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ABSTRACT  

Recent advances in technology have brought major breakthroughs in deep learning techniques. In this work, the author 
will elaborate on such techniques for output data of image processing performed on craquelure patterns in historical 
paintings. Historical painted objects, especially panel paintings, with their long environmental history, exhibit complex 
crack patterns called craquelures. These are cracks in paintings that can be referred to as ‘edge fractures’ since they are 
formed from the free surface. The analysis has been conducted on the set of selected craquelure patterns to which a 
recent deep learning method, i.e. Neural Networks algorithm is implemented and the results of such a self-learning 
process are discussed. 
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1. INTRODUCTION
Historical painted objects, with their long environmental history, exhibit a complex network of cracks called craquelures. 
Over the last decades, craquelure patterns in paintings have been intensively studied. Currently, the craquelures research 
is becoming one of the most captivating and intriguing challenges at the borderline between humanities represented by 
art history and conservation on one hand and natural sciences and engineering on the other. Motivation for research on 
craquelures are twofold. On one hand, this research are driven by academic interest how craquelures develop and why 
one can see very different and distinguishable craquelure patterns. On the other, this research aims at decisively 
contributing to the development of new evidence-based environmental specifications for paintings which are the most 
precious and vulnerable heritage asset in museums and historic buildings worldwide. In spite of recent advances in 
understanding the physical response of historic materials to changing environmental conditions, lack of material 
properties of historical materials and limited information on the effect of the damage accumulated in paintings in the past 
on their susceptibility to environmental variations have been perceived as two major deficiencies of the research. The 
deficiencies are raised as main arguments against relaxing climate control in museums which would make possible 
movement to green museums, that is reducing energy consumption and carbon emissions. 
The craquelure studies involve different approaches, starting from the use of digital technology to experimental 
measurements of prepared samples based on historical paint formulas. For instance, S. Bucklow compared different 
methods for craquelure description [1]. Other works involve crack channeling mechanisms [2], desiccation crack patterns 
[3], craquelure formation mechanisms [4,5], development of cracks [6], Neural Networks for the description of 
craquelures as mathematical graphs [7,8], and more. This leads to uncovering the physical processes, paintings history, 
geographic origin or characteristics of cracks, such as thickness and their depths, or categorization of craquelure patterns. 
Some features are also used for the authenticity of paintings. The majority of the works focusing on craquelures involve 
image processing to identify the cracks. The development, recent advances in technology as well as available software 
allow us to take heritage science to a new level. In this work, image processing is used to extract craquelure patterns. 
Moreover, the progress of machine learning is put into use. Cracks to be observed on the surfaces of different materials,  
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in particular on historical paintings, are ideal subjects for machine learning algorithms due to the big amount of data that 
the system can learn from. The areas where automated data analysis can be implemented in the domain of heritage 
science are vast. Craquelure recognition, identification, and categorization are one of them. 
To date, research shows that different origin of the paintings like Italian, Flemish, Dutch, and French, from the 14th - 
18th centuries manifest their diversity in the patterns of cracks. Therefore, the primary phase of this research involving 
image processing, deep learning, and cracks characterization, is narrowed down to the Dutch Golden Age only. Taking 
into account more than one geographic origin and different times would be ideal as various sources and their differences 
could be compared. Such extensive studies are planned for future work. However, to do so, good quality sources of 
images and a longer period time are required. Here, we focus on the creation, improvement, and optimization of the 
algorithms for craquelures. Nevertheless, the results will be highly valuable for any forthcoming works as well as for the 
heritage science community. Another challenge encountered during this research is the image size and resolution which 
translate to computational time large data sets. Additionally, large data lowers the performance of the device due to 
memory and processor consumption. Hence, only small fragments of the whole painting were examined. The inclusion 
of smaller samples also results from the fact that we focus on one type of pigment alone, namely white lead. 

2. METHODOLOGY
2.1 An algorithm for cracks extraction 

The first step of the procedure is to extract the craquelure pattern from the selected fragments of the painting. To do so, 
simple image processing operators have been implemented in an appropriately established order. The crack recognition 
is performed based on the fact that crack lines emerge with the color difference to the background paint on which they 
occur. It should be noted that for dark backgrounds, it is more complex to evoke the cracks line. In most cases, they are 
just unnoticeable both with the use of a machine and with a human eye. Only zooming in the area of interest, ideally with 
the use of a microscope, can give a picture in which all the details are revealed. The bright background, on the other 
hand, constitutes a more convenient and thus more practical case. Numerous examples of historical paintings indicate a 
higher contrast between the crack lines and homogenous background cracks in the regions of light colors, as in this work 
case. The algorithm has been developed using the Wolfram Mathematica software. Several available functions have been 
applied, from which a couple of parameters were generated. The values of these parameters were chosen for each 
fragment of the painting from the created database (Table 1) depending on contrast, quality of an image, and density of 
craquelures. The procedure of crack extraction includes the following stages: 

• Stage 1: An identification of the cracks.
To distinguish the line cracks, the selection of morphological operators has been implemented. Foremost, a grayscale is 
applied to operate on lesser data for each pixel. Secondly, the image adjustment is introduced, from which the first 
parameter emerges. However, for all of the painting fragments considered in this work, the automatic adjustment 
parameters were used, being the contrast, brightness, and gamma correction. They are set by the linearization of the 
distribution function of the combined values of pixel intensiveness. Next, the so-called gradient filter operator was 
adopted. This operator convolutes the first derivative of a Gaussian with radius r being twice the standard derivation in 
order to detect areas of a rapid change in data image. The radius is fixed and set to be r=0.5 for all samples. Such a 
choice gives the sharpest crack lines while gradient filtering. Hereafter, more complex processes were used. From there, 
an initial step was to apply a ridge filter that measures a principle curvature to find and extract ridges in an image. This is 
carried out by a local approximation of the pixel values with a polynomial of the second order, known as the Hessian 
matrix. Specifically, pixels with a greater major eigenvalue than the minor of the Hessian matrix are selected and so the 
matrix elements were rearranged giving the brightest values of the pixels at the found ridge line locations. At this point, a 
second parameter occurred subjected to the ridge filter rF. In our examples of the paintings, it oscillates from rF=2 to 7. 
The lower rF, the fewer details were recognized, and thus fewer crack lines were detected. The rF=2 is valuable for the 
the craquelure pattern where all the lines have roughly the same intensity level, which means the primary and secondary 
cracks equalized or no secondary cracks materialized. For rF<2, the primary cracks are lost. On the contrary, higher rF is 
effective for craquelure patterns which exhibit the variation in the intensity of cracks throughout the image fragment. For 
the majority of the samples chosen for the research of this work, the value of the parameter was set rF=6. Furthermore, 
one more time image adjustment was performed and on top of it the binarization operator with a threshold parameter t 
above which all pixels took a value 1 and the rest remained 0. The range of t value fluctuated from 0.015 to 0.1 for the 
chosen painting fragments, where the low value brings more contours of cracks as an outcome in the final image, 



Operator           Attributes   Values of parameters 

Gray scale  – – 

Image adjust – – 
Gradient filter r 0.5 

Ridge filter rF 2 – 7 
Binarization t 0.015 – 0.1 
Component selection c 100 – 500 

Trimming – – 

Pruning – – 

whereas the large t generates less of them. This step was one of the preprocessing functions allowing for feature and 
shape recognition of the crack lines. Having the binarized image of identified contours, the operator responsible for 
selecting specific components was implemented to eliminate any small details and objectionable parts, leaving only the 
desired lines. The operator selecting specific components was based on the provided criteria c. Parameter c took the 
values from 100 to as much as 500 that corresponded to many small components that were removed from a certain 
fragment of the painting. The number depends mostly on the frequency of undesired details and the size of the image 
itself. The result holds thick lines. Therefore, a trimming function was applied in order to trim them down. Lastly, the 
final pruning operation eliminates outer parts of branches which were not vital to the overall craquelure image output. 
The adjusted and prepared image has been achieved, which result is a specific sequence of pixels. Table 1 summarizes 
the collected operators with their parameters if any are attributed. 

 Table 1. Operators and their attributed parameters of a crack identification step for the crack extraction algorithm. 

● Stage 2: Transformation of detected cracks into a defined lines family
The second major step of the crack extraction algorithm establishes the transformation of detected cracks from the first 
step into a set of defined lines. This is carried out by detecting the endpoints of each recognized line in a modified and 
prepared image. That being said, a morphological transformation is applied, consisting of several operations such as 
convolution of erosion with dilatation, top-hat closing, and skeletonization. These functions find endpoints and branches 
in skeletonized objects. Certainly, not all the pixels resulting from the first step are needed for line reconstruction. 
Indeed, only the key pixels are looked for, using the operators mentioned above and marked as important. These are 
nodes of three types: when the lines cross each other i.e. junctions of four-line cracks, crossing of the three lines i.e. “Y” 
type, and the lines with dead ends that have no further connections. Once all such pixels are found, their adequate 
connections need to be defined. This requires a recognition function that will indicate which nodes are linked together. 
This is accomplished by assigning an index to each node. The junction type enables the algorithm to accurately establish 
the edges. Subtracting the pixels that correspond to the nodes from the image, generates a set of lines. These are 
equivalents to crack edges. Given indices of pixels enable to keep a record of the numbering of the lines generated as 
well as measuring their basic characteristics, like distance or angles. It is worth mentioning, that the algorithm will not 
consider the small round, circle-shaped cracks. It recognizes them as closed loops rather than a category for lines. The 
last phase is the simplification of the procedure. As a consequence of the operations that have been used, too many nodes 
are found. Indeed, some of the crack lines that a human eye would consider as one path, the algorithm separates into 
many small parts creating an unnecessarily large amount of lines. Therefore, the distance between the major points is 
measured and the middle points at that distance and its close neighborhood are calculated. If the points are close enough 
to a straight line connecting the major points, all middle pixels can be ignored. The process is repeated till no 
neighboring points are found. The result of this step provides the endpoints of the edges and edges of the cracks 
themselves. The process of both steps is shown in Figure 1, on the example of a fragment from the painting “Woman in 
Blue Reading a Letter” by Johannes Vermeer.  



Figure 1. The crack extraction algorithm implemented to the fragment of the painting “Woman in Blue Reading a Letter” by 
Johannes Vermeer. The first step of the algorithm addressing the cracks identification is shown on the first three zoomed-in 
pictures on the left side. Image number 3 is the final output of the step. Image number 4 shows the result of the second step 
of the algorithm where the lines (dark blue) and their endpoints (red) are detected. 

2.2 Selection of historical paintings fragments 

White pigment is one of the most vital colors in art. For years it has been used as the background in paintings, as well as 
to highlight particular parts of art giving them warm tones. Despite its toxic properties, white lead has been used 
continuously throughout history. The effects of white lead were appreciated by such artists as Vermeer or later Van 
Gogh.  
In this paper, profound research has been performed on paintings for which white lead was used. To create a database, 
accessible electronic sources have been explored. Only a few paintings were taken into account due to the complexity 
with crack identification as mentioned above. In the majority, lack of good quality images was a problem but also 
insufficiency in white parts of paintings exclusively or mixed with light color additions that change neither chemical nor 
mechanical behavior of white lead pigment. The quality of a painting is essential for the cracks extraction algorithm to be 
well-defined. One of the considered paintings with white lead is that of Fabian and Fortunato [Fabian & Fortunato 2010]. 
The Author of this work looked into seventeenth-century paintings towards the determination of lead pigment origin. 
The list of sampled paintings delivered in that work consists of a large amount of data including such information as 
author, the title of art, collection, location or region where each sample was painted, and its chemical composition. Still, 
many of them are inoperative for the goal of this work since no white lead alone had been found but rather the mixture 
with other pigments which might change the craquelure patterns. In Figure 2a the difference in craquelure structures can 
be seen in the example of “The Martyrdom of Saint Sebastian” by Battistello Caraccialo. Such variabilities are especially 
visible in the sweeping areas from light to dark color shades. In the chosen example, the denser net of cracks appears in 
dark regions, while the less packed in light ones. The contrary situation can be noticed in the painting “Sara Serena 
Rubens” by Peter Paul Rubens in Figure 2b in which very clear horizontal cracks (primary cracks) go through gray, 
white and, then skin tones. The same holds with the net of cracks in between the primary cracks. Indeed, variation in 
pigmentation does not influence the structure of the craquelure arrangement. It suggests that the artist used white lead 
also in gray and skin tone region.   
It is worth mentioning that the crack extraction algorithm created for the purpose of this work has its major disadvantage. 
Namely, the process of craquelure extraction does not distinguish cracks itself from the lines constituting the changing of 
colors in paintings. It is especially evident in Fig. 2b in which the line of the cheek is also recognized as a crack. 
Therefore, the database created in this work considers fragments of paintings in which no change of color appears. 
Consequently, the well-defined craquelure pattern derivation is assured. A complete database can be found in Table 1. A 



Painting     Title of the   Author Year       Medium  Source  Description of 
    no         painting         fragments 
A            Women in Blue    Johannes     c. 1662-    Oil on   Rijksmuseum,  13 fragments of various 

  Reading a Letter  Vermeer 1665     canvas  Amsterdam    fragments of the wall 

B           The Milkmaid by  Johannes  1657-  Oil on      Rijksmuseum,   2 selected fragments 
        Dutch master      Vermeer 1658  canvas  Amsterdam      of the wall 

C  Minerva in her   Rembrandt   1635    Oil on   The Leiden  3 selected fragments 
      Studies         canvas       collection      of the wall 

D  The Sermon of  Pieter              1566    Oil on  Museum of Fine      1 fragment from white 
   Saint John      Bruegel the  wood    Arts Budapest        shawl, 1 from sky,  
 The Baptist  Elder  1 from sleeve of a women 

sample of fragments cropped out from the chosen painting is shown in Figure 2. The complete database consists of 21 
fragments of four different paintings.  

Figure 2. Craquelure patterns of the two selected paintings: (a) “The Martyrdom of Saint Sebastian” by Battistello 
Caraccialo revealing the change of cracks structure in dark and light pigments, and (b) “Sara Serena Rubens” by Peter Paul 
Rubens showing the uniform distribution of cracks in the light region of the painting. 

Table 2. Database of the paintings consisting of the lead white pigment selected for the research of this work. 

 

2.3 Characterization of extracted cracks 

As mentioned earlier, the created algorithm makes the points and edges recognition possible. We obtain a defined family 
of lines spread over the region of the same image size as the initially chosen fragment of the painting. That being said, 
each fragment has certain ranges of axis x and y. The statistical analysis constitutes specifying a couple of line 
characteristics such as their lengths, the total number of lines per unit square, and the deviation of lines from the vertical 
line. From these three types of grouping, one is chosen to categorize the lines that represent the craquelure pattern. The 
selected categorization is the one expressing parallel or perpendicular lines depending on the angle α they create with a 
respective direction. For sets of lines with a specific α that changes every 10 degrees, the length of the mean cracks is 
calculated as well as their amount. These calculations are followed up by the machine learning algorithm, to be specific 



the Neural Networks. The self-learning procedures of this algorithm are fed with the obtained results from the manual 
crack identification.  

2.4 Determination of craquelure pattern distribution using Neural Networks 

Build-in functions of the Wolfram Mathematica software are used for Neural Networks implementation. The adopted 
technique for this work is to learn the distribution of the craquelure patterns for each fragment of the paintings selected 
and listed in Table 1. The Neural Networks algorithm produces different results every time used, even with the same 
input data. The reason lays in the learning processes of the machine learning algorithm in which multiple learning paths 
are possible. Nevertheless, all output data are correct and should not be neglected. To verify the right direction, we take 
ten learned distributions with the amount of the points equal to the number of the endpoints found manually in the earlier 
section for the same fragment of extracted craquelure pattern. The results are later put into the final operation that defines 
the order of the distribution. For all ten cases, we obtain the same order number. Hence, the representation of the primary 
distribution is taken in the following calculations. Training distribution on the data given as a list plot of points provides 
a possibility to generate a similar craquelure pattern. Nonetheless, the new pattern is artificial, by means does not have a 
real equivalent in historical paintings, in any case not necessary. The algorithm used ends up with a smooth kernel 
distribution in which the probability density for value x is given by  

where k(x) is kernel and h bandwidth parameter. Here, the Gaussian kernel is used. The use of the method based on 
kernel density estimation calculates the bandwidth for each sample. To validate the correctness of the algorithm, the 
source data is divided into two parts (training data and test data) and used as a benchmark. Data division is repeated 
multiple times with different distributions of the source data and provides similar results. The obtained distributed data of 
points that represent the craquelure pattern is analyzed by looking at the histograms of each axis. The histograms are 
simply projections of point distribution to each axis. One can notice the periodicity of the signal obtained. The ranges of 
histogram bars are diverse due to points scattered throughout the plot. In Figure 3, the visualization of histograms of each 
axis and the found distribution of the cracks network is shown.  

Figure 3. Visualization of the craquelure pattern distribution along with its histograms for obtained points. The gray lines in 
the bottom panel represent the original crack structure of the fragment of the painting “Woman in Blue Reading a Letter” by 
Johannes Vermeer shown in Fig.2. Blue dots are the point distribution obtained from Neural Network algorithm. 



 

 
 

 

 
 

2.5 Defining an order parameter of the recognized craquelure pattern 

The constructed model for the craquelure network reconstruction and its points distribution representation in a two-
dimension space presented in section 2.3 led to the reasoning of how to categorize the results of different painting 
fragments. For this purpose, a form of the order parameter is determined. The specific methodology has been applied. 
That is to say, the mathematical construction of mesh called a Voronoi diagram is used as a parameter identifying the 
degree of the arrangement order of crack lines in a given region. The Voronoi diagram creates a convex polygon, the so-
called Voronoi cell, for each point in the plane. Mathematically, for the set of points P in space , the Voronoi cell 
corresponding to each point  is defined as . In the area , the edges are nearest to  than to any other 
point in : 

 
For the configuration of P points, the group of Voronoi cells  are produced. The created 
polynomials never overlap. In the case of the points distribution that is highly nonuniform, the Voronoi cells 
significantly differ in shape and size, whereas for the arrangement close to even, the cells are nearly the same. In the 
event of the perfectly uniform configuration, the cells are all identical to the shape of a honeycomb. Figure 4 shows the 
Voronoi mesh for the set of points which represent the craquelure pattern of the case fragment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The Voronoi tessellation (blue, thin lines) of a point configuration (red points) that represent the craquelure pattern 
(gray lines) for the painting fragment of “Woman in Blue Reading a Letter” by Johannes Vermeer. 

 
Next, the Voronoi iteration process, known as Lloyd’s algorithm, has been adopted to obtain an equal arrangement of the 
initial point configuration. The goal is to calculate the number of iterations needed to reach the composition of the points 
as near to an ideal uniformity as possible. The iterations number sets the degree of order in the system. The higher 
iteration, the higher degree of disorder, while the lower iteration number, the arrangement of points is more regular, 
evenly spaced over the space of the painting fragment. The input for the iteration algorithm is the configuration of the 
initial points obtained from calculations from the first part of this section i.e. the extraction of a craquelure pattern along 
with its point distribution that constitutes its representation, such as a set of points scattered in the plane of specific 
dimensions. Next, the Voronoi mesh is implemented for this point distribution. The third step includes finding the 
centroid in each created cell of a Voronoi diagram. A new points formation PI is generated. Here, the first iterations end. 
In the second iteration, again the Voronoi mesh is executed for the new points network and the new centroids are found. 
The procedure is repeated till the configuration of the points is obtained, as evenly spread as possible. Hence, the point 
configuration  corresponds to an array of point sets . The number of iterations N 
constitutes an order parameter that reveals the degree of complexity for a given set of points.  
 
 



 

 
 

 

 
 

3. RESULTS  
.  

3.1 Human controlled calculations 

In this section, the results of craquelure patterns of the given painting fragments are shown, in which the white lead 
paints is used. Four selected paintings are presented in Table 1. From each painting as many as possible fragments were 
cropped. Thus, from the “Woman in Blue Reading a Letter” by Johannes Vermeer, 13 fragments were extracted due to 
the wide area of bright parts in this particular painting. In the rest of the chosen paintings, two or three fragments were 
considered. Limitation in these cases arises from insufficient regions with white lead. For all fragments, both the high 
and low qualities were image-processed with the two steps algorithm described in section 2.1. The automatic image 
adjustment allowed to equalize the quality of fragments that were in worse condition. First operators in the algorithm 
methodology, such as grayscale, image adjustment, and a gradient filter, allow for separating the dataset of the painting 
fragments into two categories. The first category, consisting of fifteen cases, has clear and visible cracks that easily can 
be distinguished from the background. For these, the following set of parameters was employed: rF = 5, t = 0.094, and c 
= 300.  One can notice the precise numbers especially for parameter c, in which the third decimal place is also 
influential. The choice of such a parametrization is based on the trial and error method till the best match of the extracted 
cracks with a real object is obtained. The second category includes the examples in which cracks are less evident. For 
these samples, different parametrization was applied: rF = 5, t = 0.07, and c = 500. Thus, a group of examples with the 
extracted cracks presented as the black contours on the white background is obtained. At this point, the next part of the 
methodology provided in section 2.1 is carried out. This part focuses on the craquelure pattern of derived sample image 
interpretation from which the defined lines are determined. For each image that represents a particular painting fragment, 
lines with its endpoints are found in the way that the structures of cracks of the real object are still preserved. 
Indubitably, it may be affirmed that all compositions of lines and points of the selected painting fragments are 
homogeneous. This fact is also backed up by the characteristics and statistics of lines and points of each fragment. 
Indeed, the results obtained from manual calculations that can be found in the first three columns of Table 3, are 
characterized by similar features. The number of lines for which the angle between them and the vertical line is =450, is 
roughly two times lesser than the total number of lines. This indicates the isotropicity of the pattern, i.e. no specified 
direction of cracks. With such results, there are many possibilities of the composition of lines, such as square patterns or 
mud type cracks. The statistical calculations were also performed for other angles. Additionally, an analysis of a different 
mock-up was carried out. This work is described in paper submitted to be published [Abdollahzadeh Jamalabadi et al. 
2021]. That is to say, the craquelure pattern on gesso layer on a wooden panel was experimentally prepared. The cracks 
lines that emerged on gesso exhibited an evident distinction of lines along the longitudinal wood direction which 
appeared to be longer than the ones across that were significantly shorter. Certainly, for an angle =100 from the 
longitudinal direction, 75% of lines lied inwardly. The percentage raised to 91% for already 200. Only a small part of 
lines across the grain appeared. On the contrary, the fragments considered in the research of this work, being the 
historical paintings in which the white lead pigment was used, have no specified orientation nor length. Calculated mean 
lengths of the lines of each fragment are comparable with respect to the size of the cut fragments. Few exceptions appear 
in the data, for example, the mean length of the last three samples D1-D3 from the same painting is significantly smaller. 
The total number of lines is also higher which translates into more line intersections. Moreover, fragments D1-D3 as the 
only one from chosen painting selection is on wood panel. Hence, the main cracks – vertical lines – that go through wide 
areas of paintings are the response of wood substrate strain change. The painting fragment numbers, placed in first 
column of Table 3, correspond to the historical paintings listed in Table 1. Each of the paintings has a capital letter 
assigned to it, whereas the fragments cropped out from them are numbered.     

3.2 Machine Learning computation 

One of the major elements of this work is the use of Neural Networks series of algorithms. For each set of points that 
represent both the endpoints and lines of craquelure patterns (extended input), a particular computation that learns the 
distribution of points based on deep machine learning is implemented. The method is self-training based on provided 
point distribution. The learn distribution process includes such indicators as training examples used and best-chosen 
methods. Training examples vary depending on the number of points given, see Table 3. Regarding the methods, 
Contingency Table and Kernel Density Estimation were employed. The number of points that the algorithm returns is set 
to be the amount of the endpoints of the extracted lines. This number can be found in column 3 of Table 3. It should be 
noticed that the endpoint amount will not necessarily be double the line quantity since many of them are the connections 



 

 
 

 

 
 

of lines. In this sense, one point can be an endpoint of one, two, or three lines - more than three is a very rare case in 
general, and it does not occur in this study. The results collected for all considered painting fragments show the 
similarity in their homogeneousness, which was already evident in the characteristics of the extracted lines analysis. 
Therefore, the output of Neural Networks confirms the comparable behavior of craquelure patterns in the painting 
fragments where white lead was used. However, the research of this work includes only four paintings. Hence, extended 
research comprising of a broad database of paintings is required. Nevertheless, the paintings in this work exhibiting their 
uniformity are compared with artificially generated craquelure patterns. Thereby, a parallel analysis has been performed 
revealing the distinctions between the lead white fragments and generated crack lines of different pattern categories. That 
being said, three imitations of the obtained cracks were created. Two of them are the horizontal crack lines with no 
secondary cracks in between and that do not cross themselves. The third one presents the circles with a common center. 
Such a pattern is usually caused by the mechanical impact, points of tension, or a different type of support structure. All 
generated and three chosen crack lines extracted from the selected historical paintings (fragments A5, B1, and C1 from 
Table 3) are shown in Figure 5.  
 

 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 5. Craquelure patterns. On the left side: extracted from the historical paintings, numbers correspond to the fragments 
presented in Table 3, on the right side: artificially generated cracks described above. 

Next, Lloyd’s algorithm is applied and the number of iterations needed to obtain the evenly spaced sets of points 
calculated. The indicator for the uniform distribution is the area of each cell in the Voronoi mesh. The more equal the 
areas of individual cells in one fragment, the higher will be the homogeneousness of the system. The areas can be 
visualized by data histograms. The percentage of k iteration is computed in relation to the input point distribution that is 
iteration number zero. Therefore, the question arises: after how many iterations do the areas of each cell equalize. An 
infinite number of iterations are needed to equalize the cells almost at the same level. Nevertheless, the Lloyd algorithm 
does not lead to a perfectly distributed space of points i.e. the honeycomb pattern. As far as all studied cases of historical 
paintings are concerned, the results are roughly the same. For more than 200 iterations, the percent of the difference in 
areas, from the biggest to smallest, in two sets that correspond to no iteration case and iteration number k, barely changes 
or does not change at all. On that account, for 200 iterations, the percentage is 7.3%, whereas for 1500 iterations it is 
7.2%. This indicates the vertical asymptote at around 7% . The drop of the iteration number results in a percentage 
increase. At the level of the fifth iteration, the areas equalize so that the percentage is dropping to 25 - 60%. This relation 
can be seen in Figure 6, in which a dependency between the number of iteration and the percentage of the cell area is 
presented. It can be noticed, that the knee of the curve and exponential function vary depending on the studied fragment. 
However, the knee points for each fragment are in the range of 10 to 12 iterations. The average is equal to 11, which is 
marked in Fig. 6 by the grey line. The knee point of each plot is adopted to be a threshold at which the point composition 
becomes homogeneous. The percentage of the area and the corresponding iteration number for each fragment are listed 
in Table 3. As it was mentioned earlier, the artificially generated point distribution of the specific craquelure patterns was 
also computed for comparison purposes. The output data for these three cases are shown in Figure 6 in blue. The Y-axis 



 

 
 

 

 
 

for these curves is on the right side of the graph. The behavior can be easily understood. The second iteration constitutes 
the threshold of homogeneity. Further iterations do not change the composition of the points and this stability is held on 
70 to 75% of the obtained areas. Such a result indicates that the methodology in place is sufficient for the craquelure 
pattern type recognition at a certain level of credibility. Clear differentiation can be seen between the generated cracks, 
that are without noises, and the crack lines extracted from the studied historical paintings. One may predict that for a 
wider database of the fragments, the curves at the percentage-iteration dependency graph will be more spread holding the 
same average iteration value at the level of iteration=11. The future work will include different types of pigments along 
with white lead to compare various results and obtain the full picture of the methodology strategized in this work. 
Furthermore, the experimental works that currently are being performed will also be included in the craquelure patterns 
research. Experimental measurements will provide a comprehensive database of material properties and structural 
features of pictorial layers, in particular, different types of pigments. As of today, an extensive study is conducted for the 
lead white, yellow ocher, and azurite. The physical analysis of the prepared samples is carried out in the laboratory 
including the measurements using environmental rooms, universal testing machines for tensile properties determination, 
a dynamic mechanical analyzer, as well as a vacuum microbalance for measuring water vapor adsorption isotherms 
coupled to a vessel for measuring moisture-related swelling. Such parameters as Young’s Modulus and strain at break 
are calculated for the painting samples. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The percentage of the Voronoi cell areas as a function of Lloyd’s algorithm iteration number. The black lines 
correspond to the fragments of the historical fragments listed in Table 3. The blue lines correspond to the three artificially 
generated craquelure patterns from the right part of Figure 5, marked A, B, and C. The diamond-shaped points are the knee 
of each curve. The vertical grey line shows an average iteration number for historical paintings. 

 

Table 3. Data obtained from manual calculations and the data output of the series of the Neural Networks of algorithms. 

 Manual calculations Machine learning calculations 

Painting 
fragment no 

Size of the 
fragment 
[pixels] 

Number of 
extracted 

lines 

Mean 
length of 

lines 
[pixels] 

Number of 
lines 

deviated 
=450 from 
a vertical 

line 

Neural 
Network 
training 

examples 

Percentage 
of the area 

[%] 

Number of 
iterations 

A1 1727x960 321 64 169 22115 44 11 
A2 1936x993 314 61 158 21829 36 11 
A3 2218x1070 577 54 284 34143 41 11 
A4 1895x976 217 82 131 19954 24 11 
A5 1880x1046 357 62 182 23124 41 11 



 

 
 

 

 
 

A6 1749x976 185 88 79 17705 26 11 
A7 1934x1047 239 62 130 17055 30 10 
A8 1951x1003 385 59 205 26036 24 12 
A9 1798x1011 213 73 110 17581 24 11 

A10 1996x1050 447 57 233 29800 17 11 
A11 2012x1029 645 49 290 35508 42 11 
A12 2090x1006 398 60 187 27866 42 11 
A13 1892x936 225 61 131 15097 35 11 
B1 880x565 264 31 115 9891 35 11 
B2 1028x609 201 34 92 8517 24 12 
C1 1782x1036 439 53 228 28682 22 11 
C2 1928x939 539 44 282 30513 26 10 
C3 1827x914 235 54 114 16821 28 11 
D1 769x773 386 30 209 15859 40 11 
D2 1889x1010 829 38 448 41474 34 12 
D3 1122x984 670 32 321 27944 28 11 

 

4. SUMMARY AND DISCUSSION 
In this work, the investigation of craquelure patterns in historical paintings of the Dutch Golden Age origin has been 
presented for which white lead as a pigment was used. The model has been created that allows to extract and perform a 
complete analysis of the cracks composition of the cropped fragments of the given paintings. The model consists of 
several main steps. These are identification of cracks in the original fragment, a transformation of the detected cracks 
into a set of lines that have defined the endpoints, manual analysis of the obtained lines from which numerous parameters 
characterizing the pattern are acquired. Furthermore, the Neural Network’s series of algorithms are implemented, whose 
output is a self-learned distribution of points that later can be categorized using the Voronoi iteration process. This 
inventive model stands out as it is formulated in a way that is applicable for various types of paintings, fragments of 
paintings, or other patterns. It has been demonstrated that in all considered cases the craquelure patterns are similar to 
each other, resembling the type of pigment and origin of the art. This was obtained by a multimethod applied to each 
case of the chosen fragments. The same process has been carried out for the idealized cracks composition composed of 
simple lines. Such simulated patterns, running through the algorithm, showed that the order parameter is much slower 
than the one for historical paintings. This kind of comparison allowed us to see a wider picture of a possible 
methodology of the cracks categorization and, therefore, the model for the origin of paintings and their physical 
characteristics. Further work on this topic using a wider database and experimental efforts is being in progress. 
Additional refinement of the model will also enable understanding any supplementary parameters related to the statistical 
analysis of the given patterns.  
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