# LIDAR based semi-automatic pattern recognition within an archaeological landscape

Karl Hjalte Maack Raun Heidelberg University

HEIDELBERG UNIVERSITY

# LIDAR based semi-automatic pattern recognition within an archaeological landscape

Inauguraldissertation zur Erlangung der Doktorwürde der Philosophischen Fakultät der Universität Heidelberg

vorgelegt von: Raun, Karl Hjalte Maack.

Erstgutachter: Volkmann, Armin.

Zweitgutachter: Meier, Thomas.

Datum: 12.02.2018.

Heidelberg University, Ur- und Frühgeschichte

In collaboration with: IWR Interdisciplinary Center for Scientific Computing and the Cluster of Excellence, Asia and Europe in a global context. Ph.d. Dissertation

URN: urn: nbn: de: bsz: 16-propylaeumdok-44098URL: <u>http://archiv.ub.uni-</u> heidelberg.de/propylaeumdok/volltexte/2019/4409

DOI: https://doi.org/10.11588/propylaeumdok.00004409

# **Table of Contents**

| FORMALITIES                                                                          | 5   |
|--------------------------------------------------------------------------------------|-----|
| ACKNOWLEDGMENTS                                                                      | 6   |
| List of figures                                                                      | 7   |
| List of tables                                                                       | 9   |
| List of equations                                                                    | 10  |
| 1. INTRODUCTION                                                                      | 14  |
| 1.1 MOTIVATION                                                                       | 15  |
| 1.2 CHAPTERS                                                                         | 16  |
| 1.3 CREDIT                                                                           | 17  |
| 2. ARCHAEOLOGICAL LIDAR                                                              | 18  |
| 2.1 REMOTE SENSING                                                                   | 18  |
| 2.2 BASIC LIDAR                                                                      | 19  |
| 2.3 THE LIDAR POINT                                                                  | 21  |
| 2.4 THE LIDAR PRODUCT                                                                | 23  |
| 2.5 UNDERSTANDING LIDAR                                                              | 26  |
| 2.6 ACTIVE SENSING VERSUS PASSIVE SENSING                                            | 30  |
| 2.7 GEOMETRIC AND RADIOMETRIC CALIBRATION                                            | 34  |
| 2.8 BATHYMETRIC LIDAR                                                                | 36  |
| 2.9 LIDAR INTERPOLATION                                                              | 37  |
| 2.10 LIDAR VISUALIZATION                                                             | 46  |
| 2.11 LIDAR ACCESS                                                                    | 53  |
| 2.12 LIDAR FORMATS                                                                   | 56  |
| 2.13 ARCHAEOLOGICAL LIDAR POTENTIAL                                                  | 57  |
| References                                                                           | 60  |
| 3. LANDSCAPE PERSPECTIVES                                                            | 67  |
| 3.1 A PERSPECTIVE FROM LOWER FRANCONIA                                               | 69  |
| 3.2 CASE STUDY ON SIMPLE SHAPE DETECTION: BURIAL MOUNDS                              | 74  |
| 3.3 ARTIFICAL MOUNDS                                                                 | 80  |
| 3.4 CHANGING LANDSCAPES IN LOWER FRANCONIA                                           | 84  |
| References                                                                           |     |
| 4. STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY | 90  |
| 4.1 QUANTIFYING THE FIELD                                                            | 90  |
| 4.2 SYSTEMATIC LITERATURE REVIEW                                                     | 91  |
| 4.3 NETWORK ANALYSIS                                                                 | 94  |
| 4.4 TESTING THE MODEL                                                                | 104 |
| 4.5 THE NETWORK IMPACT                                                               | 107 |

| 4.6 STATE OF THE ART FOR AUTOMATED DETECTION WITHIN LIDAR LANDSCAPES | 109 |
|----------------------------------------------------------------------|-----|
| References                                                           | 114 |
| NA core references                                                   | 116 |
| 5. APPLIED DETECTION IN LIDAR DATA                                   |     |
| 5.1 TWO METHODS OF INFORMATION EXTRACTION                            | 121 |
| 5.2 HIERARCHY OF INFORMATION EXTRACTION                              | 124 |
| 5.3 SIMPLE INFORMATION EXTRACTION                                    | 126 |
| 5.4 VISUAL DETECTION                                                 | 128 |
| 5.5 CROWD-SOURCED VISUAL DETECTION                                   | 134 |
| 5.6 COMPUTATIONAL MOUND DETECTION BY TEMPLATES                       | 142 |
| 5.7 COMPARISON BETWEEN CROWD-SOURCED DATA AND TEMPLATE MATCHING      | 159 |
| References                                                           | 166 |
| 6. CONCLUSIONS AND PERSPECTIVES                                      | 168 |
| References                                                           | 174 |
| Appendix 2A                                                          | 175 |
| Appendix 3A                                                          | 176 |
| Appendix 3B                                                          |     |
| Appendix 4A                                                          | 224 |
| Appendix 4B                                                          |     |
| Appendix 4C                                                          |     |

# FORMALITIES

This dissertation finalizes a structured graduate program at the Interdisciplinary Center for Scientific Computing in collaboration with the Junior Research Group, Digital Humanities, at the Cluster of Excellence, Asia and Europe in a Global Context. The dissertation *LIDAR based semi-automatic pattern recognition within an archaeological landscape* is written as a monograph for the Philosophical Faculty at the Institute of Ur- und Frühgeschichte, Heidelberg University.

The projects first supervisor is Dr. Armin Volkmann, Junior Research Group leader, Cluster of Excellence, Asia and Europe in a Global Context, Heidelberg University. The second supervisor is Prof. Dr. Thomas Meier, Institute of Ur- und Frühgeschichte, Heidelberg University.

The project was also aided by the two mentors of Prof. Dr. Bernhard Höfle, Geographisches Institut Heidelberg, Heidelberg University, and Prof. Dr. Diamantis Panagiotopoulos, Institute of Klassische Archäologie, Heidelberg University.

In connection with the dissertation, three publications have also been produced. Two publications are as first author, and one as co-author. Several other means of public mediation have also been carried out during the project, such as presentations of results at conferences, posters, blogs, and smaller technical and practical publications. The three main articles produced are accepted for publication or published.

- I. Pfeiffer, M., K. Raun & A. Volkmann. 2016. Digital Mapping Detection and prospection through digital and physical landscapes at Koumasa, Crete. *HeiDOK:* Heidelberg dokumentenserver, Heidelberg. DOI: <u>10.11588/heidok.00021948</u>
- II. Raun, K., M. Pfeiffer & B. Höfle. 2018. Visual detection and interpretation of cultural remnants on the Königstuhl hillside in Heidelberg using airborne and terrestrial LIDAR data. In: *Digital Geoarchaeology*. New Techniques for Interdisciplinary Human-Environmental Research. Eds. C. Siart, M. Forbiger & O. Bubenzer. Natural Science in Archaeology, Springer International Publishing, AG 2018, p. 201-12. DOI: 10.1007/978-3-319-25316-9\_13
- III. Raun, K. & D. Paterson. 2019. Systematic literature review on automated monument detection. In: *Proceedings of the 44th conference on computer applications and quantitative methods in archaeology*, Oslo, March 2016, CAA Norway.

# ACKNOWLEDGMENTS

This thesis is the outcome of work and research in between 2014 and 2018 at the Institute of Urund Frühgeschichte, Faculty of Philosophy, Heidelberg University. The project is also an outcome of collaboration by the Interdisciplinary Center for Scientific Computing, IWR, and the Cluster of Excellence, Asia and Europe in a global context.

I would like to express sincere gratitude to colleagues, collaborators, and friends, without whom this project would not have been a success. In particular, I would like to thank my supervisors Armin Volkmann and Thomas Meier. Thank you for your guidance, support and encouragement during this project. In addition, special thanks is also given for help and guidance from my mentors Diamantis Panagiotopoulos and Bernhard Höfle.

Many thanks should also go to all the people who have aided this project by assistance, discussion, perspectives, or endless help out of interest and kindness. Thank you to: Duncan Paterson, Christian Seitz, Karsten Lambers, Ralf Hesse, Øivind Due Trier, Willem Vletter, Anna Schneider, David Stott, Steffen Terp Laursen, and Hubert Mara.

Thank you also goes to my colleagues who made the journey fun and interesting, and with whom many a good lunch and discussion has been initiated: Matthias Guth, Erik Decker, Matthias Arnold, and Johannes Alisch.

Great gratitude should also be extended to my colleague, Michelle Pfeiffer, with whom I shared most of this journey together with. Thank you so much for your aid, all the discussions, and making sure that life in Heidelberg was not just focused on work.

Thanks should also be extended to all my family and friends who kept helping me during the dissertation work.

Lastly, the most heartfelt thanks goes to my wife, Trine Kellberg Nielsen, who have been the sole reason why I embarked on this adventure, and who during this whole project have kept supporting and aiding me in the process.

# List of figures

| FIGURE 1: AIRBORNE LIDAR RECORDING BY COMPARISON OF FULL WAVEFORM IN THE                                         |
|------------------------------------------------------------------------------------------------------------------|
| AMPLITUDE OR DISCRETE SCANNING BY DIRECT ENERGY RECORDING                                                        |
| FIGURE 2: A SIMPLISTIC REPRESENTATION OF DIFFERENCE BETWEEN DSM AND DTM. SURFACE                                 |
| MODELS INCLUDE STRUCTURES AND CANOPIES                                                                           |
| FIGURE 5: I DE PRINCIPLE OF LIDAR RECORDING                                                                      |
| REFLECTED AMPLITUDE TO CALCULATE DISTANCE                                                                        |
| FIGURE 5: A RIEGL VZ-400 ON SITE IN DENSE VEGETATION. ATTACHED IS HIGH-RESOLUTION                                |
| CALIDRATED FISH-ETE CAMERA FOR CAFTURING RUD COLORS                                                              |
| PLANTS IN DRY CONTEXT (LASAPONARA & MASINI 2012, 26)                                                             |
| FIGURE 7. A AND B SHOW TRUE ERRORS OF HEIGHT FROM THE SIMULATED STUDY B SHOWS                                    |
| STANDARD DEVIATION BY INDICATED LINE THE POINT CLOUDS WERE CONFIGURED WITH                                       |
| ERRORS A SHOWS INCORRECT INSTRUMENT PARAMETERS BY SCAN-ANGLE [OFFSET                                             |
| $\Delta \Theta = 0.008^{\circ}$ SCANNER SCALE ERROR [ $\Delta S = 0.001$ ]. WITH A FLYING HEIGHT OF 1000M (AFTER |
| FRIESS 2006. 2)                                                                                                  |
| FIGURE 8: STANDARD INTERPOLATED DEM DATA STRUCTURE: 1. GRID OF A REGULAR SOUARE                                  |
| MATRIX DRAPED ON A DEFINED PLANE WHERE EACH PIXEL REPRESENTS ELEVATION, 2.                                       |
| TRIANGULATED IRREGULAR NETWORK. TIN, MESH TO MODEL SURFACE AS CONTIGUOUS                                         |
| NON-OVERLAPPING TRIANGLES, 3. IRREGULAR POLYGONS TO MESH SURFACE BASED ON                                        |
| CONTOUR LINES AND ORTHOGONALS (AFTER MOORE ET AL. 1991, 4)                                                       |
| FIGURE 9: COMBINED TLS SCANS WITH DIFFERENT GRID SIZE. FROM LEFT TO RIGHT: 1 M. 0.5 M.                           |
| 0.1 M. SHADED RELIEF: AZI. 45°, 270 ANGLE (RAUN ET AL. 2018)                                                     |
| FIGURE 10: CULTURAL AND NATURAL LINEAR FEATURES WITHIN THE LANDSCAPE. NATURAL                                    |
| LINEAR FEATURES MAINLY CONSIST OF FALLEN TREES. SHADED RELIEF: AZI. 45°, 270                                     |
| ANGLE                                                                                                            |
| FIGURE 11: POINT DENSITY TO M <sup>2</sup> 43                                                                    |
| FIGURE 12: FOUR PITFALL TRAPS AT NINE DIFFERENT POINT DENSITIES. REDUCED DATASET BY                              |
| PPSM FROM LEFT TO RIGHT IN DIFFERENT CONTEXT: 7.3, 3.6, 1.8, 0.73, 0.29, 0.15, 0.073,                            |
| 0.036, AND 0.007 PPSM. THEY FOUND 1.8 PPSM TO BE NECESSARY FOR COMPUTATIONAL                                     |
| DETECTION OF PITFALL TRAPS (TRIER ET AL. 2011; TRIER & PILØ 2012)45                                              |
| FIGURE 13: BURIAL MOUNDS FROM OBERHAUSEN. BY: A: CONTOUR LINES, B: ELEVATION MESH,                               |
| C: SHADED RELIEF: 45° AND 90 DEGREE, D: SHADED RELIEF: ZENITH: 45°, AZIMUTH: 315°. ©                             |
| BVV                                                                                                              |
| FIGURE 14: VISUALIZATION TECHNIQUES ILLUSTRATING DIFFERENT FEATURES IN THE                                       |
| LANDSCAPE IN ACCORDANCE TO SLOPE. (FLATLANDS) PLOUGH HEADLANDS ON A FLAT                                         |
| PLAIN NEAR ENDINGEN AM KAISERSTUHL. 1 M LIDAR DATA © LGL IN BADEN-                                               |
| WURTTEMBERG. (GENTLE SLOPES) THREE DIFFERENT TYPES OF WORLD WAR I TRENCHES                                       |
| WITH SHELTERS ON GENTLE NE SLOPES OF CRNI HRIBI, NEAR RENCE, SLOVENIA. 1 M LIDAR                                 |
| DATA © ARSO, SLOVENIA. (MODERATE SLOPES) CHARCOAL BURNING PLATFORMS IN THE                                       |
| HILLS OF THE BLACK FOREST. 1 M LIDAR DATA © LGL IN BADEN- WURTTEMBERG. (STEEP                                    |
| SLOPES) A LATE ROMAN CAMPO ON A ROCKY OUTCROP WITH A CHURCH OF ST. HELENA,                                       |
| WEST OF KUBARID, SLOVENIA. U.S M LIDAR DATA © WALKS OF PEACE IN THE SUCA RIVER                                   |
| FUUNDATION (KUKAL) & HESSE 2017, 36-7).                                                                          |
| FIGURE 15: A SCHEMATIC DEPICTION OF KNOWLEDGE CONSTRUCTION                                                       |
| FIGURE 16: CURVES IN THE LANDSCAPE. (A) PEAK; (B) PIT; (C) RIDGE; (D) RAVINE; (E) RIDGE                          |
| SADDLE; (F) KAVINE SADDLE; (G) CONVEX HILL; (I) CONCAVE HILL; (I) CONVEX SADDLE                                  |
| $\begin{array}{c} IILL; (J) CONCAVE SADDLE IILL; (A) SLOPE IILL; (I) FLAT (IKIEK ET AL. 1995, 924)$              |
| ΓΙΟΌΛΕ ΙΖ. ΙΡΕΛΕΙΣΕΡ ΥΕΛΣΙΟΝ ΟΓ ΟΛΑΡΟΑΕ ΡΕΔΑΙ ΟΓ ΥΕΛΛΣ ΟΙ ΨΕΛΚ ΑΝΡ ΙΕΛΚ                                          |
| CONTRIBUTORS                                                                                                     |
| FIGURE 19. RELIFE SHADING TO HEIGHT CHANGES FROM RIEDENHEIM IOWER FRANCONIA THE                                  |
| AREA INCLIDES 11 BURIAL MOUNDS SHADED RELIFF AND 71CMA OF 7 VALUE RV MOVING                                      |
| PLANES CALCULATION · AZI 45° 270 ANGLE · 1 KM2 TILE ↑ NORTH 73                                                   |
| I BINES GIECOLATION, MEL 75, 270 MIGHE, I KMZ IILE, I NORTHANNANANANANANANANANANA / 5                            |

| FIGURE 20: COMPLETE DIGITAL TERRAIN MODEL OF LOWER FRANCONIA BY SHADED RELIEF:<br>AZI. 45°, 270 ANGLE                                                       | 73           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| FIGURE 21: SPATIAL COMPOSITION IN LOWER FRANCONIA OF THE NINE SITES FOR FURTHER                                                                             |              |
| INVESTIGATION                                                                                                                                               | 74           |
| FIGURE 22: BURIAL MOUND CONCENTRATIONS BY KERNEL DENSITY DISTRIBUTION IN LOWE                                                                               | R            |
|                                                                                                                                                             | / 5          |
| FIGURE 23: ARTIFICIAL MOUND CREATED FOR PRACTICAL PURPOSE. A STANDARD                                                                                       |              |
| ACCUMULATED MODERN PEAK OF SOIL AND MATERIALS LOCATED NEXT TO A ROAD AND                                                                                    |              |
| DITCH IN THE FOREST NEAR MAROLDSWEISACH, UNTER FRANKEN. VIEW TOWARDS EAST                                                                                   | `81          |
| FIGURE 24: ARTIFICIAL MOUND CREATED FOR SYMBOLIC PURPOSE. COMMON WORN AND                                                                                   |              |
| ROUNDED OUTLINE OF A BURIAL MOUND. ABOVE: LANDSCAPE WITH BURIAL MOUND.                                                                                      |              |
| BELOW: DRAWN BURIAL MOUND OUTLINE. BM110. IN THE FOREST NEAR MAROLDSWEISA                                                                                   | ACH,         |
| UNTER FRANKEN. VIEW TOWARDS EAST                                                                                                                            | 82           |
| FIGURE 25: MAROLDSWEISACH DTM WITH INDICATION OF DETECTED BURIAL MOUNDS. RED                                                                                |              |
| CIRCLE INDICATES THE MISSING VISUALLY DETECTED BURIAL MOUND, BUT NOT POSSIBI                                                                                | Æ            |
| TO RELOCATE BY FIELD SURVEY SHADED RELIEF: AZI 45° 270 ANGLE                                                                                                | 85           |
| FIGURE 26: LEFT: DTM WITHOUT INDICATION OF BURIAL MOUNDS, BIGHT: INDICATION OF T                                                                            | WO           |
| DIDIAL MOUNDS DED. MISSING VELLOW, EIELD SUDVEV DETECTED SUADED DELIEE, A7                                                                                  | T            |
| ALGO 270 ANGLE                                                                                                                                              | .1.          |
| 43, 270 ANGLE                                                                                                                                               |              |
| FIGURE 27: LEFT: AREA OF MISSING DM IN MAROLDSWEISACH, RIGHT: FIELD SURVET LOCAT<br>CLICUT ELEVATIONAL CHANCE NOT VICIDIE MUTUIN THE DTM. 20 CM ELEVATIONAL |              |
| SLIGHT ELEVATIONAL CHANGE NOT VISIBLE WITHIN THE DIM. 20 CM ELEVATIONAL                                                                                     |              |
| VARIATION IN THE LANDSCAPE INDICATED A LIKELY BM BY A DISTINCT CIRUCLAR                                                                                     | 0.0          |
|                                                                                                                                                             | 86           |
| FIGURE 28: SCOPUS AND WEB OF SCIENCE (WOS) CITATION INDEX FOR PUBLICATIONS                                                                                  | _            |
| COMBINING:' LIDAR' (LI), 'ARCHAEOLOGY' (AR), 'REMOTE SENSING' (RS), AND 'AUTOMAT                                                                            | IC           |
| DETECTION' (AD). THE Y-AXIS INDICATES PUBLICATION AMOUNT, WHEREAS THE X-AXIS                                                                                |              |
| INDICATES YEAR OF PUBLICATION                                                                                                                               | 94           |
| FIGURE 29: FOCUS WITHIN THE QUALITATIVE SAMPLE DATASET OF 37 PUBLICATIONS FOR T                                                                             | ΗE           |
| NA                                                                                                                                                          | 95           |
| FIGURE 30: INSTITUTIONAL AFFILIATIONS OF THE NA DATASET FROM 37 PUBLICATIONS BY                                                                             |              |
| FIRST AUTHOR                                                                                                                                                | 96           |
| FIGURE 31: INSTITUTIONAL AFFILIATION BY MODULARITY IN 3 GROUPS: 1. DARK RED, 2. LIG                                                                         | HT           |
| GREEN, 3. LIGHT BLUE                                                                                                                                        | 97           |
| FIGURE 32: PRIMARY RESEARCH FOCUS: A. LIGHT GREEN, B. RED                                                                                                   | 97           |
| FIGURE 33: THE FULL CITATION NETWORK                                                                                                                        | 99           |
| FIGURE 34 SUBGRAPH CORE CITATION NETWORK WITH DEGREE > 1                                                                                                    | 100          |
| FIGURE 35 SUBGRAPH IN-CITATION                                                                                                                              | 100          |
| FIGURE 36 SUBGRAPH OUT-CITATION                                                                                                                             | 100          |
| FIGURE 37: TIME SERIES FOR NODES AND EDGES                                                                                                                  | 102          |
| FIGURE 38: PREDICTION (LINE) AND OBSERVED MEASURES (DOTS)                                                                                                   | . 103        |
| FIGURE 39. FOCUS WITHIN THE MODEL TESTING OUALITATIVE SAMPLE DATASET OF 41                                                                                  | . 100        |
| PUBLICATIONS OF THE NA                                                                                                                                      | 104          |
| FIGURE 40. ADDITIONAL NA TO TEST THE MODEL                                                                                                                  | 107          |
| FIGURE 41: ADDING SPECTRAL VALUES BY DRAPING SATELLITE IMAGERY OVER LIDAR DATA                                                                              | т0           |
| HEID DI AN AND INTERDRET I ANDSCADE SHADED RELIEF. A7I 45° 270 ANCLE SAT                                                                                    | 10           |
| DASTED, $\otimes$ COOCIE EADTU                                                                                                                              | 122          |
| RASIER. ♥ GOUGLE EARTH                                                                                                                                      | 122          |
| FIGURE 42: DATA ORDER REPRESENTED DI POINT DISTRIDUTION                                                                                                     | 123<br>T     |
| FIGURE 43: ABOVE: AREAS SELECTED BY THE FOLUS GROUP AS BURIAL MOUNDS BY COUNT A                                                                             |              |
| INE SILE OF STOURSTADT. UMARKS CLUSTER GROUP. I MARKS IRUE COUNT. BELOW: TR                                                                                 | .UE          |
| DURIAL MUUNDS MAKKED AS IELLUW PULIGUNS.                                                                                                                    | 139          |
| FIGURE 44: THE NINE MUST SELECTED BURIAL MOUNDS BY THE FOCUS GROUP. NUMBERING                                                                               | 12           |
| DETETERMINED BY SELECTION ID IN REFERENCE TO TABLE 19                                                                                                       | . 141        |
| FIGURE 45: ELEVATIONAL DIFFERENCES AT THE SITE OF STOCKSTADT. HISTOGRAM SHOWS                                                                               | <del>.</del> |
| ELEVATIONAL DISTRIBUTION                                                                                                                                    | . 145        |
| FIGURE 46: REMOVING MODERN CONSTRUCTION BY FILTERING OUT MAJOR ROADS                                                                                        | . 149        |
| FIGURE 47: TRUE, FALSE, AND MISSED DETECTION BY INITIAL TEMPLATE FILTER                                                                                     | 149          |

# List of tables

| TABLE 1: SPECIFICATIONS FOR THE TWO SCANNERS                                     | 29          |
|----------------------------------------------------------------------------------|-------------|
| TABLE 2: LANDSAT 5 AND 8 BAND AND WAVELENGTH COMPARISON (USGS LANDSAT)           | 33          |
| TABLE 3: POINT DENSITY VERSUS POINT DISTANCE IN LIDAR DATA (AFTER GOBAKKEN &     |             |
| NÆSSET, 2008)                                                                    | 44          |
| TABLE 4: METADATA REQUIRED FOR DEM VISUALIZATIONS (AFTER KOKALJ & HESSE 2017, 39 | ) 47        |
| TABLE 5: EXTRACT OF FINANCIAL SITUATION FOR LIDAR DATA INCOME FROM 5 STATES IN   |             |
| GERMANY. FROM THE MAIL CORRESPONDENCE BETWEEN MARTIN ISENBURG AND 5 OF TH        | ΗE          |
| 16 STATE SURVEY OFFICES IN GERMANY (ISENBURG 2017; APPENDIX 2A)                  | 53          |
| TABLE 6: SOME OF THE PRESENT NATIONWIDE SITES FOR OPEN LIDAR DATA                | 54          |
| TABLE 7: OPALS CODE USED FOR INTERPOLATION                                       | 71          |
| TABLE 8: Z-VALUE ADDITION BY MOVING PLANES CALCULATION                           | 71          |
| TABLE 9: CALCULATIONS OF Z VALUES DERIVED SIMULTANEOUSLY AS SIDE PRODUCTS OF GRI | ID          |
| INTERPOLATION                                                                    | 72          |
| TABLE 10: SITE OVERVIEW WITH GROUND TRUTH ESTIMATE OF BURIAL MOUNDS WITHIN TH    | Е           |
| VICINITY                                                                         | 76          |
| TABLE 11: DESCRIPTION OF INDIVIDUAL SITES                                        | 77          |
| TABLE 12: COMPARISON OF TOP 10 CENTRALITY MEASURES (MULTIPLE APPEARANCES IN BO)  | LD)         |
|                                                                                  | . 101       |
| TABLE 13: COMPARISON OF TOP 10 BY CENTRALITY MEASURES (MULTIPLE APPEARANCES IN   |             |
| BOLD). SLIGHT CHANCES IN COMPARISON TO EARLIER DATASET                           | . 106       |
| TABLE 14: NINE SITES FOR SAMPLING COMPARISON                                     | . 130       |
| TABLE 15: THE NINE SELECTED SITES WITH VECTORIZED MARKING OF EXACT BURIAL MOUNI  | )           |
| POSITION                                                                         | . 131       |
| TABLE 16: BURIAL MOUNDS VERIFIED AT EACH SITE COMPARED TO CROWD-SOURCED          |             |
| DETECTION FROM THE FOCUS GROUP                                                   | . 134       |
| TABLE 17: THE NINE SELECTED SITES WITH REPRESENTATION OF CROWD-SOURCED VISUAL    |             |
|                                                                                  | .135        |
| TABLE 18: SELECTION COUNT BY VISUAL DETECTION FROM INDIVIDUALS OF THE FOLUS GROU | 120         |
| UN A-AAIS, AND SITE BY SITE-NUMBER UN T-AAIS                                     | . 138<br>IE |
| IABLE 19: DETECTION BY FOUDS GROUP GENERATING CONFIDENCE VALUE BY SELECTION. IN  | 1E<br>140   |
| NINE MUSI CONFIDENT SELECTIONS ARE REPRESENTED IN BOLD                           | . 140       |
| TADLE 20: EVALUATING DIFFERENT MATCHING FUNCTIONS                                | . 143       |
| TADLE 21: THE THREE EQUATIONS AND THEIR IMPACT ON DETECTION: NORMALIZED          | 146         |
| TADIE 22. THE ADDITED DYTHON SCOIDT FOD ODENCU TEMDIATE MATCHINC                 | 1/0         |
| TABLE 22: THE AFFLIED FITHON SCRIFT FOR OPENCY TEMPLATE MATCHING                 | 151         |
| TABLE 25: TEMPLATE MATCHING DI SIMILARITI THRESHOLD OF 0.5                       | 101         |
| TABLE 24: TEMPLATE MATCHING DI DEST TIRRESHOLD MATCH AND DUPPER-ZONES            | 150         |
| TABLE 23. AMOUT OF AUTOMATICLE DETECTED DE LEMPLATE MATCHING                     | . 100       |
| MATCHED AND TRUE RUDIAL MOUNDS RV SECMENTATION TO AREAS OF INTEDEST              |             |
| GRADIENT IS INVERSED WITHIN TEMPLATE PATTERNS MAKING THESE PATTERNS              |             |
| CONTRASTING REMAINING SEGMENTATION                                               | 160         |
|                                                                                  | . 100       |

# List of equations

| EQUATION 1: TRAVEL TIME CALCULATION                                    |  |
|------------------------------------------------------------------------|--|
| EQUATION 2: NORMALISED DIFFERENCE VEGETATION INDEX.                    |  |
| EQUATION 3: PRINCIPLE OF SIMPLE MATCHING COEFFICIENT FOR DATA MATCHING |  |
| EQUATION 4: FUNCTION EQUATION FOR MATCHING SIMILARITY BY CORRELATION   |  |
| COEFFICIENCE                                                           |  |

| Term & Abb.     | Description                                                                            |
|-----------------|----------------------------------------------------------------------------------------|
| absolute        | A measure that accounts for all systematic and random errors in a data set             |
| accuracy        |                                                                                        |
| accuracy        | The closeness of an estimated value to a standard or accepted value of a particular    |
|                 | quantity                                                                               |
| ALS             | Airborne Laser Scanning                                                                |
| amplitude       | range: wave extent of emitted pulse from mean                                          |
| ANN             | Artificial Neural Network                                                              |
| AoI             | Area of Interest                                                                       |
| Aperture        | Laser scanner angle from origin                                                        |
| angle           |                                                                                        |
| ASPRS           | American Society for Photogrammetry and Remote Sensing                                 |
| Azi             | Azimuth: angular perspective of illumination, i.e. Digital celestial sun in LIDAR data |
| BIL             | Band interleaved by line: Compression file for multiband image data                    |
| BIP             | Band interleaved by pixel: Compression file for multiband image data                   |
| BLV             | Bayerisches Landesamt für Vermessung                                                   |
| BM              | Burial Mound                                                                           |
| BSQ             | Band sequential: Compression file for multiband image data                             |
| BVV             | Bayerisches Vermessungsverwaltung                                                      |
| cm              | centimeter                                                                             |
| confidence      | accuracy: The percentage of points within a data set that are estimated to meet the    |
| level           | stated accuracy                                                                        |
| DEM             | Digital Elevation Model                                                                |
| digital truth   | Observed digital evidence: non-calibrated with ground truth                            |
| DSM             | Digital Surface Model                                                                  |
| DTM             | Digital Terrain Model                                                                  |
| Echo            | Backscattered power of the return signal                                               |
| EDA             | Exploratory Data Analysis                                                              |
| first pulse     | return pulse of the highest feature: maximum                                           |
| Full            | Detected and digitized backscattered energy of the receiving unit allocated to one     |
| waveform        | observation                                                                            |
| FW              | Full waveform                                                                          |
| GeoTIFF         | Georeferenced Tagged Image File Format                                                 |
| GIS             | Geographic Information System                                                          |
| GPS             | Global Positioning System                                                              |
| ground truth    | Observed evidence: often by survey                                                     |
| Hz              | Hertz                                                                                  |
| IMU             | Inertial Measurement Unit                                                              |
| intensity       | Strength of light return signal                                                        |
| ISPRS           | International Society for Photogrammetry and Remote Sensing                            |
| k-d tree        | Binary tree for k-dimensional representation of data structure by splitting half-      |
|                 | spaces                                                                                 |
| <i>k</i> -means | Partition of n observations by mean                                                    |
| k-means         | Partition of n observations into k-clusters                                            |
| clustering      |                                                                                        |
| kurtosis        | The measure of relative "peakedness" or flatness of a distribution                     |

| LAS         | Standardized binary file format for laser scanning data                                                                                                       |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Laser       | Light Amplification by Stimulated Emission of Radiation                                                                                                       |  |  |
| last pulse  | return pulse of the lowest feature: minimum                                                                                                                   |  |  |
| LIDAR       | Light Detection And Ranging; Light RADAR                                                                                                                      |  |  |
| LRM         | Local Relief Model                                                                                                                                            |  |  |
| LRM         | Local Relief Model                                                                                                                                            |  |  |
| LS          | Laser Scanning                                                                                                                                                |  |  |
| m           | meter                                                                                                                                                         |  |  |
| mean error  | The average error in a set of values, obtained by adding all errors, e.g. in x, y or z,<br>and then dividing by the total number of errors for that dimension |  |  |
| measuremen  | Difference between the theoretically-unknowable "true" value of a parameter and                                                                               |  |  |
| t error     | its measured value                                                                                                                                            |  |  |
| MLS         | Mobile Laser Scanning                                                                                                                                         |  |  |
| mm          | millimeter                                                                                                                                                    |  |  |
| MSII        | Multi-Scale Integral Invariants                                                                                                                               |  |  |
| n           | unspecified iterations                                                                                                                                        |  |  |
| NA          | Network Analysis                                                                                                                                              |  |  |
| nm          | nanometers                                                                                                                                                    |  |  |
| NN          | Neural Network                                                                                                                                                |  |  |
| NSSDA       | National Standard for Spatial Data Accuracy                                                                                                                   |  |  |
| РСА         | Principal Component Analysis                                                                                                                                  |  |  |
| pixel       | the smallest physical point in a raster                                                                                                                       |  |  |
| ppsm        | points per square meter                                                                                                                                       |  |  |
| precision   | The closeness with which measurements agree with each other, even though they may all contain a systematic bias                                               |  |  |
| PS          | Phase-Shift                                                                                                                                                   |  |  |
| pts/m2      | points per square meter                                                                                                                                       |  |  |
| p-value     | Probability value of a given statistical model to measure statistical significance                                                                            |  |  |
| resolution  | The smallest unit a sensor can detect or the smallest unit an orthoimage depicts                                                                              |  |  |
| S           | sample standard deviation. Calculated as: $sx=\sqrt{(1/((n-1))\sum_{i=1}^{n})^{n}(x_{i}-x_{i})^{2})}$                                                         |  |  |
| skew        | A measure of symmetry or asymmetry within a data set. Symmetric data will have skewness towards zero                                                          |  |  |
| SLR         | Systematic Literature Review                                                                                                                                  |  |  |
| smc         | simple matching coefficient                                                                                                                                   |  |  |
| standard    | A measure of spread or dispersion of a sample of errors around the sample mean                                                                                |  |  |
| deviation   | error                                                                                                                                                         |  |  |
| SVF         | Sky-View Factor                                                                                                                                               |  |  |
| systematic  | An error whose algebraic sign and, to some extent, magnitude bears a fixed relation                                                                           |  |  |
| error       | to some condition or set of conditions                                                                                                                        |  |  |
| template    | standardized or idealized data                                                                                                                                |  |  |
|             | I agged Image File Format                                                                                                                                     |  |  |
|             | I Frangulated Irregular Network                                                                                                                               |  |  |
| TLS         | Terrestrial Laser Scanning                                                                                                                                    |  |  |
|             | Time-of-Flight                                                                                                                                                |  |  |
| uncertainty | also a parameter to characterize the dispersion of confidence value                                                                                           |  |  |
| USGS        | United States Geological Survey                                                                                                                               |  |  |

| vector | vector graphics of entities through point, line or polygon geometry |
|--------|---------------------------------------------------------------------|
| XYZ    | 3dimensional coordinate structure                                   |
| XYZI   | 4dimensional coordinate structure with intensity recording          |
| μm     | micrometers (1 $\mu$ m = 1000 nm)                                   |

# 1. INTRODUCTION

Within the framework of this thesis, the main objective is to investigate and assess the status of LIDAR based semi-automatic pattern recognition within an archaeological landscape. This implies not only semi-automatic detection and information extraction of archaeological monuments within digital landscapes, but also assessment and development of the field. This will be done to determine impact and potential within the archaeological community for automating procedures towards improved possibilities of detection and management of cultural heritage in the landscape.

LIDAR data provides a novel approach for locating and monitoring cultural heritage in the landscape, especially in areas of logistical complications, e.g. forest, rough terrain, and remote areas. Manuel detection and mapping of archaeological information in the landscape is a time-consuming task. To improve and increase the possibilities of cultural heritage detection and management, computational means can offer a solution, and even reveal details that are not possible to detect with the naked eye. However, to implement automated information extraction from LIDAR data, different stages of standardized workflows are necessary for archaeological use of LIDAR data. Presently the use of LIDAR within the archaeological community often lacks standardized approaches for proper handling, developing, and processing for cultural heritage detection and management. Further, the majority of stakeholders within the field of archaeology and cultural heritage management encounter various problems regarding macro- and micromanagement when handling and processing LIDAR data, repeatedly resulting in quantitative assessment being impractical or impossible. Thus, In order for LIDAR data to become a truly competent method for heritage management, a large-scale quantitative approach for handling, developing, and processing needs to be formed and defined. For this, the effort of this project will be focused on quantitative methods for handling and processing LIDAR data and digital landscapes by systematic and semiautomated approaches. The aim of this project is the creation of a large-scale approach for a wide array of scientific fields and application domains within archaeology, informatics, and the earth sciences. However, the project will have particular emphasis on archaeological monuments within LIDAR based digital landscapes. Archaeological monuments are in this context defined as features of the past that have become part of the landscape as covered or partly covered structures. Monuments are defined as physical entities with a physical presence in the landscape. They consist of a wide variety from singular entities to multiple entities in complexes. Monuments in general do not imply temporal definition, but archaeological monuments imply a temporal scope towards the past and something not of contemporary use by original intention. This implies that archaeological

#### **CHAPTER 1: INTRODUCTION**

monuments refer to features and structures that were once or are still forgotten, hidden or partly hidden in the landscape. A process in which archaeological monuments have become assimilated and earthbound with the landscape through wear and tear by time, and by external and internal decomposition of materials covering or partly covering the structures and features of interest. As a result, archaeological monuments co-exist in LIDAR data as elusive patterns part of the modern landscape and of the terrain. This complicates the possibility of manual distinction out in the field, as well as digitally by remotely sensed data such as LIDAR. However, by learning the variables and patterns of archaeological monuments, it is possible to learn how to distinguish the structures by human visual inspection as well as by computational semi-automated detection. This necessitates that we understand the patterns within our digital landscapes of LIDAR data created by automation and semi-automation. All computational means can be automated procedures: from pre-processing, to processing, and post-processing. By any human interaction, however, the process becomes semiautomatic. Thus, the algorithmic procedures can be automated to a point of validation and interpretation, but then becomes semi-automatic investigation. So is it possible to completely automate investigation of the landscape of the past from automated segmentation to fully automated classification of landscape? This will be investigated and answered in this thesis, but also with a notion of quality of information compared to cost and use. Meaning, any approach of computation, has to be compared to human gain of understanding. Naturally, this is not answered by a simple 'yes' or 'no' to the improvement of archaeological data and information, and not something that can be confidently located on a binary scale between 1 and 0. However, it is on a scale. However, on a scale that is constantly moving and changing position in space towards 1 or 0 as we progress and improve our understanding of the possibilities to quantify and extract information for archaeological mapping in the analog and digital landscape. Because, the potential is not yet defined, but we can see the trajectory currently set in motion.

# 1.1 MOTIVATION

Within an archaeological scope, the motivation for this thesis is to asses archaeological LIDAR and automated and semi-automated procedures for the detection of archaeological patterns and monuments in LIDAR landscapes. This will be done by also applying simple and open algorithmic means of segmentation and classification in LIDAR landscapes towards large-scale archaeological monument detection. In order to do so, the thesis will give a thorough account of the archaeological use and potential of LIDAR data; qualitative and quantitatively define the state and development of the field for automatic and semi-automatic archaeological detection by LIDAR data; indicate best

15

# **CHAPTER 1: INTRODUCTION**

practice and state of the art; exemplify quality of detection by automated and semi-automated segmentation and classification of data; indicate range of potential application; apply template matching for large-scale cultural heritage investigation; compare human versus computational detection; and lastly discuss and stipulate potentials within the field of LIDAR based pattern recognition. The main objectives and research questions are focused on applicability by potential use through time and cost efficiency, and more importantly so, the quality of extracted information from LIDAR data. The objectives and research questions can consequently be defined by use and potential use within the archaeological community. This is aimed towards creating large-scale digital landscape investigations to be more generally and more effectively applied within the archaeological community. These perspectives are formulated into four questions to exemplify the scope of the thesis:

What is LIDAR and how is it used within archaeology?

To what degree is the application of automated and semi-automated procedures applied for the detection of archaeological monuments within the archaeological community?

Can we perform LIDAR based semi-automatic large-scale investigations of landscape by open and simple segmentation and classification?

Are the results of segmentation and classification improving detection and management of archaeological monuments in LIDAR landscapes?

# 1.2 CHAPTERS

To answer the research questions above, the thesis structure follows the same outline by investigating data, community, application, and impact. This compresses into five main chapters with subsections following the general guideline.

## **Chapter 2: ARCHAEOLOGICAL LIDAR**

## **Chapter 3: LANDSCAPE PERSPECTIVES**

# Chapter 4: STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY

**Chapter 5: APPLIED DETECTION IN LIDAR DATA** 

**Chapter 6: CONCLUSIONS AND PERSPECTIVES** 

#### **CHAPTER 1: INTRODUCTION**

**Chapter 2** explains the use of LIDAR data, the implementation in archaeological practice, as well as outline limitation and potential of using LIDAR in archaeology. **Chapter 3** establishes an introduction to LIDAR data from Lower Franconia further investigated in chapter 5, as well as constructing interpretation of landscape perspectives. **Chapter 4** defines the field of automated archaeological monument detection by a systematic review to qualitative and quantitative assess state of the field by development and evolution, as well as propose state of the art and best practice within archaeology and beyond. Key focus will be on the degree of application for cultural heritage management and information extraction. **Chapter 5** will elaborate and apply detection algorithms for model and data driven approaches of automatic and semi-automatic information extraction. **Chapter 5** will also analyze the results and qualitatively and quantitatively evaluate the difference between human versus computational interpretation of landscape. **Chapter 6** will discuss the results gathered from chapter 2-4 to conclude and determine the future of automated and semi-automatic archaeological information extraction and monument detection.

# 1.3 CREDIT

Gratitude is extended towards the Bavarian State Offices for Sites and Monuments (Bayerisches Landesamt für Denkmalpflege) and the Environment (Bayerisches Landesamt für Umwelt) for providing site information, together with a particularly thanks to the Bavarian State Office for Surveying and Geoinformation (Bayerisches Landesamt für Vermessung und Geoinformation) for providing access to unpublished LIDAR point clouds for the area of Unterfranken. Gratitude also has to be extended for funding for the project, provided by the *Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences*, HGS MathComp, at the *Interdisciplinary Research Center for Scientific Computing*, IWR. Assistance and thanks also go to the *Junior Research Group Digital Humanities* at the *Cluster of Excellence, Asia and Europe in a Global Context*, as well as the Institute of Pre- and Protohistory at Heidelberg University.

# 2. ARCHAEOLOGICAL LIDAR

The increasing amount of landscape modification by stakeholders has necessitated innovation and cost-effective methods for archaeologist to efficiently keep up with the growing pressure on cultural heritage in the landscape. One of the means for improving archaeological surveying, monitoring, and documenting cultural heritage in the landscape, has been given in the shape of Airborne Laser Scanning, also referred to as LIDAR (Crutchley & Crow 2009). The presences of LIDAR in archaeological studies have been increasing in the last two decades (see also chapter 4). This is especially true within Europe due to regional and nationwide scanning campaigns for improved knowledge on the administrative landscape (Doneus & Kühteiber 2013, 32). This, in return, has given archaeologist a perfect window for complex site understanding and landscape investigations by the increased availability of remotely sensed data. Region and nationwide documentation by laser scanning have also given way to a wide array of scientific projects concerned with standardized and systematic documentation of cultural heritage within the landscape (e.g. Bofinger & Hesse 2011; De Laet et al. 2007; Doneus et al. 2006; Schmidt et al. 2005; Schneider et al. 2015; Trier & Zortea 2012). To understand the impact of LIDAR in archaeology, it is first important to understand what LIDAR is and the potential impact on archaeological mapping, documentation, and management. This chapter will define the layout of LIDAR data to understand the potential application of archaeological LIDAR for information extraction and detection of archaeological monuments in the landscape.

# 2.1 REMOTE SENSING

The use of remote sensing has and is changing archaeological practice of analysis, detection, and management of cultural heritage in the landscape. From the mid-19<sup>th</sup> century and onwards, the presence of remotely sensed data has evolved towards a spearhead praxis within archaeology. Especially in the aftermath of the First World War, aerial reconnaissance and documentation grew in importance (Cowley et al. 2010; Olesen et al. 2011, 8-9). The early oblique and ortho images captured from low-flying airplanes were originally meant for mapping, but have since highly impacted the field of archaeology. The practice of remote documentation of crop marks, monuments, earthworks and cultural landscapes, is still one of the most applied approaches within large-scale archaeological reconnaissance and management (Cowley et al. 2010; Olesen et al. 2011; Olesen & Klinkby 2012; Verhoeven 2009). Data from satellite imagery has likewise increased the dimensionality of past and present landscape by untargeted documentation used as supplementary

information within archaeology (e.g. De Laet et al. 2007; Figorito & Tarantino 2014; Hesse 2015) or main documentation (e.g. Grøn et al. 2003; Lambers & Zingman 2012; Siart et al. 2008). Analyzing crops and subsurface differentiation in hyperspectral images can provide unique proxy values for understanding in-situ cultural heritage in the landscape (Cavalli et al. 2013; Custer et al. 1986; Doneus et al. 2014). Similar to aerial raster, LIDAR data provides remote data to understand landscape, whether by terrestrial or aerial documentation. Currently, LIDAR data enhances our knowledge of landscape in a comparable manner to early oblique and ortho images by giving new perspectives and means to improve knowledge of cultural landscapes (Opits & Cowley 2013).

Understanding cultural landscape requires both data analysis and correlation with other sources of remotely sensed data. In performing comprehensive large-scale studies and repeated site management, many of the individual procedures of remotely sensed documentation becomes time consuming. Consequently such tasks become peripheral due to the lack of public sensation value, and subsequently funding. Many of the repeated tasks of processing large-scale remotely sensed data, are, as a consequence, becoming automated computational or semi-automatic procedures. Examples of such are; automated georeferencing (e.g. Verhoeven et al. 2012), automated site detection (e.g. Menze & Ur 2012; Trier & Zortea 2012; Schneider et al. 2015), and machine learning towards automatic analysis and feature learning (e.g. Arel et al. 2010; Belgiu et al. 2014; Maaten et al. 2007; Trier et al. 2016). Automated detection and analysis within cultural landscapes is not a particular new field within archaeology (e.g. Lemmens et al. 1993; Redfern 1997). However, the development of automated monument detection has been evolving for a long time without much of an impact. However, these former tendencies are changing, and automated segmentation and classification are becoming necessary to cope with the vast amount of remotely sensed data and cultural heritage information.

# 2.2 BASIC LIDAR

As of yet, no consensus exist on how to coin LIDAR, and is therefore used by different terms and concepts. The most common reference of LIDAR in papers goes by the assumption of LIDAR as an acronym change from RADAR, *Radio Detection and Ranging*, to *Light Detection and Ranging*. The acronym for LIDAR as *Light Detection and Ranging*, is one of the most used means of understanding LIDAR, but is not necessarily depicting the correct term for the technique. LIDAR is also referred to as LADAR, *Laser Detection and Ranging*, *Laser Radar* (Geist et al. 2009, 311), as well as coined by the linguistic blend of "light radar" (Ring 1963) supported by the Oxford English Dictionary. The capitalization of letters within LIDAR also changes in relation to perception of origin and meaning.

Thus LIDAR can be spelled: LIDAR, LiDAR, LIDaR, LiDaR, LIdar, Lidar or lidar. For this thesis, a standard has been integrated based on the United States Geological Survey, USGS, standard for description of Laser Scanning by LIDAR principles. The USGS together with the American Society for Photogrammetry and Remote Sensing, ASPRS, and International Society for Photogrammetry and Remote Sensing, ISPRS, has a long history of working towards standards for LIDAR data and metadata (Heidemann 2012; ASPRS 2013). The USGS and SPRS use the two derivatives: LIDAR & lidar. The standard from the International Organization of Standardization, ISO, is lidar as Light Detection and Ranging, for documenting and specifying LIDAR scanning (ISO TS 19139-2 2014). The standard used within this thesis will therefore be LIDAR, as it does not imply anything regarding origin by capitalization, and thus simply implies a difference between LIDAR and LASER as scale. However, by definition LIDAR scanning is Laser Scanning from air and land, but is for many fields mostly associated with airborne scanning due to the capabilities of large-scale coverage of landscape. Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) are therefore more generic terms of LIDAR scanning. LIDAR is Laser Scanning (LS), and LASER is an acronym for Light Amplification by Stimulated Emission of Radiation (Gould 1959). LIDAR scanning works similar to total station measurements, but is differentiated by large-scale random light emission versus controlled measurement, e.g. a total station. The technical measurements of points work on similar principles of triangulation to determine position in space, but with difference of travel time calculation between emitted and received pulse. It can therefore be argued that a better term for LIDAR scanning is Laser Scanning (LS), differentiated by terrestrial (TLS), mobile (MLS), and airborne (ALS) platforms. There is, however, a use for the differentiation of terms from LIDAR to Laser Scanning, and that is reflected in scale and resolution. With the increasing use of 3D models from objects and landscape, the term Laser Scanning can be argued to be more commonly accepted as artefact and object scanning, whereas the term LIDAR is more often used for large-scale investigations. Thus Laser Scanning by LIDAR highlights a specific use compared to other applications of Laser Scanning, and consequently helps a term definition of scale. The term use of LIDAR is then used as an overarching definition for the field of large-scale Laser Scanning. The terms for ALS, MLS, and TLS will be used when necessary to mark difference based on airborne, terrestrial or mobile mounting. LIDAR, despite the intention of the term, in the end similar to the RADAR principle by using infrared and near infrared light instead of emitting radio waves to detect particles and physical conditions.

# 2.3 THE LIDAR POINT

The LIDAR point is in the end the LIDAR product. The basic LIDAR point is three sets of values to construct a coordinate transformed to a Cartesian plane. The raw LIDAR point is an active emitted pulse, generally at a single near-infrared wavelength. The backscattered pulse is reflected in the same narrow wavelength of imaging spectrum. The reflected backscattered repetition pulse is registered based on intensity, which provides a possibility of understanding terrain or canopies by the intensity of reflection. Most laser scanners record the intensity, resulting in LIDAR data having reflection intensity, or echo, recorded in the point as: XYZI. This also provides, that the digital footprint of the point cloud can be used to segment and classify based on reflected intensity. However, the digital footprint based on intensity of the echo is a rough definition of surface or object qualities, leading it to be more relevant for segmentation then classification. This is exemplified in the schematic of Figure 1. Thus by using the full waveform of the amplitude, it can be possible to distinguish more details, but especially for archaeological mapping the discrete last return of direct energy recording is the most relevant.



FIGURE 1: AIRBORNE LIDAR RECORDING BY COMPARISON OF FULL WAVEFORM IN THE AMPLITUDE OR DISCRETE SCANNING BY DIRECT ENERGY RECORDING

Typically, LIDAR for archaeological use is delivered and used by the simple segmentation of first and last return of the pulse, because the main concern of archaeological mapping is not the surface, but rather the terrain by its inclusion and assimilation of traces and patterns of the past. Nonetheless, understanding the reflection value gives opportunities to manipulate the scanned surface based on more criteria than spatial composition, and thus resulting in an added dimension for understanding the landscape. Examples of such can be seen by the results of Challis et al. 2011, by the potential of archaeological and geological crop mark detection based on ALS intensity data. Intensity values can also be used to understand density or biomass as a proxy for the detection of archaeological features (e.g. Briese et al. 2014; Stott et al. 2015). However, the individual LIDAR point does not provide much information, but by the combined structure of the point cloud, it provides contextual surface information from which information can be understood. Typically, archaeological LIDAR is used by its segmentation between first and last pulse, with the surface model containing all first pulses, and the terrain model containing first pulse, unless last pulse is registered. However, as previously mentioned, this does not provide a complete terrain model, meaning additional filters needs to be applied to remove structures that are not part of the scanned present natural landscape (Belgiu et al. 2014; Silthole 2005). This is especially necessary for airborne LIDAR that produces huge datasets. An airborne laser scanner emits pulses at extreme rates from which huge point clouds are created of the landscape. So far, the limit of sampling rate is not yet determined, and the question is not whether LIDAR resolution can be improved, but rather whether what resolution is needed and what is optimal for landscape studies. The sampling rate is determined by hertz and amount of channels used for measurement rate, making airborne scanners produce point clouds anywhere between thousands to millions of points per second. Thus, the potential of archaeological LIDAR is defined by available *point per square meter*, ppsm, and point density to a distance needed to visualize data to a desired degree of detail. An increase in amount of ppsm naturally leaves restrains on computation by file size through density or scale. However, archaeological LIDAR is often delivered as values of first and last pulse as quick segmentation between surface and terrain. For archaeological use it is mainly the last pulse that is of interest, since this depicts the terrain and contours of archaeological structures in the terrain (Hypppä et al. 2009, 336), resulting in the reduction of point density used for analysis. Further, data for archaeological LIDAR is often delivered as points in gridded space structured as one point per square meter to represent a mean value of original density to reduce file size. Calculating points to a grid by computing cell elevation values by a mean through a neighborhood defined search radius, can also help standardize data, but as a result also smooths data out to visually omit details in the landscape. However, many deliverables of public DEMs are already gridded into regularly gridded cell interpolations representing specified distance values, i.e. DEM1 or DTM1 as 1 meter grid, and DEM10 or DTM10 as 10 meter gridded cell values to represent point densities exceeding defined resolution. As a result, maximum resolution scale is defined by a singular point of unknown local point densities, meaning level of detail in the landscape cannot be verified. Nonetheless, if local point densities are sufficient for digital landscape representation, it is an efficient way of handling point clouds by user friendliness through improved computation by file size.

# 2.4 THE LIDAR PRODUCT

The LIDAR product is point clouds in 3dimensional space based on the recording of tangible 3dimensinal information. Airborne LIDAR can offer similar landscape information as aerial archaeology, but adds a dimension based on elevation data. Aerial archaeology offers a passive remote sensing technique recording the reflected part of the visible and near infrared spectrum. The LIDAR product, on the other hand, offers an active technique by measuring dense clouds of surface information capable of dynamic segmentation based on classification of points. A laser pulse can penetrate vegetation to a certain degree, making it possible to distinguish and discriminate different objects within the footprint (Doneus & Briese 2006, 99-100). The LIDAR product offers possibilities of interpolation and modelling of landscape and objects in accordance to defined criteria in order to visualize specific requirements. Thus, if proper processed and manipulated, data can be filtered to reveal different manipulated landscapes, such as only points of terrain by removing vegetation, construction, and all other features above bare-earth. This ability provides a new layer for understanding the landscape surrounding us, often revealing details that were long forgotten. LIDAR sensors are mounted on different platforms, mobile or static, terrestrial or airborne. LIDAR data is especially useful for mobile platforms due to the capabilities of continuous large-scale measurement of points. The common mobile platforms are satellites, airplanes, unmanned aerial vehicles, and vehicles. The principle of LIDAR is the emission of light towards any given surface, which is then reflected and echoed back to the sensors. The LIDAR scanner emits rapid pulses of light at any given surface, and amount of return signals is defined by the LIDAR instruments capability to record and store the return of the pulsed light photon. The amount of returned light is determined by internal and external factors. Internal factors are software and hardware, whereas external factors are atmospheric and surface conditions. A basic raw LIDAR point consists of XYZ position often coordinated to a Global Positioning System, GPS, together with orientation by the local Inertia Measurement Unit, IMU, measuring angle and range. These parameters construct a point in Euclidian space of any given surface. The result is the base of any spatial measurement

transformed to a Cartesian plane with the Global Positioning System. The Euclidian space is the geometrical axiom in space, but usually transformed to reference a certain method of representation in a Cartesian plane, e.g. a coordinate system. Presently there are two standards of LIDAR scanning by the documentation of light. The first consist of conventional scanners that record discrete echo return signal, i.e. measurement of signal peak by separation. The second consist of Full Waveform scanning, FW, recording the whole return as one continuous wave. FW LIDAR can also be segmented and counted by peaks to make it discrete (Lasaponara et al. 2011, 2062). FW LIDAR further allows extended segmentation by improving the wavelength extension to classify signal returns terrain and off terrain objects, such as vegetation, natural objects, and man-made objects in connection to the terrain (Doneus et al. 2008). This makes it possible to distinguish between return signals by canopy penetration, producing more accurate Digital Elevation Models.

The outcome of LIDAR scanning is typically Digital Elevation Models (DEMs) derived from recorded 3D point clouds. Two major outcomes of DEMs, are: Digital Terrain Models (DTM) of the bare earth, and Digital Surface Models (DSM) with canopy details (see also Figure 2). For detection and management of information from the past, especially the DTM reveals important information for understanding, investigating, and managing sites and landscapes of cultural heritage interest. In order to perform comprehensive investigations of spatial context and cultural and temporal impact on landscape, it is necessary to understand and analyze procedures and methods to retrieve correct ground truth of comparable data and site information. Consequently, techniques and methods need as much attention as results. Scanning results are already manipulated data, and as such often strongly related to specific research questions. Hence, data retrieval and manipulation need proper assessment and analysis before any conclusions can be finale. Utilization of LIDAR data could easily become the standard from which cultural heritage monument detection and management could be initiated for a cost-effective approach for large-scale handling and processing. However, it is necessary to remember that LIDAR only documents the physical presence of the surface and terrain, and thus only cultural heritage monuments in the landscape with physical manifestation. Further, as landscape is segmented into surface and terrain models, it is necessary to note the filtration process used to remove modern construction and vegetation. Because, the algorithmic procedures for segmentation between surface and terrain do not discriminate between human made structures of the past and the present. The DTMs therefore only represents monuments of the past that has become part of the terrain by elevation differences inside the parameters set for segmentation of landscape. Segmentation of the landscape for definition of surface and terrain models can be filtered by many different algorithmic approaches, which all indicate slight differences in how to understand the landscape (Silthole 2005, 13-28). The parameters for the algorithmic filtering are based on available data structure of the individual LIDAR points. The individual LIDAR points typically also contains information for segmentation based on intensity reflectance value due to multiple point measurements, recording first and last pulse values, making it possible to discriminate data based on more information than elevation and geometrical shape of structures and landscape. Segmentation based on filters of elevation and geometry revolves around four concepts:

- 1. Slope based Algorithms where slope is determined by difference of height between two points. Highest point within a certain threshold is assumed to belong to a group or object.
- 2. Block-minimum Horizontal plane with corresponding buffer zone above. The horizontal plane locates buffer zone, and the buffer defines zone where bare earth points are expected to reside
- *3.* Surface based A parametric surface with a corresponding buffer zone above and below. Similar to before, the buffer defines zone where bare earth points are expected to reside.
- 4. Segmentation by clustering Segmentation by cluster algorithms defines entities based on clustering according to defined modularity. Any points are defined to belong to the cluster if the cluster value is above the neighborhood. The neighborhood expands into higher level structures allowing classification based on spatial organization of surface in a point cloud.

#### Silthole 2005, 30

Digital objects or entities in LIDAR data can also be filtered based on rules of continuity of discontinuity. A building, for example, breaks the continuity of the terrain. Some of the measures of continuity and discontinuity are based on: height differences, slope, and shortest distance to defined surfaces. However, everything is dependent on means of measurement, data structure, and information contained in the individual point. Many studies have shown that using the full waveform of LIDAR data can aid in understanding and extracting information from the landscape (e.g. Anderson et al. 2006; Briese et al. 2013; Briese et al. 2014; Doneus & Briese 2006; Höfle et al. 2012; Lasaponara et al. 2011). Many more algorithmic procedures exist for filtering data into segments or classification, and it is a process that keeps evolving to incorporate more and more variables to produce better data. The general circumstances making filtering methods difficult can be described as: 1. random errors, 2. geometric complexity, 3. geometric discontinuity, 4. geometric fusion, 5. low vegetation, and 6. dense vegetation. These six circumstances have large impact on the potential for segmenting and classifying any landscape, which especially for the classification process results in the detection of false positives while omitting others. Thus, even in trying to reconstruct landscapes by surface or terrain values, it needs to be questioned to which degree a

digital landscape is a true depiction of natural and cultural tangible values. Because, all remotely sensed data is a designed representation of real-world entities, manipulated to make sense to any given target. As a result, the desired terrain segmentation for an archaeologist might be different than that of geologist. The archaeological main concern would be that of the cultural terrain, whereas the geological focus would be on the natural terrain. Thereby not defining that one is not important to understand the other, but a burial mound would be extremely urgent to keep in the digital representation from an archaeological point of view, and would be much less important from a geological perspective.



FIGURE 2: A SIMPLISTIC REPRESENTATION OF DIFFERENCE BETWEEN DSM AND DTM. SURFACE MODELS INCLUDE STRUCTURES AND CANOPIES

# 2.5 UNDERSTANDING LIDAR

The LIDAR equation is similar to RADAR, and relates to the power of emitted light and return signal. LIDAR datasets provides series of point based energy recordings reflecting any given surface. In this study, particular interest is on its abilities for terrain registration and canopy documentation. LIDAR measurements are recorded by static scanners or scanners mounted on moving airborne or terrestrial vehicles to cover large areas. The power of LIDAR data is especially recognized by its ability to cover large areas, but static Terrestrial Laser Scanning on fixed positions is also of growing importance for complex site investigations (Doneus et al. 2010; Cheng et al. 2016). LIDAR is a multisensor measurement system capable of incorporating multiple sources following time-synchronized components. The components consist of a global positioning system (GPS) determining absolute position by 3dimensional XYZ space. From this fixed position everything is synchronized by angle, distance and reflection. The laser range finder operates by this two-way travel time of a pulse of laser light, often in the near infrared electromagnetic spectrum (Figure 3). Distance in this two-way travel from scanner to terrain or canopy is calculated by:

EQUATION 1: TRAVEL TIME CALCULATION

$$r [r = c \cdot \Delta t/2]$$

 $\Delta t$  is travel time, and *c* is the known speed of light (Geist et al. 2009, 312).



FIGURE 3: THE PRINCIPLE OF LIDAR RECORDING

The means of calculating travel time can be different based on system parameters, which in return also have an effect of the area scanned. The two standard means of distance calculation are Time-of-Flight (TOF) and Phase-shift (PS) (Alonso et al. 2011). The two technological approaches are applied to different spheres due to the capabilities of accuracy and acquisition rate. TOF enables long range scanning, while PS typically is applied to short distance scanning for more accurate data with high acquisition rates. The two approaches have been developing towards each other with PS extending range, while TOF have been increasing the acquisition rate. TOF scanners calculate the individual short pulse emitted from the scanner, and the time it takes for the pulse to return after reflection on a given surface. PS scanners calculate a continuous beam of emitted laser, and calculate the phase shift between the emitted and received laser beams. This also makes the difference in potential of full waveform recording, because PS scanners return data stream rather than discrete time-stamped points, which in return makes it more optimal for intricate and detailed surface information, such as dense forest canopy. Because, the two different measurements produce different results dependent

on scenery circumstances. As a consequence, a scanner is not just a scanner. A scanner is produced towards a specified task. Range, conditions, and scenery circumstances determine which techniques are more applicable.



FIGURE 4: PHASE-SHIFT (PS) MEASUREMENT BETWEEN TRANSMITTED AMPLITUDE AND REFLECTED AMPLITUDE TO CALCULATE DISTANCE

The phase measurement for PS is the difference between transmitted amplitude and reflected amplitude of the pulse,  $\Delta p$  (Figure 4). The transmitted amplitude is measured in order to determine the distance of the travelled pulse. The distance between the receiving wave amplitude is then measured and compared to the distance in the transmitted amplitude. The accuracy is determined by the length of the cycle of periodicity and wavelength ambiguity in the range of estimation (Alonso et al. 2011, 378). The principle are similar to TOF by distance calculation (Amann et al. 2001, 12), but the necessary length measurements provides some fundamental difference. This results in different scanners using different means of distance calculation. A comparison can be seen in the study of Alonso et al. 2011 by TLS of site documentation. The study compares the Faro 80 photon scanner which uses PS calculation, and the Leica Scan Station 10 which uses TOF calculation. Naturally, this does not mean that the two product providers do not offer other means of distance

calculation, merely that in this case, the two scanners use different means for distance calculation making it possible to compare measurement based on hardware specifications (Table 1). The system specifications are as follows:

|--|

|                    | FARO PHOTON 80                    | LEICA SCAN STATION C10                    |
|--------------------|-----------------------------------|-------------------------------------------|
| Technique          | PS                                | TOF                                       |
| Accuracy           | ±2mm at 25m                       | ±4mm within 1-50m                         |
| Resolution         | Up to 700 million points per scan | Selectable from less than                 |
|                    |                                   | 1mm                                       |
| Effective range    | 0.6 to 76m                        | 0.1 to 300m                               |
| Beam type          | Near infrared                     | Visible Green                             |
| Wavelength         | 785nm                             | 532nm                                     |
| Data capture speed | 120.000 points per second         | 50.000 points per second                  |
| (max)              |                                   |                                           |
| Field of view      | 360º horizontal by 320º vertical  | $360^{\circ}$ horizontal by $270^{\circ}$ |
|                    |                                   | vertical                                  |
| Beam diameter      | 3.3mm at output                   | 4.5mm at output; 7mm at                   |
|                    |                                   | 50m                                       |

Alonso et al. 2010 study, investigates scanning comparison of certain cultural heritage objects within the Royal Pantheon in the Basilica of San Isidoro, Italy. All processing steps of the data were carried out similarly, resulting in standardized approaches and results. The results show a scale difference between the two scanners and techniques. The Faro scanner created a bigger scale, reaching and recording more surfaces, whereas the Leica scanner had more trouble with the surface of the scanned scenery. Equally, the Faro photon 80 scan has a 1 cm deviation, resulting in a more marked roughness of the objects scanned. In the end however, the conclusion of the study indicated very similar scanning results, but with a difference in absolute captured results and overall accuracy (Alonso et al. 2011, 385). However, as data capture speed and amounts of points per second are proving more and more demanding, the PS technique have been gaining the advantage of the market. The results of the two different scanning approaches produced similar sceneries, but the need for increased points per second has resolved in PS to be the dominating distance calculation for modern day scanning systems (Alonso et al. 2011, 385).

## 2.6 ACTIVE SENSING VERSUS PASSIVE SENSING

No matter the distance calculation, LIDAR data is active sensing by producing its own energy for recording the area of interest through the emission of light. Passive sensing records environment levels based on existing light and energy sources. The majority of remote sensing is done by passive sensing where the sun is the main component of ambient energy source. This is evident by the large field of aerial archaeology and spatial understanding by aerial and satellite imagery. The field of passive sensing within archaeology is also focused on the irregularities between natural and cultural distributions of patterns of static energy recordings. This is for instance present in the use of aerial thermal infrared recordings increasing the wavelength at which images can be produced to potentially reveal buried structures. Normal passive aerial photography can equally reveal buried structures, but the increase in thermal multispectral imagery has increased the potential by increasing the wavelength range at which images can be acquired (Bewley et al. 2011). Equally, hidden sub-soil features change the circumstances for which external factors interact with the topand subsoil producing inhomogeneous distribution of humidity. This, in result, affects soil density, color, and physical state of vegetation (Scollar et al. 1990), as well as the thermal and electric capacity and conductivity (Orlando & Villa 2011, 155). Thermal sensing includes passive sensors to register energy emissions in the landscape, such as natural energy emissions and latent sun capture in landscape and canopies. The future of remote sensing therefore perhaps lie in a combination of active and passive sensing in order to improve archaeological feature detection by adding more bands of wavelength recording by multispectral LIDAR.

Because, points of data are not confined to only depict spatial value within the data structure. By recording multiple wavelengths and by attaching and calibrating a camera to the scanner (Figure 5), spectral bands can be derived from raw radiometric measurements as physical quantification of absolute values reflecting external factors. Thus it combines active and passive sensing. Multispectral ALS especially derives value for understanding acquisition parameters and atmospheric conditions, such that backscattering can be normalized for comparison and standardization between different study areas (Alexander et al. 2010). For TLS, radiometric calibration is equally necessary for potential comparison between scanned data. For the TLS, the radiometric value is not as important for determination of external parameters of scanning, such as atmospheric conditions, because weather condition is not as dynamically changing and affecting local environment for scanning. TLS is easier to strategically complete when conditions are locally deemed sufficient, and the amount of return signal is not as important due to large quantities of emitted pulses and scale of area investigated. This makes radiometric calibration less important for

TLS, but very important for ALS towards standardizing datasets. Multispectral LIDAR can also provide information in wavelengths outside of the human visible range, making it possible to record additional variables for segmentation and classification.



FIGURE 5: A RIEGL VZ-400 ON SITE IN DENSE VEGETATION. ATTACHED IS HIGH-RESOLUTION CALIBRATED FISH-EYE CAMERA FOR CAPTURING RGB COLORS

The human perception is multispectral sensing, meaning it can sense beyond one spectrum. Human perception especially responds to the red, green and blue wavelength regions forming an adapted hue color spectrum from *RGB* to identify the world. However, the human range of perception of the electromagnetic spectrum lies in a very small region of the visible range. The visible range corresponds to wavelengths in the range of 400 to 700 nm, or 0.4 to 0.7 µm, with a color range of violet through red. The visible colors are constructed from shortest to longest wavelength from: violet, blue, green, yellow, orange, and red. Ultraviolet wavelength is outside of the humanly visible spectrum, but can be recorded and manipulated to be shown within a human visible range. Ultraviolet radiation has a shorter wavelength than the visible violet light, whereas infrared radiation has a longer wavelength than visible red light. Meanwhile, sunlight consists of the entire electromagnetic spectrum, and is reflected and absorbed within and beyond the human range of perception. White is the mixture of colors in the visible spectrum, and black is the total absence of light in any spectrum. This gives the gradation of the natural amplitude of the visible spectrum from

1 to 0, of presence or absence. The image gradient for RGB is typically structured by 0 to 255 as the scale from no presence to presence, and can be computed as gradient scales for edge and texture matching to detect features or densities. For a long time within remote sensing, it was the hope that computer assisted interpretation would lead to the identification of unique spectral values to classify the world. For archaeology it is still one of the primary areas for non-invasive archaeology and detection of sub-soil evidence. However, no unique identifiers work for all contexts, meaning environment has a large influence on the possibilities of non-invasive sub-soil feature detection. Different wavelengths are as a consequence more applicable in certain contexts compared to others, because passive sensing records natural absorbed and emitted energy by the surface and terrain. For active sensing, such as multispectral scanning with controlled exposure to certain wavelengths, it is also quite clear that certain wavelengths are more applicable than others. For instance, vegetation has a wide array of wavelengths usable depending on vegetation type and potential moisture, e.g. broadleaf versus needle (Eastman 2001, 21). Multispectral wavelengths are also used for the 'landuse' classification from the NASA and USGS LANDSAT 1 to 8 series, and continue to be of use for a wide array of scanning and recording for understanding landscape. The basic spectral bands for Earth monitoring is constructed to use the red, near infrared, and green bands to construct pseudo colors for information extraction from the landscape. This has formed the classical indices for vegetation classification based on the normalized difference vegetation index, NDVI, which follows:

EQUATION 2: NORMALISED DIFFERENCE VEGETATION INDEX.

NDVI = (NIR - R) / (NIR + R) NIR = NEAR INFRARED, R = RED

NDVI is a calculation that has proven to be efficient in distinguishing between vegetation and other structures interaction with the electromagnetic spectrum (Eastman 2001, 32). Using near infrared for the detection of vegetation indices to determine potential archaeological features is an added dimension in aerial archaeology (Bennett et al. 2012; Lasaponara et al. 2008). The NDVI reveals vegetation indices by photon absorption from spectral composition such as plant growth based on levels of low or high natural stress variables in certain contexts, i.e. plant growth on buried archaeological features (Figure 6).



FIGURE 6: RECORDED POTENTIAL WAVELENGTH COMPOSITION FROM HEALTHY OR STRESSED PLANTS IN DRY CONTEXT (LASAPONARA & MASINI 2012, 26)

| Landsat 5   | Bands                                 | Wavelength       | Resolution |
|-------------|---------------------------------------|------------------|------------|
| Thematic    |                                       | (µm/micrometers) | (meters)   |
| Mapper      | Band 1 - Blue                         | 0.45-0.52        | 30         |
| (TM)        | Band 2 - Green                        | 0.52-0.60        | 30         |
|             | Band 3 - Red                          | 0.63-0.69        | 30         |
|             | Band 4 - Near Infrared (NIR)          | 0.76-0.90        | 30         |
|             | Band 5 - Shortwave Infrared (SWIR) 1  | 1.55-1.75        | 30         |
|             | Band 6 - Thermal                      | 10.40-12.50      | 120* (30)  |
|             | Band 7 - Shortwave Infrared (SWIR) 2  | 2.08-2.35        | 30         |
|             |                                       | 0.43 - 0.45      | 30         |
| Landsat 8   | Band 1 - Ultra Blue (coastal/aerosol) |                  |            |
| Operational | Band 2 - Blue                         | 0.45 - 0.51      | 30         |
| Land Imager | Band 3 - Green                        | 0.53 - 0.59      | 30         |
| (OLI)       | Band 4 - Red                          | 0.64 - 0.67      | 30         |
| and         | Band 5 - Near Infrared (NIR)          | 0.85 - 0.88      | 30         |
| Thermal     | Band 6 - Shortwave Infrared (SWIR) 1  | 1.57 - 1.65      | 30         |
| Infrared    | Band 7 - Shortwave Infrared (SWIR) 2  | 2.11 - 2.29      | 30         |
| Sensor      | Band 8 - Panchromatic                 | 0.50 - 0.68      | 15         |
| (TIRS)      | Band 9 - Cirrus                       | 1.36 - 1.38      | 30         |
|             | Band 10 - Thermal Infrared (TIRS) 1   | 10.60 - 11.19    | 100 * (30) |
|             | Band 11 - Thermal Infrared (TIRS) 2   | 11.50 - 12.51    | 100 * (30) |

TABLE 2: LANDSAT 5 AND 8 BAND AND WAVELENGTH COMPARISON (USGS LANDSAT)

Similarly, LANDSAT 1 to 5, recorded between 1972-2013, was focused on pseudo color generation and the creation of vegetation indices for classification, but LANDSAT 5 included a thematic mapper to include mid-range infrared with seven bands added to the data structure. The amount of bands for wavelength documentation is, however, only confined by hardware and range of applications envisioned. For instance, the LANDSAT 5 Thematic Mapper recorded seven spectral bands in different wavelengths, whereas the LANDSAT 8, from 2013 to present, expands the band range with eleven bands to include a wider range of wavelengths (Table 2).

Equally, promising steps are undertaken to map the potential use of multispectral LIDAR (Briese et al. 2013b; Wichmann et al. 2015). By the study of Wichmann et al. (2015, 118), it is shown that combining active sensing and passive sensing can improve classification accuracies. Briese et al. (2013b, 123) show the practical potential of calibrated radiometric information for LIDAR data for archaeological prospection and future ideas for usage of multi-wavelength LIDAR data for different applications. Thus, the range of potential application by adding different wavelengths to remotely sensed data and LIDAR data is still a field expanding with a great potential of adding multiple variables to the detection of archaeological details above and below ground.

## 2.7 GEOMETRIC AND RADIOMETRIC CALIBRATION

Calibration of LIDAR data is essential for a wide range of applications and means of standardization. Calibration by geometric and radiometric calibration aims at standardizing data and removing systematic errors from the point clouds. Random errors occur despite calibration, but can be removed by other means. Geometric and radiometric calibration is especially necessary for the comparison of different scanning sessions, such as in between archaeological site comparison or flight strip correlation. Systematic errors are related to setup and environment, and the errors can be unique based on the parameters influenced in the specific scanning session. The systematic errors mainly occurs by bias in system parameters, such as mounting parameters and changing system components of range and angles (Habib et al. 2011). This is rectified by standardized calibration and data-driven strip adjustment to compensate for systematic errors (Friess 2006; Skaloud & Lichti 2006; Glira et al. 2015). The construction of systematic errors by scanning is created by imperfect instruments, incorrect registration, or deficiencies in the mathematical models used (Friess 2006, 2). Systematic errors can be compensated, because they follow rules and patterns based on variables of equipment and circumstances, whereas random errors occur based on internal and external irregularities. The imperfect instruments can be corrected or updated, registration of data can be re-positioned, and mathematical models rerun. Random errors are more
difficult to deal with in the pre- and processing stages of data collection and registration, but possible to correct in post-processing stages of data management. Systematic errors can lead to erroneous data collection, and is therefore more necessary to address in the pre-processing stages, but can as well be addressed in the processing stages of data construction. Random errors cannot be accounted for, before a degree of analysis is carried out. Random errors occur due to light reflection problems, moving objects, and human errors. For the reflection of emitted pulse, the reflection can be affected by wet surfaces and water in general. Reflection of light within wet surfaces and water can be dispersed because of a lack of clear surface, resulting in light sometimes bouncing back to the receiver, but often not. Similar to the reaction of light illuminating a crystal, light disperses into many directions when in contact with water making the amount and intensity occur randomly. Random errors also occur by moving objects which based on the resolution of the scan can be different. TLS is affected by many small changes in the scenery, e.g. canopies changing position because of wind, living objects moving into scanning range, and environment. ALS is less affected by details due to the resolution of the scan, but still detects similar instances of irregularities needed to be filtered. Especially weather conditions affect ALS. In both instances of TLS and ALS, many irregularities is compensated by increased amount of scanning positions and angles from which terrain, objects, and canopies are scanned. Increased amount of positions can counter moving objects by defining them as random errors and outliers not part of the static scenery intended for scanning. The algorithmic approaches is defined by experience, but especially for automation, procedures become estimations based on simulated case studies for correction of systematic and random errors during scanning. Simulated estimation of standard deviations based on systematic and random errors help minimize misleading data by determining potential impact on data and means of correction. The theoretical accuracy is determined by the computed error of covariance propagation, giving standard deviations as valid measure of laser point accuracy. The importance and significance is evident, because the system parameters compute based on observation of angle, range, position, and orientation. An offset of  $\Delta \Theta$ =0.008° can therefore lead to a constant error capable of skewing true accuracy and position (Figure 7), evident by the simulated scans of Peter Friess to merge airborne LIDAR data (2006).



FIGURE 7: A AND B SHOW TRUE ERRORS OF HEIGHT FROM THE SIMULATED STUDY. B SHOWS STANDARD DEVIATION BY INDICATED LINE. THE POINT CLOUDS WERE CONFIGURED WITH ERRORS. A SHOWS INCORRECT INSTRUMENT PARAMETERS, BY: SCAN-ANGLE [OFFSET  $\Delta\Theta$ =0.008°], SCANNER SCALE ERROR [ $\Delta$ S=0.001], WITH A FLYING HEIGHT OF 1000M (AFTER FRIESS 2006, 2).

The random errors are constant and produce similar outliers, whereas the systematic errors can skew accuracy and position leading to incapable comparison between different scanning positions, strips and/or sessions. Thus, for standardizing data, it is necessary to also understand the processing of the point cloud by random errors as well as systematic errors in order to fully comprehend correlation of data (Burman 2000; Glira et al. 2015; Ressl et al. 2008). Friess 2006 uses the redundancy in the overlapping areas of flight lines to estimate correction for observations of instrument parameters to produce more complete and correct point clouds. This is done to understand point cloud adjustment, but also to automate point cloud processing (Friess 2006, 7). From processing the point cloud to correct for errors, standardizing data structure, and add variables, it is possible to work directly on the point cloud to analyze and interpret data. However, simply to navigate in the point can be computational heavy, as well as humanly intangible to comprehend. As a consequence, LIDAR is transformed to more simplistic format by interpolating data to vector- or raster-based DEMs (Hengl & Evans 2009).

# 2.8 BATHYMETRIC LIDAR

On a side note, it also has to be mentioned that both airborne and terrestrial LIDAR can be used for underwater scanning. Bathymetric LIDAR will not be the focus of this investigation, but it has to be mentioned how bathymetric LIDAR functions. Underwater scanning is essential for many fields for

understanding underwater morphology, biology, and human impact. Within archaeology it is primarily focused on understanding sunken artefacts and landscapes of the past. Presently bathymetric LIDAR has some limits in regards to scale of precise scanning range, making it more suitable for shallow water investigations, such as intertidal and near shore zones. These areas are also the most relevant areas for understanding human dispersal and use, since the near shore areas consist of the most significant areas for past exploration of resources and settlement (Doneus et al. 2013a, 2136). Deep waters have naturally also played a significant role for past human activity, such as for deep water fishing and transportation of goods. The remains of previous activity on deep water, is, however, affected by the current and open bed floors, resulting in the dispersal range encompassing waste areas. In shallow waters, the potential of conservation is greatly improved because of gyttja and the encapsulation of materials in anaerobic layers of sediments, and the potential of less dispersal of materials. The effectiveness of bathymetric LIDAR is reflected based on the composition of substances in the water. The composition of substances in water, such as in gyttja rich areas, complicates the potential of bathymetric LIDAR by presence of dissolved organic matter, phytoplankton, and minerals. This is due to problems of reflection and absorption of light photons in turbid waters with high organic levels. In the element of water, the penetration and reflection of light is not as controlled due to light dispersal and absorption of light photons, also meaning return signal will have different intensity levels. Substance composition in different waters requires different means of adaptation in relation to photon absorption and scattering due to minerals, yellow substance, and phytoplankton (Silva et al. 2008). This is especially problematic in the near infrared of laser light, but can be compensated to some degree by the use of emitted pulses in the green specter of light. The green spectrum of light with longer wavelengths has proven to be the most efficient spectral region for water penetration (Doneus et al. 2013, 2138). As with all kinds of Laser Scanning, it is important to understand environmental variables in order to construct digital documentation of landscape. Bathymetric LIDAR, however, helps push the boundaries and possibilities of LIDAR data by operating in very difficult scanning circumstances. For now, however, it is necessary to differentiate between the spectral bands above and below water.

# 2.9 LIDAR INTERPOLATION

The interpolated raster data, commonly used within archaeological practice, are the transformation of data from points to gridded data. A raster is constructed of pixels arranged in order by an outlined grid of specified dimensions. Each pixel contains given information in a range between minimum to maximum outlined by spectral band definition. Compared to large datasets of vector

data, raster image is a more efficient way to display consistent large areas of information. The reason for this is human logical reading of gradients versus absolutes. Vector can also be graduated, but will always consist of gaps. Interpolated data constructs value in between points of information, e.g. by the nearest neighbor algorithm, thus filling gaps. The gradient value of interpolated data is determined by choice and source. Usually the standard of LIDAR data is an 8-bit integer value between 0 to 255, e.g. from black to white as indication of relative elevational scale (Fischer et al. 1996, 239), thus a 3dimensional visualization on a 2.5dimensional plane. By 2.5dimensional plane, the definition is that it is not true a true 3 dimension, because interpolated data is the construction of a grid draped upon data. Thus, a LIDAR point is in itself 3dimensional, but the LIDAR interpolation is a visualization fixed to a 2dimensional plane. Controlling the transformation of data by interpolation, is therefore of absolute necessity. This is especially true since LIDAR has become an important and integral part of an objective approach to visualize and understand the landscape on both micro- and macro-scale. Archaeological LIDAR is simplistically often defined as an interpolated raster derived from LS, and often visualized by the hillshade algorithm from an artificial setting sun in the west. This standardized visualization of landscape for archaeological studies makes data comparable because of similar expression. None the less, it also results in data not revealing everything hidden within the DEMs. But any interpolated visualization is biased towards certain details in the landscape, and potentially visually omitting others. DEMs are interpolated as digital representations of relief over space. DEMs are either vector- or raster-based to be used in three different data structures (see also Figure 8; Masini et al. 2011, 268):



FIGURE 8: STANDARD INTERPOLATED DEM DATA STRUCTURE: 1. GRID OF A REGULAR SQUARE MATRIX DRAPED ON A DEFINED PLANE WHERE EACH PIXEL REPRESENTS ELEVATION, 2. TRIANGULATED IRREGULAR NETWORK, TIN, MESH TO MODEL SURFACE AS CONTIGUOUS NON-OVERLAPPING TRIANGLES, 3. IRREGULAR POLYGONS TO MESH SURFACE BASED ON CONTOUR LINES AND ORTHOGONALS (AFTER MOORE ET AL. 1991, 4)

Regular gridded DEMs are the standard means of algorithmic interpolation of data, but have the disadvantage of not being able to properly represent abrupt discontinuity in the landscape, and smooths out details in very flat areas where data is not present (Masini et al. 2011, 269). Gridded DEMs are raster-based, and even though some details might be lost in the interpolation, compared to vector-based interpolation, it also offers some advantages in the form of standardizing output for comparison. The grid heights of regular gridded DEMs are typically determined by approximation methods like inverse distance weighting, moving last squares, linear prediction, or kriging interpolation. These methods offer grid cell creation based on nearest neighbor principles, making data continuous. However, most are more relevant for datasets of large point distribution, i.e. site, structure or object distribution. Vector-based interpolation produces discontinuous interpolation, making it more possible to determine data gaps. The vector-based TIN interpolation produces a network of triangles between all point data, structured by maximum length and exponent of triangle edges. This makes TIN interpolation capable of representing missing data or data with extreme elevation difference to indicate roughness of landscape. As a result, areas with missing data or abrupt elevation difference will look unnatural compared to actual landscape if the point density is not high enough to smooth the abrupt change in the data. But even though the problem with TIN-DEMs can be the visualization of landscape as discontinuous, it is also its advantages such as highlighting data areas that are troublesome and incomplete for detection and interpretation. The last means of interpolation by irregular polygons also use vector-based representation, but follows linear interpretation based on input. Contour lines are determined, and gridded by irregular polygons between maximum and minimum. Contour lines smooth out data similar to a raster grid and shows landscape as very continuous. For archaeological LIDAR and archaeological mapping, the choice of interpolation is therefore not simply one over the other, but rather a qualified decision based on data resolution needed, and scale of investigation. This is especially necessary for constructing quantifiable and standardized LIDAR data, and sets the basis from which the landscape can be visualized. The landscape of investigation also determines the necessary data resolution needed from regularly gridded DEMs and inherent ppsm to be computed by. An example of amount of detail can be seen in Figure 9 below, by three interpolated continuous regular gridded DEMs by different grid size.



FIGURE 9: COMBINED TLS SCANS WITH DIFFERENT GRID SIZE. FROM LEFT TO RIGHT: 1 M, 0.5 M, 0.1 M. SHADED RELIEF: AZI. 45°, 270 ANGLE (RAUN ET AL. 2018)

To understand amount of detail needed for gridded interpolation, it is necessary to understand features in the landscape. The landscape in Figure 9 is from a dense forested landscape with both exposed and hidden archaeological features. For human and computational interpretation of the landscape, a lot of details in the landscape can be even more confusing for proper information extraction from the DEMs, meaning highest amount of detail is not always the best solution. Within the DEMs are pathways on a very sloped area, as well as cellar structures. The cellar structure is completely buried, and is only revealed as an unnatural elevation change in the landscape by ALS. However, since it is located right next to a modern road, it could easily be classified as something of no interest. The pathways in the landscape, however, reveal unequivocal evidence of past activity of interest for archaeological mapping from remote sensing. A closer view of the DEMs in Figure 9 reveals some of the changes in different grid size when interpolating. The amount of ppsm remains constant for the following interpolation comparison, and is retrieved by 12 different terrestrial

scanning positions, of 14 scans in total with two additional scans in front of a cellar structure by point density changes between 8 to 3 mm at 10 m. The DTM was created by selecting minimum zvalue per raster cell, resulting in some areas having vegetation as minimum z-value and consequently being included as terrain within the DTM. The 12 normal scanning positions were set at a resolution of 8 mm per point at 10 m distance. The additional two high resolution scans were of 3 mm per point at 10 m distance. In total 230.555.115 points were recorded for the 12 scanning positions with a resolution of 8 mm at 10 m, and the 2 additional scan positions included 24.469.696 points of 3 mm at 10 m. In total, the area scanned consist of c. 1.5 ha sloped hillside with dense vegetation, containing 255.024.811 points. The data processing procedures included data handling and manipulation for improved information extraction. The retrieved point clouds were processed in RISCAN PRO, operating and processing software for Riegl 3D laser scanners. The single scan positions were co-registered in RISCAN PRO by applying "Multi Station adjustment" with an average error of 1.17 cm. Individual ASCII text files were exported for each scan to be further processed in OPALS, Orientation and Processing of Airborne Laser Scanning data (Mandlburger et al. 2009). From OPALS, data was interpolated to DEMs of different grid size of 1 m, 0.5 m, and 0.1 m. Different means of visualizing the structured cells were attempted for interpolation, but a grayscale hillshade relief offers one of the best human readable ways of representing landscape for manual visual object detection of small and large structures. Especially the minor pathways were best seen by shading for indication of minor height differences, while still representing the generally sloped area.

The change in level of detail reveal that some details can be seen in the interpolated 1 m grid, but the amount of information is too low to distinguish them as being cultural traces left in the landscape. In the 0.5 m grid, the road and terrace structures can be distinguished as not being part of the natural landscape, and stands out as clear lines. In the 0.1 m grid, road and terrace structures are present and distinguishable as cultural traces left in the natural landscape. However, the amount of other details in the landscape also increases in the 0.1 m gridded interpolation. The visualization therefore becomes more blurred because more detail is revealed and information given. Thus, the high amount of detail in the interpolation with the highest amount of ppsm and information demonstrates not to be the most relevant or efficient for manual visual detection of objects and structures. The 0.5 m DTM reveals the same information in a simpler and faster procedure. The added amount of information is equally creating a more indistinguishable scenery for information extraction for both human as well as computational interpretation. This is evident in FIGURE 10 visualizing the 0.1 m gridded interpolation with linear features marked. From FIGURE 10, a large

amount of linear features are distinguishable in the landscape, but 68 % of the linear features detected are of natural origin, i.e. fallen trees. 32 % consisted of culturally constructed linear features, i.e. pathways and terrace walls.



FIGURE 10: CULTURAL AND NATURAL LINEAR FEATURES WITHIN THE LANDSCAPE. NATURAL LINEAR FEATURES MAINLY CONSIST OF FALLEN TREES. SHADED RELIEF: AZI. 45°, 270 ANGLE.

RED: CULTURAL LINEAR FEATURES. YELLOW: NATURAL LINEAR FEATURES.

The results show that the highest amount of data is not necessarily the best approach. It is more relevant to focus on increased scanning positions and scale, instead of amount of detail recorded at each scanning position when documenting in dense vegetation. Because focused and structured procedures of scanning will in the long run produce the highest amount of information, and thus give the most complete picture of the area of investigation. ALS resolution consequently needs to include resolution capable of producing comprehensive 0.5 m gridded interpolations in order to

become the effective means of large-scale cultural heritage detection. However, one approach cannot necessarily replace the other. Within the area of investigation, it is almost impossible to get a complete overview of the details and structures on-site. One of the major pathways within the area of investigation was not detected before a closer investigation of the TLS data was initiated. Since then the pathway has been confirmed as a ground truth, but the dense vegetation and collapsed trees made it almost impossible to detect by the initial fieldwork. It was only by knowing exact details from the TLS data, that it was possible to confirm this digitally detected plateau as part of the remaining cultural complex. Many other details were equally difficult to determine within the TLS data, and necessitated prior knowledge or later ground confirmation of its existence. Thus, all three data sources were necessary in order to construct a comprehensive overview of the cultural activities within the area of investigation, and none of them were completely capable of replacing the other. The study further investigated many different interpolated DTM's at different levels of detail. However, the most remarkably changes occur in the difference of grid size in the interpolation process. Increase and decrease in amount of information is not linear with amount of ppsm and potential amount of information and details in the landscape. Meaning, too much or too little information can be equally disturbing for archaeological information extraction. A 0.5 m DTM requires ideally 4 ppsm (see FIGURE 11), when not calculating for special circumstances, such as dense vegetation or extreme slopes.



FIGURE 11: POINT DENSITY TO M<sup>2</sup>

From LIDAR laser scanning in a simple flat landscape, the following parameters can be defined in order to construct and assess point density needed for effectively defining ground sampling necessity (TABLE 3).

| ppsm | point distance (cm) | ppsm | point distance (cm) |  |
|------|---------------------|------|---------------------|--|
| 0,1  | 316,23              | 2    | 70,71               |  |
| 0,2  | 223,61              | 3    | 57,74               |  |
| 0,3  | 182,57              | 4    | 50                  |  |
| 0,4  | 158,11              | 5    | 44,72               |  |
| 0,5  | 141,42              | 6    | 40,82               |  |
| 0,6  | 129,1               | 7    | 37,8                |  |
| 0,7  | 119,52              | 8    | 35,36               |  |
| 0,8  | 111,8               | 9    | 33,33               |  |
| 0,9  | 105,41              | 10   | 31,62               |  |
| 1    | 100                 | 16   | 25                  |  |

TABLE 3: POINT DENSITY VERSUS POINT DISTANCE IN LIDAR DATA (AFTER GOBAKKEN & NÆSSET, 2008)

The possibilities for information extraction from any interpolated DEM are therefore highly related to interpolation by ppsm, as is also revealed in FIGURE 12. Minimum ground sampling towards target geometries can be defined such as pitfall traps. Trier et al. (2011, 135) suggest a minimum of 1,8 ppsm to properly sample pitfall traps, but by a ground sampling that is already excluding vegetation and building returns, meaning an initial higher ppsm is needed for the initial scan. As suggested, this initial scan, especially for detection within densely vegetated areas, should be by acquisition resolution of 4 ppsm in order to be better capable of distinguishing between canopies and hidden or exposed archaeological monuments. This is especially needed for the detection of archaeological features smaller than pitfall traps, and also increases the potential of visually manipulating unknown details hidden in the landscape. For the detection of burial mounds, similarly it would require c. 2 ppsm by point density of c. 0.7 cm. For already filtered data, a 1 m grid is a minimum necessity. Thus, a filtered dataset of 1 ppsm is sufficient for the detection of larger archaeological monuments in the landscape, but with some distortion of details while also omitting many smaller structures of potential interest. Most LIDAR products are, however, delivered in 1 m gridded planes, resulting in limited pattern detection possibilities. The optimal minimum solution would be 1.8 ppsm, and the best solution would be 4 ppsm as illustrated by investigations from the TLS study on the Königstuhl hillside in Heidelberg (Raun et al. 2018). But it is all dependent on context of landscape and necessary information extraction by the features and structures investigated. Bollandsås et al. (2012) also concluded that 1 ppsm did not make for sufficient detection of archaeological features in the landscape, and found that a significant increase in visual detection rate for archaeologist was evident by an increase to 5 ppsm. However, by an increase to 10 ppsm it was a less distinctive increase in detection by the test group (Bollandsås et al. 2012, 2742). Archaeological monuments such as burial mounds, pitfall traps, kilns, cairns, and monuments of a sizable extent and size will not have any trouble being visually detected in a 1 m gridded plane by 1 ppsm. The uncertainty of the point measured when the density become s less than 1 ppsm, however means, that the recorded information becomes uncertain to a degree where validation of terrain and surface becomes problematic for archaeological monument detection. Nonetheless, it is all dependent on the features and details intended to be detected, and thus amount of information required. Interestingly as well, is the impact of cognitive and semantic approach for human and computational vision. From Bollandsås et al. 2012, the detection rate and success was significantly different from test person to test person, meaning also a necessary consideration of human bias when interpreting the results of detection rates in LIDAR data, as well as by different interpolation by ppsm. Equally so, the detection rate and success differs by ppsm, as shown in the study of Trier et al 2011. However, from less points within and plane, to more points within a plane, does not result in linear increase of results. This was also the conclusions on the Königstuhl fieldwork (Raun et al. 2018). Thus, it is a matter of settling by finding best mean, which is given by 4 to 5 ppsm (Bolandsås et al. 2012, 2742; Raun et al. 2018).



FIGURE 12: FOUR PITFALL TRAPS AT NINE DIFFERENT POINT DENSITIES. REDUCED DATASET BY PPSM FROM LEFT TO RIGHT IN DIFFERENT CONTEXT: 7.3, 3.6, 1.8, 0.73, 0.29, 0.15, 0.073, 0.036, AND 0.007 PPSM. THEY FOUND 1.8 PPSM TO BE NECESSARY FOR COMPUTATIONAL DETECTION OF PITFALL TRAPS (TRIER ET AL. 2011; TRIER & PILØ 2012)

# 2.10 LIDAR VISUALIZATION

LIDAR visualization is within the field of image analysis, and LIDAR visualization is an important part of post processing data for aiding human cognition and computational logic. This means that visualization of LIDAR data is key for both quantitative and qualitative studies, because it represents the visual aspects on how data should be read and understood, and how features and details are represented. DEMs are the representation of 3dimensional XYZ data on a Cartesian plane, with a gradient representation of Z as elevation. However, dependent on perspective and goals, different visualizations can be more informative than others. As such, there is no objective visualization of the digital landscape, but possibilities exist towards means of standardizing for data comparison to potentially make human and computational logic more objective. Without standardized approaches for pre-processing and processing LIDAR data from acquisition to data construction, any postprocessing, or visualization, will not make sense. All steps are therefore necessary for making best practice recommendations for visualizing the digital landscapes of DEMs. The main questions for choosing how to visualize landscape, is therefore: How is data constructed? What is the context? And what is best suited to visualize the characteristics of features for information extraction? Data construction is answered by data acquisition, i.e. scanner and sensor model, nominal point density, nominal swath overlap, date of data. Context is defined by external conditions of landscape by topography, i.e. degree of slope, and morphology of features within. Lastly, information extraction by visualization is determined by the two former, as well as personal preferences for qualified studies and computational time for quantitative studies. This reasons the necessity of understanding all steps of LIDAR data from points to planes necessary to make large-scale investigations of landscape, and equally more so to document algorithmic procedures undertaken for the three individual steps of LIDAR data construction. The metadata construction for visualizations should include visualization technique and parameters used. Parameters change in accordance to technique, but as proposed by Kokalj & Hesse (2017, 39), some mandatory and ancillary parameters are necessary to document means of LIDAR visualization (TABLE 4).

TABLE 4: METADATA REQUIRED FOR DEM VISUALIZATIONS (AFTER KOKALJ & HESSE 2017, 39)

| technique       | mandatory parameters                  | ancillary parameters                            |  |  |
|-----------------|---------------------------------------|-------------------------------------------------|--|--|
| shaded relief   | illumination azimuth                  | illumination elevation, vertical exaggeration   |  |  |
|                 |                                       | factor, histogram stretch                       |  |  |
| slope           | histogram stretch (min/max)           |                                                 |  |  |
| trend removal   | low pass filter radius                | histogram stretch, color code, type of low pass |  |  |
| and LRM         |                                       | filter                                          |  |  |
| openness        | positive/negative, greyscale/inverted | number of search directions, histogram stretch  |  |  |
|                 | greyscale, search radius              |                                                 |  |  |
| sky-view factor | search radius                         | number of search directions, histogram stretch  |  |  |
| local dominance | search radius                         | observer height, histogram stretch              |  |  |
| cumulative      | search radius                         | observer/target height, angular resolution      |  |  |
| visibility      |                                       |                                                 |  |  |
| accesibility    |                                       | search radius, number of search directions      |  |  |
| MSII            | reference vector (if not zero)        | number of scales, min & max radius, histogram   |  |  |
|                 |                                       | stretch                                         |  |  |
| Laplacian-of-   | filter radius                         | greyscale/inverted greyscale, histogram stretch |  |  |
| Gaussian        |                                       |                                                 |  |  |

visualization

Changes in visualization by, for instance, change of azimuth and degree angle of illumination, radically changes human perception of landscape. Mounds look like pits, and degree of slopes less exaggerated, as can be seen in FIGURE 13 below. FIGURE 13a visualize contour lines, giving an indication of elevational changes within the plane. FIGURE 13b shows elevation by gradient, thus showing elevational levels making it distinguishable minimum and maximum values. While FIGURE 13c and FIGURE 13d gives relative elevational changes, making it possible to increase scale of perspective by comparison of information throughout the gradient scale. However, FIGURE 13c and FIGURE 13d shows the clear implication of change in azimuth and interpretation of positive or negative curvature within the landscape.



FIGURE 13: BURIAL MOUNDS FROM OBERHAUSEN. BY: A: CONTOUR LINES, B: ELEVATION MESH, C: SHADED RELIEF: 45° AND 90 DEGREE, D: SHADED RELIEF: ZENITH: 45°, AZIMUTH: 315°. © BVV.

Difference in means of visualizing landscape impact information extraction by visualization techniques, and thus highly impact the potential of archaeological feature detection. To some degree, this can be quantified towards applicability of techniques towards specific archaeological features, because the different techniques have different advantages in visualizing degree of slope, negative and positive elevation changes, flatness, steepness, or roughness. A determination of variation by applied visualization techniques can be referenced in Figure 14.

As a consequence, multiple perspectives are often necessary to complete a picture of the landscape and the features within. Areas directly facing the point of illumination, or opposite, are usually less detailed due to saturation levels being too extreme. Changes in azimuth can relieve this extreme saturation, or it can be solved by other visualization techniques that incorporate multiple illumination points towards one singular output, such as sky-view factor and openness. To locate correct parameters for target archaeological geometry in the landscape, experimentation is necessary, because where some visualization techniques offer improved visibility for certain details, it obscures the detection possibility of others. The most common visualization technique for archaeological detection is by relief shading of elevation differences, because it offers an intuitively readable visual impression of landscape (Kokalj & Hesse 2017, 16). Relief shading, or hillshade, offers an impression of a 3dimensional landscape on a 2dimensional plane – elevation differences seem natural for the human eye. From a computational point of view, this naturally is not similar, but still offers a normalized visual impression by which many different types of landscape can be

compared by same standard. Shaded relief models are illuminated by a constant direct light from same azimuth and elevation angle. By very low illumination source angles, e.g. <10°, extremely subtle changes in elevation can be detected. This is especially useful when local areas need further exploration to reveal all hidden details in the landscape, but is not useful for large-scale investigations due to information also being lost by overlap and pattern overflow. The biggest problem with shaded relief models, as also demonstrated in FIGURE 13, is the direction of illumination. Archaeological features and structures that are not represented by linear patterns, do not present the same angular problem by illumination. For instance, burial mounds generally have curvature towards all angles, and therefore do not present a problem for relief shade models. However, linear patterns can be hidden within a visual representation by a single light source by running parallel with the illumination. Meaning, linear archaeological structures running parallel with the illumination source will not be visually represented due to the lack of relief shade (Devereux et al. 2008). In general, linear structures can be very problematic to detect in LIDAR data, i.e. by chance of point recording on both elevational positions towards correct interpolation, but also by visualization if multiple angles of relief shading is not being practiced. The detection of structures for archaeological mapping is therefore somewhat problematic because of the dangers of omitting details in the landscape when visually manipulating how the digital landscape is represented. To overcome some problems with singular dimensional representation, various techniques for visualizing DEMs have been created. Some techniques are created for more objective representation of landscape, while others intend to enhance the subtle changes of elevation in certain environments of landscape. As mentioned, for instance, linear structures running parallel with the illumination source, is not represented in singular hillshade models. For this reason Devereux et al. (2008) presented *Principal Component Analysis* (PCA) to visualize a correlation of 16 illumination directions to create a more objective representation of linear features within the landscape. Sky-View Factor (SVF), created by Kokalj et al. (2011), also tries to overcome the problems of linear detection by revealing negative curvature by a complete diffuse illumination from all angles. Similarly Hesse (2010) created a Local Relief Model (LRM) to represent local positive and negative elevation to enhance detection of subtle changes and simplify curvature. The Openness of a feature is equally interesting towards how to objectively represent landscape. Positive and negative Openness for archaeological LIDAR was created by Doneus (2013) to represent small elevational change, but distorts the possibilities of representing small and large curvature changes at the same time. Likewise Multi-Scale Integral Invariants (MSII), created by Mara et al. (2010), determines volume fractions for each DEM pixel, thus creating a single value for each pixel to indicate low or high neighboring value within a DEM for automated information

extraction. All have unique characteristics of representing a digital surface and a digital landscape, but they all have different strengths and weaknesses. For the human cognitive understanding of landscape, the simple hillshade is still the preferred means of representation, but does not offer the full range of information within the DEM. However, the need for computation for creating a hillshade is reduced compared to other techniques of LIDAR visualization. Meanwhile, the need for comprehensive analytical human cognition to understand relief visualization of the digital landscape by hillshade is lesser for the human interpreter. Given the popularity of hillshade representation of DEMs, and the relative ease of information extraction for archaeological purpose, hillshade models also represent a highly comparable and standard representation of elevational data. This can be a result of simple relief visualization of landscape not overcomplicating the procedures of processing and postprocessing data, and thus that the increased amount of use and large-scale comparison of data, can enhance the quality of information by availability. The concern therefore becomes whether or not the different visualization techniques, as e.g. shown in FIGURE 14, justifies a change of common representation of DEMs, or whether the standard should remain hillshade visualization with additional visualization techniques for target specific investigations.

#### Flat terrain



shaded relief (sun elevation < 10°)



trend removal / LRM (filter radius ~ 20 m)



local dominance (radius 10-20 m)



openness or MSII (radius 10 m)



shaded relief (sun elevation ~ 30°)

300 m



0

sky-view factor (radius ~ 10 m)



trend removal / LRM (filter radius ~ 20 m)



local dominance (radius 10-20 m)



openness or MSII (radius 10 m)

Moderate slopes

0

shaded relief (sun elevation ~ 45°)

50 m





sky-view factor (& LoG) (radius ~ 10 m)



trend removal / LRM (filter radius ~ 20 m)



local dominance (&LoG) (radius 10-20 m)



openness or MSII (radius 10 m)

Steep slopes or complex topography



shaded relief (sun elevation > 45°)

sky-view factor (& LoG) <sup>50 m</sup>(radius ~ 10 m)

local dominance (&LoG) (radius 10-20 m)

openness or MSII (radius 10 m)

FIGURE 14: VISUALIZATION TECHNIQUES ILLUSTRATING DIFFERENT FEATURES IN THE LANDSCAPE IN ACCORDANCE TO SLOPE. (FLATLANDS) PLOUGH HEADLANDS ON A FLAT PLAIN NEAR ENDINGEN AM KAISERSTUHL. 1 M LIDAR DATA © LGL IN BADEN-WÜRTTEMBERG. (GENTLE SLOPES) THREE DIFFERENT TYPES OF WORLD WAR I TRENCHES WITH SHELTERS ON GENTLE NE SLOPES OF ČRNI HRIBI, NEAR RENČE, SLOVENIA. 1 M LIDAR DATA © ARSO, SLOVENIA. (MODERATE SLOPES) CHARCOAL BURNING PLATFORMS IN THE HILLS OF THE BLACK FOREST. 1 M LIDAR DATA © LGL IN BADEN- WÜRTTEMBERG. (STEEP SLOPES) A LATE ROMAN CAMPO ON A ROCKY OUTCROP WITH A CHURCH OF ST. HELENA, WEST OF KOBARID, SLOVENIA. 0.5 M LIDAR DATA © WALKS OF PEACE IN THE SOČA RIVER FOUNDATION (KOKALJ & HESSE 2017, 36-7).

# 2.11 LIDAR ACCESS

The availability of remotely sensed data for archaeological investigation differs widely from country to country in Europe. Some countries and regions offer publicly available remotely sensed data, whereas others adopt a business model for the availability of remotely sensed data, or simply restrict access. Especially in Germany this is well illustrated by the differentiated approach to public availability of LIDAR data. Two states out of 16 offer open free downloadable LIDAR data for public use as of spring 2017. The LIDAR archives are traditionally stored in the 16 state survey departments where requisition of LIDAR data requires larger investments for use and sharing under common license. However, more and more countries, states, regions, and municipalities are making remote sensing archives available to the general public on a European scale. This project is also a testament to the changing attitudes towards open data, as the point clouds of Unterfranken in Germany were made available for scientific investigations as XYZ point clouds for the *lunior* Research Group, Digital Humanities, Heidelberg University. The main reasons for open data can be defined as a combination between increased use, quality of information, and cost efficiency. All factors influence each other, but the key influence is *increased use*. Naturally it is extremely difficult to measure the exact effect without a complete picture of service and use of LIDAR data. However, especially in the case of archaeological practice, it is a beneficial point of view to understand potential quality production of knowledge. Cost and time efficiency for the requisition of data is dependent on market consumption and use. The argument against open and free data is often that revenue will be spent on new scanning campaigns for improved datasets. However, a large amount of any revenue will be consumed by maintaining bureaucracy and paperwork in order to control distribution. For Germany, it can be seen that it is not small amounts of money that is generated in the sale of LIDAR data (TABLE 5).

| Rheinland-                  | Phalz       | Saxony-Anł                  | nalt         | Saarland                    |            | Schleswig-I                 | lolstein    | Bremen                      |          |
|-----------------------------|-------------|-----------------------------|--------------|-----------------------------|------------|-----------------------------|-------------|-----------------------------|----------|
| from<br>2005-15<br>ave.year | €<br>58.012 | from<br>2011-15<br>ave.year | €<br>132.350 | from<br>2008-14<br>ave.year | €<br>4.575 | from<br>2012-14<br>ave.year | €<br>22.606 | from<br>2013-15<br>ave.year | €<br>743 |

TABLE 5: EXTRACT OF FINANCIAL SITUATION FOR LIDAR DATA INCOME FROM 5 STATES IN GERMANY. FROM THE MAIL CORRESPONDENCE BETWEEN MARTIN ISENBURG AND 5 OF THE 16 STATE SURVEY OFFICES IN GERMANY (ISENBURG 2017; APPENDIX 2A)

What the diverse pattern of income from the state survey departments suggests, is a differentiated potential of use for both private and public users. The differentiated income can be argued to reflect difference in price range and special offers for certain groups, such as for state agencies and

academia. But one thing it clearly shows is uneven access to a resource, and thus uneven potential for both public and private knowledge improvement and innovation. Whether the LIDAR services provided is actually an income requires more information. However, from a similar scenario in England, it quickly proved that a business model for the distribution of LIDAR data was not a viable model to follow. This was explored by the "freedom of information" request by Louise Huby, November 2014<sup>1</sup>. The enquiry revealed an annual sales turnover of 373.921 € between the years 2007 to 2014, proving that the actual revenue after running cost would be extremely low (Huby 2014). As a result of this situation, by September 2015 LIDAR data in England became freely accessible for commercial and private use. The freely accessible LIDAR data in England has since become an example of good praxis for LIDAR data. Similar success stories continue in other countries with state initiatives to deliver open data to the public. Finland, Holland, and Denmark have all for a longer period been promoting open and free data for public and private use, and all offers LIDAR repositories and a wide array of data for entire regions or nations. Some of the possible sources for open LIDAR data by limited or unlimited use license can be accessed at: https://github.com/openterrain/openterrain/wiki/Terrain-Data (Jarvis et al. 2008). Many of the nationwide LIDAR providers can be seen in TABLE 6 below:

| Denmark     | SDFE                                              | http://download.kortforsyningen.dk                                            |
|-------------|---------------------------------------------------|-------------------------------------------------------------------------------|
| England     | Environment Agency                                | http://environment.data.gov.uk/ds/survey/#/survey                             |
| Finland     | NLS                                               | https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?la<br>ng=en            |
| Netherlands | SDI                                               | https://www.pdok.nl/nl/producten/downloaden-van-<br>data-pdok                 |
| Norway      | Kartverket                                        | https://hoydedata.no/LaserInnsyn/                                             |
| Latvia      | latvian geospatial information agency             | http://map.lgia.gov.lv/index.php?lang=2&cPath=4_5&txt_i<br>d=126              |
| Poland      | Geoportal                                         | http://mapy.geoportal.gov.pl/imap/                                            |
| Spain       | PNOT                                              | http://pnoa.ign.es/coberturalidar                                             |
| Slovenia    | Ministry of the Environment and Spatial Planning. | http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Li<br>dar@Arso        |
| Sweden      | Lantmäteriet                                      | http://www.lantmateriet.se/sv/Kartor-och-geografisk-<br>information/Hojddata/ |
| USA         | NSF/OpenTopography                                | http://www.opentopography.org                                                 |
|             | USGS                                              | http://earthexplorer.usgs.gov                                                 |
|             | NOAA                                              | https://coast.noaa.gov/dataregistry/search/collection/inf<br>o/coastallidar   |
|             | NASA                                              | http://gliht.gsfc.nasa.gov/ext/maps/index.html                                |
| Wales       | NRW                                               | http://lle.gov.wales/Catalogue/Item/LidarCompositeData<br>set/?lang=en        |

TABLE 6: SOME OF THE PRESENT NATIONWIDE SITES FOR OPEN LIDAR DATA

<sup>1</sup> https://www.whatdotheyknow.com/request/the\_revenue\_made\_from\_the\_sale\_o

Advances towards open and freely available LIDAR data can also be seen by the increasing amount of international repositories and portals publicly available for use and download, e.g. OpenTopography, USGS Earth Explorer, Lidar Online, Open Access Hub, and many more. Open sources for global datasets are available for continental, national and regional studies by SRTM Global and ASTER Global DEMs, obtainable at earthexplorer.usgs.gov. The result of such initiatives impacts potential use by removing barriers of cost and time, and thus improves data quality. By the possibility of control comparison and added spatial information, new data will be enriched by already known information, and improve the scale of potential investigation. However, in situations where remotely sensed data is only publicly available by request or payments, cost by time and value, can directly halt projects of improvement or innovation. When a request for remotely sensed data is necessary, it slows down the process of acquisition for any project. Consequently, this has a negative impact on the use of remotely sensed data, especially for archaeological investigations. Many archaeological investigations are based on small timescales for prospection, investigation, and interpretation. As a result, any formal administrative request could easily stop or slow the process of acquisition down to such a degree that remotely sensed data only becomes a means of visualization of information, rather than as a means of investigation. This limits the potential impact of remotely sensed data for archaeological investigations by removing a meta-layer of information for knowledge construction. By direct availability of remotely sensed data, such as airborne LIDAR,

it increases the range of perspectives from singular entities to patterns, and from microto macro-scaled perspectives on the landscape and the past. Because, increased use by the community is controlled by time and cost efficiency. The end result is improved quality of information for both manual and automatic information extraction from digital landscapes by availability and scale of investigation. The structure is exemplified in the schematic depiction in Figure 15. The three pillars of knowledge construction will be a common theme throughout this thesis.



FIGURE 15: A SCHEMATIC DEPICTION OF KNOWLEDGE CONSTRUCTION

Because, quality of information is not linear to rate of detection, but rather as a cost-benefit analysis by invested material cost and invested cost of time to impact quantity of use, and thus quality of information. Only by finding a balance between knowledge construction and remote information extraction, can we justly apply large-scale archaeological investigations of landscape.

# 2.12 LIDAR FORMATS

The LIDAR product is delivered in many different formats, but it all stems from three coordinates on a defined plane. Added data information can be added to the data string within one point in space, but it is still just a point in space by XYZ. Typically the LIDAR product is delivered as gridded points in ASCII text files with internal separation or interpolated and rasterized DEMs, DSMs and DTMs as GeoTIFF container files for pixel determination of spatial extent by georeference. In the raw point cloud they can also be delivered in container files besides the ASCII text formats to standardize and compress data, such as LAS and LAS-extension files by binary compression, i.e. 2-base numeral system of 0 or 1. Container files, such as LAS files, incorporate the possibility of integrating the full waveform of LIDAR data with classification values by standardizing the classification of wavelength peaks, resulting in class 2 always classified as terrain and a range of classes for surface details. However, LAS classification extent changes accordingly to the level of detail available in the LIDAR data, and is therefore not a finite definition. But the ASPRS have set up a standard for classification within the file structure which follows much of the industrial standard of file exchange between producers and consumers for LIDAR data by classification of wavelength. Classification of wavelength will naturally be expanded, and therefore the data structure is not a finite product, but rather a guideline of extension. ASCII files are as equally transferable between systems as LAS files, if not more so by its simple construction of data as text, but ASCII files easily become a burden by sheer file-size compared to LAS formats by binary encoding. The LAS files are however, unreadable for the human eye due to the binary structure of data and thus some transparency of data can be lost in the compression procedure. LAS files are also changing towards more compressed LAS extensions, and the danger then becomes whether or not software producers are able to standardize capability of reading and handling new formats, or whether a division of file formats will arise. Thus, presently the best means of storing LIDAR data can be argued to be by Unicode characters in ASCII files by data separation, e.g. comma separated values, csv. For working with LIDAR data, a transformation and compression of data to LAS extensions can be needed for handling and working with large-scale LIDAR projects.

Naturally, LIDAR data comes in many file formats, and will continue to do so as the field develops. The important thing is keeping the separation of individual recorded values, and making sure that LIDAR data remains open by not creating restriction by compression and encryption of data to locked market specific standards. Restraining access by data encryption is a slippery slope, because it is a sought after control to safeguard datasets from being used by people without access and without purchased rights of publication. Such processes will stop the field more than safeguard the potential income and control of data. This results in some file formats being constructed very specific towards only being available by certain software possibilities. Naturally there is an abundance of file formats for containing LIDAR data and LIDAR metadata. Similarly so, there is an abundance of container files for interpolated raster that are build towards specific tasks and means of reading data by target programming languages or to coordinate with other datasets. This is naturally a valid necessity to structure data, but an abundance of container files for both LIDAR points clouds and interpolated LIDAR raster, limits efficiency and potential quality of information by a lack of possible use across platforms. The potential of LIDAR in archaeology by both the professional and layperson community, can therefore be somewhat complicated by this dilemma. That is why keeping the data as ASCII text files by comma separated values for LIDAR data, can be the simplest and most long term solution for transferring and storing point cloud information, but not the best solution for minimizing data file size or computational procedures. However, for much of the archaeological community, it is the already interpolated raster as GeoTIFF files that are delivered. GeoTIFFs have a general widespread use within all fields, and serves as an interface for gridded space in compressed and decompressed formats. Equally more so, the added spatial record gives the possibility of transferring coordinate structure on a Cartesian plane across most platforms and software solutions. This leads to TIFF files in general being the most recommend file format for applications and storage, and GeoTIFFs being one of the most used formats for remote sensing.

# 2.13 ARCHAEOLOGICAL LIDAR POTENTIAL

The archaeological potential of LIDAR data is founded in its ability to depict dimensions, and equally more so to add dimensions to the possibilities of interpreting the cultural landscape. By its natural 3dimensional space, spatial understanding plays a large part on information extraction from the landscape, and archaeological monuments become visual representations by elevational change. The potential of archaeological LIDAR is also by its documentation scale from structures to sites by TLS, and from local areas to international and worldwide comparison by ALS. Borders do not intrinsically exist in LIDAR data, and landscape can therefore be better perceived as a connected landscape by all its revealed information of natural and cultural traces and patterns. LIDAR is a

digital product, and can therefore be manipulated to visualize certain details. The use of LIDAR to manipulate the digital landscape to segment categories of terrain, surface, and potentially everything in between, is undoubtedly the strongest advantage of LIDAR data. But it is not the only advantage. LIDAR data aid investigating spatial integrity of monuments and landscape by spectral values and geometrical composition by keeping a physical measurable record of information to reference the changes in landscape of human and natural impact. By the simple detection of change between two datasets of point clouds, recorded at different time intervals, it is possible to see changes made in the landscape, e.g. by modern construction, farming, and foresting impact on landscape (Walter 2004). This offers a simple large-scale possibility of cultural heritage management. However, in order to be effective, data from both sequences needs to be standardized and correlated to be comparable. This means that same standards of geometric and radiometric calibration towards regulated benchmarking data are necessary; otherwise the systematic errors can skew data to such a degree that direct comparison is not possible because of inconsistencies between the datasets. However, the same point is never measured again in LIDAR data, because it is random large-scale light emission. This can be compensated by the gridding of points into one point per square meter to represent the mean of all recorded points, resulting in some changes of elevational accuracy being inevitable. Gridding to mean is more necessary when the densities of point sampling are smaller, i.e. by ALS scanning in certain altitude above earth, compared to the denser point sampling by TLS. Equally more so, measuring terrain and surface by different bands in different wavelengths increase the possibilities of segmentation and classification of the landscape by multiple variables. But what is continually necessary, is to construct data given. In most archaeological situations, the case rarely constitute densely distributed measurement points of light in different wavelengths, but rather scarce point sampling of discrete return of first and last pulse of the landscape. This is by no means a disadvantage, and is still of great value for landscape interpretation, almost no matter the point sampling density of LIDAR data. But with lower density sampling, interpolation plays a more significant role for the representation of continued or abrupt changes of elevation. Meaning that especially for DEMs with low density sampling, substantial focus is required on the means of post-processing point clouds of interpolation and image analysis for manual and automatic extraction in order to retrieve the largest amount of information for archaeological mapping. Otherwise, the ratio between detecting true positives and false positives will be unequally distributed, and true positive detection remain uncertain classifications for desk based investigations. For desk based investigations, however, ground verification will be a necessity for most investigations. The biggest potential of LIDAR data is therefore not necessarily in its potential of application for individuals, but rather by its wider application and use in the community by both professionals and laypersons for the construction of qualified knowledge by comparative use. Applying simple large-scale algorithms for the detection and segmentation of archaeological monuments in LIDAR data is interesting for questions regarding efficient use towards constructing improved knowledge production. This should be understood by the increase in a increased user domain being able to add other sources of information for landscape investigation by formulating quantified and qualified conclusions based on the details detected in landscape. However, does this lead to improved quality of information or simply improved quantity of information? To see the potential of archaeological monument extraction from LIDAR data, we therefore need to evaluate the use and impact of semi-automated information extraction by the archaeological and wider academic community. In chapter 3, LANDSCAPE PERSPECTIVES, primary data is introduced, and the field of automatic archaeological monument detection is qualitatively assessed. The use and impact of automated and semi-automatic information extraction, is analyzed, visualized and modelled in chapter 4, STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION IN **REMOTE SENSING ARCHAEOLOGY,** in order to quantitatively asses state of the field and define best practice. In chapter 5, APPLIED DETECTION IN LIDAR DATA, pattern recognition will be assessed, and adapted to show human and computational interpretation of digital LIDAR landscapes. This will all be summarized and assessed in chapter 6, CONCLUSIONS AND PERSPECTIVES.

# References

- Anderson, J., M. Martin, M. Dubayah, R. Dubayah, M. Hofton, P. Hyde, B. Peterson, J. Blair & R. Knox. 2006. The use of waveform LiDAR to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. *Remote Sensing and Environment*, vol. 105, p. 248–61.
- Arel, I., C. Rose & T Karnowski. 2010. Deep machine larning a new frontier in artificial intelligence research. *IEEE Computational Intelligence Magazine*, vol. 5, no. 4, p. 13-8.
- Amann, M., T. Lescure, R. Myllyla & M. Rioux. 2001. Laser Ranging: a critical review of usual techniques for distance measurement. *Optical Engineering*, vol. 40, no. 1, p. 10-9.
- Alexander, C., K. Tansey, J. Kaduk, D. Holland & N. Tage. 2010. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. *ISPRS Journal of Photogrammetry and Remote Sensing*, 65, p. 423-32.
- Alonso, J., J. Rubio, J. Martin & J. Fernandez. 2011. Comparing Time-of-Flight and Phase-Shift. The survey of the royal pantheon in the basilica of San Isidoro (Leon). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-5/W16, p. 377-85.
- ASPRS. 2013. LAS Specification. Version 1.4 R13. 15 July. [online] *The American Society for Photogrammetry and Remote Sensing.* Available at: http://www.asprs.org/wpcontent/uploads/2010/12/LAS\_1\_4\_r13.pdf [01/03-2017].
- Bennett, R., K. Welham, R. Hill & A. Ford. 2012. The Application of Vegetation Indices for the Prospection of Archaeological Features in Grass Dominated Environment. *Archaeological Prospection*, vol. 19, p. 209-18.
- Belgiu, M., I. Tomljenovic, T. Lampoltshammer, T. Blaschke & B. Hoefle. 2014. Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. *Remote Sensing*, vol. 6, no. 2, p. 1347-66.
- Bewley, B., D. Donoghue, V. Gaffney, M. Leusen & A. Wise. 2011. Aerial Survey for Archaeology: A Guide to Good Practice. [online] *Guides to Good Practice*. Archaeology Data Service, University of York, UK.
  Available at: http://guides.archaeologydataservice.ac.uk//g2gp/AerialPht\_Toc [10/10-2017]
- Bofinger, J., & R. Hesse. 2011. As far as the laser can reach ... laminar analysis of LiDAR detected structures as a powerful instrument for archaeological heritage management in Baden-Württemberg, Germany. *Remote Sensing for Archaeological Heritage Management*. Eds. D. Cowley. Proceedings of the 11th EAC Heritage Management Symposium. Reykjavik, Iceland, 25–27 March 2010. Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), Budapest, p. 161–71.
- Bolstad, P., 2008, GIS Fundamentals a first text on Geographic Information Systems. Third Edition. White Bear Lake, Eider Press.
- Bollandsås, A., O. Risbøl, L. Ene, A. Nesbakken, T. Gobakken & E. Næsset. 2012. Using airborne small-footprint laser scanner data for detection of cultural remains in forests: an experimental study of the effects of pulse density and DTM smoothing. *Journal of Archaeological Science*, vol. 39, p. 2733-43.
- Briese, C., M. Doneus & G. Verhoeven. 2013a. Radiometric calibration of ALS data for archaeological interpretation. *Archaeological Prospection. Proceedings of the 10th International Conference on*

*Archaeological Prospection.* Eds W. Neubauer, I. Trinks, R. B. Salisbury & C. Einwögerer. Wien, Austria, p. 427–29.

- Briese, C., Pfennigbauer, M., Ullrich, A., Doneus, M., 2013b. Multi-wavelength airborne laser scanning for archaeological prospection. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science*, vol. 40, p. 119-24.
- Briese, C., M. Pfenningbauer, A. Ullrich & M. Doneus. 2014. Radiometric information from airborne laser scanning for archaeological prospection. *International Journal of Heritage in the Digital Era*, vol. 3, p. 159-78.
- Burman, H. 2000. Adjustment of Laser Scanner Data for Correction of Orientation Errors. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science,* Amsterdam, The Netherlands, Vol. XXXIII, Part 3A, p. 548–55.
- Cavalli, M.R., G. Licciardi & J. Chanussot. 2013. Detection of Anomalies Produced by Buried Archaeological Structures Using Nonlinear Principal Component Analysis Applied to Airborne Hyperspectral Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 2, p. 659-69.
- Challis, K., C. Carey, M. Kincey & A. Howard. 2011. Airborne lidar intensity and geoarchaeological prospection in river valley floors. *Archaeological Prospection*, vol. 18, p. 1-13.
- Cheng, L., Y. Wang, Y. Chen & M. Li. 2016. Using LiDAR for digital documentation of ancient city walls. *Journal of Cultural Heritage*, vol. 17, p. 188-93.
- Cowling, D. 2011. Remote Sensing for Archaeological heritage management. *Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010.* Eds. D. Cowley. EAC, no. 5, p. 11-6.
- Cowley, D.C., Standring, R.A., and Abicht, M.J. (2010). *Landscapes through the Lens: Aerial Photographs and the Historic Environment*. Oxbow Books, Oxford.
- Crutchley, S., & P. Crow. 2009. *The light fantastic: using airborne LIDAR in archaeological survey.* English Heritage Publishing, Swindon.
- Custer, J., V. Klemas & I. Wells. 1986. Application of Landsat Data and Synoptic Remote Sensing to Predictive Models for Prehistoric Archaeological Sites: An Example from the Delaware Coastal Plain. *American Antiquity,* vol. 51, p. 572–88.
- De Laet, V., E. Paulissen & M. Waelkens. 2007. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). *Journal of Archaeological Science*, vol. 34, no. 5, May 2007, p. 830–41.
- Devereux, B., G. Amable & P. Crow. 2008. Visualisation of LiDAR Terrain Models for Archaeological Feature Detection. *Antiquity*, vol. 82, no. 316, p. 470–9.
- Doneus, M., & C. Briese. 2006. Full waveform airborne laser scanning as a tool for archaeological reconnaissance. *From Space to Place. Proceedings of the 2nd International Conference on Remote Sensing in Archaeology*, BAR International Series 1568, p. 99-105.

- Doneus, M., C. Briese, M. Fera, & M. Janner. 2008. Archaeological prospection of forested areas using fullwaveform airborne laser scanning. *Journal of Archaeological Science*, vol. 35, no 4, p. 882-93.
- Doneus, M., C. Briese, & N. Studnicka. 2010. Analysis of full-waveform ALS data by simultaneously acquired TLS data: Towards an advanced DTM generation in wooded areas. *ISPRS TC VII Symposium – 100 years ISPRS,* July 5-7, IAPRS, Vienna, Austria, vol. XXXVIII, part 7B, p. 193-8.
- Doneus, M. 2013. Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. *Remote Sensing,* vol. 5, p. 6427-42.
- Doneus M., & T. Kühtreiber. 2013. Airborne laser scanning and archaeological interpretation bringing back the people. *Interpreting archaeological topography – airborne laser scanning, 3D data and ground observation.* Eds R. Opitz & D. Cowley. Oxbow Books, Oxford, p. 32-50.
- Doneus, M., N. Doneus, C. Briese, M. Pregesbauer, G. Mandlburger & G. Verhoeven. 2013. Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. *Journal of Archaeological Science*, vol. 40, p. 2136-51.
- Doneus, M., G. Verhoeven, C. Atzberger, M. Wess & M. Ruš. 2014. New ways to extract archaeological information from hyperspectral pixels. *Journal of Archaeological Science*, vol. 52, pp. 84-96.
- Eastman, J. 2001. IDRISI Guide to GIS and Image Processing Vol. 1 . Clark University, Worcester.
- Figorito, B., & E. Tarantino. 2014. Semi-automatic detection of linear archaeological traces from orthorectified aerial images. *International Journal of Applied Earth Observations and Geoinformation*, vol. 26, p. 458-63.
- Fischer, R., S. Perkins, A. Walker & E. Wolfart. 1996. *HIPR Hypermedia Image Processing Reference*. [online] John Wiley & Sons LTD. Available at: http://www.dsi.unive.it/~atorsell/Hipr.pdf [04/10-2016]
- Friess, P. 2006. Towards a Rigorous Methodology for Airborne Laser Mapping. Proceedings of the International Calibration and Validation Workshop EURO COW, Castelldefels, Spain. Published as CD-ROM.
- Geist, T., B. Höfle, M. Rutzinger, N. Pfeifer & J. Stötter. 2009. Laser scanning a paradigm change in topograhic data acquisition for natural hazard management. *Sustainable Natural Hazard Management in Alpine Environment.* Eds. E. Veulliet, S. Johann & H. Weck-Hannemann. Springer, Heidelberg, p. 309-44.
- Glira, P., N. Pfeifer, C. Briese & C. Ressl. 2015. Rigorous strip adjustment of airborne laserscanning data based on the ICP algorithm. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, vol. II-3/w5, p. 73-80.
- Gobakken, T., & E. Næsset. 2008. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. *Canadian journal of forest research-revue canadienne de recherche forestiere*, vol. 38, no. 5, p. 1095-1109.
- Gould, R. 1959. The LASER, Light Amplification by Stimulated Emission of Radiation. *The Ann Arbor Conference on Optical Pumping*. Eds. P. Franken & R. Sands, the University of Michigan, June 15 through June 18, 1959. pp. 128.

- Grøn, O., L. Aurdal, F. Christensen, H. Tømmervik & A. Loska. 2004. Locating invisible cultural heritage sites in agricultural fields evaluation of methods for satellite monitoring of cultural heritage sites results 2003. The Norwegian Directorate for Cultural Heritage, Oslo. NIKU; Norsk romsenter. Available at: https://brage.bibsys.no/xmlui/handle/11250/175792 (Accessed: 18 April 2017).
- Habib, A., A. Kersting, A. Shaker & W. Yan. 2011. Geometric Calibaration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products. *Sensors*, vol. 11, no. 9, p. 9069-97.
- Hengl, T., & I. Evans. 2009. Mathematical and Digital Models of the Land Surface. *Geomorphometry. Concepts, Software, Applications*. Eds. T. Hengl & H. Reuter, p. 31-63.
- Hesse, R. 2010. LiDAR-derived Local Relief Models a new tool for archaeological prospection. *Archaeological Prospection, vol.* 17, p. 67-72.
- Hesse, R. 2015. Combining Structure-from-Motion with high and intermediate resolution satellite images to document threats to archaeological heritage in arid environments. *Journal of Cultural Heritage*, vol. 16, no. 2, March–April 2015, p. 192–201.
- Hiedemann, H. 2012. Lidar Base Specification Version 1.0. [online] U.S. Geological Survey Techniques and Methods, book 11, chap. B4, pp. 63. Available at: https://pubs.usgs.gov/tm/11b4/pdf/tm11-B4.pdf [01/03-2017]
- Huby, L. 2014. Freedom of information. The revenue made from the sale of LiDAR data. [online]. WhatDoTheyKnow. Available at;

https://www.whatdotheyknow.com/request/the\_revenue\_made\_from\_the\_sale\_o [10/10-2017]

- Hyyppä, J., H. Hyyppä, X. Yu, H. Kaartinen, A. Kukko & M. Holopainen. 2009. Forest inventory using smallfootprint airborne LiDAR. *Topographic laser ranging and scanning: Principles and processing.* Eds. J. Shan & C. Toth, p. 336-70.
- Höfle, B., M. Hollaus & J. Hagenauer. 2012. Urban vegetation detection using radiometrically calibrated smallfootprint full-waveform airborne LiDAR data. *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 67, 134–47.
- Isenburg, M. First Open LiDAR in Germany. [online]. Rapidlasso GmbH. Available at: https://rapidlasso.com/2017/01/03/first-open-lidar-in-germany/ [3/3-2017]
- ISO TS 19130-2. 2014. *Geographic information Imagery sensor models for geopositioning Part 2: SAR, InSAR, lidar and sonar.* International Organization for Standardization.
- Janos, T. 2013. *Precision Agriculture.* [online] University of Debrecen. Available at: http://www.tankonyvtar.hu/en/tartalom/tamop412A/2011\_0009\_Tamas\_Janos-Precision\_Agriculture/adatok.html [4/10-2016]
- Jarvis, A., H. Reuter, A. Nelson, E. Guevara. 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org/. [online] also available at: https://github.com/openterrain/openterrain/wiki/Terrain-Data [3/3-2017]
- Kokalj, Z., K. Zaksek & K. Ostir. 2011. Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. *Antiquity*, vol. 85, p. 263-73.

- Kokalj, Z., & R. Hesse. 2017. *Airborne Laser Scanning Raster Data visualization a guide to good practice.* Zalozba ZRC, Ljubljana.
- Lambers, K. & I. Zingman. 2012. Towards Detection of Archaeological Objects in High-Resolution Remotely Sensed Images: the Silvretta Case Study. *Proceedings of the 40th conference on computer applications and quantitative methods in archaeology*. Archaeology in the digital era, II. Amsterdam, p. 781-91.
- Lasapona, R., N. Masini & G. Scardozzi. 2008. New perspectives for satellite-based archaeological research in the ancient territory of Hierapolis (Turkey). *Advances in Geoscience*, vol. 19, p. 87-96.
- Lasaponara, R., R. Coluzzi & N. Masini. 2011. Flights into the past: Full-waveform airborne laser scanning data for archaeological investigation. *Journal of Archaeological Science*, vol. *38*, p. 2061–70.
- Lasaponara, R., & N. Masini. 2012. Image Enhancement, Feature Extraction and Geospatial Analysis in an Archaeological Perspective. *Satellite Remote Sensing: a New Tool for Archaeology.* Eds. R.Lasaponara & N. Masini. New York, Springer.
- Lemmens, J.P.M.M., Z. Stančič and R.G. Verwaal 1993. Automated Archaeological Feature Extraction from Digital Aerial Photographs. *Computing the Past. Computer Applications and Quantitative Methods in Archaeology. CAA92*. Eds. J. Andresen, T. Madsen and I. Scollar, Aarhus University Press, Aarhus, p. 45-52.
- Mara, H., S. Krömker, S. Jakob & B. Breuckmann. 2010. GigaMesh and Gilgamesh 3D Multiscale Integral Invariant Cuneiform Character Extraction, *The 11th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST*. Eds. A. Artusi, M. Joly-Parvex, G. Lucet, A. Ribes u. D. Pitzalis. Paris, France, p. 131–8.
- Maaten, L. van der, P. Boon, G. Lange, H. Paijmans & E. Postma. 2007. Computer Vision and Machine Learning for Archaeology. *Proceedings of the 34th Conference on digital Discovery. Exploring New Frontiers in Human Heritage. CAA2006*. Eds. J. Clark & E. Hagemeister. Computer Applications and Quantitative Methods in Archaeology. Fargo, United States, April 2006. Archaeolingua, Budapest, p. 476-82.
- Mandlburger, G., J. Otepka, W. Karel, W. Wagner & N. Pfeifer (2009) Orientation and processing of airborne laser scanning data (OPALS) – concept and first results of comprehensive ALS software. *ISPRS* workshop, Laser Scanning '09, vol. 38. Paris, France, p. 55-60.
- Menze, B., & J. Ur. 2012. Mapping Patterns of Long-Term Settlement in Northern Mesopotamia at a Large Scale. *PNAS*, vol. 109, no. 14, p. 778-87.
- Moore I., R. Grayson & A. Ladson. 1991. Digital Terrain Modelling: A Review of Hydrological, Geomorphological and Biological Applications. *Hydrological Processes*, vol. 5, p. 3-30.
- Olesen, L.H., & K.J. Klinkby. 2012. Fredede fortidsminder fra luften. Roundborgs Grafiske Hus, Holstebro.
- Olesen, L.H., H. Dupont & C. Dam. 2011. Luftfotos over Danmark. Roundborgs Grafiske Hus, Holstebro.
- Opitz, R., & D. Cowley. 2013. Interpreting Archaeological Topography: 3D Data, Visualisation and Observation. Oxbow Books, Oxford.
- Orlando, P., & B. Villa. 2011. Remote Sensing Applications in Archaeology. *Archaeologica e Calcatori*, vol. 222, p. 147-68.

Redfern S. 1997. Computer assisted classification from aerial photographs. AARG news 14, p. 33-8.

Ring, J. 1963. The Laser in Astronomy. *New Scientist*, p. 672-3.

- Ressl, C., H. Kager & G. Mandlburger. 2008. Quality Checking of ALS Projects Using Statistics of Strip Differences. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008, p. 253-60.
- Schneider, A., M. Tekla, A. Nicolay, A. Raab & T. Raab. 2015. A Template matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. *Archaeological Prospection*, vol. 22, no. 1, p. 45-62.
- Scollar, I., A. Tabbagh, A. Hesse & I. Herzog. 1990. *Archaeological Prospecting and Remote Sensing*. Cambridge: Cambridge University Press, 1990.
- Siart, C., B. Eitel & D. Panagiotopoulos. 2008. Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete. *Journal of Archaeological Science*, vol. 35, p. 2918–26.
- Silthole, G. 2005. *Segmentation and Classification of Airborne Laser Scanner Data*. Ph.D. Thesis, Technische Universiteit Delft.
- Silva, T., M. Costa, J. Melack & E. Novo. 2008. Remote sensing of aquatic vegetation. *Theory and Applications. Environmental Monitoring and* Assessment. Vol. 140, p 131-45.
- Skaloud, J., & D. Lichti. 2006. Rigorous approach to bore-sight self-calibration in airborne laser scanning. *ISPRS, Journal of Photogrammetry and Remote Sensing,* vol. 61, p. 47-59.
- Slott, D., D. Boyd, A. Beck & A. Cohn. 2015. Airborne LiDAR for the Detection of Archeological Vegetation Marks using Biomass as a Proxy. *Remote Sensing*, vol. 7, p. 1594-1618.
- Trier, O., & M. Zortea. 2012. Semi-automatic detection of cultural heritage in LiDAR data. *Proceedings of the 4th GEOBIA, May 7-9, 2012 Rio de Janeiro Brazil*, p. 123-8.
- Trier, Ø. T. Brun, L. Gustavsen, K. Loftsgarden. L. Pilø, A. Salberg, R. Solberg, K. Stormsvik & C. Tonning. 2011. Application of remote sensing in management of cultural heritage – Project report 2010. Norsk Regnesentral.
- Trier, Ø. & M. Zortea. 2012. Semi-automatic detection of cultural heirtage in LiDAR data. *Proceedings of the 4th GEOBIA*, May 7-9, 2012 Rio de Janeiro Brazil. pp. 123.
- Trier, O., J. Hamar, M. Kermit, L. Pilø, A. Salberg. 2016. Application of remote sensing in cultural heritage management. *CultSearcher project report 2015*. NR-notat SAMBA/08/16.
- USGS LANDSAT. 2017. [online]. Available at: https://landsat.usgs.gov/ [20/3-2017]
- Verhoeven, G., 2009. Beyond Conventional Boundaries. New Technologies, Methodologies, and Procedures for the Benefit of Aerial Archaeological Data Acquisition and Analysis. PhD thesis, Gent University.
- Verhoeven, G., M. Doneus, C. Briese & F. Vermeulen. 2012. Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. *Journal of Archaeological Science*, vol. 39, no. 7, p. 2060-70.

- Walter, V. 2004. Object-based classification of remote sensing data for change detection. *ISPRS Journal of Photogrammetry & Remote Sensing,* vol. 58,p. 225–38.
- Wichmann, V., M. Bremer, J. Lindenberger, M. Rutzinger, C. Georges & F. Petrini-Monteferri. 2015. Evaluating the Potential of Multispectral Airborne LiDAR for Topographic Mapping and Land Cover Classification. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, vol. II-3/W5, p. 113-19.

# **3. LANDSCAPE PERSPECTIVES**

The landscape, as terrain and surface, consist of many details that visualize past human presence. To determine cultural or natural impact on landscape is a difficult assertion when based on singular entities. On macro scale, landscape is a homogenous construct influenced by heterogeneous events of both cultural and natural impact. Patterns in the landscape can show source by different perspectives and scales. Thus, interpreting landscape requires a necessity of scaled pattern investigation of artificial constructs in the landscape as true or false entities. The patterns of archaeological monuments are represented in shapes of elevational difference within LIDAR data, and all detectable entities within LIDAR data are elevational change in relation to the natural curvature of landscape. However, the distinction between cultural and natural landscape can be somewhat arbitrary, since remains of the past are slowly integrated into the terrain by decomposition and decay. Observed distribution therefore need careful consideration compared to strategies of data collection and transformation of the landscape (Cowley 2016, 148). Emerging patterns can be a result of missing as well as missed observation and registration. In many instances it is a case of training how to interpret the landscape, and thus code both the computer and the human mind to look for certain distinctive details in the landscape by micro or macro patterns. Details are easily subconsciously ignored if they do not fit the expectations (Halliday 2013), and both the human and computational interpreter can create gaps of information if not properly trained or adapted.



FIGURE 16: CURVES IN THE LANDSCAPE. **(A)** PEAK; **(B)** PIT; **(C)** RIDGE; **(D)** RAVINE; **(E)** RIDGE SADDLE; **(F)** RAVINE SADDLE; **(G)** CONVEX HILL; **(H)** CONCAVE HILL; **(I)** CONVEX SADDLE HILL; **(J)** CONCAVE SADDLE HILL; **(I)** FLAT (TRIER ET AL. 1995, 924).

### **CHAPTER 3: LANDSCAPE PERSPECTIVES**

The complex pattern of archaeological data means that singular perspectives creates bias between past and present patterns, resulting in omission of unknown patterns of the past and present. Because, the geometrical patterns in the landscape are constructed by both cultural and natural influence, resulting in curvatures having a wide range of origin points, but potential visual presence in a range of curvatures (Figure 16). The range of curvatures by peaks can for instance fit both natural and cultural origin points, causing singular curvatures fitting multiple classifications, and thus minimize potential impact of comprehensive interpretation of areas of interest within a given landscape.



FIGURE 17: IDEALISED VERSION OF GRADUAL DECAY OF PEAKS BY WEAR AND TEAR

All curvature and height adjustment in the landscape has a range of natural and cultural influencers. A peak can be the accumulation of debris from both natural and cultural origin, but can also be constructed peaks as a result of a specific actions and intentions, e.g. sedimentary movement or placement. Equally peaks in the landscape, such as burial mounds, are affected by wear and tear through time by weather, erosion and living things changing original shape by displacement. Displacement and removal of materials decreases size and presence of curvature in the landscape, and thus slowly alters unique characteristics of cultural heritage monuments in the landscape, as exemplified in FIGURE 17. All peaks show some degree of decay by the displacement of materials from original or prime shape, but especially artificial mounds are on a gradual scale from original shapes towards integrated into terrain as flat landscape, such as in cultivated agricultural soil. Likewise, ridges can be constructs of cultural landscape manipulation, but also natural changes of erosion and isostatic equilibrium of height adjustments from the dynamic buoyancy of sediments. Thus, geometrical features and simple shapes are created by a wide range of processes. Meaning the curvature can be interpreted by a cultural origin point, such as: a peak understood as a burial mound or waste accumulation; a ridge understood as wall or terrace origin; a pit understood as dugout for materials, waster pti or pit fall trap, etc.. They are all difficult interpretations when based on singular variables to use for the detection of archaeological monuments. Pattern recognition of archaeological monuments by remote sensing requires scaled perspectives to see individual or clustered patterns in order to determine cultural or natural origin. Overall pattern determines whether the point of origin is natural or cultural, and whether clustering is intentional or random.

# **CHAPTER 3: LANDSCAPE PERSPECTIVES**

However, the overall pattern is only detected if the individual geometrical shapes are initial segmented and extracted, resulting in the necessity of both micro and macro scale. Therefore, information extraction of singular variables do not complete the picture, but it makes for large-scale pattern detection to determine curvature in the landscape as potential natural or cultural origin. Thus, micro detection of the smallest unit within the frame makes for macro interpretation of cultural heritage. The patterns of cultural heritage, is patterned and ordered, because, humans are, and will always be, structured beings. However, humans are not simply overarching logical-thinking individuals, but humans are at the basis controlled by logical relationships between survival and social convention. Thereby not saying that humans are necessarily following social convention, but simply equally reacting to impulses and instincts in different contextual scenarios depending on the individual experience of cultural backgrounds. Humans are therefore illogical compared to what could be the best possible solution in various situations as rational logical cognition can and will be influenced by emotions (Tomasello 1999). That does not mean that emotions are not logical, but emotions can get in the way of what might be most rational. Human actors must not for these reasons, neither be degraded or exalted, because humans are not simply conscious or unconscious actors, but rather a little bit of both (Bourdieu 1977; 1998; Lakoff & Johnson 2003; Lévi-Strauss 1969). Praxis is therefore patterned and structured, even though individual thought and experience distorts, but never beyond the context of structure.

# 3.1 A PERSPECTIVE FROM LOWER FRANCONIA

For the applied means of information extraction from LIDAR data, a dataset has been constructed to further investigate the possibilities of semi-automatic and automatic large-scale archaeological information extraction. The primary target area for investigation and assessment is Lower Franconia, Germany (Figure 18). The dataset consist of a gridded LIDAR point cloud from Lower Franconia, comprising some 8544 km<sup>2</sup> LIDAR data from the state of Bavaria. In some areas, the laser scanning is documenting outside of the bounds of Lower Franconia, hence the LIDAR dataset is slightly larger in km<sup>2</sup> compared to the actual bounds of the administrative district of Lower Franconia.

The dataset specifications are: grid width of 1 m,  $\leq 0.2$  m height accuracy, and  $\pm 0.5$  m positional accuracy. The dataset constitutes of first and last echoes, structured as a binary-1 meter grid in the elevational reference system of DHHN92. Digital Elevation Models in Bayern have been instigated since 1996 by airborne LIDAR investigations, and is continuously updated and completed with new airborne scanning campaigns. For the area of Lower Franconia the dataset is complete and available for acquisition in a number of grid formats from the Bavarian State Offices for Sites and Monuments.



FIGURE 18: AREA OF INTEREST, LOWER FRANCONIA, WITHIN THE STATE OF BAVARIA. © OPENSTREETMAP CONTRIBUTORS

The point cloud used is structured for Lower Franconia by a 1 m grid width as a DEM1 or DGM1, *Digital Elevation Model* and *Digital Ground Model* respectively. This is nationally referred to as DHM1, *Digitales Höhenmodell* in a 1 m grid. The point cloud dataset is stored in a secure repository in the Integrated Rule-Oriented Data System, *iRODS*, to facilitate primary data management and secure data collaboration. The data is stored as separated XYZ ASCII text files to insure data readability and data sustainability across platforms and projects. The point clouds are stored as first and last pulses segmenting between surface and terrain. Equally, a combined dataset exist with both surface and terrain. The interpolated dataset for Lower Franconia is stored on Heidelberg University servers for collaborative research at the Cluster of Excellence, Asia and Europe in a Global Context. The interpolated LIDAR raster data are stored in GeoTIFF container files to keep pixel determination of spatial extent by georeference. The coordinating reference system is set on the Cartesian plane of a Transverse Mercator projection in Gauss-Krüger, zone 4, EPSG: 31468. Interpolation and visualization of the entire dataset was done in OPALS, *Orientation and Processing of Airborne Laser Scanning data* (cf. Mandlburger et al. 2009; Pfeifer et al. 2014). OPALS is a modular programming system consisting of components clustered thematically in terms of packages for
specific application by point cloud data, especially oriented towards macro scaled perspectives of airborne LIDAR. The processing language for OPALS is simple and structured, allowing for large datasets to be processed and keeping spatial reference. The dataset was constructed by commands from a scripted batch file between the operating system and the OPALS processing program. The following script allows for tasks of repetition on segmented terrain point clouds to be converted into rectangular interpolated DEMs by the grid module. The derived grid model is stored in "pixel is point" interpretation, i.e. the grid values represent the interpolated heights at the pixel center instead of "pixel is area" where the raster value is valid for the entire cell area and not only for the center of the pixel. The script used for the dataset is fixed on three commands: Defining input to *OPALS data manager*, ODM, processing input, and constructing output (TABLE 7)

TABLE 7: OPALS CODE USED FOR INTERPOLATION

| 1  |                                                                           |
|----|---------------------------------------------------------------------------|
| 2  | ODM container for calculation of XYZ input                                |
| 3  | opalsImport -inFile 1234_1234.xyz -outFile 1234_1234_xyz.odm -iformat xyz |
| 4  |                                                                           |
| 5  | Compute interpolation grid                                                |
| 6  | opalsGrid -inFile 1234_1234_xyz.odm -outFile 1234_1234_dtm1.tif -grid 1.0 |
| 7  |                                                                           |
| 8  | Generate relief shade visualization                                       |
| 9  | opalsShade -infile 1234_1234_dtm1.tif                                     |
| 10 |                                                                           |

File name is exemplified by 1234\_1234, as 4 x 4 digits optimal for the coordinate reference system of the narrow Cartesian plane of Gauss-Krüger, zone 4. From OPALS, data is interpolated to DEMs of 1 m cell size by same coordinate value as input. Grayscaled shaded relief is the visualization used for interpolation due to computational efficiency, as well as its data readability for information extraction by a human interpreter. Other techniques of visualization can be more useful for information extraction, especially linear detection (Kokalj & Hesse 2017, 35), but requires more computation and does not offer easy clarification for the untrained human interpreter. From the basic OPALS ODM structure, several possibilities of pixel transformation for a Z value can be calculated, such as by a *moving planes* interpolation (TABLE 8).

TABLE 8: Z-VALUE ADDITION BY MOVING PLANES CALCULATION

Calculation of Z values offers several possibilities of transformation by elevation, slope, density, and exposition through the moving planes interpolation. Moving planes calculates for each grid cell n nearest neighbor points are queried and a best fitting tilted plane is estimated. The height of the resulting plane at the grid point of a XY position is mapped to the grid cell. The tilted plane interpolator allows the derivation of slope measures by: n of x, n of y, slope, and exposition for each grid point. Moving plane interpolation requires the specification of the number of neighbor points considered for interpolation of a single grid. The results of the neighbor queries can be restricted to a maximum search radius around the grid point, enabling a consideration in areas with sparse point density in the resulting grid as void pixels. This helps define areas void of pixels in the end product, but also a means of visualizing landscape according to different values of elevation, slope, density, and exposition. See TABLE 9 for a list of calculations of Z values.

| command      | parameter calculation                                                                    |
|--------------|------------------------------------------------------------------------------------------|
| sigmaz       | S of interpolated grid height                                                            |
| sigma0       | S of the unit weight observation                                                         |
| density      | point density estimate                                                                   |
| excentricity | distance grid point - center of gravity of data points                                   |
| slope        | steepest slope in percent                                                                |
| slpDeg       | steepest slope in degree                                                                 |
| slpRad       | steepest slope in radians                                                                |
| slope        | steepest slope in percent                                                                |
| exposition   | slope aspect [rad] = azimuth of steepest slope line,<br>N=0, clockwise sense of rotation |
| normal       | x-component of the surface normal unit vector                                            |
| normaly      | y-component of the surface normal unit vector                                            |

TABLE 9: CALCULATIONS OF Z VALUES DERIVED SIMULTANEOUSLY AS SIDE PRODUCTS OF GRID INTERPOLATION

Dependent on landscape, and details of investigation, Z value manipulation aids potential information extraction and archaeological monument extraction. Below it is exemplified by sigmaz by standard deviation of interpolated grid height to highlight more pronounced height changes (FIGURE 19). The entire dataset is built to incorporate Z value change and manipulation simultaneously with interpolation and visualization in OPALS, making it easy to change perspectives on landscape.



FIGURE 19: RELIEF SHADING TO HEIGHT CHANGES FROM RIEDENHEIM, LOWER FRANCONIA. THE AREA INCLUDES 11 BURIAL MOUNDS. SHADED RELIEF AND ZIGMA OF Z VALUE BY MOVING PLANES CALCULATION: AZI. 45°, 270 ANGLE: 1 KM2 TILE, ↑ NORTH

The complete dataset from Lower Franconia, consist of 9752 tiles of  $\leq 1 \text{ km}^2$  georeferenced raster files in a GeoTIFF format. The complete dataset, histogram stretched to full dataset, can be seen in Figure 16 below, ranging from Gauss-Krüger, zone 4, coordinates of 4279000-5549000 to 4425000-5556000.



FIGURE 20: COMPLETE DIGITAL TERRAIN MODEL OF LOWER FRANCONIA BY SHADED RELIEF: AZI. 45°, 270 ANGLE

# 3.2 CASE STUDY ON SIMPLE SHAPE DETECTION: BURIAL MOUNDS

To investigate the possibilities of automatic detection for archaeological monuments within LIDAR data, nine sites in Lower Franconia have been selected for comparison and analysis (FIGURE 21; see also appendix 3B). For automatic detection, the case studies will focus on simple shape detection by burial mounds. The nine sites are all cultural landscapes of the past, and all contain burial mounds to a smaller or larger extent for scale comparison of quality by manual and automated detection.



FIGURE 21: SPATIAL COMPOSITION IN LOWER FRANCONIA OF THE NINE SITES FOR FURTHER INVESTIGATION

The nine sites have been explored by manual and automated remote investigation, as well as fieldwork to determine ground truth of archaeological monuments detected or not detected by visual manual interpretation and automated computational interpretation. Lower Franconia is rich in cultural heritage with many archaeological monuments still present in the landscape, but the investigation has focused on simple shape detection by burial mounds. Equally, burial mounds have an impact on the modern terrain of Lower Franconia as cultural peaks changing the natural curvature of landscape (see distribution in FIGURE 22). 860 locations are registered as sites containing one or more burial mounds at each location within Lower Franconia. The tumuli grounds

are recorded as one point or area containing an unknown amount of graves and burial mounds, but define the base of potential information extraction for a complete picture of burial mounds within the LIDAR data.



FIGURE 22: BURIAL MOUND CONCENTRATIONS BY KERNEL DENSITY DISTRIBUTION IN LOWER FRANCONIA

The burial mounds of Lower Franconia are located in a wide variety of landscape. In both flat and sloped terrain, in forested and open landscape. Equal to all remnants of the past, they are endangered and exposed to destruction by modern construction as well as terrain and surface cultivation and extraction. This is not necessarily altered by whether or not the cultural traces of the past exist as known or unknown remnants in the landscape, because information can be difficult to assess when required to be actively mediated from heritage agencies. Accessibility to best possible mapping of cultural heritage is required to change the burden of active mediation of information from agencies to active information collection by agents. A complete mapping of cultural heritage in the landscape, both hidden and revealed, is impossible. However, known information should be easily accessible to help secure cultural heritage in the landscape from misguided and unaware destruction by construction and landscape cultivation. Presently the cultural record from the past is partly revealed in Lower Franconia by macro scaled site registration. This is best practice for many

parts of the world, but also results in unaware decisions based on misguided and lacking information. A necessity of archaeological mapping of monuments in the landscape is therefore of utmost importance, but it requires quantitative perspectives rather than qualitative perspectives. The quality of information can be better exposed by macro perspectives of pattern investigation, because it results in more comprehensive depiction of the cultural landscape shaped by the past and present. Equally so, repetition and quantitative depiction and extraction is important to continued management of archaeological monuments in the landscape. For this purpose, computational detection from LIDAR data offers standardized and comparable results by data and model driven approaches of information extraction for change detection (Murakami 1999; Richter et al. 2013; Teo & Shih 2013; Walter 2004). However, this requires multiple datasets of comparability. In many instances, it is the initial documentation that is the main concern for further development, and for future tracking of change detection. To complete the picture extensive mapping is necessary, but the results can be ambiguous and indiscernible. Meaning, it can be difficult to discern what results and conclusions are based upon, resulting in repetition being impossible. But the scientific process should be possible to replicate for verification and substantiating of qualitative to quantitative investigation. The nine selected sites for further investigation from qualitative to quantitative investigation consist of burial mounds in varied landscape. The examples are of singular as well as numerous clustered burial mounds. They are located in flat and sloped terrain, but all within areas less affected by human exploitation situated in areas of vegetation. Some are in dense and unmaintained forest, while others are in more open production woodlands and plantations. Thus, the aim of subdiving segments of landscape for cultural heritage detection will be applied in a variety of landscapes and curvatures to see the impact on confidence values and detection results. The nine sites are presented in TABLE 10 and TABLE 11.

| No. | SITE           | Ground truth   |
|-----|----------------|----------------|
|     |                | estimate of BM |
| 1   | Stockstadt am  | 12             |
|     | Main           |                |
| 2   | Triefenstein   | 25             |
| 3   | Hohe Wart      | 1              |
| 4   | Amorbach       | 1              |
| 5   | Kleinlangheim  | 26             |
| 6   | Riedenheim     | 11             |
| 7   | Maroldsweisach | 10             |
| 8   | Stettfeld      | 2              |
| 9   | Alzenau        | 20             |

TABLE 10: SITE OVERVIEW WITH GROUND TRUTH ESTIMATE OF BURIAL MOUNDS WITHIN THE VICINITY

# TABLE 11: DESCRIPTION OF INDIVIDUAL SITES

| NAME                                                                                                | Stockstadt am Main                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Description                                                                                         | Burial mounds: three clusters                                                                      |  |  |  |  |  |
| Temporal or cultural frame                                                                          | Inknown prehistory                                                                                 |  |  |  |  |  |
| Ground truth estimate                                                                               | 12                                                                                                 |  |  |  |  |  |
| Nearest administrative IIID                                                                         | 207688                                                                                             |  |  |  |  |  |
| File number                                                                                         | D-6-6020-0087                                                                                      |  |  |  |  |  |
| Sub district                                                                                        | 361                                                                                                |  |  |  |  |  |
| 12 burial mounds were located by field inspection                                                   | . The 12 burial mounds are located in three                                                        |  |  |  |  |  |
| distinct clusters. C1-3. but all are placed on the rid                                              | ge towards the valley to the south. The burial                                                     |  |  |  |  |  |
| mounds to the east. C1. are all heavily damaged by                                                  | mounds to the east. C1, are all heavily damaged by looting and a road running through one of them. |  |  |  |  |  |
| All mounds in C1 are larger. The burial mounds in                                                   | C2 are almost not noticable in the field due to                                                    |  |  |  |  |  |
| canopy obstrcution, but stands out as patterns of c                                                 | clear cultural certainty within the DEM. The last                                                  |  |  |  |  |  |
| cluster, C3, are quite prominent in the DEM as wel                                                  | l as in the landscape, but all have also been looted                                               |  |  |  |  |  |
| at some point in time.                                                                              | -                                                                                                  |  |  |  |  |  |
| NAME                                                                                                | Triefenstein                                                                                       |  |  |  |  |  |
| Description                                                                                         | Burial mounds; three clusters                                                                      |  |  |  |  |  |
| Temporal or cultural frame                                                                          | Unknown prehistory                                                                                 |  |  |  |  |  |
| Ground truth estimate                                                                               | 25                                                                                                 |  |  |  |  |  |
| Nearest administrative UID                                                                          | 199043; 208622; 982209                                                                             |  |  |  |  |  |
| File number                                                                                         | D-6-6223-0013; D-6-6223-0012; D-6-6223-0049                                                        |  |  |  |  |  |
| Sub district 613                                                                                    |                                                                                                    |  |  |  |  |  |
| Three distinct clusters of burial mounds, all locate                                                | d on the same plateau above the river Main, near                                                   |  |  |  |  |  |
| Urphar. C1 consist of four flat topped burial moun                                                  | ds. C2 consist of minimum 11 burial mounds with                                                    |  |  |  |  |  |
| some being cut by a pathway. Within the centre of                                                   | the concentration the burial mounds are                                                            |  |  |  |  |  |
| overlapping eachother, but it is difficult to assess s                                              | stratigraphic relations without formal excavation.                                                 |  |  |  |  |  |
| However, it does seem like the two burial mounds                                                    | in the centre are the primary connectors. In                                                       |  |  |  |  |  |
| between C2 and C3, some smaller circular earthen                                                    | work are also present as potential burial mounds,                                                  |  |  |  |  |  |
| but they are all connected to the forest roads, and                                                 | therefore might as well be connected to general                                                    |  |  |  |  |  |
| earthenwork construction due to logistic patterns                                                   | of waste dispersal. The last group C3, consist of a                                                |  |  |  |  |  |
| minimum of eight burial mounds of varying size, a                                                   | nd are stratigraphicly overlapping. The temporal                                                   |  |  |  |  |  |
| scope of the grave fields are undocumented, but a                                                   | connection to the Migration Age fortification of                                                   |  |  |  |  |  |
| Wettenburg is likely due to spatial presence within close vicinity.                                 |                                                                                                    |  |  |  |  |  |
|                                                                                                     | Hone Wart                                                                                          |  |  |  |  |  |
|                                                                                                     | Burial mound; one cluster                                                                          |  |  |  |  |  |
| Temporal or cultural frame                                                                          | Unknown prehistory                                                                                 |  |  |  |  |  |
| Ground truth estimate                                                                               | 1                                                                                                  |  |  |  |  |  |
| Nearest administrative UID                                                                          | 977096                                                                                             |  |  |  |  |  |
| File number D-6-6021-0094                                                                           |                                                                                                    |  |  |  |  |  |
| Sub district                                                                                        | 406                                                                                                |  |  |  |  |  |
| The burial mound of Hohe Wart, is a singular rego                                                   | cnisable mound located on a very steep slope on a                                                  |  |  |  |  |  |
| hillside facing the north. By its physical presence, it stands out as a compact earthenwork covered |                                                                                                    |  |  |  |  |  |
| with stones.                                                                                        |                                                                                                    |  |  |  |  |  |
|                                                                                                     | Amorbach                                                                                           |  |  |  |  |  |
| Description                                                                                         | Burial mound; one cluster                                                                          |  |  |  |  |  |
| Timeframe Unknown prehistory                                                                        |                                                                                                    |  |  |  |  |  |
| Ground truth estimate                                                                               | 1                                                                                                  |  |  |  |  |  |
| Nearest administrative UID                                                                          | 201173                                                                                             |  |  |  |  |  |
| -                                                                                                   |                                                                                                    |  |  |  |  |  |

| File number                                                                                         | D-6-6321-0004                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Sub district                                                                                        | 470                                                 |  |  |  |  |
| The burial mound of Amorbach lies singuarly near the highest topographic point in the landscape.    |                                                     |  |  |  |  |
| Forestry is very active, and fresh tractor tracks were seen dug into the side of the burial mound.  |                                                     |  |  |  |  |
| NAME                                                                                                | Kleinlangheim                                       |  |  |  |  |
| Description                                                                                         | Burial mounds; one cluster                          |  |  |  |  |
| Timeframe                                                                                           | Hallstatt Culture                                   |  |  |  |  |
| Ground truth estimate                                                                               | 26                                                  |  |  |  |  |
| Nearest administrative UID                                                                          | 209040                                              |  |  |  |  |
| File number                                                                                         | D-6-6227-0058                                       |  |  |  |  |
| Sub district                                                                                        | 1154;1142                                           |  |  |  |  |
| One large cluster of burial mounds with different of                                                | legrees of preservation. Some older, and some       |  |  |  |  |
| more modern evidence of looting and digging in th                                                   | e landscape. West of the burial mound               |  |  |  |  |
| concentration, several potential overploughed bur                                                   | ial mounds were identified due to slight elevation, |  |  |  |  |
| and the discovery of ceramics of potential Hallstat                                                 | Culture. Other finds of Hallstat Culture has been   |  |  |  |  |
| located in the vicinity, and is a likely connection to                                              | the burial mounds. The burial mounds are            |  |  |  |  |
| located in the small valley, almost at the lowest po                                                | int in the vicinity, but with slight elevation      |  |  |  |  |
| towards the south.                                                                                  |                                                     |  |  |  |  |
|                                                                                                     | Riedenheim                                          |  |  |  |  |
| Description                                                                                         | Burial mounds; one cluster                          |  |  |  |  |
| Temporal or cultural frame                                                                          | Unknown prehistory                                  |  |  |  |  |
| Ground truth estimate                                                                               | 11                                                  |  |  |  |  |
| Nearest administrative UID                                                                          | 202035                                              |  |  |  |  |
| File number                                                                                         | D-6-6425-0062                                       |  |  |  |  |
| Sub district                                                                                        | 774;768                                             |  |  |  |  |
| Burial mounds of various degree of destruction and deteriation. However, most of them seem          |                                                     |  |  |  |  |
| undisturbed from looting. There are two spatial pl                                                  | acements of burial mounds at the site within two    |  |  |  |  |
| clusters. The first cluster is situated along the nort                                              | hern ridge of the forest. The second cluster is a   |  |  |  |  |
| little further inside the forest. In between the clust                                              | ters is an empty area devoid of mounds, but with a  |  |  |  |  |
| hollow road passing through. The road is of model                                                   | rn use, but likely extends back in time as primary  |  |  |  |  |
| road in the area.                                                                                   |                                                     |  |  |  |  |
|                                                                                                     | Maroldsweisach                                      |  |  |  |  |
| Description                                                                                         | Burial mounds; two clusters                         |  |  |  |  |
| Temporal or cultural frame                                                                          | Unknown prehistory                                  |  |  |  |  |
| Ground truth estimate                                                                               |                                                     |  |  |  |  |
| Nearest administrative UID                                                                          | 134142; 132787; 132795; 132783                      |  |  |  |  |
|                                                                                                     | D-6-5829-0008;D-6-5829-0012-4                       |  |  |  |  |
| Sub district     2138; 2138;2223                                                                    |                                                     |  |  |  |  |
| Dispersed pattern of individual and clustered groups of burial mounds on the slopes and plateaus of |                                                     |  |  |  |  |
| the landscape. In C1, one burial mound has since the LIDAR scanning been removed, and is no         |                                                     |  |  |  |  |
| longer possible to locate in the field. The two others still present were large flat topped burial  |                                                     |  |  |  |  |
| cluster of hurial mounds were clear, and the two outer mounds also very likely predictoric          |                                                     |  |  |  |  |
| Cluster of burnar mountus were clear, and the two outer mountus also very fixery premistoric.       |                                                     |  |  |  |  |
| Description                                                                                         | Burial mounds: one cluster                          |  |  |  |  |
| Temporal or cultural frame                                                                          | Linknown prehistory                                 |  |  |  |  |
| Ground truth estimate                                                                               |                                                     |  |  |  |  |
|                                                                                                     | 4                                                   |  |  |  |  |
|                                                                                                     | 101207; 134234                                      |  |  |  |  |

| File number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-4-6030-0023; D-6-6030-0005 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Sub district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 994;2291                     |  |  |
| Two very centrally placed burial mounds on top of natural elevation. Both peaks of the Spitzlbe have been in use for different purposes throughout time, and have been heavily shaped and destroyed by human activity. The western burial mound has been re-used as a new sarcophagu religious display, whereas the eastern mound has almost been completely hollowed out. Both b mounds are therefore almost completely destroyed, but can still be recognised by their continu physical presence in landscape.                                              |                              |  |  |
| NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alzenau                      |  |  |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Burial mounds; two clusters  |  |  |
| Temporal or cultural frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unknown prehistory           |  |  |
| Ground truth estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                           |  |  |
| Nearest administrative UID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 194524; 196034               |  |  |
| File number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-6-5920-0007; D-6-5920-0021 |  |  |
| Sub district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 994;2291                     |  |  |
| The two clusters of burial mounds at Alzenau are situated in an area of former migrating sand<br>dunes, now held down by forest and canopies. However, this highly complicates the identification of<br>burial mounds in the area. Undoubtedly there are two clusters of burial mounds in the area, but to<br>determine their extent is extremely difficult by remote investigation, as well as by field<br>investigation. Therefore the finale estimate is a very rough estimate, and the southern cluster, C2,<br>seems to be the most prominent of the two |                              |  |  |

A more comprehensive representation of the nine individual sites can be seen in appendix 3A and 3B. For the applied means of automatic information extraction from LIDAR data, a range of ground truths are therefore established. The detection of archaeological monuments within digital landscapes of LIDAR data is a discussion of positive and false positive detection by confidence improvement through shapes and patterns. To define limits of shape and patterns of cultural heritage, it is necessary to determine a baseline of impact. A baseline of impact will be determined by simple shape detection of burial mounds in the digital landscape. This includes a discussion on how to describe and interpret natural mounds from cultural mounds, and how to classify the range of artificial mounds in the landscape from a wide array of cultural and natural impacts on terrain and surface. Because, terrain is dynamic through time and space by living and natural manipulation of soil composition and decomposition, and thus patterns of the past and present are mingled together as details in the landscape. Detection and comparison by automated and manual means, will be continued and applied in chapter 5, but it is necessary to establish some fundamentals before. Because, the ground truth estimate are verified burial mounds. However, all false positives can potentially be true burial mounds, and can only be truly rejected or confirmed by excavations and archaeological profile sections in the landscape. The remote distinction of artificial cultural mounds and natural peaks, are even further complicated by the wide array of artificial mounds

constructed and amassed in different contexts, and different periods of time. Therefore, a remotely detected false positive, is almost never a complete rejection or verification of origin and purpose.

# **3.3 ARTIFICAL MOUNDS**

Artificial mounds are an ever present landscape detail across the known inhabited world as constructs from both the past and the present. The construction of artificial mounds are a narrative of construction and reproduction of socio-cultural symbolic guidelines, but also a narrative of practical principles and natural composition and decomposition of soil and materials to adapt to environmental variables in time and space. All artificial mounds are the composition and decomposition of earth and stones intentionally accumulated, but also depicting the gradual scatter of soil and materials through time. Artificial mounds are structured or accumulated entities meant to serve a practical purpose, a symbolic purpose, and/or both at the same time. A practical purpose is as a byproduct of other activities, such as construction or material displacement. Artificial mounds can also aid by its spatial characteristics as a structure offering an advantage compared to the natural landscape, e.g. visual or defensive improvement. Meaning, artificial mounds can be constructed for both the living and the dead. They can be constructs of intentionality and unintentionality and as markers of the once lived landscape, re-used for the living. All mounds have extents gradually scattered in space through time. However, both natural and cultural mounds can equally be accumulating soil, sediments, and materials by decomposition. Therefore, a distinction between artificial and natural mounds can be difficult, if not impossible without excavation and cross-sections revealing horizons. The alternative is looking at macro patterns in order to determine structure and variables for composition and decomposition of soil, sediments, and materials in the landscape. The landscape pattern indicates origin of both natural and cultural construction by soil horizon stratigraphy, but traces of movement and erosion in terrain can equally reveal natural and cultural impact on the landscape. For this purpose, LIDAR data is well suited for visualizing terrain composition and decomposition from a macro scale perspective. The landscape footprint by the lower part of the mound is commonly rounded gradually outward from the summit. Artificial mound variations exist, with for instance burial mounds also supplementing with other architectural features such as stone settings, ditches, walls, and chambers inside. Equally, for burial mounds variations exist over deposition in or out of the summit, and as cremations and inhumation deposits with or without chambers in a wide variety of shapes. Therefore, physical mound footprint in landscape changes in correlation to structural details and deposition in relation to a summit. Common for all artificial, as well as natural mounds, is, that the modern shape of curvature and peak

are simplistic due to temporal and spatial wear and tear by external impact through decomposition of soil and materials by living things and weather. Thus, the physical composition can be naively defined as rounded geometries in landscape shaped by environment and time. Thus, classification between natural and cultural mounds is difficult, but even more so between artificial mounds created for practical purpose, or artificial mounds created for symbolic purposes (FIGURE 23 & FIGURE 24).



FIGURE 23: ARTIFICIAL MOUND CREATED FOR PRACTICAL PURPOSE. A STANDARD ACCUMULATED MODERN PEAK OF SOIL AND MATERIALS LOCATED NEXT TO A ROAD AND DITCH IN THE FOREST NEAR MAROLDSWEISACH, UNTER FRANKEN. VIEW TOWARDS EAST.

The result is confidence value of automation requiring validation and verification by other criteria than outline detection. Segmentation is a valid means of improving our ability to process digital landscapes, but classification is restricted to other standards of analysis unlikely to remove the human interpreter. Consequently, changes of pattern perception from micro to macro patterns and perspectives are necessary to describe landscape details by efficient and quantifiable information extraction. However, learning and reading a landscape towards known target specific details is easier for both a human and computational interpreter, compared to a broad application to make sense of all unknown details in the cultural landscape. Equally, we can segment all mounds in the

landscape, but remote classification will continue to be a matter of settling on certainty and confidence values needed for both a human and computational perspective. To initiate, it is necessary to settle on how to understand the overarching concept of a burial mound, and the simple artificial shape behind it.



FIGURE 24: ARTIFICIAL MOUND CREATED FOR SYMBOLIC PURPOSE. COMMON WORN AND ROUNDED OUTLINE OF A BURIAL MOUND. ABOVE: LANDSCAPE WITH BURIAL MOUND. BELOW: DRAWN BURIAL MOUND OUTLINE. BM110. IN THE FOREST NEAR MAROLDSWEISACH, UNTER FRANKEN. VIEW TOWARDS EAST.

Cultural burial mounds are barrows, tumuli, graves, kurgans, cairns, passage graves, mortuary enclosures, earthen-work, earthen-covered artificial curvature, and many more. More overarching or describing terms and names exist, but similar to all burial mounds is the construction and accumulation of earth, timber, stones or other materials covering a grave or several graves by past visual manifestation (Bradley 1998; Scarre 2002). Simply stated, burial mounds are constructed and accumulated cover over or for the dead ancestors, but the term burial mound does not cover the internal architecture by cultural strategy of deposition of the dead. Thus, a burial mound is the overlapping term used for a wide variety of cultural practice as a structure in the landscape by

representation. Because, the burial mound is created in composition and resonance with the cultural and spatial context to mimic, reference or reproduce socio-cultural guidelines (Scarre 2002; Tilley 1994; 1996). The symbolic purpose of burial mounds are of a tangible visual representation and significance by landscape alterations from a culture specific outline (Bradley 1993, 95-103; 1998, 10; Renfrew 1973; 1983; Scarre 2002) to establish, negotiate, and maintain social relationships (Goldhahn 2008; Holst & Rasmussen 2012) but equally as artificializing and manipulating nature (Midgley 2013; Tilley 1994; 1996), and as claiming community establishment and ownership (Hodder 1984; Renfrew 1981; Sherratt 1990). Thus, there is no single purpose for burial mounds in the landscape, but rather as an entity by a variation of practical and symbolic meaning for the living and the dead. However, it is a term integrating the cataloguing of a past or present day earthen cover, shaping the landscape over the dead as a risen mound and monument in contrast to the natural curvature of landscape (see FIGURE 24). Each artificial mound entity utilizes individual components of accumulated materials, but with regional factors by source material availability. Thus pragmatic principles are also evident for the identity of the burial mound. The visible remains of the artificial mounds are laterally and vertically modified by a range of cultural and natural factors impacting the physical extent, and the life cycle of a burial mound is therefore not only understood by its point of origin, but rather by its adaptation and modification through time. The burial mound nevertheless, is defined as a singular entity collectively impacted in state of preservation and conservation by changes to physical extent in context. The physical state of a burial mound is an enclosed entity sealed by internal environment, creating individual stable ecosystem, and thus different degrees of preservation and conservation of organic and inorganic materials. The physical state of burial mounds vary from dry and aerobic almost deplete of organic materials, to wet and anaerobic with complete organic preservation. Dependent on internal sealed environment, the pH levels within burial mounds ranges from slightly alkaline to acidic with pH levels below 3. Maintaining the physical outline and extent implies preservation of water-saturation and iron pan (Breuning-Madsen & Holst 1998), and thus defines the state of preservation. The environment is constructed from last penetration of iron cap and outline from external natural or cultural impact. The amount and quality of information within the burial mound is therefore not directly correlated to the mere physical presence or absence in relation to original mound (Holst et al. 2006). As a result, preservation of metal and organic material varies greatly in different environments. Thus, the necessary active preservation of burial mounds is a correlation to preserve a stable and continued internal environment. Modifying the landscape and altering moisture levels, such as by drainage or water displacement, changes the previous chemical balance and environment around, and thus affects accumulated conservation within the mound. The amount and quantity of

information preserved from barrow to barrow, changes in relation to the landscape, and thus impacts the necessary active preservation precautions to maintain the accumulated passive conservation within the sealed ecosystems. These are very important factors to consider for nondestructive preservation of cultural heritage, and especially burial mounds in the landscape. Because, the burial mounds are not just important as monuments in the landscape, but also as entities preserving information near the time of origin construction. However, the dangers of destruction for burial mounds are many, and naturally the physical changes to the outline of the monuments have the most impact on preservation of information. Burial mounds in the landscape are in danger of being destroyed despite general protection by rules of preservation from modern construction, forestry, and agriculture. The impact of environment, but also negligence or intentional destruction, randomly changes and destroys monuments in the landscape. But even without random occurrence of external impacts, it is estimated that cultivation alone causes continued erosion by 1 cm/year on non-scheduled burial mounds in the landscape (Holst et al. 2006, 68-9). Records of ground truth are therefore an absolute necessity for monitoring changes in landscape. Automated detection and automated *change detection* are subsequently necessary steps of modern cultural heritage management in order to preserve both the physical and digital record of our landscape.

## 3.4 CHANGING LANDSCAPES IN LOWER FRANCONIA

Landscapes are ever changing by constructing and deconstruction. No terrain remains stable, and all recording and documentation are static representation and visualization of given space in given time. Remote investigations are therefore constructed representations of given space in given time. Landscape is inevitably changed and changing in area of interest since origin of construction, but also since point of recording and documentation. As a result, digital truths of elevation models are not always similar to ground truths. From Lower Franconia, this is exemplified from predicted digital truths by remote visual LIDAR detection of burial mounds at the nine areas of interest introduced above. The nine sites are field surveyed to compare digital truths and ground truths to create a record of burial mounds within the landscape of the areas of interest. This is presented in appendix 3B. However, in the appendix 3B is only represented the actual burial mounds within the landscape, and not the details changing landscapes, and misconceptions between digital and analog information. Because, as was already revealed in chapter 2,6, desk based investigations and field surveys do not exclude one another, but rather compliments each other by revealing hidden details not completely discovered by one approach alone. Similar for the nine areas of interest, not all details revealed by LIDAR are true, but the LIDAR data also revealed much information not possible

to attain from field surveys alone. Some burial mounds were not detected by visual detection, some changed classification when closer inspection was carried out by the field survey, and some details was no longer part of the landscape since the original LIDAR recording and present day representation of landscape. Digital artefacts, meaning remnant and patterns created by the remote recording, are an ever present problem, but in one instance included the disappearance of a burial mound likely destroyed by modern forestry (FIGURE 25).





FIGURE 25: MAROLDSWEISACH DTM WITH INDICATION OF DETECTED BURIAL MOUNDS. RED CIRCLE INDICATES THE MISSING VISUALLY DETECTED BURIAL MOUND, BUT NOT POSSIBLE TO RELOCATE BY FIELD SURVEY. SHADED RELIEF: AZI. 45°, 270 ANGLE.

The visually detected burial mound indicated in raster 2, FIGURE 25, was not possible to relocate by field survey, despite the area containing a distinct looted burial mound within the DTM. Just below the missing burial mound, a new burial mound was located by field survey that was not possible to remotely detect from desk based investigation by the DTM (FIGURE 26; FIGURE 27).



FIGURE 26: LEFT: DTM WITHOUT INDICATION OF BURIAL MOUNDS. RIGHT: INDICATION OF TWO BURIAL MOUNDS. RED: MISSING, YELLOW: FIELD SURVEY DETECTED. SHADED RELIEF: AZI. 45°, 270 ANGLE.



FIGURE 27: LEFT: AREA OF MISSING BM IN MAROLDSWEISACH. RIGHT: FIELD SURVEY LOCATED A SLIGHT ELEVATIONAL CHANGE NOT VISIBLE WITHIN THE DTM. 20 CM ELEVATIONAL VARIATION IN THE LANDSCAPE INDICATED A LIKELY BM BY A DISTINCT CIRUCLAR STRUCTURE.

Artificial mounds in the landscape can be constructions of any given time, but reveals indirect information by macro patterns in landscape and contextualization to other known details. For the area of Maroldsweisach, the situation is similar. It is not necessarily the micro patterns of elevational change and artificial mound placement that determines classification, but rather the macro pattern of context. Two clusters of burial mounds are located within the area investigated and shown in FIGURE 25, but they are heavily altered from original representation, with most likely destroyed and removed mounds in between. However, many details of the former burial mounds are still possible to locate within the landscape, if overall macro patterns are capable of indicating areas of interest. To further cultural heritage management and detection, the application of macro segmentation can therefore contribute meaningful patterns to understand landscape. Thus, it is a matter of segmenting landscape to a degree where individual details are not essential for primary detection and interpretation for areas of interest, such as complex grave field distribution. Accordingly, it is a matter of defining approaches to improve macro pattern detection substantial enough for micro patterns to be investigated. Simple shape detection allows for macro pattern

extraction, but do not construct micro patterns of certainty regarding origin. To apply pattern recognition, the perspectives should therefore be focused on macro patterns rather than micro patterns in the landscape. To understand how to best apply, it is necessary to define present practice, and impact in the field of cultural heritage management and detection. This will be visualized and exemplified in the following chapter. The following chapter will define state of the art for automated detection, and best practice for segmentation and simple shape detection within remotely sensed data, and particular for LIDAR data. This will be done to make a quantifiable representation of the development of the field, meanwhile locating best approaches for improving quality of information extraction by notions of cost efficiency, and increased or improved use for the archaeological community. However, it is necessary to remember that remotely sensed information is not always the same as the perceived information gathered from the ground. Details and information changes, and landscape is constantly manipulated, altered, and shaped by external and internal factors.

#### References

Bourdieu, P. 1977. Outline of a Theory of Practice. Cambridge: Cambridge University Press.

- Bourdieu, P. 1998. Practical Reason: On the Theory of Action. Padstow: Blackwell Publishers ltd.
- Bradley, R. 1993. *Altering the Earth. The origins of Monuments in Britain and Ancient Europe*. Edinburgh, Society of Antiquaries of Scotland.
- Bradley, R. 1998. The significance of Monuments. On the Shaping of Human Experience in Neolithic and Bronze Age Europe. London, Routledge.
- Breuning-Madsen, H. & M. Holst. 1998. Recent studies on the formation of iron pans around the oaken logcoffins in the bronze age burial mounds of Denmark. Journal of Archaeological Science, vol. 25, p. 1103-10.
- Cowley, D. 2016. What Do the Patterns Mean? Archaeological Distributions and Bias in Survey Data. *Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing*. Eds. M. Forte & S. Campana. Springer International Publishing AG, p. 147-70.
- Goldhahn, J., 2008. From monuments in landscape to landscapes in monuments: monuments, death and landscape in early Bronze Age Scandinavia. *Prehistoric Europe. Theory and practice*. Eds. A. Jones. Chichester, Blackwell Studies in Global Archaeology, p. 56–85.
- Halliday, S. (2013). I Walked, I Saw, I surveyed, but what did I see?... and what did I survey. *Interpreting archaeological topography: airborne laser scanning, 3D data and interpretation.* Eds. R. Opitz & D. Cowley. Oxford, Oxbow, p. 63-75.
- Holst, M., H. Breuning-Madsen, S. Laursen, K. Johansen & M. Hermansen. 2006. Boring Bronze Age Barrows. *Archaeology of Burial Mounds.* Eds. L. Šmejda. Plzeň, ArchaeOlogica, p. 63-9.
- Holst, M. & M. Rasmussen. 2012. Combined efforts: the cooperation and coordination of barrow-building in the Bronze Age. *Excavating the Mind: cross-sections through culture, cognition and materiality*. Eds. N.
  Johannsen, M. Jessen, and H. Juel Jensen. Aarhus: Universitetsforlag, 255–279.
- Mandlburger, G., J. Otepka, W. Karel, W. Wagner & N. Pfeifer. 2009. Orientation and processing of airborne laser scanning data (OPALS) – concept and first results of comprehensive ALS software. *ISPRS workshop, Laser Scanning '09,* vol. 38. Paris, France, p. 55-60.
- Midgley, M. 2013. Megaliths in North-West Europe. *The Oxford Handbook of the Archaeology of Death and Burial*. Eds. L. Stutz & S. Tarlow. Oxford, Oxford Handbook.
- Murakami, H., K. Nakagawa, H. Hasegawa, T. Shibata & E. Iwanami. 1999. Change detection of buildings using an airborne laser scanner. *ISPRS*, vol. 54, p. 148–52.
- Kokalj, Z., & R. Hesse. 2017. *Airborne Laser Scanning Raster Data visualization a guide to good practice.* Zalozba ZRC, Ljubljana.
- Lakoff, G., & M. Johnson. 2003. Metaphors we live by. Chicago, The University of Chicago Press ltd.

Lévi-Strauss, C. 1969. The Elementary Structures of Kinship.. Boston, Beacon Press.

Pfeifer, N., G. Mandlburger, J. Otepka & W. Karel. 2014. OPALS – A framework for Airborne Laser Scanning data analysis. *Computers, Environment and Urban Systems,* vol. 45, p. 125-36.

- Richter, R., J. Kyprianidis & J. Döllner. 2013. Out-of-core GPU-based change detection in massive 3D point clouds. *Transactions in GIS*, vol. 17, no. 5, p. 724–41.
- Renfrew, C. 1973. Monuments, mobilisation and social organisation in Neolithic Wessex. *The Explanation of Culture Change*. Eds. C. Renfrew. London, Duckworth, p 539-58.
- Renfrew, C. 1981. Space, Time and Man. *Transactions of the Institute of British Geographers*, vol. 6, no. 3, p. 257-78.
- Renfrew, C. 1983. The Megalithic Monuments of Western Europe. London, Thames & Hudson Ltd.
- Scarre, C. 2002. A Place of Special Meaning: Interpreting Pre-historic Monuments in the Landscape. *Inscriped Landscapes.* Eds. B. David & M. Wilson. Honolulu, University of Hawaii Press, p. 154-75.
- Sherratt, A. 1990. The genesis of megaliths: Monumentality, ethnicity and social complexity in Neolithic northwest Europe. *World Archaeology*, vol. 22, no. 2, p. 147-67.
- Tilley, C. 1994. *A Phenomenology of Landscape: Places, Paths and Monuments*. Oxford press, Berg.
- Tilley, C. 1996. The powers of rocks: topography and monument construction on Bodmin Moor. *World Archaeology*, vol. 28, no. 2, p. 161–76.
- Tomasello, M. 2009. The Cultural Origin of Human Cognition. Boston, Harvard University Press.
- Trier, Ø., T. Taxt & A. Jain. 1995. Data Capture from Maps Based on Gray Scale Topographic Analysis. *IEEE Proceedings of 3rd International Conference on Document Analysis and Recognition*, vol. 2, p. 923-6.
- Teo, T., & T. Shih. 2013. Lidar-based change detection and change-type determination in urban areas. International Journal of Remote Sensing, vol. 34, no. 3, p. 968–981.
- Walter, V. 2004. Object-based classification of remote sensing data for change detection. *ISPRS*, vol. 58, p. 225-38.

# 4. STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY

The following approach focuses on automated procedures for the detection of monuments in the landscape as part of archaeological mapping. The approach is a reaction to understand automated detection across domains and academics fields, as well as a response to the increased availability of data from vast areas of diverse landscape shaped by the past and present. Especially with the availability of LIDAR data, digital landscape analysis and detection of cultural heritage monuments has developed rapidly during the last 15 years. Consequently, this increase in information has amplified the need for automated procedures for monitoring, surveying and detection of known and unknown monuments. Whenever tools and procedures, such as these, cross knowledge domains they invariably split existing disciplines into those familiar and engaging with the new, and those that do not. The pattern by which new knowledge is spreading, and where appropriation takes place, holds vital clues for understanding the long-term impact of the procedures in questions. To understand development of the field and best practice, automated procedures can also help to analyze the use of automated detection for cultural heritage studies. In this chapter, this will be done by a systematic literature review to get a simple perspective of publication intensity. In a second step, applied statistics of network analysis will be used to generate a dataset that contains information relevant for the dissemination of knowledge. The goal of this chapter is to see publications patterns in order to determine state of the art and best practice to be applied in the following chapter. The network analysis helps describe the paths taken by the community, and how this impacts the field today.

# 4.1 QUANTIFYING THE FIELD

The analysis of patterns within automated procedures for cultural heritage and monument detection has two components: First it is initiated by a Systematic Literature Review (SLR) to reveal overall trends. The overall trends are subsequently analyzed using Network Analysis (NA) to gain a more detailed view of community structure and knowledge brokerage. The SLR uses Systematic Search Queries (SSQ) of bibliographic databases and citation indexes. The NA is based on a sample dataset for referential connectivity. The NA citation data can be referenced by appendix 4A, 4B, and 4C. By looking at the historical development of the field through a quantitative lens, the hope is to reduce personal bias and let the data of publications and citations do the talking instead. The results

of the analysis can assist planning for similar projects by pointing to the hidden or missing connections of clusters of research.

Quantitative approaches principally depend on the quality of their underlying datasets. The dependence on qualitative data for analysis is partly due to technical limitations in the citation databases. Without the ability to automatically generate larger randomized samples or to compare the topology of our graph with that of the complete corpus underlying the queries, it can only present an informed estimate of the real-world network. Just as these databases suffer from limitations in their collection process, e.g. collection based on English as lingua franca, they nevertheless provide a reasonably good estimate of different academic fields. Similarly, the core articles of the analysis present an estimate at the state of the field as it appears within these datasets. As time progresses, schematic models representing the field will equally develop. However, the following approach takes a dual approach to determine the field by the initial sample dataset for NA, as well as compare with an updated dataset by recommendations following a presentation given at the CAA 2016 in Oslo.

# 4.2 SYSTEMATIC LITERATURE REVIEW

Data for the SLR is collected from online publication indexes and SSO. SLR produces a general overview for understanding the community and development of automated detection within archaeology. Web of Science, (WoS; www.webofknowledge.com) and Scopus (https://www.scopus.com/) were used as primary platforms for data extraction. Other potential databases for SSQ, are: Google Scholar, CINAHL, CAS Illumina Databases, EBSCOhost Databases, EMBASE, PubMed Central, Science Direct, and SciFinder Scholar. However, all the investigated online citation indexes provide a limited coverage of a field's literary corpus. Thus, data fragmentation remains a problem for automatic extraction of data via SSO, because the corpus of articles lacks publications from lesser recognized journals and proceedings. Hence, qualitative selection of sample datasets enables a less impaired analysis in comparison to quantitative studies through online citation indexes. In its present state, online citation indexes are usually biased towards different journals in relation to access obtained, or in-house publication. Consequently, comparisons between the different citation indexes are not defined as 1:1. Patterns can still be compared, because they are indications of overall trends. But it is necessary that they incorporate a large source material for data to be comparable. WoS and Scopus are two of the biggest citation indexes at present, and both incorporate a large corpus of publications focused on remote sensing and cultural heritage, such as Antiquity, Journal of Archaeological Science, International Society for

Photogrammetry and Remote Sensing, Remote Sensing, and many more. Figure 28 shows the results of the SSQ. The online journal and citation indexes indicate increasing relevance on the topic of remote sensing. By 2016 the data shows a reduced number of publications, but that is largely also a result of data extraction being performed mid-2016. All queries used combine two generic terms. More generic terms were experimentally queried, but few proved to show discernible patterns for dissemination of automated procedures in archaeological contexts. In addition to the selection bias favoring international peer-reviewed journals, a heterogeneous array of terms can designate automated procedures within archaeological practices<sup>2</sup>. All terms describe various advances towards automated and semi-automated means of segmenting and classifying remotely sensed data. The varied terms, however, make it difficult to locate specific tags that encompass all relevant data. Therefore, the SLR consists of generic terms to locate general tendencies and trends, such as: 'archaeology' (Ar), 'LIDAR (Li), 'remote sensing' (RS), and 'automatic detection' (AD). These terms contain the largest potential data corpus for a SLR, but cannot reveal a complete picture. Especially in the combination with terms such as 'archaeology' the tendencies are much more fragmented. One such example is the combination of generalized search terms of 'automatic', or 'detection' combined with 'archaeology', resulting in two hits. Consequently, the more generalized search term 'remote sensing' has been used to see the presence in search queries together with 'automatic detection'. The SLR reveals a prominent presence of remote sensing and LIDAR data within archaeology, but almost no relation to automated procedures. Within remote sensing the presence of LIDAR data grows exponentially. Equally, automated procedures grow parallel to remote sensing and LIDAR data within the online citation index of WoS, while Scopus indicates a more blurred pattern. However, none of the online citation indexes can indicate trends in the field of automated procedures for monument detection within archaeology. While other studies such as Tomljenovic et al. (2015) and Agapiou & Lysandrou (2015) effectively use SLR to enhance our understanding of remote sensing and automated procedures, this investigation uses NA, to complement the SLR. NA reveals the community of automated procedures within archaeology, which is otherwise not registered by the SLR. Thus, where the SLR fails, the NA can elaborate and highlight more present, different, and miniscule communities and trends. This gives the possibility to quantifiably review the evolution of best practice for automated practice, and its pattern of application within archaeology.

<sup>&</sup>lt;sup>2</sup> The terms and keywords for the procedures are described by 'algorithmic procedures' and 'general methods'. Generic terms are given as: 'hough', 'canny', 'edge', 'line', 'shape', 'matching', 'extraction', 'detection', 'transform', 'object', 'template', 'attribute', 'texture', 'contrast', 'morphology', 'per-pixel', 'segmentation', 'classification', 'ontology', 'pattern', 'recognition', 'image analysis', 'automatic', 'semi-automatic', 'deep', 'machine learning', 'computation', and 'algorithm'.











1996 11997 11997 11997 11997 11997 11997 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 119988 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998 11998

D: (RS) & (AD)







800

FIGURE 28: SCOPUS AND WEB OF SCIENCE (WOS) CITATION INDEX FOR PUBLICATIONS COMBINING:' LIDAR' (LI), 'ARCHAEOLOGY' (AR), 'REMOTE SENSING' (RS), AND 'AUTOMATIC DETECTION' (AD). THE Y-AXIS INDICATES PUBLICATION AMOUNT, WHEREAS THE X-AXIS INDICATES YEAR OF PUBLICATION

The timespan is defined by the possible extraction from the search queries of WoS and Scopus. Figure 9A illustrates the impact of 'LIDAR' data within 'archaeology'. Figure 9B illustrates impact of 'remote sensing' and 'archaeology', where usage history is extended back in time with increasing presence towards today. For 'remote sensing' and 'LIDAR', in figure 9C, a clear trend can be seen for the presence of LIDAR data within remote sensing studies with high increasing presence and impact. Lastly, figure9D illustrates the tendencies for the search terms of 'automatic detection' within 'remote sensing' as well as 'archaeology' to show the difference in impact within these fields. It also illustrates problems for understanding automatic procedures within archaeology. Within remote sensing and automated detection, the field is exponentially growing, whereas within archaeology the picture is more blurred with few articles recognized by the online citation indexes. Some included articles are not even relevant, but as can be seen in the reference list from the sample NA dataset (see appendix 4C) many more articles of interest exist. But even though the SLR does not provide a complete picture, it still gives solid indications as to the larger trends in-between different fields.

# 4.3 NETWORK ANALYSIS

To gain a more fine-grained understanding of the regional and intellectual shape of the community revealed by the SLR, this study turn to the advantages of network analysis. By generating a citation network based on a new qualitative sample dataset of 37 peer-reviewed core articles, the connections between individual publications and their authors, as well as the larger connected clusters that they form, can be traced and visualized. The modelled overall shape of the citation graph allows for a tentative assessment of the connectedness of the field as a whole, and visualizes its development and evolution. The initial 37 core articles all apply automatic detection by either a data or model driven approach. To minimize referential bias, the dataset is restricted towards one article per main author, and exclude articles with high degrees of overlap between authors and co-authors between separate publications. The publications in the NA sample do not represent all publications related to automated procedures for monument detection, but rather a diverse sample to probe the structure of connections between different aspects of the field. The modelled citation will later be validated by adding additional articles to the dataset, to see if the patterns change. The initial citation network consists of 1075 publication nodes and 1160 directed citation edges. It

includes a variety of authors, and models the evolution of the field between 1999 and spring 2016. As a result, the connectivity of the graph puts further emphasis on intellectual brokerage between loosely connected components at the exclusion of self-references and repeated (re-)publications by identical groups.

The mean cooperation between authors is 1.105 per article. Within this selection (see Figure 29) 20 articles focus on aerial imagery from satellites and airplanes, 17 articles focus on LIDAR data. 21 articles concern technical questions, and 16 concern cultural heritage questions. 32 articles focus on data driven and attribute analysis, whereas five articles specifically concern "model driven" and "template matching".



FIGURE 29: FOCUS WITHIN THE QUALITATIVE SAMPLE DATASET OF 37 PUBLICATIONS FOR THE NA

Only a few articles include institutional affiliations of their authors at the time of publication, so information was manually supplied for the 37 core publications by first author. In Figure 30 it can be seen that the field has global reach, but with a rather Eurocentric focus. This is likely also a result of personal institutional or linguistic bias, and of snowball sampling. A similar regional focus occurs with respect to places of publication from the bibliographical metadata. Yet, in today's publishing environment this has limited analytical potential, given the prevalence of English as scientific lingua franca and academic publishing practices.



FIGURE 30: INSTITUTIONAL AFFILIATIONS OF THE NA DATASET FROM 37 PUBLICATIONS BY FIRST AUTHOR

Institutional connection by reference indicates connection by direct or indirect influence. To review the pattern of institutional affiliation, Figure 31 indicates modularity in three distinct groups by color range. The three distinct modularity groups are connected by similarity of references, but also indicate collaboration or influence. Despite the Eurocentric focus of the dataset, Figure 31 also gives indications as to directions of international collaboration. The 1<sup>st</sup> modularity group is highly internationally connected; whereas the 2<sup>nd</sup> modularity group has a very central European connection. The 3<sup>rd</sup> group equally has an international connectivity, but with a somewhat North American focus.



FIGURE 31: INSTITUTIONAL AFFILIATION BY MODULARITY IN 3 GROUPS: 1. DARK RED, 2. LIGHT GREEN, 3. LIGHT BLUE

The construction of three distinct modularity groups is also a result of field of field focus on either primarily technical or cultural questions for research topic (Figure 32).



FIGURE 32: PRIMARY RESEARCH FOCUS: A. LIGHT GREEN, B. RED

By comparison of Figure 31 and Figure 32, it can be seen how the modularity group 1 is aligned with articles focused on automated feature detection for cultural heritage and archaeology, whereas modularity group 3 is focused on automated feature detection from a technical point of view towards a wider array of fields. The modularity group 3 is to a large degree focused on building footprints towards a contemporary classification of landscape, where modularity group 1 is focused on the ancient landscape. This modularity separation is natural given the input dataset of 43 % of primary articles focused on cultural aspects of automated detection and classification, and 57% of the primary articles focused on technical or more contemporary aspects of automated detection and classification. However, modularity group 2 in Figure 31, becomes something different. Modularity group 2 is the mediator between the other two modularity groups. Thus implying a wider depth of institutional affiliation towards a bigger field, and thus perhaps the most influential group by having and in- and out-degree of connectivity to the whole field of automated detection within remote sensing. This connectivity is determined by cross-references, meaning it is important to determine the sources of co-citation in order to understand the differences of perspectives. The citation network shown in Figure 33, uses Force-Atlas layout. This citation graph forms the basis for applying community detection algorithms, analysis of subgraphs, and event type information. The relative position of nodes remains consistent from Figure 33 to Figure 36 below. Figure 33 shows the full scope of the citation network. When viewing the full citation network, the patterns become illusive by the amount of information present. It is therefore necessary to filter to reveal patterns of interest for the field of automatic detection.

#### CHAPTER 4: STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY



#### FIGURE 33: THE FULL CITATION NETWORK

In Figure 34, PageRank (Page et al. 1999) determines both node and label size. By itself, it is a good indicator of measuring academic impact. In the following figures, PageRank is contrasted by centrality to assess the academic impact of individual publications (see also Yan and Ding 2011). The prevalence of egocentric clusters such as the 190 mostly isotopic nodes related to the article of Blaschke 2010, results in a sparse graph with a density of 0.001 and 4 main components. By filtering nodes with a degree > 1, Figure 34 allows for a clearer view of those publications forming the well-connected core of the network (10.7% of nodes). The differences in node and label sizes are striking. These differences indicate competing ways in which publications are significant for the field. Blaschke 2010 draws upon the most citations, but only a small part is in turn connected to the core group. Ben-Arie and Rao 1993, on the other hand, occupies a central role for authors who in turn inspire other authors within the discipline. This becomes even more evident when comparing the subgraphs for in- and out-citations in Figure 35 and Figure 36. To derive these subgraphs, nodes are ignored which have zero in- or out-degree respectively, which as a consequence filter isolated nodes from the remaining set.



De Boer 2005

FIGURE 34 SUBGRAPH CORE CITATION NETWORK WITH DEGREE > 1



FIGURE 35 SUBGRAPH IN-CITATION

FIGURE 36 SUBGRAPH OUT-CITATION

In both cases Moon et al. 2002 and Ben-Arie and Rao 1993 play a significant role, albeit as part of small out-citation components. De Laet et al. 2007 and Luo et al. 2014a show the most consistent impact across all measures, along with others such as Dorazio et al. 2012 who rank in the top ten across different measures (see Table 12). This sequence of sub-graphs explains the discrepancy in impact that different means of measurement capture in the original citation network, displayed here by modifying nodes and label size independent of each other.

| RANK | PUBLICATION        |       |                   |      |                  |       |
|------|--------------------|-------|-------------------|------|------------------|-------|
|      | BETWEENNESS        |       | PAGERANK (0.00)   |      | DEGREE           |       |
| 1    | DE LAET ET AL.     | 154.5 | BEN-ARIE & RAO    | 2129 | BLASCHKE 2010    | 191.0 |
|      | 2007               |       | 1993              |      |                  |       |
| 2    | DORAZIO ET AL.     | 87.5  | MOON ET AL. 2002  | 1582 | BELGIU ET AL.    | 69.0  |
|      | 2012               |       |                   |      | 2014             |       |
| 3    | MENZE ET AL.       | 82.0  | DI IORIO ET AL.   | 1582 | LUO ET AL. 2014A | 66.0  |
|      | 2007A              |       | 2008              |      |                  |       |
| 4    | LAMBERS &          | 65.0  | TRIER ET AL. 2009 | 1008 | BHASKARAN ET     | 62.0  |
|      | ZINGMAN 2013       |       |                   |      | AL. 2010         |       |
| 5    | SCHUETTER ET AL.   | 32.5  | TRIER & PILOE     | 0890 | DORAZIO ET AL.   | 53.0  |
|      | 2013               |       | 2012              |      | 2012             |       |
| 6    | BENZ ET AL. 2004   | 24.0  | KRAUS & PFEIFER   | 0691 | LASAPONARA ET    | 44.0  |
|      |                    |       | 1998              |      | AL. 2014         |       |
| 7    | JAHJAH & ULIVIERI  | 21.0  | AXELSSON 1999     | 0604 | MENZE ET AL.     | 41.0  |
|      | 2010               |       |                   |      | 2007A            |       |
| 8    | FIGORITO &         | 20.5  | BRIESE 2004A      | 0558 | MYINT ET AL.     | 39.0  |
|      | TARANTINO 2014     |       |                   |      | 2011             |       |
| 9    | MOON ET AL. 2002   | 17.0  | RUTZINGER ET AL.  | 0494 | SCHUETTER ET AL. | 37.0  |
|      |                    |       | 2009              |      | 2013             |       |
| 10   | BRIESE ET AL. 2009 | 14.0  | DEVEREUX ET AL.   | 0456 | CHEN ET AL. 2009 | 37.0  |
|      |                    |       | 2005              |      |                  |       |

TABLE 12: COMPARISON OF TOP 10 CENTRALITY MEASURES (MULTIPLE APPEARANCES IN BOLD)

Looking at the evolution of the network over time in Figure 37 it can be seen that a shared body of references is only slowly coming into being. While the articles in the dataset were published between 1999 and 2015, their references go as far back as 1820 with the majority of publications (43%) falling between 2011 and 2015 as can be seen in the long-tail plot of the occurrence of nodes and edges for the whole graph. It cannot be said conclusively that this indicates the conscious development of the field in light of its earlier history, but it is very likely the case. When comparing the time at which new nodes enter the network with the time in which edges are formed, it becomes obvious that the formation of today's field first began around 2009 when a steep increase in the connectedness of the graph occurs, while the increase in nodes remains stable. Before 2009 most publications stand in relative isolation. Both the 2009 peak and a second peak in 2013 can be seen in the final panel of Figure 38 which tracks changes over time in the clustering coefficient.



FIGURE 37: TIME SERIES FOR NODES AND EDGES

Given that connectivity, overall size, rate of growth, and regional spread, are continuously increasing, the question is less if the field is going to continue to grow, but how. Predicting the future growth of the network touches upon the question of preferential attachment (Barabási 1999). Throughout the sequence of graphs from figure 4 to figure 7, hubs of various sizes are clearly visible. Given the kind of knowledge network that is modelled, such a non-random topology matches the expectations of the dataset. In simple terms, those publications that have already attracted more attention are likely to continue to do so. Comparing the network evolution with the predicted development of scale-free networks in Figure 38, somewhat contradictory results can be retrieved. The graph for degree distribution shows strong linear tendencies and the formation of hubs are formed earlier than expected, which is reflected in a poor correlation between the predicted and the observed graph structure. The values for avg. clustering coefficient (and topological coefficients), however, show a better match between prediction and observation. Most back referenced publications before 1999 do not form hubs. After 1999 hubs form slightly faster than predicted by power law models. While the early history of the field shows a high degree of isolation from later

developments, recent trends tend to strongly accumulate around hubs, which is likely to continue to influence the future formation of the field.



FIGURE 38: PREDICTION (LINE) AND OBSERVED MEASURES (DOTS)

In summary, the network analysis shows a field with historic roots in the 19<sup>th</sup> century, experiencing intense spurs of growth and expansion. A high degree of ego-centric clusters impeded the formation of a truly connected whole characteristic for scientific communities. This, however, has been over-compensated in recent years, by a small number of publications that brought the fragmented parts of the network into contact. These brokers continue to unify the network to a higher degree than

expected. It remains to be seen in the following section what the causes of their performance might be. The data at hand is not suitable for a detailed inquiry into the regional and institutional affiliations for each node in the network. While these are likely to have shaped the formation of the network, it is indicated and visualized that the internal structure of the network is exerting its influence. By drawing connection between otherwise disparate research endeavors, the modelled community indicates that it is now in a better position to formulate informed responses to methodological challenges, or to avoid repeating past mistakes.

# 4.4 TESTING THE MODEL

To test the model, additional data will be supplied to the NA reference list. This is an addition based on discussion and advice after a presentation at the international CAA in Oslo 2016. 4 additional articles were added to the core 37 per-reviewed articles to the sample NA dataset. All 4 additional articles are focused on answering cultural questions based on applied means of automatic feature extraction by remotely sensed data (FIGURE 39). This balances the weight between articles focused on technical or cultural questions within the dataset, but keeps the same skewness between data analysis approach of data versus model driven, and remote sensing by aerial imagery versus LIDAR.



# FIGURE 39: FOCUS WITHIN THE MODEL TESTING QUALITATIVE SAMPLE DATASET OF 41 PUBLICATIONS OF THE NA

The additional articles follow the same guidelines as the earlier dataset by not including papers with authors already within the dataset. This is done to keep the referential integrity, and not enhance individual bias and skewness to the dataset. The new dataset cannot visually replicate previous layout structure of the network, because when connectivity changes, so does the layout of nodes and edges. However, the patterns are discernible by same standard, and thus offer comparative analysis to validate or question the previous model. The new dataset consist of 1236 unique nodes by 1489 entries, giving 1367 edge relations in the network. In contrast the first dataset has 1075 unique nodes by 1277 entries, giving 1160 edge relations. This gives a slight increase in connection from 16% to 17%, and is an expected increase by adding more articles to the dataset. If continued, then

the network will in the end be fully connected due to academic referential practice. However, it is not possible to referential investigate all literature ever published, so it is important to know how large the literary corpus needs to be in order to visualize a stable output, and to which degree more data is needed to be able to clarify academic connectedness. By four added papers it gives an increase of 7% to the dataset by total number of references, and it is therefore interesting to see if new patterns emerge (Figure 40). The top ten articles measured by centrality, do not change a lot with the added data (Table 13), indicating that both datasets are stable models of the community. Some changes, however, is necessary to mention. The top ten articles by centrality measurements remain the same, besides one paper being omitted by the added referential data, and that is the paper of Di Iorio et al. 2008. It previously had a high impact by PageRank, but has been completely pushed out in the new dataset. Despite that, the rest of the dataset remains stable, besides some slight changes in ranking brokerage by Betweenness and connectedness by PageRank. Di Iorio et al. 2008 had a high PageRank by having a very low degree of citations, but almost all being directly connected to one of the primary articles in the dataset, and that being of Di Iorio et al. 2010. But by the added articles in the new dataset, this bias weight is removed.

By Betweenness measurement, i.e. brokerage between authors, institutions, and fields, some slight changes occur in the ranking. Some papers are pushed out of the top ten, but still remain significant for the complete network analysis (Figure 40). Blaschke 2010, however, suddenly becomes very connected to the network by Betweenness measurement form in- and out-citations. This indicates that many of the new citations in the four added articles cite the same articles. Thus, Blaschke 2010 becomes an important broker of the field.

# TABLE 13: COMPARISON OF TOP 10 BY CENTRALITY MEASURES (MULTIPLE APPEARANCES IN BOLD). SLIGHT CHANCES IN COMPARISON TO EARLIER DATASET

| RANK | PUBLICATION         |       |                    |      |                   |       |
|------|---------------------|-------|--------------------|------|-------------------|-------|
|      | BETWEENNESS         |       | PAGERANK (0.00)    |      | DEGREE            |       |
| 1    | LAMBERS & ZINGMAN   | 190,5 | BEN-ARIE & RAO     | 1057 | BLASCHKE 2010     | 191.0 |
|      | 2013                |       | 1993               |      |                   |       |
| 2    | BLASCHKE 2010       | 182.8 | MOON ET AL. 2002   | 1019 | SEVARA ET AL.     | 82.0  |
|      |                     |       |                    |      | 2016              |       |
| 3    | DE LAET ET AL. 2007 | 179,3 | TRIER ET AL. 2009  | 0971 | BELGIU ET AL.     | 69.0  |
|      |                     |       |                    |      | 2014              |       |
| 4    | MENZE ET AL. 2007A  | 162   | TRIER & PILOE 2012 | 0959 | ZINGMAN ET AL.    | 66.0  |
|      |                     |       |                    |      | 2016              |       |
| 5    | D'ORAZIO ET AL.     | 128,5 | KRAUS & PFEIFER    | 0934 | LUO ET AL. 2014A  | 65.0  |
|      | 2012                |       | 1998               |      |                   |       |
| 6    | FIGORITO &          | 89,2  | BRIESE 2004A       | 0928 | BHASKARAN ET AL.  | 61.0  |
|      | TARANTINO 2014      |       |                    |      | 2010              |       |
| 7    | BELGIU ET AL. 2014  | 67    | AXELSSON 1999      | 0924 | D'ORAZIO ET AL.   | 55.0  |
|      |                     |       |                    |      | 2012              |       |
| 8    | BENZ ET AL. 2004    | 48,3  | RUTZINGER ET AL.   | 0915 | STOTT ET AL. 2012 | 49.0  |
|      |                     |       | 2009               |      |                   |       |
| 9    | JAHJAH & ULIVIERI   | 41,5  | DEVEREUX ET AL.    | 0911 | LASAPONARA ET AL. | 44.0  |
|      |                     |       | 2005               |      | 2014              |       |
| 10   | MOON ET AL. 2002    | 35    | DUDA ET AL. 2005   | 0906 | MENZE ET AL.      | 42.0  |
|      |                     |       |                    |      | 2007A             |       |

The most important parameter for measuring the stability of the model is PageRank. The PageRank algorithm measures by neighborhood, and estimates value based on direction of edges to indicate influence on the field. The result is a probability distribution of the likelihood articles influence the field or are used to understand the field. The PageRank measurement remains stable, besides Di Iorio et al. 2008 being left out and replaced by Duda et al. 2005 in the top ten. As a result, both datasets are stable for modelling and visualizing patterns by. The visual layout of the network changes by edges, but the influence and brokerage of nodes remain similarly established between both datasets (Figure 40).
CHAPTER 4: STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY



FIGURE 40: ADDITIONAL NA TO TEST THE MODEL

## 4.5 THE NETWORK IMPACT

Both NA and SLR point to the formation of a fast growing and increasingly connected discourse concerning automated procedures within archaeology. The analysis looks at the evolution of the field as it happens. This means that the network indicates that the community fundamentally trusts the praxis successfully spreading within the network based on selective pressures of standard academic review. What the method cannot provide, are a theoretical foundation for or against new paradigms. By 2009 a well-connected community starts to form, which is measured by the year of publication. The observable imbalance between model and data driven approaches, means that those following the majority approach had an advantage through a larger body of established knowledge. For the evolution of the field, it remains to be seen if model driven approaches can

counteract this structural inertia, or if they continue to stand in relative isolation within archaeological practice to entirely different knowledge domains.

The overall focus (85%, FIGURE 39) on data driven approaches for both automated procedures and automated monument detection has shaped the development of the citation network. The dominance of procedures by unique proxy values and per-pixel analysis signifies a long-standing search for standardized means of detecting hidden monuments in vegetation. However, with LIDAR data this has changed so that both data and model driven approaches are applied to previously untested areas. Model driven approaches (15%, FIGURE 39) for automatic detection of monuments emerge in the mid 90'es, but with little immediate impact on the field. In this, the model driven community mirrors the data driven community around 1995 with many network isotopes and isolated nodes. More recently, it follows the general growth trend of a field consolidating itself. Looking at one example more closely, it may explain how innovations generate impact without forming connections in the graph. Arjan De Boer's work on standardized means of automated monument detection (2007), stands in relative isolation within the graph. Yet, despite its isolation, the methodological approach of De Boer (2007) regarding template matching and pattern recognition has found its way into the larger discourse of automatic detection and cultural heritage. This implies influence and collaboration from the field of computer science where these techniques are explored in depth under the heading of image analysis. The data lacks unambiguous references to research fields of collaborating authors, and therefore cannot accurately capture this implied influence. Our method can only capture innovation if it is expressed in the form of citations. Instances such as these are a reminder that knowledge advances along different trajectories during conference hallways, personal correspondences, and collaboration between fields. Future publications might still remedy this fact by forming new connections to earlier works.

From recent comparisons of best practice between model vs. data driven approaches, it can be seen that it is not a transition from pixels to regions, but rather two techniques towards the same aim (e.g. Brunelli and Poggio 1993; Myint et al. 2011; Pregesbauer 2013; Sevara et al. 2016; Tomljenovic et al. 2015). Consequently, a combined approach will likely set the next stage for machine learning. Machine learning is a versatile means for working with multiple variables and data sources towards optimized detection algorithms (e.g. Krizhevsky et al. 2012; Trier et al. 2016). However, it is only briefly present in the citation network by reference from the core articles, while machine learning for automated procedures for archaeological practice were not registered by the systematic literature review from our structured search queries. As with De Boer's example, lack of connectivity is neither a sufficient criterion for novelty nor does it preclude impact. Instead

intellectual brokers can often only be judged in retrospect. In our case, the pattern of isolation is similar to that of data and model driven approaches ca. 1999 and 2010 respectively. Machine learning will likely evolve to form a discernible community with connections to both data and model driven communities. Looking at these patterns of isolation within the data, approaches combining all three elements are still insufficiently explored. Such combined approaches present promising candidates for future research implementation. However, the question is just as much then, whether it will be used within the archaeological community, and whether it improves the quality of detection by the gap of experience towards its potential target audience.

# 4.6 STATE OF THE ART FOR AUTOMATED DETECTION WITHIN LIDAR LANDSCAPES

To define state of the art for automated detection within LIDAR data is a matter of understanding classification possibilities and needs. Segmentation of data and landscape is common practice within remote sensing, but it is regulated by classification techniques that make for interest of investigation to determine best practice and state of the art. Classification techniques compose numerating and describing Cartesian space in order to contextualize pixels or geometries. The measured space can be translated as k-dimensional vector space where pixels are describing real world entities by points or pixels. The descriptors are spectral properties of reflectance, radiance, and transmittance or by combinational properties of geometry. Classification then becomes establishing a relationship between pre-defined class-categories, and unknown entities within the data. Whether state of the art is by data or model driven approaches is also questioned by Kamagata et al. 2005 and Sevara et al. 2016. Determining state of the art for automated detection in LIDAR data is also a difficult task because of the rapid development of the field. However, certain groups and advancements are influencing the field more than others, as can be seen by the referential dataset in the NA. A purely quantitative conclusion on state of the art by the NA is, however, not possible due to the rapid development of the field. Mainly this is because the NA looks towards the past by its referential structure, has difficulties of representing the present, and can only determine future if the future follows the same trajectory and pattern of the past. None the less, the NA models the development of the field, and helps us understand the field by visualizing actors of brokerage and influence. Qualitatively it is possible to determine relevant literature of the field by working within and understanding the field (e.g. Casana 2014; Lambers & Traviglia 2016). But by purely qualitative assessments, dangers are that the recommendations become much more biased than available by assessment through quantitative literary reviews, such as SLR and NA (e.g. Blaschke

2010; Tomljenovic et al. 2015; Agapiou & Lysandrou 2015). In the end, however, it is not one approach over the other, but rather combining both quantitative and qualitative means to determine state of the field and state of the art for automated detection by LIDAR and remote sensing in general. Otherwise the scope of the field of automatic detection for archaeological mapping, could easily restrain itself from getting input from new sources and other fields applying automated detection, by going into a spiral of closed connectivity. This is not a present day scenario, since it can be seen in the NA, that archaeologists are collaborating across many different fields towards improved positive detection rates within a wide variety of cultural landscapes. However, it is necessary to understand the trajectory of patterns within automated detection in order to recognize whether or not it is cultivating good academic practice and collaboration, or if the field is retracting towards secluded units of individual projects. Because, novel approaches requires continued support and attention from people of different perspectives. If not present, the field will end up in a struggle for large-scale cultural heritage management and detection, constantly taking two steps forwards, and one step back. In order to keep an open scope of perspectives, state of the art will be determined by a qualitative and quantitative assessment, as well as comparison.

Undoubtedly the wider archaeological community has recognized the potential and impact of automating procedures within remote sensing by segmentation and classification for archaeological management and prospection. However, using LIDAR created DEMs for automated information extraction is still rare within cultural heritage management and the archaeological community. In total four major research entities are identified within the NA, applying automated procedures for the detection of archaeological monuments within LIDAR data: Schneider et al. 2015; Sevara & Pregesbauer 2014; Stott et al. 2015; Trier et al. 2009. These are the core articles related to the four research entities. The aforementioned authors and co-authors stand at the forefront of applying automated detection by airborne LIDAR data within archaeological landscapes, and the influence they have on the wider community of remote sensing within the NA is differentiated by some leading and others following. The four research entities, however, do not constitute singular research entities, but rather symbolizing the core structure of collaboration within LIDAR based semi-automatic detection for archaeological landscapes. For applied automatic detection of archaeological monuments within LIDAR data, several other research entities also exist, but they do not exist prominently by in- and out-degree of reference, or by PageRank. Two examples of other important research entities and papers not present in the NA, are De Boer 2007 and Vletter 2014. Equally, many other researchers work within the subject, but are not present in the NA in relation to the criteria of applied automatic detection of archaeological monuments within LIDAR data, but will be products by reference in future NA investigations due to the conclusions possible to produce by SLR and NA. The implementation of automated information extraction within the archaeological community is greater and more established with a wide variety of applications by both data and model driven detection. The field is also constantly expanding with many new authors emerging and establishing themselves by applying detection algorithms within LIDAR data (e.g. D'Orazio et al 2015; Freeland et al. 2016). However, the four defined research entities are the present communities validated within the NA by citation. From these four research entities, validation for best practice can also be established and investigated, and whether or not best approaches are data or model driven. Three of the four, Schneider et al. 2015; Sevara & Pregesbauer 2014; Trier et al. 2009, apply model driven approaches. One research entity, Stott et al. 2015, focus on data driven approaches. The initial work on automated archaeological monument detection was carried out by Lemmens et al. 1993, but does not have a significant presence within the NA, despite also being used as one of the core articles within the NA. Equally so, Redfern 1997 and Redfern 1998 also have no presence within the NA, despite its undoubted impact on archaeological cognition for digital landscapes. However, both Lemmens et al. 1993 and Redfern 1997 focus on satellite and aerial imagery, and Lemmens et al. 1993 combines early attempts of both a data and model driven approach. To a large extent, most of the remote sensing community by satellite and aerial raster is focused on data driven approaches, i.e. by pixel value and per pixel segmentation, but great strides are also taken for object-based approaches for satellite and aerial raster to overcome data driven approaches targeting the singular pixel for statistical analysis, and instead produce complete nonoverlapping segments or polygons (Blaschke 2010, 4). Data driven approaches, are geared towards producing segmentation algorithms to divide raster into relatively homogenous and semantically significant groups of pixels. However, this pose a problem when dealing with heterogeneous archaeological structures and features revealed as remains after hundreds or thousands of years of decay and deconstruction. Meaning the archaeological remains rarely compose homogenous segments of landscape, but rather as adaptions to wear and tear and natural and geomorphological context. However, this is affecting all means of automated information extraction of archaeological remains in the landscape, and as such defines the ambiguity that is present in all aspects of archaeological practice. In the end, it is therefore a question of what is more successful. The interesting aspects become conclusions based on time efficiency, cost efficiency, use and quality of end results. Time efficiency is related to computation and know-how. Cost efficiency associates with data acquisition, as well as software and hardware needs, which in return has a direct effect on use by the community. The end result is quality of information, which is indirectly impacted by quantity of use and experience gained within the community. These four parameters help evaluate

conclusions of state of the art, and can be comparatively assisted by results of the NA. Evident is the presence of Øivind Due Trier and his team through multiple publications on the subject of automated information extraction by LIDAR data (Trier et al. 1996; Trier et al. 2009; Trier et al. 2011; Trier & Pilø 2012; Trier & Zortea 2012; Trier 2015; Trier et al. 2015; Trier & Huseby 2016; Trier et al. 2016). The two articles Trier et al. 2009 and Trier & Pilø 2012 has particular impact on the community by its ranking in the NA, as well as by its qualitative recommendation of state of the art value referenced by other articles describing the field. However, the above mentioned articles and the Norwegian research collective, are not simply applying one method, but rather experiment by both data and model driven approaches towards information extraction from many different sources of remotely sensed data. What this pattern exemplifies, is similar to the pattern seen within the entire community of automatic detection, as that of experimentation, innovation, and exploratory investigation towards understanding and defining best practice and state of the art. Thus best practice and state of the art is not as easily defined, because of its dependence on data and context, but even more so by the rapid development of methods for digital manipulation of data and information extraction. The research entities applying automated procedures for the detection of archaeological monuments within LIDAR data are focused on model driven approaches by geometry extraction and template matching. However, the majority of articles within the NA, and within the field of automated detection of archaeological monuments within remote sensing, are focused on data driven approaches of segmenting landscape and extracting information.

So the question becomes: is the future of automated information extraction within archaeological LIDAR either data or model driven? As previously stated, the future should perhaps not be determined as one approach instead of the other. However, in order to define a trajectory from which to improve from, it is necessary to understand best possibilities in the present. By assessment through necessities of time efficiency and quality, large-scale landscape investigations for archaeological use might not be implemented by its ability to incorporate multiple variables, but rather by its ability of application within the archaeological community. As Parcak is also asking: "*Is satellite technology advancing faster than archaeologists' ability to learn, apply, and analyze the data and programs, and all the inherent implications?*" (2009, 239). A simple answer to this, and as indicated by the SLR, is that semi-automatic and automatic methods are not represented within archaeological community adapting to new methods and techniques for handling the data explosion within cultural heritage management. To tackle the taboo of automation within cultural heritage, it is necessary to stay open-minded and see the possibilities of improvement and aid gained within the

short time of existence within archaeology (Bennett et al. 2014). The academic practice of peerreviewed publishing slows down the process of information sharing, and thus case-studies and smaller projects can often be several years older than the date of publishing (Parcak 2009, 239). For more rapid development of the community and information sharing, new means for publishing the results are necessary. This could be by open online journals by simpler or other standards than customary academic journal papers to reduce time interval between case-study results and actual publication, as well as give way for more specialized research towards direct exchange comparison and quality control by the community.

However, first and foremost, to determine success parameters and the future of automated detection of archaeological monuments, it is necessary to look closer into the applied means of automatic and semi-automatic information extraction from LIDAR data by the quality of information presently extracted. This will be elaborated in the following chapter, **APPLIED DETECTION IN LIDAR DATA**, as to evaluate and compare application.

#### **References**

Agapiou, A., & V. Lysandrou. 2015. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015. *Journal of Archaeological Science*, vol. 4, p. 192–200.

Barabási, A. & R. Albert. 1999. Emergence of Scaling in Random Networks. Scence. 286, no. 5439, p. 509–12.

- Bennett, R., D. Cowley & V. De Laet. 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. *Antiquity* 88, p. 896–905.
- Belgiu, M., I. Tomljenovic, T. Lampoltshammer, T. Blaschke & B. Hoefle. 2014. Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. *Remote Sensing*, vol. 6, no. 2, p. 1347-66.

Blaschke, T. 2010. Object based image analysis for remote sensing. *ISPRS*, vol. 62, p. 2–16.

- Brunelli, R., & T. Poggio. 1993. Face recognition: features versus templates. *IEEE Transactions on PAMI*, 15(10), p. 1042-52.
- Casana, J. 2014. Regional-Scale Archaeological Remote Sensing in the Age of Big Data. Automated Site Discovery vs. Brute Force Methods. *Advances in Archaeological Practice: A Journal of the Society for American Archaeology*, p. 222-33.
- De Boer, A. 2007. Using Pattern Recognition to Search LIDAR Data for Archeological Sites. *Proceedings of the* 33th conference on computer applications and quantitative methods in archaeology, Tomar, March 2005. CAA 2005 Portugal, p. 245-54.
- De Laet, V., E. Paulissen, M. Waelkens. 2007. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). *Journal of Archaeological Science*, vol. 34, Issue 5, p. 830–41.
- D'Orazio T, P. Da Pelo, R. Marani & C. Guaragnella. 2015. Automated extraction of archaeological traces by a modified variance analysis. *Remote Sensing*, vol. 7, p. 3565–87.
- Durham, P., P. Lewis & S. Shennan. 1995. Artefact matching and retrieval using the generalised Hough Transform. Proceedings of the 21<sup>st</sup> CAA conference held at Staffordshire University, Stoke-On-Trent, 3-8<sup>th</sup> april 1993. BAR International Series 1995. Tempvs Repatvm, Oxford.
- Figorito, B., & E. Tarantino. 2014. Semi-automatic detection of linear archaeological traces from orthorectified aerial images. *International Journal of Applied Earth Observations and Geoinformation*, vol. 26, p. 458-63.
- Freeland T, B. Heung, D. Burley, G. Clark & A. Knudby. 2016. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the kingdom of Tonga. *Journal of Archaeological Science*, vol. 69, p. 64–74.
- Hesse, R. 2015. Combining Structure-from-Motion with high and intermediate resolution satellite images to document threats to archaeological heritage in arid environments. *Journal of Cultural Heritage*, vol. 16, Issue 2, March-April 2015, p. 192–201.
- Kamagata, N., Y. Akamatsu, M. Mori & Y. Li. 2005. Comparison of pixel-based and object-based classifications of high resolution satellite data in urban fringe areas. *Asian Conference on Remote Sensing* (ACRS). AARS, Hanoi.

- Krizhevsky, A., I. Sutskever & G. Hinton. 2012. ImageNet classification with deep convolutional neural networks. *Advances in Neural Information Processing Systems 25 (NIPS 2012)*, eds. F. Pereira, C. Burges L. Bottou & K. Weinberger, NIPS Foundation, p. 1106–14.
- Lambers, K., & A. Traviglia. 2016. Automated detection in remote sensing archaeology: a reading list. *AARGnews*, vol. 53, p. 25-9.
- Lemmens, M., Z. Stancic & R. Verwaal. 1993. Automated archaeological feature extraction from digital aerial photographs. *Computing the Past. Computer Applications and Quantitative Methods in Archaeology.*, eds. Andresen, J., T. Madsen & I. Scollar. CAA 92, Aarhus: Aarhus University Press, p. 45-52.
- Maaten, L. van der, P. Boon, G. Lange, H. Paijmans & E. Postma. 2007. Computer Vision and Machine Learning for Archaeology. *Proceedings of the 34th Conference on Computer Applications and Quantitative Methods in Archaeology, Digital Discovery. Exploring New Frontiers in Human Heritage*, eds. J. Clark & E. Hagemeister. Archaeolingua, Budapest, p. 476-82.
- Myint, S., P. Gober, A. Brazel, S. Grossman-Clarke & Q Weng. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. *Remote Sensing of Environment*, vol. 115, Issue 5, 15 May 2011, p. 1145–61.
- Page, L., S. Brin, R. Motwani & T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. *Stanford Infolab*, number 1999-66.
- Parcak, S. 2009. Satellite Remote Sensing for Archaeology, New York, Taylor & Francis.
- Pregesbauer, M. 2013. Object versus Pixel—Classification techniques for high resolution airborne remote sensing data, *Proceedings of the 10th International Conference—Wienna, May 29th–June 2nd 2013, Archaeological Prospection,* eds. W. Neubauer, I. Trinks, R. Salisbury, & C. Einwögerer. Wien: Verlag der ÖAW, p. 200-2.
- Redfern, S. 1997. Computer assisted classification from aerial photographs. AARGnews, vol. 14, p. 33-8.
- Redfern S. 1998. An approach to automated morphological-topographical classification. AARGnews 17, p. 31-7.
- Schneider, A., M. Tekla, A. Nicolay, A. Raab & T. Raab. 2015. A Template-matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. *Archaeological Prospection*, vol. 22, issue 1, p. 45-62.
- Siart, C., B. Eitel & D. Panagiotopoulos. 2008. Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete. *Journal of Archaeological Science*, vol. 35, p. 2918–26.
- Sevara, C., Pregesbauer, M., 2014. Archaeological feature classification: an object oriented approach. *South-Eastern European Journal of Earth Observation and Geomatics*, vol. 3, no. 2S, p. 139–44.
- Sevara, C., M. Pregesbauer, M. Doneus, G. Verhoeven & I. Trinks. 2016. Pixel versus object a comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. *Journal of Archaeological Science*, reports 5, p. 485-98.
- Stott, D., D. Boyd, A. Beck & A. Cohn. 2015. Airborne LiDAR for the Detection of Archeological Vegetation Marks using Biomass as a Proxy. *Remote Sensing*, vol. 7, p. 1594-1618.

- Tomljenovic, I., B. Höfle, D. Tiede & T. Blaschke. 2015. Building extraction from airborne laser scanning data: an analysis of the state of the art. *Remote Sensing*, vol. 7, issue 4, p. 3826-62.
- Trier, Ø., A. Jain & T. Taxt. 1996. Feature extraction methods for character recognition a survey. *Pattern Recognition*, vol 29, no. 4, p. 641–662.
- Trier, Ø., S. Larsen, & R. Solberg. 2009. Automatic Detection of Circular Structures in High-Resolution Satellite Images of Agricultural Land. *Archaeological Prospection*, vol. 16, p. 1–15.
- Trier, Ø. T. Brun, L. Gustavsen, K. Loftsgarden. L. Pilø, A. Salberg, R. Solberg, K. Stormsvik & C. Tonning. 2011. Application of remote sensing in management of cultural heritage – Project report 2010. Norsk Regnesentral.
- Trier, Ø., & L. Pilø. 2012. Automatic detection of pit structures in airborne laser scanning data. *Archaeological Prospection,* vol. 19, p. 103-21.
- Trier, Ø., & M. Zortea. 2012. Semi-automatic detection of cultural heritage in LIDAR data. *Proceedings of the 4th GEOBIA, May 7-9, 2012 Rio de Janeiro Brazil,* p. 123-8.
- Trier, Ø., 2015. Automatic mapping of forest density from airborne LIDAR data. *Geodesy and Cartography*, vol. 41, no. 2, p. 49-65.
- Trier, Ø., M. Zortea & C. Tonning. 2015. Automatic detection of mound structures in airborne laser scanning data. Journal of Archaeolical Science, vol. 2, p. 69–79.
- Trier, Ø., & R. Huseby. 2016. Near real-time automatic oil spill detection in SAR images. *Project report 2016.* Norwegian Computing Center & Norwegian Space Centre.
- Trier, Ø., J. Hamar, M. Kermit, L. Pilø, A. Salberg. 2016. Application of remote sensing in cultural heritage management. *CultSearcher project report 2015*. NR-notat SAMBA/08/16.
- Verhoeven, G., M. Doneus, C. Briese & F. Vermeulen. 2012. Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. *Journal of Archaeological Science*, vol. 39, issue 7, p. 2060-70.
- Vletter, W., 2014. (Semi) automatic extraction from airborne laser scan data of roads and paths in forested areas. *Proc. SPIE* 9229, Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), 92291D (August 12, 2014).
- Yan, E., & Y. Ding. 2011. Discovering Author Impact: A PageRank Perspective. Information Processing & Management, vol. 47, no. 1, p. 125-34.

#### NA core references

- [1]De Boer, A. 2007. Using Pattern Recognition to Search LIDAR Data for Archeological Sites. Proceedings of the 33th conference on computer applications and quantitative methods in archaeology, Tomar, March 2005. CAA Portugal, p. 245-54.
- [2]Briese, C., Mandlburger, G. & Ressl, C., 2009. Automatic break line determination for the generation of a dtm along the river main. *ISPRS*, vol. XXXIII, Part B3.
- [3]Hu, X. & L. Ye. 2013. A fast and simple method of building detection from LIDAR data based on scan line analysis. *ISPRS*, vol. II-3/W1.

[4]Karsli, F. & O. Kahya. 2008. Building extraction from laser scanning data. *ISPRS*, vol. XXXVII Part B3b.

- [5]Mandlburger, G., N. Pfeifer, C. Ressl, C. Briese, A. Roncat, H. Lehner & W. Mücke. 2010. Algorithms and tools for Airborne LIDAR data processing from a scientific perspective. *European LIDAR Mapping Forum.* November 30 – December 1, 2010, The Hague, Netherlands
- [6]Melzer, T. & C. Briese 2004. Extraction and modeling of power lines from ALS point clouds. Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition, Hagenberg, Austria, 17–18 June 2004; p. 47–54.
- [7]Rutzinger, M., M. Maukisch, F. Petrini-Monteferri & J. Stötter. 2011. Development of Algorithms for the Extraction of Linear Patterns (Lineaments) from Airborne Laser Scanning Data. *Proceedings of the Conference 'Geomorphology for the Future'*, Obergurgl, Austria, p. 161-8.
- [9]Trier, Ø., & M. Zortea. 2012. Semi-automatic detection of cultural heritage in LIDAR data. *Proceedings of the 4th GEOBIA*, May 7-9, 2012 Rio de Janeiro Brazil. p. 123-8.
- [10]Bhaskraun, S., S. Paramanada & M. Ramnarayan. 2010. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. *Applied Geography*, vol. 30, Issue 4, Special Issue: SI, p. 650-65
- [11]Chen, Y., W. Su, J. Li & Z. Sun. 2009. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. *Advances in Space Research*, vol. 43, p. 1101-10.
- [12]De Laet, V., E. Paulissen & M. Waelkens. 2007. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). *Journal of Archaeological Science*, vol. 34, Issue 5, May 2007, p. 830–41
- [13]Lambers, K. & I. Zingman. 2012. Towards Detection of Archaeological Objects in High-Resolution Remotely Sensed Images: the Silvretta Case Study. *Proceedings of the 40th conference on computer applications and quantitative methods in archaeology*. Archaeology in the digital era, II. Amsterdam, p. 781-91.
- [14]Myint, S., P. Gober, A. Brazel, S. Grossman-Clarke & Q Weng. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. *Remote Sensing* of Environment, vol. 115, Issue 5, 15 May 2011, p. 1145–61
- [15]Rottensteiner, F. 2003. Automatic generation of high-quality building models from LIDAR data. IEEE Computer Graphics and Applications, vol. 23, Issue 6, p. 42-50
- [16]Baillard, C., C. Schmid, A. Zisserman & A. Fitzgibbon. 1999. Automatic line matching and 3d reconstruction of buildings from multiple views. *ISPRS*, Conference on Automatic Extraction of GIS Objects from Digital Imagery, p. 69-80
- [17]Bruegelmann, R. 2000. Automatic breakline detection form airborne laser range data. ISPRS, vol. XXXIII, Part B3. Amsterdam.
- [18]Belgiu, M., I. Tomljenovic, T. Lampoltshammer, T. Blaschke & B. Hoefle. 2014. Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. *Remote Sensing*, vol. 6, issue 2, p. 1347-66

- [19]Vosselman, G., & Z. Liang. 2009. Detection of curbstones in airborne laser scanning data. *Proceedings of the Laser Scanning Conference. Laserscanning09*, vol. XXXVIII, Paris, France, p.111-6.
- [20]Di Iorio, A., N. Straccia & R. Carlucci. 2010. Advancement in Automatic Monitoring and Detection of Archaeological Sites Using a Hybrid Process of Remote Sensing, GIS Techniques and a Shape Detection Algorithm. Proceedings of the 30th EARSel symposium. Remote Sensing for Science, Education, and Natural and Cultural Heritage, Paris, France, 2010. p. 53-64.
- [21]Moon, H., R. Chellappa & A. Rosenfeld. 2002. Optimal Edge-Based Shape Detection. *IEEE transactions on image processing*, vol.11, issue 11, NOVEMBER 2002, p. 1209-26.
- [22]Awrangjeb, M., & C. Fraser. 2013. Rule-based segmentation of LIDAR point cloud for automatic extraction of building roof planes. *ISPRS*, vol. II-3/W3.
- [23]D'Hondt, O., S. Guillaso & O. Hellwich. 2012. Automatic extraction of geometric structures for 3d reconstruction from tomographic SAR data. *IEEE Geoscience and Remote Sensing Symposium* (*IGARSS*), p. 3728–31.
- [24]Höfle, B., W. Mücke, M. Dutter & P. Dorninger. 2009. Detection of building regions using airborne LIDAR
  : a new combination of raster and point cloud based GIS methods. *Proceedings of the geoinformatics forum Salzburg*, Geoinformatics on stage, p. 66-75.
- [25]Teo, T., & L. Chen. 2004. Object based building detection from LIDAR data and high resolution satellite imagery. *Proceedings of the 25th ACRS 2004*, PS5, Chiang Mai, Thailand, p. 1614-19.
- [26]Menze, B., S. Mühl, A. Sherratt. 2007. Virtual survey on North Mesopotamian tell sites by means of satellite remote sensing. *Broadening horizons: multidisciplinary approaches to landscape study*. Eds. Ooghe, B. & G.Verhoeven, Newcastle, Cambridge Scholars Publishing, p. 5-29.
- [27]Benz, U., P. Hofmann, G. Willhauck, I. Lingenfelder, M. Heynen. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. *ISPRS*, vol. 58, no.34, p. 239 258.
- [28]Blaschke, T. 2010. Object based image analysis for remote sensing. *ISPRS*, vol. 62, p. 2–16.
- [29]Bennett, R., D. Cowley & V. De Laet. 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. *Antiquity* 88, p. 896–905.
- [30]Lasaponara, R., G. Leucci, N. Masini & R. Persico. 2014. Investigating archaeological looting using satellite images and georadar. The experience in Lambayeque in North Peru. *Journal of Archaeological*, vol. 42, p. 216-30.
- [31]Bescoby, D. 2006. Detecting Roman land boundaries in aerial photographs using Radon transforms. *Journal of Archaeological*, vol. 33(5), p. 735-43.
- [32]D'Orazio, T., F. Palumbo & C. Guaragnella. 2012. Archaeological trace extraction by a local directional active contour approach. *Pattern Recognition,* vol. 45, no. 9, p. 3427-38.
- [33]Figorito, B., & E. Tarantino. 2014. Semi-automatic detection of linear archaeological traces from orthorectified aerial images. *International Journal of Applied Earth Observations and Geoinformation*, vol. 26, p. 458-63.
- [34] Jahjah, M., & C. Ulivieri. 2010. Automatic archaeological feature extraction from satellite VHR images.

Acta Astronautica, vol. 66, no.9, p. 1302-10

- [35]Luo, L., X. Wang, H. Guo, C. Liu, J. Liu, L. Li, X. Du & G. Qian. 2014a. Automated Extraction of the Archaeological Tops of Qanat Shafts from VHR Imagery in Google Earth. *Remote Sensing*, vol. 6, no. 12, p. 11956-76
- [36]Schneider, A., M. Tekla, A. Nicolay, A. Raab & T. Raab. 2015. A Template matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. *Archaeological Prospection*, vol. 22, no. 1, p. 45-62.
- [37]Schuetter, J., P. Goel, J. McCorriston, J. Park, M. Senn & M. Harrower. 2013. Autodetection of ancient Arabian tombs in high-resolution satellite imagery. *Remote Sensing*.
- [38]Vletter, W. 2014. (Semi) automatic extraction from Airborne Laser Scan data of roads and paths in forested areas. *Proceedings of the second International Conference on Remote Sensing and Geoinformation of the Environment.* (RSCy2014), 92291D (August 12, 2014).
- [39] Lemmens, M., Z. Stancic & R. Verwaal. 1993. Automated archaeological feature extraction from digital aerial photographs. *Computing the Past. Computer Applications and Quantitative Methods in Archaeology.*, eds. Andresen, J., T. Madsen & I. Scollar. CAA 92, Aarhus: Aarhus University Press, p. 45-52.
- [40]Sevara, C., M. Pregesbauer, M. Doneus, G. Verhoeven & I. Trinks. 2016. Pixel versus object A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. *Journal of Archaeological Science*, report 5, p. 485-98.
- [41]Zingman, I., D. Saupe, O. Penatti & K. Lambers. 2016. Detection of Fragmented Rectangular Enclosures in Very High Resolution Remote Sensing Images. *IEEE Transactions on geoscience and remote sensing*, vol.. 54, no. 8, p. 4580-93.
- [42]Slott, D., D. Boyd, A. Beck & A. Cohn. 2015. Airborne LiDAR for the Detection of Archeological Vegetation Marks using Biomass as a Proxy. *Remote Sensing*, vol. 7, p. 1594-1618.

# 5. APPLIED DETECTION IN LIDAR DATA

The possibilities of automated detection for archaeological monuments are numerous, but most are built around commercial software packages offering a range of applied means of segmentation. However, image and feature analysis is equally developing by open principles of code and library sharing towards improved information extraction. Many are shared and offered as singular code string, code libraries or plugin extensions for open-source software packages. By using partly or completely open-source code and software, the application possibilities are equally numerous. But what are the application possibilities for large-scale archaeological mapping in the digital landscapes of LIDAR data? Almost all GIS and image analysis software offers some sort of data segmentation, but for archaeological mapping and detection the results are often highly limited or simplistic due to the degradation, decay, and imperfection of archaeological data. The applied means of automated detection draws on the history of image processing by vegetation indices (Shennan & Donoghue 1992) and Tasseled Cap transformation (Kauth & Thomas 1976) in satellite imagery by transforming original image bands into new converted image bands. Applied detection in LIDAR data, however, diverts from data driven spectral values to dimensions of shape and model driven approaches. This was also seen by three of the four leading and influential research entities identified in chapter 4 by focus on spatial dimensions of LIDAR data to extract information. The search for homogenous values and indices visualizing archaeological features and structures across different landscapes is still ongoing, but so far no single variable is capable of depicting the diverse and heterogeneous cultural impact in and on the landscape. This results in the necessity to involve multiple variables to extract archaeological information in the landscape, even for earthworks and monuments shaping the landscape. The complexity of information extraction from remotely sensed data complicates the possibilities of scaled investigations and the implication of resolution in largescale investigations for archaeological mapping. The quality of information from remote investigations is correlated by intensity and involvement of investigation, since a measure of ground truth is compulsory to all novel remote investigations. Thus quality of information is undoubtedly directly connected to invested use or work, while amount of work is dependent on investment by cost and time efficiency. Thus, in order to improve quality of information, it is a matter of cost and time efficiency regarding detection of archaeological monuments in LIDAR data. Since a certain degree of verification by field inspection is necessary to determine ground truth, it is essential to define a balance between desk-based investigations and fieldwork for more quantifiable truths from which digital and analog details are correlated and comparable (Cowley 2016, 148; Sevara et al. 2016, 496).

#### **5.1 TWO METHODS OF INFORMATION EXTRACTION**

The two methods for information extraction of archaeological monuments within remote sensing are by either data or model driven approaches. Meaning, they either extract information by per pixel or entity. Within both methods are different possibilities of investigation from smallest entity contained within data by per point, or by grouped attributes in entity. This, in return also has an impact on range of application by scale, since computation and comparability changes according to dimension of investigated entity (Risbøl et al. 2013; Trier & Pilø 2012; see also chapter 2.9). By investigation of smallest entity and per pixel value, different landscapes need altered means of manipulation. By information extraction from grouped entities, the shape detected in local context results in potential comparison between results from different context. Thus, using a model driven approach, structures and features detected can be compared in a wide variety of landscapes, because the information extraction procedure is analogous. Using a data driven approach, however, the increase in variables implies that methods needs to be altered between different context and landscapes, i.e. flat and sloped landscapes, as well as by frame of a more or less manipulated landscape. This, however, also means, that any feature detection within a given landscape can be improved by data driven approaches due to its near infinite amount of potential variables. A near infinite amount of potential variables to describe and quantify landscape also implies heavy computation and complicated contextualization. Hence, initial information extraction is more easily achieved by model driven approaches to minimize computed area. The virtue of LIDAR data is its dimensionality by elevation, but the emphasis on geometry is also due to the often lack of spectral information in LIDAR data, i.e. color, near- or infrared wavelengths. As specified in chapter 2.6, this is likely not a restriction of future LIDAR datasets incorporating multiple wavelengths towards increased variables of digital landscape information (Stott et al. 2015), but it is the present premise of most LIDAR datasets. The value of LIDAR data is its capability of depicting terrain instead of surface, and spectral information of the terrain is not as imperative as spectral information of the surface towards use and information extraction. The spectral values of the surface are more easily recorded by aerial and satellite imagery, but can also be of value to LIDAR data in future perspectives. Presently it is a matter of cost and time efficiency when choosing which method to use for recording terrain or surface in the landscape. Naturally, the methods can be combined, correlated and draped in order for LIDAR data to depict the spectral values captured by aerial and satellite imagery (Rowlands & Sarris 2007) as shown in FIGURE 41 of burial mounds east of Stockstadt. Draping does not necessarily increase information extraction, but improves how to cognitively understand the landscape correlation between terrain and surface (FIGURE 41).



FIGURE 41: ADDING SPECTRAL VALUES BY DRAPING SATELLITE IMAGERY OVER LIDAR DATA TO HELP PLAN AND INTERPRET LANDSCAPE. SHADED RELIEF: AZI. 45°, 270 ANGLE. SAT. RASTER: © GOOGLE EARTH

Added spectral information recorded in the LIDAR point of surface and terrain by mounted camera, is different than the combination of LIDAR and aerial and satellite raster data, but offers some of the same possibilities. Terrain is not represented in color by combination of LIDAR with aerial and satellite raster. Nor is it present in the LIDAR return signal from surface and terrain. Color in the LIDAR point is not documented by emitted active signal, but by the passive wavelengths in the landscape by a mounting combination between of different means of documentation. Meaning, the LIDAR point is constructed as a combination of recorded raster values of landscape and the energy recording of return signal in space and signal strength. Therefore, spectral information of terrain is always obstructed by canopies in the surface, resulting in limited separability of the color scheme of the landscape (Brodu & Lague 2012; Lichti 2005). Spectral information is recorded in a pixel or point, and can be individually extracted as visualizing certain tendencies in landscape. This is commonly extracted by data driven approaches. Model driven approaches are the segmentation of information in entities, rather than by individual attributes. However, it is calculation focused on individual attributes and pixels in order to segment into Areas of Interest, AoI. This is performed as segmentation methods of point-based, edge-based, or region-based techniques (Schiewe 2002). The pattern of interest can be certain distribution patterns of points, edges, or patterns of shape to extract entities. Equally, all detection is the extraction of clustered, ordered, random or patterned discrete and continues data variables (Figure 42). Computational detection by shape is segmentation and/or classification by combined rules of extraction and interpretation.



FIGURE 42: DATA ORDER REPRESENTED BY POINT DISTRIBUTION

No image segmentation is capable of representing the cultural landscape completely for archaeological investigation, but segmentation attempts to provide meaningful non-overlapping entities in images. They are either pixel or model driven, and visualize based on input criteria from statistical analysis, homogeneity, textural, geometrical, contextual, and prior knowledge. The result is classification based on segmentation of belonging to a classification category, and equally so not-belonging.

## **5.2 HIERARCHY OF INFORMATION EXTRACTION**

The means of information extraction is by either segmentation or classification. Segmentation splits context according to a given criteria, e.g. presence or absence and the confidence value or scale inbetween. Classification is the addition of information if a given criteria is met, e.g. minimum z-value classified as terrain and anything above as surface. Segmentation and classification can be done, manually, semi-automatic or automatic based on interaction before, during, or after computation by given criteria. It is therefore a constant of two approaches on how to extract and compute information from data input towards data output, and to which degree data processing best suits the queries given. However, the notion of a fully automatic system of documentation would require both automatic segmentation and classification with a correct positive feature return. This is rarely the case in archaeology because of imperfection of monuments, and the necessity of validation by results and conclusions. Thus, for computational cultural heritage management, a system will always be that of a semi-automatic process due to the adaptation to context, the state of archaeological monuments, and the lack of adaption to scale and differing patterns by scale (Risbøl et al. 2013). Algorithms and code attempt to define rule based learning adaptations to improve detection rates. However, the archaeological structures and features are difficult to construct as defined rules due to diverging patterns. To adapt to scales of perspective, Neural Networks, NN, are necessary to introduce a hierarchy of investigation. NNs are trained on sets of dependent output variables measured on known input to find linear fitting mechanisms to find regularities on given dataset (Barceló 2009a, 16; Barceló 2009b). To compensate for strict rule based approaches of NN, Artificial Neural Networks, ANN, are constructed as an information processing paradigm set to mimic the human brain cognition by interconnected non-linear processing elements to accept numeric input in unison towards numeric outputs. Raster data is easily transferable as numeric pixel input, or vector input calculated by per pixel, and thus transferred to NNs and ANNs. Archaeological observables and archaeological explanations are no longer represented in terms of sentences, but as numbers. This allows intelligent processing of archaeological data (Barceló 2009a, 16). Redfern (1997) arranged an ANN to create algorithms for comparison of vector geometry as unsupervised object classification, but despite initial interesting results, the approach has not had a real impact on feature detection and information extraction within archaeology. This is not until recent attempts by the Norwegian Directorate for Cultural Heritage and the Norwegian Computing Center to construct Deep Learning by Convolutional Neural Networks, CNN, showing some interesting aspects to construct rule based approaches for information extraction of linear features, i.e. roads, pathways, terraces, and similar features (Salberg et al. 2017).

#### **CHAPTER 5: APPLIED DETECTION IN LIDAR DATA**

NNs undoubtedly have a great potential for pattern recognition. The reasons for a lack of impact on the archaeological community are most likely problems with applicability through know-how, but also due to the necessity of detection by rules of properties and variables. Because idealized archaeological monuments rarely exist, resulting in the range of exception being as great as the range of application. Thus, parameters of potential use through quality of information and time and cost efficiency are the limiting factors for application within the archaeological community. In the end, the complexity of the cultural landscape requires as many exceptions as rules to navigate. Hierarchies of information extraction and manipulation in NNs are therefore incomplete, while ANNs intrinsically distance itself from the archaeological sphere of acceptance and certainty by the complexity to improve quality of information by validation. The partial visibility of archaeological features and structures in the terrain, often resolves in the distinction between individual pixels being too few to segment between area of interest, and area of non-interest. Equally, automated information extraction is as much a discussion of acceptance and certainty as a discussion of ground truth detection. Meaning, it is a matter of segmenting and classifying landscape to a degree from which detection rates can be accepted as improving quality of information and cost and time efficiency compared to human cognition and interpretation. This is because, automated information extraction is only valuable if it aids and improves any means of the process for cultural heritage detection and management. Automated information extraction benefits our understanding of remote sensing by quantifying landscape and the features and structures within to standardize input and output. But, despite the algorithmic steps and rules being potentially imperfect and complex, automated information extraction offers a possibility of altering pattern perspectives for segmentation and classification. Thus, it is matter of finding application aiding and improving the archaeological agenda for standardized and quantifiable possibilities of analyzing digital landscapes. Unique values for detection of archaeological monuments in digital landscapes do not exist, but rather a range of values depict different correct information extraction for cultural heritage detection and management. So far, the most influential applications are model driven approaches, as concluded in chapter 4. Equally, algorithmic complexity do not necessarily offer the best approach for application within the archaeological community due to the need of simple and repeatable methods of automated information extraction and pattern recognition (Wheatley & Gillings 2002). Therefore, the point of departure needs to be simple automated information extraction aimed towards broadest audience possible in order to establish lasting impact on cultural heritage management and detection.

## **5.3 SIMPLE INFORMATION EXTRACTION**

Model driven approaches of information extraction can be calculation of correlation between entities and templates on data. Data driven approaches calculates local details by per pixel or cell. Both are simple forms of data extraction. Model driven approaches remains simple, whereas data driven approaches can be near infinitely complex by complementing variables and variable range. Thus, model driven approaches are close to a finite potential, whereas improvements are enhanced by data and per pixel based calculations to near infinite variations of features and structures based on context and landscape. However, this complexity equally makes for information extraction not being simple, and thus not necessarily improving the quality of information. Simple information extraction therefore has strengths for the archaeological community, especially in regards to effective impact on use. The implications being that the archaeological community should remain focused on simple matching algorithms for best cost-benefit of input and output (Bennett et al. 2014, 901-2; Grøn et al. 2011, 2030). Simple information extraction is not only done by automated detection, but also by manual visual detection. The standard for interpreting landscape is done by visual inspection for cultural heritage management and detection. Visual detection is a very efficient and important procedure of interpreting landscape, and equally has great potential for aspects of crowd-sourced data for large-scale landscape analysis to improve the scale of investigation (Duckers 2013; Goodchild 2007). However, automated procedures for segmenting and classifying landscape do not exist as a replacement for manual visual detection, but offers improved or complimentary visual representation to interpret landscape. Simple information extraction by well applied segmentation and classification offers a procedure of application usable by the larger archaeological community to improve qualitative and quantitative investigations, as well as standardizing procedures for comparison and verification. Thus, automated information extraction is equally interesting by its improvement for visual detection. Naturally, a simple segmentation and classification does not necessarily produce more accurate detection rates, because the range of variables used are limited by the need of simplicity and transparency. Therefore, it is a question of use and possibility of application when compared to centralizing procedures of automated cultural heritage management and detection. Because, the quality of information is constructed by inductive interpretation and confidence to understand application in order to be accepted and standardized, and thus claim methodological value for the archaeological community. Transparent applicability is therefore the key necessity. Transparent applicability can be argued to be at the core of model driven approaches of automated information extraction, because the premise is similarity and brute force matching. Brute force matching compares variables and matches with all other features in given input and dataset. The matching algorithm of variable and feature definition differs based on methods and equations, i.e. best match or best match to *k*-means clustering to *n* partition. The principle, however, remains similarity comparison. Similarity comparison follows the *simple matching coefficient* of similarity and dissimilarity (EQUATION 3).

#### EQUATION 3: PRINCIPLE OF SIMPLE MATCHING COEFFICIENT FOR DATA MATCHING

 $smc = \frac{A \ (matching \ values)}{B \ (values)}$  $smc = \frac{\leq 1)}{1}$  $smc = \frac{3+4}{3+4+1+2} = \frac{7}{10} = 0.7$ 

The equation above is a calculation of similarity and dissimilarity, but towards binary presence or absence by numeric 1 or 0. The principle follows quantitative comparison between both model and data driven approaches of similarity detection by binary calculation of pixels, cells and numerical representation. Within 0 to 1 there is a binary representation of presence or absence, but also the infinite representation of scale by the decimals leading to 1. Consequently, from 0 to 1 constructs the potential of infinite variations, but equally a finite representation as defined by given thresholds of segmentation. Classifying the finite thresholds, however, requires limitations to the infinite space, meaning a compromise on infinity is necessary to represent classification. Likewise, any similarity detection is a matter of compromise to define thresholds or variables capable of equating input comparison by reasonable confidence in output. Segmentation is defined by the threshold of partition by given value, from 0 to 1, and thus specifies and outlines resolution possible for classification. Brute force matching by simple shape comparison offers several improving benchmarks for remote investigations for the archaeological community, not least by the ability to use output to segment input into macro patterns of more discernible information for the interpreter. However, archaeological data is by nature imperfect and thus not possible to distinctively partition as binary, unless extensive compromise of data representation or value is given. Meaning, in understanding the objects, features, and structures of the past, nothing is completely similar, but everything a compromise towards similarity labels or representations. Even brute force matching cannot remain simple information extraction, but rather qualitatively defined on a scale of infinite variations from 0 to 1. Simple information extraction, therefore, does not stay simple unless it is constructed to follow gradual compromise. Similarly, the application of brute force matching is by virtue computational simple, but computational processing can be excessive if iterations are made on large quantities of data. The concluding output of any algorithmic chain of operations can equally be excessive and intricate to a degree where it is not improving invested quality of information, thus defeating the purpose of automating steps of computation. It is therefore a matter of finding standards of automation that improves cost efficiency and quality of information. In order to do so, it becomes essential to understand and compare between manual visual detection and automated information extraction. For this task, a focus group was formed to compare visual detection, automated information. This will be represented in the following subchapters; **5.4 Visual Detection; 5.5 Crowd-sourced visual detection; 5.6 Computational mound detection by templates; 5.7 Comparison between crowd-sourced data and template matching** 

## **5.4 VISUAL DETECTION**

Visual detection is manual detection by human cognition. Human cognition is relatively well adjusted and adapted to distinguish and discard on the scale from similarity and dissimilarity in any given context. This also applies to micro and macro pattern detection within digital landscapes of remotely sensed data. Equally, patterns of nature and patterns of culture ranges from being similar and dissimilar, however, human cognition adapts to scaled macro patterns, and thus focusses on more than the individual micro contrast or shape. Therefore, untrained visual detection can derive reasonable detection rates by crowd-sourcing. This is also evidenced by the studies of Gary L. Duckers (2013) on web-based interpretations on remotely sensed data between a trained professional group of archaeologist and a group of untrained volunteers. Because, the rate of visual detection needs cost-benefit analysis based on crowd-sourcing information from trained and untrained groups (Goodchild 2007; Simpson & Williams 2008). Surveying by crowd-sourced visual detection resulted in an average coverage of around 4.7 km<sup>2</sup> per day by a trained professional group, whereas the untrained group of volunteers surveyed around 5 km<sup>2</sup> per day (Duckers 2013, chapter 4). This does not necessarily indicate uniformity in the quality of information from the transcription of remotely sensed data. But comparatively, the survey areas covered by crowdsourcing from trained and untrained focus groups are almost similar in comparison to spatial area investigated. Open data and open investigations therefore has advantages in regards to amount of possible area and amount of information extracted. The potential amount of information is increased by crowd-sourcing data from interested groups and people by the sheer number of potential surveyors enlisted. Thus, a large body of untrained investigators has the potential to locate

#### **CHAPTER 5: APPLIED DETECTION IN LIDAR DATA**

almost all details of interest within a landscape, despite not necessarily having the same prerequisite to make initial detection compared to trained investigators. The potential detection is the same between trained and untrained investigator, but the confidence in quality of extracted information differs. The question then becomes, is the quality of information as a result better or worse? Answering this is not simple since there is no singular measure for correct detection of all cultural heritage information hidden in the landscape. The range of information hidden in the landscape constantly changes by smaller and larger impacts on the landscape, and the patterns are different compared to resolution and scale by perspective and source. Therefore, the outcome is not only determined by the remotely sensed data, but rather as a perspective and source of interpretation. Amount of data detail and resolution indicates potential amount of information from macro and micro pattern detection. But, amount of detail and information by resolution, does not guarantee complete detection, as discussed previously in chapter 2.9.

The potential within remotely sensed data can be improved by automated means of segmenting and classifying landscape for inspection by both trained and untrained groups for quality of information verification. Undoubtedly there is a difference in quality of information between trained and untrained surveying, but this can be negated by the amount of investigators aiding visual detection by combined information extraction and the combined confidence value constructed by repeated detection. Naturally, bias plays an integral part of the human brain for both trained and untrained investigators, resulting in classification by expected outcome rather than by open unbiased interpretation. This can lead to homogenous wrong detection patterns (Bennett et al. 2014, 899), but is similar for automation which focuses on detection by trained, known, and defined patterns. To understand some of the problems and solutions, it is necessary to qualitatively and quantitatively exemplify by revealing patterns of detection from human and machine interpretation of landscape. Human and machine interpretation of landscape is investigated and compared by the nine selected sites for evaluation by visual detection and empiric ground truth verification (see chapter 5.7), crowd-sourced visual detection by untrained groups (see chapter 5.5), and automatic detection by template matching to compare and enhance detection confidence (see chapter 5.6). The following consist of initial visual detection and ground truth verification. The surrounding area have been systematically surveyed, but only if details in the landscape by visual detection demarcated areas of interest or potential interest. Meaning, some areas within the nine selected sites have not been systematically surveyed, and can still include additional information of interest. However, the visual detection and ground truth verification revealed 108 burial mounds in different types of landscape at different locations in Lower Franconia (TABLE 14). At each individual site the clustering

#### CHAPTER 5: APPLIED DETECTION IN LIDAR DATA

of burial mounds varies greatly, and some burial mounds are located completely isolated (TABLE 15). The mound chronology is mainly determined by pattern, shape, and potential contextual relation to sites in the vicinity and material culture found in the surface and topsoil. The result of this is, that the temporal and cultural frame is for most of the sites unknown and simply classified as unknown prehistory (see appendix 3B).

| No. | SITE_name          | Amount verified |
|-----|--------------------|-----------------|
| 1   | Stockstadt am Main | 12              |
| 2   | Triefenstein       | 25              |
| 3   | Hohe Wart          | 1               |
| 4   | Amorbach           | 1               |
| 5   | Kleinlangheim      | 26              |
| 6   | Riedenheim         | 11              |
| 7   | Maroldsweisach     | 10              |
| 8   | Stettfeld          | 2               |
| 9   | Alzenau            | 20              |
|     |                    | 108             |

TABLE 14: NINE SITES FOR SAMPLING COMPARISON

| NAME                                               | Stockstadt am Main |
|----------------------------------------------------|--------------------|
| Burial mounds confirmed by field<br>inspection: 12 | C3 C2 C1<br>500 m  |
| NAME                                               | Triefenstein       |
| Burial mounds confirmed by field<br>inspection: 25 |                    |
| NAME                                               | Hohe Wart          |
| Burial mounds confirmed by field<br>inspection: 1  | 50 m               |

TABLE 15: THE NINE SELECTED SITES WITH VECTORIZED MARKING OF EXACT BURIAL MOUND POSITION

| NAME                                               | Amorbach      |
|----------------------------------------------------|---------------|
| Burial mounds confirmed by field<br>inspection: 1  | 50 m          |
| NAME                                               | Kleinlangheim |
| Burial mounds confirmed by field<br>inspection: 26 |               |
| NAME                                               | Riedenheim    |
| inspection: 11                                     | DO m          |

| NAME                                               | Maroldsweisach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burial mounds confirmed by field<br>inspection: 10 | C1<br>C2<br>500 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NAME                                               | Stettfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Burial mounds confirmed by field<br>inspection: 2  | S00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NAME                                               | Alzenau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Burial mounds confirmed by field<br>inspection: 20 | Contraction of the second seco |

The nine selected and surveyed sites constitute good sampling variability for evaluation of manual and automatic detection potential. Equally, the nine sampling sites consist of landscape in the range from simple to complex landscapes of curvature, as well as demonstration of human and natural manipulation and impact on landscape terrain and surface. However, at the site of Alzenau, the wandering sand dunes in the surrounding area of the two burial mound clusters, makes for very insecure verification. However, it is certain that two burial mound clusters are present, but also at very different degrees of preservation. Generally, the burial mounds within each and every sample site are in different stages of preservation, and in diverse contexts of homogeneous and heterogeneous curvature of landscape. The clustering of burial mounds within the different sites also alters according to past and present cultural impact, meaning that different perspectives of micro and macro patterns are necessary for a comprehensive interpretation and classification of individual burial mounds, as well as burial mound clusters.

# 5.5 CROWD-SOURCED VISUAL DETECTION

To quantitatively investigate the potential of qualitative visual detection, a focus group was tasked with detecting burial mounds within the nine sampling sites. The focus group consists of 16 archaeology students from different backgrounds, and with different experience. None of the students within the focus group are trained for visual detection of archaeological monuments within remotely sensed data, and can therefore be termed untrained. However, all the participants have an understanding of the physical extent of burial mounds and their presence in landscape. The participants are therefore able to convert ideas of burial mounds towards visual detection of burial mounds within the generated DTM's from the nine different sampling sites. The results of the crowd-sourced visual detection can be seen in TABLE 16 and TABLE 17.

| No. | SITE_name          | Amount verified | Ave. crowd det. |  |
|-----|--------------------|-----------------|-----------------|--|
| 1   | Stockstadt am Main | 12              | 10              |  |
| 2   | Triefenstein       | 25              | 15,06           |  |
| 3   | Hohe Wart          | 1               | 5,53            |  |
| 4   | Amorbach           | 1               | 5,26            |  |
| 5   | Kleinlangheim      | 26              | 24,86           |  |
| 6   | Riedenheim         | 11              | 9,2             |  |
| 7   | Maroldsweisach     | 10              | 8,13            |  |
| 8   | Stettfeld          | 2               | 2,4             |  |
| 9   | Alzenau            | 20              | 9,46            |  |
|     | Total              | 108             | 89,9            |  |

TABLE 16: BURIAL MOUNDS VERIFIED AT EACH SITE COMPARED TO CROWD-SOURCED DETECTION FROM THE FOCUS GROUP

| NAME                                                                                                                                                    | Stockstadt am Main |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                    |
| NAME                                                                                                                                                    | Triefenstein       |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                    |
| NAME                                                                                                                                                    | Hohe Wart          |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                    |

TABLE 17: THE NINE SELECTED SITES WITH REPRESENTATION OF CROWD-SOURCED VISUAL DETECTION

| NAME                                                                                                                                                    | Amorbach      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |               |
| NAME                                                                                                                                                    | Kleinlangheim |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |               |
| NAME                                                                                                                                                    | Riedenheim    |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |               |

| NAME                                                                                                                                                    | Maroldsweisach |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                |
| NAME                                                                                                                                                    | Stettfeld      |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                |
| NAME                                                                                                                                                    | Alzenau        |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |                |

#### CHAPTER 5: APPLIED DETECTION IN LIDAR DATA

The results of visual detection by the focus group, is not simply interesting because of false or correct detection rates, but equally by the selection patterns and highlighted areas of interest. Within the nine sampling sites, there are 108 verified mounds based on initial visual detection and field survey testing, however, with the site of Alzenau very much an extreme site of uncertainties. The mean amount of detected burial mounds by the focus group are 89,9 burial mounds within all nine sampling sites. On average, the individual visual detection is very similar to the verified results. At sites with less burial mounds, the focus group generally detects more false positive burial mounds. At sites with a higher frequency of burial mounds, the focus group generally selects less than is actually present. The individual selection patterns can be seen and correlated between TABLE 17 and TABLE 18.

| - /  | -    | _  | -  |    | -  | _  |    |    |    |    |    |    |    |    |    |    |    |
|------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| S.No | Ver. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 1    | 12   | 15 | 13 | 5  | 9  | 10 | 7  | 11 | 14 | 7  | 8  | 9  | 9  | 9  | 4  | 12 | 8  |
| 2    | 25   | 16 | 18 | 15 | 13 | 18 | 20 | 14 | 16 | 15 | 14 | 12 | 12 | 7  | 12 | 16 | 8  |
| 3    | 1    | 6  | 50 | 1  | 2  | 4  | 2  | 1  | 4  | 4  | 2  | 1  | 2  | 2  | 2  | 0  | 0  |
| 4    | 1    | 9  | 30 | 2  | 3  | 1  | 4  | 5  | 12 | 3  | 1  | 1  | 1  | 3  | 2  | 1  | 1  |
| 5    | 26   | 19 | 25 | 26 | 19 | 30 | 24 | 32 | 30 | 29 | 19 | 18 | 19 | 16 | 22 | 20 | 25 |
| 6    | 11   | 7  | 17 | 10 | 7  | 9  | 9  | 10 | 9  | 11 | 6  | 6  | 7  | 6  | 9  | 7  | 8  |

TABLE 18: SELECTION COUNT BY VISUAL DETECTION FROM INDIVIDUALS OF THE FOCUS GROUP ON X-AXIS, AND SITE BY SITE-NUMBER ON Y-AXIS

What is also present in the correlation between the different tables, are the selection of several false positives. By the visualization of density selection in TABLE 17, it is evident that the areas that are continuously selected by the focus group are areas of interest containing burial mounds and burial mound clusters. Therefore, though some individuals of the focus group might make erroneous selection, the combination of the entire focus group makes for complete or almost complete coverage of true burial mounds within the nine sampling sites. The confidence value of selection relates to the areas of interest by a gradient from 0 to 1, from black to white. At each and every site, the maximum density selection always indicates an actual burial mound or burial mound cluster, indicating that crowd-sourced visual detection by an untrained group returns quantitative data useful for estimation and segmentation of landscape towards key areas of interest and improved information quality.

By closer inspection, it can also be seen how human cognition selects by macro patterns. Meaning, the human cognition used within the focus group is by contextual selection in linking to vicinity interpretation and relation. The individual burial mounds not clustered, is to some extent selected by the focus group from the nine sample sites. However, in the near vicinity of original selection the area surrounding is more meticulously investigated and more likely to embrace additional selections.



FIGURE 43: ABOVE: AREAS SELECTED BY THE FOCUS GROUP AS BURIAL MOUNDS BY COUNT AT THE SITE OF STOCKSTADT. C MARKS CLUSTER GROUP. T MARKS TRUE COUNT. BELOW: TRUE BURIAL MOUNDS MARKED AS YELLOW POLYGONS.

Within the three known clusters of burial mounds at the site of Stockstadt, all have the highest amount of selections across the focus group, but by different extents of exact detection (Figure 43). None the less, they contain the majority of selections, and as a result contain the greatest visual detection confidence of burial mounds. The outliers of false positive are by comparison much less prevalent across the selections of the focus group. From the site of Stockstadt, 10 false positives were selected, but with a complete detection of all true burial mound positives. The result is a false

positive detection rate of 1.6 at the site of Stockstadt, considerably improving some state of the art detection rates by automated computational detection of 4 and 3.7 times as many false positives (Trier & Pilø 2012; Schneider et al. 2015). For the focus group, the number of false positive detections varies greatly from site to site by different individuals, with some sites having detection rates 50 times higher than true positives. This is true from the site of Hohewart, site no. 2, with a particular extreme detection rate by one test person. For visualization purposes, this necessitated removal from the kernel density visualization in Table 17 in order to be properly visualized. However, the overall detection rates of the entire focus group remained at 5.5 times as many false positive selections, despite the extreme outlier of one person. Removing this test person entirely from the case study of Hohewart, results in a false positive detection rate of 2.2, thus improving the result significantly. Similarly was the case study of Amorbach, site no. 4, with 30 times as many false positive selections by the same test person within the focus group. Likewise, this required removal from the kernel density representation in Table 17 in order not to skew the visualization. From Amorbach the average selection rate is 5.2 by all test persons from the focus group, but by removing the individual outlier this improves the detection rate to 3.2 times as many false as true selections. From all sites, the confidence of detections is indicated by the amount and pattern of selection. By the frequency of selection by the focus group at the site of Stockstadt, the confidence can be determined. Nine burial mounds from the site of Stockstadt are selected by such a high frequency that they contribute as very certain detections, whereas the remaining 14 irregularities selected by the focus group, represent more uncertain detection by rate of selection frequency (TABLE 19; FIGURE 44).

| sel_ID | sel_count | sel_ID | sel_count | sel_ID | sel_count |
|--------|-----------|--------|-----------|--------|-----------|
| 1      | 16        | 7      | 9         | 21     | 1         |
| 2      | 16        | 8      | 5         | 22     | 1         |
| 5      | 15        | 12     | 3         | 23     | 1         |
| 9      | 15        | 19     | 2         | 11     | 1         |
| 10     | 15        | 16     | 2         | 13     | 1         |
| 6      | 14        | 17     | 2         | 14     | 1         |
| 4      | 12        | 18     | 1         | 15     | 1         |
| 3      | 11        | 20     | 1         |        |           |

TABLE 19: DETECTION BY FOCUS GROUP GENERATING CONFIDENCE VALUE BY SELECTION. THE NINE MOST CONFIDENT SELECTIONS ARE REPRESENTED IN BOLD



FIGURE 44: THE NINE MOST SELECTED BURIAL MOUNDS BY THE FOCUS GROUP. NUMBERING IS DETETERMINED BY SELECTION ID IN REFERENCE TO TABLE 19

The patterns from all sample sites are similar with the majority of selections being close to true burial mounds within the landscape, and continued selections in areas of interest in the vicinity of more confident selections. This, however, does not mean that all true burial mounds have high confidence values based on amount of selections, but rather that landscape is correctly segmented into areas of interest by visual detection. By removing outliers, the confidence is improved, and data exploration developed using less or simplified information. Similar to all Exploratory Data Analysis, EDA, the interpretation of patterns and removal of outliers, improves the quality of information (Tukey 1977.) The product is not simply constructed by the modelling of data, but rather what data is modelled. Naturally, such an approach requires equally tentative scrutiny as to not oversimplify. and create subjective patterns. The same can be said at each and every stage of data pre-processing, processing, and post-processing, because all steps require adaptation and testing before conclusion. The necessity required, is that any alteration can always be traced back to origin and original data, because any transformation is considered acceptable if steps of processing are traced and documented. Transforming data can improve the quality of information possible to extract, and thus benefit interpretation and conclusion. Therefore, any segmentation that improves possibilities of classification is beneficial to improve landscape interpretation for cultural heritage detection and management, whether that is by crowd-sourced data or by computational segmentation. For citizen science by crowd-sourced data, the benefits are present. It just requires that patterns generated are understood, and thus investigate structures and not outliers.

## 5.6 COMPUTATIONAL MOUND DETECTION BY TEMPLATES

Computational mound detection by templates is fundamentally brute-force matching towards given threshold of similarity. It offers a means of both segmenting and classifying landscape by output, and shows great potential for cultural heritage management and detection of archaeological monuments. Template matching is generally model driven by correlating entities with strong or weak features of comparison for filtering data. Dependent on scale and resolution of data and template, the detection can also be data driven, but is more commonly detection by filtering data by entities. Filtering data by templates offers possibilities of both segmentation and classification based on how data is processed. Template matching also delivers immediate detection output by given input, and can thus be an immediate classification if confidence of output is certain. However, that is rarely the case, and thus similar to most methods of landscape understanding, more compatible as a means of segmenting landscape. Within segmentation, as for crowd-sourced selection within remotely sensed data, classification can similarly be based on thresholds of confidence. Thresholds of confidence are then not constructed towards amount or percentage of detections, but rather on individual similarity between dual input entities. The fundamentals of output are therefore different, but with possibilities of similarity comparison between automatic extraction and manual visual detection. For comparison, the same nine sample sites have been used for automatic detection by entity filtering through model driven templates. The algorithms and code for filtering and detecting in the following case study are used and build in relation to the open-source library sharing of OpenCV, Open Source Computer Vision (Itseez 2015). OpenCV is the collection of many libraries for open programming functions, but specifically targeting computer vision and image analysis. The following code adaptations and build is based on the general-purpose programming language of Python. Template matching is structured on dual image inputs by source image(s) and template image(s) in order to find similarity between two individual images or catalogues. The threshold of similarity determines confidence of output, and output can then be given similarity value to define certainty of classification. However, archaeological data is often imperfect and heterogeneous without strong edges or feature indicators, resulting in similarity calculation accepting deviance between template and source image. The similarity coefficient is based on calculating distance to similarity or dissimilarity, and template matching is commonly run by simple brute-force matching. Brute-force matching slides or moves descriptor values from template to source image across the entire raster, and thus calculates as a model driven approach between individual target-XY to source-XY position by output value of dissimilarity or similarity between 0 to 1, or minimum to maximum. The output is the sum of absolute differences in result, defined by **R**(x,y) (see also

The correlation coefficient function also has the greatest possibility of tracking changes in detection by having a constant to relate quantitative values by, and thus simplifying threshold to more applicable values. This makes for better qualitative assessment of impact on changes in threshold. The coefficient function is displayed in EQUATION 4 below.

EQUATION 4, p. 147). The correlation coefficient function also has the greatest possibility of tracking changes in detection by having a constant to relate quantitative values by, and thus simplifying threshold to more applicable values. This makes for better qualitative assessment of impact on
changes in threshold. The coefficient function is displayed in EQUATION 4 below. The matching function is chosen by evaluating matching results based on six different equations by same template to same source image from the site of Stockstadt (TABLE 20).

| Template | Match. Pro. | Matching calculation | Matching result 1:1 |
|----------|-------------|----------------------|---------------------|
|          | SQDIFF      |                      |                     |
|          | SQDIFF_N    |                      |                     |
|          | CCORR       |                      |                     |
|          | CCORR_N     |                      |                     |
|          | COEFF       |                      |                     |

 TABLE 20: EVALUATING DIFFERENT MATCHING FUNCTIONS



Based on initial results in TABLE 20, the pattern representation shows normalizing data makes for correct detection at every matching procedure. Normalizing data represents standardizing data input variation to a threshold of 0 to 1. This improves or minimizes light variation within individual input, as well as correcting and standardizing input between template and source image. In the above matching functions, the filter is set to locate maximum similarity, and thus locates a singular detection by maximum similarity. The correlation and coefficient equation both detect false positives, but all normalized equations make correct detection.

The landscape at the site of Stockstadt does consist of some changes in elevation, and therefore best similarity match also consist of false positives almost impossible to avoid. This was also seen by the crowd-sourced detection of burial mounds within the landscape. However, the minimum and maximum elevation is not extreme, therefore normalizing the raster DTMs at the site of Stockstadt does not involve major extremes of elevational change necessary to incorporate, but some modern structures disturb the elevational differences in the landscape (FIGURE 45). If source input and template is very dissimilar by visual differences, such as elevational differences, this can impact the automated detection success. Therefore source and template needs some correlation to be effective, and target specific templates to landscape are better for different landscapes. This can be somewhat helped by normalizing data, by improving correlation between source and template.



FIGURE 45: ELEVATIONAL DIFFERENCES AT THE SITE OF STOCKSTADT. HISTOGRAM SHOWS ELEVATIONAL DISTRIBUTION

For automated detection, when the threshold filter of similarity is lowered, the detection changes and shows that some equations are more applicable than others. The following examples of this will only show the equations that normalize data as they have proven more proficient. Normalizing data represented better results in detection by lesser similarity than represented in the non-normalized data. The threshold of similarity was lowered towards finding best match, resulting in threshold value changing between different equations. Best match of true detections was then pursued towards improvement of automated detections. The best match of the three equations was by the correlation coefficient, COEFF\_N (TABLE 21).

TABLE 21: THE THREE EQUATIONS AND THEIR IMPACT ON DETECTION: NORMALIZED CORRELATION, NORMALIZED SQUARED DIFFERENCE, AND NORMALIZED COEFFIECIENT





The correlation coefficient function also has the greatest possibility of tracking changes in detection by having a constant to relate quantitative values by, and thus simplifying threshold to more applicable values. This makes for better qualitative assessment of impact on changes in threshold. The coefficient function is displayed in EQUATION 4 below.

# EQUATION 4: FUNCTION EQUATION FOR MATCHING SIMILARITY BY CORRELATION COEFFICIENCE (FROM ITSEEZ 2015)

I denotes image, T template, R result

$$R(\mathbf{x},\mathbf{y}) = \frac{\sum_{\mathbf{x}',\mathbf{y}'} (\mathsf{T}'(\mathbf{x}',\mathbf{y}') \cdot \mathsf{I}'(\mathbf{x}+\mathbf{x}',\mathbf{y}+\mathbf{y}'))}{\sqrt{\sum_{\mathbf{x}',\mathbf{y}'} \mathsf{T}'(\mathbf{x}',\mathbf{y}')^2 \cdot \sum_{\mathbf{x}',\mathbf{y}'} \mathsf{I}'(\mathbf{x}+\mathbf{x}',\mathbf{y}+\mathbf{y}')^2}}$$

The matching equation applied to the nine sample sites, slides template through source image and compares overlapping patches. The function compares sums to maximum similarity between template and source image. Sum is done over source patch by : x' = 0...w - 1,y' = 0...1. This is implemented as template matching in the programming language of Python, and used as an execution of two data inputs of source and template. The code is represented below with the matching function applied in TABLE 22 and represented at all the nine sampling sites in TABLE 23.

TABLE 22: THE APPLIED PYTHON SCRIPT FOR OPENCV TEMPLATE MATCHING

```
1
2
     # import modules
3
     import cv2
4
     import numpy as np
5
     from matplotlib import pyplot as plt
6
7
     # source image to display
     img rgb = cv2.imread('inp4286 5541.tif')
8
9
     img gray = cv2.cvtColor(img rgb, cv2.COLOR BGR2GRAY)
10
11
     # template image to display
     template = cv2.imread('temp.png',0)
12
13
     w, h = template.shape[::-1]
14
15
     # Matching and Normalize
16
     res = cv2.matchTemplate(img gray,template,cv2.TM CCOEFF NORMED)
17
18
     # set confidence value by threshold of similarity.
19
     threshold value = 0.5
20
     loc = np.where( res >= threshold value)
21
22
     # Draw on output image
23
     for pt in zip(*loc[::-1]):
         cv2.rectangle(img rgb, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2)
24
25
26
     # Display on output image
     cv2.imwrite('outp4286 5541.tif',img rgb)
27
28
```

The script runs import of the OpenCV library, together with numpy and matplotlib. The script handles color adaptation and correction to greyscale, in case of application of other remotely sensed data, i.e. aerial imagery. The matching is done by sliding iterations by patch over source image via template to defined threshold value between 0 to 1. The output is vectorized squares on source image, directly capable of import to any GIS of preference afterwards. The output does not have extent defined, but since source image is georeferenced, the coordinate system can be transferred to new output from original source image extent. The above script runs from the second line merely by a choice of aesthetics of visualization and readability in present display. Equally, it runs an extra line below the entire script, but both are redundant. The input can consist of all raster, and by normalizing data source image and template can be transferred from different context. However, template needs to be of similar scale, since template slides over as patch calculation. Individual size of curvature is possible to be scaled based on given threshold value, meaning that burial mound size can alter. The above example in TABLE 21, are similarity calculations only based on one extracted template within the site, but gives a first rough estimate of matching functions applicable.

Using the information gained from first initial template matching, there are certain details that can be used to improve detection. Many of the detections are based on modern construction, such as ditches near roadways having similar curvature or details similar. Many of the false positives can be directly excluded by a buffer excluding details within modern building activity, making the landscape much more comprehensible to interpret (FIGURE 46).



FIGURE 46: REMOVING MODERN CONSTRUCTION BY FILTERING OUT MAJOR ROADS

However, the result of detections made by the template filter, visualize that many of the true burial mounds are not detected, and many false positives detected instead (FIGURE 47).



FIGURE 47: TRUE, FALSE, AND MISSED DETECTION BY INITIAL TEMPLATE FILTER

The initial detection resulted in 1.25 times as many false positives, but with 1.5 times as many missed true burial mounds. This ratio can be altered by changing threshold of similarity extraction, but will increase more false positive detection. However, the present confidence value of threshold will be used to further investigate all nine sampling sites to make a comparative between automatic information extraction and crowd-sourced information extraction of burial mounds. By information extraction through geometry and templates, there is an immediate classification of shape in the landscape; the problem simply becomes a matter of confidence regarding classification certainty. The confidence of detection is naturally of importance, but initial interesting aspects are what impact simple geometry detection across different context reveals by the pattern of detection. Initial simple geometry detection is applied in TABLE 23 by templates from site of investigation to reveal initial patterns of computational detection.

## TABLE 23: TEMPLATE MATCHING BY SIMILARITY THRESHOLD OF 0.5

| NAME                                                                                                            | Stockstadt am Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COEFF_N                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threshold val:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                             | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Template:                                                                                                       | And the second of the second o |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 | 500 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NAME                                                                                                            | Triefenstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| COEFF_N                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threshold val:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Template:                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NAME                                                                                                            | Hohe Wart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| COEFF_N                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Threshold val:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Template:                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| To and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| INAME          | Amorbach                                                                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------|
| COEFF_N        |                                                                                                                 |
| Threshold val: | the second se |
| 0.5            |                                                                                                                 |
| Template:      |                                                                                                                 |
|                | 500                                                                                                             |
| NAME           | Kleinlangheim                                                                                                   |
| COEFF_N        |                                                                                                                 |
| Threshold val: |                                                                                                                 |
| 0.5            |                                                                                                                 |
| Template:      |                                                                                                                 |
|                |                                                                                                                 |
| NAME           | Riedenheim                                                                                                      |
| COEFF_N        |                                                                                                                 |
| Threshold val: |                                                                                                                 |
| 0.5            |                                                                                                                 |
| Template:      |                                                                                                                 |
|                |                                                                                                                 |

| NAME                      | Maroldsweisach |
|---------------------------|----------------|
| COEFF_N<br>Threshold val: |                |
| 0.5                       |                |
| Template:                 |                |
|                           |                |
| NAME                      | Stettfeld      |
| COEFF_N                   |                |
| Threshold val:            |                |
| 0.5                       |                |
| Template:                 |                |
|                           |                |
| NAME                      |                |
| COEFF_N                   |                |
| Threshold val:            |                |
| 0.5                       |                |
| Template:                 |                |
|                           | 500            |

The detection result in TABLE 23 is of very different quality by true and false positives from different context of landscape, but all follow the same steps of information extraction with a threshold similarity between source image and template being set at 0.5. The pattern of detection is scattered. A scattered pattern is to be expected since the selection process is by micro perspectives of individual characteristics within a template patch. Therefore, the pattern of detection is noncontextual. Any clustering or ordered pattern by template matching is objective detection by similarity of input, and not influenced by other features in the vicinity. The rate of true and false positives is at some sites extremely skewed by similar curvature in the landscape, especially as a result of modern construction blurring the filtering possibilities. Therefore, it is, as before, necessary to remove and exclude detection within certain areas of modern construction by a buffer to extract more purposeful information. Naturally, this can also result in erroneous exclusion of features of interest within near vicinity of modern construction. In the near vicinity of modern constructions, the presence of recent artificial mounds and curvatures is too excessive to be filtered, but deceives both human visual detection as well as computational automatic detection. Therefore, it is necessary to exclude these areas by a buffer as presented in Figure 47 around major roadways. All modern construction, such as minor roadways, cannot be excluded, since it would remove too many details in the landscape. Therefore, the buffer will only be extended around major structures of modern construction. To improve rate of detection by template matching, the threshold value applied does not deliver equal good results across the different contexts of landscape. As a consequence, best match needs to be investigated by changing given similarity threshold at the nine different sampling sites. The similarity threshold can easily be adjusted to increase degree of similarity necessary for detection between source image and template to change and improve outcome. However, initial similarity calculation was set at the same threshold value to have comparable output. In order to improve, the following automated detection in TABLE 24, was designed towards finding best threshold match to given context, as well as buffer exclusion surrounding major parts of modern construction. The representation of script function in TABLE 24 by changing threshold values clearly shows necessary adaptation to different context of landscape by the amount of curvature represented.

#### TABLE 24: TEMPLATE MATCHING BY BEST THRESHOLD MATCH AND BUFFER-ZONES

| ockstadt am Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and the second s |
| The second of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a company of the second s                                                                                                                                                                                                                                             |
| 500 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| riefenstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ohe Wart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| d. de la constante de la consta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| has a second sec |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| NAME           | Amorbach                     |
|----------------|------------------------------|
| COEFF_N        |                              |
| Threshold val: |                              |
| 0.5            |                              |
| Template:      |                              |
|                | 500                          |
| NAME           | Kleinlangheim                |
| COEFF_N        |                              |
| Threshold val: |                              |
| 0.6            |                              |
| Template:      |                              |
|                |                              |
| NAME           | Riedenheim                   |
| COEFF_N        |                              |
| Threshold val: |                              |
| 0.65           |                              |
| Template:      | A THE THE PARTY OF THE PARTY |
|                |                              |

| NAME                                                  | Maroldsweisach |
|-------------------------------------------------------|----------------|
| NAME<br>COEFF_N<br>Threshold val:<br>0.6<br>Template: | Maroldsweisach |
|                                                       |                |
| NAME                                                  | Stettfeld      |
| COEFF_N                                               |                |
| Threshold val:                                        |                |
| 0.87                                                  |                |
| Template:                                             |                |
|                                                       |                |
| NAME                                                  | Alzenau        |
| COEFF_N<br>Threshold val:<br>0.6<br>Template:         |                |

The rate of detection by best match is producing many false positives, as is presented in TABLE 25.

| No. | SITE_name          | Amount verified | Amount auto. det. | ount auto. det. ratio false pos. |   |
|-----|--------------------|-----------------|-------------------|----------------------------------|---|
| 1   | Stockstadt am Main | 12              | 9                 | 0                                | 2 |
| 2   | 2 Triefenstein 25  |                 | 202               | 8                                | 1 |
| 3   | 3 Hohe Wart 1      |                 | 8                 | 8                                | 0 |
| 4   | Amorbach           | 1               | 12                | 12                               | 0 |
| 5   | Kleinlangheim      | 26              | 69                | 2                                | 0 |
| 6   | Riedenheim         | 11              | 54                | 4                                | 0 |
| 7   | Maroldsweisach     | 10              | 15                | 1                                | 1 |
| 8   | Stettfeld          | 2               | 11                | 5                                | 1 |
| 9   | Alzenau            | 20              | 232               | 11                               | 0 |

TABLE 25: AMOUT OF AUTOMATICLY DETECTED BY TEMPLATE MATCHING

The extreme amount of false positives is a construct of amount of curvature in the landscape, often easily discernible by human cognition as non-burial mounds. The automated micro pattern detection therefore necessitates trained rejection and verification. However, all curvatures of similarity are selected, meaning that this is a construct for thorough remote survey of data for overview of geometry and curvature of interest. A majority of verified burial mounds are also detected, but with flat or destroyed burial mounds missed by automated detection of simple shapes through template matching. The overall pattern of all extracted information is focused on the individual information of curvature in the landscape. Occlusion and rejection of many false positives are easily attainable by trained investigation, but also by filtering out areas containing obvious modern impact on rate of detection. The pattern of detection also follows some tendencies and trends of interest of curvature and curvature clusters in the landscape not detected by the focus group and crowd-sourced data. There are therefore some obvious differences in interpretation of landscape that makes for different segmentation and classification of landscape, also impacting finale quality of information extracted. Naturally, the threshold values used for similarity detection can be reduced or increased to either increase or decrease details detected. The thresholds selected, though, appear to fit the different sampling sites by encompassing best results of detecting true positives while not excluding considerable amounts of detail. However, the truly interesting aspects of template matching, is the pattern of detection, and how this pattern of detection is comparable to crowd-sourced data. While both methods of detecting and segmenting landscape do not directly compare, we will see in the following how the individual patterns reveal improved quality of information extraction.

# 5.7 COMPARISON BETWEEN CROWD-SOURCED DATA AND TEMPLATE MATCHING

Data from crowd-sourcing information extraction reveals segmentation patterns capable of improving detection for large-scale cultural heritage management. Equally, the patterns of simple geometry of template matching by open-source principles, reveals segmentation patterns capable of improving detection for large-scale cultural heritage management. The data extracted from template matching is visualized as segmentation in TABLE 26 together with the crowd-sourced data extracted by the focus group. The product is segmented parts of landscape, revealing key areas of interest for understanding amount and presence of burial mounds within the nine different sampling sites.

Both methods are semi-automatic from a point of view of cultural heritage agencies and agents, because it uses automated template matching and untrained volunteer selection by human interpretation. The patterns they reveal are interesting, and both help to statistically and more objectively classify landscape by circumstantial information extraction. Crowd-sourced data reveal macro patterns of contextual relations, while template matching reveal micro patterns of internal geometry composition. They both improve potentials of interpretation and classification, but combined they help substantiate recognition of areas of interest. However, product still necessitates finale trained expertize classification of detection shapes and patterns. The results are therefore two methods for model based area understanding of landscape, by not focusing on individual details or features, and instead both producing macro patterns for dissemination and removing bias.

Applying the script for automated information extraction by templates is a simple task of operation for all interested parties. The major concern therefore becomes whether or not cost-efficiency and quality of information is improved. Crowd-sourced detection can be a time consuming task, but by volunteer basis not cost-consuming. The added positive is also creating and motivating a community of heritage enthusiasts capable of continued contribution, and individual surveying. This naturally requires infrastructure of logistics, but has been seen to produce very positive results in many countries with open heritage and remotely sensed data. The results of crowd-sourced and template matched data to reveal patterns and geometries of interest for cultural heritage management and detection is shown below in TABLE 26. The patterns are not completely similar, but the areas of overlap are extremely interesting, and the segmentation offers complete coverage of true burial mounds by combined effort.

#### TABLE 26: DETECTION PATTERN OF COMPARISON BETWEEN CROWD-SOURCED, TEMPLATE MATCHED, AND TRUE BURIAL MOUNDS BY SEGMENTATION TO AREAS OF INTEREST. GRADIENT IS INVERSED WITHIN TEMPLATE PATTERNS, MAKING THESE PATTERNS CONTRASTING REMAINING SEGMENTATION.

| NAME |                                                                           | Stockstadt am Main |
|------|---------------------------------------------------------------------------|--------------------|
| 0    | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |                    |
|      |                                                                           | Triefenstein       |
| 0    | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |                    |
| NAME |                                                                           | Hohe Wart          |
| 0    | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |                    |

| NAME       |                                                                           | Amorbach      |
|------------|---------------------------------------------------------------------------|---------------|
| 0          | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |               |
|            |                                                                           | Kleinlangheim |
| $\bigcirc$ | Verified BM                                                               |               |
| 0          | Template pattern                                                          |               |
|            | Gradient by<br>Crowd-source<br>pattern                                    |               |
| NAME       |                                                                           | Riedenheim    |
| $\bigcirc$ | Verified BM                                                               |               |
| 0          | Template pattern                                                          |               |
|            | Gradient by<br>Crowd-source<br>pattern                                    |               |

| NAME |                                                                           | Maroldsweisach |
|------|---------------------------------------------------------------------------|----------------|
| 0    | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |                |
| NAME |                                                                           | Stettield      |
| 0    | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern |                |
|      |                                                                           |                |
|      | Verified BM<br>Template pattern<br>Gradient by<br>Crowd-source<br>pattern | Alzenau        |

Combining the methods in TABLE 26 reveals segmentation patterns containing burial mounds. At each site small differences in detection rates and patterns can be seen. From the site of Stockstadt, site no. 1, one cluster is not detected by template matching, but both crowd-sourced data and template matching missed true burial mounds. The false positives by the two methods are somewhat similar, but in general low. From the site of Triefenstein, site no. 2, all burial mound clusters are detected, with a lot of false positives from template matching due to modern construction and extreme slopes towards the river Main. The template matching show better detection of the northern group of burial mounds compared to crowd-sourced data, but all burial mounds are detected by both methods. At Hohe Wart, site no. 3, there is only one known burial mound in the vicinity, but the crowd-sourced data have increased amounts of false positives compared to template matching. Amorbach, site no. 4 also just contains one burial mound, and the detection of false positives is completely opposite between crowd-sourced and template matching, but both methods correctly detect the burial mound. From Kleinlangheim, site no. 5, the biggest rate of detection by both crowd-sourced data and template matching data, is centered on the known cluster of burial mounds. The template matching has many false positives located on the steep slopes towards the creek running across the landscape, while these peaks are completely excluded by the focus group. From the site of Riedenheim, site no. 6, both methods have strong correlation towards the burial mound cluster, and the focus group barely detects any false positives at the site. The template matching, however, shows many curvatures and elevations of interest, but also many along the roads in the open landscape and in the forest. From Maroldsweisach, site no. 7, the picture is very different, with the crowd-sourced data including many false positives, while the template matching barely extracts false positives, but misses one very flat burial mound. From Stettfeld, site no. 8, the situation is similar to Maroldsweisach with few false positives by the template matching, but many false positives by the focus group. However, the template matching also misses one hollowed "square" burial mound. At the last sample site, Alzenau, site no. 9, the landscape consist of peaked curvatures almost everywhere due to sand dunes. As a consequence, the template matching detects an extreme amount of false positives, but that is equal for the focus group. The template matching miss two verified burial mounds, but which are detected by the focus group. However, many unknown burial mounds are undoubtedly not verified in the field, and some of the areas detected by the template matching could certainly also be true burial mounds. At the site of Alzenau, finale verification requires archaeological excavation, but some good estimates can be done by the degree of similarity, combined with confidence value by selection from the focus group.

Both methods have missing true positives, but combined contain all known and verified burial mounds within the nine different sampling sites. Naturally, many of the false positive detections are not necessarily verified as non-existing, and can therefore consist of unknown features of curvature and elevation of interest towards complete detection of all burial mounds or cultural heritage within the landscape.

A complete picture of details of archaeological interest is impossible without confirming archaeological excavation. The confidence of detection is as a result impossible to conclude, but undoubtedly the most prominent details of the landscape can be correctly selected and detected by remote investigations. Both methods equally have different potentials as untrained segmentation of landscape into areas of interest, and best results are present when both methods are visualized before interpretation by trained expertise classification of details in the landscape. Segmentation by crowd-sourcing and segmentation through template matching, delivers model based approaches for understanding the digital LIDAR landscape, as well as real physical entities in the terrain. The most interesting areas are undoubtedly when both methods overlap each other, however, in some areas there is a difference in detection due to differentiated focus on either micro or macro patterns. This is mainly visualized by the difference in false positive detection which diverts between the two methods. This also shows, that, what computational are calculated as similar, are obvious for human cognition as not similar and thus rejected.

The false positives of template matching often occur in complicated scenery, such as steep slopes or heavy impact on landscape by modern use and manipulation. To filter out all areas of modern impact is complicated and controversial. Since human cognition easily excludes these areas as areas of non-interest, both untrained and trained human interpretation can quickly verify and reject automated template matching segmentation. By segmenting data through template matches, two areas containing true burial mounds were not detected. Consequently, best approach would be by segmenting landscape into areas of interest, only then to judge and interpret details in the landscape. Because, crowd-sourced data does not deliver perfect segmentation and classification of landscape, neither does simple template matching. However, the combined results improve the different methods, and thus untrained detection can produce similar results as that of trained detection.

The end result of both trained and untrained detection will never be perfect, but archaeological data and monuments in the landscape are not perfect. But by applying semi-automatic information extraction for pattern recognition, cost efficiency and quality of information can be improved. The result is potential increased use and knowledge generation by combined efforts of untrained sources, verified by trained and qualified classification, making monuments in the landscape better detected, protected, and preserved for the future. Because, the details and patterns in landscape are revealed by combined open data and open-source sharing; a pattern of openness that continues throughout the exploration in the different chapters.

#### References

- Barceló, J. 2009a. Computational Intelligence in Archaeology. State of the art. *Proceedings of the 37th International Conference, Williamsburg, Virginia, United States of America, March 22-26.* Eds. B.
   Frischer, J. Webb Crawford & D. Koller. BAR International Series S2079, Archaeopress, Oxford, p. 11-21
- Barceló, J. 2009b. The birth and historical development of computational intelligence applications in archaeology. *Archeologia e calcolatori*, p. 95-109.
- Bennett, R., D. Cowley & V. De Laet. 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. *Antiquity* 88, p. 896–905.
- Brodu, N, & D. Lague. 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 68, p. 121–34.
- Cowley, D. 2016. What Do the Patterns Mean? Archaeological Distributions and Bias in Survey Data.
   *Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing*. Eds. M. Forte &
   S. Campana. Springer International Publishing AG, p. 147-70.
- Duckers, G. 2013. Bridging the 'geospatial divide' in archaeology: community based interpretation of LIDAR data. [Online] *Internet Archaeology*, 35. Available at: <u>http://intarch.ac.uk/journal/issue35/duckers\_index.html</u> [10/10-2017]
- Goodchild, M. 2007. Citizens as sensors: the world of volunteered geography. *GeoJournal*, vol. 69, no. 4, p. 211-21.
- Grøn, O., S. Palmer, F. Stylegar, K. Esbensen, S. Kucheryavski & S. Aase. 2011. Interpretation of archaeological small-scale features in spectral images. *Journal of Archaeological Science*, vol. 38, no. 9, p. 2024-30.
- Itseez. 2015. *Open Source Computer Vision Library*. [online] Copyright (C) 2015-2016, Itseez Inc., all rights reserved. Available at: <u>http://opencv.org/</u>
- Kauth, R. & G. Thomas. 1976. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. *LARS Symposia*, paper 159.
- Krizhevsky, A., I. Sutskever & G. Hinton. 2012. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, p. 1097-105.
- Lichti, D. 2005. Spectral filtering and classification of terrestrial laser scanner point clouds. *The Photogrammetric Record*, vol. 20, no. 111, p. 218–40.
- Redfern, S. 1997. Computer assisted classification from aerial photographs. AARGnews, vol. 14, p. 33-8.

- Risbøl, O., O. Bollandsås, A. Nesbakken, H. Ørka, E., Næsset & T. Gobakken. 2013. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. *Journal of Archaeological Science*, vol. 40, p. 4688–700.
- Rowlands, A., & A. Sarris. 2007. Detection of exposed and subsurface archaeological remains using multisensor remote sensing. *Journal of Archaeological Science*, vol. 34, p. 795-803.
- Salberg, A., Ø. Trier & M. Kampffmeyer. 2017. Large-Scale Mapping of Small Roads in Lidar Images Using Deep Convolutional Neural Networks. *Image Analysis: 20th Scandinavian Conference, Part II,* SCIA 2017. Eds. P. Sharma & F. Bianchi. Tromsø. Springer International Publishing AG, p. 193-204.
- Schiewe, J. 2002. Segmentation of high-resolution remotely sensed data concepts, application and problems. *ISPRS commission IV Symposium on Geospatial Theory, Processing and Applications*.
- Schneider, A., M. Tekla, A. Nicolay, A. Raab & T. Raab. 2015. A Template matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. *Archaeological Prospection*, vol. 22, no. 1, p. 45-62.
- Sevara, C., M. Pregesbauer, M. Doneus, G. Verhoeven & I. Trinks. 2016. Pixel versus object a comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. *Journal of Archaeological Science*, reports 5, p. 485-98.
- Shennan I., & D. Donoghue. 1992. Remote Sensing in Archaeological Research. *Proceedings of the British Academy*, vol. 77, p. 223–32.
- Simpson, F., & H. Williams. 2008. Evaluating Community Archaeology in the UK. *Public Archaeology*, vol. 7, p. 69-90.
- Trier, Ø., & L. Pilø. 2012. Automatic detection of pit structures in airborne laser scanning data. *Archaeological Prospection*, vol. 19, p. 103-21.
- Tukey, J. 1977. Exploratory Data Analysis. Addison Wesley Pub Co inc, Pearson.
- Wheatley, D., & M. Gillings. 2002. *Spatial Technology and Archaeology the Archaeological Applications of GIS*. New York Taylor & Francis, London.

## 6. CONCLUSIONS AND PERSPECTIVES

Throughout this thesis, conclusions and perspectives have been exemplified and created at the end of every chapter. Combined, they all offer different aspects as to understand limitations and potentials of large-scale semi-automatic pattern recognition within an archaeological landscape. There are plenty of limitations, but the potentials are even greater.

Reliable spatial detection of archaeological monuments in the landscape, are necessary for largescale cultural heritage management and detection. Resources for reliable spatial detection has been the goal of remote sensing in archaeology for a long time, but has been halted by the heterogeneous and imperfect nature of archaeological features in the landscape. With the increasing amount of remotely sensed data, and especially with the introduction of LIDAR, the needs for comparable and standardized approaches and methodologies have similarly increased. Meanwhile, our digital landscapes are archives of so many unknown details waiting to be detected and understood, but it is difficult to cost-efficiently investigate them all. The digital landscapes are manipulated products to reveal certain details of interest, but there is not enough time to actively investigate and interpret everything. The information of detail and information is too great to process, and our classification of landscape becomes subjectively blurred by what we are looking for. Semi-automatic pattern recognition by similarity matching and citizen science, are the methods for improving use of imperfect archaeological data to increase knowledge gain by improved quality of information. Semiautomated pattern recognition is also development of cost-efficient procedures for cultural heritage agencies and agents to detect and manage remnants of the past hidden and revealed in the landscape.

The field of automated information extraction is a dynamic field, rapidly improving, meanwhile open-data and open-source sharing is the standard in almost all aspects of public interest. Likewise, the trajectory of cultural heritage management and detection moves towards open-data and open-source sharing, resulting in increased use of data. The necessities are therefore also adaptation to amplified amounts of unsupervised and imperfect data created by citizen science. The results of citizen science, can be improved quality of information, and thus deliver very good detection rates for cultural heritage management and detection. However, all landscapes and context are unique, meaning there is a constant need for adaptation to results. To handle large-scale information extraction, results needs to be standardized and comparable. To adapt, it is necessary to

compromise and segment information into qualified standards in order to extract information for improved knowledge gain. However, there are many different aspects of large-scale cultural heritage management and detection that it can be difficult to visualize necessities and problems. This thesis was written to represent and visualize many different aspects of large-scale cultural heritage management and detection with the intent of discussing and defining archaeological LIDAR potential and limitations, visualizing the imperfect nature of archaeological monuments, representing the field of automated detection within archaeology, and semi-automatic extraction of information from crowd-sourced and automated template matching. This was presented in six chapters, all offering different aspects on how to understand the digital LIDAR landscape of the past and present, and how the trajectory of automated information extraction develops. For this purpose:

**Chapter 1** defines the thesis outline, premise, and motivation. **Chapter 2** focuses on technical aspects of LIDAR data and archaeological LIDAR use and potential. The chapter explains history, development, and defines the LIDAR product from point to plane. From initial outline of the LIDAR product, the chapter exemplifies how archaeological LIDAR can be improved by adding information. The extent of LIDAR goes from passive sensing to active sensing, with added, altered, or intensified wavelengths. But too much information can equally disturb the possibilities for human cognition and computational calculation to interpret details. Optimal settings are therefore not found by always improving resolution, because the increased amount of details blurs the macro patterns possible to discern in digital elevation models. Standards for comparison of data are also complicated by the diversity of LIDAR data and metadata, making for necessities of calibration and normalization to assess between different LIDAR datasets. This can be controlled by interpolation and visualization, however, amount of detail can still complicate comparison. When defining interpolation and visualization of data, it is necessary to remember that different means of interpolation and visualization makes for detection of dissimilar features and structures in the landscape. The commonly applied presentation of digital elevation models are by visualizing relief shade or hillshade. Shading landscape by relief is easily understandable for human cognition, and therefore often a standard chosen for visualization of LIDAR data for crowd-sourced information extraction. Shading landscape by relief is equally machine readable, and the case studies are therefore represented by similar relief shading for comparison. However, LIDAR accessibility can complicate possibilities for archaeologist and engaged public alike, resulting in difference by lack of use, cost-efficiency, and quality of information extracted.

**Chapter 3** represented primary data for information extraction. Specifics and definition of data and metadata structure was introduced to explain steps of procedure for the complete interpolation of the dataset from Lower Franconia. To understand the dataset from Lower Franconia, it is necessary to explain and model composition of features in the landscape by the imperfect nature of archaeological data. Because, no matter the approach for segmenting landscape, individual data points are distorted and skewed by the impact of cultural and natural manipulation of landscape, combined with decomposition, degradation, and decay of patterns of the past and present. Micro patterns are therefore illusive and difficult to confidently determine by desk-based investigations, while macro patterns fade by lack of overview through surveying. Different approaches reveal different details, but it is necessary to establish best steps of processing to improve both field and desk based investigations. Segmentation of landscape before surveying improves the possibility of investigating individual details, while understanding macro patterns in landscape, resorting to discovery of additional details in the landscape. However, not all micro patterns detected by desk based investigations are true, because terrain and surface is in constant transition.

**Chapter 4** defines the field of automated information extraction by remotely sensed data, with particular focus on extraction of archaeological features and structures from LIDAR data. The field of automated segmentation and classification of details in remote sensing is undoubtedly growing. However, within the archaeological community for cultural heritage management and detection, the pattern is not as defined. Undoubtedly, the archaeological community is seeing a network grow and develop for automated and semi-automated means of detection, with certain leading brokers and institutions influencing the field. By people and articles influencing the field, state of the art and best practice can be established by common use and trends of use. The NA shows that data driven approaches were previously much more prevalent, but the articles and authors leading the field are adapting to model driven approaches and template matching. Four research entities were detected by pattern of community influence on the field. By dynamic time-scaled representation of research and articles the evolution of the field is extracted by key instigators, brokers, and leaders. The pattern of present field development is used as representation for methodology to define state of the art and best practice. The results on methodology are applied in the following chapter for automated information extraction and archaeological monument detection in LIDAR data.

**Chapter 5** applies visual detection, citizen science by crowd-sourcing data, and automated information extraction to segment and classify landscape. The results vary, but all contain different potentials and limitations. The two approaches discussed are extracted from the conclusions of

chapter 4, and consist of automated information extraction by data or model driven approaches. This implies information extraction by per pixel or by geometry and regions. Means of information extraction can adapt many different variables of data, but easily becomes intricate to a degree where amount of information distorts more than aids the possibilities of improving quality of information. In contrast, simple information extraction by template matching offers a good rate of detection by similarity validation. Equally, citizen science through crowd-sourced data offers a good rate of detection by relative confidence defined by selection count. Comparing the two methods of simple information extraction through crowd-sourced data and template matching, indicates interesting detection patterns of landscape interpretation. The patterns are to a strong degree dissimilar by selection of either micro or macro patterns in landscape. However, where the two methods overlap, the confidence of detection is greatest. By combined segmentation, all true burial mound areas of interest are detected, with new areas of interest modelled, and areas containing false positives more easily excluded. The resulting automated information extraction is not perfect, but it offers an enhanced segmented perspective on micro and macro patterns in the landscape.

From all the different chapters, different perspectives are given for semi-automatic pattern recognition within an archaeological landscape. The basis of the thesis is to present opportunities for large-scale cultural heritage management and detection. This also implies creating more objective and comparable datasets in combination for knowledge-based expert interpretation and automated procedures of information extraction of real entities and details in the landscape. For detection of archaeological monuments in LIDAR data, best results of positive detection are by trained expert interpretation combined with differentiated perspectives and fieldwork. But all human interpretation of characteristics and variables within a given dataset can also be incorrect due to misclassification based on external and internal influence and bias. By computation, however, the results are controlled and replicable. Computational detection faces the same problems as visual detection with a high degree of false positive detections with indiscriminate segmentation and classification, and both approaches have high uncontrolled error rates of detection if not proper organized and adjusted. The real concern is therefore how to prober optimize and adjust weights to increase time efficiency for optimal large-scale segmentation and classification of landscape. By computation for archaeological detection and mapping, the real objective is to improve quality of information towards confident true positive detections, rather than removing the human component. This is especially true for the diverse pattern of imperfect archaeological monuments hidden in the modern landscape. Aimed at optimizing positive detection of a specific structure or pattern from the past, it is a matter of improving efficiency by minimizing errors based on

performance evaluation through input and expected output. Thus automated detection for archaeological features and structures is not necessarily a matter of absolute detection, but rather of best fit to the archaeological community by minimizing error rates or improving confidence. This statement also implies that the human interpreter should not be removed for the applied means of detection, but rather that computation should focus on how to optimize the procedures to quantifiably and objectively determine the extent and possibilities for improved detection rates for the human interpreter. Because, the patterns of archaeological features and structures, necessitates discarding similar patterns in the landscape constructed by natural and cultural activity. This is especially true for the detection of tumuli, since barrows and mounds are continuously created by cultural and natural activities of different purposes creating similar patterns equal to burial mounds of the past. Generally, within the archaeological community, one of the assumptions is that the techniques thus far have not provided improved detection rates and proper classification of archaeological monuments in the landscape to effectively remove the human involvement in archaeological mapping and management. The archaeological community is questioning whether or not it will be computational possible to replicate and imitate the human interpreter (Parcak 2009, 110). Due to the imperfect nature of archaeological remains in the landscape, this is a valid and proper critique, but not necessarily the correct concern. Because, even though automated mapping of archaeological monuments might never be fully automated, the procedures are still improving the potential of archaeological detection and management. Some concerns determine that the imperfect nature of archaeological data makes for too many false positives while omitting patterns of interest by automated detection (Hanson 2010). Equally, this is a valid concern, but not necessarily the correct concern. The reason for this is: one approach does not omit the other, but rather should be used and seen as a dual approach of investigation. In the end, the result is always measured by the input parameters, and thus a matter of learning how to cognitively or computationally understand and describe the landscape. This entails that the outcome will always be, manually and automatically, a result based on prior knowledge of already known parameters. But even by mapping or detecting already known and recurrent archaeological monuments in the landscape, this improves the possibility of detecting atypical and unknown monuments in the landscape by providing additional resources by which patterns can be distinguished. Thus by measuring potential use and application within archaeological landscapes, the core of implementation lies perhaps not in the classification of details, but rather in the segmentation for improved information extraction by aiding pattern recognition. The added layers of segmentation changes interpretation of landscape, and thus helps to define the variables of the near infinite diversity by which archaeological monuments can be described. This in return constructs the spatial record on how the landscape of

the past should be understood, outlining indices and geometries possible to compute and interpret, or segment and classify. By using simple unsupervised automatic information extraction, it is possible to achieve good results for segmenting landscape into areas of interest for improved human visual detection and verification. Equally, by using simple unsupervised crowd-sourced information extraction, it is possible to achieve good results for segmenting landscape into areas of interest. Combined, detection becomes similar to supervised and trained information extraction in landscape. This should not be seen as a threat to experts in the field, but rather as an improved perspective that can be used by experts. The proposed dual methods of simple information extraction creates a baseline dataset by combined micro and macro patterns of features and areas of interest to aid and safeguard cultural heritage in the landscape.

Certainly, the imperfect nature of archaeological data is a continued concern for archaeological monument detection and mapping, but the concern is similar for both manual and automatic information extraction of details in the landscape. In the end, one set of unique values for archaeological monuments do not exist, but they are scattered on a scale from 0 to 1. Within the range of 0 to 1 lies infinite variation in finite space, similar to cultural heritage monuments hidden and revealed in the landscape. All finite definition is a compromise to compare and standardize interpretation, but can always differ based on perspective. Therefore, segmentation is the classification of compromise between infinite values or perspectives to finite values and perspectives to define and describe entities and ideas. Every possibility of improving our understanding of entities and ideas should be accepted, because they can always be expanded and elaborated. Segmenting and classifying our landscape helps increase the scale of definition for both human and computational understanding, and by simple semi-automatic information extraction, our landscapes can be much better understood for improved knowledge generation towards large-scale cultural heritage management and detection.

173

## References

Hanson, W. 2010. The future of aerial archaeology in Europe. *Photo Interprétation: European Journal of Applied Remote Sensing*, vol. 46, p. 3-11.

Parcak, S. 2009. Satellite Remote Sensing for Archaeology, New York, Taylor & Francis.

| Rheinland-Phalz |            | Saxony-Anhalt |            | Saarland |           | Schleswig- |           | Bremen  |       |
|-----------------|------------|---------------|------------|----------|-----------|------------|-----------|---------|-------|
| Veer            | LIDAD      | Vaar          | LIDAD      | Vaar     | LIDAD     | Noor       | LIDAD     | Vaar    | LIDAD |
| rear            | LIDAK      | rear          | LIDAK      | rear     | LIDAK     | rear       | LIDAK     | rear    | LIDAK |
|                 | sale       |               | sale       |          | sale      |            | sale      |         | sale  |
| 2015            | 43.205,10  | 2015          | 106.604,58 |          |           |            |           | 2015    | 456   |
|                 |            |               |            |          |           |            |           | (unt.   |       |
|                 |            |               |            |          |           |            |           | Oct.)   |       |
| 2014            | 71.180,88  | 2014          | 97.387,86  | 2014     | 3.760,00  | 2014       | 13.674,00 | 2014    | 439   |
| 2013            | 62.744,56  | 2013          | 216.990,14 | 2013     | 2.300,00  | 2013       | 40.470,00 | 2013    | 1334  |
| 2012            | 141.002,00 | 2012          | 192.955,54 | 2012     | 824,00    | 2012       | 13.674,00 |         |       |
| 2011            | 162.373,50 | 2011          | 47.814,17  | 2011     | 4.464,00  |            |           |         |       |
| 2010            | 31.567,00  |               |            | 2010     | 4.408,00  |            |           |         |       |
| 2009            | 40.333,98  |               |            | 2009     | 6.012,00  |            |           |         |       |
| 2008            | 41.611,00  |               |            | 2008     | 10.260,00 |            |           |         |       |
| 2007            | 24.846,80  |               |            |          |           |            |           |         |       |
| 2006            | 12.589,34  |               |            |          |           |            |           |         |       |
| 2005            | 6.685,80   |               |            |          |           |            |           |         |       |
| sum             | 638.139,96 | sum           | 661.752,29 | sum      | 32.028,00 | sum        | 67.818,00 | sum     | 2229  |
| Average         | 58.012,72  | Average       | 132.350,46 | Average  | 4.575,43  | Average    | 22.606,00 | Average | 743   |

## Appendix 2A

Extract of financial situation for LIDAR data income from 5 states in Germany. From the mail correspondence between Martin Isenburg and five of the sixteen state survey offices in Germany (Isenburg 2017) at: <u>https://rapidlasso.com/2017/01/03/first-open-lidar-in-germany/</u> (03/03 2017)

## Appendix 3A

| BMID | Area               | Cluster | BMID | Area          | Cluster | BMID | Area           | Cluster |
|------|--------------------|---------|------|---------------|---------|------|----------------|---------|
| 1    | Stockstadt am Main | 1       | 40   | Hohe Wart     | 1       | 110  | Maroldsweisach | 1       |
| 2    | Stockstadt am Main | 1       | 41   | Amorbach      | 1       | 111  | Maroldsweisach | 1       |
| 3    | Stockstadt am Main | 1       | 42   | Kleinlangheim | 1       | 113  | Maroldsweisach | 1       |
| 4    | Stockstadt am Main | 1       | 43   | Kleinlangheim | 1       | 120  | Maroldsweisach | 2       |
| 5    | Stockstadt am Main | 1       | 44   | Kleinlangheim | 1       | 121  | Maroldsweisach | 2       |
| 6    | Stockstadt am Main | 2       | 45   | Kleinlangheim | 1       | 122  | Maroldsweisach | 2       |
| 7    | Stockstadt am Main | 2       | 46   | Kleinlangheim | 1       | 123  | Maroldsweisach | 2       |
| 8    | Stockstadt am Main | 2       | 47   | Kleinlangheim | 1       | 124  | Maroldsweisach | 2       |
| 9    | Stockstadt am Main | 2       | 48   | Kleinlangheim | 1       | 125  | Maroldsweisach | 2       |
| 10   | Stockstadt am Main | 3       | 49   | Kleinlangheim | 1       | 126  | Maroldsweisach | 2       |
| 11   | Stockstadt am Main | 3       | 50   | Kleinlangheim | 1       | 130  | Stettfeld      | 1       |
| 12   | Stockstadt am Main | 3       | 51   | Kleinlangheim | 1       | 131  | Stettfeld      | 1       |
| 15   | Triefenstein       | 3       | 52   | Kleinlangheim | 1       | 140  | Alzenau        | 1       |
| 16   | Triefenstein       | 1       | 53   | Kleinlangheim | 1       | 141  | Alzenau        | 1       |
| 17   | Triefenstein       | 1       | 54   | Kleinlangheim | 1       | 142  | Alzenau        | 1       |
| 18   | Triefenstein       | 1       | 55   | Kleinlangheim | 1       | 143  | Alzenau        | 2       |
| 19   | Triefenstein       | 1       | 56   | Kleinlangheim | 1       | 144  | Alzenau        | 2       |
| 20   | Triefenstein       | 2       | 57   | Kleinlangheim | 1       | 145  | Alzenau        | 2       |
| 21   | Triefenstein       | 2       | 58   | Kleinlangheim | 1       | 146  | Alzenau        | 2       |
| 22   | Triefenstein       | 2       | 59   | Kleinlangheim | 1       | 147  | Alzenau        | 2       |
| 23   | Triefenstein       | 2       | 60   | Kleinlangheim | 1       | 148  | Alzenau        | 2       |
| 24   | Triefenstein       | 2       | 61   | Kleinlangheim | 1       | 149  | Alzenau        | 2       |
| 25   | Triefenstein       | 2       | 62   | Kleinlangheim | 1       | 150  | Alzenau        | 2       |
| 26   | Triefenstein       | 2       | 63   | Kleinlangheim | 1       | 151  | Alzenau        | 2       |
| 27   | Triefenstein       | 2       | 64   | Kleinlangheim | 1       | 152  | Alzenau        | 2       |
| 28   | Triefenstein       | 2       | 65   | Kleinlangheim | 1       | 153  | Alzenau        | 2       |
| 29   | Triefenstein       | 2       | 70   | Riedenheim    | 1       | 154  | Alzenau        | 2       |
| 30   | Triefenstein       | 2       | 71   | Riedenheim    | 1       | 155  | Alzenau        | 2       |
| 31   | Triefenstein       |         | 72   | Riedenheim    | 1       | 156  | Alzenau        | 2       |
| 32   | Triefenstein       |         | 73   | Riedenheim    | 1       | 157  | Alzenau        | 2       |
| 33   | Triefenstein       | 3       | 74   | Riedenheim    | 1       | 158  | Alzenau        | 2       |
| 34   | Triefenstein       | 3       | 75   | Riedenheim    | 1       | 159  | Alzenau        | 2       |
| 35   | Triefenstein       | 3       | 76   | Riedenheim    | 1       | 160  | Alzenau        | 2       |
| 36   | Triefenstein       | 3       | 77   | Riedenheim    | 1       | 161  | Alzenau        | 2       |
| 37   | Triefenstein       | 3       | 78   | Riedenheim    | 1       | 162  | Alzenau        | 1       |
| 38   | Triefenstein       | 3       | 79   | Riedenheim    | 1       | 163  | Alzenau        | 1       |
| 39   | Triefenstein       | 3       | 80   | Riedenheim    | 1       | 164  | Alzenau        | 1       |

| NAME                       | Stockstadt am Main            |
|----------------------------|-------------------------------|
| Description                | Burial mounds; three clusters |
| Temporal or cultural frame | Unknown prehistory            |
| Ground truth estimate      | 12                            |
| Nearest administrative UID | 207688                        |
| File number                | D-6-6020-0087                 |
| Sub district               | 361                           |

## **Appendix 3B**

#### Description:

12 burial mounds were located by field inspection. The 12 burial mounds are located in three distinct clusters, C1-3, but all are placed on the ridge towards the valley to the south. The burial mounds to the east, C1, are all heavily damaged by looting and a road running through one of them. All mounds in C1 are larger. The burial mounds in C2 are almost not noticable in the field due to canopy obstrcution, but stands out as patterns of clear cultural certainty within the DEM. The last cluster, C3, are quite prominent in the DEM as well as in the landscape, but all have also been looted at some point in time.

## **Visual detection**

| Raw relief shade                 |  |
|----------------------------------|--|
| Sun zenith: 45                   |  |
| Sun azimuth: 315                 |  |
| Burial cemetery recorded on site |  |

## **APPENDIX 3B**

| Burial mounds confirmed by field<br>inspection                                                                                                          | C3 C2 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Survey results for visual detection                                                                                                                     |       |  |
| Survey results for visual detection by<br>kernel density. Radius 100, Cellsize:<br>10<br>Weight: count<br>Gradient: black to white from less to<br>more |       |  |


| BM1      |  |
|----------|--|
| C1       |  |
| View: NE |  |
|          |  |
| Note:    |  |
| largest  |  |
| mound of |  |
| Group1   |  |
|          |  |
| GK4:     |  |
| 4287947/ |  |
| 5542874  |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
| [6113]   |  |
| BM1      |  |
| C1       |  |
| View: N  |  |
|          |  |
| Note:    |  |
| negative |  |
| openness |  |
| of BM    |  |
| looting  |  |
| _        |  |
| GK4:     |  |
| 4287947/ |  |
| 5542874  |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |







| NAME                       | Triefenstein                                |
|----------------------------|---------------------------------------------|
| Description                | Burial mounds; three clusters               |
| Temporal or cultural frame | Unknown prehistory                          |
| Ground truth estimate      | 25                                          |
| Nearest administrative UID | 199043; 208622; 982209                      |
| File number                | D-6-6223-0013; D-6-6223-0012; D-6-6223-0049 |
| Sub district               | 613                                         |

Three distinct clusters of burial mounds, all located on the same plateau above the river Main, near Urphar. C1 consist of four flat topped burial mounds. C2 consist of minimum 11 burial mounds with some being cut by a pathway. Within the centre of the concentration the burial mounds are overlapping eachother, but it is difficult to assess stratigraphic relations without formal excavation. However, it does seem like the two burial mounds in the centre are the primary connectors. In between C2 and C3, some smaller circular earthenwork are also present as potential burial mounds, but they are all connected to the forest roads, and therefore might as well be connected to general earthenwork construction due to logistic patterns of waste dispersal. The last group C3, consist of a minimum of eight burial mounds of varying size, and are stratigraphicly overlapping. The temporal scope of the grave fields are undocumented, but a connection to the Migration Age fortification of Wettenburg is likely due to spatial presence within close vicinity.









| BM23<br>C2<br>View: W<br>Note:<br>Large BM<br>connected<br>with many                      |  |
|-------------------------------------------------------------------------------------------|--|
| smaller                                                                                   |  |
| GK4:<br>4323954/<br>5519127                                                               |  |
|                                                                                           |  |
| [6208]<br>BM26<br>C2<br>View: E<br>Note:<br>Large BM<br>connected<br>with many<br>smaller |  |
| GK4:<br>4323971/<br>5519161                                                               |  |
| [6208]                                                                                    |  |





| NAME                       | Hohe Wart                 |
|----------------------------|---------------------------|
| Description                | Burial mound; one cluster |
| Temporal or cultural frame | Unknown prehistory        |
| Ground truth estimate      | 1                         |
| Nearest administrative UID | 977096                    |
| File number                | D-6-6021-0094             |
| Sub district               | 406                       |

The burial mound of Hohe Wart, is a singular regocnisable mound located on a very steep slope on a hillside facing the north. By its physical presence, it stands out as a compact earthenwork covered with stones.



| Burial mounds confirmed by field                                             |                                         |
|------------------------------------------------------------------------------|-----------------------------------------|
| Inspection                                                                   |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
|                                                                              |                                         |
|                                                                              | 500                                     |
| Survey results of manual visual                                              | A A A A A A A A A A A A A A A A A A A   |
| detection                                                                    |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              | *                                       |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
| Survey results for visual detection by kernel density. Radius 100, Cellsize: |                                         |
| 10<br>Waishta agust                                                          |                                         |
| Gradient: black to white from less to                                        |                                         |
| more                                                                         |                                         |
|                                                                              |                                         |
|                                                                              |                                         |
|                                                                              | 500                                     |
|                                                                              |                                         |





| NAME                       | Amorbach                  |
|----------------------------|---------------------------|
| Description                | Burial mound; one cluster |
| Timeframe                  | Unknown prehistory        |
| Ground truth estimate      | 1                         |
| Nearest administrative UID | 201173                    |
| File number                | D-6-6321-0004             |
| Sub district               | 470                       |

The burial mound of Amorbach lies singuarly near the highest topographic point in the landscape. Forestry is very active, and fresh tractor tracks were seen dug into the side of the burial mound.



| Burial mounds confirmed by field<br>inspection                                                                                                          | 500 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Survey results of manual visual detection                                                                                                               |     |
| Survey results for visual detection<br>by kernel density. Radius 100,<br>Cellsize: 10<br>Weight: count<br>Gradient: black to white from less<br>to more |     |



| BM41<br>C1<br>View: N                                                     |  |
|---------------------------------------------------------------------------|--|
| Note:<br>Flat                                                             |  |
| topped,                                                                   |  |
| but with a                                                                |  |
| large                                                                     |  |
| alameter                                                                  |  |
| GK4:                                                                      |  |
| 4305460/                                                                  |  |
| 5505326                                                                   |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| [6188]                                                                    |  |
| BM41                                                                      |  |
| C1<br>View: F                                                             |  |
|                                                                           |  |
| Note:                                                                     |  |
| Flat                                                                      |  |
| toppod                                                                    |  |
| topped,<br>but with a                                                     |  |
| topped,<br>but with a<br>large                                            |  |
| topped,<br>but with a<br>large<br>diameter                                |  |
| topped,<br>but with a<br>large<br>diameter<br>GK4 <sup>.</sup>            |  |
| topped,<br>but with a<br>large<br>diameter<br>GK4:<br>4305460/            |  |
| topped,<br>but with a<br>large<br>diameter<br>GK4:<br>4305460/<br>5505326 |  |

| NAME                       | Kleinlangheim              |
|----------------------------|----------------------------|
| Description                | Burial mounds; one cluster |
| Timeframe                  | Hallstatt Culture          |
| Ground truth estimate      | 26                         |
| Nearest administrative UID | 209040                     |
| File number                | D-6-6227-0058              |
| Sub district               | 1154;1142                  |

One large cluster of burial mounds with different degrees of preservation. Some older, and some more modern evidence of looting and digging in the landscape. West of the burial mound concentration, several potential overploughed burial mounds were identified due to slight elevation, and the discovery of ceramics of potential Hallstat Culture. Other finds of Hallstat Culture has been located in the vicinity, and is a likely connection to the burial mounds. The burial mounds are located in the small valley, almost at the lowest point in the vicinity, but with slight elevation towards the south.

| Raw relief shade                 | A Contraction of the |
|----------------------------------|----------------------|
| Sun zenith: 45                   |                      |
| Sun azimuth: 315                 |                      |
|                                  | 500                  |
| Burial cemetery recorded on site |                      |
|                                  | 500                  |

| Burial mounds confirmed by field<br>inspection                                                                                                          |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                         | 500 |
| Survey results of manual visual detection                                                                                                               |     |
| Survey results for visual detection by<br>kernel density. Radius 100, Cellsize:<br>10<br>Weight: count<br>Gradient: black to white from less to<br>more |     |





| BM62<br>C1<br>View: N                        |                                                  |
|----------------------------------------------|--------------------------------------------------|
| Note:<br>Middle of<br>the cluster<br>towards |                                                  |
| western<br>edge                              |                                                  |
| GK4:<br>4378956/<br>5517307                  |                                                  |
|                                              |                                                  |
| [6257]<br>BM48                               | VISA MARKANA ANA ANA ANA ANA ANA ANA ANA ANA ANA |
| C1<br>View: NW                               |                                                  |
| Note:<br>Middle of<br>the cluster<br>towards |                                                  |
| western<br>edge                              |                                                  |
| GK4:<br>4378970/<br>5517360                  |                                                  |
|                                              |                                                  |
|                                              |                                                  |
| [6259]                                       |                                                  |



| NAME                       | Riedenheim                 |
|----------------------------|----------------------------|
| Description                | Burial mounds; one cluster |
| Temporal or cultural frame | Unknown prehistory         |
| Ground truth estimate      | 11                         |
| Nearest administrative UID | 202035                     |
| File number                | D-6-6425-0062              |
| Sub district               | 774;768                    |

Burial mounds of various degree of destruction and deteriation. However, most of them seem undisturbed from looting. There are two spatial placements of burial mounds at the site within two clusters. The first cluster is situated along the northern ridge of the forest. The second cluster is a little further inside the forest. In between the clusters is an empty area devoid of mounds, but with a hollow road passing through. The road is of modern use, but likely extends back in time as primary road in the area.

| Raw relief shade<br>Sun zenith: 45<br>Sun azimuth: 315 |     |
|--------------------------------------------------------|-----|
|                                                        |     |
| Rurial comptony recorded on site                       | 500 |
| Burlar cemetery recorded on site                       |     |
|                                                        |     |
|                                                        | 500 |

| Burial mounds confirmed by field inspection            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        | A CONTRACT OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Current require of recruice visual                     | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| detection                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Survey results for visual detection by                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ternel density. Radius 100, Cellsize:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Weight: count<br>Gradient: black to white from less to |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| more                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |







| NAME                       | Maroldsweisach                 |
|----------------------------|--------------------------------|
| Description                | Burial mounds; two clusters    |
| Temporal or cultural frame | Unknown prehistory             |
| Ground truth estimate      | 10                             |
| Nearest administrative UID | 134142; 132787; 132795; 132783 |
| File number                | D-6-5829-0008;D-6-5829-0012-4  |
| Sub district               | 2138; 2138;2223                |

Dispersed pattern of individual and clustered groups of burial mounds on the slopes and plateaus of the landscape. In C1, one burial mound has since the LIDAR scanning been removed, and is no longer possible to locate in the field. The two others still present were large flat topped burial mounds. From C2 a dispersed pattern of burial mounds are seen. From the field investigation, the cluster of burial mounds were clear, and the two outer mounds also very likely prehistoric.



| Burial mounds confirmed by field                       | A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inspection                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | Martin A. Martin 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                        | A Company of the second s |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Survey results of manual visual                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| detection                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Survey results for visual detection by                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| kernel density. Radius 100, Cellsize:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Weight: count<br>Gradient: black to white from loss to |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| more                                                   | man and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| inore                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |







| NAME                       | Stettfeld                    |
|----------------------------|------------------------------|
| Description                | Burial mounds; one cluster   |
| Temporal or cultural frame | Unknown prehistory           |
| Ground truth estimate      | 2                            |
| Nearest administrative UID | 181267; 134234               |
| File number                | D-4-6030-0023; D-6-6030-0005 |
| Sub district               | 994;2291                     |

Two very centrally placed burial mounds on top of natural elevation. Both peaks of the Spitzlberg, have been in use for different purposes throughout time, and have been heavily shaped and destroyed by human activity. The western burial mound has been re-used as a new sarcophagus religious display, whereas the eastern mound has almost been completely hollowed out. Both burial mounds are therefore almost completely destroyed, but can still be recognised by their continued physical presence in landscape.


| Burial mounds confirmed by field<br>inspection                                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Survey results of manual visual detection                                                                                                               |  |
| Survey results for visual detection by<br>kernel density. Radius 100, Cellsize:<br>10<br>Weight: count<br>Gradient: black to white from less to<br>more |  |



| BM130<br>C1<br>View: W<br>Note:<br>The extent<br>of the<br>unnatural<br>hilltop<br>GK4:<br>4409411/<br>5536904 |                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| BM130                                                                                                          |                                                                                                                  |
| C1                                                                                                             |                                                                                                                  |
| View: N                                                                                                        |                                                                                                                  |
| Note:                                                                                                          |                                                                                                                  |
| Present                                                                                                        |                                                                                                                  |
| day                                                                                                            |                                                                                                                  |
| religious                                                                                                      | "                                                                                                                |
| display                                                                                                        |                                                                                                                  |
| CKA.                                                                                                           |                                                                                                                  |
| GK4:<br>4409411/                                                                                               |                                                                                                                  |
| 5536904                                                                                                        |                                                                                                                  |
|                                                                                                                | and the second |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
|                                                                                                                |                                                                                                                  |
| [6312]                                                                                                         |                                                                                                                  |



| NAME                       | Alzenau                      |
|----------------------------|------------------------------|
| Description                | Burial mounds; two clusters  |
| Temporal or cultural frame | Unknown prehistory           |
| Ground truth estimate      | 20                           |
| Nearest administrative UID | 194524; 196034               |
| File number                | D-6-5920-0007; D-6-5920-0021 |
| Sub district               | 994;2291                     |

#### **Description:**

The two clusters of burial mounds at Alzenau are situated in an area of former migrating sand dunes, now held down by forest and canopies. However, this highly complicates the identification of burial mounds in the area. Undoubtedly there are two clusters of burial mounds in the area, but to determine their extent is extremely difficult by remote investigation, as well as by field investigation. Therefore the finale estimate is a very rough estimate, and the southern cluster, C2, seems to be the most prominent of the two.

#### **Visual detection**



| Burial mounds confirmed by field       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inspection                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | CARLO AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | A share the title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 1 1 All and a start of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | ACAMANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Survey results of manual visual        | and the state of t |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Survey results for visual detection by | Company of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| kernel density. Radius 100, Cellsize:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>Weight: count                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gradient: black to white from less to  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| more                                   | A strange and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | - and a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| BM143<br>C1<br>View: E                                                              |  |
|-------------------------------------------------------------------------------------|--|
| Note:<br>View from<br>BM145<br>towards<br>BM144<br>and<br>BM143                     |  |
| GK4:<br>4288742/<br>5551805                                                         |  |
| [6174]<br>BM154<br>C1                                                               |  |
| View: E<br>Note:<br>View from<br>BM154<br>and the<br>migrating<br>dune<br>landscape |  |
| GK4:<br>4288909/<br>5551874                                                         |  |
| [6174]                                                                              |  |

# Appendix 4A

| ID Node label                | Intérence                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 De Boer 2007               | De Boer, A. 2007. Using Pattern Recognition to Search LIDAR Data for Archeological Sites. Proceedings of the 33rd Conference. Tomar. March 2005. CAA Portugal. Tomar, pp. 245-254.                                                                                                                                                                                                                                                                                                     |
| 2 Briese et al. 2009         | Briese, C., Mandiburger, G. & Ressl, C., 2009, Automatic break line determination for the generation of a dtm along the river main. ISPRS, Vol. XXXIII. Part B3. Amsterdam 2000.                                                                                                                                                                                                                                                                                                       |
| 3Hu & Ye 2013                | Hu, X and Ye, L 2013. A fast and simple method of building detection from LIDAR data based on scan line analysis ISPRS. Volume II-3/W1.                                                                                                                                                                                                                                                                                                                                                |
| 4 Karsli & Kahya 2008        | Karsli, F. and Kahya, O., 2008. Building extraction from laser scanning data. ISPRS, Volume XXXVII Part B3b.                                                                                                                                                                                                                                                                                                                                                                           |
| 5 MandIburger et al. 2010    | Mandburger, G., N. Pfeifer, C. Ressl, C. Briese, A. Roncat, H. Lehner & W. Muecke. 2010. Algorithms and tools for Airborne LIDAR data processing from a scientific perspective. European LiDAR Mapping Forum. The Hague. Netherlands.                                                                                                                                                                                                                                                  |
| 6 Melzer & Briese 2004       | Melzer, T. & C. Briese 2004: Extraction and modeling of power lines from ALS point clouds. Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition. Hagenberg, Austria, 17–18 June 2004; pp. 47–54.                                                                                                                                                                                                                                                       |
| 7 Rutzinger et al. 2011      | Rutzinger, M., M. Maukisch, F. Petrini-Monteferri & J. Stoetter. 2011. Development of Algorithms for the Extraction of Linear Patterns (Linearments) from Airborne Laser Scanning Data. Proceedings of the Conference 'Geomorphology for the Future'.                                                                                                                                                                                                                                  |
| 9 Trier & Zortea 2012        | Trier, O. & M. Zortea. Semi-automatic detection of cultural heirtage in LiDAR data. Proceedings of the 4th GEOBIA. May 7-9, 2012 - Rio de Janeiro - Brazil.                                                                                                                                                                                                                                                                                                                            |
| 10Bhaskaran et al. 2010      | Bhaskraun, S., S. Paramanada & M. Rammarayan. 2010. Per-pixel and object-oriented classification methods for mapping urban features using lkonos satellite data. Applied Geography. vol 30. no. 4. p. 650-65.                                                                                                                                                                                                                                                                          |
| 11 Chen et al. 2009          | Chen, Y., W. Su, J. Li & Z. Sun. 2009. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research, vol 49, no. 6, pp. 1112                                                                                                                                                                                                                                                                             |
| 12De Laet et al. 2007        | De Laet, V. E. Paulissen, M. Waelkens. 2007. Methods for the extraction of archaeological features from very high-resolution [konos-2 remote sensing imagery; Hisar (southwest Turkey). Journal of Archaeological Science, vol 34, no. 5, p. 830-841                                                                                                                                                                                                                                   |
| 13 Lambers & Zingman 2012    | Lambers, K. & I. Zingman. 2012. Towards Detection of Archaeological Objects in High-Resolution Remotely Sensed Images: the Silvretta Case Study. Proceedings of the 40th conference on CAA. p. 781-791.                                                                                                                                                                                                                                                                                |
| 14 Myintetal. 2011           | Myint S., P. Gober, A. Brazel, S. Grossman-Clarke & Q. Weng. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment vol. 115, no. 5, p. 1145-61.                                                                                                                                                                                                                                          |
| 15 Rottensteiner 2003        | Rottensteiner, F. 2003. Automatic generation of high-quality building models from lidar data. IEEE Computer Graphics and Applications, vol. 23, no. 6, p. 42-50                                                                                                                                                                                                                                                                                                                        |
| 16 Baillardet al. 1999       | Baillard, C., C. Schmid, A. Zisserman & A. Fitzgibben. 1999. Automatic line matching and 3d reconstruction of buildings from multiple views. ISPRS Conference on Automatic Extraction of GIS Objects from Digital Imagery. p. 69-80                                                                                                                                                                                                                                                    |
| 17Bruegelmann 2000           | Bruegelmann, R. 2000. Automatic breakline detection form airborne laser range data. ISPRS. International Archives of Photogrammetry and Remote Sensing, Vol.XXXIII, Part B3, Amsterdam.                                                                                                                                                                                                                                                                                                |
| 18 Belgiu et al. 2014        | Belgiu, M., I. Tomljenovic, T. Lampoltshammer, T. Blaschke & B. Hoefle. 2014. Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. Remote Sensing, vol. 6, no. 2, p. 1347-66                                                                                                                                                                                                                                                                    |
| 19Vosselman & Liang 2009     | Votestanta A. & Starting 2009. Detection of curbatore is a strained as brooking of the laser Scanning Conference Laser scanning by Volume XXVIII Paris, France p. 11-12.<br>N Locia A. N. Starcick SR. Coluce 3010. Advancements is alteriorated Description of Carbon Scanning of Volume XXVIII Paris, France p. 11-12.                                                                                                                                                               |
| 20Di Iorio et al. 2010       | Paris, France. 2010, p. 53-64.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21 Moon et al. 2002          | Moon, H., R. Chellappa & A. Rosenfeld. 2002. OptimalEdge-Based Shape Detection. IEEE transactions on image processing. vol. 11. no. 11. NOVEMBER 2002, p. 1209-1226.                                                                                                                                                                                                                                                                                                                   |
| 22 Awrangjeb & Fraser 2013   | Awrangeb, M., & C. Fraser. 2013. Rule-based segmentation of LiDAR point cloud for automaticextraction of building roof planes. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, vol. II-3/W3.                                                                                                                                                                                                                                                      |
| 23D'Hondt et al. 2012        | D'Hondt, Q., S. Guillaso&O. Hellwich. 2012. Automatic extraction of geometric structures for 3d reconstruction from tomographic SAR data. Geoscience and Remote Sensing Symposium (IGARSS). IEEE International. p. 3728-31.                                                                                                                                                                                                                                                            |
| 24Hoefle et al. 2009         | Hoeft, B., W. Muecke, M. Dutter & P. Dorninger. 2009. Detection of building regions using airborne LiDAR: a new combination of raster and point cloud based GIS methods. Proceedings of the geoinformatics for um Salzburg. Geoinformatics on stage, p. 1-10.                                                                                                                                                                                                                          |
| 25 Teo & Chen 2004           | Teo, T., & L Chen. 2004. Object based building detection from LiDAR data and high resolution satellite imagery. Proceedings of the 25th ACRS 2004, Chiang Mai, Thailand, p. 1614-19,                                                                                                                                                                                                                                                                                                   |
| 26 Menze et al. 2007a        | Menze, B., S. Mühl, A. Sherratt. 2007-a. Virtual survey on North Mesopotamian tell sites by means of satellike remote sensing. Broadening horizons: multidisciplinary approaches to landscape study. Newcastle, Cambridge Scholars Publishing. p. 5-29.                                                                                                                                                                                                                                |
| 27Benzet al. 2004            | Benz, U. P. Hofmann, G. Willhaudz, I. Lingenfelder, M. Heynen. 2004. Multi-resolution. object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sensing vol. 58, no. 34, p. 23 98.                                                                                                                                                                                                                                                 |
| 28Blaschke 2010              | Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sensing vol. 2, p. 2–16.                                                                                                                                                                                                                                                                                                                                                                |
| 29Bennett et al. 2014        | Bennett, R. D. Cowley & V. De Laet, 2014. The data explosion: tackling the tabooof automatic feature recognition in airborne survey data. Antiquity, vol. 88, p. 896–905.                                                                                                                                                                                                                                                                                                              |
| 30 Lasaponara et al. 2014    | Lasaponara, R., G. Leucci, N. Masini & R. Persico. 2014. Investigating archaeological looting using satellite images and georadar. The experience in Lambay eque in North Peru. Journal of Archaeological Science 2013, 216-30.                                                                                                                                                                                                                                                        |
| 31 Bescoby 2006              | Bescoby, D. 2006. Detecting Roman land boundaries in aerial photographs using Radon transforms, Journal of Archaeological Science, vol 33, no. 5, p. 755-43                                                                                                                                                                                                                                                                                                                            |
| 32 Dorazioet al. 2012        | Dorazio, T., F. Palumbo & C. Guaragnella. 2012. Archaeological trace extraction by a local directional active contour approach. Pattern Recognition, vol. 45, p. 3427-38.                                                                                                                                                                                                                                                                                                              |
| 33 Figorito & Tarantino 2014 | Figorito. B., & E. Tarantino. 2014. Semi-automatic detection of linear archaeological traces from orthorectified aerial images. International Journal of Applied Earth Observations and Geoinformation, vol. 26, p. 458-463.                                                                                                                                                                                                                                                           |
| 34 Jahjah & Ulivieri 2010    | Jahjah, M., & C. Ulivieri. 2010. Automatic archaeological feature extraction from satellike VHR images. Acta Astronautica. vol. 66. no. 9, p. 1302-10                                                                                                                                                                                                                                                                                                                                  |
| 35Luo et al. 2014a           | Luo, L, X. Wang, H. Guo, C. Liu, J. Liu, L. Li, X. Du & G. Qian. 2014a. Automated Extraction of the Archaeological Topsof Qanat Shafts from VHR Imagery in Google Earth. Remote Sensing, vol. 6, no. 12, p. 11956-76                                                                                                                                                                                                                                                                   |
| 36Schneideret al. 2015       | Schneider, A., M. Teka, A. Nicolay, A. Rab & T. Rab 2015. A Template matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Klin Stess. Archaeological Prospection, vol. 22. no. 1, p. 45-62.                                                                                                                                                                                                                                                            |
| 37Schuetter et al. 2013      | Schuteter, J., P. Ocoli, J., Cocorriston, J. Park, M. Senn & M. Harrower. 2013. Autodetection of ancient Arabiantombin high-resolution satelliteimagery. International Journan of Remote Sensing, vol. 34, no. 19, p. 6611-35.                                                                                                                                                                                                                                                         |
| 38Vletter 2014               | Vletter, W. 2014. (Semi) automatic extraction from Airborne Laser Scan data of roads and paths in forested rases. Proceedings of the second International Conference on Remote Sensing and Geoinformation of the Environment vol. 9229.                                                                                                                                                                                                                                                |
| 39Lemmens et al. 1993        | Lemmens, M., Z. Stancic & R. Verwaal. 1993. Automated archaeological feature extraction from digital aerial photographs. Proceedings of the CAA Conference Aarhus. Aarhus University Press, p. 45-52.<br>Sevara, C., M. Pregesbauer, M. Doneus, G. Verhoeven & I. Trinks. 2016. Fixel versus object — A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. Journal of Archaeological Science, vol. 5, p. 485<br>or |
| 41Zingmanet al. 2016         | Zingman, L. D. Saupe, O. Penatti & K. Lambers. 2016. Detection of Fragmented Restangular Enclosures in Very High Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing vol. 54, no. 8, p. 4580-93.                                                                                                                                                                                                                                                      |
| 42Stott et al. 2015          | Stort, D., D. Bord, A. Beck & A. Cohn. 2015. Airborne LiDAR for the Detection of Archeological Vesetation Marks usine Biomass as a Proxy. Remote Sensing. vol. 7, p. 1594-1618.                                                                                                                                                                                                                                                                                                        |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| ID | Attribute_1                          | Attribute_2 | Attribute_3 | Auto_type | Year |
|----|--------------------------------------|-------------|-------------|-----------|------|
| 1  | ADC_Archeologisch Diensten Centrum   | LiDAR       | Cultural    | Template  | 2007 |
| 2  | University of Vienna                 | LiDAR       | Technical   | Attribute | 2009 |
| 3  | Wuhan University                     | LiDAR       | Technical   | Attribute | 2013 |
| 4  | Karadeniz Technical University       | LiDAR       | Technical   | Attribute | 2008 |
| 5  | University of Vienna                 | LiDAR       | Technical   | Attribute | 2010 |
| 6  | University of Vienna                 | LiDAR       | Technical   | Attribute | 2004 |
| 7  | University of Twente                 | LiDAR       | Technical   | Attribute | 2011 |
| 9  | Norwegian Computing Center           | LiDAR       | Cultural    | Template  | 2012 |
| 10 | City University of New York          | Aerial      | Technical   | Attribute | 2010 |
| 11 | Beijing Normal University            | LiDAR       | Technical   | Attribute | 2009 |
| 12 | University of Leuven                 | Aerial      | Cultural    | Attribute | 2007 |
| 13 | University of Bamberg                | Aerial      | Cultural    | Attribute | 2012 |
| 14 | Arizona State University             | Aerial      | Technical   | Attribute | 2011 |
| 15 | University of Vienna                 | LiDAR       | Technical   | Attribute | 2003 |
| 16 | University of Oxford                 | Aerial      | Technical   | Attribute | 1999 |
| 17 | Ministry of Transport, Netherlands   | LiDAR       | Technical   | Attribute | 2000 |
| 18 | University of Salzburg               | LiDAR       | Technical   | Attribute | 2014 |
| 19 | University of Twente                 | LiDAR       | Technical   | Attribute | 2009 |
| 20 | Rovsing A/S                          | Aerial      | Cultural    | Template  | 2010 |
| 21 | University of Maryland               | Aerial      | Technical   | Attribute | 2002 |
| 22 | MonashUniversity                     | Aerial      | Technical   | Attribute | 2013 |
| 23 | TechnicalUniversity of Berlin        | Aerial      | Technical   | Attribute | 2012 |
| 24 | University of Osnabrueck             | LiDAR       | Technical   | Attribute | 2009 |
| 25 | National Central University          | LiDAR       | Technical   | Attribute | 2004 |
| 26 | University of Heidelberg             | Aerial      | Cultural    | Attribute | 2007 |
| 27 | Definiens Imaging GmbH_private       | Aerial      | Technical   | Attribute | 2004 |
| 28 | University of Salzburg               | Aerial      | Technical   | Attribute | 2010 |
| 29 | University of Winchester             | Aerial      | Cultural    | Attribute | 2014 |
| 30 | National Research Council of Italy   | Aerial      | Cultural    | Attribute | 2014 |
| 31 | University of East Anglia            | Aerial      | Cultural    | Attribute | 2006 |
| 32 | National Research Council of Italy   | Aerial      | Cultural    | Attribute | 2012 |
| 33 | Polytechnic University of Bari       | Aerial      | Cultural    | Attribute | 2014 |
| 34 | University of Rome                   | Aerial      | Cultural    | Attribute | 2010 |
| 35 | Chinese Academy of Sciences          | Aerial      | Cultural    | Attribute | 2014 |
| 36 | Brandenburg University of Technology | LiDAR       | Cultural    | Template  | 2015 |
| 37 | University Columbus                  | Aerial      | Cultural    | Attribute | 2013 |
| 38 | University of Vienna                 | LiDAR       | Cultural    | Template  | 2014 |
| 39 | Delft University of Technology       | Aerial      | Cultural    | Attribute | 1993 |
| 40 | University of Vienna                 | LiDAR       | Cultural    | Both      | 2016 |
| 41 | University of Konstanz               | Aerial      | Cultural    | Attribute | 2016 |
| 42 | University of Leeds                  | LiDAR       | Cultural    | Attribute | 2015 |

# Appendix 4B

|                    | Node |                                | Edge |      |        |        |
|--------------------|------|--------------------------------|------|------|--------|--------|
| Node label         | ID   | Edge label                     | ID   | Year | Source | Target |
| De Boer 2007       | 1    | Bradley 1985                   | 101  | 1985 | 1      | 101    |
| De Boer 2007       | 1    | Brunelli & Poggio 1993         | 102  | 1993 | 1      | 102    |
| De Boer 2007       | 1    | Burrough & Mcdonnell 1998      | 103  | 1998 | 1      | 103    |
| De Boer 2007       | 1    | Fletcher & Lock 1984           | 104  | 1984 | 1      | 104    |
| De Boer 2007       | 1    | Fletcher & Spicer 1992         | 105  | 1992 | 1      | 105    |
| De Boer 2007       | 1    | Herzog 2001                    | 106  | 2001 | 1      | 106    |
| De Boer 2007       | 1    | Laan & De Boer 2005            | 107  | 2005 | 1      | 107    |
| De Boer 2007       | 1    | Schmidt et al. 2005            | 108  | 2005 | 1      | 108    |
| De Boer 2007       | 1    | Sittler & Daeffler 2005        | 109  | 2005 | 1      | 109    |
| De Boer 2007       | 1    | Theodoridis & Koutroumbas 1999 | 110  | 1999 | 1      | 110    |
| De Boer 2007       | 1    | Theunissen 1999                | 111  | 1999 | 1      | 111    |
| De Boer 2007       | 1    | Van Zejverden & Laan 2004      | 112  | 2004 | 1      | 112    |
| De Boer 2007       | 1    | Waldus & Van der Velde 2005    | 113  | 2005 | 1      | 113    |
| Briese et al. 2009 | 2    | Axelsson 1999                  | 114  | 1999 | 2      | 114    |
| Briese et al. 2009 | 2    | Briese 2004a                   | 115  | 2004 | 2      | 115    |
| Briese et al. 2009 | 2    | Briese 2004b                   | 116  | 2004 | 2      | 116    |
| Briese et al. 2009 | 2    | Briese & Pfeifer 2008          | 117  | 2008 | 2      | 117    |
| Briese et al. 2009 | 2    | Brügelmann 2000                | 118  | 2000 | 2      | 118    |
| Briese et al. 2009 | 2    | Doneus & Briese 2006           | 119  | 2006 | 2      | 119    |
| Briese et al. 2009 | 2    | Gomes-Pereira & Janssen 1999   | 120  | 1999 | 2      | 120    |
| Briese et al. 2009 | 2    | Gomes-Pereira & Wicherson 1999 | 121  | 1999 | 2      | 121    |
| Briese et al. 2009 | 2    | Kager 2004                     | 122  | 2004 | 2      | 122    |
| Briese et al. 2009 | 2    | Karel et al. 2006              | 123  | 2006 | 2      | 123    |
| Briese et al. 2009 | 2    | Maas 2000                      | 124  | 2000 | 2      | 124    |
| Briese et al. 2009 | 2    | Mandlburger & Briese 2007      | 125  | 2007 | 2      | 125    |
| Briese et al. 2009 | 2    | Mandlburger et al. 2008        | 126  | 2008 | 2      | 126    |
| Briese et al. 2009 | 2    | Ressl et al. 2008              | 127  | 2008 | 2      | 127    |
| Briese et al. 2009 | 2    | Ressl et al. 2009              | 128  | 2009 | 2      | 128    |
| Briese et al. 2009 | 2    | Sui 2002                       | 129  | 2002 | 2      | 129    |
| Hu & Ye 2013       | 3    | Axelsson 1999                  | 114  | 1999 | 3      | 114    |
| Hu & Ye 2013       | 3    | Axelsson 2000                  | 131  | 2000 | 3      | 131    |
| Hu & Ye 2013       | 3    | Frédéricque et al. 2008        | 132  | 2008 | 3      | 132    |
| Hu & Ye 2013       | 3    | Douglas & Peucker 1973         | 133  | 1973 | 3      | 133    |
| Hu & Ye 2013       | 3    | Dorninger & Pfeifer 2008       | 134  | 2008 | 3      | 134    |
| Hu & Ye 2013       | 3    | Gross et al. 2005              | 135  | 2005 | 3      | 135    |
| Hu & Ye 2013       | 3    | Haithcoat et al. 2001          | 136  | 2001 | 3      | 136    |
| Hu & Ye 2013       | 3    | Hu et al. 2013                 | 137  | 2013 | 3      | 137    |
| Hu & Ye 2013       | 3    | Kraus & Pfeifer 1998           | 138  | 1998 | 3      | 138    |
| Hu & Ye 2013       | 3    | Mayer 2008                     | 139  | 2008 | 3      | 139    |
| Hu & Ye 2013       | 3    | Meng et al 2009                | 140  | 2009 | 3      | 140    |
| Hu & Ye 2013       | 3    | Moussa & El-Sheimy 2012        | 141  | 2012 | 3      | 141    |

| Hu & Ye 2013            | 3 | Rottensteiner et al 2012   | 142 | 2012 | 3 | 142 |
|-------------------------|---|----------------------------|-----|------|---|-----|
| Hu & Ye 2013            | 3 | Rutzinger et al. 2009      | 143 | 2009 | 3 | 143 |
| Hu & Ye 2013            | 3 | Sithole 2005               | 144 | 2005 | 3 | 144 |
| Hu & Ye 2013            | 3 | Sithole & Vosselman 2004   | 145 | 2004 | 3 | 145 |
| Hu & Ye 2013            | 3 | Tóvári & Pfeifer 2005      | 146 | 2005 | 3 | 146 |
| Hu & Ye 2013            | 3 | Vosselman 2000             | 147 | 2000 | 3 | 147 |
| Hu & Ye 2013            | 3 | Wu & Márquez 2003          | 148 | 2003 | 3 | 148 |
| Hu & Ye 2013            | 3 | Zhang & Lin 2012           | 149 | 2012 | 3 | 149 |
| Hu & Ye 2013            | 3 | Zhou & Neumann 2009        | 150 | 2009 | 3 | 150 |
| Karsli & Kahya 2008     | 4 | Atiquazzaman & Akhtar 1994 | 151 | 1994 | 4 | 151 |
| Karsli & Kahya 2008     | 4 | Atiquazzaman & Akhtar 1995 | 152 | 1995 | 4 | 152 |
| Karsli & Kahya 2008     | 4 | Davies 1988                | 153 | 1988 | 4 | 153 |
| Karsli & Kahya 2008     | 4 | Ballard 1981               | 154 | 1981 | 4 | 154 |
| Karsli & Kahya 2008     | 4 | Gonzales et al. 2004       | 155 | 2004 | 4 | 155 |
| Karsli & Kahya 2008     | 4 | Hough 1962                 | 156 | 1962 | 4 | 156 |
| Karsli & Kahya 2008     | 4 | Maas & Vosselman 1999      | 157 | 1999 | 4 | 157 |
| Karsli & Kahya 2008     | 4 | Nguyen et al. 2005         | 158 | 2005 | 4 | 158 |
| Karsli & Kahya 2008     | 4 | Oda et al. 2004            | 159 | 2004 | 4 | 159 |
| Karsli & Kahya 2008     | 4 | Overby et al. 2004         | 160 | 2004 | 4 | 160 |
| Karsli & Kahya 2008     | 4 | Rabbani et al. 2005        | 161 | 2005 | 4 | 161 |
| Karsli & Kahya 2008     | 4 | Richards & Casasent 1991   | 162 | 1991 | 4 | 162 |
| Karsli & Kahya 2008     | 4 | Rottensteiner 2003         | 163 | 2003 | 4 | 163 |
| Karsli & Kahya 2008     | 4 | Tarsha-Kurdi et al. 2007   | 164 | 2007 | 4 | 164 |
| Karsli & Kahya 2008     | 4 | Vosselman & Dijkman 2001   | 165 | 2001 | 4 | 165 |
| Mandlburger et al. 2010 | 5 | Briese 2004a               | 115 | 2004 | 5 | 115 |
| Mandlburger et al. 2010 | 5 | Briese et al. 2008         | 167 | 2008 | 5 | 167 |
| Mandlburger et al. 2010 | 5 | Chauve et al 2009          | 168 | 2009 | 5 | 168 |
| Mandlburger et al. 2010 | 5 | Doneus et al. 2008         | 169 | 2008 | 5 | 169 |
| Mandlburger et al. 2010 | 5 | Hoefle et al. 2009         | 24  | 2009 | 5 | 170 |
| Mandlburger et al. 2010 | 5 | Hofton 2000                | 171 | 2000 | 5 | 171 |
| Mandlburger et al. 2010 | 5 | Kager 2004                 | 122 | 2004 | 5 | 122 |
| Mandlburger et al. 2010 | 5 | Kraus & Pfeifer 1998       | 138 | 1998 | 5 | 138 |
| Mandlburger et al. 2010 | 5 | Lehner & Briese 2010       | 174 | 2010 | 5 | 174 |
| Mandlburger et al. 2010 | 5 | Lin & Mills 2010           | 175 | 2009 | 5 | 175 |
| Mandlburger et al. 2010 | 5 | Mallet & Bretar 2009       | 176 | 2009 | 5 | 176 |
| Mandlburger et al. 2010 | 5 | Mandlburger et al. 2007    | 177 | 2007 | 5 | 177 |
| Mandlburger et al. 2010 | 5 | Mandlburger et al. 2009a   | 178 | 2009 | 5 | 178 |
| Mandlburger et al. 2010 | 5 | Mandlburger et al. 2009b   | 179 | 2009 | 5 | 179 |
| Mandlburger et al. 2010 | 5 | Mücke et al. 2010          | 180 | 2010 | 5 | 180 |
| Mandlburger et al. 2010 | 5 | Otepka et al. 2006         | 181 | 2006 | 5 | 181 |
| Mandlburger et al. 2010 | 5 | Pfeifer & Mandlburger 2008 | 182 | 2008 | 5 | 182 |
| Mandlburger et al. 2010 | 5 | Ressl et al. 2009          | 128 | 2009 | 5 | 128 |
| Mandlburger et al. 2010 | 5 | Roncat et al. 2010a        | 184 | 2010 | 5 | 184 |

| Mandlburger et al. 2010 | 5 | Roncat et al. 2010b           | 185 | 2010 | 5 | 185 |
|-------------------------|---|-------------------------------|-----|------|---|-----|
| Mandlburger et al. 2010 | 5 | Skaloud 2007                  | 186 | 2007 | 5 | 186 |
| Mandlburger et al. 2010 | 5 | Wagner 2010                   | 187 | 2010 | 5 | 187 |
| Mandlburger et al. 2010 | 5 | Wagner et al. 2006            | 188 | 2006 | 5 | 188 |
| Mandlburger et al. 2010 | 5 | Yu et al. 2010                | 189 | 2010 | 5 | 189 |
| Melzer & Briese 2004    | 6 | Axelsson 1999                 | 114 | 1999 | 6 | 114 |
| Melzer & Briese 2004    | 6 | Besl & Jain 1988              | 191 | 1988 | 6 | 191 |
| Melzer & Briese 2004    | 6 | Duda et al. 2000              | 192 | 2000 | 6 | 192 |
| Melzer & Briese 2004    | 6 | Gonzales & Wintz 1987         | 193 | 1987 | 6 | 193 |
| Melzer & Briese 2004    | 6 | Hartley & Zisserman 2000      | 194 | 2000 | 6 | 194 |
| Melzer & Briese 2004    | 6 | Hoover et al. 1996            | 195 | 1996 | 6 | 195 |
| Melzer & Briese 2004    | 6 | Kraus & Pfeifer 1998          | 138 | 1998 | 6 | 138 |
| Melzer & Briese 2004    | 6 | Martines & Schulten 1994      | 197 | 1994 | 6 | 197 |
| Melzer & Briese 2004    | 6 | Rottensteiner & Briese 2002   | 198 | 2002 | 6 | 198 |
| Melzer & Briese 2004    | 6 | Wagner et al. 2004            | 199 | 2004 | 6 | 199 |
| Melzer & Briese 2004    | 6 | Wehr & Lohr 1999              | 200 | 1999 | 6 | 200 |
| Rutzinger et al. 2011   | 7 | Anders et al. 2009            | 201 | 2009 | 7 | 201 |
| Rutzinger et al. 2011   | 7 | Asselen & Seijmonsbergen 2006 | 202 | 2006 | 7 | 202 |
| Rutzinger et al. 2011   | 7 | Benz et al. 2004              | 27  | 2004 | 7 | 203 |
| Rutzinger et al. 2011   | 7 | Bailly et al. 2008            | 204 | 2008 | 7 | 204 |
| Rutzinger et al. 2011   | 7 | Blaschke et al. 2008          | 205 | 2008 | 7 | 205 |
| Rutzinger et al. 2011   | 7 | Briese 2004b                  | 116 | 2004 | 7 | 116 |
| Rutzinger et al. 2011   | 7 | Briese 2010                   | 207 | 2010 | 7 | 207 |
| Rutzinger et al. 2011   | 7 | Brügelmann 2000               | 118 | 2000 | 7 | 118 |
| Rutzinger et al. 2011   | 7 | Brzank et al. 2008            | 209 | 2008 | 7 | 209 |
| Rutzinger et al. 2011   | 7 | Clark & Wilson 1994           | 210 | 1994 | 7 | 210 |
| Rutzinger et al. 2011   | 7 | Geist et al. 2009             | 211 | 2009 | 7 | 211 |
| Rutzinger et al. 2011   | 7 | Glenn et al. 2006             | 212 | 2006 | 7 | 212 |
| Rutzinger et al. 2011   | 7 | Gruber 2004                   | 213 | 2004 | 7 | 213 |
| Rutzinger et al. 2011   | 7 | Hoefle & Rutzinger 2011       | 214 | 2011 | 7 | 214 |
| Rutzinger et al. 2011   | 7 | Jordan & Schott 2005          | 215 | 2005 | 7 | 215 |
| Rutzinger et al. 2011   | 7 | Kraus & Pfeifer 1998          | 138 | 1998 | 7 | 138 |
| Rutzinger et al. 2011   | 7 | Mavrantza & Argialas 2008     | 217 | 2008 | 7 | 217 |
| Rutzinger et al. 2011   | 7 | McKean & Goering 2004         | 218 | 2004 | 7 | 218 |
| Rutzinger et al. 2011   | 7 | Nyborg et al. 2007            | 219 | 2007 | 7 | 219 |
| Rutzinger et al. 2011   | 7 | Pfeifer & Mandlburger 2009    | 220 | 2009 | 7 | 220 |
| Rutzinger et al. 2011   | 7 | Rutzinger et al. 2007         | 221 | 2007 | 7 | 221 |
| Rutzinger et al. 2011   | 7 | Shan & Toth 2009              | 222 | 2009 | 7 | 222 |
| Rutzinger et al. 2011   | 7 | Sithole & Vosselman 2004      | 145 | 2004 | 7 | 145 |
| Rutzinger et al. 2011   | 7 | Vosselman & Liang 2009        | 224 | 2009 | 7 | 224 |
| Rutzinger et al. 2011   | 7 | Vosselman & Maas 2010         | 225 | 2010 | 7 | 225 |
| Rutzinger et al. 2011   | 7 | Wladis 1999                   | 226 | 1999 | 7 | 226 |
| Rutzinger et al. 2011   | 7 | Wood 1996                     | 227 | 1996 | 7 | 227 |

| Trier & Zortea 2012   | 9  | Aurdal et al. 2006          | 243 | 2006 | 9  | 243 |
|-----------------------|----|-----------------------------|-----|------|----|-----|
| Trier & Zortea 2012   | 9  | Devereux et al. 2005        | 244 | 2005 | 9  | 244 |
| Trier & Zortea 2012   | 9  | Hastie et al. 2009          | 245 | 2009 | 9  | 245 |
| Trier & Zortea 2012   | 9  | Prokop & Reeves 1992        | 246 | 1992 | 9  | 246 |
| Trier & Zortea 2012   | 9  | Pudil et al. 1994           | 247 | 1994 | 9  | 247 |
| Trier & Zortea 2012   | 9  | Trier et al. 2009           | 248 | 2009 | 9  | 248 |
| Trier & Zortea 2012   | 9  | Trier & Piloe 2012          | 249 | 2012 | 9  | 249 |
| Bhaskaran et al. 2010 | 10 | Anderson 1971               | 250 | 1971 | 10 | 250 |
| Bhaskaran et al. 2010 | 10 | Baatz & Schape 2000         | 251 | 2000 | 10 | 251 |
| Bhaskaran et al. 2010 | 10 | Benz et al. 2004            | 27  | 2004 | 10 | 203 |
| Bhaskaran et al. 2010 | 10 | Bhaskaran 2004              | 253 | 2004 | 10 | 253 |
| Bhaskaran et al. 2010 | 10 | Blaschke & Strobl 2001      | 254 | 2001 | 10 | 254 |
| Bhaskaran et al. 2010 | 10 | Bolstad & Lillesand 1991    | 255 | 1991 | 10 | 255 |
| Bhaskaran et al. 2010 | 10 | Casals-Carrasco et al. 2000 | 256 | 2000 | 10 | 256 |
| Bhaskaran et al. 2010 | 10 | Clark & Jantz 1995          | 257 | 1995 | 10 | 257 |
| Bhaskaran et al. 2010 | 10 | Congalton & Green 1999      | 258 | 1999 | 10 | 258 |
| Bhaskaran et al. 2010 | 10 | Cowen & Jensen 1998         | 259 | 1998 | 10 | 259 |
| Bhaskaran et al. 2010 | 10 | Dare 2005                   | 260 | 2005 | 10 | 260 |
| Bhaskaran et al. 2010 | 10 | Dean & Smith 2003           | 261 | 2003 | 10 | 261 |
| Bhaskaran et al. 2010 | 10 | Dial et al. 2003            | 262 | 2003 | 10 | 262 |
| Bhaskaran et al. 2010 | 10 | Forster 1983                | 263 | 1983 | 10 | 263 |
| Bhaskaran et al. 2010 | 10 | Gatrell & Jensen 2008       | 264 | 2008 | 10 | 264 |
| Bhaskaran et al. 2010 | 10 | Gitas et al. 2004           | 265 | 2004 | 10 | 265 |
| Bhaskaran et al. 2010 | 10 | Goetz et al. 2003           | 266 | 2003 | 10 | 266 |
| Bhaskaran et al. 2010 | 10 | Hardin et al. 2007          | 267 | 2007 | 10 | 267 |
| Bhaskaran et al. 2010 | 10 | Hellden 1980                | 268 | 1980 | 10 | 268 |
| Bhaskaran et al. 2010 | 10 | Herold et al. 2003          | 269 | 2003 | 10 | 269 |
| Bhaskaran et al. 2010 | 10 | Herold & Scepan 2002        | 270 | 2002 | 10 | 270 |
| Bhaskaran et al. 2010 | 10 | Hofmann 2001                | 271 | 2001 | 10 | 271 |
| Bhaskaran et al. 2010 | 10 | Ippoliti-Ramilo et al. 2003 | 272 | 2003 | 10 | 272 |
| Bhaskaran et al. 2010 | 10 | Ivits & Koch 2002           | 273 | 2002 | 10 | 273 |
| Bhaskaran et al. 2010 | 10 | Jat et al. 2008             | 274 | 2008 | 10 | 274 |
| Bhaskaran et al. 2010 | 10 | Jensen & Cowen 1999         | 275 | 1999 | 10 | 275 |
| Bhaskaran et al. 2010 | 10 | Jensen & Im 2007            | 276 | 2007 | 10 | 276 |
| Bhaskaran et al. 2010 | 10 | Kato & Yamaguchi 2005       | 277 | 2005 | 10 | 277 |
| Bhaskaran et al. 2010 | 10 | Kim & Madden 2009           | 278 | 2009 | 10 | 278 |
| Bhaskaran et al. 2010 | 10 | Lillesand & Kiefer 1994     | 279 | 1994 | 10 | 279 |
| Bhaskaran et al. 2010 | 10 | Lo & Choi 2004              | 280 | 2004 | 10 | 280 |
| Bhaskaran et al. 2010 | 10 | Longley et al. 2001         | 281 | 2001 | 10 | 281 |
| Bhaskaran et al. 2010 | 10 | Lucieer et al. 2005         | 282 | 2005 | 10 | 282 |
| Bhaskaran et al. 2010 | 10 | Madhavan et al. 2001        | 283 | 2001 | 10 | 283 |
| Bhaskaran et al. 2010 | 10 | Mather 1987                 | 284 | 1987 | 10 | 284 |
| Bhaskaran et al. 2010 | 10 | Pizzolato & Haertel 2003    | 285 | 2003 | 10 | 285 |

| Bhaskaran et al. 2010 | 10 | Richards 1999              | 286 | 1999 | 10 | 286 |
|-----------------------|----|----------------------------|-----|------|----|-----|
| Bhaskaran et al. 2010 | 10 | Richards & Jia 1999        | 287 | 1999 | 10 | 287 |
| Bhaskaran et al. 2010 | 10 | Sanchez 2004               | 288 | 2004 | 10 | 288 |
| Bhaskaran et al. 2010 | 10 | Sawaya et al. 2003         | 289 | 2003 | 10 | 289 |
| Bhaskaran et al. 2010 | 10 | Shackelford & Davis 2003   | 290 | 2003 | 10 | 290 |
| Bhaskaran et al. 2010 | 10 | Shalaby & Tateishi 2007    | 291 | 2007 | 10 | 291 |
| Bhaskaran et al. 2010 | 10 | Shettigara 1991            | 292 | 1991 | 10 | 292 |
| Bhaskaran et al. 2010 | 10 | Short 1982                 | 293 | 1982 | 10 | 293 |
| Bhaskaran et al. 2010 | 10 | Stow et al. 2007           | 294 | 2007 | 10 | 294 |
| Bhaskaran et al. 2010 | 10 | Tapiador & Casanova 2003   | 295 | 2003 | 10 | 295 |
| Bhaskaran et al. 2010 | 10 | Thapa & Murayama 2009      | 296 | 2009 | 10 | 296 |
| Bhaskaran et al. 2010 | 10 | Thomas et al. 1987         | 297 | 1987 | 10 | 297 |
| Bhaskaran et al. 2010 | 10 | Walker & Blaschke 2008     | 298 | 2008 | 10 | 298 |
| Bhaskaran et al. 2010 | 10 | Weng 2001                  | 299 | 2001 | 10 | 299 |
| Bhaskaran et al. 2010 | 10 | Weng & Quattrochi 2006     | 300 | 2006 | 10 | 300 |
| Bhaskaran et al. 2010 | 10 | Wright 1996                | 301 | 1996 | 10 | 301 |
| Bhaskaran et al. 2010 | 10 | Xiao et al. 2006           | 302 | 2006 | 10 | 302 |
| Bhaskaran et al. 2010 | 10 | Yan et al. 2006            | 303 | 2006 | 10 | 303 |
| Bhaskaran et al. 2010 | 10 | Yu et al. 2006             | 304 | 2006 | 10 | 304 |
| Bhaskaran et al. 2010 | 10 | Yuan 2008                  | 305 | 2008 | 10 | 305 |
| Bhaskaran et al. 2010 | 10 | Yuan & Bauer 2006          | 306 | 2006 | 10 | 306 |
| Bhaskaran et al. 2010 | 10 | Yuan et al. 2005           | 307 | 2005 | 10 | 307 |
| Bhaskaran et al. 2010 | 10 | Zeilhofer & Topanotti 2008 | 308 | 2008 | 10 | 308 |
| Bhaskaran et al. 2010 | 10 | Zhan et al. 2002           | 309 | 2002 | 10 | 309 |
| Bhaskaran et al. 2010 | 10 | Zhou & Robson 2001         | 310 | 2001 | 10 | 310 |
| Bhaskaran et al. 2010 | 10 | Zhou & Troy 2008           | 311 | 2008 | 10 | 311 |
| Chen et al. 2009      | 11 | Aplin 1999                 | 312 | 1999 | 11 | 312 |
| Chen et al. 2009      | 11 | Baatz & Schape 2000        | 251 | 2000 | 11 | 251 |
| Chen et al. 2009      | 11 | Baatz et al. 2004          | 314 | 2004 | 11 | 314 |
| Chen et al. 2009      | 11 | Brunn & Weidner 1997       | 315 | 1997 | 11 | 315 |
| Chen et al. 2009      | 11 | Campbell 1987              | 316 | 1987 | 11 | 316 |
| Chen et al. 2009      | 11 | Chang & Li 1994            | 317 | 1994 | 11 | 317 |
| Chen et al. 2009      | 11 | Couloigner & Ranchin 2000  | 318 | 2000 | 11 | 318 |
| Chen et al. 2009      | 11 | Csatho et al. 2003         | 319 | 2003 | 11 | 319 |
| Chen et al. 2009      | 11 | Curran 1985                | 320 | 1985 | 11 | 320 |
| Chen et al. 2009      | 11 | Acqua 2001                 | 321 | 2001 | 11 | 321 |
| Chen et al. 2009      | 11 | Dou & Chen 2005            | 322 | 2005 | 11 | 322 |
| Chen et al. 2009      | 11 | Gamba & Houshmand 2002     | 323 | 2002 | 11 | 323 |
| Chen et al. 2009      | 11 | Gamba et al. 2005          | 324 | 2005 | 11 | 324 |
| Chen et al. 2009      | 11 | Garbay et al. 1986         | 325 | 1986 | 11 | 325 |
| Chen et al. 2009      | 11 | Haala 1994                 | 326 | 1994 | 11 | 326 |
| Chen et al. 2009      | 11 | Haala & Anders 1997        | 327 | 1997 | 11 | 327 |
| Chen et al. 2009      | 11 | Haala & Brenner 1999       | 328 | 1999 | 11 | 328 |

| Chen et al. 2009    | 11 | Hug & Wehr 1997             | 329 | 1997 | 11 | 329 |
|---------------------|----|-----------------------------|-----|------|----|-----|
| Chen et al. 2009    | 11 | Madhok & Landgrebe 1999     | 330 | 1999 | 11 | 330 |
| Chen et al. 2009    | 11 | McFeeters 1996              | 331 | 1996 | 11 | 331 |
| Chen et al. 2009    | 11 | Pesaresi 1999               | 332 | 1999 | 11 | 332 |
| Chen et al. 2009    | 11 | Richards 1993               | 333 | 1993 | 11 | 333 |
| Chen et al. 2009    | 11 | Rottensteiner et al. 2003a  | 334 | 2003 | 11 | 334 |
| Chen et al. 2009    | 11 | Rottensteiner & Briese 2003 | 335 | 2003 | 11 | 335 |
| Chen et al. 2009    | 11 | Rottensteiner et al. 2003b  | 336 | 2003 | 11 | 336 |
| Chen et al. 2009    | 11 | Rottensteiner et al. 2005   | 337 | 2005 | 11 | 337 |
| Chen et al. 2009    | 11 | Schenk & Csatho 2002        | 338 | 2002 | 11 | 338 |
| Chen et al. 2009    | 11 | Schiewe 2002                | 339 | 2002 | 11 | 339 |
| Chen et al. 2009    | 11 | Shackelford & Davis 2003    | 290 | 2003 | 11 | 290 |
| Chen et al. 2009    | 11 | Shufel 2000                 | 341 | 2000 | 11 | 341 |
| Chen et al. 2009    | 11 | Sohn & Dowman 2003          | 342 | 2003 | 11 | 342 |
| Chen et al. 2009    | 11 | Steger 1998                 | 343 | 1998 | 11 | 343 |
| Chen et al. 2009    | 11 | Sulafa 2002                 | 344 | 2002 | 11 | 344 |
| Chen et al. 2009    | 11 | Syed et al. 2005            | 345 | 2005 | 11 | 345 |
| Chen et al. 2009    | 11 | Tatem et al. 2001           | 346 | 2001 | 11 | 346 |
| Chen et al. 2009    | 11 | Teo & Chen 2004             | 347 | 2004 | 11 | 347 |
| Chen et al. 2009    | 11 | Vosselman 2002              | 348 | 2002 | 11 | 348 |
| De Laet et al. 2007 | 12 | Abrams 2000                 | 349 | 2000 | 12 | 349 |
| De Laet et al. 2007 | 12 | Baatz & Schape 2000         | 251 | 2000 | 12 | 251 |
| De Laet et al. 2007 | 12 | Baatz et al. 2002           | 351 | 2002 | 12 | 351 |
| De Laet et al. 2007 | 12 | Blaschke & Strobl 2001      | 254 | 2001 | 12 | 254 |
| De Laet et al. 2007 | 12 | Bracke 1993                 | 353 | 1993 | 12 | 353 |
| De Laet et al. 2007 | 12 | Buck et al. 2003            | 354 | 2003 | 12 | 354 |
| De Laet et al. 2007 | 12 | Challis 2006                | 355 | 2006 | 12 | 355 |
| De Laet et al. 2007 | 12 | Changlin et al. 2004        | 356 | 2004 | 12 | 356 |
| De Laet et al. 2007 | 12 | Chavez 1988                 | 357 | 1988 | 12 | 357 |
| De Laet et al. 2007 | 12 | Clark et al. 1998           | 358 | 1998 | 12 | 358 |
| De Laet et al. 2007 | 12 | Colby 1991                  | 359 | 1991 | 12 | 359 |
| De Laet et al. 2007 | 12 | Conese et al. 1993          | 360 | 1993 | 12 | 360 |
| De Laet et al. 2007 | 12 | Crippen 1987                | 361 | 1987 | 12 | 361 |
| De Laet et al. 2007 | 12 | Dave & Bernstein 1982       | 362 | 1982 | 12 | 362 |
| De Laet et al. 2007 | 12 | Devereux et al. 2005        | 244 | 2005 | 12 | 244 |
| De Laet et al. 2007 | 12 | Emmolo et al. 2004          | 364 | 2004 | 12 | 364 |
| De Laet et al. 2007 | 12 | Franklin & Giles 1995       | 365 | 1995 | 12 | 365 |
| De Laet et al. 2007 | 12 | Georgoula et al. 2004       | 366 | 2004 | 12 | 366 |
| De Laet et al. 2007 | 12 | Giada et al. 2003           | 367 | 2003 | 12 | 367 |
| De Laet et al. 2007 | 12 | Hofmann 2001                | 271 | 2001 | 12 | 271 |
| De Laet et al. 2007 | 12 | Jensen 1996                 | 369 | 1996 | 12 | 369 |
| De Laet et al. 2007 | 12 | Jensen 1990                 | 370 | 1990 | 12 | 370 |
| De Laet et al. 2007 | 12 | Jordan et al. 2005          | 371 | 2005 | 12 | 371 |

| De Laet et al. 2007    | 12 | Kaufman 1989              | 372 | 1989 | 12 | 372 |
|------------------------|----|---------------------------|-----|------|----|-----|
| De Laet et al. 2007    | 12 | Kiema 2002                | 373 | 2002 | 12 | 373 |
| De Laet et al. 2007    | 12 | Lillesand et al. 2004     | 374 | 2004 | 12 | 374 |
| Lambers & Zingman 2012 | 13 | Beck et al. 2007          | 375 | 2007 | 13 | 375 |
| Lambers & Zingman 2012 | 13 | Cowley 2012               | 376 | 2012 | 13 | 376 |
| Lambers & Zingman 2012 | 13 | De Laet & Lambers 2009    | 377 | 2009 | 13 | 377 |
| Lambers & Zingman 2012 | 13 | De Laet et al. 2009       | 378 | 2009 | 13 | 378 |
| Lambers & Zingman 2012 | 13 | Duda et al. 2000          | 192 | 2000 | 13 | 192 |
| Lambers & Zingman 2012 | 13 | Evans & Traviglia 2012    | 380 | 2012 | 13 | 380 |
| Lambers & Zingman 2012 | 13 | Garrison et al. 2008      | 381 | 2008 | 13 | 381 |
| Lambers & Zingman 2012 | 13 | Giardino 2011             | 382 | 2011 | 13 | 382 |
| Lambers & Zingman 2012 | 13 | Gleirscher 2010           | 383 | 2010 | 13 | 383 |
| Lambers & Zingman 2012 | 13 | Gonzales & Woods 2001     | 384 | 2001 | 13 | 384 |
| Lambers & Zingman 2012 | 13 | Hanbury 2004              | 385 | 2004 | 13 | 385 |
| Lambers & Zingman 2012 | 13 | Jahjah & Ulivieri 2010    | 34  | 2010 | 13 | 386 |
| Lambers & Zingman 2012 | 13 | Lambers & Reitmaier 2013  | 387 | 2013 | 13 | 387 |
| Lambers & Zingman 2012 | 13 | Lasaponara & Masini 2012a | 388 | 2012 | 13 | 388 |
| Lambers & Zingman 2012 | 13 | Menze et al. 2007a        | 26  | 2007 | 13 | 26  |
| Lambers & Zingman 2012 | 13 | Ojala et al. 2002         | 390 | 2002 | 13 | 390 |
| Lambers & Zingman 2012 | 13 | Otsu 1979                 | 391 | 1979 | 13 | 391 |
| Lambers & Zingman 2012 | 13 | Parcak 2009               | 392 | 2009 | 13 | 392 |
| Lambers & Zingman 2012 | 13 | Reitmaier 2010            | 393 | 2010 | 13 | 393 |
| Lambers & Zingman 2012 | 13 | Reitmaier 2012            | 394 | 2012 | 13 | 394 |
| Lambers & Zingman 2012 | 13 | Serra 1988                | 395 | 1988 | 13 | 395 |
| Lambers & Zingman 2012 | 13 | Soille 2003               | 396 | 2003 | 13 | 396 |
| Lambers & Zingman 2012 | 13 | Soille & Pesaresi 2002    | 397 | 2002 | 13 | 397 |
| Lambers & Zingman 2012 | 13 | Szeliski 2010             | 398 | 2010 | 13 | 398 |
| Lambers & Zingman 2012 | 13 | Trier et al. 2009         | 248 | 2009 | 13 | 248 |
| Lambers & Zingman 2012 | 13 | Trier & Piloe 2012        | 249 | 2012 | 13 | 249 |
| Lambers & Zingman 2012 | 13 | Walser & Lambers 2012     | 401 | 2012 | 13 | 401 |
| Lambers & Zingman 2012 | 13 | Zingman et al. 2012       | 402 | 2012 | 13 | 402 |
| Myint et al. 2011      | 14 | Asner & Heidebrecht 2002  | 403 | 2002 | 14 | 403 |
| Myint et al. 2011      | 14 | Baatz & Schape 1999       | 404 | 1999 | 14 | 404 |
| Myint et al. 2011      | 14 | Baatz & Schape 2000       | 251 | 2000 | 14 | 251 |
| Myint et al. 2011      | 14 | Campbell 1987             | 316 | 1987 | 14 | 316 |
| Myint et al. 2011      | 14 | Congalton 1991            | 407 | 1991 | 14 | 407 |
| Myint et al. 2011      | 14 | Congalton & Green 1999    | 258 | 1999 | 14 | 258 |
| Myint et al. 2011      | 14 | Cowen et al. 1995         | 409 | 1995 | 14 | 409 |
| Myint et al. 2011      | 14 | De Jong & Burrough 1995   | 410 | 1995 | 14 | 410 |
| Myint et al. 2011      | 14 | Desclée et al. 2006       | 411 | 2006 | 14 | 411 |
| Myint et al. 2011      | 14 | Ferro & Warner 2002       | 412 | 2002 | 14 | 412 |
| Myint et al. 2011      | 14 | Franklin et al. 2000      | 413 | 2000 | 14 | 413 |
| Myint et al. 2011      | 14 | Gober et al. 2010         | 414 | 2010 | 14 | 414 |

| Myint et al. 2011    | 14 | Grimmond & Oke 2002         | 415 | 2002 | 14 | 415 |
|----------------------|----|-----------------------------|-----|------|----|-----|
| Myint et al. 2011    | 14 | Im et al. 2008a             | 416 | 2008 | 14 | 416 |
| Myint et al. 2011    | 14 | Im et al. 2008b             | 417 | 2008 | 14 | 417 |
| Myint et al. 2011    | 14 | Ivits & Koch 2002           | 273 | 2002 | 14 | 273 |
| Myint et al. 2011    | 14 | Jensen 2005                 | 419 | 2005 | 14 | 419 |
| Myint et al. 2011    | 14 | Jensen & Cowen 1999         | 275 | 1999 | 14 | 275 |
| Myint et al. 2011    | 14 | Lam & Quattrochi 1992       | 421 | 1992 | 14 | 421 |
| Myint et al. 2011    | 14 | Lee & Warner 2006           | 422 | 2006 | 14 | 422 |
| Myint et al. 2011    | 14 | Lillesand et al. 2004       | 374 | 2004 | 14 | 374 |
| Myint et al. 2011    | 14 | Lu & Weng 2004              | 424 | 2004 | 14 | 424 |
| Myint et al. 2011    | 14 | Lucieer 2004                | 425 | 2004 | 14 | 425 |
| Myint et al. 2011    | 14 | Moeller et al. 2007         | 426 | 2007 | 14 | 426 |
| Myint et al. 2011    | 14 | Mueller et al. 2004         | 427 | 2004 | 14 | 427 |
| Myint et al. 2011    | 14 | Munoz et al. 2003           | 428 | 2003 | 14 | 428 |
| Myint et al. 2011    | 14 | Myint 2006                  | 429 | 2006 | 14 | 429 |
| Myint et al. 2011    | 14 | Myint et al. 2008a          | 430 | 2008 | 14 | 430 |
| Myint et al. 2011    | 14 | Myint & Lam 2005            | 431 | 2005 | 14 | 431 |
| Myint et al. 2011    | 14 | Myint et al. 2008b          | 432 | 2008 | 14 | 432 |
| Myint et al. 2011    | 14 | Myint et al. 2006           | 433 | 2006 | 14 | 433 |
| Myint et al. 2011    | 14 | Myint et al. 2007           | 434 | 2007 | 14 | 434 |
| Myint et al. 2011    | 14 | Navulur 2007                | 435 | 2007 | 14 | 435 |
| Myint et al. 2011    | 14 | Okin et al. 2001            | 436 | 2001 | 14 | 436 |
| Myint et al. 2011    | 14 | Purkis et al. 2006          | 437 | 2006 | 14 | 437 |
| Myint et al. 2011    | 14 | Roberts et al. 2003         | 438 | 2003 | 14 | 438 |
| Myint et al. 2011    | 14 | Roberts et al. 1998         | 439 | 1998 | 14 | 439 |
| Myint et al. 2011    | 14 | Schowengerdt 1995           | 440 | 1995 | 14 | 440 |
| Myint et al. 2011    | 14 | Stow et al. 2008            | 441 | 2008 | 14 | 441 |
| Rottensteiner 2003   | 15 | Ameri 2000                  | 442 | 2000 | 15 | 442 |
| Rottensteiner 2003   | 15 | Weidner 1997                | 443 | 1997 | 15 | 443 |
| Rottensteiner 2003   | 15 | Rottensteiner & Briese 2002 | 444 | 2002 | 15 | 444 |
| Rottensteiner 2003   | 15 | Brenner 2000                | 445 | 2000 | 15 | 445 |
| Rottensteiner 2003   | 15 | Vosselman & Dijkman 2001    | 165 | 2001 | 15 | 165 |
| Rottensteiner 2003   | 15 | Haala et al. 1998           | 447 | 1998 | 15 | 447 |
| Rottensteiner 2003   | 15 | Hoover et al. 1996          | 195 | 1996 | 15 | 195 |
| Rottensteiner 2003   | 15 | Geibel & Stilla 2000        | 449 | 2000 | 15 | 449 |
| Rottensteiner 2003   | 15 | Baillard et al. 1999        | 450 | 1999 | 15 | 450 |
| Rottensteiner 2003   | 15 | Rottensteiner 2001          | 451 | 2001 | 15 | 451 |
| Rottensteiner 2003   | 15 | Fuchs 1998                  | 452 | 1998 | 15 | 452 |
| Rottensteiner 2003   | 15 | Kager 1989                  | 453 | 1989 | 15 | 453 |
| Baillard et al. 1999 | 16 | Ayache 1990                 | 454 | 1990 | 16 | 454 |
| Baillard et al. 1999 | 16 | Ayache & Faugeras 1987      | 455 | 1987 | 16 | 455 |
| Baillard et al. 1999 | 16 | Baillard & Zisserman 1999   | 456 | 1999 | 16 | 456 |
| Baillard et al. 1999 | 16 | Baillard et al. 1998        | 457 | 1998 | 16 | 457 |

| Baillard et al. 1999 | 16 | Berthod et al. 1995            | 458 | 1995 | 16 | 458 |
|----------------------|----|--------------------------------|-----|------|----|-----|
| Baillard et al. 1999 | 16 | Bignone et al. 1996            | 459 | 1996 | 16 | 459 |
| Baillard et al. 1999 | 16 | Brunn & Weidner 1998           | 460 | 1998 | 16 | 460 |
| Baillard et al. 1999 | 16 | Collins et al. 1998            | 461 | 1998 | 16 | 461 |
| Baillard et al. 1999 | 16 | Crowley & Stelmazyk 1990       | 462 | 1990 | 16 | 462 |
| Baillard et al. 1999 | 16 | Deriche & Faugeras 1990        | 463 | 1990 | 16 | 463 |
| Baillard et al. 1999 | 16 | Fischer et al. 1998            | 464 | 1998 | 16 | 464 |
| Baillard et al. 1999 | 16 | Fradkin et al. 1999a           | 465 | 1999 | 16 | 465 |
| Baillard et al. 1999 | 16 | Fradkin et al. 1999b           | 466 | 1999 | 16 | 466 |
| Baillard et al. 1999 | 16 | Girard et al. 1998             | 467 | 1998 | 16 | 467 |
| Baillard et al. 1999 | 16 | Gros 1995                      | 468 | 1995 | 16 | 468 |
| Baillard et al. 1999 | 16 | Haala & Hahn 1995              | 469 | 1995 | 16 | 469 |
| Baillard et al. 1999 | 16 | Hartley & Zisserman 2000       | 194 | 2000 | 16 | 194 |
| Baillard et al. 1999 | 16 | Horaud & Skordas 1989          | 471 | 1989 | 16 | 471 |
| Baillard et al. 1999 | 16 | Huttenlocher et al. 1993       | 472 | 1993 | 16 | 472 |
| Baillard et al. 1999 | 16 | Luong & Vieville 1996          | 473 | 1996 | 16 | 473 |
| Baillard et al. 1999 | 16 | McGlone & Shufelt 1994         | 474 | 1994 | 16 | 474 |
| Baillard et al. 1999 | 16 | Medioni & Nevatia 1985         | 475 | 1985 | 16 | 475 |
| Baillard et al. 1999 | 16 | Moons et al. 1998              | 476 | 1998 | 16 | 476 |
| Baillard et al. 1999 | 16 | Noronha & Nevatia 1997         | 477 | 1997 | 16 | 477 |
| Baillard et al. 1999 | 16 | Roux & McKeown 1994            | 478 | 1994 | 16 | 478 |
| Baillard et al. 1999 | 16 | Schmid & Zisserman 1997        | 479 | 1997 | 16 | 479 |
| Baillard et al. 1999 | 16 | Shashua 1994                   | 480 | 1994 | 16 | 480 |
| Baillard et al. 1999 | 16 | Setsakis & Aloimonos 1990      | 481 | 1990 | 16 | 481 |
| Baillard et al. 1999 | 16 | Venkateswar & Chellappa 1995   | 482 | 1995 | 16 | 482 |
| Baillard et al. 1999 | 16 | Weidner & Foerstner 1995       | 483 | 1995 | 16 | 483 |
| Baillard et al. 1999 | 16 | Zhang 1994                     | 484 | 1994 | 16 | 484 |
| Brügelmann 2000      | 17 | Besl 1986                      | 485 | 1986 | 17 | 485 |
| Brügelmann 2000      | 17 | Chakreyavanich 1991            | 486 | 1991 | 17 | 486 |
| Brügelmann 2000      | 17 | Foerstner 1998                 | 487 | 1998 | 17 | 487 |
| Brügelmann 2000      | 17 | Gomes-Pereira & Janssen 1999   | 120 | 1999 | 17 | 120 |
| Brügelmann 2000      | 17 | Gomes-Pereira & Wicherson 1999 | 121 | 1999 | 17 | 121 |
| Brügelmann 2000      | 17 | Huising & Gomes-Pereira 1998   | 490 | 1998 | 17 | 490 |
| Brügelmann 2000      | 17 | Kraus 1986                     | 491 | 1986 | 17 | 491 |
| Brügelmann 2000      | 17 | Petzold et al. 1999            | 492 | 1999 | 17 | 492 |
| Brügelmann 2000      | 17 | Reed 1997                      | 493 | 1997 | 17 | 493 |
| Brügelmann 2000      | 17 | Suk & Bhandarkar 1992          | 494 | 1992 | 17 | 494 |
| Brügelmann 2000      | 17 | Weidner 1994                   | 495 | 1994 | 17 | 495 |
| Brügelmann 2000      | 17 | Wild & Krzystek 1996           | 496 | 1996 | 17 | 496 |
| Belgiu et al. 2014a  | 18 | Okada & Takai 2000             | 497 | 2000 | 18 | 497 |
| Belgiu et al. 2014a  | 18 | Heiple & Sailor 2008           | 498 | 2008 | 18 | 498 |
| Belgiu et al. 2014a  | 18 | Cheng et al. 2008              | 499 | 2008 | 18 | 499 |
| Belgiu et al. 2014a  | 18 | Niemeyer et al. 2014           | 500 | 2014 | 18 | 500 |

| Belgiu et al. 2014a | 18 | Rottensteiner & Briese 2002        | 444 | 2002 | 18 | 444 |
|---------------------|----|------------------------------------|-----|------|----|-----|
| Belgiu et al. 2014a | 18 | Huang et al. 2013                  | 502 | 2013 | 18 | 502 |
| Belgiu et al. 2014a | 18 | Awrangjeb et al. 2010              | 503 | 2010 | 18 | 503 |
| Belgiu et al. 2014a | 18 | Hermosilla et al. 2011             | 504 | 2011 | 18 | 504 |
| Belgiu et al. 2014a | 18 | Chen et al. 2009                   | 505 | 2009 | 18 | 505 |
| Belgiu et al. 2014a | 18 | Wurm et al. 2009                   | 506 | 2009 | 18 | 506 |
| Belgiu et al. 2014a | 18 | Barnsley & Barr 1997               | 507 | 1997 | 18 | 507 |
| Belgiu et al. 2014a | 18 | Herold et al. 2002                 | 508 | 2002 | 18 | 508 |
| Belgiu et al. 2014a | 18 | De Almeida et al. 2013             | 509 | 2013 | 18 | 509 |
| Belgiu et al. 2014a | 18 | Gonzalez-Aguilera et al. 2013      | 510 | 2013 | 18 | 510 |
| Belgiu et al. 2014a | 18 | Forestier et al. 2012              | 511 | 2012 | 18 | 511 |
| Belgiu et al. 2014a | 18 | Guan et al. 2013                   | 512 | 2013 | 18 | 512 |
| Belgiu et al. 2014a | 18 | Smeulders et al. 2000              | 513 | 2000 | 18 | 513 |
| Belgiu et al. 2014a | 18 | Steiniger et al. 2008              | 514 | 2008 | 18 | 514 |
| Belgiu et al. 2014a | 18 | Arvor et al. 2013                  | 515 | 2013 | 18 | 515 |
| Belgiu et al. 2014a | 18 | Luscher et al. 2009                | 516 | 2009 | 18 | 516 |
| Belgiu et al. 2014a | 18 | Gruber 1993                        | 517 | 1993 | 18 | 517 |
| Belgiu et al. 2014a | 18 | Wang & Schenk 1998                 | 518 | 1998 | 18 | 518 |
| Belgiu et al. 2014a | 18 | Alharthy & Bethel 2001             | 519 | 2001 | 18 | 519 |
| Belgiu et al. 2014a | 18 | Elaksher & Bethel 2002             | 520 | 2002 | 18 | 520 |
| Belgiu et al. 2014a | 18 | Bimal & Kumar 1992                 | 521 | 1992 | 18 | 521 |
| Belgiu et al. 2014a | 18 | Hofmann et al. 2002                | 522 | 2002 | 18 | 522 |
| Belgiu et al. 2014a | 18 | Cho et al. 2004                    | 523 | 2004 | 18 | 523 |
| Belgiu et al. 2014a | 18 | Miliaresis & Kokkas 2007           | 524 | 2007 | 18 | 524 |
| Belgiu et al. 2014a | 18 | Evans 1980                         | 525 | 1980 | 18 | 525 |
| Belgiu et al. 2014a | 18 | Jochem et al. 2012                 | 526 | 2012 | 18 | 526 |
| Belgiu et al. 2014a | 18 | Wurm et al. 2011                   | 527 | 2011 | 18 | 527 |
| Belgiu et al. 2014a | 18 | Agarwal 2005                       | 528 | 2005 | 18 | 528 |
| Belgiu et al. 2014a | 18 | Lutz & Klien 2006                  | 529 | 2006 | 18 | 529 |
| Belgiu et al. 2014a | 18 | Luscher et al. 2008                | 530 | 2008 | 18 | 530 |
| Belgiu et al. 2014a | 18 | De Bertrand de Beuvron et al. 2013 | 531 | 2013 | 18 | 531 |
| Belgiu et al. 2014a | 18 | Thonnat 2002                       | 532 | 2002 | 18 | 532 |
| Belgiu et al. 2014a | 18 | Hudelot & Thonnat 2003             | 533 | 2003 | 18 | 533 |
| Belgiu et al. 2014a | 18 | Liu et al. 2007a                   | 534 | 2007 | 18 | 534 |
| Belgiu et al. 2014a | 18 | Guarino 1998                       | 535 | 1998 | 18 | 535 |
| Belgiu et al. 2014a | 18 | Masolo et al. 2002                 | 536 | 2002 | 18 | 536 |
| Belgiu et al. 2014a | 18 | Raskin 2014                        | 537 | 2014 | 18 | 537 |
| Belgiu et al. 2014a | 18 | Mark et al. 2005                   | 538 | 2005 | 18 | 538 |
| Belgiu et al. 2014a | 18 | Janowics 2012                      | 539 | 2012 | 18 | 539 |
| Belgiu et al. 2014a | 18 | Motik et al. 2012                  | 540 | 2012 | 18 | 540 |
| Belgiu et al. 2014a | 18 | Rutzinger et al. 2009              | 143 | 2009 | 18 | 143 |
| Belgiu et al. 2014a | 18 | Zeuvenberge & Thorne 1987          | 542 | 1987 | 18 | 542 |
| Belgiu et al. 2014a | 18 | Hoefle & Pfeifer 2007              | 543 | 2007 | 18 | 543 |

| Belgiu et al. 2014a    | 18 | Hoefle et al. 2012            | 544 | 2012 | 18 | 544 |
|------------------------|----|-------------------------------|-----|------|----|-----|
| Belgiu et al. 2014a    | 18 | Taubenboeck et al. 2013       | 545 | 2013 | 18 | 545 |
| Belgiu et al. 2014a    | 18 | Walde et al. 2012             | 546 | 2012 | 18 | 546 |
| Belgiu et al. 2014a    | 18 | Walde et al. 2013             | 547 | 2013 | 18 | 547 |
| Belgiu et al. 2014a    | 18 | Hudelot et al. 2008           | 548 | 2008 | 18 | 548 |
| Belgiu et al. 2014a    | 18 | Kursa & Rudnicki 2010         | 549 | 2010 | 18 | 549 |
| Belgiu et al. 2014a    | 18 | Breiman 2001                  | 550 | 2001 | 18 | 550 |
| Belgiu et al. 2014a    | 18 | Stumpf & Kerle 2011           | 551 | 2011 | 18 | 551 |
| Belgiu et al. 2014a    | 18 | Corcoran et al. 2013          | 552 | 2013 | 18 | 552 |
| Belgiu et al. 2014a    | 18 | Immitzer et al. 2012          | 553 | 2012 | 18 | 553 |
| Belgiu et al. 2014a    | 18 | Touw et al. 2013              | 554 | 2013 | 18 | 554 |
| Belgiu et al. 2014a    | 18 | Rodriguez-Galiano et al. 2012 | 555 | 2012 | 18 | 555 |
| Belgiu et al. 2014a    | 18 | Team 2013                     | 556 | 2013 | 18 | 556 |
| Belgiu et al. 2014a    | 18 | Tsarkov & Horrocks 2006       | 557 | 2006 | 18 | 557 |
| Belgiu et al. 2014a    | 18 | Van Rijsbergen 1979           | 558 | 1979 | 18 | 558 |
| Belgiu et al. 2014a    | 18 | Lutz & Kolas 2007             | 559 | 2007 | 18 | 559 |
| Belgiu et al. 2014a    | 18 | Belgiu et al. 2014b           | 560 | 2014 | 18 | 560 |
| Belgiu et al. 2014a    | 18 | Kohli et al. 2012             | 561 | 2012 | 18 | 561 |
| Belgiu et al. 2014a    | 18 | Tripathi & Babaie 2008        | 562 | 2008 | 18 | 562 |
| Belgiu et al. 2014a    | 18 | Li et al. 2012                | 563 | 2012 | 18 | 563 |
| Belgiu et al. 2014a    | 18 | Bock et al. 2008              | 564 | 2008 | 18 | 564 |
| Belgiu et al. 2014a    | 18 | Blaschke 2010                 | 28  | 2010 | 18 | 565 |
| Vosselman & Liang 2009 | 19 | Akel et al. 2005              | 566 | 2005 | 19 | 566 |
| Vosselman & Liang 2009 | 19 | Brenner 2005                  | 567 | 2005 | 19 | 567 |
| Vosselman & Liang 2009 | 19 | Clode et al. 2004a            | 568 | 2004 | 19 | 568 |
| Vosselman & Liang 2009 | 19 | Clode et al. 2004b            | 569 | 2004 | 19 | 569 |
| Vosselman & Liang 2009 | 19 | Clode et al. 2005             | 570 | 2005 | 19 | 570 |
| Vosselman & Liang 2009 | 19 | de Boor 1978                  | 571 | 1978 | 19 | 571 |
| Vosselman & Liang 2009 | 19 | Fischler & Bolles 1981        | 572 | 1981 | 19 | 572 |
| Vosselman & Liang 2009 | 19 | Hatger 2005                   | 573 | 2005 | 19 | 573 |
| Vosselman & Liang 2009 | 19 | Hatger & Brenner 2003         | 574 | 2003 | 19 | 574 |
| Vosselman & Liang 2009 | 19 | Hyppae & Inkinen 1999         | 575 | 1999 | 19 | 575 |
| Vosselman & Liang 2009 | 19 | Matikainen et al. 2003        | 576 | 2003 | 19 | 576 |
| Vosselman & Liang 2009 | 19 | Persson et al. 2002           | 577 | 2002 | 19 | 577 |
| Vosselman & Liang 2009 | 19 | Rieger et al. 1999            | 578 | 1999 | 19 | 578 |
| Vosselman & Liang 2009 | 19 | Rottensteiner 2003            | 163 | 2003 | 19 | 163 |
| Vosselman & Liang 2009 | 19 | Sampath & Shan 2007           | 580 | 2007 | 19 | 580 |
| Vosselman & Liang 2009 | 19 | Vosselman 2008                | 581 | 2008 | 19 | 581 |
| Vosselman & Liang 2009 | 19 | Vosselman et al. 2005         | 582 | 2005 | 19 | 582 |
| Vosselman & Liang 2009 | 19 | Wang et al. 2006              | 583 | 2006 | 19 | 583 |
| Vosselman & Liang 2009 | 19 | Zhou 2009                     | 584 | 2009 | 19 | 584 |
| Di Iorio et al. 2010   | 20 | Moon et al. 2002              | 21  | 2002 | 20 | 21  |
| Di Iorio et al. 2010   | 20 | Ben-Arie & Rao 1993           | 586 | 1993 | 20 | 586 |

| Di Iorio et al. 2010    | 20 | Di Iorio et al. 2008        | 587 | 2008 | 20 | 587 |
|-------------------------|----|-----------------------------|-----|------|----|-----|
| Moon et al. 2002        | 21 | Arcese et al. 1970          | 588 | 1970 | 21 | 588 |
| Moon et al. 2002        | 21 | Argyle 1971                 | 589 | 1971 | 21 | 589 |
| Moon et al. 2002        | 21 | Ballard 1981                | 154 | 1981 | 21 | 154 |
| Moon et al. 2002        | 21 | Ben-Arie & Rao 1993         | 586 | 1993 | 21 | 586 |
| Moon et al. 2002        | 21 | Ben-Arie & Rao 1994         | 592 | 1994 | 21 | 592 |
| Moon et al. 2002        | 21 | Canny 1983                  | 593 | 1983 | 21 | 593 |
| Moon et al. 2002        | 21 | Canny 1986                  | 594 | 1986 | 21 | 594 |
| Moon et al. 2002        | 21 | Chellappa et al. 1996       | 595 | 1996 | 21 | 595 |
| Moon et al. 2002        | 21 | Cooper & McGillem 1999      | 596 | 1999 | 21 | 596 |
| Moon et al. 2002        | 21 | Keren 1994                  | 597 | 1994 | 21 | 597 |
| Moon et al. 2002        | 21 | Lepage 1980                 | 598 | 1980 | 21 | 598 |
| Moon et al. 2002        | 21 | Lowe 1987                   | 599 | 1987 | 21 | 599 |
| Moon et al. 2002        | 21 | Moon et al. 2002            | 600 | 2002 | 21 | 600 |
| Moon et al. 2002        | 21 | Mumford et al. 1987         | 601 | 1987 | 21 | 601 |
| Moon et al. 2002        | 21 | Rosenfeld 1970              | 602 | 1970 | 21 | 602 |
| Moon et al. 2002        | 21 | Rosenfeld & Thurston 1971   | 603 | 1971 | 21 | 603 |
| Moon et al. 2002        | 21 | Ramesh & Haralick 1993      | 604 | 1993 | 21 | 604 |
| Moon et al. 2002        | 21 | Rosenfeld & Kak 1976        | 605 | 1976 | 21 | 605 |
| Awrangjeb & Fraser 2013 | 22 | Awrangjeb & Lu 2008         | 606 | 2008 | 22 | 606 |
| Awrangjeb & Fraser 2013 | 22 | Awrangjeb et al. 2010       | 503 | 2010 | 22 | 503 |
| Awrangjeb & Fraser 2013 | 22 | Awrangjeb et al. 2012a      | 608 | 2012 | 22 | 608 |
| Awrangjeb & Fraser 2013 | 22 | Awrangjeb et al. 2012b      | 609 | 2012 | 22 | 609 |
| Awrangjeb & Fraser 2013 | 22 | Awrangjeb et al. 2013       | 610 | 2013 | 22 | 610 |
| Awrangjeb & Fraser 2013 | 22 | Chen et al. 2012            | 611 | 2012 | 22 | 611 |
| Awrangjeb & Fraser 2013 | 22 | Cramer 2010                 | 612 | 2010 | 22 | 612 |
| Awrangjeb & Fraser 2013 | 22 | Dorninger & Pfeifer 2008    | 134 | 2008 | 22 | 134 |
| Awrangjeb & Fraser 2013 | 22 | Haala & Kada 2010           | 614 | 2010 | 22 | 614 |
| Awrangjeb & Fraser 2013 | 22 | Jochem et al. 2012          | 526 | 2012 | 22 | 526 |
| Awrangjeb & Fraser 2013 | 22 | Khoshelham et al. 2005      | 616 | 2005 | 22 | 616 |
| Awrangjeb & Fraser 2013 | 22 | Kim & Shan 2011             | 617 | 2011 | 22 | 617 |
| Awrangjeb & Fraser 2013 | 22 | Lafarge et al. 2010         | 618 | 2010 | 22 | 618 |
| Awrangjeb & Fraser 2013 | 22 | Perera et al. 2012          | 619 | 2012 | 22 | 619 |
| Awrangjeb & Fraser 2013 | 22 | Rottensteiner 2003          | 163 | 2003 | 22 | 163 |
| Awrangjeb & Fraser 2013 | 22 | Rottensteiner 2007          | 621 | 2007 | 22 | 621 |
| Awrangjeb & Fraser 2013 | 22 | Rottensteiner & Briese 2003 | 335 | 2003 | 22 | 335 |
| Awrangjeb & Fraser 2013 | 22 | Rottensteiner et al. 2012   | 623 | 2012 | 22 | 623 |
| Awrangjeb & Fraser 2013 | 22 | Rutzinger et al. 2009       | 143 | 2009 | 22 | 143 |
| Awrangjeb & Fraser 2013 | 22 | Sampath & Shan 2010         | 625 | 2010 | 22 | 625 |
| Awrangjeb & Fraser 2013 | 22 | Satari et al 2012           | 626 | 2012 | 22 | 626 |
| Awrangjeb & Fraser 2013 | 22 | Sohn et al 2008             | 627 | 2008 | 22 | 627 |
| Awrangjeb & Fraser 2013 | 22 | Tarsha-Kurdi et al. 2008    | 628 | 2008 | 22 | 628 |
| Awrangjeb & Fraser 2013 | 22 | Verna et al. 2006           | 629 | 2006 | 22 | 629 |

| Awrangjeb & Fraser 2013 | 22 | Vosselman et al. 2004       | 242 | 2004 | 22 | 242 |
|-------------------------|----|-----------------------------|-----|------|----|-----|
| Awrangjeb & Fraser 2013 | 22 | Zhang et al. 2005a          | 631 | 2005 | 22 | 631 |
| D'Hondt et al. 2012     | 23 | Reigber & Moreira 2000      | 632 | 2000 | 23 | 632 |
| D'Hondt et al. 2012     | 23 | Guillaso & Reigber 2005     | 633 | 2005 | 23 | 633 |
| D'Hondt et al. 2012     | 23 | Zhu & Bamler 2012           | 634 | 2012 | 23 | 634 |
| D'Hondt et al. 2012     | 23 | Guillaso et al. 2012        | 635 | 2012 | 23 | 635 |
| D'Hondt et al. 2012     | 23 | Fischler & Bolles 1981      | 572 | 1981 | 23 | 572 |
| D'Hondt et al. 2012     | 23 | Bughin et al. 2010          | 637 | 2010 | 23 | 637 |
| D'Hondt et al. 2012     | 23 | Chum et al. 2003            | 638 | 2003 | 23 | 638 |
| D'Hondt et al. 2012     | 23 | Toldo & Fusiello 2008       | 639 | 2008 | 23 | 639 |
| D'Hondt et al. 2012     | 23 | Torr & Murray 1994          | 640 | 1994 | 23 | 640 |
| Hoefle et al. 2009      | 24 | Dorninger & Pfeifer 2008    | 134 | 2008 | 24 | 134 |
| Hoefle et al. 2009      | 24 | Filin & Pfeifer 2006        | 642 | 2006 | 24 | 642 |
| Hoefle et al. 2009      | 24 | Hoefle et al. 2006          | 643 | 2006 | 24 | 643 |
| Hoefle et al. 2009      | 24 | Hoefle et al. 2008          | 644 | 2008 | 24 | 644 |
| Hoefle et al. 2009      | 24 | Kaartinen et al. 2005       | 645 | 2005 | 24 | 645 |
| Hoefle et al. 2009      | 24 | Maas & Vosselman 1999       | 157 | 1999 | 24 | 157 |
| Hoefle et al. 2009      | 24 | Melzer 2007                 | 647 | 2007 | 24 | 647 |
| Hoefle et al. 2009      | 24 | Nothegger & Dorninger 2009  | 648 | 2009 | 24 | 648 |
| Hoefle et al. 2009      | 24 | Pfeifer et al. 2001         | 649 | 2001 | 24 | 649 |
| Hoefle et al. 2009      | 24 | Rutzinger et al. 2008       | 650 | 2008 | 24 | 650 |
| Hoefle et al. 2009      | 24 | Rutzinger et al. 2009       | 143 | 2009 | 24 | 143 |
| Teo & Chen 2004         | 25 | Behan 2000                  | 652 | 2000 | 25 | 652 |
| Teo & Chen 2004         | 25 | Briese et al. 2002          | 653 | 2000 | 25 | 653 |
| Teo & Chen 2004         | 25 | Fraser & Hanley 2003        | 654 | 2003 | 25 | 654 |
| Teo & Chen 2004         | 25 | Halla & Walter 1999         | 655 | 1999 | 25 | 655 |
| Teo & Chen 2004         | 25 | Hofmann & Van der Vegt 2001 | 656 | 2001 | 25 | 656 |
| Teo & Chen 2004         | 25 | Hofmann et al. 2002         | 522 | 2002 | 25 | 522 |
| Teo & Chen 2004         | 25 | Lohmann 2002                | 658 | 2002 | 25 | 658 |
| Teo & Chen 2004         | 25 | Maas 1999                   | 659 | 1999 | 25 | 659 |
| Teo & Chen 2004         | 25 | Nakagawa et al. 2002        | 660 | 2002 | 25 | 660 |
| Teo & Chen 2004         | 25 | Rottensteiner & Jansa 2002  | 661 | 2002 | 25 | 661 |
| Teo & Chen 2004         | 25 | Schiewe 2003                | 662 | 2003 | 25 | 662 |
| Teo & Chen 2004         | 25 | Vosselman 2002              | 348 | 2002 | 25 | 348 |
| Teo & Chen 2004         | 25 | Walter 2004                 | 664 | 2004 | 25 | 664 |
| Teo & Chen 2004         | 25 | Zhang 1999                  | 665 | 1999 | 25 | 665 |
| Teo & Chen 2004         | 25 | Zeng et al. 2002            | 666 | 2002 | 25 | 666 |
| Menze et al. 2007a      | 26 | Adams 1972                  | 667 | 1972 | 26 | 667 |
| Menze et al. 2007a      | 26 | Adams & Nissen 1972         | 668 | 1972 | 26 | 668 |
| Menze et al. 2007a      | 26 | Altaweel 2003               | 669 | 2003 | 26 | 669 |
| Menze et al. 2007a      | 26 | Altaweel 2004               | 670 | 2004 | 26 | 670 |
| Menze et al. 2007a      | 26 | Altaweel 2005               | 671 | 2005 | 26 | 671 |
| Menze et al. 2007a      | 26 | Andrae 1977                 | 672 | 1977 | 26 | 672 |

| Menze et al. 2007a | 26 | Bagg 2000                  | 673 | 2000 | 26 | 673 |
|--------------------|----|----------------------------|-----|------|----|-----|
| Menze et al. 2007a | 26 | Brandt et al. 1992         | 674 | 1992 | 26 | 674 |
| Menze et al. 2007a | 26 | Dittmann 1995              | 675 | 1995 | 26 | 675 |
| Menze et al. 2007a | 26 | El-Amin & Mallowan 1949    | 676 | 1949 | 26 | 676 |
| Menze et al. 2007a | 26 | El-Amin & Mallowan 1950    | 677 | 1950 | 26 | 677 |
| Menze et al. 2007a | 26 | Fowler 2002                | 678 | 2002 | 26 | 678 |
| Menze et al. 2007a | 26 | Gabaix & Ioannides 2003    | 679 | 2003 | 26 | 679 |
| Menze et al. 2007a | 26 | Gheyle et al. 2004         | 680 | 2004 | 26 | 680 |
| Menze et al. 2007a | 26 | Kessler 1997               | 681 | 1997 | 26 | 681 |
| Menze et al. 2007a | 26 | Hritz & Wilkinson 1996     | 682 | 1996 | 26 | 682 |
| Menze et al. 2007a | 26 | Hours et al. 1994          | 683 | 1994 | 26 | 683 |
| Menze et al. 2007a | 26 | Lawler 2006                | 684 | 2006 | 26 | 684 |
| Menze et al. 2007a | 26 | Lehmann 2002               | 685 | 2002 | 26 | 685 |
| Menze et al. 2007a | 26 | Manrubia & Zanette 1998    | 686 | 1998 | 26 | 686 |
| Menze et al. 2007a | 26 | Mehrer & Wescott 2006      | 687 | 2006 | 26 | 687 |
| Menze et al. 2007a | 26 | Menze 2005                 | 688 | 2005 | 26 | 688 |
| Menze et al. 2007a | 26 | Menze et al. 2007b         | 689 | 2007 | 26 | 689 |
| Menze et al. 2007a | 26 | Menze et al. 2006          | 690 | 2006 | 26 | 690 |
| Menze et al. 2007a | 26 | Nitsch 2005                | 691 | 2005 | 26 | 691 |
| Menze et al. 2007a | 26 | Rosenstock 2005            | 692 | 2005 | 26 | 692 |
| Menze et al. 2007a | 26 | Sarre 1911                 | 693 | 1911 | 26 | 693 |
| Menze et al. 2007a | 26 | Scollar et al. 1990        | 694 | 1990 | 26 | 694 |
| Menze et al. 2007a | 26 | Schroeder 1820             | 695 | 1820 | 26 | 695 |
| Menze et al. 2007a | 26 | Sherratt 2004              | 696 | 2004 | 26 | 696 |
| Menze et al. 2007a | 26 | Ur 2002                    | 697 | 2002 | 26 | 697 |
| Menze et al. 2007a | 26 | Ur 2003                    | 698 | 2003 | 26 | 698 |
| Menze et al. 2007a | 26 | Ur 2004                    | 699 | 2004 | 26 | 699 |
| Menze et al. 2007a | 26 | Van Lierre & Lauffray 1955 | 700 | 1955 | 26 | 700 |
| Menze et al. 2007a | 26 | Weiss 1986                 | 701 | 1986 | 26 | 701 |
| Menze et al. 2007a | 26 | Wilkinson 1993             | 702 | 1993 | 26 | 702 |
| Menze et al. 2007a | 26 | Wilkinson & Tucker 1995    | 703 | 1995 | 26 | 703 |
| Menze et al. 2007a | 26 | Wilkinson 2000             | 704 | 2000 | 26 | 704 |
| Menze et al. 2007a | 26 | Wilkinson 2003             | 705 | 2003 | 26 | 705 |
| Menze et al. 2007a | 26 | Wilkinson et al. 2005      | 706 | 2005 | 26 | 706 |
| Menze et al. 2007a | 26 | Wirth 1962                 | 707 | 1962 | 26 | 707 |
| Benz et al. 2004   | 27 | Baatz & Mimler 2002        | 708 | 2002 | 27 | 708 |
| Benz et al. 2004   | 27 | Baatz & Schape 2000        | 251 | 2000 | 27 | 251 |
| Benz et al. 2004   | 27 | Bandemer & Gottwald 1995   | 710 | 1995 | 27 | 710 |
| Benz et al. 2004   | 27 | Benz 1999                  | 711 | 1999 | 27 | 711 |
| Benz et al. 2004   | 27 | Bezdek & Pal 1992          | 712 | 1992 | 27 | 712 |
| Benz et al. 2004   | 27 | Civanlar & Trussel 1986    | 713 | 1986 | 27 | 713 |
| Benz et al. 2004   | 27 | Coulde & Pottier 1996      | 714 | 1996 | 27 | 714 |
| Benz et al. 2004   | 27 | Curlander & Kober 1992     | 715 | 1992 | 27 | 715 |

| Benz et al. 2004 | 27 | Daida et al. 1990           | 716 | 1990 | 27 | 716 |
|------------------|----|-----------------------------|-----|------|----|-----|
| Benz et al. 2004 | 27 | Douglas & Peucker 1973      | 133 | 1973 | 27 | 133 |
| Benz et al. 2004 | 27 | Ghassemian & Landgrebe 1988 | 718 | 1988 | 27 | 718 |
| Benz et al. 2004 | 27 | Gopal & Woodcock 1996       | 719 | 1996 | 27 | 719 |
| Benz et al. 2004 | 27 | Haralick & Shapiro 1992     | 720 | 1992 | 27 | 720 |
| Benz et al. 2004 | 27 | Haberkamp & Tsatsoulis 1992 | 721 | 1992 | 27 | 721 |
| Benz et al. 2004 | 27 | Heene & Gautama 2000        | 722 | 2000 | 27 | 722 |
| Benz et al. 2004 | 27 | Jaeger & Benz 2000          | 723 | 2000 | 27 | 723 |
| Benz et al. 2004 | 27 | Manjunath & Chellappa 1991  | 724 | 1991 | 27 | 724 |
| Benz et al. 2004 | 27 | Mao & Jain 1992             | 725 | 1992 | 27 | 725 |
| Benz et al. 2004 | 27 | Maselli et al. 1996         | 726 | 1996 | 27 | 726 |
| Benz et al. 2004 | 27 | Panjwani & Healey 1995      | 727 | 1995 | 27 | 727 |
| Benz et al. 2004 | 27 | Pierce et al. 1994          | 728 | 1994 | 27 | 728 |
| Benz et al. 2004 | 27 | Rosenfeld & Kak 1976        | 605 | 1976 | 27 | 605 |
| Benz et al. 2004 | 27 | Serpico & Roli 1995         | 730 | 1995 | 27 | 730 |
| Benz et al. 2004 | 27 | Tsatsoulis 1993             | 731 | 1993 | 27 | 731 |
| Benz et al. 2004 | 27 | Zadeh 1965                  | 732 | 1965 | 27 | 732 |
| Blaschke 2010    | 28 | Addink et al. 2007          | 733 | 2007 | 28 | 733 |
| Blaschke 2010    | 28 | Albrecht 2008               | 734 | 2008 | 28 | 734 |
| Blaschke 2010    | 28 | al Khudairy et al. 2005     | 735 | 2005 | 28 | 735 |
| Blaschke 2010    | 28 | Amin & Mabe 2000            | 736 | 2000 | 28 | 736 |
| Blaschke 2010    | 28 | An et al. 2007              | 737 | 2007 | 28 | 737 |
| Blaschke 2010    | 28 | Aplin et al. 1999           | 738 | 1999 | 28 | 738 |
| Blaschke 2010    | 28 | Arbiol et al. 2006          | 739 | 2006 | 28 | 739 |
| Blaschke 2010    | 28 | Aubrecht et al 2008         | 740 | 2008 | 28 | 740 |
| Blaschke 2010    | 28 | Baatz & Schape 2000         | 251 | 2000 | 28 | 251 |
| Blaschke 2010    | 28 | Baatz et al. 2008           | 742 | 2008 | 28 | 742 |
| Blaschke 2010    | 28 | Baltsavias 2004             | 743 | 2004 | 28 | 743 |
| Blaschke 2010    | 28 | Benz et al. 2004            | 27  | 2004 | 28 | 27  |
| Blaschke 2010    | 28 | Berberoglu & Akin 2009      | 745 | 2009 | 28 | 745 |
| Blaschke 2010    | 28 | Bian 2007                   | 746 | 2007 | 28 | 746 |
| Blaschke 2010    | 28 | Blaschke 1995               | 747 | 1995 | 28 | 747 |
| Blaschke 2010    | 28 | Blaschke 2002               | 748 | 2002 | 28 | 748 |
| Blaschke 2010    | 28 | Blaschke 2005               | 749 | 2005 | 28 | 749 |
| Blaschke 2010    | 28 | Blaschke & Strobl 2001      | 254 | 2001 | 28 | 254 |
| Blaschke 2010    | 28 | Blaschke & Hay 2001         | 751 | 2001 | 28 | 751 |
| Blaschke 2010    | 28 | Blaschke & Lang 2006        | 752 | 2006 | 28 | 752 |
| Blaschke 2010    | 28 | Blaschke & Kux 2005         | 753 | 2005 | 28 | 753 |
| Blaschke 2010    | 28 | Blaschke et al. 2000        | 754 | 2000 | 28 | 754 |
| Blaschke 2010    | 28 | Blaschke et al. 2004        | 755 | 2004 | 28 | 755 |
| Blaschke 2010    | 28 | Blaschke et al. 2008        | 205 | 2008 | 28 | 205 |
| Blaschke 2010    | 28 | Boehner et al. 2006         | 757 | 2006 | 28 | 757 |
| Blaschke 2010    | 28 | Bock et al. 2005            | 758 | 2005 | 28 | 758 |

| Blaschke 2010 | 28 | Bontemps et al. 2008     | 759 | 2008 | 28 | 759 |
|---------------|----|--------------------------|-----|------|----|-----|
| Blaschke 2010 | 28 | Brennan & Webster 2006   | 760 | 2006 | 28 | 760 |
| Blaschke 2010 | 28 | Burnet & Blaschke 2002   | 761 | 2002 | 28 | 761 |
| Blaschke 2010 | 28 | Brunet & Blaschke 2003   | 762 | 2003 | 28 | 762 |
| Blaschke 2010 | 28 | Bunting & Lucas 2006     | 763 | 2006 | 28 | 763 |
| Blaschke 2010 | 28 | Camara et al. 1996       | 764 | 1996 | 28 | 764 |
| Blaschke 2010 | 28 | Carleer et al. 2005      | 765 | 2005 | 28 | 765 |
| Blaschke 2010 | 28 | Caron et al. 2008        | 766 | 2008 | 28 | 766 |
| Blaschke 2010 | 28 | Castilla et al. 2008     | 767 | 2008 | 28 | 767 |
| Blaschke 2010 | 28 | Castilla & Hay 2006      | 768 | 2006 | 28 | 768 |
| Blaschke 2010 | 28 | Chen et al. 2007         | 769 | 2007 | 28 | 769 |
| Blaschke 2010 | 28 | Chubey et al. 2006       | 770 | 2006 | 28 | 770 |
| Blaschke 2010 | 28 | Civco et al. 2002        | 771 | 2002 | 28 | 771 |
| Blaschke 2010 | 28 | Cracknell 1998           | 772 | 1998 | 28 | 772 |
| Blaschke 2010 | 28 | Conchedda et al 2008     | 773 | 2008 | 28 | 773 |
| Blaschke 2010 | 28 | Corbane et al. 2008      | 774 | 2008 | 28 | 774 |
| Blaschke 2010 | 28 | Cova & Goodchild 2002    | 775 | 2002 | 28 | 775 |
| Blaschke 2010 | 28 | Cutter et al. 2002       | 776 | 2002 | 28 | 776 |
| Blaschke 2010 | 28 | Darwish et al. 2003      | 777 | 2003 | 28 | 777 |
| Blaschke 2010 | 28 | Desclee et al. 2006      | 778 | 2006 | 28 | 778 |
| Blaschke 2010 | 28 | Devereux et al. 2004     | 779 | 2004 | 28 | 779 |
| Blaschke 2010 | 28 | Diaz-Varela et al. 2008  | 780 | 2008 | 28 | 780 |
| Blaschke 2010 | 28 | Dorren et al. 2003       | 781 | 2003 | 28 | 781 |
| Blaschke 2010 | 28 | Dubois & Reeb 2000       | 782 | 2000 | 28 | 782 |
| Blaschke 2010 | 28 | Douveiller et al. 2008   | 783 | 2008 | 28 | 783 |
| Blaschke 2010 | 28 | Durieux et al. 2008      | 784 | 2008 | 28 | 784 |
| Blaschke 2010 | 28 | Ebert et al. 2009        | 785 | 2009 | 28 | 785 |
| Blaschke 2010 | 28 | Ehlers et al. 2003       | 786 | 2003 | 28 | 786 |
| Blaschke 2010 | 28 | Ehlers et al. 2006       | 787 | 2006 | 28 | 787 |
| Blaschke 2010 | 28 | Flanders et al. 2003     | 788 | 2003 | 28 | 788 |
| Blaschke 2010 | 28 | Frauman & Wolff 2005     | 789 | 2005 | 28 | 789 |
| Blaschke 2010 | 28 | Hoelbling & Neubert 2008 | 790 | 2008 | 28 | 790 |
| Blaschke 2010 | 28 | Kuhn 1962                | 791 | 1962 | 28 | 791 |
| Blaschke 2010 | 28 | Levine & Nasif 1985      | 792 | 1985 | 28 | 792 |
| Blaschke 2010 | 28 | Gahegan 1999             | 793 | 1999 | 28 | 793 |
| Blaschke 2010 | 28 | Gamanya et al. 2009      | 794 | 2009 | 28 | 794 |
| Blaschke 2010 | 28 | Geneletti & Gorte 2003   | 795 | 2003 | 28 | 795 |
| Blaschke 2010 | 28 | Gergel et al. 2007       | 796 | 2007 | 28 | 796 |
| Blaschke 2010 | 28 | Gitas et al. 2004        | 265 | 2004 | 28 | 265 |
| Blaschke 2010 | 28 | Goodchild 1992           | 798 | 1992 | 28 | 798 |
| Blaschke 2010 | 28 | Goodchild 2004           | 799 | 2004 | 28 | 799 |
| Blaschke 2010 | 28 | Goodchild & Longley 1999 | 800 | 1999 | 28 | 800 |
| Blaschke 2010 | 28 | Gorte 1998               | 801 | 1998 | 28 | 801 |

| Blaschke 2010 | 28 | Grenier et al 2008          | 802 | 2008 | 28 | 802 |
|---------------|----|-----------------------------|-----|------|----|-----|
| Blaschke 2010 | 28 | Gusella et al. 2005         | 803 | 2005 | 28 | 803 |
| Blaschke 2010 | 28 | Hall & Hay 2003             | 804 | 2003 | 28 | 804 |
| Blaschke 2010 | 28 | Hall et al. 2004            | 805 | 2004 | 28 | 805 |
| Blaschke 2010 | 28 | Haralick 1983               | 806 | 1983 | 28 | 806 |
| Blaschke 2010 | 28 | Haralick & Shapiro 1985     | 807 | 1985 | 28 | 807 |
| Blaschke 2010 | 28 | Harzing & van der Wal 2008  | 808 | 2008 | 28 | 808 |
| Blaschke 2010 | 28 | Hay et al. 1996             | 809 | 1996 | 28 | 809 |
| Blaschke 2010 | 28 | Hay et al. 2001             | 810 | 2001 | 28 | 810 |
| Blaschke 2010 | 28 | Hay et al. 2002             | 811 | 2002 | 28 | 811 |
| Blaschke 2010 | 28 | Hay et al. 2003             | 812 | 2003 | 28 | 812 |
| Blaschke 2010 | 28 | Hay et al. 2005             | 813 | 2005 | 28 | 813 |
| Blaschke 2010 | 28 | Hay & Castilla 2008         | 814 | 2008 | 28 | 814 |
| Blaschke 2010 | 28 | Herrera et al. 2004         | 815 | 2004 | 28 | 815 |
| Blaschke 2010 | 28 | Heyman et al. 2003          | 816 | 2003 | 28 | 816 |
| Blaschke 2010 | 28 | Hofmann et al. 2008         | 817 | 2008 | 28 | 817 |
| Blaschke 2010 | 28 | Hu et al. 2005              | 818 | 2005 | 28 | 818 |
| Blaschke 2010 | 28 | Im et al. 2008              | 819 | 2008 | 28 | 819 |
| Blaschke 2010 | 28 | Ivits & Koch 2002           | 273 | 2002 | 28 | 273 |
| Blaschke 2010 | 28 | Ivits et al. 2005           | 821 | 2005 | 28 | 821 |
| Blaschke 2010 | 28 | Jacquin et al. 2008         | 822 | 2008 | 28 | 822 |
| Blaschke 2010 | 28 | Jobin et al. 2008           | 823 | 2008 | 28 | 823 |
| Blaschke 2010 | 28 | Johansen et al. 2007        | 824 | 2007 | 28 | 824 |
| Blaschke 2010 | 28 | Kartikeyan et al. 1998      | 825 | 1998 | 28 | 825 |
| Blaschke 2010 | 28 | Kettig & Landgrebe 1976     | 826 | 1976 | 28 | 826 |
| Blaschke 2010 | 28 | Koch et al. 2003            | 827 | 2003 | 28 | 827 |
| Blaschke 2010 | 28 | Koestler 1967               | 828 | 1967 | 28 | 828 |
| Blaschke 2010 | 28 | Kong et al. 2006            | 829 | 2006 | 28 | 829 |
| Blaschke 2010 | 28 | Krause et al. 2004          | 830 | 2004 | 28 | 830 |
| Blaschke 2010 | 28 | Kressler & Steinnocher 2008 | 831 | 2008 | 28 | 831 |
| Blaschke 2010 | 28 | Kux & Araujo 2008           | 832 | 2008 | 28 | 832 |
| Blaschke 2010 | 28 | Lackner & Conqay 2008       | 833 | 2008 | 28 | 833 |
| Blaschke 2010 | 28 | Laliberte et al. 2004       | 834 | 2004 | 28 | 834 |
| Blaschke 2010 | 28 | Laliberte et al. 2007       | 835 | 2007 | 28 | 835 |
| Blaschke 2010 | 28 | Lang 2005                   | 836 | 2005 | 28 | 836 |
| Blaschke 2010 | 28 | Lang 2008                   | 837 | 2008 | 28 | 837 |
| Blaschke 2010 | 28 | Lang & Blaschke 2003        | 838 | 2003 | 28 | 838 |
| Blaschke 2010 | 28 | Lang & Blaschke 2006        | 839 | 2006 | 28 | 839 |
| Blaschke 2010 | 28 | Lang & Langanke 2006        | 840 | 2006 | 28 | 840 |
| Blaschke 2010 | 28 | Lang & Tiede 2007           | 841 | 2007 | 28 | 841 |
| Blaschke 2010 | 28 | Langanke et al. 2007        | 842 | 2007 | 28 | 842 |
| Blaschke 2010 | 28 | Lang et al. 2006            | 843 | 2006 | 28 | 843 |
| Blaschke 2010 | 28 | Lang et al. 2008            | 844 | 2008 | 28 | 844 |

| Blaschke 2010 | 28 | Lathrop et al. 2006          | 845 | 2006 | 28 | 845 |
|---------------|----|------------------------------|-----|------|----|-----|
| Blaschke 2010 | 28 | Lemp & Weidnet 2005          | 846 | 2005 | 28 | 846 |
| Blaschke 2010 | 28 | Levick & Rogers 2008         | 847 | 2008 | 28 | 847 |
| Blaschke 2010 | 28 | Liu & Zhou 2004              | 848 | 2004 | 28 | 848 |
| Blaschke 2010 | 28 | Liu et al. 2005              | 849 | 2005 | 28 | 849 |
| Blaschke 2010 | 28 | Liu et al. 2006              | 850 | 2006 | 28 | 850 |
| Blaschke 2010 | 28 | Lobo et al. 1996             | 851 | 1996 | 28 | 851 |
| Blaschke 2010 | 28 | Lu & Weng 2007               | 852 | 2007 | 28 | 852 |
| Blaschke 2010 | 28 | Lucieer 2008                 | 853 | 2008 | 28 | 853 |
| Blaschke 2010 | 28 | Luscier et al. 2006          | 854 | 2006 | 28 | 854 |
| Blaschke 2010 | 28 | Mallinis et al. 2008         | 855 | 2008 | 28 | 855 |
| Blaschke 2010 | 28 | Marceau 1999                 | 856 | 1999 | 28 | 856 |
| Blaschke 2010 | 28 | Maier et al. 2008            | 857 | 2008 | 28 | 857 |
| Blaschke 2010 | 28 | Marignani et al. 2008        | 858 | 2008 | 28 | 858 |
| Blaschke 2010 | 28 | Mathieu et al. 2007          | 859 | 2007 | 28 | 859 |
| Blaschke 2010 | 28 | McKeown et al. 1989          | 860 | 1989 | 28 | 860 |
| Blaschke 2010 | 28 | Meinel et al. 2001           | 861 | 2001 | 28 | 861 |
| Blaschke 2010 | 28 | Mo et al. 2007               | 862 | 2007 | 28 | 862 |
| Blaschke 2010 | 28 | Moeller et al. 2007          | 426 | 2007 | 28 | 426 |
| Blaschke 2010 | 28 | Myint et al. 2008            | 864 | 2008 | 28 | 864 |
| Blaschke 2010 | 28 | Narumalani et al. 1998       | 865 | 1998 | 28 | 865 |
| Blaschke 2010 | 28 | Navulur 2007                 | 435 | 2007 | 28 | 435 |
| Blaschke 2010 | 28 | Neubert 2001                 | 867 | 2001 | 28 | 867 |
| Blaschke 2010 | 28 | Neubert 2008                 | 868 | 2008 | 28 | 868 |
| Blaschke 2010 | 28 | Niemeyer et al. 2008         | 869 | 2008 | 28 | 869 |
| Blaschke 2010 | 28 | Nobrega et al. 2008          | 870 | 2008 | 28 | 870 |
| Blaschke 2010 | 28 | Nussbaum & Menz 2008         | 871 | 2008 | 28 | 871 |
| Blaschke 2010 | 28 | Ojala & Pietikainen 1999     | 872 | 1999 | 28 | 872 |
| Blaschke 2010 | 28 | Opitz & Blundell 2008        | 873 | 2008 | 28 | 873 |
| Blaschke 2010 | 28 | Pal & Pal 1993               | 874 | 1993 | 28 | 874 |
| Blaschke 2010 | 28 | Park & Chi 2008              | 875 | 2008 | 28 | 875 |
| Blaschke 2010 | 28 | Pascual et al. 2008          | 876 | 2008 | 28 | 876 |
| Blaschke 2010 | 28 | Pesaresi & Benediktsson 2001 | 877 | 2001 | 28 | 877 |
| Blaschke 2010 | 28 | Radoux & Defourny 2007       | 878 | 2007 | 28 | 878 |
| Blaschke 2010 | 28 | Radoux & Defourny 2008       | 879 | 2008 | 28 | 879 |
| Blaschke 2010 | 28 | Reiche et al. 2007           | 880 | 2007 | 28 | 880 |
| Blaschke 2010 | 28 | Schiewe 2002                 | 339 | 2002 | 28 | 339 |
| Blaschke 2010 | 28 | Schiewe & Ehlers 2005        | 882 | 2005 | 28 | 882 |
| Blaschke 2010 | 28 | Shackelford & Davis 2003     | 290 | 2003 | 28 | 290 |
| Blaschke 2010 | 28 | Schoepfer & Moeller 2006     | 884 | 2006 | 28 | 884 |
| Blaschke 2010 | 28 | Schoepfer et al. 2008        | 885 | 2008 | 28 | 885 |
| Blaschke 2010 | 28 | Simon 1973                   | 886 | 1973 | 28 | 886 |
| Blaschke 2010 | 28 | Su et al. 2008               | 887 | 2008 | 28 | 887 |

| Blaschke 2010       | 28 | Platt & Rapoza 2008               | 888 | 2008 | 28 | 888 |
|---------------------|----|-----------------------------------|-----|------|----|-----|
| Blaschke 2010       | 28 | Ryherd & Woodcock 1996            | 889 | 1996 | 28 | 889 |
| Blaschke 2010       | 28 | Shiba & Itaya 2006                | 890 | 2006 | 28 | 890 |
| Blaschke 2010       | 28 | Stow et al. 2007                  | 294 | 2007 | 28 | 294 |
| Blaschke 2010       | 28 | Stow et al. 2008                  | 441 | 2008 | 28 | 441 |
| Blaschke 2010       | 28 | Strahler et al. 1986              | 893 | 1986 | 28 | 893 |
| Blaschke 2010       | 28 | Thomas et al. 2003                | 894 | 2003 | 28 | 894 |
| Blaschke 2010       | 28 | Tiede et al. 2008                 | 895 | 2008 | 28 | 895 |
| Blaschke 2010       | 28 | Tilton 1998                       | 896 | 1998 | 28 | 896 |
| Blaschke 2010       | 28 | Trias-Sanz et al. 2008            | 897 | 2008 | 28 | 897 |
| Blaschke 2010       | 28 | Turker & Sumer 2008               | 898 | 2008 | 28 | 898 |
| Blaschke 2010       | 28 | van de Sande et al. 2003          | 899 | 2003 | 28 | 899 |
| Blaschke 2010       | 28 | van der Werff & van der Meer 2008 | 900 | 2008 | 28 | 900 |
| Blaschke 2010       | 28 | van Kousha & Thelwall 2008        | 901 | 2008 | 28 | 901 |
| Blaschke 2010       | 28 | Walker & Briggs 2007              | 902 | 2007 | 28 | 902 |
| Blaschke 2010       | 28 | Walker & Blaschke 2008            | 298 | 2008 | 28 | 298 |
| Blaschke 2010       | 28 | Wang et al. 2004                  | 904 | 2004 | 28 | 904 |
| Blaschke 2010       | 28 | Walter 2004                       | 664 | 2004 | 28 | 664 |
| Blaschke 2010       | 28 | Weidner 2008                      | 906 | 2008 | 28 | 906 |
| Blaschke 2010       | 28 | Weiers et al. 2004                | 907 | 2004 | 28 | 907 |
| Blaschke 2010       | 28 | Weinke et al. 2008                | 908 | 2008 | 28 | 908 |
| Blaschke 2010       | 28 | Wiseman et al. 2009               | 909 | 2009 | 28 | 909 |
| Blaschke 2010       | 28 | Woodcock & Harward 1992           | 910 | 1992 | 28 | 910 |
| Blaschke 2010       | 28 | Wu 1999                           | 911 | 1999 | 28 | 911 |
| Blaschke 2010       | 28 | Wu & Loucks 1995                  | 912 | 1995 | 28 | 912 |
| Blaschke 2010       | 28 | Wu & David 2002                   | 913 | 2002 | 28 | 913 |
| Blaschke 2010       | 28 | Wuest & Zhang 2009                | 914 | 2009 | 28 | 914 |
| Blaschke 2010       | 28 | Xie et al. 2008                   | 915 | 2008 | 28 | 915 |
| Blaschke 2010       | 28 | Wulder 1998                       | 916 | 1998 | 28 | 916 |
| Blaschke 2010       | 28 | Yan et al. 2006                   | 917 | 2006 | 28 | 917 |
| Blaschke 2010       | 28 | Yu et al. 2006                    | 304 | 2006 | 28 | 304 |
| Blaschke 2010       | 28 | Zhang et al. 2005b                | 919 | 2005 | 28 | 919 |
| Blaschke 2010       | 28 | Zhang et al. 2005c                | 920 | 2005 | 28 | 920 |
| Blaschke 2010       | 28 | Zhang et al. 2005d                | 921 | 2005 | 28 | 921 |
| Blaschke 2010       | 28 | Zhou & Troy 2008                  | 311 | 2008 | 28 | 311 |
| Blaschke 2010       | 28 | Zhou et al. 2006                  | 923 | 2006 | 28 | 923 |
| Bennett et al. 2014 | 29 | Beck 2011                         | 924 | 2011 | 29 | 924 |
| Bennett et al. 2014 | 29 | Bennett et al. 2011               | 925 | 2011 | 29 | 925 |
| Bennett et al. 2014 | 29 | Bennett et al. 2012               | 926 | 2012 | 29 | 926 |
| Bennett et al. 2014 | 29 | Brophy & Cowley 2005              | 927 | 2005 | 29 | 927 |
| Bennett et al. 2014 | 29 | Cowley 2011                       | 928 | 2011 | 29 | 928 |
| Bennett et al. 2014 | 29 | Cowley & Sigurdardottir 2011      | 929 | 2011 | 29 | 929 |
| Bennett et al. 2014 | 29 | Cowley et al. 2013                | 930 | 2013 | 29 | 930 |

| Bennett et al. 2014    | 29 | Domingos 2012             | 931 | 2012 | 29 | 931 |
|------------------------|----|---------------------------|-----|------|----|-----|
| Bennett et al. 2014    | 29 | Duckers 2013              | 932 | 2013 | 29 | 932 |
| Bennett et al. 2014    | 29 | Gojda 2011                | 933 | 2011 | 29 | 933 |
| Bennett et al. 2014    | 29 | Grøn et al. 2011          | 934 | 2011 | 29 | 934 |
| Bennett et al. 2014    | 29 | Halliday 2013             | 935 | 2013 | 29 | 935 |
| Bennett et al. 2014    | 29 | Hanson 2010               | 936 | 2010 | 29 | 936 |
| Bennett et al. 2014    | 29 | Hill 2009                 | 937 | 2009 | 29 | 937 |
| Bennett et al. 2014    | 29 | Horne 2009                | 938 | 2009 | 29 | 938 |
| Bennett et al. 2014    | 29 | De laet et al. 2007       | 12  | 2007 | 29 | 12  |
| Bennett et al. 2014    | 29 | Lambers & Zingman 2013    | 13  | 2013 | 29 | 13  |
| Bennett et al. 2014    | 29 | Lasaponara & Masini 2012a | 388 | 2012 | 29 | 388 |
| Bennett et al. 2014    | 29 | Palmer 2011               | 942 | 2011 | 29 | 942 |
| Bennett et al. 2014    | 29 | Parcak 2009               | 392 | 2009 | 29 | 392 |
| Bennett et al. 2014    | 29 | Pascal & Pascal 2013      | 944 | 2013 | 29 | 944 |
| Bennett et al. 2014    | 29 | Risboel et al. 2013       | 945 | 2013 | 29 | 945 |
| Bennett et al. 2014    | 29 | Sonka et al. 2008         | 946 | 2008 | 29 | 946 |
| Bennett et al. 2014    | 29 | Trier & Piloe 2012        | 249 | 2012 | 29 | 249 |
| Bennett et al. 2014    | 29 | Trier et al. 2009         | 248 | 2009 | 29 | 248 |
| Bennett et al. 2014    | 29 | Verhagen & Dragut 2012    | 949 | 2012 | 29 | 949 |
| Bennett et al. 2014    | 29 | Verhoeven 2012            | 950 | 2012 | 29 | 950 |
| Bennett et al. 2014    | 29 | Wilson 2000               | 951 | 2000 | 29 | 951 |
| Lasaponara et al. 2014 | 30 | Alva 2001                 | 952 | 2001 | 30 | 952 |
| Lasaponara et al. 2014 | 30 | Anselin 1995              | 953 | 1995 | 30 | 953 |
| Lasaponara et al. 2014 | 30 | Atwood 2006               | 954 | 2006 | 30 | 954 |
| Lasaponara et al. 2014 | 30 | Ball & Hall 1965          | 955 | 1965 | 30 | 955 |
| Lasaponara et al. 2014 | 30 | Brodie et al. 2001        | 956 | 2001 | 30 | 956 |
| Lasaponara et al. 2014 | 30 | Brodie & Renfrew 2005     | 957 | 2005 | 30 | 957 |
| Lasaponara et al. 2014 | 30 | Cliff & Ord 1981          | 958 | 1981 | 30 | 958 |
| Lasaponara et al. 2014 | 30 | Contreras 2010            | 959 | 2010 | 30 | 959 |
| Lasaponara et al. 2014 | 30 | Conyers & Goodman 1997    | 960 | 1997 | 30 | 960 |
| Lasaponara et al. 2014 | 30 | Conyers 2004              | 961 | 2004 | 30 | 961 |
| Lasaponara et al. 2014 | 30 | Conyers 2006              | 962 | 2006 | 30 | 962 |
| Lasaponara et al. 2014 | 30 | Conyers 2012              | 963 | 2012 | 30 | 963 |
| Lasaponara et al. 2014 | 30 | Conyers et al. 2013       | 964 | 2013 | 30 | 964 |
| Lasaponara et al. 2014 | 30 | Daniels et al. 1988       | 965 | 1988 | 30 | 965 |
| Lasaponara et al. 2014 | 30 | Davis & Annan 1989        | 966 | 1989 | 30 | 966 |
| Lasaponara et al. 2014 | 30 | Fotheringham et al. 2002  | 967 | 2002 | 30 | 967 |
| Lasaponara et al. 2014 | 30 | Geary 1954                | 968 | 1954 | 30 | 968 |
| Lasaponara et al. 2014 | 30 | Getis & Ord 1994          | 969 | 1994 | 30 | 969 |
| Lasaponara et al. 2014 | 30 | Goodman 2013              | 970 | 2013 | 30 | 970 |
| Lasaponara et al. 2014 | 30 | Goodman et al. 2006       | 971 | 2006 | 30 | 971 |
| Lasaponara et al. 2014 | 30 | Goodman & Piro 2013       | 972 | 2013 | 30 | 972 |
| Lasaponara et al. 2014 | 30 | Hearn 2007                | 973 | 2007 | 30 | 973 |

| Lasaponara et al. 2014 | 30 | Illian et al. 2008            | 974  | 2008 | 30 | 974  |
|------------------------|----|-------------------------------|------|------|----|------|
| Lasaponara et al. 2014 | 30 | Laben et al. 2000             | 975  | 2000 | 30 | 975  |
| Lasaponara et al. 2014 | 30 | Lasaponara & Masini 2010      | 976  | 2010 | 30 | 976  |
| Lasaponara et al. 2014 | 30 | Lasaponara et al. 2011a       | 977  | 2011 | 30 | 977  |
| Lasaponara et al. 2014 | 30 | Lasaponara & Masini 2012c     | 978  | 2012 | 30 | 978  |
| Lasaponara et al. 2014 | 30 | Lasaponara et al. 2012b       | 979  | 2012 | 30 | 979  |
| Lasaponara et al. 2014 | 30 | Leucci 2012                   | 980  | 2012 | 30 | 980  |
| Lasaponara et al. 2014 | 30 | MacQueen 1967                 | 981  | 1967 | 30 | 981  |
| Lasaponara et al. 2014 | 30 | Masini et al. 2012            | 982  | 2012 | 30 | 982  |
| Lasaponara et al. 2014 | 30 | Moran 1948                    | 983  | 1948 | 30 | 983  |
| Lasaponara et al. 2014 | 30 | Parcak 2007                   | 984  | 2007 | 30 | 984  |
| Lasaponara et al. 2014 | 30 | Reynolds 1998                 | 985  | 1998 | 30 | 985  |
| Lasaponara et al. 2014 | 30 | Sandmeier 2011                | 986  | 2011 | 30 | 986  |
| Lasaponara et al. 2014 | 30 | Sheriff & Geldart 1995        | 987  | 1995 | 30 | 987  |
| Lasaponara et al. 2014 | 30 | Silverman 1993                | 988  | 1993 | 30 | 988  |
| Lasaponara et al. 2014 | 30 | Smith 2005                    | 989  | 2005 | 30 | 989  |
| Lasaponara et al. 2014 | 30 | Stone 2008                    | 990  | 2008 | 30 | 990  |
| Lasaponara et al. 2014 | 30 | Van Ess et al. 2006           | 991  | 2006 | 30 | 991  |
| Lasaponara et al. 2014 | 30 | Watson 1999                   | 992  | 1999 | 30 | 992  |
| Lasaponara et al. 2014 | 30 | Widess 1973                   | 993  | 1973 | 30 | 993  |
| Lasaponara et al. 2014 | 30 | Woodward et al. 2003          | 994  | 2003 | 30 | 994  |
| Lasaponara et al. 2014 | 30 | Yilmaz 1987                   | 995  | 1987 | 30 | 995  |
| Bescoby 2006           | 31 | Alcock 1993                   | 996  | 1993 | 31 | 996  |
| Bescoby 2006           | 31 | Ballester 1996                | 997  | 1996 | 31 | 997  |
| Bescoby 2006           | 31 | Bescoby 2007                  | 998  | 2007 | 31 | 998  |
| Bescoby 2006           | 31 | Bescoby et al. 2004           | 999  | 2004 | 31 | 999  |
| Bescoby 2006           | 31 | Bracewell 1995                | 1000 | 1995 | 31 | 1000 |
| Bescoby 2006           | 31 | Casas et al. 2000             | 1001 | 2000 | 31 | 1001 |
| Bescoby 2006           | 31 | Deans 1983                    | 1002 | 1983 | 31 | 1002 |
| Bescoby 2006           | 31 | Dilke 1992                    | 1003 | 1992 | 31 | 1003 |
| Bescoby 2006           | 31 | Diniz da Costa & Starkey 2001 | 1004 | 2001 | 31 | 1004 |
| Bescoby 2006           | 31 | Duda & Hart 1973              | 1005 | 1973 | 31 | 1005 |
| Bescoby 2006           | 31 | Durrani & Bisset 1983         | 1006 | 1983 | 31 | 1006 |
| Bescoby 2006           | 31 | Giardina & Dougherty 1988     | 1007 | 1988 | 31 | 1007 |
| Bescoby 2006           | 31 | Hansen & Hodges 2007          | 1008 | 2007 | 31 | 1008 |
| Bescoby 2006           | 31 | Hodges et al. 2004            | 1009 | 2004 | 31 | 1009 |
| Bescoby 2006           | 31 | Hounslow & Chroston 2002      | 1010 | 2002 | 31 | 1010 |
| Bescoby 2006           | 31 | Koike et al. 2005             | 1011 | 2005 | 31 | 1011 |
| Bescoby 2006           | 31 | Lim 1990                      | 1012 | 1990 | 31 | 1012 |
| Bescoby 2006           | 31 | Magli et al. 1999             | 1013 | 1999 | 31 | 1013 |
| Bescoby 2006           | 31 | Mugglestone & Renshaw 1998    | 1014 | 1998 | 31 | 1014 |
| Bescoby 2006           | 31 | Novak & Soulakellis 2000      | 1015 | 2000 | 31 | 1015 |
| Bescoby 2006           | 31 | Peterson 1992                 | 1016 | 1992 | 31 | 1016 |

| Bescoby 2006        | 31 | Rizakis 1995              | 1017 | 1995 | 31 | 1017 |
|---------------------|----|---------------------------|------|------|----|------|
| Bescoby 2006        | 31 | Romano 2003               | 1018 | 2003 | 31 | 1018 |
| Bescoby 2006        | 31 | Romano & Schoenbrun 1995  | 1019 | 1995 | 31 | 1019 |
| Bescoby 2006        | 31 | Scollar et al. 1990       | 694  | 1990 | 31 | 694  |
| Bescoby 2006        | 31 | Vincent 1991              | 1021 | 1991 | 31 | 1021 |
| Bescoby 2006        | 31 | Waldemark et al. 2000     | 1022 | 2000 | 31 | 1022 |
| Bescoby 2006        | 31 | Weinstein 1995            | 1023 | 1995 | 31 | 1023 |
| Dorazio et al. 2012 | 32 | Mena 2003                 | 1024 | 2003 | 32 | 1024 |
| Dorazio et al. 2012 | 32 | Baltsavias 2004           | 743  | 2004 | 32 | 743  |
| Dorazio et al. 2012 | 32 | Siart et al. 2008         | 1026 | 2008 | 32 | 1026 |
| Dorazio et al. 2012 | 32 | Kaimaris et al. 2011      | 1027 | 2011 | 32 | 1027 |
| Dorazio et al. 2012 | 32 | De laet et al. 2007       | 12   | 2007 | 32 | 12   |
| Dorazio et al. 2012 | 32 | Kucukkaya 2004            | 1029 | 2004 | 32 | 1029 |
| Dorazio et al. 2012 | 32 | Giardina 2010             | 1030 | 2010 | 32 | 1030 |
| Dorazio et al. 2012 | 32 | Johnson 2006              | 1031 | 2006 | 32 | 1031 |
| Dorazio et al. 2012 | 32 | Parcak 2009               | 392  | 2009 | 32 | 392  |
| Dorazio et al. 2012 | 32 | Ciminale et al. 2009      | 1033 | 2009 | 32 | 1033 |
| Dorazio et al. 2012 | 32 | Hejcman & Smrz 2010       | 1034 | 2010 | 32 | 1034 |
| Dorazio et al. 2012 | 32 | Evans & Jones 1977        | 1035 | 1977 | 32 | 1035 |
| Dorazio et al. 2012 | 32 | Edis et al. 1989          | 1036 | 1989 | 32 | 1036 |
| Dorazio et al. 2012 | 32 | Mueller et al. 2004       | 1037 | 2004 | 32 | 1037 |
| Dorazio et al. 2012 | 32 | Fradkin et al. 2001       | 1038 | 2001 | 32 | 1038 |
| Dorazio et al. 2012 | 32 | Wang et al. 2010          | 1039 | 2010 | 32 | 1039 |
| Dorazio et al. 2012 | 32 | Gautama et al. 2006       | 1040 | 2006 | 32 | 1040 |
| Dorazio et al. 2012 | 32 | Chen & Hoi 2008           | 1041 | 2008 | 32 | 1041 |
| Dorazio et al. 2012 | 32 | Lasaponara & Masini 2011  | 1042 | 2011 | 32 | 1042 |
| Dorazio et al. 2012 | 32 | Lasaponara & Masini 2007  | 1043 | 2007 | 32 | 1043 |
| Dorazio et al. 2012 | 32 | Papari & Petkov 2011a     | 1044 | 2011 | 32 | 1044 |
| Dorazio et al. 2012 | 32 | Tremeau & Bobel 1997      | 1045 | 1997 | 32 | 1045 |
| Dorazio et al. 2012 | 32 | Shih & Cheng 2005         | 1046 | 2005 | 32 | 1046 |
| Dorazio et al. 2012 | 32 | Alexakis et al. 2009      | 1047 | 2009 | 32 | 1047 |
| Dorazio et al. 2012 | 32 | Bucha & Ablameyko 2007    | 1048 | 2007 | 32 | 1048 |
| Dorazio et al. 2012 | 32 | Kass et al. 1988          | 1049 | 1988 | 32 | 1049 |
| Dorazio et al. 2012 | 32 | Caselles et al. 1997      | 1050 | 1997 | 32 | 1050 |
| Dorazio et al. 2012 | 32 | Melonakos et al. 2008     | 1051 | 2008 | 32 | 1051 |
| Dorazio et al. 2012 | 32 | Zhu et al. 2007           | 1052 | 2007 | 32 | 1052 |
| Dorazio et al. 2012 | 32 | Zhu et al. 2010           | 1053 | 2010 | 32 | 1053 |
| Dorazio et al. 2012 | 32 | Lankton & Tannenbaum 2008 | 1054 | 2008 | 32 | 1054 |
| Dorazio et al. 2012 | 32 | Darolti et al. 2008       | 1055 | 2008 | 32 | 1055 |
| Dorazio et al. 2012 | 32 | Jing et al. 2011          | 1056 | 2011 | 32 | 1056 |
| Dorazio et al. 2012 | 32 | Xie 2010                  | 1057 | 2010 | 32 | 1057 |
| Dorazio et al. 2012 | 32 | Krinidis & Chatzis 2009   | 1058 | 2009 | 32 | 1058 |
| Dorazio et al. 2012 | 32 | Ahmadi et al. 2010a       | 1059 | 2010 | 32 | 1059 |

| Dorazio et al. 2012       | 32 | Han et al. 2003           | 1060 | 2003 | 32 | 1060 |
|---------------------------|----|---------------------------|------|------|----|------|
| Dorazio et al. 2012       | 32 | Fang & Chan 2007          | 1061 | 2007 | 32 | 1061 |
| Dorazio et al. 2012       | 32 | Ma et al. 2010a           | 1062 | 2010 | 32 | 1062 |
| Dorazio et al. 2012       | 32 | Ma et al. 2011            | 1063 | 2011 | 32 | 1063 |
| Dorazio et al. 2012       | 32 | Ma et al. 2010b           | 1064 | 2010 | 32 | 1064 |
| Dorazio et al. 2012       | 32 | Chan & Vese 2001          | 1065 | 2001 | 32 | 1065 |
| Dorazio et al. 2012       | 32 | Osher & Sethian 1988      | 1066 | 1988 | 32 | 1066 |
| Dorazio et al. 2012       | 32 | Flusser et al. 2009       | 1067 | 2009 | 32 | 1067 |
| Dorazio et al. 2012       | 32 | Bradford 1950             | 1068 | 1950 | 32 | 1068 |
| Dorazio et al. 2012       | 32 | Sandau et al. 2000        | 1069 | 2000 | 32 | 1069 |
| Dorazio et al. 2012       | 32 | Gonzales et al. 2009      | 1070 | 2009 | 32 | 1070 |
| Dorazio et al. 2012       | 32 | Rochery et al. 2006       | 1071 | 2006 | 32 | 1071 |
| Dorazio et al. 2012       | 32 | Stoica et al. 2004        | 1072 | 2004 | 32 | 1072 |
| Dorazio et al. 2012       | 32 | Yu et al. 2007            | 1073 | 2007 | 32 | 1073 |
| Dorazio et al. 2012       | 32 | Bas & Erdogmus 2011       | 1074 | 2011 | 32 | 1074 |
| Dorazio et al. 2012       | 32 | Wang et al. 2011          | 1075 | 2011 | 32 | 1075 |
| Dorazio et al. 2012       | 32 | Donohue & Ascoli 2011     | 1076 | 2011 | 32 | 1076 |
| Figorito & Tarantino 2014 | 33 | Agapiou et al. 2012       | 1077 | 2012 | 33 | 1077 |
| Figorito & Tarantino 2014 | 33 | Ahmadi et al. 2010a       | 1059 | 2010 | 33 | 1059 |
| Figorito & Tarantino 2014 | 33 | Alexakis et al. 2009      | 1047 | 2009 | 33 | 1047 |
| Figorito & Tarantino 2014 | 33 | Aqdus et al. 2012         | 1080 | 2012 | 33 | 1080 |
| Figorito & Tarantino 2014 | 33 | Bucha & Ablameyko 2007    | 1048 | 2007 | 33 | 1048 |
| Figorito & Tarantino 2014 | 33 | Cao et al. 2008           | 1082 | 2008 | 33 | 1082 |
| Figorito & Tarantino 2014 | 33 | Chan & Vese 2001          | 1065 | 2001 | 33 | 1065 |
| Figorito & Tarantino 2014 | 33 | Cramer 2006               | 1084 | 2006 | 33 | 1084 |
| Figorito & Tarantino 2014 | 33 | De laet et al. 2007       | 12   | 2007 | 33 | 12   |
| Figorito & Tarantino 2014 | 33 | De Santis et al. 2010     | 1086 | 2010 | 33 | 1086 |
| Figorito & Tarantino 2014 | 33 | Dorazio et al. 2012       | 32   | 2012 | 33 | 32   |
| Figorito & Tarantino 2014 | 33 | Eramo et al. 2004         | 1088 | 2004 | 33 | 1088 |
| Figorito & Tarantino 2014 | 33 | Evans & Jones 1977        | 1035 | 1977 | 33 | 1035 |
| Figorito & Tarantino 2014 | 33 | Gallo et al. 2009         | 1090 | 2009 | 33 | 1090 |
| Figorito & Tarantino 2014 | 33 | Gulgen & Gokgoz 2011      | 1091 | 2011 | 33 | 1091 |
| Figorito & Tarantino 2014 | 33 | Hejcman & Smrz 2010       | 1034 | 2010 | 33 | 1034 |
| Figorito & Tarantino 2014 | 33 | Lasaponara & Masini 2007  | 1043 | 2007 | 33 | 1043 |
| Figorito & Tarantino 2014 | 33 | Lasaponara & Masini 2012a | 388  | 2012 | 33 | 388  |
| Figorito & Tarantino 2014 | 33 | Lasaponara et al. 2012a   | 1095 | 2012 | 33 | 1095 |
| Figorito & Tarantino 2014 | 33 | Masini & Lasaponara 2007  | 1096 | 2007 | 33 | 1096 |
| Figorito & Tarantino 2014 | 33 | Mumford & Shah 2006       | 1097 | 2006 | 33 | 1097 |
| Figorito & Tarantino 2014 | 33 | Oldfield 2005             | 1098 | 2005 | 33 | 1098 |
| Figorito & Tarantino 2014 | 33 | Osher & Sethian 1988      | 1066 | 1988 | 33 | 1066 |
| Figorito & Tarantino 2014 | 33 | Parcak 2009               | 392  | 2009 | 33 | 392  |
| Figorito & Tarantino 2014 | 33 | Pirotti et al. 2013a      | 1101 | 2013 | 33 | 1101 |
| Figorito & Tarantino 2014 | 33 | Pirotti et al. 2013b      | 1102 | 2013 | 33 | 1102 |

| Figorito & Tarantino 2014 | 33 | Sandau et al. 2000        | 1069 | 2000 | 33 | 1069 |
|---------------------------|----|---------------------------|------|------|----|------|
| Figorito & Tarantino 2014 | 33 | Santoro et al. 2013       | 1104 | 2013 | 33 | 1104 |
| Figorito & Tarantino 2014 | 33 | Tarantino & Figorito 2011 | 1105 | 2011 | 33 | 1105 |
| Figorito & Tarantino 2014 | 33 | Vese & Chan 2002          | 1106 | 2002 | 33 | 1106 |
| Jahjah & Ulivieri 2010    | 34 | Soille & Martino 2002     | 1107 | 2002 | 34 | 1107 |
| Jahjah & Ulivieri 2010    | 34 | Fukunaga & Koontz 1970    | 1108 | 1970 | 34 | 1108 |
| Jahjah & Ulivieri 2010    | 34 | Schoelkopf et al. 1999    | 1109 | 1999 | 34 | 1109 |
| Jahjah & Ulivieri 2010    | 34 | Baudat & Anouar 2000      | 1110 | 2000 | 34 | 1110 |
| Jahjah & Ulivieri 2010    | 34 | Barber & Ledrew 1991      | 1111 | 1991 | 34 | 1111 |
| Jahjah & Ulivieri 2010    | 34 | Zhang 1999                | 1112 | 1999 | 34 | 1112 |
| Jahjah & Ulivieri 2010    | 34 | Laine & Fan 1993          | 1113 | 1993 | 34 | 1113 |
| Jahjah & Ulivieri 2010    | 34 | Randen & Husoy 1999       | 1114 | 1999 | 34 | 1114 |
| Jahjah & Ulivieri 2010    | 34 | Lee & Landgrebe 1997      | 1115 | 1997 | 34 | 1115 |
| Jahjah & Ulivieri 2010    | 34 | Destival 1986             | 1116 | 1986 | 34 | 1116 |
| Jahjah & Ulivieri 2010    | 34 | Serra & Soille 1994       | 1117 | 1994 | 34 | 1117 |
| Jahjah & Ulivieri 2010    | 34 | Chou et al. 1994          | 1118 | 1994 | 34 | 1118 |
| Jahjah & Ulivieri 2010    | 34 | Watson 1987               | 1119 | 1987 | 34 | 1119 |
| Jahjah & Ulivieri 2010    | 34 | Safa & Flouzat 1989       | 1120 | 1989 | 34 | 1120 |
| Jahjah & Ulivieri 2010    | 34 | Merring & Parrot 1994     | 1121 | 1994 | 34 | 1121 |
| Jahjah & Ulivieri 2010    | 34 | Yamada et al. 1993        | 1122 | 1993 | 34 | 1122 |
| Jahjah & Ulivieri 2010    | 34 | Jahjah et al. 2007        | 1123 | 2007 | 34 | 1123 |
| Jahjah & Ulivieri 2010    | 34 | Welch & Ahlers 1987       | 1124 | 1987 | 34 | 1124 |
| Jahjah & Ulivieri 2010    | 34 | Scollar 1990              | 1125 | 1990 | 34 | 694  |
| Jahjah & Ulivieri 2010    | 34 | Baatz & Schape 1999       | 1126 | 1999 | 34 | 1126 |
| Jahjah & Ulivieri 2010    | 34 | Duda et al. 2000          | 192  | 2000 | 34 | 192  |
| Luo et al. 2014a          | 35 | Wilson 2012               | 1128 | 2012 | 35 | 1128 |
| Luo et al. 2014a          | 35 | Lasaponara & Masini 2012a | 388  | 2012 | 35 | 388  |
| Luo et al. 2014a          | 35 | Beazeley 1919             | 1130 | 1919 | 35 | 1130 |
| Luo et al. 2014a          | 35 | Musson et al. 2006        | 1131 | 2006 | 35 | 1131 |
| Luo et al. 2014a          | 35 | MeCauley et al. 1982      | 1132 | 1982 | 35 | 1132 |
| Luo et al. 2014a          | 35 | Moore et al. 2007         | 1133 | 2007 | 35 | 1133 |
| Luo et al. 2014a          | 35 | Stewarta et al. 2014      | 1134 | 2014 | 35 | 1134 |
| Luo et al. 2014a          | 35 | Chase et al. 2012         | 1135 | 2012 | 35 | 1135 |
| Luo et al. 2014a          | 35 | Johnson & Quimet 2014     | 1136 | 2014 | 35 | 1136 |
| Luo et al. 2014a          | 35 | Aqdus et al. 2012         | 1080 | 2012 | 35 | 1080 |
| Luo et al. 2014a          | 35 | Atzberger et al. 2014     | 1138 | 2014 | 35 | 1138 |
| Luo et al. 2014a          | 35 | Cavalli et al. 2007       | 1139 | 2007 | 35 | 1139 |
| Luo et al. 2014a          | 35 | Challis et al. 2009       | 1140 | 2009 | 35 | 1140 |
| Luo et al. 2014a          | 35 | De laet et al. 2007       | 12   | 2007 | 35 | 12   |
| Luo et al. 2014a          | 35 | Lasaponara & Masini 2007  | 1043 | 2007 | 35 | 1043 |
| Luo et al. 2014a          | 35 | De Laet et al. 2009       | 378  | 2009 | 35 | 378  |
| Luo et al. 2014a          | 35 | Lasaponara & Masini 2012b | 1144 | 2012 | 35 | 1144 |
| Luo et al. 2014a          | 35 | Noviello et al. 2013      | 1145 | 2013 | 35 | 1145 |

| Luo et al. 2014a | 35 | Lasaponara & Masini 2014  | 1146 | 2014 | 35 | 1146 |
|------------------|----|---------------------------|------|------|----|------|
| Luo et al. 2014a | 35 | Luo et al. 2014b          | 1147 | 2014 | 35 | 1147 |
| Luo et al. 2014a | 35 | Wonsok et al. 2013        | 1148 | 2013 | 35 | 1148 |
| Luo et al. 2014a | 35 | Myers 2010                | 1149 | 2010 | 35 | 1149 |
| Luo et al. 2014a | 35 | Sheppard & Cizek 2008     | 1150 | 2008 | 35 | 1150 |
| Luo et al. 2014a | 35 | Parks 2009                | 1151 | 2009 | 35 | 1151 |
| Luo et al. 2014a | 35 | Kennedy & Bishop 2011     | 1152 | 2011 | 35 | 1152 |
| Luo et al. 2014a | 35 | Sadr & Rodier 2012        | 1153 | 2012 | 35 | 1153 |
| Luo et al. 2014a | 35 | Kempe & Al-Malabeh 2012   | 1154 | 2012 | 35 | 1154 |
| Luo et al. 2014a | 35 | Pringle 2010              | 1155 | 2010 | 35 | 1155 |
| Luo et al. 2014a | 35 | Ur 2006                   | 1156 | 2006 | 35 | 1156 |
| Luo et al. 2014a | 35 | Luo et al. 2012           | 1157 | 2012 | 35 | 1157 |
| Luo et al. 2014a | 35 | Morehart 2012             | 1158 | 2012 | 35 | 1158 |
| Luo et al. 2014a | 35 | Evans et al. 2007         | 1159 | 2007 | 35 | 1159 |
| Luo et al. 2014a | 35 | Doneus et al. 2014        | 1160 | 2014 | 35 | 1160 |
| Luo et al. 2014a | 35 | Dorazio et al. 2012       | 32   | 2012 | 35 | 32   |
| Luo et al. 2014a | 35 | Lasaponara & Masini 2011  | 1042 | 2011 | 35 | 1042 |
| Luo et al. 2014a | 35 | Lasaponara & Masini 2012a | 388  | 2012 | 35 | 388  |
| Luo et al. 2014a | 35 | Agapiou et al. 2013       | 1164 | 2013 | 35 | 1164 |
| Luo et al. 2014a | 35 | Tarantino & Figorito 2014 | 1165 | 2014 | 35 | 1165 |
| Luo et al. 2014a | 35 | Redfern & Lyons 1998      | 1166 | 1998 | 35 | 1166 |
| Luo et al. 2014a | 35 | Jahjah & Ulivieri 2010    | 34   | 2010 | 35 | 34   |
| Luo et al. 2014a | 35 | Schuetter et al. 2013     | 37   | 2013 | 35 | 37   |
| Luo et al. 2014a | 35 | Trier et al. 2009         | 248  | 2009 | 35 | 248  |
| Luo et al. 2014a | 35 | Figorito & Tarantino 2014 | 33   | 2014 | 35 | 33   |
| Luo et al. 2014a | 35 | Pasolli et al. 2008       | 1171 | 2008 | 35 | 1171 |
| Luo et al. 2014a | 35 | Todd & Mays 2004          | 1172 | 2004 | 35 | 1172 |
| Luo et al. 2014a | 35 | Boustani 2009             | 1173 | 2009 | 35 | 1173 |
| Luo et al. 2014a | 35 | Karez 2014                | 1174 | 2014 | 35 | 1174 |
| Luo et al. 2014a | 35 | Ahmadi et al. 2010b       | 1175 | 2010 | 35 | 1175 |
| Luo et al. 2014a | 35 | Moticee et al. 2006       | 1176 | 2006 | 35 | 1176 |
| Luo et al. 2014a | 35 | Abudu et al. 2011         | 1177 | 2011 | 35 | 1177 |
| Luo et al. 2014a | 35 | Hu et al. 2012            | 1178 | 2012 | 35 | 1178 |
| Luo et al. 2014a | 35 | Huang 2003                | 1179 | 2003 | 35 | 1179 |
| Luo et al. 2014a | 35 | Li 2005                   | 1180 | 2005 | 35 | 1180 |
| Luo et al. 2014a | 35 | Hosseini et al. 2010      | 1181 | 2010 | 35 | 1181 |
| Luo et al. 2014a | 35 | Haakon & Shen 2006        | 1182 | 2006 | 35 | 1182 |
| Luo et al. 2014a | 35 | Haralick et al. 1987      | 1183 | 1987 | 35 | 1183 |
| Luo et al. 2014a | 35 | Gonzales & Woods 2002     | 1184 | 2002 | 35 | 1184 |
| Luo et al. 2014a | 35 | Maini & Aggarwai 2009     | 1185 | 2009 | 35 | 1185 |
| Luo et al. 2014a | 35 | Rahnama & Gloaguen 2014   | 1186 | 2014 | 35 | 1186 |
| Luo et al. 2014a | 35 | Canny 1986                | 594  | 1986 | 35 | 594  |
| Luo et al. 2014a | 35 | Hough 1962                | 156  | 1962 | 35 | 156  |
| Luo et al. 2014a      | 35 | Yuen et al. 1989             | 1189 | 1989 | 35 | 1189 |
|-----------------------|----|------------------------------|------|------|----|------|
| Luo et al. 2014a      | 35 | Rizon et al. 2005            | 1190 | 2005 | 35 | 1190 |
| Luo et al. 2014a      | 35 | Raymond et al. 1992          | 1191 | 1992 | 35 | 1191 |
| Luo et al. 2014a      | 35 | Duda & Hart 1972             | 1192 | 1972 | 35 | 1192 |
| Luo et al. 2014a      | 35 | Shufelt 1999                 | 1193 | 1999 | 35 | 1193 |
| Schneider et al. 2015 | 36 | Bandeira et al. 2012         | 1194 | 2012 | 36 | 1194 |
| Schneider et al. 2015 | 36 | Bennett et al. 2012          | 926  | 2012 | 36 | 926  |
| Schneider et al. 2015 | 36 | Bollandsaas et al. 2012      | 1196 | 2012 | 36 | 1196 |
| Schneider et al. 2015 | 36 | Bond 2007                    | 1197 | 2007 | 36 | 1197 |
| Schneider et al. 2015 | 36 | De Laet et al. 2007          | 12   | 2007 | 36 | 12   |
| Schneider et al. 2015 | 36 | Deforce et al. 2013          | 1199 | 2013 | 36 | 1199 |
| Schneider et al. 2015 | 36 | Devereux et al. 2008         | 1200 | 2008 | 36 | 1200 |
| Schneider et al. 2015 | 36 | Eisank et al. 2014           | 1201 | 2014 | 36 | 1201 |
| Schneider et al. 2015 | 36 | Groenewoudt 2005             | 1202 | 2005 | 36 | 1202 |
| Schneider et al. 2015 | 36 | Hesse 2010                   | 1203 | 2010 | 36 | 1203 |
| Schneider et al. 2015 | 36 | Jasiewitcz & Stepinski 2013  | 1204 | 2013 | 36 | 1204 |
| Schneider et al. 2015 | 36 | Jenness et al. 2013          | 1205 | 2013 | 36 | 1205 |
| Schneider et al. 2015 | 36 | Kennelly 2008                | 1206 | 2008 | 36 | 1206 |
| Schneider et al. 2015 | 36 | Lipsdorf 2001                | 1207 | 2001 | 36 | 1207 |
| Schneider et al. 2015 | 36 | Ludemann 2003                | 1208 | 2003 | 36 | 1208 |
| Schneider et al. 2015 | 36 | Menze et al. 2006            | 690  | 2006 | 36 | 690  |
| Schneider et al. 2015 | 36 | Nelle 2003                   | 1210 | 2003 | 36 | 1210 |
| Schneider et al. 2015 | 36 | Nicolay et al. 2014          | 1211 | 2014 | 36 | 1211 |
| Schneider et al. 2015 | 36 | Nystroem 2014                | 1212 | 2014 | 36 | 1212 |
| Schneider et al. 2015 | 36 | Pirotti 2010                 | 1213 | 2010 | 36 | 1213 |
| Schneider et al. 2015 | 36 | Pollock 1998                 | 1214 | 1998 | 36 | 1214 |
| Schneider et al. 2015 | 36 | Raab et al. 2014             | 1215 | 2014 | 36 | 1215 |
| Schneider et al. 2015 | 36 | Risboel et al. 2013          | 945  | 2013 | 36 | 945  |
| Schneider et al. 2015 | 36 | Roesler 2008                 | 1217 | 2008 | 36 | 1217 |
| Schneider et al. 2015 | 36 | Roesler et al. 2012          | 1218 | 2012 | 36 | 1218 |
| Schneider et al. 2015 | 36 | Salamuniccar et al. 2014     | 1219 | 2014 | 36 | 1219 |
| Schneider et al. 2015 | 36 | Sawabe et al. 2006           | 1220 | 2006 | 36 | 1220 |
| Schneider et al. 2015 | 36 | Schindling & Gibbes 2014     | 1221 | 2014 | 36 | 1221 |
| Schneider et al. 2015 | 36 | Shruthi et al. 2011          | 1222 | 2011 | 36 | 1222 |
| Schneider et al. 2015 | 36 | Sofia et al. 2014            | 1223 | 2014 | 36 | 1223 |
| Schneider et al. 2015 | 36 | Stular et al. 2012           | 1224 | 2012 | 36 | 1224 |
| Schneider et al. 2015 | 36 | Tarolli et al. 2012          | 1225 | 2012 | 36 | 1225 |
| Schneider et al. 2015 | 36 | Trier & Piloe 2012           | 249  | 2012 | 36 | 249  |
| Schneider et al. 2015 | 36 | Trier et al. 2009            | 248  | 2009 | 36 | 248  |
| Schneider et al. 2015 | 36 | Van den Eeckhaut et al. 2012 | 1228 | 2012 | 36 | 1228 |
| Schneider et al. 2015 | 36 | Verhagen & Dragut 2012       | 949  | 2012 | 36 | 949  |
| Schuetter et al. 2013 | 37 | Al-Shahri 2007               | 1230 | 2007 | 37 | 1230 |
| Schuetter et al. 2013 | 37 | Bin Aqil & McCorriston 2009  | 1231 | 2009 | 37 | 1231 |

| Schuetter et al. 2013 | 37 | Braemer et al. 2001         | 1232 | 2001 | 37 | 1232 |
|-----------------------|----|-----------------------------|------|------|----|------|
| Schuetter et al. 2013 | 37 | Canny 1986                  | 594  | 1986 | 37 | 594  |
| Schuetter et al. 2013 | 37 | Cashdan 1983                | 1234 | 1983 | 37 | 1234 |
| Schuetter et al. 2013 | 37 | Cleziou 2001                | 1235 | 2001 | 37 | 1235 |
| Schuetter et al. 2013 | 37 | Cleziou 2007                | 1236 | 2007 | 37 | 1236 |
| Schuetter et al. 2013 | 37 | Dalenius 1951               | 1237 | 1951 | 37 | 1237 |
| Schuetter et al. 2013 | 37 | De Cardi et al. 1977        | 1238 | 1977 | 37 | 1238 |
| Schuetter et al. 2013 | 37 | De Laet et al. 2007         | 12   | 2007 | 37 | 12   |
| Schuetter et al. 2013 | 37 | Duda & Hart 1972            | 1192 | 1972 | 37 | 1192 |
| Schuetter et al. 2013 | 37 | Elwaseif & Slater 2010      | 1241 | 2010 | 37 | 1241 |
| Schuetter et al. 2013 | 37 | Engelman & Hartigan 1969    | 1242 | 1969 | 37 | 1242 |
| Schuetter et al. 2013 | 37 | Giger et al. 1988           | 1243 | 1988 | 37 | 1243 |
| Schuetter et al. 2013 | 37 | Haraliok 1974               | 1244 | 1974 | 37 | 1244 |
| Schuetter et al. 2013 | 37 | Harrower 2008               | 1245 | 2008 | 37 | 1245 |
| Schuetter et al. 2013 | 37 | Harrower et al. 2002        | 1246 | 2002 | 37 | 1246 |
| Schuetter et al. 2013 | 37 | Hough 1962                  | 156  | 1962 | 37 | 156  |
| Schuetter et al. 2013 | 37 | Jensen 1996                 | 369  | 1996 | 37 | 369  |
| Schuetter et al. 2013 | 37 | Kelly 1995                  | 1249 | 1995 | 37 | 1249 |
| Schuetter et al. 2013 | 37 | Lezine et al. 2010          | 1250 | 2010 | 37 | 1250 |
| Schuetter et al. 2013 | 37 | Lloyd 1982                  | 1251 | 1982 | 37 | 1251 |
| Schuetter et al. 2013 | 37 | McCorriston et al. 2012     | 1252 | 2012 | 37 | 1252 |
| Schuetter et al. 2013 | 37 | McCorriston et al. 2011     | 1253 | 2011 | 37 | 1253 |
| Schuetter et al. 2013 | 37 | Menze & Ur 2012             | 1254 | 2012 | 37 | 1254 |
| Schuetter et al. 2013 | 37 | Okabe et al. 1992           | 1255 | 1992 | 37 | 1255 |
| Schuetter et al. 2013 | 37 | Proffitt 1982               | 1256 | 1982 | 37 | 1256 |
| Schuetter et al. 2013 | 37 | Roussillon et al. 2010      | 1257 | 2010 | 37 | 1257 |
| Schuetter et al. 2013 | 37 | Steimer-Herbert et al. 2006 | 1258 | 2006 | 37 | 1258 |
| Schuetter et al. 2013 | 37 | Steinhaus 1956              | 1259 | 1956 | 37 | 1259 |
| Schuetter et al. 2013 | 37 | Stojmenovic & Nayak 2007    | 1260 | 2007 | 37 | 1260 |
| Schuetter et al. 2013 | 37 | Stojmenovic & Nayak 2006    | 1261 | 2006 | 37 | 1261 |
| Schuetter et al. 2013 | 37 | Tansey et al. 2009          | 1262 | 2009 | 37 | 1262 |
| Schuetter et al. 2013 | 37 | Tosi 1986                   | 1263 | 1986 | 37 | 1263 |
| Schuetter et al. 2013 | 37 | Tou & Gonzales 1974         | 1264 | 1974 | 37 | 1264 |
| Schuetter et al. 2013 | 37 | Tucker 1979                 | 1265 | 1979 | 37 | 1265 |
| Schuetter et al. 2013 | 37 | Zunic & Hirota 2008         | 1266 | 2008 | 37 | 1266 |
| Vletter 2014          | 38 | Mallet & Bretar 2009        | 176  | 2009 | 38 | 1267 |
| Vletter 2014          | 38 | Doneus & Briese 2006b       | 1268 | 2006 | 38 | 1268 |
| Vletter 2014          | 38 | Humme et al. 2006a          | 1269 | 2006 | 38 | 1269 |
| Vletter 2014          | 38 | Briese 2004a                | 115  | 2004 | 38 | 115  |
| Vletter 2014          | 38 | Doneus & Briese 2011        | 1271 | 2011 | 38 | 1271 |
| Vletter 2014          | 38 | Doneus & Briese 2006a       | 119  | 2006 | 38 | 119  |
| Vletter 2014          | 38 | Djuricic 2012               | 1273 | 2012 | 38 | 1273 |
| Vletter 2014          | 38 | Briese et al. 2009          | 2    | 2009 | 38 | 2    |

| Vletter 2014        | 38 | Yokoyama et al. 2002         | 1275 | 2002 | 38 | 1275 |
|---------------------|----|------------------------------|------|------|----|------|
| Vletter 2014        | 38 | Doneus 2013                  | 1276 | 2013 | 38 | 1276 |
| Vletter 2014        | 38 | Pregesbauer 2013             | 1277 | 2013 | 38 | 1277 |
| Lemmens et al. 1993 | 39 | Allen 1984                   | 1278 | 1984 | 39 | 1278 |
| Lemmens et al. 1993 | 39 | Bosma et al. 1989            | 1279 | 1989 | 39 | 1279 |
| Lemmens et al. 1993 | 39 | Dassie 1978                  | 1280 | 1978 | 39 | 1280 |
| Lemmens et al. 1993 | 39 | Haigh 1983                   | 1281 | 1983 | 39 | 1281 |
| Lemmens et al. 1993 | 39 | Haralick 1984                | 1282 | 1984 | 39 | 1282 |
| Lemmens et al. 1993 | 39 | Lemmens 1990                 | 1283 | 1990 | 39 | 1283 |
| Lemmens et al. 1993 | 39 | Lemmens 1991                 | 1284 | 1991 | 39 | 1284 |
| Lemmens et al. 1993 | 39 | Limp 1987                    | 1285 | 1987 | 39 | 1285 |
| Lemmens et al. 1993 | 39 | Pratt 1978                   | 1286 | 1978 | 39 | 1286 |
| Lemmens et al. 1993 | 39 | Prewitt 1970                 | 1287 | 1970 | 39 | 1287 |
| Lemmens et al. 1993 | 39 | Roberts 1965                 | 1288 | 1965 | 39 | 1288 |
| Lemmens et al. 1993 | 39 | Scollar 1975                 | 1289 | 1975 | 39 | 1289 |
| Lemmens et al. 1993 | 39 | Scollar 1979                 | 1290 | 1979 | 39 | 1290 |
| Lemmens et al. 1993 | 39 | Scollar et al. 1984          | 1291 | 1984 | 39 | 1291 |
| Lemmens et al. 1993 | 39 | Wilson 1982                  | 1292 | 1982 | 39 | 1292 |
| Sevara et al. 2016  | 40 | Ackermann 1999               | 1293 | 1999 | 40 | 1293 |
| Sevara et al. 2016  | 40 | Alt 1990                     | 1294 | 1990 | 40 | 1294 |
| Sevara et al. 2016  | 40 | Arbman 1940                  | 1295 | 1940 | 40 | 1295 |
| Sevara et al. 2016  | 40 | Baatz et al. 2008            | 742  | 2008 | 40 | 742  |
| Sevara et al. 2016  | 40 | Belgiu & Lampoltshammer 2013 | 1297 | 2013 | 40 | 1297 |
| Sevara et al. 2016  | 40 | Belgiu et al. 2014a          | 18   | 2014 | 40 | 18   |
| Sevara et al. 2016  | 40 | Benediksson et al. 1990      | 1299 | 1990 | 40 | 1299 |
| Sevara et al. 2016  | 40 | Bennett et al. 2014          | 29   | 2014 | 40 | 29   |
| Sevara et al. 2016  | 40 | Bennett et al. 2012          | 926  | 2012 | 40 | 926  |
| Sevara et al. 2016  | 40 | Benz et al. 2004             | 27   | 2004 | 40 | 27   |
| Sevara et al. 2016  | 40 | Bewley et al. 2005           | 1303 | 2005 | 40 | 1303 |
| Sevara et al. 2016  | 40 | Blaschke 2010                | 28   | 2010 | 40 | 28   |
| Sevara et al. 2016  | 40 | Blaschke et al. 2014         | 1305 | 2014 | 40 | 1305 |
| Sevara et al. 2016  | 40 | Blaschke et al. 2000         | 754  | 2000 | 40 | 754  |
| Sevara et al. 2016  | 40 | De Boer 2005                 | 1    | 2005 | 40 | 1    |
| Sevara et al. 2016  | 40 | Bofinger & Hesse 2011        | 1308 | 2011 | 40 | 1308 |
| Sevara et al. 2016  | 40 | Briese et al. 2002           | 653  | 2002 | 40 | 653  |
| Sevara et al. 2016  | 40 | Casana 2014                  | 1310 | 2014 | 40 | 1310 |
| Sevara et al. 2016  | 40 | Challis et al. 2008          | 1311 | 2008 | 40 | 1311 |
| Sevara et al. 2016  | 40 | Cheung 2005                  | 1312 | 2005 | 40 | 1312 |
| Sevara et al. 2016  | 40 | Cowley 2012                  | 376  | 2012 | 40 | 376  |
| Sevara et al. 2016  | 40 | De Laet et al. 2007          | 12   | 2007 | 40 | 12   |
| Sevara et al. 2016  | 40 | De Laet et al. 2007a         | 1315 | 2007 | 40 | 1315 |
| Sevara et al. 2016  | 40 | Devereux et al. 2008         | 1200 | 2008 | 40 | 1200 |
| Sevara et al. 2016  | 40 | Dey et al. 2010              | 1317 | 2010 | 40 | 1317 |

| Sevara et al. 2016 | 40 | Doneus 2013               | 1276 | 2013 | 40 | 1276 |
|--------------------|----|---------------------------|------|------|----|------|
| Sevara et al. 2016 | 40 | Doneus & Briese 2006      | 1268 | 2006 | 40 | 1268 |
| Sevara et al. 2016 | 40 | Doneus & Briese 2011      | 1271 | 2011 | 40 | 1271 |
| Sevara et al. 2016 | 40 | Doneus & Kuehtreiber 2013 | 1321 | 2013 | 40 | 1321 |
| Sevara et al. 2016 | 40 | Doneus et al. 2008        | 169  | 2008 | 40 | 169  |
| Sevara et al. 2016 | 40 | Doneus et al. 2001        | 1323 | 2001 | 40 | 1323 |
| Sevara et al. 2016 | 40 | Dragut & Blaschke 2006    | 1324 | 2006 | 40 | 1324 |
| Sevara et al. 2016 | 40 | Dragut et al. 2014        | 1325 | 2014 | 40 | 1325 |
| Sevara et al. 2016 | 40 | Figorito & Tarantino 2014 | 33   | 2014 | 40 | 33   |
| Sevara et al. 2016 | 40 | Fischer 1997              | 1327 | 1997 | 40 | 1327 |
| Sevara et al. 2016 | 40 | Harrower et al. 2013      | 1328 | 2013 | 40 | 1328 |
| Sevara et al. 2016 | 40 | Hay & Castilla 2008       | 814  | 2008 | 40 | 814  |
| Sevara et al. 2016 | 40 | Hengl & Reuter 2009       | 1330 | 2009 | 40 | 1330 |
| Sevara et al. 2016 | 40 | Hermodsson 2004           | 1331 | 2004 | 40 | 1331 |
| Sevara et al. 2016 | 40 | Hesse 2010                | 1203 | 2010 | 40 | 1203 |
| Sevara et al. 2016 | 40 | Hesse 2014                | 1333 | 2014 | 40 | 1333 |
| Sevara et al. 2016 | 40 | Hughes 1968               | 1334 | 1968 | 40 | 1334 |
| Sevara et al. 2016 | 40 | Humme et al. 2006b        | 1335 | 2006 | 40 | 1335 |
| Sevara et al. 2016 | 40 | Jahjah & Ulivieri 2010    | 34   | 2010 | 40 | 34   |
| Sevara et al. 2016 | 40 | Kamagata et al. 2005      | 1337 | 2005 | 40 | 1337 |
| Sevara et al. 2016 | 40 | Kenzler & Lambers 2015    | 1338 | 2015 | 40 | 1338 |
| Sevara et al. 2016 | 40 | Kettig & Landgrebe 1976   | 826  | 1976 | 40 | 826  |
| Sevara et al. 2016 | 40 | Kokalj et al. 2011        | 1340 | 2011 | 40 | 1340 |
| Sevara et al. 2016 | 40 | Kraus & Otepka 2005       | 1341 | 2005 | 40 | 1341 |
| Sevara et al. 2016 | 40 | Lambers & Zingman 2013    | 13   | 2013 | 40 | 13   |
| Sevara et al. 2016 | 40 | Lasaponara & Masini 2006  | 1343 | 2006 | 40 | 1343 |
| Sevara et al. 2016 | 40 | Lasaponara & Masini 2009  | 1344 | 2009 | 40 | 1344 |
| Sevara et al. 2016 | 40 | Lasaponara et al. 2011b   | 1345 | 2011 | 40 | 1345 |
| Sevara et al. 2016 | 40 | Lillesand & Kiefer 1994   | 279  | 1994 | 40 | 279  |
| Sevara et al. 2016 | 40 | Liu & Xia 2010            | 1347 | 2010 | 40 | 1347 |
| Sevara et al. 2016 | 40 | Loecker et al. 2009       | 1348 | 2009 | 40 | 1348 |
| Sevara et al. 2016 | 40 | Mahalanobis 1936          | 1349 | 1936 | 40 | 1349 |
| Sevara et al. 2016 | 40 | Mandlburger et al. 2009b  | 179  | 2009 | 40 | 179  |
| Sevara et al. 2016 | 40 | Nerman 1918               | 1351 | 1918 | 40 | 1351 |
| Sevara et al. 2016 | 40 | Neubauer 2012             | 1352 | 2012 | 40 | 1352 |
| Sevara et al. 2016 | 40 | Neugebauer 1995           | 1353 | 1995 | 40 | 1353 |
| Sevara et al. 2016 | 40 | Opitz & Cowley 2013       | 1354 | 2013 | 40 | 1354 |
| Sevara et al. 2016 | 40 | Platt & Rapoza 2008       | 888  | 2008 | 40 | 888  |
| Sevara et al. 2016 | 40 | Pregesbauer 2013          | 1277 | 2013 | 40 | 1277 |
| Sevara et al. 2016 | 40 | Schiewe 2002              | 339  | 2002 | 40 | 339  |
| Sevara et al. 2016 | 40 | Schneider et al. 2015     | 36   | 2015 | 40 | 36   |
| Sevara et al. 2016 | 40 | Sevara 2013               | 1359 | 2013 | 40 | 1359 |
| Sevara et al. 2016 | 40 | Sevara & Pregesbauer 2014 | 1360 | 2014 | 40 | 1360 |

| Sevara et al. 2016  | 40 | Sittler 2004                    | 1361 | 2004 | 40 | 1361 |
|---------------------|----|---------------------------------|------|------|----|------|
| Sevara et al. 2016  | 40 | Smeulders et al. 2000           | 513  | 2000 | 40 | 513  |
| Sevara et al. 2016  | 40 | Townshend 1981                  | 1363 | 1981 | 40 | 1363 |
| Sevara et al. 2016  | 40 | Townshend et al. 2000           | 1364 | 2000 | 40 | 1364 |
| Sevara et al. 2016  | 40 | Trier & Piloe 2012              | 249  | 2012 | 40 | 249  |
| Sevara et al. 2016  | 40 | Trier & Zortea 2015             | 1366 | 2015 | 40 | 1366 |
| Sevara et al. 2016  | 40 | Trinks et al. 2010              | 1367 | 2010 | 40 | 1367 |
| Sevara et al. 2016  | 40 | Trinks et al. 2014              | 1368 | 2014 | 40 | 1368 |
| Sevara et al. 2016  | 40 | Trnka 1991                      | 1369 | 1991 | 40 | 1369 |
| Sevara et al. 2016  | 40 | Tso & Maher 2009                | 1370 | 2009 | 40 | 1370 |
| Sevara et al. 2016  | 40 | Verhagen & Dragut 2012          | 949  | 2012 | 40 | 949  |
| Sevara et al. 2016  | 40 | Wessely 1998                    | 1372 | 1998 | 40 | 1372 |
| Sevara et al. 2016  | 40 | Yokoyama et al. 2002            | 1275 | 2002 | 40 | 1275 |
| Sevara et al. 2016  | 40 | Zaksek et al. 2011              | 1374 | 2011 | 40 | 1374 |
| Zingman et al. 2016 | 41 | Kothieringer et al. 2015        | 1375 | 2015 | 41 | 1375 |
| Zingman et al. 2016 | 41 | Lambers & Zingman 2013          | 13   | 2013 | 41 | 13   |
| Zingman et al. 2016 | 41 | Trier et al. 2009               | 248  | 2009 | 41 | 248  |
| Zingman et al. 2016 | 41 | Mayer 1999                      | 1378 | 1999 | 41 | 1378 |
| Zingman et al. 2016 | 41 | Lin & Nevatia 1998              | 1379 | 1998 | 41 | 1379 |
| Zingman et al. 2016 | 41 | Kim & Muller 1999               | 1380 | 1999 | 41 | 1380 |
| Zingman et al. 2016 | 41 | Croitoru & Doytsher 2004        | 1381 | 2004 | 41 | 1381 |
| Zingman et al. 2016 | 41 | Jung & Schramm 2004             | 1382 | 2004 | 41 | 1382 |
| Zingman et al. 2016 | 41 | Krishnamachari & Chellappa 1996 | 1383 | 1996 | 41 | 1383 |
| Zingman et al. 2016 | 41 | Benedek et al. 2012             | 1384 | 2012 | 41 | 1384 |
| Zingman et al. 2016 | 41 | Sirmacek & Unsalan 2011         | 1385 | 2011 | 41 | 1385 |
| Zingman et al. 2016 | 41 | Sirmacek & Unsalan 2009         | 1386 | 2009 | 41 | 1386 |
| Zingman et al. 2016 | 41 | Manno-Kovacs & Sziranyi 2013    | 1387 | 2013 | 41 | 1387 |
| Zingman et al. 2016 | 41 | Ortner et al. 2008              | 1388 | 2008 | 41 | 1388 |
| Zingman et al. 2016 | 41 | Liu et al. 2007b                | 1389 | 2007 | 41 | 1389 |
| Zingman et al. 2016 | 41 | Keller et al. 2008              | 1390 | 2008 | 41 | 1390 |
| Zingman et al. 2016 | 41 | Loy & Barnes 2004               | 1391 | 2004 | 41 | 1391 |
| Zingman et al. 2016 | 41 | Zhu et al. 2003                 | 1392 | 2003 | 41 | 1392 |
| Zingman et al. 2016 | 41 | Yu & Bajaj 2004                 | 1393 | 2004 | 41 | 1393 |
| Zingman et al. 2016 | 41 | Zingman et al. 2013a            | 1394 | 2013 | 41 | 1394 |
| Zingman et al. 2016 | 41 | Moon et al. 2002                | 21   | 2002 | 41 | 21   |
| Zingman et al. 2016 | 41 | Descombes & Zerubia 2002        | 1396 | 2002 | 41 | 1396 |
| Zingman et al. 2016 | 41 | Verdie & Lafarge 2014           | 1397 | 2014 | 41 | 1397 |
| Zingman et al. 2016 | 41 | Krizhevsky et al. 2012          | 1398 | 2012 | 41 | 1398 |
| Zingman et al. 2016 | 41 | Simonyan & Zisserman 2015       | 1399 | 2015 | 41 | 1399 |
| Zingman et al. 2016 | 41 | Chatfield et al. 2014           | 1400 | 2014 | 41 | 1400 |
| Zingman et al. 2016 | 41 | Sermanet et al. 2014            | 1401 | 2014 | 41 | 1401 |
| Zingman et al. 2016 | 41 | Szegedy et al. 2015             | 1402 | 2015 | 41 | 1402 |
| Zingman et al. 2016 | 41 | Dalal & Triggs 2005             | 1403 | 2005 | 41 | 1403 |
|                     |    |                                 |      |      |    |      |

| Zingman et al. 2016 | 41 | Zingman et al. 2014           | 1404 | 2014 | 41 | 1404 |
|---------------------|----|-------------------------------|------|------|----|------|
| Zingman et al. 2016 | 41 | Zingman et al. 2013b          | 1405 | 2013 | 41 | 1405 |
| Zingman et al. 2016 | 41 | Lindeberg 1998                | 1406 | 1998 | 41 | 1406 |
| Zingman et al. 2016 | 41 | Grigorescu et al. 2004        | 1407 | 2004 | 41 | 1407 |
| Zingman et al. 2016 | 41 | Papari & Petkov 2011b         | 1408 | 2011 | 41 | 1408 |
| Zingman et al. 2016 | 41 | Grompone von Gioi et al. 2010 | 1409 | 2010 | 41 | 1409 |
| Zingman et al. 2016 | 41 | Siddiqi et al. 2002           | 1410 | 2002 | 41 | 1410 |
| Zingman et al. 2016 | 41 | Pizer et al. 2003             | 1411 | 2003 | 41 | 1411 |
| Zingman et al. 2016 | 41 | Dimitrov et al. 2003          | 1412 | 2003 | 41 | 1412 |
| Zingman et al. 2016 | 41 | Engel & Curio 2008            | 1413 | 2008 | 41 | 1413 |
| Zingman et al. 2016 | 41 | Xu & Prince 1998              | 1414 | 1998 | 41 | 1414 |
| Zingman et al. 2016 | 41 | Duda & Hart 1972              | 1192 | 1972 | 41 | 1192 |
| Zingman et al. 2016 | 41 | Lam et al. 1992               | 1416 | 1992 | 41 | 1416 |
| Zingman et al. 2016 | 41 | Duda & Hart 1973              | 1417 | 1973 | 41 | 1417 |
| Zingman et al. 2016 | 41 | Bron & Kerbosch 1973          | 1418 | 1973 | 41 | 1418 |
| Zingman et al. 2016 | 41 | Fukunaga 1990                 | 1419 | 1990 | 41 | 1419 |
| Zingman et al. 2016 | 41 | Devlin et al. 1981            | 1420 | 1981 | 41 | 1420 |
| Zingman et al. 2016 | 41 | Hariharan et al. 2012         | 1421 | 2012 | 41 | 1421 |
| Zingman et al. 2016 | 41 | Lambers & Reitmaier 2013      | 387  | 2013 | 41 | 387  |
| Zingman et al. 2016 | 41 | Zingman et al. 2012           | 402  | 2012 | 41 | 402  |
| Zingman et al. 2016 | 41 | Otsu 1979                     | 1424 | 1979 | 41 | 1424 |
| Zingman et al. 2016 | 41 | Haykin 2009                   | 1425 | 2009 | 41 | 1425 |
| Zingman et al. 2016 | 41 | LeCun et al. 2015             | 1426 | 2015 | 41 | 1426 |
| Zingman et al. 2016 | 41 | Oquab et al. 2014             | 1427 | 2014 | 41 | 1427 |
| Zingman et al. 2016 | 41 | Donahue et al. 2014           | 1428 | 2014 | 41 | 1428 |
| Zingman et al. 2016 | 41 | Razavian et al. 2014          | 1429 | 2014 | 41 | 1429 |
| Zingman et al. 2016 | 41 | Girshik et al. 2015           | 1430 | 2015 | 41 | 1430 |
| Zingman et al. 2016 | 41 | Penatti et al. 2015           | 1431 | 2015 | 41 | 1431 |
| Zingman et al. 2016 | 41 | Russakovsky et al. 2015       | 1432 | 2015 | 41 | 1432 |
| Zingman et al. 2016 | 41 | Jia et al. 2014               | 1433 | 2014 | 41 | 1433 |
| Zingman et al. 2016 | 41 | Vedaldi & Lenc 2015           | 1434 | 2015 | 41 | 1434 |
| Zingman et al. 2016 | 41 | Vedaldi & Fulkerson 2016      | 1435 | 2016 | 41 | 1435 |
| Zingman et al. 2016 | 41 | Schlesinger & Hlavac 2002     | 1436 | 2002 | 41 | 1436 |
| Zingman et al. 2016 | 41 | Fawcett 2006                  | 1437 | 2006 | 41 | 1437 |
| Zingman et al. 2016 | 41 | Krzanowski & Hand 2009        | 1438 | 2009 | 41 | 1438 |
| Zingman et al. 2016 | 41 | Hanley & McNeil 1982          | 1439 | 1982 | 41 | 1439 |
| Zingman et al. 2016 | 41 | Pepik et al. 2015             | 1440 | 2015 | 41 | 1440 |
| Stott et al. 2015   | 42 | Evans 2007                    | 1441 | 2007 | 42 | 1441 |
| Stott et al. 2015   | 42 | Hejcman & Smrz 2010           | 1034 | 2010 | 42 | 1034 |
| Stott et al. 2015   | 42 | Bennett et al. 2013           | 1443 | 2013 | 42 | 1443 |
| Stott et al. 2015   | 42 | Beck 2011                     | 1444 | 2011 | 42 | 1444 |
| Stott et al. 2015   | 42 | Jones & Evans 1975            | 1445 | 1975 | 42 | 1445 |
| Stott et al. 2015   | 42 | Brophy & Cowley 2005          | 927  | 2005 | 42 | 927  |

| Stott et al. 2015 | 42 | Hejcman et al. 2011          | 1447 | 2011 | 42 | 1447 |
|-------------------|----|------------------------------|------|------|----|------|
| Stott et al. 2015 | 42 | Bennett et al. 2012          | 1448 | 2012 | 42 | 1448 |
| Stott et al. 2015 | 42 | Verhoeven et al. 2013        | 1449 | 2013 | 42 | 1449 |
| Stott et al. 2015 | 42 | Bennett et al. 2012          | 926  | 2012 | 42 | 926  |
| Stott et al. 2015 | 42 | Cowley 2002                  | 1451 | 2002 | 42 | 1451 |
| Stott et al. 2015 | 42 | Mills 2005                   | 1452 | 2005 | 42 | 1452 |
| Stott et al. 2015 | 42 | Cowley & Dickson 2007        | 1453 | 2007 | 42 | 1453 |
| Stott et al. 2015 | 42 | Rowlands & Sarris 2007       | 1454 | 2007 | 42 | 1454 |
| Stott et al. 2015 | 42 | Verhoeven 2012               | 950  | 2012 | 42 | 950  |
| Stott et al. 2015 | 42 | Bernardini et al. 2013       | 1456 | 2013 | 42 | 1456 |
| Stott et al. 2015 | 42 | Masini & Lasaponara 2013     | 1457 | 2013 | 42 | 1457 |
| Stott et al. 2015 | 42 | Challis et al. 2008          | 1311 | 2008 | 42 | 1311 |
| Stott et al. 2015 | 42 | Chase et al. 2011            | 1459 | 2011 | 42 | 1459 |
| Stott et al. 2015 | 42 | Evans et al. 2013            | 1460 | 2013 | 42 | 1460 |
| Stott et al. 2015 | 42 | Johnson & Quimet 2014        | 1136 | 2014 | 42 | 1136 |
| Stott et al. 2015 | 42 | Cui et al. 2010              | 1462 | 2010 | 42 | 1462 |
| Stott et al. 2015 | 42 | Challis et al. 2011          | 1463 | 2011 | 42 | 1463 |
| Stott et al. 2015 | 42 | Challis et al. 2011          | 1464 | 2011 | 42 | 1464 |
| Stott et al. 2015 | 42 | Briese et al. 2013           | 1465 | 2013 | 42 | 1465 |
| Stott et al. 2015 | 42 | Briese et al. 2014           | 1466 | 2014 | 42 | 1466 |
| Stott et al. 2015 | 42 | Hoefle et al. 2012           | 544  | 2012 | 42 | 544  |
| Stott et al. 2015 | 42 | Doneus & Briese 2006         | 1468 | 2006 | 42 | 1468 |
| Stott et al. 2015 | 42 | Doneus et al. 2008           | 169  | 2008 | 42 | 169  |
| Stott et al. 2015 | 42 | Lasaponara et al. 2011b      | 1345 | 2011 | 42 | 1345 |
| Stott et al. 2015 | 42 | Mallet & Bretar 2009         | 176  | 2009 | 42 | 176  |
| Stott et al. 2015 | 42 | Wagner et al. 2006           | 188  | 2006 | 42 | 188  |
| Stott et al. 2015 | 42 | Mallet et al. 2008           | 1473 | 2008 | 42 | 1473 |
| Stott et al. 2015 | 42 | Anderson et al. 2006         | 1474 | 2006 | 42 | 1474 |
| Stott et al. 2015 | 42 | Heinzel & Koch 2011          | 1475 | 2011 | 42 | 1475 |
| Stott et al. 2015 | 42 | Buddenbaum et al. 2013       | 1476 | 2013 | 42 | 1476 |
| Stott et al. 2015 | 42 | Zhang et al. 2014            | 1477 | 2014 | 42 | 1477 |
| Stott et al. 2015 | 42 | Lin & Mills 2010             | 175  | 2010 | 42 | 175  |
| Stott et al. 2015 | 42 | Morsdorf et al. 2006         | 1479 | 2006 | 42 | 1479 |
| Stott et al. 2015 | 42 | Zhuang & Mountrakis 2014     | 1480 | 2014 | 42 | 1480 |
| Stott et al. 2015 | 42 | Armitage et al. 2013         | 1481 | 2013 | 42 | 1481 |
| Stott et al. 2015 | 42 | Blackburn et al. 2014        | 1482 | 2014 | 42 | 1482 |
| Stott et al. 2015 | 42 | Englhart et al. 2013         | 1483 | 2013 | 42 | 1483 |
| Stott et al. 2015 | 42 | Hopkinson et al. 2008        | 1484 | 2008 | 42 | 1484 |
| Stott et al. 2015 | 42 | Pfennigbauer & Ulrich 2011   | 1485 | 2011 | 42 | 1485 |
| Stott et al. 2015 | 42 | Mesas-Carrascosa et al. 2012 | 1486 | 2012 | 42 | 1486 |
| Stott et al. 2015 | 42 | Beck 2007                    | 1487 | 2007 | 42 | 1487 |
| Stott et al. 2015 | 42 | Beck et al. 2007             | 375  | 2007 | 42 | 375  |
| Stott et al. 2015 | 42 | Rosnell & Honkavaara 2012    | 1489 | 2012 | 42 | 1489 |

# Appendix 4C

| Edge<br>ID | Edge reference                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101        | BRADLEY, R.; SMALL, C. (1985) - Looking for circular structures in post hole distributions:<br>Quantitative analysis of BRADLEY, R.; SMALL, C. (1985) - Looking for circular structures in post hole<br>distributions: Quantitative analysis of<br>two settlements from bronze age England Journal of Archaeological Science, 12, p. 285-297             |
| 102        | BRUNELLI, R.; POGGIO, T. (1993) - Face recognition: features versus templates. IEEE Transactions on PAMI. 15(10), p. 1042-1052.                                                                                                                                                                                                                          |
| 103        | BURROUGH, P. A.; MCDONNELL, R. A. (1998) - Principles of Geographical Information Systems. Oxford.                                                                                                                                                                                                                                                       |
| 104        | FLETCHER, M.; LOCK, G. (1984) - Post built structures at Danebury hillfort: an analytical search method with statistical discussion. Oxford Journal of Archaeology, 3 (2), p. 175-196.                                                                                                                                                                   |
| 105        | FLETCHER, M.; SPICER, D. (1992) - The Display and Analysis of Ridge-and Furrow from<br>Topographically Surveyed Data. In REILLY, R; RAHTZ, S., eds Archaeology and the information age: a<br>global perspective. London: Routledge.                                                                                                                      |
| 106        | HERZOG, I. (2001) - Ehemalige Materialentnahmegruben erkennen - Auswertung von Hoehendaten.<br>Archaeologische Informationen, 24, 1, p. 39-43.                                                                                                                                                                                                           |
| 107        | LAAN, W.; A. DE BOER (2005) - AHN onderzoek West-Veluwe. ADC rapport, Amersfoort.<br>MINISTRY OF PUBLIC WORKS (RIJKSWATERSTAAT) {2000)-Product Specification AHN2000<br>(Productspecificatie AHN 2000), in Dutch.                                                                                                                                        |
| 108        | SCHMIDT, S., J. BOFINGER, R.KELLER and S. KURZ. (2007) - LIDAR – High Resolution Raster Data as a Survey Tool, in: Figueiredo, A. and G. Leite Velho (eds.), The world is in your eyes. CAA2005. Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 33rd Conference, Tomar, March 2005. CAA Portugal, Tomar, pp. 255-260. |
| 109        | SITTLER, S.; DAEFFLER, M. {200S)-Assessing ancient landscapesfossilized underforests by using laser scanning: a pilot study to generate 3-D models ofridge andfurrow in the upper Rhine Valley, this publication.                                                                                                                                        |
| 110        | THEODORIDIS, S.; KOUTROUMBAS, K. (1999) - Pattern Recognition. London: Academic Press.                                                                                                                                                                                                                                                                   |
| 111        | THEUNISSEN, L. ( 1999) - Midden-bronstijdsamenlevingen in het zuiden van de Lage Landen. Ph.D. dissertation, Leiden University.                                                                                                                                                                                                                          |
| 112        | VAN ZIJVERDEN, W.; LAAN, W. (2004) - Landscape reconstructions and predictive modeling in archaeological research, using a LIDAR based DEM and digital boring databases. In: Archaeologie und Computer. Workshop 7 (Vienna 2004).                                                                                                                        |
| 113        | WALDUS W.; VAN DER VELDE, H. (red.) (2005) - Archeologie in vogelvlucht: een onderzoek naar de toepassingsmogelijkheden van het AHN voor de archeologie. ADC rapport (in press), Amersfoort.                                                                                                                                                             |
| 114        | Axelsson, P., 1999. Processing of laser scanner data — algorithms and applications. ISPRS J. Photogrammetry & Remote Sensing. 54(2): 138–147.                                                                                                                                                                                                            |
| 115        | Briese, C., 2004a. Breakline Modelling from Airborne Laser Scanner Data. PhD thesis, University of Vienna of Technology.                                                                                                                                                                                                                                 |
| 116        | Briese, C., 2004b. Three-dimensional modelling of breaklines from airborne laser scanner data. In:<br>International Archives of Photogrammetry and Remote Sensing, Vol.XXXV, B3, Istanbul, Turkey.                                                                                                                                                       |
| 117        | Briese, C. and Pfeifer, N., 2008. Line based reconstruction from terrestrial laser scanning data. Journal of Applied Geodesy 2(2), pp. 85–95.                                                                                                                                                                                                            |
| 118        | Brügelmann, R., 2000. Automatic breakline detection from airborne laser range data. In: International Archives of Photogrammetry and Remote Sensing, XXXIII, B3, Amsterdam, Netherlands, pp. 109–115.                                                                                                                                                    |
| 119        | Doneus, M. and Briese, C., 2006. Digital terrain modelling for archaeological interpretation within forested areas using fullwaveform laserscanning. In: The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, Cyprus.                                                                                             |

| 120 | Gomes-Pereira, L. and Janssen, L., 1999. Suitability of laser data for dtm generation: A case study in the context of road planning and design. ISPRS Journal of Photogrammetry and Remote Sensing 54, pp. 244–253.                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 121 | Gomes-Pereira, L. and Wicherson, R., 1999. Suitability of laser data for deriving geographical information – a case study in the context of management of fluvial zones. ISPRS Journal of Photogrammetry and Remote Sensing 54, pp. 105–114.  |
| 122 | Kager, H. 2004. Discrepancies between overlapping laser scanning strips - simultaneous fitting of aerial laser scanner strips. In International Archives of Photogrammetry and Remote Sensing, XXXV, B/1, Istanbul, Turkey, pp. 555–560.      |
| 123 | Karel, W., Briese, C. and Pfeifer, N., 2006. Dtm quality assessment. In: International Archives of Photogrammetry and Remote Sensing, XXXVI, 2, Vienna, Austria.                                                                              |
| 124 | Maas, HG., 2000. Least-squares matching with airborne laserscanning data in a tin structure. In:<br>International Archives of Photogrammetry and Remote Sensing, XXXIII, 3A, Amsterdam, Netherlands,<br>pp. 548–555.                          |
| 125 | Mandlburger, G. and Briese, C., 2007. Using airborne laser scanning for improved hydraulic models. In:<br>International Congress on Modeling and Simulation - MODSIM07 (ISBN: 978-09758400-4-7).                                              |
| 126 | Mandlburger, G., Hauer, C., Hoefle, B., Habersack, H. and Pfeifer, N., 2008. Optimisation of lidar derived terrain models for river flow modelling. Hydrology and Earth System Sciences Discussions 5, pp. 3605 – 3638.                       |
| 127 | Ressl, C., Kager, H. and Mandlburger, G., 2008. Quality checking of als projects using statistics of strip differences. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXVII, pp. 253–260.                            |
| 128 | Ressl, C., Mandlburger, G. and Pfeifer, N., 2009. Investigating adjustment of airborne laser scanning strips without usage of gnss/imu trajectory data. In: ISPRS Workshop Laserscanning 2009, Paris, FRANCE.                                 |
| 129 | Sui, L., 2002. Processing of laser scanner data and automatic extraction of structure lines. In:<br>International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.<br>XXXIV (Part 2), pp. 429–435.           |
| 114 | Axelsson, P., 1999. Processing of laser scanner data — algorithms and applications. ISPRS J. Photogrammetry & Remote Sensing. 54(2): 138–147.                                                                                                 |
| 131 | Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. In: IAPRS, Vol.XXXIII B4, Amsterdam, Netherlands.                                                                                                       |
| 132 | Frédéricque, B., Daniel, S., Bédard, Y., Paparoditis, N., 2008. Populating a building multi-representation data base with photogrammetric tools: Recent progress. ISPRS Journal of Photogrammetry and Remote Sensing 64 (4), 441_460.         |
| 133 | Douglas, D., Peucker, T., 1973. Algorithms for the reduction of the number of points required for represent a digitzed line or its caricature. Canadian Cartographer, 10(2):112–122.                                                          |
| 134 | Dorninger, P., Pfeifer, N., 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11):7323-7343.                                       |
| 135 | Gross, U., Thoennessen, and Hansen, W., 2005. 3d-modeling of urban structures. In: International Archives of Photogrammetry and RS, 36/3-W24, Vienna, Austria.                                                                                |
| 136 | Haithcoat, T.L., Song, W., Hipple, J.D., 2001. Building footprint extraction and 3D reconstruction from LiDAR data. In: Proceedings of the Remote Sensing and Data Fusion over Urban Areas. 8_9 November. IEEE/ISPRS, Roma, Italy, pp. 74_78. |
| 137 | Hu, X., Li, X., Zhang, Y., 2013. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration, IEEE Geoscience and Remote Sensing Letters, March.                                                  |
| 138 | Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4): 193-203.                                                           |
| 139 | Mayer, H., 2008. Object extraction in photogrammetric computer vision. ISPRS J. Photogrammetry & Remote Sensing. 63(2):213-222.                                                                                                               |
| 140 | Meng, X., Wang, L., Silván-Cárdenas, J., L., et al., 2009. A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing. 64(1): 117-124.                                             |
| 141 | Moussa, A., El-Sheimy, N., 2012. A new object based method for automated extraction of urban objects                                                                                                                                          |

|     | from airborne sensors data. XXII ISPRS Congress, 2012, Melbourne, Australia.                                                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 142 | Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., and Breitkopf, U., 2012. The ISPRS benchmark on urban object classification and 3D building reconstruction. XXII ISPRS Congress, 2012, Melbourne, Australia.                          |
| 143 | Rutzinger, M.,F. Rottensteiner, & N. Pfeifer. 2009. A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J. Selected Topics in Applied Earth Observations & Remote Sens. 2(1):11-20.                                   |
| 144 | Sithole, G., 2005. Segmentation and Classification of Airborne Laser Scanner Data, Ph.D. thesis, TU Delft.                                                                                                                                                         |
| 145 | Sithole, G., & G. Vosselman. 2004. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2): 85-101.                                          |
| 146 | Tóvári, D., Pfeifer, N., 2005. Segmentation based robust interpolation-a new approach to laser data filtering. IAPRS, 2005, 36(3): W19.                                                                                                                            |
| 147 | Vosselman, G., 2000. Slope based filtering of laser altimetry data. In IAPRS, Vol.XXXIII B3, Amsterdam, Netherlands.                                                                                                                                               |
| 148 | Wu, ST., Márquez, MG., 2003. A non-self-intersection Douglas-Peucker algorithm. Computer<br>Graphics and Image Processing. SIBGRAPI 2003. XVI Brazilian Symposium on. IEEE, 2003: 60-66.                                                                           |
| 149 | Zhang, J., Lin, X., 2012. Object-based classification of urban airborne LiDAR point clouds wich multiple echoes using SVM. XXII ISPRS Congress, 2012, Melbourne, Australia.                                                                                        |
| 150 | Zhou, QY., Neumann, U., 2009. A streaming framework for seamless building reconstruction from large-scale aerial lidar data. In Computer Vision and Pattern Recognition. IEEE Conference on (pp. 2759-2766). IEEE.                                                 |
| 151 | Atiquazzaman, M. and Akhtar, M.W., 1994. Complete line segment description using the Hough transform, Image Vision Comp., 12(5): 267-273.                                                                                                                          |
| 152 | Atiquazzaman, M. and Akhtar, M.W., 1995. A robust Hough transform technique for complete line segment description, Real-Time Imaging 1: 419-426.                                                                                                                   |
| 153 | Davies, E. R., 1988. Application of the generalized Hough transformation to corner detection. IEEE proceedings, Vol 135, Pt. E, No. 1.                                                                                                                             |
| 154 | Ballard, D.H. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2), pp. 111-122.                                                                                                                                          |
| 155 | Gonzalez, RC., Woods, RE. and Eddins, SL., 2004. Digital Image processing using MATLAB. Printed in USA, Pearson Prentice Hall. ISBN 0-13-008519-7. 609p.                                                                                                           |
| 156 | Hough, P.V.C., 1962. Method and Means for Recognizing Complex Patterns. U.S. Patent 3.069.654.                                                                                                                                                                     |
| 157 | Maas, H.G. and Vosselman, G., 1999. Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry & Remote Sensing Vol. 54, No. 2/3, pp. 153-163.                                                                   |
| 158 | Nguyen, V., Martinelli, A., Tomatis, N. and Siegwart, R., 2005. A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. IEEE/RSJ Proceedings. Int. conference on intelligent robots and systems, IROS, Edmonton, Canada. |
| 159 | Oda, K., Takano, T., Doihara, T. and Shibasaki, R., 2004. Automatic building extraction and 3-D city modeling from lidar data based on Hough transformation. Int. Arch. of Photogrammetry and Remote Sensing, Vol. XXXV, part B3.                                  |
| 160 | Overby, J., Bodum, L., Kjems, E. and Ilsoe, P. M., 2004. Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform. Int. Arch. of Photogrammetry and Remote Sensing, Vol. XXXV, part B3.                          |
| 161 | Rabbani, T. and Van den Heuvel, F., 2005. Efficient Hough transform for automatic detection of cylinders in point clouds. ISPRS Proceedings. Workshop Laser scanning. Enschede, the Netherlands, September 12-14, 2005.                                            |
| 162 | Richards, J. and Casasent, D.P., 1991. Extracting input-line position from Hough data, Appl. Opt., 30(20): 2899-2905.                                                                                                                                              |
| 163 | Rottensteiner, F., 2003. Automatic generation of high-quality building models from Lidar data. IEEE Computer Graphics and Applications 23(6), pp. 42-51.                                                                                                           |
| 164 | Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P., 2007.Hough transform and extended RANSAC algorithm for automatic detection of 3D building roof planes from Lidar data, IAPRS Volume XXXVI,                                                                      |

|       | Part 3 / W52, 2007.                                                                                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 165   | Vosselman, G. and Dijkman, S., 2001. 3D building model reconstruction from point clouds and ground                                                                                                   |
|       | plans. Int. Arch. of Photogrammetry and Remote Sensing, XXXIV-3/W4: 37-43.                                                                                                                           |
| 115   | Briese, C., 2004a. Breakline Modelling from Airborne Laser Scanner Data. PhD thesis, University of                                                                                                   |
|       | Vienna of Technology.                                                                                                                                                                                |
| 167   | Briese, C., B. Hoefle, H. Lehner, W. Wagner, and M. Pfenningbauer (2008). Calibration of full-waveform                                                                                               |
|       | airborne laser scanning data for object classification. In SPIE: Laser Radar Technology and                                                                                                          |
|       | Applications XIII.                                                                                                                                                                                   |
| 168   | Chauve, A., C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech (2009). Advanced                                                                                             |
|       | full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in                                                                                              |
| 1.60  | an alpine coniferous forest. International Journal of Remote Sensing 30(19), 5211–5228.                                                                                                              |
| 169   | Doneus, M., C. Briese, M. Fera, and M. Janner (2008). Archaeological prospection of forested areas                                                                                                   |
| 24    | using full-waveform airborne laser scanning. Journal of Archaeological Science 35(4), 882–893.                                                                                                       |
| 24    | Hoeffe, B., W. Mucke, M. Dutter, M. Rutzinger, and P. Dorninger (2009). Detection of building regions                                                                                                |
|       | Using an borne LiDAR – A new combination of raster and point cloud based GIS methods. In<br>Proceedings of the Cooinformatics Forum Salzburg, Salzburg, Austria, pp. 66, 75                          |
| 171   | Hofton M. I. Minster, and I. Blair (2000). Decomposition of laser altimeter waveforms. IEEE                                                                                                          |
| 1/1   | Transactions on Geoscience and Remote Sensing 38, 1989–1996                                                                                                                                          |
| 122   | Kager, H. 2004. Discrepancies between overlapping laser scanning strips - simultaneous fitting of                                                                                                    |
|       | aerial laser scanner strips. In International Archives of Photogrammetry and Remote Sensing, XXXV.                                                                                                   |
|       | B/1, Istanbul, Turkey, pp. 555–560.                                                                                                                                                                  |
| 138   | Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser                                                                                                    |
|       | scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4): 193-203.                                                                                                                    |
| 174   | Lehner, H. and C. Briese (2010). Radiometric calibration of full-waveform airborne laser scanning data                                                                                               |
|       | based on natural surfaces. In ISPRS Technical Commission VII Symposium, 100 Years ISPRS,                                                                                                             |
|       | Advancing Remote Sensing Science, Volume XXXVIII, Part 7B of The International Archives of                                                                                                           |
|       | Photogrammetry, Remote Sensing ans Spatial Information Sciences, pp. 360–365.                                                                                                                        |
| 175   | Lin, Y. and J. Mills (2009). Integration of full-waveform information into the airborne laser scanning                                                                                               |
| 1 - 1 | data filtering process. In ISPRS Workshop Laserscanning 2009, Paris, FRANCE.                                                                                                                         |
| 176   | Mallet, C. and F. Bretar (2009). Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of                                                                                                 |
| 177   | Photogrammetry and Remote Sensing 64(1), 1–16.                                                                                                                                                       |
| 1//   | Manufourger, G., C. Briese, and N. Pieller (2007). Progress in LiDAR sensor technology - chance and challenge for DTM generation and data administration. In Proceedings of the 51th Photogrammetric |
|       | Week D Fritsch (ed.) Heidelberg Germany nn 159–169 Herbert Wichmann Verlag                                                                                                                           |
| 178   | Mandlburger G. C. Hauer B. Hoefle, H. Habersack and N. Pfeifer (2009). Ontimisation of LiDAR                                                                                                         |
|       | derived terrain models for river flow modelling. Hydrology and Earth System Sciences 13(8), 1453–                                                                                                    |
|       | 1466.                                                                                                                                                                                                |
| 179   | Mandlburger, G., J. Otepka, W. Karel, W. Wagner, and N. Pfeifer (2009, September 1-2, 2009).                                                                                                         |
|       | Orientation and Processing of Airborne Laser Scanning Data (opals) - Concept and First Results of a                                                                                                  |
|       | Comprehensive ALS Software. In ISPRS Workshop Laserscanning 2009, Paris, FRANCE.                                                                                                                     |
| 180   | Mücke, W., C. Briese, and M. Hollaus. 2010. Terrain echo probability assignment based on full-                                                                                                       |
|       | waveform airborne laser scanning observables. InW.Wagner and B. Szekely (Eds.), ISPRS Technical                                                                                                      |
|       | Commission VII Symposium 2010: 100 Years ISPRS – Advancing Remote Sensing Science.                                                                                                                   |
|       | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences                                                                                                        |
| 101   | XXXVIII, Part /A, pp. 15/–162.                                                                                                                                                                       |
| 101   | Otepka, J., C. Driese, and C. Nothegger (2006). First steps to a topographic information system of the                                                                                               |
|       | next generation. In symposium of isr is commission iv - deo spatial Databases for sustainable<br>Development Goa India                                                                               |
| 182   | Pfeifer N and G Mandlhurger 2008 Tonographic Laser Ranging and Scanning- Principles and                                                                                                              |
| 102   | Processing. Chapter Filtering and DTM Generation. CRC Press.                                                                                                                                         |
| 128   | Ressl. C., Mandlburger, G. and Pfeifer, N., 2009. Investigating adjustment of airborne laser scanning                                                                                                |
| -     | strips without usage of gnss/imu trajectory data. In: ISPRS Workshop Laserscanning 2009. Paris.                                                                                                      |
|       | FRANCE.                                                                                                                                                                                              |
| 184   | Roncat, A., G. Bergauer, & N. Pfeifer. 2010a. B-Spline Deconvolution for Differential Target Cross-                                                                                                  |
|       | Section Determination in Full-Waveform Laser Scanning. ISPRS Journal of Photogrammetry and                                                                                                           |

|     | Remote Sensing. In Review.                                                                                                                                                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 185 | Roncat, A., G. Bergauer, & N. Pfeifer. 2010b. Retrieval of the Backscatter Cross-Section in Full-                                                                          |
|     | Waveform Lidar                                                                                                                                                             |
|     | Data using B-Splines. In N. Paparoditis, M. Pierrot-Deseilligny, C. Mallet, and O. Tournaire (Eds.), PCV                                                                   |
|     | 2010 – ISPRS Technical Commission III Symposium on Photogrammetric Computer Vision and Image                                                                               |
|     | Analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information                                                                             |
| 196 | Sciences XXXVIII, Part 3B, pp. 137–142.                                                                                                                                    |
| 100 | mapping. In D. Fritsch (Ed.), Photogrammetric Week '07, pp. 227–241.                                                                                                       |
| 187 | Wagner, W. 2010. Radiometric calibration of small-footprint full-waveform airborne laser scanner                                                                           |
|     | measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing (Special Issue: 100 years ISPRS), in press. doi:10.1016/j.isprsjprs.2010.06.007. |
| 188 | Wagner, W., A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka. 2006. Gaussian decomposition and                                                                            |
|     | calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of                                                                   |
|     | Photogrammetry and Remote Sensing 60(2), 100–112.                                                                                                                          |
| 189 | Yu, A. W., M. A. Krainak, D. J. Harding, J. B. Abshire, & X. Sun. 2010. A spaceborne lidar for high-                                                                       |
|     | resolution topographic mapping of the earth's surface. SPIE newsroom,                                                                                                      |
| 114 | 001:10.1117/2.1201002.002055.                                                                                                                                              |
| 117 | Journal of Photogrammetry and Remote Sensing 54.138–147 1999                                                                                                               |
| 191 | Besl, P.L. & R.C. Jain, 1988. Segmentation through variable-order surface fitting. IEEE Trans. Pattern                                                                     |
|     | Analysis and Machine Intelligence, 10(2):167–191.                                                                                                                          |
| 192 | Duda R.O., P.E. Hart, and D.G. Stork. 2000. Pattern Classification. John Wiley & Sons, 2nd                                                                                 |
|     | edition.                                                                                                                                                                   |
| 193 | Gonzalez R & P Wintz 1987 Digital Image Processing Addison Wesley 2nd edition                                                                                              |
| 194 | Hartley, R. & A. Zisserman, 2000, Multiple View Geometry in Computer Vision, Cambridge University                                                                          |
| 171 | Press.                                                                                                                                                                     |
| 195 | Hoover, A., G. Jen-Baptiste, X. Jiang, P. Flynn, H. Bunke, D. Goldgof, K.                                                                                                  |
|     | Bowyer, D. Eggert, A. Fitzgibbon, & R. Fisher. 1996. An experimental comparison of range                                                                                   |
|     | image segmentation algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(7).                                                                               |
| 138 | Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser                                                                          |
|     | scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4): 193-203.                                                                                          |
| 197 | Martinetz, T., & K. Schulten. 1994. Topology representing networks. Neural Networks, 7(3):507–522.                                                                         |
| 198 | Rottensteiner, F., & C. Briese. 2002. A new method for building extraction in urban areas from high-                                                                       |
|     | resolution                                                                                                                                                                 |
|     | LIDAR data. In International Archives of Photogrammetry and Remote Sensing, volume XXXIV/3A,                                                                               |
| 100 | pages 295–301.                                                                                                                                                             |
| 199 | Wagner, W., A. Ulrich, & C. Briese. Der Laserstrahl und seine Interaktion mit der Erdoberflaeche. VGI,                                                                     |
|     | oesterreichische Zeitschrift f ur Vermessung und Geoinformation. To appear in 2004.                                                                                        |
| 200 | Wehr, A., & U. Lohr. 1999. Airborne laser scanning - an introduction and overview. ISPRS International                                                                     |
|     | Journal of Photogrammetry and Remote Sensing.                                                                                                                              |
| 201 | Anders, N.S., A.C. Seijmonsbergen, & W. Bouten. 2009. Modelling channel incision and alpine hillslope                                                                      |
| 202 | development using laser altimetry data. Geomorphology 113 (12), 35 46.                                                                                                     |
| 202 | Asseien, S., A. Seijmonsbergen. 2006. Expert-ariven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78 (3.4), 309 320      |
| 27  | Benz, U., P. Hofmann, G. Willhauck, I. Lingenfelder, M. Hevnen, 2004. Multi-resolution, object-oriented                                                                    |
|     | fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Rem. Sens 58                                                                         |
|     | (3 4), 239 258.                                                                                                                                                            |
| 204 | Bailly, J., P. Lagacherie, C. Millier, C. Puech, & P. Kosuth. 2008. Agrarian landscapes linear features                                                                    |
|     | detection from LiDAR: application to artificial drainage networks. Int. J. Remote Sens. 29, 3489 3508.                                                                     |
| 205 | Blaschke, T., Lang, S., Hav, G.L. 2008. Object Based Image Analysis. Springer, Heidelberg, Berlin, New                                                                     |
|     |                                                                                                                                                                            |

|     | York, 817 p.                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116 | Briese, C., 2004b. Three-dimensional modelling of breaklines from airborne laser scanner data. In:<br>International Archives of Photogrammetry and Remote Sensing, Vol.XXXV, B3, Istanbul, Turky.                                                                                                                                                                                           |
| 207 | Briese, C. 2010. Extraction of digital terrain models. In: Vosselman, G., Maas, HG. (Eds.), Airborne and Terrestrial Laser Scanning. Whittles Publishing, Boca Raton, FL.                                                                                                                                                                                                                   |
| 118 | Brügelmann, R. 2000. Automatic breakline detection from airborne laser range data. In: IAPRS, vol. 33, Part B3, pp. 109 116.                                                                                                                                                                                                                                                                |
| 209 | Brzank, A., C. Heipke, J. Goepfert, & U. Soergel. 2008. Aspects of generating precise digital terrain models in the Wadden Sea from lidar water classification and structure line extraction. ISPRS J. Photogramm. Remote Sens. 63 (5), 510 528.                                                                                                                                            |
| 210 | Clark, C.D. & C. Wilson. 1994. Spatial analysis of lineaments. Comput. Geosci. 20 (7 8), 1237-1258.                                                                                                                                                                                                                                                                                         |
| 211 | Geist, T., B. Hoefle, M. Rutzinger, N. Pfeifer, & J. Stoetter. 2009. Laser scanning - a paradigm change in<br>topographic data acquisition for natural hazard management. In: Veulliet, E., Stoetter, J., Weck-<br>Hannemann, H. (Eds.), Sustainable Natural Hazard Management in Alpine Environments. Springer,<br>Heidelberg, pp. 309 344.                                                |
| 212 | Glenn, N.F., D.R. Streutker, D.J. Chadwick, G.D. Thackray, & S.J. Dorsch. 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73 (1 2), 131 148.                                                                                                                                                |
| 213 | Gruber, A. 2004. Jahrbuch der Geologischen Bundesanstalt, Geological Survey of Austria, Vienna, in<br>Bericht 2004 über geologische Aufnahmen im Quartaer der Noerdlichen Tuxer Alpen auf Blatt 148<br>Brenner, pp. 337 343.                                                                                                                                                                |
| 214 | Hoefle, B., M. Rutzinger. 2011. Topographic airborne LiDAR in geomorphology: a technological perspective. Z. Geomorphol.                                                                                                                                                                                                                                                                    |
| 215 | Jordan, G., & B. Schott. 2005. Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sens. Environ. 94 (1), 31 38.                                                                                                                                                                                   |
| 138 | Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4): 193-203.                                                                                                                                                                                                         |
| 217 | Mavrantza, O., & D. Argialas. 2008. An object-oriented image analysis approach for the identification of geologic lineaments in a sedimentary geotectonic environment. In: Blaschke, T., Lang, S., Geoffrey, H. (Eds.), Object-Based Image Analysis, Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp. 383 398.                                                        |
| 218 | McKean, J., & J. Goering. 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57 (3 4), 331 351.                                                                                                                                                                                                               |
| 219 | Nyborg, M., J. Berglund, & C. Triumf. 2007. Detection of lineaments using airborne laser scanning technology: Laxemar-Simpevarp, Sweden. Hydrogeol. J. 15 (1), 29 32.                                                                                                                                                                                                                       |
| 220 | Pfeifer, N., G. Mandlburger. 2009. LiDAR data filtering and DTM generation. In: Shan, J., Toth, C.K. (Eds.), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Taylor & Francis, London, pp. 307 334.                                                                                                                                                            |
| 221 | Rutzinger, M., M. Maukisch, F. Petrini-Monteferri, & J. Stoetter. 2007. Development of algorithms for<br>the extraction of linear patterns lineaments from airborne laser scanning data. In: Kellerer-Pirklbauer,<br>A., Keiler, M., Embleton-Hamann, C., Stoetter, J. (Eds.), Proceedings Geomorphology for the Future.<br>Innsbruck University Press,<br>Obergurgl, Austria, pp. 161 168. |
| 222 | Shan, J., & C.K. Toth. 2009. Topographic Laser Ranging and Scanning - Principles and Processing. CRC Press, Taylor & Francis, London.                                                                                                                                                                                                                                                       |
| 145 | Sithole, G., & G. Vosselman. 2004. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2): 85-101.                                                                                                                                                                   |
| 224 | Vosselman, G., & Z. Liang. 2009. Detection of curbstones in airborne laser scanning data. In: IAPRS, vol. 38, Part 3/W8, pp. 111 116.                                                                                                                                                                                                                                                       |
| 225 | Vosselman, G., Maas, HG. (Eds.), 2010. Airborne and Terrestrial Laser Scanning. Whittles Publishing, Boca Raton, FL.                                                                                                                                                                                                                                                                        |

| 226 | Wladis, D., 1999, Automatic lineament detection using digital elevation models with second derivative          |
|-----|----------------------------------------------------------------------------------------------------------------|
|     | filters. Photogramm. Eng. Remote Sens. 65 (4), 453 458.                                                        |
| 227 | Wood, J.D., 1996. The Geomorphological Characterisation of Digital Elevation Models. Ph.D. Thesis,             |
|     | University of Leicester, Leicester.                                                                            |
| 243 | Aurdal, L., Eikvil, L., Koren, H., Loska, A., 2006. Semi-automatic search for cultural heritage sites in       |
|     | satellite images. In: From Space to Place, Proceedings of the 2nd International Conference on Remote           |
|     | Sensing in Archaeology, Rome, Italy, December 4-7, 2006, pp. 1-6.                                              |
| 244 | Devereux, B. J., Amable, G. S., Crow, P., Cliff, A. D., 2005. The potential of airborne lidar for detection of |
|     | archaeological features under woodland canopies. Antiquity 79, pp. 648-660.                                    |
| 245 | Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning. Data mining, inference   |
|     | and prediction. Second edition. Springer, New York.                                                            |
| 246 | Prokop, R. J., Reeves, A. P. 1992. A survey of moment-based techniques for unoccluded object                   |
|     | representation and recognition. CVGIP: Graphical Models and Image Processing 54(5), pp. 438–460.               |
| 247 | Pudil, P., Novovičova, J., Kittler, J., 1994. Floating search methods in feature selection. Pattern            |
| 240 | Recognition Letters 15, pp. 1119-1125.                                                                         |
| 248 | Trier, Ø. D., Larsen, S. Ø., Solberg, R., 2009. Automatic detection of circular structures in high-            |
|     | resolution satellite images of agricultural land. Archaeological Prospection 16(1), pp. 1-15. DOI:             |
| 240 | Twice Q D. Dilg I. H. 2012 Automatic dataction of nit structures in airborna lason scenning data               |
| 249 | Archaeological Prospection to appear                                                                           |
| 250 | Anderson J.R. (1971) Land use classification schemes used in selected recent geographic applications           |
|     | of remote sensing. Photogrammetric Engineering, 37(4), 379–387.                                                |
| 251 | Baatz, M., & Schape, A. (2000). Multiresolution segmentation and optimization approaches for high              |
|     | quality multi-scale image segmentation. In J. Strobl (Ed.), Angewandte Geographische                           |
|     | Informationsverarbeitung XII AGIT symposium, Salzburg, Germany, 2000 (pp. 12–23).                              |
| 27  | Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-      |
|     | oriented fuzzy analysis of remote sensing data for GISready information. ISPRS Journal of                      |
|     | Photogrammetry and Remote Sensing, 58, 239–258.                                                                |
| 253 | Bhaskaran, S., Datt, B., Forster, B., Neal, T., & Brown, M. (2004). Potential of imaging spectroscopy and      |
|     | GIS for Hail-storm disaster mitigation. International Journal of Remote Sensing, 25(13), 2625–2639,            |
|     | (Publishers: Taylor and Francis).                                                                              |
| 254 | Blaschke, T., & Strobl, J. (2001). What's wrong with pixels? Some recent developments interfacing              |
| 255 | remote sensing and GIS. GIS Zeitschrift für Geoinformationssysteme, 6/2001, 12–17.                             |
| 255 | Bolstad, P. V., & Lillesand, T. M. (1991). Rapid maximum likelihood classification. Photogrammetric            |
|     | Engineering and Remote Sensing, 57, 67–74. Campbell, J. B. (1987). Introduction to remote sensing.             |
| 256 | Casals-Carrasco P. Kubo S. & Madhayan B. B. (2000). Application of spectral mixture analysis for               |
| 230 | terrain evaluation studies International Journal of Remote Sensing 21, 3039–3055                               |
| 257 | Clark D & Jantz S C (1995) Growth management techniques in the city of Carlshad Journal of Urban               |
|     | Planning and Development, 121(1), 11–18.                                                                       |
| 258 | Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and           |
|     | practices. Lewis Publishers                                                                                    |
| 259 | Cowen, D. J., & Jensen, J. R. (1998). In D. Liverman, E. F. Moran, R. R. Rindfuss, & P. C. Stern (Eds.),       |
|     | Extraction and modeling of urban attributes using remote sensing technology, people and pixels:                |
|     | Linking remote sensing and social science (pp. 164–188). Washington, DC: National Academy Press                |
| 260 | Dare, P. M. (2005). Shadow analysis in high-resolution satellite imagery of urban areas.                       |
|     | Photogrammetric Engineering & Remote Sensing, 71(2), 169–177.                                                  |
| 261 | Dean, A. M., & Smith, G. M. (2003). An evaluation of per-parcel land cover mapping using maximum               |
|     | likelihood class probabilities. International Journal of Remote Sensing, 24, 2905–2920.                        |
| 262 | Dial, G. F., Bowen, H., Gerlach, B., Grodecki, J., & Oleszczuk, R. (2003). IKONOS satellite, sensor,           |
|     | imagery, and products. Remote Sensing of Environment, 88, 23–36. doi:10.1016/S0034-                            |
| 262 | 4257(03)00229-3.                                                                                               |
| 263 | Forster, B. (1983). Some urban measurements from Landsat data. Photogrammetric Engineering, 49,                |
|     | 1073-1/0/.                                                                                                     |

| 264  | Gatrell, J. D., & Jensen, R. R. (2008). Sociospatial applications of remote sensing in urban environments.     |
|------|----------------------------------------------------------------------------------------------------------------|
|      | Geography Compass, 2, 728–743.                                                                                 |
| 265  | Gitas, I.Z., Mitri, G.H., Ventura, G., 2004. Object-based image classification for burned area mapping of      |
|      | Creus Cape, Spain. Remote Sensing of Environment 92 (3), 709-713.                                              |
| 266  | Goetz, S. J., Wright, R., Smith, A. J., Zinecker, E., & Schaub, E. (2003). Ikonos imagery for resource         |
|      | management: tree cover, impervious surfaces and riparian buffer analyses in the mid-Atlantic region.           |
|      | Remote Sensing of Environment, 88, 195–208.                                                                    |
| 267  | Hardin, P. J., Jackson, M. W., & Otterstrom, S. M. (2007). In R. R. Jensen, J. D. Gatrell, & D. McLean (Eds.), |
| 260  | Mapping, measuring, and modeling urban growth.                                                                 |
| 268  | Heliden, U. (1980). A test of Landsat-2 imagery and digital data for thematic mapping, illustrated by an       |
|      | University                                                                                                     |
| 260  | University.<br>Herold M. Coldstein N. C. & Clarke K. C. (2002). The spatiotemporal form of urban growth:       |
| 209  | merolu, M., Golustelli, N. C., & Glarke, K. C. (2005). The spatiotelliporal form of urbail growth.             |
| 270  | Horold M. & Sconan I. (2002). Object oriented manning and analysis of urban land use /cover using              |
| 270  | Ikenes data. In Proceedings of 22nd EAPSEL symposium geoinformation for European wide                          |
|      | integration Proque June 2002                                                                                   |
| 271  | Hofmann P (2001) Detecting building and roads from Ikonos data using additional elevation                      |
| 2/1  | information GeoBIT/GIS 6 28–33                                                                                 |
| 272  | Ippoliti-Ramilo, G. A., Epiphanio, I. C. N., & Shimabukuro, Y. E. I. (2003), Landsat-5 Thematic Mapper         |
|      | data for preplanting crop area evaluation in tropical countries. International Journal of Remote               |
|      | Sensing, 24(7), 1521–1534, (14).                                                                               |
| 273  | Ivits, E., & Koch, B. (2002). Object-oriented remote sensing tools for biodiversity assessment: a              |
|      | European approach. In. Geoinformation for European-White integration, proceedings of the 22nd                  |
|      | earSel, symposium. Netherland: Millpress Science publishers. (4–6 June).                                       |
| 274  | Jat, M. K., Garg, P. K., & Khare, D. (2008). Modeling urban growth using spatial analysis techniques: a        |
|      | case study of Ajmer city (India). International Journal of Remote Sensing, 29(2), 543–567.                     |
| 275  | Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and                      |
|      | socioeconomic attributes. Photogrammetric Engineering & RemoteSensing, 65(5), 611–622.                         |
| 276  | Jensen, J. R., & Im, J. (2007). Remote sensing change detection in urban environments. In R. R. Jensen, J.     |
|      | D. Gatrell, & D. McLean (Eds.), Geo-spatial technologies in urban environments: Policy, practice and           |
|      | pixels (2nd ed.). (pp. 7–30) Heidelberg: Springer-Verlag.                                                      |
| 277  | Kato, S., & Yamaguchi, Y. (2005). Analysis of urban heat-island effect using ASTER and ETM5 data:              |
|      | separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote          |
| 270  | Sensing of Environment, $99(1-2)$ , $44-54$ .                                                                  |
| 270  | Kim, M., & Madden, M. (2009). Determination of optimal scale parameters for alliance-leve; forest              |
|      | crassification og multispectral ikonos image. In. commission iv, we iv/4 on Proceeding of ist OBIA             |
| 279  | Lillesand T. M. & Kiefer, D. W. (1004). Demote consing and image interpretation /Themas M. Lillesand           |
| 275  | Ralph W. New York: Kiefer Wiley & Sons                                                                         |
| 280  | Lo C. P. & Choi I. (2004). A hybrid approach to urban land use/cover mapping using Landsat-7                   |
|      | Enhanced Thematic Mapper Plus (ETMb) images. International Journal of Remote Sensing, 25(14).                  |
|      | 2687–2700.                                                                                                     |
| 281  | Longley, P. A., Barnsley, M. I., & Donnay, J. P. (2001). Remote sensing and urban analysis: a research         |
|      | agenda. In JP. Donnay, M. J. Barnsley, & P. A. Longley (Eds.), Remote sensing and urban analysis (pp.          |
|      | 245–258). London: Taylor & Francis                                                                             |
| 282  | Lucieer, A., Stein, A., & Fisher, P. F. (2005). Texture-based segmentation of high-resolution remotely         |
|      | sensed imagery for identification of fuzzy objects. International Journal of Remote Sensing, 26(14),           |
|      | 2917–2936.                                                                                                     |
| 283  | Madhavan, B. B., Kubo, S., Kurisaki, N. T., & Sivakumar, V. L. N. (2001). Appraising the anatomy and           |
|      | spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through               |
|      | remote sensing. International Journal of Remote Sensing, 22, 789–806.                                          |
| 284  | Mather, P. M. (1987). Computer processing of remotely-sensed images. An introduction (1st ed.).                |
| 0.07 | Chichester: Wiley.                                                                                             |
| 285  | Pizzolato, A. N., & Haertel, V. (2003). On the application of Gabor filtering in supervised image              |

|     | classification. International Journal of Remote Sensing, 1366–5901(24), 2167–2189.                                                                                                                                                                                                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 286 | Richards, J. A. (1999). Remote sensing digital image analysis. Berlin: Springer-Verlag.                                                                                                                                                                                                                                                                                      |
| 287 | Richards, J. A., & Jia, X. (1999). Remote sensing digital image analysis: An introduction (3rd ed.). New York, NY: Springer-Verlag.                                                                                                                                                                                                                                          |
| 288 | Sanchez, T. (2004). Land use and growth impacts from highway capacity increases. Journal of Urban Planning and Development, 130(2),                                                                                                                                                                                                                                          |
| 289 | Sawaya, K., Olmanson, L., Holden, G., Sieracki, J., Heinert, N., & Bauer, M. (2003). Extending satellite remote sensing to local scales: land and water resource management using high resolution imagery. Remote Sensing of Environment, 88, 143–155. doi:10.1016/j.rse.2003.04.006.                                                                                        |
| 290 | Shackelford, A. K., & Davis, C. H. (2003). A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing, 41, 2167–2189.                                                                                                                              |
| 291 | Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27, 28–41.                                                                                                                                                                               |
| 292 | Shettigara, V. K. (1991). Robustness of Gaussian maximum likelihood and linear discriminant<br>classifiers. In. Proceedings of the International Geoscience and remote sensing Symposium, IGARSS<br>'91. Remote sensing Global Monitoring for Earth management, Helsinki University of technology,<br>Espoo, Finland, 3–6 June 1991, Vol. 3 (pp. 1830–1842). New York: IEEE. |
| 293 | Short, N. M. (1982). The landsat tutorial workbook. In: NASA reference Publication 1078. NASA.                                                                                                                                                                                                                                                                               |
| 294 | Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. (2007). Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data. International Journal of Remote Sensing, 28(22), 5167–5173, 20.                                                                                                                                 |
| 295 | Tapiador, F. J., & Casanova, J. L. (2003). Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landscape and Urban Planning, 62/2, 103–115.                                                                                                                                                                            |
| 296 | Thapa, R. B., & Murayama, Y. (2009). Urban mapping, accuracy, & image classification: a comparison of multiple approaches in Tsukuba City. Applied Geography, 29(2009), 135–144.                                                                                                                                                                                             |
| 297 | Thomas, I. L., Benning, V. M., & Ching, N. P. (1987). Classification of remotely sensed images. Bristol:<br>Adam Hilger.                                                                                                                                                                                                                                                     |
| 298 | Walker, J. S., & Blaschke, T. (2008). Object-based land-cover classification for the Phoenix metropolitan area: optimization vs. transportability. International Journal of Remote Sensing, 29(7), 2021–2040, 10 April 2008.                                                                                                                                                 |
| 299 | Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014.                                                                                                                                                                          |
| 300 | Weng, Q., & Quattrochi, D. A. (2006). Urban remote sensing. CRC Press/Taylor and Francis.                                                                                                                                                                                                                                                                                    |
| 301 | Wright, D. W. (1996). Infrastructure planning and sustainable development. Journal of Urban Planning and Development, 122(4), 111–117.                                                                                                                                                                                                                                       |
| 302 | Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., et al. (2006). Evaluating urban expansion and land use change in Shijiazhaung, China, by using GIS and remote sensing. Landscape and Urban Planning, 75, 69–80.                                                                                                                                               |
| 303 | Yan, P., Zhang, Y., Yang, D., Tang, J., Yu, X., Cheng, H., et al. (2006). Characteristics of aerosol ionic compositions in summer of 2003 at Lin'An of Yangtze Delta region. Acta Meteorologica Sinica, 20(3), 374–382.                                                                                                                                                      |
| 304 | Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Shirokauer. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72, 799–811.                                                                                                                         |
| 305 | Yuan, F. (2008). Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modeling. International Journal of Remote Sensing, 29(4), 1169–1184.                                                                                                                                                              |
| 306 | Yuan, F., & Bauer, M. E. (2006). Mapping impervious surface area using high resolution imagery: a comparison of object-oriented classification to per-pixel classification. In. Proceedings of American Society of Photogrammetry and remote sensing annual conference, May 1–5, 2006. Reno, NV: CD-ROM.                                                                     |

| 307 | Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change  |
|-----|-----------------------------------------------------------------------------------------------------------|
|     | analysis of the Twin Cities (Minnesota) Metropolitan Area by multi-temporal Landsat remote sensing.       |
|     | Remote Sensing of Environment, 98(2–3), 317–328.                                                          |
| 308 | Zeilhofer, P., & Topanotti, V. P. (2008), GIS and ordination techniques for evaluation of environmental   |
|     | impacts in informal settlements: a case study from Cuiaba', Central Brazil. Applied Geography, 28, 1–     |
|     | 15.                                                                                                       |
| 309 | Zhan, X., Sohlberg, R., Townshend, I., DiMiceli, C., Carroll, M., Eastman: Hansen, I., et al. (2002).     |
|     | Detection of land cover changes using MODIS 2.50 m data. Remote Sensing of Environment, 83, 336–          |
|     | 350.                                                                                                      |
| 310 | Zhou, O., & Robson, M. (2001). Automated rangeland vegetation cover and density estimation using          |
|     | ground digital images and spectral-contextual classifier. International Journal of Remote Sensing.        |
|     | 22(17), 3457–3470.                                                                                        |
| 311 | Zhou W & Troy A (2008) An object-oriented approach for analysing and characterizing urban                 |
|     | landscape at the parcel level International Journal of Remote Sensing 29(11) 3119–3135 10 June            |
|     |                                                                                                           |
| 312 | Aplin, P., Atkinson, P., Curran, P. 1999, Per-field classification of land use using the forthcoming very |
| -   | fine resolution satellite sensors: problems and potential solutions. Advances in Remote Sensing and       |
|     | GIS Analysis. Wiley and Son, Chichester, nn. 219–239, 1999.                                               |
| 251 | Baatz, M., Schape, A. 2000, Multiresolution Segmentation: an optimization approach for high quality       |
| _   | multi-scale image segmentation. Proceedings of Angewandte Geo. Informationsverarbeitung XII. in:          |
|     | Strohl, L. Blaschke, T. (Eds.), Wichmann, Heidelberg, pp. 12–23, 2000.                                    |
| 314 | Baatz, M., Benz, U., Dehghani, S. 2004, eCognition User Guide 4, Definiens Imagine.                       |
|     | http://www.Definiens-imaging.com.6-7 6-14.7-4.7-5.2004.                                                   |
| 315 | Brunn, A., Weidner, U. 1997, Extracting buildings from digital surface models, 3D Reconstruction and      |
|     | Modelling of Topographic Objects 32 (Part 3–4W2), 27–34, 1997.                                            |
| 316 | Campbell, B.I. 1987. Introduction to Remote Sensing. Guilford Press, New York, 1987.                      |
| 217 | Chang VI Li VR Adaptivo imago region growing IEEE Trang Imago Progogo 2 (6) 969 972 1004                  |
| 517 | Chang, T.L., El, A.B. Adaptive infage region-growing. IEEE Trans. Infage Process. 5 (0), 808–872, 1994.   |
| 318 | Couloigner, I., Ranchin, T. 2000. Mapping of urban areas: a multiresolution modeling approach for         |
| 210 | Semi-automatic extraction of streets. Photogramm. Eng. Rem. Sensing 66 (7), 867–874, 2000.                |
| 519 | Usatino, B., Schenk, T., Snin, S., Seo, S. 2003. Spectral interpretation based on multisensor fusion for  |
|     | urban mapping, in: Process of the 2nd GRSS/ISPRS Joint Workshop on Data fusion and remote sensing         |
| 320 | Over ui Dall al eds, Berlin, May, pp. 6–11, 2005.                                                         |
| 520 | Curran, F.J. 1965. Frinciples of Remote Sensing. Longman, New Tork, 1965.                                 |
| 321 | Acqua, F.D., Gamba, P. 2001. Detection of urban structures in SAR images by robust fuzzy clustering       |
|     | algorithms: the example of street tracking. IEEE Trans. Geosci. Rem. Sensing 39, 2287–2297, 2001.         |
| 322 | Dou, W., Chen, Y.H. 2005. Report of Urban Planning Module in MACRES Airborne Remote Sensing               |
|     | Programme. Malaysian Center for Remote Sensing (MACRES), Malaysia, 2005.                                  |
| 323 | Gamba, P., Houshmand, B. 2002. Joint analysis of SAR, LIDAR and aerial imagery over an urban              |
| 224 | environment. Int. J. Rem. Sensing 23 (20), 4439–4450, 2002.                                               |
| 324 | Gamba, P., Dell_Acqua, F., Dasarathy, B.V. 2005. Urban remote sensing using multiple data sets: past,     |
| 225 | present, and future [J]. Inform. Fusion 6, 319–326, 2005.                                                 |
| 325 | Garbay, C., Chassery, J.M., Brugal, G. 1986. An iterative region-growing process for cell image           |
|     | segmentation based on local color similarity and global shape criteria [J]. Anal. Quant. Cytol. Histol. 8 |
| 226 | (1), 25–34, 1986.                                                                                         |
| 326 | Haala, N. 1994. Detection of buildings by fusion of range and image data, in: Proc. ISPRS Congress        |
| 227 | Community III. Mu nchen, pp. 341–346, 1994.                                                               |
| 327 | Haala, N., Anders, K.H. 1997. Acquisition of 3D urban models by analysis of aerial images, digital        |
|     | surface models and existing 2D building information, in: SPIE Conference on Integrating                   |
|     | Protogrammetric Techniques with Scene Analysis and Machine Vision III. Orlando, Florida, pp. 212–         |
| 220 | 444, 1997.                                                                                                |
| 328 | Haala, N., Brenner, C. 1999. Extraction of buildings and trees in urban environments. ISPRS J.            |
| 220 | Protogramm. Kem. Sensing 54 (2–3), 130–137, 1999.                                                         |
| 329 | Hug, C., Wenr, A. 1997. Detecting and identifying topographic objects in imaging laser altimeter data.    |
|     | I ne International Archives of Photogrammetry & Remote Sensing 32 (Part 3–4W2), 19–26, 1997.              |

| 330  | Madhok, V., Landgrebe, D. 1999. Supplementing hyperspectral data with digital elevation, in: IEEE          |
|------|------------------------------------------------------------------------------------------------------------|
|      | Geoscience and Remote Sensing Symposium (IGARSS_99). Hamburg, Germany, June 1999, vol. I, pp.              |
|      | 59–61, 1999.                                                                                               |
| 331  | McFeeters, S.K. 1996. The use of normalized difference water index (NDW I) in the delineation of open      |
|      | water features [J]. Int. J. Rem. Sensing 17 (7), 1425–1432, 1996.                                          |
| 332  | Pesaresi, M. 1999. Textural classification of very high-resolution satellite imagery: empirical            |
|      | estimation of the interaction between window sizeand detection accuracy in urban environment, in:          |
|      | Proc. ICIP, vol. 1, pp. 114–118, 1999.                                                                     |
| 333  | Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 2nd ed Springer-Verlag, Berlin,     |
|      | 1993.                                                                                                      |
| 334  | Rottensteiner, F., Trinder, J., Clode, S., Kubik, K. 2003a. Detecting buildings and roof segments by       |
|      | combining LIDAR data and multispectral images, in: Proceedings of Image and Vision Computing New           |
|      | Zealand (IVCNZ), Palmerston North (New Zealand), pp. 60–65, 2003a.                                         |
| 335  | Rottensteiner, F., & Briese, C. 2003. Automatic generation of building models from LIDAR data and the      |
|      | integration of aerial images [M], in: ISPRS workshop on 3-D reconstruction from airborne                   |
|      | laserscanner and In SAR data, Dresden, Germany, pp. 174–180, 2003.                                         |
| 336  | Rottensteiner, F., Trinder, J., Clode, S., Kubik, K. 2003b. Building detection using LIDAR data and        |
|      | multispectral images [A]. Process 7th Digital Image Computing: Techniques and Applications [C].            |
|      | Sydney, 2003b.                                                                                             |
| 337  | Rottensteiner, F., Trinder, J., Clode, S., Kubik, K. 2005. Using the Dempster–Shafer method for the        |
|      | fusion of LIDAR data and multi-spectral images for building detection [J]. Inform. Fusion 6, 283–300,      |
|      | 2005.                                                                                                      |
| 338  | Schenk, T., Csatho, B. 2002. Fusion of LIDAR data and aerial imagery for a more complete surface           |
|      | description. IAPRS. XXXIII. Graz, Austria, pp. 310–317, 2002.                                              |
| 339  | Schiewe, J. 2002. Segmentation of high-resolution remotely sensed data concepts, applications and          |
|      | problems. Symposium on Geospatial Theory, Processing and Applications, 2002.                               |
| 290  | Shackelford, A.K., & Davis, C.H. 2003. A combined fuzzy pixel-based and objectbased approach for           |
|      | classification of high-resolution multi-spectral data over urban areas. IEEE Trans. Geosci. Rem.           |
|      | Sensing 41 (10), 2354–2363, 2003.                                                                          |
| 341  | Shufel, J. 2000. Geometric Constraints for Object Detection and Delineation. Kluwer Academic,              |
| 0.40 | Dordrecht, 2000.                                                                                           |
| 342  | Sohn, G., & Dowman, I. 2003. Building extraction using LIDAR DEMs and IKONOS images [R], in:               |
| 242  | Proceedings of the ISPRS working group III/3 workshop. Dresden, Germany, 2003.                             |
| 343  | Steger, C. 1998. An unbiased detector of curvilinear structures. IEEE Trans.: Pattern Ann. Machine         |
| 244  | Intelligence 20, 113–125, 1998.                                                                            |
| 344  | Sulata, I. 2002. Feature extraction and 3D city modeling using airborne LIDAR and high-resolution          |
| 245  | uigital orthopholos. http://charlotte.utdahas.edu, 2002 (assess on 15th January, 2008).                    |
| 345  | Syed, S., Dare, P., & Jones, S. 2005. Automatic classification of land cover features with high resolution |
|      | hindgery and LiDAR data: an object-oriented approach.                                                      |
| 346  | Tatom A.L. Lowis, H.C. Atkinson, P.M. & Nixon, M.S. 2001, Super resolution manning of urban scenes         |
| 540  | from IKONOS imagory using a Honfield neural network Proc. ICAPSS 7, 2202, 2205, 2001                       |
| 347  | Teo T A & Chen I C 2004 Object-based building detection from LiDAR data and high resolution                |
| 517  | satallite imagery in: Proceedings of Asian Conference on Remote Sensing November 22-26 Ching.              |
|      | Mai Thailand 2004                                                                                          |
| 348  | Vosselman C. 2002 Fusion of laser scanning data mans and aerial photographs for building                   |
| 510  | reconstruction [C] IFFF International Geoscience and Remote Sensing Symposium and the 24th                 |
|      | Canadian Symposium on Remote Sensing IGARSS'02 Toronto nn 20–23 2002                                       |
| 349  | Abrams M 2000 The Advanced Spacehorne Thermal Emission and Reflection Radiometer (ASTER)                   |
| 017  | data products for the high spatial resolution imager on NASA's Terra Platform International Journal of     |
|      | Remote Sensing 21 (5) 847-859                                                                              |
| 251  | Reatz M Schane A 2000 Multiresolution segmentation an ontimization Approach for high quality               |
| 201  | multi-scale image segmentation In Strohl I Rlaschke T (Fds) Angewandte Geographische                       |
|      | Informations verarbeitung XII Wichmann Heidelberg nn 12-23                                                 |
| 351  | Baatz, M., Heynen, M., Hofmann, P., Lingenfelder, L. Milmer, M. Schaene, A. Weber, M. Willbauck, G.        |

|       | eCognition, 2002. Object Oriented Image Analysis, User guide (3.0). Definiens AG, Munich.                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 254   | Blaschke, T., Strobl, J., 2001. What's wrong with pixels? Some recent developments interfacing remote                                    |
|       | sensing and GIS. GISdZeitschrift fu" r Geoinformationssysteme 6, 12-17.                                                                  |
| 353   | Bracke, H., 1993. Pisidia in Hellenistic Times (334-25B.C.). In: Waelkens, M. (Ed.), Sagalassos I. First                                 |
|       | general report on the survey (1986-1989) and excavations (1990-1991). Acta Archaeologica                                                 |
|       | Lovaniensia Monographiae 5. Acta Archaeologica Lovaniensia Monographiae 5. Leuven University                                             |
| 0.7.4 | Press, Leuven, pp. 15-37.                                                                                                                |
| 354   | Buck, P.E., Sabol, D.E., Gillespie, A.R., 2003. Sub-pixel artifact detection using remote sensing. Journal of                            |
| 255   | Archaeological Science 30, 973-989.<br>Challia K. 2006. Airborno Lagar Altimatry in Alluviated Landaganag. Archaeological Drognostion 12 |
| 333   | (2) 103-127                                                                                                                              |
| 356   | Changlin, W., Ning, Y., Yueping, N., Lin, Y., 2004, Environmental Study and Information Extraction of                                    |
|       | Archaeological Features with Remote Sensing Imagery in Arid Area of Western China, Proceedings of                                        |
|       | the International Conference on Remote Sensing Archaeology, Beijing.                                                                     |
| 357   | Chavez, P.S., 1988. An improved dark-object subtraction technique for atmospheric scattering                                             |
|       | correction of multispectral data. Remote Sensing of Environment 24 (3), 459-479.                                                         |
| 358   | Clark, C.D., Garrod, S.M., Pearson, M.P., 1998. Landscape archaeology and remote sensing in southern                                     |
|       | Madagascar. International Journal of Remote Sensing 19 (8), 1461-1477.                                                                   |
| 359   | Colby, J.D., 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering and                                          |
| 260   | Remote Sensing 57 (5), 531-537.                                                                                                          |
| 360   | Conese, C., Gilabert, M.A., Maselli, F., Bottai, L., 1993. Topographic normalization of the scenes trough                                |
|       | the use of an atmospheric correction method and digital terrain models. Photogrammetric                                                  |
| 361   | Crippen D. 1007 The regression intersection method of adjusted image data for hand rationing                                             |
| 501   | International Journal of Remote Sensing 8 (2) 137-155                                                                                    |
| 362   | Dave IV Bernstein R 1982 Effect of terrain orientation and solar position on satellite-level                                             |
|       | luminance observations. Remote Sensing of Environment 12 (1), 331-348.                                                                   |
| 244   | Devereux, B.J., Amable, G.S., Crow, P., Cliff, A.D., 2005. The potential of airborne lidar for detection of                              |
|       | archaeological features under woodland canopies. Antiquity 79, 648-660.                                                                  |
| 364   | Emmolo, D., Franco, V., Lo Brutto, M., Orlando, P., Villa, B., 2004. Hyperspectral Techniques and GIS for                                |
|       | Arechaeological Investigation, Proceedings of the XXth ISPRS congress on Geo-imagery Bridging                                            |
| 265   | Continents, Istanbul, Turkey.                                                                                                            |
| 365   | Franklin, S.E., Glies, P.T., 1995. Radiometric processing of aerial satellite remote-sensing imagery.                                    |
| 366   | Configurers and Geosciences 21 (5), 415-425.                                                                                             |
| 500   | satellite image Tools for the archaeological research Proceedings of XYth ISPRS congress on Geo-                                         |
|       | imagery Bridging Continents Istanbul Turkey                                                                                              |
| 367   | Giada, S., De Groeve, T., Ehrlich, D., 2003. Information extraction from very high-resolution satellite                                  |
|       | imagery over Lukole refugee camp, Tanzania. International Journal of Remote Sensing 24 (22),                                             |
|       | 4251e4266.                                                                                                                               |
| 271   | Hofmann, P., 2001. Detecting informal settlements from Ikonos image data using methods of object                                         |
|       | oriented image analysisdan example from Cape Town (South Africa). In: Jurrgens, C. (Ed.), Remote                                         |
|       | Sensing of Urban Areas/Fernerkundung in urbanen Ra <sup>°</sup> umen. Regensburger Geographische Schriften,                              |
|       | pp. 107e118.                                                                                                                             |
| 369   | Jensen, J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall,                                  |
| 270   |                                                                                                                                          |
| 370   | Jensen, J.R., 2000. Remote Sensing of the Environment. An Earth Resource Perspective. Prentice Hall,                                     |
| 371   | Jordan C. Meijininger RMI Van Hinshergen DII Meulenkamn IF. Van Dijk D.M. 2005 Extraction                                                |
| 5,1   | of morphotectonic features from DEMs. Development and applications for study areas in Hungary and                                        |
|       | NW Greece. International Journal of Applied Earth Observation and Geoinformation 7 (3), 163-182                                          |
| 372   | Kaufman, Y.J., 1989. The atmospheric effect on remote sensing and its correction. In: Asrar. G. (Ed.).                                   |
|       | Theory and Application of Optical Remote Sensing. John Wiley and Sons, pp. 336e429.                                                      |
| 373   | Kiema, J.B.K., 2002. Texture analysis and data fusion in the extraction of topographic objects from                                      |
|       |                                                                                                                                          |

|     | satellite imagery. International Journal of Remote Sensing 23 (4), 767e776.                                                                                                                                                                                                                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 374 | Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote Sensing and Image Interpretation. John Wiley and Sons, New York.                                                                                                                                                                                                                                                           |
| 375 | Beck, A., K. Wilkinson and G. Philip. 2007. "Some techniques for improving the detection of archaeological features from satellite imagery." In Remote sensing for environmental monitoring, GIS applications, and geology VII. Proceedings of SPIE vol. 6749, edited by M. Ehlers and U. Michel. Florence: SPIE.                                                                     |
| 376 | Cowley, D. C. 2012. "In with the new, out with the old? Auto-extraction for remote sensing archaeology." In Remote sensing of the ocean, sea ice, coastal waters, and large water regions 2012. Proceedings of SPIE vol. 8532, edited by C. B. Botstater et al. Edinburgh: SPIE.                                                                                                      |
| 377 | De Laet, V., & K. Lambers. 2009. "Archaeological prospecting using high-resolution digital satellite<br>imagery: recent advances and future prospects - a session held at the Computer Applications and<br>Quantitative Methods in Archaeology (CAA) conference, Williamsburg, USA, March 2009." AARGnews -<br>The Newsletter of the Aerial Archaeological Research Group 39: 9-17.   |
| 378 | De Laet, V., E. Paulissen, K. Meuleman and M. Waelkens. 2009. "Effects of image characteristics on the identification and extraction of archaeological features from Ikonos-2 and Quickbird-2 imagery: Case study Sagalassos (southwest Turkey)." International Journal of Remote Sensing 30: 5655-5668.                                                                              |
| 192 | Duda, R. O., P. E. Hart & D. G. Stork. 2000. Pattern classification. New York: Wiley.                                                                                                                                                                                                                                                                                                 |
| 380 | Evans, D. and A. Traviglia. 2012. "Uncovering Angkor: integrated remote sensing applications in the archaeology of early Cambodia." In Satellite remote sensing: a new tool for archaeology, edited by R. Lasaponara and M. Masini, 197-230. Dordrecht: Springer.                                                                                                                     |
| 381 | Garrison, T. G., S. D. Houston, C. Golden, T. Inomata, Z. Nelson and J. Munson. 2008. "Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology." Journal of Archaeological Science 35: 2770-2777.                                                                                                                                                       |
| 382 | Giardino, M. J. 2011. "A history of NASA remote sensing contributions to archaeology." Journal of Archaeological Science 38: 2003-2009.                                                                                                                                                                                                                                               |
| 383 | Gleirscher, P. 2010. "Hochweidenutzung oder Almwirtschaft? Alte und neue Überlegungen zur<br>Interpretation urgeschichtlicher und roemerzeitlicher Fundstellen in den Ostalpen." In Archaeologie<br>in den Alpen: Alltag und Kult, edited by F. Mandl and H. Stadler, 43-62. Haus. i. E.: ANISA.                                                                                      |
| 384 | Gonzalez, R. and R. E. Woods. 2001. Digital image processing. Boston: Wesley Longman Publishing.                                                                                                                                                                                                                                                                                      |
| 385 | Hanbury, A. 2004. "The morphological top-hat operator generalised to multi-channel images." In<br>Proceedings of the international conference on pattern recognition, August 23-26, 2004, Cambridge,<br>United Kingdom, edited by J. Kittler, M. Petrou and M. Nixon, 672-675. Cambridge: ICPR.                                                                                       |
| 34  | Jahjah, M. and C. Ulivieri. 2010. "Automatic archaeological feature extraction from satellite VHR images." Acta Astronautica 66: 1302-1310.                                                                                                                                                                                                                                           |
| 387 | Lambers, K. & T. Reitmaier. 2013. "Silvretta Historica: Satellite-assisted archaeological survey in an alpine environment." In CAA 2010 Fusion of cultures: proceedings of the 38th annual conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010, edited by F. Contreras, M. Farjas and F. J. Melero, 543-546. Oxford: Archeopress. |
| 388 | Lasaponara, R. and N. Masini. 2012. "Remote sensing in archaeology: from visual data interpretation to digital data manipulation." In Satellite remote sensing: a new tool for archaeology, edited by R. Lasaponara and N. Masini, 3-16. Dordrecht: Springer.                                                                                                                         |
| 26  | Menze, B. H., S. Mühl and A. G. Sherratt. 2007. "Virtual survey on north Mesopotamian tell sites by means of satellite remote sensing." In Broadening horizons: multidisciplinary approaches to landscape study, edited by B. Ooghe and G. Verhoeven, 5-29. Newcastle: Cambridge Scholars Publishing.                                                                                 |
| 390 | Ojala,Timo, Matti Pietikaeinen and Topi Maenpaeae. 2002. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 971–987.                                                                                                                                           |
| 391 | Otsu, N. 1979. "A threshold selection method from graylevel histograms." IEEE Transactions on Systems, Man and Cybernetics 9: 62–66.                                                                                                                                                                                                                                                  |
| 392 | Parcak, S. H. 2009. Satellite remote sensing for archaeology. London: Routledge.                                                                                                                                                                                                                                                                                                      |
| 393 | Reitmaier, T. 2010. "Auf der Hut – Methodische Überlegungen zur praehistorischen Alpwirtschaft in der Schweiz." In Archaeologie in den Alpen: Alltag und Kult, edited by F. Mandl and H. Stadler, 219-238. Haus. i. E.: ANISA.                                                                                                                                                        |

| 394 | Reitmaier, T. (ed.) 2012. Letzte Jaeger, erste Hirten: Hochalpine Archaeologie in der Silvretta. Chur:<br>Archaeologischer Dienst Graubünden.                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 395 | Serra, J. 1988. Image analysis and mathematical morphology: theoretical advances. London: Academic Press.                                                                                                                                                                                 |
| 396 | Soille, P. 2003. Morphological image analysis: principles and applications. Berlin: Springer.                                                                                                                                                                                             |
| 397 | Soille, P. and M. Pesaresi. 2002. "Advances in mathematical morphology applied to geoscience and remote sensing." IEEE Transactions on Geoscience and Remote Sensing 40: 2042–2055.                                                                                                       |
| 398 | Szeliski, R. 2010. Computer vision: algorithms and applications. New York: Springer                                                                                                                                                                                                       |
| 248 | Trier, Ø. D., S. Ø. Larsen and R. Solberg. 2009. "Automatic detection of circular structures in high-<br>resolution satellite images of agricultural land." Archaeological Prospection 16: 1-15.                                                                                          |
| 249 | Trier, Ø. D. and L. H. Pilø. 2012. "Automatic detection of pit structures in airborne laser scanning data."                                                                                                                                                                               |
| 401 | Walser, C. and K. Lambers, 2012. "Human activity in the Silvretta massif and climatic developments                                                                                                                                                                                        |
| 101 | throughout the Holocene." eTopoi - Journal for Ancient Studies, special volume 3: 55-62.                                                                                                                                                                                                  |
| 402 | Zingman, I., D. Saupe and K. Lambers. 2012. "Morphological operators for segmentation of high contrast textured regions in remotely sensed imagery." In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, 22-27 July, 2012, 3451-3454. Munich: IEEE. |
| 403 | Asner, G. P., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 19, 3939–3958.                                                    |
| 404 | Baatz, M., & Schape, A. (1999). Object-oriented and multi-scale image analysis in semantic networks.<br>Proceedings of the 2nd international symposium on operationalization of remote sensing, 16–20<br>August 1999. Enschede: ITC.                                                      |
| 251 | Baatz, M., & Schape, A. (2000). Multiresolution segmentation and optimization approaches for high quality multi-scale image segmentation. In J. Strobl (Ed.), Angewandte Geographische Informationsverarbeitung XII AGIT symposium. Salzburg, Germany, 2000 (pp. 12–23).                  |
| 316 | Campbell, J. 1987. Introduction to remote sensing (4th ed.). New York: The Guilford Press.                                                                                                                                                                                                |
| 407 | Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data.<br>Remote Sensing of Environment, 37, 35–46.                                                                                                                                      |
| 258 | Congalton, R. G., & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, Florida, 137 p.                                                                                                                             |
| 409 | Cowen, D. J., Jensen, J. R., & Bresnahan, P. J. (1995). The design and implementation of an integrated geographic information system for environmental applications. Photogrammetric Engineering and Remote Sensing, 61, 1393–1404.                                                       |
| 410 | De Jong, S. M., & Burrough, P. A. (1995). A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images. Photogrammetric Engineering and Remote Sensing, 61, 1041–1053.                                                                            |
| 411 | Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102, 1–11.                                                                                                                                    |
| 412 | Ferro, C. J. S., & Warner, T. A. (2002). Scale and texture in digital image classification. Photogrammetric Engineering and Remote Sensing, 68, 51–63.                                                                                                                                    |
| 413 | Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J., & Lavigne, M. B. (2000). Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing, 21, 61–79.                                      |
| 414 | Gober, P., Brazel, A. J.,Myint, S., Quay, R.,Miller, A., Rossi, S., & Grossman-Clarke, S. (2010). Using watered landscapes to manipulate urban heat island effects: How much water will it take to cool Phoenix? Journal of the American Planning Association, 76, 109–121.               |
| 415 | Grimmond, C. S. B., & Oke, T. R. (2002). Turbulent heat fluxes in urban areas: Observations and local-<br>scale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology, 41,<br>792–810.                                                                     |
| 416 | Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high posting density lidar data. GIScience and Remote Sensing, 45, 209–228.                                                                                                                  |
| 417 | Im, J., Jensen, J. R., & Tullis, J. A. (2008). Object-based change detection using correlation image analysis and image segmentation techniques. International Journal of Remote Sensing, 29, 399–423.                                                                                    |

| 273 | Ivits, E., & Koch, B. (2002). Object-oriented remote sensing tools for biodiversity assessment: A<br>European approach. Proceedings of the 22nd EARSeL symposium, Prague, Czech Republic, 4–6 June<br>2002. Rotterdam. Netherlands: Millnress Science Publishers                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 419 | Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed.).<br>Upper Saddle River: Prentice-Hall 526 pp.                                                                                                                                                       |
| 275 | Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-<br>economic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611–622.                                                                                                                   |
| 421 | Lam, N. S. N., & Quattrochi, D. A. (1992). On the issues of scale, resolution, and fractal analysis in the mapping sciences. Professional Geographer, 44, 88–97.                                                                                                                                        |
| 422 | Lee, J. Y., & Warner, T. A. (2006). Segment based image classification. International Journal of Remote Sensing, 27, 3403–3412.                                                                                                                                                                         |
| 374 | Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote Sensing and Image Interpretation. John Wiley and Sons, New York.                                                                                                                                                                             |
| 424 | Lu, D., & Weng, Q. (2004). Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ Imagery. Photogrammetric Engineering and Remote Sensing, 70, 1053–1062.                                                                                                                   |
| 425 | Lucieer, A. (2004). Uncertainties in segmentation and their visualisation, Ph D., International Institute for Geo-Information Science and Earth Observation (ITC) and the University of Utrecht, Netherlands, 177 pp.                                                                                   |
| 426 | Moeller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9, 311–321.                                                                                        |
| 427 | Mueller, M., Segl, K., & Kaufmann, H. (2004). Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognition, 37, 1619–1628.                                                                                     |
| 428 | Munoz, X., Freixenet, J., Cufi, X., & Marti, J. (2003). Strategies for image segmentation combining region and boundary information. Pattern Recognition Letters, 24, 375–392.                                                                                                                          |
| 429 | Myint, S. W. (2006). A new framework for effective urban land use land cover classification: A wavelet approach. GIScience and Remote Sensing, 43, 155–178.                                                                                                                                             |
| 430 | Myint, S.W., Giri, C. P., Wang, L., Zhu, Z., & Gillette, S. (2008). Identifyingmangrove species and their surrounding land use and landcover classes using an object oriented approach with a lacunarity spatial measure. GIScience and Remote Sensing, 45, 188–208.                                    |
| 431 | Myint, S. W., & Lam, N. S. N. (2005). Examining lacunarity approaches in comparison with fractal and spatial autocorrelation techniques for urban mapping. Photogrammetric Engineering and Remote Sensing, 71, 927–937.                                                                                 |
| 432 | Myint, S. W., May, Y., Cerveny, R., & Giri, C. P. (2008). Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data. Sensors, 8, 1128–1156.                                                                                                        |
| 433 | Myint, S. W., Mesev, V., & Lam, N. S. N. (2006). Texture analysis and classification through a modified lacunarity analysis based on differential box counting method. Geographical Analysis, 38, 371–390.                                                                                              |
| 434 | Myint, S. W., Wentz, E., & Purkis, S. (2007). Employing spatial metrics in urban land use/land cover mapping: Comparing the Getis and Geary indices. Photogrammetric Engineering and Remote Sensing, 73, 1403–1415.                                                                                     |
| 435 | Navulur, K. (2007). Multispectral image analysis using the object-oriented paradigm. Boca Raton, FL: CRC Press, Taylor and Frances Group.                                                                                                                                                               |
| 436 | Okin, G. S., Roberts, D. A., Murray, B., & Okin, W. J. (2001). Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sensing of Environment, 77, 212–225.                                                                                               |
| 437 | Purkis, S. J., Myint, S. W., & Riegl, B. M. (2006). Enhanced detection of the coral Acropora cervicornis from satellite imagery using a textural operator. Remote Sensing of Environment, 101, 82–94.                                                                                                   |
| 438 | Roberts, D. A., Dennison, P. E., Gardner, M., Hetzel, Y. L., Ustin, S. L., & Lee, C. (2003). Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible Infrared Imaging Spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41, 1297–1310. |
| 439 | Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998). Mapping Chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267–279.                                                                    |
| 440 | Schowengerdt, R. A. (1995). Soft classification and spatial-spectral mixing. Proceedings of international workshop on soft computing in remote sensing data analysis. 4–5 December 1995.                                                                                                                |

|      | Milan, Italy.                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 441  | Stow, D., Hamada, Y., Coulter, L., & Anguelova, Z. (2008). Monitoring shrubland habitat changes                                                                                                              |
|      | through object-based change identification with airborne multi-spectral imagery. Remote Sensing of                                                                                                           |
|      | Environment, 112, 1051–1061.                                                                                                                                                                                 |
| 442  | Ameri, B. 2000. Automatic Recognition and 3D Reconstruction of Buildings from Digital Imagery,                                                                                                               |
|      | doctoral dissertation, DGKC 526, Inst. Photogrammetry, Stuttgart Univ., 2000.                                                                                                                                |
| 443  | Weidner, U. 1997. Gebaeudeerfassung aus digitalen Oberflaechenmodellen [Building Extraction from                                                                                                             |
|      | Digital Surface Models], doctoral dissertation, DGK-C 474, Inst. Photogrammetry, Bonn Univ., 1997.                                                                                                           |
| 444  | Rottensteiner, F., and C. Briese. 2002. "A New Method for Building Extraction in Urban Areas from                                                                                                            |
|      | High-Resolution Lidar Data," Int'l Archives Photogrammetry and Remote Sensing (IAPRS), vol. 34, no.                                                                                                          |
| 445  | 3A, 2002, p. 295-301.                                                                                                                                                                                        |
| 445  | Brenner, C. 2000. Dreidimensionale Gebaeuderekonstrutkion aus digitalen Oberflaechenmodellen und                                                                                                             |
|      | Grundrissen [Inree-Dimensional Building Reconstruction from Digital Surface Models and Ground<br>Plans, doctoral dissortation, DCK C 520, Inst. Photogrammetry, Stuttgart Univ. 2000                         |
| 165  | Vosselman C. & S. Dijkman 2001 "2D Building Model Reconstruction from Point Clouds and Ground                                                                                                                |
| 105  | Plans " Int'l Archives Photogrammetry and Remote Sensing (IAPRS) vol 34 no 3W4 2001 nn 37-43                                                                                                                 |
| 447  | Haala N C Brenner & KH Anders 1998 "Urban GIS from Laser Altimeter and 2D Man Data" Int'l                                                                                                                    |
|      | Archives Photogrammetry and Remote Sensing (IAPRS), vol. 32, no. 3, 1998, pp. 339-346.                                                                                                                       |
| 195  | Hoover, A., et al. 1996. "An Experimental Comparison of Range Image Segmentation Algorithms." IEEE                                                                                                           |
|      | Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 7, 1996, pp. 673-689.                                                                                                                         |
| 449  | Geibel, R., & U. Stilla. 2000. "Segmentation of Laser Altimeter Data for Building Reconstruction:                                                                                                            |
|      | Different Procedures and Comparison," Int'l Archives Photogrammetry and Remote Sensing (IAPRS),                                                                                                              |
|      | vol. 33, no. B3, 2000, pp. 326-334.                                                                                                                                                                          |
| 450  | Baillard, C., et al. 1999. "Automatic Line Matching and 3D Reconstruction of Buildings from Multiple                                                                                                         |
| 454  | Views," Int'l Archives Photogrammetry and Remote Sensing (IAPRS), vol. 32, no. 3, 1999, pp. 69-80.                                                                                                           |
| 451  | Rottensteiner, F. 2001. Semi-automatic Extraction of Buildings based on Hybrid Adjustment Using 3D                                                                                                           |
|      | Surface Models and Management of Building Data in a TIS, doctoral dissertation, inst.                                                                                                                        |
| 452  | Fuchs C 1998 Extraction polymorphor Bildstrukturon und ihro topologischo und geometrischo                                                                                                                    |
| 152  | Grunnierung [Extraction of Polymorphic Image Structures and their Topologic and Geometric                                                                                                                    |
|      | Grouping], doctoral dissertation, DGK-C 502, Inst. Photogrammetry, Bonn Univ., 1998                                                                                                                          |
| 453  | Kager, H. 1989. "ORIENT: A Universal Photogrammetric Adjustment System," Optical 3-D                                                                                                                         |
|      | Measurement, A. Grün and H. Kahmen, eds., Wichmann, 1989, pp. 447-455.                                                                                                                                       |
| 454  | Ayache, N., 1990. Stereovision and Sensor Fusion. MITPress.                                                                                                                                                  |
| 455  | Ayache, N. and Faugeras, O., 1987. Building a consistent 3D representation of a mobile robot                                                                                                                 |
|      | environment by combining multiple stereo views. In: Proc. IJCAI, pp. 808–810.                                                                                                                                |
| 456  | Baillard, C. and Zisserman, A., 1999. Automatic reconstruction of piecewise planar models from                                                                                                               |
|      | multiple views. In: Proc. CVPR.                                                                                                                                                                              |
| 457  | Baillard, C., Dissard, O. and Maıtre, H., 1998. Segmentation of urban scenes from aerial stereo imagery.                                                                                                     |
| 450  | In: Proc. ICPR, pp. 1405–1407.                                                                                                                                                                               |
| 458  | Berthod, M., Gabet, L., Giraudon, G. and Lotti, J. L., 1995. High-resolution stereo for the detection of huidings. In A Group of Kingham and D Agouria (ada). Automatic Extraction of Man. Mode Objects from |
|      | Aerial and Space Images Birkh"auser pp. 135–144.                                                                                                                                                             |
| 459  | Rignone E. Henricsson O. Fue P. and Stricker M. 1996 Automatic extraction of generic house roofs                                                                                                             |
| 10,5 | from high resolution aerial imagery In Proc FCCV nn 85–96                                                                                                                                                    |
| 460  | Brunn, A. and Weidner, U., 1998. Hierarchical bayesian nets for building extraction using dense digital                                                                                                      |
|      | surface models. Int. Journal of Photogrammetry and Remote Sensing 53(5), pp. 296–307.                                                                                                                        |
| 461  | Collins, R., Jaynes, C., , Cheng, YQ., Wang, X., Stolle, F., Riseman, E. and Hanson, A., 1998. The ascender                                                                                                  |
|      | system: Automated site modeling from multiple images. CVIU 72(2), pp. 143–162.                                                                                                                               |
| 462  | Crowley, J. and Stelmazyk, P., 1990. Measurement and integration of 3d structures by tracking edge                                                                                                           |
|      | lines. In: Proc. ECCV, pp. 269–280.                                                                                                                                                                          |
| 463  | Deriche, R. and Faugeras, O., 1990. Tracking line segments. In: Proc. ECCV, pp. 259–267.                                                                                                                     |
| 464  | Fischer, A., Kolbe, T. H., Lang, F., Cremers, A., F <sup></sup> orstner, W., Pl <sup></sup> umer, L. and Steinhage, V., 1998.                                                                                |
|      | Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D. CVIU 72(2), pp.                                                                                                         |

|     | 185–203.                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 465 | Fradkin, M., Roux, M. and Ma^itre, H., 1999a. Building detection from multiple views. In: ISPRS                                 |
|     | Conference on Automatic Extraction of GIS Objects from Digital Imagery.                                                         |
| 466 | Fradkin, M., Roux, M., Ma <sup>^</sup> itre, H. and Leloglu, U., 1999b. Surface reconstruction from multiple aerial             |
| 165 | images in dense urban areas. In: Proc. CVPR. to appear                                                                          |
| 467 | Girard, S., Gu'erin, P., Ma'itre, H. and Roux, M., 1998. Building detection from high resolution colour                         |
| 160 | Images. In: Int. symp. on Remote Sensing, Barcelona.                                                                            |
| 400 | of Robotics Research 14(6) nn 633-642                                                                                           |
| 469 | Haala, N. and Hahn, M., 1995, Data fusion for the detection and reconstruction of buildings. In:                                |
|     | Automatic Extraction of Man-Made Objects from Aerial and Space Images, Birkh <sup>a</sup> user, pp. 211–220.                    |
| 194 | Hartley, R. I., 1995. A linear method for reconstruction from lines and points. In: Proc. ICCV, pp. 882–                        |
|     | 887.                                                                                                                            |
| 471 | Horaud, R. and Skordas, T., 1989. Stereo correspondence through feature grouping and maximal                                    |
|     | cliques. IEEE TPAMI 11(11), pp. 1168–1180.                                                                                      |
| 472 | Huttenlocher, D. P., Klanderman, G. A. and Rucklidge, W. J., 1993. Comparing images using the                                   |
| 472 | Hausdorff distance. IEEE T-PAMI.                                                                                                |
| 475 | views (VIII 64(2) pp 193–229                                                                                                    |
| 474 | McGlone L and Shufelt L 1994 Projective and object space geometry for monocular building                                        |
|     | extraction. In: Proc. CVPR, pp. 54–61.                                                                                          |
| 475 | Medioni, G. and Nevatia, R., 1985. Segment-based stereo matching. Computer Vision, Graphics and                                 |
|     | Image Processing 31, pp. 2–18.                                                                                                  |
| 476 | Moons, T., Fr ere, D., Vandekerckhove, J. and Van Gool, L., 1998. Automatic modelling and 3d                                    |
| .== | reconstruction of urban house roofs from high resolution aerial imagery. In: Proc. ECCV, pp. 410–425.                           |
| 477 | Noronha, S. and Nevatia, R., 1997. Detection and description of buildings from multiple images. In:                             |
| 478 | Proc. UVPR, pp. 588–594.<br>Pour M and McKoown D M 1994 Feature matching for huilding extraction from multiple views. In:       |
| 470 | Proc. CVPR.                                                                                                                     |
| 479 | Schmid, C. and Zisserman, A., 1997. Automatic line matching across views. In: Proc. CVPR, pp. 666–671.                          |
| 480 | Shashua, A., 1994. Trilinearity in visual recognition by alignment. In: Proc. ECCV, Vol. 1, pp. 479–484.                        |
| 481 | Spetsakis, M. E. and Aloimonos, J., 1990. Structure from motion using line correspondences. IJCV 4(3),                          |
| 402 | pp. 171–183.                                                                                                                    |
| 482 | venkateswar, v. and Chellappa, R., 1995. Hierarchical stereo and motion correspondence using feature groupings IICV pp. 245–269 |
| 483 | Weidner II and Foerstner W 1995 Towards automatic building extraction from high-resolution                                      |
|     | digital elevation models. ISPRS j. of Photogrammetry and Remote Sensing 50(4), pp. 38–49.                                       |
| 484 | Zhang, Z., 1994. Token tracking in a cluttered scene. Image and Vision Computing 12(2), pp. 110–120.                            |
| 485 | Besl, P., 1986. Surfaces in Range Image Understanding. Springer.                                                                |
| 486 | Chakreyavanich, U., 1991. Regular Grid DEM Data Compression by Using Zero-Crossings: The                                        |
|     | Automatic Breakline Detection Method. PhD thesis, Columbus: Ohio State University. Report OSU-                                  |
|     | DGSS No. 412.                                                                                                                   |
| 487 | Foerstner, W., 1998. Image processing for feature extraction in digital intensity, color and range                              |
|     | Images. In: Proc. Of the                                                                                                        |
|     | 25 Pn Springer Lecture Notes on Earth Sciences                                                                                  |
| 120 | Gomes-Pereira, L. and Janssen, L., 1999. Suitability of laser data for DTM generation: A case study in                          |
| -   | the context of road planning and design. ISPRS Journal of Photogrammetry & Remote Sensing 54, pp.                               |
|     | 244-253.                                                                                                                        |
| 121 | Gomes-Pereira, L. and Wicherson, R., 1999. Suitability of laser data for deriving geographical                                  |
|     | information - a case study in the context of management of fluvial zones. ISPRS Journal of                                      |
|     | Photogrammetry & Remote Sensing 54(2-3), pp. 105–114.                                                                           |

| 490 | Huising, E. and Gomes-Pereira, L., 1998. Errors and accuracy estimates of laser data acquired by                                                                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | various laser scanning systems for topographic applications. ISPRS Journal of Photogrammetry &                                                                                                            |
| 401 | Kemote Sensing 53, pp. 245–261.                                                                                                                                                                           |
| 491 | Kraus, K., 1980. Photogrammetrie. Vol. I, D ummer Bohn.                                                                                                                                                   |
| 492 | Petzold, B., Reiss., P. and St <sup>°</sup> ossel,W., 1999. Laser scanning - surveying and mapping agencies are using                                                                                     |
|     | a new technique for the derivation of digital terrain models. ISPRS Journal of Photogrammetry &<br>Pomoto Sonsing 54(2, 2), pp. 95, 104                                                                   |
| 493 | Reed M 1997 Fugro FLI-MAP system EARSel, Newsletter Special Issue: Laser Scanning nn 18–21                                                                                                                |
| 494 | Sult M and Bhandarkar S. 1992 Three Dimensional Object Decemption from Pange Images. Springer                                                                                                             |
| 405 | Suk, M. and Bhandarkar, S., 1992. Thee-Dimensional Object Recognition from Range images. Springer.                                                                                                        |
| 495 | Weidner, U., 1994. Information-preserving surface restoration and feature extraction for digital                                                                                                          |
|     | Photobrammetry and Computer Vision' Munich                                                                                                                                                                |
| 496 | Wild, D. and Krzystek, P., 1996, Automatic breakline detection using an edge preserving filter. In:                                                                                                       |
|     | International Archives of Photogrammetry and Remote Sensing, Vol. XXXI, Part B3, Vienna, pp. 946–                                                                                                         |
|     | 952.                                                                                                                                                                                                      |
| 497 | Okada, S.; Takai, N. 2000. Classifications of Structural Types and Damage Patterns of Buildings for                                                                                                       |
|     | Earthquake Field Investigation. In Proceedings of the 12th World Conference on Earthquake                                                                                                                 |
| 400 | Engineering, Auckland, New Zealand, 30 January–4 February 2000.                                                                                                                                           |
| 498 | Helple, S.; Sallor, D.J. 2008. Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy concumption profiles. Energy Build, 2009, 40, 1426 |
|     | 1436                                                                                                                                                                                                      |
| 499 | Cheng, L.: Gong, I.: Chen, X.: Han, P. 2008, Building boundary extraction from high resolution imagery                                                                                                    |
|     | and lidar data. Int. Archive. Photogramm. Remote Sens. Spatial Inf. Sci. 2008, 37(Part B3), 693–698.                                                                                                      |
| 500 | Niemeyer, J.; Rottensteiner, F.; Soergel, U. 2014. Contextual classification of lidar data and building                                                                                                   |
|     | object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165.                                                                                                                     |
| 444 | Rottensteiner, F.; Briese, C. 2002. A New Method for Building Extraction in Urban Areas from High-                                                                                                        |
|     | Resulution LIDAR Data. In Proceedings of Commission IV Symposium –Geospatial Theory, Processing                                                                                                           |
| 502 | and Applications  , Ottawa, ON, Canada, 9–12 July 2001.                                                                                                                                                   |
| 502 | reconstruction from laser scanning data. ISPRS I. Photogramm. Remote Sens. 2013. 79. 29–43.                                                                                                               |
| 503 | Awrangjeb, M.; Ravanbakhsh, M.; Fraser, C.S. 2010. Automatic detection of residential buildings using                                                                                                     |
|     | LIDAR data and multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 457–467.                                                                                                                |
| 504 | Hermosilla, T.; Ruiz, L.A.; Recio, J.A.; Estornell, J. 2011. Evaluation of automatic building detection                                                                                                   |
| 505 | approaches combining high resolution images and lidar data. Remote Sens. 2011, 3, 1188–1210.                                                                                                              |
| 505 | Chen, Y.; Su, W.; Li, J.; Sun, Z. 2009. Hierarchical object oriented classification using very high                                                                                                       |
| 506 | Wurm M · Taubanbaack H · Path A · Dach S 2000 Urban Structuring Using Multisonsoral Pamata                                                                                                                |
| 500 | Sensing Data: By the Example of the German Cities Cologne and Dresden. In Proceedings of Urban                                                                                                            |
|     | Remote Sensing Event, Shanghai, China, 20–22 May 2009.                                                                                                                                                    |
| 507 | Barnsley, M.J.; Barr, S.L. 1997. Distinguishing urban land-use categories in fine spatial resolution land-                                                                                                |
|     | cover data using a graph-based, structural pattern recognition system. Comput. Environ. Urban Syst.                                                                                                       |
|     | 1997, 21, 209–225.                                                                                                                                                                                        |
| 508 | Herold, M.; Scepan, J.; Müller, A.; Günther, S. 2002. Object-Oriented Mapping and Analysis of Urban                                                                                                       |
|     | Land Use/Lover Using IKUNUS Data. In Proceedings of 22nd EARSeL Symposium Geoinformation for                                                                                                              |
| 509 | De Almeida I P: Morley I.C: Dowman II 2013 A graph-based algorithm to define urban topology                                                                                                               |
| 505 | from unstructured geospatial data. Int. J. Geogr. Inf. Sci. 2013, 27, 1514–1529.                                                                                                                          |
| 510 | Gonzalez-Aguilera, D.; Crespo-Matellan, E.; Hernandez-Lopez, D.; Rodriguez-Gonzalvez, P. 2013.                                                                                                            |
|     | Automated urban analysis based on LiDAR-derived building models. IEEE Trans. Geosci. Remote Sens.                                                                                                         |
|     | 2013, 51, 1844–1851.                                                                                                                                                                                      |
| 511 | Forestier, G.; Puissant, A.; Wemmert, C.; Gançarski, P. 2012. Knowledge-based region labeling for                                                                                                         |
| F10 | remote sensing image interpretation. Comput. Environ. Urban Syst. 2012, 36, 470–480.                                                                                                                      |
| 512 | Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z.; Yang, X. 2013. Integration of orthoimagery and lidar data                                                                                                |
|     | for object-based urban mematic mapping using random forests. Int. J. Remote sens. 2013, 34, 5166-                                                                                                         |

|            | 5186.                                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------|
| 513        | Smeulders, W.M.A.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. 2000. Content-based image retrieval at  |
|            | the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1349–1380.                 |
| 514        | Steiniger, S.; Lange, T.; Burghardt, D.; Weibel, R. 2008. An approach for the classification of urban    |
| <b>F1F</b> | building structures based on discriminant analysis techniques. Trans. GIS 2008, 12, 31–59.               |
| 515        | Arvor, D.; Durieux, L.; Andres, S.; Laporte, MA. 2013. Advances in geographic object-based image         |
|            | analysis with ontologies: A review of main contributions and limitations from a remote sensing           |
| 516        | Lüccher, D. Weihel, D. Purghardt, D. 2000. Integrating antological modelling and Payeoian information    |
| 510        | for nattern classification in tonographic vector data. Comput. Environ Urban Syst. 2009. 33, 363–374     |
| 517        | Cruber T.R. 1993. A translation approach to portable ontology specifications. J. Knowl. Acquis. Knowl.   |
| 017        | Based Syst. 1993. 5. 199–220.                                                                            |
| 518        | Wang, Z.; Schenk, T. 1998. Extracting Buildings Information from LiDAR Data. In Proceedings of ISPRS     |
|            | Commission III Symposium on Object Recognition and Scene Classification from Multispectral and           |
|            | Multisensor Pixels, Columbus, OH, USA, 6–10 July 1998; pp. 279–284.                                      |
| 519        | Alharthy, A.; Bethel, J. 2001. Heuristic Filtering and 3D Feature Extraction from LiDAR Data. In         |
|            | Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI,        |
|            | USA, 8–14 December 2001.                                                                                 |
| 520        | Elaksher, A.F.; Bethel, J.S. 2002. Building Extraction Using LiDAR Data. In Proceedings of ASPRS-ACSM    |
| 7.0.1      | Annual Conference and FIG XXII Congress, Wachington, DC, USA, 22–26 May 2002.                            |
| 521        | Bimal, R.K.; Kumar, S.R. 1992. An algorithm for polygonal approximation of digitized curves. Pattern     |
| 500        | Recognit. Lett. 1992, 13, 489–496.                                                                       |
| 522        | Hofmann, A.; Maas, H.G.; Strellein, A., 2002. Knowledge-based building detection based on laser          |
|            | scanner data and topographic map information. Int. Archives Photogramm. Remote Sens. 2002, 34,           |
| 523        | 109-1/4.                                                                                                 |
| 525        | LIDAR Data In Proceedings of ISPRS Congress Istanbul 2004. Istanbul Turkey 12-23 July 2004. nn           |
|            | 3-6.                                                                                                     |
| 524        | Miliaresis, G.; Kokkas, N. 2007. Segmentation and object-based classification for the extraction of the  |
|            | building class from LIDAR DEMs. Comput. Geosci. 2007, 33, 1076–1087.                                     |
| 525        | Evans, I. 1980. An integrated system for terrain analysis and slope mapping. Zeitschrift fuer            |
|            | Geomorphologie 1980, 36, 274–290.                                                                        |
| 526        | Jochem, A.; Hoefle, B.; Wichmann, V.; Rutzinger, M.; Zipf, A. 2012. Area-wide roof plane segmentation    |
| 505        | in airborne LiDAR point clouds. Comput. Environ. Urban Syst. 2012, 36, 54–64.                            |
| 527        | Wurm, M.; Taubenboeck, H.; Schardt, M.; Esch, T.; Dech, S. 2011. Object-based image information          |
|            | fusion using multisensor earth observation data over urban areas. Int. J. Imag. Data Fus. 2011, 2, 121–  |
| 528        | Agarwal P 2005 Ontological considerations in GIScience Int I Geogr Inf Sci 2005 19 501–536               |
| 520        | Lutz M. Klion E 2006 Ontological considerational of geographic information. Int J. Coogn. Inf. Sci. 2006 |
| 329        | 20 233–260                                                                                               |
| 530        | Lüscher P: Weihel R: Burghardt D 2008 Alternative Ontions of Using Processing Knowledge to               |
|            | Populate Ontologies for the Recognition of Urban Concepts. In Proceedings of 11th ICA Workshop on        |
|            | Generalisation and Multiple Representation, Montpellier, France, 20–21 June 2008.                        |
| 531        | De Bertrand de Beuvron, F.; Marc-Zwecker, S.; Puissant, A.; Zanni-Merk, C. 2013. From expert             |
|            | knowledge to formal ontologies for semantic interpretation of the urban environment from satellite       |
|            | images. Int. J. KnowlBased Intell. Eng. Syst. 2013, 17, 55–65.                                           |
| 532        | Thonnat, M. 2002. Knowledge-based techniques for image processing and image understanding. J. de         |
|            | Physique EDP Sci. 2002, 4, 189–235.                                                                      |
| 533        | Hudelot, C.; Thonnat, M. 2003. A Cognitive Vision Platform for Automatic Recognition of Natural          |
|            | Lomplex Ubjects. In Proceedings of the 15th IEEE International Conference on Tools with Artificial       |
| 524        | Interingence ICTAT 05, Sacramento, CA, USA, 5-5 NOVEMBER 2003                                            |
| 554        | semantics Pattern Recognit 2007 40 262-282                                                               |
| 535        | Guaring N 1998 Formal Ontology and Information Systems. In Proceedings of International                  |
| 220        | Guarmo, n. 1770. i ormai ontology and mitri mation bystems. In i foldeulligs of mitel haddlidi           |

|     | Conference on Formal Ontology in Information Systems (FOIS1998), Trento, Italy, 6–8 June 1998; pp. 3–15.                                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 536 | Masolo, C.; Borgo, S.; Gangemi, A.; Guarino, N.; Oltramari, A.; Oltramari, R.; Schneider, L.; Istc-cnr, L.P.;<br>Horrocks, I. 2002. The WonderWeb Library of Foundational Ontologies and the DOLCE Ontology;<br>WonderWeb Deliverable D17, Final Report; ISTC-CNR: Trento, Italy, 2002. |
| 537 | Raskin, R. 2014. Guide to SWEET Ontologies. NASA/Jet Propulsion Lab, Pasadena, CA, USA. Available online: http://sweet.jpl.nasa.gov/guide.doc (accessed on 30 January 2014).                                                                                                            |
| 538 | Mark, D.M.; Smith, B.; Egenhofer, M.; Hirtle, S. 2005. Ontological Foundations for Geographic<br>Information Science. In A Research Agenda for Geographic Information Science; McMaster, R.B., Usery,<br>E.L., Eds.; CRC Press: Boca Raton, FL, USA, 2005.                              |
| 539 | Janowicz, K. 2012. Observation-driven geo-ontology engineering. Trans. GIS 2012, 16, 351–374.                                                                                                                                                                                           |
| 540 | Motik, B.; Patel-Schneider, P.F.; Parsia, B.; Bock, C.; Fokoue, A.; Haase, P.; Hoekstra, R.; Horrocks, I.;<br>Ruttenberg, A.; Sattler, U. 2009. Owl 2 web ontology language: Structural specification and functional-<br>style syntax. W3C Recomm. 2009, 27, 1–133.                     |
| 143 | Rutzinger, M.,F. Rottensteiner, & N. Pfeifer. 2009. A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J. Selected Topics in Applied Earth Observations & Remote Sens. 2(1):11-20.                                                        |
| 542 | Zevenbergen, L.W.; Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56.                                                                                                                                                    |
| 543 | Hoefle, B.; Pfeifer, N. 2007. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433.                                                                                                                       |
| 544 | Hoefle, B.; Hollaus, M.; Hagenauer, J. 2012. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134–147.                                                                        |
| 545 | Taubenboeck, H.; Klotz, M.; Wurm, M.; Schmieder, J.; Wagner, B.; Wooster, M.; Esch, T.; Dech, S. 2013. Delineation of central business districts in Mega city regions using remotely sensed data. Remote Sens. Environ. 2013, 136, 386–401.                                             |
| 546 | Walde, I.; Hese, S.; Schmullius, C. 2012. Graph Based Mapping of Urban Structure Types from High Resolution Satellite Image Objects. In Proceedings of 4th International conference on Geographic Object-Based Image Analysis, Rio de Janeiro, Brazil, 7–9 May 2012.                    |
| 547 | Walde, I.; Hese, S.; Berger, C.; Schmullius, C. Graph-based mapping of urban structure types from high-<br>resolution satellite image objects: Case study of the German cities Rostock and Erfurt. IEEE Geosci.<br>Remote Sens. Lett. 2013, 10, 932–936.                                |
| 548 | Hudelot, C.; Atif, J.; Bloch, I. 2008. Fuzzy spatial relation ontology for image interpretation. Fuzzy Set. Syst. 2008, 159, 1929–1951.                                                                                                                                                 |
| 549 | Kursa, M.B.; Rudnicki, W.R. 2010. Feature selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13.                                                                                                                                                                            |
| 550 | Breiman, L. 2001. Random forest. Mach. Learn. 2001, 45, 5–32.                                                                                                                                                                                                                           |
| 551 | Stumpf, A.; Kerle, N. 2011. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577.                                                                                                                                                     |
| 552 | Corcoran, J.; Knight, J.; Gallant, A. 2013 Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens. 2013. 5. 3212–3238.                                          |
| 553 | Immitzer, M.; Atzberger, C.; Koukal, T. 2012. Tree species classification with random forest using very high spatial resolution 8-Band WorldView-2 Satellite data. Remote Sens. 2012. 4. 2661–2693.                                                                                     |
| 554 | Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A. 2013. Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinforma. 2013, 14, 315–326.                                               |
| 555 | Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012. 67. 93–104.                                          |
| 556 | Team, D.C. 2013. R: A Language and Environment for Statistical Computing; R Foundation for<br>Statistical Computing: Vienna, Austria, 2013.                                                                                                                                             |
| 557 | Tsarkov, D.; Horrocks, I. 2006. FaCT++ description logic reasoner: System description. Automated                                                                                                                                                                                        |

|     | Reason. 2006, 4130, 292–297.                                                                                                                                                                                                                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 558 | Van Rijsbergen, C. 1979. Information Retrieval; Butterworth-Heinemann: London, UK, 1979.                                                                                                                                                                                                         |
| 559 | Lutz, M.; Kolas, D. 2007. Rule-based discovery in spatial data infrastructure. Trans. GIS 2007, 11, 317–336.                                                                                                                                                                                     |
| 560 | Belgiu, M.; Drăguț, L.; Strobl, J. 2014. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS J. Photogramm. Remote Sens. 2014, 87, 205–215.                                                               |
| 561 | Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. 2012. An ontology of slums for image-based classification.<br>Comput. Environ. Urban Syst. 2012, 36, 154–163.                                                                                                                                       |
| 562 | Tripathi, A.; Babaie, H.A. 2008. Developing a modular hydrogeology ontology by extending the SWEET upper-level ontologies. Comput. Geosci. 2008, 34, 1022–1033.                                                                                                                                  |
| 563 | Li, Y.; Yu, Y.; Heflin, J. 2012. Evaluating Reasoners under Realistic Semantic Web Conditions. In Proceedings of the 2012 OWL Reasoner Evaluation Workshop, Ulm, Germany, 22 July 2012.                                                                                                          |
| 564 | Bock, J.; Haase, P.; Ji, Q.; Volz, R. 2008. Benchmarking OWL Reasoners. In Proceedings of the ARea2008<br>Workshop, Tenerife, Spain, 2 June 2008.                                                                                                                                                |
| 28  | Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 62, 2–16.                                                                                                                                                                             |
| 566 | Akel, N. A., Kremeike, K., Filin, S., Sester, M., Doytsher, Y., 2005. Dense DTM generalization aided by roads extracted from LIDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol. 36, part 3/W19, Enschede, the Netherlands, pp.54-59. |
| 567 | Brenner, C., 2005. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation 6 (3-4), 187-198.                                                                                                                               |
| 568 | Clode, S.P., Kootsookos, P.J., Rottensteiner, F., 2004a. Accurate Building Outlines from ALS Data.<br>Proceedings 12th Australasian Remote Sensing and Photogrammetry Conference, October 18-22,<br>Fremantle, Perth, Western Australia.                                                         |
| 569 | Clode, S., Kootsookos, P., Rottensteiner, F., 2004b. The automatic extraction of roads from LIDAR data.<br>International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol.<br>35, part B3, Istanbul, Turkey, pp. 231-237.                                     |
| 570 | Clode, S., Rottensteiner, F., Kootsookos, P., 2005. Improving city model determination by using road detection from lidar data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 3/W24, Vienna, Austria, pp. 159-164.                    |
| 571 | de Boor, C., 1978. A Practical Guide to Splines. Springer Verlag, New York.                                                                                                                                                                                                                      |
| 572 | Fischler, M., Bolles, R., 1981. Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24 (6), 381-395.                                                                                                  |
| 573 | Hatger, C., 2005. On the use of airborne laser scanning data to verify and enrich road network features.<br>International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol.<br>36, part 3/W19, Enschede, the Netherlands, pp.138-143.                         |
| 574 | Hatger, C., Brenner, C., 2003. Extraction of Road Geometry Parameters form Laser Scanning and Existing Databases. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, vol. 34, part 3/W13, pp. 225-230.                             |
| 575 | Hyyppae, J., Inkinen, M., 1999. Detecting and estimating attributes for single trees using laser scanner.<br>The Photogrammetric Journal of Finland 16 (2), 27-42.                                                                                                                               |
| 576 | Matikainen, L., Hyyppae, J. Hyyppae, H., 2003. Automatic Detection of Buildings from Laser Scanner<br>Data for Map Updating. In: International Archives of Photogrammetry, Remote Sensing and Spatial<br>Information Sciences, Dresden, Germany, vol. 34, part 3/W13, pp. 218-224.               |
| 577 | Persson, Å., Holmgren, J., Söderman, U., 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing 68 (9), 925-932.                                                                                                           |
| 578 | Rieger, W., Kerschner, M., Reiter, T. & Rottensteiner, F. (1999) Roads and buildings from laser scanner data within a forest enterprise. International Archives of Photogrammetry and Remote Sensing, vol. 32, part 3/W14, La Jolla, U.S.A., pp. 185-191.                                        |
| 163 | Rottensteiner, F., 2003. Automatic generation of high-quality building models from Lidar data. IEEE Computer Graphics and Applications 23(6), pp. 42-51.                                                                                                                                         |

| F00 | Connection A. Change I. 2007. Desilities Decondants The size and Developing the form Ainforms Liden Deint       |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 560 | Clouds. Photogrammetric Engineering & Remote Sensing 73 (7), 805-812.                                           |
| 581 | Vosselman, G., 2008, Analysis of planimetric accuracy of airborne laser scanning surveys. International         |
|     | Archives of Photogrammetry Remote Sensing and Spatial Information Sciences vol. 37 part 3A                      |
|     | Beijing, China, July 3-11, pp. 99-104.                                                                          |
| 582 | Vosselman, G., Kessels, P., Gorte, B.G.H., 2005. The Utilisation of Airborne Laser Scanning for Three-          |
|     | Dimensional Mapping, International Journal of Applied Earth Observation and Geoinformation 6 (3-4).             |
|     | 177-186.                                                                                                        |
| 583 | Wang O. Lodha S. and Helmhold, D. 2006. A Bayesian Approach to Building Footprint Extraction                    |
|     | from Aerial LIDAR Data Third International Symposium on 3D Data Processing Visualization and                    |
|     | Transmission (3DPVT). Chapel Hill, USA.                                                                         |
| 584 | Zhou L. 2009 Extraction of road sides from high point density airborne laser scanning data M Sc                 |
|     | thesis International Institute of Geo-Information Sciences and Farth Observation (ITC) Enschede the             |
|     | Netherlands 55 n http://www.itc.nl/library/napers 2009/msc/gfm/zhou_liang.ndf (Accessed March                   |
|     |                                                                                                                 |
| 21  | 27, 2007).<br>Moon H. Challana D. and Deconfield A. 2002. Ontimal Edge Paced Shane Detection. IEEE Transactions |
| 21  | on Imago Drocossing Vol 11 No                                                                                   |
|     | 11 Nevember 2002                                                                                                |
| F06 | 11, NOVEILIDEI 2002.                                                                                            |
| 200 | Ben-Arie J. and Rao K. K., 1993. A novel approach for template matching by honorthogonal image                  |
| 507 | expansion, IEEE Trans. Circuits Syste. video Tecnnol., vol. 3, pp. /1-84, 1993.                                 |
| 587 | Di Iorio A., Bridgwood I., Rasmussen M., Sørensen M., Carlucci R., Bernardini F., Osman A. 2008.                |
|     | Automatic detection of archaeological sites using a hybrid process of Remote Sensing, Gis techniques            |
|     | and a shape detection algorithm, Proceeding of the 29° EARSel Symposium, Chania, Greece.                        |
| 588 | Arcese, A., P. H. Mengert, and E. Trombini. 1970. "Image detection through bipolar correlation," IEEE           |
|     | Trans. Inform. Theory, vol. IT-16, pp. 534–541, 1970.                                                           |
| 589 | Argyle, E. 1971. "Techniques for edge detection," Proc. IEEE, vol. 59, pp. 285–287, 1971.                       |
| 154 | Ballard, D.H. 1981. "Generalizing the Hough transform to detect arbitrary shapes," Pattern Recognit.,           |
|     | vol. 13, pp. 111–122, 1981.                                                                                     |
| 586 | Ben-Arie, J., and K. R. Rao. 1993. "A novel approach for template matching by nonorthogonal image               |
|     | expansion," IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp. 71–84, 1993.                                 |
| 592 | Ben-Arie, J., and L.R. Rao. 1994. "Optimal edge-detection using expansion matching and restoration,"            |
| -   | IEEE Trans. Pattern Anal. Machine Intell., vol. 16, pp. 1169–1182, 1994. [6]                                    |
| 593 | Canny, J. 1983. "Finding edges and lines in images,", MIT AI TR-720, 1983.                                      |
| 594 | Canny, J. 1986. "A computational approach to edge detection," IEEE Trans. Pattern Anal. Machine                 |
|     | Intell., vol. PAMI-8, pp. 679–698, 1986.                                                                        |
| 595 | Chellappa, R., X. Zhang, P. Burlina, C. L. Lin, Q. Zheng, L. S. Davis, and A. Rosenfeld. 1996 "An integrated    |
|     | system for site model supported monitoring of transportation activities in aerial images," in Proc.             |
|     | DARPA Image Understanding Workshop, 1996, pp. 275–304.                                                          |
| 596 | Cooper, G.R., and C. D. McGillem. 1999. Probabilistic Methods of Signal and System Analysis. Oxford,            |
|     | U.K.: Oxford Univ. Press, 1999.                                                                                 |
| 597 | Keren, D., D. B. Cooper, and J. Subrahmonia. 1994. "Describing complicated objects by implicit                  |
|     | polynomials," IEEE Trans. Pattern Anal. Machine Intell., vol. 16, pp. 38–53, 1994.                              |
| 598 | Lepage, G.P. 1980. "VEGAS: An Adaptive Multidimensional Integration Program," Cornell Univ., Ithaca,            |
| 500 | NY, PUD. CLNS-80/447, 1980.                                                                                     |
| 599 | Lowe, D.G. 1987. "Three-dimensional object recognition from single twodimensional images," Artif.               |
| (00 | Intell., vol. 31, pp. 355–395, 1987.                                                                            |
| 600 | Moon, H., R. Chellappa, and A. Rosenfeld. 2002. "Performance analysis of a simple vehicle detection             |
| (01 | algorithm, image vis. Comput., vol. 20, pp. 1–13, 2002.                                                         |
| 601 | Mumford, D., S. M. Kosslyn, L. A. Hillger, and K. J. Hernstein. 1987. "Discriminating figure from ground:       |
|     | I ne role of edge detection and region growing," in Proc. Nat. Acad. Sci. USA, vol. 84, 1987, pp. 7354–         |
| 602 |                                                                                                                 |
| 602 | Kosenteid, A. 1970. "A nonlinear edge detection technique," Proc. IEEE, vol. 58, pp. 814–816, 1970.             |
| 603 | Rosenfeld, A., and M. Thurston. 1971. "Edge and curve detection for visual scene analysis," IEEE                |
|     | Trans. Comput., vol. C-20, pp. 562–569, 1971.                                                                   |

| r   |                                                                                                                                                                                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 604 | Ramesh, V., and R. M. Haralick. 1993. "Performance characterization of edge operators," in Proc.                                                                                                                                                                                                                |
| 605 | Rosenfeld, A., Kak, A.C., 1976. Digital Picture Processing. Academic Press, New York.                                                                                                                                                                                                                           |
| 606 | Awrangjeb, M. and Lu, G., 2008. Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Transactions on Multimedia 10(6), pp. 1059–1072.                                                                                                                                |
| 503 | Awrangjeb, M., Ravanbakhsh, M. and Fraser, C. S., 2010. Automatic multispectral imagery. ISPRS<br>Journal of Photogrammetry and Remote Sensing 65(5), pp. 457–467.                                                                                                                                              |
| 608 | Awrangjeb, M., Zhang, C. and Fraser, C. S., 2012a. Automatic reconstruction of building roofs through integration of LIDAR and multispectral imagery. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-3, Melbourne, Australia, pp. 203–208.                     |
| 609 | Awrangjeb, M., Zhang, C. and Fraser, C. S., 2012b. Building detection in complex scenes thorough effective separation of buildings from trees. Photogrammetric Engineering & Remote Sensing 78(7), pp. 729–745.                                                                                                 |
| 610 | Awrangjeb, M., Zhang, C. and Fraser, C. S., 2013. Automatic extraction of building roofs using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing 83(9), pp. 1–18.                                                                                                        |
| 611 | Chen, D., Zhang, L., Li, J. and Liu, R., 2012. Urban building roof segmentation from airborne LIDAR point clouds. International Journal of Remote Sensing 33(20), pp. 6497–6515.                                                                                                                                |
| 612 | Cramer, M., 2010. The DGPF test on digital aerial camera evaluation - overview and test design.<br>Photogrammetrie Fernerkundung Geoinformation 2, pp. 73–82.                                                                                                                                                   |
| 134 | Dorninger, P. and Pfeifer, N., 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11), pp. 7323–7343.                                                                                                 |
| 614 | Haala, N. and Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing 65(6), pp. 570–580                                                                                                                                                          |
| 526 | Jochem, A., H <sup>°</sup> ofle, B., Wichmann, V., Rutzinger, M. and Zipf, A., 2012. Area-wide roof plane segmentation in airborne LIDAR point clouds. Computers, Environment and Urban Systems 36(1), pp. 54–64                                                                                                |
| 616 | Khoshelham, K., Li, Z. and King, B., 2005. A split-and-merge technique for automated reconstruction of roof planes. Photogrammetric Engineering & Remote Sensing 71(7), pp. 855–862.                                                                                                                            |
| 617 | Kim, K. and Shan, J., 2011. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS Journal of Photogrammetry and Remote Sensing 66(4), pp. 484–497.                                                                                                                        |
| 618 | Lafarge, F., Descombes, X., Zerubia, J. and Pierrot-Deseilligny, M., 2010. Structural approach for building reconstruction from a single DSM. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), pp. 135–147.                                                                                |
| 619 | Perera, S. N., Nalani, H. A. and Maas, HG., 2012. An automated method for 3D roof outline generation<br>and regularization in airborne laser scanner data. In: ISPRS Annals of the Photogrammetry, Remote<br>Sensing and Spatial Information Sciences, Vol. I-3, Melbourne, Australia, pp. 281–286.             |
| 163 | Rottensteiner, F., 2003. Automatic generation of high-quality building models from LIDAR data.<br>Computer Graphics and Applications 23(6), pp. 42–50.                                                                                                                                                          |
| 621 | Rottensteiner, F., 2007. Building change detection from digital surface models and multispectral images. In: Proceedings of PIA07 - Photogrammetric Image Analysis. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 36(3/W49B), Munich, Germany, pp. 145–150.   |
| 335 | Rottensteiner, F. and Briese, C., 2003. Automatic generation of building models from LIDAR data and the integration of aerial images. In: Proc. ISPRS working group III/3 workshop on 3-D reconstruction from airborne laserscanner and InSAR data, Vol. IAPRS XXXIV, Part 3/W13, Dresden, Germany, pp. 512–517 |
| 623 | Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S. and Breitkopf, U., 2012. The ISPRS benchmark on urban object classification and 3D building reconstruction. I-3. pp. 293–298.                                                                                                       |
| 143 | Rutzinger, M., Rottensteiner, F. and Pfeifer, N., 2009. A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2(1), pp. 11–20.                                                           |
| 625 | Sampath, A. and Shan, J., 2010. Segmentation and reconstruction of polyhedral building roofs from aerial LIDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 48(3), pp. 1554–                                                                                                                |

|     | 1567.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 626 | Satari, M., Samadzadegan, F., Azizi, A. and Maas, H. G., 2012. A multi-resolution hybrid approach for building model reconstruction from LIDAR data. The Photogrammetric Record 27(139), pp. 330–359.                                                                                                                                                                                                                                                       |
| 627 | Sohn, G., Huang, X. and Tao, V., 2008. Using binary space partitioning tree for reconstructing polyhedral building models from airborne LIDAR data. Photogrammetric Engineering & Remote Sensing 74(11), pp. 1425–1438.                                                                                                                                                                                                                                     |
| 628 | Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P., 2008. Extended RANSAC algorithm for automatic detection of building roof planes from LIDAR data. The photogrammetric journal of Finland 21(1), pp. 97–109.                                                                                                                                                                                                                                               |
| 629 | Verma, V., Kumar, R. and Hsu, S., 2006. 3D building detection and modeling from aerial LIDAR data. In:<br>IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, New York,<br>USA, pp. 2213–2220.                                                                                                                                                                                                                             |
| 242 | Vosselman, G., Gorte, B. G. H., Sithole, G. and Rabbani, T., 2004. Recognising structure in laser scanner point cloud. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVI (8/W2), istanbul, Turkey, pp. 33–38.                                                                                                                                                                                       |
| 631 | Zhang, Y., Zhang, Z., Zhang, J. and Wu, J., 2005. 3D building modelling with digital map, LIDAR data and video image sequences. The Photogrammetric Record 20(11), pp. 285–302.                                                                                                                                                                                                                                                                             |
| 632 | Reigber, A., & A. Moreira. 2000. "First demonstration of airborne SAR tomography using multibaseline L-band data," IEEE Trans. Geosci. Remote Sens, vol. 38, no. 5, pp. 2142 –2152, 2000.                                                                                                                                                                                                                                                                   |
| 633 | Guillaso, S., & A. Reigber. 2005. "Polarimetric SAR Tomography<br>(POLTOMSAR)," in POLINSAR'05, 2005.                                                                                                                                                                                                                                                                                                                                                       |
| 634 | Zhu, X.X., & R. Bamler. 2012. "Super-resolution power androbustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR," IEEE Trans. Geosci. Remote Sens, vol. 50, no. 1, pp. 247–258, 2012.                                                                                                                                                                                                                     |
| 635 | Guillaso, S., O. D'Hondt, and O. Hellwich. 2012. "Extraction of points of interest from polarimetric SAR tomograms.," in IGARSS, 2012, Accepted for publication.                                                                                                                                                                                                                                                                                            |
| 572 | Fischler, M.A., & R. C. Bolles. 1981. "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.                                                                                                                                                                                                                                                |
| 637 | Bughin, E., A. Almansa, R. Grompone von Gioi, & Y. Tendero. 2010. "Fast plane detection in disparity maps," in ICIP, 2010, pp. 2961–2964.                                                                                                                                                                                                                                                                                                                   |
| 638 | Chum, O., J. Matas, and J. Kittler. 2003. "Locally optimized RANSAC," Pattern Recognition, vol. 2781, pp. 236–243, 2003.                                                                                                                                                                                                                                                                                                                                    |
| 639 | Toldo, R., & A. Fusiello. 2008. "Robust multiple structures estimation with j-linkage," in ECCV, 2008, pp. 537–547.                                                                                                                                                                                                                                                                                                                                         |
| 640 | Torr, P.H.S. & D. W. Murray. 1994. "Stochastic motion clustering," in ECCV, 1994, pp. 328–337.                                                                                                                                                                                                                                                                                                                                                              |
| 134 | Dorninger, P. & Pfeifer, N. (2008), A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11), 7323 – 7343.                                                                                                                                                                                                                                                |
| 642 | Filin, S. & Pfeifer, N. (2006), Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS J. Photogramm. Remote Sens. 60(2), 71 – 80.                                                                                                                                                                                                                                                                                         |
| 643 | Höfle, B., Rutzinger, M., Geist, T. & Stötter, J. (2006), Using airborne laser scanning data in urban data management - set up of a flexible information system with open source components. – In: Proceedings of UDMS 2006. – Aalborg, Denmark, pp. 7.11 – 7.23, on CD.                                                                                                                                                                                    |
| 644 | Höfle, B., Hollaus, M., Lehner, H., Pfeifer, N. & Wagner, W. (2008), Area-based parame-terization of forest structure using full-waveform airborne laser scanning data. – In: Pro-ceedings Silvilaser 2008, Edinburgh, Scotland, pp. 227 – 235.                                                                                                                                                                                                             |
| 645 | Kaartinen, H., Hyyppä, J., Gülch, E., Vosselman, G., Hyyppä, H., Matikainen, L., Hof-mann, A.D., Mäder, U.,<br>Persson, Å., Söderman, U., Elmqvist, M., Ruiz, A., Dragoja, M., Flamanc, D., Maillet, G., Kersten, T., Carl, J.,<br>Hau, R., Wild, E., Frederiksen, L., Holmgaard, J. & Vester, K. (2005), Accuracy of 3d city models:<br>EuroSDR comparison. – In: International Archives of Photogrammetry and Remote Sensing<br>36(3/W19), pp. 227 – 232. |
| 157 | Maas, HG. & Vosselman, G. (1999), Two algorithms for extracting building models from raw laser altimetry data. ISPRS J. Photogramm. Remote Sens. 54(2/3), 153 – 163.                                                                                                                                                                                                                                                                                        |

| 047                                                                         | Melzer, T. (2007), The mean shift algorithm for clustering point clouds. J. Appl. Geod. 1(3), 445 – 456.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 648                                                                         | Nothegger, C. & Dorninger, P. (2009), 3D filtering of high-resolution terrestrial laser scan-ner point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             | clouds for cultural heritage documentation. PFG 1/2009, 51 – 62.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 649                                                                         | Pfeifer, N., Stadler, P. & Briese, C. (2001), Derivation of Digital Terrain Models in the SCOP++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | Environment. – In: Proceedings of OEEPE Workshop on Airborne Laserscan-ning and Interferometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 650                                                                         | Butzinger M. Höfle B. Ceist T. & Stötter I. (2006). Object-based building detection based on airborne.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 030                                                                         | laser scanning data within GRASS GIS environment – In: Proceed-ings of IDMS 2006 – Aalborg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | Denmark, pp. 7.37 – 7.48, on CD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 143                                                                         | Rutzinger, M., Rottensteiner, F. & Pfeifer, N. (2009), A comparison of evaluation tech-niques for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | building extraction from airborne laser scanning. IEEE Journal of Selected Topics in Applied Earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | Observation and Remote Sensing, Vol. PP (99), 1 – 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 652                                                                         | Behan, A., 2000. On the matching accuracy rasterised scanning laser altimeter data. IAPRS, Vol. XXXIII,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 652                                                                         | Part B2, pp./5-82.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 055                                                                         | determination JAPRS vol XXXIII nn 55-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 654                                                                         | Fraser, C. S. and Hanley H. B., 2003. Bias compensation in rational function for IKONOS satellite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | imagery, Photogrammetric Engineering and Remote Sensing, Vol. 69, No. 1, pp.53-57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 655                                                                         | Halla, N., and Walter, V., 1999. Automatic classification of urban environments for database revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                             | using LIDAR and color aerial imagery, IAPRS, Vol.32, Part 7-4-3 W6, pp.76-82.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 656                                                                         | Hofmann, A., and Van der Vegt, J., 2001. New Sensor systems and new classification methods: laser-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | and digital camera-data meet object-oriented strategies, GIS, Vol. 6. pp.18-23. (http://www.definiens-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E22                                                                         | Imaging.com/documents/gis.ntm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 322                                                                         | nonnann, A.D., Mass, H., Sulenen, A., 2002. Knowledge-based bunding detection based on laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 658                                                                         | Lohmann P 2002 Segmentation and filtering of laser scanner digital surface models IAPRS Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                             | XXXIV, Part 2, Xi'an, China, 20-23, Aug, 2002, pp311-316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 659                                                                         | Mass, H-G., 1999. The potential of height texture measures for the segmentation of airborne laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | scanner data, Fourth International Airborne Remote Sensing Conference and Exhibition/21st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                             | Canadian Symposium on Remote Sensing, June, 21-24, 1999, Ottawa, Ontario, Canada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 660                                                                         | Nakagawa, M., Shibasaki, R., and Kagawa, Y., 2002. Fusion Stereo Linear CCD Image and Laser Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 661                                                                         | Battensteiner F, and Jansa J. 2002. Automatic Extraction of Building from LIDAR Data and Aerial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 001                                                                         | Rottensteiner, F., and Jansa, J., 2002. Matomatic Extraction of Dunaning from ErDink Data and Heriai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                             | Images, IAPRS, Vol.34, Part 4, pp. 295-301.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 662                                                                         | Images, IAPRS, Vol.34, Part 4, pp. 295-301.<br>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 662                                                                         | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 662                                                                         | Images, IAPRS, Vol.34, Part 4, pp. 295-301.<br>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint<br>ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,<br>2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 662<br>348                                                                  | Images, IAPRS, Vol.34, Part 4, pp. 295-301.<br>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint<br>ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,<br>2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)<br>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 662<br>348                                                                  | Images, IAPRS, Vol.34, Part 4, pp. 295-301.<br>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint<br>ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,<br>2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)<br>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building<br>reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,<br>Toronto Canada, on CD-ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 662<br>348<br>664                                                           | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 662<br>348<br>664                                                           | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 662<br>348<br>664<br>665                                                    | <ul> <li>Images, IAPRS, Vol.34, Part 4, pp. 295-301.</li> <li>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint</li> <li>ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9, 2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)</li> <li>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building</li> <li>reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June, Toronto, Canada, on CD-ROM</li> <li>Walter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change</li> <li>detection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.</li> <li>Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectral</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 662<br>348<br>664<br>665                                                    | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectralclassification and texture filtering, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp.50-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 662<br>348<br>664<br>665                                                    | <ul> <li>Images, IAPRS, Vol.34, Part 4, pp. 295-301.</li> <li>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9, 2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)</li> <li>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June, Toronto,Canada, on CD-ROM</li> <li>Walter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change detection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.</li> <li>Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering, ISPRS Journal of Photogrammetry &amp; Remote Sensing, Vol.54, pp.50-60.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 662<br>348<br>664<br>665<br>666                                             | <ul> <li>Images, IAPRS, Vol.34, Part 4, pp. 295-301.</li> <li>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint<br/>ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,<br/>2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)</li> <li>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building<br/>reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,<br/>Toronto,Canada, on CD-ROM</li> <li>Walter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change<br/>detection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.</li> <li>Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectral<br/>classification and texture filtering, ISPRS Journal of Photogrammetry &amp; Remote Sensing, Vol.54, pp.50-<br/>60.</li> <li>Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airborne</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 662<br>348<br>664<br>665<br>666                                             | <ul> <li>Images, IAPRS, Vol.34, Part 4, pp. 295-301.</li> <li>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9, 2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)</li> <li>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June, Toronto,Canada, on CD-ROM</li> <li>Walter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change detection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.</li> <li>Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering, ISPRS Journal of Photogrammetry &amp; Remote Sensing, Vol.54, pp.50-60.</li> <li>Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airborne laser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satellite</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 662<br>348<br>664<br>665<br>666                                             | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectralclassification and texture filtering, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp.50-60.Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airbornelaser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satelliteInformation IV/ISPRS Commission I/ FIEOS 2002 Conference Proceedings.(http://www.isprs.org/commission1/proceedings/contents-fiacs.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 662<br>348<br>664<br>665<br>666                                             | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectralclassification and texture filtering, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp.50-60.Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airbornelaser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satelliteInformation IV/ISPRS Commission 1/ FIEOS 2002 Conference Proceedings.(http://www.isprs.org/commission1/proceedings/contents-fieos.html)Adams Robert McC. "Settlement and Irrigation natterns in Ancient Akkad" In The City and the Area of                                                                                                                                                                                                                                                                                                                                                                        |
| 662<br>348<br>664<br>665<br>666<br>667                                      | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectralclassification and texture filtering, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp.50-60.Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airbornelaser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satelliteInformation IV/ISPRS Commission I/ FIEOS 2002 Conference Proceedings.(http://www.isprs.org/commission1/proceedings/contents-fieos.html)Adams, Robert McC. "Settlement and Irrigation patterns in Ancient Akkad." In The City and the Area ofKish, edited by MacGuire Gibson, 182-208. Miami, Coconut Grove: Field Research Projects. 1972.                                                                                                                                                                                                                                                                        |
| 662<br>348<br>664<br>665<br>666<br>667<br>668                               | Images, IAPRS, Vol.34, Part 4, pp. 295-301.Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, JointISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9,2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for buildingreconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June,Toronto,Canada, on CD-ROMWalter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic changedetection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectralclassification and texture filtering, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp.50-60.Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airbornelaser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satelliteInformation IV/ISPRS Commission I/ FIEOS 2002 Conference Proceedings.(http://www.isprs.org/commission1/proceedings/contents-fieos.html)Adams, Robert McC. "Settlement and Irrigation patterns in Ancient Akkad." In The City and the Area ofKish, edited by MacGuire Gibson, 182-208. Miami, Coconut Grove: Field Research Projects, 1972.Adams, Robert McC., Hans-Jurgen Nissen. "The Uruk Countryside. The Natural Settings of Urban                                                                                                                                                                            |
| 662         348         664         665         666         667         668 | <ul> <li>Images, IAPRS, Vol.34, Part 4, pp. 295-301.</li> <li>Schiewe, J., 2003. Integration of data from multi-sensor systems for landscape modeling tasks, Joint ISPRS Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", September 8-9, 2003, Stuttgart, Germanny. (http://www.iuw.univechta.de/personal/geoinf/jochen/papers/27.pdf)</li> <li>Vosselman, G., 2002. Fusion of laser scanning data, maps and aerial photographs for building reconstruction, International Geoscience and Remote Sensing Symposium, 2002, 24-28 June, Toronto,Canada, on CD-ROM</li> <li>Walter, V., 2004. Object-based evaluation of LIDAR and multispectral data for automatic change detection in GIS databases, IAPRS, Vol. 35, Part B2, pp.723-728.</li> <li>Zhang, Y., 1999. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering, ISPRS Journal of Photogrammetry &amp; Remote Sensing, Vol.54, pp.50-60.</li> <li>Zeng, Y., Zhang J., Wang G., and Lin, Z., 2002. Urban land-use classification using integrated airborne laser scanning data and high resolution multi-spectral satellite imagery, Pecora 15/Land satellite Information IV/ISPRS Commission I/ FIEOS 2002 Conference Proceedings. (http://www.isprs.org/commission1/proceedings/contents-fieos.html)</li> <li>Adams, Robert McC. "Settlement and Irrigation patterns in Ancient Akkad." In The City and the Area of Kish, edited by MacGuire Gibson, 182-208. Miami, Coconut Grove: Field Research Projects, 1972.</li> <li>Adams, Robert McC., Hans-Jurgen Nissen. "The Uruk Countryside. The Natural Settings of Urban Societies." Chicago-London: The University of Chicago Press, 1972.</li> </ul> |

| 670   | Altaweel, Mark R. "The Land of Ashur: A Study of Landscape and Settlement in the Assyrian<br>Heartland", Uppublished PhD dissertation, University of Chicago, 2004.                              |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 671   | Altaweel, Mark R. "The Use of ASTER Satellite Imagery in Archaeological Contexts." Archaeological<br>Prospection 12 (2005): 151-166                                                              |
| 672   | Andrae, Walter. "Das wiedererstandene Assur." Munich: C.H. Beck, 1938 (1977, 2nd ed. by Bartel                                                                                                   |
|       | Hrouda).                                                                                                                                                                                         |
| 673   | Bagg, Ariel M." Assyrische Wasserbauten. Landwirtschaftliche Wasserbauten im Kernland Assyriens                                                                                                  |
|       | zwischen der 2. H"alfte des 2. und der ersten H"alfte des 1. Jahrtausends v. Chr." (Bagdader                                                                                                     |
| 6.5.4 | Forschungen 24). Mainz am Rhein: Phillip von Zabern, 2000.                                                                                                                                       |
| 674   | Brandt, Roel, Bert J. Groenewoudt, Kenneth L. Kvamme. "An Experiment in Archaeological Site<br>Location: Modeling in the Netherlands using GIS Techniques." World Archaeology 24 (1992):268-282  |
| 675   | Dittmann, Reinhard. "Ruinenbeschreibungen der Machmur-Ebene aus dem Nachlass von Walter                                                                                                          |
|       | Bachmann." In Beitr age zur Kulturgeschichte Vorderasiens: Festschrift f ur Rainer Michael Boehmer,                                                                                              |
|       | edited by Uwe Finkbeiner, Reinhard Dittmann & Harald Hauptmann, 87-102. Mainz am Rhein: Phillipp                                                                                                 |
| (7)   | von Zabern, 1995.                                                                                                                                                                                |
| 676   | El-Amin, Mahmud and Max E.L. Mallowan. "Soundings in the Makhmur Plain." Sumer 5, no. 2 (1949):                                                                                                  |
| 677   | 145-155.<br>Fl-Amin Mahmud and May F.L. Mallowan "Soundings in the Makhmur Plain: Part 2" Sumer 6, no. 1                                                                                         |
| 0//   | (1950): 55-68                                                                                                                                                                                    |
| 678   | Fowler, Martin I. F. "Satellite Remote Sensing and Archaeology: a Comparative Study of Satellite                                                                                                 |
|       | Imagery of the Environs of Figsbury Ring, Wiltshire." Archaeological Prospection 9 (2002): 55-69.                                                                                                |
| 679   | Gabaix, Xavier and Yannis M. Ioannides, "The Evolution of City Size Distributions" In Handbook of                                                                                                |
|       | Urban and Regional Economics, Volume IV: Cities and Geography, editied by J.V. Henderson and J.F.                                                                                                |
|       | Thisse, North-Holland Publisher, Amsterdam, 2003                                                                                                                                                 |
| 680   | Gheyle, Wouter, Raf Trommelmans, Jean Bourgeois, Rudi Goossens, Ignace Bourgeois, Alain De Wulf                                                                                                  |
|       | and Tom Willems. "Evaluating CORONA: A Case Study in the Altai Republic (South Siberia)." Antiquity                                                                                              |
| 601   | 78, no. 300 (2004): 391-403.                                                                                                                                                                     |
| 001   | Lin Accurice 1995. Proceedings of the 10th Appiversary Symposium of the Nee Accurice Toyt Corpus                                                                                                 |
|       | Project Helsinki Sentember 7-11 1995 edited by Simo Parnola and Robert M Whiting 129-136                                                                                                         |
|       | Helsinki: Neo-Assyrian Text Corpus Project, 1997.                                                                                                                                                |
| 682   | Hritz, Carrie and Tony J. Wilkinson "Recognition of ancient irrigation channels in Mesopotamia using                                                                                             |
|       | digital terrain data." Antiquity 80 (1996): 415-425.                                                                                                                                             |
| 683   | Hours, Francis et al. "Atlas des sites du Proche Orient (14000-5700BP)." Lyon: Maison de l'Orient                                                                                                |
| 60.1  | mditerranen, 1994.                                                                                                                                                                               |
| 684   | Lawler, Andrew. "Archaeology: North Versus South, Mesopotamian Style." Science 312 (2006): 1458-<br>63.                                                                                          |
| 685   | Lehmann, Gunnar. "Bibliographie der arch" aologischen Fundstellen und Surveys in Syrien und                                                                                                      |
|       | Libanon." Rahden/Westfalen: Marie Leidorf 2002                                                                                                                                                   |
| 686   | Manrubia, Susanna C. and Damian H. Zanette. "Intermittency model for urban development."                                                                                                         |
|       | PHYSICAL REVIEW E 58 (1998):285-302                                                                                                                                                              |
| 687   | Mehrer, MarkW. and Konnie L.Wescott (eds.). "GIS and Archaeological Site Location Modeling" Boca                                                                                                 |
| (00   | Raton: URU-1 aylor & Francis, 2006                                                                                                                                                               |
| 000   | Menze, b) of it n. virtual ourvey: a semi-Automateu renspotting Algorithm. In Archatias, November 2005, 1st Edition, URL: http://www.archatlas.org/Menze/MenzeTellspotting.php.(accessed: August |
|       | 28th 2006) 2005                                                                                                                                                                                  |
| 689   | Menze, Bjorn H., B. Michael Kelm and Fred A. Hamprecht. "From Eigenspots to Fisherspots - Latent                                                                                                 |
|       | Subspaces in the Nonlinear Detection of Spot Patterns in a Highly Varying Background." in: Lenz, HJ.                                                                                             |
|       | & Decker, R. (eds.), Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge                                                                                          |
|       | Organization, Vol. 33, Heidelberg: Springer Publisher, to appear 2007                                                                                                                            |
| 690   | Menze, Bj"orn H., Jason A. Ur and Andrew G. Sherratt. "Detection of Ancient Settlement Mounds:                                                                                                   |
|       | Archaeological Survey Based on the SRTM Terrain Model." Photogrammetric Engineering and Remote                                                                                                   |
| 601   | Sensing / 2, no. 3, (2006): 321-327.                                                                                                                                                             |
| 691   | Nitsch, voiker. "Zipt Zipped." Journal of Urban Economics 57, no. 1, (2005): 86-100.                                                                                                             |

| 692 | Rosenstock, Eva. "Tells in S <sup></sup> udwestasien und S <sup></sup> udosteuropa. Untersuchungen zu Verbreitung,<br>Entstehung und Definition eines Siedlungsph <sup></sup> anomens." Unpublished Ph.D. dissertation, University of<br>T <sup></sup> ubingen, 2005.                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 693 | Sarre, Friedrich and Ernst Herzfeld. "Arch <sup></sup> aologische Reise im Euphrat- und Tigris-Gebiet 1." Berlin:<br>Dietrich Reimer (Ernst Vohsen), 1911.                                                                                                                                                                                        |
| 694 | Scollar, I., A. Tabbagh, A. Hesse and I. Herzog. "Archaeological Prospecting and Remote Sensing."<br>Cambridge: Cambridge University Press, 1990.                                                                                                                                                                                                 |
| 695 | Schroeder, Otto. "Keilschrifttexte aus Assur verschiedenen Inhalts" (Wissenschaftliche                                                                                                                                                                                                                                                            |
|     | Ver öffentlichungen der Deutschen Orient-Gesellschaft 35), Leibzig: Hinrichs, 1820.                                                                                                                                                                                                                                                               |
| 696 | Sherratt, Andrew G. "Spotting tells from space", Antiquity 78 (2004), URL:<br>http://antiquity.ac.uk/projgall/ sherratt/                                                                                                                                                                                                                          |
| 697 | Ur, Jason A. "Settlement and Landscape in Northern Mesopotamia: The Tell Hamoukar Survey 2000-2001", Akkadica 123 (2002): 57-88.                                                                                                                                                                                                                  |
| 698 | Ur, Jason A. "CORONA Satellite Photography and Ancient Road Networks: A Northern Mesopotamian<br>Case Study". Antiquity 77 (2003): 102-115.                                                                                                                                                                                                       |
| 699 | Ur, Jason A. "Urbanism and Society in the Third Millennium Upper Khabur Basin". Ph.D. dissertation,                                                                                                                                                                                                                                               |
| 700 | Van Lierre, M.I. and I. Lauffray, "Nouvelle prospection archologique dans la haute jezireh syrienne."                                                                                                                                                                                                                                             |
|     | Les Annales Archologques de Syrie 4-5 (1954-1955): 129-148.                                                                                                                                                                                                                                                                                       |
| 701 | Weiss, Harvey "The Origins of Tell Leilan and the Conquest of Space in Third Millennium<br>Mesopotamia". In: The Origins of Cities in Dry-Farming Syria and Mesopotamia in the Third<br>Millennium B.C. edited by Harvey Weiss, 71-108, Guilford: Four Quarters Publishing Co. 1986                                                               |
| 702 | Wilkinson, Tony J. "Linear hollows in the Jazira, Upper Mesopotamia", Antiquity 67 (1993): 548-562.                                                                                                                                                                                                                                               |
| 703 | Wilkinson, Tony J. and David J. Tucker. "Settlement Development in the North Jazira, Iraq: A Study of                                                                                                                                                                                                                                             |
|     | the Archaeological Landscape". Warminster: Aris & Phillips, 1995.                                                                                                                                                                                                                                                                                 |
| 704 | Wilkinson, Tony J. "Archaeological Survey of the Tell Beydar Region, Syria, 1997: A Preliminary Report." in Tell Beydar: environmental and technical studies edited by Karel van Lerberghe, G. Voet, 1-37. Turnhout: Brepols, 2000.                                                                                                               |
| 705 | Wilkinson, Tony J. "Archaeological Landscapes of the Near East." Tucson: University of Arizona Press, 2003.                                                                                                                                                                                                                                       |
| 706 | Wilkinson, Tony J., Eleanor B. Wilkinson, Jason A. Ur and Mark R. Altaweel. "Landscape and Settlement<br>in the Neo-Assyrian Empire." Bulletin of the American Schools of Oriental Research 340: 2005.                                                                                                                                            |
| 707 | Wirth, Eugen. "Agrargeographie des Irak" (Hamburger Geographische Studien 13). Hamburg: Institut<br>für Geographie und Wirtschaftsgeographie der Universit¨at Hamburg, 1962.                                                                                                                                                                      |
| 708 | Baatz, M., Mimler, M., 2002. Bildobjekt-Primitive als Bausteine Extraktion von Objekten of interest<br>bzw. anthropogenen Objekten basierend auf der expliziten Kanteninformation von Bildobjekt-<br>Primitiven. In: Blaschke, T. (Ed.), GIS und Fernerkundung: Neue Sensoren – Innovative Methoden.<br>Wichmann Verlag, Heidelberg, pp. 179–188. |
| 251 | Baatz, M., Schäpe, A., 2000. Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., Griesebner, G. (Eds.), Angewandte Geographische Informations-Verarbeitung XII. Wichmann Verlag, Karlsruhe, pp. 12–23.                                                           |
| 710 | Bandemer, H., Gottwald, S., 1995. Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications. Wiley,<br>Chichester.                                                                                                                                                                                                                                 |
| 711 | Benz, U., 1999. Supervised fuzzy analysis of single and multichannel SAR data. Transactions on Geoscience and Remote Sensing 37 (2), 1023–1037.                                                                                                                                                                                                   |
| 712 | Bezdek, J., Pal, S., 1992. Fuzzy Models for Pattern Recognition, Methods that Search for Structures in                                                                                                                                                                                                                                            |
|     | Data. IEEE Press, New, York.                                                                                                                                                                                                                                                                                                                      |
| 713 | Civanlar, R., Trussel, H., 1986. Constructing membership functions using statistical data. IEEE Fuzzy<br>Sets and Systems 18, 1–14.                                                                                                                                                                                                               |
| 714 | Coulde, S.R., Pottier, E., 1996. A review of target decomposition theorems in radar polarimetry. IEEE                                                                                                                                                                                                                                             |
| 715 | Transactions on Geoscience and Remote Sensing 34 (2), 498–518.                                                                                                                                                                                                                                                                                    |
| /15 | IGARSS. IEEE Press, New York, pp. 854– 856.                                                                                                                                                                                                                                                                                                       |
| 716 | Daida, J., Samadani, R., Vesecky, J.F., 1990. Object-oriented feature-tracking algorithms for SAR image                                                                                                                                                                                                                                           |

|     | of the marginal ice zone. IEEE Transactions on Geoscience and Remote Sensing 28 (4), 573–589.                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 133 | Douglas, D.H., Peucker, T.K., 1973. Algorithms for the reduction of the number of points required to                                                                                                |
|     | represent a line or its caricature. Canadian Cartographer 10 (2), 112–122.                                                                                                                          |
| 718 | Ghassemian, H., Landgrebe, D.A., 1988. Object-oriented feature extraction method for image data compaction. IEEE Control Systems Magazine 8 (3), 42–48.                                             |
| 719 | Gopal, S., Woodcock, C., 1996. Remote sensing of forest change using artificial neural networks. IEEE                                                                                               |
|     | Transactions on Geoscience and Remote Sensing 34 (2), 398–404.                                                                                                                                      |
| 720 | Haralick, R., Shapiro, L., 1992. Computer and Robot Vision, vol. I. Chap. 9. Texture. Addison-Wesley,<br>Reading, USA, pp. 453–494.                                                                 |
| 721 | Haverkamp, D., Tsatsoulis, C., 1992. The use of expert systems in combination with active and passive                                                                                               |
| 722 | Heene G Gautama S 2000 Ontimisation of a coastline extraction algorithm for object-oriented                                                                                                         |
|     | matching of multisensor satellite imagery. Proc. IGARSS, vol. 6. IEEE Press, New York, pp. 2632–2634.                                                                                               |
| 723 | Jaeger, G., Benz, U., 2000. Measures of classification accuracy based on fuzzy similarity. IEEE                                                                                                     |
|     | Transactions on Geoscience and Remote Sensing 38 (2), 1462–1467.                                                                                                                                    |
| 724 | Manjunath, B., Chellappa, R., 1991. Unsupervised texture segmentation using Markov random field                                                                                                     |
|     | models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (5), 478–482.                                                                                                             |
| 725 | Mao, J., Jain, A., 1992. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25 (2), 173–188                                      |
| 726 | Maselli, F., Rodolfi, A., Connese, C., 1996. Fuzzy classification of spatially degraded thematic mapper                                                                                             |
|     | data for the estimation of sub-pixel components. International Journal of Remote Sensing 17 (3), 537–                                                                                               |
|     | 551.                                                                                                                                                                                                |
| 727 | Panjwani, D., Healey, G., 1995. Markov random field models for unsupervised segmentation of                                                                                                         |
|     | textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (10), 939–                                                                                                 |
| 720 | 954.                                                                                                                                                                                                |
| 728 | Pierce, E., Ulaby, F., Sarabandi, K., Dobson, M., 1994. Knowledgebased classification of polarimetric                                                                                               |
| 605 | Rosenfeld A Kak A C 1976 Digital Picture Processing Academic Press New York                                                                                                                         |
| 720 | Corming C. Doli E. 100E. Classification of multiconcer remotoconging images by structured nounal                                                                                                    |
| 730 | networks. IEEE Transactions on Geoscience and Remote Sensing 33 (3), 562– 577.                                                                                                                      |
| 731 | Tsatsoulis, C., 1993. Expert systems in remote sensing applications. IEEE Geoscience and Remote Sensing Newsletter June, $7-15$ .                                                                   |
| 732 | Zadeh, L., 1965. Fuzzy Sets. IEEE Transactions Information and Control 8 (3), 338–353.                                                                                                              |
| 733 | Addink, E.A., de Jong, S.M., Pebesma, E.J., 2007. The importance of scale in object-based mapping of                                                                                                |
|     | vegetation parameters with hyperspectral imagery. Photogrammetric Engineering & Remote Sensing                                                                                                      |
|     | 73 (8), 905 912.                                                                                                                                                                                    |
| 734 | Albrecht, F., 2008. Assessing the spatial accuracy of object-based image classifications. In: Car, A.,                                                                                              |
|     | Griesebner, G., Strobl, J. (Eds.), Geospatial Grossroads @ GI_Forum 08. Proceedings of the                                                                                                          |
| 735 | al Khudairy D.H. Carayaggi I. Glada S. 2005 Structural damage assessments from Ikonos data using                                                                                                    |
|     | change detection, object-oriented segmentation, and classification techniques. Photogrammetric                                                                                                      |
|     | Engineering & Remote Sensing 71 (7), 825 837                                                                                                                                                        |
| 736 | Amin, M., Mabe, M., 2000. Impact factors: Use and abuse. Perspectives in Publishing 1, 1-6.                                                                                                         |
| 737 | An, K., Zhang, J., Xiao, Y., 2007. Object-oriented urban dynamic monitoring. A case study of Haidian                                                                                                |
| 738 | Anlin P. Atkinson P.M. Curran P.I. 1999 Fine spatial resolution simulated satellite sensor imagery                                                                                                  |
|     | for land cover mapping in the United Kingdom. Remote Sensing of Environment 68 (3), 206 216.                                                                                                        |
| 739 | Arbiol, R., Zhang, Y., Palá,, 2006. Advanced classification techniques: a review. ISPRS Commission VII                                                                                              |
|     | Mid-term Symposium ``From Pixel to Processes'', Enschede, NL, 8-11 May 2006.                                                                                                                        |
| 740 | Aubrecht, C., Steinnocher, K., Hollaus, M., Wagner, W., 2008. Integrating earth observation and                                                                                                     |
|     | GIScience for high resolution spatial and functional modeling of urban land use. Computers,                                                                                                         |
| 251 | Environment and Urban Systems 33 (1), 15 25.                                                                                                                                                        |
| 251 | Baatz, M., Schape, M., 2000. Multiresolution segmentation An optimization approach for high quality multi-scale image segmentation. In: Strobl. I., Blaschke, T., Griesebner, G. (Eds.). Angewandte |

|      | Geographische Informations-Verarbeitung XII. Wichmann Verlag, Karlsruhe, pp. 1223.                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 742  | Baatz, M., Hoffmann, C., Willhauck, G., 2008. Progressing from object-based to object-oriented image                                               |
|      | analysis. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object based image analysis. Springer, Heidelberg,                                         |
|      | Berlin, New York, pp. 29 42.                                                                                                                       |
| 743  | Baltsavias, E.P., 2004. Object extraction and revision by image analysis using existing geodata and                                                |
|      | knowledge: Current status and steps towards operational systems. ISPRS Journal of Photogrammetry                                                   |
| 27   | and Remote Sensing 58 (3 4), 129 151.                                                                                                              |
| 27   | benz, U.L., Holmann, P., Winnauck, G., Lingenielder, I., Heynen, M., 2004. Multifesolution, object-                                                |
|      | Photogrammetry and Remote Sensing 58 (3.4), 239 258                                                                                                |
| 745  | Berberoglu, S., Akin, A., 2009. Assessing different remote sensing techniques to detect land use/cover                                             |
|      | changes in the eastern Mediterranean. International Journal of Applied Earth Observation and                                                       |
|      | Geoinformation 11 (1), 46 53.                                                                                                                      |
| 746  | Bian, L., 2007. Object-oriented representation of environmental phenomena: Is everything best                                                      |
|      | represented as an object? Annals of the Association of American Geographers 97 (2), 267 281.                                                       |
| 747  | Blaschke, T., 1995. Measurement of structural diversity with GIS Not a problem of technology. In: JEC                                              |
|      | Joint European conference on Geographical Information proceedings, vol. 1. IOS press, The Hague, NL,                                               |
| 749  | pp. 334 340.<br>Placebles T. (Ed.), 2002. Fernerlundung und CIS: Neue Senseren Innevetive Methoden, Wichmann                                       |
| 740  | Verlag Karlsruhe 264 nn                                                                                                                            |
| 749  | Blaschke, T., 2005. A framework for change detection based on image objects. In: Erasmi, S., Cyffka, B.,                                           |
|      | Kappas, M. (Eds.), Göttinger Geographische Abhandlungen, vol. 113. Göttingen, pp. 19.                                                              |
| 254  | Blaschke, T., Strobl, J., 2001. What's wrong with pixels? Some recent developments interfacing remote                                              |
|      | sensing and GIS. GIS Zeitschrift für Geoinformationssysteme 14 (6), 12 17.                                                                         |
| 751  | Blaschke, T., Hay, G.J., 2001. Object-oriented image analysis and scale-space: Theory and methods for                                              |
|      | modeling and evaluating multi-scale landscape structure. International Archives of Photogrammetry                                                  |
| 752  | and Remote Sensing 54 (Part 4/W5), 22 29.<br>Blaschke T. Lang S. 2006. Object based image analysis for automated information extraction. A         |
| 752  | synthesis In: Measuring the Earth II ASPRS Fall Conference 6-10 November 2006. San Antonio Texas                                                   |
|      | on CD-ROM.                                                                                                                                         |
| 753  | Blaschke, T., Kux, H. (Eds.), 2005. Sensoriamento remoto e SIG acançados. Novos sistemas sensores -                                                |
|      | métodos inovadores. Oficina de Textos, Sao Paulo, Brasil, pp. 242.                                                                                 |
| 754  | Blaschke, T., Lang, S., Lorup, E., Strobl, J., Zeil, P., 2000. Object-oriented image processing in an                                              |
|      | Integrated GIS/remote sensing environment and perspectives for environmental applications. In:                                                     |
|      | Gremers, A., Greve, K. (Eus.), Environmental information for Planning, Politics and the Public, vol. 2.<br>Metropolis Verlag, Marburg, pp. 555-570 |
| 755  | Blaschke, T., Burnett, C., Pekkarinen, A., 2004, New contextual approaches using image segmentation                                                |
|      | for object-based classification. In: De Meer, F., de Jong, S. (Eds.), Remote Sensing Image Analysis:                                               |
|      | Including the spatial domain. Kluver Academic Publishers, Dordrecht, pp. 211 236.                                                                  |
| 205  | Blaschke, T., Lang, S., Hay, G.J. (Eds.), 2008. Object Based Image Analysis. Springer, Heidelberg, Berlin,                                         |
|      | New York, 817 p.                                                                                                                                   |
| 757  | Böhner, J., Selige, T., Ringeler, A., 2006. Image segmentation using representativeness analysis and                                               |
|      | region growing. In: Bonner, J., McCloy, K., Strobl, J. (Eds.), SAGA Analyses and Modelling Applications.                                           |
| 758  | Bock M. Yofis P. Mitchley I. Rossner C. Wissen M. 2005 Object-oriented methods for habitat                                                         |
| / 50 | mapping at multiple scales Case studies from Northern Germany and Wye Downs, IJK. Journal for                                                      |
|      | Nature Conservation 13 (2 3), 75 89.                                                                                                               |
| 759  | Bontemps, S., Bogaert, P., Titeux, N., Defourny, P., 2008. An object-based change detection method                                                 |
|      | accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote                                                |
|      | Sensing of Environment 112 (6), 3181 3191.                                                                                                         |
| 760  | Brennan, R., Webster, T.L., 2006. Object-oriented land cover classification of lidarderived surfaces.                                              |
| 761  | Canadian Journal of Remote Sensing 32 (2), 162 172.                                                                                                |
| /01  | Durnett, C., Diascrike, T., 2002. Objects/not-objects and near-decomposability: Ecosystems and Gl. In:                                             |
|      | Mount (10.), abolence 2002, bounder. pp. 223-227.                                                                                                  |
| 7(2) |                                                                                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 762  | Burnett, C., Blaschke, T., 2003. A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling 168 (3), 233 249. |
| 763  | Bunting, P.L. Lucas, R.M., 2006. The delineation of tree crowns in Australian mixed species forests                                                                  |
|      | using hyperspectral Compact Airborne Spectrographic Imager (CASI) data Remote Sensing of                                                                             |
|      | Environment 101 220 240                                                                                                                                              |
| 764  | Câmere C. Soure D.C.M. Freites II.M. Carride I. 100( Spring, Integrating remate consing and CIC by                                                                   |
| 704  | Camara, G., Souza, K.C.M., Freitas, O.M., Garrido, J., 1996. Spring: Integrating remote sensing and GIS by                                                           |
|      | object-oriented data modeling. Computers & Graphics 20 (3), 395 403.                                                                                                 |
| 765  | Carleer, A.P., Debeir, O., Wolff, E., 2005. Assessment of very high spatial resolution satellite image                                                               |
|      | segmentations. Photogrammtric Engineering & Remote Sensing 71 (11), 1285 1294.                                                                                       |
| 766  | Caron, C., Roche, S., Goyer, D., Jaton, A., 2008. GIScience journals ranking and evaluation: An                                                                      |
|      | international delphi study. Transactions in GIS 12 (3), 293 321.                                                                                                     |
| 767  | Castilla, G., Hay, G.J., Ruiz, J.R., 2008. Size-constrained region merging (SCRM): An automated                                                                      |
|      | delineation tool for assisted photointerpretation. Photogrammetric Engineering & Remote Sensing 74                                                                   |
|      | (4), 409 419.                                                                                                                                                        |
| 768  | Castilla, G., Hay, G.L. 2006. Uncertainties in land use data. Hydrology and Earth System Sciences 3 (6).                                                             |
|      | 3439 3472.                                                                                                                                                           |
| 769  | Chen, Y., Shi, P., Fung, T., Wang, I., Li, Y., 2007. Object-oriented classification for urban land cover                                                             |
|      | mapping with ASTER imagery. International Journal of Remote Sensing 28 (29), 4645 4651.                                                                              |
| 770  | Chubey MS Franklin SF Wulder MA 2006 Object-based analysis of IKONOS-2 imagery for                                                                                   |
|      | extraction of forest inventory parameters. Photogrammetric Engineering & Remote Sensing 72 (4)                                                                       |
|      | 202.204                                                                                                                                                              |
| 771  | 505 574.                                                                                                                                                             |
| //1  | detection methoda, In. ACDEC ennuel convention proceedings (on CD, DOM). Weshington, DC                                                                              |
| 770  | detection methods. In: ASPRS annual convention proceedings (on CD-ROM), washington, DC.                                                                              |
| 112  | Cracknell, A.P., 1998. Synergy in remote sensing What's in a pixel? International Journal of Remote                                                                  |
|      | Sensing 19 (11), 2025 2047.                                                                                                                                          |
| 773  | Conchedda, G., Durieux, L., Mayaux, P., 2008. An object-based method for mapping and change analysis                                                                 |
|      | in mangrove ecosystems. ISPRS Journal of Photogrammetery & Remote Sensing 63 (5), 578 589.                                                                           |
| 774  | Corbane, C., Raclot, D., Jacob, F., Albergel, J., Andrieux, P., 2008. Remote sensing of soil surface                                                                 |
|      | characteristics from a multiscale classification approach. Catena 75 (3), 308 318.                                                                                   |
| 775  | Cova, T.J., Goodchild, M.F., 2002. Extending geographical representation to include fields of spatial                                                                |
|      | objects. International Journal of Geographical Information Science 16 (6), 509 532.                                                                                  |
| 776  | Cutter, S.L., Golledge, R., Graf, W.L., 2002. The big questions in geography. The Professional                                                                       |
|      | Geographer 54 (3), 305 317.                                                                                                                                          |
| 777  | Darwish, A., Leukert, K., Reinhardt, W., 2003. Image segmentation for the purpose of object-based                                                                    |
|      | classification. In: Geoscience and Remote Sensing Symposium, 2003, IGARSS '03, 2003 IEEE                                                                             |
|      | International (3) 2039 2041                                                                                                                                          |
| 778  | Desclée B Boggert P Defourny P 2006 Forest change detection by statistical object-based method                                                                       |
|      | Remote Sensing of Environment 102 (1.2) 1.11                                                                                                                         |
| 779  | Devereux BL Amable CS Costa Posada C 2004 An efficient image segmentation algorithm for                                                                              |
| ,    | landscape analysis International Journal of Annlied Farth Observation and Ceginformation 6 (1) 47                                                                    |
|      | 61                                                                                                                                                                   |
| 780  | Diaz Varala P.A. Pamil Paga P. Idlasias S.C. Muñaz Sabrina C. 2009 Automatic babitat classification                                                                  |
| 700  | matheda bagad an gatallita imagag. A practical accogrammat in the NIAU havia coastal mountains                                                                       |
|      | Inethous based on satellite infages: A practical assessment in therwideria coastal mountains.                                                                        |
| 701  | Environmental Monitoring and Assessment 144 (15), 229 250.                                                                                                           |
| /01  | Dorren, L.K., Maler, B., Seijmonsbergen, A.C., 2003. Improved Landsat-based forest mapping in steep                                                                  |
|      | mountainous terrain using object-based classification. Forest Ecology and Management 183 (1-3), 31                                                                   |
| 702  |                                                                                                                                                                      |
| /82  | Dubois, F.L., Keeb, D., 2000. Kanking the international business journals. Journal of International                                                                  |
| 700  | Business Studies 31 (4), 689 /04.                                                                                                                                    |
| 783  | Duveiller, G., Defourny, P., Desciee, B., Mayaux, P., 2008. Deforestation in Central Africa: Estimates at                                                            |
|      | regional, national and landscape levels by advanced processing of systematically-distributed Landsat                                                                 |
|      | extracts. Remote Sensing of Environment 112 (5), 1969 1981.                                                                                                          |
| 784  | Durieux, L., Lagabrielle, E., Nelson, A., 2008. A method for monitoring building construction in urban                                                               |
|      | sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS Journal of                                                                    |
|      | Photogrammetry and Remote Sensing 63 (4), 399 408.                                                                                                                   |

| 785 | Ebert, A., Kerle, N., Stein, A., 2009. Urban social vulnerability assessment with physical proxies and      |
|-----|-------------------------------------------------------------------------------------------------------------|
|     | spatial metrics derived from air- and spaceborne imagery and GIS data. Natural Hazards 48 (2), 275          |
|     | 294.                                                                                                        |
| 786 | Ehlers, M., Gähler, M., Janowsky, R., 2003. Automated analysis of ultra highresolution remote sensing       |
|     | data for biotope type mapping: New possibilities and challenges. ISPRS Journal of Photogrammetry            |
|     | and Remote Sensing 57 (5 6), 315 326.                                                                       |
| 787 | Ehlers, M., Gähler, M., Janowsky, R., 2006. Automated techniques for environmental monitoring and           |
|     | change analyses for ultra high-resolution remote sensing data. Photogrammetric Engineering &                |
|     | Remote Sensing 72 (7), 835 844.                                                                             |
| 788 | Flanders, D., Hall-Beyer, M., Pereverzoff, J., 2003. Preliminary evaluation of eCognition object-based      |
|     | software for cut block delineation and feature extraction. Canadian Journal of Remote Sensing 29 (4),       |
|     | 441 452.                                                                                                    |
| 789 | Frauman, E., Wolff, E., 2005. Segmentation of very high spatial resolution satellite images in urban        |
|     | areas for segments-based classification. In: Proc. International Symposium Remote Sensing and Data          |
|     | Fusion Over Urban Areas and 5th Intern. Symposium Remote Sensing of Urban Areas, Tempe, USA, 14             |
|     | 16 March 2005.                                                                                              |
| 790 | Hölbling, D., Neubert, M., 2008. ENVI Feature Extraction 4.5. Snapshot. In: GIS Business, 7=2008. pp.       |
|     | 48 51.                                                                                                      |
| 791 | Kuhn, T.S., 1962. The Structure of Scientific Revolutions. The Chicago University Press, Chicago.           |
| 792 | Levine, M.D., Nazif, A.M., 1985. Rule-based image segmentation: A dynamic control strategy approach.        |
|     | Computer Vision, Graphics and Image Processing 32 (1), 104 126.                                             |
| 793 | Gahegan, M., 1999. Characterizing the semantic content of geographic data, models, and systems. In:         |
|     | Goodchild, M.F., Egenhofer, M., Fegeas, R., Kottman, C. (Eds.), Interoperating Geographic Information       |
|     | Systems. Kluwer Academic Publishers, Norwell, MA, pp. 71 84.                                                |
| 794 | Gamanya, R., de Maeyer, P., De Dapper, M., 2009. Object-oriented change detection for the city of           |
|     | Harare, Zimbabwe. Expert Systems with Applications 36 (1), 571 588.                                         |
| 795 | Geneletti, D., Gorte, B.G.H., 2003. A method for objectoriented land cover classification combining         |
| 504 | Landsat TM data and aerial photographs. International Journal of Remote Sensing 24 (6), 1273 1286.          |
| 796 | Gergel, S.E., Stange, Y., Coops, N.C., Johansen, K., Kirby, K.R., 2007. What is the value of a good map? An |
| 265 | example using high spatial resolution imagery to aid riparian restoration. Ecosystems 10 (5), 688 702.      |
| 265 | Gitas, I.Z., Mitri, G.H., Ventura, G., 2004. Object-based image classification for burned area mapping of   |
| 700 | Creus Cape, Spain. Remote Sensing of Environment 92 (3), 709-713.                                           |
| /90 | Goodchild, M.F., 1992. Geographical information science. International journal of Geographical              |
| 700 | Condebild M.E. 2004 Clearance geography form and process Appels of the Association of American              |
| 799 | Geographers 92 (4), 709 714.                                                                                |
| 800 | Goodchild, M.F., Longley, P.A., 1999. The future of GIS and spatial analysis. In: Longley, P.A., Goodchild, |
|     | M.F., Maguire, D.J., Rhind, D.W. (Eds.), Geographical Information Systems: Principles, Techniques,          |
|     | Applications and Management. Wiley, New York, pp. 567 580.                                                  |
| 801 | Gorte, B., 1998. Probabilistic Segmentation of Remotely Sensed Images. ITC Publication Series No. 63,       |
|     | Enschede, NL.                                                                                               |
| 802 | Grenier, M., Labrecque, S., Benoit, M., Allard, M., 2008. Accuracy assessment method for wetland            |
|     | object-based classification. In: Proceedings GEOBIA, 2008 Pixels, Objects, Intelligence: GEOgraphic         |
|     | Object Based Image Analysis for the 21st Century. pp. 285 289.                                              |
| 803 | Gusella, L., Adams, B., J., Bitelli, G., Huyck, C.K., Eeri, M., Mognol, A., 2005. Objectoriented image      |
|     | understanding and post-earthquake damage assessment for the 2003 Bam, Iran, Earthquake.                     |
|     | Earthquake Spectra 21 (S1), S225 S238.                                                                      |
| 804 | Hall, O., Hay, J.G., 2003. A multiscale object-specific approach to digital change detection. International |
|     | Journal of Applied Earth Observation and Geoinformation 4 (4), 311 327.                                     |
| 805 | Hall, O., Hay, G.J., Bouchard, A., Marceau, D.J., 2004. Detecting dominant landscape objects through        |
|     | multiple scales: An integration of object-specific methods and watershed segmentation. Landscape            |
|     | Ecology 19 (1), 59 76.                                                                                      |
| 806 | Haralick, R.M., 1983. Decision making in context. IEEE Transactions on Pattern Analysis and Machine         |
|     | Intelligence 5 (4), 417 428.                                                                                |
|     |                                                                                                             |

| 807 | Haralick, R.M., Shapiro, L., 1985. Survey: Image segmentation techniques. Computer Vision, Graphics, and Image Processing 29, 100 132.                                                                                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 808 | Harzing, AW., van der Wal, R., 2008. (2nd version 20 December 2008). Comparing the Google Scholar h-index with the ISI Journal Impact Factor. http://www.harzing.com/h_indexjournals.htm(accessed 07.08.09).                                                                                 |
| 809 | Hay, G.J., Niemann, K.O., McLean, G.F., 1996. An object-specific image-texture analysis of H-resolution forest imagery. Remote Sensing of Environment 55 (2), 108 122.                                                                                                                       |
| 810 | Hay, G.J., Marceau, D.J., Dube, P., Bouchard, A., 2001. A multiscale framework for landscape analysis:<br>Object-specific analysis and upscaling. Landscape Ecology 16 (6), 471 490.                                                                                                         |
| 811 | Hay, G.J., Dube, A., Bouchard, Marceau, D.J., 2002. A scale-space primer for exploring and quantifying complex landscapes. Ecological Modelling 153 (1 2), 27 49.                                                                                                                            |
| 812 | Hay, G.J., Blaschke, T., Marceau, D.J., Bouchard, A., 2003. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing 57 (5 6), 327 345.                                                             |
| 813 | Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R., 2005. An automated object-based approach for the multiscale image segmentation of forest scenes. International Journal of Applied Earth Observation and Geoinformation 7 (4), 339 359.                                                    |
| 814 | Hay, G.J., Castilla, G., 2008. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In: Blaschke, T., Lang, S., Hay, G. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 93 112.                                                |
| 815 | Herrera, B., Klein, C., Koch, B., Dees, M., 2004. Automatic classification of trees outside forest using an object-driven approach: An application in a Costa Rican landscape. Photogrammetrie, Fernerkundung, Geoinformation 8 (2), 111 119.                                                |
| 816 | Heyman, O., Gaston, G.G., Kimerling, A.J., Campbell, J.T., 2003. A persegment approach to improving                                                                                                                                                                                          |
| 817 | Hofmann, P., Strobl, J., Blaschke, T., Kux, H.J., 2008. Detecting informal settlements from QuickBird data in Rio de Janeiro using an object-based approach. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 531 554. |
| 818 | Hu, X., Tao, C.V., Prenzel, B., 2005. Automatic segmentation of high-resolution satellite imagery by integrating texture, intensity, and color features. Photogrammetric Engineering & Remote Sensing 71 (12), 1399 1406.                                                                    |
| 819 | Im, J., Jensen, J.R., Tullis, J.A., 2008. Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing 29 (2), 399 423.                                                                                                    |
| 273 | Ivits, E., Koch, B., 2002. Object-oriented remote sensing tools for biodiversity assessment: A European approach. In: Proceedings 22nd EARSeL Symposium, Prague, 4-6 June 2002. Millpress Science Publishers, Rotterdam.                                                                     |
| 821 | Ivits, E., Koch, B., Blaschke, T., Jochum, M., Adler, P., 2005. Landscape structure assessment with image grey-values and object-based classification at three spatial resolutions. International Journal of Remote Sensing 26 (4), 2975 2993.                                               |
| 822 | Jacquin, A., Misakova, L., Gay, M., 2008. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landscape and Urban Planning 84 (2), 152 165.                                                                                                     |
| 823 | Jobin, B., Labrecque, S., Grenier, M., Falardeau, G., 2008. Object-based classification as an alternative approach to the traditional pixel-based classification to identify potential habitat of the grasshopper sparrow. Environmental Management 41 (1), 20 31.                           |
| 824 | Johansen, K., Coops, N.C., Gergel, S.E., Stange, J., 2007. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment 110 (1), 29 44.                                                                          |
| 825 | Kartikeyan, B., Sarkar, A., Majumder, K.L., 1998. A segmentation approach to classification of remote sensing imagery. International Journal of Remote Sensing 19 (9), 1695 1709.                                                                                                            |
| 826 | Kettig, R., Landgrebe, D., 1976. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics GE-14 (1), 19 26.                                                                                           |
| 827 | Koch, B., Jochum, M., Ivits, E., Dees, M., 2003. Pixelbasierte Klassifizierung im Vergleich und Ergänzung zum objektbasierten Verfahren. Photogrammetrie, Fernerkundung, Geoinformation 7 (3), 195 204.                                                                                      |
| 828 | Koestler, A., 1967. The Ghost in the Machine. Random House, New York.                                                                                                                                                                                                                        |

| 829 | Kong, C., Xu, K., Wu, C., 2006. Classification and extraction of urban land-use information from high-<br>resolution image based on object multi-features. Journal of China University of Geosciences 17 (2),<br>151 157.                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 830 | Krause, G., Bock, M., Weiers, S., Braun, G., 2004. Mapping land-cover and mangrove structures with remote sensing techniques: A contribution to a synoptic GIS in support of coastal management in North Brazil. Environmental Management 34 (3), 429 440.                      |
| 831 | Kressler, F., Steinnocher, K., 2008. Object-oriented analysis of image and LiDAR data and its potential for dasymetric mapping applications. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 611 624.    |
| 832 | Kux, H.J., Araujo, E.H.G., 2008. Object-based image analysis using QuickBird satellite images and GIS data, case study Belo Horizonte (Brazil). In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 571 588. |
| 833 | Lackner, M., Conway, T.M., 2008. Determining land-use information from land cover through an object-oriented classification of IKONOS imagery. Canadian Journal of Remote Sensing 34 (2), 77 92.                                                                                |
| 834 | Laliberte, A.S., Rango, A., Havstad, K.M., Paris, J.F., Beck, R.F., McNeely, R., Gonzalez, A.L., 2004. Object-<br>oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico.<br>Remote Sensing of Environment 93 (1 2), 198 210.          |
| 835 | Laliberte, A.S., Fredrickson, E.L., Rango, A., 2007. Combining decision trees with hierarchical object-<br>oriented image analysis for mapping arid rangelands. Photogrammetric Engineering & Remote<br>Sensing 73 (2), 197 207.                                                |
| 836 | Lang, S., 2005. Image objects vs. landscape objects. Interpretation, hierarchical representation and significance, Salzburg (unpublished Ph.D. thesis).                                                                                                                         |
| 837 | Lang, S., 2008. Object-based image analysis for remote sensing applications: Modeling reality Dealing with complexity. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 1 25.                             |
| 838 | Lang, S., Blaschke, T., 2003. Hierarchical object representation. Comparative multiscale mapping of anthropogenic and natural features. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (Part 3/W8), 181 186.                      |
| 839 | Lang, S., Blaschke, T., 2006. Bridging remote sensing and GIS - what are the main supporting pillars?.<br>International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-<br>4/C42.                                                            |
| 840 | Lang, S., Langanke, T., 2006. Object-based mapping and object-relationship modeling for land use classes and habitats. Photogrammetrie, Fernerkundung, Geoinformation 10 (1), 5 18.                                                                                             |
| 841 | Lang, S., Tiede, D., 2007. Definiens Developer. GIS Business 9/2007, 34 37.                                                                                                                                                                                                     |
| 842 | Langanke, T., Burnett, C., Lang, S., 2007. Assessing the mire conservation status of a raised bog site in Salzburg using object-based monitoring and structural analysis. Landscape and Urban Planning 79 (2), 160 169.                                                         |
| 843 | Lang, S., Tiede, D., Hofer, F., 2006. Modeling ephemeral settlements using VHSR image data and 3D visualization The example of Goz Amer Refugee Camp in Chad. Photogrammetrie, Fernerkundung, Geoinformation 10 (4), 327 337.                                                   |
| 844 | Lang, S., Schöpfer, E., Langanke, T., 2008. Combined object-based classification and manual interpretation Synergies for a quantitative assessment of parcels and biotopes. Geocarto International 23 (4), 1 16.                                                                |
| 845 | Lathrop, R.G., Montesano, P., Haag, S., 2006. A multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogrammetric Engineering & Remote Sensing 72 (5), 665 675.                                                             |
| 846 | Lemp, D., Weidner, U., 2005. Segment-Based characterization of roof surfaces using hyperspectral and laser scanning data. In: Proceedings IGARSS 2005 Symposium, Seoul, Korea, 25 29 July 2005.                                                                                 |
| 847 | Levick, S.R., Rogers, K-H., 2008. Structural biodiversity monitoring in savannah ecosystems. In:<br>Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New<br>York, pp. 477 492.                                              |
| 848 | Liu, Y., Zhou, Q., 2004. Accuracy analysis of remote sensing change detection by rulebased rationality evaluation with post-classification comparison. International Journal of Remote Sensing 25 (5), 1037 1050.                                                               |

| 849  | Liu, Z.J., Wang, J., Liu, W.P., 2005. Building extraction from high resolution imagery based on multi-                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | scale object oriented classification and probabilistic Hough transform. In: Proc. IGARSS 2005                                                                                                        |
| 950  | Symposium, Seoul, Korea, 25 29 July 2005. pp. 2250 2253.                                                                                                                                             |
| 030  | object oriented image analysis. Chinese Geographical Science 16 (3), 282 288                                                                                                                         |
| 851  | Lobo, A., Chick, O., Casterad, A., 1996. Classification of Mediterranean crops with multisensor data:                                                                                                |
|      | Per-pixel versus per-object statistics and image segmentation. International Journal of Remote                                                                                                       |
|      | Sensing 17 (12), 2385 2400.                                                                                                                                                                          |
| 852  | Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving                                                                                                        |
|      | classification performance. International Journal of Remote Sensing 28 (5), 823 870.                                                                                                                 |
| 853  | Lucieer, V.L., 2008. Object-oriented classification of sidescan sonar data for mapping benthic marine                                                                                                |
|      | habitats. International Journal of Remote Sensing 29 (3), 905 921.                                                                                                                                   |
| 854  | Luscier, J.D., Thompson, W.L., Wilson, J.M., Gorham, B.E., Dragut, L.D., 2006. Using digital photographs                                                                                             |
|      | and object-based image analysis to estimate percent ground cover in vegetation plots. Frontiers in                                                                                                   |
| 077  | Ecology and the Environment 4 (8), 408 413.                                                                                                                                                          |
| 855  | Mallinis, G., Koutsias, N., Tsakiri-Strati, M., Karteris, M., 2008. Object-based classification using                                                                                                |
|      | Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS                                                                                                     |
| 056  | Journal of Photogrammetry and Remote Sensing 63 (2), 237 250.                                                                                                                                        |
| 000  | Marceau, D., 1999. The scale issue in the social and natural sciences. Canadian journal of Remote                                                                                                    |
| 857  | Selisilig 25 (4), 547 550.<br>Major B. Tiodo D. Dorron I. 2009. Characterising mountain forest structure using landscape metrics.                                                                    |
| 037  | on LiDAR-based canony surface models. In: Blaschke, T. Lang, S. Hay, G.L. (Eds.). Object Based Image                                                                                                 |
|      | Analysis Springer Heidelberg Berlin New York nn 625 644                                                                                                                                              |
| 858  | Marignani, M., Rocchini, D., Torri, D., Chiarucci, A., Maccherini, S., 2008, Planning restoration in a                                                                                               |
|      | cultural landscape in Italy using an object-based approach and historical analysis. Landscape and                                                                                                    |
|      | Urban Planning 84 (1), 28 37.                                                                                                                                                                        |
| 859  | Mathieu, R., Freeman, C., Aryal, J., 2007. Mapping private gardens in urban areas using object-oriented                                                                                              |
|      | techniques and very high-resolution satellite imagery. Landscape and Urban Planning 81 (3), 179 192.                                                                                                 |
| 860  | McKeown, D.M., Harvey, W.A., Wixson, L.E., 1989. Automating knowledge acquisition for aerial image                                                                                                   |
|      | interpretation. Computer Vision, Graphics, and Image Processing 46 (1), 37 81.                                                                                                                       |
| 861  | Meinel, G., Neubert, M., Reder, J., 2001. Pixelorientierte versus segmentorientierte Klassifikation von                                                                                              |
|      | IKONOS-Satellitenbilddaten ein Methodenvergleich. Photogrammetrie, Fernerkundung,                                                                                                                    |
| 0.60 | Geoinformation 5 (3), 157 170.                                                                                                                                                                       |
| 862  | Mo, DK., Lin, H., Li, J., Sun, H., Xiong, XJ., 2007. Design and implementation of a high spatial                                                                                                     |
|      | resolution remote sensing image intelligent interpretation system. Data Science Journal 6                                                                                                            |
| 126  | (Supplement), 5445 452.                                                                                                                                                                              |
| 420  | moner, M., Lymburner, L., Volk, M., 2007. The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Ceoinformation 9 (3) |
|      | 311 321                                                                                                                                                                                              |
| 864  | Myint, S.W., Yuan, M., Cerveny, R.S., Giri, C.P., 2008, Comparison of remote sensing image processing                                                                                                |
|      | techniques to identify tornado damage areas from landsat TM data. Sensors 8 (2), 1128 1156.                                                                                                          |
| 865  | Narumalani, S., Zhou, Y., Jelinski, D., 1998. Utilizing geometric attributes of spatial information to                                                                                               |
|      | improve digital image classification. Remote Sensing Review 16, 233 253.                                                                                                                             |
| 435  | Navulur, K., 2007. Multispectral image analysis using the object-oriented paradigm. CRC Press, Boca                                                                                                  |
|      | Raton, FL.                                                                                                                                                                                           |
| 867  | Neubert, M., 2001. Segment-based analysis of high resolution satellite and laser scanning data In:                                                                                                   |
|      | Hilty, L.M., Gilgen, P.W. (Eds.), Sustainability in the Information Society. In: Umwelt-Informatik aktuell,                                                                                          |
|      | 30. Metropolis Verlag, Marburg, pp. 379 386.                                                                                                                                                         |
| 868  | Neubert, M., Herold, H., Meinel, G., 2008. Assessing image segmentation quality Concepts, methods                                                                                                    |
|      | and application. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer,                                                                                                |
| 0(0  | Heidelberg, Berlin, New York, pp. 760 784.                                                                                                                                                           |
| 869  | Niemeyer, I., Marpu, P.,R., Nussbaum, S., 2008. Change detection using object features. In: Blaschke, T.,                                                                                            |
|      | Lang, S., Hay, G.J. (Eds.J, Object based image Analysis. Springer, Heidelberg, Berlin, New York, pp. 169                                                                                             |
| 870  | 104.<br>Nobroga DA a'Hara CC Quintanilles IA 2000 An abiast based annuage to detect used for twee                                                                                                    |
| 0/0  | noorega, N.A., o nara, G.G., Quintannia, J.A., 2006. An object-based approach to detect road features                                                                                                |

|     | for informal settlements near Sao Paulo, Brazil. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based<br>Image Analysis, Springer, Heidelberg, Berlin, New York, pp. 589-607 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 871 | Nussbaum, S., Menz, G., 2008. Object-based image analysis and treaty verification. In: New Approaches                                                                              |
|     | in Remote Sensing Applied to Nuclear Facilities in Iran. Springer, Heidelberg, p. 218.                                                                                             |
| 872 | Ojala, T., Pietikainen, M., 1999. Unsupervised texture segmentation using feature distributions. Pattern                                                                           |
|     | Recognition 32 (3), 477 486.                                                                                                                                                       |
| 873 | Opitz, D., Blundell, S., 2008. Object recognition and image segmentation: The Feature Analyst                                                                                      |
|     | approach. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg,                                                                         |
|     | Berlin, New York, pp. 153 168.                                                                                                                                                     |
| 874 | Pal, R., Pal, K., 1993. A review on image segmentation techniques. Pattern Recognition 26 (9), 1277 1294.                                                                          |
| 875 | Park, NW., Chi, KH., 2008. Quantitative assessment of landslide susceptibility using high-resolution                                                                               |
|     | remote sensing data and a generalized additive model. International Journal of Remote Sensing 29 (1),                                                                              |
|     | 247 264.                                                                                                                                                                           |
| 876 | Pascual, C., García-Abril, A., García-Montero, L.G., Martín-Fernández, S., Cohen, W.B., 2008. Object-                                                                              |
|     | based semi-automatic approach for forest structure characterization using lidar data in                                                                                            |
| 077 | heterogeneous Pinus sylvestris stands. Forest Ecology and Management 255 (11), 3677 3685.                                                                                          |
| 877 | Pesaresi, M., Benediktsson, J.A., 2001. A new approach for the morphological segmentation of high-                                                                                 |
| 070 | resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 39 (2), 309 320.                                                                                  |
| 878 | Radoux, J., Defourny, P., 2007. A quantitative assessment of boundaries in automated forest stand                                                                                  |
| 879 | Padoux I. Defourny P. 2008 Quality assessment of segmentation results devoted to object based                                                                                      |
| 079 | classification In: Blaschke T Lang S Hay GI (Eds.) Object Based Image Analysis Springer                                                                                            |
|     | Heidelberg Berlin New York nn 257 271                                                                                                                                              |
| 880 | Reiche I. Hese S. Schmullius C. 2007 Objektbasjerte Klassifikation terrestrischer                                                                                                  |
|     | Ölverschmutzungen mittels hochauflösender Satellitendaten in West-Sibirien. Photogrammetrie.                                                                                       |
|     | Fernerkundung, Geoinformation 11 (4), 275 288.                                                                                                                                     |
| 339 | Schiewe, J., 2002. Segmentation of high-resolution remotely sensed data concepts, applications and                                                                                 |
|     | problems. In: Joint ISPRS Commission IV Symposium: Geospatial Theory, Processing and Applications,                                                                                 |
|     | 9 12 July 2002 (on CDROM).                                                                                                                                                         |
| 882 | Schiewe, J., Ehlers, M., 2005. A novel method for generating 3D city models from high resolution and                                                                               |
|     | multi-sensor remote sensing data. International Journal of Remote Sensing 26 (4), 683 698.                                                                                         |
| 290 | Shackelford, A.K., Davis, C.H., 2003. A hierarchical fuzzy classification approach for high-resolution                                                                             |
|     | multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing 41 (9),                                                                                    |
| 004 |                                                                                                                                                                                    |
| 884 | Schopfer, E., Moller, M.S., 2006. Comparing metropolitan areas Transferable object-based image                                                                                     |
| 885 | Schönfor F. Lang S. Albrocht F. 2008 Object fate analysis. Spatial relationships for the assessment                                                                                |
| 000 | of object transition and correspondence In: Blaschke T Lang S Hay GI (Eds.) Object Resed Image                                                                                     |
|     | Analysis, Springer, Heidelberg, Berlin, New York, np. 785 801.                                                                                                                     |
| 886 | Simon, H.A., 1973. The organization of complex systems. In: Pattee, H.H. (Ed.), Hierarchy Theory: The                                                                              |
|     | Challenge of Complex Systems. George Braziller, New York, Cambridge, pp. 1 27.                                                                                                     |
| 887 | Su, W., Li, J., Chen, Y., Liu, Z., Zhang, J., Low, T.M., Suppiah, I., Hashim, S.A.M., 2008. Textural and local                                                                     |
|     | spatial statistics for the object-oriented classification of urban areas using high resolution imagery.                                                                            |
|     | International Journal of Remote Sensing 29 (11), 3105 3117.                                                                                                                        |
| 888 | Platt, R.V., Rapoza, L., 2008. An evaluation of an object-oriented paradigm for land use/land cover                                                                                |
|     | classification. The Professional Geographer 60 (1), 87 100.                                                                                                                        |
| 889 | Ryherd, S., Woodcock, C.E., 1996. Combining spectral and texture data in the segmentation of remotely                                                                              |
|     | sensed images. Photogrammetric Engineering & Remote Sensing 62 (2), 181 194.                                                                                                       |
| 890 | Shiba, M., Itaya, A., 2006. Using eCognition for improved forest management and monitoring systems                                                                                 |
|     | in precision forestry. In: Ackerman, P. A., Längin, D.W., Antonides, M.C. (Eds.), Precision Forestry in                                                                            |
|     | plantations, semi-natural and natural forests. Proceedings International Precision Forestry                                                                                        |
| 204 | Symposium, Stellenbosch University, South Africa, March 2006, Stellenbosch.                                                                                                        |
| 274 | Slow, D., Lopez, A., Lippill, C., Hillon, S., Weeks, J., 2007. Object-based classification of residential land                                                                     |
|     | use within Actia, Ghana based on Quickbird Satenne data. International journal of Kenfole Sensing 28                                                                               |

|     | (22), 5167 5173.                                                                                                                                                                                                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 441 | Stow, D., Hamada, Y., Coulter, L., Anguelova, Z., 2008. Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sensing of Environment 112 (3), 1051 1061.                                                                     |
| 893 | Strahler, A., Woodcock, C., Smith, J., 1986. On the nature of models in remote sensing. Remote Sensing of Environment 20, 121 139.                                                                                                                                                                 |
| 894 | Thomas, N., Hendrix, C., Congalton, R.G., 2003. A comparison of urban mapping methods using high-<br>resolution digital imagery. Photogrammetric Engineering & Remote Sensing 69 (9), 963 972.                                                                                                     |
| 895 | Tiede, D., Lang, S., Hoffmann, C., 2008. Domain-specific class modelling for one-level representation of single trees. In: Blaschke, T., Lang, S., Hay, G. (Eds.), Object-Based Image Analysis. Spatial Concepts for Knowledge-driven Remote Sensing Applications. Springer, New York, pp. 133 151 |
| 896 | Tilton, J.C., 1998. Image segmentation by region growing and spectral clustering with a natural convergence criterion. In: Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International 4. pp. 1766 1768.                                                        |
| 897 | Trias-Sanz, R., Stamon, G., Louchet, J., 2008. Using colour, texture, and hierarchical segmentation for high-resolution remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 63 (2), 156 168.                                                                                        |
| 898 | Turker, M., Sumer, E., 2008. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images. International Journal of Remote Sensing 29 (11), 3073 3089.                                                                                       |
| 899 | Van de Sande, C.J., de Jong, S.M., de Roo, A.P.J., 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment.<br>International Journal of Applied Earth Observation and Geoinformation 4 (3), 217 229.          |
| 900 | van der Werff, H.M.A., van der Meer, F.D., 2008. Shape-based classification of spectrally identical objects. ISPRS Journal of Photogrammetry and Remote Sensing 63 (2), 251 258.                                                                                                                   |
| 901 | van Kousha, K., Thelwall, M., 2008. Sources of Google Scholar citations outside the Science Citation<br>Index: A comparison between four science disciplines. Scientometrics 74 (2), 273 294.                                                                                                      |
| 902 | Walker, J.S., Briggs, J.M., 2007. An object-oriented approach to urban forest mapping in phoenix.<br>Photogrammetric Engineering & Remote Sensing 73 (5), 577 583.                                                                                                                                 |
| 298 | Walker, J.S., Blaschke, T., 2008. Object-based landcover classification for the Phoenix metropolitan area: Optimization vs. transportability. International Journal of Remote Sensing 29 (7), 2021 2040.                                                                                           |
| 904 | Wang, L., Sousa, W.P., Gong, P., 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing 25 (24), 5655 5668.                                                                                           |
| 664 | Walter, V., 2004. Object-based classification of remote sensing data for change detection. ISPRS<br>Journal of Photogrammetry and Remote Sensing 58 (3 4), 225 238.                                                                                                                                |
| 906 | Weidner, U., 2008. Contribution to the assessment of segmentation quality for remote sensing applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (Part B7).                                                                                 |
| 907 | Weiers, S., Bock, M., Wissen, M., Rossner, G., 2004. Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landscape and Urban Planning 67 (1 4), 43 65.                                                                       |
| 908 | Weinke, E., Lang, S., Preiner, M., 2008. Strategies for semi-automated habitat delineation and spatial change assessment in an Alpine environment. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis. Springer, Heidelberg, Berlin, New York, pp. 711 732.                 |
| 909 | Wiseman, G., Kort, J., Walker, D., 2009. Quantification of shelterbelt characteristics using high-<br>resolution imagery. Agriculture, Ecosystems and Environment 131 (1 2), 111 117.                                                                                                              |
| 910 | Woodcock, C., Harward, V.J., 1992. Nested-hierarchical scene models and image segmentation.<br>International Journal of Remote Sensing 13 (16), 3167 3187.                                                                                                                                         |
| 911 | Wu, J., 1999. Hierarchy and scaling: Extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25 (4), 367 380.                                                                                                                                                         |
| 912 | Wu, J., Loucks, O.L., 1995. From balance-of-nature to hierarchical patch dynamics: A paradigm shift in ecology. Quarterly Review of Biology 70 (4), 439 466.                                                                                                                                       |
| 913 | Wu, J., David, J.L., 2002. A spatially explicit hierarchical approach to modeling complex ecological                                                                                                                                                                                               |

|     | systems: Theory and applications. Ecological Modelling 153 (1 2), 7 26.                                                                                                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 914 | Wuest, B., Zhang, Y., 2009. Region based segmentation of QuickBird multispectral imagery through band ratios and fuzzy comparison. ISPRS Journal of Photogrammetry and Remote Sensing 64 (1), 55 64.                                                                                                                               |
| 915 | Xie, Z., Roberts, C., Johnson, B., 2008. Object-based target search using remotely sensed data: A case study in detecting invasive exotic Australian Pine in south Florida. ISPRS Journal of Photogrammetry & Remote Sensing 63 (6), 647 660.                                                                                      |
| 916 | Wulder, M., 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography 22 (4), 449 476.                                                                                                                                                             |
| 917 | Yan, G., Mas, JF., Maathuis, B.H.P., Xiangmin, Z., Van Dijk, P.M., 2006. Comparison of pixel-based and object-oriented image classification approaches A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing 27 (18), 4039 4055.                                                  |
| 304 | Yu, Q., Gong, P., Chinton, N., Biging, G., Kelly, M., Schirokauer, D., 2006. Objectbased detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing 72 (7), 799 811.                                                                            |
| 919 | Zhang, Q.F., Molenaar, M., Tempfli, K., Shi, W., 2005. Quality assessment for geospatial objects derived from remotely sensed data. International Journal of Remote Sensing 26 (14), 2953 2974.                                                                                                                                    |
| 920 | Zhang, Q.F., Pavlic, G., Chen, W.J., Fraser, R., Leblanc, S., Cihlar, J., 2005. A semiautomatic segmentation procedure for feature extraction in remotely sensed imagery. Computers & Geosciences 31 (3), 289 296.                                                                                                                 |
| 921 | Zhang, BL., Song, M., Zhou, WC., 2005c. Exploration on method of autoclassification for main ground objects of Three Gorges Reservoir area. Chinese Geographical Science 15 (2), 157 161.                                                                                                                                          |
| 311 | Zhou, W., Troy, A., 2008. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing 29 (11), 3119 3135.                                                                                                                                            |
| 923 | Zhou, W., Troy, A., Grove, M., 2008. Modeling residential lawn fertilization practices: Integrating high resolution remote sensing with socioeconomic data. Environmental Management 41 (5), 742 752.                                                                                                                              |
| 924 | BECK, A. 2011. Archaeological applications of multi/hyper-spectral data—challenges and potential, in D.C. Cowley (ed.) Remote sensing for archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 87–97. Budapest: Archaeolingua.                                                                |
| 925 | BENNETT, R., K.WELHAM, R.A. HILL & A. FORD. 2011. Making the most of airborne remote sensing techniques for archaeological survey and interpretation, in D.C. Cowley (ed.) Remote sensing for archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 99–106. Budapest: Archaeolingua.           |
| 926 | BENNETT, R., K.WELHAM, R.A. HILL & A. FORD. 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeological Prospection 19: 41–48.<br>http://dx.doi.org/10.1002/arp.1414                                                                                                        |
| 927 | BROPHY, K. & D. COWLEY. 2005. From the air—understanding aerial archaeology. Stroud: Tempus.                                                                                                                                                                                                                                       |
| 928 | COWLEY, D.C. 2011. Remote sensing for European archaeology and heritage management—site discovery, interpretation and registration, in D.C. Cowley (ed.) Remote sensing for archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 43–55. Budapest: Archaeolingua.                              |
| 929 | COWLEY, D.C. & K.HULD SIGUR–DARD'OTTIR. 2011. Remote sensing for archaeological heritage management, in D.C. Cowley (ed.) Remote sensing for archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 11–16. Budapest: Archaeolingua.                                                             |
| 930 | COWLEY, D.C., V. DE LAET & R.A. BENNETT. 2013. Auto-extraction techniques and cultural heritage databases, in W. Neubauer, I. Trinks, R. Salisbury & C. Einw¨ogerer (ed.) Proceedings of the 10th International Conference on Archaeological Prospection, Vienna, May 29–June 2 2013: 406–408. Vienna: Ludwig Boltzmann Institute. |
| 931 | DOMINGOS, P. 2012. A few useful things to know about machine learning. Communications of the ACM 55(10): 78–87. http://dx.doi.org/10.1145/ 2347736.2347755                                                                                                                                                                         |
| 932 | DUCKERS, G.L. 2013. Bridging the 'geospatial divide' in archaeology: community based interpretation of LIDAR data. Internet Archaeology 35. http://dx.doi.org/10.11141/ia.35.10                                                                                                                                                    |
| 933 | GOJDA, M. 2011. Remote sensing for the integrated study and management of sites and monuments—<br>a Central European perspective and Czech case study, in D.C. Cowley (ed.) Remote sensing for                                                                                                                                     |

|     | archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 215–<br>34. Budapest: Archaeolingua.                                                                                                                                                                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 934 | GRØN, O., S. PALM'ER, F. STYLEGAR, K. ESBENSEN, S. KUCHERYAVSKI & S. AASE. 2011. Interpretation of archaeological small-scale features in spectral images. Journal of Archaeological Science 38: 2024–30. http://dx.doi.org/10.1016/ j.jas.2009.11.023                                                                                                                                                              |
| 935 | HALLIDAY, S. 2013. I walked, I saw, I surveyed, but what did I see?and what did I survey? in R. Opitz & D.C. Cowley (ed.) Interpreting archaeological topography: lasers, 3D data, observation, visualisation and applications: 63–75. Oxford: Oxbow.                                                                                                                                                               |
| 936 | HANSON, W.S. 2010. The future of aerial archaeology in Europe. Photo Interpr'etation: European Journal of Applied Remote Sensing 46(1): 3–11.                                                                                                                                                                                                                                                                       |
| 937 | HILL, R. 2009. The roar of the butterflies. London: HarperCollins.                                                                                                                                                                                                                                                                                                                                                  |
| 938 | HORNE, P. 2009. A strategy for the National Mapping Programme. Swindon: English Heritage.                                                                                                                                                                                                                                                                                                                           |
| 12  | DE LAET, V., E. PAULISSEN&M. WAELKENS. 2007. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science 34: 830–41. http://dx.doi.org/10.1016/j.jas.2006.09.013                                                                                                                                   |
| 13  | LAMBERS, K. & I. ZINGMAN. 2013. Texture segmentation as a first step towards archaeological object<br>detection in high resolution satellite images of the Silvretta Alps, in W. Neubauer, I. Trinks, R.<br>Salisbury & C. Einw <sup>-</sup> ogerer (ed.) Proceedings of the 10th International Conference on Archaeological<br>Prospection, Vienna May 29–June 2 2013: 327–29. Vienna: Ludwig Boltzmann Institute. |
| 388 | LASAPONARA, R. & N.MASINI. 2012. Satellite remote sensing: a new tool for archaeology. New York: Springer. http://dx.doi.org/10.1007/ 978-90-481-8801-7                                                                                                                                                                                                                                                             |
| 942 | PALMER, R. 2011. Knowledge-based aerial image interpretation, in D.C. Cowley (ed.) Remote sensing for archaeological heritage management (Europae Archaeologiae Consilium Occasional Papers 5): 283–91. Budapest: Archaeolingua.                                                                                                                                                                                    |
| 392 | PARCAK, S. 2009. Satellite remote sensing for archaeology. London: Routledge.                                                                                                                                                                                                                                                                                                                                       |
| 944 | PASCAL & PASCAL2. 2013. Pattern analysis, statistical modelling and computational learning.<br>Available at: http://pascallin.ecs.soton.ac.uk/ and http://pascallin2.ecs.soton.ac.uk/ (accessed 17 June 2014).                                                                                                                                                                                                      |
| 945 | RISBØL, O., O.M. BOLLANDS°AS, A. NESBAKKEN, H. ØRKA, E. NÆSSET & T. GOBAKKEN. 2013.<br>Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of<br>size and shape on detection success rates. Journal of Archaeological Science 40: 4688–700.<br>http://dx.doi.org/10.1016/j.jas.2013.07.002                                                                           |
| 946 | SONKA, M., V.HLAVAC & R. BOYLE. 2008. Image processing, analysis and machine vision. Toronto: Thomson Learning.                                                                                                                                                                                                                                                                                                     |
| 249 | TRIER, Ø. & L. PILØ. 2012. Automatic detection of pit structures in airborne laser scanning data.<br>Archaeological Prospection 19: 103–21. http://dx.doi.org/10.1002/arp.1421                                                                                                                                                                                                                                      |
| 248 | TRIER, Ø., S. LARSEN & R. SOLBERG. 2009. Automatic detection of circular structures in high-<br>resolution satellite images of agricultural land. Archaeological Prospection 16: 1–15.<br>http://dx.doi.org/ 10.1002/arp.339                                                                                                                                                                                        |
| 949 | VERHAGEN, P. & L.DR <sup>*</sup> AGUT, 2012. Object-based landform delineation and classification from DEMs for archaeological predictive mapping. Journal of Archaeological Science 39: 698–703.<br>http://dx.doi.org/10.1016/j.jas.2011.11.001                                                                                                                                                                    |
| 950 | VERHOEVEN, G. 2012. Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations. Journal of Archaeological Method and Theory 19: 132–60.<br>http://dx.doi.org/10.1007/s10816-011-9104-5                                                                                                                                                                                  |
| 951 | WILSON, D.R. 2000. Air photo interpretation for archaeologists. London: Tempus.                                                                                                                                                                                                                                                                                                                                     |
| 952 | Alva, W., 2001. The destruction, looting and traffic of the archaeological heritage of Peru. In: Brodie, N.J., Doole, J., Renfrew, C. (Eds.), Trade in Illicit Antiquities: the Destruction of the World's Archaeological Heritage. McDonald Institute, Cambridge. pp. 89e96.                                                                                                                                       |
| 953 | Anselin, L., 1995. Local indicators of spatial association LISA. Geogr. Anal. 27 (2), 93e115.                                                                                                                                                                                                                                                                                                                       |
| 954 | Atwood, R., 2006. Stealing History: Tomb Raiders, Smugglers, and the Looting of the Ancient World. St. Martin's Press.                                                                                                                                                                                                                                                                                              |

| 955  | Ball, G.H., Hall, D.J., 1965. ISODATA, a Novel Method of Data Analysis and Pattern Classification.                                                                                                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Technical Report, April 1965, Prepared for Information Science Branch Office of Naval Research,                                                                                                                                                                                         |
|      | Contract Nr. 4918, SRI Project 5533.                                                                                                                                                                                                                                                    |
| 956  | Brodie, N.J., Doole, J., Renfrew, C., 2001. Trade in Illicit Antiquities: the Destruction of the World's                                                                                                                                                                                |
|      | Archaeological Heritage. McDonald Institute, Cambridge.                                                                                                                                                                                                                                 |
| 957  | Brodie, N., Renfrew, C., 2005. Looting and the world's archaeological heritage: the inadequate                                                                                                                                                                                          |
|      | Response. Annu. Rev. Anthropol. 34, 343e361.                                                                                                                                                                                                                                            |
| 958  | Cliff, A.D., Ord, J.K., 1981. Spatial Processes, Models, and Applications. Pion, London.                                                                                                                                                                                                |
| 959  | Contreras, D.H., 2010. Huajeros and remote sensing imagery: assessing looting damage in the Virù                                                                                                                                                                                        |
|      | Valley, Peru. Antiquity 84 (324), 544e555.                                                                                                                                                                                                                                              |
| 960  | Conyers, L.B., Goodman, D., 1997. Ground-penetrating Radar e an Introduction for Archaeologists.                                                                                                                                                                                        |
| 0.64 | AltaMira Press, A Division of Sage Publications, Inc.                                                                                                                                                                                                                                   |
| 961  | Conyers, L.B., 2004. Ground-Penetrating Radar for Archaeology. AltaMira, Walnut Creek, California.                                                                                                                                                                                      |
| 962  | Conyers, L.B., 2006. Innovative ground-penetrating radar methods for archaeological mapping.<br>Archaeological Prospection 13 (2), 139e141.                                                                                                                                             |
| 963  | Conyers, L.B., 2012. Interpreting Ground-penetrating Radar for Archaeology. Left Coast Press, Walnut                                                                                                                                                                                    |
|      | Creek, CA.                                                                                                                                                                                                                                                                              |
| 964  | Conyers, L.B., Daniels, J.M., Haws, J., Benedetti, M., 2013. An upper palaeolithic landscape analysis of                                                                                                                                                                                |
|      | coastal portugal using ground-penetrating radar. Archaeological Prospection 20, 45e51.                                                                                                                                                                                                  |
| 965  | Daniels D. Gunton D.I. Scott H.F. 1988 Introduction to subsurface radar. Institution of electrical                                                                                                                                                                                      |
|      | engineers. Proceedings 135 (F4), 278e320.                                                                                                                                                                                                                                               |
| 966  | Davis, I.L., Annan, A.P., 1989, Ground penetrating radar for high resolution mapping of soil and rock                                                                                                                                                                                   |
|      | stratigraphy. Geophys. Prospect. 37, 531e551.                                                                                                                                                                                                                                           |
| 967  | Fotheringham, A.S., Brunsdon, C., Charlton, M., 2002. Geographically Weighted Regression: the                                                                                                                                                                                           |
|      | Analysis of Spatially Varying Relationships. Wiley, West Sussex.                                                                                                                                                                                                                        |
| 968  | Geary, R.C., 1954. The contiguity ratio and statistical mapping. Incorp. Stat. 5, 115e145.                                                                                                                                                                                              |
| 969  | Getis, A., Ord, J.K., 1994. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24,                                                                                                                                                                         |
|      | 189e206.                                                                                                                                                                                                                                                                                |
| 970  | Goodman, D., 2013. GPR Slice V. 7.0 Manual. From http://www.gpr-survey.com. June, 2013.                                                                                                                                                                                                 |
| 971  | Goodman, D., Steinberg, J., Damiata, B., Nishimure, Y., Schneider, K., Hiromichi, H., Hisashi, N., 2006.                                                                                                                                                                                |
| 972  | Coodman, D. Diro, S. 2012, CDP Remote Sensing in Archaeology. In: Series: Cootechnologies and the                                                                                                                                                                                       |
| 572  | Finvironment vol 9 (XI) Springer p 233                                                                                                                                                                                                                                                  |
| 973  | Hearn, K., 2007, Oldest temple, Mural in the americas found in Peru. Natl. Geogr. 12.                                                                                                                                                                                                   |
| 974  | Illian I. Donttinon A. Stovan H. Stovan D. 2000 Statistical Analysis and Modelling of Spatial Doint                                                                                                                                                                                     |
| 974  | Patterns, John Wiley & Sons Ltd. West Sussey, IIK                                                                                                                                                                                                                                       |
| 975  | Laben C.A. Bernard V. Brower W. 2000 Process for Enhancing the Snatial Resolution                                                                                                                                                                                                       |
|      | of Multispectral Imagery Using Pan Sharpening (US patent 6.011.875).                                                                                                                                                                                                                    |
|      |                                                                                                                                                                                                                                                                                         |
| 976  | Lasaponara, R., Masini, N., 2010. Facing the archaeological looting in Peru by local spatial                                                                                                                                                                                            |
|      | autocorrelation statistics of very high resolution satellite imagery. In: Taniar, D., Gervasi, O., Murgante,                                                                                                                                                                            |
|      | B., Pardede, E., Apdunan, B.O., Bernady, O. (Eds.), Proceedings of ICSSA, the 2010 International                                                                                                                                                                                        |
|      | Comerence on computational science and its Application (Fukuoka-Japan, March 25 e 20, 2010).                                                                                                                                                                                            |
| 977  | Lasanonara R. Masini N. Rizzo F. Orafici C. 2011 New discoveries in the Piramide Naraniada in                                                                                                                                                                                           |
| ,,,  | Cabuachi (Peru) using satellite Ground Prohing Radar and magnetic investigations 1 Archaeol Sci 38                                                                                                                                                                                      |
|      | (9). 2031e2039. http://dx.doi.org/10.1016/i.jas.2010.12.010.                                                                                                                                                                                                                            |
| 978  | Lasaponara, R., Masini, N., 2012. Pan-sharpening techniques to enhance archaeological marks: an                                                                                                                                                                                         |
|      | overview. In: Lasaponara, R., Masini, N. (Eds.), Satellite Remote Sensing: a New Tool for Archaeology.                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                         |
|      | Springer, Verlag, Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 87e110.                                                                                                                                                                                                                |
| 979  | Springer, Verlag, Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 87e110.<br>Lasaponara, R., Danese, M., Masini, N., 2012. Satellite-based monitoring of archaeological looting in                                                                                                       |
| 979  | Springer, Verlag, Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 87e110.<br>Lasaponara, R., Danese, M., Masini, N., 2012. Satellite-based monitoring of archaeological looting in<br>Peru. In: Lasaponara, R., Masini, N. (Eds.), Satellite Remote Sensing: A New Tool for Archaeology. |

| 980  | Leucci, 2012. Ground Penetrating Radar: a Useful Tool for Shallow Subsurface Stratigraphy<br>Characterization in Stratigraphy. INTECH, ISBN 979-953-307-339-1.                                                                                                                                                                                                                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 981  | MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations. In:<br>Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of<br>California Press 1, pp. 281e297.                                                                                                                                             |
| 982  | Masini, N., Lasaponara, R., Rizzo, E., Orefici, G., 2012. Integrated remote sensing approach in Cahuachi (Peru): studies and Results of the ITACA Mission. In: Lasaponara, R., Masini, N. (Eds.), Satellite Remote Sensing: a New Tool for Archaeology. Springer, Verlag, Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 307e344. http://dx.doi.org/10.1007/978-90-481-8801-7_14        |
| 983  | Moran, P., 1948. The interpretation of statistical maps. J. R. Stat. Soc. 10 (2), 243e251.                                                                                                                                                                                                                                                                                              |
| 984  | Parcak, S., 2007. Satellite remote sensing methods for monitoring archaeological tells in the Middle East. J. Field Archaeol. 32 (1), 65e81.                                                                                                                                                                                                                                            |
| 985  | Reynolds, J.M., 1998. An Introduction to Applied and Environmental Geophysics. John Wiley & Sons<br>Ltd.                                                                                                                                                                                                                                                                                |
| 986  | Sandmeier, K.J., 2011. Reflexw 6.0 Manual Sandmeier Software ZipserStrabe1 D-76227. Karlsruhe<br>Germany.                                                                                                                                                                                                                                                                               |
| 987  | Sheriff, R.E., Geldart, L.P., 1995. Exploration Seismology, second ed. Cambridge Univ. Press, New York, p. 592.                                                                                                                                                                                                                                                                         |
| 988  | Silverman, H., 1993. Cahuachi in the Ancient Nasca World. University of Iowa Press.                                                                                                                                                                                                                                                                                                     |
| 989  | Smith, K.L., 2005. Looting and the politics of archaeological knowledge in Northern Peru. Ethnos 70 (2), 147e170.                                                                                                                                                                                                                                                                       |
| 990  | Stone, E.C., 2008. Patterns of looting in southern Iraq. Antiquity 82, 125-138.                                                                                                                                                                                                                                                                                                         |
| 991  | Van Ess, M., Becker, H., Fassbinder, J., Kiefl, R., Lingefelder, I., Schreier, G., Zevenbergen, A., 2006.<br>Detection of looting activities at archaeological sites in<br>Iraq using Ikonos imagery. In: Stroble, J., Blaschke, Th., Griesebner, G. (Eds.), Agenwandte Geo-<br>Informatik. Breitrage zum 18. AGIT Symposium Salzburg 2006. Wichman Verlag, Heidelberg, pp.<br>669e678. |
| 992  | Watson, P., 1999. The lessons of Sipan: archaeologists and huajeros. Culture without context. Newsl.<br>Illicit Antiq Res. Centre 4, 15e20.                                                                                                                                                                                                                                             |
| 993  | Widess, M.B., 1973. How Thin Is This Bed? Geophysics, vol. 38, pp. 176e1180.                                                                                                                                                                                                                                                                                                            |
| 994  | Woodward, J., Ashworth, P.H., Best, J.L., Sambrook Smith, G.H., Simpson, C.J., 2003. The use and application of GPR in sandy fluvial environments: methodological stratigraphic analysis of layered deposits considerations. In: Bristow, C.S., Jol, H.M. (Eds.), Ground Penetrating Radar in Sediments, vol. 211. Geological Society Special Pubblication. London. pp. 127e142.        |
| 995  | Yilmaz, O., 1987. In: Neitzel, E.B. (Ed.), Seismic Data Processing. Society of Exploration Geophysicists,<br>Tulsa, OK.                                                                                                                                                                                                                                                                 |
| 996  | Alcock, G. 1993. The Landscapes of Roman Greece, Cambridge<br>University Press, Cambridge.                                                                                                                                                                                                                                                                                              |
| 997  | Ballester. P. 1996. Hough transforms and astronomical data analysis, Vistas in Astronomy 40, p. 479-485.                                                                                                                                                                                                                                                                                |
| 998  | Bescoby, D.J. 2007. Geoarchaeological investigations at Roman Butrint, in: I. Hansen, R.H. Hodges<br>(Eds.), The Roman Colony at Butrint: an Assessment, Journal of Roman Archaeology Supplementary<br>Series. JRA, Portsmouth, Rhode Island.                                                                                                                                           |
| 999  | Bescoby, D.J., G.C. Cawley, & P.N. Chroston. 2004. Enhanced interpretation of magnetic survey data using artificial neural networks: a case study from Butrint, southern Albania, Archaeological Prospection 11, p. 189-199.                                                                                                                                                            |
| 1000 | Bracewell, R.N. 1995. Two-dimensional Imaging, Prentice Hall, Englewood Cliffs, New Jersey.                                                                                                                                                                                                                                                                                             |
| 1001 | Casas, A.M., A.L. Corte´, A. Maestro, M.A. Soriano, A. Riaguas, J. Bernal. 2000. LINDENS: a program for lineament length and density analysis, Computers & Geosciences 26. 1011-1022.                                                                                                                                                                                                   |
| 1002 | Deans, S. 1983. The Radon Transform and Some of its Applications, John Wiley & Sons, New York.                                                                                                                                                                                                                                                                                          |
| 1003 | Dilke, O.A.W. 1992. The Roman Land Surveyors: an Introduction to the Agrimensers, second ed., Adolf M. Hakkert, Amsterdam.                                                                                                                                                                                                                                                              |

| 1004 | Diniz da Costa, R., & J. Starkey. 2001. PhotoLin: a program to identify and analyse linear structures in aerial photographs, satellite images and maps, Computers & Geosciences 27, p.527-534.                                                                                                                                      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1005 | Duda, R.O. & P.E. Hart. 1973. Pattern Classification and Scene Analysis,Wiley & Sons, New York.                                                                                                                                                                                                                                     |
| 1006 | Durrani, T.S. & D. Bisset. 1983. The Radon transform and some of its properties, Geophysics 49, p. 1180-1187.                                                                                                                                                                                                                       |
| 1007 | Giardina, C.R. & E.R. Dougherty. 1988. Morphological Methods in Image and Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey.                                                                                                                                                                                           |
| 1008 | Hansen, I. & R.H. Hodges. 2007. The Roman Colony at Butrint: an Assessment, Journal of Roman Archaeology Supplementary Series, JRA, Portsmouth, Rhode Island.                                                                                                                                                                       |
| 1009 | Hodges, R., W. Bowden, & K. Lako. 2004. Byzantine Butrint: Excavations and Surveys 1994e1999, Oxbow, Oxford.                                                                                                                                                                                                                        |
| 1010 | Hounslow, M.W. & P.N. Chroston. 2002. Structural layout of the suburbs of Roman Butrint, southern Albania: results from a gradiometer and resistivity survey, Archaeological Prospection 9, p. 229e242.                                                                                                                             |
| 1011 | Koike, K., S. Nagano, & M. Ohmi. 1995. Lineament analysis of satellite images using a segment tracing algorithm (STA), Computers & Geosciences 21, p. 1091e1104.                                                                                                                                                                    |
| 1012 | Lim, J.S. 1990. Two-dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, New Jersey.                                                                                                                                                                                                                           |
| 1013 | Magli, E., G. Olmo, & L. Lo Presti. 1999. Pattern recognition by means of the Radon transform and the continuous wavelet transform, Signal Processing 73 (1999) 277e289.                                                                                                                                                            |
| 1014 | Mugglestone, M.A. & E. Renshaw. 1998. Detection of geological lineations on aerial photographs using two-dimensional spectral analysis, Computers & Geosciences 24, 771e784.                                                                                                                                                        |
| 1015 | Novak, I.D. & N. Soulakellis. 2000. Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece, Geomorphology 34, 101e109.                                                                                                                                                                     |
| 1016 | Peterson, J.W.M. 1992. Fourier analysis of field boundaries, in: G. Lock, J. Moffett (Eds.), CAA91:<br>Computer Applications and Quantitative Methods in Archaeology 1991, BAR International Series 577,<br>p. 149e156.                                                                                                             |
| 1017 | Rizakis, A.D. 1995. Roman colonies in the province of Achaia: territories, land and population, in: S. Alcock (Ed.), The Early Roman Empire in the East, Oxbow Monograph 95, Oxbow, Oxford, p. 15e36.                                                                                                                               |
| 1018 | Romano, D.G. 2003.City planning, centuriation and land division in Roman Corinth, in: C.K. Williams II, N. Bookidis (Eds.), Corinth: Results of Excavations Conducted by the American School of Classical Studies at Athens, vol. 20, The American School of Clasical Studies at Athens, Athens.                                    |
| 1019 | Romano, D.G. & B.C. Schoenbrun. 1995. Remote sensing, GIS and electronic surveying: reconstructing the city plan and landscape of Roman Corinth, in: J. Hugget, N. Ryan (Eds.), Computer Applications and Quantitative Methods in Archaeology, BAR International Series 600, pp. 163e 174 (British Archaeological Reports, Oxford). |
| 694  | Scollar, I., A. Tabbagh, A. Hesse, & I. Herzog. 1990. Archaeological Prospecting and Remote Sensing,<br>Cambridge University Press, Cambridge.                                                                                                                                                                                      |
| 1021 | Vincent, L. 1991. Morphological transformations of binary images with arbitrary structuring elements, Signal Processing 22, 3e23.                                                                                                                                                                                                   |
| 1022 | Waldemark, J., M. Millberg, T. Lindblad, & K. Waldemark. 2000. Image analysis for airborne reconnaissance and missile applications, Pattern Recognition Letters 21, 239e251.                                                                                                                                                        |
| 1023 | Weinstein, F.S. 1995. An interesting feature of the Radon transform, Applied Mathematics Letters 8, 75e77.                                                                                                                                                                                                                          |
| 1024 | Mena, J. 2003. State of the art on automatic road extraction for GIS update: a novel classification<br>Pattern Recognition Letters, 24 (2003), pp. 3037–3058                                                                                                                                                                        |
| 743  | Baltsavias, E.P. 2004. Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems                                                                                                                                                                  |
| 1021 | ISPRS Journal of Photogrammetry and Remote Sensing, 58 (2004), pp. 129–151                                                                                                                                                                                                                                                          |
| 1026 | Siart, C., B. Eitel, & D. Panagiotopoulos. 2008. Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete Journal of Archaeological Science, 35 (2008), pp. 2918–2926                                                                                          |
| 1027 | Kaimaris, D., S. Sylaiou, O. Georgoula, & P. Patias. 2011. GIS of landmarks management Journal of                                                                                                                                                                                                                                   |

|      | Cultural Heritage, 12 (2011), pp. 65–73                                                                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12   | De Laet, E. Paulissen, M. Waelkens. 2007. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey) Journal of                         |
| 1020 | Archaeological Science, 34 (2007), pp. 830–841                                                                                                                                                                         |
| 1029 | Kucukkaya, A. 2004. Photogrammetry and remote sensing in archeology Journal of Quantitative                                                                                                                            |
| 1020 | Spectroscopy and Radiative Transfer, 88 (2004), pp. 83–88                                                                                                                                                              |
| 1030 | Giardino, M.J. 2010. A history of NASA remote sensing contributions to archaeology Journal of                                                                                                                          |
| 1021 | Archaeological Science, 38 (9) (2010), pp. 2003–2009                                                                                                                                                                   |
| 1031 | Johnson, J.K. 2006. Remote Sensing in Archaeology: An Explicitly North American Perspective                                                                                                                            |
| 202  | University Alabama Press (2006)                                                                                                                                                                                        |
| 392  | Parcak, S.H. 2009. Satellite Remote Sensing for Archaeology Taylor & Francis (2009)                                                                                                                                    |
| 1033 | Ciminale, M., D. Gallo, R. Lasaponara, N. Masini. 2009. A multiscale approach for reconstructing archaeological landscapes: applications in Northern Apulia (Italy) Archaeological Prospection, 16 (2009), pp. 143–153 |
| 1034 | Hejcman, Mj., Z. Smrz. 2010.Cropmarks in stands of cereals, legumes and winter rape indicate sub-soil                                                                                                                  |
|      | archaeological features in the agricultural landscape of Central Europe Agriculture, Ecosystems and                                                                                                                    |
|      | Environment, 138 (2010), pp. 348–354                                                                                                                                                                                   |
| 1035 | Evans, R., R. Jones. 1977. Crop marks and soils at two archaeological sites in Britain Journal of                                                                                                                      |
|      | Archaeological Science, 4 (1977), pp. 63–76                                                                                                                                                                            |
| 1036 | Edis, J., D. MacLeod, R. Bewley. 1989. An archaeologist's guide to classification of cropmarks and soilmarks Antiquity, 63 (1989), pp. 112–126                                                                         |
| 1037 | Mueller, M., K. Segl, H. Kaufmann. 2004. Edge- and region-based segmentation technique for the                                                                                                                         |
|      | extraction of large, man-made objects in high-resolution satellite imagery Pattern Recognition, 37 (8)                                                                                                                 |
|      | (2004), pp. 1619–1628                                                                                                                                                                                                  |
| 1038 | Fradkin, M., H. Maitre, M. Roux. 2001. Building detection from multiple aerial images in dense urban                                                                                                                   |
|      | areas Computer Vision and Image Understanding, 83 (3) (2001), pp. 181–207                                                                                                                                              |
| 1039 | Wang, Y., F. Tupin, C. Han. 2010. Building detection from high resolution PolSAR data at the rectangle                                                                                                                 |
|      | level by combining region and edge information Pattern Recognition Letters, 31 (2010), pp. 1077–                                                                                                                       |
| 1040 |                                                                                                                                                                                                                        |
| 1040 | Gautama, S., W. Goeman, J.D. Haeyer, W. Philips. 2006. Characterizing the performance of automatic                                                                                                                     |
| 1041 | Char CH. & D.C. Pater Hai 2000. Statistical wattern mass mitting in more to angle 2 (2006), pp. 1001–1009                                                                                                              |
| 1041 | Unen, U.H., & P.G. Peter Hol. 2008. Statistical pattern recognition in remote sensing Pattern                                                                                                                          |
| 1042 | Recognition, 41 (9) (2008), pp. 2731–2741                                                                                                                                                                              |
| 1042 | Lasaponara, K., & N. Masini. 2011. Satellite remote sensing in archaeology: past, present and future                                                                                                                   |
| 1042 | perspectives Journal of Archaeological Science, 38 (9) (2011), pp. 1995–2496                                                                                                                                           |
| 1045 | Lasaponara, K., & N. Masini. 2007. Detection of archaeological Crop marks by using satellite Quickbird                                                                                                                 |
| 1044 | Dapari C. & N. Datkov. 2011. Edge and line oriented contour detection, state of art Image and Vision                                                                                                                   |
| 1011 | Computing 29 (2011) np 79–103                                                                                                                                                                                          |
| 1045 | Tremeau A & N Robel 1997 A region growing and merging algorithm to color segmentation Pattern                                                                                                                          |
| 1010 | Recognition 30 (7) (1997) nn 1191–1203                                                                                                                                                                                 |
| 1046 | Shih A F & S Cheng 2005 Automatic seeded region growing for color image segmentation Image and                                                                                                                         |
| 1010 | Vision Computing, 23 (2005), pp. 877–886                                                                                                                                                                               |
| 1047 | Alexakis D. A. Sarris T. Astaras K. Albanakis 2009 Detection of neolithic settlements in Thessalv                                                                                                                      |
|      | (Greece) through multispectral and hyperspectral satellite imagery Sensors, 9 (2009), pp. 1167–1187                                                                                                                    |
| 1048 | Bucha, V., & S. Ablameyko, 2007. Interactive objects extraction from remote sensing images A. Morris.                                                                                                                  |
|      | S. Kokhan (Eds.), Geographic Uncertainty in Environmental Security, Springer, Netherlands (2007).                                                                                                                      |
|      | pp. 225–238                                                                                                                                                                                                            |
| 1049 | Kass, M., A. Witkin, D. Terzopolulos, 1988, Snakes; active contour model International Journal of                                                                                                                      |
|      | Computer Vision, 1 (1988), pp. 321–331                                                                                                                                                                                 |
| 1050 | Caselles, R. Kimmel, G. Saniro, 1997, Geodesic active contour International Journal of Computer Vision                                                                                                                 |
|      | 22 (1) (1997), pp. 61–79                                                                                                                                                                                               |
| 1051 | Melonakos, E. Pichon, S. Angenent, A. Tannenbaum, 2008 Finsler active contour IEEE Transactions on                                                                                                                     |
|      | Pattern Analysis and Machine Intelligence 30 (3) (2008) nn 412–423                                                                                                                                                     |
|      |                                                                                                                                                                                                                        |

| 1052 | Zhu, S. Zhang, Q. Zeng, C. Wang. 2007. Directional geodesic active contour for image segmentation JEI Letters, 16 (3) (2007), pp. 252–256                                                                                                                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1053 | Zhu, S. Zhang, Q. Zeng, C. Wang. 2010. Gradient vector flow active contour with prior directional information Pattern Recognition Letters, 31 (2010), pp. 845–856                                                                                                                                      |
| 1054 | Lankton, A. Tannenbaum. 2008. Localizing region-based active contours IEEE Transactions on Image<br>Processing, 17 (2008), pp. 2029–2039                                                                                                                                                               |
| 1055 | Darolti, A. Mertins, C. Bodensteiner, U. Hofmann. 2008. Local region descriptors for active contour evolution IEEE Transactions on Image Processing. 17 (12) (2008), pp. 2275–2288                                                                                                                     |
| 1056 | Jing, J. An, Z. Liu. 2011. A Novel edge detection algorithm based on global minimization active contour model for oil slick infrared aerial image IEEE Transactions on Geoscience and Remote sensing, 49 (6) (2011), pp. 2005–2013                                                                     |
| 1057 | Xie, X. 2010. Active contouring based on gradient vector interaction on constrained level set diffusion IEEE Transactions on Image Processing, 19 (1) (2010), pp. 154–164                                                                                                                              |
| 1058 | Krinidis, S. & V. Chatzis. 2009. Fuzzy energy-based active contour IEEE Transactions on Image<br>Processing, 18 (12) (2009), pp. 2747–2755                                                                                                                                                             |
| 1059 | Ahmadi, M.J. Valadan Zoej, H. Ebadi, H.A. Mghaddam, A. Mohammadzadeh. 2010. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours International Journal of Applied Earth Observation and Geoinformation, 12 (2010), pp. 150–157 |
| 1060 | Han, X.,C. Xu, & J. Prince. 2003. A topology preserving level set method for geometric deformable models IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (6) (2003), pp. 755–768                                                                                                    |
| 1061 | Fang, W. & K. Chan. 2007. Incorporating shape prior into geodesic active contours for detecting partially occluded objects International Journal of Pattern Recognition, 40 (2007), pp. 2163–2172                                                                                                      |
| 1062 | Ma, J.M. Tavares, R.N. Jorge, T. Mascarenhas. 2010. A review of algorithms for medical image segmentation and their applications to the female pelvic cavity Computer Methods in Biomechanics and Biomedical Engineering, 13 (2) (2010), pp. 235–246                                                   |
| 1063 | Ma, R.N. Jorge, T. Mascarenhas, J.M. Tavares. 2011. Novel approach to segment the inner and outer boundaries of the bladder wall in T2-weighted magnetic resonance images Annals of Biomedical Engineering, 39 (8) (2011), pp. 2287–2297                                                               |
| 1064 | Ma, R.N. Jorge, J.M. Tavares. 2010. A shape guided C-V model to segment the levator ani muscle in axial magnetic resonance images Medical Engineering and Physics, 32 (7) (2010), pp. 766–774                                                                                                          |
| 1065 | Chan, T.f. & L.A. Vese. 2001. Active contours without edges IEEE Transactions on Image Processing, 10 (2001), pp. 266–277                                                                                                                                                                              |
| 1066 | Osher, S., & J.A. Sethian. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations Journal of Computational Physics, 79 (1988), pp. 12–49                                                                                                            |
| 1067 | Flusser, J., T. Suk, & B. Zitova. 2009. Moments and Moment Invariants in Pattern Recognition Wiley & Sons Ltd. (2009)                                                                                                                                                                                  |
| 1068 | Bradford, T. 1950. The Apulia expedition: an interim report Antiquity, 24 (1950)                                                                                                                                                                                                                       |
| 1069 | Sandau, R., B. Braunecker, H. Driescher, A. Eckardt, S. Hilbert, J. Hutton, W. Kirchhofer, E. Lithopoulos, R. Reulke, S. Wicki. 2000. Design principles of the LH systems ADS40 airborne digital sensor International Archives of Photogrammetry and Remote Sensing, 33 (2000), pp. 258–265            |
| 1070 | Gonzales, R., R. Woods, S. Eddins. 2009. Digital Image Processing Using Matlab (second ed.)Gatesmark<br>Publishing, Knoxville, TN (2009)                                                                                                                                                               |
| 1071 | Rochery, M., I.H. Jeremy, & J. Zerubia. 2006. Higer order active contour International Journal of Computer Vision, 69 (1) (2006), pp. 27–42                                                                                                                                                            |
| 1072 | Stoica, R., X. Descombes, J. Zenubria. 2004. A Gibbs point process for road extraction from remotely sensed images International Journal of Computer Vision, 57 (2) (2004), pp. 121–136                                                                                                                |
| 1073 | Yu, T. Pham, H. Yan, B. Zhang, D. Crane. 2007 Segmentation of cultured neurons using local analysis of grey and distance difference Journal of Neuroscience Methods, 166 (2007), pp. 125–137                                                                                                           |
| 1074 | Bas, E., & D. Erdogmus. 2011. Principal curves as skeletons of tubular objects: locally characterizing the structure of axons Neuroinformatics, 9 (2–3) (2011), pp. 181–191                                                                                                                            |
| 1075 | Wang, A. Narayanaswamy, C. Tsai, B. Roysam. 2011. A broadly applicable 3D neuron tracing method based on open curve snake Neuroinformatics, 9 (2–3) (2011), pp. 193–217                                                                                                                                |
| 1076 | Donohue, D., & G. Ascoli. 2011. Automated reconstruction of neuronal morphology: an overview Brain                                                                                                                                                                                                     |

|                                                     | Research Reviews, 67 (1–2) (2011), pp. 94–102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1077                                                | Agapiou, A., Alexakis, D.D., Hadjimitsis, D.G., 2012. Spectral sensitivity of ALOSASTER, IKONOS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | LANDSAT and SPOT satellite imagery intended for the detectionof archaeological crop marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                     | International Journal of Digital Earth, 1–22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1059                                                | Ahmadi, S., Zoej, M., Ebadi, H., Moghaddam, H.A., Mohammadzadeh, A., 2010. Auto-matic urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | building boundary extraction from high resolution aerial imagesusing an innovative model of active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | contours. International Journal of AppliedEarth Observation and Geoinformation 12 (3), 150–157.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1047                                                | Alexakis, D., Sarris, A., Astaras, T., Albanakis, K., 2009. Detection of neolithic settle-ments in Thessaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | (Greece) through multispectral and hyperspectral satelliteimagery. Sensors 9 (2), 1167–1187.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1080                                                | Aqdus, S.A., Hanson, W.S., Drummond, J., 2012. The potential of hyperspectral andmulti-spectral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | imagery to enhance archaeological cropmark detection: a com-parative study. Journal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1040                                                | Archaeological Science 39 (7), 1915–1924.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1048                                                | Bucha, V., Ablameyko, S., 2007. Interactive objects extraction from remote sensing mages. In: Morris,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | A., Koknan, S. (Eds.), Geographic Uncertainty in Environmen-tai Security. Springer, Netherlands, pp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1092                                                | 225-238.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1002                                                | reading Chan, Mao, Z., Talig, A., Ala, D., 2000. Optical defial image partitioning using levelsets based off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1065                                                | Chan T.F. Vese I. A. 2001 Active contours without edges IEEE Transactions on Image Processing 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1005                                                | (2), 266–277.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1084                                                | Cramer, M., 2006. The ADS40 Vaihingen/Enz geometric performance test. ISPRSJournal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | Photogrammetry and Remote Sensing 60 (6), 363–374.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                  | De Laet, V., Paulissen, E., Waelkens, M., 2007. Methods for the extraction of archae-ological features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1006                                                | Archaeological Science 34 (5), 830–841.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1086                                                | De Santis, V., Caldara, M., de Torres, T., Ortiz, J.E., 2010. Stratigraphic units of theApulian Tavoliere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     | plain (Southern Italy): Chronology, correlation with marineisotope stages and implications regarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22                                                  | vertical movements. SedimentaryGeology 228 (3), 255–270.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 52                                                  | D Orazio, T., Palumbo, F., Guaragnella, C., 2012. Archaeological trace extractionby a local directional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1088                                                | Framo G. Laviano R. Muntoni I.M. Volne G. 2004 Late Roman cooking not-terv from the Tavoliere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1000                                                | area (Southern Italy): raw materials and technological aspects. Journal of Cultural Heritage 5 (2), 157–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     | 165.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1035                                                | Evans, R., Jones, R., 1977. Crop marks and soils at two archaeological sites in Britain. Journal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | Archaeological Science 4 (1), 63–76.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1090                                                | Archaeological Science 4 (1), 63–76.<br>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1090                                                | Archaeological Science 4 (1), 63–76.<br>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast<br>Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1090<br>1091                                        | Archaeological Science 4 (1), 63–76.<br>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast<br>Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.<br>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1090<br>1091                                        | Archaeological Science 4 (1), 63–76.<br>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast<br>Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.<br>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization.<br>International Journal of Digital Earth 4 (2), 133–153.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1090<br>1091<br>1034                                | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization.<br/>International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1090<br>1091<br>1034                                | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape of Central Europe. Agriculture, Ecosystems &amp; Technological 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,</li></ul> |
| 1090<br>1091<br>1034                                | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1090<br>1091<br>1034<br>1043                        | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization.<br/>International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1090<br>1091<br>1034<br>1043                        | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1090<br>1091<br>1034<br>1043<br>388                 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands. Dordrecht</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095         | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095         | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale Journal of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095         | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4).S29–S39.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095<br>1096 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4),S29–S39.</li> <li>Masini, N., Lasaponara, R., 2007. Investigating the spectral capability of OuickBirddata to detect</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095<br>1096 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4),S29–S39.</li> <li>Masini, N., Lasaponara, R., 2007. Investigating the spectral capability of QuickBirddata to detect archaeological remains buried under vegetated and not vegetatedareas. Journal of Cultural Heritage 8</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095<br>1096 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>*</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study of the Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4),S29–S39.</li> <li>Masini, N., Lasaponara, R., 2007. Investigating the spectral capability of QuickBirddata to detect archaeological remains buried under vegetated and not vegetatedareas. Journal of Cultural Heritage 8 (1), 53–60.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095<br>1096 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization. International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr*z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study ofthe Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4),S29–S39.</li> <li>Masini, N., Lasaponara, R., 2007. Investigating the spectral capability of QuickBirddata to detect archaeological remains buried under vegetated and not vegetatedareas. Journal of Cultural Heritage 8 (1), 53–60.</li> <li>Mumford, D., Shah, J., 2006. Optimal approximations by piecewise smooth func-tions and associated</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1090<br>1091<br>1034<br>1043<br>388<br>1095<br>1096 | <ul> <li>Archaeological Science 4 (1), 63–76.</li> <li>Gallo, D., Ciminale, M., Becker, H., Masini, N., 2009. Remote sensing techniques forreconstructing a vast Neolithic settlement in Southern Italy. Journal of Archae-ological Science 36 (1), 43–50.</li> <li>Gülgen, F., Gökgöz, T., 2011. A block-based selection method for road network gen-eralization.<br/>International Journal of Digital Earth 4 (2), 133–153.</li> <li>Hejcman, M., Smr<sup>×</sup>z, Z., 2010. Cropmarks in stands of cereals, legumes and winterrape indicate sub-soil archaeological features in the agricultural landscape ofCentral Europe. Agriculture, Ecosystems &amp; Environment 138 (3), 348–354.</li> <li>Lasaponara, R., Masini, N., 2007. Detection of archaeological crop marks by usingsatellite QuickBird multispectral imagery. Journal of Archaeological Science 34(2), 214–221.</li> <li>Lasaponara, R., Masini, N., 2012. Satellite Remote Sensing: A New Tool for Archae-ology. Springer Netherlands, Dordrecht.</li> <li>Lasaponara, R., Masini, N., Holmgren, R., Forsberg, Y.B., 2012. Integration of aerialand satellite remote sensing for archaeological investigations: a case study ofthe Etruscan site of San Giovenale. Journal of Geophysics and Engineering 9 (4),S29–S39.</li> <li>Masini, N., Lasaponara, R., 2007. Investigating the spectral capability of QuickBirddata to detect archaeological remains buried under vegetated and not vegetatedareas. Journal of Cultural Heritage 8 (1), 53–60.</li> <li>Mumford, D., Shah, J., 2006. Optimal approximations by piecewise smooth func-tions and associated variational problems. Communications on Pure and AppliedMathematics 42 (5), 577–685.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |

| <ul> <li>Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed-algorithms based on<br/>Hamilton-Jacobi formulations. Journal of ComputationalPhysics 79 (1), 12–49.</li> <li>Parcak, S.H., 2009. Satellite Remote Sensing for Archaeology. Routledge, New York.</li> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013a. Ground filtering and vegetation mappingusing multi-return<br/>terrestrial laser scanning. ISPRS Journal of Photogrammetryand Remote Sensing 76, 56–63.</li> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013b. State of the art of ground and aeriallaser scanning<br/>technologies for high-resolution topography of the earth surface.European Journal of Remote Sensing<br/>46, 66–78.</li> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos,<br/>F., Reuke, R., Wickl, S., 2000. Design principles of the L14 SystemADS40 airborne digital sensor.<br/>International Archives of Photogrammetry andRemote Sensing 33 (B1; Part 1), 258–265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Cuilalano, S., Donghia, A.M., 2013. A tree count-ing algorithm for<br/>precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a<br/>decision making strategy. Remote Sensing 31 (8), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A dvancesinmathematicalmorphology<br/>appliedtogeoscienceandremotesensing.IEEETrans.Cesoci.<br/>Remote Sensing40 (9)(2002)September.</li> <li>Flord Buckmaga, &amp; W.I.G. Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion<br/>tofeatureselectionandordering.IEEETrans.Comput. C.19 (April)(1970)311-318.</li> <li>Schoelkopf, A.Smola, &amp; K. Mudler, 1999. Nonlinearcomponentanelysis as<br/>akerneleigenvalueproblem.NeuralComput.10(5)(1999) 1299–1319 1998.IX,p,A1–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusing akernel<br/>approach, MeuralGoung, IEEETrans.Neuralcomput.20(5)(1999) 1499</li></ul>                   |      | c. 1020–c. 1230. Journal of Medieval History 31 (4),327–345.                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hamilton-Jacobi formulations. Journal of ComputationalPhysics 79 (1), 12-49.           392         Parcak, S.H., 2009. Satellite Remote Sensing for Archaeology. Routledge, New York.           1101         Pirotik, F., Guarnieri, A., Vettore, A., 2013a. Ground filtering and vegetation mappingusing multi-return terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 76, 56–63.           1102         Pirotik, F., Guarnier, A., Vettore, A., 2013b. State of the art of ground and aerialiser scanning. technologies for high-resolution topography of the earth surface.European Journal of Remote Sensing 36, 66–78.           1108         Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsADS40 airborne digital sensor. International Archives of Photogrammetry and Remote Sensing 38, 181, 241, 12, 258–265.           1104         Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth (F)1, 94–102.           1105         Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3(B), 1553–1567.           1106         Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.           1107         Soille, P., & Martino Pasersis. 2002. Advancesimmathematicalimorphology appliedtogeoscienceandremotesensing, 16(2)(2002)September.           1108 <th>1066</th> <td>Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed:algorithms based on</td>                                                                                                                                                                                                                                                                 | 1066 | Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed:algorithms based on                                                                                              |
| <ul> <li>Parcak, S.H., 2009. Satellite Remote Sensing for Archaeology. Routledge, New York.</li> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013a. Ground filtering and vegetation mappingusing multi-return terrestrial laser scanning. ISPR5 Journal of Photogrammetry and Remote Sensing 76, 56–63.</li> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013b. State of the art of ground and aeriallaser scanning technologies for high-resolution topography of the earth surface. European Journal of Remote Sensing 46, 66–78.</li> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsADS40 airborne digital sensor. International Archives of Photogrammetry andRemote Sensing 33 (B1, Part 1), 258–265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Cualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. An untiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedogeoscienceandremotesensing JEEETrans. Comput. C. 19 (April) (1970) 311–318.</li> <li>Schoelkopf, A.Smola, &amp; K.K.Mueller. 1999. Nonlinearcomponentanalysis as akernel eigenvalueproblem. Neural Comput. L (2) (1999) 1299–1319 1998. Ng, p41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminationusing texture statistic: amultivariateapproach, Photogramm. Eng. Remote Sensing 57 (62 (1991) 1949–131 1999. 014).</li> <li>Zhang, J.Pan. 1993. Textureclassification acomparative study. JEEETrans. PatternRecognit. Machinelintell. 15 (1992)</li></ul>                                                                        |      | Hamilton–Jacobi formulations. Journal of ComputationalPhysics 79 (1), 12–49.                                                                                                                       |
| <ul> <li>Pirotti, F., Guarnieri, A., Vetore, A., 2013a. Ground filtering and vegetation mappingusing multi-return terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 76, 56-63.</li> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013b. State of the art of ground and aeriallaser scanning technologies for high-resolution topography of the earth surface.European Journal of Remote Sensing 46, 66-78.</li> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reuke, R., Wick, S., 2000. Design principles of the LH SystemASD40 airborne digital sensor. International Archives of Photogrammetry andRemote Sensing 33 (B1; Part 1), 258-265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree courting algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94-102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553-1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271-293.</li> <li>Solile, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedtogeoscienceandremotesensing. JEEETrans.Ceosci. Remote Sensing 40(9)(2002) September.</li> <li>Pukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoffheKarhunen-Loeve expansion tofeatureselectionadordering JEEETrans.Ceosci.</li> <li>Remote K. Er.Lehrew. 1991. SNReacieddiscriminantanalysissing a kernel approach.NeuralComput. 10(5) (1999) 1299-1310 1998. IX, pp.41-48.</li> <li>Batdat &amp; F. Anouar. 2000. Generalizeddiscriminantanalysissing kernel approach.NeuralComput. 10(5) (1999) 1299-1310 1998. IX, pp.41-48.</li> <li>Batdat &amp; F. Anouar. 2000. Generalizeddiscriminantanalysissing a kernel approach.NeuralComput. 10(5) (1999) 1299-1310 1998. IX,</li></ul>                                                                    | 392  | Parcak, S.H., 2009. Satellite Remote Sensing for Archaeology. Routledge, New York.                                                                                                                 |
| <ul> <li>Pirotti, F., Guarnieri, A., Vettore, A., 2013b. State of the art of ground and aeriallaser scanning technologies for high-resolution topography of the earth surface.European Journal of Remote Sensing 46, 66–78.</li> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reuke, R., Wicki, S., 2000. Design principles of the LH SystemsAD540 airborne digital sensor. International Archives of Photogrammetry andRemote Sensing 33 (B1; Part 1), 258–265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree court-ing algorithm for precision agriculture tasks. International Journal of Digitalizarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesimathematicalinorphology appliedtogeoscienceandremotesensing, IEEETrans.Geosci. Remote Sensing 40(9) (2002)September.</li> <li>Remote Sensing 40(9) (2002)September.</li> <li>Buthar, 2000. Generalizeddiscriminatanalysisusing kernel approach.NeuralComput. 10(5) (1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Batber, &amp; F.F. LeDrew. 1991. SARseatcediscriminationusing texture statistic amultivariateapproach.Photogram.Eng.Remote Sensing 57(62) (1991)494–958.</li> <li>Laine, &amp; J.Fan. 1993. Textureclassificationywaveletpacketsignatures, IEEE Trans.PatternRecognit.MachineIntell. 15(1993)1186–1191.</li> <li>Lae, G., Bavido, A. Landgrebe. 1997. Decisionboundaryfeature estraction forneuralnetworks.IEEETrans.NeuralKeyppliedtoremotesensing.Acta Astronaut.13(6/7)(1986)371–385.</li> <li>Serra, B. P. Soille. 1994. MathematicalMorphologyandits/pplications toImageProcessing—Post</li></ul>                                                                           | 1101 | Pirotti, F., Guarnieri, A., Vettore, A., 2013a. Ground filtering and vegetation mappingusing multi-return terrestrial laser scanning. ISPRS Journal of Photogrammetryand Remote Sensing 76, 56–63. |
| <ul> <li>technologies for high-resolution topography of the earth surface.European Journal of Remote Sensing 46, 66–78.</li> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsAD3Vd airborne digital sensor. International Archives of Photogrammetry andRemote Sensing 33 (B1, Part 1), 258–265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Qualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level Set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesimathematicalmorphology appliedtogeoscienceandremotesensing.IEEET rans.Geosci.</li> <li>Remote Sensing40(9)(2002)September.</li> <li>Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering.IEEETrans.Comput. C19 (April)(1970)311–318.</li> <li>Schkong, A. Smolak, K.R.Mueller. 1999. Notimearcomponentanalysis as akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminationusingtexture statistic: amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)49–958.</li> <li>Zhang, 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationofbuildingditectionetoretesensing.54(1)(19</li></ul>                                                                       | 1102 | Pirotti, F., Guarnieri, A., Vettore, A., 2013b. State of the art of ground and aeriallaser scanning                                                                                                |
| <ul> <li>46, 66–78.</li> <li>5andau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer, W., Lithopoulos, E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsAD540 airborne digital sensor. International Archives of Photogrammetry andRemote Sensing 33 (B1: Part 1), 258–265.</li> <li>104 Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, M., 2013. At ree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>105 Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 33 (B),1553–1567.</li> <li>106 Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>107 Soille, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedtogeoscienceandremotesensing,IEEETrans.Coesci. Remote Sensing 40(9)(2002)Spetmber.</li> <li>108 Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen–Loeve expansion tofeatureselectionandordering.IEEETrans.Comput. C-19 (April)[1970)311–318.</li> <li>109 Schoelkopf, A.Smola,&amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as akermeleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>110 Bauda, &amp; F. Anoura. 2000. Generalizeddiscriminatianalysisusinga kernel approach,NeuralComput.12(10)(2000)2385–2404.</li> <li>111 Barber, &amp; E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic: amultivariateapproach,Photogramm.Eng Remote Sensing 57(62)(1991)1949–958.</li> <li>1111 Barber, &amp; J.Fan. 1993. Textureelassificationinsatelliteimagesby combining multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm.RemoteSensing54(1)[1999)50–60.</li> <li>113 Laine, &amp; J.Fan. 1993. Textureelassificationis comparative stuttestistic amultivariateapproach,Photogramm.Eng Remote Sensing 57(</li></ul>                                                           |      | technologies for high-resolution topography of the earth surface. European Journal of Remote Sensing                                                                                               |
| <ul> <li>Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchoher, W., Lithopoulos, E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsADS40 airborne digital sensor.<br/>International Archives of Photogrammetry andRemote Sensing 33 (B1; Part 1), 258–265.</li> <li>Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of Digitalizath 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level sel framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedtogeoscienceandremotesensing. IEEETrans.Geosci. Remote Sensing40(9)(2002)September:</li> <li>Rukunaga, &amp; W.L. Koonzt. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering.IEEETrans.Comput. C-19 (April)(1970)311–318.</li> <li>Schoelkopf, A.Smola, &amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as akernel eigenvalueproblem.NeuralComput. 10(5)(1999) 1299–1319 1988. Xp. P1–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusing a kernel approach.NeuralComput. 12(10)(2000)2385–2404.</li> <li>Baudat, &amp; F. LeDrew. 1991. SARseicediscriminationusing texture statistic: amultivariateapproach.Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang, 1999. Optimisationofbuldingdetectioninsatelliteingaeseby combining multispectralclassificationandtexturefiltering.ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–60.</li> <li>Lee, C., &amp; David A. Landgrebe. 197. Decisionboundaryfeature extraction forneuralnetworks.BLEETrans.PatternNae.000000000000000000000000000000000000</li></ul>                                                                                                |      | 46, 66–78.                                                                                                                                                                                         |
| <ul> <li>E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsADS40 airborne digital sensor.<br/>International Archives of Photogrammetry andRemote Sensing 33 (B1, 1974).</li> <li>Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesimmathematicalmorphology appliedtogeoscienceandremotesensing,IEEETrans.Geosci. Remote Sensing40(9)(2002)September.</li> <li>Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering,IEEETrans.Comput. C-19 (April)(1970)311–318.</li> <li>Schoelkopf, A.Smola, &amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as akerneleigenvalueproblem.NeuralComput.105()(1999) 1299–1319 1998.IX.pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminationusingtexture statistic: amultivariateapproach.Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Barber, &amp; E.F.LeDrem. 1911. SARkeaicediscriminationusingtexture statistic: amultivariateapproach.Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralcasificationandtexturefiltering,ISPRS). Photogramm. RemoteSensing54(1)(1999)50–60.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction formeuralnetworks,IEEETrans.Kouk, 2019.</li> <li>Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster Contributions,Paris,France, September 1994, pp.43–44.</li> <li>Desti</li></ul>                                                               | 1069 | Sandau, R., Braunecker, B., Driescher, H., Eckardt, A., Hilbert, S., Hutton, J., Kirchhofer,W., Lithopoulos,                                                                                       |
| International Archives of Photogrammetry andRemote Sensing 33 (B1; Part 1), 258–265.           1104         Santoro, F., Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (B), 1553–1567.           1106         Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.           1107         Soille, P., & Martino Pesaresi. 2002. Advancesimmathematicalmorphology appliedtogeoscienceandremotesensing.IEEETrans.Geosci. Remote Sensing40(9)(2002)September.           1108         Fukunaga, & W.LG.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering.IEEETrans.Comput. C-19 (April)(1970)311-318.           1109         Schelkopf, A.Smola, & K.R.Mueller. 1999. Nonlinearcomponentanalysis as akerneleigenvalueproblem,NeuralComput.12(10)(2002)3528–2404.           1110         Baudat, & F. Anouar. 2000. Generalizeddiscriminantanalysisuinga kernel approach,NeuralComput.12(10)(2002)3528–2404.           1111         Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic: amultivariateapproach,NeuralGonput.12(10)(2002)3528–2404.           1111         Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic: amultivariateapproach,NeuralGonput.12(10)(2002)3528–2404.           1112         Jang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationad mathematical morphology (1)(1999)150–60.           11111         Barber,& E.J.LeDrew. 1991. SARseaicediscrimin                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | E., Reulke, R., Wicki, S., 2000. Design principles of the LH SystemsADS40 airborne digital sensor.                                                                                                 |
| <ul> <li>Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.</li> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (8),1553–1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesimmathematicalmorphology appliedtogeoscienceandremotesensing.IEEETrans.Geosci. Remote Sensing40(9)(2002)September.</li> <li>Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering.IEEETrans.Comput. C. 19 (April)(1970)311–318.</li> <li>Schoelkopf, A.Smola,&amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel approach.NeuralComput.12(10)(2000)2385–2404.</li> <li>Barber, &amp; E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic: amultivariateapproach.Photogramm.Eng Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationandtexturefiltering.ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–60.</li> <li>Laine, &amp; J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE Trans.PatternRecognit.MachineIntell. 157(1993)1146–1191.</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassification:a comparative study.IEEETrans.PatternRecognit.Machinelnetl. 15(1993)1146–1191.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfreature extraction forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Destival. 1986. MathematicalMorphologyanditsAppli</li></ul>                                                           |      | International Archives of Photogrammetry and Remote Sensing 33 (B1; Part 1), 258–265.                                                                                                              |
| precision agriculture tasks. International journal of DigitalEarth 6 (1), 94–102.           1105         Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (8),1553–1567.           1106         Vese, LA, Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Munford and Shah model. International Journal of Computer Vision50 (3), 271–293.           1107         Soille, P., & Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedtogeoscienceandremotesensing,IEEETnas.Cosoci. Remote Sensing40(9)(2002)September.           1108         Fukunaga, & W.L.G.Koontz. 1970. ApplicationoftheKarhunen–Loeve expansion tofeatureselectionandordering,IEEETrans.Comput. C-19 (April)(1970)311–318.           1109         Schoelkopf, A.Smola,& K.R.Mueller. 1999. Nonlinearcomponentanalysis as akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.           1110         Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusing texture statistic: amultivariateapproach,Photogramm.Eng, Remote Sensing 57(62)(1991)949–958.           1112         Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationandtextureflitering,ISPRS). Photogramm. Eng Remote Sensing 57(62)(1991)949–958.           1113         Laine, & J.F.M. 1993. Textureclassificationbywaveletpacketsignatures, IEEE Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.           1114         Randen, & J.H.Husoy. 1999. Pitteringfortextureclassification: a comparative study,IEEETrans.PatternRecognit.Machinelntell. 12 (1999)291–310.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1104 | Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D'Onghia, A.M., 2013. A tree count-ing algorithm for                                                                                        |
| <ul> <li>Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a decision making strategy. Remote Sensing 3 (8),1553-1567.</li> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>Solle, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology appliedtogeoscienceandremotesensing,IEEETrans.Geosci. Remote Sensing40(9)(2002)September.</li> <li>Remote Sensing40(9)(2002)September.</li> <li>Fukungaa, &amp; W. LG. Konotz. 1970. ApplicationoftheKarhunen-Loeve expansion tofeatureselectionandordering,IEEETrans.Comput. C-19 (April)(1970)311–318.</li> <li>Schoelkopf, A.Smola,&amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as akerneleigenvalueproblem, NeuralComput. 10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminationusingtexture statistic: amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Baudat, &amp; J. F. LøDrew. 1991. SARseaicediscriminationusingtexture statistic: amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–60.</li> <li>Laine, &amp; J.Fan. 1993.Textureclassificationbywaveletpacketsignatures, IEEE Trans.PatternRecognit.Machinelintell. 15(1993)1186–1191.</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassificationia comparative study.IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction forneuralnetworks.IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Sert, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster Contributions,Paris,France, September 1994,pp.43–44.</li> <li>Chou, R.Weger, J.Ligtenberg,</li></ul>                                                           |      | precision agriculture tasks. International Journal of DigitalEarth 6 (1), 94–102.                                                                                                                  |
| <ul> <li>decision making strategy. Remote Sensing 3 (8),1553–1567.</li> <li>1106 Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the<br/>Mumford and Shah model. International Journal of Computer Vision50 (3), 271–293.</li> <li>1107 Soille, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology<br/>appliedtogeoscienceandremotesensing,IEEETrans.Geosci.<br/>Remote Sensing40(9)(2002)September.</li> <li>1108 Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion<br/>tofeatureselectionandordering,IEEETrans.Comput. C-19 (April)(1970)311–318.</li> <li>1109 Scheelkopf, A.Smola,&amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as<br/>akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>1110 Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br/>approach,NeuralComput.12(10)(2000)2385–2404.</li> <li>1111 Barber, &amp; E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br/>amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>1112 Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br/>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br/>60.</li> <li>1113 Laine, &amp; J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE<br/>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.</li> <li>1114 Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassificationa: comparative<br/>study,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>1116 Destival. 1986. MathematicalMorphologyaphiledtoremotesensing, Acta Astronaut.13(6/7)(1986)371-<br/>385.</li> <li>1117 Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions,Paris,France, September 1994,pp.43-44.</li> <li>1118 Chou, R.Weger, J.Ligtenberg,KS.Kuo, R.Welch, P. Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering.Int.J.RemoteSens.15(5)(1994)1019–10</li></ul>     | 1105 | Tarantino, E., Figorito, B., 2011. Extracting buildings from true color stereoaerial images using a                                                                                                |
| <ul> <li>Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the<br/>Mumford and Shah model. International Journal of Computer Visions 0 (3), 271–293.</li> <li>Soille, P., &amp; Martino Pesaresi. 2002. Advancesinmathematicalmorphology<br/>appliedtogeoscienceandremotesensing, IEEETrans.Geosci.<br/>Remote Sensing/40(9)(2002)September.</li> <li>Fukunaga, &amp; W.L.G.Koontz. 1970. ApplicationoftheKarhunen–Loeve expansion<br/>tofeatureselectionandordering, IEEETrans.Comput. C-19 (April)(1970)311–318.</li> <li>Sochelkopf, A.Smola, &amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as<br/>akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br/>approach,NeuralComput.12(10)(2000)2385–2404.</li> <li>Barber, &amp; E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br/>amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br/>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br/>60.</li> <li>Laine, &amp; J.Fan. 1993.Textureclassificationbywaveletpacketsignatures, IEEE<br/>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassificationa comparative<br/>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br/>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions,Paris,France, September 1994,pp.43–44.</li> <li>Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectralexturemeasuresand morphologicalfiltering.Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>Watosn. 1987. AnewmethodofclassificationforLandsatatausing the<br/>'wateshed'algo</li></ul> | 1100 | decision making strategy. Remote Sensing 3 (8),1553–1567.                                                                                                                                          |
| Multinetic and Shan model: International journal of Computer Vision50 (5), 271-293.           1107         Solille,P, & Martino Pesaresi: 2002. Advancesinmathematicalmorphology<br>appliedtogeoscienceandremotesensing,IEEETrans.Geosci.<br>Remote Sensing40(9)(2002)September:           1108         Fukunaga, & W. Lo, Koontz. 1970. ApplicationofheKarhunen-Loeve expansion<br>tofeatureselectionandordering,IEEETrans.Comput. C-19 (April)(1970)311-318.           1109         Schoelkopf, A.Smola,& K.R.Mueller. 1999. Nonlinearcomponentanalysis as<br>akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299-1319 1998.IX,pp.41-48.           1110         Baudat, & F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br>approach,NeuralComput.12(10)(2000)2385-2404.           1111         Barber, & E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br>amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949-958.           1112         Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50-<br>60.           1113         Laine, & J.Fan. 1993. Textureclassifications a comparative<br>study.IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291-310.           1114         Rahen, & J.H.Husoy. 1999. Filteringfortextureclassification a comparative<br>study.IEEETrans.NeuralNetworks8(1) (1997) January.           1116         Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43-44.           1117         Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcess                                                                                                                                                                                                                                                                                                                                                                                                     | 1106 | Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentationusing the Mumford and Shah model. International Journal of Computer Vision 50 (2), 271–202                    |
| <ul> <li>Solnie, Y. &amp; Martino Fesaresi. 2002. AuValitesimination intology applied togeoscience and remotes ensing LEET rans. Geosci. Remote Sensing 40(9)(2002)September.</li> <li>Fukunaga, &amp; W.L.G.Koontz. 1970. Application of the Karhunen–Loeve expansion tofeatureselection and ordering. LEEET rans. Comput. C-19 (April)(1970)311–318.</li> <li>Schoelkopf, A.Smola, &amp; K.R.Mueller. 1999. Nonline arcomponentanalysis as akerneleigenvalue problem, Neural Comput. 10(5)(1999) 1299–1319 1998.IX, pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalized discrimination using texture statistic: amultivariateapproach, Photogramm. Eng. Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisation of building detection insatellite images by combining multispectral classification and texture filtering. ISPRSJ. Photogramm. Remote Sensing 57(62)(1991)949–958.</li> <li>Laine, &amp; J.Fan. 1993. Texture classification by wavelet packets ignatures, IEEE Trans. PatternRecognit. Machine Intell. 15(1993)1186–1191.</li> <li>Laine, &amp; J.H.Husoy. 1999. Filtering for texture classification: a comparative study. IEEE Trans. PatternRecognit. Machine Intell. 21 (1999) 221–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decision boundary feature extraction forneural networks. IEEE Trans. Neural Networks8(1) (1997) January.</li> <li>Destival. 1986. Mathematical Morphology applied toremotesensing. Acta Astronaut. 13(6/7)(1986)371–385.</li> <li>Serra, &amp; P.Soille. 1994. Mathematical Morphology and its Applications to Image Processing—Poster Contributions, Paris, France, September 1994, pp.43–44.</li> <li>Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P. Breeden. 1994. Segmentation of polarscenes using multispectral texture essand morphological filtering. Int. J. RemoteSens. 15(5)(1994)1019–1036.</li> <li>Watson. 1987. Anewmethod of classification for Landsatdatusing the 'watershed' algorithm. Pattern Recognit. Lett. 6(1987)15–19.</li> <li>Safa, &amp; G.Flouzat. 1989. Speckeremoval onlor admita</li></ul>                                                         | 1107 | Soille D. & Martine Decensei 2002. Advancesinmethematicalmerphology                                                                                                                                |
| appineutogeoscientation interesting, ILETTAIS.SecOst.         Remote Sensing40(9)[2002)September.         1108       Fukunaga, & W.L.G.Koontz. 1970. ApplicationoftheKarhunen-Loeve expansion<br>tofeatureselectionandordering, IEEETrans.Comput. C-19 (April)(1970)311–318.         1109       Schoelkopf, A.Smola,& K.K.Mueller. 1999. Nonlinearcomponentanalysis as<br>akerneleigenvalueproblem, NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.         1110       Baudat, & F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br>approach, NeuralComput.12(10)(2000)2385–2404.         1111       Barber, & E.F.LeDrew. 1991. SARseaicediscriminantationusingtexture statistic:<br>amultivariateapproach, Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.         1112       Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br>multispectralclassificationandtexturefiltering, ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br>60.         1113       Laine, & J.Fan. 1993.Textureclassificationbywaveletpacketsignatures, IEEE<br>Trans.PatternRecognit.MachineIntell. 15(1993)1186–1191.         1114       Randen, & J.H.Husoy. 1999. Filteringfortextureclassification:a comparative<br>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)201–310.         1115       Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.         1116       Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions.Paris,France, September 1994,pp.43–44.         1117       Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications to                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1107 | sonie, P., & Mai uno Pesaresi. 2002. Auvancesinnathematicannoi photogy                                                                                                                             |
| <ul> <li>Neinko Vensar, S. V. L. G. Koontz. 1970. Application of the Karhunen–Loeve expansion<br/>tofeatureselection and ordering. JEEETrans. Comput. C-19 (April) (1970) 311–318.</li> <li>Schoelkopf, A. Smola, &amp; K.R. Mueller. 1999. Nonlinear componentanalysis as<br/>akerneleigenvalueproblem. Neural Comput. 10(5) (1999) 1299–1319 1998. IX, p. 41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalized discriminantanalysis using a kernel<br/>approach, Neural Comput. 12(10) (2000) 2385–2404.</li> <li>Barber, &amp; E.F. Le Drew. 1991. SARseaice discrimination using texture statistic:<br/>amultivariate approach, Photogramm. Eng. Remote Sensing 57(62) (1991) 949–958.</li> <li>Zhang. 1999. Optimisation of building detection insatellite images by combining<br/>multispectral classification and texture filtering. JSPRSJ. Photogramm. Remote Sensing 54(1) (1999) 50–<br/>60.</li> <li>Laine, &amp; J. Fan. 1993. Texture classification by wavelet packets ignatures, IEEE<br/>Trans. Pattern Recognit. Machine Intell. 15(1993) 1186–1191.</li> <li>Randen, &amp; J. H. Husoy. 1999. Filtering for texture classification: a comparative<br/>study. JEEET Trans. Pattern Recognit. Machine Intell. 121 (1999) 291–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decision boundary feature extraction<br/>for neural networks. JEEET Trans. Neural Networks 8(1) (1997) January.</li> <li>Destival. 1986. Mathematical Morphology and its Applications to Image Processing—Poster<br/>Contributions. Paris. France, September 1994, pp. 43–44.</li> <li>Chou, R. Weger, J. Ligtenberg, KS. Kuo, R. Welch, P. Breeden. 1994. Segmentation of polarscenes using multi-<br/>spectral texture measures and morphological filtering. Int. J. Remote Sens. 15(5) (1994) 1019–1036.</li> <li>Watson. 1987. A new method of classification for Landsat data using the<br/>'watershed'algorithm, Pattern Recognit. Lett. 6(1987) 15–19.</li> <li>Safa, &amp; G. Flouzat. 1989. Speckleremoval on radari magery based on mathematical<br/>morphology. Signal Process. 16(1989) 319–333.</li> <li>Mering, &amp; JF. Parrot.</li></ul>           |      | Remote Sensing40(9)(2002)Sentember                                                                                                                                                                 |
| <ul> <li>Takamaga, G. Hustonka, J. Shippington and the matter in the problem of the problem</li></ul>                                            | 1108 | Fukunaga & W.L.G.Koontz 1970 ApplicationoftheKarhunen-Loeve expansion                                                                                                                              |
| <ul> <li>Schoelkopf, A.Smola,&amp; K.R.Mueller. 1999. Nonlinearcomponentanalysis as<br/>akerneleigenvalueproblem, NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41–48.</li> <li>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br/>approach, NeuralComput.12(10)(2000)2385–2404.</li> <li>Barber,&amp; E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br/>amultivariateapproach, Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.</li> <li>Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br/>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br/>60.</li> <li>Laine, &amp; J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE<br/>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassification:a comparative<br/>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br/>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Destival. 1986. Mathematicalmorphologyanpliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–<br/>385.</li> <li>Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions,Paris,France, September 1994,pp.43–44.</li> <li>Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology,SignalProcess.16(1989)319–333.</li> <li>Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters,ni.Serra, P.Soille (Eds.),MathematicalMorphology and<br/>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>Y</li></ul>   | 1100 | tofeatureselectionandordering.IEEETrans.Comput. C-19 (April)(1970)311–318.                                                                                                                         |
| akerneleigenvalueproblem,NeuralComput.10(5)(1999) 1299–1319 1998.IX,pp.41-48.           1110         Baudat, & F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel<br>approach,NeuralComput.12(10)(2000)2385-2404.           1111         Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br>amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.           1112         Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br>60.           1111         Laine, & J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE<br>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.           1114         Randen, & J.H.Husoy. 1999. Filteringfortextureclassification:a comparative<br>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.           1115         Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.           1116         Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43–44.           1118         Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalifiltering,It.J.RemoteSens.15(5)(1994)1019–1036.           1119         Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.           1120         Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morpholo                                                                                                                                                                                                                                                                                                                                                                                                       | 1109 | Schoelkopf, A.Smola,& K.R.Mueller. 1999. Nonlinearcomponentanalysis as                                                                                                                             |
| 1110       Baudat, & F. Anouar. 2000. Generalized discriminantanalysisusinga kernel<br>approach, NeuralComput.12(10)(2000)2385–2404.         1111       Barber, & E.F.LeDrew. 1991. SARseaiced iscrimination using texture statistic:<br>amultivariate approach, Photogramm. Eng. Remote Sensing 57(62)(1991)949–958.         1112       Zhang. 1999. Optimisation of building detection insatellite images by combining<br>multispectral classification and texture filtering, ISPRSJ. Photogramm. Remote Sensing 54(1)(1999)50–<br>60.         1113       Laine, & J.Fan. 1993. Texture classification by wavelet packet signatures, IEEE<br>Trans. Pattern Recognit. Machine Intell. 15(1993)1186–1191.         1114       Randen, & J.H.Husoy. 1999. Filtering for texture classification: a comparative<br>study. IEEET rans. Pattern Recognit. Machine Intell. 21 (1999)291–310.         1115       Lee, C., & David A. Landgrebe. 1997. Decision boundary feature extraction<br>for neural networks. IEEE Trans. Neural Networks 8(1) (1997) January.         1116       Destival. 1986. Mathematical Morphology and its Applications to Image Processing—Poster<br>Contributions, Paris, France, September 1994, pp. 43–44.         1118       Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P. Breeden. 1994. Segmentation of polarscenesusing multi-<br>spectral texture measures and morphological filtering, Int. J. Remote Sens. 15(5)(1994)1019–1036.         1119       Watson. 1987. Anew methodo fclassification for Landsatd at using the<br>'watershed'algorithm, Pattern Recognit Lett. 6(1987)15–19.         1120       Safa, & G.Flouzat. 1989. Specklere moval on radarimagery based on mathematical<br>morphology, Signal Process. 16(1989)319–333.                                                                                                                                                                                                                                                                                                                                                                                                    |      | akerneleigenvalueproblem, Neural Comput. 10(5)(1999) 1299–1319 1998. IX, pp. 41–48.                                                                                                                |
| approach,NeuralComput.12(10)(2000)2385-2404.         1111       Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:<br>amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949-958.         1112       Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50-<br>60.         1113       Laine, & J.Fan. 1993.Textureclassificationhywaveletpacketsignatures, IEEE<br>Trans.PatternRecognit.MachineIntell.15(1993)1186-1191.         1114       Randen, & J.H.Husoy. 1999. Filteringfortextureclassification:a comparative<br>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291-310.         1115       Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.         1116       Destival. 1986. MathematicalMorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371-<br>385.         1117       Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43-44.         1118       Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019-1036.         1119       Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15-19.         1120       Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319-333.         1121 </th <th>1110</th> <th>Baudat, &amp; F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel</th>                                                                                                                                                                                                                                                                                                                                   | 1110 | Baudat, & F. Anouar. 2000. Generalizeddiscriminantanalysisusinga kernel                                                                                                                            |
| 1111       Barber,& E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:         amultivariateapproach,Photogramm.Eng,Remote Sensing 57(62)(1991)949–958.         1112       Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining         multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–60.         1113       Laine, & J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE         Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.         1114       Randen, & J.H.Husoy. 1999. Filteringfortextureclassification: a comparative         study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.         1115       Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction         forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.         1116       Destival. 1986. MathematicalMorphologyanditsApplications toImageProcessing—Poster         Contributions,Paris,France, September 1994,pp.43–44.         1118       Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-         spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.         1119       Watson. 1987. AnewmethodofclassificationforLandsatdatausing the         'vvatershed'algorithm,PatternRecognit.Lett.6(1987)15–19.         1120       Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical         morphology,Signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | approach,NeuralComput.12(10)(2000)2385–2404.                                                                                                                                                       |
| amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.         1112       Zhang, 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining<br>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–<br>60.         1113       Laine, & J.Fan. 1993.Textureclassificationbywaveletpacketsignatures, IEEE<br>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.         1114       Randen, & J.H.Husoy. 1999. Filteringfortextureclassification:a comparative<br>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.         1115       Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.         1116       Destival. 1986. MathematicalMorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–<br>385.         1117       Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43–44.         1118       Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.         1119       Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'vatershed'algorithm,PatternRecognit.Lett.6(1987)15–19.         1121       Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.         1122       Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>an                                                                                                                                                                                                                                                                                                                                                                                                              | 1111 | Barber, & E.F.LeDrew. 1991. SARseaicediscriminationusingtexture statistic:                                                                                                                         |
| <ul> <li>Interpretation of the second se</li></ul>                                           |      | amultivariateapproach,Photogramm.Eng.Remote Sensing 57(62)(1991)949–958.                                                                                                                           |
| <ul> <li>multispectralclassificationandtexturefiltering,ISPRSJ. Photogramm. RemoteSensing54(1)(1999)50–60.</li> <li>Laine, &amp; J.Fan. 1993. Textureclassificationbywaveletpacketsignatures, IEEE Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassification: a comparative study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–385.</li> <li>Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster Contributions,Paris,France, September 1994,pp.43–44.</li> <li>Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>Watson. 1987. AnewmethodofclassificationforLandsatdatausing the 'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical morphology,SignalProcess.16(1989)319–333.</li> <li>Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology and reformalizedHoughtransformationforthe analysis oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      | 1112 | Zhang. 1999. Optimisationofbuildingdetectioninsatelliteimagesby combining                                                                                                                          |
| <ul> <li>b0.</li> <li>b0.</li> <li>b1113</li> <li>Laine, &amp; J.Fan. 1993.Textureclassificationbywaveletpacketsignatures, IEEE</li> <li>Trans.PatternRecognit.MachineIntell.15(1993)1186–1191.</li> <li>b114</li> <li>Randen, &amp; J.H.Husoy. 1999. Filteringfortextureclassification:a comparative</li> <li>study,IEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.</li> <li>b20, &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction</li> <li>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>b20, &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction</li> <li>forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>b20, &amp; Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–385.</li> <li>b2117</li> <li>Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster</li> <li>Contributions,Paris,France, September 1994,pp.43–44.</li> <li>b118</li> <li>Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>b119</li> <li>Watson. 1987. AnewmethodofclassificationforLandsatdatausing the 'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>b26, Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical morphology,SignalProcess.16(1989)319–333.</li> <li>b1121</li> <li>Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>b1122</li> <li>Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology and reformalizedHoughtransformationforthe analysis oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                          |      | multispectral classification and texture filtering, ISPRSJ. Photogramm. Remote Sensing 54(1)(1999)50-                                                                                              |
| 1111       Lahle, & J. Fahl. 1995. Texture classification/waveletplatedesignations, IEEE         Trans. PatternRecognit.MachineIntell.15(1993)1186–1191.         1114       Randen, & J.H.Husoy. 1999. Filteringfortextureclassification:a comparative         study.JEEETrans.PatternRecognit.MachineIntell. 21 (1999)291–310.         1115       Lee, C., & David A. Landgrebe. 1997. Decisionboundaryfeature extraction         forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.         1116       Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–385.         1117       Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster         Contributions,Paris,France, September 1994,pp.43–44.         1118       Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-         spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.         1119       Watson. 1987. AnewmethodofclassificationforLandsatdatausing the         'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.         1120       Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical         morphology,SignalProcess.16(1989)319–333.         1121       Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological         filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and         itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1112 | 00.<br>Laina & Lean 1002 Tautumalagaifigationhurusualatnagkataignatuma IEEE                                                                                                                        |
| <ul> <li>Infansi atterinterogint. Machine Intern 15(15) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17) 5(17)</li></ul>                                            | 1115 | Trans PatternRecognit MachineIntell 15(1993)1186_1191                                                                                                                                              |
| <ul> <li>Kunden, &amp; J. Hindsoly. 1999. Findening for texture centrative comparative study, IEEETrans. Pattern Recognit. Machine Intell. 21 (1999)291–310.</li> <li>Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundary feature extraction forneural networks, IEEETrans. Neural Networks8(1) (1997) January.</li> <li>Destival. 1986. Mathematical morphology applied to remote sensing, Acta Astronaut. 13(6/7)(1986)371–385.</li> <li>Serra, &amp; P.Soille. 1994. Mathematical Morphology and its Applications to Image Processing—Poster Contributions, Paris, France, September 1994, pp.43–44.</li> <li>Chou, R. Weger, J. Ligtenberg, KS. Kuo, R. Welch, P. Breeden. 1994. Segmentation of polarscenes using multispectral texture measures and morphological filtering. Int. J. Remote Sens. 15(5)(1994)1019–1036.</li> <li>Watson. 1987. Anewmethod of classification for Landsat data using the 'watershed'algorithm, Pattern Recognit. Lett. 6(1987)15–19.</li> <li>Safa, &amp; G. Flouzat. 1989. Specklere moval on radari magery based on mathematical morphology, Signal Process. 16(1989) 319–333.</li> <li>Mering, &amp; JF. Parrot. 1994. Radari mages analysis using morphological filters, in: J. Serra, P. Soille (Eds.), Mathematical Morphology and its Applications to Image Processing, Kluwer, Norwell, MA, 1994, pp.353–360.</li> <li>Yamada, K. Yamamoto, &amp; K. Hosokawa. 1993. Direction almathematical morphology and reformalized Hough transformation for the analysis oftopographic maps, IEEET rans. Pattern Anal. Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1114 | Randen & I H Husov 1999 Filteringfortextureclassification:a comparative                                                                                                                            |
| <ul> <li>1115 Lee, C., &amp; David A. Landgrebe. 1997. Decisionboundaryfeature extraction<br/>forneuralnetworks, IEEETrans.NeuralNetworks8(1) (1997) January.</li> <li>1116 Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–<br/>385.</li> <li>1117 Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions, Paris, France, September 1994, pp.43–44.</li> <li>1118 Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering, Int.J. RemoteSens.15(5)(1994)1019–1036.</li> <li>1119 Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm, PatternRecognit.Lett.6(1987)15–19.</li> <li>1120 Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology, SignalProcess.16(1989)319–333.</li> <li>1121 Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters, in: J.Serra, P.Soille(Eds.), MathematicalMorphology and<br/>itsApplicationstoImageProcessing, Kluwer, Norwell, MA, 1994, pp.353–360.</li> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps, IEEETrans. PatternAnal. Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | study. JEEETrans. Pattern Recognit, Machine Intell, 21 (1999) 291–310.                                                                                                                             |
| formeuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.1116Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–<br>385.1117Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43–44.1118Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.1119Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.1120Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319–333.1121Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.1122Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1115 | Lee, C., & David A. Landgrebe, 1997. Decisionboundaryfeature extraction                                                                                                                            |
| <ul> <li>1116 Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–<br/>385.</li> <li>1117 Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions, Paris, France, September 1994, pp.43–44.</li> <li>1118 Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering, Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>1119 Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm, PatternRecognit.Lett.6(1987)15–19.</li> <li>1120 Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology, SignalProcess.16(1989)319–333.</li> <li>1121 Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters, in: J.Serra, P.Soille(Eds.), MathematicalMorphology and<br/>itsApplicationstoImageProcessing, Kluwer, Norwell, MA, 1994, pp.353–360.</li> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps, IEEETrans. PatternAnal. Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | forneuralnetworks,IEEETrans.NeuralNetworks8(1) (1997) January.                                                                                                                                     |
| 385.1117Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br>Contributions,Paris,France, September 1994,pp.43–44.1118Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.1119Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.1120Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319–333.1121Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.1122Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1116 | Destival. 1986. Mathematicalmorphologyappliedtoremotesensing, Acta Astronaut.13(6/7)(1986)371–                                                                                                     |
| <ul> <li>1117 Serra, &amp; P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster<br/>Contributions,Paris,France, September 1994,pp.43–44.</li> <li>1118 Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>1119 Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>1120 Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology,SignalProcess.16(1989)319–333.</li> <li>1121 Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br/>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 385.                                                                                                                                                                                               |
| Contributions,Paris,France, September 1994,pp.43–44.1118Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.1119Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.1120Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319–333.1121Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.1122Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1117 | Serra, & P.Soille. 1994. MathematicalMorphologyanditsApplications toImageProcessing—Poster                                                                                                         |
| <ul> <li>1118 Chou,R.Weger,J.Ligtenberg,KS.Kuo,R.Welch,P.Breeden. 1994. Segmentationofpolarscenesusingmulti-<br/>spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.</li> <li>1119 Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>1120 Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology,SignalProcess.16(1989)319–333.</li> <li>1121 Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br/>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Contributions,Paris,France, September 1994,pp.43–44.                                                                                                                                               |
| spectraltexturemeasuresand morphologicalfiltering,Int.J.RemoteSens.15(5)(1994)1019–1036.1119Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.1120Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319–333.1121Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.1122Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1118 | Chou, R.Weger, J.Ligtenberg, KS.Kuo, R.Welch, P.Breeden. 1994. Segmentation of polarscenes using multi-                                                                                            |
| <ul> <li>1119 Watson. 1987. AnewmethodofclassificationforLandsatdatausing the<br/>'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.</li> <li>1120 Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology,SignalProcess.16(1989)319–333.</li> <li>1121 Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br/>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | spectraltexturemeasuresand morphologicalfiltering, Int. J. Remote Sens. 15(5)(1994)1019–1036.                                                                                                      |
| 'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.1120Safa, & G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br>morphology,SignalProcess.16(1989)319–333.1121Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.1122Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology<br>andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1119 | Watson. 1987. AnewmethodofclassificationforLandsatdatausing the                                                                                                                                    |
| <ul> <li>Safa, &amp; G.Flouzat. 1989. Speckleremovalonradarimagerybasedon mathematical<br/>morphology,SignalProcess.16(1989)319–333.</li> <li>Mering, &amp; JF.Parrot. 1994. Radarimagesanalysisusingmorphological<br/>filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and<br/>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100 | 'watershed'algorithm,PatternRecognit.Lett.6(1987)15–19.                                                                                                                                            |
| 1121       Mering, & JF.Parrot. 1994. Radarimagesanalysisusingmorphological         1121       filters,in:J.Serra,P.Soille(Eds.),MathematicalMorphology and         itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.         1122       Yamada, K.Yamamoto, & K.Hosokawa. 1993. Directionalmathematical morphology         andreformalizedHoughtransformationforthe analysis         oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1120 | Safa, & G.F.Iouzat. 1989. Speckleremovalonradarimagerybasedon mathematical                                                                                                                         |
| <ul> <li>intering, &amp; JF.Farrot. 1994. Ratar inagesanarysististinginor photograph</li> <li>filters, in: J.Serra, P.Soille (Eds.), Mathematical Morphology and</li> <li>itsApplicationstoImageProcessing, Kluwer, Norwell, MA, 1994, pp.353–360.</li> <li>Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology</li> <li>andreformalizedHoughtransformationforthe analysis</li> <li>oftopographicmaps, IEEETrans. PatternAnal. Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1171 | IIIUI PIIUIUgy, Sigilairi Ucess. 10(1707)517-555.<br>Moring & L. F. Parrot 1004. Padarimagoganalygigugingmorphological                                                                             |
| <ul> <li>itsApplicationstoImageProcessing,Kluwer,Norwell,MA, 1994, pp.353–360.</li> <li>Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1121 | filters in I Serre D Soille(Eds.) MathematicalMorphology and                                                                                                                                       |
| <ul> <li>1122 Yamada, K.Yamamoto, &amp; K.Hosokawa. 1993. Directionalmathematical morphology<br/>andreformalizedHoughtransformationforthe analysis<br/>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | itsAnnlicationstoImageProcessing Kluwer Norwell MA 1994 nn 353-360                                                                                                                                 |
| andreformalizedHoughtransformationforthe analysis<br>oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1122 | Yamada, K.Yamamoto, & K.Hosokawa, 1993, Directionalmathematical mornhology                                                                                                                         |
| oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | andreformalizedHoughtransformationforthe analysis                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | oftopographicmaps,IEEETrans.PatternAnal.Machine Intell. 15(April)(1993)380–387.                                                                                                                    |

| 1123 | Jahjah, A.Invernizzi, C.Ulivieri, R.Parapetti. 2007. Archaeological remotesensingapplicationpre-<br>postwarsituation of Babylon archaeological site—Iraq. LACTAAstronaut.61(2007) 121–130.                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1124 | Welch,& W.Ahlers. 1987. MergingmultiresolutionSPOTHRVand Landsat                                                                                                                                                                                                                     |
| 1125 | Scollar, I. 1990. Archaeologicalprocessingandremotesensing, Cambridge University,1990276–292.                                                                                                                                                                                        |
| 1126 | Baatz, & A.Schaepe. 1999. Object-orientedandmulti-scaleimageanalysis in semanticnetworks,in:TheSecondInternationalSymposium: Operationalization ofRemoteSensing,NewMethodologies,(1999) 16–20 August,ITC,NL.                                                                         |
| 192  | Duda R.O., P.E. Hart, and D.G. Stork. 2000. Pattern Classification. John Wiley & Sons, 2nd edition.                                                                                                                                                                                  |
| 1128 | Wilson, D.R. Air Photo Interpretation for Archaeologists; St. Martin's Press: New York, NY, USA, 2012.                                                                                                                                                                               |
| 388  | Lasaponara, R.; Masini, N. Remote sensing in archaeology: From visual data interpretation to digital data manipulation. In Satellite Remote Sensing: A New Tool for Archaeology; Springer: New York, NY, USA, 2012; pp. 3–16.                                                        |
| 1130 | Beazeley, G.A. Air photography in archaeology. Geogr. J. 1919, 53, 330–335.                                                                                                                                                                                                          |
| 1131 | Musson, C.; Driver, T.; Pert, T. Air photo applications in Wales, UK. Exploration, landscape analysis, conservation and public presentation. In Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, Italy, 4–7 December, 2006.                   |
| 1132 | McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R. Subsurface valleys and geoarchaeology of the eastern Sahara revealed by shuttle radar. Science 1982, 218, 1004–1020.                                                       |
| 1133 | Moore, E.; Freeman, T.; Hensley, S. Spaceborne and airborne radar at Angkor: Introducing new technology to the ancient site. In Remote Sensing in Archaeology; Wiseman, J., El-Baz, F., Eds.; Springer: New York, NY, USA, 2007; pp. 185–216.                                        |
| 1134 | Stewarta, C.; Lasaponara, R.; Schiavona, G. Multi-frequency, polarimetric SAR analysis for archaeological prospection. Int. J. Appl. Earth Obs. 2014, 28, 211–219.                                                                                                                   |
| 1135 | Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS 2012, 109, 12916–12921.                                                                                                       |
| 1136 | Johnson, K.M.; Ouimet, W.B. Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J. Archaeol. Sci. 2014, 43, 9–20.                                                                                            |
| 1080 | Aqdus, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924.                                                                          |
| 1138 | Atzberger, C.; Wess, M.; Doneus, M.; Verhoeven, G. ARCTIS—A MATLAB® toolbox for archaeological imaging spectroscopy. Remote Sens. 2014, 6, 8617–8638.                                                                                                                                |
| 1139 | Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. Cult. Herit. 2007, 8, 272–283.                                                                                                      |
| 1140 | Challis, K.; Kincey, M.; Howard, A.J. Airborne remote sensing of valley floor geoarchaeology using Daedalus ATM and CASI. Archaeol. Prospect. 2009, 16, 17–33.                                                                                                                       |
| 12   | De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). J. Archaeol. Sci. 2007, 34, 830–841.                                                             |
| 1043 | Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007. 34, 214–221                                                                                                                            |
| 378  | De Laet, V.; Paulissen, E.; Meuleman, K.; Waelkens, M. Effects of image characteristics on the                                                                                                                                                                                       |
|      | identification and extraction of archaeological features from Ikonos-2 and Quickbird-2 imagery: Case study Sagalassos (southwest Turkey). Int. J. Remote Sens. 2009, 30, 5655–5668.                                                                                                  |
| 1144 | Lasaponara, R.; Masini, N. Pattern recognition and classification using VHR data for archaeological research. In Satellite Remote Sensing: A New Tool for Archaeology; Springer: New York, NY, USA, 2012; pp. 65–85.                                                                 |
| 1145 | Noviello, M.; Ciminale, M.; Pasquale, V.D. Combined application of pansharpening and enhancement methods to improve archaeological cropmark visibility and identification in QuickBird imagery: Two case studies from Apulia, Southern Italy. J. Archaeol. Sci. 2013, 40, 3604–3613. |

| 1146 | Lasaponara, R.; Masini, N. Beyond modern landscape features: New insights in the archaeological area of Tiwanaku in Bolivia from satellite data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 464–471. |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1147 | Luo, L.; Wang, X.; Liu, C.; Guo, H.; Du, X. Integrated RS, GIS and GPS approaches to archaeological                                                                                                  |
|      | prospecting in the Hexi Corridor, NW China: A case study of the royal road to ancient Dunhuang. J.                                                                                                   |
|      | Archaeol. Sci. 2014, 50,178–190.                                                                                                                                                                     |
| 1148 | Wonsok, K.; Nie, Y.; Zhu, J.; Deng, B.; Yu, L.; Liu, F.; Gao, H. Local orientation based detection of circular                                                                                       |
|      | soil marks of ancient graves by GA. J. Remote Sens. 2013, 17, 671–678.                                                                                                                               |
| 1149 | Myers, A. Camp Delta, Google Earth and the ethics of remote sensing in archaeology. World Archaeol.                                                                                                  |
|      | 2010, 42, 455–467.                                                                                                                                                                                   |
| 1150 | Sheppard, S.; Cizek, P. The ethics of Google Earth: Crossing thresholds from spatial data to landscape                                                                                               |
|      | visualization. J. Environ. Manage. 2008, 90, 2102–2117.                                                                                                                                              |
| 1151 | Parks, L. Digging into Google Earth: An analysis of "Crisis in Darfur". Geoforum 2009, 40, 535–545.                                                                                                  |
| 1152 | Kennedy, D.; Bishop, M.C. Google Earth and the archaeology of Saudi Arabia, a case study from the                                                                                                    |
|      | Jeddah area. J. Archaeol. Sci. 2011, 38, 1284–1293.                                                                                                                                                  |
| 1153 | Sadr, K.; Rodier, X. Google Earth, GIS and stone-walled structures in southern Gauteng, South Africa. J.                                                                                             |
|      | Archaeol. Sci. 2012, 39, 1034–1042.                                                                                                                                                                  |
| 1154 | Kempe, S.; Al-Malabeh, A. Desert kites in Jordan and Saudi Arabia: Structure, statistics and function, a                                                                                             |
|      | Google Earth study. Quat. Int. 2012, 297, 126–146.                                                                                                                                                   |
| 1155 | Pringle, H. Google Earth shows clandestine worlds. Science. 2010, 329, 1008–1009.                                                                                                                    |
| 1156 | Ur, J. Google Earth and archaeology. SAA Record 2006, 6, 35–38.                                                                                                                                      |
| 1157 | Luo, L.; Wang, X.; Cai, H.; Li, C.; Ji, W. Mapping a paleodrainage system of the Keriya River using remote                                                                                           |
|      | sensing data and historical materials. J. Earth Sci. Eng. 2012, 2, 712–721.                                                                                                                          |
| 1158 | Morehart, C.T. Mapping ancient chinampa landscapes in the Basin of Mexico: A remote sensing and GIS                                                                                                  |
|      | approach. J. Archaeol. Sci. 2012, 39, 2541–2551.                                                                                                                                                     |
| 1159 | Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A.; Barbetti, M. A comprehensive                                                                                               |
|      | archaeological map of the world's largest preindustrial settlement complex at Angkor, Cambodia. Proc.                                                                                                |
|      | Natl. Acad. Sci. USA 2007, 104, 14277–14282.                                                                                                                                                         |
| 1160 | Doneus, M.; Verhoeven, G.; Atzberger, C.; Wess, M.; Ruš, M. New ways to extract archaeological                                                                                                       |
|      | information from hyperspectral pixels. J. Archaeol. Sci. 2014, 52, 84–96.                                                                                                                            |
| 32   | DOrazio, T.; Palumbo, F.; Guaragnell, C. Archaeological trace extraction by a local directional active                                                                                               |
|      | contour approach. Pattern Recogn. 2012, 45, 3427–3438.                                                                                                                                               |
| 1042 | Lasaponara, R.; Masini, N. Satellite remote sensing in archaeology: Past, present and future                                                                                                         |
|      | perspectives. J. Archaeol. Sci. 2011, 38, 1995–2496.                                                                                                                                                 |
| 388  | Lasaponara, R.; Masini, N. Image enhancement, feature extraction and geospatial analysis in an                                                                                                       |
|      | archaeological perspective. In Satellite Remote Sensing: A New Tool for Archaeology; Springer: New                                                                                                   |
|      | York, NY, USA, 2012; pp. 17–63.                                                                                                                                                                      |
| 1164 | Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis. D.G. Orthogonal equations of multi-spectral satellite                                                                                          |
|      | imagery for the identification of un-excavated archaeological sites. Remote Sens. 2013, 5, 6560–6586.                                                                                                |
| 1165 | Tarantino, E.; Figorito, B. Steerable filtering in interactive tracing of archaeological linear features                                                                                             |
|      | using digital true colour aerial images. Int. J. Digital Earth 2014, 7, 870–880.                                                                                                                     |
| 1166 | Redtern, S.; Lyons, G. The Application of Digital Techniques to the Detection and Extraction of                                                                                                      |
|      | Archaeological Earthwork Monuments from Aerial Photographs. 1998. Available online:                                                                                                                  |
|      | www.it.nuigalway.ie (accessed on 6 November 2013).                                                                                                                                                   |
| 34   | Janjan, M.; Ulivieri, C. Automatic archaeological feature extraction from satellite VHR images. Acta                                                                                                 |
| 07   | Astronaut. 2010, 66, 1302–1310.                                                                                                                                                                      |
| 31   | Scnuetter, J.; Goel, P.; McCorriston, J.; Park, J.; Senn, M.; Harrower, M. Autodetection of ancient Arabian                                                                                          |
| 240  | tomos in nigh-resolution satellite imagery. Int. J. Kemote Sens. 2013, 34, 6611–6635.                                                                                                                |
| 240  | i rier, w.u.; Larsen, S.w.; Solderg, K. Automatic detection of circular structures in high-resolution                                                                                                |
| 22   | Saterinte inidges of agricultur al fanti. Afchaeol. Prospect. 2009, 10, 1–15.                                                                                                                        |
| 33   | rigorito, D.; Farantino, E. Senn-automatic detection of linear archaeological traces from orthorectified                                                                                             |
| 1171 | attial illiages. Illi, J. Appl. Eal III UDS. 2014, 20, 458–405.                                                                                                                                      |
| 11/1 | Pasoni, E.; Meigani, F.; Doneni, M.; Alloui, K.; de Vos, M. Automatic detection and classification of                                                                                                |
|      | of the 2009 IEEE International Conscience and Demote Sensing Sumposium Destan MALUSA 7, 11                                                                                                           |
|      | of the 2000 fills international deoscience and kemole sensing symposium, boston, MA, USA, 7–11                                                                                                       |

|      | July 2008; pp. II-525–II-528.                                                                                                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                      |
| 1172 | Todd, D.K.; Mays, L.W. Introduction. In Groundwater Hydrology, 3rd ed.; Wiley: New York, NY, USA, 2004; pp. 7–41.                                                                                                    |
| 1173 | Boustani, F. Sustainable water utilization in arid region of Iran by Qanats. Int. J. Human Soc. Sci. 2009, 4, 505–508.                                                                                               |
| 1174 | Karez: Afghanistan's Traditional Irrigation System. Available online: http://www.adkn.org/en/<br>agriculture/article.asp?a=67 (accessed on 25 September 2014).                                                       |
| 1175 | Ahmadi, H.; Samani, A.N.; Malekian, A. The Qanat: A living history in Iran. In Water and Sustainability in Arid Regions; Schneier-Madanes, G., Courel, M.F., Eds.; Springer: Landon, UK, 2010; pp. 125–138.          |
| 1176 | Motiee, H.; Mcbean, E.; Semsar, A.; Gharabaghi, B.; Ghomashchi, V. Assessment of the contributions of Traditional Qanats in sustainable water resources management. Int. J. Water Res. Develop. 2006, 22, 575–588.   |
| 1177 | Abudu, S.; Cevik, S.Y.; Bawazir, S.; King, J.P.; Cui, C. Vitality of ancient Karez systems in arid lands: A case study in Turpan region of China. Water Hist. 2011, 3, 213–225.                                      |
| 1178 | Hu, W.; Zhang, J.; Liu, Y. The Qanats of Xinjiang: Historical development, characteristics and modern implications for environmental protection. J. Arid Land 2012, 4, 211–220.                                      |
| 1179 | Huang, S. Oasis Studies; Science Press: Beijing, China, 2003; pp.3–17. (In Chinese)                                                                                                                                  |
| 1180 | Li, J. A study on the origin and date of Xinjiang's Kan'erjing. J. Xinjiang Norm. Univ. Soc. Sci. 2005, 26, 25–28. (In Chinese)                                                                                      |
| 1181 | Hosseini, S.A.; Shahraki, S.Z.; Farhudi, R.; Hosseini, S.M.; Salari, M.; Pourahmad, A. Effect of urban sprawl on a traditional water system (Qanat) in the City of Mashhad, NE Iran. Urb. Water J. 2010, 7, 309–320. |
| 1182 | Haakon, L.; Shen, Y. The Disappearance of the Karez of Turfan; Report from the Project "Harvest from Wasteland. Land, People and Water Management Reforms in the Dry Lands of Xinjiang"; Acta                        |
|      | Geographica Series A15; Department of Geography, Norwegian University of Science and Technology (NTNU): Trondheim, Norway, 2006.                                                                                     |
| 1183 | Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans.<br>Pattern Anal. Mach. Intell. 1987, PAMI-9, 532–550.                                                          |
| 1184 | Gonzalez, R.C.; Woods, R.E. Morphological Image Processing. In Digital Image Processing, 2nd ed.;<br>Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 462–463.                                                  |
| 1185 | Maini, R.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. 2009, 3, 1–11.                                                                                       |
| 1186 | Rahnama, M.; Gloaguen, R. TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 1: Line segment detection and extraction. Remote Sens. 2014, 6, 5938–5958.           |
| 594  | Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698.                                                                                                 |
| 156  | Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962.                                                                                                            |
| 1189 | Yuen, H.K.; Illingworth, J.; Kittler, J. Detecting partially occluded ellipses using the Hough transform.<br>Image Vision Comput.1989, 7, 31–37.                                                                     |
| 1190 | Rizon, M.; Yazid, H.; Saad, P.; Md Shakaff, A.Y.; Saad, A.R.; Sugisaka, M.; Yaacob, S.; Mamat, M.R.;<br>Karthigayan, M. Object detection using circular Hough transform. Am. J. Appl. Sci. 2005, 2, 1606–1609.       |
| 1191 | Raymond, K.K.Y.; Peter, K.S.T.; Dennis N.K.L. Modification of Hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recogn. 1992, 25, 1007–1022.                                   |
| 1192 | Duda, R.O.; Hart, P.E. Use of the Hough transform to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.                                                                                               |
| 1193 | Shufelt, J.A. Performance evaluation and analysis of monocular building extraction from Aerial                                                                                                                       |
| 1194 | Imagery. IEEE I rans. Pattern Anal. Macn. Intell. 1999, 21, 311–326.<br>Bandeira L. Ding W. Steninski TF. 2012. Detection of subkilometer craters in high resolution planetary.                                      |
|      | images using shape and texture features. Advances in Space Research 49(1): 64–74. DOI: 10.1016/j.asr 2011.08.021                                                                                                     |
|      | 10.1010/j.a51.2011.00.021                                                                                                                                                                                            |

| 926  | Bennett R, Welham K, Hill Ra, Ford A. 2012. A comparison of visualization techniques for models          |
|------|----------------------------------------------------------------------------------------------------------|
|      | created from airborne laser scanned data. Archaeological Prospection 19(1): 41–48. DOI:                  |
|      | 10.1002/arp.1414                                                                                         |
| 1196 | Bollandsås OM, Risbøl O, Ene LT, Nesbakken A, Gobakken T, Næsset E. 2012. Using airborne                 |
|      | smallfootprint laser scanner data for detection of cultural remains in forests: an experimental study of |
|      | the effects of pulse density and DTM smoothing. Journal of Archaeological Science 39(8): 2733–2743.      |
|      | DOI: 10.1016/j.jas.2012.04.026                                                                           |
| 1197 | Bond J. 2007. Medieval charcoal burning in England. In Arts and Crafts in Medieval Rural                 |
|      | Environments, Klapste J, Sommer P (eds), 22–29 September 2005, Ruralia VI: Dobogókő, Hungary; 25–        |
|      | 34.                                                                                                      |
| 12   | De Laet V. Paulissen E. Waelkens M. 2007. Methods for the extraction of archaeological features from     |
|      | very high-resolution Ikonos-2 remote sensing imagery. Hisar (southwest Turkey). Journal of               |
|      | Archaeological Science 34(5): 830–841. DOI: 10.1016/j.jas.2006.09.013                                    |
| 1199 | Deforce K, Boeren I, Adriaenssens S, Bastiaens J, De Keersmaeker L, Haneca K, Tys D, Vandekerkhove       |
|      | K. 2013. Selective woodland exploitation for charcoal production. A detailed analysis of charcoal kiln   |
|      | remains (ca. 1300–1900 AD) from Zoersel (northern Belgium). Journal of Archaeological Science            |
|      | 40(1): 681–689. DOI: 10.1016/j.jas.2012.07.009                                                           |
| 1200 | Devereux BJ, Amable GS, Crow P. 2008. Visualisation of LiDAR terrain models for archaeological           |
|      | feature detection. Antiquity 82(316): 470–479.                                                           |
| 1201 | Eisank C, Smith M, Hillier J. 2014. Assessment of multiresolution segmentation for delimiting drumlins   |
|      | in digital elevation models. Geomorphology 214: 452–464. DOI: 10.1016/j.geomorph.2014.02.028             |
| 1202 | Crean average of the R 2005 Changes I Durning and Landsson a Durnamics in the Early Mediavel Netherlands |
| 1202 | Buralia IV. 227–227                                                                                      |
| 1202 | Kulalla IV: 52/-55/.                                                                                     |
| 1205 | Archaeological Prograction 17(2), 67, 72, DOI: 10.1002 (orn. 274                                         |
| 1204 | Archaeological Prospection 17(2): 07–72. DOI: 10.1002/arp.574                                            |
| 1204 | manning of landforms. Coomerphology 192: 147, 156, DOI: 10.1016 / i geomerph 2012.11.005                 |
| 1205 | Jannass I. Brost B. Bajar P. 2013. Land Facet Corridor Designer: Extension for ArcCIS. Jannass           |
| 1205 | Enterprises http://www.jennessent.com/arcgis/land_facets.htm_date_of_access: 11.06.2014                  |
| 1206 | Kennelly PL 2008 Terrain maps displaying hill-shading with curvature Geomorphology 102(3-4)              |
| 1200 | 567–577. DOI: 10.1016/i.geomorph.2008.05.046                                                             |
| 1207 | Lipsdorf I. 2001. Köhler über die Kohle. Ausgrabungen von Holzkohlemeilern am Tagebau                    |
|      | länschwalde. Ausgrabungen im Niederlausitzer Braunkohlenrevier - Arbeitsberichte zur                     |
|      | Bodendenkmalpflege in Brandenburg 8: 213–223.                                                            |
| 1208 | Ludemann T. 2003. Large-scale reconstruction of ancient forest vegetation by anthracology – a            |
|      | contribution from the Black Forest. Phytocoenologia 33(4): 645–666                                       |
| 690  | Menze BH, Ur JA, Sherratt AG. 2006. Detection of ancient settlement mounds: archaeological survey        |
|      | based on the SRTM terrain model. Photogrammetric Engineering and Remote Sensing 72(3): 321–327.          |
| 1210 |                                                                                                          |
| 1210 | Nelle U. 2003. Woodland history of the last 500 years revealed by anthracological studies of charcoal    |
| 1211 | Kini sites in the Bavarian Forest, Germany. Phytocoenologia 33(4): 667–682.                              |
| 1211 | Nicolay A, Raad A, Raad T, Roster H, Bonisch E, Murray AS. 2014. Evidence of (pre-Jnistoric to modern    |
|      | Coomerphologie 59(Suppl 2): 7, 21, DOI: 10.1127/0272.9954/2014/S.00162                                   |
| 1212 | Nyström M. Holmgran I. Fransson IES. Olsson H. 2014. Detection of windthrown trees using airborne        |
| 1212 | loser scanning International Journal of Applied Farth Observation and Cooinformation 30: 21–29           |
|      | DOI: 10.1016/j jag 2014.01.012                                                                           |
| 1213 | Pirotti F 2010 Assessing a template matching approach for tree height and position extraction from       |
|      | lidar derived canony height models of Pinus ninaster stands Forests 1(4). 194–208                        |
| 1214 | Pollock R 1998 Individual tree recognition based on a synthetic tree crown image model. In               |
|      | Proceedings of the International Forum on Automated Interpretation of High Spatial Resolution            |
|      | Digital Imagery for Forestry, Hill DA, Leckie DG (eds.) Victoria: British Columbia Canada February       |
|      | 10-12; 25–34.                                                                                            |

| 1215 | Raab A, Takla M, Raab T, Nicolay A, Schneider A, Rösler H, Heußner K-U, Bönisch E. 2014. Pre-<br>Industrial charcoal production in Lower Lusatia (Brandenburg, Germany) – detection and evaluation<br>of a large charcoal burning field by combining archaeological studies, GIS based analyses of shaded-<br>relief maps and dendrochronological age determination. Quaternary International. DOI:<br>10.1016/j.quaint.2014.09.041 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 945  | Risbøl O, Bollandsås OM, Nesbakken A, Ørka HO, Næsset E, Gobakken T. 2013. Interpreting cultural                                                                                                                                                                                                                                                                                                                                    |
|      | remains in airborne laser scanning generated digital terrain models: effects of size and shape on                                                                                                                                                                                                                                                                                                                                   |
|      | detection success rates. Journal of Archaeological Science 40(12): 4688–4700. DOI: 10.1016/j.jas.2013.07.002                                                                                                                                                                                                                                                                                                                        |
| 1217 | Rösler H. 2008. Köhlerei für das Eisenhüttenwerk Peitz in Brandenburg. Archäologie in Deutschland 3: 36–37.                                                                                                                                                                                                                                                                                                                         |
| 1218 | Rösler H, Bönisch E, Schopper F, Raab T, Raab A. 2012. Pre-industrial charcoal production in southern                                                                                                                                                                                                                                                                                                                               |
|      | Brandenburg and its impact on the environment. In Landscape Archaeology between Art and Science,                                                                                                                                                                                                                                                                                                                                    |
| 1210 | Kluiving S, Guttmann-Bond E (eds). Amsterdam University Press: Amsterdam; 167–178.                                                                                                                                                                                                                                                                                                                                                  |
| 1219 | Salamuniccar G, Loncaric S, Pina P, Bandeira L, Saraiva J. 2014. Integrated method for crater detection from tenegraphy and entirel images and the new PH0224CT satalogue of Phohee impact craters                                                                                                                                                                                                                                  |
|      | Advances in Snace Research 53(12): 1798–1809 DOI: 10.1016/j.asr 2013.11.006                                                                                                                                                                                                                                                                                                                                                         |
| 1220 | Sawabe Y. Matsunaga T. Rokugawa S. 2006. Automated detection and classification of lunar craters                                                                                                                                                                                                                                                                                                                                    |
|      | using multiple approaches. Advances in Space Research 37(1): 21–27. DOI: 10.1016/j.asr.2005.08.022                                                                                                                                                                                                                                                                                                                                  |
| 1221 | Schindling J, Gibbes C. 2014. LiDAR as a tool for archaeological research: a case study. Archaeological                                                                                                                                                                                                                                                                                                                             |
|      | and Anthropological Sciences. DOI: 10.1007/s12520-014-0178-3                                                                                                                                                                                                                                                                                                                                                                        |
| 1222 | Shruthi RBV, Kerle N, Jetten V. 2011. Object-based gully feature extraction using high spatial                                                                                                                                                                                                                                                                                                                                      |
| 1222 | resolution imagery. Geomorphology 134(3–4): 260–268. DOI: 10.1016/j. geomorph.2011.07.003                                                                                                                                                                                                                                                                                                                                           |
| 1223 | sona G, Fondana GD, Tatoni P. 2014. High-resolution topography and antihopogenic reature                                                                                                                                                                                                                                                                                                                                            |
|      | 2061. DOI: 10.1002/hvp.9727                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1224 | Stular B, Kokalj Z, Ostir K, Nuninger L. 2012. Visualization of lidar-derived relief models for detection                                                                                                                                                                                                                                                                                                                           |
|      | of archaeological features. Journal of Archaeological Science 39(11): 3354-3360. DOI:                                                                                                                                                                                                                                                                                                                                               |
|      | 10.1016/j.jas.2012.05.029                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1225 | Tarolli P, Sofia G, Dalla Fontana G. 2012. Geomorphic features extraction from high-resolution                                                                                                                                                                                                                                                                                                                                      |
|      | topography: landslide crowns and bank erosion. Natural Hazards 61(1): 65–83. DOI: 10.1007/s11069-010-9695-2                                                                                                                                                                                                                                                                                                                         |
| 249  | Trier ØD, Pilø LH. 2012. Automatic Detection of Pit Structures in Airborne Laser Scanning Data.<br>Archaeological Prospection 19(2): 103–121, DOI: 10,1002/arp 1421                                                                                                                                                                                                                                                                 |
| 248  | Trier ØD, Larsen SØ, Solberg R. 2009. Automatic detection of circular structures in high-resolution                                                                                                                                                                                                                                                                                                                                 |
|      | satellite images of agricultural land. Archaeological Prospection 16(1): 1–15. DOI: 10.1002/arp.339                                                                                                                                                                                                                                                                                                                                 |
| 1228 | Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J. 2012. Object-oriented identification of forested                                                                                                                                                                                                                                                                                                                                   |
|      | landslides with derivatives of single pulse LiDAR data. Geomorphology 173–174: 30–42. DOI:                                                                                                                                                                                                                                                                                                                                          |
| 040  | 10.1016/j.geomorph.2012.05.024                                                                                                                                                                                                                                                                                                                                                                                                      |
| 949  | verhagen P, Dragu, L. 2012. Object-based landform defineation and classification from DEMS for archaeological predictive mapping. Journal of Archaeological Science 39(3): 698–703. DOI:                                                                                                                                                                                                                                            |
|      | 10.1016/i.jas.2011.11.001                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1230 | Al-Shahrî, A. 2007. "Grave types and 'Triliths' in Dhofar." Arabian Archaeology and Epigraphy 2: 182–                                                                                                                                                                                                                                                                                                                               |
|      | 195.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1231 | Bin Aqil, A. and J. McCorriston. 2009. "Convergences in the Ethnography, Semantics, and Archaeology                                                                                                                                                                                                                                                                                                                                 |
|      | of Prehistoric Small Scale Monument Types in Hadra-mawt (Southern Arabia)." Antiquity 83: 602–                                                                                                                                                                                                                                                                                                                                      |
| 1222 | 018.<br>Preamon E. T. Staiman Hawhat I. Duahat I. E. Saliàna and II. Curr 2001. "La Pranza Andre Du Provint                                                                                                                                                                                                                                                                                                                         |
| 1232 | ы аеннет, г., т. Steinner-nervet, L. Buonet, J. F. Sallege, and H. Guy. 2001. Le Bronze Ancien Du Kamlat<br>as Sabatayn (Yémen): Deux nécronoles de la première moitié du Ille millénaire à la bordure du décort                                                                                                                                                                                                                    |
|      | Iebel Iidran et Iebel Ruwaia." Paléorient 27: 21–44.                                                                                                                                                                                                                                                                                                                                                                                |
| 594  | Canny, J. 1986. "A Computational Approach to Edge Detection." IEEE Transactions on Pattern Analysis                                                                                                                                                                                                                                                                                                                                 |
|      | and Machine Intelligence 8: 679–698.                                                                                                                                                                                                                                                                                                                                                                                                |
| 1234 | Cashdan, E. 1983. "Territoriality among Human Foragers: Ecological Models and an Application to                                                                                                                                                                                                                                                                                                                                     |
|      | Four Bushman Groups." Current Anthropology 24: 47–66.                                                                                                                                                                                                                                                                                                                                                                               |

| 1235  | Cleuziou, S. 2001. Presénce et mise en scène des morts à l'usage des vivants dans les communautés               |
|-------|-----------------------------------------------------------------------------------------------------------------|
|       | protohistoriques: l'exemple de la péninsule d'Oman à l'âge du bronze ancien, I primi popoli d'Europa,           |
|       | edited by M. Molines and A. Zifferno. Forli: Abaco.                                                             |
| 1236  | Cleuziou, S. 2007. "Evolution toward Complexity in a Coastal Desert Environment: The Early Bronze               |
|       | Age in the Ja' alan, Sultanate of Oman." In The Model-Based Archaeology of Socionatural Systems,                |
|       | edited by T. A. Kohler and S. E. van der Leeuw. Santa Fe, NM: School for Advanced Research.                     |
| 1237  | Dalenius, T. 1951. "The Problem of Optimum Stratification." Skandinavisk Aktua-rietidskrift 34: 133–            |
|       | 148.                                                                                                            |
| 1238  | De Cardi, B., B. Doe, and S. Roskams. 1977. "Excavation and Survey in the Sharqiyah, Oman 1976."                |
|       | Journal of Oman Studies 3: 17–33.                                                                               |
| 12    | De Laet, V., E. Paulissen, and M.Waelken. 2007. "Methods for Extraction of Archaeological Features              |
|       | from Very High-Resolution Ikonos-2 Remote Sensing Imagery, Hisar (Southwest Turkey)." Journal of                |
|       | Archaeological Science 34: 830–841.                                                                             |
| 1192  | Duda, R. O. and P. E. Hart. 1972. "Use of the Hough Transformation to Detect Lines and Curves in                |
|       | Pictures." Communications of the ACM 15: 11–15.                                                                 |
| 1241  | Elwaseif, M. and L. Slater. 2010. "Quantifying Tomb Geometries in Resistivity Images Using Watershed            |
|       | Algorithms." Journal of Archaeological Science 37: 1424–2436.                                                   |
| 1242  | Engelman, L., and J. A. Hartigan. 1969. "Percentage Points of a Test for Clusters." Journal of the              |
|       | American Statistical Association 64: 1647–1648.                                                                 |
| 1243  | Giger, M., K. Doi, and H. MaoMahon. 1988. "Image Feature Analysis and Computer-Aided Diagnosis in               |
|       | Digital Radiography. 3. Automated Detection of Nodules in Peripheral Lung Fields." Medical Physics              |
|       | 15: 158–166.                                                                                                    |
| 1244  | Haraliok, R. M. 1974. "A Measure for Circularity of Digital Figures." IEEE Transactions on Systems, Man         |
| 10.17 | and Cybernetics 4: 394–396.                                                                                     |
| 1245  | Harrower, M. 2008. "Hydrology, Ideology, and the Origins of Irrigation in Ancient Southwest Arabia              |
| 10.16 | (Yemen)." Current Anthropology 49: 497–510.                                                                     |
| 1246  | Harrower, M., J.McCorriston, and E. A. Oches. 2002. "Mapping the Roots of Agriculture in Southern               |
|       | Arabia: The Application of Satellite Remote Sensing, Global Positioning System and Geographic                   |
| 150   | Information System Technologies." Archaeological Prospection 9: 35–42.                                          |
| 150   | Hough, P. V. C. 1962. Method and means for recognizing complex patterns. US Patent No. 3,069,654.               |
| 260   | Washington, DC: US Patent and Trademark Onice.                                                                  |
| 309   | Series in Geographic Information Science, Unper Saddle River, NJ: Prentice Hall                                 |
| 1249  | Kelly R 1995 The Foraging Spectrum Washington DC: Smithsonian Institution Press                                 |
| 1217  | Keny, K. 1995. The Foraging Spectrum. Washington, DC. Sinthsoman Institution (Tess.                             |
| 1250  | Lézine, A., C. Robert, S. Cleuziou, M. Inizan, F. Braemer, J. Saliége, F. Sylvestre, J. Tiercelin, R. Crassard, |
|       | S. Mery, V. Charpentier, and T. Steimer-Herbet. 2010. "Climate Change and Human Occupation in the               |
|       | Southern Arabian Lowiands during the Last Deglaciation and the Holocene. Global and Planetary                   |
| 1251  | Unange 72: 412–428.                                                                                             |
| 1231  | 120 127                                                                                                         |
| 1252  | McCorriston I. M. Harrower I. Martin and F. Oches. 2012. "Cattle Cults of the Arabian Neolithic and             |
| 1252  | Farly Territorial Societies " American Anthronologist 114: 45–63                                                |
| 1253  | McCorrison I T Steimer-Herhet M Harrower K Williams I Saliège and A B Agil 2011 "Gazetteer                      |
| 1200  | of Small Scale Monuments in Prehistoric Hadramawt Vemen: A Radiocarbon Chronology from RASA                     |
|       | Project Research 1998–2008." Arabian Archaeology and Enigraphy 22: 1–22.                                        |
| 1254  | Menze, B., and J. Ur. 2012. "Mapping Patterns of Long-Term Settlement in Northern Mesopotamia at a              |
|       | Large Scale." Proceedings of the National Academy of Sciences 109: E778–E787.                                   |
| 1255  | Okabe, A., B. Boots, K. Sugihara, and S. Chiu. 1992. Spatial Tessellations: Concepts and Applications of        |
|       | Voronoi Diagrams. Chichester: Wiley & Sons.                                                                     |
| 1256  | Proffitt, D. 1982. "The Measurement of Circularity and Ellipticity on a Digital Grid." Pattern                  |
|       | Recognition 15: 383–387.                                                                                        |
| 1257  | Roussillon, T., S. Sivignon, and L. Tougne. 2010. "A Measure of Circularity for Parts of Digital                |
|       | Boundaries and its Fast Computation." Pattern Recognition 43: 37–46.                                            |
| 1258  | Steimer-Herbet, T., F. Braemer, and G. Davtian. 2006. "Pastoralists Tombs and Settlement Patterns in            |

|      | Wadi Wash'ah during the Bronze Age (Hadramawt, Yemen)." Proceedings of the Seminar for Arabian                                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1259 | Steinbaus H 1956 "Sur la Division des Corn Materiels en Parties" Bulletin L'Acadmie Polonaise des                                               |
| 1207 | Science 1: 801–804.                                                                                                                             |
| 1260 | Stojmenovi´c, M., and A. Nayak. 2007. "Shape Based Circularity Measures of Planar Point Sets." In                                               |
|      | Proceedings of the IEEE International Conference on Signal Processing and Communications, Dubai,                                                |
|      | UAE, November 24–27, 1279–1282. IEEE.                                                                                                           |
| 1261 | Stojmenovi´c, M., A. Nayak, and J. Zunic. 2006. "Measuring Linearity of a Finite Set of Points." In                                             |
|      | Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems. Los                                                    |
|      | Alamitos, CA, June, 222–227. IEEE.                                                                                                              |
| 1262 | Tansey, K., I. Chambers, A. Anstee, A. Denniss, and A. Lamb. 2009. "Object Oriented Classification of                                           |
|      | Very High Resolution Airborne Imagery for the Extraction of Hedgerows and Field Margin Cover in                                                 |
| 1262 | Agricultural Areas. Applied Geography 29: 145–157.                                                                                              |
| 1203 | 400                                                                                                                                             |
| 1264 | Tou LT and R.C. Gonzalez 1974 Pattern Recognition Principles Reading MA: AddisonWesley                                                          |
| 1265 | Tucker C 1979 "Red and Photographic Infrared Linear Combinations for Monitoring Vegetation"                                                     |
| 1205 | Remote Sensing of Environment 8: 127–150.                                                                                                       |
| 1266 | Zunic, J., and K. Hirota, 2008. "Measuring Shape Circularity." In Progress in Pattern Recognition. Image                                        |
|      | Analysis and Applications– LNCS. Vol. 5197. 94–101. Berlin: Springer.                                                                           |
| 176  | Mallet, C. and Bretar, F. 2009. "Full-Waveform Topographic Lidar: State-of-the-Art", ISPRS Journal of                                           |
|      | Photogrammetry and Remote Sensing 64(1), pp. 1–16, (2009).                                                                                      |
| 1268 | Doneus, M., and Briese. 2006. "Full-waveform airborne laser scanning as a tool for archaeological                                               |
|      | reconnaissance" From Space to Place. Proc. 2nd International Conference on Remote Sensing in                                                    |
| 12(0 | Archaeology, BAR International Series, 1568, 99 – 105, (2006).                                                                                  |
| 1269 | Humme, A, Lindenbergh, R and Sueur, C. 2006. "Revealing celtic fields from lidar data using kriging                                             |
|      | based filtering, international Archives of Photogrammetry And Remote Sensing, volume XXXIV / 3A,                                                |
| 115  | pp. 293-30, (2000).<br>Briese C. "Break line modelling from Airborne Laser Scanner Data" Diss. Technical University.                            |
| 110  | Vienna. Austria. (2004).                                                                                                                        |
| 1271 | Doneus, M. a Briese, C., "Airborne Laser Scanning in Forested Areas - Potential and Limitations of an                                           |
|      | Archaeological Prospection Technique", in Remote Sensing for Archaeological Heritage Management,                                                |
|      | proc. 11th EAC Heritage Management Symposium, Reykjavík, Iceland (25-27 March 2010).                                                            |
| 119  | Doneus, M., and Briese. C. "Digital terrain modelling for archaeological interpretation within forested                                         |
|      | areas using full-waveform laser scanning", Proc. The 7th International Symposium on Virtual Reality,                                            |
| 10-0 | Archaeology and Cultural Heritage VAST (2006).                                                                                                  |
| 1273 | Djuricic, A., "Extraction of forest roads". Master thesis. Beograd. (2012).                                                                     |
| 2    | Briese, C., Mandlburger, G., Ressl, C. and Brockmann, H., "Automatic break line determination for the                                           |
|      | generation of a DTM along the river Main" Proc. Laser scanning 2009, IAPRS, Vol. XXXVIII, Part 3/W8 –                                           |
| 1075 | Paris, France, (1-2 September 2009).                                                                                                            |
| 1275 | Yokoyama, R., Shirasawa, M. and Pike, R. 2002. "Visualizing topography by openness: a new                                                       |
|      | application of image processing to digital elevation models , Photogrammetric Engineering & Remote Sensing Vol. 69, No. 3, p. 257. (March 2002) |
| 1276 | Doneus M Openness as visualization technique for interpretative mapping of airborne LiDAR derived                                               |
| 12/0 | digital terrain model. Remote Sensing, 5, (2013).                                                                                               |
| 1277 | Pregesbauer, M. "Object versus Pixel – Classification Techniques for high resolution airborne remote                                            |
|      | sensing data" Proc. 10th International Conference on Archaeological Prospection. Wien, Austria,                                                 |
|      | 29.0502.06.2013. 200–202. (2013)                                                                                                                |
| 1278 | Allen, G. 1984. Discovery from the air. Aerial Archaeology, 10.                                                                                 |
| 1279 | Bosma, M., J. Drummond & B. Raidt. 1989. A prelimenary report on low-cost scanners. ITC Journal, 2, p.                                          |
|      | 115-20.                                                                                                                                         |
| 1280 | Dassie, J. 1978. Manual d'archaeologue aerienne. Editions Technic, Paris.                                                                       |
| 1281 | Haigh, J. 1983. Practical methods for the rectification of oblique aerial photographs. Proceedings of the                                       |
|      | 22nd Symposium on Archaeometry, April 1982, p. 1-10.                                                                                            |

| 1282                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                    | Haralick, R. 1984. Digital step edges from zero crossings of second directional derivatives. IEEE<br>Transactions on Pattern Analysis and Machine Intelligence, vol. 6, p. 58-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1202                                                                                               | Lamana M 1000 Automized interface of digital anacial imagine and geographic information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1205                                                                                               | systems. Int. Arc. Of Photogrammetry and Remote Sensing, vol. 28, p. 374-385.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1284                                                                                               | Lemmens M 1991 Integration levels of tono databases and geo imagery. Proceedings of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1201                                                                                               | ISDBC /OFEDE is in two vertex on undating digital data by the togrammatric matheds contamber 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                    | Or for a like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1007                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1285                                                                                               | Limp, W. 1987. The identification of archaeological site patterning through integration of remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                    | sensing, gis and exploratory data analysis. Proceedings of US Army Corps of Engineers Sixth Remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                    | Sensing Symposium, Galveston, Texas, p. 232-62.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1286                                                                                               | Pratt, W. 1978. Digital image processing. John Willey and Sons. New York.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4005                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1287                                                                                               | Prewitt, J. 1970. Object enhancement and extraction. In: Lipkin, B.S. & Rosenfeld (eds.) Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                    | processing and psychopictories. Academic Press, New York.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1288                                                                                               | Roberts, L. 1965. Machine Perception of three-dimensional solids. In: Optical and electrooptial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                    | information processing, eds. Tippet et al. MIT Press, Massachussets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1289                                                                                               | Scollar 1 1975 Transformation of extreme oblique aerial photographs to maps or plans by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                    | convertional means or hy computer Aerial Reconnaissance for Archaeology Research Report 12 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                    | ro n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1200                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1290                                                                                               | Scollar, I. 1979. Computer production of orthophotoes from single oblique images or from rotating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                    | mirror scanner. Aerial Archaeology, vol. 4, p. 17-28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1291                                                                                               | Scollar, I., B. Weidnet & T. Huang. 1984. Image enhancement using the media and the interquartile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                    | distance. Computer Vision, Graphics and Image Proceesing, vol. 25, p. 236-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1292                                                                                               | Wilson, D.R. Air Photo Interpretation for Archaeologists. Batsford, London.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1202                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1293                                                                                               | Ackermann, F., 1999. Airborne laser scannig: present status and future expectations. ISPRS J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                    | Photogramm. Remote Sens. 54, 64–67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1294                                                                                               | Alt, M., 1990. Exploring Hyperspace — A Non-mathematical Explanation of Multivariate Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                    | McGraw-Hill, London.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1295                                                                                               | Arbman, H., 1940. Birka — Die Gräber I, Tafeln. KVHAA, Stockholm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 742                                                                                                | Baatz, M., Hoffmann, C., Willhauck, G., 2008. Progressing From Object-based to Objectoriented Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                    | Analysis. Springer, Heidenberg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1297                                                                                               | Belgiu M., Lampoltshammer, T., 2013, Ontology based interpretation of very high resolution imageries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                    | — grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18                                                                                                 | — grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.<br>— Belgiu M. Tomlienovic I. Lampoltshammer, T.L. Blaschke, T. Höfle, B. 2014. Ontology based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18                                                                                                 | <ul> <li>— grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based</li> <li>classification of huilding times detected from airborne laser scanning data. Pomoto Sons. 6 (2), 1247.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18                                                                                                 | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1266. http://dv.doi.org/10.2200/m6021247</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18                                                                                                 | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18<br>1299                                                                                         | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18<br>1299                                                                                         | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18<br>1299<br>29                                                                                   | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18<br>1299<br>29                                                                                   | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18<br>1299<br>29<br>926                                                                            | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18<br>1299<br>29<br>926                                                                            | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18<br>1299<br>29<br>926<br>27                                                                      | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz II.C. Hofmann P. Willbauck G. Lingenfselder M. 2004 Multi-resolution objectoriented fuzzy.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18<br>1299<br>29<br>926<br>27                                                                      | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote scansing data for CIS ready information. ISPRS I. Photogramm. Pomoto Sons. 59.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18<br>1299<br>29<br>926<br>27                                                                      | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 230. 250.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18<br>1299<br>29<br>926<br>27                                                                      | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18<br>1299<br>29<br>926<br>27<br>1303                                                              | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18<br>1299<br>29<br>926<br>27<br>1303                                                              | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18<br>1299<br>29<br>926<br>27<br>1303<br>28                                                        | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18<br>1299<br>29<br>926<br>27<br>1303<br>28                                                        | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18<br>1299<br>29<br>926<br>27<br>1303<br>28<br>1305                                                | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.L., Kelly, M., Lang, S., Hofmann, P., Addink, E., Oueiroz Feitosa, R., van der Meer, F.</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
| 18<br>1299<br>29<br>926<br>27<br>1303<br>28<br>1305                                                | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff H. van Coillie F. Tiede D. 2014 Geographic object based image analysis — towards a</li> </ul>                                                                                                                                                                                                                                            |
| 18         1299         29         926         27         1303         28         1305             | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic objectbased image analysis — towards a new waradigm. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> </ul>                                                                                                                     |
| 18         1299         29         926         27         1303         28         1305             | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic objectbased image analysis — towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87 (100), 180–191.</li> </ul>                                                                                                                                                                   |
| 18         1299         29         926         27         1303         28         1305             | <ul> <li>Bergunding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic objectbased image analysis — towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87 (100), 180–191. http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014.</li> </ul>                                                                                                               |
| 18         1299         29         926         27         1303         28         1305         754 | <ul> <li>grounding ontologies on visual interpretation keys. Proc. Agile, p. 2013.</li> <li>Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T., Höfle, B., 2014. Ontology based classification of building types detected from airborne laser scanning data. Remote Sens. 6 (2), 1347–1366. http://dx.doi.org/10.3390/rs6021347.</li> <li>Benediksson, A.I., Swain, P.H., Esroy, O.K., 1990. Neural network approaches versus statisticalmethods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540–552.</li> <li>Bennett, R., Cowley, D., De Laet, V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88, 896–905.</li> <li>Bennett, R., Welham, K., Hill, R.A., Ford, A.L.J., 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect. 19 (1), 41–48.</li> <li>Benz, U.C., Hofmann, P., Willhauck, G., Lingenfselder, M., 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258.</li> <li>Bewley, R.H., Crutchley, S., Shell, C., 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647.</li> <li>Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004.</li> <li>Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic objectbased image analysis — towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87 (100), 180–191. http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014.</li> <li>Blaschke, T., Lang, S., Lorup, E., Strobl, J., Zeil, P., 2000. Object-oriented image processing in an</li> </ul> |

|      | Cremers, A., Greve, K. (Eds.), Environmental Information for Planning, Politics and the Public.<br>Metropolic Verlag, Marburg, pp. 555–570 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Boer A C d 2005 Using nattern recognition to search LiDAR data for archeological sites. In:                                                |
| 1    | Figueirede A. Leite Velha C. (Edg.) The World is in Your Eyes, Drog of the VVVIII CAA200E                                                  |
|      | Figuelleuo, A., Leite Vellio, G. (Eus.), The World is in Four Eyes, Proc. of the AAATH CAA2005                                             |
| 1200 | Connerence. CAA2007: Tonnai: Portugai, Tonnai, pp. 245–254.                                                                                |
| 1300 | Bonnger, J., Hesse, R., 2011. As far as the laser can reach laminar analysis of LIDAR detected                                             |
|      | structures as a powerful instrument for archaeological neritage management in Baden-wurttemberg,                                           |
|      | Germany. In: Cowley, D. (Ed.), Remote Sensing for Archaeological Heritage Management. Proceedings                                          |
|      | of the 11th EAC Heritage Management Symposium. Reykjavik, Iceland, 25–27 March 2010. 161–171.                                              |
|      | Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), Budapest.                                         |
| 653  | Briese, C., Pfeifer, N., Dorninger, P., 2002. Applications of the robust interpolation for DTM                                             |
|      | determination. In: Kalliany, R., Leberl, F., Fraundorfer, F. (Eds.), Photogrammetric Computer Vision,                                      |
|      | International Archives of Photogrammetry. XXXIV, pp. 55–61 Graz.                                                                           |
| 1310 | Casana, J., 2014. Regional-scale archaeological remote sensing in the age of big data: automated site                                      |
|      | discovery vs. brute force methods. Adv. Archaeol. Pract. 222–233 (August 2014).                                                            |
| 1311 | Challis, K., Kokalj, Z., Kincey, M., Moscrop, D., Howard, A.J., 2008. Airborne LiDAR and historic                                          |
|      | environment records. Antiquity 82, 1055–1064.                                                                                              |
| 1312 | Cheung, YM., 2005. On rival penalization controlled competitive learning for clustering with                                               |
|      | automatic cluster number selection. Knowl. Data Eng. IEEE Trans.                                                                           |
|      | http://dx.doi.org/10.1109/TKDE.2005.184.                                                                                                   |
| 376  | Cowley, D.C., 26–27 September 2012. In with the new, out with the old? Auto-extraction for remote                                          |
|      | sensing archaeology. In: Bostater, C., Mertikas, S., Neyt, X., Nichol, C., Cowley, D., Bruyant, J.P. (Eds.),                               |
|      | Remote Sensing of the Ocean, Sea Ice, CoastalWaters, and Large Water Regions 2012. Bellingham,                                             |
|      | Wash: SPIE (8532), Edinburgh, United Kingdom 853206/1–853206/9 S.                                                                          |
| 12   | De Laet, V., Paulissen, E., Waelkens, M., 2007b. Methods for the extraction of archaeological features                                     |
|      | from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). JAS 34 (5),                                           |
|      | 830-841.                                                                                                                                   |
| 1315 | De Laet, V., Paulissen, E.,Meuleman, K., Waelkens,M., 2007a. The effect of pixel resolution and spectral                                   |
|      | characteristics on the extraction of archaeological features from very high-resolution remote sensing                                      |
|      | imagery: Sagalassos, Southwest Turkey. Remote Sensing for Environmental Monitoring, GIS                                                    |
|      | Applications, and Geology VII, Florence, Italy. 17 September 2007, p. 67490A.                                                              |
| 1200 | Devereux, B.J., Amable, G.S., Crow, P., 2008. Visualisation of LiDAR terrain models for archaeological                                     |
|      | feature detection. Antiquity 82, 470–479.                                                                                                  |
| 1317 | Dey, V., Zhang, Y., Zhong, M., 2010. A review on image segmentation techniques with remote sensing                                         |
|      | perspective. In: Wagner,W. (Ed.), ISPRS TC VII Symposium – 100 Years ISPRS. XXXVIII, pp. 31–42                                             |
|      | Vienna.                                                                                                                                    |
| 1276 | Doneus, M., 2013. Openness as visualization technique for interpretative mapping of airborne LiDAR                                         |
|      | derived digital terrain models. Remote Sens. 5 (12), 6427–6442.                                                                            |
|      | http://dx.doi.org/10.3390/rs5126427.                                                                                                       |
| 1268 | Doneus, M., Briese, C., 2006. Full-waveform airborne laser scanning as a tool for archaeological                                           |
|      | reconnaissance. In: Forte, M. (Ed.), From Space to Place, 2. International Conference on Remote                                            |
|      | Sensing in Archaeology. Archaeopress, Oxford, Rome, pp. 99–106                                                                             |
| 1271 | Doneus, M., Briese, C., 2011. Airborne laser scanning in forested areas — potential and limitations of                                     |
|      | an archaeological prospection technique. In: Cowley, D. (Ed.), Remote Sensing for Archaeological                                           |
|      | Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik,                                                 |
|      | Iceland, 25–27 March 2010. Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology                                            |
|      | Research Group, 3), Budapest, pp. 53–76.                                                                                                   |
| 1321 | Doneus, M., Kühtreiber, T., 2013. Airborne laser scanning and archaeological interpretation —                                              |
|      | bringing back the people. In: Opitz, R., Cowley, D. (Eds.), Interpreting Archaeological Topography.                                        |
|      | Airborne Laser Scanning, 3D Data and Ground Observation. Oxbow Books (Occasional Publication of                                            |
|      | the Aerial Archaeology Research Group, 5), Oxford, pp. 32–50.                                                                              |
| 169  | Doneus, M., Briese, C., Fera, M., Janner, M., 2008. Archaeological prospection of forested areas using                                     |
|      | full-waveform airborne laser scanning. J. Archaeol. Sci. 35 (4), 882–893.                                                                  |
| 1323 | Doneus, M., Neubauer, W., Trnka, G., 2001. Die jüngerlinearbandkeramische Grabenanlage von                                                 |
|      | Großrußbach-Weinsteig in Niederösterreich — das größte Erdwerk der Linearbandkeramik.                                                      |

|       | Preistoria Alpina 37, 145–159.                                                                                                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1324  | Drăguț, L., Blaschke, T., 2006. Automated classification of landform elements using objectbased image analysis. Geomorphology             |
| 1325  | Drăgut L. Csillik O. Eisank C. Tiede D. 2014 Automated parameterisation for multiscale image                                              |
|       | segmentation on multiple layers. ISPRS I. Photogramm. Remote Sens. 88, 119–127.                                                           |
|       | http://dx.doi.org/10.1016/i.isprsiprs.2013.11.018.                                                                                        |
| 33    | Figorito B Tarantino E 2014 Semi-automatic detection of linear archaeological traces from                                                 |
|       | orthorectified aerial images Int I Appl Earth Observ Geoinf 26 458–463                                                                    |
|       | http://dx.doi.org/10.1016/i.jag.2013.04.005.                                                                                              |
| 1327  | Fisher P 1997 The nixel: a snare and a delusion Int I Remote Sens 18 (3) 679–685                                                          |
|       | http://dx.doi.org/10.1080/014311697219015.                                                                                                |
| 1328  | Harrower, M.L. Schuetter, L.McCorriston, L. Goel, P.K., Senn, M.L. 2013, Survey, automated detection,                                     |
|       | and spatial distribution analysis of Cairn Tombs in Ancient Southern Arabia. In: Comer. D.C.,                                             |
|       | Harrower, M.I. (Eds.). Mapping Archaeological Landscapes From Space, Springer, New York, pp. 259–                                         |
|       | 268. http://dx.doi.org/10.1007/978–1-4614-6074-9 22.                                                                                      |
| 814   | Hay, G.I., Castilla, G., 2008, Geographic object-based image analysis (GEOBIA): a new name for a new                                      |
|       | discipline. In: Blaschke, T., Lang, S., Hay, G.G. (Eds.), Object-based Image Analysis: Spatial Concepts for                               |
|       | Knowledge-driven Remote Sensing Applications, Springer-Verlag, Berlin Heidelberg, pp. 75–89.                                              |
| 1330  | Hengl, T., Reuter, H.I., 2009. Geomorphometry. Concepts, software, applications. Elsevier                                                 |
|       | (Developments in soil science, 33), Amsterdam.                                                                                            |
| 1331  | Hermodsson, Ö., 2004. Anmälan om specialinventering på Björkö och Hovgården 1997, RAÄ (RAÄ dnr                                            |
|       | 326–2743-2004. http://www.fmis.raa.se/(accessed 2013–04-10).                                                                              |
| 1203  | Hesse, R., 2010. LiDAR-derived local relief models — a new tool for archaeological prospection.                                           |
|       | Archaeol. Prospect. 17 (2), 67–72.                                                                                                        |
| 1333  | Hesse, R., 2014. Geomorphological traces of conflict in high-resolution elevation models. Appl. Geogr.                                    |
|       | 46, 11–20. http://dx.doi.org/10.1016/j.apgeog.2013.10.004.                                                                                |
| 1334  | Hughes, G., 1968. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14                                     |
|       | (1), 55–63.                                                                                                                               |
| 1335  | Humme, A., Lindenbergh, R., Sueur, C., 2006. Revealing Celtic fields from LiDAR data using Kriging                                        |
|       | based filtering. In: Maas, H.G., Schneider, D. (Eds.), Proceedings of the ISPRS Commission V Symposium                                    |
|       | 'Image Engineering and Vision Metrology', Dresden.                                                                                        |
| 34    | Jahjah, M., Ulivieri, C., 2010. Automatic archaeological feature extraction from satellite VHR images.                                    |
|       | Acta Astronaut. 66 (9–10), 1302–1310. http://dx.doi.org/10.1016/j.actaastro.2009.10.028.                                                  |
| 1337  | Kamagata, N., Akamatsu, Y., Mori, M., Li, Y.Q., 2005. Comparison of pixel-based and object based                                          |
|       | classifications of high resolution satellite data in urban fringe areas. Asian Conference on Remote                                       |
|       | Sensing (ACRS). AARS, Hanoi.                                                                                                              |
| 1338  | Kenzler, H., Lambers, K., 2015. Challenges and perspectives of woodland archaeology across Europe.                                        |
|       | In: Giligny, F., Djindjian, F., Costa, L., Moscati, P., Robert, S. (Eds.), CAA 2014: 21st Century Archaeology,                            |
|       | Concepts, Methods and Tools. Proceedings of the 42nd Annual Conference on Computer Applications                                           |
|       | and Quantitative Methods in Archaeology. Archaeopress, Oxford, pp. 73–80.                                                                 |
| 826   | Kettig, R., Landgrebe, D., 1976. Classification of multispectral image data by extraction and                                             |
| 10.10 | classification of homogeneous objects. IEEE Trans. Geosci. Electron. 14 (1), 19–26.                                                       |
| 1340  | Kokalj, Z., Zakšek, K., Oštir, K., 2011. Application of sky-view factor for the visualisation of historic                                 |
| 10.11 | landscape features in LiDAR-derived relief models. Antiquity 85, 263–273.                                                                 |
| 1341  | Kraus, K., Otepka, J., 2005. DTM modelling and visualization — the SCOP. Photogrammetric Week.                                            |
| 10    | Wichmann, Heidelberg, pp. 241–252.                                                                                                        |
| 13    | Lambers, K., Zingman, I., 2013. Towards detection of archaeological objects in highresolution remotely                                    |
|       | senseu images: the Silvaretta case study. In: Earl, G., Siy, I., Chrysanthi, A., Murrietta-Flores, P.,                                    |
|       | rapauopoious, c., Komanowska, i., Wheatey, D. (Eus.), Archaeology in the Digital Era: Proceedings of                                      |
|       | Southampton United Kingdom 26, 20 March 2012, Amsterdam University Press, pp. 701, 701                                                    |
| 12/2  | Josephana P. Masini N. 2006. On the notantial of OuislePird data for archaeological programming.                                          |
| 1343  | Lasaponara, K., Mashii, N., 2000. On the potential of Quickon u data for alchaeological prospection. Int.<br>I Remote Sens. 27, 3607–3614 |
| 1344  | Lasanonara R Masini N 2009 Full-waveform airhorne laser scanning for the detection of medieval                                            |
| 1317  | archaeologicalmicrotonographic relief I Cult Herit 10 78-82                                                                               |
|       | arenaeorogrammerotopographie renet. j. data nenta 10,70-04.                                                                               |

|      | http://dx.doi.org/10.1016/j.culher.2009.10.004.                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1345 | Lasaponara, R., Coluzzi, R., Masini, N., 2011. Flights into the past: full-waveform airborne laser scanning data for archaeological investigation. J. Archaeol. Sci. 38 (9), 2061–2070.<br>http://dx.doi.org/10.1016/j.jas.2010.10.003.                                                                                                                                                                                  |
| 279  | Lillesand, T., Kiefer, R.W., 1994. Remote Sensing and Image Interpretation. fourth ed. J. Wiley & Sons, New York.                                                                                                                                                                                                                                                                                                        |
| 1347 | Liu, D., Xia, F., 2010. Assessing object-based classification: advantages and limitations. Remote Sens.<br>Lett. 1 (4), 187–194. http://dx.doi.org/10.1080/01431161003743173                                                                                                                                                                                                                                             |
| 1348 | Löcker, K., Nau, E., Hinterleitner, A., Neubauer, W., 2009. Magnetic surveys of Early and Middle Neolithic settlements in Austria. ArchéoSciences 33 (suppl.), 101–104.                                                                                                                                                                                                                                                  |
| 1349 | Mahalanobis, P.C., 1936. On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2 (1), 49–<br>55.                                                                                                                                                                                                                                                                                                       |
| 179  | Mandlburger, G., Otepka, J., Karel,W., Wagner, W., Pfeifer, N., 2009. Orientation and processing of airborne laser scanning data (OPALS)—concept and first results of a comprehensive ALS software. ISPRS Workshop Laser Scanning.                                                                                                                                                                                       |
| 1351 | Nerman, B., 1918. Kungshögarna på Adelsö och Sverigesäldsta konungalängder. Fornvännen 13, 65–<br>77.                                                                                                                                                                                                                                                                                                                    |
| 1352 | Neubauer, W., 2012. Kreisgrabenanlagen — Middle Neolithic ritual enclosures in Austria. In: Gibson, A. (Ed.), Enclosing the Neolithic: Recent Studies in Britain and Europe. BAR International, Oxford, pp. 147–163.                                                                                                                                                                                                     |
| 1353 | Neugebauer, J.W., 1995. Archäologie in Niederösterreich. Poysdorf und das Weinviertel.<br>Niederösterreichische Pressehaus, St. Pölten.                                                                                                                                                                                                                                                                                  |
| 1354 | Opitz, R., Cowley, D.C. (Eds.), 2013. Interpreting Archaeological Topography. Oxbow Books, Oxford.                                                                                                                                                                                                                                                                                                                       |
| 888  | Platt, R.V., Rapoza, L., 2008. An evaluation of an object-oriented paradigm for land use/land cover classification. Prof. Geogr. 60 (1), 87–100. http://dx.doi.org/10.1080/00330120701724152.                                                                                                                                                                                                                            |
| 1277 | Pregesbauer,M., 2013. Object versus pixel—classification techniques for high-resolution airborne remote sensing data. In: Neubauer, W., Trinks, I., Sailsbury, R., Einwögerer, C. (Eds.), Proceedings of the 10th International Conference on Archaeological Prospection, Vienna, 29 May–2 June 2013. Austrian Academy of Sciences Press. Vienna, pp. 200–202.                                                           |
| 339  | Schiewe, J., 2002. Segmentation of high-resolution remotely sensed data — concepts, applications and problems. ISPRS Commission IV Symposium: Geospatial Theory, Processing and Applications.                                                                                                                                                                                                                            |
| 36   | Schneider, A., Takla, M., Nicolay, A., Raab, A., Raab, T., 2015. A template-matching approach combining morphometric variables for automated mapping of charcoal kiln sites. Archaeol. Prospect. http://dx.doi.org/10.1002/arp.1497 (Online Access).                                                                                                                                                                     |
| 1359 | Sevara, C., 2013. Historic landscapes in relief: detection and interpretation of historic landscape<br>elements using gromorphometric and image analysis techniques. In: Neubauer, W., Trinks, I.,<br>Salisbury, R.B., Einwögerer, C. (Eds.), Proceedings of the 10th International Conference on<br>Archaeological Prospection, Vienna, 29 May–2 June 2013. Austrian Academy of Sciences Press, Vienna,<br>pp. 153–155. |
| 1360 | Sevara, C., Pregesbauer, M., 2014. Archaeological feature classification: an object oriented approach.<br>South East. Eur. J. Earth Observ. Geomatics 3 (2 s), 139–144.                                                                                                                                                                                                                                                  |
| 1361 | Sittler, B., 2004. Revealing historical landscapes by using airborne laser scanning — a 3D model of ridge and furrow in forests near Rastatt (Germany). Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 36 (8), 258–261.                                                                                                                                                                                            |
| 513  | Smeulders, A.W.M.,Worring, M., Santini, S., Gupta, A., Jain, R., 2000. Content-based image retrieval at the end of the early years. {IEEE}. Trans. Pattern Anal. Mach. Intell. 22 (12), 1349–1380.<br>http://dx.doi.org/10.1109/34.895972.                                                                                                                                                                               |
| 1363 | Townshend, J.R., 1981. The spatial resolving power of earth resources satellites. Progress in Physical Geography (5), 32–55. http://dx.doi.org/10.1177/030913338100500102                                                                                                                                                                                                                                                |
| 1364 | Townshend, J.R., Huang, S.N.V., Kalluri, R.S., Defries, R.S., Liang, S., Yang, K., 2000. Beware of per-pixel characteristics of land cover. Int. J. Remote Sens. 21, 839–843.                                                                                                                                                                                                                                            |
| 249  | Trier, Ø.D., Pilø, L.H., 2012. Automatic detection of pit structures in airborne laser scanning data.<br>Archaeol. Prospect. 19 (2), 103–121.                                                                                                                                                                                                                                                                            |
| 1366 | Trier, Ø.D., Zortea, M., Tonning, C., 2015. Automatic detection of mound structures in airborne laser                                                                                                                                                                                                                                                                                                                    |

|      | scanning data. J. Archaeol. Sci. 2, 69–79. http://dx.doi.org/10.1016/j.jasrep.2015.01.005.                                                                                                                                                                                                                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1367 | Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustafsson, C., Nissen, J., Hinterleitner, A., 2010. Efficient, large-scale archaeological prospection using a true three-dimensional ground penetrating radar array system. Archaeol. Prospect. 17 (3), 175–186.                                                                                                                                       |
| 1368 | Trinks, I., Neubauer, W., Hinterleitner, A., 2014. First high-resolution GPR and magnetic archaeological prospection at the Viking Age settlement of Birka in Sweden. Archaeol. Prospect. 21 (3), 185–199.                                                                                                                                                                                                                    |
| 1369 | Trnka, G., 1991. Neolithische Befestigungen in Ost-österreich. Mitt. Anthrop. Ges. Wein 121, 137–155.                                                                                                                                                                                                                                                                                                                         |
| 1370 | Tso, B., Mather, P., 2009. Classification Methods for Remotely Sensed Data. CRC Press.                                                                                                                                                                                                                                                                                                                                        |
| 949  | Verhagen, P., Drăguț, L., 2012. Object-based landform delineation and classification from DEMs for archaeological predictive mapping. J. Archaeol. Sci. 39 (3), 698–703.<br>http://dx.doi.org/10.1016/j.jas.2011.11.001.                                                                                                                                                                                                      |
| 1372 | Wessely, G., 1998. Geologie des Korneuburger Beckens. Beitr. Paläontol. 23, 9–23.                                                                                                                                                                                                                                                                                                                                             |
| 1275 | Yokoyama, R., Shirasawa, M., Pike, R.J., 2002. Visualizing topography by openness : a new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 68 (3), 257–265.                                                                                                                                                                                                                         |
| 1374 | Zakšek, K., Oštir, K., Kokalj, Ž., 2011. Sky-view factor as a relief visualization technique. Remote Sens.<br>Environ. 3 (2), 398–415.                                                                                                                                                                                                                                                                                        |
| 1375 | Kothieringer, K., et al. 2015. "High impact: Early pastoralism and environmental change during the Neolithic and Bronze Age in the Silvretta Alps (Switzerland/Austria) as evidenced by archaeological, palaeoecological and pedological proxies," Zeitschrift Geomorphologie, vol. 59, no. 2, pp. 177–198, 2015.                                                                                                             |
| 13   | Lambers, K., & I. Zingman. 2013."Towards detection of archaeological objects in high-resolution<br>remotely sensed images: The Silvretta case study," in Archaeology in the Digital Era, vol. II (e-papers)<br>From the 40th Conf.on Computer Applications and Quantitative Methods in Archaeology,<br>Southampton, March 2012, G. Earl et al., Eds. Amsterdam, The Netherlands: Amsterdam Univ. Press,<br>2013, pp. 781–791. |
| 248  | Trier, Ø. D., Larsen, S. Ø., Solberg, R., 2009. Automatic detection of circular structures in high-<br>resolution satellite images of agricultural land. Archaeological Prospection 16(1), pp. 1-15. DOI:<br>10.1002/arp.339.                                                                                                                                                                                                 |
| 1378 | Mayer. 1999. "Automatic object extraction from aerial imagery—A survey focusing on buildings,"<br>Comput. Vis. Image Understand., vol. 74, no. 2, pp. 138–149, 1999.                                                                                                                                                                                                                                                          |
| 1379 | Lin and R. Nevatia, "Building detection and description from a single intensity image," Comput. Vis.<br>Image Understand., vol. 72, no. 2, pp. 101–121, 1998.                                                                                                                                                                                                                                                                 |
| 1380 | Kim and JP. Muller, "Development of a graph-based approach for building detection," Image Vis. Comput., vol. 17, no. 1, pp. 3–14, 1999.                                                                                                                                                                                                                                                                                       |
| 1381 | Croitoru and Y. Doytsher, "Right-angle rooftop polygon extraction in regularised urban areas: Cutting the corners," Photogramm. Rec., vol. 19, no. 108, pp. 311–341, 2004.                                                                                                                                                                                                                                                    |
| 1382 | Jung and R. Schramm, "Rectangle detection based on a windowed Hough transform," in Proc. 17th Brazilian SIBGRAPI, 2004, pp. 113–120.                                                                                                                                                                                                                                                                                          |
| 1383 | Krishnamachari and R. Chellappa, "Delineating buildings by grouping lines with MRFs," IEEE Trans.<br>Image Process., vol. 5, no. 1, pp. 164–168, Jan. 1996.                                                                                                                                                                                                                                                                   |
| 1384 | Benedek, X. Descombes, and J. Zerubia, "Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth–death dynamics," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 33–50, Jan. 2012.                                                                                                                                                                                    |
| 1385 | Sirmacek and C. Unsalan, "A probabilistic framework to detect buildings in aerial and satellite images,"<br>IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 211–221, Jan. 2011.                                                                                                                                                                                                                                         |
| 1386 | Sirmacek and C. Unsalan, "Urban-area and building detection using SIFT keypoints and graph theory,"<br>IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1156–1167. Apr. 2009.                                                                                                                                                                                                                                            |
| 1387 | Manno-Kovacs and T. Sziranyi, "Multidirectional building detection in aerial images without shape templates," Int. Archives Photogramm., Remote Sens. Spatial Inf. Sci., vol. XL-1/W1, pp. 227–232, May 2013.                                                                                                                                                                                                                 |
| 1388 | Ortner, X. Descombes, and J. Zerubia, "A marked point process of rectangles and segments for automatic analysis of digital elevation models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 1, pp. 105–119, Jan. 2008.                                                                                                                                                                                                |

| 1389                                                                                                 | Liu, T. Ikenaga, and S. Goto, "An MRF model-based approach to the detection of rectangular shape objects in color images," Signal Process, vol. 87, no. 11, np. 2649–2658, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1390                                                                                                 | Keller, C. Sprunk, C. Bahlmann, I. Giebel, and G. Baratoff, "Realtime recognition of US speed signs," in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                      | Proc. IEEE Intell. Veh. Symp., 2008, pp. 518–523.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1391                                                                                                 | Loy and N. M. Barnes, "Fast shape-based road sign detection for a driver assistance system," in Proc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                      | IEEE/RSJ Int. Conf. Intell. Robots Syst., Sendai, Japan, 2004, pp. 70–75.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1392                                                                                                 | Zhu, B. Carragher, F. Mouche, and C. S. Potter, "Automatic particle detection through efficient Hough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                      | transforms," IEEE Trans. Med. Imag., vol. 22, no. 9, pp. 1053–1062, Sep. 2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1393                                                                                                 | Yu and C. Bajaj, "Detecting circular and rectangular particles based on geometric feature detection in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                      | electron micrographs," J. Struct. Biol., vol. 145, no. 1/2, pp. 168–180, 2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1394                                                                                                 | Zingman, D. Saupe, and K. Lambers, "Automated search for livestock enclosures of rectangular shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                      | in remotely sensed imagery," in Proc. 19th SPIE, Image Signal Process. Remote Sens., L. Bruzzone, Ed.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                      | Dresden, Germany, 2013, vol. 8892, pp. 1–11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21                                                                                                   | Moon, R. Chellappa, and A. Rosenfeld, "Optimal edge-based shape detection," IEEE Trans. Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1207                                                                                                 | Process., vol. 11, no. 11, pp. 1209–1227, Nov. 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1396                                                                                                 | Descombes and J. Zerubia, "Marked point process in image analysis," IEEE Signal Process. Mag., vol. 19,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1207                                                                                                 | III. 5, pp. 77–84, Sep. 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1397                                                                                                 | Comput Vis vol 106 no 1 np 57–75 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1398                                                                                                 | Krizhevsky I Sutskever and G E Hinton "ImageNet classification with deen convolutional neural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                      | networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1399                                                                                                 | Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition,"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                      | presented at the Int. Conf. Learning Representations (ICLR), May 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1400                                                                                                 | Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the devil in the details: Delving deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                      | into convolutional nets," in Proc. Brit. Mach. Vis. Conf., 2014, p. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1401                                                                                                 | Sermanet et al., "OverFeat: Integrated recognition, localization and detection using convolutional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                      | networks," in Proc. ICLR, Apr. 2014, pp. 1–16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1402                                                                                                 | Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1402<br>1403                                                                                         | Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.<br>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1402<br>1403                                                                                         | Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.<br>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.<br>Zingman, D. Sauna, and K. Lambers, "A morphological approach for dictinguishing toyture and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1402<br>1403<br>1404                                                                                 | Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.<br>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR,<br>2005, pp. 886–893.<br>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and<br>individual features in images." Pattern Recognit. Lett. vol. 47, pp. 129–138. Oct. 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1402<br>1403<br>1404<br>1405                                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating."</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1402<br>1403<br>1404<br>1405                                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1402<br>1403<br>1404<br>1405                                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1402<br>1403<br>1404<br>1405                                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1402<br>1403<br>1404<br>1405<br>1406                                                                 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1402<br>1403<br>1404<br>1405<br>1405                                                                 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1402<br>1403<br>1404<br>1405<br>1406<br>1407                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1402<br>1403<br>1404<br>1405<br>1406<br>1407                                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2014.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408                                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409                                 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control." IEEE Trans. Pattern Anal Mach. Intell. vol. 32, no. 4, np. 722–732, Apr. 2010.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi S. Bouix A. Tannenbaum, and S. W. Zucker, "Hamilton-Jacobi skeletons," Int. J. Comput. Vis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410                         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit, vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Hamilton–Jacobi skeletons," Int. J. Comput. Vis., vol. 48, no. 3, no. 215–231, 2002.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411                 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Hamilton–Jacobi skeletons," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddigi, G. Székely, I. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties."</li> </ul>                                                                                                                                                                                                                                                       |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411                 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 55, no. 2/3, pp. 155–179, 2003.</li> </ul>                                                                                                                                                                          |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411<br>1412         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit., vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 55, no. 2/3, pp. 155–179, 2003.</li> <li>Dimitrov, J. N. Damon, and K. Siddiqi, "Flux invariants for shape," in Proc. IEEE Conf. CVPR, 2003, vol. 1,</li> </ul>                                                     |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411<br>1412         | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit, vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Hamilton–Jacobi skeletons," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 55, no. 2/3, pp. 155–179, 2003.</li> <li>Dimitrov, J. N. Damon, and K. Siddiqi, "Flux invariants for shape," in Proc. IEEE Conf. CVPR, 2003, vol. 1, p. 1-835.</li> </ul>                                                              |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411<br>1412<br>1413 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit, vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Hamilton–Jacobi skeletons," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 55, no. 2/3, pp. 155–179, 2003.</li> <li>Dimitrov, J. N. Damon, and K. Siddiqi, "Flux invariants for shape," in Proc. IEEE Conf. CVPR, 2003, vol. 1, p. 1-835.</li> <li>Engel and C. Curio, "Scale-invariant medial features</li></ul> |
| 1402<br>1403<br>1404<br>1405<br>1405<br>1406<br>1407<br>1408<br>1409<br>1410<br>1411<br>1412<br>1413 | <ul> <li>Szegedy et al., "Going deeper with convolutions," in Proc. IEEE CVPR, Jun. 2015, p. 1.</li> <li>Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. CVPR, 2005, pp. 886–893.</li> <li>Zingman, D. Saupe, and K. Lambers, "A morphological approach for distinguishing texture and individual features in images," Pattern Recognit. Lett., vol. 47, pp. 129–138, Oct. 2014.</li> <li>Zingman, D. Saupe, and K. Lambers, "Detection of texture and isolated features using alternating morphological filters," in Mathematical Morphology and Its Applications to Signal and Processing, vol. 7883, ser. Lecture Notes in Computer Science, C. Hendriks, G. Borgefors, and R. Strand, Eds. New York, NY, USA: Springer-Verlag, 2013, pp. 440–451.</li> <li>Lindeberg, "Edge detection and ridge detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156, 1998</li> <li>Grigorescu, N. Petkov, and M. Westenberg, "Contour and boundary detection improved by surround suppression of texture edges," Image Vis. Comput., vol. 22, pp. 609–622, 2004.</li> <li>Papari and N. Petkov, "An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection," Pattern Recognit, vol. 44, pp. 1999–2007, 2011.</li> <li>Grompone von Gioi, J. Jakubowicz, JM. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.</li> <li>Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, "Hamilton–Jacobi skeletons," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 48, no. 3, pp. 215–231, 2002.</li> <li>Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker, "Multiscale medial loci and their properties," Int. J. Comput. Vis., vol. 55, no. 2/3, pp. 155–179, 2003.</li> <li>Dimi</li></ul> |

|                                                                                                              | Process., vol. 71, no. 2, pp. 131–139, 1998.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1192                                                                                                         | Duda and P. E. Hart, "Use of the Hough transformation to detect lines and curves in pictures,"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                              | Commun. ACM, vol. 15, no. 1, pp. 11–15, Jan. 1972.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1416                                                                                                         | Lam, SW. Lee, and C. Y. Suen, "Thinning methodologies—A comprehensive survey," IEEE Trans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1417                                                                                                         | Pattern Anal. Mach. Intell., vol. 14, no. 9, pp. 869–865, Sep. 1992.<br>Duda and P. F. Hart. Pattern Classification and Scene Analysis. Oxford, ILK Wiley, 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/10                                                                                                         | Prop and I. Korbosch "Algorithm 457. Finding all cliques of an undirected graph" Commun. ACM vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1410                                                                                                         | 16 no 9 nn 575–577 Sen 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1419                                                                                                         | Fukunaga, IntroductiontoStatisticalPatternRecognition. NewYork, NY, USA: Academic, 1990.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1420                                                                                                         | Devlin, R. Gnanadesikan, and J. R. Kettenring, "Robust estimation of dispersion matrices and principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | components," J. Amer. Statist. Assoc., vol. 76, no. 374, pp. 354–362, 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1421                                                                                                         | Hariharan, J. Malik, and D. Ramanan, "Discriminative decorrelation for clustering and classification," in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 207                                                                                                          | Proc. Eur. Conf. Comput. Vis., 2012, pp. 459–472.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 307                                                                                                          | environment" in CAA 2010 Fusion of Cultures: Proceedings of the 38th Annual Conference on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              | Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010, F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                              | Contreras, M. Farjas, and F. J. Melero, Eds. Oxford, U.K.: Archaeopress, 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 402                                                                                                          | Zingman, D. Saupe, and K. Lambers, "Morphological operators for segmentation of high contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                              | textured regions in remotely sensed imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp.,Munich,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | Germany,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1424                                                                                                         | Jul. 2012, pp. 5451–5454.<br>Otsu "A threshold selection method from grav-level histograms" IEEE Trans Syst. Man Cybern, vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1121                                                                                                         | 9, no. 1, pp. 62–66, Jan. 1979.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1425                                                                                                         | Haykin, Neural Networks and Learning Machines, 3rd ed. London, U.K.: Pearson, 2009, ch. 4.17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1426                                                                                                         | LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | no. 7553, pp. 436–444, 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1427                                                                                                         | Oquab. L. Bottou. I. Laptey, and J. Sivic, "Learning and transferring mid-level image representations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | in the second seco                                                |
| 1                                                                                                            | using convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1/1/–1/24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1428                                                                                                         | Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition." in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1428                                                                                                         | Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1428<br>1429                                                                                                 | Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in<br>Proc. 31st ICML, Jun. 2014, pp. 647–655.<br>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1428<br>1429                                                                                                 | Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in<br>Proc. 31st ICML, Jun. 2014, pp. 647–655.<br>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline<br>for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1428<br>1429<br>1430                                                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object data string and experimentation," IEEE Twong, Pattern Anal. Math. Intell. 20, pp. 1, pp. 142–150.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1428<br>1429<br>1430                                                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1428<br>1429<br>1430<br>1431                                                                                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1428<br>1429<br>1430<br>1431                                                                                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1428<br>1429<br>1430<br>1431<br>1432                                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1428<br>1429<br>1430<br>1431<br>1432                                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433                                                                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia 2014, np. 675–678.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434                                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434<br>1435                                                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434<br>1435                                                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434<br>1435<br>1436                                         | <ul> <li>Using convolutional neural networks, in Proc. IEEE conf. CVPR, Jun. 2014, pp. 1/1/–1/24.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in<br/>Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline<br/>for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object<br/>detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan.<br/>2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to<br/>remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–<br/>42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf.<br/>Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int.<br/>Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in<br/>Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin,</li> </ul>                                                                                                                                                                                                                                                                     |
| 1428         1429         1430         1431         1432         1433         1434         1435         1436 | <ul> <li>Using convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in<br/>Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline<br/>for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object<br/>detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan.<br/>2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to<br/>remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. JICV, Apr. 2015, pp. 1–<br/>42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Int. Conf.<br/>Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int.<br/>Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in<br/>Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin,<br/>Germany: Springer-Verlag, 2002.</li> </ul>                                                                                                                                                                                                                                      |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434<br>1435<br>1436<br>1437                                 | <ul> <li>Using convolutional netural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717-1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647-655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512-519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44-51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. 21pt, Apr. 2015, pp. 1-42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689-692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin, Germany: Springer-Verlag, 2002.</li> <li>Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861-874, Jun. 2005.</li> </ul>                                                                                                                                                   |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1433<br>1434<br>1435<br>1436<br>1437                         | <ul> <li>Idsing convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin, Germany: Springer-Verlag, 2002.</li> <li>Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006.</li> </ul>                                                                                                                                                        |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1434<br>1435<br>1436<br>1437<br>1438<br>1422                 | <ul> <li>Using convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. IJCV, Apr. 2015, pp. 1–42.</li> <li>Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin, Germany: Springer-Verlag, 2002.</li> <li>Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006.</li> <li>Krzanowski and D. J. Hand, ROC Curves for Continuous Data. London, U.K.: Chapman &amp; Hall, 2009.</li> </ul>                                        |
| 1428<br>1429<br>1430<br>1431<br>1432<br>1433<br>1433<br>1434<br>1435<br>1436<br>1437<br>1438<br>1439         | <ul> <li>Using convolutional neural networks, in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 1717–1724.</li> <li>Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. 31st ICML, Jun. 2014, pp. 647–655.</li> <li>Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in Proc. IEEE CVPRW, 2014, pp. 512–519.</li> <li>Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142–158, Jan. 2015.</li> <li>Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?" in Proc. IEEE CVPRW, 2015, pp. 44–51.</li> <li>Russakovsky et al., "ImageNet large scale visual recognition challenge," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.</li> <li>Vedaldi and K. Lenc, "MatConvNet—Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.</li> <li>Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th ACM Int. Conf. Multimedia. Version: 0.9.16. [Online]. Available: http://www.vlfeat.org/</li> <li>Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition. Berlin, Germany: Springer-Verlag, 2002.</li> <li>Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006.</li> <li>Krzanowski and D. J. Hand, ROC Curves for Continuous Data. London, U.K.: Chapman &amp; Hall, 2009.</li> <li>Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve" Rediology vol 143 no 1 np. 29–36 1922</li> </ul> |

| 1440 | Pepik, R. Benenson, T. Ritschel, and B. Schiele, "What is holding back ConvNets for detection?" in Pattern Recognition, Berlin, Germany: Springer-Verlag, 2015, pp. 517–528.                                                                                                                                                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1441 | Evans, R. The weather and other factors controlling the appearance of crop marks on clay and "difficult"soils. In Populating Clay Landscapes; Mills, J., Palmer, R., Eds.; Tempus: Stroud, UK, 2007; pp. 16–27.                                                                                                                             |
| 1034 | Hejcman, M.; Smirz, Z. Cropmarks in stands of cereals, legumes and winter rape indicate sub-soil archeological features in the agricultural landscape of central Europe. Agric. Ecosyst. Environ. 2010, 138, 348–354.                                                                                                                       |
| 1443 | Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. Airborne spectral imagery for archaeological prospection in grassland environments—An evaluation of performance. Antiquity 2013, 87, 220–237.                                                                                                                                                 |
| 1444 | Beck, A.R. Archaeological applications of multi/hyper-spectral data—Challenges and potential. In<br>Remote Sensing for Archaeological Heritage Management; Cowley, D.C., Ed.; Europae Archaeologia<br>Consilium: Budapest, Hungary, 2011; pp. 87–98.                                                                                        |
| 1445 | Jones, R.J.A.; Evans, R. Soil and Crop Marks in the Recognition of Archaeological Sites by Air Photography; Aerial Reconnaissance for Archaeology: London, UK, 1975.                                                                                                                                                                        |
| 927  | Brophy, K.; Cowley, D. From the Air: Understanding Aerial Archaeology; Tempus: Stroud, UK, 2005.                                                                                                                                                                                                                                            |
| 1447 | Hejcman, M.J.; Ondracek, J.; Smrz, Z. Ancient waste pits with wood ash irreversibly increase crop production in central Europe. Plant Soil 2011, 339, 341–350.                                                                                                                                                                              |
| 1448 | Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. The application of vegetation indices for the prospection of archaeological features in grass-dominated environments. Archaeol. Prospect. 2012, 19, 209–218.                                                                                                                                  |
| 1449 | Verhoeven, G.; Doneus, M.; Atzberger, C.; Wess, M.; Rus, M.; Pregesbauer, M.; Briese, C. New approaches for archaeological feature extraction of airborne imaging spectroscopy data. In Proceedings of the 10th International Conference on Archaeological Prospection, Vienna, Austria, 29 May–2 June 2013; pp. 13–15.                     |
| 926  | Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. A comparison of visualisation techniques for models created airborne laser scanned data. Archaeol. Prospect. 2012, 19, 41–48.                                                                                                                                                                 |
| 1451 | Cowley, D.C. A case study in the analysis of patterns of aerial reconnaissance in a lowland area of southest Scotland. Archaeol. Prospect. 2002, 9, 255–265.                                                                                                                                                                                |
| 1452 | Mills, J. Bias and the world of the vertical aerial photograph. In From the Air: Understanding Aerial Archaeology; Brophy, K., Cowley, D., Eds.; Tempus: Stroud, UK, 2005; pp. 117–126.                                                                                                                                                     |
| 1453 | Cowley, D.C.; Dickson, A.L. Clays and "difficult Soils" in Eastern and Southern Scotland: Dealing with the gaps. In Populating Clay Landscapes; Mills, J., Palmer, R., Eds.; Tempus: Gloucester, UK, 2007; pp. 43–54.                                                                                                                       |
| 1454 | Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-<br>sensor remote sensing. J. Archaeol. Sci. 2007, 34, 795–803.                                                                                                                                                                             |
| 950  | Verhoeven, G.J. Near-infrared aerial crop mark archaeology: From its historical use to current digital implementations. J. Archaeol. Method Theory 2012, 19, 132–160.                                                                                                                                                                       |
| 1456 | Bernardini, F.; Sgambati, A.A.; Montagnari, M.; Kokelj, M.; Zaccaria, C.; Micheli, R.; Fragiacomo, A.;<br>Tiussi, C.; Dreossi, D.; Tuniz, C.; et al. Airborne LiDAR application to karstic areas: The example of<br>Trieste province (north-eastern Italy) from prehistoric sites to Roman forts. J. Archaeol. Sci. 2013, 40,<br>2152–2160. |
| 1457 | Masini, N.; Lasaponara, R. Airborne lidar in archaeology: Overview and a case study. In Proceedings of the 13th International Conference, Ho Chi Minh City, Vietnam, 24–27 June 2013.                                                                                                                                                       |
| 1311 | Challis, K.; Kokalj, Z.; Kincey, M.; Moscrop, M.; Howard, A.J. Airborne lidar and historic environment records. Antiquity 2008, 82, 1055–1064.                                                                                                                                                                                              |
| 1459 | Chase, A.F.; Chase, D.Z.; Weishampel, J.F.; Drake, J.B.; Shrestha, R.L. Slatton, C.; Awef, J.J.; Carter, W.E.<br>Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci. 2011,<br>38, 387–398.                                                                                                    |
| 1460 | Evans, D.; Fletcher, R.J.; Pottier, C.; Chevanc, JB.; Souti, D.; Tand, B.S.; Imd, S.; Ead, D.; Tind, T.; Kimd, S.; et al. Uncovering archaeological landscapes at Angkor using lidar. Proc. Natl. Acad. Sci. USA 2013, 110, 12595–12600.                                                                                                    |
| 1136 | Johnson, K.M.; Ouimet, W.B. Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J. Archaeol. Sci. 2014, 43, 9–20.                                                                                                                                                   |

| 1462 | Cui, Y.; Zhao, K.; Fan, W.; Xu, X. Using lidar to retreive crop structural parameters. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Sympsium IGARSS, Honolulu, HI, USA, 25–30 July 2010.                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1463 | Challis, K.; Carey, C.; Kincey, M.; Howard, A.J. Airborne lidar intensity and geoarchaeological prospection in river valley floors. Archaeol. Prospect. 2011, 18, 1–13.                                                                                                                               |
| 1464 | Challis, K.; Carey, C.; Kincey, M.; Howard, A.J. Assessing the preservation potential of temperate, lowland alluvial sediments using airborne lidar intensity. J. Archaeol. Sci. 2011, 38, 301–311.                                                                                                   |
| 1465 | Briese, C.; Doneus, M.; Verhoeven, G. Radiometric calibration of ALS data for archaeological interpretation. In Proceedings of the 10th International Conference, Vienna, Austria, 29 May–2 June 2013.                                                                                                |
| 1466 | Briese, C.; Pfennigbauer, M.; Ullrich, A.; Doneus, M. Radiometric information from airborne Laser scanning for archaeological prospection. Int. J. Herit. Digit. Era 2014, 3, 159–178.                                                                                                                |
| 544  | Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-<br>footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134–147.                                                                                         |
| 1468 | Doneus, M.; Briese, C. Full-waveform airborne laser scanning as a tool for archaeological reconnaissance. BAR Int. Ser. 2006. 1568. 99–105.                                                                                                                                                           |
| 169  | Doneus, M.; Briese, C.; Fera, M.; Janner, M. Archaeological prospection of forested areas using full-<br>waveform airborne laser scanning. J. Archaeol. Sci. 2008, 35, 882–893.                                                                                                                       |
| 1345 | Lasaponara, R.; Coluzzi, R.; Masini, N. Flights into the past: Full-waveform airborne laser scanning data for archaeological investigation. J. Archaeol. Sci. 2011, 38, 2061–2070.                                                                                                                    |
| 176  | Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16.                                                                                                                                                                           |
| 188  | Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112.                                                                 |
| 1473 | Mallet, C.; Bretar, F.; Soergel, U. Analysis of full-waveform lidar data for classification of urban areas.<br>Photogramm. Fernerkund. Geoinf. 2008, 5, 337–349.                                                                                                                                      |
| 1474 | Anderson, J.; Martin, M.; Dubayah, M.L.; Dubayah, R.; Hofton, M.; Hyde, P.; Peterson, B.; Blair, J.; Knox, R. The use of waveform LiDAR to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens. Environ. 2006, 105, 248–261.                        |
| 1475 | Heinzel, J.; Koch, B. Exploring full-waveform LiDAR parameters for tree species classification. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 152–160.                                                                                                                                                   |
| 1476 | Buddenbaum, H.; Seeling, S.; Hill, J. Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. Int. J. Remote Sens. 2013, 34, 4511–4524.                                                                                                 |
| 1477 | Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Miles, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yuf, Y.;<br>Myneni, R.G. Estimation of forest aboveground biomass in California using canopy height and leaf area<br>index estimated from satellite data. Remote Sens. Environ. 2014, 151, 44–56. |
| 175  | Lin, YC.; Mills, J.P. Factors influencing pulse width of small footprint, full waveform airborne laser scanning data. Photogramm. Eng. Remote Sens. 2010, 76, 49–59.                                                                                                                                  |
| 1479 | Morsdorf, F.; Kotz, B.; Meier, E.; Itten, K.I.; Allgower, B. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ. 2006, 104, 50–61.                                                                                  |
| 1480 | Zhuang, W.; Mountrakis, G. An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data. ISPRS J. Photogramm. Remote Sens. 2014, 95, 81–92.                                                                                              |
| 1481 | Armitage, R.P.; Alberto Ramirez, F.; Mark Danson, F.; Ogunbadewa, E.Y. Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask. Remote Sens. Lett. 2013, 4, 427–435.                                                                                   |
| 1482 | Blackburn, G.A.; Latif, Z.; Boyd, D.S. Forest disturbance and regeneration: A mosaic of discrete gap dynamics and open matrix regimes? J. Veg. Sci. 2014. 25. 1341–1354.                                                                                                                              |
| 1483 | Englhart, S.; Jubanski, J.; Siegert, F. Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets, Remote Sens, 2013. 5, 2368–2388.                                                                                                                               |
| 1484 | Hopkinson, C.; Chasmer, L.E.; Hall, R.J. The uncertainty in conifer plantation growth prediction from                                                                                                                                                                                                 |

|      | multitemporal lidar datasets. Remote Sens. Environ. 2008, 112, 1168–1180.                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1485 | Pfennigbauer, M.; Ullrich, A. Multi-wavelength airborne laser scanning. In Proceedings of the 2011<br>International Lidar Mapping Forum, ILMF, New Orleans, LA, USA, 7–9 February 2011.                                             |
| 1486 | Mesas-Carrascosa, F.J.; Castillejo-González, I.L.; de la Orden, M.S.; Porras, A.GF. Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses. Comput. Electron. Agric. 2012, 84, 36–46.             |
| 1487 | Beck, A.R. Archaeological site detection: The importance of contrast. In Proceedings of the 2007<br>Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle, Australia, 11–14<br>September 2007; pp. 307–312. |
| 375  | Beck, A.; Wilkinson, K.; Philip, G. Some techniques for improving the detection of archaeological features from satellite imagery. Proc. SPIE 2007, doi:10.1117/12.736704.                                                          |
| 1489 | Rosnell, T.; Honkavaara, E. Point cloud generation from aerial image data acquired by a quadrocopter type micro Unmanned Aerial Vehicle and a digital still camera. Sensors 2012, 12, 453–480.                                      |

LIDAR based semi-automatic pattern recognition within an archaeological landscape

> Karl Hjalte Maack Raun Heidelberg University