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Term	&	Abb.	 Description	
absolute	
accuracy		

A measure that accounts for all systematic and random errors in a data set 

accuracy	 The closeness of an estimated value to a standard or accepted value of a particular 
quantity 

ALS	 Airborne Laser Scanning 
amplitude	 range: wave extent of emitted pulse from mean 
ANN	 Artificial Neural Network 
AoI	 Area of Interest 
Aperture	
angle	

Laser scanner angle from origin 

ASPRS	 American Society for Photogrammetry and Remote Sensing 
Azi	 Azimuth: angular perspective of illumination, i.e. Digital celestial sun in LIDAR data 
BIL	 Band interleaved by line: Compression file for multiband image data 
BIP	 Band interleaved by pixel: Compression file for multiband image data 
BLV	 Bayerisches Landesamt für Vermessung 
BM	 Burial Mound 
BSQ	 Band sequential: Compression file for multiband image data 
BVV	 Bayerisches Vermessungsverwaltung 
cm	 centimeter 
confidence	
level		

accuracy: The percentage of points within a data set that are estimated to meet the 
stated accuracy 

Crowd‐
sourced	

Gaining information and services from relatively groups to aid a cause or purpose 
to produce cumulative results 

DEM	 Digital Elevation Model 
digital	truth	 Observed digital evidence: non-calibrated with ground truth 
DSM	 Digital Surface Model
DTM	 Digital Terrain Model 
Echo	 Backscattered power of the return signal 
EDA	 Exploratory Data Analysis 
first	pulse	 return pulse of the highest feature: maximum 
Full	
waveform	

Detected and digitized backscattered energy of the receiving unit allocated to one 
observation  

FW		 Full waveform 
GeoTIFF	 Georeferenced Tagged Image File Format 
GIS	 Geographic Information System
GPS	 Global Positioning System 
ground	truth	 Observed evidence: often by survey 
Hz	 Hertz 
IMU	 Inertial Measurement Unit 
intensity	 Strength of light return signal 
ISPRS	 International Society for Photogrammetry and Remote Sensing 
k‐d	tree	 Binary tree for k-dimensional representation of data structure by splitting half-

spaces 
k‐means	 Partition of n observations by mean 
k‐means	 Partition of n observations into k-clusters 



clustering	
kurtosis	 The measure of relative “peakedness” or flatness of a distribution  
LAS	 Standardized binary file format for laser scanning data 
Laser	 Light Amplification by Stimulated Emission of Radiation  
last	pulse	 return pulse of the lowest feature: minimum
LIDAR	 Light Detection And Ranging; Light RADAR  
LRM	 Local Relief Model 
LRM	 Local Relief Model 
LS	 Laser Scanning 
m	 meter 
mean	error	 The average error in a set of values, obtained by adding all errors, e.g. in x, y or z,  

and then dividing by the total number of errors for that dimension 
measuremen
t	error	

Difference between the theoretically-unknowable “true” value of a parameter and 
its measured value 

MLS	 Mobile Laser Scanning 
mm	 millimeter 
MSII	 Multi-Scale Integral Invariants  
n	 unspecified iterations 
NA	 Network Analysis 
nm	 nanometers 
NN	 Neural Network 
NSSDA		 National Standard for Spatial Data Accuracy 
PCA	 Principal Component Analysis  
pixel	 the smallest physical point in a raster 
ppsm	 points per square meter  
precision	 The closeness with which measurements agree with each other, even though they 

may all contain a systematic bias. 
PS	 Phase-Shift 
pts/m2	 points per square meter  
p‐value	 Probability value of a given statistical model to measure statistical significance 
resolution		 The smallest unit a sensor can detect or the smallest unit an orthoimage depicts 
S	 Sample standard deviation. Calculated as: sx=√(1/((n-1)) ∑_(i=1)^n(x_i-x ̅ )^2 ) 
skew	 A measure of symmetry or asymmetry within a data set.  Symmetric data will have 

skewness towards zero 
SLR	 Systematic Literature Review 
smc	 simple matching coefficient 
standard	
deviation	

A measure of spread or dispersion of a sample of errors around the sample mean 
error 

SVF	 Sky-View Factor 
systematic	
error		

An error whose algebraic sign and, to some extent, magnitude bears a fixed relation 
to some condition or set of conditions 

template	 standardized or idealized data
TIFF	 Tagged Image File Format 
TIN	 Triangulated Irregular Network 
TLS	 Terrestrial Laser Scanning 
TOF	 Time-of-Flight 



Trained	Data	 Data process where rules and variables increase to improve output, i.e. learn by 
dataset. Untrained data is output by one rule or criteria.  

uncertainty		 also a parameter to characterize the dispersion of confidence value 
USGS	 United States Geological Survey 
vector	 vector graphics of entities through point, line or polygon geometry 
XYZ	 3dimensional coordinate structure 
XYZI	 4dimensional coordinate structure with intensity recording 
μm	 micrometers (1 μm = 1000 nm)



CHAPTER 1: INTRODUCTION 

14 
 

1. INTRODUCTION 

Within the framework of this thesis, the main objective is to investigate and assess the status of 

LIDAR based semi-automatic pattern recognition within an archaeological landscape. This implies 

not only semi-automatic detection and information extraction of archaeological monuments within 

digital landscapes, but also assessment and development of the field. This will be done to determine 

impact and potential within the archaeological community for automating procedures towards 

improved possibilities of detection and management of cultural heritage in the landscape.   

LIDAR data provides a novel approach for locating and monitoring cultural heritage in the 

landscape, especially in areas of logistical complications, e.g. forest, rough terrain, and remote areas. 

Manuel detection and mapping of archaeological information in the landscape is a time-consuming 

task. To improve and increase the possibilities of cultural heritage detection and management, 

computational means can offer a solution, and even reveal details that are not possible to detect 

with the naked eye. However, to implement automated information extraction from LIDAR data, 

different stages of standardized workflows are necessary for archaeological use of LIDAR data. 

Presently the use of LIDAR within the archaeological community often lacks standardized 

approaches for proper handling, developing, and processing for cultural heritage detection and 

management. Further, the majority of stakeholders within the field of archaeology and cultural 

heritage management encounter various problems regarding macro- and micromanagement when 

handling and processing LIDAR data, repeatedly resulting in quantitative assessment being 

impractical or impossible. Thus, In order for LIDAR data to become a truly competent method for 

heritage management, a large-scale quantitative approach for handling, developing, and processing 

needs to be formed and defined. For this, the effort of this project will be focused on quantitative 

methods for handling and processing LIDAR data and digital landscapes by	 systematic and semi-

automated approaches. The aim of this project is the creation of a large-scale approach for a wide 

array of scientific fields and application domains within archaeology, informatics, and the earth 

sciences. However, the project will have particular emphasis on archaeological monuments within 

LIDAR based digital landscapes. Archaeological monuments are in this context defined as features of 

the past  that have become part of the landscape as covered or partly covered structures. 

Monuments are defined as physical entities with a physical presence in the landscape. They consist 

of a wide variety from singular entities to multiple entities in complexes. Monuments in general do 

not imply temporal definition, but archaeological monuments imply a temporal scope towards the 

past and something not of contemporary use by original intention. This implies that archaeological 
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monuments refer to features and structures that were once or are still forgotten, hidden or partly 

hidden in the landscape. A process in which archaeological monuments have become assimilated 

and earthbound with the landscape through wear and tear by time, and by external and internal 

decomposition of materials covering or partly covering the structures and features of interest. As a 

result, archaeological monuments co-exist in LIDAR data as elusive patterns part of the modern 

landscape and of the terrain. This complicates the possibility of manual distinction out in the field, 

as well as digitally by remotely sensed data such as LIDAR. However, by learning the variables and 

patterns of archaeological monuments, it is possible to learn how to distinguish the structures by 

human visual inspection as well as by computational semi-automated detection. This necessitates 

that we understand the patterns within our digital landscapes of LIDAR data created by automation 

and semi-automation. All computational means can be automated procedures: from pre-processing, 

to processing, and post-processing. By any human interaction, however, the process becomes semi-

automatic. Thus, the algorithmic procedures can be automated to a point of validation and 

interpretation, but then becomes semi-automatic investigation. The question therefore becomes, is 

it possible to completely automate investigation of the landscape of the past from automated 

segmentation to fully automated classification of landscape? This will be investigated and answered 

in this thesis, but also with a notion of quality of information compared to cost and use. Meaning, 

any approach of computation, has to be compared to human gain of understanding. Naturally, this is 

not answered by a simple ‘yes’ or ‘no’ to the improvement of archaeological data and information, 

and not something that can be confidently located on a binary scale between 1 and 0. However, it is 

on a scale. On a scale that is constantly moving and changing position in space towards 1 or 0 as we 

progress and improve our understanding of the possibilities to quantify and extract information for 

archaeological mapping in the analog and digital landscape. Because, the potential is not yet defined, 

but we can see the trajectory currently set in motion.   

1.1 MOTIVATION 

Within an archaeological scope, the motivation for this thesis is to asses LIDAR data for automated 

and semi-automated procedures for the detection of archaeological patterns and monuments in 

digital landscapes. This will be done by applying simple and open algorithmic means of 

visualization, segmentation and classification in and of digital LIDAR landscapes towards large-scale 

archaeological monument detection. In order to do so, the thesis will give a thorough account of the 

archaeological use and potential of LIDAR data; qualitative and quantitatively define the state and 

development of the field for automatic and semi-automatic archaeological detection by LIDAR data; 
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indicate best practice and state of the art; exemplify quality of detection by automated and semi-

automated segmentation and classification of data; indicate range of potential application; apply 

template matching for large-scale cultural heritage investigation; compare human versus 

computational detection; and lastly discuss and stipulate potentials within the field of LIDAR based 

pattern recognition. The main objectives and research questions are focused on applicability by 

potential use through time and cost efficiency, and more importantly so, the quality of extracted 

information from LIDAR data. The objectives and research questions can consequently be defined 

by use and potential use within the archaeological community. This is aimed towards creating large-

scale digital landscape investigations to be more generally and more effectively applied within the 

archaeological community. These perspectives are formulated into four questions to exemplify the 

scope of the thesis:  

What	is	LIDAR	and	how	is	it	used	within	archaeology?	

To	 what	 degree	 is	 the	 application	 of	 automated	 and	 semi‐automated	 procedures	 applied	 for	 the	

detection	of	archaeological	monuments	within	the	archaeological	community?		

Can	we	 perform	 LIDAR	 based	 semi‐automatic	 large‐scale	 investigations	 of	 landscape	 by	 open	 and	

simple	segmentation	and	classification?	

Are	 the	 results	 of	 segmentation	 and	 classification	 improving	 detection	 and	 management	 of	

archaeological	monuments	in	LIDAR	landscapes?	

1.2 CHAPTERS 

To answer the research questions above, the thesis structure follows the same outline by 

investigating data, community, application, and impact. This compresses into five main chapters 

with subsections following the general guideline.   

Chapter	2:	ARCHAEOLOGICAL	LIDAR	

Chapter	3:	LANDSCAPE	PERSPECTIVES	

Chapter	4:	STATE	OF	AUTOMATED	AND	SEMI‐AUTOMATED	DETECTION	WITHIN	REMOTE	

SENSING	ARCHAEOLOGY	

Chapter	5:	APPLIED	DETECTION	IN	LIDAR	DATA	

Chapter	6:	CONCLUSIONS	AND	PERSPECTIVES		
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Chapter	2 explains the use of LIDAR data, the implementation in archaeological practice, as well as 

outline limitation and potential of using LIDAR in archaeology. Chapter	 3	 establishes an 

introduction to LIDAR data from Lower Franconia further investigated in chapter 5, as well as 

constructing interpretation of landscape perspectives. Chapter	 4 defines the field of automated 

archaeological monument detection by a systematic review to qualitative and quantitative assess 

state of the field by development and evolution, as well as propose state of the art and best practice 

within archaeology and beyond. Key focus will be on the degree of application for cultural heritage 

management and information extraction. Chapter	5 will elaborate and apply detection algorithms 

for model and data driven approaches of automatic and semi-automatic information extraction. 

Chapter 5 will also	analyze the results and qualitatively and quantitatively evaluate the difference 

between human versus computational interpretation of landscape. Chapter	 6	 will discuss the 

results gathered from chapter 2-4 to conclude and determine the future of automated and semi-

automatic archaeological information extraction and monument detection.   
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Landesamt für Denkmalpflege) and the Environment (Bayerisches Landesamt für Umwelt) for 
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aid. Assistance and thanks also go to the Junior	Research	Group	Digital	Humanities at the Cluster	of	

Excellence,	Asia	and	Europe	 in	a	Global	Context, as well as the Institute of Prehistory, Protohistory, 
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CHAPTER 2: ARCHAEOLOGICAL LIDAR 
 

18 
 

2. ARCHAEOLOGICAL LIDAR 

The increasing amount of landscape modification by stakeholders has necessitated innovation and 

cost-effective methods for archaeologist to effectively keep up with the growing pressure on 

cultural heritage in and on the landscape. One of the means for improving archaeological surveying, 

monitoring, and documenting cultural heritage in the landscape, has been given in the shape of 

Airborne Laser Scanning, also referred to as LIDAR (Crutchley & Crow 2009). The presences of 

LIDAR in archaeological studies have been increasing in the last two decades (see also chapter 4). 

This is especially true within Europe due to regional and nationwide scanning campaigns for 

improved knowledge on the physical landscape surrounding us for administrative and inquisitive 

purposes (Doneus & Kühteiber 2013, 32). This, in return, has given archaeologist a perfect window 

for complex site understanding and landscape investigations by the increased availability of 

remotely sensed data. Region and nationwide documentation by laser scanning have also given way 

to a wide array of scientific projects concerned with standardized and systematic documentation of 

cultural heritage within the landscape (e.g. Bofinger & Hesse 2011; De Laet et al. 2007; Doneus et al. 

2006; Schmidt et al. 2005; Schneider et al. 2015; Trier & Zortea 2012). To understand the impact of 

LIDAR in archaeology, it is first important to understand what LIDAR is and the potential impact on 

archaeological mapping, documentation, and management. This chapter will define the layout of 

LIDAR data to understand the potential application of archaeological LIDAR for information 

extraction and detection of archaeological monuments in the landscape.  

2.1 REMOTE SENSING 

The use of remote sensing has and is changing archaeological practice of analysis, detection, and 

management of cultural heritage in the landscape. From the mid-19th century and onwards, the 

presence of remotely sensed data has evolved towards a spearhead praxis within archaeology. 

Especially in the aftermath of the First World War, aerial reconnaissance and documentation grew 

in importance (Cowley et al. 2010; Olesen et al. 2011, 8-9). The early oblique and ortho images 

captured from low-flying airplanes were originally meant for mapping, but have since highly 

impacted the field of archaeology. The practice of remote documentation of crop marks, 

monuments, earthworks and cultural landscapes, is still one of the most applied approaches within 

large-scale archaeological reconnaissance and management (Cowley et al. 2010; Olesen et al. 2011; 

Olesen & Klinkby 2012; Verhoeven 2009). Data from satellite imagery has likewise increased the 

dimensionality of past and present landscape by untargeted documentation used as supplementary 
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information within archaeology (e.g. De Laet et al. 2007; Figorito & Tarantino 2014; Hesse 2015) or 

main documentation (e.g. Grøn et al. 2003; Lambers & Zingman 2012; Siart et al. 2008). Analyzing 

crops and subsurface differentiation in hyperspectral images can provide unique proxy values for 

understanding in-situ cultural heritage in the landscape (Cavalli et al. 2013; Custer et al. 1986; 

Doneus et al. 2014). Similar to aerial raster, LIDAR data provides remote data to understand 

landscape, whether by terrestrial or aerial documentation. Currently, LIDAR data enhances our 

knowledge of landscape in a comparable manner to early oblique and ortho images by giving new 

perspectives and means to improve knowledge of cultural landscapes (Opits & Cowley 2013). 

Understanding cultural landscape requires both data analysis and correlation with other sources of 

remotely sensed data. In performing comprehensive large-scale studies and repeated site 

management, many of the individual procedures of remotely sensed documentation becomes time 

consuming. Consequently such tasks become peripheral due to the lack of public sensation value, 

and subsequently funding. Many of the repeated tasks of processing large-scale remotely sensed 

data, are, as a consequence, becoming automated computational or semi-automatic procedures. 

Examples of such are; automated georeferencing (e.g. Verhoeven et al. 2012), automated site 

detection (e.g. Menze & Ur 2012; Trier & Zortea 2012; Schneider et al. 2015), and machine learning 

towards automatic analysis and feature learning (e.g. Arel et al. 2010; Belgiu et al. 2014; Maaten et 

al. 2007; Trier et al. 2016). Automated detection and analysis within cultural landscapes is not a 

particular new field within archaeology (e.g. Lemmens et al. 1993; Redfern 1997). However, the 

development of automated monument detection has been evolving for a long time without much of 

an impact. However, these former tendencies are changing, and automated segmentation and 

classification are becoming necessary to cope with the vast amount of remotely sensed data and 

cultural heritage information.  

2.2 BASIC LIDAR 

As of yet, no consensus exist on how to coin LIDAR, and is therefore used by different terms and 

concepts. The most common reference of LIDAR in papers goes by the assumption of LIDAR as an 

acronym change from RADAR, Radio	Detection	and	Ranging, to Light	Detection	and	Ranging. The 

acronym for LIDAR as Light	Detection	and	Ranging,	is one of the most used means of understanding 

LIDAR,	but is not necessarily depicting the correct term for the technique. LIDAR is also referred to 

as LADAR, Laser	Detection	and	Ranging,	Laser Radar (Geist et al. 2009, 311), as well as coined by the 

linguistic blend of “light radar” (Ring 1963) supported by the Oxford English Dictionary. The 

capitalization of letters within LIDAR also changes in relation to perception of origin and meaning. 
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Thus LIDAR can be spelled: LIDAR, LiDAR, LIDaR, LiDaR, LIdar, Lidar or lidar. For this thesis, a 

standard has been integrated based on the United States Geological Survey, USGS,	 standard for 

description of Laser Scanning by LIDAR principles. The USGS together with the American	Society	for	

Photogrammetry	 and	 Remote	 Sensing,	 ASPRS,	 and	 International	 Society	 for	 Photogrammetry	 and	

Remote	 Sensing, ISPRS, has a long history of working towards standards for LIDAR data and 

metadata (Heidemann 2012; ASPRS 2013).  The USGS and SPRS use the two derivatives: LIDAR & 

lidar. The standard from the International	Organization	 of	 Standardization, ISO, is lidar as Light 

Detection and Ranging, for documenting and specifying LIDAR scanning (ISO TS 19139-2 2014) . 

The standard used within this thesis will therefore be LIDAR, as it does not imply anything 

regarding origin by capitalization, and thus simply implies a difference between LIDAR and LASER 

as scale. However, by definition LIDAR scanning is Laser Scanning from air and land, but is for many 

fields mostly associated with airborne scanning due to the capabilities of large-scale coverage of 

landscape. Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) are therefore more 

generic terms of LIDAR scanning. LIDAR is Laser Scanning (LS), and LASER is an acronym for Light	

Amplification	by	Stimulated	Emission	of	Radiation (Gould 1959). LIDAR scanning works similar to 

total station measurements, but is differentiated by large-scale random light emission versus 

controlled measurement, e.g. a total station. The technical measurements of points work on similar 

principles of triangulation to determine position in space, but with difference of travel time 

calculation between emitted and received pulse. It can therefore be argued that a better term for 

LIDAR scanning is Laser Scanning (LS), differentiated by terrestrial (TLS), mobile (MLS), and 

airborne (ALS) platforms. There is, however, a use for the differentiation of terms from LIDAR to 

Laser Scanning, and that is reflected in scale and resolution. With the increasing use of 3D models 

from objects and landscape, the term Laser Scanning can be argued to be more commonly accepted 

as artefact and object scanning, whereas the term LIDAR is more often used for large-scale 

investigations. Thus Laser Scanning by LIDAR highlights a specific use compared to other 

applications of Laser Scanning, and consequently helps a term definition of scale. The term use of 

LIDAR is then used as an overarching definition for the field of large-scale Laser Scanning. The 

terms for ALS, MLS, and TLS will be used when necessary to mark difference based on airborne, 

terrestrial or mobile mounting. LIDAR, despite the intention of the term, in the end similar to the 

RADAR principle by using infrared and near infrared light instead of emitting radio waves to detect 

particles and physical conditions.  
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2.3 THE LIDAR POINT 

The LIDAR point is in the end the LIDAR product. The basic LIDAR point is three sets of values to 

construct a coordinate transformed to a Cartesian plane. The raw LIDAR point is an active emitted 

pulse, generally at a single near-infrared wavelength. The backscattered pulse is reflected in the 

same narrow wavelength of imaging spectrum. The reflected backscattered repetition pulse is 

registered based on intensity, which provides a possibility of understanding terrain or canopies by 

the intensity of reflection. Most laser scanners record the intensity, resulting in LIDAR data having 

reflection intensity, or echo, recorded in the point as: XYZI. This also provides, that the digital 

footprint of the point cloud can be used to segment and classify based on reflected intensity. 

However, the digital footprint based on intensity of the echo is a rough definition of surface or 

object qualities, leading it to be more relevant for segmentation then classification. This is 

exemplified in the schematic of Figure 1. Thus by using the full waveform of the amplitude, it can be 

possible to distinguish more details, but especially for archaeological mapping the discrete last 

return of direct energy recording is the most relevant.  

 
FIGURE 1: AIRBORNE LIDAR RECORDING BY COMPARISON OF FULL WAVEFORM IN THE AMPLITUDE OR 

DISCRETE SCANNING BY DIRECT ENERGY RECORDING 
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Typically, LIDAR for archaeological use is delivered and used by the simple segmentation of first and 

last return of the pulse, because the main concern of archaeological mapping is not the surface, but 

rather the terrain by its inclusion and assimilation of traces and patterns of the past. Nonetheless, 

understanding the reflection value gives opportunities to manipulate the scanned surface based on 

more criteria than spatial composition, and thus resulting in an added dimension for understanding 

the landscape. Examples of such can be seen by the results of Challis et al. 2011, by the potential of 

archaeological and geological crop mark detection based on ALS intensity data. Intensity values can 

also be used to understand density or biomass as a proxy for the detection of archaeological 

features (e.g. Briese et al. 2014; Stott et al. 2015). However, the individual LIDAR point does not 

provide much information, but by the combined structure of the point cloud, it provides contextual 

surface information from which information can be understood. Typically, archaeological LIDAR is 

used by its segmentation between first and last pulse, with the surface model containing all first 

pulses, and the terrain model containing first pulse, unless last pulse is registered. However, as 

previously mentioned, this does not provide a complete terrain model, meaning additional filters 

needs to be applied to remove structures that are not part of the scanned present natural landscape 

(Belgiu et al. 2014; Silthole 2005). This is especially necessary for airborne LIDAR that produces 

huge datasets. An airborne laser scanner emits pulses at extreme rates from which huge point 

clouds are created of the landscape. So far, the limit of sampling rate is not yet determined, and the 

question is not whether LIDAR resolution can be improved, but rather whether what resolution is 

needed and what is optimal for landscape studies. The sampling rate is determined by hertz and 

amount of channels used for measurement rate, making airborne scanners produce point clouds 

anywhere between thousands to millions of points per second. Thus, the potential of archaeological 

LIDAR is defined by available point	per	square	meter,	ppsm, and point density to a distance needed 

to visualize data to a desired degree of detail. An increase in amount of ppsm naturally leaves 

restrains on computation by file size through density or scale. However, archaeological LIDAR is 

often delivered as values of first and last pulse as quick segmentation between surface and terrain. 

For archaeological use it is mainly the last pulse that is of interest, since this depicts the terrain and 

contours of archaeological structures in the terrain (Hyyppä et al. 2009, 336), resulting in the 

reduction of point density used for analysis. Further, data for archaeological LIDAR is often 

delivered as points in gridded space structured as one point per square meter to represent a mean 

value of original density to reduce file size. Calculating points to a grid by computing cell elevation 

values by a mean through a neighborhood defined search radius, can also help standardize data, but 

as a result also smooths data out to visually omit details in the landscape. However, many 

deliverables of public DEMs are already gridded into regularly gridded cell interpolations 
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representing specified distance values, i.e. DEM1 or DTM1 as 1 meter grid, and DEM10 or DTM10 as 

10 meter gridded cell values to represent point densities exceeding defined resolution. As a result, 

maximum resolution scale is defined by a singular point of unknown local point densities, meaning 

level of detail in the landscape cannot be verified. Nonetheless, if local point densities are sufficient 

for digital landscape representation, it is an efficient way of handling point clouds by user 

friendliness through improved computation by file size.  

2.4 THE LIDAR PRODUCT 

The LIDAR product is point clouds in 3dimensional space based on the recording of tangible 

3dimensinal information. Airborne LIDAR can offer similar landscape information as aerial 

archaeology, but adds a dimension based on elevation data. Aerial archaeology offers a passive 

remote sensing technique recording the reflected part of the visible and near infrared spectrum. The 

LIDAR product, on the other hand, offers an active technique by measuring dense clouds of surface 

information capable of dynamic segmentation based on classification of points. A laser pulse can 

penetrate vegetation to a certain degree, making it possible to distinguish and discriminate different 

objects within the footprint (Doneus & Briese 2006, 99-100). The LIDAR product offers possibilities 

of interpolation and modelling of landscape and objects in accordance to defined criteria in order to 

visualize specific requirements. Thus, if proper processed and manipulated, data can be filtered to 

reveal different manipulated landscapes, such as only points of terrain by removing vegetation, 

construction, and all other features above bare-earth. This ability provides a new layer for 

understanding the landscape surrounding us, often revealing details that were long forgotten. 

LIDAR sensors are mounted on different platforms, mobile or static, terrestrial or airborne. LIDAR 

data is especially useful for mobile platforms due to the capabilities of continuous large-scale 

measurement of points. The common mobile platforms are satellites, airplanes, unmanned aerial 

vehicles, and vehicles. The principle of LIDAR is the emission of light towards any given surface, 

which is then reflected and echoed back to the sensors. The LIDAR scanner emits rapid pulses of 

light at any given surface, and amount of return signals is defined by the LIDAR instruments 

capability to record and store the return of the pulsed light photon. The amount of returned light is 

determined by internal and external factors. Internal factors are software and hardware, whereas 

external factors are atmospheric and surface conditions. A basic raw LIDAR point consists of XYZ 

position often coordinated to a Global Positioning System, GPS, together with orientation by the 

local Inertia Measurement Unit, IMU, measuring angle and range. These parameters construct a 

point in Euclidian space of any given surface. The result is the base of any spatial measurement 
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transformed to a Cartesian plane with the Global Positioning System. The Euclidian space is the 

geometrical axiom in space, but usually transformed to reference a certain method of 

representation in a Cartesian plane, e.g. a coordinate system. Presently there are two standards of 

LIDAR scanning by the documentation of light. The first consist of conventional scanners that record 

discrete echo return signal, i.e. measurement of signal peak by separation. The second consist of Full 

Waveform scanning, FW, recording the whole return as one continuous wave. FW LIDAR can also be 

segmented and counted by peaks to make it discrete (Lasaponara et al. 2011, 2062).  FW LIDAR 

further allows extended segmentation by improving the wavelength extension to classify signal 

returns terrain and off terrain objects, such as vegetation, natural objects, and man-made objects in 

connection to the terrain (Doneus et al. 2008). This makes it possible to distinguish between return 

signals by canopy penetration, producing more accurate Digital Elevation Models.  

The outcome of LIDAR scanning is typically Digital Elevation Models (DEMs) derived from recorded 

3D point clouds. Two major outcomes of DEMs, are: Digital Terrain Models (DTM) of the bare earth, 

and Digital Surface Models (DSM) with canopy details (see also Figure 2). For detection and 

management of information from the past, especially the DTM reveals important information for 

understanding, investigating, and managing sites and landscapes of cultural heritage interest. In 

order to perform comprehensive investigations of spatial context and cultural and temporal impact 

on landscape, it is necessary to understand and analyze procedures and methods to retrieve correct 

ground truth of comparable data and site information. Consequently, techniques and methods need 

as much attention as results. Scanning results are already manipulated data, and as such often 

strongly related to specific research questions. Hence, data retrieval and manipulation need proper 

assessment and analysis before any conclusions can be finale. Utilization of LIDAR data could easily 

become the standard from which cultural heritage monument detection and management could be 

initiated for a cost-effective approach for large-scale handling and processing. However, it is 

necessary to remember that LIDAR only documents the physical presence of the surface and terrain, 

and thus only cultural heritage monuments in the landscape with physical manifestation. Further, as 

landscape is segmented into surface and terrain models, it is necessary to note the filtration process 

used to remove modern construction and vegetation. Because, the algorithmic procedures for 

segmentation between surface and terrain do not discriminate between human made structures of 

the past and the present. The DTMs therefore only represents monuments of the past that has 

become part of the terrain by elevation differences inside the parameters set for segmentation of 

landscape. Segmentation of the landscape for definition of surface and terrain models can be filtered 

by many different algorithmic approaches, which all indicate slight differences in how to understand 
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the landscape (Silthole 2005, 13-28). The parameters for the algorithmic filtering are based on 

available data structure of the individual LIDAR points. The individual LIDAR points typically also 

contains information for segmentation based on intensity reflectance value due to multiple point 

measurements, recording first and last pulse values, making it possible to discriminate data based 

on more information than elevation and geometrical shape of structures and landscape. 

Segmentation based on filters of elevation and geometry revolves around four concepts:    

1. Slope based – Algorithms where slope is determined by difference of height between two 

points. Highest point within a certain threshold is assumed to belong to a group or object.  

2. Block-minimum – Horizontal plane with corresponding buffer zone above. The horizontal 

plane locates buffer zone, and the buffer defines zone where bare earth points are expected 

to reside 

3. Surface based – A parametric surface with a corresponding buffer zone above and below. 

Similar to before, the buffer defines zone where bare earth points are expected to reside.		

4. Segmentation by clustering – Segmentation by cluster algorithms defines entities based on 

clustering according to defined modularity. Any points are defined to belong to the cluster if 

the cluster value is above the neighborhood. The neighborhood expands into higher level 

structures allowing classification based on spatial organization of surface in a point cloud. 

 Silthole 2005, 30 

Digital objects or entities in LIDAR data can also be filtered based on rules of continuity of 

discontinuity. A building, for example, breaks the continuity of the terrain. Some of the measures of 

continuity and discontinuity are based on: height differences, slope, and shortest distance to defined 

surfaces.  However, everything is dependent on means of measurement, data structure, and 

information contained in the individual point. Many studies have shown that using the full 

waveform of LIDAR data can aid in understanding and extracting information from the landscape 

(e.g. Anderson et al. 2006; Briese et al. 2013; Briese et al. 2014; Doneus & Briese 2006; Höfle et al. 

2012; Lasaponara et al. 2011). Many more algorithmic procedures exist for filtering data into 

segments or classification, and it is a process that keeps evolving to incorporate more and more 

variables to produce better data. The general circumstances making filtering methods difficult can 

be described as: 1. random errors, 2. geometric complexity, 3. geometric discontinuity, 4. geometric 

fusion, 5. low vegetation, and 6. dense vegetation. These six circumstances have large impact on the 

potential for segmenting and classifying any landscape, which especially for the classification 

process results in the detection of false positives while omitting others. Thus, even in trying to 

reconstruct landscapes by surface or terrain values, it needs to be questioned to which degree a 
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digital landscape is a true depiction of natural and cultural tangible values. Because, all remotely 

sensed data is a designed representation of real-world entities, manipulated to make sense to any 

given target. As a result, the desired terrain segmentation for an archaeologist might be different 

than that of geologist. The archaeological main concern would be that of the cultural terrain, 

whereas the geological focus would be on the natural terrain. Thereby not defining that one is not 

important to understand the other, but a burial mound would be extremely urgent to keep in the 

digital representation from an archaeological point of view, and would be much less important from 

a geological perspective.  

 

   

FIGURE 2: A SIMPLISTIC REPRESENTATION OF DIFFERENCE BETWEEN DSM AND DTM. SURFACE MODELS 

INCLUDE STRUCTURES AND CANOPIES 

2.5 UNDERSTANDING LIDAR 

The LIDAR equation is similar to RADAR,	and relates to the power of emitted light and return signal. 

LIDAR datasets provides series of point based energy recordings reflecting any given surface. In this 

study, particular interest is on its abilities for terrain registration and canopy documentation. LIDAR 

measurements are recorded by static scanners or scanners mounted on moving airborne or 

terrestrial vehicles to cover large areas. The power of LIDAR data is especially recognized by its 

ability to cover large areas, but static Terrestrial Laser Scanning on fixed positions is also of growing 

importance for complex site investigations (Doneus et al. 2010; Cheng et al. 2016). LIDAR is a multi-

sensor measurement system capable of incorporating multiple sources following time-synchronized 

components. The components consist of a global positioning system (GPS) determining absolute 

position by 3dimensional XYZ space. From this fixed position everything is synchronized by angle, 

distance and reflection. The laser range finder operates by this two-way travel time of a pulse of 
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laser light, often in the near infrared electromagnetic spectrum (Figure 3). Distance in this two-way 

travel from scanner to terrain or canopy is calculated by:  

EQUATION 1: TRAVEL TIME CALCULATION 

r [ r = c · Δt/2 ] 

Δt is travel time, and	c is the known speed of light (Geist et al. 2009, 312). 

 

FIGURE 3: THE PRINCIPLE OF LIDAR RECORDING 

The means of calculating travel time can be different based on system parameters, which in return 

also have an effect of the area scanned. The two standard means of distance calculation are Time-of-

Flight (TOF) and Phase-shift (PS) (Alonso et al. 2011). The two technological approaches are applied 

to different spheres due to the capabilities of accuracy and acquisition rate. TOF enables long range 

scanning, while PS typically is applied to short distance scanning for more accurate data with high 

acquisition rates. The two approaches have been developing towards each other with PS extending 

range, while TOF have been increasing the acquisition rate. TOF scanners calculate the individual 

short pulse emitted from the scanner, and the time it takes for the pulse to return after reflection on 

a given surface. PS scanners calculate a continuous beam of emitted laser, and calculate the phase 

shift between the emitted and received laser beams. This also makes the difference in potential of 

full waveform recording, because PS scanners return data stream rather than discrete time-stamped 

points, which in return makes it more optimal for intricate and detailed surface information, such as 

dense forest canopy. Because, the two different measurements produce different results dependent 
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on scenery circumstances. As a consequence, a scanner is not just a scanner. A scanner is produced 

towards a specified task. Range, conditions, and scenery circumstances determine which techniques 

are more applicable.  

 

FIGURE 4: PHASE-SHIFT (PS) MEASUREMENT BETWEEN TRANSMITTED AMPLITUDE AND REFLECTED 

AMPLITUDE TO CALCULATE DISTANCE 

The phase measurement for PS is the difference between transmitted amplitude and reflected 

amplitude of the pulse, Δp	(Figure 4). The transmitted amplitude is measured in order to determine 

the distance of the travelled pulse. The distance between the receiving wave amplitude is then 

measured	and compared to the distance in the transmitted amplitude. The accuracy is determined 

by the length of the cycle of periodicity and wavelength ambiguity in the range of estimation (Alonso 

et al. 2011, 378). The principle are similar to TOF by distance calculation (Amann et al. 2001, 12), 

but the necessary length measurements provides some fundamental difference. This results in 

different scanners using different means of distance calculation, based on necessity of reproducing 

at different scales with phase-shift calculation used for larger point-clouds, and time-of-flight for 

smaller point cloud production (Alonso et al. 2011, 385). 
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2.6 ACTIVE SENSING VERSUS PASSIVE SENSING 

No matter the distance calculation, LIDAR data is active sensing by producing its own energy for 

recording the area of interest through the emission of light. Passive sensing records environment 

levels based on existing light and energy sources. The majority of remote sensing is done by passive 

sensing where the sun is the main component of ambient energy source. This is evident by the large 

field of aerial archaeology and spatial understanding by aerial and satellite imagery. The field of 

passive sensing within archaeology is also focused on the irregularities between natural and 

cultural distributions of patterns of static energy recordings. This is for instance present in the use 

of aerial thermal infrared recordings increasing the wavelength at which images can be produced to 

potentially reveal buried structures. Normal passive aerial photography can equally reveal buried 

structures, but the increase in thermal multispectral imagery has increased the potential by 

increasing the wavelength range at which images can be acquired (Bewley et al. 2011). Equally, 

hidden sub-soil features change the circumstances for which external factors interact with the top- 

and subsoil producing inhomogeneous distribution of humidity. This, in result, affects soil density, 

color, and physical state of vegetation (Scollar et al. 1990), as well as the thermal and electric 

capacity and conductivity (Orlando & Villa 2011, 155). Thermal sensing includes passive sensors to 

register energy emissions in the landscape, such as natural energy emissions and latent sun capture 

in landscape and canopies. The future of remote sensing therefore perhaps lie in a combination of 

active and passive sensing in order to improve archaeological feature detection by adding more 

bands of wavelength recording by multispectral LIDAR. 

Because, points of data are not confined to only depict spatial value within the data structure. By 

recording multiple wavelengths and by attaching and calibrating a camera to the scanner (Figure 5), 

spectral bands can be derived from raw radiometric measurements as physical quantification of 

absolute values reflecting external factors. Thus it combines active and passive sensing. 

Multispectral ALS especially derives value for understanding acquisition parameters and 

atmospheric conditions, such that backscattering can be normalized for comparison and 

standardization between different study areas (Alexander et al. 2010). For TLS, radiometric 

calibration is equally necessary for potential comparison between scanned data. For the TLS, the 

radiometric value is not as important for determination of external parameters of scanning, such as 

atmospheric conditions, because weather condition is not as dynamically changing and affecting 

local environment for scanning. TLS is easier to strategically complete when conditions are locally 

deemed sufficient, and the amount of return signal is not as important due to large quantities of 

emitted pulses and scale of area investigated. This makes radiometric calibration less important for 
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TLS, but very important for ALS towards standardizing datasets. Multispectral LIDAR can also 

provide information in wavelengths outside of the human visible range, making it possible to record 

additional variables for segmentation and classification.  

 

FIGURE 5: A RIEGL VZ-400 ON SITE IN DENSE VEGETATION. ATTACHED IS HIGH-RESOLUTION CALIBRATED 

FISH-EYE CAMERA FOR CAPTURING RGB COLORS 

The human perception is multispectral sensing, meaning it can sense beyond one spectrum. Human 

perception especially responds to the red, green and blue wavelength regions forming an adapted 

hue color spectrum from RGB to identify the world. However, the human range of perception of the 

electromagnetic spectrum lies in a very small region of the visible range. The visible range 

corresponds to wavelengths in the range of 400 to 700 nm, or 0.4 to 0.7 μm, with a color range of 

violet through red. The visible colors are constructed from shortest to longest wavelength from: 

violet, blue, green, yellow, orange, and red. Ultraviolet wavelength is outside of the humanly visible 

spectrum, but can be recorded and manipulated to be shown within a human visible range. 

Ultraviolet radiation has a shorter wavelength than the visible violet light, whereas infrared 

radiation has a longer wavelength than visible red light. Meanwhile, sunlight consists of the entire 

electromagnetic spectrum, and is reflected and absorbed within and beyond the human range of 

perception. White is the mixture of colors in the visible spectrum, and black is the total absence of 

light in any spectrum. This gives the gradation of the natural amplitude of the visible spectrum from 
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1 to 0, of presence or absence. The image gradient for RGB is typically structured by 0 to 255 as the 

scale from no presence to presence, and can be computed as gradient scales for edge and texture 

matching to detect features or densities. For a long time within remote sensing, it was the hope that 

computer assisted interpretation would lead to the identification of unique spectral values to 

classify the world. For archaeology it is still one of the primary areas for non-invasive archaeology 

and detection of sub-soil evidence. However, no unique identifiers work for all contexts, meaning 

environment has a large influence on the possibilities of non-invasive sub-soil feature detection. 

Different wavelengths are as a consequence more applicable in certain contexts compared to others, 

because passive sensing records natural absorbed and emitted energy by the surface and terrain. 

For active sensing, such as multispectral scanning with controlled exposure to certain wavelengths, 

it is also quite clear that certain wavelengths are more applicable than others. For instance, 

vegetation has a wide array of wavelengths usable depending on vegetation type and potential 

moisture, e.g. broadleaf versus needle (Eastman 2001, 21). Multispectral wavelengths are also used 

for the ‘landuse’ classification from the NASA and USGS LANDSAT 1 to 8 series, and continue to be of 

use for a wide array of scanning and recording for understanding landscape. The basic spectral 

bands for Earth monitoring is constructed to use the red, near infrared, and green bands to 

construct pseudo colors for information extraction from the landscape. This has formed the classical 

indices for vegetation classification based on the normalized	 difference	 vegetation	 index,	NDVI, which 

follows:  

EQUATION 2: NORMALISED DIFFERENCE VEGETATION INDEX.  

NDVI = (NIR - R) / (NIR + R) 

NIR = NEAR INFRARED, R = RED 

NDVI is a calculation that has proven to be efficient in distinguishing between vegetation and other 

structures interaction with the electromagnetic spectrum (Eastman 2001, 32). Using near infrared 

for the detection of vegetation indices to determine potential archaeological features is an added 

dimension in aerial archaeology (Bennett et al. 2012; Lasaponara et al. 2008). The NDVI reveals 

vegetation indices by photon absorption from spectral composition such as plant growth based on 

levels of low or high natural stress variables in certain contexts, i.e. plant growth on buried 

archaeological features (Figure 6).  
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FIGURE 6: RECORDED POTENTIAL WAVELENGTH COMPOSITION FROM HEALTHY OR STRESSED PLANTS IN 

DRY CONTEXT (LASAPONARA & MASINI 2012, 26) 

TABLE 1: LANDSAT 5 AND 8 BAND AND WAVELENGTH COMPARISON (USGS LANDSAT) 

Landsat	5 

Thematic	

Mapper	

(TM) 

Bands Wavelength	

(μm/micrometers) 

Resolution

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5  - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30)

Band 7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 

	

Landsat	8 

Operational	

Land	Imager	

(OLI)	

and	

Thermal	

Infrared	

Sensor	

(TIRS)	

	

	 

 

Band 1 - Ultra Blue (coastal/aerosol) 

0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)
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Similarly, LANDSAT 1 to 5, recorded between 1972-2013, was focused on pseudo color generation 

and the creation of vegetation indices for classification, but LANDSAT 5 included a thematic mapper 

to include mid-range infrared with seven bands added to the data structure. The amount of bands 

for wavelength documentation is, however, only confined by hardware and range of applications 

envisioned. For instance, the LANDSAT 5 Thematic Mapper recorded seven spectral bands in 

different wavelengths, whereas the LANDSAT 8, from 2013 to present, expands the band range with 

eleven bands to include a wider range of wavelengths (Table 1). 

Equally, promising steps are undertaken to map the potential use of multispectral LIDAR (Briese et 

al. 2013b; Wichmann et al. 2015). By the study of Wichmann et al. (2015, 118), it is shown that 

combining active sensing and passive sensing can improve classification accuracies. Briese et al. 

(2013b, 123) show the practical potential of calibrated radiometric information for LIDAR data for 

archaeological prospection and future ideas for usage of multi-wavelength LIDAR data for different 

applications. Thus, the range of potential application by adding different wavelengths to remotely 

sensed data and LIDAR data is still a field expanding with a great potential of adding multiple 

variables to the detection of archaeological details above and below ground.  

2.7 GEOMETRIC AND RADIOMETRIC CALIBRATION 

Calibration of LIDAR data is essential for a wide range of applications and means of standardization. 

Calibration by geometric and radiometric calibration aims at standardizing data and removing 

systematic errors from the point clouds. Random errors occur despite calibration, but can be 

removed by other means. Geometric and radiometric calibration is especially necessary for the 

comparison of different scanning sessions, such as in between archaeological site comparison or 

flight strip correlation. Systematic errors are related to setup and environment, and the errors can 

be unique based on the parameters influenced in the specific scanning session. The systematic 

errors mainly occurs by bias in system parameters, such as mounting parameters and changing 

system components of range and angles (Habib et al. 2011). This is rectified by standardized 

calibration and data-driven strip adjustment to compensate for systematic errors (Friess 2006; 

Skaloud & Lichti 2006; Glira et al. 2015). The construction of systematic errors by scanning is 

created by imperfect instruments, incorrect registration, or deficiencies in the mathematical models 

used (Friess 2006, 2). Systematic errors can be compensated, because they follow rules and patterns 

based on variables of equipment and circumstances, whereas random errors occur based on 

internal and external irregularities. The imperfect instruments can be corrected or updated, 

registration of data can be re-positioned, and mathematical models rerun. Random errors are more 
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difficult to deal with in the pre- and processing stages of data collection and registration, but 

possible to correct in post-processing stages of data management. Systematic errors can lead to 

erroneous data collection, and is therefore more necessary to address in the pre-processing stages, 

but can as well be addressed in the processing stages of data construction. Random errors cannot be 

accounted for, before a degree of analysis is carried out. Random errors occur due to light reflection 

problems, moving objects, and human errors. For the reflection of emitted pulse, the reflection can 

be affected by wet surfaces and water in general. Reflection of light within wet surfaces and water 

can be dispersed because of a lack of clear surface, resulting in light sometimes bouncing back to the 

receiver, but often not. Similar to the reaction of light illuminating a crystal, light disperses into 

many directions when in contact with water making the amount and intensity occur randomly. 

Random errors also occur by moving objects which based on the resolution of the scan can be 

different. TLS is affected by many small changes in the scenery, e.g. canopies changing position 

because of wind, living objects moving into scanning range, and environment. ALS is less affected by 

details due to the resolution of the scan, but still detects similar instances of irregularities needed to 

be filtered. Especially weather conditions affect ALS. In both instances of TLS and ALS, many 

irregularities is compensated by increased amount of scanning positions and angles from which 

terrain, objects, and canopies are scanned. Increased amount of positions can counter moving 

objects by defining them as random errors and outliers not part of the static scenery intended for 

scanning. The algorithmic approaches is defined by experience, but especially for automation, 

procedures become estimations based on simulated case studies for correction of systematic and 

random errors during scanning. Simulated estimation of standard deviations based on systematic 

and random errors help minimize misleading data by determining potential impact on data and 

means of correction. The theoretical accuracy is determined by the computed error of covariance 

propagation, giving standard deviations as valid measure of laser point accuracy. The importance 

and significance is evident, because the system parameters compute based on observation of angle, 

range, position, and orientation. An offset of ∆Θ=0.008° can therefore lead to a constant error 

capable of skewing true accuracy and position (Figure 7 ), evident by the simulated scans of Peter 

Friess to merge airborne LIDAR data (2006).  



CHAPTER 2: ARCHAEOLOGICAL LIDAR 
 

35 
 

 

FIGURE 7: A AND B SHOW TRUE ERRORS OF HEIGHT FROM THE SIMULATED STUDY. B SHOWS STANDARD 

DEVIATION BY INDICATED LINE. THE POINT CLOUDS WERE CONFIGURED WITH ERRORS. A SHOWS 

INCORRECT INSTRUMENT PARAMETERS, BY: SCAN-ANGLE [OFFSET ΔΘ=0.008°], SCANNER SCALE ERROR 

[ΔS=0.001], WITH A FLYING HEIGHT OF 1000M (AFTER FRIESS 2006, 2). 

The random errors are constant and produce similar outliers, whereas the systematic errors can 

skew accuracy and position leading to incapable comparison between different scanning positions, 

strips and/or sessions. Thus, for standardizing data, it is necessary to also understand the 

processing of the point cloud by random errors as well as systematic errors in order to fully 

comprehend correlation of data (Burman 2000; Glira et al. 2015; Ressl et al. 2008). Friess 2006 uses 

the redundancy in the overlapping areas of flight lines to estimate correction for observations of 

instrument parameters to produce more complete and correct point clouds. This is done to 

understand point cloud adjustment, but also to automate point cloud processing (Friess 2006, 7). 

From processing the point cloud to correct for errors, standardizing data structure, and add 

variables, it is possible to work directly on the point cloud to analyze and interpret data. However, 

simply to navigate in the point can be computational heavy, as well as humanly intangible to 

comprehend. As a consequence, LIDAR is transformed to more simplistic format by interpolating 

data to vector- or raster-based DEMs (Hengl & Evans 2009).  

2.8 BATHYMETRIC LIDAR 

On a side note, it also has to be mentioned that both airborne and terrestrial LIDAR can be used for 

underwater scanning. Bathymetric LIDAR will not be the focus of this investigation, but it has to be 

mentioned how bathymetric LIDAR functions. Underwater scanning is essential for many fields for 
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understanding underwater morphology, biology, and human impact. Within archaeology it is 

primarily focused on understanding sunken artefacts and landscapes of the past. Presently 

bathymetric LIDAR has some limits in regards to scale of precise scanning range, making it more 

suitable for shallow water investigations, such as intertidal and near shore zones. These areas are 

also the most relevant areas for understanding human dispersal and use, since the near shore areas 

consist of the most significant areas for past exploration of resources and settlement (Doneus et al. 

2013a, 2136). Deep waters have naturally also played a significant role for past human activity, such 

as for deep water fishing and transportation of goods. The remains of previous activity on deep 

water, is, however, affected by the current and open bed floors, resulting in the dispersal range 

encompassing waste areas. In shallow waters, the potential of conservation is greatly improved 

because of gyttja and the encapsulation of materials in anaerobic layers of sediments, and the 

potential of less dispersal of materials. The effectiveness of bathymetric LIDAR is reflected based on 

the composition of substances in the water. The composition of substances in water, such as in 

gyttja rich areas, complicates the potential of bathymetric LIDAR by presence of dissolved organic 

matter, phytoplankton, and minerals. This is due to problems of reflection and absorption of light 

photons in turbid waters with high organic levels. In the element of water, the penetration and 

reflection of light is not as controlled due to light dispersal and absorption of light photons, also 

meaning return signal will have different intensity levels. Substance composition in different waters 

requires different means of adaptation in relation to photon absorption and scattering due to 

minerals, yellow substance, and phytoplankton (Silva et al. 2008). This is especially problematic in 

the near infrared of laser light, but can be compensated to some degree by the use of emitted pulses 

in the green specter of light. The green spectrum of light with longer wavelengths has proven to be 

the most efficient spectral region for water penetration (Doneus et al. 2013, 2138). As with all kinds 

of Laser Scanning, it is important to understand environmental variables in order to construct 

digital documentation of landscape. Bathymetric LIDAR, however, helps push the boundaries and 

possibilities of LIDAR data by operating in very difficult scanning circumstances. For now, however, 

it is necessary to differentiate between the spectral bands above and below water.  

2.9 LIDAR INTERPOLATION 

The interpolated raster data, commonly used within archaeological practice, are the transformation 

of data from points to gridded data. A raster is constructed of pixels arranged in order by an 

outlined grid of specified dimensions. Each pixel contains given information in a range between 

minimum to maximum outlined by spectral band definition. Compared to large datasets of vector 
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data, raster image is a more efficient way to display consistent large areas of information. The 

reason for this is human logical reading of gradients versus absolutes. Vector can also be graduated, 

but will always consist of gaps. Interpolated data constructs value in between points of information, 

e.g. by the nearest neighbor algorithm, thus filling gaps. The gradient value of interpolated data is 

determined by choice and source. Usually the standard of LIDAR data is an 8-bit integer value 

between 0 to 255, e.g. from black to white as indication of relative elevational scale (Fischer et al. 

1996, 239), thus a 3dimensional visualization on a 2.5dimensional plane. By 2.5dimensional plane, 

the definition is that it is not true a true 3dimension, because interpolated data is the construction of 

a grid draped upon data. Thus, a LIDAR point is in itself 3dimensional, but the LIDAR interpolation is 

a visualization fixed to a 2dimensional plane. Controlling the transformation of data by 

interpolation, is therefore of absolute necessity. This is especially true since LIDAR has become an 

important and integral part of an objective approach to visualize and understand the landscape on 

both micro- and macro-scale. Archaeological LIDAR is simplistically often defined as an interpolated 

raster derived from LS, and often visualized by the hillshade algorithm from an artificial setting sun 

in the west. This standardized visualization of landscape for archaeological studies makes data 

comparable because of similar expression. None the less, it also results in data not revealing 

everything hidden within the DEMs. But, any interpolated visualization is biased towards certain 

details in the landscape, and potentially visually omitting others. DEMs are interpolated as digital 

representations of relief over space. DEMs are either vector- or raster-based to be used in three 

different data structures (see also Figure 8; Masini et al. 2011, 268): 

 

FIGURE 8:  STANDARD INTERPOLATED DEM DATA STRUCTURE: 1. GRID OF A REGULAR SQUARE MATRIX 

DRAPED ON A DEFINED PLANE WHERE EACH PIXEL REPRESENTS ELEVATION, 2. TRIANGULATED 

IRREGULAR NETWORK, TIN, MESH TO MODEL SURFACE AS CONTIGUOUS NON-OVERLAPPING TRIANGLES, 3. 

IRREGULAR POLYGONS TO MESH SURFACE BASED ON CONTOUR LINES AND ORTHOGONALS (AFTER MOORE 

ET AL. 1991, 4) 
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Regular gridded DEMs are the standard means of algorithmic interpolation of data, but have the 

disadvantage of not being able to properly represent abrupt discontinuity in the landscape, and 

smooths out details in very flat areas where data is not present (Masini et al. 2011, 269). Gridded 

DEMs are raster-based, and even though some details might be lost in the interpolation, compared 

to vector-based interpolation, it also offers some advantages in the form of standardizing output for 

comparison. The grid heights of regular gridded DEMs are typically determined by approximation 

methods like inverse distance weighting, moving last squares, linear prediction, or kriging 

interpolation. These methods offer grid cell creation based on nearest neighbor principles, making 

data continuous. However, most are more relevant for datasets of large point distribution, i.e. site, 

structure or object distribution. Vector-based interpolation produces discontinuous interpolation, 

making it more possible to determine data gaps. The vector-based TIN interpolation produces a 

network of triangles between all point data, structured by maximum length and exponent of triangle 

edges. This makes TIN interpolation capable of representing missing data or data with extreme 

elevation difference to indicate roughness of landscape. As a result, areas with missing data or 

abrupt elevation difference will look unnatural compared to actual landscape if the point density is 

not high enough to smooth the abrupt change in the data. But even though the problem with TIN-

DEMs can be the visualization of landscape as discontinuous, it is also its advantages such as 

highlighting data areas that are troublesome and incomplete for detection and interpretation. The 

last means of interpolation by irregular polygons also use vector-based representation, but follows 

linear interpretation based on input. Contour lines are determined, and gridded by irregular 

polygons between maximum and minimum. Contour lines smooth out data similar to a raster grid 

and shows landscape as very continuous. For archaeological LIDAR and archaeological mapping, the 

choice of interpolation is therefore not simply one over the other, but rather a qualified decision 

based on data resolution needed, and scale of investigation. This is especially necessary for 

constructing quantifiable and standardized LIDAR data, and sets the basis from which the landscape 

can be visualized. The landscape of investigation also determines the necessary data resolution 

needed from regularly gridded DEMs and inherent ppsm to be computed by. An example of amount 

of detail can be seen in Figure 9 below, by three interpolated continuous regular gridded DEMs by 

different grid size.  
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FIGURE 9: COMBINED TLS SCANS WITH DIFFERENT GRID SIZE. FROM LEFT TO RIGHT: 1 M, 0.5 M, 0.1 M. 

SHADED RELIEF: AZI. 45°, 270 ANGLE (RAUN ET AL. 2018) 

To understand amount of detail needed for gridded interpolation, it is necessary to understand 

features in the landscape. The landscape in Figure 9 is from a dense forested landscape with both 

exposed and hidden archaeological features. For human and computational interpretation of the 

landscape, a lot of details in the landscape can be even more confusing for proper information 

extraction from the DEMs, meaning highest amount of detail is not always the best solution. Within 

the DEMs are pathways on a very sloped area, as well as cellar structures. The cellar structure is 

completely buried, and is only revealed as an unnatural elevation change in the landscape by ALS. 

However, since it is located right next to a modern road, it could easily be classified as something of 

no interest. The pathways in the landscape, however, reveal unequivocal evidence of past activity of 

interest for archaeological mapping from remote sensing. A closer view of the DEMs in Figure 9 

reveals some of the changes in different grid size when interpolating. The amount of ppsm remains 

constant for the following interpolation comparison, and is retrieved by 12 different terrestrial 
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scanning positions, of 14 scans in total with two additional scans in front of a cellar structure by 

point density changes between 8 to 3 mm at 10 m. The DTM was created by selecting minimum z-

value per raster cell, resulting in some areas having vegetation as minimum z-value and 

consequently being included as terrain within the DTM. The 12 normal scanning positions were set 

at a resolution of 8 mm per point at 10 m distance. The additional two high resolution scans were of 

3 mm per point at 10 m distance. In total 230.555.115 points were recorded for the 12 scanning 

positions with a resolution of 8 mm at 10 m, and the 2 additional scan positions included 

24.469.696 points of 3 mm at 10 m. In total, the area scanned consist of c. 1.5 ha sloped hillside with 

dense vegetation, containing 255.024.811 points. The data processing procedures included data 

handling and manipulation for improved information extraction. The retrieved point clouds were 

processed in RISCAN PRO, operating and processing software for Riegl 3D laser scanners. The single 

scan positions were co-registered in RISCAN PRO by applying “Multi Station adjustment” with an 

average error of 1.17 cm. Individual ASCII text files were exported for each scan to be further 

processed in OPALS, Orientation	and	Processing	of	Airborne	Laser	Scanning	data	(Mandlburger et al. 

2009). From OPALS, data was interpolated to DEMs of different grid size of 1 m, 0.5 m, and 0.1 m. 

Different means of visualizing the structured cells were attempted for interpolation, but a grayscale 

hillshade relief offers one of the best human readable ways of representing landscape for manual 

visual object detection of small and large structures. Especially the minor pathways were best seen 

by shading for indication of minor height differences, while still representing the generally sloped 

area.  

The change in level of detail reveal that some details can be seen in the interpolated 1 m grid, but 

the amount of information is too low to distinguish them as being cultural traces left in the 

landscape. In the 0.5 m grid, the road and terrace structures can be distinguished as not being part 

of the natural landscape, and stands out as clear lines. In the 0.1 m grid, road and terrace structures 

are present and distinguishable as cultural traces left in the natural landscape. However, the amount 

of other details in the landscape also increases in the 0.1 m gridded interpolation. The visualization 

therefore becomes more blurred because more detail is revealed and information given. Thus, the 

high amount of detail in the interpolation with the highest amount of ppsm and information 

demonstrates not to be the most relevant or efficient for manual visual detection of objects and 

structures. The 0.5 m DTM reveals the same information in a simpler and faster procedure. The 

added amount of information is equally creating a more indistinguishable scenery for information 

extraction for both human as well as computational interpretation. This is evident in FIGURE 10 

visualizing the 0.1 m gridded interpolation with linear features marked. From FIGURE 10, a large 
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amount of linear features are distinguishable in the landscape, but 68 % of the linear features 

detected are of natural origin, i.e. fallen trees. 32 % consisted of culturally constructed linear 

features, i.e. pathways and terrace walls.  

 

 
FIGURE 10: CULTURAL AND NATURAL LINEAR FEATURES WITHIN THE LANDSCAPE. NATURAL LINEAR 
FEATURES MAINLY CONSIST OF FALLEN TREES. SHADED RELIEF: AZI. 45°, 270 ANGLE.  

RED: CULTURAL LINEAR FEATURES. YELLOW: NATURAL LINEAR FEATURES. 

The results show that the highest amount of data is not necessarily the best approach. It is more 

relevant to focus on increased scanning positions and scale, instead of amount of detail recorded at 

each scanning position when documenting in dense vegetation. Because focused and structured 

procedures of scanning will in the long run produce the highest amount of information, and thus 

give the most complete picture of the area of investigation. ALS resolution consequently needs to 

include resolution capable of producing comprehensive 0.5 m gridded interpolations in order to 
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become the effective means of large-scale cultural heritage detection. However, one approach 

cannot necessarily replace the other. Within the area of investigation, it is almost impossible to get a 

complete overview of the details and structures on-site. One of the major pathways within the area 

of investigation was not detected before a closer investigation of the TLS data was initiated. Since 

then the pathway has been confirmed as a ground truth, but the dense vegetation and collapsed 

trees made it almost impossible to detect by the initial fieldwork. It was only by knowing exact 

details from the TLS data, that it was possible to confirm this digitally detected plateau as part of the 

remaining cultural complex. Many other details were equally difficult to determine within the TLS 

data, and necessitated prior knowledge or later ground confirmation of its existence. Thus, all three 

data sources were necessary in order to construct a comprehensive overview of the cultural 

activities within the area of investigation, and none of them were completely capable of replacing 

the other. The study further investigated many different interpolated DTM’s at different levels of 

detail. However, the most remarkably changes occur in the difference of grid size in the 

interpolation process. Increase and decrease in amount of information is not linear with amount of 

ppsm and potential amount of information and details in the landscape. Meaning, too much or too 

little information can be equally disturbing for archaeological information extraction. A 0.5 m DTM 

requires ideally 4 ppsm (see FIGURE 11), when not calculating for special circumstances, such as 

dense vegetation or extreme slopes.  

 

 
FIGURE 11: POINT DENSITY TO M2 
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From LIDAR laser scanning in a simple flat landscape, the following parameters can be defined in 

order to construct and assess point density needed for effectively defining ground sampling 

necessity (TABLE 2).  

TABLE 2: POINT DENSITY VERSUS POINT DISTANCE IN LIDAR DATA (AFTER GOBAKKEN & NÆSSET, 2008) 

ppsm  point distance (cm)  ppsm  point distance (cm) 

0,1  316,23  2  70,71 

0,2  223,61  3  57,74 

0,3  182,57  4  50 

0,4  158,11  5  44,72 

0,5  141,42  6  40,82 

0,6  129,1  7  37,8 

0,7  119,52  8  35,36 

0,8  111,8  9  33,33 

0,9  105,41  10  31,62 

1  100  16  25 

 

The possibilities for information extraction from any interpolated DEM are therefore highly related 

to interpolation by ppsm, as is also revealed in FIGURE 12. Minimum ground sampling towards target 

geometries can be defined such as pitfall traps. Trier et al. (2011, 135) suggest a minimum of 1,8 

ppsm to properly sample pitfall traps, but by a ground sampling that is already excluding vegetation 

and building returns, meaning an initial higher ppsm is needed for the initial scan. As suggested, this 

initial scan, especially for detection within densely vegetated areas, should be by acquisition 

resolution of 4 ppsm in order to be better capable of distinguishing between canopies and hidden or 

exposed archaeological monuments. This is especially needed for the detection of archaeological 

features smaller than pitfall traps, and increases the potential of visually manipulating unknown 

details hidden in the landscape. For the detection of burial mounds, similarly it would require c. 2 

ppsm by point density of c. 0.7 cm. For already filtered data, a 1 m grid is a minimum necessity. 

Thus, a filtered dataset of 1 ppsm is sufficient for the detection of larger archaeological monuments 

in the landscape, but with some distortion of details while also omitting many smaller structures of 

potential interest. Most LIDAR products are, however, delivered in 1 m gridded planes, resulting in 

limited pattern detection possibilities. The optimal minimum solution would be 1.8 ppsm, and the 

best solution would be 4 ppsm as illustrated by investigations from the TLS study on the Königstuhl 

hillside in Heidelberg (Raun et al. 2018). But it is all dependent on context of landscape and 

necessary information extraction by the features and structures investigated. Bollandsås et al. 

(2012) also concluded that 1 ppsm did not make for sufficient detection of archaeological features 

in the landscape, and found that a significant increase in visual detection rate for archaeologist was 
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evident by an increase to 5 ppsm. However, by an increase to 10 ppsm it was a less distinctive 

increase in detection by the test group (Bollandsås et al. 2012, 2742).  Archaeological monuments 

such as burial mounds, pitfall traps, kilns, cairns, and monuments of a sizable extent and size will 

not have any trouble being visually detected in a 1 m gridded plane by 1 ppsm. The uncertainty of 

the point measured when the density become s less than 1 ppsm, however means, that the recorded 

information becomes uncertain to a degree where validation of terrain and surface becomes 

problematic for archaeological monument detection. Nonetheless, it is all dependent on the features 

and details intended to be detected, and thus amount of information required. Interestingly as well, 

is the impact of cognitive and semantic approach for human and computational vision. From 

Bollandsås et al. 2012, the detection rate and success was significantly different from test person to 

test person, meaning also a necessary consideration of human bias when interpreting the results of 

detection rates in LIDAR data, as well as by different interpolation by ppsm. Equally so, the 

detection rate and success differs by ppsm, as shown in the study of Trier et al 2011. However, from 

less points within and plane, to more points within a plane, does not result in linear increase of 

results. This was also the conclusions on the Königstuhl fieldwork (Raun et al. 2018). Thus, it is a 

matter of settling by finding best mean, which is given by 4 to 5 ppsm (Bolandsås et al. 2012, 2742; 

Raun et al. 2018).      

 
FIGURE 12: FOUR PITFALL TRAPS AT NINE DIFFERENT POINT DENSITIES. REDUCED DATASET BY PPSM 

FROM LEFT TO RIGHT IN DIFFERENT CONTEXT: 7.3, 3.6, 1.8, 0.73, 0.29, 0.15, 0.073, 0.036, AND 0.007 PPSM. 

THEY FOUND 1.8 PPSM TO BE NECESSARY FOR COMPUTATIONAL DETECTION OF PITFALL TRAPS (TRIER ET 

AL. 2011; TRIER & PILØ 2012) 
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2.10 LIDAR VISUALIZATION 

LIDAR visualization is within the field of image analysis, and LIDAR visualization is an important 

part of post processing data for aiding human cognition and computational logic. This means that 

visualization of LIDAR data is key for both quantitative and qualitative studies, because it represents 

the visual aspects on how data should be read and understood, and how features and details are 

represented. DEMs are the representation of 3dimensional XYZ data on a Cartesian plane, with a 

gradient representation of Z as elevation. However, dependent on perspective and goals, different 

visualizations can be more informative than others. As such, there is no objective visualization of the 

digital landscape, but possibilities exist towards means of standardizing for data comparison to 

potentially make human and computational logic more objective. Without standardized approaches 

for pre-processing and processing LIDAR data from acquisition to data construction, any post-

processing, or visualization, will not make sense. All steps are therefore necessary for making best 

practice recommendations for visualizing the digital landscapes of DEMs. The main questions for 

choosing how to visualize landscape, is therefore: How is data constructed? What is the context? 

And what is best suited to visualize the characteristics of features for information extraction? Data 

construction is answered by data acquisition, i.e. scanner and sensor model, nominal point density, 

nominal swath overlap, date of data. Context is defined by external conditions of landscape by 

topography, i.e. degree of slope, and morphology of features within. Lastly, information extraction 

by visualization is determined by the two former, as well as personal preferences for qualified 

studies and computational time for quantitative studies. This reasons the necessity of 

understanding all steps of LIDAR data from points to planes necessary to make large-scale 

investigations of landscape, and equally more so to document algorithmic procedures undertaken 

for the three individual steps of LIDAR data construction. The metadata construction for 

visualizations should include visualization technique and parameters used. Parameters change in 

accordance to technique, but as proposed by Kokalj & Hesse (2017, 39), some mandatory and 

ancillary parameters are necessary to document means of LIDAR visualization (TABLE 3). 
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TABLE 3: METADATA REQUIRED FOR DEM VISUALIZATIONS (AFTER KOKALJ & HESSE 2017, 39) 

visualization	

technique	 mandatory	parameters	 ancillary	parameters	

shaded	relief	 illumination azimuth illumination elevation, vertical exaggeration 

factor, histogram stretch 

slope	 histogram stretch (min/max) 

trend	 removal	

and	LRM	

low pass filter radius histogram stretch, color code, type of low pass 

filter 

openness	 positive/negative, greyscale/inverted 

greyscale, search radius 

number of search directions, histogram stretch 

sky‐view	factor	 search radius number of search directions, histogram stretch 

local	dominance	 search radius observer height, histogram stretch 

cumulative	

visibility	

search radius observer/target height, angular resolution 

accesibility	  search radius, number of search directions 

MSII	 reference vector (if not zero) number of scales, min & max radius, histogram 

stretch 

Laplacian‐of‐

Gaussian	

filter radius greyscale/inverted greyscale, histogram stretch 

 

Changes in visualization by, for instance, change of azimuth and degree angle of illumination, 

radically changes human perception of landscape. Mounds look like pits, and degree of slopes less 

exaggerated, as can be seen in FIGURE 13 below. FIGURE 13a visualize contour lines, giving an 

indication of elevational changes within the plane. FIGURE 13b shows elevation by gradient, thus 

showing elevational levels making it distinguishable minimum and maximum values. While FIGURE 

13c and FIGURE 13d gives relative elevational changes, making it possible to increase scale of 

perspective by comparison of information throughout the gradient scale. However, FIGURE 13c and 

FIGURE 13d shows the clear implication of change in azimuth and interpretation of positive or 

negative curvature within the landscape.  
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FIGURE 13: BURIAL MOUNDS FROM OBERHAUSEN. BY: A: CONTOUR LINES, B: ELEVATION MESH, C: SHADED 

RELIEF: 45° AND 90 DEGREE, D: SHADED RELIEF: ZENITH: 45°, AZIMUTH: 315°. © BVV. 

Difference in means of visualizing landscape impact information extraction by visualization 

techniques, and thus highly impact the potential of archaeological feature detection. To some 

degree, this can be quantified towards applicability of techniques towards specific archaeological 

features, because the different techniques have different advantages in visualizing degree of slope, 

negative and positive elevation changes, flatness, steepness, or roughness. A determination of 

variation by applied visualization techniques can be referenced in Figure 14.  

As a consequence, multiple perspectives are often necessary to complete a picture of the landscape 

and the features within. Areas directly facing the point of illumination, or opposite, are usually less 

detailed due to saturation levels being too extreme. Changes in azimuth can relieve this extreme 

saturation, or it can be solved by other visualization techniques that incorporate multiple 

illumination points towards one singular output, such as sky-view factor and openness. To locate 

correct parameters for target archaeological geometry in the landscape, experimentation is 

necessary, because where some visualization techniques offer improved visibility for certain details, 

it obscures the detection possibility of others. The most common visualization technique for 

archaeological detection is by relief shading of elevation differences, because it offers an intuitively 

readable visual impression of landscape (Kokalj & Hesse 2017, 16). Relief shading, or hillshade, 

offers an impression of a 3dimensional landscape on a 2dimensional plane – elevation differences 

seem natural for the human eye. From a computational point of view, this naturally is not similar, 

but still offers a normalized visual impression by which many different types of landscape can be 
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compared by same standard. Shaded relief models are illuminated by a constant direct light from 

same azimuth and elevation angle. By very low illumination source angles, e.g. <10°,	 extremely 

subtle changes in elevation can be detected. This is especially useful when local areas need further 

exploration to reveal all hidden details in the landscape, but is not useful for large-scale 

investigations due to information also being lost by overlap and pattern overflow. The biggest 

problem with shaded relief models, as also demonstrated in FIGURE 13, is the direction of 

illumination. Archaeological features and structures that are not represented by linear patterns, do 

not present the same angular problem by illumination. For instance, burial mounds generally have 

curvature towards all angles, and therefore do not present a problem for relief shade models. 

However, linear patterns can be hidden within a visual representation by a single light source by 

running parallel with the illumination. Meaning, linear archaeological structures running parallel 

with the illumination source will not be visually represented due to the lack of relief shade 

(Devereux et al. 2008). In general, linear structures can be very problematic to detect in LIDAR data, 

i.e. by chance of point recording on both elevational positions towards correct interpolation, but 

also by visualization if multiple angles of relief shading is not being practiced. The detection of 

structures for archaeological mapping is therefore somewhat problematic because of the dangers of 

omitting details in the landscape when visually manipulating how the digital landscape is 

represented. To overcome some problems with singular dimensional representation, various 

techniques for visualizing DEMs have been created. Some techniques are created for more objective 

representation of landscape, while others intend to enhance the subtle changes of elevation in 

certain environments of landscape. As mentioned, for instance, linear structures running parallel 

with the illumination source, is not represented in singular hillshade models. For this reason 

Devereux et al. (2008) presented Principal	Component	Analysis (PCA) to visualize a correlation of 16 

illumination directions to create a more objective representation of linear features within the 

landscape. Sky‐View	 Factor (SVF), created by Kokalj et al. (2011), also tries to overcome the 

problems of linear detection by revealing negative curvature by a complete diffuse illumination 

from all angles. Similarly Hesse (2010) created a Local	Relief	Model (LRM) to represent local positive 

and negative elevation to enhance detection of subtle changes and simplify curvature.  The 

Openness of a feature is equally interesting towards how to objectively represent landscape. 

Positive and negative Openness for archaeological LIDAR was created by Doneus (2013) to 

represent small elevational change, but distorts the possibilities of representing small and large 

curvature changes at the same time.  Likewise Multi-Scale Integral Invariants (MSII), created by 

Mara et al. (2010), determines volume fractions for each DEM pixel, thus creating a single value for 

each pixel to indicate low or high neighboring value within a DEM for automated information 
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extraction. All have unique characteristics of representing a digital surface and a digital landscape, 

but they all have different strengths and weaknesses. For the human cognitive understanding of 

landscape, the simple hillshade is still the preferred means of representation, but does not offer the 

full range of information within the DEM. However, the need for computational power for hillshade 

datasets are reduced compared to other techniques of LIDAR visualization. Meanwhile, the need for 

comprehensive analytical human cognition to understand relief visualization of the digital 

landscape by hillshade is lesser for the human interpreter. Given the popularity of hillshade 

representation of DEMs, and the relative ease of information extraction for archaeological purpose, 

hillshade models also represent a highly comparable and standard representation of elevational 

data. This can be a result of simple relief visualization of landscape not overcomplicating the 

procedures of processing and postprocessing data, and thus that the increased amount of use and 

large-scale comparison of data can enhance the quality of information by simple availability and 

readability. The concern therefore becomes whether or not the different visualization techniques, as 

e.g. shown in FIGURE 14, justifies a change of common representation of DEMs, or whether the 

standard should remain hillshade visualization with additional visualization techniques for target 

specific investigations.  The main vizualisation of the repository of LIDAR data from Unerfranken 

later introduced, are produced as hillshaded visualization of a setting sun at 315° azimuth to 

represent this standardized visualization of landscape for both human and computational 

interpretation of landscape. Different visualizations for DEMs are produced and exemplified in 

chapter 5 by its comparative source for automated information extraction.  
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FIGURE 14: VISUALIZATION TECHNIQUES ILLUSTRATING DIFFERENT FEATURES IN THE LANDSCAPE IN 

ACCORDANCE TO SLOPE. (FLATLANDS) PLOUGH HEADLANDS ON A FLAT PLAIN NEAR ENDINGEN AM 

KAISERSTUHL. 1 M LIDAR DATA © LGL IN BADEN-WÜRTTEMBERG. (GENTLE SLOPES) THREE DIFFERENT 

TYPES OF WORLD WAR I TRENCHES WITH SHELTERS ON GENTLE NE SLOPES OF ČRNI HRIBI, NEAR RENČE, 

SLOVENIA. 1 M LIDAR DATA © ARSO, SLOVENIA. (MODERATE SLOPES) CHARCOAL BURNING PLATFORMS IN 

THE HILLS OF THE BLACK FOREST. 1 M LIDAR DATA © LGL IN BADEN- WÜRTTEMBERG. (STEEP SLOPES) A 

LATE ROMAN CAMPO ON A ROCKY OUTCROP WITH A CHURCH OF ST. HELENA, WEST OF KOBARID, 

SLOVENIA. 0.5 M LIDAR DATA © WALKS OF PEACE IN THE SOČA RIVER FOUNDATION (KOKALJ & HESSE 

2017, 36-7). 
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2.11 LIDAR ACCESS 

The availability of remotely sensed data for archaeological investigation differs widely from country 

to country all around the world, and also within Europe. Some countries and regions offer publicly 

available remotely sensed data, whereas others adopt a business model for the availability of 

remotely sensed data, or simply restrict access. Especially in Germany this is well illustrated by the 

differentiated approach to public availability of LIDAR data. Two states out of 16 offer open free 

downloadable LIDAR data for public use as of spring 2017. The LIDAR archives are traditionally 

stored in the 16 state survey departments where requisition of LIDAR data requires larger 

investments for use and sharing under common license. However, more and more countries, states, 

regions, and municipalities are making remote sensing archives available to the general public on a 

European scale. This project is also a testament to the changing attitudes towards open data, as 

point clouds of Unterfranken in Germany were made available for scientific investigations as XYZ 

point clouds for the Junior	 Research	 Group,	 Digital	 Humanities,	 Heidelberg	 University.	 Advances 

towards open and freely available LIDAR data can also be seen by the increasing amount of 

international repositories and portals publicly available for use and download, e.g. 

OpenTopography, USGS Earth Explorer, Lidar Online, Open Access Hub, and many more. Open 

sources for global datasets are available for continental, national and regional studies by SRTM 

Global and ASTER Global DEMs, obtainable at earthexplorer.usgs.gov. The result of such initiatives 

impacts potential use by removing barriers of cost and time, and thus improves data quality. By the 

possibility of control comparison and 

added spatial information, new data 

will be enriched by already known 

information, and improve the scale of 

potential investigation. However, in 

situations where remotely sensed 

data is only publicly available by 

request or payments, cost by time and 

value, can directly halt projects of 

improvement or innovation. When a 

request for remotely sensed data is 

necessary, it slows down the process 

of acquisition for any project.  

INCREASED USE

QUALITY OF

INFORMATION
COST EFFICIENCY

FIGURE 15: A SCHEMATIC DEPICTION OF KNOWLEDGE 
CONSTRUCTION	
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Consequently, this has a negative impact on the use of remotely sensed data, especially for 

archaeological investigations. Many archaeological investigations are based on small timescales for 

prospection, investigation, and interpretation. As a result, any formal administrative request could 

easily stop or slow the process of acquisition down to such a degree that remotely sensed data only 

becomes a means of visualization of information, rather than as a means of investigation. This limits 

the potential impact of remotely sensed data for archaeological investigations by removing a meta-

layer of information for knowledge construction. By direct availability of remotely sensed data, such 

as airborne LIDAR, it increases the range of perspectives from singular entities to patterns, and from 

micro- to macro-scaled perspectives on the landscape and the past. Because, increased use by the 

community is controlled by time and cost efficiency. The end result is improved quality of 

information for both manual and automatic information extraction from digital landscapes by 

availability and scale of investigation. The structure is exemplified in the schematic depiction in 

Figure  15. The three pillars of knowledge construction will be a common theme throughout this 

thesis. Because, quality of information is not linear to rate of detection, but rather as a cost-benefit 

analysis by invested material cost and invested cost of time to impact quantity of use, and thus 

quality of information. Only by finding a balance between knowledge construction and remote 

information extraction, can we justly apply large-scale archaeological investigations of landscape.  

2.12 LIDAR FORMATS 

The LIDAR product is delivered in many different formats, but it all stems from three coordinates on 

a defined plane. Added data information can be added to the data string within one point in space, 

but it is still just a point in space by XYZ. Typically, the LIDAR product is delivered as gridded points 

in ASCII text files with internal separation or interpolated and rasterized DEMs, DSMs and DTMs as 

GeoTIFF container files for pixel determination of spatial extent by georeference. In the raw point 

cloud they can also be delivered in container files besides the ASCII text formats to standardize and 

compress data, such as LAS and LAS-extension files by binary compression, i.e. 2-base numeral 

system of 0 or 1. Container files, such as LAS files, incorporate the possibility of integrating the full 

waveform of LIDAR data with classification values by standardizing the classification of wavelength 

peaks, resulting in class 2 always classified as terrain and a range of classes for surface details. 

However, LAS classification extent changes accordingly to the level of detail available in the LIDAR 

data, and is therefore not a finite definition. But the ASPRS have set up a standard for classification 

within the file structure which follows much of the industrial standard of file exchange between 

producers and consumers for LIDAR data by classification of wavelength. Classification of 
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wavelength will naturally be expanded, and therefore the data structure is not a finite product, but 

rather a guideline of extension. ASCII files are as equally transferable between systems as LAS files, 

if not more so by its simple construction of data as text, but ASCII files easily become a burden by 

sheer file-size compared to LAS formats by binary encoding. The LAS files are however, unreadable 

for the human eye due to the binary structure of data and thus some transparency of data can be 

lost in the compression procedure. LAS files are also changing towards more compressed LAS 

extensions, and the danger then becomes whether or not software producers are able to 

standardize capability of reading and handling new formats, or whether a division of file formats 

will arise. Thus, presently the best means of storing LIDAR data can be argued to be by Unicode 

characters in ASCII files by data separation, e.g. comma separated values, csv. For working with 

LIDAR data, a transformation and compression of data to LAS extensions can be needed for handling 

and working with large-scale LIDAR projects.  

However, LIDAR data is delivered in many file formats, and will continue to do so as the field 

develops. The key aspect is maintaining separation of individual recorded values, and making sure 

that LIDAR data remains open by not creating restriction by compression and encryption of data to 

locked market specific standards. Restraining access by data encryption is a slippery slope, because 

it is a sought after control to safeguard datasets from being freely used without purchased rights of 

access and publication possibility. Such processes tends to halt use more than safeguard the 

potential misuse and control of data. This results in some file formats being constructed towards 

only being available by certain software possibilities. Naturally, there are abundances of file formats 

for containing LIDAR data and LIDAR metadata. Similarly so, there is an abundance of container files 

for interpolated raster that are build towards specific tasks and means of reading data by target 

programming languages or to coordinate with other datasets. This is a valid necessity to structure 

data, but an abundance of container files for both LIDAR points clouds and interpolated LIDAR 

raster, limits efficiency and potential quality of information by a lack of possible use across 

platforms. The potential of LIDAR in archaeology by both the professional and layperson 

community, can therefore be somewhat complicated by this dilemma. That is why keeping the data 

as ASCII text files by comma separated values for LIDAR data, can be the simplest and most long 

term solution for transferring and storing point cloud information, but not the best solution for 

minimizing data file size or computational procedures. However, for much of the archaeological 

community, it is the already interpolated raster as GeoTIFF files that are delivered. GeoTIFFs have a 

general widespread use within all fields, and serves as an interface for gridded space in compressed 

and decompressed formats.  Equally more so, the added spatial record gives the possibility of 
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transferring coordinate structure on a Cartesian plane across most platforms and software 

solutions. This leads to TIFF files in general being the most recommend file format for applications 

and storage, and GeoTIFFs being one of the most used formats for remote sensing.  

2.13 ARCHAEOLOGICAL LIDAR POTENTIAL 

The archaeological potential of LIDAR data is founded in its ability to depict dimensions, and equally 

more so to add dimensions to the possibilities of interpreting the cultural landscape. By its natural 

3dimensional space, spatial understanding plays a large part on information extraction from the 

landscape, and archaeological monuments become visual representations by elevational change. 

The potential of archaeological LIDAR is also by its documentation scale from structures to sites by 

TLS, and from local areas to international and worldwide comparison by ALS. Borders do not 

intrinsically exist in LIDAR data, and landscape can therefore be better perceived as a connected 

landscape by all its revealed information of natural and cultural traces and patterns. LIDAR is a 

digital product, and can therefore be manipulated to visualize certain details. The use of LIDAR to 

manipulate the digital landscape to segment categories of terrain, surface, and potentially 

everything in between, is undoubtedly the strongest advantage of LIDAR data. But it is not the only 

advantage. LIDAR data aid investigating spatial integrity of monuments and landscape by spectral 

values and geometrical composition by keeping a physical measurable record of information to 

reference the changes in landscape of human and natural impact. By the simple detection of change 

between two datasets of point clouds, recorded at different time intervals, it is possible to see 

changes made in the landscape, e.g. by modern construction, farming, and foresting impact on 

landscape (Walter 2004). This offers a simple large-scale possibility of cultural heritage 

management. However, in order to be effective, data from both sequences needs to be standardized 

and correlated to be comparable. This means that same standards of geometric and radiometric 

calibration towards regulated benchmarking data are necessary; otherwise the systematic errors 

can skew data to such a degree that direct comparison is not possible because of inconsistencies 

between the datasets. However, the same point is never measured again in LIDAR data, because it is 

random large-scale light emission. This can be compensated by the gridding of points into one point 

per square meter to represent the mean of all recorded points, resulting in some changes of 

elevational accuracy being inevitable. Gridding to mean is more necessary when the densities of 

point sampling are smaller, i.e. by ALS scanning in certain altitude above earth, compared to the 

denser point sampling by TLS. Equally more so, measuring terrain and surface by different bands in 

different wavelengths increase the possibilities of segmentation and classification of the landscape 

by multiple variables. But what is continually necessary, is to construct data given. In most 
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archaeological situations, the case rarely constitute densely distributed measurement points of light 

in different wavelengths, but rather scarce point sampling of discrete return of first and last pulse of 

the landscape. This is by no means a disadvantage, and is still of great value for landscape 

interpretation, almost no matter the point sampling density of LIDAR data. However, with lower 

density sampling, interpolation plays a more significant role for the representation of continued or 

abrupt changes of elevation. Meaning that especially for DEMs with low density sampling, 

substantial focus is required on the means of post-processing point clouds of interpolation and 

image analysis for manual and automatic extraction in order to retrieve the largest amount of 

information for archaeological mapping. Otherwise, the ratio between detecting true positives and 

false positives will be unequally distributed, and true positive detection remain uncertain due to 

details lost by misclassification or lack of classification by remote investigations. For remote 

investigations of landscape, a certain degree of ground trothing and verification will always be a 

necessity for most investigations. The biggest potential of LIDAR data is therefore not necessarily in 

its potential of application for singular perspectives, but rather by its wider application as 

perspectives and altered perspectivesby both professionals and laypersons for the construction of 

qualified knowledge by comparative use. Applying simple large-scale algorithms for the detection 

and segmentation of archaeological monuments in LIDAR data is interesting for questions regarding 

efficient use towards constructing improved knowledge production. This should be understood by 

the increase in an increased user domain being able to add other sources of information for 

landscape investigation by formulating quantified and qualified conclusions based on the details 

detected in landscape. However, does this lead to improved quality of information or simply 

improved quantity of information? To see the potential of archaeological monument extraction from 

LIDAR data, we therefore need to evaluate the use and impact of semi-automated information 

extraction for qualitative and quantitative assesment. In chapter	3, LANDSCAPE	PERSPECTIVES,	

primary data is introduced, and the field of automatic archaeological monument detection is 

qualitatively assessed. The use and impact of automated and semi-automatic information extraction, 

is analyzed, visualized and modelled in chapter 4, STATE	 OF	 AUTOMATED	 AND	 SEMI‐

AUTOMATED	DETECTION	IN	REMOTE	SENSING	ARCHAEOLOGY,	in order to quantitatively asses 

state of the field	 and define best practice. In chapter 5, APPLIED	DETECTION	 IN	LIDAR	DATA,	

pattern recognition will be assessed, and adapted to show human and computational interpretation 

of digital LIDAR landscapes. This will all be summarized and assessed in chapter 6, CONCLUSIONS	

AND	PERSPECTIVES.		
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3. LANDSCAPE PERSPECTIVES 

The landscape, as terrain and surface, consist of many details that visualize past human presence. To 

determine cultural or natural impact on landscape is a difficult assertion when based on singular 

entities. On macro scale, landscape is a homogenous construct influenced by heterogeneous events 

of both cultural and natural impact. Patterns in the landscape can show source by different 

perspectives and scales. Thus, interpreting landscape requires a necessity of scaled pattern 

investigation of artificial constructs in the landscape as true or false entities. The patterns of 

archaeological monuments are represented in shapes of elevational difference within LIDAR data, 

and all detectable entities within LIDAR data are elevational change in relation to the natural 

curvature of landscape. However, the distinction between cultural and natural landscape can be 

somewhat arbitrary, since remains of the past are slowly integrated into the terrain by 

decomposition and decay. Observed distribution therefore need careful consideration compared to 

strategies of data collection and transformation of the landscape (Cowley 2016, 148). Emerging 

patterns can be a result of missing as well as missed observation and registration. In many instances 

it is a case of training how to interpret the landscape, and thus code both the computer and the 

human mind to look for certain distinctive details in the landscape by micro or macro patterns. 

Details are easily subconsciously ignored if they do not fit the expectations (Halliday 2013), and 

both the human and computational interpreter can create gaps of information if not properly 

trained or adapted.  

 

 
FIGURE 16: CURVES IN THE LANDSCAPE. (A)	PEAK; (B)	PIT; (C)	RIDGE; (D)	RAVINE; (E)	RIDGE SADDLE; (F)	
RAVINE SADDLE; (G)	CONVEX HILL; (H)	CONCAVE HILL; (I)	CONVEX SADDLE HILL; (J)	CONCAVE SADDLE 
HILL; (K)	SLOPE HILL; (I)	FLAT (TRIER ET AL. 1995, 924). 
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The complex pattern of archaeological data means that singular perspectives creates bias between 

past and present patterns, resulting in omission of unknown patterns of the past and present. 

Because, the geometrical patterns in the landscape are constructed by both cultural and natural 

influence, resulting in curvatures having a wide range of origin points, but potential visual presence 

in a range of curvatures (Figure 16). The range of curvatures by peaks can for instance fit both 

natural and cultural origin points, causing singular curvatures fitting multiple classifications, and 

thus minimize potential impact of comprehensive interpretation of areas of interest within a given 

landscape. 

 

 
FIGURE 17: IDEALISED VERSION OF GRADUAL DECAY OF PEAKS BY WEAR AND TEAR 

All curvature and height adjustment in the landscape has a range of natural and cultural influencers. 

A peak can be the accumulation of debris from both natural and cultural origin, but can also be 

constructed peaks because of specific actions and intentions, e.g. sedimentary movement or 

placement. Equally, peaks in the landscape, such as burial mounds, are affected by wear and tear 

through time by weather, erosion and living things changing original shape by displacement. 

Displacement and removal of materials decreases size and presence of curvature in the landscape, 

and thus slowly alters unique characteristics of cultural heritage monuments in the landscape, as 

exemplified in FIGURE 17. All peaks show some degree of decay by the displacement of materials 

from original or prime shape, but especially artificial mounds are on a gradual scale from original 

shapes towards integrated into terrain as flat landscape, such as in cultivated agricultural soil. 

Likewise, ridges can be constructs of cultural landscape manipulation, but also natural changes of 

erosion and isostatic equilibrium of height adjustments from the dynamic buoyancy of sediments. 

Thus, geometrical features and simple shapes are created by a wide range of processes. Meaning the 

curvature can be interpreted by a cultural origin point, such as: a peak understood as a burial 

mound or waste accumulation; a ridge understood as wall or terrace origin; a pit understood as 

dugout for materials, waster pit or pit fall trap, etc.. They are all difficult interpretations when based 

on singular variables to use for the detection of archaeological monuments. Pattern recognition of 

archaeological monuments by remote sensing requires scaled perspectives to see individual or 

clustered patterns in order to determine cultural or natural origin. Overall pattern determines 

whether the point of origin is natural or cultural, and whether clustering is intentional or random. 
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However, the overall pattern is only detected if the individual geometrical shapes are initial 

segmented and extracted, resulting in the necessity of both micro and macro scale. Therefore, 

information extraction of singular variables do not complete the picture, but it makes for large-scale 

pattern detection to determine curvature in the landscape as potential natural or cultural origin. 

Thus, micro detection of the smallest unit within the frame makes for macro interpretation of 

cultural heritage. The patterns of cultural heritage, is patterned and ordered, because, humans are, 

and will always be, structured beings. However, humans are not simply overarching logical-thinking 

individuals, but humans are at the basis controlled by logical relationships between survival and 

social convention. Thereby not saying that humans are necessarily following social convention, but 

simply equally reacting to impulses and instincts in different contextual scenarios depending on the 

individual experience of cultural backgrounds. Humans are therefore illogical compared to what 

could be the best possible solution in various situations as rational logical cognition can and will be 

influenced by emotions (Tomasello 1999). That does not mean that emotions are not logical, but 

emotions can get in the way of what might be most rational. Human actors must not for these 

reasons, neither be degraded or exalted, because humans are not simply conscious or unconscious 

actors, but rather a little bit of both (Bourdieu 1977; 1998; Lakoff & Johnson 2003; Lévi-Strauss 

1969). Praxis is therefore patterned and structured, even though individual thought and experience 

distorts, but never beyond the context of structure.   

 

3.1 A PERSPECTIVE FROM LOWER FRANCONIA 

For the applied means of information extraction from LIDAR data, a dataset has been constructed to 

further investigate the possibilities of semi-automatic and automatic large-scale archaeological 

information extraction. The primary target area for investigation and assessment is Lower 

Franconia, Germany (Figure  18). The dataset consist of a gridded LIDAR point cloud from Lower 

Franconia, comprising some 8544 km2 LIDAR data from the state of Bavaria. In some areas, the laser 

scanning is documenting outside of the bounds of Lower Franconia, hence the LIDAR dataset is 

slightly larger in km2 compared to the actual bounds of the administrative district of Lower 

Franconia.  
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The dataset specifications are: grid width of 1 

m, ≤ 0.2 m height accuracy, and ± 0.5 m 

positional accuracy. The dataset constitutes of 

first and last echoes, structured as a binary-1 

meter grid in the elevational reference system 

of DHHN92. Digital Elevation Models in Bayern 

have been instigated since 1996 by airborne 

LIDAR investigations, and is continuously 

updated and completed with new airborne 

scanning campaigns. For the area of Lower 

Franconia the dataset is complete and available 

for acquisition in a number of grid formats 

from the Bavarian State Offices for Sites and 

Monuments.  

 

 

The point cloud used is structured for Lower Franconia by a 1 m grid width as a DEM1 or DGM1, 

Digital	 Elevation	Model	 and Digital	 Ground	Model respectively. This is nationally referred to as 

DHM1, Digitales	Höhenmodell	in a 1 m grid. The point cloud dataset is stored in a secure repository 

in the Integrated Rule-Oriented Data System¸ iRODS, to facilitate primary data management and 

secure data collaboration. The data is stored as separated XYZ ASCII text files to insure data 

readability and data sustainability across platforms and projects. The point clouds are stored as first 

and last pulses segmenting between surface and terrain. Equally, a combined dataset exist with both 

surface and terrain. The interpolated dataset for Lower Franconia is stored on Heidelberg 

University servers for collaborative research at the Cluster of Excellence, Asia and Europe in a 

Global Context. The interpolated LIDAR raster data are stored in GeoTIFF container files to keep 

pixel determination of spatial extent by georeference. The coordinating reference system is set on 

the Cartesian plane of a Transverse Mercator projection in Gauss-Krüger, zone 4, EPSG: 31468. 

Interpolation and visualization of the entire dataset was done in OPALS, Orientation	and	Processing	

of	Airborne	Laser	Scanning	data	(cf. Mandlburger et al. 2009; Pfeifer et al. 2014). OPALS is a modular 

programming system consisting of components clustered thematically in terms of packages for 

FIGURE 18: AREA OF INTEREST, LOWER FRANCONIA, 
WITHIN THE STATE OF BAVARIA. © OPENSTREETMAP 
CONTRIBUTORS 
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specific application by point cloud data, especially oriented towards macro scaled perspectives of 

airborne LIDAR. The processing language for OPALS is simple and structured, allowing for large 

datasets to be processed and keeping spatial reference. The dataset was constructed by commands 

from a scripted batch file between the operating system and the OPALS processing program. The 

following script allows for tasks of repetition on segmented terrain point clouds to be converted 

into rectangular interpolated DEMs by the grid module. The derived grid model is stored in "pixel is 

point" interpretation, i.e. the grid values represent the interpolated heights at the pixel center 

instead of “pixel is area” where the raster value is valid for the entire cell area and not only for the 

center of the pixel. The script used for the dataset is fixed on three commands: Defining input to 

OPALS	data	manager, ODM, processing input, and constructing output (TABLE 4) 

TABLE 4: OPALS CODE USED FOR INTERPOLATION 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

	
ODM	container	for	calculation	of	XYZ	input	
opalsImport -inFile 1234_1234.xyz -outFile 1234_1234_xyz.odm -iformat xyz 
 
Compute	interpolation	grid	
opalsGrid -inFile 1234_1234_xyz.odm -outFile 1234_1234_dtm1.tif -grid 1.0 
 
Generate	relief	shade	visualization	
opalsShade -infile 1234_1234_dtm1.tif 
 

 
File name is exemplified by 1234_1234, as 4 x 4 digits optimal for the coordinate reference system of 

the narrow Cartesian plane of Gauss-Krüger, zone 4. From OPALS, data is interpolated to DEMs of 1 

m cell size by same coordinate value as input. Grayscaled shaded relief is the visualization used for 

interpolation due to computational efficiency, as well as its data readability for information 

extraction by a human interpreter.  Other techniques of visualization can be more useful for 

information extraction, especially linear detection (Kokalj & Hesse 2017, 35), but requires more 

computation and does not offer easy clarification for the inexperienced human interpreter. From the 

basic OPALS ODM structure, several possibilities of pixel transformation for a Z value can be 

calculated, such as by a moving	planes interpolation (TABLE 5). 

TABLE 5: Z-VALUE ADDITION BY MOVING PLANES CALCULATION 

1 
2 
3 
4 

	
Compute	grid	by	moving	planes	
opalsGrid -inFile 1234_1234_xyz.odm -outFile 1234_1234_grid_1m.tif -grid 1.0 -interpol movingPlane 
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Calculation of Z values offers several possibilities of transformation by elevation, slope, density, and 

exposition through the moving planes interpolation. Moving planes calculates for each grid cell n 

nearest neighbor points are queried and a best fitting tilted plane is estimated. The height of the 

resulting plane at the grid point of a XY position is mapped to the grid cell. The tilted plane 

interpolator allows the derivation of slope measures by: n of x, n of y, slope, and exposition for each 

grid point. Moving plane interpolation requires the specification of the number of neighbor points 

considered for interpolation of a single grid. The results of the neighbor queries can be restricted to 

a maximum search radius around the grid point, enabling a consideration in areas with sparse point 

density in the resulting grid as void pixels. This helps define areas void of pixels in the end product, 

but also a means of visualizing landscape according to different values of elevation, slope, density, 

and exposition. See TABLE 6 for a list of calculations of Z values.  

TABLE 6: CALCULATIONS OF Z VALUES DERIVED SIMULTANEOUSLY AS SIDE PRODUCTS OF GRID 
INTERPOLATION 

command	 parameter	calculation	
sigmaz S of interpolated grid height 
sigma0 S of the unit weight observation  
density point density estimate  
excentricity  distance grid point - center of gravity of data points  
slope steepest slope in percent 
slpDeg steepest slope in degree  
slpRad steepest slope in radians  
slope steepest slope in percent  

exposition 
slope aspect [rad] = azimuth of steepest slope line, 
N=0, clockwise sense of rotation 

normal x-component of the surface normal unit vector 
normaly y-component of the surface normal unit vector

Dependent on landscape, and details of investigation, Z value manipulation aids potential 

information extraction and archaeological monument extraction. Below it is exemplified by sigmaz 

by standard deviation of interpolated grid height to highlight more pronounced height changes 

(FIGURE 19). The entire dataset is built to incorporate Z value change and manipulation 

simultaneously with interpolation and visualization in OPALS, making it easy to change perspectives 

on landscape.  
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FIGURE 19: RELIEF SHADING TO HEIGHT CHANGES FROM RIEDENHEIM, LOWER FRANCONIA. THE AREA 
INCLUDES 11 BURIAL MOUNDS. SHADED RELIEF AND ZIGMA OF Z VALUE BY MOVING PLANES 
CALCULATION: AZI. 45°, 270 ANGLE: 1 KM2 TILE, ↑ NORTH 

The complete dataset from Lower Franconia, consist of 9752 tiles of ≤ 1 km2 georeferenced raster 

files in a GeoTIFF format. The complete dataset, histogram stretched to full dataset, can be seen in 

Figure 16 below, ranging from Gauss-Krüger, zone 4, coordinates of 4279000-5549000 to 4425000-

5556000. 

 

FIGURE 20: COMPLETE DIGITAL TERRAIN MODEL OF LOWER FRANCONIA BY SHADED RELIEF: AZI. 45°, 270 
ANGLE 
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3.2 CASE STUDY ON SHAPE DETECTION: BURIAL MOUNDS 

To investigate the possibilities of automatic detection for archaeological monuments within LIDAR 

data, nine sites in Lower Franconia have been selected for comparison and analysis (FIGURE 21; see 

also appendix 3B). For automatic detection, the case studies will focus on shape detection by burial 

mounds. The nine sites are all cultural landscapes of the past, and all contain burial mounds to a 

smaller or larger extent for scale comparison of quality by manual and automated detection.  

 

FIGURE 21: SPATIAL COMPOSITION IN LOWER FRANCONIA OF THE NINE SITES FOR FURTHER 
INVESTIGATION 

The nine sites have been explored by survey and remote investigation. The remote investigation is 

carried out by sampling known ground-truth, and new areas to explore by human and 

computational interpretation of landscape. Fieldwork was eplored after first initial sampling of 

known data, with different perspectives by expert human interpretationers and computational 

detection of areas of interest. The survey was carried out to determine ground truth of 

archaeological monuments detected or not detected by visual manual interpretation and automated 

computational interpretation. Both true, uncertain, and false positive detection were re-investigated 

by field survey. However, the end result is only best possible estimation by many different actors, 
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and especially completely undetectable monuments by lack of any change in terrain compared to 

natural terrain, are impossible to determine and verify without archaeological excavation. Lower 

Franconia is rich in cultural heritage with many archaeological monuments still present in the 

landscape, but the investigation has focused on a “simple” shape detection by burial mounds. Burial 

mounds have an impact on the modern terrain of Lower Franconia as cultural peaks changing the 

natural curvature of landscape (see distribution in FIGURE 22). 860 locations are registered as sites 

containing one or more burial mounds at each location within Lower Franconia. The tumuli grounds 

are recorded as one point or area containing an unknown amount of graves and burial mounds, but 

define the base of potential information extraction for a complete picture of burial mounds within 

the LIDAR data.  

 

FIGURE 22: BURIAL MOUND CONCENTRATIONS BY KERNEL DENSITY DISTRIBUTION IN LOWER FRANCONIA 

The burial mounds of Lower Franconia are located in a wide variety of landscape. In both flat and 

sloped terrain, in forested and open landscape. Equal to all remnants of the past, they are 

endangered and exposed to destruction by modern construction, as well as terrain and surface 

cultivation and extraction. This is not necessarily altered by whether or not the cultural traces of the 

past exist as known or unknown remnants in the landscape, because information can be difficult to 
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assess when required to be actively mediated from heritage agencies. Accessibility to best possible 

mapping of cultural heritage is required to change the burden of active mediation of information 

from agencies to active information collection by agents. A complete mapping of cultural heritage in 

the landscape, both hidden and revealed, is impossible. However, known information should be 

easily accessible to help secure cultural heritage in the landscape from misguided and unaware 

destruction by construction and landscape cultivation. Presently the cultural monument record is 

partly revealed in Lower Franconia by macro scaled site registration. This is best practice for many 

parts of the world, but also results in unaware decisions based on misguided and lacking 

information. A necessity of archaeological mapping of monuments in the landscape is therefore of 

utmost importance, but it requires quantitative perspectives rather than qualitative narratives. 

Equally, quality of information is better exposed and revealed if understood by both micro and 

macro perspectives by more comprehensive depiction of the cultural landscape shaped by the past 

and present. Equally so, repetition and quantitative depiction and extraction is important to 

continued management of archaeological monuments in the landscape. For this purpose, 

computational detection from LIDAR data offers standardized and comparable results by data and 

model driven approaches of information extraction for change detection (Murakami 1999; Richter 

et al. 2013; Teo & Shih 2013; Walter 2004). However, this requires multiple datasets of 

comparability. In many instances, it is the initial documentation that is the main concern for further 

development, and for future tracking of change detection. To complete the picture, extensive 

mapping is necessary. However, the results are sometimes ambiguous and indiscernible. Meaning, it 

can be difficult to distinguish what results and conclusions are based upon, resulting in repetition 

being impossible. However, the necessity for verification and substantiating qualitative to 

quantitative investigation requires possibilities of replication. The nine selected sites for this study, 

follows similar practice outline in order to substantiate the qualitative information and micro 

patterns to quantitative replication and macro patterns. The examples given at the nine different 

sample sites, range from singular to numerous clustered burial mounds. They are located in flat as 

well as rough and sloped terrain, but all within areas less affected by human exploitation and 

situated in areas of vegetation. Some are in dense and unmaintained forest, while others are in more 

open production woodlands and plantations. Thus, the aim of subdividing segments of landscape for 

cultural heritage detection will be applied in a variety of landscapes and curvatures to see the 

impact on confidence values and detection results. The nine sites are presented in TABLE 7 and 

TABLE 8.  
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TABLE 7: SITE OVERVIEW WITH GROUND TRUTH ESTIMATE OF BURIAL MOUNDS WITHIN THE VICINITY 

No.	 SITE Ground	truth	
estimate	of	BM	

1 Stockstadt	am	
Main	

12 

2 Triefenstein	 25 
3 Hohe	Wart	 1 
4 Amorbach	 1 
5 Kleinlangheim	 26 
6 Riedenheim	 11 
7 Maroldsweisach	 10 
8 Stettfeld 2
9 Alzenau	 20 

TABLE 8: DESCRIPTION OF INDIVIDUAL SITES 

NAME	 Stockstadt	am	Main	
Description Burial mounds; three clusters 
Temporal or cultural frame Unknown prehistory 
Ground truth estimate 12
Nearest administrative UID 207688 
File number D-6-6020-0087 
Sub district 361 
12 burial mounds were located by field inspection. The 12 burial mounds are located in three 
distinct clusters, C1-3, but all are placed on the ridge towards the valley to the south. The burial 
mounds to the east, C1, are all heavily damaged by looting and a road running through one of them. 
All mounds in C1 are larger. The burial mounds in C2 are almost not noticable in the field due to 
canopy obstrcution, but stands out as patterns of clear cultural certainty within the DEM. The last 
cluster, C3, are quite prominent in the DEM as well as in the landscape, but all have also been looted 
at some point in time.  
NAME  Triefenstein 

Description  Burial mounds; three clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  25 

Nearest administrative UID  199043; 208622; 982209 

File number  D‐6‐6223‐0013; D‐6‐6223‐0012; D‐6‐6223‐0049 

Sub district  613 

Three distinct clusters of burial mounds, all located on the same plateau above the river Main, near 
Urphar. C1 consist of four flat topped burial mounds. C2 consist of minimum 11 burial mounds with 
some being cut by a pathway. Within the centre of the concentration the burial mounds are 
overlapping eachother, but it is difficult to assess stratigraphic relations without formal excavation. 
However, it does seem like the two burial mounds in the centre are the primary connectors. In 
between C2 and C3, some smaller circular earthenwork are also present as potential burial mounds, 
but they are all connected to the forest roads, and therefore might as well be connected to general 
earthenwork construction due to logistic patterns of waste dispersal. The last group C3, consist of a 
minimum of eight burial mounds of varying size, and are stratigraphicly overlapping. The temporal 
scope of the grave fields are undocumented, but a connection to the Migration Age fortification of 
Wettenburg is likely due to spatial presence within close vicinity.  
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NAME  Hohe Wart 

Description  Burial mound; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  1 

Nearest administrative UID  977096 

File number  D‐6‐6021‐0094 

Sub district  406 

The burial mound of Hohe Wart, is a singular regocnisable mound located on a very steep slope on a 
hillside facing the north. By its physical presence, it stands out as a compact earthenwork covered 
with stones. 
NAME  Amorbach 

Description  Burial mound; one cluster 

Timeframe  Unknown prehistory 

Ground truth estimate  1 

Nearest administrative UID  201173 

File number  D‐6‐6321‐0004 

Sub district  470 

The burial mound of Amorbach lies singuarly near the highest topographic point in the landscape. 
Forestry is very active, and fresh tractor tracks were seen dug into the side of the burial mound.  
NAME  Kleinlangheim 

Description  Burial mounds; one cluster 

Timeframe  Hallstatt Culture 

Ground truth estimate  26 

Nearest administrative UID  209040 

File number  D‐6‐6227‐0058 

Sub district  1154;1142 

One large cluster of burial mounds with different degrees of preservation. Some older, and some 
more modern evidence of looting and digging in the landscape. West of the burial mound 
concentration, several potential overploughed burial mounds were identified due to slight elevation, 
and the discovery of ceramics of potential Hallstat Culture. Other finds of Hallstat Culture has been 
located in the vicinity, and is a likely connection to the burial mounds. The burial mounds are 
located in the small valley, almost at the lowest point in the vicinity, but with slight elevation 
towards the south.  
NAME  Riedenheim 

Description  Burial mounds; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  11 

Nearest administrative UID  202035 

File number  D‐6‐6425‐0062 

Sub district  774;768 

Burial mounds of various degree of destruction and deteriation. However, most of them seem 
undisturbed from looting. There are two spatial placements of burial mounds at the site within two 
clusters. The first cluster is situated along the northern ridge of the forest. The second cluster is a 
little further inside the forest. In between the clusters is an empty area devoid of mounds, but with a 
hollow road passing through. The road is of modern use, but likely extends back in time as primary 
road in the area.  
NAME  Maroldsweisach 

Description  Burial mounds; two clusters 
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Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  10 

Nearest administrative UID  134142; 132787; 132795; 132783 

File number  D‐6‐5829‐0008;D‐6‐5829‐0012‐4 

Sub district  2138; 2138;2223 

Dispersed pattern of individual and clustered groups of burial mounds on the slopes and plateaus of 
the landscape. In C1, one burial mound has since the LIDAR scanning been removed, and is no 
longer possible to locate in the field. The two others still present were large flat topped burial 
mounds. From C2 a dispersed pattern of burial mounds are seen. From the field investigation, the 
cluster of burial mounds were clear, and the two outer mounds also very likely prehistoric.  
NAME  Stettfeld 

Description  Burial mounds; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  2 

Nearest administrative UID  181267; 134234 

File number  D‐4‐6030‐0023; D‐6‐6030‐0005 

Sub district  994;2291 

Two very centrally placed burial mounds on top of natural elevation. Both peaks of the Spitzlberg, 
have been in use for different purposes throughout time, and have been heavily shaped and 
destroyed by human activity. The western burial mound has been re-used as a new sarcophagus 
religious display, whereas the eastern mound has almost been completely hollowed out. Both burial 
mounds are therefore almost completely destroyed, but can still be recognised by their continued 
physical presence in landscape.  
NAME  Alzenau 

Description  Burial mounds; two clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  20 

Nearest administrative UID  194524; 196034 

File number  D‐6‐5920‐0007; D‐6‐5920‐0021 

Sub district  994;2291 

The two clusters of burial mounds at Alzenau are situated in an area of former migrating sand 
dunes, now held down by forest and canopies. However, this highly complicates the identification of 
burial mounds in the area. Undoubtedly there are two clusters of burial mounds in the area, but to 
determine their extent is extremely difficult by remote investigation, as well as by field 
investigation. Therefore the finale estimate is a very rough estimate, and the southern cluster, C2, 
seems to be the most prominent of the two.  
 

A more comprehensive representation of the nine individual sites can be seen in appendix 3A and 

3B. For the applied means of automatic information extraction from LIDAR data, a range of ground 

truths are therefore established. The detection of archaeological monuments within digital 

landscapes of LIDAR data is a discussion of positive and false positive detection by confidence 

improvement through shapes and patterns. To define limits of shape and patterns of cultural 

heritage, it is necessary to determine a baseline of impact. A baseline of impact will be determined 

by simple shape detection of burial mounds in the digital landscape. This includes a discussion on 
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how to describe and interpret natural mounds from cultural mounds, and how to classify the range 

of artificial mounds in the landscape from a wide array of cultural and natural impacts on terrain 

and surface. Because, terrain is dynamic through time and space by living and natural manipulation 

of soil composition and decomposition, and thus patterns of the past and present are mingled 

together as details in the landscape. Detection and comparison by automated and manual means, 

will be continued and applied in chapter 5, but it is necessary to establish some fundamentals 

before. Because, the ground truth estimate are verified burial mounds. However, all false positives 

can potentially be true burial mounds, and only truly rejected or confirmed by the archaeological 

practice. The visual and remote distinction of artificial cultural mounds and natural peaks, are even 

further complicated by the wide array of artificial mounds constructed and amassed in different 

contexts, and different periods of time. Therefore, a remotely detected false positive, is almost never 

a complete rejection or verification of origin and purpose. Because, even though a burial mound has 

a simple shape and outline, simple shapes and outlines similar to burial mounds are also constantly 

constructed and shaped by other means of cultural and natural manipulation of landscape. This 

naturally, is the implication for all geometry in landscape. It is constantly produced, reproduced and 

fragmented by wear and tear through time. Linear features are also a simple shape, and can be 

found in even greater abundance in the landscape, but linear features in the landscape are often 

more connected to more recent history, i.e. roads, ditches and dikes (see Vletter 2014) . Even more 

so, linear features such as roads, ditches, and dikes, are often reused as similar details in landscape 

with slight alterations, making it near impossible to determine origin and authenticity.  More 

complex shapes of monuments in the landscape, on the other hand, might have more unique 

features possible to detect, but is impacted by the equally unique record of fragmentation. Very 

unique structures has very unique situations of decay and deconstruction, making it almost 

impossible to define variable standards. If the variable definitions for complex features are 

simplified, the result will be a wide array of similarities detected in the landscape by modern and 

natural origin. Consequently, even though burial mounds have many similar false positive burial 

mounds in the landscape, the same can be said about most monuments in the landscape. All features 

change curvature, outline and shape according to wear and tear, smoothing unique details to a 

degree where it becomes the slight curvature changes in landscape that is the only possible thing 

left to detect. With a reasonable result on detecting mounds, the mound variables are as a result 

possible to be extended towards locating the fragmented and deconstructed records of the past, 

because within lies many unique shapes. The burial mound in it itself might therefore not be simple, 

but the mound is simply the ever present shape of any given landscape. The detection of a mound, 

compared to detection of a burial mound, can subsequently be based on the detection of macro 
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patterns, rather than micro patterns. Thus, the spatial and contextual relationship can be more 

important than individual outline of natural and cultural curvature in landscape.   

3.3 ARTIFICAL MOUNDS 

Artificial mounds are an ever present landscape detail across the known inhabited world as 

constructs from both the past and the present. The construction of artificial mounds are a narrative 

of construction and reproduction of socio-cultural symbolic guidelines, but also a narrative of 

practical principles and natural composition and decomposition of soil and materials to adapt to 

environmental variables in time and space. All artificial mounds are the composition and 

decomposition of earth and stones intentionally accumulated, but also depicting the gradual scatter 

of soil and materials through time. Artificial mounds are structured or accumulated entities meant 

to serve a practical purpose, a symbolic purpose, and/or both at the same time. A practical purpose 

is as a byproduct of other activities, such as construction or material displacement. Artificial 

mounds can also aid by its spatial characteristics as a structure offering an advantage compared to 

the natural landscape, e.g. visual or defensive improvement. Meaning, artificial mounds can be 

constructed for both the living and the dead. They can be constructs of intentionality and 

unintentionality and as markers of the once lived landscape, re-used for the living. All mounds have 

extents gradually scattered in space through time. However, both natural and cultural mounds can 

equally be accumulating soil, sediments, and materials by decomposition. Therefore, a distinction 

between artificial and natural mounds can be difficult, if not impossible without excavation and 

cross-sections revealing horizons. The alternative is looking at macro patterns in order to determine 

structure and variables for composition and decomposition of soil, sediments, and materials in the 

landscape. The landscape pattern indicates origin of both natural and cultural construction by soil 

horizon stratigraphy, but traces of movement and erosion in terrain can equally reveal natural and 

cultural impact on the landscape. For this purpose, LIDAR data is well suited for visualizing terrain 

composition and decomposition from a macro scale perspective. The landscape footprint by the 

lower part of the mound is commonly rounded gradually outward from the summit. Artificial 

mound variations exist, with for instance burial mounds also supplementing with other 

architectural features such as stone settings, ditches, walls, and chambers inside. Equally, for burial 

mounds variations exist over deposition in or out of the summit, and as cremations and inhumation 

deposits with or without chambers in a wide variety of shapes. Therefore, physical mound footprint 

in landscape changes in correlation to structural details and deposition in relation to a summit. 

Common for all artificial, as well as natural mounds, is, that the modern shape of curvature and peak 
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are simplistic due to temporal and spatial wear and tear by external impact through decomposition 

of soil and materials by living things and weather. Thus, the physical composition can be naively 

defined as rounded geometries in landscape shaped by environment and time. Thus, classification 

between natural and cultural mounds is difficult, but even more so between artificial mounds 

created for practical purpose, or artificial mounds created for symbolic purposes (FIGURE 23 & 

FIGURE 24).  

 

FIGURE 23: ARTIFICIAL MOUND CREATED FOR PRACTICAL PURPOSE. A STANDARD ACCUMULATED 
MODERN PEAK OF SOIL AND MATERIALS LOCATED NEXT TO A ROAD AND DITCH IN THE FOREST NEAR 
MAROLDSWEISACH, UNTER FRANKEN. VIEW TOWARDS EAST. 

The result is confidence value of automation requiring validation and verification by other criteria 

than outline detection. Segmentation is a valid means of improving our ability to process digital 

landscapes, but classification is restricted to other standards of analysis unlikely to remove the 

human interpreter. Consequently, changes of pattern perception from micro to macro patterns and 

perspectives are necessary to describe landscape details by efficient and quantifiable information 

extraction. However, learning and reading a landscape towards known target specific details is 

easier for both a human and computational interpreter, compared to a broad application to make 

sense of all unknown details in the cultural landscape. Equally, we can segment all mounds in the 
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landscape, but remote classification will continue to be a matter of settling on certainty and 

confidence values needed for both a human and computational perspective. To initiate, it is 

necessary to settle on how to understand the overarching concept of a burial mound, and the simple 

artificial shape behind it. 

 

 

FIGURE 24: ARTIFICIAL MOUND CREATED FOR SYMBOLIC PURPOSE. COMMON WORN AND ROUNDED 
OUTLINE OF A BURIAL MOUND. ABOVE: LANDSCAPE WITH BURIAL MOUND. BELOW: DRAWN BURIAL 
MOUND OUTLINE. BM110. IN THE FOREST NEAR MAROLDSWEISACH, UNTER FRANKEN. VIEW TOWARDS 
EAST. 

Cultural burial mounds are barrows, tumuli, graves, kurgans, cairns, passage graves, mortuary 

enclosures, earthen-work, earthen-covered artificial curvature, and many more. More overarching 

or describing terms and names exist, but similar to all burial mounds is the construction and 

accumulation of earth, timber, stones or other materials covering a grave, commemorative, or 

several graves by past cultural manifestation (Bradley 1998; Scarre 2002). Simply stated, burial 

mounds are constructed and accumulated cover over or for the dead ancestors, but the term burial 

mound does not cover the internal architecture by cultural strategy of deposition of the dead. Thus, 

a burial mound is the overlapping term used for a wide variety of cultural practice as a structure in 
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the landscape by representation. Because, the burial mound is created in composition and 

resonance with the cultural and spatial context to mimic, reference or reproduce socio-cultural 

guidelines (Scarre 2002; Tilley 1994; 1996). The symbolic purpose of burial mounds are of a 

tangible visual representation and significance by landscape alterations from a culture specific 

outline (Bradley 1993, 95-103; 1998, 10; Renfrew 1973; 1983; Scarre 2002) to establish, negotiate, 

and maintain social relationships (Goldhahn 2008; Holst & Rasmussen 2012) but equally as 

artificializing and manipulating nature (Midgley 2013; Tilley 1994; 1996), and as claiming 

community establishment and ownership (Hodder 1984; Renfrew 1981; Sherratt 1990). Thus, there 

is no single purpose for burial mounds in the landscape, but rather as an entity to a variation of 

practical and symbolic meaning for the living and the dead. However, it is a term integrating the 

cataloguing of a past or present day earthen cover, shaping the landscape over the dead as a risen 

elevation, mound, and monument in contrast to the natural curvature of landscape (see FIGURE 24). 

Each artificial mound entity utilizes individual components of accumulated materials, but with 

regional factors by source material availability. Thus pragmatic principles are also evident for the 

identity of the burial mound. The visible remains of the artificial mounds are laterally and vertically 

modified by a range of cultural and natural factors impacting the physical extent, and the life cycle of 

a burial mound is therefore not only understood by its point of origin, but rather by its adaptation 

and modification through time. The burial mound nevertheless, is defined as a singular entity 

collectively impacted in state of preservation and conservation by changes to physical extent in 

context. The physical state of a burial mound is an enclosed entity sealed by internal environment, 

creating individual stable ecosystem, and thus different degrees of preservation and conservation of 

organic and inorganic materials. The physical state of burial mounds vary from dry and aerobic 

almost deplete of organic materials, to wet and anaerobic with complete organic preservation. 

Dependent on internal sealed environment, the pH levels within burial mounds ranges from slightly 

alkaline to acidic with pH levels below 3. Maintaining the physical outline and extent implies 

preservation of water-saturation and iron pan (Breuning-Madsen & Holst 1998), and thus defines 

the state of preservation. The environment is constructed from last penetration of iron cap and 

outline from external natural or cultural impact. The amount and quality of information within the 

burial mound is therefore not directly correlated to the mere physical presence or absence in 

relation to original mound (Holst et al. 2006). As a result, preservation of metal and organic material 

varies greatly in different environments. Thus, the necessary active preservation of burial mounds is 

a correlation to preserve a stable and continued internal environment. Modifying the landscape and 

altering moisture levels, such as by drainage or water displacement, changes the previous chemical 

balance and environment around, and thus affects accumulated conservation within the mound. The 
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amount and quantity of information preserved from barrow to barrow, changes in relation to the 

landscape, and thus impacts the necessary active preservation precautions to maintain the 

accumulated passive conservation within the sealed ecosystems. These are very important factors 

to consider for non-destructive preservation of cultural heritage, and especially burial mounds in 

the landscape. Because, the burial mounds are not just important as monuments in the landscape, 

but also as entities preserving information near the time of origin construction.  However, the 

dangers of destruction for burial mounds are many, and naturally the physical changes to the 

outline of the monuments have the most impact on preservation of information. Burial mounds in 

the landscape are in danger of being destroyed despite general protection by rules of preservation 

from modern construction, forestry, and agriculture (Asingh 2001; Jørgensen 2001). The impact of 

environment, but also negligence or intentional destruction, randomly changes and destroys 

monuments in the landscape. But even without random occurrence of external impacts, it is 

estimated that cultivation alone causes continued erosion by 1 cm/year on non-scheduled burial 

mounds in the landscape (Holst et al. 2006, 68-9). Records of ground truth are therefore an absolute 

necessity for monitoring changes in landscape. Automated detection and automated change	

detection are subsequently necessary steps of modern cultural heritage management in order to 

preserve both the physical and digital record of our landscape by being able detect change, and 

repeatedly calculating modern impact in the continuous flow of new datasets. 

3.4 CHANGING LANDSCAPES IN LOWER FRANCONIA 

Landscapes are ever changing by construction and deconstruction. No terrain remains stable, and 

all recording and documentation are static representation and visualization of given space in given 

time. Remote investigations are therefore constructed representations of given space in given time. 

Landscape is inevitably changed and changing in area of interest since origin of construction, but 

also since point of recording and documentation. As a result, digital truths of elevation models are 

not always similar to ground truths. From Lower Franconia, this is exemplified from predicted 

digital truths by remote visual LIDAR detection of burial mounds at the nine areas of interest 

introduced above. The nine sites are field surveyed to compare digital truths and ground truths to 

create a record of burial mounds within the landscape of the areas of interest. This is presented in 

appendix 3B. However, in the appendix 3B is only represented the actual burial mounds within the 

landscape, and not the details changing landscapes, and misconceptions between digital and analog 

information. Because, as was already revealed in chapter 2,6, desk based investigations and field 

surveys do not exclude one another, but rather compliments each other by revealing hidden details 

not completely discovered by one approach alone. Similar for the nine areas of interest, not all 
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details revealed by LIDAR are true, but the LIDAR data also revealed much information not possible 

to attain from field surveys alone. Some burial mounds were not detected by visual detection, some 

changed classification when closer inspection was carried out by the field survey, and some details 

was no longer part of the landscape since the original LIDAR recording and present day 

representation of landscape. Digital artefacts, meaning remnant and patterns created by the remote 

recording, are an ever present problem, but in one instance included the disappearance of a burial 

mound likely destroyed by modern forestry (FIGURE 25). 

       

FIGURE 25: MAROLDSWEISACH DTM WITH INDICATION OF DETECTED BURIAL MOUNDS. RED CIRCLE 
INDICATES THE MISSING VISUALLY DETECTED BURIAL MOUND, BUT NOT POSSIBLE TO RELOCATE BY 

FIELD SURVEY. SHADED RELIEF: AZI. 45° , 270 ANGLE. 

The visually detected burial mound indicated in raster 2, FIGURE 25, was not possible to relocate by 

field survey, despite the area containing a distinct looted burial mound within the DTM. Just below 

the missing burial mound, a new burial mound was located by field survey that was not possible to 

remotely detect from desk based investigation by the DTM (FIGURE 26; FIGURE 27).  

Maroldsweisach
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FIGURE 26: LEFT: DTM WITHOUT INDICATION OF BURIAL MOUNDS. RIGHT: INDICATION OF TWO BURIAL 
MOUNDS. RED: MISSING, YELLOW: FIELD SURVEY DETECTED. SHADED RELIEF: AZI. 45°, 270 ANGLE. 

FIGURE 27: LEFT: AREA OF MISSING BM IN MAROLDSWEISACH. RIGHT: FIELD SURVEY LOCATED A SLIGHT 
ELEVATIONAL CHANGE NOT VISIBLE WITHIN THE DTM. 20 CM ELEVATIONAL VARIATION IN THE 

LANDSCAPE INDICATED A LIKELY BM BY A DISTINCT CIRUCLAR STRUCTURE. 

Artificial mounds in the landscape can be constructions of any given time, but reveals indirect 

information by macro patterns in landscape and contextualization to other known details. For the 

area of Maroldsweisach, the situation is similar. It is not necessarily the micro patterns of 

elevational change and artificial mound placement that determines classification, but rather the 

macro pattern of context. Two clusters of burial mounds are located within the area investigated 

and shown in FIGURE 25, but they are heavily altered from original representation, with most likely 

destroyed and removed mounds in between. However, many details of the former burial mounds 

are still possible to locate within the landscape, if overall macro patterns are capable of indicating 

areas of interest. To further cultural heritage management and detection, the application of macro 

segmentation can therefore contribute meaningful patterns to understand landscape. Thus, it is a 

matter of segmenting landscape to a degree where individual details are not essential for primary 

detection and interpretation for areas of interest, such as complex grave field distribution. 

Accordingly, it is a matter of defining approaches to improve macro pattern detection substantial 

enough for micro patterns to be investigated. Simple shape detection allows for macro pattern 
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extraction, but do not construct micro patterns of certainty regarding origin. To apply pattern 

recognition, the perspectives should therefore be focused on macro patterns rather than micro 

patterns in the landscape. To understand how to best apply, it is necessary to define present 

practice, and impact in the field of cultural heritage management and detection. This will be 

visualized and exemplified in the following chapter. The following chapter will define state of the art 

for automated detection, and best practice for segmentation and simple shape detection within 

remotely sensed data, and particular for LIDAR data. This will be done to make a quantifiable 

representation of the development of the field, meanwhile locating best approaches for improving 

quality of information extraction by notions of cost efficiency, and increased or improved use for the 

archaeological community. However, it is necessary to remember that remotely sensed information 

is not always the same as the perceived information gathered from the ground. Details and 

information changes, and landscape is constantly manipulated, altered, and shaped by external and 

internal factors.  
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4. STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION 

WITHIN REMOTE SENSING ARCHAEOLOGY 

The following approach focuses on automated procedures for the detection of monuments in the 

landscape as part of archaeological mapping. The approach is a reaction to understand automated 

detection across domains and academics fields, as well as a response to the increased availability of 

data from vast areas of diverse landscape shaped by the past and present. Especially with the 

availability of LIDAR data, digital landscape analysis and detection of cultural heritage monuments 

has developed rapidly during the last 15 years. Consequently, this increase in information has 

amplified the need for automated procedures for monitoring, surveying and detection of known and 

unknown monuments. Whenever tools and procedures, such as these, cross knowledge domains 

they invariably split existing disciplines into those familiar and engaging with the new, and those 

that do not. The pattern by which new knowledge is spreading, and where appropriation takes 

place, holds vital clues for understanding the long-term impact of the procedures in questions. To 

understand development of the field and best practice, automated procedures can also help to 

analyze the use of automated detection for cultural heritage studies. In this chapter, this will be 

done by a systematic literature review to get a simple perspective of publication intensity. In a 

second step, applied statistics of network analysis will be used to generate a dataset that contains 

information relevant for the dissemination of knowledge. The goal of this chapter is to see 

publications patterns in order to determine state of the art and best practice to be applied in the 

following chapter. The network analysis helps describe the paths taken by the community, and how 

this impacts the field today.  

4.1 QUANTIFYING THE FIELD 

The analysis of patterns within automated procedures for cultural heritage and monument 

detection has two components: First it is initiated by a Systematic Literature Review (SLR) to reveal 

overall trends. The overall trends are subsequently analyzed using Network Analysis (NA) to gain a 

more detailed view of community structure and knowledge brokerage. The SLR uses Systematic 

Search Queries (SSQ) of bibliographic databases and citation indexes. The NA is based on a sample 

dataset for referential connectivity. The NA citation data can be referenced by appendix 4A, 4B, and 

4C.  By looking at the historical development of the field through a quantitative lens, the hope is to 

reduce personal bias and let the data of publications and citations do the talking instead. The results 
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of the analysis can assist planning for similar projects by pointing to the hidden or missing 

connections of clusters of research.  

Quantitative approaches principally depend on the quality of their underlying datasets. The 

dependence on qualitative data for analysis is partly due to technical limitations in the citation 

databases. Without the ability to automatically generate larger randomized samples or to compare 

the topology of the graph with that of the complete corpus underlying the queries, it can only 

present an informed estimate of the real-world network. Just as these databases suffer from 

limitations in their collection process, e.g. collection based on English as lingua franca, they 

nevertheless provide a reasonably good estimate of different academic fields. Similarly, the core 

articles of the analysis present an estimate at the state of the field as it appears within these 

datasets. As time progresses, schematic models representing the field will equally develop. 

However, the following approach takes a dual approach to determine the field by the initial sample 

dataset for NA, as well as compare with an updated dataset by recommendations following a 

presentation given at the conference, Computer  Applications and Quantitative Methods in 

Archaeology, spring 2016 in Oslo.  

4.2 SYSTEMATIC LITERATURE REVIEW 

Data for the SLR is collected from online publication indexes and SSQ. SLR produces a general 

overview for understanding the community and development of automated detection within 

archaeology. Web of Science, (WoS; www.webofknowledge.com) and Scopus 

(https://www.scopus.com/) were used as primary platforms for data extraction. Other potential 

databases for SSQ, are: Google Scholar, CINAHL, CAS Illumina Databases, EBSCOhost Databases, 

EMBASE, PubMed Central, Science Direct, and SciFinder Scholar. However, all the investigated 

online citation indexes provide a limited coverage of a field’s literary corpus. Thus, data 

fragmentation remains a problem for automatic extraction of data via SSQ, because the corpus of 

articles lacks publications from lesser recognized journals and proceedings. Hence, qualitative 

selection of sample datasets enables a less impaired analysis in comparison to quantitative studies 

through online citation indexes. In its present state, online citation indexes are usually biased 

towards different journals in relation to access obtained, or in-house publication. Consequently, 

comparisons between the different citation indexes are not defined as 1:1. Patterns can still be 

compared, because they are indications of overall trends. But it is necessary that they incorporate a 

large source material for data to be comparable. WoS and Scopus are two of the biggest citation 

indexes at present, and both incorporate a large corpus of publications focused on remote sensing 
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and cultural heritage, such as Antiquity, Journal	of	Archaeological	Science, International	Society	 for	

Photogrammetry	and	Remote	Sensing, Remote	Sensing, and many more. Figure 28 shows the results 

of the SSQ. The online journal and citation indexes indicate increasing relevance on the topic of 

remote sensing. By 2016 the data shows a reduced number of publications, but that is largely also a 

result of data extraction being performed mid-2016. All queries used combine two generic terms. 

More generic terms were experimentally queried, but few proved to show discernible patterns for 

dissemination of automated procedures in archaeological contexts. In addition to the selection bias 

favoring international peer-reviewed journals, a heterogeneous array of terms can designate 

automated procedures within archaeological practices1. All terms describe various advances 

towards automated and semi-automated means of segmenting and classifying remotely sensed data. 

The varied terms, however, make it difficult to locate specific tags that encompass all relevant data. 

Therefore, the SLR consists of generic terms to locate general tendencies and trends, such as: 

‘archaeology’ (Ar), ‘LIDAR (Li), ‘remote sensing’ (RS), and ‘automatic detection’ (AD). These terms 

contain the largest potential data corpus for a SLR, but cannot reveal a complete picture. Especially 

in the combination with terms such as ‘archaeology’ the tendencies are much more fragmented. One 

such example is the combination of generalized search terms of ‘automatic’, or ‘detection’ combined 

with ’archaeology’, resulting in two hits. Consequently, the more generalized search term ‘remote 

sensing’ has been used to see the presence in search queries together with ‘automatic detection’. 

The SLR reveals a prominent presence of remote sensing and LIDAR data within archaeology, but 

almost no relation to automated procedures. Within remote sensing the presence of LIDAR data 

grows exponentially. Equally, automated procedures grow parallel to remote sensing and LIDAR 

data within the online citation index of WoS, while Scopus indicates a more blurred pattern. 

However, none of the online citation indexes can indicate trends in the field of automated 

procedures for monument detection within archaeology. While other studies such as Tomljenovic et 

al. (2015) and Agapiou & Lysandrou (2015) effectively use SLR to enhance our understanding of 

remote sensing and automated procedures, this investigation uses NA, to complement the SLR. NA 

reveals the community of automated procedures within archaeology, which is otherwise not 

registered by the SLR. Thus, where the SLR fails, the NA can elaborate and highlight more present, 

different, and miniscule communities and trends. This gives the possibility to quantifiably review 

evolution of best practice for automated practice, and its pattern of application within archaeology.  

                                                                  
1 The terms and keywords for the procedures are described by ‘algorithmic procedures’ and ‘general 
methods’. Generic terms are given as: ‘hough’, ‘canny’, ‘edge’, ‘line’, ‘shape’, ‘matching’, ‘extraction’, ‘detection’, 
‘transform’, ‘object’, ‘template’, ‘attribute’, ‘texture’, ‘contrast’, ‘morphology’, ‘per-pixel’, ‘segmentation’, 
‘classification’, ‘ontology’, ‘pattern’, ‘recognition’, ‘image analysis’, ‘automatic’, ‘semi-automatic’, ‘deep’, 
‘machine learning’, ‘computation’, and ‘algorithm’. 
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WOS	 SCOPUS

A:	(Li)	&	(Ar) 

  

B:	(RS)	&	(Ar)	
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FIGURE 28: SCOPUS AND WEB OF SCIENCE (WOS) CITATION INDEX FOR PUBLICATIONS COMBINING:’ 

LIDAR’ (LI), ‘ARCHAEOLOGY’ (AR), ‘REMOTE SENSING’ (RS), AND ‘AUTOMATIC DETECTION’ (AD). THE Y-

AXIS INDICATES PUBLICATION AMOUNT, WHEREAS THE X-AXIS INDICATES YEAR OF PUBLICATION 

The timespan is defined by the possible extraction from the search queries of WoS and Scopus. 

Figure 9A illustrates the impact of ‘LIDAR’ data within ‘archaeology’. Figure 9B illustrates impact of 

‘remote sensing’ and ‘archaeology’, where usage history is extended back in time with increasing 

presence towards today. For ‘remote sensing’ and ‘LIDAR’, in figure 9C, a clear trend can be seen for 

the presence of LIDAR data within remote sensing studies with high increasing presence and 

impact. Lastly, figure9D illustrates the tendencies for the search terms of ‘automatic detection’ 

within ‘remote sensing’ as well as ‘archaeology’ to show the difference in impact within these fields. 

It also illustrates problems for understanding automatic procedures within archaeology. Within 

remote sensing and automated detection, the field is exponentially growing, whereas within 

archaeology the picture is more blurred with few articles recognized by the online citation indexes. 

Some included articles are not even relevant, but as can be seen in the reference list from the sample 

NA dataset (see appendix 4C) many more articles of interest exist. But even though the SLR does not 

provide a complete picture, it still gives solid indications as to the larger trends in-between different 

fields.  

4.3 NETWORK ANALYSIS 

To gain a more fine-grained understanding of the regional and intellectual shape of the community 

revealed by the SLR, this study turn to the advantages of network analysis. By generating a citation 

network based on a new qualitative sample dataset of 37 peer-reviewed core articles, the 

connections between individual publications and their authors, as well as the larger connected 

clusters that they form, can be traced and visualized. The modelled overall shape of the citation 

graph allows for a tentative assessment of the connectedness of the field as a whole, and visualizes 

its development and evolution. The initial 37 core articles all apply automatic detection by either a 

data or model driven approach. To minimize referential bias, the dataset is restricted towards one 

article per main author, and exclude articles with high degrees of overlap between authors and co-

authors between separate publications. The publications in the NA sample do not represent all 

publications related to automated procedures for monument detection, but rather a diverse sample 

to probe the structure of connections between different aspects of the field. The modelled citation 

will later be validated by adding additional articles to the dataset, to see if the patterns change. The 

initial citation network consists of 1075 publication nodes and 1160 directed citation edges. It 
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includes a variety of authors, and models the evolution of the field between 1999 and spring 2016. 

As a result, the connectivity of the graph puts further emphasis on intellectual brokerage between 

loosely connected components at the exclusion of self-references and repeated (re-)publications by 

identical groups.  

The mean cooperation between authors is 1.105 per article. Within this selection (see Figure 29) 20 

articles focus on aerial imagery from satellites and airplanes, 17 articles focus on LIDAR data. 21 

articles concern technical questions, and 16 concern cultural heritage questions. 32 articles focus on 

data driven and attribute analysis, whereas five articles specifically concern “model driven” and 

“template matching”. 

 

FIGURE 29: FOCUS WITHIN THE QUALITATIVE SAMPLE DATASET OF 37 PUBLICATIONS FOR THE 

NA 
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Only a few articles include institutional affiliations of their authors at the time of publication, so 

information was manually supplied for the 37 core publications by first author. In Figure 30 it can 

be seen that the field has global reach, but with a rather Eurocentric focus. This is likely also a result 

of personal institutional or linguistic bias, and of snowball sampling. A similar regional focus occurs 

with respect to places of publication from the bibliographical metadata. Yet, in today’s publishing 

environment this has limited analytical potential, given the prevalence of English as scientific lingua 

franca and academic publishing practices.  

 

FIGURE 30: INSTITUTIONAL AFFILIATIONS OF THE NA DATASET FROM 37 PUBLICATIONS BY 

FIRST AUTHOR 

Institutional connection by reference indicates connection by direct or indirect influence. To review 

the pattern of institutional affiliation, Figure 31 indicates modularity in three distinct groups by 

color range. The three distinct modularity groups are connected by similarity of references, but also 

indicate collaboration or influence. Despite the Eurocentric focus of the dataset, Figure 31 also gives 

indications as to directions of international collaboration. The 1st modularity group is highly 

internationally connected; whereas the 2nd modularity group has a very central European 

connection. The 3rd group equally has an international connectivity, but with a somewhat North 

American focus.  
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FIGURE 31: INSTITUTIONAL AFFILIATION BY MODULARITY IN 3 GROUPS: 1. DARK RED, 2. LIGHT 

GREEN, 3. LIGHT BLUE 

The construction of three distinct modularity groups is also a result of field of field focus on either 
primarily technical or cultural questions for research topic (Figure 32). 

 

FIGURE 32: PRIMARY RESEARCH FOCUS: A. LIGHT GREEN, B. RED 

A 

B

1  2
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By comparison of Figure 31 and Figure 32, it can be seen how the modularity group 1 is aligned with 

articles focused on automated feature detection for cultural heritage and archaeology, whereas 

modularity group 3 is focused on automated feature detection from a technical point of view 

towards a wider array of fields. The modularity group 3 is to a large degree focused on building 

footprints towards a contemporary classification of landscape, where modularity group 1 is focused 

on the ancient landscape. This modularity separation is natural given the input dataset of 43 % of 

primary articles focused on cultural aspects of automated detection and classification, and 57% of 

the primary articles focused on technical or more contemporary aspects of automated detection and 

classification. However, modularity group 2 in Figure 31, becomes something different. Modularity 

group 2 is the mediator between the other two modularity groups. Thus implying a wider depth of 

institutional affiliation towards a bigger field, and thus perhaps the most influential group by having 

and in- and out-degree of connectivity to the whole field of automated detection within remote 

sensing. This connectivity is determined by cross-references, meaning it is important to determine 

the sources of co-citation in order to understand the differences of perspectives. The citation 

network shown in Figure 33, uses Force-Atlas layout. This citation graph forms the basis for 

applying community detection algorithms, analysis of subgraphs, and event type information. The 

relative position of nodes remains consistent from Figure 33 to Figure 36 below. Figure 33 shows 

the full scope of the citation network. When viewing the full citation network, the patterns become 

illusive by the amount of information present. It is therefore necessary to filter to reveal patterns of 

interest for the field of automatic detection.   
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FIGURE 33: THE FULL CITATION NETWORK 

In Figure 34, PageRank (Page et al. 1999) determines both node and label size. By itself, it is a good 

indicator of measuring academic impact. In the following figures, PageRank is contrasted by 

centrality to assess the academic impact of individual publications (see also Yan and Ding 2011). 

The prevalence of egocentric clusters such as the 190 mostly isotopic nodes related to the article of 

Blaschke 2010, results in a sparse graph with a density of 0.001 and 4 main components. By filtering 

nodes with a degree > 1, Figure 34 allows for a clearer view of those publications forming the well-

connected core of the network (10.7% of nodes). The differences in node and label sizes are striking. 

These differences indicate competing ways in which publications are significant for the field. 

Blaschke 2010 draws upon the most citations, but only a small part is in turn connected to the core 

group. Ben-Arie and Rao 1993, on the other hand, occupies a central role for authors who in turn 

inspire other authors within the discipline. This becomes even more evident when comparing the 

subgraphs for in- and out-citations in Figure 35 and Figure 36. To derive these subgraphs, nodes are 

ignored which have zero in- or out-degree respectively, which as a consequence filter isolated nodes 

from the remaining set.  
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FIGURE 34 SUBGRAPH CORE CITATION NETWORK WITH DEGREE > 1 

FIGURE 35 SUBGRAPH IN-CITATION FIGURE 36 SUBGRAPH OUT-CITATION 

In both cases Moon et al. 2002 and Ben-Arie and Rao 1993 play a significant role, albeit as part of 

small out-citation components. De Laet et al. 2007 and Luo et al. 2014a show the most consistent 

impact across all measures, along with others such as Dorazio et al. 2012 who rank in the top ten 

across different measures (see Table 9). This sequence of sub-graphs explains the discrepancy in 

impact that different means of measurement capture in the original citation network, displayed here 

by modifying nodes and label size independent of each other. 
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TABLE 9: COMPARISON OF TOP 10 CENTRALITY MEASURES (MULTIPLE APPEARANCES IN BOLD) 

RANK	 PUBLICATION	
 BETWEENNESS PAGERANK (0.00…) DEGREE 
1 DE LAET ET AL. 

2007 
154.5 BEN-ARIE & RAO 

1993 
…2129 BLASCHKE 2010 191.0

2 DORAZIO	ET	AL.	
2012	

87.5 MOON	ET	AL.	2002 …1582 BELGIU ET AL. 
2014 

69.0

3 MENZE	ET	AL.	
2007A	

82.0 DI IORIO ET AL. 
2008 

…1582 LUO ET AL. 2014A 66.0

4 LAMBERS & 
ZINGMAN 2013 

65.0 TRIER ET AL. 2009 …1008 BHASKARAN ET 
AL. 2010 

62.0

5 SCHUETTER	ET	AL.	
2013	

32.5 TRIER & PILOE 
2012 

…0890 DORAZIO	ET	AL.	
2012	

53.0

6 BENZ ET AL. 2004 24.0 KRAUS & PFEIFER 
1998 

…0691 LASAPONARA ET 
AL. 2014 

44.0

7 JAHJAH & ULIVIERI 
2010 

21.0 AXELSSON 1999 …0604 MENZE	ET	AL.	
2007A	

41.0

8 FIGORITO & 
TARANTINO 2014 

20.5 BRIESE 2004A …0558 MYINT ET AL. 
2011 

39.0

9 MOON	ET	AL.	2002	 17.0 RUTZINGER ET AL. 
2009 

…0494 SCHUETTER	ET	AL.	
2013	

37.0

10 BRIESE ET AL. 2009 14.0 DEVEREUX ET AL. 
2005 

…0456 CHEN ET AL. 2009 37.0

 

Looking at the evolution of the network over time in Figure 37 it can be seen that a shared body of 

references is only slowly coming into being. While the articles in the dataset were published 

between 1999 and 2015, their references go as far back as 1820 with the majority of publications 

(43%) falling between 2011 and 2015 as can be seen in the long-tail plot of the occurrence of nodes 

and edges for the whole graph. It cannot be said conclusively that this indicates the conscious 

development of the field in light of its earlier history, but it is very likely the case. When comparing 

the time at which new nodes enter the network with the time in which edges are formed, it becomes 

obvious that the formation of today’s field first began around 2009 when a steep increase in the 

connectedness of the graph occurs, while the increase in nodes remains stable. Before 2009 most 

publications stand in relative isolation. Both the 2009 peak and a second peak in 2013 can be seen 

in the final panel of Figure 38 which tracks changes over time in the clustering coefficient. 



CHAPTER 4: STATE OF AUTOMATED AND SEMI-AUTOMATED DETECTION WITHIN REMOTE SENSING ARCHAEOLOGY 
 

100 
 

 

FIGURE 37: TIME SERIES FOR NODES AND EDGES 

Given that connectivity, overall size, rate of growth, and regional spread, are continuously 

increasing, the question is less if the field is going to continue to grow, but how. Predicting the 

future growth of the network touches upon the question of preferential attachment (Barabási 

1999). Throughout the sequence of graphs from figure 4 to figure 7, hubs of various sizes are clearly 

visible. Given the kind of knowledge network that is modelled, such a non-random topology matches 

the expectations of the dataset. In simple terms, those publications that have already attracted more 

attention are likely to continue to do so. Comparing the network evolution with the predicted 

development of scale-free networks in Figure 38, somewhat contradictory results can be retrieved. 

The graph for degree distribution shows strong linear tendencies and the formation of hubs are 

formed earlier than expected, which is reflected in a poor correlation between the predicted and the 

observed graph structure. The values for avg. clustering coefficient (and topological coefficients), 

however, show a better match between prediction and observation. Most back referenced 

publications before 1999 do not form hubs. After 1999 hubs form slightly faster than predicted by 

power law models. While the early history of the field shows a high degree of isolation from later 
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developments, recent trends tend to strongly accumulate around hubs, which is likely to continue to 

influence the future formation of the field. 

Correlation	 R‐squared	 Plot	

0.840 0.512 

 

0.957 0.803 

 

0.993 0.979 

 

FIGURE 38: PREDICTION (LINE) AND OBSERVED MEASURES (DOTS) 

In summary, the network analysis shows a field with historic roots in the 19th century, experiencing 

intense spurs of growth and expansion. A high degree of ego-centric clusters impeded the formation 

of a truly connected whole characteristic for scientific communities. This, however, has been over-

compensated in recent years, by a small number of publications that brought the fragmented parts 

of the network into contact. These brokers continue to unify the network to a higher degree than 
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expected. It remains to be seen in the following section what the causes of their performance might 

be. The data at hand is not suitable for a detailed inquiry into the regional and institutional 

affiliations for each node in the network. While these are likely to have shaped the formation of the 

network, it is indicated and visualized that the internal structure of the network is exerting its 

influence. By drawing connection between otherwise disparate research endeavors, the modelled 

community indicates that it is now in a better position to formulate informed responses to 

methodological challenges, or to avoid repeating past mistakes.  

4.4 TESTING THE MODEL 

To test the model, additional data will be supplied to the NA reference list. This is an addition based 

on discussion and advice after a presentation at the international CAA in Oslo 2016. 4 additional 

articles were added to the core 37 per-reviewed articles to the sample NA dataset. All 4 additional 

articles are focused on answering cultural questions based on applied means of automatic feature 

extraction by remotely sensed data (FIGURE 39). This balances the weight between articles focused 

on technical or cultural questions within the dataset, but keeps the same skewness between data 

analysis approach of data versus model driven, and remote sensing by aerial imagery versus LIDAR.

 

FIGURE 39: FOCUS WITHIN THE MODEL TESTING QUALITATIVE SAMPLE DATASET OF 41 PUBLICATIONS OF 
THE NA 

The additional articles follow the same guidelines as the earlier dataset by not including papers with 

authors already within the dataset. This is done to keep the referential integrity, and not enhance 

individual bias and skewness to the dataset. The new dataset cannot visually replicate previous 

layout structure of the network, because when connectivity changes, so does the layout of nodes and 

edges. However, the patterns are discernible by same standard, and thus offer comparative analysis 

to validate or question the previous model. The new dataset consist of 1236 unique nodes by 1489 

entries, giving 1367 edge relations in the network. In contrast the first dataset has 1075 unique 

nodes by 1277 entries, giving 1160 edge relations. This gives a slight increase in connection from 

16% to 17%, and is an expected increase by adding more articles to the dataset. If continued, then 

54%
46%

Aerial imagery LIDAR

51%49%

technical cultural

85%

15%

data model
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the network will in the end be fully connected due to academic referential practice. However, it is 

not possible to referential investigate all literature ever published, so it is important to know how 

large the literary corpus needs to be in order to visualize a stable output, and to which degree more 

data is needed to be able to clarify academic connectedness. By four added papers it gives an 

increase of 7% to the dataset by total number of references, and it is therefore interesting to see if 

new patterns emerge (Figure 40).  The top ten articles measured by centrality, do not change a lot 

with the added data (Table 10), indicating that both datasets are stable models of the community. 

Some changes, however, is necessary to mention. The top ten articles by centrality measurements 

remain the same, besides one paper being omitted by the added referential data, and that is the 

paper of Di Iorio et al. 2008. It previously had a high impact by PageRank, but has been completely 

pushed out in the new dataset. Despite that, the rest of the dataset remains stable, besides some 

slight changes in ranking brokerage by Betweenness and connectedness by PageRank.  Di Iorio et al. 

2008 had a high PageRank by having a very low degree of citations, but almost all being directly 

connected to one of the primary articles in the dataset, and that being of Di Iorio et al. 2010. But by 

the added articles in the new dataset, this bias weight is removed.  

By Betweenness measurement, i.e. brokerage between authors, institutions, and fields, some slight 

changes occur in the ranking. Some papers are pushed out of the top ten, but still remain significant 

for the complete network analysis (Figure 40). Blaschke 2010, however, suddenly becomes very 

connected to the network by Betweenness measurement form in- and out-citations. This indicates 

that many of the new citations in the four added articles cite the same articles. Thus, Blaschke 2010 

becomes an important broker of the field.  
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TABLE 10: COMPARISON OF TOP 10 BY CENTRALITY MEASURES (MULTIPLE APPEARANCES IN 

BOLD). SLIGHT CHANCES IN COMPARISON TO EARLIER DATASET 

RANK PUBLICATION 

 BETWEENNESS PAGERANK (0.00…) DEGREE 

1 LAMBERS	&	ZINGMAN	

2013 

190,5 BEN-ARIE & RAO 

1993 

…1057 BLASCHKE 2010 191.0 

2 BLASCHKE	2010	 182.8 MOON	ET	AL.	2002	 …1019 SEVARA ET AL. 

2016 

82.0 

3 DE	LAET	ET	AL.	2007	 179,3 TRIER ET AL. 2009 …0971 BELGIU	ET	AL.	

2014	

69.0 

4 MENZE	ET	AL.	2007A	 162 TRIER & PILOE 2012 …0959 ZINGMAN ET AL. 

2016 

66.0 

5 D’ORAZIO	ET	AL.	

2012	

128,5 KRAUS & PFEIFER 

1998 

…0934 LUO	ET	AL.	2014A	 65.0 

6 FIGORITO & 

TARANTINO 2014 

89,2 BRIESE 2004A …0928 BHASKARAN ET AL. 

2010 

61.0 

7 BELGIU	ET	AL.	2014	 67 AXELSSON 1999 …0924 D’ORAZIO	ET	AL.	

2012	

55.0 

8 BENZ ET AL. 2004 48,3 RUTZINGER ET AL. 

2009 

…0915 STOTT ET AL. 2012 49.0 

9 JAHJAH	&	ULIVIERI	 41,5 DEVEREUX ET AL. 

2005 

…0911 LASAPONARA	ET	AL.	

2014	

44.0 

10 MOON	ET	AL.	2002	 35 DUDA ET AL. 2005 …0906 MENZE	ET	AL.	

2007A	

42.0 

 

The most important parameter for measuring the stability of the model is PageRank. The PageRank 

algorithm measures by neighborhood, and estimates value based on direction of edges to indicate 

influence on the field. The result is a probability distribution of the likelihood articles influence the 

field or are used to understand the field. The PageRank measurement remains stable, besides Di 

Iorio et al. 2008 being left out and replaced by Duda et al. 2005 in the top ten. As a result, both 

datasets are stable for modelling and visualizing patterns by. The visual layout of the network 

changes by edges, but the influence and brokerage of nodes remain similarly established between 

both datasets (Figure 40).  
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FIGURE 40: ADDITIONAL NA TO TEST THE MODEL 

4.5 THE NETWORK IMPACT 

Both NA and SLR point to the formation of a fast growing and increasingly connected discourse 

concerning automated procedures within archaeology. The analysis looks at the evolution of the 

field as it happens. This means that the network indicates that the community fundamentally trusts 

the praxis successfully spreading within the network based on selective pressures of standard 

academic review. What the method cannot provide, are a theoretical foundation for or against new 

paradigms. By 2009 a well-connected community starts to form, which is measured by the year of 

publication. The observable imbalance between model and data driven approaches, means that 

those following the majority approach had an advantage through a larger body of established 

knowledge. For the evolution of the field, it remains to be seen if model driven approaches can 
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counteract this structural inertia, or if they continue to stand in relative isolation within 

archaeological practice to entirely different knowledge domains.  

The overall focus (85%, FIGURE 39) on data driven approaches for both automated procedures and 

automated monument detection has shaped the development of the citation network. The 

dominance of procedures by unique proxy values and per-pixel analysis signifies a long-standing 

search for standardized means of detecting hidden monuments in vegetation. However, with LIDAR 

data this has changed so that both data and model driven approaches are applied to previously 

untested areas. Model driven approaches (15%, FIGURE 39) for automatic detection of monuments 

emerge in the mid 90’es, but with little immediate impact on the field. In this, the model driven 

community mirrors the data driven community around 1995 with many network isotopes and 

isolated nodes. More recently, it follows the general growth trend of a field consolidating itself. 

Looking at one example more closely, it may explain how innovations generate impact without 

forming connections in the graph. Arjan De Boer’s work on standardized means of automated 

monument detection (2007), stands in relative isolation within the graph. Yet, despite its isolation, 

the methodological approach of De Boer (2007) regarding template matching and pattern 

recognition has found its way into the larger discourse of automatic detection and cultural heritage. 

This implies influence and collaboration from the field of computer science where these techniques 

are explored in depth under the heading of image analysis. The data lacks unambiguous references 

to research fields of collaborating authors, and therefore cannot accurately capture this implied 

influence. Our method can only capture innovation if it is expressed in the form of citations. 

Instances such as these are a reminder that knowledge advances along different trajectories during 

conference hallways, personal correspondences, and collaboration between fields. Future 

publications might still remedy this fact by forming new connections to earlier works. 

From recent comparisons of best practice between model vs. data driven approaches, it can be seen 

that it is not a transition from pixels to regions, but rather two techniques towards the same aim 

(e.g. Brunelli and Poggio 1993; Myint et al. 2011; Pregesbauer 2013; Sevara et al. 2016; Tomljenovic 

et al. 2015). Consequently, a combined approach will likely set the next stage for machine learning. 

Machine learning is a versatile means for working with multiple variables and data sources towards 

optimized detection algorithms (e.g. Krizhevsky et al. 2012; Trier et al. 2016). However, it is only 

briefly present in the citation network by reference from the core articles, while machine learning 

for automated procedures for archaeological practice were not registered by the systematic 

literature review from our structured search queries. As with De Boer’s example, lack of 

connectivity is neither a sufficient criterion for novelty nor does it preclude impact. Instead 
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intellectual brokers can often only be judged in retrospect. In our case, the pattern of isolation is 

similar to that of data and model driven approaches ca. 1999 and 2010 respectively. Machine 

learning will likely evolve to form a discernible community with connections to both data and model 

driven communities. Looking at these patterns of isolation within the data, approaches combining 

all three elements are still insufficiently explored. Such combined approaches present promising 

candidates for future research implementation. However, the question is just as much then, whether 

it will be used within the archaeological community, and whether it improves the quality of 

detection by the gap of experience towards its potential target audience.  

4.6 STATE OF THE ART FOR AUTOMATED DETECTION WITHIN LIDAR 

LANDSCAPES 

To define state of the art for automated detection within LIDAR data is a matter of understanding 

classification possibilities and needs. Segmentation of data and landscape is common practice 

within remote sensing, but it is regulated by classification techniques that make for interest of 

investigation to determine best practice and state of the art. Classification techniques compose 

numerating and describing Cartesian space in order to contextualize pixels or geometries. The 

measured space can be translated as k-dimensional vector space where pixels are describing real 

world entities by points or pixels. The descriptors are spectral properties of reflectance, radiance, 

and transmittance or by combinational properties of geometry. Classification then becomes 

establishing a relationship between pre-defined class-categories, and unknown entities within the 

data. Whether state of the art is by data or model driven approaches is also questioned by Kamagata 

et al. 2005 and Sevara et al. 2016. Determining state of the art for automated detection in LIDAR 

data is also a difficult task because of the rapid development of the field. However, certain groups 

and advancements are influencing the field more than others, as can be seen by the referential 

dataset in the NA. A purely quantitative conclusion on state of the art by the NA is, however, not 

possible due to the rapid development of the field. Mainly this is because the NA looks towards the 

past by its referential structure, has difficulties of representing the present, and can only determine 

future if the future follows the same trajectory and pattern of the past. None the less, the NA models 

the development of the field, and helps us understand the field by visualizing actors of brokerage 

and influence. Qualitatively it is possible to determine relevant literature of the field by working 

within and understanding the field (e.g. Casana 2014; Lambers & Traviglia 2016). But by purely 

qualitative assessments, dangers are that the recommendations become much more biased than 

available by assessment through quantitative literary reviews, such as SLR and NA (e.g. Blaschke 
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2010; Tomljenovic et al. 2015; Agapiou & Lysandrou 2015). In the end, however, it is not one 

approach over the other, but rather combining both quantitative and qualitative means to 

determine state of the field and state of the art for automated detection by LIDAR and remote 

sensing in general. Otherwise the scope of the field of automatic detection for archaeological 

mapping, could easily restrain itself from getting input from new sources and other fields applying 

automated detection, by going into a spiral of closed connectivity. This is not a present day scenario, 

since it can be seen in the NA, that archaeologists are collaborating across many different fields 

towards improved positive detection rates within a wide variety of cultural landscapes. However, it 

is necessary to understand the trajectory of patterns within automated detection in order to 

recognize whether or not it is cultivating good academic practice and collaboration, or if the field is 

retracting towards secluded units of individual projects. Because, novel approaches requires 

continued support and attention from people of different perspectives. If not present, the field will 

end up in a struggle for large-scale cultural heritage management and detection, constantly taking 

two steps forwards, and one step back. In order to keep an open scope of perspectives, state of the 

art will be determined by a qualitative and quantitative assessment, as well as comparison.  

Undoubtedly the wider archaeological community has recognized the potential and impact of 

automating procedures within remote sensing by segmentation and classification for archaeological 

management and prospection. However, using LIDAR created DEMs for automated information 

extraction is still rare within cultural heritage management and the archaeological community. In 

total four major research entities are identified within the NA, applying automated procedures for 

the detection of archaeological monuments within LIDAR data: Schneider et al. 2015; Sevara & 

Pregesbauer 2014; Stott et al. 2015; Trier et al. 2009. These are the core articles related to the four 

research entities. The aforementioned authors and co-authors stand at the forefront of applying 

automated detection by airborne LIDAR data within archaeological landscapes, and the influence 

they have on the wider community of remote sensing within the NA is differentiated by some 

leading and others following. The four research entities, however, do not constitute singular 

research entities, but rather symbolizing the core structure of collaboration within LIDAR based 

semi-automatic detection for archaeological landscapes. For applied automatic detection of 

archaeological monuments within LIDAR data, several other research entities also exist, but they do 

not exist prominently by in- and out-degree of reference, or by PageRank. Two examples of other 

important research entities and papers not present in the NA, are; De Boer 2007 and Vletter 2014. 

Equally, many other researchers work within the subject, but are not present in the NA in relation to 

the criteria of applied automatic detection of archaeological monuments within LIDAR data, but will 
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be products by reference in future NA investigations due to the conclusions possible to produce by 

SLR and NA. The implementation of automated information extraction within the archaeological 

community is greater and more established with a wide variety of applications by both data and 

model driven detection. The field is also constantly expanding with many new authors emerging and 

establishing themselves by applying detection algorithms within LIDAR data (e.g. D’Orazio et al 

2015; Freeland et al. 2016). However, the four defined research entities are the present 

communities validated within the NA by citation. From these four research entities, validation for 

best practice can also be established and investigated, and whether or not best approaches are data 

or model driven. Three of the four, Schneider et al. 2015; Sevara & Pregesbauer 2014; Trier et al. 

2009, apply model driven approaches. One research entity, Stott et al. 2015, focus on data driven 

approaches. The initial work on automated archaeological monument detection was carried out by 

Lemmens et al. 1993, but does not have a significant presence within the NA, despite also being used 

as one of the core articles within the NA. Equally so, Redfern 1997 and Redfern 1998 also have no 

presence within the NA, despite its undoubted impact on archaeological cognition for digital 

landscapes. However, both Lemmens et al. 1993 and Redfern 1997 focus on satellite and aerial 

imagery, and Lemmens et al. 1993 combines early attempts of both a data and model driven 

approach. To a large extent, most of the remote sensing community by satellite and aerial raster is 

focused on data driven approaches, i.e. by pixel value and per pixel segmentation, but great strides 

are also taken for object-based approaches for satellite and aerial raster to overcome data driven 

approaches targeting the singular pixel for statistical analysis, and instead produce complete non-

overlapping segments or polygons (Blaschke 2010, 4). Data driven approaches, are geared towards 

producing segmentation algorithms to divide raster into relatively homogenous segmented 

significant groups of pixels. However, this pose a problem when dealing with heterogeneous 

archaeological structures and features revealed as remains after hundreds or thousands of years of 

decay and deconstruction. Meaning, the archaeological remains rarely compose homogeneous 

segments of landscape, but rather adaptations to wear, tear, and natural, cultural, and 

geomorphological impact. Naturally, this is affecting all means of information extraction from 

archaeological remains in the landscape, and as such defines the ambiguity that is present in all 

aspects of the archaeological practice. In the end, it is therefore a question of what is more 

successful. The interesting aspects become conclusions based on time efficiency, cost efficiency, use 

and quality of end results. Time efficiency is related to computation and know-how. Cost efficiency 

associates with data acquisition, as well as software and hardware needs, which in return has a 

direct effect on use by the community. The end result is quality of information, which is indirectly 

impacted by quantity of use and experience gained within the community. These four parameters 
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help evaluate conclusions of state of the art, and can be comparatively assisted by results of the NA. 

Evident is the presence of Øivind Due Trier and his team through multiple publications on the 

subject of automated information extraction by LIDAR data (Trier et al. 1996; Trier et al. 2009; Trier 

et al. 2011; Trier & Pilø 2012; Trier & Zortea 2012; Trier 2015; Trier et al. 2015; Trier & Huseby 

2016; Trier et al. 2016). The two articles Trier et al. 2009 and Trier & Pilø 2012 has particular 

impact on the community by its ranking in the NA, as well as by its qualitative recommendation of 

state of the art value referenced by other articles describing the field. However, the above 

mentioned articles and the Norwegian research collective, are not simply applying one method, but 

rather experiment by both data and model driven approaches towards information extraction from 

many different sources of remotely sensed data. What this pattern exemplifies, is similar to the 

pattern seen within the entire community of automatic detection, as that of experimentation, 

innovation, and exploratory investigation towards understanding and defining best practice and 

state of the art. Thus best practice and state of the art is not as easily defined, because of its 

dependence on data and context, but even more so by the rapid development of methods for digital 

manipulation of data and information extraction. The research entities applying automated 

procedures for the detection of archaeological monuments within LIDAR data are focused on model 

driven approaches by geometry extraction and template matching. However, the majority of articles 

within the NA, and within the field of automated detection of archaeological monuments within 

remote sensing, are focused on data driven approaches of segmenting landscape and extracting 

information. This is directly correlated to investigated data, resulting in raster data processed by 

data driven approaches focused on the visual spectrum of details. Meanwhile, model driven 

approaches are more commonly used on spatial data such as LIDAR. Especially the approach of 

template matching, and geometry matching has taken a significant position for automated and semi-

automated extraction of archaeological data in landscape. Best results of automated and semi-

automated detection of cultural heritage specific questions are papers with a high page-rank. High 

page-rank papers inspires and leads the field, while brokers tie the field together. Thus, high page-

rank papers will commonly be papers of best practice based on given time of publication, while 

brokers inspire the field to reveal high page-rank papers. Naturally, this is just a representation of 

how the field has formed, used, and might inspire, but in reality not necessarily define best practice 

going forward.  

So the question then becomes: is the future of automated information extraction within 

archaeological LIDAR either data or model driven? As previously stated, the future should perhaps 

not be determined as one approach instead of the other. However, in order to define a trajectory 
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from which to improve from, it is necessary to understand best possibilities in the present. By 

assessment through necessities of time efficiency and quality, large-scale landscape investigations 

for archaeological use might not be implemented by its ability to incorporate multiple variables, but 

rather by its ability of application within the archaeological community. As Parcak is also asking: “Is	

satellite	technology	advancing	faster	than	archaeologists’	ability	to	learn,	apply,	and	analyze	the	data	

and	 programs,	 and	 all	 the	 inherent	 implications?” (2009, 239). A simple answer to this, and as 

indicated by the SLR, is that semi-automatic and automatic methods are not represented within 

archaeological practice. The NA on the other hand visualizes a growing community within the 

archaeological community adapting to new methods and techniques for handling the data explosion 

within cultural heritage management. To tackle the taboo of automation within cultural heritage, it 

is necessary to stay open-minded and see the possibilities of improvement and aid gained within the 

short time of existence within archaeology (Bennett et al. 2014). The academic practice of peer-

reviewed publishing slows down the process of information sharing, and thus case-studies and 

smaller projects can often be several years older than the date of publishing (Parcak 2009, 239). For 

more rapid development of the community and information sharing, new means for publishing the 

results are necessary. This could be by open online journals by simpler or other standards than 

customary academic journal papers to reduce time interval between case-study results and actual 

publication, as well as give way for more specialized research towards direct exchange comparison 

and quality control by the community. However, the impact of LIDAR and model driven approaches 

of processing data for archaeological segmentation and information extraction, is both increasing in 

influence and significance in recent years. Consequently, primary approach for computational semi-

automated information extraction will in the following chapter be focused on model driven 

approaches of information extraction by templates. However, first and foremost, to determine 

success parameters and the future of automated detection of archaeological monuments, it is 

necessary to investigate applied means of automated and semi-automated information extraction 

from LIDAR data by model driven approaches. This will be elaborated in the following chapter,	

APPLIED	DETECTION	IN	LIDAR	DATA, as to evaluate application and compare both computational 

and human interpretation by micro and macro pattern recognition within an archaeological 

landscape.  
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5. APPLIED DETECTION IN LIDAR DATA 

The possibilities of automated detection for archaeological monuments are numerous, but most are 

built around commercial software packages offering a range of applied means of segmentation. 

However, image and feature analysis is equally developing by open principles of code and library 

sharing towards improved information extraction. Many are shared and offered as singular code 

string, code libraries or plugin extensions for open-source software packages. By using partly or 

completely open-source code and software, the application possibilities are equally numerous. But 

what are the application possibilities for large-scale archaeological mapping in the digital 

landscapes of LIDAR data? Almost all GIS and image analysis software offers some sort of data 

segmentation, but for archaeological mapping and detection the results are often highly limited or 

simplistic due to the degradation, decay, and imperfection of archaeological data. The applied means 

of automated detection draws on the history of image processing by vegetation indices (Shennan & 

Donoghue 1992) and Tasseled Cap transformation (Kauth & Thomas 1976) in satellite imagery by 

transforming original image bands into new converted image bands. Applied detection in LIDAR 

data, however, diverts from data driven spectral values to dimensions of shape and model driven 

approaches. This was also seen by three of the four leading and influential research entities 

identified in chapter 4 by focus on spatial dimensions of LIDAR data to extract information. The 

search for homogenous values and indices visualizing archaeological features and structures across 

different landscapes is still ongoing, but so far, no single variable is capable of depicting the diverse 

and heterogeneous cultural impact in and on the landscape. This results in the necessity to involve 

multiple variables to extract archaeological information in the landscape, even for earthworks and 

monuments shaping the landscape. The complexity of information extraction from remotely sensed 

data complicates the possibilities of scaled investigations and the implication of resolution in large-

scale investigations for archaeological mapping. The quality of information from remote 

investigations is correlated by intensity and involvement of investigation, since a measure of ground 

truth is compulsory to all novel remote investigations. Thus quality of information is undoubtedly 

directly connected to invested use or work, while amount of work is dependent on investment by 

cost and time efficiency. Thus, in order to improve quality of information, it is a matter of cost and 

time efficiency regarding detection of archaeological monuments in LIDAR data. Since a certain 

degree of verification by field inspection is necessary to determine ground truth, it is essential to 

define a balance between desk-based investigations and fieldwork for more quantifiable truths from 

which digital and analog details are correlated and comparable (Cowley 2016, 148; Sevara et al. 

2016, 496).  
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5.1 TWO METHODS OF INFORMATION EXTRACTION  

The two methods for information extraction of archaeological monuments within remote sensing 

are by either data or model driven approaches. Meaning, they either extract information by per pixel 

or entity. Within both methods are different possibilities of investigation from smallest entity 

contained within data by per point, or by grouped attributes in entity.  This, in return also has an 

impact on range of application by scale, since computation and comparability changes according to 

dimension of investigated entity (Risbøl et al. 2013; Trier & Pilø 2012; see also chapter 2.9). By 

investigation of smallest entity and per pixel value, different landscapes need altered means of 

manipulation. By information extraction from grouped entities, the shape detected in local context 

results in potential comparison between results from different context. Thus, using a model driven 

approach, structures and features detected can be compared in a wide variety of landscapes, 

because the information extraction procedure is analogous. Using a data driven approach, however, 

the increase in variables implies that methods needs to be altered between different context and 

landscapes, i.e. flat and sloped landscapes, as well as by frame of a more or less manipulated 

landscape. This, however, also means, that any feature detection within a given landscape can be 

improved by data driven approaches due to its near infinite amount of potential variables. A near 

infinite amount of potential variables to describe and quantify landscape also implies heavy 

computation and complicated contextualization. Hence, initial information extraction is more easily 

achieved by model driven approaches to minimize computed area. The virtue of LIDAR data is its 

dimensionality by elevation, but the emphasis on geometry is also due to the often lack of spectral 

information in LIDAR data, i.e. color, near- or infrared wavelengths. As specified in chapter 2.6, this 

is likely not a restriction of future LIDAR datasets incorporating multiple wavelengths towards 

increased variables of digital landscape information (Stott et al. 2015), but it is the present premise 

of most LIDAR datasets. The value of LIDAR data is its capability of depicting terrain instead of 

surface, and spectral information of the terrain is not as imperative as spectral information of the 

surface towards use and information extraction. The spectral values of the surface are more easily 

recorded by aerial and satellite imagery, but can also be of value to LIDAR data in future 

perspectives. Presently it is a matter of cost and time efficiency when choosing which method to use 

for recording terrain or surface in the landscape. Naturally, the methods can be combined, 

correlated and draped in order for LIDAR data to depict the spectral values captured by aerial and 

satellite imagery (Rowlands & Sarris 2007) as shown in FIGURE 41 of burial mounds east of 

Stockstadt.  Draping does not necessarily increase information extraction, but improves how to 

cognitively understand the landscape correlation between terrain and surface (FIGURE 41).  
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FIGURE 41: ADDING SPECTRAL VALUES BY DRAPING SATELLITE IMAGERY OVER LIDAR DATA TO HELP 
PLAN AND INTERPRET LANDSCAPE. SHADED RELIEF: AZI. 45°, 270 ANGLE. SAT. RASTER: © GOOGLE EARTH 

LIDAR

Satellite

Combined
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Added spectral information recorded in the LIDAR point of surface and terrain by mounted camera, 

is different than the combination of LIDAR and aerial and satellite raster data, but offers some of the 

same possibilities. Terrain is not represented in color by combination of LIDAR with aerial and 

satellite raster.  Nor is it present in the LIDAR return signal from surface and terrain. Color in the 

LIDAR point is not documented by emitted active signal, but by the passive wavelengths in the 

landscape by a mounting combination between of different means of documentation. Meaning, the 

LIDAR point is constructed as a combination of recorded raster values of landscape and the energy 

recording of return signal in space and signal strength. Therefore, spectral information of terrain is 

always obstructed by canopies in the surface, resulting in limited separability of the color scheme of 

the landscape (Brodu & Lague 2012; Lichti 2005). Spectral information is recorded in a pixel or 

point, and can be individually extracted as visualizing certain tendencies in landscape. This is 

commonly extracted by data driven approaches. Model driven approaches are the segmentation of 

information in entities, rather than by individual attributes. However, it is calculation focused on 

individual attributes and pixels in order to segment into Areas of Interest, AoI. This is performed as 

segmentation methods of point-based, edge-based, or region-based techniques (Schiewe 2002). The 

pattern of interest can be certain distribution patterns of points, edges, or patterns of shape to 

extract entities. Equally, all detection is the extraction of clustered, ordered, random or patterned 

discrete and continues data variables (Figure 42). Computational detection by shape is 

segmentation and/or classification by combined rules of extraction and interpretation.  

 

FIGURE 42: DATA ORDER REPRESENTED BY POINT DISTRIBUTION 

No image segmentation is capable of representing the cultural landscape completely for 

archaeological investigation, but segmentation attempts to provide meaningful non-overlapping 

entities in images. They are either pixel or model driven, and visualize based on input criteria from 

statistical analysis, homogeneity, textural, geometrical, contextual, and prior knowledge. The result 

is classification based on segmentation of belonging to a classification category, and equally so not-

belonging. 
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5.2 HIERARCHY OF INFORMATION EXTRACTION 

The means of information extraction is by either segmentation or classification. Segmentation splits 

context according to a given criteria, e.g. presence or absence and the confidence value or scale in-

between. Classification is the addition of information if a given criteria is met, e.g. minimum z-value 

classified as terrain and anything above as surface. Segmentation and classification can be done, 

manually, semi-automatic or automatic based on interaction before, during, or after computation by 

given criteria. It is therefore a constant of two approaches on how to extract and compute 

information from data input towards data output, and to which degree data processing best suits 

the queries given. However, the notion of a fully automatic system of documentation would require 

both automatic segmentation and classification with a correct positive feature return. This is rarely 

the case in archaeology because of imperfection of monuments, and the necessity of validation by 

results and conclusions. Thus, for computational cultural heritage management, a system will 

always be that of a semi-automatic process due to the adaptation to context, the state of 

archaeological monuments, and the lack of adaption to scale and differing patterns by scale (Risbøl 

et al. 2013). Algorithms and code attempt to define rule based learning adaptations to improve 

detection rates. However, the archaeological structures and features are difficult to construct as 

defined rules due to diverging patterns. To adapt to scales of perspective, Neural Networks, NN, are 

necessary to introduce a hierarchy of investigation. NNs are trained on sets of dependent output 

variables measured on known input to find linear fitting mechanisms to find regularities on given 

dataset (Barceló 2009a, 16; Barceló 2009b). To compensate for strict rule based approaches of NN, 

Artificial Neural Networks, ANN, are constructed as an information processing paradigm set to 

mimic the human brain cognition by interconnected non-linear processing elements to accept 

numeric input in unison towards numeric outputs. Raster data is easily transferable as numeric 

pixel input, or vector input calculated by per pixel, and thus transferred to NNs and ANNs. 

Archaeological observables and archaeological explanations are no longer represented in terms of 

sentences, but as numbers. This allows intelligent processing of archaeological data (Barceló 2009a, 

16). Redfern (1997) arranged an ANN to create algorithms for comparison of vector geometry as 

unsupervised object classification, but despite initial interesting results, the approach has not had a 

real impact on feature detection and information extraction within archaeology. This is not until 

recent attempts by the Norwegian Directorate for Cultural Heritage and the Norwegian Computing 

Center to construct Deep Learning by Convolutional Neural Networks, CNN, showing some 

interesting aspects to construct rule based approaches for information extraction of linear features, 

i.e. roads, pathways, terraces, and similar features (Salberg et al. 2017).  
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NNs undoubtedly have a great potential for pattern recognition. The reasons for a lack of impact on 

the archaeological community are most likely problems with applicability through know-how, but 

also due to the necessity of detection by rules of properties and variables. Because idealized 

archaeological monuments rarely exist, resulting in the range of exception being as great as the 

range of application. Thus, parameters of potential use through quality of information and time and 

cost efficiency are the limiting factors for application within the archaeological community. In the 

end, the complexity of the cultural landscape requires as many exceptions as rules to navigate. 

Hierarchies of information extraction and manipulation in NNs are therefore incomplete, while 

ANNs intrinsically distance itself from the archaeological sphere of acceptance and certainty by the 

complexity to improve quality of information by validation. The partial visibility of archaeological 

features and structures in the terrain, often resolves in the distinction between individual pixels 

being too few to segment between area of interest, and area of non-interest. Equally, automated 

information extraction is as much a discussion of acceptance and certainty as a discussion of ground 

truth detection. Meaning, it is a matter of segmenting and classifying landscape to a degree from 

which detection rates can be accepted as improving quality of information and cost and time 

efficiency compared to human cognition and interpretation. This is because, automated information 

extraction is only valuable if it aids and improves any means of the process for cultural heritage 

detection and management. Automated information extraction benefits our understanding of 

remote sensing by quantifying landscape and the features and structures within to standardize 

input and output. But, despite the algorithmic steps and rules being potentially imperfect and 

complex, automated information extraction offers a possibility of altering pattern perspectives for 

segmentation and classification. Thus, it is matter of finding application aiding and improving the 

archaeological agenda for standardized and quantifiable possibilities of analyzing digital landscapes. 

Unique values for detection of archaeological monuments in digital landscapes do not exist, but 

rather a range of values depict different correct information extraction for cultural heritage 

detection and management. So far, the most influential applications are model driven approaches, as 

concluded in chapter 4. Equally, algorithmic complexity do not necessarily offer the best approach 

for application within the archaeological community due to the need of simple and repeatable 

methods of automated information extraction and pattern recognition (Wheatley & Gillings 2002). 

Therefore, the point of departure needs to be simple automated information extraction aimed 

towards broadest audience possible in order to establish lasting impact on cultural heritage 

management and detection. 
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5.3 SIMPLE INFORMATION EXTRACTION 

Model driven approaches of information extraction can be calculation of correlation between 

entities and templates on data. Data driven approaches calculates local details by per pixel or cell. 

Both are simple forms of data extraction. Model driven approaches remains simple, whereas data 

driven approaches can be near infinitely complex by complementing variables and variable range.  

Thus, model driven approaches are close to a finite potential, whereas improvements are enhanced 

by data and per pixel based calculations to near infinite variations of features and structures based 

on context and landscape. However, this complexity equally makes for information extraction not 

being simple, and thus not necessarily improving the quality of information. Simple information 

extraction therefore has strengths for the archaeological community, especially in regards to 

effective impact on use. The implications being that the archaeological community should remain 

focused on simple matching algorithms for best cost-benefit of input and output (Bennett et al. 

2014, 901-2; Grøn et al. 2011, 2030). Simple information extraction is not only done by automated 

detection, but also by manual visual detection. The standard for interpreting landscape is done by 

visual inspection for cultural heritage management and detection. Visual detection is a very efficient 

and important procedure of interpreting landscape, and equally has great potential for aspects of 

crowd-sourced data for large-scale landscape analysis to improve the scale of investigation 

(Duckers 2013; Goodchild 2007). However, automated procedures for segmenting and classifying 

landscape do not exist as a replacement for manual visual detection, but offers improved or 

complimentary visual representation to interpret landscape. Simple information extraction by well 

applied segmentation and classification offers a procedure of application usable by the larger 

archaeological community to improve qualitative and quantitative investigations, as well as 

standardizing procedures for comparison and verification. Thus, automated information extraction 

is equally interesting by its improvement for visual detection. Naturally, a simple segmentation and 

classification does not necessarily produce more accurate detection rates, because the range of 

variables used are limited by the need of simplicity and transparency. Therefore, it is a question of 

use and possibility of application when compared to centralizing procedures of automated cultural 

heritage management and detection. Because, the quality of information is constructed by inductive 

interpretation and confidence to understand application in order to be accepted and standardized, 

and thus claim methodological value for the archaeological community. Transparent applicability is 

therefore the key necessity. Transparent applicability can be argued to be at the core of model 

driven approaches of automated information extraction, because the premise is similarity and brute 

force matching. Brute force matching compares variables and matches with all other features in 

given input and dataset. The matching algorithm of variable and feature definition differs based on 
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methods and equations, i.e. best match or best match to k‐means clustering to n	 partition. The 

principle, however, remains similarity comparison. Similarity comparison follows the simple	

matching	coefficient of similarity and dissimilarity (EQUATION 3). 

EQUATION 3: PRINCIPLE OF SIMPLE MATCHING COEFFICIENT FOR DATA MATCHING 

 

𝑠𝑚𝑐 ൌ
𝐴 ሺ𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠ሻ

𝐵 ሺ𝑣𝑎𝑙𝑢𝑒𝑠ሻ
 

𝑠𝑚𝑐 ൌ
൑ 1ሻ

1
 

𝑠𝑚𝑐 ൌ ଷାସ

ଷାସାଵାଶ
ൌ ଻

ଵ଴
 = 0.7               

 

The equation above is a calculation of similarity and dissimilarity, but towards binary presence or 

absence by numeric 1 or 0. The principle follows quantitative comparison between both model and 

data driven approaches of similarity detection by binary calculation of pixels, cells and numerical 

representation. Within 0 to 1 there is a binary representation of presence or absence, but also the 

infinite representation of scale by the decimals leading to 1. Consequently, from 0 to 1 constructs 

the potential of infinite variations, but equally a finite representation as defined by given thresholds 

of segmentation. Classifying the finite thresholds, however, requires limitations to the infinite space, 

meaning a compromise on infinity is necessary to represent classification. Likewise, any similarity 

detection is a matter of compromise to define thresholds or variables capable of equating input 

comparison by reasonable confidence in output. Segmentation is defined by the threshold of 

partition by given value, from 0 to 1, and thus specifies and outlines resolution possible for 

classification. Brute force matching by simple shape comparison offers several improving 

benchmarks for remote investigations for the archaeological community, not least by the ability to 

use output to segment input into macro patterns of more discernible information for the 

interpreter. However, archaeological data is by nature imperfect and thus not possible to 

distinctively partition as binary, unless extensive compromise of data representation or value is 

given. Meaning, in understanding the objects, features, and structures of the past, nothing is 

completely similar, but everything a compromise towards similarity labels or representations. Even 

brute force matching cannot remain simple information extraction, but rather qualitatively defined 

on a scale of infinite variations from 0 to 1. Simple information extraction, therefore, does not stay 
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simple unless it is constructed to follow gradual compromise. Similarly, the application of brute 

force matching is by virtue computational simple, but computational processing can be excessive if 

iterations are made on large quantities of data.  The concluding output of any algorithmic chain of 

operations can equally be excessive and intricate to a degree where it is not improving invested 

quality of information, thus defeating the purpose of automating steps of computation. It is 

therefore a matter of finding standards of automation that improves cost efficiency and quality of 

information.  In order to do so, it becomes essential to understand and compare between manual 

visual detection and automated information extraction. For this task, a focus group was formed to 

compare visual detection, automated information extraction, potential coverage, pattern 

understanding, and concluding quality of information. This will be represented in the following sub-

chapters; 5.4	Visual	Detection;	5.5	Crowd‐sourced	visual	detection;	5.6	Computational	mound	

detection	by	templates;	5.7	Comparison	between	crowd‐sourced	data	and	template	matching 

5.4 VISUAL DETECTION 

Visual detection is manual detection by human interpretation and cognition. Human cognition is 

relatively well adjusted and adapted to distinguish and discard on the scale from similarity and 

dissimilarity in any given context. This also applies to micro and macro pattern detection within 

digital landscapes of remotely sensed data. Equally, patterns of nature and patterns of culture 

ranges from being similar and dissimilar, however, human cognition adapts to scaled macro 

patterns, and thus focusses on more than the individual micro contrast or shape. Therefore, even 

inexperiencedvisual detection can derive reasonable detection rates by crowd-sourcing. This is also 

evidenced by the studies of Gary L. Duckers (2013) on web-based interpretations on remotely 

sensed data between a professional group of archaeologist and a group of inexperienced volunteers. 

Complete and constant coverage of landscape for archaeological heritage management, requires 

cost-beneficial visual detection analysis based on crowd-sourcing information from a wide variety 

of groups (Goodchild 2007; Simpson & Williams 2008). Surveying by crowd-sourced visual 

detection resulted in an average coverage of around 4.7 km2 per day by an experienced professional 

group, whereas the inexperiencedgroup of volunteers surveyed around 5 km2 per day (Duckers 

2013, chapter 4). This does not necessarily indicate uniformity in the quality of information from 

the transcription of remotely sensed data. Comparatively, the survey areas covered by crowd-

sourcing from experienced and inexperiencedfocus groups are almost similar in comparison to 

spatial area investigated. Open data and open investigations therefore has advantages in regards to 

amount of possible area and amount of information extracted. The potential amount of information 

is increased by crowd-sourcing data from interested groups and people by the sheer number of 
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potential surveyors enlisted. Thus, a large body of inexperienced investigators has the potential to 

locate almost all details of interest within a landscape, despite not necessarily having the same 

prerequisite to make initial detection compared to expert investigators. The potential detection is 

the same between experienced and inexperienced investigator, but the confidence in quality of 

extracted information differs. The question then becomes, is the quality of information as a result 

better or worse? Answering this is not simple, since there is no singular measure for correct 

detection of all cultural heritage information hidden in the landscape. The range of information 

hidden in the landscape constantly changes by smaller and larger impacts on the landscape, and the 

patterns are different compared to resolution and scale by perspective and source. Therefore, the 

outcome is not only determined by the remotely sensed data, but rather as a perspective and source 

of interpretation. Amount of data detail and resolution indicates potential amount of information 

from macro and micro pattern detection. But, amount of detail and information by resolution, does 

not guarantee complete detection, as discussed previously in chapter 2.9.   

The potential within remotely sensed data can be improved by automated means of segmenting and 

classifying landscape for inspection by both experienced and inexperienced groups for quality of 

information verification. Undoubtedly, there is a difference in quality of information between 

experienced and inexperienced surveying, but this can be negated by the amount of investigators 

aiding visual detection by combined information extraction and the combined confidence value 

constructed by repeated detection. Naturally, bias plays an integral part of the human brain for both 

experienced and inexperienced investigators, resulting in classification by expected outcome rather 

than by open unbiased interpretation. This can lead to homogenous wrong detection patterns 

(Bennett et al. 2014, 899), but is similar for automation which focuses on detection by experienced, 

known, and defined patterns. To understand some of the problems and solutions, it is necessary to 

qualitatively and quantitatively exemplify by revealing patterns of detection from human and 

machine interpretation of landscape. Human and machine interpretation of landscape is 

investigated and compared by the nine selected sites for evaluation by visual detection and empiric 

ground truth verification (see chapter 5.7), crowd-sourced visual detection by inexperienced groups 

(see chapter 5.5), and automatic detection by template matching to compare and enhance detection 

confidence (see chapter 5.6). The following consist of initial visual detection and ground truth 

verification. The surrounding area have been systematically surveyed, but only if details in the 

landscape by visual detection demarcated areas of interest or potential interest. Meaning, some 

areas within the nine selected sites have not been systematically surveyed, and can still include 

additional information of interest. However, the visual detection and ground truth verification 
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revealed 108 burial mounds in different types of landscape at different locations in Lower Franconia 

(TABLE 11). At each individual site the clustering of burial mounds varies greatly, and some burial 

mounds are located completely isolated (TABLE 12). The mound chronology is mainly determined by 

pattern, shape, and potential contextual relation to sites in the vicinity and material culture found in 

the surface and topsoil. The result of this is, that the temporal and cultural frame is for most of the 

sites unknown and simply classified as unknown prehistory (see appendix 3B).   

TABLE 11: NINE SITES FOR SAMPLING COMPARISON 

No.	 SITE_name	 Amount	verified	
1 Stockstadt am Main 12 
2 Triefenstein 25 
3 Hohe Wart 1 
4 Amorbach 1 
5 Kleinlangheim 26 
6 Riedenheim 11 
7 Maroldsweisach 10 
8 Stettfeld 2 
9 Alzenau 20 
 	 108	
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TABLE 12: THE NINE SELECTED SITES WITH VECTORIZED MARKING OF EXACT BURIAL MOUND POSITION 

NAME	 Stockstadt	am	Main	
Burial mounds confirmed by field 
inspection: 12 

NAME	 Triefenstein	
Burial mounds confirmed by field 
inspection: 25 

NAME	 Hohe	Wart	
Burial mounds confirmed by field 
inspection: 1 

 

 

 

C1 
C2 

C3 

C1 
C2 

C3 
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NAME	 Amorbach	
Burial mounds confirmed by field 
inspection: 1 

NAME	 Kleinlangheim	
Burial mounds confirmed by field 
inspection: 26 

NAME	 Riedenheim	
Burial mounds confirmed by field 
inspection: 11 
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NAME	 Maroldsweisach	
Burial mounds confirmed by field 
inspection: 10 

NAME	 Stettfeld	
Burial mounds confirmed by field 
inspection: 2 

NAME	 Alzenau	
Burial mounds confirmed by field 
inspection: 20 

 

  

C1 

C2 

C1 

C2 
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The nine selected and surveyed sites constitute good sampling variability for evaluation of manual 

and automatic detection potential. Equally, the nine sampling sites consist of landscape in the range 

from simple to complex landscapes of curvature, as well as demonstration of human and natural 

manipulation and impact on landscape terrain and surface. However, at the site of Alzenau, the 

wandering sand dunes in the surrounding area of the two burial mound clusters, makes for very 

insecure verification. However, it is certain that two burial mound clusters are present, but also at 

very different degrees of preservation. Generally, the burial mounds within each and every sample 

site are in different stages of preservation, and in diverse contexts of homogeneous and 

heterogeneous curvature of landscape. The clustering of burial mounds within the different sites 

also alters according to past and present cultural impact, meaning that different perspectives of 

micro and macro patterns are necessary for a comprehensive interpretation and classification of 

individual burial mounds, as well as burial mound clusters.    

5.5 CROWD-SOURCED VISUAL DETECTION 

To quantitatively investigate the potential of qualitative visual detection, a focus group was tasked 

with detecting burial mounds within the nine sampling sites. The focus group consists of 16 

archaeology students from different backgrounds, and with different experience. None of the 

students within the focus group are corrected during manual visual detection of archaeological 

monuments within the nine test sites, and can therefore be termed “untrained	data”. Trained or 

untrained data is based on the notion of process of information extraction, compared to whether or 

not the control groups, algorithms or processes are encouraged or discouraged from adding new 

information and adapting along the way and any given task. It therefore does not refer to the 

experience or expert status of the participants involved, but rather the process by which the human 

participants where encouraged to extract information. Likewise, the algorithm is commanded to 

locate certain details within a given landscape. The algorithm is not trained to adapt to, increase or 

decrease, by variables, and is likewise coined untrained. However, all participants have an 

understanding of the physical extent of burial mounds and their presence in landscape. Similar the 

algorithm also has outline to locate based upon. The participants convert their own ideas and 

concepts of burial mounds towards visual detection of similar outline and pattern within the DEMs 

from the nine different sampling sites. Likewise, the algorithm is commanded to brute force match a 

given model of a standard burial mound to any given landscape, and find similar results in the two 

sets of input by given similarity criteria with output being extracted by confidence value.  
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The results of the crowd-sourced visual detection can be seen in TABLE 13 and TABLE 14 below. As 

expexted, the test groups very well locating many of the burial mounds within the nine different test 

sites. The test group is not explained how many are possible to locate, or if even any. Even though 

they are confined to certain minimum and maximum expectations within given datasets, the results 

are very close to the ground truth verified burial mounds located from previous deskbased 

investigations and survey. Many of the areas detected naturally also contain some false positive 

detection. Similar false positives were detected by automated information extraction from the 

algorithm, and many areas have been surveyed as to deny or verify the possibility of burial mounds 

within the given landscape. Thus, true amount of burial mounds within a given dataset from the 

nine different sites, are almost certain. Naturally, almost completely destroyed and undetectable 

burial mounds with almost no curvature left in the terrain, are still possible to locate in most 

landscapes. From time of origin, all monuments of the landscape are impacted by many different 

factors, and many are completely submerged under present terrain in subsoil. The only possibility 

to truly know what is beneath the terrain is by the archaeological method. But even though 

complete verification will only come ones excavated, the landscape by vegetation and terrain still 

reveals many clues and patterns of our prehistoric past. Vegetation and terrain contain many clues 

to aid over interpretation and comprehension what is hidden beneath vegetation and terrain from 

both passive and active remotely sensed data by pattern recognition from humans and algorithms. 

For now, however, the investigation will focus on what is visible to detect by curvature in terrain, 

such as burial mounds by human cognition and computational commands.    

TABLE 13: BURIAL MOUNDS VERIFIED AT EACH SITE COMPARED TO CROWD-SOURCED DETECTION FROM 
THE FOCUS GROUP 

No.	 SITE_name	 Amount	verified	 Ave.	crowd	det.	
1 Stockstadt am Main 12 10 

2 Triefenstein 25 15,06 

3 Hohe Wart 1 5,53 

4 Amorbach 1 5,26 

5 Kleinlangheim 26 24,86 

6 Riedenheim 11 9,2 

7 Maroldsweisach 10 8,13 

8 Stettfeld 2 2,4 

9 Alzenau 20 9,46 

 Total	 108	 323 



CHAPTER 5: APPLIED DETECTION IN LIDAR DATA 

 134 
 

 

TABLE 14: THE NINE SELECTED SITES WITH REPRESENTATION OF CROWD-SOURCED VISUAL DETECTION 

NAME	 Stockstadt	am	Main	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Triefenstein	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Hohe	Wart	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 
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NAME	 Amorbach	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Kleinlangheim	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Riedenheim	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 
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NAME	 Maroldsweisach	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Stettfeld	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 

NAME	 Alzenau	
Survey results for visual detection 
by kernel density. Radius 100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 
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The results of visual detection by the focus group is not simply interesting because of false or 

correct detection rates, but equally by the selection patterns and highlighted areas of interest. 

Within the nine sampling sites, there are 108 verified mounds based on initial visual detection and 

field survey testing, however, with the site of Alzenau very much an extreme site of uncertainties. 

The mean amount of detected burial mounds by the focus group are 89,9 burial mounds within all 

nine sampling sites. On average, the individual visual detection is very similar to the verified results. 

At sites with less burial mounds, the focus group generally detects more false positive burial 

mounds. At sites with a higher frequency of burial mounds, the focus group generally selects less 

than is actually present. The individual selection patterns can be seen and correlated between 

TABLE 14 and TABLE 15.  

TABLE 15: SELECTION COUNT BY VISUAL DETECTION FROM INDIVIDUALS FROM THE FOCUS GROUP ON X-
AXIS, SITE-ID BY SITE-NUMBER ON Y-AXIS 

S.No	 Ver.	 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

1	 12 15  13  5  9  10  7  11  14  7  8  9  9  9  4  12  8 

2	 25 16  18  15  13  18  20  14  16  15  14  12  12  7  12  16  8 

3	 1 6  50  1  2  4  2  1  4  4  2  1  2  2  2  0  0 

4	 1 9  30  2  3  1  4  5  12  3  1  1  1  3  2  1  1 

5	 26 19  25  26  19  30  24  32  30  29  19  18  19  16  22  20  25 

6	 11 7  17  10  7  9  9  10  9  11  6  6  7  6  9  7  8 

7	 10 10  10  8  6  8  8  8  9  6  7  7  9  2  13  6  5 

8	 2 5  0  4  2  0  2  2  2  3  1  1  6  2  5  0  1 

9	 20 30  40  6  8  27  10  0  0  1  0  0  2  1  14  0  3 

 

What is also present in the correlation between the different tables, are the selection of several false 

positives. By the visualization of density selection in TABLE 14, it is evident that the areas that are 

continuously selected by the focus group are areas of interest containing burial mounds and burial 

mound clusters. Therefore, though some individuals of the focus group might make erroneous 

selection, the combination of the entire focus group makes for complete or almost complete 

coverage of true burial mounds within the nine sampling sites. The confidence value of selection 

relates to the areas of interest by a gradient from 0 to 1, from black to white. At each and every site, 

the maximum density selection always indicates an actual burial mound or burial mound cluster, 

indicating that crowd-sourced visual detection by an untrained group returns quantitative data 

useful for estimation and segmentation of landscape towards key areas of interest and improved 

information quality.  
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By closer inspection, it can also be seen how human cognition selects by macro patterns. Meaning, 

the human cognition used within the focus group is by contextual selection in linking to vicinity 

interpretation and relation. The individual burial mounds not clustered, is to some extent selected 

by the focus group from the nine sample sites. However, in the near vicinity of original selection the 

area surrounding is more meticulously investigated and more likely to embrace additional 

selections.   

 

FIGURE 43: ABOVE: AREAS SELECTED BY THE FOCUS GROUP AS BURIAL MOUNDS BY COUNT AT THE SITE 
OF STOCKSTADT. C MARKS CLUSTER GROUP. T MARKS TRUE COUNT. BELOW: TRUE BURIAL MOUNDS 
MARKED AS YELLOW POLYGONS.  

Within the three known clusters of burial mounds at the site of Stockstadt, all have the highest 

amount of selections across the focus group, but by different extents of exact detection (Figure 43). 

None the less, they contain the majority of selections, and as a result contain the greatest visual 

detection confidence of burial mounds. The outliers of false positive are by comparison much less 

prevalent across the selections of the focus group. From the site of Stockstadt, 10 false positives 

were selected, but with a complete detection of all true burial mound positives. The result is a false 
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positive detection rate of 1.6 at the site of Stockstadt, considerably improving some state of the art 

detection rates by automated computational detection of 4 and 3.7 times as many false positives 

(Trier & Pilø 2012; Schneider et al. 2015). For the focus group, the number of false positive 

detections varies greatly from site to site by different individuals, with some sites having detection 

rates 50 times higher than true positives. This is true from the site of Hohewart, site no. 2, with a 

particular extreme detection rate by one test person. For visualization purposes, this necessitated 

removal from the kernel density visualization in Table 14 in order to be properly visualized. 

However, the overall detection rates of the entire focus group remained at 5.5 times as many false 

positive selections, despite the extreme outlier of one person. Removing this test person entirely 

from the case study of Hohewart, results in a false positive detection rate of 2.2, thus improving the 

result significantly. Similarly was the case study of Amorbach, site no. 4, with 30 times as many false 

positive selections by the same test person within the focus group. Likewise, this required removal 

from the kernel density representation in Table 14 in order not to skew the visualization. From 

Amorbach the average selection rate is 5.2 by all test persons from the focus group, but by removing 

the individual outlier this improves the detection rate to 3.2 times as many false as true selections. 

From all sites, the confidence of detections is indicated by the amount and pattern of selection. By 

the frequency of selection by the focus group at the site of Stockstadt, the confidence can be 

determined. Nine burial mounds from the site of Stockstadt are selected by such a high frequency 

that they contribute as very certain detections, whereas the remaining 14 irregularities selected by 

the focus group, represent more uncertain detection by rate of selection frequency (TABLE 16; 

FIGURE 44).  

TABLE 16: DETECTION BY FOCUS GROUP GENERATING CONFIDENCE VALUE BY SELECTION. THE NINE 
MOST CONFIDENT SELECTIONS ARE REPRESENTED IN BOLD 

sel_ID  sel_count  sel_ID  sel_count sel_ID  sel_count 

1  16  7 9 21 1 

2  16  8 5 22 1 

5  15  12 3 23 1 

9  15  19 2 11 1 

10  15  16 2 13 1 

6  14  17 2 14 1 

4  12  18 1 15 1 

3  11  20 1    
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FIGURE 44: THE NINE MOST SELECTED BURIAL MOUNDS BY THE FOCUS GROUP. NUMBERING IS 
DETETERMINED BY SELECTION ID IN REFERENCE TO TABLE 16 

The patterns from all sample sites are similar with the majority of selections being close to true 

burial mounds within the landscape, and continued selections in areas of interest in the vicinity of 

more confident selections. This, however, does not mean that all true burial mounds have high 

confidence values based on amount of selections, but rather that landscape is correctly segmented 

into areas of interest by visual detection. By removing outliers, the confidence is improved, and data 

exploration developed using less or simplified information. Similar to all Exploratory Data Analysis, 

EDA, the interpretation of patterns and removal of outliers, improves the quality of information 

(Tukey 1977.) The product is not simply constructed by the modelling of data, but rather what data 

is modelled. Naturally, such an approach requires equally tentative scrutiny as to not oversimplify, 

and create subjective patterns. The same can be said at each and every stage of data pre-processing, 

processing, and post-processing, because all steps require adaptation and testing before conclusion. 

The necessity required, is that any alteration can always be traced back to origin and original data, 

because any transformation is considered acceptable if steps of processing are traced and 

documented. Transforming data can improve the quality of information possible to extract, and thus 

benefit interpretation and conclusion. Therefore, any segmentation that improves possibilities of 

classification is beneficial to improve landscape interpretation for cultural heritage detection and 

management, whether that is by crowd-sourced data or by computational segmentation. For citizen 

science by crowd-sourced data, the benefits are present. It just requires that patterns generated are 

understood, and thus investigate structures and not outliers. 
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5.6 COMPUTATIONAL MOUND DETECTION BY TEMPLATES 
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Computational mound detection by templates is fundamentally brute-force matching towards given 

threshold of similarity. It offers a means of both segmenting and classifying landscape by output, 

and shows great potential for cultural heritage management and detection of archaeological 

monuments. Template matching is generally model driven by correlating entities with strong or 

weak features of comparison for filtering data. Dependent on scale and resolution of data and 

template, the detection can also be data driven, but is more commonly detection by filtering data by 

entities. Filtering data by templates offers possibilities of both segmentation and classification based 

on how data is processed. Template matching also delivers immediate detection output by given 

input, and can thus be an immediate classification if confidence of output is certain. However, that is 

rarely the case, and thus similar to most methods of landscape understanding, more compatible as a 

means of segmenting landscape. Within segmentation, as for crowd-sourced selection within 

remotely sensed data, classification can similarly be based on thresholds of confidence. Thresholds 

of confidence are then not constructed towards amount or percentage of detections, but rather on 

individual similarity between dual input entities. The fundamentals of output are therefore 

different, but with possibilities of similarity comparison between automatic extraction and manual 

visual detection. For comparison, the same nine sample sites have been used for automatic 

detection by entity filtering through model driven templates. The algorithms and code for filtering 

and detecting in the following case study are used and build in relation to the open-source library 

sharing of OpenCV, Open	Source	Computer	Vision (Itseez 2015). OpenCV is the collection of many 

libraries for open programming functions, but specifically targeting computer vision and image 

analysis. The following code adaptations and build is based on the general-purpose programming 

language of Python. Template matching is structured on dual image inputs by source image(s) and 

template image(s) in order to find similarity between two individual images or catalogues. The 

threshold of similarity determines confidence of output, and output can then be given similarity 

value to define certainty of classification. However, archaeological data is often imperfect and 

heterogeneous without strong edges or feature indicators, resulting in similarity calculation 

accepting deviance between template and source image.  

The similarity coefficient is based on calculating distance to similarity or dissimilarity, and template 
matching is commonly run by simple brute-force matching. Brute-force matching slides or moves 
descriptor values from template to source image across the entire raster, and thus calculates as a 

model driven approach between individual target-XY to source-XY position by output value of 
dissimilarity or similarity between 0 to 1, or minimum to maximum. The output is the sum of 

absolute differences in result, defined by R(x,y) (see also 

The correlation coefficient function also has the greatest possibility of tracking changes in detection 

by having a constant to relate quantitative values by, and thus simplifying threshold to more 
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applicable values. This makes for better qualitative assessment of impact on changes in threshold. 

The coefficient function is displayed in EQUATION 4 below.  

 

EQUATION 4, p. 147). Thus R	is the result between compared template and compared data based on 

similarity and dissimilarity of given XY-area of comparison. Only areas of given rules and 

parameters, e.g. threshold value or similarity value of minimum 0.5 results in detection. Overlap is 

reduced by selection through best fit, meaning the most similar detection is choosen as final 

extraction target.  

The correlation coefficient function also has the greatest possibility of tracking changes in detection 

by having a constant to relate quantitative values by, and thus simplifying threshold to more 

applicable values. This makes for better qualitative assessment of impact on changes in threshold. 

The coefficient function is displayed in EQUATION 4 below. The matching function is chosen by 

evaluating matching results based on six different equations by same template to same source 

image from the site of Stockstadt (TABLE 17).  

TABLE 17: EVALUATING DIFFERENT MATCHING FUNCTIONS 

Template	 Match.	Pro.	 Matching	calculation		 Matching	result	1:1	

 
SQDIFF 

  

 
SQDIFF_N 

  

 
CCORR 
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CCORR_N 

 
COEFF 

 

 
COEFF_N 

  

Based on initial results in TABLE 17, the pattern representation shows normalizing data makes for 

correct detection at every matching procedure. Normalizing data represents standardizing data 

input variation to a threshold of 0 to 1. This improves or minimizes light variation within individual 

input, as well as correcting and standardizing input between template and source image.  In the 

above matching functions, the filter is set to locate maximum similarity, and thus locates a singular 

detection by maximum similarity. The correlation and coefficient equation both detect false 

positives, but all normalized equations make correct detection based on same given template input. 

The landscape at the site of Stockstadt does consist of some changes in elevation, and therefore best 

similarity match also consist of false positives almost impossible to avoid. This was also seen by the 

crowd-sourced detection of burial mounds within the landscape. However, the minimum and 

maximum elevation is not extreme, therefore normalizing the raster DTMs at the site of Stockstadt 

does not involve major extremes of elevational change necessary to incorporate, but some modern 

structures disturb the elevational differences in the landscape (FIGURE 45). If source input and 

template is very dissimilar by visual differences, such as elevational differences, this can impact the 

automated detection success. Therefore, source and template needs some correlation to be effective, 

and target specific templates to landscape are better for different landscapes. This can be somewhat 

helped by normalizing data, by improving correlation between source and template.    
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FIGURE 45: ELEVATIONAL DIFFERENCES AT THE SITE OF STOCKSTADT. HISTOGRAM SHOWS ELEVATIONAL 
DISTRIBUTION 

For automated detection, when the threshold filter of similarity is lowered, the detection changes 

and shows that some equations are more applicable than others. The following examples of this will 

only show the equations that normalize data as they have proven more proficient. Normalizing data 

represented better results in detection by lesser similarity than represented in the non-normalized 

data. The threshold of similarity was lowered towards finding best match, resulting in threshold 

value changing between different equations. Best match of true detections was then pursued 

towards improvement of automated detections. The best match of the three equations was by the 

normalised correlation coefficient, COEFF_N (TABLE 18).   
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TABLE 18: THE THREE EQUATIONS AND THEIR IMPACT ON DETECTION: NORMALIZED CORRELATION, 
NORMALIZED SQUARED DIFFERENCE, AND NORMALIZED COEFFIECIENT 

CCORR_N 

Best match 

Threshold val: 

0,935 

Template: 

 

SQDIFF_N 

Best match 

Threshold val: 

0.9 

Template: 
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COEFF_N 

Best match 

Threshold val: 

0.5 

Template: 

 

 

The correlation coefficient function also has the greatest possibility of tracking changes in detection 

by having a constant to relate quantitative values by, and thus simplifying threshold to more 

applicable values. This makes for better qualitative assessment of impact on changes in threshold. 

The coefficient function is displayed in EQUATION 4 below.  

 

EQUATION 4: FUNCTION EQUATION FOR MATCHING SIMILARITY BY CORRELATION COEFFICIENCE  

(FROM ITSEEZ 2015)  

 DENOTES IMAGE,  TEMPLATE,  RESULT  

 

The matching equation applied to the nine sample sites, slides template through source image and 

compares overlapping patches. The function compares sums to maximum similarity between 

template and source image. Sum is done over source patch by : x’ = 0…w – 1,y’ = 0… 1. This is 

implemented as template matching in the programming language of Python, and used as an 

execution of two data inputs of source and template. The code is represented below with the 

matching function applied in TABLE 19 and represented at all the nine sampling sites in TABLE 20. 
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TABLE 19: THE APPLIED PYTHON SCRIPT FOR OPENCV TEMPLATE MATCHING 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

 
# import modules 
import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
 
# source image to display 
img_rgb = cv2.imread('inp4286_5541.tif') 
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) 
 
# template image to display 
template = cv2.imread('temp.png',0) 
w, h = template.shape[::-1] 
 
# Matching and Normalize 
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED) 
 
# set confidence value by threshold of similarity.  
threshold_value = 0.5 
loc = np.where( res >= threshold_value) 
 
# Draw on output image 
for pt in zip(*loc[::-1]): 
    cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2) 
 
# Display on output image 
cv2.imwrite('outp4286_5541.tif',img_rgb) 
 

 
The script runs import of the OpenCV library, together with numpy and matplotlib. The script 

handles color adaptation and correction to greyscale, in case of application of other remotely sensed 

data, i.e. aerial imagery. The matching is done by sliding iterations by patch over source image via 

template to defined threshold value between 0 to 1. The output is vectorized squares on source 

image, directly capable of import to any GIS of preference afterwards. The output does not have 

extent defined, but since source image is georeferenced, the coordinate system can be transferred to 

new output from original source image extent. The above script runs from the second line merely by 

a choice of aesthetics of visualization and readability in present display. Equally, it runs an extra line 

below the entire script, but both are redundant. The input can consist of all raster, and by 

normalizing data source image and template can be transferred from different context. However, 

template needs to be of similar scale, since template slides over as patch calculation. Individual size 

of curvature is possible to be scaled based on given threshold value, meaning that burial mound size 

can alter. The above example in TABLE 18, are similarity calculations only based on one extracted 

template within the site, but gives a first rough estimate of matching functions applicable. 
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Using the information gained from first initial template matching, there are certain details that can 

be used to improve detection. Many of the detections are based on modern construction, such as 

ditches near roadways having similar curvature or details similar. Many of the false positives can be 

directly excluded by a buffer excluding details within modern building activity, making the 

landscape much more comprehensible to interpret (FIGURE 46).  

 

FIGURE 46: REMOVING MODERN CONSTRUCTION BY FILTERING OUT MAJOR ROADS 

However, the result of detections made by the template filter, visualize that many of the true burial 

mounds are not detected, and many false positives detected instead (FIGURE 47).  

 

FIGURE 47: TRUE, FALSE, AND MISSED DETECTION BY INITIAL TEMPLATE FILTER 
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The initial detection resulted in 1.25 times as many false positives, but with 1.5 times as many 

missed true burial mounds. This ratio can be altered by changing threshold of similarity extraction. 

By increased similarity, more false positives are detected. With a lower threshold value, less true 

burial mounds are detected. Different threshold values have been applied, but a 50 % similarity to 

given template gave decent results, without missing to many important details of similarity in 

landscape. With a 50 % likeness of a threshold of value of 0.5, details of human manipulation, such 

as looters pits and other major destruction of original outline, is also possible for the algorithm to 

overlook to find burial mounds similar to the given template for matching. Different templates were 

tried, but will always result in similar exclusion of data if calculated output is very unique compared 

to input. Therefore, it is better to set a value where size and shape can differ to a large extent 

compared to template input. The confidence value of the threshold is set at 0.5, and is applied to all 

case study sites to further investigate all nine sampling sites to make a comparative between 

automatic information extraction and crowd-sourced information extraction of burial mounds. By 

information extraction through geometry and templates, there is an immediate classification of 

shape in the landscape; the problem simply becomes a matter of confidence regarding classification 

certainty. The confidence of detection is naturally of importance, but initial interesting aspects are 

what impact simple geometry detection across different context reveals by the pattern of detection. 

Initial simple geometry detection is applied in TABLE 20 by templates from site of investigation to 

reveal initial patterns of computational detection.  
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TABLE 20: TEMPLATE MATCHING BY SIMILARITY THRESHOLD OF 0.5 

NAME	 Stockstadt	am	Main	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Triefenstein	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Hohe	Wart	
COEFF_N 

Threshold val: 

0.5 

Template: 
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NAME	 Amorbach	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Kleinlangheim	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Riedenheim	
COEFF_N 

Threshold val: 

0.5 

Template: 
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NAME	 Maroldsweisach	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Stettfeld	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Alzenau	
COEFF_N 

Threshold val: 

0.5 

Template: 
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The detection result in TABLE 20 is of very different quality by true and false positives from different 

context of landscape, but all follow the same steps of information extraction with a threshold 

similarity between source image and template being set at 0.5. The pattern of detection is scattered. 

A scattered pattern is to be expected since the selection process is by micro perspectives of 

individual characteristics within a template patch. Therefore, the pattern of detection is non-

contextual. Any clustering or ordered pattern by template matching is objective detection by 

similarity of input, and not influenced by other features in the vicinity. The classification and 

interpretation of detection naturally then becomes subjective based on rules given to classify by, or 

background of interpretation. The rate of true and false positives is at some sites extremely skewed 

by similar curvature in the landscape, especially as a result of modern construction blurring the 

filtering possibilities. Therefore, it is, as before, necessary to remove and exclude detection within 

certain areas of modern construction by a buffer to extract more purposeful information. Naturally, 

this can also result in erroneous exclusion of features of interest within near vicinity of modern 

construction. In the near vicinity of modern constructions, the presence of recent artificial mounds 

and curvatures is too excessive to be filtered, but deceives both human visual detection as well as 

computational automatic detection. Therefore, it is necessary to exclude these areas by a buffer as 

presented in Figure 47 around major roadways. All modern construction, such as minor roadways, 

cannot be excluded, since it would remove too many details in the landscape. Therefore, the buffer 

will only be extended around major structures of modern construction. To improve rate of detection 

by template matching, the threshold value applied does not deliver equal good results across the 

different contexts of landscape. As a consequence, best match needs to be investigated by changing 

given similarity threshold at the nine different sampling sites. The similarity threshold can easily be 

adjusted to increase degree of similarity necessary for detection between source image and 

template to change and improve outcome. However, initial similarity calculation was set at the same 

threshold value to have comparable output. In order to improve, the following automated detection 

in TABLE 21, was designed towards finding best threshold match to given context, as well as buffer 

exclusion surrounding major parts of modern construction. The representation of script function in 

TABLE 21 by changing threshold values clearly shows necessary adaptation to different context of 

landscape by the amount of curvature represented.  
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TABLE 21: TEMPLATE MATCHING BY BEST THRESHOLD MATCH AND BUFFER-ZONES 

NAME	 Stockstadt	am	Main	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Triefenstein	
COEFF_N 

Threshold val: 

0.55 

Template: 

 

NAME	 Hohe	Wart	
COEFF_N 

Threshold val: 

0.5 

Template: 
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NAME	 Amorbach	
COEFF_N 

Threshold val: 

0.5 

Template: 

 

NAME	 Kleinlangheim	
COEFF_N 

Threshold val: 

0.6 

Template: 

 

NAME	 Riedenheim	
COEFF_N 

Threshold val: 

0.65 

Template: 
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NAME	 Maroldsweisach	
COEFF_N 

Threshold val: 

0.6 

Template: 

 

NAME	 Stettfeld	
COEFF_N 

Threshold val: 

0.87 

Template: 

 

NAME	 Alzenau	
COEFF_N 

Threshold val: 

0.6 

Template: 
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The rate of detection by best match is producing many false positives, as is presented in TABLE 22.   

TABLE 22: AMOUT OF AUTOMATICLY DETECTED BY TEMPLATE MATCHING 

No.  SITE_name  Amount verified Amount auto. det. ratio false pos.  missed BM in area 

1  Stockstadt am Main  12  9  0  2 

2  Triefenstein  25  202  8  1 

3  Hohe Wart  1  8  8  0 

4  Amorbach  1  12  12  0 

5  Kleinlangheim  26  69  2  0 

6  Riedenheim  11  54  4  0 

7  Maroldsweisach  10  15  1  1 

8  Stettfeld  2  11  5  1 

9  Alzenau  20  232  11  0 

 

The extreme amount of false positives is a construct of amount of curvature in the landscape, often 

easily discernible by human cognition as non-burial mounds. The automated micro pattern 

detection therefore necessitates expert rejection and verification. However, all curvatures of 

similarity are selected, meaning that this is a construct for thorough remote survey of data for 

overview of geometry and curvature of interest. A majority of verified burial mounds are also 

detected, but with flat or destroyed burial mounds missed by automated detection of simple shapes 

through template matching. The overall pattern of all extracted information is focused on the 

individual information of curvature in the landscape. Occlusion and rejection of many false positives 

are easily attainable by expert investigation, but also by filtering out areas containing obvious 

modern impact on rate of detection.  The pattern of detection also follows some tendencies and 

trends of interest of curvature and curvature clusters in the landscape not detected by the focus 

group and crowd-sourced data. There are therefore some obvious differences in interpretation of 

landscape that makes for different segmentation and classification of landscape, also impacting 

finale quality of information extracted. Naturally, the threshold values used for similarity detection 

can be reduced or increased to either increase or decrease details detected. The thresholds selected, 

though, appear to fit the different sampling sites by encompassing best results of detecting true 

positives while not excluding considerable amounts of detail. However, the truly interesting aspects 

of template matching, is the pattern of detection, and how this pattern of detection is comparable to 

crowd-sourced data. While both methods of detecting and segmenting landscape do not directly 

compare, we will see in the following how the individual patterns reveal improved quality of 

information extraction. 
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5.7 COMPARISON BETWEEN CROWD-SOURCED DATA AND TEMPLATE 
MATCHING 

Data from crowd-sourcing information extraction reveals segmentation patterns capable of 

improving detection for large-scale cultural heritage management. Equally, the patterns of simple 

geometry of template matching by open-source principles, reveals segmentation patterns capable of 

improving detection for large-scale cultural heritage management. The data extracted from 

template matching is visualized as segmentation in TABLE 23 together with the crowd-sourced data 

extracted by the focus group. The product is segmented parts of landscape, revealing key areas of 

interest for understanding amount and presence of burial mounds within the nine different 

sampling sites.  

Both methods are semi-automatic from a point of view of cultural heritage agencies and agents, 

because it uses automated template matching and inexperienced volunteer selection by human 

interpretation. The patterns they reveal are interesting, and both help to statistically and more 

objectively classify landscape by circumstantial information extraction. Crowd-sourced data reveal 

macro patterns of contextual relations, while template matching reveal micro patterns of internal 

geometry composition. They both improve potentials of interpretation and classification, but 

combined they help substantiate recognition of areas of interest. However, product still necessitates 

finale experienced expertize classification of detection shapes and patterns. The results are 

therefore two methods for model based area understanding of landscape, by not focusing on 

individual details or features, and instead both producing macro patterns for dissemination and 

removing bias.     

Applying the script for automated information extraction by templates is a simple task of operation 

for all interested parties. The major concern therefore becomes whether or not cost-efficiency and 

quality of information is improved. Crowd-sourced detection can be a time consuming task, but by 

volunteer basis not cost-consuming. The added positive is also creating and motivating a community 

of heritage enthusiasts capable of continued contribution, and individual surveying. This naturally 

requires infrastructure of logistics, but has been seen to produce very positive results in many 

countries with open heritage and remotely sensed data. The results of crowd-sourced and template 

matched data to reveal patterns and geometries of interest for cultural heritage management and 

detection is shown below in TABLE 23. The patterns are not completely similar, but the areas of 

overlap are extremely interesting, and the segmentation offers complete coverage of true burial 

mounds by combined effort. 
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TABLE 23: DETECTION PATTERN OF COMPARISON BETWEEN CROWD-SOURCED, TEMPLATE MATCHED, AND 
TRUE BURIAL MOUNDS BY SEGMENTATION TO AREAS OF INTEREST. GRADIENT IS INVERSED WITHIN 
TEMPLATE PATTERNS, MAKING THESE PATTERNS CONTRASTING REMAINING SEGMENTATION. 

NAME	 Stockstadt	am	Main	

 

NAME	 Triefenstein	

 

NAME	 Hohe	Wart	
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NAME	 Amorbach	

 

NAME	 Kleinlangheim	

 

NAME	 Riedenheim	
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NAME	 Maroldsweisach	

 

NAME	 Stettfeld	

 

NAME	 Alzenau	
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Combining the methods in TABLE 23 reveals segmentation patterns containing burial mounds. At 

each site small differences in detection rates and patterns can be seen. From the site of Stockstadt, 

site no. 1, one cluster is not detected by template matching, but both crowd-sourced data and 

template matching missed true burial mounds. The false positives by the two methods are 

somewhat similar, but in general low. From the site of Triefenstein, site no. 2, all burial mound 

clusters are detected, with a lot of false positives from template matching due to modern 

construction and extreme slopes towards the river Main. The template matching show better 

detection of the northern group of burial mounds compared to crowd-sourced data, but all burial 

mounds are detected by both methods. At Hohe Wart, site no. 3, there is only one known burial 

mound in the vicinity, but the crowd-sourced data have increased amounts of false positives 

compared to template matching. Amorbach, site no. 4 also just contains one burial mound, and the 

detection of false positives is completely opposite between crowd-sourced and template matching, 

but both methods correctly detect the burial mound. From Kleinlangheim, site no. 5, the biggest rate 

of detection by both crowd-sourced data and template matching data, is centered on the known 

cluster of burial mounds. The template matching has many false positives located on the steep 

slopes towards the creek running across the landscape, while these peaks are completely excluded 

by the focus group. From the site of Riedenheim, site no. 6, both methods have strong correlation 

towards the burial mound cluster, and the focus group barely detects any false positives at the site. 

The template matching, however, shows many curvatures and elevations of interest, but also many 

along the roads in the open landscape and in the forest. From Maroldsweisach, site no. 7, the picture 

is very different, with the crowd-sourced data including many false positives, while the template 

matching barely extracts false positives, but misses one very flat burial mound. From Stettfeld, site 

no. 8, the situation is similar to Maroldsweisach with few false positives by the template matching, 

but many false positives by the focus group. However, the template matching also misses one 

hollowed “square” burial mound. At the last sample site, Alzenau, site no. 9, the landscape consist of 

peaked curvatures almost everywhere due to sand dunes. As a consequence, the template matching 

detects an extreme amount of false positives, but that is equal for the focus group. The template 

matching miss two verified burial mounds, but which are detected by the focus group. However, 

many unknown burial mounds are undoubtedly not verified in the field, and some of the areas 

detected by the template matching could certainly also be true burial mounds. At the site of Alzenau, 

finale verification requires archaeological excavation, but some good estimates can be done by the 

degree of similarity, combined with confidence value by selection from the focus group. 	
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Both methods have missing true positives, but combined contain all known and verified burial 

mounds within the nine different sampling sites. Naturally, many of the false positive detections are 

not necessarily verified as non-existing, and can therefore consist of unknown features of curvature 

and elevation of interest towards complete detection of all burial mounds or cultural heritage within 

the landscape.  

A complete picture of details of archaeological interest is impossible without archaeological 

excavation. The confidence of detection is as a result impossible to conclude, but undoubtedly the 

most prominent details of the landscape can be correctly selected and detected by remote 

investigations. Both methods equally have different potentials as untrained data segmentation of 

landscape into areas of interest, and best results are present when both methods are visualized 

before interpretation by expert classification of details in the landscape. Segmentation by crowd-

sourcing and segmentation through template matching, delivers model based approaches for 

understanding the digital LIDAR landscape, as well as real physical entities in the terrain. The most 

interesting areas are undoubtedly when both methods overlap each other, however, in some areas 

there is a difference in detection due to differentiated focus on either micro or macro patterns. This 

is mainly visualized by the difference in false positive detection which diverts between the two 

methods. This also shows that, what computational are calculated as similar, are sometimes obvious 

for human cognition as not similar, and thus rejected. On the other hand, computational 

interpretation of landscape is not deceived by macro patterns in landscape, and sometimes reveals 

outliers that human cognition might miss because of expectancy to find a specific pattern. Rather, 

computational interpretation by templates, strictly focuses on the individual micro similarity of 

shape and curvature in the landscape compared to input. Similarly, input is changeable according to 

landscape, but the mound shape works correspondingly across many datasets if resolution and 

visualation of data remains the same.   

The false positives of template matching often occur in complicated scenery, such as steep slopes, 

dynamic terrain or areas with heavy impact on landscape by modern use and manipulation. To filter 

out all areas of modern impact is complicated and controversial, because, then you also remove the 

areas most necessary to investigate due to more imminent danger. Human cognition easily excludes 

many apparent areas of non-interest, such as roundabouts, modern construction and many impacts 

of modern manipulation of landscape. At the same time, inexperienced and experienced human 

landscape interpretation, can quickly verify and reject many obvious automated template matching 

results. The automated segmentation of landscape, leads to detection of areas similar to rules 

defined, and this leads to objective investigation of data according to rules set in the parameters. 
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Differently to human interpretation, no areas will be forgotten by the computational segmentation 

of landscape. But the true classification of investigated subject might not always be completely true, 

but it offers the possibility to re-investigate and see landscape from a different perspective. Thus 

potentially, also leading to more correct and better verified monument detection by both desk based 

investigations and surveys.  

Segmenting landscape by template matching also reveals some uncertainties in conclusion based on 

computational extraction alone. Two areas containing true burial mounds were not detected, but for 

all other sites the algorithm pinpointed areas of importance. Consequently, best approach would be 

by segmenting landscape into areas of interest, only then to judge and interpret details in the 

landscape. Similarly, crowd-sourced data does not deliver perfect segmentation and classification of 

landscape. However, the combined results improve the different methods, and thus inexperienced 

detection can produce knowledge generation by offering multiple perspectives, and perhaps detect 

and verify details not noticeable or not possible for the expert to investigate. Equally, the automated 

detection by similarity detects possible areas missed by expert interpretation. Because, what is 

sometimes revealed once archaeological excavation takes place, is that there are details that were 

almost impossible to notice before excavation, with only the slightest of curvature changes in 

terrain. Examples of such, are almost completely destroyed and overploughed burial mounds only 

present below topsoil. The end result of both crowd-sourced and computational data detection will 

never be perfect, but archaeological data and monuments in the landscape are not perfect. By 

applying semi-automatic information extraction for pattern recognition, cost efficiency and quality 

of information can be improved, because it reveals areas of interest to further investigate by 

experienced professionals, but also leads to investigation of areas potentially missed and 

undetected due to subjective expectation. The consequence of open data and increased perspectives 

by crowd-sourcing through public archaeology and computational segmentation and classification 

of landscape, are increased use and knowledge generation by combined efforts of multiple sources. 

Improved perspectives and potential collaboration for ground truthing by groups instead of 

individual experts increase the areas and perspectives possible to cover. Similar, computational 

segmentation and classification increase possibility of quicker verification by drawing focus to areas 

of interest, and thus minimizing the necessity to scan all details in large datasets. Likewise, more 

eyes on perspectives and context will only help safeguard the vulnerable monuments revealed and 

hidden in the landscape by increased detection, preservation, and protection by avareness and 

autonomous public presence in the landscape. Openness and cooperation is the only way forward. It 

is impossible for the archaeological community to keep track of all changes and destruction 
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constantly affecting hidden and revealed information of archaeological sites and monuments. 

Consequently, aid is necessary to both track changes and undetected details still hidden. Such aid is 

possible to attain both by public archaeology through crowd-sourced data, but also automated 

pattern recognition to segment landscape into areas and details of interest necessary to investigate 

and re-investigate. Thus, it is a collaborative effort necessary to safeguard both the known and 

unkown details of landscape, and that is only possible with multiple perspectives and innovative 

methods of improving our knowledge gain. Knowledge gain by crowd-sourcing and automated 

procedures is by no means perfect, but it makes us look at landscape differently, and forces re-

investigation of details sometimes overlooked. Therefore, the automation of archaeological 

monument detection certainly has an encouraging role as aid for heritage management, both now 

and in the future.  
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6. CONCLUSIONS AND PERSPECTIVES 

Throughout this thesis, conclusions and perspectives have been exemplified and created at the end 

of every chapter. Combined, they all offer different aspects to understand limitations and potentials 

of large-scale semi-automatic pattern recognition within an archaeological landscape. There are 

plenty of limitations, but the potentials are even greater.  

 

Reliable spatial detection of archaeological monuments in the landscape, are necessary for large-

scale cultural heritage management and detection. Resources for reliable spatial detection has been 

the goal of remote sensing in archaeology for a long time, but has been halted by the heterogeneous 

and imperfect nature of archaeological features in the landscape. With the increasing amount of 

remotely sensed data, and especially with the introduction of LIDAR, the needs for comparable and 

standardized approaches and methodologies have similarly increased. Meanwhile, our digital 

landscapes are archives of so many unknown details waiting to be detected and understood, but it is 

difficult to cost-efficiently investigate them all. The digital landscapes are manipulated products to 

reveal certain details of interest, but there is not enough time to actively investigate and interpret 

everything. The information of detail and information is too great to process, and our classification 

of landscape becomes subjectively blurred by what we are looking for. Semi-automatic pattern 

recognition by similarity matching and citizen science, are the methods for improving use of 

imperfect archaeological data to increase knowledge gain by improved quality of information. Semi-

automated pattern recognition is also development of cost-efficient procedures for cultural heritage 

agencies and agents to detect and manage remnants of the past hidden and revealed in the 

landscape.  

 

The field of automated information extraction is a dynamic field, rapidly improving, meanwhile 

open-data and open-source sharing is the standard in almost all aspects of public interest. Likewise, 

the trajectory of cultural heritage management and detection moves towards open-data and open-

source sharing, resulting in increased use of data. The necessities are therefore also adaptation to 

amplified amounts of unsupervised and imperfect crowd-sourced data created by citizen science 

and public archaeology. The results of crowd-sourcing, can be improved quality of information, and 

thus deliver good detection rates for cultural heritage management. However, all landscapes and 

context are unique, meaning there is a constant need for adaptation to results. To handle large-scale 

information extraction, results needs to be standardized and comparable. To adapt, it is necessary to 
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compromise and segment information into qualified standards in order to extract information for 

improved knowledge gain. However, there are so many different aspects of large-scale cultural 

heritage management and detection, that it can be difficult to visualize necessities and problems. 

This thesis was written to represent and visualize many different aspects of large-scale cultural 

heritage management and detection with the intent of discussing and defining archaeological LIDAR 

potential and limitations, visualizing the imperfect nature of archaeological monuments, 

representing the field of automated detection within archaeology, and semi-automatic extraction of 

information from crowd-sourced and automated template matching. This is presented in six 

chapters, all offering different aspects on how to understand the digital LIDAR landscape of the past 

and present, and how the trajectory of automated information extraction develops. For this 

purpose:   

 

Chapter	 1 defines the thesis outline, premise, and motivation. Chapter	 2 focuses on technical 

aspects of LIDAR data and archaeological LIDAR use and potential. The chapter explains history, 

development, and defines the LIDAR product from point to plane. From initial outline of the LIDAR 

product, the chapter exemplifies how archaeological LIDAR can be improved by adding information. 

The extent of LIDAR goes from passive sensing to active sensing, with added, altered, or intensified 

wavelengths. But too much information can equally disturb the possibilities for human cognition 

and computational calculation to interpret details. Optimal settings are therefore not found by 

always improving resolution, because the increased amount of details blurs the macro patterns 

possible to discern in digital elevation models. Standards for comparison of data are also 

complicated by the diversity of LIDAR data and metadata, making for necessities of calibration and 

normalization to assess between different LIDAR datasets. This can be controlled by interpolation 

and visualization, however, amount of detail can still complicate comparison. When defining 

interpolation and visualization of data, it is necessary to remember that different means of 

interpolation and visualization makes for detection of dissimilar features and structures in the 

landscape. The commonly applied presentation of digital elevation models are by visualizing relief 

shade or hillshade. Shading landscape by relief is easily understandable for human cognition, and 

therefore often a standard chosen for visualization of LIDAR data for crowd-sourced information 

extraction. Shading landscape by relief is equally machine readable, and the case studies are 

therefore represented by similar relief shading for comparison. However, LIDAR accessibility can 

complicate possibilities for archaeologist and engaged public alike, resulting in difference by lack of 

use, cost-efficiency, and quality of information extracted. 
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Chapter	3 represented primary data for information extraction. Specifics and definition of data and 

metadata structure was introduced to explain steps of procedure for the complete interpolation of 

the dataset from Lower Franconia. To understand the dataset from Lower Franconia, it is necessary 

to explain and model composition of features in the landscape by the imperfect nature of 

archaeological data. Because, no matter the approach for segmenting landscape, individual data 

points are distorted and skewed by the impact of cultural and natural manipulation of landscape, 

combined with decomposition, degradation, and decay of patterns of the past and present. Micro 

patterns are therefore illusive and difficult to confidently determine by desk-based investigations, 

while macro patterns fade by lack of overview through surveying. Different approaches reveal 

different details, but it is necessary to establish best steps of processing to improve both field and 

desk based investigations. Segmentation of landscape before surveying improves the possibility of 

investigating individual details, while understanding macro patterns in landscape, resorting to 

discovery of additional details in the landscape.  However, not all micro patterns detected by desk 

based investigations are true, because terrain and surface is in constant transition.   

	

Chapter	 4	 defines the field of automated information extraction by remotely sensed data, with 

particular focus on extraction of archaeological features and structures from LIDAR data. The field 

of automated segmentation and classification of details in remote sensing is undoubtedly growing. 

However, within the archaeological community for cultural heritage management and detection, the 

pattern is not as defined. Undoubtedly, the archaeological community is seeing a network grow and 

develop for automated and semi-automated means of detection, with certain leading brokers and 

institutions influencing the field. By people and articles influencing the field, state of the art and best 

practice can be established by common use and trends of use. The NA shows that data driven 

approaches were previously much more prevalent, but the articles and authors leading the field are 

adapting to model driven approaches and template matching. Four research entities were detected 

by pattern of community influence on the field. By dynamic time-scaled representation of research 

and articles the evolution of the field is extracted by key instigators, brokers, and leaders. The 

pattern of present field development is used as representation for methodology to define state of 

the art and best practice. The results on methodology are applied in the following chapter for 

automated information extraction and archaeological monument detection in LIDAR data.  

 

Chapter	 5	 applies visual detection, citizen science by crowd-sourcing data, and automated 

information extraction to segment and classify landscape. The results vary, but all contain different 

potentials and limitations. The two approaches discussed are extracted from the conclusions of 
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chapter 4, and consist of automated information extraction by data or model driven approaches. 

This implies information extraction by per pixel or by geometry and regions. Means of information 

extraction can adapt many different variables of data, but easily becomes intricate to a degree 

where amount of information distorts more than aids the possibilities of improving quality of 

information. In contrast, simple information extraction by template matching offers a good rate of 

detection by similarity validation. Equally, citizen science through crowd-sourced data offers a good 

rate of detection by relative confidence defined by selection count. Comparing the two methods of 

simple information extraction through crowd-sourced data and template matching, indicates 

interesting detection patterns of landscape interpretation. The patterns are to a strong degree 

dissimilar by selection of either micro or macro patterns in landscape. However, where the two 

methods overlap, the confidence of detection is greatest. By combined segmentation, all true burial 

mound areas of interest are detected, with new areas of interest modelled, and areas containing 

false positives more easily excluded. The resulting automated information extraction is not perfect, 

but it offers an enhanced segmented perspective on micro and macro patterns in the landscape.  

 

From all the different chapters, different perspectives are given for semi-automatic pattern 

recognition within an archaeological landscape. The basis of the thesis is to present opportunities 

for large-scale cultural heritage management and detection. This also implies creating more 

objective and comparable datasets in combination for knowledge-based expert interpretation and 

automated procedures of information extraction of real entities and details in the landscape. For 

detection of archaeological monuments in LIDAR data, best results of positive detection are by 

expert interpretation combined with differentiated perspectives and fieldwork. But all human 

interpretation of characteristics and variables within a given dataset can also be incorrect due to 

misclassification based on external and internal influence and bias. By computation, however, the 

results are controlled and replicable. Computational detection confronts the same problems as 

visual detection with a high degree of false positive detections with indiscriminate segmentation 

and classification, and both approaches have high uncontrolled error rates of detection if not proper 

organized and adjusted. The real concern is therefore how to prober optimize and adjust weights to 

increase time efficiency for optimal large-scale segmentation and classification of landscape. By 

computation for archaeological detection and mapping, the real objective is to improve quality of 

information towards confident true positive detections, rather than removing the human 

component. This is especially true for the diverse pattern of imperfect archaeological monuments 

hidden in the modern landscape. Aimed at optimizing positive detection of a specific structure or 

pattern from the past, it is a matter of improving efficiency by minimizing errors based on 
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performance evaluation through input and expected output. Thus, automated detection for 

archaeological features and structures is not necessarily a matter of absolute detection, but rather of 

best fit to the archaeological community by minimizing error rates or improving confidence. This 

statement also implies that the human interpreter should not be removed for the applied means of 

detection, but rather that computation should focus on how to optimize the procedures to 

quantifiably and objectively determine the extent and possibilities for improved detection rates for 

the human interpreter. Because, the patterns of archaeological features and structures, necessitates 

discarding similar patterns in the landscape constructed by natural and cultural activity. This is 

especially true for the detection of tumuli, since barrows and mounds are continuously created by 

cultural and natural activities of different purposes creating similar patterns equal to burial mounds 

of the past. Generally, within the archaeological community, one of the assumptions is that the 

techniques thus far have not provided improved detection rates and proper classification of 

archaeological monuments in the landscape to effectively remove the human involvement in 

archaeological mapping and management. The archaeological community is questioning whether or 

not it will be computational possible to replicate and imitate the human interpreter (Parcak 2009, 

110). Due to the imperfect nature of archaeological remains in the landscape. This is a valid and 

proper critique, but not necessarily the correct concern. Because, even though automated mapping 

of archaeological monuments might never be fully automated, the procedures are still improving the 

potential of archaeological detection and management. Some concerns determine that the imperfect 

nature of archaeological data makes for too many false positives while omitting patterns of interest 

by automated detection (Hanson 2010). Equally, this is a valid concern, but not necessarily the 

correct concern. The reason for this is: one approach does not omit the other, but rather should be 

used and seen as a dual approach of investigation. In the end, the result is always measured by the 

input parameters, and thus a matter of learning how to cognitively or computationally understand 

and describe the landscape. This entails that the outcome will always be, manually and 

automatically, a result based on prior knowledge of already known parameters. However, even by 

mapping or detecting already known and recurrent archaeological monuments in the landscape, 

this improves the possibility of detecting atypical and unknown monuments in the landscape by 

providing additional resources by which patterns can be distinguished. Thus by measuring potential 

use and application within archaeological landscapes, the core of implementation lies perhaps not in 

the classification of details, but rather in the segmentation for improved information extraction by 

aiding pattern recognition. The added layers of segmentation changes interpretation of landscape, 

and thus helps to define the variables of the near infinite diversity by which archaeological 

monuments can be described. This in return constructs the spatial record on how the landscape of 
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the past should be understood, outlining indices and geometries possible to compute and interpret, 

or segment and classify. By using simple untrained and unsupervised automatic information 

extraction, it is possible to achieve good results for segmenting landscape into areas of interest for 

improved human visual detection and verification. Equally, by using simple untrained and 

unsupervised crowd-sourced information extraction, it is possible to achieve good results for 

segmenting landscape into areas of interest. Combined, detection becomes almost similar to 

expertly defined and detected monument detection and extraction of information in the landscape. 

This should not be seen as a threat to experts in the field, but rather as an improved perspective that 

can be used by experts. The proposed dual methods of simple information extraction creates a 

baseline dataset by combined micro and macro patterns of features and areas of interest to aid and 

safeguard cultural heritage in the landscape.  

 

Certainly, the imperfect nature of archaeological data is a continued concern for archaeological 

monument detection and mapping, but the concern is similar for both manual and automatic 

information extraction of details in the landscape. In the end, one set of unique values for 

archaeological monuments do not exist, but they are scattered on a scale from 0 to 1. Within the 

range of 0 to 1 lies infinite variation in finite space, similar to cultural heritage monuments hidden 

and revealed in the landscape.  All finite definition is a compromise to compare and standardize 

interpretation, but can always differ based on perspective. Therefore, segmentation is the 

compromise between infinite values or perspectives to finite values and perspectives to classify, 

define, and describe entities, and ideas. Every possibility of improving our understanding of entities 

and ideas should be accepted, because they can always be expanded and elaborated. Segmenting 

and classifying our landscape helps increase the scale of definition for both human and 

computational understanding, and by simple semi-automatic information extraction, our landscapes 

can be much better understood for improved knowledge generation towards large-scale cultural 

heritage management and detection.  
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Appendix	3A	
BMID  Area  Cluster  BMID  Area  Cluster  BMID  Area  Cluster 

1  Stockstadt am Main  1  40  Hohe Wart  1  110  Maroldsweisach  1 

2  Stockstadt am Main  1  41  Amorbach  1  111  Maroldsweisach  1 

3  Stockstadt am Main  1  42  Kleinlangheim  1  113  Maroldsweisach  1 

4  Stockstadt am Main  1  43  Kleinlangheim  1  120  Maroldsweisach  2 

5  Stockstadt am Main  1  44  Kleinlangheim  1  121  Maroldsweisach  2 

6  Stockstadt am Main  2  45  Kleinlangheim  1  122  Maroldsweisach  2 

7  Stockstadt am Main  2  46  Kleinlangheim  1  123  Maroldsweisach  2 

8  Stockstadt am Main  2  47  Kleinlangheim  1  124  Maroldsweisach  2 

9  Stockstadt am Main  2  48  Kleinlangheim  1  125  Maroldsweisach  2 

10  Stockstadt am Main  3  49  Kleinlangheim  1  126  Maroldsweisach  2 

11  Stockstadt am Main  3  50  Kleinlangheim  1  130  Stettfeld  1 

12  Stockstadt am Main  3  51  Kleinlangheim  1  131  Stettfeld  1 

15  Triefenstein  3  52  Kleinlangheim  1  140  Alzenau  1 

16  Triefenstein  1  53  Kleinlangheim  1  141  Alzenau  1 

17  Triefenstein  1  54  Kleinlangheim  1  142  Alzenau  1 

18  Triefenstein  1  55  Kleinlangheim  1  143  Alzenau  2 

19  Triefenstein  1  56  Kleinlangheim  1  144  Alzenau  2 

20  Triefenstein  2  57  Kleinlangheim  1  145  Alzenau  2 

21  Triefenstein  2  58  Kleinlangheim  1  146  Alzenau  2 

22  Triefenstein  2  59  Kleinlangheim  1  147  Alzenau  2 

23  Triefenstein  2  60  Kleinlangheim  1  148  Alzenau  2 

24  Triefenstein  2  61  Kleinlangheim  1  149  Alzenau  2 

25  Triefenstein  2  62  Kleinlangheim  1  150  Alzenau  2 

26  Triefenstein  2  63  Kleinlangheim  1  151  Alzenau  2 

27  Triefenstein  2  64  Kleinlangheim  1  152  Alzenau  2 

28  Triefenstein  2  65  Kleinlangheim  1  153  Alzenau  2 

29  Triefenstein  2  70  Riedenheim  1  154  Alzenau  2 

30  Triefenstein  2  71  Riedenheim  1  155  Alzenau  2 

31  Triefenstein     72  Riedenheim  1  156  Alzenau  2 

32  Triefenstein     73  Riedenheim  1  157  Alzenau  2 

33  Triefenstein  3  74  Riedenheim  1  158  Alzenau  2 

34  Triefenstein  3  75  Riedenheim  1  159  Alzenau  2 

35  Triefenstein  3  76  Riedenheim  1  160  Alzenau  2 

36  Triefenstein  3  77  Riedenheim  1  161  Alzenau  2 

37  Triefenstein  3  78  Riedenheim  1  162  Alzenau  1 

38  Triefenstein  3  79  Riedenheim  1  163  Alzenau  1 

39  Triefenstein  3  80  Riedenheim  1  164  Alzenau  1 
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Appendix	3B	
NAME  Stockstadt am Main 

Description  Burial mounds; three clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  12 

Nearest administrative UID  207688 

File number  D‐6‐6020‐0087 

Sub district  361 

 

Description: 

12 burial mounds were located by field inspection. The 12 burial mounds are located in three distinct 

clusters, C1‐3, but all are placed on the ridge towards the valley to the south. The burial mounds to the 

east, C1, are all heavily damaged by looting and a road running through one of them. All mounds in C1 

are larger. The burial mounds in C2 are almost not noticable in the field due to canopy obstrcution, but 

stands out as patterns of clear cultural certainty within the DEM. The last cluster, C3, are quite 

prominent in the DEM as well as in the landscape, but all have also been looted at some point in time.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 

Burial cemetery recorded on site 



APPENDIX 3B 
 

179 
 

Burial  mounds  confirmed  by  field 
inspection 

Survey results for visual detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 

C1 
C2 

C3 
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COEFF_N 

Threshold val: 

0.5 

Template: 
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BM1 
C1 
View: NE 
 
Note: 
largest 
mound of 
Group1 
 
GK4: 
4287947/ 
5542874 
 
 
 
 
 
 
 
 
[6113] 

BM1 
C1 
View: N 
 
Note: 
negative 
openness 
of BM 
looting 
 
GK4: 
4287947/ 
5542874 
 
 
 
 
 
 
 
[6117] 
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BM3 
C1 
View: SE 
 
Note: 
slight 
unnatural 
elevation 
cut by 
road. 
 
GK4: 
4287839/ 
5542817 
 
 
 
 
 
 
[6131] 

BM4 
C1 
View: SV 
 
Note: 
beginning 
line of BM 
 
GK4: 
4287954/ 
5542751 
 
 
 
 
 
 
 
 
 
[6132] 
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BM4 
C1 
View: N 
 
Note: 
Middle of 
BM with 
looting cut 
 
GK4: 
4287948/5
542768 
 
 
 
 
 
 
 
 
[6138] 

BM6 
C2 
View: S 
 
Note: 
largest BM 
of C2 
 
GK4: 
4287159/ 
5542665 
 
 
 
 
 
 
 
 
 
[6167] 
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BM12 
C3 
View: SE 
 
Note: BM 
with 
looting cut 
in the 
middle 
 
GK4: 
4286822/ 
5542698 
 
 
 
 
 
 
 
[6163] 

BM10 
C3 
View: N 
 
Note: Most 
western 
BM. Flat, 
but no 
traces of 
looting 
 
GK4: 
4286779/ 
5542714 
 
 
 
 
 
 
[6162] 
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NAME  Triefenstein 

Description  Burial mounds; three clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  25 

Nearest administrative UID  199043; 208622; 982209 

File number  D‐6‐6223‐0013; D‐6‐6223‐0012; D‐6‐6223‐0049 

Sub district  613 

 

Description: 

Three distinct clusters of burial mounds, all located on the same plateau above the river Main, near 

Urphar. C1 consist of four flat topped burial mounds. C2 consist of minimum 11 burial mounds with 

some being cut by a pathway. Within the centre of the concentration the burial mounds are overlapping 

eachother, but it is difficult to assess stratigraphic relations without formal excavation. However, it does 

seem like the two burial mounds in the centre are the primary connectors. In between C2 and C3, some 

smaller circular earthenwork are also present as potential burial mounds, but they are all connected to 

the forest roads, and therefore might as well be connected to general earthenwork construction due to 

logistic patterns of waste dispersal. The last group C3, consist of a minimum of eight burial mounds of 

varying size, and are stratigraphicly overlapping. The temporal scope of the grave fields are 

undocumented, but a connection to the Migration Age fortification of Wettenburg is likely due to spatial 

presence within close vicinity.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
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Burial cemetery recorded on site 

Burial  mounds  confirmed  by  field 
inspection 

Survey results for visual detection  

C1 
C2 

C3 
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Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 

COEFF_N 

Threshold val: 

0.55 

Template: 
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BM16 
C1 
View: W 
 
Note: 
Very flat 
topped 
elevation 
 
GK4: 
4323799/ 
5519310 
 
 
 
 
 
 
 
 
[6203] 

BM22 
C2 
View: NE 
 
Note: 
Start of the 
larger C1 
concentrati
on 
 
GK4: 
4323935/ 
5519122 
 
 
 
 
 
 
 
[6206] 
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BM23 
C2 
View: W 
 
Note: 
Large BM 
connected 
with many 
smaller 
 
GK4: 
4323954/ 
5519127 
 
 
 
 
 
 
 
[6208] 

BM26 
C2 
View: E 
 
Note: 
Large BM 
connected 
with many 
smaller 
 
GK4: 
4323971/ 
5519161 
 
 
 
 
 
 
 
[6208] 
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BM28 
C2 
View: E 
 
Note: 
Extension 
of C2 
towards 
east 
 
GK4: 
4324030/ 
5519176 
 
 
 
 
 
 
 
[6218] 

BM31 
 
View: N 
 
Note: 
One of the 
less 
distinct 
elevations 
in between 
C2 and C3 
 
GK4: 
4324383/ 
5519238 
 
 
 
 
 
[6220] 
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BM35 
C3 
View: N 
 
Note: 
Towards 
the two 
rows of 
BMs 
 
GK4: 
4324868/ 
5519532 
 
 
 
 
 
 
 
[6228] 

BM41 
C3 
View: NE 
 
Note: 
Last row of 
BMs 
 
GK4: 
4324864/5
519573 
 
 
 
 
 
 
 
 
 
[6243] 
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NAME  Hohe Wart 

Description  Burial mound; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  1 

Nearest administrative UID  977096 

File number  D‐6‐6021‐0094 

Sub district  406 

 

Description: 

The burial mound of Hohe Wart, is a singular regocnisable mound located on a very steep slope on a 

hillside facing the north. By its physical presence, it stands out as a compact earthenwork covered with 

stones. 

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection 

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 
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COEFF_N 

Threshold val: 

0.5 

Template: 
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BM40 
C1 
View: W 
 
Note: 
Stone 
covered 
BM 
 
GK4: 
4302744/ 
5534815 
 
 
 
 
 
 
 
 
[6183] 

BM40 
C1 
View: W 
 
Note: 
Stone 
covered 
BM 
 
GK4: 
4302744/ 
5534815 
 
 
 
 
 
 
 
 
[6184] 
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NAME  Amorbach 

Description  Burial mound; one cluster 

Timeframe  Unknown prehistory 

Ground truth estimate  1 

Nearest administrative UID  201173 

File number  D‐6‐6321‐0004 

Sub district  470 

 

Description: 

The burial mound of Amorbach lies singuarly near the highest topographic point in the landscape. 

Forestry is very active, and fresh tractor tracks were seen dug into the side of the burial mound.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection 

Survey results for visual detection 
by  kernel  density.  Radius  100, 
Cellsize: 10 
Weight: count 
Gradient: black to white from less 
to more 
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COEFF_N 

Threshold val: 

0.5 

Template: 
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BM41 
C1 
View: N 
 
Note: 
Flat 
topped, 
but with a 
large 
diameter 
 
GK4: 
4305460/ 
5505326 
 
 
 
 
 
 
[6188] 

BM41 
C1 
View: E 
 
Note: 
Flat 
topped, 
but with a 
large 
diameter 
 
GK4: 
4305460/ 
5505326 
 
 
 
 
 
 
[6191] 
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NAME  Kleinlangheim 

Description  Burial mounds; one cluster 

Timeframe  Hallstatt Culture 

Ground truth estimate  26 

Nearest administrative UID  209040 

File number  D‐6‐6227‐0058 

Sub district  1154;1142 

 

Description: 

One large cluster of burial mounds with different degrees of preservation. Some older, and some more 

modern evidence of looting and digging in the landscape. West of the burial mound concentration, 

several potential overploughed burial mounds were identified due to slight elevation, and the discovery 

of ceramics of potential Hallstat Culture. Other finds of Hallstat Culture has been located in the vicinity, 

and is a likely connection to the burial mounds. The burial mounds are located in the small valley, almost 

at the lowest point in the vicinity, but with slight elevation towards the south.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 
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COEFF_N 

Threshold val: 

0.6 

Template: 
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BM63 
C1 
View: SW 
 
Note: 
Two 
connected 
BMs on the 
southern 
edge of the 
cluster 
 
GK4: 
4378948/ 
5517293 
 
 
 
 
 
[6251] 

BM62 
C1 
View: NW 
 
Note: 
Deep cut in 
BM62 
 
GK4: 
4378956/ 
5517307 
 
 
 
 
 
 
 
 
 
[6255] 
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BM62 
C1 
View: N 
 
Note: 
Middle of 
the cluster 
towards 
western 
edge 
 
GK4: 
4378956/ 
5517307 
 
 
 
 
 
 
[6257] 

BM48 
C1 
View: NW 
 
Note: 
Middle of 
the cluster 
towards 
western 
edge 
 
GK4: 
4378970/ 
5517360 
 
 
 
 
 
 
[6259] 
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BM46 
C1 
View: N 
 
Note: 
Modern 
cut 
 
GK4: 
4378945/ 
5517365 
 
 
 
 
 
 
 
 
 
[6262] 

Anomaly 
 
View: N 
 
Note: 
A anomaly 
reflected 
as a 
mound 
within the 
DTM 
 
GK4: 
4379285 
5517295 
 
 
 
 
 
[6263] 
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NAME  Riedenheim 

Description  Burial mounds; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  11 

Nearest administrative UID  202035 

File number  D‐6‐6425‐0062 

Sub district  774;768 

 

Description: 

Burial mounds of various degree of destruction and deteriation. However, most of them seem 

undisturbed from looting. There are two spatial placements of burial mounds at the site within two 

clusters. The first cluster is situated along the northern ridge of the forest. The second cluster is a little 

further inside the forest. In between the clusters is an empty area devoid of mounds, but with a hollow 

road passing through. The road is of modern use, but likely extends back in time as primary road in the 

area.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 
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COEFF_N 

Threshold val: 

0.65 

Template: 
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BM72 
C1 
View: NE 
 
Note: 
Dense 
vegetation 
over BM 
 
GK4: 
4351290/ 
5491630  
 
 
 
 
 
 
 
 
[6275] 

BM74 
C1 
View: E 
 
Note: 
Flat 
topped BM 
with one of 
the only 
looting 
cuts in the 
area 
 
GK4: 
4351333/ 
5491647 
 
 
 
 
[6280] 
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BM75 
C1 
View: N 
 
Note: 
Larger BM 
completely 
hollowed 
out by 
animal 
activity 
 
GK4: 
4351334/ 
5491614 
 
 
 
 
 
[6293] 

BM78 
C2 
View: SW 
 
Note: 
Two 
separated 
BMs 
 
GK4: 
4351280/ 
5491541 
 
 
 
 
 
 
 
 
[6295] 
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NAME  Maroldsweisach 

Description  Burial mounds; two clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  10 

Nearest administrative UID  134142; 132787; 132795; 132783 

File number  D‐6‐5829‐0008;D‐6‐5829‐0012‐4 

Sub district  2138; 2138;2223 

 

Description: 

Dispersed pattern of individual and clustered groups of burial mounds on the slopes and plateaus of the 

landscape. In C1, one burial mound has since the LIDAR scanning been removed, and is no longer 

possible to locate in the field. The two others still present were large flat topped burial mounds. From C2 

a dispersed pattern of burial mounds are seen. From the field investigation, the cluster of burial mounds 

were clear, and the two outer mounds also very likely prehistoric.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 

C1 

C2 



APPENDIX 3B 
 

213 
 

COEFF_N 

Threshold val: 

0.6 

Template: 

 

 

 

BM110 
C1 
View: SE 
 
Note: 
Flat 
topped 
large BM 
 
GK4: 
4402693/ 
5561330 
 
 
 
 
 
 
 
 
[6321] 
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BM120 
C1 
View: S 
 
Note: 
Area of 
missing BM 
 
GK4: 
4402836/ 
5561670 
 
 
 
 
 
 
 
 
 
[6325] 

BM111 
C1 
View: NW 
 
Note: 
Visible BM 
in the field, 
but almost 
invisible in 
the DTM 
 
GK4: 
4402804/ 
5561604 
 
 
 
 
 
 
[6328] 
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NAME  Stettfeld 

Description  Burial mounds; one cluster 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  2 

Nearest administrative UID  181267; 134234 

File number  D‐4‐6030‐0023; D‐6‐6030‐0005 

Sub district  994;2291 

 

Description: 

Two very centrally placed burial mounds on top of natural elevation. Both peaks of the Spitzlberg, have 

been in use for different purposes throughout time, and have been heavily shaped and destroyed by 

human activity. The western burial mound has been re‐used as a new sarcophagus religious display, 

whereas the eastern mound has almost been completely hollowed out. Both burial mounds are 

therefore almost completely destroyed, but can still be recognised by their continued physical presence 

in landscape.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 
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COEFF_N 

Threshold val: 

0.87 

Template: 
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BM130 
C1 
View: W 
 
Note: 
The extent 
of the 
unnatural 
hilltop 
 
GK4: 
4409411/ 
5536904 
 
 
 
 
 
 
 
[6313] 

BM130 
C1 
View: N 
 
Note: 
Present 
day 
religious 
display 
 
GK4: 
4409411/ 
5536904 
 
 
 
 
 
 
 
 
 
 
 
[6312] 
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BM130 
C1 
View: E 
 
Note: 
Present 
day 
religious 
display 
 
GK4: 
4409411/ 
5536904 
 
 
 
 
 
 
 
[6310] 

BM131 
C1 
View: W 
 
Note: 
The last 
remains of 
the burial 
mound 
after 
looting and 
destruction 
 
GK4: 
4409595/ 
5536912 
 
 
 
 
[6318] 
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NAME  Alzenau 

Description  Burial mounds; two clusters 

Temporal or cultural frame  Unknown prehistory 

Ground truth estimate  20 

Nearest administrative UID  194524; 196034 

File number  D‐6‐5920‐0007; D‐6‐5920‐0021 

Sub district  994;2291 

 

Description: 

The two clusters of burial mounds at Alzenau are situated in an area of former migrating sand dunes, 

now held down by forest and canopies. However, this highly complicates the identification of burial 

mounds in the area. Undoubtedly there are two clusters of burial mounds in the area, but to determine 

their extent is extremely difficult by remote investigation, as well as by field investigation. Therefore the 

finale estimate is a very rough estimate, and the southern cluster, C2, seems to be the most prominent 

of the two.  

Visual detection 

Raw relief shade  
Sun zenith: 45  
Sun azimuth: 315 
 
 

Burial cemetery recorded on site 
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Burial  mounds  confirmed  by  field 
inspection 

Survey  results  of  manual  visual 
detection  

Survey results for visual detection by 
kernel  density.  Radius  100,  Cellsize: 
10 
Weight: count 
Gradient: black to white from less to 
more 

C1 

C2 
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COEFF_N 

Threshold val: 

0.6 

Template: 
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BM146 
C1 
View: SE 
 
Note: 
BM slightly 
cut by 
forest 
pathway 
 
GK4: 
4288706/ 
5551809 
 
 
 
 
 
 
 
[6172] 

BM145 
C1 
View: E 
 
Note: 
BM slightly 
cut by 
forest 
pathway 
 
GK4: 
4288742/ 
5551805 
 
 
 
 
 
 
 
[6173] 
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BM143 
C1 
View: E 
 
Note: 
View from 
BM145 
towards 
BM144 
and 
BM143 
 
GK4: 
4288742/ 
5551805 
 
 
 
 
 
[6174] 

BM154 
C1 
View: E 
 
Note: 
View from 
BM154 
and the 
migrating 
dune 
landscape 
 
GK4: 
4288909/ 
5551874 
 
 
 
 
 
[6174] 
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Appendix	4A	
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Appendix	4B	

Node label 
Node 

ID Edge label 
Edge 

ID Year Source Target

De Boer 2007 1 Bradley 1985 101 1985 1 101 

De Boer 2007 1 Brunelli & Poggio 1993 102 1993 1 102 

De Boer 2007 1 Burrough & Mcdonnell 1998 103 1998 1 103 

De Boer 2007 1 Fletcher & Lock 1984 104 1984 1 104 

De Boer 2007 1 Fletcher & Spicer 1992 105 1992 1 105 

De Boer 2007 1 Herzog 2001 106 2001 1 106 

De Boer 2007 1 Laan & De Boer 2005 107 2005 1 107 

De Boer 2007 1 Schmidt et al. 2005 108 2005 1 108 

De Boer 2007 1 Sittler & Daeffler 2005 109 2005 1 109 

De Boer 2007 1 Theodoridis & Koutroumbas 1999 110 1999 1 110 

De Boer 2007 1 Theunissen 1999 111 1999 1 111 

De Boer 2007 1 Van Zejverden & Laan 2004 112 2004 1 112 

De Boer 2007 1 Waldus & Van der Velde 2005 113 2005 1 113 

Briese et al. 2009 2 Axelsson 1999 114 1999 2 114 

Briese et al. 2009 2 Briese 2004a 115 2004 2 115 

Briese et al. 2009 2 Briese 2004b 116 2004 2 116 

Briese et al. 2009 2 Briese & Pfeifer 2008 117 2008 2 117 

Briese et al. 2009 2 Brügelmann 2000 118 2000 2 118 

Briese et al. 2009 2 Doneus & Briese 2006 119 2006 2 119 

Briese et al. 2009 2 Gomes-Pereira & Janssen 1999 120 1999 2 120 

Briese et al. 2009 2 Gomes-Pereira & Wicherson 1999 121 1999 2 121 

Briese et al. 2009 2 Kager 2004 122 2004 2 122 

Briese et al. 2009 2 Karel et al. 2006 123 2006 2 123 

Briese et al. 2009 2 Maas 2000 124 2000 2 124 

Briese et al. 2009 2 Mandlburger & Briese 2007 125 2007 2 125 

Briese et al. 2009 2 Mandlburger et al. 2008 126 2008 2 126 

Briese et al. 2009 2 Ressl et al. 2008 127 2008 2 127 

Briese et al. 2009 2 Ressl et al. 2009 128 2009 2 128 

Briese et al. 2009 2 Sui 2002 129 2002 2 129 

Hu & Ye 2013 3 Axelsson 1999 114 1999 3 114 

Hu & Ye 2013 3 Axelsson 2000 131 2000 3 131 

Hu & Ye 2013 3 Frédéricque et al. 2008 132 2008 3 132 

Hu & Ye 2013 3 Douglas & Peucker 1973 133 1973 3 133 

Hu & Ye 2013 3 Dorninger & Pfeifer 2008 134 2008 3 134 

Hu & Ye 2013 3 Gross et al. 2005 135 2005 3 135 

Hu & Ye 2013 3 Haithcoat et al. 2001 136 2001 3 136 

Hu & Ye 2013 3 Hu et al. 2013 137 2013 3 137 

Hu & Ye 2013 3 Kraus & Pfeifer 1998 138 1998 3 138 

Hu & Ye 2013 3 Mayer 2008 139 2008 3 139 

Hu & Ye 2013 3 Meng et al 2009 140 2009 3 140 

Hu & Ye 2013 3 Moussa & El-Sheimy 2012 141 2012 3 141 
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Hu & Ye 2013 3 Rottensteiner et al 2012 142 2012 3 142 

Hu & Ye 2013 3 Rutzinger et al. 2009 143 2009 3 143 

Hu & Ye 2013 3 Sithole 2005 144 2005 3 144 

Hu & Ye 2013 3 Sithole & Vosselman 2004 145 2004 3 145 

Hu & Ye 2013 3 Tóvári & Pfeifer 2005 146 2005 3 146 

Hu & Ye 2013 3 Vosselman 2000 147 2000 3 147 

Hu & Ye 2013 3 Wu & Márquez 2003 148 2003 3 148 

Hu & Ye 2013 3 Zhang & Lin 2012 149 2012 3 149 

Hu & Ye 2013 3 Zhou & Neumann 2009 150 2009 3 150 

Karsli & Kahya 2008 4 Atiquazzaman & Akhtar 1994 151 1994 4 151 

Karsli & Kahya 2008 4 Atiquazzaman & Akhtar 1995 152 1995 4 152 

Karsli & Kahya 2008 4 Davies 1988 153 1988 4 153 

Karsli & Kahya 2008 4 Ballard 1981 154 1981 4 154 

Karsli & Kahya 2008 4 Gonzales et al. 2004 155 2004 4 155 

Karsli & Kahya 2008 4 Hough 1962 156 1962 4 156 

Karsli & Kahya 2008 4 Maas & Vosselman 1999 157 1999 4 157 

Karsli & Kahya 2008 4 Nguyen et al. 2005 158 2005 4 158 

Karsli & Kahya 2008 4 Oda et al. 2004 159 2004 4 159 

Karsli & Kahya 2008 4 Overby et al. 2004 160 2004 4 160 

Karsli & Kahya 2008 4 Rabbani et al. 2005 161 2005 4 161 

Karsli & Kahya 2008 4 Richards & Casasent 1991 162 1991 4 162 

Karsli & Kahya 2008 4 Rottensteiner 2003 163 2003 4 163 

Karsli & Kahya 2008 4 Tarsha-Kurdi et al. 2007 164 2007 4 164 

Karsli & Kahya 2008 4 Vosselman & Dijkman 2001 165 2001 4 165 

Mandlburger et al. 2010 5 Briese 2004a 115 2004 5 115 

Mandlburger et al. 2010 5 Briese et al. 2008 167 2008 5 167 

Mandlburger et al. 2010 5 Chauve et al 2009 168 2009 5 168 

Mandlburger et al. 2010 5 Doneus et al. 2008 169 2008 5 169 

Mandlburger et al. 2010 5 Hoefle et al. 2009 24 2009 5 170 

Mandlburger et al. 2010 5 Hofton 2000 171 2000 5 171 

Mandlburger et al. 2010 5 Kager 2004 122 2004 5 122 

Mandlburger et al. 2010 5 Kraus & Pfeifer 1998 138 1998 5 138 

Mandlburger et al. 2010 5 Lehner & Briese 2010 174 2010 5 174 

Mandlburger et al. 2010 5 Lin & Mills 2010 175 2009 5 175 

Mandlburger et al. 2010 5 Mallet & Bretar 2009 176 2009 5 176 

Mandlburger et al. 2010 5 Mandlburger et al. 2007 177 2007 5 177 

Mandlburger et al. 2010 5 Mandlburger et al. 2009a 178 2009 5 178 

Mandlburger et al. 2010 5 Mandlburger et al. 2009b 179 2009 5 179 

Mandlburger et al. 2010 5 Mücke et al. 2010 180 2010 5 180 

Mandlburger et al. 2010 5 Otepka et al. 2006 181 2006 5 181 

Mandlburger et al. 2010 5 Pfeifer & Mandlburger 2008 182 2008 5 182 

Mandlburger et al. 2010 5 Ressl et al. 2009 128 2009 5 128 

Mandlburger et al. 2010 5 Roncat et al. 2010a 184 2010 5 184 
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Mandlburger et al. 2010 5 Roncat et al. 2010b 185 2010 5 185 

Mandlburger et al. 2010 5 Skaloud 2007 186 2007 5 186 

Mandlburger et al. 2010 5 Wagner 2010 187 2010 5 187 

Mandlburger et al. 2010 5 Wagner et al. 2006 188 2006 5 188 

Mandlburger et al. 2010 5 Yu et al. 2010 189 2010 5 189 

Melzer & Briese 2004 6 Axelsson 1999 114 1999 6 114 

Melzer & Briese 2004 6 Besl & Jain 1988 191 1988 6 191 

Melzer & Briese 2004 6 Duda et al. 2000 192 2000 6 192 

Melzer & Briese 2004 6 Gonzales & Wintz 1987 193 1987 6 193 

Melzer & Briese 2004 6 Hartley & Zisserman 2000 194 2000 6 194 

Melzer & Briese 2004 6 Hoover et al. 1996 195 1996 6 195 

Melzer & Briese 2004 6 Kraus & Pfeifer 1998 138 1998 6 138 

Melzer & Briese 2004 6 Martines & Schulten 1994 197 1994 6 197 

Melzer & Briese 2004 6 Rottensteiner & Briese 2002 198 2002 6 198 

Melzer & Briese 2004 6 Wagner et al. 2004 199 2004 6 199 

Melzer & Briese 2004 6 Wehr & Lohr 1999 200 1999 6 200 

Rutzinger et al. 2011 7 Anders et al. 2009 201 2009 7 201 

Rutzinger et al. 2011 7 Asselen & Seijmonsbergen 2006 202 2006 7 202 

Rutzinger et al. 2011 7 Benz et al. 2004 27 2004 7 203 

Rutzinger et al. 2011 7 Bailly et al. 2008 204 2008 7 204 

Rutzinger et al. 2011 7 Blaschke et al. 2008 205 2008 7 205 

Rutzinger et al. 2011 7 Briese 2004b 116 2004 7 116 

Rutzinger et al. 2011 7 Briese 2010 207 2010 7 207 

Rutzinger et al. 2011 7 Brügelmann 2000 118 2000 7 118 

Rutzinger et al. 2011 7 Brzank et al. 2008 209 2008 7 209 

Rutzinger et al. 2011 7 Clark & Wilson 1994 210 1994 7 210 

Rutzinger et al. 2011 7 Geist et al. 2009 211 2009 7 211 

Rutzinger et al. 2011 7 Glenn et al. 2006 212 2006 7 212 

Rutzinger et al. 2011 7 Gruber 2004 213 2004 7 213 

Rutzinger et al. 2011 7 Hoefle & Rutzinger 2011 214 2011 7 214 

Rutzinger et al. 2011 7 Jordan & Schott 2005 215 2005 7 215 

Rutzinger et al. 2011 7 Kraus & Pfeifer 1998 138 1998 7 138 

Rutzinger et al. 2011 7 Mavrantza & Argialas 2008 217 2008 7 217 

Rutzinger et al. 2011 7 McKean & Goering 2004 218 2004 7 218 

Rutzinger et al. 2011 7 Nyborg et al. 2007 219 2007 7 219 

Rutzinger et al. 2011 7 Pfeifer & Mandlburger 2009 220 2009 7 220 

Rutzinger et al. 2011 7 Rutzinger et al. 2007 221 2007 7 221 

Rutzinger et al. 2011 7 Shan & Toth 2009 222 2009 7 222 

Rutzinger et al. 2011 7 Sithole & Vosselman 2004 145 2004 7 145 

Rutzinger et al. 2011 7 Vosselman & Liang 2009 224 2009 7 224 

Rutzinger et al. 2011 7 Vosselman & Maas 2010 225 2010 7 225 

Rutzinger et al. 2011 7 Wladis 1999 226 1999 7 226 

Rutzinger et al. 2011 7 Wood 1996 227 1996 7 227 
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Trier & Zortea 2012 9 Aurdal et al. 2006 243 2006 9 243 

Trier & Zortea 2012 9 Devereux et al. 2005 244 2005 9 244 

Trier & Zortea 2012 9 Hastie et al. 2009 245 2009 9 245 

Trier & Zortea 2012 9 Prokop & Reeves 1992 246 1992 9 246 

Trier & Zortea 2012 9 Pudil et al. 1994 247 1994 9 247 

Trier & Zortea 2012 9 Trier et al. 2009 248 2009 9 248 

Trier & Zortea 2012 9 Trier & Piloe 2012 249 2012 9 249 

Bhaskaran et al. 2010 10 Anderson 1971 250 1971 10 250 

Bhaskaran et al. 2010 10 Baatz & Schape 2000 251 2000 10 251 

Bhaskaran et al. 2010 10 Benz et al. 2004 27 2004 10 203 

Bhaskaran et al. 2010 10 Bhaskaran 2004 253 2004 10 253 

Bhaskaran et al. 2010 10 Blaschke & Strobl 2001 254 2001 10 254 

Bhaskaran et al. 2010 10 Bolstad & Lillesand 1991 255 1991 10 255 

Bhaskaran et al. 2010 10 Casals-Carrasco et al. 2000 256 2000 10 256 

Bhaskaran et al. 2010 10 Clark & Jantz 1995 257 1995 10 257 

Bhaskaran et al. 2010 10 Congalton & Green 1999 258 1999 10 258 

Bhaskaran et al. 2010 10 Cowen & Jensen 1998 259 1998 10 259 

Bhaskaran et al. 2010 10 Dare 2005 260 2005 10 260 

Bhaskaran et al. 2010 10 Dean & Smith 2003 261 2003 10 261 

Bhaskaran et al. 2010 10 Dial et al. 2003 262 2003 10 262 

Bhaskaran et al. 2010 10 Forster 1983 263 1983 10 263 

Bhaskaran et al. 2010 10 Gatrell & Jensen 2008 264 2008 10 264 

Bhaskaran et al. 2010 10 Gitas et al. 2004 265 2004 10 265 

Bhaskaran et al. 2010 10 Goetz et al. 2003 266 2003 10 266 

Bhaskaran et al. 2010 10 Hardin et al. 2007 267 2007 10 267 

Bhaskaran et al. 2010 10 Hellden 1980 268 1980 10 268 

Bhaskaran et al. 2010 10 Herold et al. 2003 269 2003 10 269 

Bhaskaran et al. 2010 10 Herold & Scepan 2002 270 2002 10 270 

Bhaskaran et al. 2010 10 Hofmann 2001 271 2001 10 271 

Bhaskaran et al. 2010 10 Ippoliti-Ramilo et al. 2003 272 2003 10 272 

Bhaskaran et al. 2010 10 Ivits & Koch 2002 273 2002 10 273 

Bhaskaran et al. 2010 10 Jat et al. 2008 274 2008 10 274 

Bhaskaran et al. 2010 10 Jensen & Cowen 1999 275 1999 10 275 

Bhaskaran et al. 2010 10 Jensen & Im 2007 276 2007 10 276 

Bhaskaran et al. 2010 10 Kato & Yamaguchi 2005 277 2005 10 277 

Bhaskaran et al. 2010 10 Kim & Madden 2009 278 2009 10 278 

Bhaskaran et al. 2010 10 Lillesand & Kiefer 1994 279 1994 10 279 

Bhaskaran et al. 2010 10 Lo & Choi 2004 280 2004 10 280 

Bhaskaran et al. 2010 10 Longley et al. 2001 281 2001 10 281 

Bhaskaran et al. 2010 10 Lucieer et al. 2005 282 2005 10 282 

Bhaskaran et al. 2010 10 Madhavan et al. 2001 283 2001 10 283 

Bhaskaran et al. 2010 10 Mather 1987 284 1987 10 284 

Bhaskaran et al. 2010 10 Pizzolato & Haertel 2003 285 2003 10 285 
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Bhaskaran et al. 2010 10 Richards 1999 286 1999 10 286 

Bhaskaran et al. 2010 10 Richards & Jia 1999 287 1999 10 287 

Bhaskaran et al. 2010 10 Sanchez 2004 288 2004 10 288 

Bhaskaran et al. 2010 10 Sawaya et al. 2003 289 2003 10 289 

Bhaskaran et al. 2010 10 Shackelford & Davis 2003 290 2003 10 290 

Bhaskaran et al. 2010 10 Shalaby & Tateishi 2007 291 2007 10 291 

Bhaskaran et al. 2010 10 Shettigara 1991 292 1991 10 292 

Bhaskaran et al. 2010 10 Short 1982 293 1982 10 293 

Bhaskaran et al. 2010 10 Stow et al. 2007 294 2007 10 294 

Bhaskaran et al. 2010 10 Tapiador & Casanova 2003 295 2003 10 295 

Bhaskaran et al. 2010 10 Thapa & Murayama 2009 296 2009 10 296 

Bhaskaran et al. 2010 10 Thomas et al. 1987 297 1987 10 297 

Bhaskaran et al. 2010 10 Walker & Blaschke 2008 298 2008 10 298 

Bhaskaran et al. 2010 10 Weng 2001 299 2001 10 299 

Bhaskaran et al. 2010 10 Weng & Quattrochi 2006 300 2006 10 300 

Bhaskaran et al. 2010 10 Wright 1996 301 1996 10 301 

Bhaskaran et al. 2010 10 Xiao et al. 2006 302 2006 10 302 

Bhaskaran et al. 2010 10 Yan et al. 2006 303 2006 10 303 

Bhaskaran et al. 2010 10 Yu et al. 2006 304 2006 10 304 

Bhaskaran et al. 2010 10 Yuan 2008 305 2008 10 305 

Bhaskaran et al. 2010 10 Yuan & Bauer 2006 306 2006 10 306 

Bhaskaran et al. 2010 10 Yuan et al. 2005 307 2005 10 307 

Bhaskaran et al. 2010 10 Zeilhofer & Topanotti 2008 308 2008 10 308 

Bhaskaran et al. 2010 10 Zhan et al. 2002 309 2002 10 309 

Bhaskaran et al. 2010 10 Zhou & Robson 2001 310 2001 10 310 

Bhaskaran et al. 2010 10 Zhou & Troy 2008 311 2008 10 311 

Chen et al. 2009 11 Aplin 1999 312 1999 11 312 

Chen et al. 2009 11 Baatz & Schape 2000 251 2000 11 251 

Chen et al. 2009 11 Baatz et al. 2004 314 2004 11 314 

Chen et al. 2009 11 Brunn & Weidner 1997 315 1997 11 315 

Chen et al. 2009 11 Campbell 1987 316 1987 11 316 

Chen et al. 2009 11 Chang & Li 1994 317 1994 11 317 

Chen et al. 2009 11 Couloigner & Ranchin 2000 318 2000 11 318 

Chen et al. 2009 11 Csatho et al. 2003 319 2003 11 319 

Chen et al. 2009 11 Curran 1985 320 1985 11 320 

Chen et al. 2009 11 Acqua 2001 321 2001 11 321 

Chen et al. 2009 11 Dou & Chen 2005 322 2005 11 322 

Chen et al. 2009 11 Gamba & Houshmand 2002 323 2002 11 323 

Chen et al. 2009 11 Gamba et al. 2005 324 2005 11 324 

Chen et al. 2009 11 Garbay et al. 1986 325 1986 11 325 

Chen et al. 2009 11 Haala 1994 326 1994 11 326 

Chen et al. 2009 11 Haala & Anders 1997 327 1997 11 327 

Chen et al. 2009 11 Haala & Brenner 1999 328 1999 11 328 
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Chen et al. 2009 11 Hug & Wehr 1997 329 1997 11 329 

Chen et al. 2009 11 Madhok & Landgrebe 1999 330 1999 11 330 

Chen et al. 2009 11 McFeeters 1996 331 1996 11 331 

Chen et al. 2009 11 Pesaresi 1999 332 1999 11 332 

Chen et al. 2009 11 Richards 1993 333 1993 11 333 

Chen et al. 2009 11 Rottensteiner et al. 2003a 334 2003 11 334 

Chen et al. 2009 11 Rottensteiner & Briese 2003 335 2003 11 335 

Chen et al. 2009 11 Rottensteiner et al. 2003b 336 2003 11 336 

Chen et al. 2009 11 Rottensteiner et al. 2005 337 2005 11 337 

Chen et al. 2009 11 Schenk & Csatho 2002 338 2002 11 338 

Chen et al. 2009 11 Schiewe 2002 339 2002 11 339 

Chen et al. 2009 11 Shackelford & Davis 2003 290 2003 11 290 

Chen et al. 2009 11 Shufel 2000 341 2000 11 341 

Chen et al. 2009 11 Sohn & Dowman 2003 342 2003 11 342 

Chen et al. 2009 11 Steger 1998 343 1998 11 343 

Chen et al. 2009 11 Sulafa 2002 344 2002 11 344 

Chen et al. 2009 11 Syed et al. 2005 345 2005 11 345 

Chen et al. 2009 11 Tatem et al. 2001 346 2001 11 346 

Chen et al. 2009 11 Teo & Chen 2004 347 2004 11 347 

Chen et al. 2009 11 Vosselman 2002 348 2002 11 348 

De Laet et al. 2007 12 Abrams 2000 349 2000 12 349 

De Laet et al. 2007 12 Baatz & Schape 2000 251 2000 12 251 

De Laet et al. 2007 12 Baatz et al. 2002 351 2002 12 351 

De Laet et al. 2007 12 Blaschke & Strobl 2001 254 2001 12 254 

De Laet et al. 2007 12 Bracke 1993 353 1993 12 353 

De Laet et al. 2007 12 Buck et al. 2003 354 2003 12 354 

De Laet et al. 2007 12 Challis 2006 355 2006 12 355 

De Laet et al. 2007 12 Changlin et al. 2004 356 2004 12 356 

De Laet et al. 2007 12 Chavez 1988 357 1988 12 357 

De Laet et al. 2007 12 Clark et al. 1998 358 1998 12 358 

De Laet et al. 2007 12 Colby 1991 359 1991 12 359 

De Laet et al. 2007 12 Conese et al. 1993 360 1993 12 360 

De Laet et al. 2007 12 Crippen 1987 361 1987 12 361 

De Laet et al. 2007 12 Dave & Bernstein 1982 362 1982 12 362 

De Laet et al. 2007 12 Devereux et al. 2005 244 2005 12 244 

De Laet et al. 2007 12 Emmolo et al. 2004 364 2004 12 364 

De Laet et al. 2007 12 Franklin & Giles 1995 365 1995 12 365 

De Laet et al. 2007 12 Georgoula et al. 2004 366 2004 12 366 

De Laet et al. 2007 12 Giada et al. 2003 367 2003 12 367 

De Laet et al. 2007 12 Hofmann 2001 271 2001 12 271 

De Laet et al. 2007 12 Jensen 1996 369 1996 12 369 

De Laet et al. 2007 12 Jensen 1990 370 1990 12 370 

De Laet et al. 2007 12 Jordan et al. 2005 371 2005 12 371 
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De Laet et al. 2007 12 Kaufman 1989 372 1989 12 372 

De Laet et al. 2007 12 Kiema 2002 373 2002 12 373 

De Laet et al. 2007 12 Lillesand et al. 2004 374 2004 12 374 

Lambers & Zingman 2012 13 Beck et al. 2007 375 2007 13 375 

Lambers & Zingman 2012 13 Cowley 2012 376 2012 13 376 

Lambers & Zingman 2012 13 De Laet & Lambers 2009 377 2009 13 377 

Lambers & Zingman 2012 13 De Laet et al. 2009 378 2009 13 378 

Lambers & Zingman 2012 13 Duda et al. 2000 192 2000 13 192 

Lambers & Zingman 2012 13 Evans & Traviglia 2012 380 2012 13 380 

Lambers & Zingman 2012 13 Garrison et al. 2008 381 2008 13 381 

Lambers & Zingman 2012 13 Giardino 2011 382 2011 13 382 

Lambers & Zingman 2012 13 Gleirscher 2010 383 2010 13 383 

Lambers & Zingman 2012 13 Gonzales & Woods 2001 384 2001 13 384 

Lambers & Zingman 2012 13 Hanbury 2004 385 2004 13 385 

Lambers & Zingman 2012 13 Jahjah & Ulivieri 2010 34 2010 13 386 

Lambers & Zingman 2012 13 Lambers & Reitmaier 2013 387 2013 13 387 

Lambers & Zingman 2012 13 Lasaponara & Masini 2012a 388 2012 13 388 

Lambers & Zingman 2012 13 Menze et al. 2007a 26 2007 13 26 

Lambers & Zingman 2012 13 Ojala et al. 2002 390 2002 13 390 

Lambers & Zingman 2012 13 Otsu 1979 391 1979 13 391 

Lambers & Zingman 2012 13 Parcak 2009 392 2009 13 392 

Lambers & Zingman 2012 13 Reitmaier 2010 393 2010 13 393 

Lambers & Zingman 2012 13 Reitmaier 2012 394 2012 13 394 

Lambers & Zingman 2012 13 Serra 1988 395 1988 13 395 

Lambers & Zingman 2012 13 Soille 2003 396 2003 13 396 

Lambers & Zingman 2012 13 Soille & Pesaresi 2002 397 2002 13 397 

Lambers & Zingman 2012 13 Szeliski 2010 398 2010 13 398 

Lambers & Zingman 2012 13 Trier et al. 2009 248 2009 13 248 

Lambers & Zingman 2012 13 Trier & Piloe 2012 249 2012 13 249 

Lambers & Zingman 2012 13 Walser & Lambers 2012 401 2012 13 401 

Lambers & Zingman 2012 13 Zingman et al. 2012 402 2012 13 402 

Myint et al. 2011 14 Asner & Heidebrecht 2002 403 2002 14 403 

Myint et al. 2011 14 Baatz & Schape 1999 404 1999 14 404 

Myint et al. 2011 14 Baatz & Schape 2000 251 2000 14 251 

Myint et al. 2011 14 Campbell 1987 316 1987 14 316 

Myint et al. 2011 14 Congalton 1991 407 1991 14 407 

Myint et al. 2011 14 Congalton & Green 1999 258 1999 14 258 

Myint et al. 2011 14 Cowen et al. 1995 409 1995 14 409 

Myint et al. 2011 14 De Jong & Burrough 1995 410 1995 14 410 

Myint et al. 2011 14 Desclée et al. 2006 411 2006 14 411 

Myint et al. 2011 14 Ferro & Warner 2002 412 2002 14 412 

Myint et al. 2011 14 Franklin et al. 2000 413 2000 14 413 

Myint et al. 2011 14 Gober et al. 2010 414 2010 14 414 
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Myint et al. 2011 14 Grimmond & Oke 2002 415 2002 14 415 

Myint et al. 2011 14 Im et al. 2008a 416 2008 14 416 

Myint et al. 2011 14 Im et al. 2008b 417 2008 14 417 

Myint et al. 2011 14 Ivits & Koch 2002 273 2002 14 273 

Myint et al. 2011 14 Jensen 2005 419 2005 14 419 

Myint et al. 2011 14 Jensen & Cowen 1999 275 1999 14 275 

Myint et al. 2011 14 Lam & Quattrochi 1992 421 1992 14 421 

Myint et al. 2011 14 Lee & Warner 2006 422 2006 14 422 

Myint et al. 2011 14 Lillesand et al. 2004 374 2004 14 374 

Myint et al. 2011 14 Lu & Weng 2004 424 2004 14 424 

Myint et al. 2011 14 Lucieer 2004 425 2004 14 425 

Myint et al. 2011 14 Moeller et al. 2007 426 2007 14 426 

Myint et al. 2011 14 Mueller et al. 2004 427 2004 14 427 

Myint et al. 2011 14 Munoz et al. 2003 428 2003 14 428 

Myint et al. 2011 14 Myint 2006 429 2006 14 429 

Myint et al. 2011 14 Myint et al. 2008a 430 2008 14 430 

Myint et al. 2011 14 Myint & Lam 2005 431 2005 14 431 

Myint et al. 2011 14 Myint et al. 2008b 432 2008 14 432 

Myint et al. 2011 14 Myint et al. 2006 433 2006 14 433 
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Figorito & Tarantino 2014 33 Masini & Lasaponara 2007 1096 2007 33 1096 

Figorito & Tarantino 2014 33 Mumford & Shah 2006 1097 2006 33 1097 
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Figorito & Tarantino 2014 33 Sandau et al. 2000 1069 2000 33 1069 

Figorito & Tarantino 2014 33 Santoro et al. 2013 1104 2013 33 1104 
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Jahjah & Ulivieri 2010 34 Scollar 1990 1125 1990 34 694 
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Jahjah & Ulivieri 2010 34 Duda et al. 2000 192 2000 34 192 

Luo et al. 2014a 35 Wilson 2012 1128 2012 35 1128 

Luo et al. 2014a 35 Lasaponara & Masini 2012a 388 2012 35 388 

Luo et al. 2014a 35 Beazeley 1919 1130 1919 35 1130 

Luo et al. 2014a 35 Musson et al. 2006 1131 2006 35 1131 

Luo et al. 2014a 35 MeCauley et al. 1982 1132 1982 35 1132 

Luo et al. 2014a 35 Moore et al. 2007 1133 2007 35 1133 

Luo et al. 2014a 35 Stewarta et al. 2014 1134 2014 35 1134 

Luo et al. 2014a 35 Chase et al. 2012 1135 2012 35 1135 

Luo et al. 2014a 35 Johnson & Quimet 2014 1136 2014 35 1136 

Luo et al. 2014a 35 Aqdus et al. 2012 1080 2012 35 1080 

Luo et al. 2014a 35 Atzberger et al. 2014 1138 2014 35 1138 

Luo et al. 2014a 35 Cavalli et al. 2007 1139 2007 35 1139 

Luo et al. 2014a 35 Challis et al. 2009 1140 2009 35 1140 

Luo et al. 2014a 35 De laet et al. 2007 12 2007 35 12 
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Luo et al. 2014a 35 Lasaponara & Masini 2012b 1144 2012 35 1144 
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Luo et al. 2014a 35 Ur 2006 1156 2006 35 1156 

Luo et al. 2014a 35 Luo et al. 2012 1157 2012 35 1157 
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Luo et al. 2014a 35 Evans et al. 2007 1159 2007 35 1159 

Luo et al. 2014a 35 Doneus et al. 2014 1160 2014 35 1160 

Luo et al. 2014a 35 Dorazio et al. 2012 32 2012 35 32 

Luo et al. 2014a 35 Lasaponara & Masini 2011 1042 2011 35 1042 

Luo et al. 2014a 35 Lasaponara & Masini 2012a 388 2012 35 388 

Luo et al. 2014a 35 Agapiou et al. 2013 1164 2013 35 1164 

Luo et al. 2014a 35 Tarantino & Figorito 2014 1165 2014 35 1165 

Luo et al. 2014a 35 Redfern & Lyons 1998 1166 1998 35 1166 

Luo et al. 2014a 35 Jahjah & Ulivieri 2010 34 2010 35 34 

Luo et al. 2014a 35 Schuetter et al. 2013 37 2013 35 37 

Luo et al. 2014a 35 Trier et al. 2009 248 2009 35 248 

Luo et al. 2014a 35 Figorito & Tarantino 2014 33 2014 35 33 

Luo et al. 2014a 35 Pasolli et al. 2008 1171 2008 35 1171 

Luo et al. 2014a 35 Todd & Mays 2004 1172 2004 35 1172 

Luo et al. 2014a 35 Boustani 2009 1173 2009 35 1173 

Luo et al. 2014a 35 Karez 2014 1174 2014 35 1174 

Luo et al. 2014a 35 Ahmadi et al. 2010b 1175 2010 35 1175 

Luo et al. 2014a 35 Moticee et al. 2006 1176 2006 35 1176 

Luo et al. 2014a 35 Abudu et al. 2011 1177 2011 35 1177 

Luo et al. 2014a 35 Hu et al. 2012 1178 2012 35 1178 

Luo et al. 2014a 35 Huang 2003 1179 2003 35 1179 

Luo et al. 2014a 35 Li 2005 1180 2005 35 1180 

Luo et al. 2014a 35 Hosseini et al. 2010 1181 2010 35 1181 

Luo et al. 2014a 35 Haakon & Shen 2006 1182 2006 35 1182 
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Luo et al. 2014a 35 Yuen et al. 1989 1189 1989 35 1189 

Luo et al. 2014a 35 Rizon et al. 2005 1190 2005 35 1190 

Luo et al. 2014a 35 Raymond et al. 1992 1191 1992 35 1191 

Luo et al. 2014a 35 Duda & Hart 1972 1192 1972 35 1192 

Luo et al. 2014a 35 Shufelt 1999 1193 1999 35 1193 

Schneider et al. 2015 36 Bandeira et al. 2012 1194 2012 36 1194 

Schneider et al. 2015 36 Bennett et al. 2012 926 2012 36 926 

Schneider et al. 2015 36 Bollandsaas et al. 2012 1196 2012 36 1196 

Schneider et al. 2015 36 Bond 2007 1197 2007 36 1197 

Schneider et al. 2015 36 De Laet et al. 2007 12 2007 36 12 

Schneider et al. 2015 36 Deforce et al. 2013 1199 2013 36 1199 

Schneider et al. 2015 36 Devereux et al. 2008 1200 2008 36 1200 

Schneider et al. 2015 36 Eisank et al. 2014 1201 2014 36 1201 

Schneider et al. 2015 36 Groenewoudt 2005 1202 2005 36 1202 

Schneider et al. 2015 36 Hesse 2010 1203 2010 36 1203 

Schneider et al. 2015 36 Jasiewitcz & Stepinski 2013 1204 2013 36 1204 

Schneider et al. 2015 36 Jenness et al. 2013 1205 2013 36 1205 

Schneider et al. 2015 36 Kennelly 2008 1206 2008 36 1206 

Schneider et al. 2015 36 Lipsdorf 2001 1207 2001 36 1207 

Schneider et al. 2015 36 Ludemann 2003 1208 2003 36 1208 

Schneider et al. 2015 36 Menze et al. 2006 690 2006 36 690 

Schneider et al. 2015 36 Nelle 2003 1210 2003 36 1210 

Schneider et al. 2015 36 Nicolay et al. 2014 1211 2014 36 1211 

Schneider et al. 2015 36 Nystroem 2014 1212 2014 36 1212 

Schneider et al. 2015 36 Pirotti 2010 1213 2010 36 1213 

Schneider et al. 2015 36 Pollock 1998 1214 1998 36 1214 

Schneider et al. 2015 36 Raab et al. 2014 1215 2014 36 1215 

Schneider et al. 2015 36 Risboel et al. 2013 945 2013 36 945 

Schneider et al. 2015 36 Roesler 2008 1217 2008 36 1217 

Schneider et al. 2015 36 Roesler et al. 2012 1218 2012 36 1218 

Schneider et al. 2015 36 Salamuniccar et al. 2014 1219 2014 36 1219 

Schneider et al. 2015 36 Sawabe et al. 2006 1220 2006 36 1220 

Schneider et al. 2015 36 Schindling & Gibbes 2014 1221 2014 36 1221 

Schneider et al. 2015 36 Shruthi et al. 2011 1222 2011 36 1222 

Schneider et al. 2015 36 Sofia et al. 2014 1223 2014 36 1223 

Schneider et al. 2015 36 Stular et al. 2012 1224 2012 36 1224 

Schneider et al. 2015 36 Tarolli et al. 2012 1225 2012 36 1225 

Schneider et al. 2015 36 Trier & Piloe 2012 249 2012 36 249 

Schneider et al. 2015 36 Trier et al. 2009 248 2009 36 248 

Schneider et al. 2015 36 Van den Eeckhaut et al. 2012 1228 2012 36 1228 

Schneider et al. 2015 36 Verhagen & Dragut 2012 949 2012 36 949 

Schuetter et al. 2013 37 Al-Shahri 2007 1230 2007 37 1230 

Schuetter et al. 2013 37 Bin Aqil & McCorriston 2009 1231 2009 37 1231 
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Schuetter et al. 2013 37 Braemer et al. 2001 1232 2001 37 1232 

Schuetter et al. 2013 37 Canny 1986 594 1986 37 594 

Schuetter et al. 2013 37 Cashdan 1983 1234 1983 37 1234 

Schuetter et al. 2013 37 Cleziou 2001 1235 2001 37 1235 

Schuetter et al. 2013 37 Cleziou 2007 1236 2007 37 1236 

Schuetter et al. 2013 37 Dalenius 1951 1237 1951 37 1237 

Schuetter et al. 2013 37 De Cardi et al. 1977 1238 1977 37 1238 

Schuetter et al. 2013 37 De Laet et al. 2007 12 2007 37 12 

Schuetter et al. 2013 37 Duda & Hart 1972 1192 1972 37 1192 

Schuetter et al. 2013 37 Elwaseif & Slater 2010 1241 2010 37 1241 

Schuetter et al. 2013 37 Engelman & Hartigan 1969 1242 1969 37 1242 

Schuetter et al. 2013 37 Giger et al. 1988 1243 1988 37 1243 

Schuetter et al. 2013 37 Haraliok 1974 1244 1974 37 1244 

Schuetter et al. 2013 37 Harrower 2008 1245 2008 37 1245 

Schuetter et al. 2013 37 Harrower et al. 2002 1246 2002 37 1246 

Schuetter et al. 2013 37 Hough 1962 156 1962 37 156 

Schuetter et al. 2013 37 Jensen 1996 369 1996 37 369 

Schuetter et al. 2013 37 Kelly 1995 1249 1995 37 1249 

Schuetter et al. 2013 37 Lezine et al. 2010 1250 2010 37 1250 

Schuetter et al. 2013 37 Lloyd 1982 1251 1982 37 1251 

Schuetter et al. 2013 37 McCorriston et al. 2012 1252 2012 37 1252 

Schuetter et al. 2013 37 McCorriston et al. 2011 1253 2011 37 1253 

Schuetter et al. 2013 37 Menze & Ur 2012 1254 2012 37 1254 

Schuetter et al. 2013 37 Okabe et al. 1992 1255 1992 37 1255 

Schuetter et al. 2013 37 Proffitt 1982 1256 1982 37 1256 

Schuetter et al. 2013 37 Roussillon et al. 2010 1257 2010 37 1257 

Schuetter et al. 2013 37 Steimer-Herbert et al. 2006 1258 2006 37 1258 

Schuetter et al. 2013 37 Steinhaus 1956 1259 1956 37 1259 

Schuetter et al. 2013 37 Stojmenovic & Nayak 2007 1260 2007 37 1260 

Schuetter et al. 2013 37 Stojmenovic & Nayak 2006 1261 2006 37 1261 

Schuetter et al. 2013 37 Tansey et al. 2009 1262 2009 37 1262 

Schuetter et al. 2013 37 Tosi 1986 1263 1986 37 1263 

Schuetter et al. 2013 37 Tou & Gonzales 1974 1264 1974 37 1264 

Schuetter et al. 2013 37 Tucker 1979 1265 1979 37 1265 

Schuetter et al. 2013 37 Zunic & Hirota 2008 1266 2008 37 1266 

Vletter 2014 38 Mallet & Bretar 2009 176 2009 38 1267 

Vletter 2014 38 Doneus & Briese 2006b 1268 2006 38 1268 

Vletter 2014 38 Humme et al. 2006a 1269 2006 38 1269 

Vletter 2014 38 Briese 2004a 115 2004 38 115 

Vletter 2014 38 Doneus & Briese 2011 1271 2011 38 1271 

Vletter 2014 38 Doneus & Briese 2006a 119 2006 38 119 

Vletter 2014 38 Djuricic 2012 1273 2012 38 1273 

Vletter 2014 38 Briese et al. 2009 2 2009 38 2 
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Vletter 2014 38 Yokoyama et al. 2002 1275 2002 38 1275 

Vletter 2014 38 Doneus 2013 1276 2013 38 1276 

Vletter 2014 38 Pregesbauer 2013 1277 2013 38 1277 

Lemmens et al. 1993 39 Allen 1984 1278 1984 39 1278 

Lemmens et al. 1993 39 Bosma et al. 1989 1279 1989 39 1279 

Lemmens et al. 1993 39 Dassie 1978 1280 1978 39 1280 

Lemmens et al. 1993 39 Haigh 1983 1281 1983 39 1281 

Lemmens et al. 1993 39 Haralick 1984 1282 1984 39 1282 

Lemmens et al. 1993 39 Lemmens 1990 1283 1990 39 1283 

Lemmens et al. 1993 39 Lemmens 1991 1284 1991 39 1284 

Lemmens et al. 1993 39 Limp 1987 1285 1987 39 1285 

Lemmens et al. 1993 39 Pratt 1978 1286 1978 39 1286 

Lemmens et al. 1993 39 Prewitt 1970 1287 1970 39 1287 

Lemmens et al. 1993 39 Roberts 1965 1288 1965 39 1288 

Lemmens et al. 1993 39 Scollar 1975 1289 1975 39 1289 

Lemmens et al. 1993 39 Scollar 1979 1290 1979 39 1290 

Lemmens et al. 1993 39 Scollar et al. 1984 1291 1984 39 1291 

Lemmens et al. 1993 39 Wilson 1982 1292 1982 39 1292 

Sevara et al. 2016 40 Ackermann 1999 1293 1999 40 1293 

Sevara et al. 2016 40 Alt 1990 1294 1990 40 1294 

Sevara et al. 2016 40 Arbman 1940 1295 1940 40 1295 

Sevara et al. 2016 40 Baatz et al. 2008 742 2008 40 742 

Sevara et al. 2016 40 Belgiu & Lampoltshammer 2013 1297 2013 40 1297 

Sevara et al. 2016 40 Belgiu et al. 2014a 18 2014 40 18 

Sevara et al. 2016 40 Benediksson et al. 1990 1299 1990 40 1299 

Sevara et al. 2016 40 Bennett et al. 2014 29 2014 40 29 

Sevara et al. 2016 40 Bennett et al. 2012 926 2012 40 926 

Sevara et al. 2016 40 Benz et al. 2004 27 2004 40 27 

Sevara et al. 2016 40 Bewley et al. 2005 1303 2005 40 1303 

Sevara et al. 2016 40 Blaschke 2010 28 2010 40 28 

Sevara et al. 2016 40 Blaschke et al. 2014 1305 2014 40 1305 

Sevara et al. 2016 40 Blaschke et al. 2000 754 2000 40 754 

Sevara et al. 2016 40 De Boer 2005 1 2005 40 1 

Sevara et al. 2016 40 Bofinger & Hesse 2011 1308 2011 40 1308 

Sevara et al. 2016 40 Briese et al. 2002 653 2002 40 653 

Sevara et al. 2016 40 Casana 2014 1310 2014 40 1310 

Sevara et al. 2016 40 Challis et al. 2008 1311 2008 40 1311 

Sevara et al. 2016 40 Cheung 2005 1312 2005 40 1312 

Sevara et al. 2016 40 Cowley 2012 376 2012 40 376 

Sevara et al. 2016 40 De Laet et al. 2007 12 2007 40 12 

Sevara et al. 2016 40 De Laet et al. 2007a 1315 2007 40 1315 

Sevara et al. 2016 40 Devereux et al. 2008 1200 2008 40 1200 

Sevara et al. 2016 40 Dey et al. 2010 1317 2010 40 1317 
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Sevara et al. 2016 40 Doneus 2013 1276 2013 40 1276 

Sevara et al. 2016 40 Doneus & Briese 2006 1268 2006 40 1268 

Sevara et al. 2016 40 Doneus & Briese 2011 1271 2011 40 1271 

Sevara et al. 2016 40 Doneus & Kuehtreiber 2013 1321 2013 40 1321 

Sevara et al. 2016 40 Doneus et al. 2008 169 2008 40 169 

Sevara et al. 2016 40 Doneus et al. 2001 1323 2001 40 1323 

Sevara et al. 2016 40 Dragut & Blaschke 2006 1324 2006 40 1324 

Sevara et al. 2016 40 Dragut et al. 2014 1325 2014 40 1325 

Sevara et al. 2016 40 Figorito & Tarantino 2014 33 2014 40 33 

Sevara et al. 2016 40 Fischer 1997 1327 1997 40 1327 

Sevara et al. 2016 40 Harrower et al. 2013 1328 2013 40 1328 

Sevara et al. 2016 40 Hay & Castilla 2008 814 2008 40 814 

Sevara et al. 2016 40 Hengl & Reuter 2009 1330 2009 40 1330 

Sevara et al. 2016 40 Hermodsson 2004 1331 2004 40 1331 

Sevara et al. 2016 40 Hesse 2010 1203 2010 40 1203 

Sevara et al. 2016 40 Hesse 2014 1333 2014 40 1333 

Sevara et al. 2016 40 Hughes 1968 1334 1968 40 1334 

Sevara et al. 2016 40 Humme et al. 2006b 1335 2006 40 1335 

Sevara et al. 2016 40 Jahjah & Ulivieri 2010 34 2010 40 34 

Sevara et al. 2016 40 Kamagata et al. 2005 1337 2005 40 1337 

Sevara et al. 2016 40 Kenzler & Lambers 2015 1338 2015 40 1338 

Sevara et al. 2016 40 Kettig & Landgrebe 1976 826 1976 40 826 

Sevara et al. 2016 40 Kokalj et al. 2011 1340 2011 40 1340 

Sevara et al. 2016 40 Kraus & Otepka 2005 1341 2005 40 1341 

Sevara et al. 2016 40 Lambers & Zingman 2013 13 2013 40 13 

Sevara et al. 2016 40 Lasaponara & Masini 2006 1343 2006 40 1343 

Sevara et al. 2016 40 Lasaponara & Masini 2009 1344 2009 40 1344 

Sevara et al. 2016 40 Lasaponara et al. 2011b 1345 2011 40 1345 

Sevara et al. 2016 40 Lillesand & Kiefer 1994 279 1994 40 279 

Sevara et al. 2016 40 Liu & Xia 2010 1347 2010 40 1347 

Sevara et al. 2016 40 Loecker et al. 2009 1348 2009 40 1348 

Sevara et al. 2016 40 Mahalanobis 1936 1349 1936 40 1349 

Sevara et al. 2016 40 Mandlburger et al. 2009b 179 2009 40 179 

Sevara et al. 2016 40 Nerman 1918 1351 1918 40 1351 

Sevara et al. 2016 40 Neubauer 2012 1352 2012 40 1352 

Sevara et al. 2016 40 Neugebauer 1995 1353 1995 40 1353 

Sevara et al. 2016 40 Opitz & Cowley 2013 1354 2013 40 1354 

Sevara et al. 2016 40 Platt & Rapoza 2008 888 2008 40 888 

Sevara et al. 2016 40 Pregesbauer 2013 1277 2013 40 1277 

Sevara et al. 2016 40 Schiewe 2002 339 2002 40 339 

Sevara et al. 2016 40 Schneider et al. 2015 36 2015 40 36 

Sevara et al. 2016 40 Sevara 2013 1359 2013 40 1359 

Sevara et al. 2016 40 Sevara & Pregesbauer 2014 1360 2014 40 1360 
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Sevara et al. 2016 40 Sittler 2004 1361 2004 40 1361 

Sevara et al. 2016 40 Smeulders et al. 2000 513 2000 40 513 

Sevara et al. 2016 40 Townshend 1981 1363 1981 40 1363 

Sevara et al. 2016 40 Townshend et al. 2000 1364 2000 40 1364 

Sevara et al. 2016 40 Trier & Piloe 2012 249 2012 40 249 

Sevara et al. 2016 40 Trier & Zortea 2015 1366 2015 40 1366 

Sevara et al. 2016 40 Trinks et al. 2010 1367 2010 40 1367 

Sevara et al. 2016 40 Trinks et al. 2014 1368 2014 40 1368 

Sevara et al. 2016 40 Trnka 1991 1369 1991 40 1369 

Sevara et al. 2016 40 Tso & Maher 2009 1370 2009 40 1370 

Sevara et al. 2016 40 Verhagen & Dragut 2012 949 2012 40 949 

Sevara et al. 2016 40 Wessely 1998 1372 1998 40 1372 

Sevara et al. 2016 40 Yokoyama et al. 2002 1275 2002 40 1275 

Sevara et al. 2016 40 Zaksek et al. 2011 1374 2011 40 1374 

Zingman et al. 2016 41 Kothieringer et al. 2015 1375 2015 41 1375 

Zingman et al. 2016 41 Lambers & Zingman 2013 13 2013 41 13 

Zingman et al. 2016 41 Trier et al. 2009 248 2009 41 248 

Zingman et al. 2016 41 Mayer 1999 1378 1999 41 1378 

Zingman et al. 2016 41 Lin & Nevatia 1998 1379 1998 41 1379 

Zingman et al. 2016 41 Kim & Muller 1999 1380 1999 41 1380 

Zingman et al. 2016 41 Croitoru & Doytsher 2004 1381 2004 41 1381 

Zingman et al. 2016 41 Jung & Schramm 2004 1382 2004 41 1382 

Zingman et al. 2016 41 Krishnamachari & Chellappa 1996 1383 1996 41 1383 

Zingman et al. 2016 41 Benedek et al. 2012 1384 2012 41 1384 

Zingman et al. 2016 41 Sirmacek & Unsalan 2011 1385 2011 41 1385 

Zingman et al. 2016 41 Sirmacek & Unsalan 2009 1386 2009 41 1386 

Zingman et al. 2016 41 Manno-Kovacs & Sziranyi 2013 1387 2013 41 1387 

Zingman et al. 2016 41 Ortner et al. 2008 1388 2008 41 1388 

Zingman et al. 2016 41 Liu et al. 2007b 1389 2007 41 1389 

Zingman et al. 2016 41 Keller et al. 2008 1390 2008 41 1390 

Zingman et al. 2016 41 Loy & Barnes 2004 1391 2004 41 1391 

Zingman et al. 2016 41 Zhu et al. 2003 1392 2003 41 1392 

Zingman et al. 2016 41 Yu & Bajaj 2004 1393 2004 41 1393 

Zingman et al. 2016 41 Zingman et al. 2013a 1394 2013 41 1394 

Zingman et al. 2016 41 Moon et al. 2002 21 2002 41 21 

Zingman et al. 2016 41 Descombes & Zerubia 2002 1396 2002 41 1396 

Zingman et al. 2016 41 Verdie & Lafarge 2014 1397 2014 41 1397 

Zingman et al. 2016 41 Krizhevsky et al. 2012 1398 2012 41 1398 

Zingman et al. 2016 41 Simonyan & Zisserman 2015 1399 2015 41 1399 

Zingman et al. 2016 41 Chatfield et al. 2014 1400 2014 41 1400 

Zingman et al. 2016 41 Sermanet et al. 2014 1401 2014 41 1401 

Zingman et al. 2016 41 Szegedy et al. 2015 1402 2015 41 1402 

Zingman et al. 2016 41 Dalal & Triggs 2005 1403 2005 41 1403 
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Zingman et al. 2016 41 Zingman et al. 2014 1404 2014 41 1404 

Zingman et al. 2016 41 Zingman et al. 2013b 1405 2013 41 1405 

Zingman et al. 2016 41 Lindeberg 1998 1406 1998 41 1406 

Zingman et al. 2016 41 Grigorescu et al. 2004 1407 2004 41 1407 

Zingman et al. 2016 41 Papari & Petkov 2011b 1408 2011 41 1408 

Zingman et al. 2016 41 Grompone von Gioi et al. 2010 1409 2010 41 1409 

Zingman et al. 2016 41 Siddiqi et al. 2002 1410 2002 41 1410 

Zingman et al. 2016 41 Pizer et al. 2003 1411 2003 41 1411 

Zingman et al. 2016 41 Dimitrov et al. 2003 1412 2003 41 1412 

Zingman et al. 2016 41 Engel & Curio 2008 1413 2008 41 1413 

Zingman et al. 2016 41 Xu & Prince 1998 1414 1998 41 1414 

Zingman et al. 2016 41 Duda & Hart 1972 1192 1972 41 1192 

Zingman et al. 2016 41 Lam et al. 1992 1416 1992 41 1416 

Zingman et al. 2016 41 Duda & Hart 1973 1417 1973 41 1417 

Zingman et al. 2016 41 Bron & Kerbosch 1973 1418 1973 41 1418 

Zingman et al. 2016 41 Fukunaga 1990 1419 1990 41 1419 

Zingman et al. 2016 41 Devlin et al. 1981 1420 1981 41 1420 

Zingman et al. 2016 41 Hariharan et al. 2012 1421 2012 41 1421 

Zingman et al. 2016 41 Lambers & Reitmaier 2013 387 2013 41 387 

Zingman et al. 2016 41 Zingman et al. 2012 402 2012 41 402 

Zingman et al. 2016 41 Otsu 1979 1424 1979 41 1424 

Zingman et al. 2016 41 Haykin 2009 1425 2009 41 1425 

Zingman et al. 2016 41 LeCun et al. 2015 1426 2015 41 1426 

Zingman et al. 2016 41 Oquab et al. 2014 1427 2014 41 1427 

Zingman et al. 2016 41 Donahue et al. 2014 1428 2014 41 1428 

Zingman et al. 2016 41 Razavian et al. 2014 1429 2014 41 1429 

Zingman et al. 2016 41 Girshik et al. 2015 1430 2015 41 1430 

Zingman et al. 2016 41 Penatti et al. 2015 1431 2015 41 1431 

Zingman et al. 2016 41 Russakovsky et al. 2015 1432 2015 41 1432 

Zingman et al. 2016 41 Jia et al. 2014 1433 2014 41 1433 

Zingman et al. 2016 41 Vedaldi & Lenc 2015 1434 2015 41 1434 

Zingman et al. 2016 41 Vedaldi & Fulkerson 2016 1435 2016 41 1435 

Zingman et al. 2016 41 Schlesinger & Hlavac 2002 1436 2002 41 1436 

Zingman et al. 2016 41 Fawcett 2006 1437 2006 41 1437 

Zingman et al. 2016 41 Krzanowski & Hand 2009 1438 2009 41 1438 

Zingman et al. 2016 41 Hanley & McNeil 1982 1439 1982 41 1439 

Zingman et al. 2016 41 Pepik et al. 2015 1440 2015 41 1440 

Stott et al. 2015 42 Evans 2007 1441 2007 42 1441 

Stott et al. 2015 42 Hejcman & Smrz 2010 1034 2010 42 1034 

Stott et al. 2015 42 Bennett et al. 2013 1443 2013 42 1443 

Stott et al. 2015 42 Beck 2011 1444 2011 42 1444 

Stott et al. 2015 42 Jones & Evans 1975 1445 1975 42 1445 

Stott et al. 2015 42 Brophy & Cowley 2005 927 2005 42 927 
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Stott et al. 2015 42 Hejcman et al. 2011 1447 2011 42 1447 

Stott et al. 2015 42 Bennett et al. 2012 1448 2012 42 1448 

Stott et al. 2015 42 Verhoeven et al. 2013 1449 2013 42 1449 

Stott et al. 2015 42 Bennett et al. 2012 926 2012 42 926 

Stott et al. 2015 42 Cowley 2002 1451 2002 42 1451 

Stott et al. 2015 42 Mills 2005 1452 2005 42 1452 

Stott et al. 2015 42 Cowley & Dickson 2007 1453 2007 42 1453 

Stott et al. 2015 42 Rowlands & Sarris 2007 1454 2007 42 1454 

Stott et al. 2015 42 Verhoeven 2012 950 2012 42 950 

Stott et al. 2015 42 Bernardini et al. 2013 1456 2013 42 1456 

Stott et al. 2015 42 Masini & Lasaponara 2013 1457 2013 42 1457 

Stott et al. 2015 42 Challis et al. 2008 1311 2008 42 1311 

Stott et al. 2015 42 Chase et al. 2011 1459 2011 42 1459 

Stott et al. 2015 42 Evans et al. 2013 1460 2013 42 1460 

Stott et al. 2015 42 Johnson & Quimet 2014 1136 2014 42 1136 

Stott et al. 2015 42 Cui et al. 2010 1462 2010 42 1462 

Stott et al. 2015 42 Challis et al. 2011 1463 2011 42 1463 

Stott et al. 2015 42 Challis et al. 2011 1464 2011 42 1464 

Stott et al. 2015 42 Briese et al. 2013 1465 2013 42 1465 

Stott et al. 2015 42 Briese et al. 2014 1466 2014 42 1466 

Stott et al. 2015 42 Hoefle et al. 2012 544 2012 42 544 

Stott et al. 2015 42 Doneus & Briese 2006 1468 2006 42 1468 

Stott et al. 2015 42 Doneus et al. 2008 169 2008 42 169 

Stott et al. 2015 42 Lasaponara et al. 2011b 1345 2011 42 1345 

Stott et al. 2015 42 Mallet & Bretar 2009 176 2009 42 176 

Stott et al. 2015 42 Wagner et al. 2006 188 2006 42 188 

Stott et al. 2015 42 Mallet et al. 2008 1473 2008 42 1473 

Stott et al. 2015 42 Anderson et al. 2006 1474 2006 42 1474 

Stott et al. 2015 42 Heinzel & Koch 2011 1475 2011 42 1475 

Stott et al. 2015 42 Buddenbaum et al. 2013 1476 2013 42 1476 

Stott et al. 2015 42 Zhang et al. 2014 1477 2014 42 1477 

Stott et al. 2015 42 Lin & Mills 2010 175 2010 42 175 

Stott et al. 2015 42 Morsdorf et al. 2006 1479 2006 42 1479 

Stott et al. 2015 42 Zhuang & Mountrakis 2014 1480 2014 42 1480 

Stott et al. 2015 42 Armitage et al. 2013 1481 2013 42 1481 

Stott et al. 2015 42 Blackburn et al. 2014 1482 2014 42 1482 

Stott et al. 2015 42 Englhart et al. 2013 1483 2013 42 1483 

Stott et al. 2015 42 Hopkinson et al. 2008 1484 2008 42 1484 

Stott et al. 2015 42 Pfennigbauer & Ulrich 2011 1485 2011 42 1485 

Stott et al. 2015 42 Mesas-Carrascosa et al. 2012 1486 2012 42 1486 

Stott et al. 2015 42 Beck 2007 1487 2007 42 1487 

Stott et al. 2015 42 Beck et al. 2007 375 2007 42 375 

Stott et al. 2015 42 Rosnell & Honkavaara 2012 1489 2012 42 1489 
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Appendix	4C	
Edge	
ID	

Edge	reference	

101 BRADLEY, R.; SMALL, C. (1985) - Looking for circular structures in post hole distributions: 
Quantitative analysis of BRADLEY, R.; SMALL, C. (1985) - Looking for circular structures in post hole 
distributions: Quantitative analysis of 
two settlements from bronze age England. Journal ofArchaeological Science, 12, p. 285-297. 

102 BRUNELLI, R.; POGGIO, T. (1993) - Face recognition: features versus templates. IEEE Transactions on 
PAMI, 15(10), p. 1042-1052. 

103 BURROUGH, P. A.; MCDONNELL, R. A. (1998) - Principles of Geographical Information Systems. Oxford.
104 FLETCHER, M.; LOCK, G. ( 1984) - Post built structures at Danebury hillfort: an analytical search 

method with statistical discussion. Oxford Journal of Archaeology, 3 (2), p. 175-196. 

105 FLETCHER, M.; SPICER, D. (1992) - The Display and Analysis of Ridge-and Furrow from 
Topographically Surveyed Data. In REILLY, R; RAHTZ, S., eds. - Archaeology and the information age: a 
global perspective. London: Routledge. 

106 HERZOG, I. (2001) - Ehemalige Materialentnahmegruben erkennen - Auswertung von Hoehendaten. 
Archaeologische Informationen, 24, 1, p. 39-43. 

107 LAAN, W.; A. DE BOER (2005) - AHN onderzoek West-Veluwe. ADC rapport, Amersfoort. 
MINISTRY OF PUBLIC WORKS (RIJKSWATERSTAAT) {2000)-Product Specification AHN2000 
(Productspecificatie AHN 2000), in Dutch. 

108 SCHMIDT, S., J. BOFINGER, R.KELLER and S. KURZ. (2007) - LIDAR – High Resolution Raster Data as a 
Survey Tool, in: Figueiredo, A. and G. Leite Velho (eds.), The world is in your eyes. CAA2005. Computer 
Applications and Quantitative Methods in Archaeology. Proceedings of the 33rd Conference, Tomar, 
March 2005. CAA Portugal, Tomar, pp. 255-260. 

109 SITTLER, S.; DAEFFLER, M. {200S)-Assessing ancient landscapesfossilized underforests by using laser 
scanning: a pilot study to generate 3-D models ofridge andfurrow in the upper Rhine Valley, this 
publication. 

110 THEODORIDIS, S.; KOUTROUMBAS, K. (1999) - Pattern Recognition. London: Academic Press.
111 THEUNISSEN, L. ( 1999) - Midden-bronstijdsamenlevingen in het zuiden van de Lage Landen. Ph.D. 

dissertation, Leiden University. 

112 VAN ZIJVERDEN, W.; LAAN, W. (2004) - Landscape reconstructions and predictive modeling in 
archaeological research, using a LIDAR based DEM and digital boring databases. In: Archaeologie und 
Computer. Workshop 7 (Vienna 2004). 

113 WALDUS W.; VAN DER VELDE, H. (red.) (2005) - Archeologie in vogelvlucht: een onderzoek naar de
toepassingsmogelijkheden van het AHN voor de archeologie. ADC rapport (in press), Amersfoort. 

114 Axelsson, P., 1999. Processing of laser scanner data — algorithms and applications. ISPRS J. 
Photogrammetry & Remote Sensing. 54(2): 138–147. 

115 Briese, C., 2004a. Breakline Modelling from Airborne Laser Scanner Data. PhD thesis, University of 
Vienna of Technology. 

116 Briese, C., 2004b. Three-dimensional modelling of breaklines from airborne laser scanner data. In: 
International Archives of Photogrammetry and Remote Sensing, Vol.XXXV, B3, Istanbul, Turkey. 

117 Briese, C. and Pfeifer, N., 2008. Line based reconstruction from terrestrial laser scanning data. Journal 
of Applied Geodesy 2(2), pp. 85–95. 

118 Brügelmann, R., 2000. Automatic breakline detection from airborne laser range data. In: International 
Archives of Photogrammetry and Remote Sensing, XXXIII, B3, Amsterdam,  Netherlands, pp. 109–115. 

119 Doneus, M. and Briese, C., 2006. Digital terrain modelling for archaeological interpretation within 
forested areas using fullwaveform laserscanning. In: The 7th International Symposium on Virtual 
Reality, Archaeology and Cultural Heritage VAST, Cyprus. 
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120 Gomes-Pereira, L. and Janssen, L., 1999. Suitability of laser data for dtm generation: A case study in the 
context of road planning and design. ISPRS Journal of Photogrammetry and Remote Sensing 54, pp. 
244–253. 

121 Gomes-Pereira, L. and Wicherson, R., 1999. Suitability of laser data for deriving geographical 
information – a case study in the context of management of fluvial zones. ISPRS Journal of 
Photogrammetry and Remote Sensing 54, pp. 105–114. 

122 Kager, H. 2004. Discrepancies between overlapping laser scanning strips - simultaneous fitting of 
aerial laser scanner strips. In International Archives of Photogrammetry and Remote Sensing, XXXV, 
B/1, Istanbul, Turkey, pp. 555–560. 

123 Karel, W., Briese, C. and Pfeifer, N., 2006. Dtm quality assessment. In: International Archives of 
Photogrammetry and Remote Sensing, XXXVI, 2, Vienna, Austria. 

124 Maas, H.-G., 2000. Least-squares matching with airborne laserscanning data in a tin structure. In: 
International Archives of Photogrammetry and Remote Sensing, XXXIII, 3A, Amsterdam, Netherlands, 
pp. 548–555. 

125 Mandlburger, G. and Briese, C., 2007. Using airborne laser scanning for improved hydraulic models. In: 
International Congress on Modeling and Simulation - MODSIM07 (ISBN: 978-09758400-4-7). 

126 Mandlburger, G., Hauer, C., Hoefle, B., Habersack, H. and Pfeifer, N., 2008. Optimisation of lidar derived 
terrain models for river flow modelling. Hydrology and Earth System Sciences Discussions 5, pp. 3605 
– 3638. 

127 Ressl, C., Kager, H. and Mandlburger, G., 2008. Quality checking of als projects using statistics of strip 
differences. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXVII, pp. 253 – 
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