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Ancient DNA reveals admixture history and 
endogamy in the prehistoric Aegean

The Neolithic and Bronze Ages were highly transformative periods for 
the genetic history of Europe but for the Aegean—a region fundamental 
to Europe’s prehistory—the biological dimensions of cultural transitions 
have been elucidated only to a limited extent so far. We have analysed newly 
generated genome-wide data from 102 ancient individuals from Crete, the 
Greek mainland and the Aegean Islands, spanning from the Neolithic to 
the Iron Age. We found that the early farmers from Crete shared the same 
ancestry as other contemporaneous Neolithic Aegeans. In contrast, the end 
of the Neolithic period and the following Early Bronze Age were marked by 
‘eastern’ gene flow, which was predominantly of Anatolian origin in Crete. 
Confirming previous findings for additional Central/Eastern European 
ancestry in the Greek mainland by the Middle Bronze Age, we additionally 
show that such genetic signatures appeared in Crete gradually from the 
seventeenth to twelfth centuries bc, a period when the influence of the 
mainland over the island intensified. Biological and cultural connectedness 
within the Aegean is also supported by the finding of consanguineous 
endogamy practiced at high frequencies, unprecedented in the global 
ancient DNA record. Our results highlight the potential of archaeogenomic 
approaches in the Aegean for unravelling the interplay of genetic admixture, 
marital and other cultural practices.

The Aegean has long been recognized as a region of major importance 
for understanding transregional societal transformations between 
Europe and the Near East. Already during the seventh millennium bc, 
the first farming communities emerged in the Aegean, whereby the ear-
liest evidence was unearthed on the island of Crete—that is, the oldest 
occupation level below the later palace of Knossos1—but the origins of 
these populations remain ambiguous. The next major transformation 
in Aegean prehistory took place during the Early Bronze Age (EBA; 
about 3100–2000 bc). Complex societies emerged, characterized by 
sophisticated architecture, metallurgy, sealing systems and the integra-
tion of the Aegean in the Bronze Age Eastern Mediterranean networks 
of exchange. During the late third millennium bc, the Greek mainland 
witnessed a severe societal breakdown (at the end of Early Helladic II) 
with lasting impact until the later Middle Helladic period of the early 
second millennium2,3. This disruption has been attributed to various 
factors, among them dramatic climatic changes2,4,5 and the arrival of 

new groups6–8. Crete does not seem to have suffered a comparable 
period of decline9,10. With the emergence of the first palaces during 
the nineteenth century bc in the Middle Minoan period, the island’s 
societies transformed into a hitherto unknown sophistication in art, 
architecture and social practices.

Only a few centuries later, during the late Middle Bronze Age 
(MBA; Middle Helladic for the mainland), the first rich shaft graves of 
local elites appeared in southern mainland Greece, often displaying 
Minoan influences11. The competition between rising elites during 
the Shaft Grave period led to regional conflicts and culminated in 
the decline of many local dominions on the Greek mainland and pos-
sibly a first mainland military expedition to Crete during the fifteenth 
century12. At the end of this conflict, the palatial period (Late Helladic 
IIIA-B) started with a few eminent polities centred in Mycenae, Tiryns, 
Pylos, Athens, Hagios Vasileios in Laconia, Thebes, Orchomenos and 
Dimini—to name only the most prominent ones13–15. During this time, 
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In our inferences for the Aegean individuals, we re-appraised all previ-
ously published contemporaneous individuals from this area24–26,29  
(Fig. 1). We also radiocarbon dated 43 of the skeletal remains that 
yielded genome-wide data (Supplementary Table 3; Methods).

Transregional genetic entanglements of Aegean populations
To visualize genetic ancestry variation, we first performed a princi-
pal component analysis (PCA) on modern West Eurasian populations 
and projected onto the first two PCs the ancient individuals from the 
Aegean and nearby regions (Fig. 2). The six individuals from Neolithic 
Aposelemis cluster with other early European and Anatolian/Aegean 
farmers, suggesting that the gene pool of Neolithic Crete was linked 
to the broader Aegean during that period. After around two millennia, 
the EBA and MBA individuals show a substantial change in their PC 
coordinates, shifted along PC2 towards Early Holocene Iran/Caucasus 
and the descending Chalcolithic and BA Anatolians/ BA Caucasians. 
This shift does not seem uniform, as the five individuals from Nea Styra, 
who were buried together in the same shaft grave, show substantial 
genetic variation. Finally, the LBA individuals deviate from these earlier 
BA individuals towards BA Central and Eastern Europe, suggesting 
multiphased genetic shifts in the Aegean since the Neolithic.

To formally test whether the remarks from the PCA are consist-
ent with diachronic gene-flow events, we used f-statistics of the form 
f4 (Mbuti, Test; Anatolian farmers, Aegean) (Methods; Supplemen-
tary Note 2) that contrast the various Aegean groups with the Anato-
lian farmers east of the Aegean (Supplementary Table 4). Affinities 
with far-eastern groups like Neolithic Iran are traced for Neolithic 
Aposelemis (or APO004) but only reach significance levels (≥3 s.e. 
or Z ≥ 3) on the EBA group from Nea Styra and then prevail for most 
of the later Aegean BA groups. However, the LBA ones additionally 
share alleles with contemporaneous or earlier (Mesolithic) popula-
tions from Central and Eastern Europe (for example, Eastern European 
hunter-gatherers: EEHG, Germany ‘Corded_Ware’, ‘Russia_Samara_
EBA_Yamnaya’ and ‘Russia_North_Caucasus’). In addition, evidence 
of admixture from these groups was confirmed with admixture f3 test 
(Supplementary Table 5 and Supplementary Note 2).

Neolithic to Early/Middle Bronze Age
Informed by the f-statistics, we explored formal admixture models 
using the software qpAdm (Methods; Supplementary Note 2). First, 
we tested a no-admixture model, which treated every individual as a 
sister group of Neolithic western Anatolia (‘W. Anatolia_N’) and then 
models by adding sequentially Neolithic Iran (‘W. Iran N’) and EEHG 
(Fig. 3). Substantial EEHG coefficients were fitted only on LBA and 
the two MBA individuals from the northern mainland ranging from 
around 5% to 25%, which explains why for some of them the simpler 
Anatolia + Iran Neolithic model was also adequate. Notably, Iran/
Caucasus-related genetic influx was inferred in published individuals 
from the later Neolithic phases on the mainland (I2318, I709 and I3920; 
Peloponnese, around the fifth millenium bc)—but not earlier—as well 
as most of the EBA individuals from Euboea, Aegina and Koufonisia. 
Overall, the genetic heterogeneity among the Late Neolithic (LN) to EBA 
is not correlated with time alone, since within the Nea Styra grave male 
individuals carried substantially varying proportions of Iranian-related 
ancestry. By applying DATES on the LN and EBA individuals from the 
mainland and the islands (Methods), we obtained an average admix-
ture date of around 4300 ± 250 bc (Supplementary Table 6), which is 
slightly younger when estimated from the Nea Styra individuals alone 
(about 3900 ± 460 bc). This variance in admixture dates also corrobo-
rates ongoing biological admixing with incoming individuals from the 
east of the Aegean following the establishment of the first Neolithic  
Aegean communities.

We further evaluated genetic heterogeneity with cladality tests 
using qpWave (Extended Data Fig. 1). Our results confirmed that vari-
ous pairs within EBA Euboea, Aegina and Koufonisia were not cladal 

the influence on Crete by mainland centres intensified and Cretan 
resources were systematically exploited with the help of turning key 
palatial centres and cities like Knossos, Hagia Triada and Chania into 
outposts for the administration of large parts of the island16. So far, past 
human migrations in the Aegean were primarily reconstructed on the 
basis of archaeological and textual evidence but bioarchaeological 
studies have been adding new information during recent decades17–22.

Biomolecular approaches based on ancient DNA (aDNA) have been 
introduced in prehistoric Aegean research during the last decade. The 
first aDNA study analysed mitochondrial genomes23, emphasizing 
autochthonous developments rather than migration from outside 
Crete. Subsequent studies generated nuclear aDNA data and showed 
a common gene pool for the Aegean Neolithic populations, indicating 
that the southern Greek mainland differed from the northern in its 
higher genetic affinity to early Holocene populations from the Iran/
Caucasus24,25. Others reported the presence of this ‘eastern’ (Iran/
Caucasus-associated) genetic component in both Bronze Age (BA) 
Cretan (Minoan) and southern Greek mainland (Mycenaean) popula-
tions26. However, the last carried additional ancestry linked to the 
Western Eurasian Steppe herders (WES)27,28 or Armenia. Recently, Cle-
mente and colleagues expanded the sampling scope of the BA Aegean 
to the northern mainland and the Aegean Islands corroborating the 
previous findings but also reporting higher WES-related ancestry in 
MBA individuals from northern Greece29.

Recent archaeogenetic studies outside the Aegean have engaged 
into integrating biological information as elements of the past social 
organization and structures30–33, whereby it is necessary to acknowl-
edge that relational identities are not determined only through biologi-
cal kinship34. Most approaches to past kinship in the Aegean were based 
on morphometric and non-metric analyses17,19,35 and first PCR-based 
studies were unsuccessful36. However, the potential of this line of 
evidence from the Aegean BA is outstanding due to the richness of 
collective burials as an expression and constitution of social belonging 
within local communities37.

Results
The archaeogenetic dataset
Here, we generated new genome-wide data from 102 prehistoric indi-
viduals from Aegean Neolithic (n = 6), BA (n = 95), as well as Iron Age 
contexts (IA; n = 1) (Fig. 1 and Supplementary Note 1), thereby achieving 
a fourfold increase in sample size from previously published datasets. 
This sample, owing to the geographical and temporal distribution, ena-
bles us to address complex features of admixture history and other bio-
logical aspects interwoven into these prehistoric societies (for example, 
marital practices). Nea Styra on the island of Euboea and Lazarides on 
the island of Aegina add to the post-Neolithic sites included that date 
to the time before the debated disruption around 2200 bc (the end of 
Early Helladic II on the Greek mainland). The remaining individuals 
from the mainland and the islands are attributed to the Mycenaean 
culture of the Late Bronze Age (LBA) (Aidonia, Glyka Nera, Lazarides, 
Koukounaries, Mygdalia and Tiryns). Most of the data come from Crete 
(66 of 102 individuals), in a time transect that covers early phases of the 
Neolithic (Aposelemis; late seventh to early sixth millennia bc) and the 
BA (Hagios Charalambos—Early-Middle Minoan; Chania, Aposelemis 
and Krousonas—Late Minoan). With the exception of Aposelemis and 
XAN035 from Chania (about 1700–1450 bc), all other Late Minoan 
individuals date between about 1400 and 1100 bc (LMII–III). All the 
analysed skeletal remains from Nea Styra, Mygdalia, BA Aposelemis, 
Krousonas, Aidonia and Hagios Charalambos belonged to the same 
within-site collective burial context; for the latter, Yersinia pestis and 
Salmonella enterica were also recently detected38. Extracted aDNA 
was immortalized into genomic libraries, part of which were enriched 
for 1,233,013 ancestry-informative single nucleotide polymorphisms 
(SNPs) (1240K) (Methods) and sequencing data were evaluated for 
aDNA preservation and contamination (Supplementary Tables 1 and 2).  
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to each other with respect to a set of reference populations (model 
P < 0.05), highlighting substantial genetic variation among coeval 
groups. In stark contrast, in Early Middle Bronze Age (EMBA) Crete 
the rate of non-cladal pairs (25 of 741) was the one expected for true 
models of cladal pairs to be rejected with a cutoff of 5% given a uniform 
distribution of the P values.

To increase the resolution of admixture inferences, we repeated 
qpAdm in groups of individuals ‘Crete Aposelemis N’ (n = 6), ‘S. 
Mainland-Islands LN-EBA’ (n = 13) and ‘Crete EMBA’ (n = 29) following 
a ‘competing’ approach described in previous studies (Methods and 
Supplementary Information 2). For Aposelemis, the one-way model 
from Neolithic western Anatolia was adequate when aceramic farmers 
from central Anatolia (Boncuklu site) were included in the reference 
populations but the one-way model with the latter as a source failed 

even without adding western Neolithic Anatolia to the references 
(P = 9.32 × 10−5) (Supplementary Note 2).

Subsequently, we modelled the differences of the two descending 
‘S. Mainland LN-EBA’ and ‘Crete EMBA’ groups from the earlier Aegean 
farmers with two-way models from these local farmers and various 
southwest Asian populations (Supplementary Table 7). Most of the 
two-way models including Neolithic Aposelemis were not rejected, indi-
cating a decreased resolution owing to the low SNP coverage and small 
group size of Aposelemis. On the contrary, when models included ‘W. 
Anatolia N’ as a local source instead, only the one with an additional 28% 
contribution from the Eneolithic/BA Southern Caucasus was feasible 
for ‘S. Mainland-Islands LN-EBA’ (Fig. 3b). Accordingly, for ‘Crete EMBA’, 
the additional ancestry was better modelled with Late Chalcolithic/
Early Bronze Age (LC-EBA) Anatolia (highest P = 4.9 × 10−3); however 
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Fig. 1 | Location and dates of individuals with newly generated aDNA data. 
a, Geographical distribution of archaeological sites mentioned in the study 
annotated by period. Sites with smaller symbols of light outline refer to the 
published datasets that are co-analysed and follow the same symbol/colour 
scheme. Data obtained from the same site but different periods, are annotated 

with jittering points. b, The number of individuals analysed and their date range 
based on archaeological chronology or radiocarbon dating. Site names are 
abbreviated in three-letter capitalized identifiers as indicated in the labels.  
E, Early; M, Middle; L, Late. See also Supplementary Tables 2 and 3.
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this model only became adequate as a three-way with an additional 
minute component (5%) from ‘W. Iran N’ (Fig. 3b).

Mobility in the Middle/Late Bronze Age Aegean
For the LBA groups and the IA individual, we explored models of mix-
ture from the corresponding ascending group (‘S. Mainland-Islands 
LN-EBA’ and ‘Crete EMBA’) and several European populations dated 
between around 3500 and 1000 bc (Supplementary Table 8). Informed 
by the previous analyses, we restricted the possible second sources to 
populations such as the EBA herders from the Pontic-Caspian Steppe 
(here grouped under ‘W. Eurasian Steppe En-BA’ and typically repre-
senting WES) and those shown to share a close genetic affinity with 
them. We first tested these models on ‘Site_Period’ groups, only if 
the cladality test (qpWave) agreed with grouping them as a homo-
geneous cluster (Supplementary Figs. 1 and 3a). Within the larger 
group from Chania, departures from cladality (P « 0.05) were more 
frequent (~10%) and were predominantly driven from specific indi-
viduals lying at the two ends of the EBA-LBA cline in the PCA (Extended 
Data Fig. 2b). To explore how these reflect significant differences in 
the admixture modelling, we analysed the group from Chania into 
the following three subgroups: ‘Chania LBA (XAN030)’, ‘Chania LBA 
(a)’ (XAN014, XAN028, XAN034) and ‘Chania LBA (b)’ (all the others) 
(Supplementary Table 8).

We found various sources ranging from East Europe, to Central 
and South Europe adequately fitting most models for the LBA Aegean 
groups. The smaller and heterogeneous sample of BA Bulgarian indi-
viduals or BA Sicily did not fit. Models with Serbia (EBA), Croatia (MBA) 
and Italy (EMBA) were adequate most of the time, while those with 
‘W. Eurasian Steppe En-BA’ (En, Eneolithic) or some Central European 
source (for example, Germany LN-EBA ‘Corded Ware’) were adequate 
for all groups at the P ≥ 0.01 cutoff. Therefore, at the moment it is not 
possible to more closely identify the region(s) from where this genetic 
affinity was derived. Among the groups of the southern mainland, the 
estimated coefficients of the WES-related ancestry are overlapping 
(±1 s.e.) and average to 22.3% (Fig. 4a) but were substantially lower 
than for Logkas in the northern mainland (43–55% ± 4%). No significant 
differences were noted for IA Tiryns (±1 s.e.), indicating—albeit with 
limited evidence—genetic continuity after the end of the BA at least 
for this site. Similar coefficient ranges as in the southern mainland are 
observed for the nearby islands and the Cyclades, although the model 
for the one individual from Salamis shows no WES-related ancestry. 
In sharp contrast, in Crete, WES-related coefficients vary from 0% 
to about 40% clustering in three groups with significantly different 
coefficients. Among the individuals with minimal/no WES ancestry 
are the earliest, dating to the late seventeenth or sixteenth century 
bc Aposelemis, whereas the youngest (Krousonas, Armenoi; twelfth 
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century bc) harbour some of the highest amounts. However, within 
the ancient city of Chania, individuals spanning a short period of about 
three centuries display the entire range, a pattern consistent with an 
early phase of mixing between divergent populations.

To better understand these remarkable ancestry patterns in LBA 
Crete, we tested competing admixture models by interchanging the 
candidate second sources in which we now included ‘Mainland MLBA’ 
that consisted of all the individuals from the third panel of Fig. 4a 
(both southern and northern). For a comparison, we also tested the 
same models on the grouped targets ‘Islands LBA’ (Euboea, Aegina, 
Salamis and Cyclades), ‘S. Mainland’ and ‘N. Mainland’—being aware 
that such artificial subdivisions of landscapes might not reflect past 
categorizations. The results are summarized in Fig. 4b. Interchang-
ing the sources resulted in the rejection of some previously adequate 
sources (for example, ‘Italy BA’ for ‘Islands LBA’). Overall, proximal 
sources like EBA Serbia, MBA Croatia and BA Italy failed to model both 
mainland and island groups (P ≤ 5.80 × 10−3), whereas models with 
Central or Eastern European sources remained adequate. However, 
two-way models with all of the above sources as well as ‘Mainland MLBA’ 

fit the allele frequencies of all the LBA individuals from Crete (‘Crete 
LBA’). This also applied when we modelled the two clusters from LBA 
Crete separately (Fig. 4a and Supplementary Table 9) but for the Crete 
LBA (group C) with high WES ancestry (individuals XAN030, KRO008, 
KRO009 and published Armenoi), just one source from ‘Mainland 
MLBA’ became adequate.

Insights into sex bias, biological kinship and marital practices
Studies have shown that in some regions of Europe—like the Iberian Pen-
insula, Central Europe and Britain—the large-scale gene flow associated 
with the Eurasian Steppe during the BA resulted in the prevalence of the 
Y chromosome R1a and R1b haplogroups28 or even involved male-biased 
admixture33,39,40. For the Aegean, we also estimated a significantly lower 
WES-ancestry proportion on the X chromosomes of the male indi-
viduals compared to most of the autosomes, which is consistent with 
male-biased admixture (Extended Data Fig. 3). However, only four out 
of the 30 male individuals dating post-sixteenth century bc (LBA and 
IA) carry the R1b1a1b Y haplogroup. The remaining—as well as the EBA/
MBA ones—attest to the high prevalence of Y haplogroups J and G/G2 
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Fig. 3 | Admixture modelling with qpAdm per individual and group. a, Ternary 
plot for a three-way admixture model of Aegean individuals using the distal 
sources of ceramic farmers from Western Anatolia, Western Iranian farmers 
from Ganj Dareh and the EEHG, all dating to about 6000 bc. Because qpAdm 
is based on allele frequency differences, modelling of individual targets has a 
lower resolution especially when the SNP coverage is low. A few of the Late-Final 
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Western Iran. To better visualize the fluctuation or Iranian-like coefficients 
among the LN-E/MBA individuals, the Anatolian–Iranian axis is also provided 
separately for Crete and the mainland islands. Fitting models were chosen 
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(0.01 ≤ P < 0.05). b, Allele frequencies are averaged among all LN-EBA individuals 
from the southern mainland and all EMBA Cretan individuals and modelled 
using proximal in time and space source populations. For the former, a source 
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and standard errors of mean were calculated by the qpAdm program applying 
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correction for multiple testing has been made. See also Extended Data Fig. 1 and 
Supplementary Tables 4–7.
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(39 and 10 out of 59, respectively; Supplementary Table 2). These were 
already present in Early Holocene Iran/Caucasus and among Anatolian 
and European farmers41–45 and very common in the Chalcolithic Anatolia 
and the Levant as well42,46,47, further highlighting the importance of the 
contacts between the Aegean and southwest Asian populations since 
the Early Neolithic.

Biological relatedness and its representation in prehistoric col-
lective burials has been poorly understood in the Aegean. Here, we 
present the first evidence for representation of biologically kin groups 
from a collective intramural infant grave dating to the LBA—a type 
of burial which existed since the Neolithic Aegean but became more 
common since the MBA48,49. Located within the Mycenaean (LBA) set-
tlement in Mygdalia, a small cist grave was the primary inhumation of 
at least eight perinatal infants and one of the six child burials under 
the houses of the settlement (Supplementary Note 1). By estimating 
the degree of relatedness among seven of these infants (Methods; 
Extended Data Fig. 4 and Supplementary Note 3) and assigning the 
uniparental haplogroups (Supplementary Table 2), the relationship of 
the infants could be resolved in a single extended family tree whereby 
the six infants were the children and grandchildren of one couple (Fig. 
5). The seventh individual (MYG004) was not a direct offspring of this 
family but related to MYG005 in the third degree through the maternal 
line, plausibly as first cousins.

Additional evidence of biological relatedness comes from Aido-
nia, where pairs of first- to third-degree relatives were determined 
among individuals buried within the three chamber tombs and the 
ossuary of Hagios Charalambos at the Lasithi plateau (Supplemen-
tary Note 1 and Extended Data Fig. 4). The individuals studied from 

Hagios Charalambos represent a secondary deposition of intermingled 
skeletons but were all unearthed from a particular section of the cave 
(Supplementary Note 1). Besides some pairs of close relatives (first to 
second degree), many pairs represent distant relatives. In addition 
to this high frequency of distant genetic relatedness, we also report 
extraordinarily high levels of consanguinity (~50% of the 27 individu-
als) estimated from the runs of homozygosity (ROH) by performing 
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hapROH on the genotyping data50 (Fig. 6a; Methods). The individual 
ROH histograms matched more with the expectations for parents being 
related to the degree of first cousins, half-siblings and aunt/uncle–
nephew/niece (Extended Data Fig. 5). However, given the stochastic 
nature of genetic recombination and the often-compromised coverage 
of ancient samples, one individual’s genome might only noisily match 
the expectations. Therefore, we combined the possible first-cousins 
unions cases and the cumulative histogram this produced favoured 
the parental relationship of first cousins against other scenarios (Fig. 
6b and Extended Data Fig. 6). Coupling the evidence for frequent dis-
tant relatives and cousin–cousin unions suggests that those individu-
als formed a small endogamous community that regularly practiced 
first-cousin intermarriages.

Intriguingly, endogamy is not a unique feature of Hagios Charalam-
bos. We applied the method on another 61 Aegean individuals from all 
the periods that met recommended SNP coverage thresholds. In total, 
we found that ~30% of the individuals have most of their ROH in the bin 
of the longest ROH blocks, consistent with being offspring of parents 
related to a degree equivalent to first and second cousins (Fig. 6a). Off-
spring of close-kin unions were identified from the Neolithic through 
the LBA but due to the uneven sampling no conclusions can be drawn 

regarding temporal trends. Consanguinity was also present in higher 
frequency in the smaller islands of Salamis, Lazarides, Koukounaries 
and Koufonisia (50%) but overall it seemed common throughout the 
Aegean. The observed high frequency of endogamy diachronically 
points to a rather common social practice in the prehistoric Aegean 
that is so far unattested in the rest of the global aDNA record50.

Finally, we observe a lowered genetic diversity among the Neolithic 
Aposelemis individuals, measured by a substantially reduced rate 
of mismatching alleles between pairs of samples (median P0 ≈ 0.22) 
(Extended Data Fig. 4; Methods). This signal can be due to several 
reasons. First, a lower P0 would be consistent with Aposelemis being 
a small endogamous community; however the absence of any long 
ROH in APO004, the single individual with sufficient coverage to infer 
long ROH, does not support this hypothesis. Second, the lowered 
pairwise diversity could represent multiple pairs of second-degree 
relatives. However, to fit all pairs into a single consistent pedigree 
would require that all six individuals are half-siblings from either the 
maternal or the paternal side, with the exception of a single pair of 
full siblings (APO004–APO028). Due to the low SNP coverage in all 
the individuals, uniparental markers can neither rule out nor confirm 
such a pedigree but its high specificity places it as a less likely scenario. 
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Finally, long-term reduction of population size (bottlenecks) can cause 
lower population heterozygosity and such a signal has been previously 
reported for instance in hunter-gatherer groups and Cardial Neolithic 
Iberians51,52. Individuals from such drifted populations are expected 
to exhibit shorter ROH (4–8 cM), which are currently not detectable 
in low-coverage individuals such as APO004. Further supporting this 
scenario, the inferred heterozygosity (h) within the Aposelemis indi-
viduals was also reduced (mean h ≈ 0.1) and close to the expectation 
when assuming that the average pairwise diversity (P0 ≈ 0.2) represents 
the diversity of the population and not pairs of close relatives. Summa-
rizing, the current evidence is most consistent with the scenario of the 
Aposelemis early farmers descending from a small-sized population.

Discussion
Our large-scale archaeogenomic approach provides new evidence 
regarding the role of human mobility in Aegean prehistory. The unprec-
edented finding of high frequency of consanguinity reveals a cultural 
practice otherwise unattested in the archaeological record.

First, our analyses on the Neolithic cemetery of Aposelemis, post-
dating the earliest levels at Knossos by about 1,000 years, suggest an 
Anatolian origin of the first Neolithic settlers, consistent with archi-
tectural, palaeobotanical and lithic evidence53 and recent evaluation 
of wild and domestic fauna at those earliest levels that also suggest 
animal husbandry54. While a similar genetic connection was observed 
for coeval mainland populations24,25, the genetic impact of Mesolithic 
and Neolithic populations from the other Aegean Islands, remain 
unknown but the evidence of a pre-Neolithic island horizon of a seafar-
ing tradition55 forces us to further elucidate the role of hunter-gatherers 
in the uptake of Neolithic subsistence practices in future studies. Thus, 
the reduced heterozygosity of the Aposelemis population might be 
interpreted as a coalescence of a small population of Anatolian farmers 
who settled the island in the early seventh millenium bc and remained 
biologically isolated for a period of time or as mobile small-sized popu-
lations arriving from nearby islands or a combination of both.

Subsequently, our findings indicate that the genetic landscape of 
Crete changed substantially since the early sixth millenium bc, marked 
by an influx of Anatolian populations inferred with our qpAdm modelling 
and admixture dating. Interestingly, eastern gene flow is also evident in 
other parts of Greece (Euboea, Aegina and Cyclades) since the LN but 
seems more episodic and oriented to populations from the Caucasus. In 
addition, although Y haplogroups are unresolved, male exogamy should 
be discussed as a plausible contributing factor to the heterogenous 
genetic profiles among the male individuals from Nea Styra, in line with 
evidence from biodistance on a neighbouring site35. Overall, while a more 
even sampling would be critical, current data seem to support that the 
eastern gene flow was not symmetric across the Aegean.

The disruption of life that is manifested in the Aegean and the 
Balkans via settlement dislocation during the late third millenium bc 
could be related to a breakdown of social structures and/or climatic 
challenges56. The finding of ‘northern’ ancestry in the MBA and LBA 
populations from the Greek mainland, does not support a large-scale 
population displacement but the north–south gradient indicates the 
directionality of this migration and population mingling. Some puta-
tively proximal sources like ‘Serbia EBA’ or ‘Bulgaria BA’ failed to model 
this ‘incoming’ ancestry in many groups and R1b Y haplogroups were 
rather infrequent among LBA Aegean groups, all of which points to 
different migration dynamics in the BA Balkans and Greece, compared 
to other parts of Central and Western Europe.

A more direct demographic connection can be proposed regarding 
the LBA Cretan and Greek mainland populations. Following an horizon 
of destructions targeting palatial centres and elite symbols in Crete 
(Late Minoan IB)57, material culture, funerary architecture and burial 
practices are believed to express innovations with features traditionally 
ascribed to the Mycenaean culture. On these grounds, an invasion of the 
island by people from the Greek mainland (around fifteenth century bc) 

has been proposed but remains highly contested12,58–60. While unable 
to settle this debate decisively, the genetic analyses demonstrate that 
Cretan populations at larger port cities biologically mixed with popu-
lations coming to the island during the course of a few centuries. The 
presence of individuals with some of the highest WES-related ancestry 
proportions within LBA Aegean (Crete LBA group C), despite fitting 
with a scenario that the Greek mainland was the only source of incoming 
people, it could also suggest that populations from more distant areas 
(for example, Italy) contributed to the Crete LBA transition, a possibility 
that is supported in the material culture as well61–63.

All different migrations proposed here (to Crete during the Neo-
lithic and EBA, to the Greek mainland before the LBA and from the 
mainland to Crete during the LBA) differ in their bioarchaeological 
evidence, which, therefore, must not be seen as a simple proof of an 
archaeological hypothesis but as an additional perspective enabling 
us to unravel the complexity of past mobilities.

Finally, the evidence for consanguinity adds another layer regard-
ing human mobility and social practices. Since the fundamental work by 
ref. 64, the phenomenon of cross-cousin unions has been much debated 
in anthropology, whereby in present-day societies, the evidence for 
cross-cousin unions is diverse, ranging from a common practice via 
toleration up to prohibition65. Different social, economic and ecologi-
cal arguments have been brought forward as underlying reasons, for 
example, geographic isolation, endemic pathogen stress, integrity of 
inherited land and so on66. A combination of several factors combined 
with subsistence-specific needs (for example, olive cultivation forc-
ing local constancy) might have shaped this practice in the Aegean. 
However, small population size was probably not a major reason in 
the Aegean as the reduced short-range ROH shown in our analyses is 
consistent with larger population sizes. Moreover, cross-cousin unions 
were practiced in different geographic contexts—on islands of differ-
ent sizes as well as the Greek mainland and are not evident at some 
places during the second millennium (for example, Chania). Future 
studies need to further elucidate the factors that were responsible for 
the emergence, continuity and disappearance of marital practices. So 
far, the importance of cross-cousin unions in the prehistoric Aegean is 
unique among the currently available data for prehistoric endogamy, 
which is otherwise rarely evidenced50,67–69. This might indicate different 
standpoints with respect to marital practices of rural versus urban socie-
ties and/or that those were amenable to cultural influences and changed 
over time. Studying the interplay between past mortuary practices and 
social structure—including marital or residence rules—from an integra-
tive bioarchaeological perspective has just become possible and future 
studies will help to refine our understanding of past social belonging.

Methods
No statistical methods were applied for the determination of sample 
size and randomization.

The overall burial record from the Aegean Bronze Age is a corpus 
which underwent specific selection criteria in the past and has been 
subject to specific modes of preservation and excavation since then 
(for example, only individuals with a certain status and/or age were 
buried in a way that allows their study at present). The corpus of sam-
ples analysed in this study represents a broad variety of burial contexts 
(for example, shaft graves/collective graves, single graves, primary 
and secondary burials) through time and none of the burials would be 
termed ‘elite’ or ‘outstanding’ in its respective archaeological/histori-
cal context. There is also no sampling bias with respect to sex, age or 
locality of the burials and diverse cultural settings were included (for 
example, individuals from urban centres like Tiryns and Chania and 
remote hamlets like Mygdalia).

Preparation of aDNA analysis
For the purpose of this study, we sampled 385 skeletal elements origi-
nally assigned to 357 ancient individuals. Teeth and petrous bones 
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made >95% of the sample corpus but when these elements were missing 
other parts such as tibia and femora were chosen. All sampling took 
place in a dedicated aDNA laboratory of MPI-SHH in Jena, following the 
laboratory’s archived protocols https://doi.org/10.17504/protocols.
io.bqebmtan and https://doi.org/10.17504/protocols.io.bdyvi7w6, the 
latter being an adaptation of a published protocol70. The aDNA extrac-
tion from most of the bone powder samples was performed with a modi-
fied silica-based protocol71. A detailed description of the steps is given 
in https://doi.org/10.17504/protocols.io.baksicwe. Genomic libraries 
were prepared from these extracts according to a double-stranded (ds) 
library protocol72 with an initial step of partial UDG treatment73 (https://
doi.org/10.17504/protocols.io.bmh6k39e), followed by Illumina dual 
indexing (https://doi.org/10.17504/protocols.io.bakticwn). For a por-
tion of the samples, we used an extraction-to-indexed library protocol 
supported by an automated liquid-handling system74,75 which constructs 
libraries from single-stranded (ss) molecules. From every extract, at 
least one of the produced libraries was initially sequenced at a low depth 
(5–10 million reads) on an Illumina HiSeq400 platform with a setup of 
50 cycles and paired-end or 75 cycles and single-read sequencing. Raw 
FastQC files were processed through EAGER pipeline76 for removal of 
adaptors (AdapterRemoval v.2.2.0; ref. 77), mapping against the human 
reference hs37d5 with the Burrows–Wheeler aligner (BWA; v.0.7.12; ref. 
78) with mapping quality and length filters of 30, and removal of PCR 
duplicates with dedup (v.0.12.2; ref. 76). Resulting information about 
library complexity and percentage of endogenous DNA was combined 
with mapDamage (v.2.0.6; ref. 79) estimates to evaluate the profile of 
endogenous aDNA preservation (Supplementary Table 1). Overall, our 
initial screening revealed that human aDNA preservation was very low 
to moderate (0.1–10% human endogenous DNA). Therefore, only aDNA 
enrichment methods are an economically viable strategy that allows one 
to generate data from a large number of individuals. Here, we chose to 
minimize batch effects and consistently generated in-solution hybridi-
zation enrichment data, consisting of ~1,2 million ancestry-informative 
positions (1240K capture)28,43,80,81 from all samples with 0.1% human 
endogenous DNA or more. We note that a small proportion of the sam-
pled libraries exhibited high DNA preservation (nine samples with >10% 
and up to ~40% endogenous content), which would make sequencing 
of the whole human genome cost-efficient and doing so could address 
additional research questions (for example, about rare variants). Only 
part of the immortalized libraries was used to produce enrichment data. 
The remaining libraries are permanently stored at the MPI-SHH/EVA 
laboratory facilities and future studies can use this resource to generate 
whole-genome data from these libraries.

Following the 1240K enrichment, the selected libraries were 
sequenced at standard ~20 million reads. For the evaluation of the 
post-1240K capture data, we rerun EAGER and mapDamage with the 
same settings. We also used the bed file of 1240K SNP positions to 
estimate on-target endogenous before-and-after 1240K capture and 
evaluate the performance of the protocol. We used Preseq (v.2.0; ref. 
82) with the parameters <lc_extrap -s 1e5 -e 1e9> to predict the unique 
reads yielded in larger sequencing experiments. For libraries with low 
complexity, whenever that was possible, we opted for preparation of 
multiple libraries from the same extract. Additional sequencing data 
from the same library or multiple libraries from one DNA extract or 
same individual that were produced with the same protocols were 
processed equally and all data were merged at the level of bam files 
with Samtools (v.1.3) and dedup was run again. We authenticated aDNA 
using three different methods on the bam files that estimate modern 
DNA contamination on ancient samples. We analysed single-stranded, 
no-UDG-treated libraries with AuthentiCT (v.1.0.0; ref. 83) that relies on 
the distribution of damage-induced deamination across the length of 
the ancient molecules. We run the module for contamination estimate 
on males from ANGSD84, which relies on heterozygosity on polymor-
phic SNPs on the X chromosome. We previously trimmed bams for 
terminal damage with trimBam (https://genome.sph.umich.edu/wiki/

BamUtil:_trimBam) and reported the method 1 estimation. Finally, we 
analysed all libraries with schmutzi85 after mapping mitochondrial 
reads with CircularMapper (v.1.93.5) and removing duplicates76 and 
downsampling to 30,000 reads. Run modules contDeam and schmutzi 
estimated endogenous deamination, called an endogenous consensus 
and, based on this, computed the contamination rate. Ratios of mito-
chondrial/nuclear DNA that are very high (>200) can be unreliable for 
mitochondrial contamination estimates86. Therefore, when applicable, 
we relied on other methods and/or the behaviour of such samples in 
population genetic analyses.

The genetic sex was determined from a scatterplot of coverage 
on X and Y chromosomes normalized for autosomal coverage, which 
provided an unambiguous distinction between males and females and 
also matched the macroscopic estimations for adult individuals in all 
but a few exceptions (Supplementary Note 1).

We extracted genotypes from the pileups of original and trimmed 
bam files of ds libraries using the tool pileupCaller (https://github.
com/stschiff/sequenceTools/tree/master/src/SequenceTools) and the 
option randomHaploid, which randomly chooses an allele to represent 
the genotype at a given SNP position. For the final genotype file, we 
kept transitions from the masked version and transversions from the 
original version. We genotyped the pileups from ss-library bams by acti-
vating the option singleStrandMode in pileupCaller which filters out 
forward-mapping reads with a C-T polymorphism and reverse-mapping 
reads with a G-A polymorphism, thereby effectively removing bias due 
to damage. Because of the differences in data production between 
ds and ss libraries, when applicable, we merged such libraries on the 
genotype level by randomly choosing a non-missing genotype at every 
position. Individuals with <20,000 SNPs, ≥10% contamination esti-
mate or absence of such estimate were excluded from subsequent 
analyses. For selected individuals, we run pileupCaller with the option 
-randomDiploid and calculated within individual heterozygosity as 
number of ht sites/number of all sites.

We merged our final dataset with the release of publicly avail-
able genotype datasets of ancient and modern individuals (v.50.0) 
(https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr- 
downloadable-genotypes-present-day-and-ancient-dna-data), to 
which we added the recently published aDNA data from Italy87 and 
based our inferences on a subset of the published data older than 
2,000 years from across Eurasia. For the merging with the worldwide 
modern populations on the Human Origins array (~0.5 million SNPs) we 
kept the intersection of SNPs between the two panels. For downstream 
analyses we restricted all data to the 22 autosomes.

We assigned mitochondrial haplogroups and haplotypes from the 
consensus sequence (q30) generated by schmutzi and the software 
Haplogrep (v.2.1.25; ref. 88) applying a quality threshold of 0.65. To 
assign Y haplogroups, we filtered the pileup from the trimmed bams 
for ISOGG SNPs and for every such SNP we calculated its record of being 
either ancestral or derived. Then, via manual inspection we checked 
whether the presence of diagnostic SNPs for a given haplogroup fol-
lowed a root-to-tip trajectory or whether there were spurious jumps 
in the phylogeny because of damage. For libraries with low coverage 
on mitochondrial and Y chromosome DNA, we additionally performed 
whole-genome and SNP enrichments, respectively, according to estab-
lished protocols81,89. A summary of genetic sex, contamination esti-
mates, SNP coverage and Y/mito-haplogroup assignments is given in 
Supplementary Table 2.

Analysis of population structure
We performed PCA using the smartpca program from the EIGENSOFT 
(v.6.01) package90. To avoid bias in the calculation of PCs introduced 
by high rates of missingness on aDNA, we computed the PCA on 84 
modern West Eurasian populations (1,264 individuals genotyped on 
the Illumina Affymetix Human Origins array) and projected ancient 
individuals with the option lsqproject.
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Admixture analysis with ADMIXTOOLS
We estimated f-statistics using the package ADMIXTOOLS (v.5.1;  
ref. 91). Depending on their formulation, f-statistics can provide a meas-
ure of genetic drift or test for hypotheses of admixture and allele sharing 
excess. While outgroup f3-test of the form (Mbuti; X, Test)—for X and 
Test non-African populations—produces high values when X and Test 
share common drift, f4(Mbuti, Y; X, Test) tests whether X and Y or Test 
and Y share more alleles than expected from the null hypothesis (X 
and Test cladal to Y). Therefore, f4-statistics under given settings can 
provide useful hints for admixture and the possible sources. In addition, 
computation of f4-statistics comes with a framework for block jackknife 
estimation of Z-scores, which we use for annotation of significant results 
(|Z| ≥ 3). We also run admixture f3(A; B, C) that tests whether the allele 
frequencies of population A are intermediate between B and C, with 
negative value indicating admixture. Using the information from the 
f-statistics results we built a framework for running tools qpWave and 
qpAdm from the same package. A detailed description of the machinery 
behind these tools is provided in ref. 28. In brief, the method harnesses 
information about allele frequency differences calculated by multiple 
f4-statistics that relate a set of reference (right) populations with a set 
of targets (left) populations. Specifically, qpWave is used to estimate 
the minimum number of independent gene pools that explain a set of 
targets from the references. In practice, if two targets are related with 
the references as one gene pool, then they are cladal (undistinguishable) 
to the resolution of the references. In qpAdm, which is a derivative of 
qpWave, this principle is leveraged to model a target population as 
a mixture of contributions from n source populations. The fit of the 
full model and the nested simpler models are evaluated and P < 0.05 
or 0.01 is generally interpreted as an inadequate explanation of the 
data. Admixture coefficients outside of the [0,1] range are also evi-
dence of a poor fit of the full model. For the comparison of admixture 
coefficients from different chromosomes, we computed Z = (coef-
ficientA − coefficientX)/√(s.e.A

2 + s.e.X
2), where A was any of the 22 auto-

somes, X the sex chromosome X, s.e. the jackknife standard deviation 
from the qpAdm and applied a significance threshold of Z ≥ 3.

To further discern differences in ancestries and their admixture 
coefficients by exploring source populations that potentially serve 
as proxies of the real sources in terms of time, space as well as the 
archaeological evidence, we applied a ‘competing’ approach described 
in previous studies92,93. In this approach, candidate source populations 
are interchanged between the reference (right) and source (left) popu-
lations in the qpAdm setting. If the one placed in the right population 
is a better proxy for the real source than the one tested in the left ones, 
the model is expected to fit poorly the data (low P value).

Admixture dating
We used the software DATES (v.753) (https://github.com/priyamoor-
jani/DATES) to test for exponential decay of local ancestry in a source 
population given two admixing sources. The decay rate is informative 
about the time since admixture; thus, the method can effectively date 
recent admixture events. A detailed explanation of the method is pro-
vided47,94,95. We run the method with standard parameters: in Morgan 
units binsize = 0.001 and fit of decay curve from 0.0045 (lovalfit) to 1 
(maxdist) distance bins.

Analysis of biological relatedness
For detection of closely related individuals, we applied the method 
READ96. In this approach, the coefficient of relatedness [0,1] between 
two individuals is estimated from their rate of mismatching allele 
(P0) normalized with the pairwise allele differences among unrelated 
individuals within the population (α), which is by default calculated as 
the median from the provided dataset. In this way, the method corrects 
for SNP ascertainment, marker density, genetic drift and inbreeding. 
An important implication from this formula is that for given α, the P0 
for two identical individuals will be α/2 and hence aDNA data from 

samples belonging to the same individual can be easily detected. The 
method also calculates P0 on non-overlapping windows of the genome 
and computes standard errors.

To detect relatives at a more distant degree, we run lcMLkin97 on 
the masked versions of bam files with the options -l phred and -g best. 
This method uses a maximum likelihood framework to infer identical 
by descent (IBD) on low-coverage DNA sequencing data from genotype 
likelihoods computed with bcftools. The coefficient of relatedness r 
is then calculated as k1/2 + k2, with k1 and k2 the probabilities to share 
one or both alleles IBD, respectively. The method can also distinguish 
between parent–offspring (k0 = 0) and siblings (k0 ≥ 0, depending on 
recombination rate) and in theory infer relatedness as distant as fifth 
degree. However, in low-quality data such as aDNA discrepancies from 
the expected k0, k1, k2 values are common especially for comparisons 
relying on <10,000 SNPs31.

To resolve pedigrees that differ in the IBD probabilities (for exam-
ple, half-siblings or double first cousins), we performed gene imputa-
tions with GeneImp (v.1.3; ref. 98) and assessed matching and opposing 
homozygotes (Supplementary Note 3).

Analysis of ROH
We inferred ROH using hapROH (v.1.0; ref. 50) (https://github.com/
hringbauer/hapROH), a method designed to analyse low-coverage 
aDNA data by leveraging linkage disequilibrium from a panel of mod-
ern haplotype references. On 1240K data of at least 0.3× coverage, the 
method can successfully recover ROH longer than 4 cM. In cases of close 
parental relatedness, which produce long ROH in the offspring, the 
method can be efficient for detecting very long ROHs at an even lower 
coverage. Here, we called ROH in 65 of the Aegean samples (including 
previously published) with >250,000 SNPs. We simulated individual 
ROH for a given degree of parental relatedness using the software 
pedsim (https://github.com/williamslab/ped-sim) as described in 
Supplementary Section 4, hapROH. We used the embedded functions 
of the program for plotting the ROH as bars, individual or combined 
histograms and karyotypes.

Direct AMS radiocarbon dating
Skeletal samples from 38 individuals were submitted to the radio-
carbon dating facility of the Klaus-Tschira-Archäometrie-Zentrum 
at the CEZ Archaeometry gGmbH, Mannheim, Germany, which uses 
a MICADAS-AMS platform. The same sample from which DNA was 
extracted was preferred. Collagen was extracted from the bone sam-
ples, purified by ultrafiltration (fraction >30 kD) and freeze-dried. 
Collagen was combusted to CO2 in an elemental analyser and CO2 was 
converted catalytically to graphite. The 14C ages were normalized to 
δ13C = −25‰ and were given in bp (before present, meaning years before 
1950). The calibration was done using the datasets IntCal13 (ref. 99) and 
IntCal20 and the software SwissCal 1.0.

Visualizations
We produced all graphs and maps with Rstudio (v.1.1.383), python 
(v.3.7) and Inkscape (v.0.92.4).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw (FASTQ) and aligned sequence data (BAM format; after MAPQ 
30, length filter 30bp and removal of duplicates) reported in this paper 
can be accessed through the European Nucleotide Archive under the 
project name: PRJEB56216. Haploid genotype data for the 1240K panel 
are available in eigenstrat format (https://figshare.com/projects/Gen-
otype_data_for_103_individuals_from_study_Ancient_DNA_reveals_
admixture_history_and_endogamy_in_the_prehistoric_Aegean_/156152).
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Code availability
No new code and method were developed. Details on the settings for 
admixture modelling and dating are provided in Supplementary Note 2.
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Extended Data Fig. 1 | Heatmap of pairwise qpWave tests. Low P values 
(conventionally < 0.05) are interpreted as a poor fit of the model and as more 
than one stream of ancestries being needed to explain the pair. Solid-line squares 
annotate clusters of individuals that date to the same period and come from 
the same archaeological site. Dashed-line square annotates Early Bronze Age 

(EBA) individuals from the islands of Euboea, Aegina and Koufonisia in Cyclades. 
Results are plotted in decreasing chronological order (Neolithic-Iron Age). We 
applied R11 (Supplementary Note 2) as a set of reference populations (‘right 
pops’). P values were calculated by the qpWave program applying a likelihood 
ratio test. No correction for multiple testing was performed.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Heatmap of pairwise qpWave tests and comparison 
with PCA coordinates. A. Test of streams of ancestry necessary to explain a pair 
of individuals from a set of reference populations for the Middle/Late Bronze 
Age and one Iron Age individual from Tiryns. We repeated the analysis presented 
in Extended Data Fig. 1 by adding to the set of reference populations (R11) ‘W. 
Eurasian Steppe En-BA’. This setting increased the rate of non-cladal pairs (P < 
0.01; at least two streams of ancestry) only among individuals from Chania (XAN) 

and led us to analyse Chania in three subgroups. P values were calculated by the 
qpWave program applying a likelihood ratio test. No correction for multiple 
testing was performed. B. The PC1-PC2 coordinates from the Western Eurasian 
PCA displaying XAN individuals with their IDs. Those analysed separately are 
annotated in red letters (XAN014, XAN028 and XAN034 were grouped together 
and XAN030 apart).
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Extended Data Fig. 3 | Estimated mean coefficients (±1SE) of additional post-
Neolithic ancestries measured on all the autosomes separately, and the X 
chromosome of the Aegean male individuals grouped by period. A. Positive 
coefficients from ‘W. Eurasian Steppe En-BA’ in LBA-IA males were fitted (P ≥ 0.01) 
for most autosomes as well as chromosome X. WES-related ancestry estimated 
from the X chromosome was substantially lower compared to the autosomes, 

although only a few of these comparisons were significant (Z-score ≥ 3). B. 
The same analysis for the ‘eastern’ ancestry indicates no sex bias in admixture 
between the Late Neolithic and the Middle Bronze Age. P alues and standard 
errors of mean were calculated by the qpAdm program applying a likelihood 
ratio test and the 5 cM block jackknifing method, respectively. No correction for 
multiple testing was performed.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Estimation of genetic relatedness with two different 
methods. A. The pairwise differences (P0) were computed with READ and 
are plotted as ±2SE of the mean. The dashed line indicates the median value 
calculated from all pairwise comparisons used for normalization (baseline of 
unrelatedness). Dotted lines show the cutoffs for the classification to second 
and first degrees and identical/twins. Confidence intervals were calculated by 
the software and are indicated in gray shadows. Results are provided separately 
for sites with related individuals. B. READ results for Neolithic Aposelemis 
in comparison to other Aegean Neolithic sites from the Greek mainland and 

Western Anatolia (mean pairwise differences with ±2SE) suggest that the 
baseline of unrelatedness might be lower for the Aposelemis population, and 
normalization of P0 produces lower cutoffs for close relatives (light-red lines). 
In this scenario, APO004 and APO028 are second-degree relatives. Because SNP 
ascertainment influences P0 values, only individuals enriched for 1240K, or in 
silico genotyped on these SNPs were included. C. lcMLkin analysis. Scatterplot 
of k0 against r for sites displaying pairs of relatives. First and up to third-degree 
relatives from Mygdalia are distinguished by both methods, as well as several 
pairs from Hagios Charalambos and Chania.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-022-01952-3

Extended Data Fig. 5 | ROH length distribution for individuals with evidence of consanguinity (cross-cousin unions). The ROH histograms are plotted for every 
case separately along with the expected densities for given parental relationships.
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Extended Data Fig. 6 | Histogram of ROH after combining simulated close-kin 
offspring, and expected densities for certain parental relationships. For 
the three parental relatedness scenarios (half-siblings, first cousins and second 
cousins), 1000 offspring were simulated with the software pedsim (Methods). 
For comparison with Fig. 6b, the histogram of every panel was created after 

combining ten simulated individuals at different proportions. Histograms 
with all simulated first cousins, or 80% first cousins and 20% second cousins 
mostly closely match the histogram from the combined Hagios Charalambos 
individuals.
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Study description This study employs ancient DNA laboratory protocols to produce genome-wide data from human skeletal remains and applies 
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Research sample  Human skeletal remains from the Aegean (present-day Greece) that were recovered from archaeological excavations.

Sampling strategy The overall burial record from the Aegean Neolithic and Bronze Age is a corpus which underwent specific selection criteria in the past 
and has been subject to specific modes of preservation and excavation since then (e.g., only individuals with a certain status and/or 
age were buried in a way that allows their study at present). The corpus of samples analyzed in this study represents a broad variety 
of burial contexts (e.g., shaft graves/collective graves, single graves, primary and secondary burials) through time, and comes from 
areas with distinct features with respect to their archaeological history. The majority of the samples dates to the Bronze Age, an 
archaeological period at the core of our questions regarding the contacts of the populations with neighbouring regions and the social 
organization.

Data collection Bone powder was sampled following minimally invasive methods for sampling of archaeological material. DNA was extracted 
converted into a genomic library with adaptors for sequencing on Illumina platforms.

Timing and spatial scale Timing scale: Neolithic (ca. 6000 BC; n=6), Bronze Age (ca. 2800-1050 BC; n=95), Iron Age (ca. 900 BC; n=1) 
Spatial scale: Southern Greek mainland, Aegean islands and Crete.

Data exclusions Processed samples for which a very low coverage of genetic markers was generated (e.g., ≤40,000 SNPs), or modern DNA 
contamination was estimated high.

Reproducibility Sequence data  will be uploaded to the European Nucleotide Archive, and all parameters (e.g., mapping  quality filters, genotyping 
methods, admixtools) are provided in the Method's section and Supplementary Note 2.

Randomization No statistical methods were applied for the determination of sample size and randomization.

Blinding Blinding was not relevant/possible for our study, since all the data come from archaeological samples.

Did the study involve field work? Yes No
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to the Greek Ministry of Culture and Sports, and after its approval, skeletal samples and/or bone powder could be exported to 
Germany. All permits were issued in Greek and copies could be provided upon request.
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Specimen deposition Samples in the form of small fragments (e.g., petrous bones, teeth) or bone powder (max. 200 mg) were exported and sent to the 

Max Planck Institute for the Science of Human History (MPI-SHH) Lab facility, in Jena, Germany.

Dating methods Radiocarbon dating with Accelerator Mass Spectrometry on bone/tooth samples weighing up to 1g. Samples were sent to the Klaus-
Tschira-Archäometrie-Zentrum at the CEZ Archaeometry gGmbH, in Mannheim, Germany and were analyzed on a MICADAS-AMS 
platform. Measurements were calibrated using the datasets IntCal13 and IntCal20 and the software SwissCal 1.0.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight No ethical approval/guidance was required. All the material  was accessed after permission from the Greek Ministry of Culture and 
Sports and the agreement of the institutions/researchers who studied archaeologically the material and who also agreed to 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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