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  Summary 

 I 

Summary 
 The genotypic and phenotypic characteristics of HIV-1 CRF02_AG strains from infected 

patients in Burkina Faso were determined in order to understand about resistance development and 

susceptibility to antiretroviral drugs of HIV-1 non-subtype B. Drug resistance studies among 

Nevirapine (NVP) naïve and exposed women from Nouna, and HAART-exposed HIV patients 

attending the University Hospital in Ouagadougou, Burkina Faso were performed. The diversity and 

evolution of HIV-1 reverse transcriptase (RT) quasispecies in paired plasma, breast milk whey and/or 

breast milk cells from seventeen HIV-infected NVP-naïve and exposed women were determined by 

direct sequencing and clonal analysis. NVP resistance mutations were detected in 8% of infected 

mothers by direct sequencing. By using clonal analysis, the detection rate increased to 46% which 

indicates the high sensitivity of clonal analysis in detecting low proportion of drug resistance variants. 

To analyze compartmentalization of virus population in different anatomic compartments, 

phylogenetic analysis comparing virus populations of plasma, breast milk and/or breast milk cells from 

individual patients at both single and multiple time points was performed and the circulation of both 

compartmentalized (50%) and non-compartmentalized (45.5%) variants were found. These results 

suggest that in some individuals, viruses in breast milk whey may be evolving separately from plasma 

viruses. In most cases, breast milk whey variants were completely different from those of breast milk 

cells suggesting that free HIV virions in breast milk do not originate from infected breast milk cells. 

Different resistance mutation patterns were observed between viruses in plasma, breast milk and breast 

milk cells which suggest that transmission of HIV-1 from mother-to-child via breastfeeding may 

involve variants harbouring resistance mutations which cannot be predicted from variants present in 

plasma.  

 To determine possible influences of genetic background on drug susceptibility of virus, a new 

CRF02_AG proviral plasmid (pBD6TB9RI) and the derivative CRF02_AG/subtype B chimera 

containing PR-RT fragment of pNL4-3 were generated. By testing drug susceptibility against 5 

protease inhibitors (PIs), 6 nucleoside reverse transcriptase inhibitors (NRTIs), and 3 non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), the CRF02_AG virus showed similar phenotypic results 

like the CRF02_AG/subtype B chimera. To further evaluate the CRF02_AG plasmid backbone, PR-

RT amplified fragments derived from HAART-experienced HIV patients were cloned into the 

pBD6TB9RI plasmid and transfection derived viruses were tested against the panel of antiretroviral 

drugs. The phenotypic results for both NRTIs and NNRTIs strongly correlated with the predicted 

genotypic resistance patterns. However, there were minor discordances with some PIs. This suggests 

that the novel recombinant viral assay should be useful in assessing the drug susceptibility of 

CRF02_AG and other non-B strains which are widely distributed in West and Central Africa. 
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Zusammenfassung 
 Die genotypische und phänotypische Eigenschaften von HIV-1 CRF02_AG Subtyp von 

infizierten Patienten aus Burkina Faso wurden bestimmen um die Entwicklung der Resistenz und die 

Suszeptibilität für antivirale Medikamenten dieses HIV-1 Subtypes zu verstehen.  In dieser Arbeit 

wurde die Resistenz von HIV gegen antivirale Medikamenten in Nevirapin (NVP)-naiven bzw. –

therapierten Patientinnen aus Nouna und HIV-Patienten unter hochaktiver antiretroviraler Therapie 

(HAART) am Universitätsklinikum in Ouagadougou, Burkina Faso untersucht. Die Diversität und die 

Evolution der HIV-1 Reverse Transkriptase (RT) Quasispezies im Blutplasma Muttermilch und/oder 

Muttermilchzellen von siebzehn HIV-infizierten, NVP-naiven bzw. -therapierten Patientinnen wurde 

durch direkte Sequenzierung und Klonalanalyse ermittelt. Die Ergebnisse zeigen, dass die klonale 

Analyse eine höhere Sensititvität bei dem Nachweis von Resistenzvarianten aufweist, die in der 

Viruspopulation nur in einem kleinen Anteil vorliegen. Während die direkte Sequnzierung nur bei 8% 

der HIV-infizierten Mütter NVP-Resistenzmutationen nachwies, wurden durch  Klonalanalyse bei 

46% dieser Frauen Mutationen detektiert.  

 Die Kompartimentierung von Viruspopulationen in Blutplasma gegenüber Muttermilch 

und/oder Zellen aus Muttermilch wurde mittels phylogenetischer Methoden analysiert. In 50% der 

Fälle zeigte sich eine Kompartimentalisierung der Viruspopulationen. Dies weist darauf hin, dass 

zumindest in einem Teil der Patientinnen eine unabhängige Entwicklung der Viren in Muttermilch 

stattfindet. Da sich die Viren in Muttermilch in den meisten Fällen von den Viren in Muttermilchzellen 

unterschieden, kann man annehmen, dass die freie HIV-Virionen in Muttermilch nicht von der 

Mehrzahl der infizierten Muttermilchzellen stammten. Aufgrund des Unterschieds von HIV-Varianten 

in Blutplasma, Muttermilch und Muttermilchzellen ist anzunehmen, dass Resistenzmutationen 

enthaltende Viren außerhalb von Blutplasma bei der Mutter-Kind Übertragung durch das Stillen eine 

wichtige Rolle spielen. Dies muss berücksichtigt werden, weil die meisten HIV-infizierten Mütter in 

Afrika ihre Kinder noch stillen.            

 Um mögliche Einflüsse des viralen Genotyps auf die Suszeptibilität von HIV gegnüber 

antiretroviralen Medikamenten zu untersuchen, wurde ein prototypisches provirales Plasmid des in 

Westafrika verbreiteten AG rekombinanen Subtyps (pBD6TB9RI) hergestellt, und die Sensitivität 

dieses Virus gegenüber 5 Protease-Inhibitoren (PI), 6 nukleosidischen Reverse-Transkriptase-

Inhibitoren (NRTI) und 3 nichtnukleosidischen Reverse-Transkriptase-Inhibitoren (NNRTI) bestimmt. 

Ein Austausch der PR-RT kodierenden Region mit entsprechenden Sequenzen aus dem Subtyp B 

Isolat NL4-3 bewirkte keine Veränderung des Sensitivitätsprofils.   Anschließend wurde die PR-RT 

Region aus Viren aus dem Plasma von Patienten unter HAART in pBD6TB9RI überführt und die 

Suszeptibilität der rekombinanten Viren gegen die verschiedenen Inhibitoren getestet. Überwiegend 

ergab sich eine Übereinstimmung mit der genotypischen Vorhersage. Im Fall der PI ergaben sich zum 

Teil jedoch Abweichungen zwischen den Ergebnissen der genotypischen und der phnotypischen 

Bestimmung. Dies zeigt den Nutzen des hier etablierten phänotypischen Resistenztests für Viren des 

AG rekombinanten Subtyps. 
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1 Introduction 
 
1.1 Human Immunodeficiency Virus (HIV)  
 The human immunodeficiency virus (HIV) causes a chronic infectious disease 

known as the acquired immunodeficiency syndrome (AIDS), which progressively 

damages the host’s immune system. HIV belongs to the lentivirus subfamily of 

retroviruses (family Retroviridae). HIV genome is encoded as a positive sense RNA 

which is transcribed into double stranded DNA by the reverse transcriptase enzyme, the 

most noticeable feature of retroviruses (Vogt, 1997). 

 Since HIV was discovered in 1983, it has rapidly emerged as one of the most 

devastating infectious pathogens of this century (Gallo et al., 1983). By the end of 2007, 

an estimated 30 million people worldwide were living with HIV of whom 2.1 million 

were children. Approximately 2.5 million new infections occurred in 2007 with 1.7 

million (68%) of these in sub-Saharan Africa (UNAIDS/WHO, 2008). 

  

 1.1.1 HIV-1 structure and genomic organization 
 The HIV-1 virion has a spherical structure with an approximate size of 145 nm in 

diameter (Briggs et al., 2003). The virion contains two copies of single stranded HIV-1 

genomic RNA encoding the structural protein (Gag), enzymatic protein (Pol), 

glycoprotein (Env) and accessory proteins (e.g. Vif, Vpr, Vpu, Nef, Rev, Tat) that 

regulate gene expression and modulate pathology (Fig. 1).  

 The gag gene synthesizes the structural polyprotein precursor Gag (Pr55Gag) 

consisting of the matrix (MA, p17), capsid (CA, p24), nucleocapsid (NC, p7) and p6 

domains as well as two spacer peptides (SP1 and SP2). The Pol proteins consist of the 

viral enzymes protease (p11), reverse transcriptase/Rnase H (p51/p66) and integrase 

(p32) which are generated by subsequently cleavage of the Gag-Pol polyprotein precursor 

(Pr160). The Env protein is expressed as a precursor glycoprotein gp160 that is 

subsequently cleaved by the cellular protease furin into the surface protein gp120 (SU) 
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and the transmembrane protein gp41 (TM). The long terminal repeats (LTRs) flank the 

coding region and are necessary for reverse transcription and integration (Fig. 1). 

 

A.

B.    

                               
Fig. 1 Genomic organization of HIV-1. (A) The open reading frames of the viral proteins are depicted. 
The virus structural genes are shaded and the accessory genes and the LTR are shown as open boxes. LTR, 
Long terminal repeat; MA, matrix; CA, capsid; NC, nucleocapsid; PR, protease; RT, reverse transcriptase; 
IN, integrase; TM, transmembrane glycoprotein; SU, surface glycoprotein. (B) Typical representation of a 
mature HIV particle: spherical, approximate 100 nm in diameter and consisting of a lipid bilayer membrane 
surrounding a conical nucleocapsid. Adapted from Knipe et al.,2001. 
 

 

 1.1.2 Replication cycle 

 HIV-1 infection begins with the interaction of gp120 with the cellular CD4 

receptor on the surface of the target cells (Dalgleish et al., 1984). Subsequently, an 

interaction between gp120 and the chemokine receptor CCR5 or CXCR4 occurs leading 

to a conformational change exposing gp41, which induces fusion of the virus and cell 

membrane (Stein et al., 1987). After fusion, HIV releases the core into the cytoplasm of 

the target cell. In the cytosol, viral reverse transcriptase (RT) synthesizes a double 

stranded DNA from single stranded viral RNA. Inside the nucleus, the viral DNA is 

integrated into the host genome by HIV-1 integrase (IN) enzyme, resulting in the so 

called provirus which can remain latent or lead to active synthesis of the viral progeny 

(Bushman et al., 1990). Viral transcription is achieved by cellular RNA polymerase II 

Tat 

Rev 

 5’LTR 

MA CA NC p6 

RT PR IN Vpr SU TM 3’LTR GAG 

POL ENV Vif Vpu Nef 
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which transcribes viral DNA into mRNA. Subsequently, viral mRNAs are exported to the 

cytoplasm for translation as polyproteins and associate with other viral components to 

form the immature, non-infectious particles. The immature virions are release from host 

cell membrane where they acquire viral envelope proteins. Finally, the viral polyprotein 

precursors within the immature particles are proteolytically processed by the viral 

protease (PR) enzyme leading to the development of mature infectious HIV virions. The 

free mature HIV-1 virions can further infect other cells and initiate their life cycle 

(Coffin, 1997) (Fig. 2). 

 

           

Fig. 2 HIV-1 replication cycle. This figure is adapted from De Clercq, 2002 and the replication cycle is 
described in the text. 
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 1.1.3 Classification of immunodeficiency viruses 

 HIV belongs to the primate lentivirus subfamily of retroviruses and can be divided 

into 2 groups; HIV-1, HIV-2. HIV-1 and HIV-2 are highly divergent with their envelope 

protein sequences differing by as much as 60%, reflecting their distinct origin (Sharp, 

2002). 

 Presently, HIV-1 is subdivided into 3 groups: Major (M), Outlier (O) and non-

M/non-O (N). However, very recently, a new strain of HIV-1 similar to SIVs gorilla was 

isolated from a Cameroonian living in France and was tentatively called HIV-1 group P 

(Plantier et al. 2009). Group M is responsible for the majority of infections worldwide 

and can be divided into 9 subtypes (A-D, F-H, J and K), 5 sub-subtypes (A1-A3 and F1-

F2) and 43 circulating recombinant forms (CRFs) (Robertson et al., 2000; Tebit et al., 

2007; Kuiken et al. 2009). Comparing the protein coding sequences between HIV-1 

subtypes a nucleotide diversity of up to 30% is observed in env, 20% in gag and 15% in 

pol (Gao et al., 1997).  

Group O viruses show high variability between isolates. Partial gag, pol and env 

sequences have been used to classify group O viruses into putative subtypes (Mas et al., 

1999; Roques et al., 2002). These studies indicate a high diversity of group O and do not 

show the same subtype formation like group M viruses (Fig. 3) (Quinones-Mateu et al., 

1998; Yamaguchi et al., 2003). The group N viruses form an independent clade related to 

group M, whereas sequences from the 3’ end cluster more closely with SIVcpzUS 

chimpanzee virus, suggesting a possible ancient recombination within humans or prior to 

cross-species transmission (Fig. 3) (Gao et al., 1999; Corbet et al., 2000). 

 HIV-2 subtypes are mainly restricted to West Africa and can be categorized as 

epidemic subtypes (A-B) and non-epidemic subtypes (C-G) (Lemey et al., 2003). 

Individuals infected with HIV-2 develop AIDS as well, but with a longer incubation 

period and lower morbidity (Gao et al., 1994).  
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Fig. 3 Phylogenetic tree representing the genetic diversity in HIV-1 group M, N, O and SIVcpz. 
HIV-2 was use as the out group. Subtype and CRFs are represented in black and different shades of gray. 
Within the HIV-1 group M the term "x-like" is used to denote clusters which are similar to the different 
group M subtypes. Adapted from Tebit et al., 2007. 

 
 



   Introduction 

 6 

1.2 Circulating recombinant forms (CRFs) 
 HIV recombination occurs when a single cell is infected by two different viruses 

to generate a heterozygous or heterodiploid virion. Due to the switching of the reverse 

transcriptase between RNA genomes during minus (-) strand DNA synthesis (Preston and 

Dougherty, 1996; Temin, 1993; Wain-Hobson, 1992), de novo infection by this 

heterodiploid virus yields a recombinant retroviral DNA sequence. HIV-1 can recombine 

not only within subtypes (intra-subtype recombination), but also between subtypes (inter-

subtype recombination) and groups (inter-group recombination) (Morris et al., 1999; 

Peeters, 2000; Takehisa et al., 1999).   

 In general, circulating recombinant forms (CRFs) are recombinants which are 

comprised of two different subtypes (Table 1). However, some CRFs are composed of 

more than two different subtypes, so called complex CRF (CRFcpx) (Table 1). These 

recombinants may occur due to recombination events between CRFs and other pure 

subtypes (Table 1). CRFs are responsible for about 10-20% of all new infections 

(Robertson et al., 2000; Peeters and Sharp, 2000). The most dominant forms in the 

epidemic are the CRF01_AE, CRF02_AG, CRF07, 08_BC and CRF12_BF viruses found 

in Asia, West Africa, China and South America, respectively (Table 1). 

 

 

Table 1. Characteristics and geographical distribution of circulating recombinant forms 

(CRFs) (adapted from Kuiken et al., 2009; Tebit et al., 2007). 

Name Reference strain Subtypes Distribution Fitness Identified 
sequencesa 

CRF01_AE CM240  A, E Thailand, central Africa group M-like 6332 
CRF02_AG IbNG  A, G West and central Africa AG>A=G 3769 
CRF03_AB Kal153  A, B Eastern Europe unknown 149 
CRF04_cpx 94CY032  A, G, H, K, U Cyprus, Greece unknown 22 
CRF05_DF VI1310  D, F Belgium unknown 29 
CRF06_cpx BFP90  A, G, J, K West Africa unknown 845 
CRF07_BC CN54  B', C China, Taiwan unknown 136 
CRF08_BC GX-6F  B', C China unknown 187 
CRF09_cpx 96GH2911  CRF02, A, U West and central Africa unknown 39 
CRF10_CD TZBF061  C, D East Africa unknown 202 
CRF11_cpx GR17  A, CRF01, G, J Central Africa unknown 529 
CRF12_BF ARMA159  B, F South America F>B=BF b 348 
CRF13_cpx 96CM-1849  A, CRF01, G, J, U Central Africa unknown 78 
CRF14_BG X397  B, G Europe, Asia unknown 90 
CRF15_01B 99TH.MU2079  CRF01, B Thailand unknown 18 
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Table 1. Characteristics and geographical distribution of circulating recombinant forms 

(CRFs) (adapted from Kuiken et al., 2009; Tebit et al., 2007) (continued) 

 
a = global estimate based on information from the HIV database and published data; b = preliminary results, 
analysis in progress; c = all BF-like viruses combined, NA= data not available; pending = sequences is still 
to be determined 
 

 

1.3 Routes of HIV-1 transmission 
 HIV-1 can be transmitted by both homosexual and heterosexual contact with 

infected partners (Clumeck et al., 1985; Kingsley et al., 1989). HIV-1 can be isolated 

from both semen and female genital secretions (Ho et al., 1984; Wofsy et al., 1986). 

Name Reference strain Subtypes Distribution Fitness Identified 
sequencesa 

CRF16_A2D KISII5009  A2, D Kenya, Korea, 
Argentina unknown 6 

CRF17_BF ARMA038 B, F South America F>B=BF b 7 
CRF18_cpx CU76 A1, F, G, H, K, U Cuba, central Africa unknown 36 
CRF19_cpx CU7 A1, D, G Cuba unknown 10 
CRF20_BG CB228 B, G Cuba unknown 5 
CRF21_A2D 99KE_KER2003 A2, D Kenya unknown 2 
CRF22_01A1 CM53122 CRF01, A1 Cameroon unknown 3 
CRF23_BG CB118 B, G Cuba unknown 2 
CRF24_BG CB378 B, G Cuba unknown 3 
CRF25_cpx 02CM_1918LE A, G, U Cameroon unknown 2 
CRF26_AU 02CD_MBTB047 A, U Pending unknown NA 
CRF27_cpx 97CDKTB49 A, E, G, H, J, K D.R.C unknown 9 
CRF28_BF BREPM12609 B, F South America F>B=BF b 2 
CRF29_BF BREPM16704 B, F South America F>B=BF b 3 
CRF30_0206 00NE36 CRF02,CRF06 Niger unknown 1 
CRF31_BC 04BR142 B, C Brazil unknown 17 

CRF32_06A1 EE0369 CRF06, A1 Eastern Europe 
(Estonia) unknown 23 

CRF33_01B 05MYKL007_1 CRF01, B Asia (Malaysia) unknown 4 
CRF34_01B OUR2478P CRF01, B Thailand unknown 3 
CRF35_AD AF095 A, D Afghanistan unknown 4 
CRF36_cpx 
 

NYU830 
 

CRF01, CRF02, 
A, D 

Cameroon 
 

unknown 2 

CRF37_cpx 
 

NYU926 
 

CRF01, CRF02, A, 
G, U 

Cameroon 
 

unknown 2 

CRF38_BF1 UY05_4752 Pending Uruguay unknown 3 
CRF39_BF 03BRRJ103 B, F Brazil unknown 3 
CRF40_BF 04BRRJ115 B, F Brazil unknown 4 
CRF41_CD CO6650V1 C, D Pending unknown 3 
CRF42_BF luBF_13_05 B, F1 Luxembourg unknown 21 
CRF43_02G J11223 CRF02, G Saudi Arabia unknown 4 
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Transmission also occurs by transfusion of whole blood, cellular blood components, 

plasma and clotting from HIV-1 infected subjects to the recipients (Curran et al., 1984; 

Ward et al., 1987). HIV is transmitted among injecting drug users (IVDU) via 

contaminated needles. Risk factors of IVDU also include frequency of needle sharing, 

injections and prevalence of HIV infection in the area (Des Jarlais et al., 1989; 

Schwenbaum et al., 1989). 

      Transmission from an HIV infected mother to the newborn has been shown to occur 

across the placenta (Lapointe et al., 1985), at the time of delivery by exposure to 

maternal secretion or post-delivery via breast feeding (Van de Perre et al., 1992; Ziegler 

et al., 1985). Breast feeding has been identified as an important route for vertical 

transmission of HIV-1 (Dunn et al., 1992; John et al., 2001), particularly in sub-Saharan 

Africa where antiviral therapy and infant formula are not widely available (Nduati et al., 

2000). Transmission of HIV from mother-to-child through breast milk (BM) is 

associated with several factors such as maternal viral load, cell-free and cell-associated 

HIV in breast milk, low maternal CD4 cell count and mastitis (Coovadia et al., 2007; 

Rousseau et al., 2004). Transmission can take place at any point during lactation and the 

cumulative probability of acquisition of infection increases with duration of breast 

feeding (Miotti et al., 1999). 

 

 

1.4 Antiretroviral therapy and drug resistance mutations 
 There are currently 5 classes of drugs approved by the United States Food and 

Drug Administration (US FDA) for HIV-1 treatment (Table 2). Most of the antiretroviral 

drugs target viral enzymes such as the protease inhibitors (PIs), reverse transcriptase 

inhibitors (RTIs) consisting of nucleoside/nucleotide RT inhibitors (NRTIs) and non-

nucleoside RT inhibitors (NNRTIs), and integrase inhibitor (INI). Two entry-inhibitors, 

enfuvirtide and maraviroc are also available for HIV-1 therapy. 
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 Table 2. Antiretroviral drugs for HIV-1 treatment  
 

Class Drugs 

NRTIs Abacavir (ABC) 

 Didanosine (ddI) 

 Emtricitabine (FTC) 

 Lamivudine (3TC) 

 Stavudine (d4T) 

 Tenofovir (TDF) 

 Zidovudine (ZDV,AZT) 

NNRTIs Efavirenz (EFV) 

 Etravirinea (ETR) 

 Nevirapine (NVP) 

PIs Atazanavirb (ATV) 

 Darunavirb (DRV) 

 Fosamprenavirb (FPV) 

 Indinavirb (IDV) 

 Lopinavirb (LPV) 

 Nelfinavir (NFV) 

 Saquinavirb (SQV) 

 Tipranavirb (TPV) 

INI Raltegravir (RAL) 

Entry inhibitors Enfuvirtide (T-20) 

Maraviroc (MVC) 
 
a = ETR shows activity against HIV strains that are resistant to previously approved NNRTIs. 
b = PIs are currently used in combination with Ritronavir (RTV) which acts as a pharmacologic booster. 
 

 

HIV-1 mutations occur due to the rapid turnover and high error rate of reverse 

transcriptase which lacks 3’- 5’ exonuclease proof reading activity (Preston et al., 1988). 

These mutations facilitate HIV-1 to escape from the immune system (Ho et al., 1995; 

Piatak et al., 1993) and also facilitate the escape from antiretroviral drug pressure 

resulting in the emergence of drug resistant viruses which account for a large portion of 

treatment failures (Coffin, 1996).  

In general, primary or major mutations decrease drug susceptibility by themselves, 

whereas secondary or minor mutations reduce drug susceptibility in combination with 
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primary mutations or improve the replicative fitness of virus isolates with primary 

mutations. 

 

 1.4.1 Protease inhibitors (PIs)  
 PIs bind to the active site of the viral protease enzyme and prevent the processing 

of viral proteins into functional forms. In this way, the new virions are unable to mature 

or become infectious. Mutations in the protease substrate cleft cause resistance by 

reducing the binding affinity between inhibitor and protease enzyme. Mutations 

elsewhere in the enzyme either cause resistance by altering enzyme catalysis, dimer 

stability, re-shaping the active site or compensate for the decreased kinetics of enzyme 

(Barbour et al., 2002; Erickson et al., 1999; Muzammil et al., 2003). 

       
Fig. 4 Mechanism of action of protease inhibitors. Protease inhibitors (indicated by dash gray arrow) 
bind to protease enzyme (indicated by solid black arrow) and prevent the polyprotein clevage (indicated by 
solid gray arrow). Adaped from Richman, 2001.  
 

 

 1.4.2 Nucleoside/nucleotide reverse transcriptase inhibitors 

 (NRTIs) 
 NRTIs have a similar molecular structure to the natural building blocks, dNTP. 

Both nucleoside and nucleotide analogs are prodrugs that must be phosphorylated by host 

cellular enzymes to become the active form. Phosphorylated NRTIs compete with natural 

dNTP for incorporation into a newly synthesized DNA strand, therefore they terminate 

the ongoing viral DNA synthesis (Richman, 2001; Shafer, 2002) (Fig. 5A). There are two 

biochemical mechanisms of NRTI drug resistance. The first mechanism is mediated by 
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mutations that allow the reverse transcriptase enzyme to distinguish between NRTIs and 

dNTPs during polymerization, thereby preventing the incorporation of NRTI to the DNA 

chain (Huang et al., 1998; Sarafianos et al., 1999). The second mechanism is mediated by 

mutations that promote the hydrolytic removal of the NRTI and permit DNA elongation 

(Arion et al., 2000; Mayer et al., 2003). 

 

 1.4.3 Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 
 NNRTIs are noncompetitive inhibitors which interact with an allosteric non-

substrate binding site of HIV-1 reverse transcriptase (De Clercq, 2002; Hsiou et al., 

2001). This interaction affects the activity of reverse transcriptase by restricted enzyme 

mobility and function (Richman, 2001) (Fig. 5B). NNRTIs do not require metabolic 

activation like NRTIs resulting as a high potency drug. However, NNRTI resistance 

usually emerges rapidly. A single mutation in the NNRTIs binding pocket can result in 

high-level resistance that can also confer cross-resistance to other drugs in the NNRTI-

group (Havlir et al., 1996; Jackson et al., 2000). 
 

                 
 
Fig. 5 Mechanism of action of reverse transcriptase inhibitors. (A) NRTI is incorporated into viral 
DNA and terminates viral DNA synthesis. (B) NNRTI binds to RT enzyme and inhibits RT enzyme 
activity. Adapted from Richman, 2001. 

 

 

A. 

B. 
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1.4.4 Integrase inhibitor (INI) 
 The HIV-1 integrase enzyme is responsible for the integration of viral DNA into 

the host cell genome. Integrase possesses two major catalytic activities: an 

endonucleolytic cleavage at each 3'-OH extremity of the viral genome, named 3'-

processing and a strand transfer reaction leading to the insertion of the processed viral 

DNA into the target DNA by a one-step trans-esterification (Ellison et al., 1990; Miller et 

al., 1997). Raltegravir is the first approved integrase inhibitor for clinical use. This 

inhibitor binds to integrase- viral DNA complex and thereby selectively blocks the strand 

transfer step (Delelis et al., 2008). However, resistance mutations to raltegravir have been 

reported. These mutations affect function of intergrase by altered both 3’ processing and 

strand transfer activities (Malet et al., 2008). 

 

1.4.5 Entry inhibitors 
 The first FDA approved entry inhibitor, enfuvirtide (T-20) is a 36–amino acid 

peptide derived from the heptad repeat 2 (HR2) region of the gp41 transmembrane 

domain of HIV-1 subtype B. T-20 is predicted to bind to a highly conserved hydrophobic 

groove located on the trimeric coiled coils of HR1, thereby preventing the formation of 

the six-helix bundle and inhibiting membrane fusion (Fig. 6). The amino acid position 36-

43 (GIVQQQNN) of heptad repeat 1 (HR1) primarily determines T-20 responsiveness. 

Therefore, changes within the GIV motif are sufficient to cause drug resistance to T-20 

(Reeves et al., 2005).  

                   
Fig. 6 Mechanisms of action of fusion inhibitor. After gp120 binds to a CD4+ cell, the transmembrane 
(TM) domain undergoes a conformational change that includes unfolding which results in the 'spring-
loaded' formation of coiled-coil helices in preparation for viral entry. Enfuvirtide (T-20) binds to the TM 
domain and prevents fusion to the host cell and viral entry. Adapted from Pomerantz & Horn, 2003. 

HR-1 

HR-2 
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 The second entry inhibitor, maraviroc, is a co-receptor antagonist which blocks 

entry of CCR5 (R5) tropic viruses to target cells (De Clercq, 2007). Viruses that can use 

both CCR5 and CXCR4 (termed dual/mixed or D/M) or only CXCR4 (X4) do not 

respond to maraviroc treatment (Westby et al., 2006; Wilkin et al., 2007). A virologic 

failure with maraviroc therapy is frequently associated with outgrowth of X4 virus that 

preexisted as a minor population below the level of assay detection (Johnson et al., 2008). 

   

1.4.6 HIV-1 treatment strategies and drug resistance mutations 
Current treatment strategies for HIV-1 infected individuals include the use of 

combination antiretroviral drug therapy also termed highly active antiretroviral therapy or 

HAART. The use of antiviral drugs has been shown to suppress HIV-1 replication and 

lead to a significant decrease in disease progression with improved clinical status (Pilcher 

et al., 1999). However, these combination strategies do not completely eliminate viruses 

and the viruses may rebound when the antiviral treatment is interrupted (Steingrover et 

al., 2008). One limitation of complex therapeutic regimens is that they may induce 

emergence of more complex resistance patterns. Several studies performed in both 

developed and developing worlds have reported the presence of resistance mutations 

among treatment-naïve HIV patients, suggesting transmission of resistant viruses (Little 

et al., 2002; Oette et al., 2006). Approximately 30 million people worldwide are infected 

with HIV and 68% of these infected people are living in sub-Sahara Africa 

(UNAIDS/WHO, 2008). The availability of HAART for HIV-infected people in sub-

Sahara Africa has also rapidly increased (Koening et al., 2006). Several studies reported 

the emergence of drug resistance in individuals undergoing treatment in African countries 

(Kantor et al., 2002; Petrella et al., 2001; Richard et al, 2004). Due to the extensive use of 

single-dose nevirapine (SD-NVP) to prevent mother-to-child transmission (PMTCT) in 

sub-Sahara Africa, NVP- associated mutations have been found most commonly (Arrive 

et al., 2007). 

 

 

1.5 Effects of single dose nevirapine (SD-NVP) and viral 

compartmentalization 
 Single dose Nevirapine (SD-NVP) given to women during labor and to infants 

within 72 hours of birth has been shown to be an effective and low cost intervention for 
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the reduction of mother-to-child transmission (MTCT) in resource limited countries 

(Jackson et al., 2003). However, administering SD-NVP can lead to rapid selection of 

resistant variants. The most common mutations among them are the K103N and/or 

Y181C mutations in reverse transcriptase which confer cross-resistance to other approved 

antiviral drugs in the NNRTI group (Deeks 2001; Richman et al., 1994). The K103N 

mutation appears to have little effect on the replication capacity of HIV-1 allowing this 

variant to persist long after NVP therapy is stopped (Lecossier et al., 2005; Palmer et al., 

2006a). Several studies have demonstrated that the frequency of NVP-resistance 

mutations decreases over time, but they can persist for more than 1 year in plasma after 

the exposure to SD-NVP (Flys et al., 2005; Palmer et al., 2006b). NVP resistant variants 

have been also detected in the breast milk of some SD-NVP exposed women (Kassaye et 

al., 2007; Lee et al., 2005) and transmission of NVP-resistant variants via breast feeding 

has been reported (Eshleman et al., 2001).  

Viral compartmentalization occurs due to constraints on viral entry and 

replication, target cell differences and differing immune responses in distinct anatomical 

sites that result in the independent selection of subsets of the virus population for 

continuous replication (Henderson et al., 2004). Moreover, the emergence of drug 

resistant strains may vary in diverse anatomical compartments and this variation can be 

attributed to the different pharmacokinetic properties of a particular drug (Kepler and 

Perelson, 1998; Wong et al., 1997). Several compartments such as cerebrospinal fluid 

(Lafeuillade et al., 2002), genital tract secretions (Overbaugh et al., 1996) and lymphoid 

tissue (Omrani and Pillay, 2000) have been shown to be poorly accessible to different 

antiretroviral drugs. 

In recent years, different anatomical compartments have been analyzed for the 

evolution of HIV-1 as well as for the emergence of drug resistance variants. Different 

compositions of viruses have been recovered from plasma and peripheral blood 

mononuclear cells (PBMC) during HIV-1 infection (Livingstone et al., 1996). Several 

studies have reported compartmentalization of HIV-1 between PBMC and mucosal 

compartment (Poss et al., 1995), PBMC and renal epithelial cells (Marras et al., 2002), 

blood and different anatomical compartments such as lung (Singh et al., 1999), brain, 

spleen and lymph node (Wong et al., 1997) and genital tract (Diem et al., 2008; Kemal et 

al., 2003) as well as body fluid (Delwart et al., 1998; Ellerbrock et al., 2001; Overbaugh 

et al., 1996) within an individual. However, information on the viral population and NVP 

associated drug resistance mutations in breast milk is still unclear (Becquart et al., 2002, 
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2007; Henderson et al., 2004; Lee et al., 2005). Such knowledge is important especially in 

Africa where breastfeeding is still highly practiced even by HIV infected mothers. 

 

 

1.6 Drug resistance assays 
 As the detection of resistance becomes an integral part of patient management, 

resistance tests have been recommended to clinicians to select the optimal drug regimens 

after the first or multiple treatment failures (Hirsch et al., 2003). Moreover, because of the 

emergence of drug resistance variants, resistance tests are also recommended in primary 

HIV infection (Little et al., 2002). Evaluation of drug resistance can be monitored by 

either genotypic or phenotypic assays.  

 

 1.6.1 Genotypic assays  
Genotypic assays are mostly based on DNA sequencing which can be performed 

by different methods. The dideoxynucleotide (Sanger) sequencing or chain termination 

method is carried out by using dye labeled dideoxynucleotides (ddNTPs) which are 

incorporated into the PCR product and lead to termination of elongation. The lengths of 

sequencing products are determined by the fluorescence spectra of the dye-label on an 

automated sequencing machine (Schuurman et al., 1999) (Fig. 7A). The Sanger 

sequencing method is widely used to detect drug resistance mutations from patient-

derived PCR products, so called direct PCR sequencing. However, direct PCR sequencing 

is unable to detect low proportions of drug-resistance variants in the heterogeneous virus 

population existing in a patient’s plasma sample (Palmer et al. 2005).  

Pyrosequencing is a DNA sequencing technique that is based on the detection of 

released pyrophosphate (PPi) during DNA synthesis (Ronagi et al., 1998). The nucleotide 

composition of a growing DNA-strand is determined by an enzyme cascade system 

(O’Meara et al., 2001; Ronaghi, 2001) (Fig. 7B). The ultra-deep pyrosequencing could 

detect minority variant harbouring drug-resistance mutations in antiretroviral-experienced 

patients in whom mutations were no longer detectable by standard direct PCR sequencing 

(Le et al., 2009; Wang et al., 2007). 

The other approaches to analyze viral genotype are based on the hybridization 

technique such as line probe assay (LiPA) (Stuyver et al., 1997), oligonucleotide ligation 
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assays (OLAs) (Beck et al., 2002; Troyer et al., 2008), and the high density 

oligonucleotide arrays (GeneChip) (Kozal et al., 1996; Wilson et al., 2000). 

 In general, genotypic assays are convenient to perform and relatively rapid but 

provide indirect evidence of resistance. Furthermore, it is difficult to interpret the 

sequences with unusual amino acid substitutions (Paolucci et al., 2003) or complex 

mutation patterns (Ross et al., 2001). 

 

Real time monitoring

DNA:sequence:

B.A.

DNA:sequence:

 
 
Fig. 7 Schematic representation of the DNA sequencing techniques. (A) Chain termination method 
(Sanger sequencing). The DNA template is added to a mixture containing dNTPs, a primer, a DNA 
polymerase and a limited amount of four dideoxynucleotides (ddATP, ddGTP, ddCTP, ddTTP) labelled 
with different fluorescence dyes that emits different colors upon laser excitation (above). An 
electropherogram showing the nucleotide composition of a particular sequence as determined by 
fluorescence (below). (B) Pyrosequencing method. The reaction mixture consists of single stranded DNA 
with an annealed primer and four enzymes. The four different nucleotides are added stepwise and the 
cascade starts with a nucleic acid polymerization reaction in which pyrophospate (PPi) is released as a 
result of nucleotide incorporation by DNA polymerase. The released PPi is subsequently converted to ATP 
by ATP sulfurylase which provides the energy to luciferase to oxidize luciferin and generate detectable 
light. The exceeded nucleotides are continuously degraded by enzyme apyrase allowing addition of 
subsequent nucleotide. dXTP indicates one of the four nucleotides (above). The pyrogram showing the 
nucleotide sequence in a specific section of DNA (below). This figure is adapted from O’Meara et al., 2001; 
Ronaghi, 2001 and http://clinical-virology.org/ 
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1.6.2 Phenotypic assays  
These assays determine the in vitro ability of an HIV-1 isolate to replicate in the 

presence of antiviral drugs and thus provide a direct quantitative resistance measurement. 

Previously, phenotypic drug susceptibility was performed by culturing viruses derived 

from patients’ peripheral blood mononuclear cells (PBMCs) and measuring the effects of 

different concentrations of a drug on viral replication in cell culture which was both labor 

intensive and time consuming (Japour et al., 1993). The novel methods based on the 

development of recombinant viruses have developed and these assays have been termed 

Recombinant Viral Assays (Kellam and Larder, 1994). In general, recombinant viruses 

are generated by amplification of patient derived protease-reverse transcriptase (PR-RT) 

sequences which are then inserted into a PR-RT-deleted provirus backbone, generally 

derived from HIV subtype B strains either by homologous recombination (Hertogs et al., 

1998) or direct cloning (Petropoulos et al., 2000; Klimkait, 2002; Paolucci et al., 2004; 

Garcia-Perez et al., 2007). The recombinant viruses therefore retain the drug 

susceptibility of the PR and RT of the patient sample. 

 

 

1.7 Global HIV distribution 
 HIV-1 subtype C comprises about 52% of all HIV infections in the world (Ghys et 

al., 2003). The highest prevalence of HIV-1 is found in Southern Africa which also has 

the lowest HIV-1 diversity due to the dominance of subtype C (Tebit et al., 2007) (Fig. 8). 

In East Africa (Fig. 8), subtypes A, D and C are the predominant strains (Zhu et al., 

1998). West and Central Africa has been described as an “HIV diversity hotspot”, 

because it carries a mixture of nearly all HIV strains. However, CRF02_AG is 

responsible for the majority of the HIV-1 infection in this part of Africa (Montavon et al., 

2000; Tebit et al., 2002) (Fig. 8). 

 Asia and Eastern Europe (Fig. 8) are currently observing a dynamic HIV 

epidemic. Although subtype B was the first strain introduced into many Asian countries, 

it has not been spread widely in comparison to other subtypes. In China, subtype C and B 

as well as the CRF07_BC and CRF08_BC are highly prevalent. Subtype C is the most 

common subtype found in India (Shankarappa et al., 2001) and CRF01_AE in South-East 

Asia (Carr et al., 1996) (Fig. 8). 
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 In Eastern Europe, sub-subtype A1 is dominant, but subtype B and CRF03_AB 

also co-circulate (Liitsola et al., 1998). In North America, Western Europe and Australia, 

subtype B is the most prevalent form of HIV-1 (Fig. 8). However, there has been a rapid 

increase in non-B subtypes and CRFs in Western Europe (Hemelaar et al., 2004). South 

America has HIV epidemics with considerable subtype and CRF diversity including 

subtypes B, C, F and BF recombinant (Tebit et al., 2007) (Fig. 8).  

 
 

               
 
 
Fig.  8 Global distribution of HIV-1 subtypes and recombinants. Adapted from http://iavireport.org 
 

 

1.8 Brief background of HIV in Burkina Faso 
 Burkina Faso is a sub-Saharan country in West Africa with little information 

about HIV. HIV seroprevalence rates of 5-7% have been reported for the urban regions of 

this country (Meda et al., 2001; Simpore et al., 2004). HIV prevalence in Burkina Faso 

was estimated at 2% in 2005 (UNAIDS/WHO, 2007). An HIV prevalence of 3.6% has 

been reported for a rural area (Collenberg et al., 2006).  The first study on HIV genetic 

variability in this country by Ouedraogo-Traore et al., (2003) indicated CRF06_cpx as the 

dominant HIV strain in Ouagadougou, the capital city. However, recently we reported 

that the co-circulating dominant viruses in rural areas are CRF02_AG and CRF06.cpx 

(Tebit et al., 2006).  
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 The recent introduction of antiretroviral therapy in Burkina Faso necessitated two 

different types of studies. The first was to define the prevalence and resistance patterns in 

exposed patients failing therapy in Ouagadougou, Burkina Faso. NRTIs and NNRTIs 

constitute the first line of therapy in sub-Saharan Africa as well as in Burkina Faso. 

Accordingly, the prevalence of resistance-associated mutations in subjects failing 

HAART was 85% for NRTIs, 76% for NNRTIs, and 40% for PIs, corresponding to their 

respective usage (Tebit et al., 2008). The second study was aimed at screening drug naïve 

patients for the presence of drug resistance mutations. A high prevalence of NRTI and 

NNRTI resistance mutations of 10.6% and 6.1% respectively was observed (Tebit et al., 

2009). A similar prevalence of NRTIs (6%) and NNRTIs (11%) resistance mutations was 

observed among 17 naïve patients from another study in Ouagadougo, Burkina Faso 

(Nadembega et al., 2006). Drug resistance mutations occurred at similar frequencies 

among CRF02_AG (12.8%) and CRF06_cpx (10.8%) infected naïve subjects (Tebit et al., 

2009). 

 

 
 
Fig. 9 (A) Location of Burkina Faso in the Africa continent. (B) An enlarged view of Burkina Faso and 
its neighboring countries. The sampling areas (Nouna and Dedougou) are underlined. Adapted from 
http://100prozent-fuer-afrika.com and http://geography-site.co.uk 
 

 

1.9 Objectives of this study  
 Burkina Faso is one of the African countries where the current epidemic of HIV- 1 

is dominated by non-subtype B, particularly CRF02_AG and more than 50% of HIV-1 

B. A. 

Burkina Faso 
Nouna* 

Dedougou* 
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infected patients are women (UNAIDS/WHO, 2008). Since, most of HIV-1 infected 

mothers in this country still breast feed their infants and the extensively used of SD-NVP 

to prevent mother to child transmission, drug resistance variants might be possibly 

transmitted from infected mothers to their infants via breast feeding. Moreover, the 

availability of HAART for HIV-infected patients in Burkina Faso is becoming more 

accessible which may increase the emergence of drug resistant viruses. Therefore, the 

knowledge about the molecular genetics and phenotypic characteristics of HIV-1 

CRF02_AG from infected drug naïve individuals in Burkina Faso would provide 

important information prior to the introduction of large scale antiretroviral therapy or new 

classes of antiretroviral drugs. Moreover, development of a drug resistance assay would 

provide useful information for non-subtype B HIV-1 infected people in Africa where the 

number of individuals receiving antiretroviral therapy is increasing. 

 The overall aim of this study was to determine the genotypic and phenotypic 

characteristics of HIV-1 CRF02_AG strains from HIV-1 infected patients in Burkina 

Faso. The specific aims were: 

 i) To determine the polymorphisms and drug resistance mutations to the entry 

inhibitor enfuvirtide (T-20) among drug naïve subjects in rural Burkina Faso.  

 ii) To determine HIV resistance mutations in paired plasma and breast milk from 

HIV infected NVP-naïve and -exposed women by population sequencing and clonal 

analysis. Further, to analyze the diversity and evolution of HIV resistance using 

phylogenetic methods to compare the virus populations between plasma and breast milk 

from individual patients at both single and multiple time points. These analyses will 

establish whether HIV populations in plasma and breast milk in these women are 

compartmentalized.  

 iii) To investigate the phenotypic drug susceptibility of non-B subtypes based on a 

RVA using a similar genetic backbone like the viruses circulating in this region.  
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2. Materials and Methods 

2.1 Materials and instruments 

Material Manufacturer 
For biological methods  

Cell culture plate Orange Scientific, Belgium 

Dulbecco’s Modification of Eagle’s 
Minimum Essential Medium 
(DMEM) 

GIBCO® Invitrogen Cell Culture, Karlsruhe, Germany 

 

ELISA plates Maxisorb, Nunc, Wiesbaden, Germany 

Fetal calf serum (FCS) Biowest, Nuaillé, France 

Luciferase lysis buffer/substrate Steady-Glo®, #E2520, Promega, Mannheim Germany 

Luciferase plates Corning Costar #3912, 96 well plate, Fisher Scientific 

Roswell Park Memorial Institute 
1640 Medium (RPMI 1640) 

GIBCO® Invitrogen Cell Culture, Karlsruhe, Germany 

Trypsin 10x Trypsin/EDTA (0,5% / 0,2%), Biochrom AG, Berlin, 
Germany 

For molecular methods  

Agarose Agarose Serva, Heidelberg, Germany 

Cloning kit TOPO TA Cloning ® kit, Invitrogen, Karlsruhe, Germany 

DNA gel extraction kit Nucleospin® Extraction II, Macherey-Nagel, Düren, Germany 

Mutagenesis kit QuickChange II XL Site-Direct Mutagenesis Kit, Stratagene, La 
Jolla, CA. 

Plasmid purification kit QIAprep® Miniprep kit, QIAGEN, Hilden, Germany 

NucleoBond MaxiPrep Kit, Macherey-Nagel, Düren, Germany 

PCR amplification kit SuperScript™ III One-Step RT-PCR with Platinum® Taq DNA 
polymerase (RT-PCR), Invitrogen, Karlsruhe, Germany 

Expand High FidelityPlus PCR system (PCR for cloning), Roche, 
Mannheim, Germany 

PCR purification kit Qiaquick PCR purification kit (Qiagen, Hilden, Germany 

Nucleospin Extract II kit, Macherey-Nagel, Düren, Germany 

Restriction enzymes MBI Fermentas (St. Leon-Rot, Germany) 

New England BioLabs (Frankfurt a.M., Germany) 

Sequence analysis kit GenomeLab® Methods Development Kit, Beckman Coulter 

Ultrafiltration columns Vivaspin centrifugal concetrators (Vivaspin 6 and Vivaspin 20; 
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3 or 10 kDa), Sartorius AG, Göttingen, Germany 

viral DNA extraction kit DNeasy® Blood & Tissue kit, QIAGEN, Hilden, Germany 

Qiagen DNA extraction kit, QIAGEN, Hilden, Germany 

viral RNA extraction kit QIAmp® Viral RNA mini kit, QIAGEN, Hilden, Germany 

  

Instruments Manufacturer 

Centrifuges  

 

 

 

J2HC or J2HS with rotors JA-10, JA-17, JA-20, Beckman 
Coulter, Fullerton, CA, USA 

Eppendorf 5415D, Eppendorf Deutschland, Hamburg, Germany 

SIGMA 2K15, SIGMA Laborzentrifugen GmbH, Osterode am 
Harz, Germany 

Omnifuge 2.0 RS, Heraeus Sepatech 

DNA electrophoresis Mini-sub or wide mini-sub cell GT cell, Bio-Rad Laboratories 
GmbH, München, Germany 

ELISA reader spectrophotometric microplate reader, Dynatech, Enbrach, 
Switzerland 

Incubator Infors, Einsbach GmbH, Germany 

Luminescence reader Luminoskan Ascent, Thermo Labsystems, USA 

PCR thermocycler PTC-200 Peltier Thermalcycler, BioZyme, Oldendorf, Germany 

Sequencer machine CEQ-2000 sequencer, Beckman Coulter, CA, USA 

Spectrophotometer DU 640, Beckman Coulter, Fullerton, CA, USA 

Ultracentrifuge L8M or Optima XL-70, rotor SW-41 or SW-60 Ti, Beckman 
Coulter, Fullerton, CA, USA 

 
 

2.2 Media, buffers and reagents 

Name Concentrations  Recipe 
LB medium for bacteria culture 
 (1000 ml) 
 

1% peptone 
0.5% yeast extract 
171 mM NaCl 

10 g tryptone 
5 g yeast extract 
5 g NaCl 
0.5 ml 10 N NaOH 
pH 7.0; autoclaved 
 

LB agar for bacteria culture 
 

1.5% agar in LB medium 1000 ml  autoclaved LB medium 
15 g agar 
pour in sterile 10 cm dishes; store at 
4oC 

   
LB-ampicillin or kanamycin agar 
for bacteria culture 
 

100 μg/ml ampicillin or 
kanamycin 

1000 ml  autoclaved LB medium 
15 g agar  
100 mg ampicillin or kanamycin  
pour in sterile 10 cm dishes; store at 
4oC 

   
50x TAE buffer 
 (1000 ml) 

2 M Tris-acetate 
50 mM EDTA 

242 g Tris 
57 ml acetic acid 
100 ml 0.5 M EDTA pH 8.0 
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10x DNA loading buffer 
 (10 ml) 

100% glycerol 
2.5% bromphenol blue 
2.5% xylene cyanol 

10 ml glycerol 
0.25 g bromphenol blue 
0.25 g xylene cyanol 
 
 

10x Phosphate buffered saline 
(PBS) 
(1000 ml) 

1.37 M NaCl 
27 mM KCl 
80 mM Na2HPO4 
18 mM KH2PO4 

80 g NaCl 
2 g KCl 
14.4 g Na2HPO4.2H2O 
2.4 g KH2PO4 

   
10x PBST  
(1000 ml) 

10x PBS 
0.5% Tween 

1000 ml PBS 
5 ml Tween 
 

   
2x HeBS transfection buffer 
(1000 ml) 

280 mM NaCl 
50 mM HEPES 
1.5 mM Na2HPO4 
pH 7.09-7.12 
 

16.4 g NaCl 
11.9 g HEPES 
0.267 g Na2HPO4.2H2O 
filter sterilize through 0.45 µm pore 
size filters; store at 4°C 
 

2x CaCl2 transfection buffer 
(1000 ml) 
 

250 mM CaCl2 36.8 g CaCl2‧2H2O; 
filter sterilize through 0.45 µm pore 
size filters; store at 4°C 
 

2.3 Antiretroviral drugs 

The following reagents were obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID.  

PIs: Lopinavir (LPV), Indinavir (IDV), Ritronavir (RTV), Tipranavir (TPV), 

Darunavir (DRV). 

NRTIs:  Zidovudine (AZT, ZDV), Dideoxyinosine (ddI), Stavudine (d4T), 

Lamivudine (3TC), Emtricitabine (FTC), Tenofovir (TDF).  

NNRTIs : Nevirapine (NVP), Efavirenz (EFV), Etravirine (ETR). 

 

2.4 Methods of biology  

 2.4.1 Ethical clearance for the study 
 In order to collect blood samples from HIV-infected individuals, an ethical 

clearance was obtained from the University of Heidelberg Ethics Committee, the Nouna 

Ethics Committee, and the Ministry of Health in Burkina Faso. 
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 2.4.2 Sample collection  

 Three distinct sample sets for three different experiments were collected in this 

study. For screening of T-20 resistance related mutations, whole blood samples were 

obtained from HIV-positive pregnant women enrolled in the prevention of mother-to-

child transmission (PMTCT) program at the Nouna District Hospital, Nouna as well as 

from HIV-positive individuals presenting at the Dedougou Regional Hospital (DRH) in 

Dedougou, Burkina Faso between July 2003 and October 2004. At the time of sampling, 

all subjects were reported to be drug naïve (Tebit et al., 2006). The samples derived from 

HAART-exposed patients attending the University Teaching Hospital, Ouagadougou, 

Burkina Faso were used for phenotypic drug susceptibility assays. Samples for analyzing 

NVP resistance and compartmentalization consisted of plasma, breast milk and breast 

milk cells and were collected from NVP-exposed and –naïve women attending the 

PMTCT site in Nouna, Burkina Faso at different post delivery stages from 2004-2008.  

 The whole blood samples were collected in vacutainer tubes containing anti-

coagulants (EDTA). Afterwards, plasma and buffy coat were separated from the whole 

blood by centrifugation at 4,000 rpm for 15 minutes. Fifteen milliliters of breast milk was 

collected from lactating women in Falcon tubes and centrifuged at 1,500 rpm for 10 

minutes at 4oC to obtain the cellular, milk whey and lipid fractions. The samples were 

stored in aliquots at -80o C and shipped to Heidelberg later on dry ice. 

 

 2.4.3 CD4 count and viral load determination 
 The CD4 cell count was determined for whole blood up to 6 hours after collection 

using a FACScount fluorescence cytometer (Becton Dickinson, San Jose, CA) in Nouna, 

Burkina Faso. Plasma viral load was determined at the Virology Unit of the Center 

Hospital Universitaire Yalgado Ouedraogo (CHUYO) in Ouagadougou by using the 

Abbott RealTime HIV-1 assay with automated m2000 System (Abbott Molecular 

Diagnostics). Breast milk viral load was determined at the Department of Virology, 

University of Heidelberg after shipment by using the Amplicor HIV-1 monitor assay 

(Roche, Mannheim, Germany).  

 

 2.4.4 Cell culture 
 Two adherent cell lines (293T and TZM) and one suspension cell line (C8166) 

were used for phenotypic drug susceptibility assays in this study. 
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 293T is a highly transfectable human embryonic kidney cell line which was used 

for transfection experiments (Charneau et al., 1992). TZM (JC53BL) cells are derived 

from the HeLaP4 cell line. This cell type expresses CD4, CCR5 on their cell surface and 

carries genes for β-galactosidase and firefly luciferase under the control of the HIV-1 

LTR (Wei et al., 2002). This allows the measurent of HIV-1 infection by β-galactosidase 

or luciferase assays. The C8166 cell-line is a HTLV-I transformed human leukemia cell 

line highly susceptible to HIV-1 infection which forms syncytia after being infected 

(Salahuddin et al., 1983). 

 Adherent cells were maintained in DMEM (Dulbecco’s modified Eagle medium) 

high glucose (Gibco) containing 10% FCS (Biowest), 100 U/ml penicillin, 100 µg/ml 

streptomycin and 20 mM HEPES, pH 7.4. Cells were passaged after detachment with 

0.05% trypsin in PBS and then further cultivated in fresh medium. Suspension cells were 

cultivated in RPMI 1640 including the same supplements. All cells were incubated at 

37°C and 5% CO2 in a humid atmosphere. 

 

 2.4.5 Transfection of adherent cells with plasmid DNA 
Transfection was performed by using the standard calcium phosphate precipitation 

method (Chen and Okayama, 1987). 1 x 106 293T cells were seeded in a 10 cm culture 

dish and incubated overnight at 37°C, 5% CO2. On the next day, 10 µg of the plasmid 

DNA was mixed with 500 μl of 0.25 M CaCl2 and the same volume of 2x HeBS buffer 

(pH 7.09-7.12) was added during vortexing. After 15 minutes incubation at room 

temperature, this mixture was introduced drop-wise onto cells with gently swirling. 

Medium was changed about 6 or 16 hours post-transfection depending on the experiment. 

Virus particles in culture supernatant were harvested 48 hours after transfection and 

clarified by centrifugation at 1500 rpm for 5 minutes. The virus stocks were aliquoted and 

then stored at -80oC. 

 

2.4.6 Virus infectivity and replication kinetics 
To determine the viral infectivity, 5 x 103 TZM cells were infected in triplicate 

with the serial dilution of cleared viral supernatants in 96 well plates. TZM cells were 

lysed 48 hours after infection with the Steady-Glo® lysis buffer including luciferase 

substrate (#E2520; Promega, Mannheim Germany). The luciferase activity was measured 

with the Luminoskan Ascent luminometer (Thermo Labsystems). 
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To determine the replication kinetics of viruses, 5 x 105 C8166 cells were infected 

overnight with 50 ng of HIV-1 p24 antigen from the cleared viral supernatants. On the 

next day, cells were washed twice with PBS, re-suspended in 2 ml RPMI and maintained 

for 2 weeks. Culture supernatants were collected every 2-3 days for quantitative p24 

ELISA (described below in section 2.4.8) and an equal volume of fresh RPMI medium 

was added to the cultures (Garcia-Perez et al., 2008). 
 

 2.4.7 Drug susceptibility assays 
Drug susceptibility assay is adapted from Garcia-Perez et al. (2007). To determine 

the susceptibility to protease inhibitors (PIs), 293T cells were trypsinized at 

approximately 16 hours post-transfection and 5 x 104 cells were distributed into 48 well 

plates in the presence of serial PI dilutions in 500 μl total volumes. Viral stocks were 

harvested 48 hours after transfection and were used to infect 5 x 103 TZM cells in 

triplicate in 96 well plates in the absence of PIs.  

To measure the susceptibility to reverse transcriptase inhibitors (RTIs), viral 

stocks generated in the absence of drug were harvested 48 hours after transfection and 

were used to infect 5 x 103 TZM cells in triplicate using 96 well plates in the presence of 

increasing concentration of RTIs. 

Replication capacity of viruses in the presence or absence of antiviral drugs was 

monitored by measuring luciferase expression in infected TZM cells with the same 

procedure as described in section 2.4.6.  

 

2.4.8 Enzyme-linked immunosorbent assay (ELISA)  
 This ELISA is modified from Konvalinka et al. (1995). Ninety six well plates 

(Maxisorb, Nunc, Wiesbaden, Germany) were coated over night at room temperature in a 

moist chamber with 100 μl/well of monoclonal mouse-anti-CA antibody (183-H12-5C; 

diluted 1:1000 in PBS). Plates were washed and blocked with 10% FCS/PBS which 

prevents unspecific binding for 2 hours at 37°C. After washing, 100 μl of different diluted 

culture supernatants pre-treated with 0.1%Triton X-100 as well as dilution series of 

purified CA protein (6.25 – 0.1 ng/ml) were added to the plate and incubated overnight in 

a moist chamber at room temperature. On the following day, these plates were washed 

and incubated with rabbit-anti-CA antiserum (1:1000 in PBST/10% FCS) and 

subsequently with peroxidase-coupled goat-anti-rabbit antibody (1:2000 in PBST/10% 
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FCS) for 1 hour at 37°C each. The amount of bound antibody corresponding to p24 was 

revealed by adding the chromogenic enzyme substrate tetramethyl benzidine (TMB) for 5 

minutes. The reaction was stopped by adding sulfuric acid and the colored reaction 

product was quantified by measuring absorbance at 450 nm with a spectrophotometric 

microplate reader (Dynatech, Enbrach, Switzerland). 

 

 

2.5 Methods of molecular biology 
 2.5.1 Nucleic acid extraction from patient samples 
 Viral DNA was extracted from buffy coats and cellular fractions of breast milk by 

using the Qiagen DNA extraction kit (QAIGEN, Hilden, Germany) and DNeasy® Blood 

& Tissue kit (Qiagen, Hilden, Germany), respectively, following the manufacturer’s 

recommendations. Before the extraction, the breast milk cells were washed twice with 

PBS. 

 Viral RNA was extracted from 140 µl of plasma and 280 µl of breast milk using 

QIAmp® Viral RNA mini kit (QAIGEN, Hilden, Germany) according to the 

manufacturer’s instructions. If viral RNA from 280 μl of breast milk was not successfully 

extracted, the volume of breast milk was increased to 1 ml and centrifuged at 44,000 rpm 

at 4oC for 1 hour to precipitate the virus particles before the extraction procedure. 

 

 2.5.2 Polymerase Chain Reaction (PCR)  
 PCR allows the selective amplification of DNA sequences in presence of two 

specific oligonucleotide primers complementary to the 5’- and 3’- regions of the DNA 

molecule. All the primers used in this study are listed in Appendix 3. The amplification 

reagents and thermal cycling protocols used for PCR were chosen according to template 

and length of the fragment to be amplified (Appendix 4 and 5).  

 To obtain the PCR fragment from plasma sample, extracted RNA (section 2.5.1) 

was amplified with the SuperScript™ III One-Step RT-PCR with Platinum® Taq DNA 

polymerase (Invitrogen) as instructed by the manufacturer. For amplification of fragments 

less than 1 kb from DNA samples (section 2.5.1), PCR was performed with Taq 

polymerase, while long PCR fragments greater than 1 kb were generated with Expand 

High FidelityPlus PCR system (Roche, Mannheim, Germany) following the manufacturer’s 

instructions. 
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All PCR in this study were carried out in the PTC-200 Peltier Thermalcycler 

(BioZyme, Oldendorf, Germany). The PCR products were purified either with 

Nucleospin Extract II kit (Macherey-Nagel, Düren, Germany) or Qiaquick PCR 

purification kit (QAIGEN, Hilden, Germany). 
 

 2.5.3 Construction of CRF02_AG provirus backbone 
 To construct the CRF02_AG provirus plasmid backbone for phenotypic assay, the 

original pBD6-15 plasmid previously described in Tebit et al. (2003) was adapted to 

generate pBD6TB9 which was used for further modification as the parental plasmid. The 

initial step of plasmid modification was performed by knocking out an EcoRI restriction 

site at nucleotide (nt) position 4660 of the parental pBD6TB9 with primers listed in 

Appendix 3 by using the QuickChange II XL Site-Direct Mutagenesis Kit (Stratagene, La 

Jolla, CA), as instructed by the manufacturer.  

 A new EcoRI site was introduced at the beginning of the protease gene (nt 2242 of 

pBD6TB9) by PCR mutagenesis. In the first round PCR, the 5’ fragment (nt 1-2260 of 

pBD6TB9) and 3’ fragment (nt 2231-3555 of pBD6TB9) were amplified with Expand 

High FidelityPlus PCR system (Roche, Mannheim, Germany). In the second round, the 

purified 5’ fragments (2.2 kb) and 3’ fragments (1.3 kb) from first round PCR were used 

as the template. In this step, the 5’ and 3’ fragments were ligated via the overlapping 

region and generated the 3.5 kb final PCR products.  

 The constituents of the PCR reaction and the cycling conditions are listed in 

Appendix 4 and 5.  

 

2.5.4 Re-amplification of protease and reverse transcriptase (PR-

 RT) fragments for phenotypic assays 
 Determination of drug resistance mutations (genotypic test) was performed by 

amplifying the PR-RT region with the ViroSeq HIV-1 Genotyping System (Applied 

Biosystems) as recommended by manufacturer. This amplification step was performed by 

the diagnostic section, Department of Virology, Heidelberg University. PCR products 

from these analyses were kept at -20 oC and were re-amplified with Expand High 

FidelityPlus PCR system (Roche, Mannheim, Germany) to obtain the 1.3 kb of patient 

derived PR-RT coding sequences with the primers, reaction components and cycling 
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conditions listed in Appendix 3-5. The 1.3 kb PR-RT fragment from HIV-1 subtype B, 

pNL4-3 was also amplified by the same procedure. 

 

 2.5.5 Restriction digest and ligation 
 2.5.5.1 DNA cleavage with restriction enzymes 

 All enzymes and buffers for DNA cloning and restriction digest were from MBI 

Fermentas (St. Leon-Rot, Germany) or from New England BioLabs (Frankfurt a.M., 

Germany). For a control restriction digest, approximately 1-2 µg DNA was incubated 

with 10 U restriction enzyme in a volume of 20 µl at the recommended temperature. For 

further cloning purposes, 2-20 μg of plasmid or 30 µl purified PCR product was digested 

with 20 U of specific restriction enzyme in a volume of 50-100 µl. 
  

 2.5.5.2 TA cloning vector 

 Taq polymerase has a non-template dependent terminal transferase activity which 

adds a single deoxyadenosine (A) to the 3’end of PCR product. This activity facilitates 

the cloning of Taq amplified fragments into a commercially available linearized vector 

pCR®2.1 TOPO supplied with the TOPO TA Cloning ® kit (Invitrogen, Karlsruhe, 

Germany). This vector has single overhanging 3’ deoxythymidine (T) residues together 

with topoisomerase activity which allows PCR fragments to efficiently ligate with the 

vector. The ligation was performed following the manufacturer’s instruction and 

subsequently used to transform competent bacteria provided with the kit. Fifteen clones 

per sample were selected for sequencing analysis.  
 

 2.5.5.3 Ligation of PR-RT fragments into circularised vector 

 To generate the new vector backbone for phenotypic assay, the 3.5 kb PCR 

fragments (section 2.5.3) were digested with ApaI and Stu I (MBI Fermentas, St. Leon-

Rot, Germany) and were subsequently ligated to pBD6TB9 parental plasmid digested 

with the same enzymes, providing the final plasmid “pBD6TB9RI”. To generate the 

patients-derived recombinant plasmids and chimeric CRF02_AG/subtype B plasmid, the 

1.3 kb PR-RT fragments (section 2.5.4) were digested with EcoRI and StuI and ligated 

into the EcoRI – StuI digested pBD6TB9RI backbone. About 5 to 50 ng of vector was 

ligated with DNA fragments in a 1:5 molar ratio and in a total volume of 20 μl with 2 

units of T4 DNA ligase and incubated at 16oC overnight. In all ligation experiments, a 
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control reaction composed of only vector was included. Competent bacteria were 

transformed with 5-10 μl ligation reaction. 

 

 2.5.6 DNA electrophoresis and isolation of DNA fragments 
 DNA electrophoresis was used for the analysis of PCR products, or purified 

restriction digested DNA fragments. Depending on the size of the DNA fragment to be 

purified, 1–1.5% (w/v) agarose in TAE buffer was melted by heating, 2 µg/ml 

ethidiumbromide was added and the gel was poured into the gel tray and cooled down. 

DNA samples mixed with DNA loading buffer were loaded onto the gel and resolved for 

40 minutes at 90 volt. DNA bands were detected with UV light of 312 nm or of 366 nm to 

avoid DNA damage for further cloning steps. The fragment size was estimated by 

comparison with the DNA 1 kb ladder marker on the same gel. Bands of the correct size 

were cut out and purified with the NucleoSpin® Extract kit (Macherey-Nagel, Düren, 

Germany).  

 

 2.5.7 Sequencing analyses 

 Sequence analysis of RT fragments and plasmid DNA was performed in-house 

based on the dye terminator method by using GenomeLab® Methods Development Kit 

on a CEQ-2000 sequencer (Beckman Coulter, CA, USA). For sequencing reactions,50 

fmol of plasmid DNA, 1.6 µM primers (Appendix 3) and manufacturer’s premix solution 

(containing DNA polymerase, dNTPs, labeled ddNTPs, buffer) were used to amplify the 

DNA fragment of interest in a total volume 20µl. After that, the reaction was stopped and 

DNA fragments generated by the reaction were precipitated by adding 5 µl stop-solution 

(3 M NaAc pH 5.2, 100 mM EDTA pH 8.0 and glycogen). The pellet was washed once 

with absolute ethanol and then with 70% ethanol, air-dried and re-dissolved in 40 µl of 

sample loading solution providing with the kit (Beckman Coulter, CA, USA). The 

dissolved DNA was transferred to a 96-well plate and overlaid with mineral oil to prevent 

evaporation.  

 All DNA samples after March 2008 were commercially sequenced by GATC 

Biotech (Konstanz, Germany).  
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 2.5.8 Bacteria transformation and plasmid DNA preparation  
 2.5.8.1 Bacteria strains 

 For transformation experiment with the pCR®2.1-TOPO both E. coli strain DH5α 

(Invitrogen) with the genotype F- θ80lacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 

endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-  and TOP10 competent 

bacteria with the genotype F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15ΔlacX74 

recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG, supplied with the 

TOPO TA cloning kit ((Invitrogen), were used. In the case of proviral plasmid 

preparation, MAX Efficiency® Stbl2TM Competent Cells (Invitrogen) were used since this 

E. coli strain shows particularly few recombination events. Stbl2TM bacteria are derived 

from JM109 strain and the genotype is: F– mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1 

lon gyrA96 thi supE44 relA1 λ– Δ(lac-proAB). 
 

 2.5.8.2 Transformation 

 Bacteria were transformed using the standard heat-shock procedure. 

Approximately 150 ng (1-2 µl) of plasmids or 10 ligation reactions were added to 50 µl of 

chemically competent bacteria (DH5α, TOP10 or Stbl2). The mixture was incubated for 

20 minutes on ice, heated for 30-45 seconds at 42°C and then cooled on ice for 2 minutes 

and 500µl of antibiotic-free LB was added. The transformed bacteria were incubated in a 

shaker incubator (200 rpm) at 37°C for 1 hour. The bacteria was spread on an LB plate 

containing ampicillin or kanamycin and incubated over night at 37°C. Single colonies 

were randomly picked to inoculate 2 ml and 200 ml of LB medium containing ampicillin 

or kanamycin for small and large amounts plasmid DNA preparations, respectively.  
 

 2.5.8.3 Preparation of small amounts of plasmid DNA (mini-preparation)  

 Mini-preparation of plasmid DNA was performed using the QIAprep® Miniprep 

kit (QAIGEN, Hilden, Germany). Bacteria culture was pelleted for 3 minutes at 

5,000 rpm and resuspended in 250 µl P1 buffer. Bacteria were lysed by addition of 250 µl 

P2 buffer, and the reaction was stopped by neutralization with 350 µl N3 buffer. The cell 

debris was pelleted for 10 minutes at 13,000 rpm and supernatant was subsequently 

applied to spin column and centrifuged 13,000 rpm for 30 seconds. The column was 

washed twice with 750 µl of PE buffer and plasmid DNA was eluted with 50 µl of EB 

buffer. All preparation steps were carried out at room temperature. 
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 2.5.8.4 Preparation of large amounts of plasmid DNA (maxi-preparation) 

 Maxi-preparation of plasmid was performed by using NucleoBond® Maxiprep kit 

(Macherey-Nagel, Düren, Germany). The bacteria was resuspended, lysed and neutralized 

by using buffer S1, S3 and S3, respectively. The supernatant containing plasmid DNA 

was loaded onto Nucleobond® column pre-wet with buffer N3, subsequently washed 

with buffer N4 and plasmid DNA was eluted from the column with buffer N5. Purified 

plasmid DNA was then precipitated with isopropanol and washed with 70% ethanol. 

Plasmid DNA was dried at room temperature and re-dissolved in water. 

 

 

2.6 Bioinformatical methods and analysis 

 2.6.1 Identifying drug resistance mutations   

 Sequence editing was performed using the program Vector NTI Advance™ 10 

(Invitrogen, Karlsruhe, Germany). The resistance mutations in PR (codon 1-99), RT 

(codons 1-250) and gp41 were determined by using the Drug Resistance Algorithm from 

the Stanford HIV drug Resistance Database (http://hivdb6.stanford.edu). This tool 

compares the input sequences with sequences of HIV-1 subtype B in the database which 

confer resistance to anti-HIV drugs. 

 

 2.6.2 Phylogenetic analyses, viral diversity and divergence 
 Sequences of HIV-1 RT fragments were aligned with Clustal X 2.0.6 (Larkin et 

al., 2007) with the reference sequences of major HIV-1 subtypes available from the Los 

Alamos HIV sequence database (http://hiv-web.lanl.gov) with minor manual adjustments. 

All alignments were gap-stripped for the generation of trees. Phylogenetic analyses were 

performed with MEGA 4 (Tamura et al., 2007) by using neighbor joining with the 

Kimura’s two parameter (K2P) method and 1,000 bootstrap resamplings of the data. 

Maximum likelihood trees were also constructed using the PHYLIP 3.67 (Felsenstein, 

1989).  Evolutionary distances between sequences were determined by calculating the 

mean pair wise genetic distances among all sequences from individual patients at each 

time point with MEGA 4 using the K2P model with transition/tranversion ratio of 2.0 

(Leitner et al., 1996; Becquart et al., 2007; Gottlieb et al., 2008).  
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 Viral divergences were measured as the pair wise genetic distances of all clones at 

a given time point to the bulk sequence at the first time point (most recent common 

ancestor, MRCA) for each patient (Troyer et al., 2005). 

 

 

2.7 Statistical analyses 
 To determine possible differences in viral load between plasma and breast milk 

and to verify whether the time after SD-NVP exposure influenced compartmentalization, 

statistical analyses were performed using the Mann-Whitney test. Differences in the 

genetic diversity and divergence of viruses between plasma, breast milk and/or breast 

milk cells were performed using the Wilcoxon signed rank test or Kruskal-Wallis test 

with Dunn's Multiple Comparison post-test. 

To measure virus susceptibility to various antiretroviral drugs, the inhibition 

percentage was calculated using the following formula (Garcia-Perez et al., 2007); 

   1001% 







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



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RLUa
RLUpI , 

where %I is an inhibitory percentage, RLUp is a luciferase activity in the presence of 

drug and RLUa is a luciferase activity in the absence of drug. 

 The dose-response curves were obtained by plotting the percent inhibition versus 

log10 of drug concentration. The 50% inhibitory concentration (IC50) of each drug was 

computed by nonlinear regression curve using a sigmoidal dose-response equation with 

the GraphPad Prism5 software (version 5.02). The fold changes in susceptibility were 

calculated by dividing the IC50 of the mutant virus by IC50 of wild type virus. Results 

were expressed as the mean value, standard error of mean (SEM), and coefficient of 

variation (CV) of 3 to 4 independent experiments. To determine possible differences in 

IC50, statistical analysis was performed by using the Friedman test with Dunn’s multiple 

comparison post-test. The p-values below 0.05 were considered to be statistically 

significant. 
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3 Results 
 3.1 Genotypic resistance to enfuvirtide (T-20)  
 T-20 drug resistance–associated polymorphisms were determined in the HR1 and 

HR2 sequences of gp41 from 38 naïve HIV infected patients consisting of HIV-infected 

individuals from Dedougou regional hospital (DRH) and pregnant women who enrolled 

in the PMTCT program in Nouna which was implemented in 2003.  

 The CD4 values among pregnant women ranged from 93-747 cells/μl, whereas 

CD4 counts of patients from DRH ranged from 1-718 cells/μl. The viral load was in range 

from 103 to 106 copies/ml which is generally high as expected from HIV-drug naïve 

patients (Tebit et al., 2006). The genotypes obtained were as follows: CRF02_AG (55%), 

CRF06_cpx (45%) and other subtypes e.g. CRF09_cpx and A3 (5%) (Tebit et al., 2006). 

 As demonstrated in figure 10, in the HR1 region, the GIV motif which is 

primarily responsible for T-20 resistance was conserved among all sequences. The most 

common polymorphism observed within this region was N42S (n = 36) which was 

dominant among CRF02_AG and CRF06_cpx viruses (Fig. 10). The Q56K/R 

polymorphism was found among sub-subtype A3, CRF02_AG, and CRF09_cpx viruses, 

but not in CRF06_cpx viruses (Fig 10). The combination L54M/Q56K was observed in 

three sequences of CRF02_AG and one of CRF06_cpx viruses (Fig. 10).  

 Ten amino acids in HR2 at position 117, 120, 123, 127, 131, 134, 138, 141, 145 

and 148 are known to be involved in the sensitivity to T-20. Six of the ten amino acids at 

positions 120, 127, 131, 134, 141 and 145 were totally conserved in all strains (Fig. 10). 

Meanwhile, S138A (n = 4) was the most common polymorphism found among the 

remaining four non-conserved amino acid positions. The polymorphisms N126K (n = 3), 

N126S (n = 1) and N140I (n =3) were also detected in HR2 sequences. Generally, the 

amino acid sequence of the HR2 region was more heterogeneous compared with that of 

the HR1 region (Fig. 10). 
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HR1                                     HR2 
aa    32                                                 82         112                                                  163 
HxB2  QLLSGIVQQQNNLLRAI.EAQQHLLQLTVWGIKQLQARILAVERYLKDQQLL          WNHTT..WMEWDREINNYTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWFN 
 
A3 
A061  -----------------.----Q--K------------V-------------          -ENM-..-LQ--K--S---DT-YG-LQ---Y-------D--A----T------D 
 
CRF02_AG 
A101  ----------S------.-------K------------V--L----R-----          -DNM-..-LQ--K--S----I-YN--------------D--A----T------D 
A368  --W-------S---N--.-------K------------V--L----R-----          -ENM-..-L---K--SK-SGT-YT------K------LD--A----SN-----G 
A395  ----------S---K--.-----M-K------------V--L----R-----         --NM-..-QQ--K------E--Y-----------T---D--A-----------S 
A450  ----------S---K--.-------K------------V--L----R-----         -ENM-..-LQ--K-VS---DI-YN-L-N----------D--A--------D--- 
A461  --------------K--.-----M-K------------V--L----R-----         -DNM-..-LQ--K------NI-YG-L------------D--A-----------D 
A465  ----------S---K--.-------R------------V--L----------         -DNM-..-LQ--K--S---DT-YR------I-------D--A--------S--D 
A543  ----------S---Q--.-----M-R------------V--L----T-----         -KNM-..-LQ--K------NI-YD--------------D--A------------ 
A675  ----------S------.----Q--K------------V--L-S--R-----         --NM-..-LQ--K--S---QK-YN-L------------D--A-----N--T--D 
A696  ----------S---K--.-----M-R------------V--L----------         -DNM-..-IQ-E---D---DT-Y--L------------D--A-----------S 
A758  ----------S------.-----M-K------------V-------------         -GNM-..--Q---------QQ-YN-----------------S--------S--D 
A1035 ----------S---K--.----N--K------------V--L----------         -GNM-..-LQ-EK--D---GT-YE---N------I--RD--A-----------D 
NR46  ----------S------.----Q--K------------V--L-S--R-----         -DNM-..-L---K--S---NI-YE-------------KD--A-----------D 
D001  ----------S------.-------K------------V--L-A--R-----         -ENM-..-LQ--K------DI-YQ------L---R---D--A-----------D 
D006  ----------S---K--.-------K------------V--L-S--------         -ANM-..-LQ--K-----SEI-YD------R--D----D--A----T---S--S 
D040  ---------HS---K--IQ--H---K------------V--L----------         -DNM-..-LQ--K-VS---DI-YT-L------------D--A-----N------ 
D043  --W-------S---K--.-----M-R------------V--L----------         -ENM-..-L--E---S---DT-YT---KAH------------------------ 
 
CRF06_cpx 
A123  ----------S------.--------------------V--L----R-----         --NM-..-I------D---QY-YT------T----------A-----------D 
A216  ----------S------.--------------------V--L----R-----  --NM-..-I------D---QY-Y----------D----D--A--------S--D 
A401  ----------S------.--------------------V--L----R-----  --NM-..-I----------QY-Y----------D----D--A-----------D 
A421  ----------S------.-V------------------V-------G-----  --NM-..-IQ-----D---QE-YN---K------Q---D--A------------ 
A435  ----------S---S--.--------------------V-------------  -DNM-..-IQ---------QQ-YR---K-------------A--E--------D 
A468  ----------S------.--------------------V--L----R-----  -GNM-..--Q---------QQ-YN-----------------S--------S--D 
A762  ----------S---S--.--------------------V--L----------  GDNM-..RIQ------K--QQ-Y--MK---I---------WA----PTVN..GL 
A1123 ----------S------.--------------------L-------------  -DNM-..-K----------Q--Y-------I-------D--AW-------S--D 
N001  ----------S------.--------------------V--L----R-----  --NM-..-I----------QY-Y----------D----D--A-----------D 
N202  H---------S------.--------------------V-------R-----  -GNM-..-IQ-----DS--QE-YN---K------Q------AW-------D--- 
D003  ----------S------.--------------------V-------------  -DNM-..-I----------QQ-Y----IA-T-------D--A--Q-TN--S--S 
D004  ----------S------.--------------------V-------------  -DNM-..-IQ--K------QQ-YN---Q--S-------D--A--Q-S------D 
D008  ----------S------.--------------------V-------R-----  -DNM-..-I----------Q--Y-------T-------D--A----S---S--D 
D010  ----------S------.--------------------V-------------  -DNMETT-I----------QQ-YN----A-T-------D--AW----------D 
D012  ----------S------.--------------------V-------R-----  -DNM-..-IQ-----D---QH-YN-LA---T-------D--A--Q--------D 
D038  --W-------S------.--------------------V--L----------  -DNM-..-IQ---------QQ-YT--------------D--A--------S--D 
D039  --M-------S------.-----M--------------V-------------  -DNM-..-IQ-E---G---QE-YD-L-K-------------A----D---S--- 
D041  ----------S---K--.--------------------V--L----------  --NM-..-I---K--S---QQ-Y---------------D--A--------S-YD 
D042  ----------S------.--------------------V--L----R-----  -DNM-..-IQ-E-------EQ-YN-L----T-------D--A----T---S—S 
 
CRF09_cpx 
D007  ----------S---Q--.-------K------------V-------------  -DNM-..-L------S---QI-YR--------------D--A--S-----S--D 
D009  ----------S---M--.-----M-K------------V--L----------  -ANM-..-LQ-E----K--HT-YE----A---------D--A--S--N-----G 

Fig 10. Alignment 
of T-20 resistance 
mutations in HR1 
and HR2 regions of 
gp41 of 38 HIV-1 
infected-patients 
(Italic). HXB2 is the 
HIV-1 subtype B 
strain. The amino 
acid (aa) positions 
associated with T-20 
resistance were 
underlined.  dot (.) = 
deletion; dash (-) = 
amino acid identity. 
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3.2 NVP resistance mutations in paired plasma-breast milk 
 3.2.1 Patients and Clinical data 

 Fifty three selected HIV infected breast feeding women, who have enrolled in 

PMTCT programe in Nouna, provided paired plasma and breast milk samples for this 

study. However, RNA or DNA could be derived from both plasma and breast milk or 

breast milk cells of 17 women (Table 3). Five women provided two samples, while one 

woman provided three samples at different time points respectively (Table 3).  

 Of the 17 women, 10 received SD-NVP at labor and only one received a drug 

combination comprising AZT at week 28 of pregnancy, single dose of NVP+AZT+3TC 

at labor and AZT+3TC at 7 days post delivery, which is the new regimen for PMTCT 

recommended by the Ministry of Health in Burkina Faso. Six women were drug naïve 

because they did not receive SD-NVP at labor (Table 3). The average CD4+ cell count pre 

and post delivery was 355 and 438 cells/mm3 respectively. The plasma viral load ranged 

between 500 to 500,000 copies/ml (average = 165,025 copies/ml). The viral load in breast 

milk was significantly lower than in plasma (Mann-Whitney test, p = 0.0001) with a mean 

of 4,498 copies/ml ranging between <40 to 44,603 copies/ml (Table 3). 

 

Table 3. Clinical characteristics of patients who provided plasma and breast milk samples 
 

Viral load 

(copies/ml) 

ID 

 

 

Age at 

baseline 

Drug 

regimen 

Subtype CD4 pre-

delivery 

(cells/mm3) 

CD4 post-

delivery 

(cells/mm3) 

Time of 

sampling 

(mo/yr) PL BM 

A368 

 

30 SD-NVP 02_AG 280 

 

157 

 

-/04 

-/05 

786,242 

344,000 

760 

ND 

A401 

 

23 SD-NVP 06_cpx 277 

 

216 

 

-/04 

-/05 

261,999 

72,997 

4,000 

<40 

A435 28 SD-NVP 02_AG 377 217 -/04 586,635 85 

A465 29 SD-NVP 02_AG 615 ND -/04 141,000 893 

ABa249 

 

32 new 

regimena 

02_AG 487 

 

654 

 

11/07 557 

 

ND 

 

ABk162 34 SD-NVP 06_cpx 260 341 06/07 4,493 440 

ADb169 

 

23 SD-NVP 02_AG ND 

 

473  

559  

11/07 

04/08 

ND 

ND 

216 

69 

AGn031 

 

28 

 

SD-NVP 06_cpx 287 

 

523  

 

04/07 

10/07 

163,996 

ND 

<40 

NDc 

ASn079 33 SD-NVP 02_AG 425 325  05/08 78,267 15,068 
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Table 3. Clinical characteristics of patients who provided plasma and breast milk samples 
(continued) 
 

Viral load 

(copies/ml) 

ID 

 

 

Age at 

baseline 

Drug 

regimen 

Subtype CD4 pre-

delivery 

(cells/mm3) 

CD4 post-

delivery 

(cells/mm3) 

Time of 

sampling 

(mo/yr) PL BM 

AY113 23 SD-NVP 06_cpx ND 418 02/08 1,946 NDc 

AY134 

 

 

31 

 

SD-NVP 02_AG ND 

 

 

802  

621   

560  

02/07 

07/07 

02/08 

2,069 

20,726 

4,461 

NDc 

NDc 

120 

ABm107 33 naïveb  02_AG ND 432  01/08 5,993 119 

ADb365  30 naïveb 02_AG 425 379 01/08 4,457 44,603 

ADr304  25 naïveb 06_cpx 290 633   04/08 1,667 NDc 

AGg078  32 naïveb 06_cpx 117 359 11/07 89,754 NDc 

AGn006  22 naïveb 02_AG ND 432 03/07 35,924 975 

AY172  

 

28 naïveb 02_AG 417 

 

441  

369  

06/07 

08/07 

1,810 

1,268 

<40 

NDc 
 
a = combination regimen (AZT at week 28 of pregnancy, single dose of NVP+AZT+3TC at labor and 
AZT+3TC at 7 days post delivery); b = did not receive SD-NVP at labor; c = PCR positive in breast milk 
cells; SD-NVP = single dose Nevirapine; PL = plasma; BM = breast milk; ND = not done; mo = month; yr 
= year. 
 

 

3.2.2 Genotypic drug resistance in NVP –naïve and exposed women  
 3.2.2.1 Subtype classification 

 To determine the distribution of HIV-1 subtypes that are circulating among HIV-

infected pregnant women in Nouna, rural Burkina Faso, the BM and plasma samples were 

PCR amplified and sequenced. The bulk sequences of the 5’ RT region spanning about 

950 bp from 24 samples of 17 HIV infected women were aligned with reference subtype 

sequences from the Los Alamos Database and a phylogenetic tree was constructed using 

maximum likelihood method as implemented in the Phylip 3.67 program. HIV sequences 

from eleven women (64.7%) clustered with HIV-1 CRF02_AG (Fig. 11), HIV isolates 

from six women (35.3%) were closely related with CRF06_cpx (Fig. 11). Plasma, breast 

milk and/or breast milk cells sequences from the same patients clustered together (Fig. 

11). 
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Fig. 11 Phylogenetic tree of pol region of the 17 HIV-1 infected women from Nouna, Burkina Faso 
(Italic). The tree was generated using the maximum likelihood method by PHYLIP 3.67 program. 
Reference sequences were obtained from the Los Alamos HIV database. The tree was rooted using HIV-1 
subtype O as an outgroup. Subtypes are indicated to the right.  
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 3.2.2.2 NVP-resistance mutations detected by direct /clonal sequencing 

 3.2.2.2.1 Direct sequencing 

 A genotypic drug resistance test based on direct PCR-product sequencing has 

been widely used to detect drug resistance mutations in HIV-1 infected patients. 

However, a major limitation of direct sequencing is that it does not detect variants which 

comprise less than 20% of sequences in the virus population (Palmer et al. 2005). As 

demonstrated in figure 12, direct sequencing of PCR products of the RT-region from 

patient-ABK162 indicates the presence of two different populations as observed from 

double peaks at the nucleotide position 541 in the electropherogram (top panel and 

arrow). However, the nucleotide G is the higher peak and so is detected as the dominant 

population. In contrast, when individual clones of this RT-fragment were analyzed, both 

distinct nucleotides were detected in this position which shows that the sample contains 

two groups of viruses (Fig. 12; middle and bottom panels).   

 

 

Fig. 12 Electropherograms 
of RT fragment from patient 
ABK162. Top panel is a 
sequence derived from direct 
sequencing representing two 
different nucleotides at the 
same position (double peak and 
arrow). Middle and bottom 
panels demonstrate the 
sequences from individual 
clonal analysis. The two 
different nucleotides are 
indicated by arrows. 
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 Two major NVP-resistance mutations, K103N and Y181C, were detected in 

paired plasma-breast milk samples from two NVP-exposed women by direct sequencing 

(Table 4). Amino acid substitution at position 179 (V179E) which slightly reduces 

susceptibility to all drugs in NNRTI group was detected in paired samples from one NVP-

exposed woman at both sampling time points (Table 4).  

 Some NRTI resistance mutations were detected among NVP-naïve and exposed 

women with no NRTI history. The M184I mutation which decreases 3TC, ABC and FTC 

susceptibility was observed from breast milk cells of one NVP-exposed woman (Table 4). 

Moreover, another NRTI resistance mutation, E44D, was found in one NVP-naïve 

woman (Table 4). Although, E44D mutation alone does not substantially alter NRTIs 

susceptibility, this mutation could correspondingly increase cross-resistance to other 

NRTIs in the presence of Thymidine Analogue-associated mutations (TAMs) (Walter et 

al., 2002).   

 

Table 4.  Drug resistance mutations detected by direct sequencing and clonal analysis 
 

Direct sequencing Clonal analysis 

  

ID 

 

 

Day 

post-

delivery PL BM BMc PL (n) BM (n) BMc (n) 

A368/1** 

 

 

 

180 

 

 

 

K103N 

 

 

 

WT 

 

 

 

K103N 

 

 

 

WT (2)  

K103N (11) 

K103N + M230V(1) 

K238Q (1) 

WT (13)  

K103N (1) 

F227L (1) 

 

K103N (15) 

K103N+Y181C (1) 

 

 

A368/2# 
 

360 

 

WT 

 

NA 

 

NA 

 

WT (14)  

K103N (1) 

NA 

 

NA 

 

A401/1*** 

 

 

210 

 

 

WT 

 

 

WT 

 

 

NA 

 

 

WT (13)  

P225S + F227C (1) 

F227C (1) 

WT (13) 

L100W (1) 

G190E (1) 

NA 

 

 

A401/2# 390 WT NA NA WT (15)  NA NA 

A435*** 

 

 

150 

 

 

WT 

 

WT 

 

WT 

 

WT (13) 

K103N (2) 

 

WT (8) 

K103N (6) 

K103E (1) 

WT (14) 

K65R (1) 

K65R+ K219E (1) 

A465*** - WT WT NA WT (15) WT (15) NA 

ABa249*** 0 WT WT NA WT (15) WT (15) NA 

ABk162* 

 

 

 

 

10 

 

 

 

 

Y181C 

 

 

 

 

Y181C 

 

 

 

 

G190R + 

(M41I+M184I) 

 

 

 

WT (5) 

Y181C (6) 

Y188C (3) 

K103R + Y181C(1) 

M230L (1) 

WT (9) 

Y181C (7) 

 

 

 

G190R+ (M41I + 

M184I) (15) 

V106A+G190R + 

(M41I + M184I) (1) 
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Table 4. Drug resistance mutations detected by direct sequencing and clonal sequencing 

(continued). 

Direct sequencing Clonal analysis   
ID 

 
 

Day 
post-

delivery PL BM BMc PL (n) BM (n) BMc (n) 
ADb169/1*** 180 V179E V179E NA V179E (13) V179E (15) NA 

ADb169/2* 

 

330 

 

V179E 

 

V179E 

 

NA 

 

V179E (14) 

 

V179E (15) 

V179G (1) 

NA 

 

AGn031/1* 

 

 

3 

 

 

WT 

 

 

WT 

 

 

NA 

 

 

WT (13) 

V108A (2) 

 

WT (13) 

K101E (1) 

K103R (1) 

NA 

 

 

AGn031/2* 

 

180 

 

WT 

 

NA 

 

WT 

 

WT (14) 

G190A (1) 

NA 

 

WT (16) 

 

ASn079* 

 

2 

 

WT 

 

WT 

 

WT 

 

WT (15) 

G190R (1) 

WT (16) 

 

WT (15) 

 

AY113* 

 

360 

 

WT 

 

NA 

 

A98T 

 

WT (15) 

 

NA 

 

A98T (15) 

A98T + K219R (1) 

AY134/1* 

 

7 

 

WT 

 

NA 

 

WT 

 

WT (14) 

V179L (1) 

NA 

 

WT (14) 

Y188H (1) 

AY134/2*** 

 

 

210 

 

 

WT 

 

 

NA 

 

 

WT 

 

 

WT (14) 

K130N (1) 

L100S (1) 

NA  

 

 

WT (9) 

V179T (6) 

K103R +V179T(1) 

AY134/3*** 360 WT WT NA WT (16) WT (15) NA 

ABm107*** 

 

 

30 

 

 

WT 

 

 

WT 

 

 

NA 

 

 

WT (16) 

 

 

WT (14) 

V106A (1) 

A98T (1) 

NA 

 

 

ADb365*** 21 WT WT NA WT (15) WT (16) NA 

ADr304* 

 

180 

 

WT 

 

NA 

 

WT 

 

WT (13) 

V118I (1) 

NA 

 

WT (16) 

 

AGg078* 
 

 

AGn006* 

 

2 

 

 

435 

 

E44D 

 

 

WT 

 

NA 

 

 

WT 

 

E44D 

 

 

WT 

 

WT (2) 

E44D (13) 

E44D + P225L (1) 

WT (15) 

 

NA 

 

 

WT (14) 

V108I (1) 

E44D (12) 

 

 

WT (14) 

F227L (1) 

AY172/1* 120 WT NA WT WT (15) NA WT (15) 

AY172/2*** 

 

180 

 

WT 

 

WT 

 

NA 

 

WT (14) 

 

WT (13) 

V179A (1) 

NA 

 

 
PL = Plasma; BM = Breast milk; BMc = Breast milk cells; WT = wild type; NA = not amplified; Bold = 
high level resistance to NVP (NNRTI); Bold-underline = cross resistance mutation to ETR (NNRTI); 
underline = polymorphism or mutations associated with modest NNRTIs resistance; Bold-Italic = high 
level resistance to NRTIs; Italic = polymorphism or mutations associated with modest NRTIs resistance;  
* = compartmentalization; ** = partial-compartmentalization; *** = non-compartmentilzation; # = not 
analyzed for compartmentalization. 
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 3.2.2.2.2 Clonal analyses 

 Using the same PCR products as for the direct sequencing, the RT fragments were 

cloned in a TA vector and more than 10 clones per sample were sequenced. The 

mutations associated with high level resistance to NVP were detected in 11 of 24 cases 

(46%) as major or minor variants by clonal analyses (Table 4). Besides the major 

mutations, other mutations which slightly reduce NVP susceptibility as well as some 

polymorphisms were also found mostly as minor population (Table 4). The most common 

mutations among NVP-exposed women were at positions 103 and 179 (Fig. 13; Table 4). 

Mutations at position 103 included K103N, K103E, K103T and K103R with N being the 

most common, constituting about 70% of all 103 mutants. Sequences carrying both the 

K103N/R and Y181C mutations were extremely rare. Only two patients carried this 

double mutation; one had K103N+Y181C, while the K103R+Y181C mutations were 

observed in the other (Table 4). Some other mutations such as K101E, G190A and 

Y188C/H were found as minor variants (Table 4). 

 NRTI resistance mutations were also detected by clonal analysis. The K65R 

mutant was detected only in breast milk cells of patient-A435 as a small proportion (2 of 

15 clones; Table 4). However, it was absent in plasma and breast milk. In patient-

ABK162, the M184I mutation was again found in breast milk cells as the dominant 

population (16 of 16 clones; Table 4).  

 From NVP-naïve women, NVP resistance mutations such as V106A, V108I were 

found in low proportions which were undetectable by direct sequencing of the PCR 

population products (Table 4). Moreover, the NRTI mutation, E44D which could be 

detected by direct sequencing was also present as the dominant population in plasma (13 

of 15 clones) and breast milk cells (12 of 12 clones) in one patient (Table 4).  

 In summary, mutations associated with high level resistance to NVP were detected 

in only 8% of patients by direct sequencing, while the detection rate increased to 46% by 

clonal analysis (Table 4). This finding suggests that the clonal analysis reveals a higher 

prevalence of NVP resistance mutations than direct sequencing. 
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 Fig. 13 NVP resistance mutations detected in plasma (PL), breast milk (BM) and breast milk cells (BMc) among patients by clonal analysis.  
 NRTIs* = mutations to nucleoside reverse transcriptase inhibitors, NNRTIs* = mutations to non- nucleoside reverse transcriptase inhibitors.  
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 3.2.2.3 Persistence of NVP resistance associated mutations 

 To determine the persistence of resistance variants over time, clonal analysis was 

performed from two paired plasma-breast milk samples obtained from two subjects 

(A368, and ADb169) and two paired plasma-breast milk cells samples from one subject 

(AY134) at different time points after delivery (Table 3). In A368, sampling was done at 

respectively, six and twelve months post delivery (Table 3). As expected, in this patient, 

the proportion of viruses containing NVP resistance mutation K103N declined over time. 

This mutation which represented the dominant population (detected in 11 of 15 plasma 

clones) at six months post delivery nearly disappeared from the virus population (detected 

in 1 of 15 plasma clones) after twelve months post delivery (Table 4). However, the 

V179E mutation detected from patient ADb169 which causes low level reduction in 

NNRTI susceptibility persisted as a dominant population in plasma and breast milk, 

although the patient received NVP almost eleven months prior to sampling (Table 4). It 

is, however, possible that this mutation occurred as wild type in this subject even pre-SD 

NVP administration. In patient AY134, NVP resistance mutations such as K103N as well 

as other polymorphisms which have been detected at seven months post-NVP exposure 

completely disappeared at twelve months (Table 4). 

 

 3.2.3 Phylogenetic analyses  
 3.2.3.1 Viral distribution and compartmentalization 

 To determine the distribution of the variants from the various compartments, the 

clonal and population sequences were aligned and phylogenetic trees constructed. To 

obtain phylogenetic trees from individual patients, both Neighbor-Joining (NJ) and 

Maximum-likelihood (ML) trees were constructed by programs MEGA4.0 and PHYLIP 

3.67, respectively. The obtained trees were grouped into three categories, i.e. 

compartmentalized, partially-compartmentalized and non-compartmentalized trees. A tree 

is defined as compartmentalized, if the sequences between plasma and breast milk or 

breast milk cells sampled at the same time point are completely segregated. If a cluster of 

sequences sampled at the same time point either from breast milk or breast milk cells is 

not completely distinguished from plasma, this type of clustering is defined as partial-

compartmentalization. Finally, if individual sequences from samples collected at the same 

time point from plasma, breast milk and/or breast milk cells mix with each other, this tree 

is classified as non-compartmentalized. From 24 samples, only 22 paired samples could 
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be used for sequence analysis. In two samples namely A368/2 and A401/2, no PCR 

products could be obtained from either breast milk or breast milk cells (Table 4).  

 Compartmentalization was observed in eleven cases, seven of these were from 

NVP-exposed and four from NVP-naïve patients (Table 4; Fig. 14A - 14K). Partial-

compartmentalization was found in only one NVP-exposed woman (Table 4; Fig. 15A) 

and non-compartmentalization presented in ten cases, seven and three cases from NVP-

exposed and NVP-naïve patients respectively (Table 4; Fig. 15B - 15K).  

  Most of the samples which were used for phylogenetic analysis were either paired 

plasma-breast milk or plasma-breast milk cells. However, a complete set of sequences 

including plasma, breast milk and breast milk cells at a single time point could be 

obtained from four NVP-exposed and one NVP-naïve women. Viral populations between 

breast milk and breast milk cells were segregated in 4 cases: ABK162 (Fig. 14A), 

ASn079 (Fig. 14B), AGn006 (Fig. 14C) and A368/1 (Fig. 15A), but not for A435 (Fig. 

15B). Statistical analysis showed that time after receiving SD-NVP did not have any 

significant effect on compartmentalization [Mann-Whitney test, p = 0.6746, n 

(compartment) = 11, n (non-compartment) = 10]. 

 

 3.2.3.2 Viral heterogeneity  

 The diversity of HIV variants may be influenced by the environment in which 

they evolve. Thus, the paired samples from two patients, ADb169 and AY134 were 

analyzed for their viral heterogeneity in plasma and breast milk or breast milk cells at two 

different time points. The time interval between the first and second sampling was 

approximately five to seven months.  

 The phylogenetic tree of patient-ADb169 at the first time point showed that the 

virus population in breast milk was separated into 2 clusters (Fig. 16A). Almost all of the 

breast milk clones (10 of 15 clones) were genetically distinct from the plasma clones, 

whereas a small proportion of breast milk variants (5 of 15 clones) were genetically 

closely relate to the major virus population in plasma. The tree of patient-ADb169 at the 

second time point showed that the virus population in breast milk was completely 

separate from the virus population in plasma (Fig. 16A). For patient-AY134, virus 

population in breast milk cells from this patient at the first time point was completely 

separate from virus population in plasma, whereas at the second time point viruses in 

breast milk cells were inter-mix with the plasma viruses (Fig. 16B). 
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Fig. 14 Maximum-likelihood (ML) 
phylogenetic trees of pol sequences 
from plasma (PL), breast milk (BM), 
and breast milk cells (BMc) at 
different time points representing 
compartmentalization of A) ABK162 

(NVP-exposed), B) ASn079(NVP-
exposed), C) AGn006 (NVP-naïve), 
D)AGn031/1(NVP-exposed), E) 
AGn031/2 (NVP-exposed), F) 
AY134/1 (NVP-exposed), G) 
ADb169/2 (NVP-exposed), H) 
AY113 (NVP-exposed), (I) ADr304 
(NVP-naïve), J) AGg078 (NVP-
naïve), K) AY172/1 (NVP-naïve). 
Close squares, close circles and 
close triangles represent sequences 
from PL, BM and BMc respectively 
at first time point. Open squares, 
open circles and open triangles 
represent sequences from PL, BM 
and BMc respectively at second time 
point. Asterisks represent sequences 
harboring resistance mutation. 
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Fig. 15 Maximum-likelihood (ML) 
phylogenetic trees of pol sequences 
from plasma (PL), breast milk (BM), 
and breast milk cells (BMc) at 
different time points representing of 

partial-compartmentalization of A) 
A368 (NVP-exposed) and non-
compartmentalization of B) A435 
(NVP-exposed), C) A401/1 (NVP-
exposed), D) A465 (NVP-exposed), 
E) Aba249 (NVP-exposed), F) 
ADb169/1 (NVP-exposed), G) 
AY134/2 (NVP-exposed), H) 
AY134/3 (NVP-exposed), (I) 
ABm107 (NVP-naïve), J) ADb365 

(NVP-naïve), K) AY172/2 (NVP-
naïve). Close squares, close circles 
and close triangles represent 
sequences from PL, BM and BMc 
respectively at first time point. Open 
squares, open circles and open 
triangles represent sequences from 
PL, BM and BMc respectively at 
second time point. Open and close 
diamonds represent sequences from 
PL and BM respectively at third time 
point. Asterisks represent sequences 
harboring resistance mutation. 
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 A.          1st time point    2nd time point  

        

 B.          1st time point    2nd time point 

          
 
Fig. 16  Maximum-likelihood phylogenetic trees of pol sequences from plasma, and breast milk or breast 
milk cells  representing (A) patient ADb169 sequences at the first and second time point and (B) patient 
AY134 sequences at the first and second time point. Close squares, close circles and close triangles 
represent respectively sequences from plasma, breast milk and breast milk cells at the first time point. Open 
squares, open circles and open triangles represent respectively sequences from plasma, breast milk and 
breast milk cells at the second time point. Asterisks represent sequences harboring drug resistance. 
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 3.2.4 Evolution of HIV-1 in different anatomic compartments 
 3.2.4.1 Genetic diversity 

 To determine the genetic diversity of the virus in plasma, breast milk and breast 

milk cells, evolutionary distances were calculated as the mean pair wise distance among 

all clones from individual patients. The difference in evolutionary distances of sequences 

between the two groups e.g. plasma-breast milk, plasma-breast milk cells or breast milk-

breast milk cells was statistically tested by Wilcoxon signed rank test, and by Kruskal-

Wallis test with Dunn's Multiple Comparison post-test for three types of sequences e.g. 

plasma-breast milk-breast milk cells. 

 The results showed that the genetic diversity of plasma variants was significantly 

higher than the breast milk variants in nine of fifteen (60%) paired samples (Table 5).  

This observation was also found in paired plasma and breast milk cells samples where 

nine of twelve (75%) plasma sequences showed significantly higher genetic diversity than 

those from breast milk cells. In comparison to variants in breast milk and breast milk 

cells, only two of five (40%) of breast milk sequences showed a significantly higher 

genetic diversity than the variants from breast milk cells (Table 5).  

 The level of genetic diversity of variants derived from the complete sample set 

consisting of plasma, breast milk and breast milk cells within individual patients was 

calculated. From four NVP-exposed patients (A368, ABK162, Asn079 and A435) and 

one NVP-naïve patient (Agn006), the genetic distances of plasma variants was the highest 

compared to variants obtained from breast milk or breast milk cells (Fig. 17A - 17D). 

There was a wide distribution of breast milk variants in one case, A435 forming two main 

clusters (Fig. 17E). In general, variants from breast milk cells were much more 

homogenous than those in breast milk and plasma. 
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Fig. 17 Evolutionary distance between variants in plasma (PL), breast milk (BM) and breast milk cells (BMc) from individual patients at single time point representing the 
genetic diversity of (A) A368, (B) ABK162, (C) Agn006, (D) Asn079 and (E) A435. Close squares, close circles and close triangles represent mean distance in PL, BM and 
BMc sequences respectively. Scatter plots show median, p-values are from nonparametric, Kruskal-Wallis test with Dunn's Multiple Comparison post-test. 
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Table 5. Genetic diversity of HIV variants from PL, BM, and BMc represented as mean pair wise distances 

ID 
Mean pair wise distance at 

1st time point  
Mean pair wise distance at 

2nd time point  
Mean pair wise distance at 

3rd time point  
  PL BM BMc p-value PL BM BMc p-value PL BM BMc p-value 
A368 0.0223 0.0139 0.0051 PL-BM > 0.05b 0.0129 - - ND - - - ND 
    PL-BMc < 0.001b         
    BM-BMc < 0.05b         
             
A401 0.0132 0.0106 - 0.2483a 0.0059 - - ND - - - ND 
             
A435 0.0149 0.0359 0.0095 PL-BM < 0.01b - - - ND - - - ND 
    PL-BMc > 0.05b         
    BM-BMc < 0.001b         
             
A465 0.0148 0.0121 - 0.0184a - - - ND - - - ND 
             
ABa249 0.0051 0.0133 - 0.0007a - - - ND - - - ND 
             
ABK162 0.0171 0.0038 0.0015 PL-BM < 0.001b - - - ND - - - ND 
    PL-BMc < 0.001b         
    BM-BMc > 0.05b         
             
ADb169 0.0057 0.0039 - 0.3659a 0.0083 0.0010 - 0.0011a - - - ND 
             
AGn031 0.0139 0.0081 - 0.0041a 0.0175 - 0.0006 0.0007a - - - ND 
             
ASn079 0.0096 0.0008 0.0037 PL-BM < 0.001b - - - ND - - - ND 
    PL-BMc < 0.001b         
    BM-BMc > 0.05b         
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Table 5. Genetic diversity of HIV variants from PL, BM, and BMc represented as mean pair wise distances (continued) 

ID 
Mean pair wise distance at 

1st time point  
Mean pair wise distance at 

2nd time point  
Mean pair wise distance at 

3rd time point  
  PL BM BMc p-value PL BM BMc p-value PL BM BMc p-value 
AY113 0.0065 - 0.0011 0.0007a - - - ND - - - ND 
             
AY134 0.0031 - 0.0025 0.2575a 0.0053 - 0.0059 0.2296a 0.0063 0.0015 - 0.0011a 
             
ABm107 0.0086 0.0092 - 0.2053a - - - ND - - - ND 
             
ADb365 0.0061 0.0070 - 0.4540a - - - ND - - - ND 
             
ADr304 0.0044 - 0.0004 0.0024a - - - ND - - - ND 
             
AGg078 0.0136 - 0.0011 0.0024a - - - ND - - - ND 
             
AGn006 0.0090 0.0035 0.0029 PL-BM < 0.001b - - - ND - - - ND 
    PL-BMc < 0.001b         
    BM-BMc > 0.05b         
             
AY172 0.0076 - 0.0014 0.0010a 0.0071 0.0076 -  0.8011a - - - ND 
             

 

a = nonparametric (Wilcoxon signed rank test); b = nonparametric (Kruskal-Wallis test with Dunn's Multiple Comparison post-test). 
Bold = statistically significant; ND = not determined; PL = Plasma; BM = Breast milk; BMc = Breast milk cells. 
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 3.2.4.2 Genetic divergence 

 Longitudinal sampling of four NVP-exposed patients (A368, ADb169, AGn031, 

and AY134) and one NVP-naïve patient (AY172) were available for determining the 

genetic divergence of viruses. Viral divergences were measured as the pair wise genetic 

distances of all clones at a given time point compared to the bulk sequence at the first 

time point (most recent common ancestor- MRCA) for each patient.  

 In plasma, five of six cases had no significant difference (p > 0.05) in genetic 

divergence between the first and second time points, with an exception of sequences from 

patient A401 which showed a significant difference in genetic divergence (p = 0.0378) 

between the first and second time points (Table 6). However, in subject AY134, there 

were no significant differences in the divergence of plasma variants between the first and 

second, or the second and third time points, but there was a significant difference between 

the first and third time points (Fig. 18A; Table 6). In breast milk (ADb169; Table 6) and 

breast milk cells (AY134, Fig. 18B; Table 6) between the first and second time points, 

significant differences in genetic divergence were observed in both cases (Table 6).  

 Overall, the genetic divergence in plasma increased with time in four of six 

women, but only two of them were statistically significant (Table 6), whereas in breast 

milk and breast milk cells, the genetic divergence significantly increased with time in 

both cases (Table 6). 

 

 
 
Fig. 18 Level of genetic divergence of plasma (PL) and breast milk cells (BMc) sequences at different 
time points represented by scatter plots. (A) Divergence of PL sequences at 3 time points from patient 
AY134, (B) divergence of BMc sequences at 2 time points from patient AY134. Close squares, open 
squares and open diamonds represent distance in plasma sequences at first, second and third time points 
respectively. Close triangles and open triangles represent mean distance in breast milk cells sequences at 
first and second time points respectively. MRCA = most recent common ancestor (bulk sequence at first 
time point). Scatter plots show median, p-values are from nonparametric, Kruskal-Wallis test with Dunn's 
Multiple Comparison post-test or Wilcoxon signed rank test. 
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 Table 6. Genetic divergence of HIV variants from plasma (PL), breast milk (BM), and breast milk cells (BMc) at different time points 
 

 

Genetic divergence  

from MRCA (mean)   

Genetic divergence 

from MRCA (mean)  

Genetic divergence 

from MRCA (mean)  

 PL1 PL2 PL3 p-value BM1 BM2 p-value BMc1 BMc2 p-value 

A368 0.0218 0.0167 - 0.0554a - - - - - - 

           

A401 0.0132 0.0093 - 0.0378a - - - - - - 

           

ADb169 0.0057 0.0066 - 0.5325a 0.0039 0.0108 0.0011a - - - 

           

AGn031 0.0139 0.0195 - 0.0545a - - - -   - 

           

AY134 

 

 

0.0034 

 

 

0.0053 

 

 

0.0073 

 

 

PL1-2 > 0.05b 

PL1-3 < 0.01b 

PL2-3 > 0.05b - - - 

0.0025 

 

 

0.0134 

 

 

0.0007a 

 

 

           

AY172 0.0076 0.0093 - 0.2708a - - - - - - 
 
  PL1, PL2, PL3 = plasma at the first, second and third time points respectively; 
  BM1, BM2= breast milk at the first and second time points respectively; 
  BMc1, BMc2 = breast milk cells at the first and second time points respectively; 
  a = nonparametric (Wilcoxon signed rank test); b = nonparametric (Kruskal-Wallis test with Dunn's Multiple Comparison post-test); 
  Bold = statistically significant; MRCA = most recent common ancestor. 
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3.3 Phenotypic characterization of a CRF02_AG based 

plasmid backbone  
3.3.1. Construction and validation of a CRF02_AG based plasmid 

 backbone 
To better understand the influence of a non-subtype B plasmid backbone on 

recombinant viral assays, the infectious molecular clone pBD6TB9 was modified by 

knocking out an EcoRI restriction site (nucleotide position 4460). After that a new EcoRI 

site was introduced at the beginning of the protease gene (nucleotide position 2242) to 

generate pBD6TB9RI (Fig. 19). To clone the patient-derived PR-RT fragments into 

pBD6TB9RI, the newly introduced EcoRI site and a StuI restriction site present in the 

reverse transcriptase gene were used. The modifed and parental plasmids were transfected 

into 293T cells and their supernatants were used to infect C8166 cells for measuring 

replication kinetics or TZM cells for testing viral infectivity. 

 
Fig. 19 Schematic representation of pBD6TB9RI. Amplified PR and RT fragment from patients are 
inserted into an indicator vector by using EcoRI and StuI restriction sites. 
 

 

The replication kinetics of the viruses generated from the new plasmid backbone 

pBD6TB9RI was measured by comparing the level of p24 production from C8166 

infected cells to the parental molecular clone pBD6TB9. The virus produced from the 

newly constructed pBD6TB9RI displayed similar replication kinetics to its parental virus 

shown by a comparable level of p24 production as observed in the figure 20A. 

Luciferase activity produced from the TZM-infected cells was measured to 

evaluate the viral infectivity of viruses produced from pBD6TB9RI and parental 

pBD6TB9. As demonstrated in the figure 20B, the infectivity of both viruses was similar. 
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Fig. 20 (A) Replication kinetics of parental BD6TB9 virus (solid line) compared to the modified BD6TB9RI virus (dash line). C8166 cells were infected with equal 
amounts of p24 and virus replication measured by quantifying HIV-1 p24 (ng/ml) production in culture supernatant during 2 weeks. (B) Viral infectivity between 
parental BD6TB9 virus (dark gray bar) and modified BD6TB9RI virus (white bar) were measured. TZM cells were infected with BD6TB9 or BD6TB9RI viruses and 
luciferase activity was detected in cell lysates 48 hours after infection. 
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3.3.2 Effect of the CRF02_AG derived plasmid backbone on 

 susceptibility to antiretroviral drugs 
To evaluate the drug susceptibility profile of the CRF02_AG recombinant plasmid 

pBD6TB9RI backbone, and its effect on the antiretroviral drug susceptibility, a chimeric 

virus was generated by cloning the PR-RT fragment derived from the pNL4-3 into 

pBD6TB9RI, hereafter named BD6TB9RINL. The susceptibility profiles of the viruses 

were determined by adding serial dilutions of PIs to transfected cells or RTIs to infected 

cells. Drugs that inhibit virus replication should reduce luciferase activity in dose-

dependent manner, and this provides a quantitative measure of drug susceptibility. 

Inhibition of luciferase activity was plotted against drug concentration (log10) for each 

tested drug.  Drug susceptibility fold changes were determined by comparing IC50 of 

tested virus with the IC50 of the control virus.  

The phenotypic drug susceptibility profiles for BD6TB9RI (wild type 

CRF02_AG), BD6TB9RINL chimera and NL4-3 (wild type B) are shown in the figure 21 

and Table 7. These three viruses revealed similar drug susceptibility profiles to all RTIs. 

The susceptibility profiles to PIs among these three viruses were also similar. However, 

they exhibited differences in susceptibility against two PIs: ritonavir (RTV) and tipranavir 

(TPV). There was a difference in the drug concentration fold change for RTV (>2.5-fold) 

for chimeric BD6TB9RINL and NL4-3 viruses respectively compared to wild type 

BD6TB9RI virus (Table 7). For TPV, there was also a >2.5-fold change difference for 

NL4-3 compared to wild type BD6TB9RI (Table 7).  

The IC50 of RTV and TPV of the BD6TB9RI virus was lower than for the 

chimeric BD6TBRINL and NL4-3 viruses shown by a shift to the left of the dose-

response curves (Fig. 21). The dose-response curves of RTV and TPV of 

theBD6TB9RINL chimera which contained the PR-RT fragment from NL4-3, subtype B 

virus, was closely similar to NL4-3 (Fig. 21). To confirm the observed differences, a 

statistical analysis was performed to determine differences in IC50 values of RTV and 

TPV between these three viruses by using the Friedman test with Dunn’s multiple 

comparison post-test. The BD6TB9RI virus produced from the CRF02_AG plasmid 

showed no significant difference in IC50 to both PIs compared to chimeric BD6TB9RINL 

and NL4-3 viruses (p>0.05). 
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Fig. 21 Phenotypic drug susceptibility to the PR and RT inhibitors representing CRF02_AG wild type virus (BD6TB9RI, black solid line), CRF02_AG/subtype B 
chimera (BD6TB9RINL, dash line) and subtype B virus (NL4-3, gray solid line). The dose-response curves were obtained by plotting the inhibition percentage versus 
the log10 of drug concentration. The IC50 was calculated by nonlinear regression curve. The error bars indicated means ± SEM. Changes in drug susceptibility were 
determined by dividing the IC50 of test virus by the IC50 of the wild type (WT). 
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Table 7.  Drug susceptibility fold change of the CRF02_AG/subtype B chimera (BD6TB9RINL), subtype B (NL4-3) viruses in comparison 

to CRF02_AG wild type virus (BD6TB9RI) 
 

    Fold change in susceptibility  (IC50 for test virus/IC50 for control virus) a 

 Resistance mutations detected by genotypic test PIs    NRTIs   NNRTIs 

Sample PIs NRTIs NNRTIs LPV IDV DRV RTV TPV   AZT d4T 3TC ddI FTC TDF   NVP EFV ETR 

BD6TB9RINLb none none none 2.5 1.1 1.1 3.2 2.2  0.7 1.1 1.1 1.0 1.0 1.6  2.4 1.6 1.3 

                    

NL4-3c none none none 1.9 1.4 1.1 2.7 2.9   1.7 1.5 0.7 1.2 0.6 2.0   1.2 1.5 1.2 

 
a = fold change was calculated as the IC50 ratio between the sample and the control virus (BD6TB9RI) that was tested in the same experiment; b = Chimeric virus 
[plasmid contained PR and RT region from pNL4-3 (subtype B) and backbone from pBD6 (CRF02_AG)]; c = Subtype B virus. 
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3.3.3 Phenotypic drug susceptibility testing with patient-derived  

 recombinant viruses 
3.3.3.1 General information of patient-derived recombinant viruses 

 For phenotypic drug susceptibility assays, the sample set was collected from 75 

HAART-exposed HIV-infected patients presenting at CHUYO in Ouagadougou from 

2004-2006 (Tebit et al., 2008). The range of CD4 counts was between 2-469 cell/mm3 

and viral load ranged from 1 x 103 to 4 x 106 copies/ml (Tebit et al., 2008). Recombinant 

viruses in this present study were generated by cloning a 1.3 kb PR-RT fragment re-

amplified from five patient-derived PCR products used previously for genotypic assays 

(Tebit et al., 2008) into the pBD6TB9RI plasmid backbone. These five selected patients 

were infected with HIV-1 CRF02_AG, received different antiretroviral drugs regimens 

and showed distinct resistance mutation patterns (Table 8).  

 Individual clones carrying different drug resistance mutations were randomly 

picked from recombinant libraries. Sequence analyses confirmed that there were no 

differences in the PR and RT mutations between the original patient samples and the 

corresponding recombinant viruses (Table 9). 
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Table 8.  Clinical data and drug resistance mutation patterns derived from genotypic analysis 
 

         
 

Drug resistance mutations by sequence analysis (genotypic assays) 

ID Sex Age VLa CD4b 
Current 
regimen 

Past  
regimen Subtype Resistance status PIs NRTIs NNRTIs 

120 

 

F 

 

53 

 

61,996 

 

5 

 

3TC-AZT-IDV 

 

none 

 

CRF02.AG 

 

+/-PI, +/-NRTI 

 

 

M46I, L76V, I84V, 

L10I, E35G, Q58E 

M41L, E44D, D67N, V118I, 

M184V, L210W, T215Y, K219N 

K101Q, E138K 

 

            

127 M 47 333,000 173 AZT- ddI none CRF02.AG +/-NRTI none M41L, T215Y none 

            

228 

 

M 

 

9 

 

25,000 

 

59 

 

3TC-d4T-NVP 

 

none 

 

CRF02.AG 

 

+/-NRTI,+/-NNRTI 

 

none 

 

K65R, T69D, K219R 

 

K101Q, Y181C, Y188CY, 

G190A 

            

273 

 

M 

 

-  

 

43,000 

 

-  

 

-  

 

none 

 

CRF02.AG 

 

+/-NRTI 

 

none 

 

M41L, M184V, L210W,  

T215Y, K219W 

A98G 

 

            

41 
 

F 
 

41 
 

1,120,000 
 

22 
 

3TC-d4T-IDV 
 

none 
 

CRF02.AG 
 

+/-PI, +/-NRTI,+/-NNRTI 
 

M46I, I84V, L10I 
 

M41l, D67HN, T69NT, M184V, 
T215Y 

K103KN 
 

            
 
a = viral load (copies/ml); b = cells/mm3; PI = protease inhibitors; NRTI = nucleoside reverse transcriptase inhibitors; NNRTIs = non-nucleoside reverse transcriptase 
inhibitors; Bold = mutations at position associated with drug resistance; Italic = minor resistance mutations to protease inhibitors. 
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Table 9.  Comparison of amino acid substitutions in PR and RT between original patient samples and the corresponding recombinant viruses 
 

  Amino acid at the following positions 
Sample Source PIs  NRTIs  NNRTIs 
    L10 E35 M46 Q58 L76 I84 L89   M41 E44 K65 D67 T69 V118 M184 L210 T215 K219  A98 K101 K103 E138 Y181 Y188 G190 

120 Originala I G I E V V   L D  N  I V W Y N   Q  K    

 Recombinantb  I G I E V V   L D  N  I V W Y N   Q  K    
                            

127 Originala         L        Y          

 Recombinantb         L        Y          

                            

228 Originala           R  D     R   Q   C C/Y A 
 Recombinantb          R  D     R   H   C  A 
                            

273 Originala       V  L      V W F W  G       

 Recombinantb       V  L      V W F W  G       

                            

41 Originala I  I  V V   L   H/N N/T  V  Y     K/N     

 Recombinantb  I  I  V V   L   N   V  Y     N     

                                                        
 

Bold = mutations in positions associated with resistance to protease (PIs) and reverse transcriptase (NRTI, NNRTI) inhibitors; Italic = minor resistance mutations to protease 
inhibitors; a = original patient plasma samples used for genotypic assay (direct sequencing); b = individual clones randomly selected from recombinant libraries (clonal 
analyses). 
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 3.3.3.2 Phenotypic drug susceptibility profiles of patients-derived 

 recombinant  viruses  

 The phenotypic drug susceptibilities of these recombinant viruses carrying 

patient-derived PR-RT coding sequences were analyzed as outlined in section 3.3.3.1. 

Representative results of susceptibility folds change are presented in Table 10 and are 

explained below. 

 

Table 10.  Drug susceptibility fold change of the patient-derived recombinant viruses in 

comparison to CRF02_AG wild type virus (BD6TB9RI) 
 
 Fold change in susceptibility  (IC50 for test virus/IC50 for control virus)a 
 PIs    NRTIs   NNRTIs 

Sample LPV IDV DRV RTV TPV   AZT d4T 3TC ddI FTC TDF   NVP EFV ETR 

BD6TB9RI120b 31.4 29.8 1.8 14.3 1.8  72.5 5.0 >500 4.5 >100 7.3  1.7 0.9 1.4 

                 

BD6TB9RI127b 5.3 1.1 1.1 2.3 1.2  9.6 2.3 2.0 1.6 1.7 2.9  0.7 0.3 0.2 

                 

BD6TB9RI228b 0.4 0.4 0.4 0.3 0.1  0.3 3.1 29.8 4.9 24.6 4.6  >125 416.9 12.8 

                 

BD6TB9RI273b 0.9 0.5 0.9 0.6 0.3  62.6 2.0 >150 1.6 >100 2.3  0.2 0.2 0.5 

                 

BD6TB9RI41b 33.2 7.3 0.9 6.0 0.2  2.7 2.1 >300 3.3 >100 2.1  48.5 12.0 0.2 

 
a = fold change was calculated as the IC50 ratio between the sample and the control virus (BD6TB9RI) that 
was tested in the same experiment; b = patient-derived recombinant viruses. 
 
 

 (i) BD6TB9RI120; the patient who provided this sample had been treated with the 

combination of 3TC, AZT and IDV and harbored the mutations with highly decreased 

susceptibility to PIs and NRTIs (Table 8). The susceptibility profile obtained from this 

recombinant virus is in agreement with the therapeutic history (Fig. 22). This recombinant 

virus was resistant to three protease inhibitors; LPV (31-fold), IDV (30-fold) and RTV 

(14.3-fold) (Fig. 22; Table 10) but was susceptible to protease inhibitors; DRV (1.8-fold) 

and TPV (1.8-fold) (Table 10). Due to the accumulation of multi-nRTI resistance mainly 

with thymidine analogue-associated mutations (TAMs) such as M41L, D67N, L210W,  

and T215Y which affect all currently approved NRTIs, this recombinant virus was highly 

resistant to all tested NRTIs in this experiment (Fig. 22; Table 10). The amino acid 
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substitutions at positions K101Q and E138K in RT gene which were earlier reported to 

cause low level resistance to NNRTIs by genotypic testing were observed although this 

patient was NNRTIs naïve (Table 10). However, this recombinant virus was shown to be 

susceptible to NNRTIs by phenotypic testing (Fig. 22; Table 10). 
 

 (ii) BD6TB9RI127; this sample was from a patient who received a combination of 

AZT and ddI and harbored mutations to NRTIs (Table 8). Low level resistance to AZT 

accompanied by d4T cross resistance and ddI accompanied by TDF cross resistance was 

detected by the phynotypic assay (Fig. 23; Table 10). 
 

 (iii) BD6TB9RI228; was obtained from a patient treated with 3TC, d4T and NVP 

combination regimen (Table 8). An increase in fold resistance was detected in all tested 

NRTIs (Fig. 24; Table 10). However, this recombinant virus was susceptible to AZT due 

to the presence of the K65R mutation which causes AZT hypersusceptibility (Fig. 24; 

Table 10). Several NNRTIs resistance mutations e.g. K101Q, Y181C, Y188C/Y, and 

G190A were observed due to the NVP-exposure. These mutations induced cross 

resistance to all NNRTIs including ETR, the newly approved NNRTI (Fig. 24; Table 10). 

 

 (iv) BD6TB9RI273; this sample was from a patient with unavailable treatment 

history (Table 8). This recombinant virus carried several mutations to NRTIs such as 

M184V and three TAMs: M41L, L210W, and T215Y when analyzed genotypically. As 

expected, the intermediate to high level resistance to NRTIs was detected (Fig. 25; Table 

10). This recombinant virus remained susceptible to NNRTIs, although the substitution at 

position A98G which has been shown to possibly affect ETR susceptibility (Johnson et 

al., 2008) was detected (Fig. 25; Table 10). One minor resistance mutation to PIs, L98V, 

was found but did not alter the susceptible to PIs used in this experiment (Fig. 25; Table 

10). 
 

 (v) BD6TB9RI41; this sample was derived from a patient with documented use of 

the combination therapy of 3TC, d4T and IDV (Table 8). The phenotypic assay 

demonstrated its resistance to three PIs; LPV (33-fold), IDV (7-fold) and RTV (6-fold) 

(Fig. 26; Table 10). In contrast, this recombinant virus was susceptible and 

hypersusceptible to the PIs, DRV (0.9-fold) and TPV (0.2-fold) respectively (Fig. 26; 

Table 10). High level resistance as well as cross resistance to NRTIs was detected which 

is in agreement with the patient’s therapeutic history (Fig. 26; Table 10). The mutation 
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K103N, which confers high level resistance to EFV and NVP but not ETR (Jonnson et al., 

2008) was detected in this recombinant virus despite the patient’s non exposure to 

NNRTI. The resistance profile showed an intermediate to high level resistance to EFV 

(12-fold) and NVP (49-fold), but remained susceptible for ETR (0.2-fold) (Fig. 26; Table 

10).  
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Fig. 22 Phenotypic drug susceptibility to PR and RT inhibitors representing the CRF02_AG wild type virus (BD6TB9RI, solid line) and the patient-derived PR-RT 
recombinant virus (BD6TB9RI120, dash line). The dose-response curves were obtained by plotting the inhibition percentage versus the log10 of drug concentration. The IC50 
was calculated and is illustrated by a nonlinear regression curve. The error bars indicate means ± SEM. Changes in drug susceptibility were determined by dividing the IC50 
of the test sample by the IC50 of the wild type (WT). 
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Fig. 23 Phenotypic drug susceptibility to PR and RT inhibitors representing the CRF02_AG wild type virus (BD6TB9RI, solid line) and the patient-derived PR-RT 
recombinant virus (BD6TB9RI127, dash line). The dose-response curves were obtained by plotting the inhibition percentage versus the log10 of drug concentration. The IC50 
was calculated and is illustrated by a nonlinear regression curve. The error bars indicate means ± SEM. Changes in drug susceptibility were determined by dividing the IC50 
of the test sample by the IC50 of the wild type (WT). 
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Fig. 24 Phenotypic drug susceptibility to PR and RT inhibitors representing the CRF02_AG wild type virus (BD6TB9RI, solid line) and the patient-derived PR-RT 
recombinant virus (BD6TB9RI228, dash line). The dose-response curves were obtained by plotting the inhibition percentage versus the log10 of drug concentration. The IC50 
was calculated and is illustrated by a nonlinear regression curve. The error bars indicate means ± SEM. Changes in drug susceptibility were determined by dividing the IC50 
of the test sample by the IC50 of the wild type (WT). 
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Fig. 25 Phenotypic drug susceptibility to PR and RT inhibitors representing the CRF02_AG wild type virus (BD6TB9RI, solid line) and the patient-derived PR-RT 
recombinant virus (BD6TB9RI273, dash line). The dose-response curves were obtained by plotting the inhibition percentage versus the log10 of drug concentration. The IC50 
was calculated and is illustrated by a nonlinear regression curve. The error bars indicate means ± SEM. Changes in drug susceptibility were determined by dividing the IC50 
of the test sample by the IC50 of the wild type (WT).  
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Fig. 26 Phenotypic drug susceptibility to PR and RT inhibitors representing the CRF02_AG wild type virus (BD6TB9RI, solid line) and the patient-derived PR-RT 
recombinant virus (BD6TB9RI41, dash line). The dose-response curves were obtained by plotting the inhibition percentage versus the log10 of drug concentration. The IC50 
was calculated and is illustrated by a nonlinear regression curve. The error bars indicate means ± SEM. Changes in drug susceptibility were determined by dividing the IC50 
of the test sample by the IC50 of the wild type (WT).  
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 3.3.4 Reproducibility of the phenotypic drug susceptibility assay 
 Drug susceptibility experiments were repeated three to four times to evaluate the 

reproducibility of the IC50 for each drug in a control virus (BD6TB9RI) and recombinant 

viruses (five patient-derived recombinant viruses and one chimeric BD6TB9RINL virus). 

Each assay was performed in triplicate. The mean of IC50s, standard error of mean (SEM) 

and coefficient of variation (CV) was calculated. As demonstrated in Table 11, the 

respective phenotypic resistance profiles can be reproducibly generated in these 

recombinant viruses. 
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Table 11. Reproducibility of drug susceptibility assays with CRF02_AG based plasmid backbone  
 

  PIs (nM)  NRTIs (μM)  NNRTIs (nM) 

Sample and Statistics 
a

 LPV IDV DRV RTV TPV   AZT d4T 3TC ddI FTC TDF   NVP EFV ETR 

BD6TB9RIb Mean IC50 1.78 15.30 1.07 11.37 137.97  0.07 2.54 1.16 3.75 0.45 1.44  80.42 1.00 1.18 

 SEM 0.13 2.03 0.02 0.65 27.36  0.004 0.25 0.12 0.63 0.04 0.12  1.83 0.24 0.11 

 CV 0.07 0.13 0.02 0.06 0.02  0.05 0.10 0.10 0.17 0.09 0.08  0.02 0.24 0.10 

BD6TB9RI120c Mean IC50 55.75 450.47 1.86 164.87 221.10  5.18 12.25 >500 15.08 >50 10.73  141.00 0.90 1.62 

 SEM 3.77 52.66 0.26 33.90 12.71  0.80 2.89 ND 1.78 ND 2.82  19.67 0.22 0.23 

 CV 0.07 0.12 0.14 0.21 0.06  0.15 0.24 ND 0.12 ND 0.26  0.14 0.24 0.14 

BD6TB9RI127c Mean IC50 9.06 17.32 1.14 26.36 136.70  0.67 5.44 2.16 5.61 0.75 4.14  52.55 0.28 0.23 

 SEM 1.22 2.41 0.09 0.62 23.20  0.15 0.97 0.56 0.15 0.06 0.32  13.12 0.04 0.05 

 CV 0.13 0.14 0.08 0.02 0.17  0.23 0.18 0.26 0.03 0.08 0.08  0.25 0.14 0.23 

BD6TB9RI228c Mean IC50 0.73 6.05 0.47 3.52 9.26  0.02 7.53 34.47 16.39 11.33 6.54  >10,000 384.30 15.10 

 SEM 0.09 0.61 0.06 0.32 1.04  0.005 0.94 6.67 4.24 4.13 0.32  ND 64.94 1.74 

 CV 0.12 0.10 0.14 0.09 0.11  0.21 0.13 0.19 0.26 0.36 0.05  ND 0.17 0.12 

BD6TB9RI273c Mean IC50 1.58 7.83 0.95 6.38 30.80  4.52 4.99 >150 5.53 >50 3.43  14.93 0.21 0.63 

 SEM 0.09 2.81 0.02 0.38 10.32  1.22 0.72 ND 1.53 ND 0.98  0.50 0.04 0.22 

 CV 0.06 0.36 0.02 0.06 0.33  0.27 0.14 ND 0.28 ND 0.28  0.03 0.20 0.35 

BD6TB9RI41c Mean IC50 82.19 119.03 0.95 67.81 30.74  0.14 2.95 >500 15.67 >50 2.41  2,982.67 8.86 0.22 

 SEM 7.28 3.26 0.13 1.62 21.53  0.03 0.59 ND 4.20 ND 0.44  457.40 1.74 0.02 

 CV 0.09 0.03 0.13 0.02 0.7  0.25 0.20 ND 0.27 ND 0.18  0.15 0.20 0.09 
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Table 11. Reproducibility of drug susceptibility assays with CRF02_AG based plasmid backbone (continued) 
 

  PIs (nM)  NRTIs (μM)  NNRTIs (nM) 

Sample and Statistics 
a

 LPV IDV DRV RTV TPV   AZT d4T 3TC ddI FTC TDF   NVP EFV ETR 

BD6TB9RINLd Mean IC50 4.34 16.03 1.21 35.78 248.00  0.05 2.60 1.18 3.38 0.44 2.21  193.33 1.40 1.59 

 SEM 0.66 0.54 0.03 6.31 7.98  0.007 0.60 0.37 0.12 0.04 0.42  16.69 0.16 0.19 

 CV 0.15 0.03 0.03 0.18 0.03  0.14 0.23 0.31 0.04 0.10 0.19  0.09 0.11 0.12 

NL4-3e Mean IC50 3.40 19.68 1.18 30.77 313.80  0.12 3.57 0.76 4.25 0.28 2.92  98.32 1.28 1.35 

 SEM 0.48 3.32 0.04 4.51 44.94  0.02 0.65 0.10 0.48 0.03 0.24  2.06 0.04 0.13 

 CV 0.14 0.17 0.03 0.15 0.14  0.16 0.18 0.13 0.11 0.12 0.08  0.02 0.03 0.10 
 

a = Drug susceptibility experiments were repeated at least 3 times to evaluate the IC50 for each drug from control and sample viruses. The mean IC50s, standard error of mean 
(SEM) and coefficient of variation (CV) were calculated; b = control virus (CRF02_AG); c = patient-derived recombinant viruses; d = chimeric virus [plasmid contained PR 
and RT region from pNL4-3 (subtype B) and backbone from pBD6 (CRF02_AG)]; e = subtype B virus; ND = not done. 
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4 Discussion 

 The present study provides a comprehensive analysis of drug resistance mutations 

of non-subtype B HIV-1, particularly CRF02_AG strain which is circulating in Burkina 

Faso. The importance of this study relates to the genotypic and phenotypic 

characterization of drug resistance mutation variants. The genotypic assay was performed 

by two different methods, namely; direct sequencing and clonal analysis, to determine the 

development of resistance mutations as well as the persistence and distribution of 

resistance variants in HIV-1 infected individuals. For the phenotypic assay, the plasmid 

backbone from the CRF02_AG subtype was generated. This tool would greatly facilitate 

the study of the antiretroviral drugs response of CRF02_AG variant. Overall, this study 

gives an insight into genetic characteristics of CRF02_AG strain which provides useful 

information and better understanding about development of drug resistance mutations and 

antiretroviral drug response in HIV-1 non-subtype B. 

 

 

4.1 Absence of enfuvirtide (T-20) -associated resistance 

mutations among drug naïve Burkinabes 
 Resistance mutations to T-20 are mediated by amino acid substitutions within 

HR1 at positions 36-45 including G36D/S, G36V/E, V38A/E/M, Q40H, N42T, and N43D 

(Marcelin et al., 2004; Jonhson et al., 2008). Among 38 drug naïve patients in Burkina 

Faso, no amino acid mutation was found in the highly conserved three amino acid motif 

at codons 36-38 (GIV) that are important determinants of viral susceptibility to T-20 

(Aghokeng et al., 2005). This finding confirms a previous study that natural T-20 

genotypic resistance is rare in drug naive individuals (Roman et al., 2003). The L54M and 

Q56K polymorphisms which were recently found to cause approximately 5-fold reduced 

sensitivity to inhibition by T-20 (Chinnadurai et al., 2005; Sen et al., 2009) were observed 

in 38% and 75% of all CRF02_AG samples, respectively. The N42S polymorphism 
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which was found in HR1 sequences from 36 patients in this study is subtype-specific and 

polymorphism at this position is reported to be associated with T-20 hypersusceptibility 

(Hudelson et al., 2009; Roman et al., 2003). In addition, the N126K and S138A mutations 

in HR2 which contribute to the reduction of T-20 susceptibility (Lu et al., 2006; Xu et al., 

2005) were also detected from the study samples. Other mutations, such as N140I, which 

provide immunologic gain (Sen et al., 2009) were found in some samples in this 

study.There were some polymorphisms observed in the HR1 and HR2 regions among 

patient sequences whose phenotypic implications are still unknown. It needs to be further 

determined whether these polymorphisms lead to phenotypic changes in these CRFs.  

 In summary, the lack of any known T-20 resistance mutations among the HIV 

subtypes and CRFs circulating in Burkina Faso implies that this drug has not been 

introduced in this area and it could be used in patients failing other drug regimens. 

Detailed phenotypic studies using primary isolates from this country will be useful. 

 

 

4.2 NVP associated resistance mutations are prevalent and 

persist in plasma and breast milk 
 This study demonstrates the presence and persistence of NVP-associated 

resistance mutations as well as the compartmentalization of HIV-1 population in paired 

plasma and breast milk or breast milk cells from 17 NVP-naïve and -exposed women 

from Nouna, Burkina Faso. Genetic analyses of these patients’ sequences by direct 

sequencing and clonal analysis provide an insight into the distribution pattern of HIV 

variants in these compartments.  

 In this present study, HIV infected breast feeding women in Nouna, a rural area of 

Burkina Faso, were infected mostly with CRF02_AG (64%) but also included 

CRF06_cpx (35%). This observation confirms the co-dominant distribution of 

CRF02_AG and CRF06_cpx in this area (Tebit et al., 2006). The co-dominant circulating 

between CRF02_AG and CRF06_cpx was also previously reported in Bobo-Dioulasso in 

Burkina Faso (Manigart et al., 2004) and in Niger, the neighboring country of Burkina 

Faso (Mamadou et al., 2002). In contrast to rural area, the CRF06_cpx was reported as 

the predominant strain in Ouagadougou, the capital city of Burkina Faso (Ouedraogo-

Traore et al., 2003). 
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 4.2.1 Detection of NVP-associated resistance mutations by direct 

 sequencing  and clonal analysis 
 Direct PCR sequencing or population-based sequencing can only identify variants 

that constitute more than 20% of the virus population (Palmer et al., 2005, 2006a). This 

method is therefore not sensitive enough to detect minor variants that harbor resistance 

mutations. Several studies have shown that minor drug-resistant variants that are not 

detected by direct sequencing are clinically relevant and often responsible for the 

virological failure of a new antiretroviral treatment regimen (Jourdain et al. 2004; Palmer 

et al. 2006b). By using direct sequencing, NVP resistance mutations were detected in 8% 

of infected mothers in the study, similar to the range reported from previous studies 

(Jourdain et al., 2004; Cunningham et al., 2002; Eshleman et al., 2004). This, however, 

increased to 46% by clonal analysis, in accordance with earlier studies confirming that a 

higher prevalence of resistance mutations could be detected by clonal analysis (Becquart 

et al., 2002, 2007; Kassaye et al., 2007).  

 

 4.2.2 Development and persistence of drug resistance mutations 

 among NVP-exposed women 
 Several studies have reported the development of NVP resistance mutations 

within several weeks after SD-NVP exposure in patients infected with different HIV-1 

subtypes (Eshleman et al., 2001; Jackson et al., 2000; Lee et al., 2005). In this study, the 

development of NVP resistance mutations was observed in some patients within three to 

ten days after SD-NVP exposure (Table 4). However, because the pre SD-NVP exposure 

samples were not sequenced, the possibility that some of the mutations existed due to the 

transmission of resistant variants before NVP exposure cannot be excluded. Such rapid 

development of resistance mutations was also previously detected within ten days 

postpartum from patients infected with CRF01_AE in Thailand (Jourdain et al., 2004).  

 The development of NVP resistance mutations could be due to several factors and 

has been extensively reported in prevention of HIV mother-to-child transmission 

programs in Africa (Eshleman et al., 2001; Jackson et al., 2000). Firstly, the long half-life 

of nevirapine which allows a prolonged sub-therapeutic level providing long term 

selective pressure for the emergence of resistance strains (Mirochnick et al., 1998). 

Secondly, a single mutation K103N (from AAA to AAT or AAC) or Y181C (from 

TAT/TAC to TGT/TGC) can cause a high level resistance to NVP. Finally, the 
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possibility that minor variants harboring these mutations are likely to be present in 

undetectable levels in infected women prior to NVP administration (Havlir et al., 1996). 

 In this study, the K103N mutation was more frequently selected compared to the 

Y181C mutation (Table 4). This selection may reflect the fitness advantage of K103N 

over Y181C (Richman et al., 1994; Eshleman et al., 2001). Moreover, because of the 

slight reduction of the replicative capacity of K103N, this variant is not completely 

overgrown by the wild type variant in the absence of NVP selective pressure (Hance et 

al., 2001)  and may replicate at low frequencies (Nicastri et al., 2003) or preserved 

latently in reservoirs (Briones et al., 2006). At twelve months post SD-NVP exposure, the 

K103N variant was still detectable by clonal analysis but not by direct sequencing (1 of 

15 plasma clones). This is consistent with previous studies which reported the persistence 

of K103N variants more than one year post NVP administration (Flys et al., 2005; Palmer 

et al., 2006b). Early reports on the effects of SD-NVP raised concerns that the persistence 

of NVP-related mutations could affect future treatment with NNRTIs or even a 

subsequent administration of SD-NVP in a second pregnancy. However, studies of 

Jourdain et al. (2004) and Lockman et al. (2007) suggest that given enough time between 

the initial NVP exposure and the subsequent administration, these resistance variants may 

fade out. 

 Beside the NVP resistance mutations, NRTIs resistance mutations were also 

detected in this study. The observation of two NRTI resistance mutations, K65R and 

M184I, from two NVP-exposed women confirms our previous findings that these patients 

might have been exposed to other antiretroviral drugs or misreported their therapeutic 

histories, a common phenomenon in Burkina Faso (Tebit et al., 2009). 

 

 4.2.3 Prevalence of NVP-associated resistance mutations among 

 naïve  patients 
 The prevalence of resistance mutations to all classes of antiretroviral drugs in 

HIV-1 naïve patients varies between 8-20% (Little et al., 2002; Oette et al., 2006). In a 

previous study among drug naïve patients in Burkina Faso, we found a high prevalence of 

NRTIs and NNRTIs resistance mutations of 10.6% and 6.1% respectively (Tebit et al., 

2009). Although no K103N or Y181C resistance mutations were detected among drug 

naïve patients in the present study, other NVP resistance mutations such as V106A, 

V108I as well as E44D mutation which causes low level resistance to NRTIs were also 
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detected in naïve patients (Table 4). This finding suggests that resistance variants are 

circulating and may be transmitted to drug naïve patients in this area.  

 

 4.2.4 Compartmentalization of virus populations in plasma and 

 breast milk 

 Compartmentalization occurs when a small population of variants is partially 

restricted from entering or exiting an anatomical site (Nickle et al., 2003). Moreover, 

difference of target cells, tissue specific and immune pressure in distinct anatomical sites 

may contribute to the independent selection of a variant population for further replication 

in such anatomical compartments (Becquart et al., 1999; Kemal et al., 2003; McKeating 

et al., 1989). Previous studies demonstrated contradictory results of HIV-1 

compartmentalization in plasma and breast milk (Becquart et al., 2002, 2007; Henderson 

2004). In this study, three different distribution patterns of viral populations between 

plasma and breast milk or breast milk cells were observed from 22 paired samples 

namely; compartmentalized (11 of 22 cases), partial-compartmentalized (1 of 22 cases), 

and non-compartmentalized (10 of 22 cases) (Fig. 14 and 15).  

 Compartmentalization in breast milk can be influenced by breast infections such 

as mastitis or abscesses. Inflammatory chemokine secretion in cases of mastitis or abscess 

may impair the blood-mammary gland permeability and lead to the migration of virus 

populations from plasma into the breast milk compartment or vice versa (Becquart et al., 

2007; Pillay et al., 2000). Furthermore, mastitis has been reported to increase the virus 

load of breast milk (Semba et al., 1999). Unfortunately, patient clinical data about the 

breast pathology at the sampling time were not available; therefore, it cannot be stated 

categorically, if compartmentalization was influenced by mastitis or other breast 

infections.  

 The viral load in breast milk was significantly lower than in plasma (Table 3), a 

finding which is in agreement with previous studies which have shown that some 

secretions in breast milk, such as lactoferrin or the local humoral immune response, may 

inhibit virus replication or affect the viability of free virus particles and, therefore, 

contribute to the low virus copies in breast milk (Becquart et al., 1999; Koulinska et al., 

2006; Pillay et al., 2000; Viani et al., 1999) 

 Breast milk from HIV infected women contains both cell-free virus particles and 

cell-associated virus. Transmission of HIV-1 during early stage of lactation is frequently 
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associated with cell-associated virus whereas transmission of cell-free virus frequently 

occurs at later stages of lactation mostly after nine months postpartum (Koulinska et al., 

2006). To characterize the difference of virus population within breast milk, the viral 

RNA reflecting the cell-free virus and viral DNA reflecting the cell-associated virus were 

amplified from five patients. The viral RNA in breast milk revealed a closer genetic 

relationship with virus in plasma, but clearly distinct from viral DNA in breast milk in 

four of five patients. As observed previously by Becquart and his colleagues (2002, 

2007), genetic difference between viral RNA and DNA in breast milk indicates that cell-

free virus was not produced by the majority of infected cells in breast milk. This may be 

caused by differences of cellular composition in blood and breast milk in which epithelial 

cells are the predominant cell population (Becquart et al., 2007). These cells are not 

highly permissive to HIV infection and produce low copies of virus in vitro (Toniolo et 

al., 1995). Furthermore, most of infected cells in milk are found to be latently infected 

with transiently silent viruses (Boulerice et al., 1990). Thus, it is possible that free virus in 

breast milk originated from two major cell populations, macrophages and lymphocytes 

which could be infected locally at sub-mucosal sites within the mammary gland (Becquart 

et al., 2002, 2007) or migrated from other peripheral mucosal sites (Kourtis et al., 2003). 

Moreover, a study by Lee et al. (2005) showed that viruses from the left and right breasts 

differed in the resistance mutations which they carried suggesting independent evolution 

and compartmentalization. This difference in drug resistance mutations might be 

influenced by several factors such as cytokine secretion or pharmacokinetics of a 

particular drug in individual compartment (Kepler and Perelson, 1998). 

 In conclusion, compartmentalization of virus populations occurs but is not a 

dominant phenomenon between plasma and breast milk.  

 

 4.2.5 HIV diversity and divergence during viral evolution in 

 plasma and breast milk  
 Previous studies have reported a lower viral diversity of genital tract variants 

compared to those from blood plasma (De Pasquale et al., 2003; Ellerbrock et al., 2001). 

In this study, diversity of the HIV-1 population was significantly less in breast milk and 

breast milk cells than in plasma (Fig. 17; Table 5). Taken together, these findings indicate 

the restriction of the pool of HIV-1 quasispecies undergoing active replication within the 

mammary compartment. In contrast, HIV-1 quasispecies circulating in plasma originate 
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from virus replication occurring at numerous sites of lymphoid tissues throughout the 

body (Cohen et al., 1995; Erice et al., 2001). 

 The viral divergence in plasma originating from six patients at multiple time 

points post NVP exposure were mostly similar, and showed no significant difference 

(Table 6). In contrast, there was a significantly divergent virus population in breast milk 

(1 case, Table 6) and breast milk cells (1 case, Table 6). Such differences could be due to 

local factors such as cell composition (Becquart et al., 2007), anti-viral substances (Swart 

et al., 1996) or local specific immunity (Becquart et al., 1999) as well as 

pharmacokinetics of antiretroviral drug concentration in mammary gland which may 

differ markedly from the systematic compartment (Bennetto-Hood et al., 2007). 

Alternatively, this could be due to changes in the cellular and immune environment 

overtime in maternal milk (Koulinska et al., 2006). Thus, these different factors in 

individual compartments could have acted as a driving force influencing the viral 

divergence within such compartments. 

 

 

4.3 Phenotypic characterization of resistance mutations in 

CRF02_AG plasmid backbone 

 Treatment with highly active antiretroviral therapy (HAART) has significantly 

reduced the rate of mortality and disease progression of HIV-1 infected patients. 

Selection for HIV-1 variants with decreasing drug susceptibility caused by mutations in 

the viral protease and reverse transcriptase represents the major reason of treatment 

failure (Perrin and Telenti, 1998). Therefore, resistance testing is recommended to guide 

the choice of more efficacious drug regimens after the first or multiple treatment failure 

(Hirsch et al., 2003) or at the initiation of therapy in drug naïve patients at risk of 

infection with resistant virus (Little et al., 2002). Current methods for the detection of 

drug resistance include genotypic and phenotypic assays. Although both methods are of 

clinical utility, genotypic and phenotypic assays have multiple advantages and 

disadvantages. Genotypic assays are relatively rapid but difficult to interpret when 

complex mutational patterns, cross-resistance, or resistance reversal are identified 

(Gingeras et al., 1996, Hertogs et al., 1998). On the other hand, phenotypic test measure 

directly the ability of HIV to grow in the presence of each antiviral drug. Thus, 

phenotypic testing can provide direct evidence of resistance including information on 
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cross-resistance, multidrug resistance, or resistance reversal (Paolucci et al., 2003; Ross et 

al., 2001). However, phenotypic assay which used the viruses derived directly from the 

patient by cocultivation methods were both difficult to perform and time consuming 

(Japour et al., 1993). The development of the recombinant virus assay (Kellam and 

Larder, 1994) demonstrated the way for rapid, reproducible, and large scale phenotypic 

analysis of drug resistance. Recombinant viruses are generated by amplification of patient 

derived protease-reverse transcriptase (PR-RT) sequences which are then cloned or 

introduced into a PR-RT-deleted provirus backbone either by homologous recombination 

(Hertogs et al., 1998) or direct cloning (Garcia-Perez et al., 2007; Petropoulos et al., 

2000).  

 

 4.3.1 Effect of CRF02_AG plasmid backbone on susceptibility to 

 antiretroviral drugs 

 Previously, the provirus backbone used for recombinant viral system was 

constructed based on HIV-1 subtype B (Garcia-Perez et al., 2007; Hertogs et al., 1998; 

Petropoulos et al., 2000) which dominates in developed countries, although this subtype 

represents only a small fraction of global HIV-1 infection (Osomanov et al., 2002). The 

current epidemic of HIV-1 infection in African countries is dominated by non-B subtype 

(Janssens et al., 2000; Spira et al., 2003). This study outlines the phenotypic aspects of a 

recombinant viral assay developed by generating a CRF02_AG proviral plasmid 

backbone (pBD6TB9RI) based on the CRF02_AG subtype which has been previously 

reported as one of the dominant circulating HIV-1 strains in Burkina Faso (Tebit et al., 

2006). CRF02_AG had also been previously reported to have a higher replicative fitness 

compared to parental subtypes A and G (Njai et al., 2006; Konings et al., 2006). 

Phenotypic assays using a backbone with similar genetic background may reveal useful 

information about antiviral drug susceptibility in non-subtype B strains. To investigate the 

effect of proviral backbone on antiviral drug response, a chimeric virus carrying the PR-

RT fragment from subtype B, pNL4-3 was generated. The result showed that similar drug 

susceptibility profiles to RTIs (Fig. 21; Table 7) between control CRF02_AG virus 

derived from proviral backbone (pBD6TB9RI), chimeric CRF02_AG/subtype B virus 

(BD6TB9RINL), and subtype B (NL4-3) virus was observed as reported by Fleury et al. 

(2006). However, minor differences in drug susceptibility between control CRF02_AG 

virus, chimera, and subtype B virus were observed for some PIs (Fig. 21; Table 7), i.e. the 
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control CRF02_AG virus was shown to be more susceptible to RTV and TPV than 

subtype B virus (NL4-3) without statistical significance (Fig. 21; Table 7). This 

observation is in agreement with a previous study which reported a higher susceptibility 

to RTV and TPV in drug naïve patients infected with CRF02_AG than subtype B 

(Abecasis et al., 2006). 

 

 4.3.2 Phenotypic drug susceptibility testing with patient-derived  

 recombinant viruses 
 In the present study, patient-derived sequences were re-amplified from frozen 

PCR products previously used for genotypic testing and were then incorporated into the 

pol-deleted CRF02_AG proviral backbone by direct cloning (Petropoulos et al., 2000). 

This method is highly efficient and reproducible compared to the relatively inefficient and 

random process of homologous recombination. Therefore, the recombinant viral system 

described here could provide both genotypic and phenotypic information from the same 

patient sample. Moreover, the comparison of the amino acid substitutions between 

original plasma samples previously used for genotypic assays and corresponding 

recombinant viruses demonstrated a nearly identical substitution patterns (Table 9). This 

observation suggests that in vitro phenotypic resistance pattern could reflect the resistance 

pattern of circulating viruses tested by genotypic assay (Hertogs et al., 1998).  

 Several studies have demonstrated the comparable in vitro susceptibility of non-B 

subtype viruses to most antiretroviral drugs (Shafer et al., 1999; Toni et al., 2002; Weidle 

et al., 2001). A good correlation was observed between resistance mutations patterns and 

the drug susceptibility profiles in cases of RT inhibitors in this study as well (Table 8 and 

10). In addition, most of the patient-derived recombinant viruses exhibited concordant PI 

susceptibility profiles and genotype (Table 8 and 10). However, some discordance 

between drug susceptibility and resistance mutations to some PIs was found in two 

patient-derived recombinant viruses (BD6TB9RI 120 and BD6TB9RI 41). These two 

recombinant viruses which harbor major resistance mutations to PIs were susceptible to 

DRV and TPV (Fig. 22 and 26; Table 8 and 10). Moreover, other two recombinant 

viruses (BD6TB9RI 228 and BD6TB9RI 273) with no major mutations to PIs were found 

to be hypersusceptible to TPV (Fig. 24 and 25; Table 8 and 10). Previous studies have 

shown that the resistance mutations to PI may differ between subtypes (Cane et al., 2001; 

Caride et al., 2001). Furthermore, some polymorphisms occurring at positions which are 
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not associated with subtype B resistance or do not present in subtype B, may alter the PI 

susceptibility in non-B subtypes (Abecasis et al., 2006; Fleury et al., 2006; Kantor and 

Katzenstein, 2003). Therefore the resistance mutations which are associated with PI 

resistance in subtype B as well as polymorphisms found in subtype B may not be 

applicable for some non-B subtypes. 

  

 4.3.3 Reproducibility of phenotypic drug susceptibility testing 
 In order to obtain better sensitivity and reproducibility of this phenotypic assay, 

the recombinant virus stocks generated from transfection were used to infect TZM target 

cells in presence or absence of antiviral drugs and viral replication was measured through 

luciferase activity 48 hours after infection. This strategy is more sensitive than HIV-gag 

p24 detection and less time is required to perform the recombinant viral assay compared 

to standard virus isolation from peripheral blood mononuclear cells which typically takes 

from 1 to 4 weeks (Tebit et al. 2002). This method also avoids selection of minority virus 

population (Garcia-Perez et al., 2007; Kusumi et al., 1992). Furthermore, the high level of 

reproducibility obtained from the present study (Table 11) suggests that this assay is able 

to distinguish minor differences in susceptibility to antiretroviral drugs. 

  

 

4.4 Future perspectives 
 Although clonal analysis provides a  sensitive means of detecting NVP-resistance 

variants, other more sensitive methods such as the oligonucleotide ligation assay-OLA 

(Troyer et al., 2008) and pyrosequencing have been applied (Le et al., 2009). All the 

paired breast milk and plasma samples used for this study are presently being analyzed by 

OLA and pyrosequencing to compare these viral quasispecies to those observed by 

normal sequencing. The point of interest will be the detection of low level K103N and 

Y181C mutations in plasma, breast milk and breast milk cells. Also, pyrosequencing is 

being used to analyze the C2-V3 of the envelope gene from these samples. These 

analyses will provide a clearer picture of the quasispecies population present in these 

compartments. Screening of minority populations in envelope is important for co-receptor 

based treatment regimens (CCR5 antagonists) which will definitely be introduced in 

Africa with time. 
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 The influx of antiretroviral therapy in Africa within the last few years has been 

substantial. This increase has been met with a rise in prevalence of drug resistance 

mutations among drug naïve HIV infected individuals. Unfortunately, the rise in 

treatment has not been equally met by an increase in infrastructure for resistance 

diagnosis. The future however, does not look completely bleak with the noticeable rise in 

the number of Sequencers in African countries following scale up in ART. Although 

genotypic analysis through sequencing will be easier to perform in this set up, the 

development of phenotypic methods as well as cheaper methods to monitor resistance in 

Africa is needed.  Phenotypic assays most often referred to as recombinant viral assays 

have been made based mostly on subtype B. By modifying a previously described 

CRF02_AG infectious molecular clone, we have been able to generate a CRF02_AG 

based vector which was used to create chimeric viruses by introducing PR and RT 

amplified directly from patient RNA. This method will be improved in the near future by 

modifying the CRF02_AG clone to suit the yeast recombination cloning method which is 

actually more efficient and represents the quasispecies present in a patient’s sample. We 

hope to extend this cloning strategy to include the envelope gene in order to facilitate 

detection of viral phenotype (CCR5 or CXCR4 using isolates) in patients who would be 

treated with receptor based regimens such as Enfuvirtide (T-20) or Maraviroc. Adapting 

the yeast cloning strategy will enable us to test several drug naïve sequences from both 

CRF02_AG and CRF06_cpx strains for their susceptibility against PR and RT inhibitors. 

Such studies will help explain the preliminary reports from our previous study which 

suggested that CRF06_cpx strains develop NRTIs drug resistance mutations especially 

TAMs faster than CRF02_AG strains. In brief, the CRF02_AG based recombinant assay 

will be useful in screening different new drugs and also testing for viral fitness. 
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Appendix 1  List of abbreviations 
 
3TC Lamivudine 

AZT Zidovudine 

AIDS Acquired Immunodeficiency Syndrome 

AMP ampicillin 

bp base pair 

BM breast milk 

BMc breast milk cells 

d4T Stavudine 

ddI Dideoxyinosine 

DMEM Dulbecco's modified eagle medium 

DMSO dimethylsulfoxide 

DNA desoxyribonucleic acid 

dNTPs deoxy-nucleoside-triphosphates 

ddNTPs dideoxy-nucleoside-triphosphate 

DRV Darunavir 

E. coli Escherichia coli 

EDTA ethylene-diamine-tetra-acetic acid 

ELISA enzyme-linked immunosorbent assay 

EFV Efavirenz 

env gene coding viral envelope glycoprotein 

ETR Etravirine 

FCS fetal calf serum 

FTC Emtricitabine 

Fig. figure 

gp41 glycoprotein 41 

h hour 

HAART highly active anti-retroviral therapy 

HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 

HIV Human Immunodeficiency Virus  

HR1 heptad repeat 1 

HR2 heptad repeat 2 

IC50 inhibition constant; the concentration of substance that provides 

50% inhibition to certain reaction 

IDV Indinavir 

kb kilo-base pair 

LB Luria-Bertani broth 

LPV Lopinavir 
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M molar concentration 

min minute 

NRTIs nucleoside reverse transcriptase inhibitors 

NNRTIs non-nucleoside reverse transcriptase inhibitors 

NVP Nevirapine 

nt  nucleotide 

OD optical density 

p24 alternative designation of the HIV-1 CA protein 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PIs protease inhibitors 

PL plasma 

PMTCT prevention mother-to-child transmission 

pol gene coding viral enzymes 

PR protease 

RNA ribonucleic acid 

rpm rotations per minute 

RPMI Roswell Park Memorial Institute 1640 Medium 

RT reverse transcriptase 

RTIs reverse transcriptase inhibitors 

RTV Ritonavir 

SD-NVP single dose Nevirapine 

TAE Tris-acetate-EDTA buffer 

TBS Tris buffered saline 

TDF Tenofovir 

Tm melting temperature 

TPV Tipranavir 

Tris Tris(hydroxymethyl)aminomethane 

u unit 

UV ultraviolet light 

wt wild-type 
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Appendix 2  List of plasmids 
 
name Prepared by restriction vector resistance 

pBD6-15 (Tebit et al., 2003) D. M. Tebit  pCR-XL-TOPO Kana 

     

pBD6TB9 (unpublished) D. M. Tebit ApaI/StuI pGEM-T-easy AMP 

     

pBD6TB9RIa K. Sathiandee EcoRI/StuI pGEM-T-easy AMP 

     

pBD6TB9RINLa K. Sathiandee EcoRI/StuI pGEM-T-easy AMP 

     

pLucBD6TB9 (unpublished) D. M. Tebit EcoRI/StuI pGEM-T-easy AMP 

     

pLucBD6TB9RI (unpublished) K. Sathiandee EcoRI/StuI pGEM-T-easy AMP 

     

pBD6TB9A (unpublished) K. Sathiandee ApaI/StuI pGEM-T-easy AMP 

     

All plasmids which contained 

patients-derived RT fragment 

(to determine NVP resistance 

mutation)a 

K. Sathiandee EcoRI pCR2.1-TOPO Kana 

 

a = manuscript in preparation. 
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Appendix 3  List of oligonucleotides 
 
List of oligonucleotides used for amplification of different parts of HIV-1. The oligonucleotides are listed 
according to their number in the list of the department of Virology. The sequences are always oriented from 
5’- to 3’-end. The presence of restriction sites is underlined. 
 

# name sequence location used for  
a Mlubase1 GGGCCCACGCGTGATGGGTTAATTTACTCCAAGA

AAAGACAAGA 
4-40 of HXB2 introduction of 

new EcoRI site 
     
a Env5+ TCAGACCTGGAGGAGGAGATATGA 7627-7650 of HXB2 amplify gp41 

domain 
     
1013 GP40F1 TCTTAGGAGCAGCAGGAAGCACTATGGG 7789-7816 of HXB2 amplify gp41 

domain 
     
1014 GP41R1 AACGACAAAGGTGAGTATCCCTGCCTAA 8347-8375 of HXB2 amplify gp41 

domain 
     
1016 GP47R2 TTAAACCTATCAAGCCTCCTACTATCATTA 8265-8294 of HXB2 amplify gp41 

domain 
     
1669 RT-rev-

StuI 
TTTCTGCTACTAGGCCTTTTGCTGGGTCATAATAG
ACTCCATGTACAGGTTCTTTT 

3550-3555 of pBD6 introduce new 
EcoRI site 
or amplify RT 
region 

1725 RT1-for AGTAGGACCTACACCTGTCAACATAATTGG 2491-2520 of pBD6 amplify RT 
region 

     
1726 RT3-for AATATGTTGACTCAGATTGGTTGTACTTTAAAT  T 2525-2558 of pBD6 amplify RT 

region 
     
1727 RT4-rev CTTTTAGAATTTCCCTGTTCTCTGCCAATTC 3474-3504 of pBD6 amplify RT 

region 
     
2118 Pro-for-

EcoRI 
GAGGGACAAGGAATTCTACCCTCCTTTAGCTTCCC
TCAAA 

2231-2270 of pBD6 introduce new 
EcoRI restriction 
site 

     
2119 Pro-rev-

EcoRI 
GCTAAAGGAGGGTAGAATTCCTTGTCCCTCGGTTC
CTGCT 

2221-2260 of pBD6 introduce new 
EcoRI site 

     
2190 KnockRI-F 

 
ATGTCACACAAGAATTTGGGATTCCCTACAATCCC
CAAAGTC 

4641-4682 of pBD6 knock out EcoRI 
site 

     
2191 KnockRI-R TGGGGATTGTAGGGAATCCCAAATTCTTGTGTGAC

ATTTG 
4638-4677 of pBD6 knock out EcoRI 

site 
     
2261 7Stu-R-

BD6 
CTGTATTTCTGCTATTAGGCCTTTTGATGGGTCAT
AATAC 

3500-3539 of 
pNL4-3 

amplify PR/RT 
region from 
pNL4-3 

     
2287 7EcoRI-F-

BD6 
GAGCCGATAGACAAGGAATTCTATCCTTTAGCTTC 2218-2252 of 

pNL4-3 
amplify PR/RT 
region from 
pNL4-3 

a = Tebit 2001 
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Appendix 4 PCR reaction components 
 
 The RT-PCR reaction contained: 

25 µl 2x Reaction mix (a buffer contain 0.4 mM of 

each dNTP, 3.2 mM MgSO4) 

2 µl SuperScript™ III RT/Platinum® Taq mix 

1 µl each forward/reverse -Primer (10 µM) 

0.01 pg - 1 ng RNA template 

Sterile distilled water to 50 µl total volume 

 
 
 The PRC reaction for fragment less than 1 kb contained: 
  

5 µl 10x PCR buffer (1.5 mM MgCl2) 

1 µl dNTP (200 µM) 

1 µl Taq polymerase  

1 µl each forward/reverse -primer (10 µM) 

20-200 ng DNA template 

Sterile distilled water to 50 µl total volume 

 
 
 The PRC reaction for fragment greater than 1 kb contained: 
  

10 µl 5x Expand High FidelityPlus buffer (1.5 

mM MgCl2) 

1 µl dNTP (200 µM) 

0.5 µl Expand High FidelityPlus Enzyme (2.5 

U/reaction) 

1 µl each forward/reverse -primer (10 µM) 

2 - 500 ng 

100 pg - 10 ng 

genomic DNA 

plasmid DNA 

Sterile distilled water to 50 µl total volume 
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Appendix 5 Thermal cycling 
 
 The following temperature cycling protocol was used for RT-PCR: 

step temperature duration 

1: cDNA synthesis 45-60°C 15-30 min 

2: initial denaturation 94°C 2 min 

3: denaturation 94°C 15 sec 

4: annealing 55 – 65°C* 30 sec 

5: elongation 68°C 1 min/kb** 

repeat steps (3-5) 39 cycles 

6: final elongation 68°C 5 min 

 
 The following temperature cycling protocol was used for short fragment PCR: 

step temperature duration 

1: initial denaturation 94°C 2 min 

2: denaturation 94°C 10-30 sec 

3: annealing 55 – 68°C* 30 sec 

4: elongation 72°C 1 min/kb** 

repeat steps (2-4) 25-35 cycles 

5: final elongation 72°C 7 min 

 
 The following temperature cycling protocol was used for long fragment PCR: 

step temperature duration 

1: initial denaturation 94°C 2 min 

2: denaturation 94°C 10-30 sec 

3: annealing 55 – 68°C* 30 sec 

4: elongation 68-72°C 1 min/kb** 

repeat steps (2-4) 10 cycles 

5: denaturation 94°C 10-30 sec 

6: annealing 55 – 68°C* 30 sec 

7: elongation 68-72°C 1 min/kb** + 10 sec. cycle elongation for 

each successive cycle 

repeat steps (5-7) 15-25 cycles 

8: final elongation 72°C 7 min 
 

* depending on the melting temperature of the primers 

** depending on the product length (~1 kb/min) 
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Appendix 6 List of antiretroviral drug concentrations 
 
 

Antiviral 
drugs 

Serial concentration (final 
concentration) 

% DMSO (final 
concentration)d 

PIs: 
LPVa 
IDVc 
RTVa 
DRVa 
TPVa 

 
0.5, 5, 50, 500 and 1000 nM 
0.5, 5, 50, 500 and 1000 nM 
0.5, 5, 50, 500 and 1000 nM 
0.5, 5, 50, 500 and 1000 nM 
0.5, 5, 50, 500 and 1000 nM 

 
0.1% in every dilution 
0.1% in every dilution d 
0.1% in every dilution  
0.1% in every dilution  
0.1% in every dilution  

NRTIs: 
AZTb 
d4Tc 
3TCa 
ddIa 
FTCc 
TDFc 

 
0.005, 0.05, 0.5, 5 and 50 uM 
0.005, 0.05, 0.5, 5 and 50 uM 
0.05, 0.5, 5, 50 and 500 uM 
0.05, 0.5, 5, 50 and 500 uM 
0.005, 0.05, 0.5, 5 and 50 uM 
0.005, 0.05, 0.5, 5 and 50 uM 

 
0.1% in every dilution d 
0.5% in every dilution d 
0.5% in every dilution  
0.5% in every dilution d 
0.5% in every dilution d 
0.5% in every dilution d 

NNRTIs: 
NVPa 
EFVa 
ETRa 

 
0.1, 1, 10, 100, 1000 and 10000 nM 
0.1, 1, 10, 100 and 1000 nM 
0.1, 1, 10, 100 and 1000 nM 

 
0.1% in every dilution  
0.1% in every dilution  
0.1% in every dilution  

 
 a = stock solution in DMSO; b = stock solution in Tris buffer; c = stock solution in water 
 d = DMSO was added into drugs which dissolved in Tris and water. 
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