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Zusammenfassung

Der Begriff ”Optischer Fluss” bezeichnet die scheinbare Bewegungen von Intensitäten
einer Bildfolge. Seine Schätzung wird bereits seit fast dreißig Jahren untersucht. Die
Ergebnisse können für eine Vielzahl von Anwendungen in Bereichen wie der experi-
mentellen Strömungsschätzung und der medizinischen Bildverarbeitung bis hin zu mo-
bilen Computerspielen verwendet werden. Die Entwicklung eines einzigen Schätzers
für alle Probleme des optischen Flusses scheint ein erstrebenswertes Ziel zu sein. In
dieser Arbeit argumentieren wir jedoch, dass dieses Ziel wahrscheinlich nie erreicht wer-
den wird. Diese Hypothese motivieren wir gründlich mit theoretischen Überlegungen
und praktischen Ergebnissen. Anhand dieser Ergebnisse identifizieren wir zwei wichtige
Probleme, die die weitere Forschung und Entwicklung behindern. Erstens gibt es nur
wenige öffentlich verfügbare Implementierungen von Flussschätzungsverfahren; zweitens
werden nicht alle relevanten Eigenschaften dieser Verfahren publiziert.
Im ersten Teil dieser Arbeit tragen wir zur Lösung beider Probleme bei. Dazu diskutieren
wir erst einige Eigenschaften, auf die ein solcher Schätzer geprüft werden sollte. Weit-
erhin zerlegen wir existierende Methoden in ihre algorithmischen Bausteine (genannt
Module). Wir schlagen vor, diese Module unabhängig vom gesamten Schätzer bezüglich
ihrer inhärenten Eigenschaften zu studieren. Eine große Zahl von Flusschätzern besteht
aus einer relativ geringen Zahl von verschiedenen Modulen. Wir haben diese Module
in einer Softwarebilbliothek namens Charon implementiert. Dadurch tragen wir zur Er-
reichbarkeit von Referenzimplementierungen und zur Möglichkeit des Experimentierens
mit vorhanden Algorithmen bei.
Im zweiten Teil dieser Arbeit stellen wir zwei neue Module zur Strömungsmessung
vor, die speziell entwickelt wurden für Bilddaten, die zur ”Particle Tracking Velocime-
try” (PTV) erzeugt wurden. Das erste Modul nennen wir ”Schätzbarkeitsmaß” (Esti-
matibility Measure). Es erkennt alle Pixelpositionen, an denen ein verlässlicher Fluss
geschätzt werden kann. Es basiert auf der Idee, dass die Bilddaten unter Anwendung
mehrerer Schwellwerte Zusammenhangskomponenten mit fast identischen Schwerpunk-
ten pro Schwellwert enthalten. Dieses Modul benötig lediglich wenige und intuitive
Parameter. Experimente weisen darauf hin, dass dieses Verfahren sehr robust bezüglich
gaussförmigem Rauschen mit räumlich variierenden Mittelwerten und Varianzen ist. Um
diese Eigenschaften zu bestimmen, schlagen wir außerdem ein Programm vor, dass die
Erzeugung von Partikelbildern simuliert.
Das zweite Modul ist ein Bewegungsmodell, das auf unüberwachtem Lernen mittels
Hauptkomponentenanalyse basiert. Trainingsdaten werden durch Computational Fluid
Dynamic (CFD) Simulationen bereit gestellt. Das Modell beschreibt lokale Ensembles
von Trajektorien deren Parameter über die Bilddaten mittels eines Ähnlichkeitsmaßes
optimiert werden können. Zusammen mit einem üblichen Ähnlichkeitsmaß und einem
einfachen Optimierungsverfahren setzen wir ein neues PTV-Verfahren zusammen. Ver-
glichen mit existierenden Techniken erreich wir genauere Ergebnisse auf realen und syn-
thetischen Sequenzen mit bekannten Flüssen.
Den gesamten, während dieser Arbeit entwickelten Quellcode bieten wir im Rahmen der
GNU Lesser General Public License (LGPL) als Open Source an.





Abstract

Optical flow is the apparent motion of intensities in an image sequence. Its estimation
has been studied for almost three decades. The results can be used in a wealth of possible
applications ranging from scientific applications like experimental fluid dynamics over
medical imaging to mobile computer games. The development of a single solution for all
optical flow problems seems to be a worthwhile goal. However, in this thesis, we argue
that this goal is unlikely to be achieved. We thoroughly motivate this hypothesis with
theoretical and practical considerations. Based on the results, we identify two major
problems that significantly complicate the research and development of new optical flow
algorithms: First, very few reference implementations are publicly available. Second,
not all relevant properties of the proposed algorithms are described in literature.
In the first part of this thesis, our contribution is to alleviate both problems. First, we
discuss a number of algorithm properties which should be known by the user. Second,
by decomposing existing optical flow methods into their individual algorithm building
blocks, shortly called modules, we propose to individually analyze the properties of each
module independently. A large number of existing techniques is composed of relatively
few existing modules. By implementing these modules in a software library called Charon
and adding tools for the evaluation of the results, we contribute to the accessibility of
reference implementations and to the possibility of analyzing algorithms by experiments.
In the second part of this thesis, we contribute two modules which are vital for the
estimation of fluid flows. They are specifically tuned to the imagery obtained for particle
tracking velocimetry (PTV). We call the first module estimatibility measure. It detects
those particle locations where fluid motion can be estimated. It is based on the constant
position of the center of gravity of the connected components generated by a large
number of thresholded versions of the original image. The module only needs a few
intuitive parameters. Experiments indicate its robustness with respect to noise with
varying mean and variance. To analyze the properties of this module we also provide a
framework for simulating the particle image generation.
The second module is a motion model based on unsupervised learning via principal
component analysis. Training data is provided through Computational Fluid Dynamic
(CFD) simulations. The model describes local ensembles of trajectories which can be
fitted to the image sequence by means of a similarity measure. Together with a standard
similarity measure and a simple optimization scheme we derive a new PTV method.
Compared to existing techniques, we obtained superior results with respect to accuracy
on real and synthetic sequences with known ground truth.
All source code developed during the thesis is available as Open Source following the
GNU Lesser General Public License (LGPL).
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Part I.

Problem Statement

The scientist is not a person who gives
the right answers, he’s one who asks the right
questions.

(Claude Lévi-Strauss, Le Cru et le cuit, 1964)
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1. Introduction

Every honest researcher I know admits he’s
just a professional amateur. He’s doing whatever
he’s doing for the first time. That makes him an
amateur. He has sense enough to know that he’s
going to have a lot of trouble, so that makes him
a professional.

(Charles Franklin Kettering (1876-1958) U. S.
Engineer and Inventor.)

1.1. Motivation and Overview

Informally, motion estimation is the task of finding out how pixels or objects move in
a given digital image sequence. At a first glance this might sound simple but at second
sight one runs into more and more problems. Indeed, this task has been studied for
more than 30 years now. One might wonder what exactly the challenges are. This
work is about a closer look at some of them. Although many of the topics addressed
here are of interest in all motion estimation techniques, in this work we focus on optical
flow estimation, whose aim is to compute a motion vector at each pixel location in the
image. Most research done in this field is dedicated to the accuracy of motion estimation
methods and to sophisticated ideas on how to generally solve the problem once and for
all with a single algorithm.

1.1.1. Modular Optical Flow Estimation

In their paper titled ”Towards Ultimate Motion Estimation: Combining Highest Accu-
racy with Real-Time Performance” by Bruhn and Weickert [1], the authors focus on the
improvement of the method of Brox et al. [2] and its near-real-time implementation.
Although the authors’ contribution of this work is highly valuable for optical flow re-
search and also addresses the very important problem of reducing computation times
for global techniques, their title is misleading in various ways. First, the term high-
est accuracy implies that the implemented algorithm yields the best achievable accuracy
possible independent of the image data. Second, the term ultimate suggests that a single
algorithm can exist that solves all problems for all types of image sequences. Third, the
term motion estimation implies that this not only holds true for optical flow algorithms
but also for motion estimation techniques in general. In this work we argue against these
concepts.
Even though accuracy and speed are two major goals in motion estimation, we believe
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1. Introduction

that there are more requirements to motion estimation algorithms. In this work we
would like to emphasize the importance of reference implementations, experimental de-
sign and the study of other requirements of optical flow algorithms such as applicability,
accessibility and modularity.
Along these lines we will argue that it is highly likely that the motion estimation problem
will never be solved with a single algorithm. We support this hypothesis with theoretical
discussions as well as experimental results in the first part of this thesis. However, we
will show that many of todays methods can be unified in one single framework, allowing
for a modular implementation with interchangeable parts that constitute most of todays
elements of motion estimation. By breaking down the problem of motion estimation
into all of its subproblems, each component can be studied separately. By substituting
specific modules of interest with others while all of the other modules remain exactly
the same (in theory as well as in the implementation), we obtain much more experimen-
tal and analytical freedom. We provide an open source software library named Charon
which can be used to study those research topics implied by the previous theoretical
discussions.

1.1.2. Application to Fluid Flow Estimation

The second main part of this thesis applies the theoretical and practical results of the
first part to the field of fluid flow estimation.
The instantaneous measurements of near wall flows are of great interest in biomedical
research in order to obtain a deeper understanding of physiological and pathological
processes. In the field of biofluid mechanics many medical issues, such as thrombotic
events and atherosclerosis, depend on shear stresses and shear rates near non-planar,
deformable walls such as, for example, blood flows in aneurysms and displacement blood
pumps. The measurement of flow fields and shear rates near non-planar walls is chal-
lenging. Therefore, very specific motion estimation techniques are required which exploit
every available prior knowledge of the measurement system. One of the main properties
of such image data is that motion information is mainly distributed in the temporal
domain (instead of the spatial domain).
We will discuss a new particle tracking velocimetry (PTV) algorithm which mainly uti-
lizes temporal image information. It is implemented in Charon. We consider PTV as a
very special case of optical flow estimation, where the various models are highly adapted
to the image data at hand. Therefore, PTV is an ideal candidate to substantiate our
hypothesis that general motion estimation is infeasible. The PTV technique consists of
two algorithms: one which detects particle locations and one which estimates the mo-
tion. For both algorithms we offer source code, test data and an analysis with respect
to the algorithm requirements described in the first part.
Together with the Biofluidmechanics Laboratory at the Charité in Berlin, we developed
this technique to get one step closer to the aim of measuring fully three-dimensional
motion trajectories. Our algorithm currently estimates two-component trajectories and
accomodates for the brightness variations induced by the inherent three-dimensionality
of the motion. As discussed in Chapter 8, this algorithm can easily be extended in a
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1.2. Contribution

final step to a fully three-dimension, three-component trajectory estimation scheme as
soon as the experimental setup developed at the Charité becomes available.

1.2. Contribution

We thoroughly discuss the hypothesis that a general solution for motion estimation
problems is not feasible. The large diversity of applications comes along with a host of
differing demands. Therefore, we suggest a list of requirements for motion estimation
algorithms. We argue that any new method should be tested against these properties in
order to obtain a specification that can be used by those who need to select the correct
algorithm for their individual application.
Furthermore, we contribute to two aspects of such desirable algorithm properties, namely
modularity and accessibility for optical flow algorithms. Based on the proposed set of
desirable properties, we give an overview of a number of publications in the field of op-
tical flow estimation. Thereby, we identify a common modular framework in which all
of these algorithms fit into. We offer an implementation of this framework along with
a number of these methods in order to be able to exemplarily analyze some of their
properties.
Furthermore, based on this framework, we contribute a new fluid flow estimation al-
gorithm based on particle tracking velocimetry. By choosing the best instances of all
available modules defined by the framework, we are able to define a new algorithm that
specifically exploits the information in the image data at hand. Finally, we analyze this
new algorithm with respect to its desired properties. Therefore, specially designed real-
world ground truth data is generated with a new method well-suited for a broad range
of particle tracking velocimetry applications.

1.3. Related Work

On the one hand there is an unmanageable amount of related work ranging from the
actual motion estimation algorithms to confidence measures, performance evaluation,
real-time-implementations on CPUs [1] or graphic card processors [3, 4] and several
fields of related research. In most papers focusing on optical flow estimation some of
the algorithm properties described in Chapter 3 are addressed. Sometimes, as for ex-
ample in the cases of [5] and [6, 7], reference implementations are supplied in the form
of source code. In many computer vision libraries such as OpenCV, CImg and FlowJ
offer some basic optical flow algorithm implementations. Performance evaluations have
been carried out by various authors as for example [8, 9, 10]. An important theoretical
discussion on performance evaluation in the field of computer vision has been published
in [11]. Many papers address certain modules of motion estimation. For example, Bruhn
et al. [12] studied the effect of the Gaussian filtering as preprocessing step for differ-
ential optical flow methods. Various types of models of brightness variations have for
example been discussed in [13, 14]. The influence and optimization of scale-spaces (or,
more specifically, pyramids) is e.g. discussed in [15, 16] but has seldomly been addressed
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1. Introduction

again, although it seems clear that multi-scale strategies can significantly improve the
accuracy of motion estimates.
On the other hand, the first part of this work focuses on an implementation of a broad
range of optical flow methods within a single framework in order to increase the degree
of comparability, availability and modularity. To the best of our knowledge this has not
been addressed so far.
However, a number of related fields of research exist in which motion estimation algo-
rithms are developed and in which our approach could be of advantage as well. In stereo
vision the correspondences between points on epipolar lines are sought [17, 18]. Regis-
tration is the task of aligning two images onto each other. Often, these images are of
different modality (e.g. ultrasound and x-ray images) [19]. The associated problems are
very similar to those of optical flow estimation and the developed strategies are often the
same. (For example, the variational matching of images based on cross-correlation [20]
combines global regularization with cross-correlation based block-matching techniques
[21]).
Although tracking can be understood as a much more general problem (namely the esti-
mation of the evolution of a state in time [22]) it is often understood as locating objects
in long image sequences. Such algorithms usually need to work in real-time and are
therefore of limited accuracy. Another major difference is that the motion estimates
sought are not dense and usually more than two images are used.
Two other fields of research, which until recently have often been ignored by the com-
puter vision community, are particle image velocimetry (PIV, [23]) and particle tracking
velocimetry (PTV, [24, 25]). Both fields have a highly correlated but seemingly disjunct
history of research (cf. 7.2.3). The most significant difference, with respect to optical
flow estimation, is that both techniques not only describe software algorithms for the
estimation of fluid flows: they also describe the physical experimental setup that is used
to acquire the images needed by the algorithms. This closely coupled research process
brings both advantages and disadvantages. On the one hand the image acquisition pro-
cess is carefully set up, analyzed and modeled appropriately in the software algorithms.
On the other hand, research is focused both on experiments and on algorithm design
which sometimes blurs the boundaries of both to some extend. We discuss relations
between both fields in detail in Chapter 7. All work related to PTV is reviewed in these
chapters as well.
All six fields of research (stereo, registration, tracking, PIV, PTV, optical flow) deal with
very similar tasks and solutions. Therefore, the availability of open source implementa-
tions of such algorithms in a common framework could even facilitate interdisciplinary
research in these fields and might result in a much broader perspective on the tasks at
hand.

1.4. Organization

The remainder of this work is organized as follows. We first review challenges of optical
flow techniques in Chapter 2. We conclude this chapter with the observation that general-
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1.4. Organization

purpose optical flow algorithms are unlikely to be developed. As choosing between
existing application-specific algorithms for a new flow estimation task is difficult, we
identify a set of requirements which can be used for the classification and evaluation of
existing algorithms in Chapter 3.
We review existing methods in Chapter 4 for finding the largest common denominator
in the form of a modular framework described in Section 5. We develop this framework
into a set of classes and interfaces that can directly be used as an implementation. The
second main part of this thesis deals with the application of the developed concepts to
a special field of application: Chapters 6 and 7 deal with the description and analysis of
a new particle tracking velocimetry algorithm with applications in biofluidmechanics.
We conclude this work with Chapter 8 by discussing the results and future research
topics.
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Part II.

Modularity in Optical Flow
Estimation

The mind likes a strange idea as little as the
body likes a strange protein and resists it with sim-
ilar energy. It would not perhaps be too fanciful
to say that a new idea is the most quickly acting
antigen known to science. If we watch ourselves
honestly we shall often find that we have begun to
argue against a new idea even before it has been
completely stated.

(Wilfred Batten Lewis Trotter (1872-1939)
English surgeon.)
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2. Challenges in Optical Flow Estimation

A fact is a simple statement that everyone
believes. It is innocent, unless found guilty. A
hypothesis is a novel suggestion that no one wants
to believe. It is guilty, until found effective.

(Edward Teller)

In this chapter we show that an abundance of situations exist, in which optical flow
estimation is either very difficult or even impossible. We give a detailed overview of
these challenges in order to strongly emphasize that even from a theoretical point of
view the design of an ultimate optical flow algorithm is neither likely to be found nor
practically useful. Based on this argumentation we will motivate a set of optical flow
algorithm requirements in the next Chapter 3.
From the implications of these two chapters we will draw the conclusion that a modular
and accessible software framework is an important step for the study of the resulting
research problems.

To define motion estimation more properly a few definitions suffice. Let O ∈ R3 be
a spatio-temporal region (e.g. the point of view of a video camera and the period of
time it is recording this view). Let I : O → R be an image sequence mapping from
spatio-temporal locations to image intensities. Then, let F : O → R2 be the mapping
that defines the motion (or flow) of the associated intensity in I with respect to time at
each image sequence location. (Please note that this definition is still continuous. When
talking about image sequences in this work we always refer to discrete videos acquired
e.g. by digital cameras. However, the continuous definition is useful for global methods
in which the discretization is introduced only for solving the problem on the discrete
sequences.)
Models of motion and brightness variations are needed to obtain meaningful motion esti-
mates. All these models encode prior knowledge in one way or another. The better these
models are, the more likely they can be used to obtain highly accurate results. As we
will discuss below, the problems in optical flow estimation are so diverse that any model
general enough to deal with all of these problems is very likely to be too unconstrained
to yield highly accurate results. Therefore, we believe that general solutions for the flow
estimation problem are not suitable to obtain the best results. Instead, we suggest to
find common modules of optical flow techniques which can be assembled for each task
at hand.
So what are the challenges in optical flow estimation? Without any further theory one
problem immediately becomes obvious: For each single pixel in the image sequence a
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2. Challenges in Optical Flow Estimation

Frame 1 (with flow vectors) Frame 2 (after motion occured)

Figure 2.1.: Occlusions occur at the boundaries even if the flow is well-defined.

flow vector with (at least) two values is sought. Where does this information come
from? The probably most intuitive idea is to relate pixel intensities or locations, e.g. by
comparing or grouping them. This constitutes the very core of motion estimation, be it
optical flow estimation, registration, tracking or any other more specific field of research
such as particle image velocimetry for fluid flow estimation. Yet, even if this very basic
problem is addressed via adequate modeling, a host of additional problems occur due
to the image acquisition process. We divide these into three groups of major problems,
namely occlusions, ambiguities and ground truth generation. Of course, many of these
problems are either obvious or well-known. We will provide a thorough and more general
discussion to motivate our hypothesis in the forthcoming chapters.

2.1. Occlusions

In the commonly used definition of occlusion, this term relates to a simple problem:
Consider a (discrete) image sequence with two time frames where each pixel exactly
moves one pixel to the left and one to the bottom. Obviously, there is a one to one
correspondence between the two frames for (almost) each pixel. Thus, at least theoreti-
cally, the flow field between the two frames could be computed. But pixels that moved
outside the image region cannot be matched. The same holds true for an object suddenly
appearing in the second frame, occluding the pixels of the first frame that should actu-
ally be matched to compute the correct flow. As a result, even theoretically the motion
between the two frames can no longer be estimated for all the occluded pixels. At this
point the problem is obvious. Yet, by observing the problem from another perspective,
a set of other problems can be understood as occlusion as well.

The first example for a more general notion of occlusion is the following: One might
argue to add a binary variable to each location that is true whenever the current pixel
is occluded in the second frame. But what if the object appearing in front of the back-
ground is half-transparent (e.g. a glass-cup of tea, 2.2)? Clearly, occlusion is nothing
digital, it should, perhaps, rather be called opacity.
But this again would not describe the problem in a more delicate thought experiment:
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2.1. Occlusions

Figure 2.2.: Occlusions cannot be easily modeled by binary variables: This image im-
pressively illustrates various problems ranging from semitransparent ob-
jects, optical distortion and light effects. Copyright: HarQ Photography
(naturea.blog94.fc2.com)

Figure 2.3.: Zooms can be understood as occlusions if the images are discrete. Here we
have an extreme case caused by aliasing: The original image in the center
looks very different from its enlarged (left) and shrinked (right) version.
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consider a camera looking at a purely two-dimensional scene without any motion (e.g.
a hash symbol, 2.3) and then zooming in. What happens inside the image? By zooming
in, each pixel in the first frame corresponds to multiple pixels in the second frame. Now,
what is the ”correct” flow? Vice versa, when the camera zooms out, several pixels of the
first frame ”condense” to a single pixel in the second frame, which can be considered
as some kind of occlusion even though the actual, physical image being recorded did
not change at all. Of course, we would not have this kind of occlusion-problem with
continuous images as zooming in would change nothing in the actual image data.
By adding zooms to the definition of occlusions, in fact any kind of divergence or conver-
gence of motion vectors in a discrete image sequence (that means any motion field that
is not constant everywhere as in the first example) contains occlusions. They either stem
from the projective nature of the image acquisition system or from the quantization of
space and light intensities.
Finally, sensor noise can (arguably) also be understood as occlusion, another major
issue of motion estimation. Please note, that interpreting physical occlusions, flow con-
vergences and divergences and noise as several kinds of occlusion is a philosophical
subsumption of three problems with different causes. Nonetheless, the effect is similar in
that the original intensities are corrupted by other signal sources (be it another physical
object, sensor noise or the accumulation of multiple locations at the same image sensor.)
These factors can neither be (completely) overcome by technical improvements nor by
algorithmic developments. In some examples the image acquisition scheme can be care-
fully adapted to greatly reduce these problems: Physical occlusions can sometimes be
removed physically, noise can (under certain circumstances) be greatly reduced by av-
eraging a large number of frames before recording the next image. Convergences and
divergences pose no problem whenever an accurate continuous image representation can
be computed e.g. because the analytical form of recorded signal is known a priori. Any-
how, all this idealizing assumptions can only be made if the image acquisition is carefully
tailored to the specific type of results one might want to obtain. Therefore, motion es-
timation algorithms should address those problems specific to the problem at hand: It
makes no sense to waste computation time on the reconstruction of a continuous image
representation when either subpixel-accuracy is not required or the motion in the se-
quence contains no occlusions. The same holds true for the next set of problems which
we summarize with the term ambiguities.

2.2. Ambiguities

Again, we start with two very simple problems to illustrate in a next step, that these are
only instances of a much more general problem. Consider two white images. Where did
any pixel of the first image move to in the second image? We cannot know because all
pixels are white. Now consider a black line crossing the whole first image and the same
black line in the second image, shifted by one pixel to the right (2.4). Assuming that
the black line is a foreground object (and not a slit in the actually white foreground) we
can again ask where it moved. Did it just move to the right? Or did it also move to the
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Frame 1 (with flow vectors) Frame 2 (after motion occured)

Figure 2.4.: A simple case of ambiguities known as aperture problem.

top? We cannot know as each pixel of the black line in the first image can be matched
to any black pixel in the second frame. This problem is generally referred to as aperture
problem. After all, this term is rather restricted to the physical interpretation of the
image sequence seen through the aperture.
A more general view (which sometimes is called generalized aperture problem) can be

illustrated by the following two examples. First, consider a random gray value image
consisting of only two distinct values: white and black. The second frame is just another
random image of the same type. Any white pixel could now be matched to any white
pixel in the second frame: The interpretation very much depends on prior knowledge on
the motion in the scene. A second example is a bright, two-dimensional Gaussian on a
black background in both frames. In the second frame, the Gaussian becomes smaller
or darker or both. It is impossible to say which is true when looking at a few pixels
only. However, we could find a model that assumes that the decrease of brightness is
associated with a three-dimensional motion, where a greater distance to the camera re-
sults in darker pixels. Hence, by introducing a third motion parameter for the depth,
this problem can be solved unambiguously.
This leads to the generalized aperture problem: Whenever the used image information

and/or model does not contain enough information to retrieve all unknown parameters
(be it motion in 2d, 3d or even additional parameters), the number of degrees of free-
dom that remain constitute the generalized aperture problem. In the example of the
black line, only the motion perpendicular to the line can be estimated correctly; in a
homogeneous image region, both motion parameters can have arbitrary values. This
is just a rough overview of these problems. A more detailed discussion with a proper
formal definition, using the notion of intrinsic dimensions, can be found in [26]. Yet,
ambiguities are another example why an ultimate motion estimation algorithm is un-
likely to be found: Whenever ambiguities exist in the image data, one has to decide for
one of the possible solutions. Therefore, prior knowledge is necessary, which is usually
application-specific. The model encoding this knowledge should neither be too general
nor too specific (to either reduce the chance of interpreting the ambiguities wrongly or
to reduce the chance of model overfitting).
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Figure 2.5.: An instance of the more general interpretation of the aperture problem arises
when objects change their intensities relative to their distance to the camera:
Is the right image smaller or just further away from the camera? Both
interpretations are correct without additional knowledge.

2.3. Ground Truth Generation

We have shown that there is an abundance of situations where optical flow estimation is
either very difficult or even impossible per se (due to occlusions) or where not all motion
parameters can be estimated reliably (due to ambiguities). In both cases application-
specific knowledge can be used to infer accurate motion fields or at least to infer at which
locations motion can be estimated at all.
Another question is how the results of an algorithm can be validated. The typical ap-
proach is to design so-called ground truth image sequences where the motion is known.
Such sequences can either be synthetic and as simple as those described in the examples
above or they can be more complex as for example those generated with e.g. raytracing
programs. The most famous examples are the Yosemite sequence [27], the street and
office sequences [28] and the diverging tree sequence [9]. These have become the stan-
dard synthetic test sequences. Of course, they do not cover all types of applications and
can therefore only be used as a hint on how the algorithm might perform on other se-
quences. The Yosemite sequence contains very small and relatively large motion vectors
with a magnitude of up to roughly four pixels. The office sequence contains a zoom and
a few motion boundaries. The street sequence contains a car with very strong motion
boundaries. One problem with such sequences is that it is largely unknown whether they
represent important or typical cases of motion together with the rendered images.
Furthermore, there are sequences which are acquired with a real camera. The first well-
known example is the marbled block sequence [29] which contains a few block-shaped,
textured objects standing on a textured underground.

Recently, a number of new synthetic and real sequences have been generated by [30].
We believe that their effort is an important step towards more ground truth data. Fur-
thermore, they encourage the publication of results based on a website were everyone
can submit new motion fields. This is another relevant contribution to facilitate further
research.
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Figure 2.6.: The set of commonly used optical flow sequences with known ground truth.
As can be seen immediately, the data does not cover a wide range of image
sequence types.
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The generation of ground truth data is a challenging optical measurement task itself.
Its accuracy should ideally be magnitudes above the accuracy that can be achieved by
motion estimation algorithms. The typical problem of real sequences is the estimation of
this accuracy. In both publications mentioned above the information supplied from an
optical measurement perspective seems to be insufficient to clearly state accuracy limits.
Hence, even though in real sequences all physical imaging effects from lens distortion
and noise to light reflections and refractions are modeled properly, it remains unclear
whether their ground truth is good enough.
New motion estimation algorithms are usually tested against a subset of these sequences.
Until recently, they where often solely tested against the Yosemite sequence. As an error
measure usually the so called average angular error (defined by [31] and used by [9] and
most successive papers) and its standard deviation over a single frame of this sequence
is reported. Not only is this error measure unmotivated, it also is inappropriate for the
comparison of some typical problems of motion estimation as is e.g. laid out in [32].
To put it in a nutshell, to the best of our knowledge, it is unknown whether current
test sequences actually can be used to describe the accuracy of an algorithm and the
performance measures are questionable. A lot of future research could be carried out in
this field. One especially interesting topic would be to find out whether synthetic test
sequences can sufficiently approximate real test sequences. This would help create large
amounts of sequences for all kinds of possible applications.
Even if ground truth data could be easily generated, it would still be questionable,
whether a generalization of the image data created across all fields of applications can
be found. Thus, the quality assessment of the quality of a general-purpose optical
flow algorithm might still be impossible. (In fact, the term ”general-purpose” looses
its meaning with the diversity of possible applications in mind.) Therefore, even if a
general-purpose algorithm would be found, we would probably never be able to identify
it.

2.4. Conclusion

We have discussed that optical flow estimation still is a difficult task as well as the
evaluation of its performance. The challenges described in this chapter are numerous
and diverse. As well, the possible ranges of applications for optical flow methods are
broad. Thus, we believe that it would be insensible to aim at designing an ultimate
optical flow algorithm. On the other hand, new techniques should still try to be as
general as possible in order to cover as many applications as possible. We believe that a
modular design of optical flow algorithms as described in Chapter 5 can ease this conflict
to some degree. Furthermore, such a modular design has many more advantages such
as the ability to more effectively compare the effects of exchangeable modules as will be
discussed later.
The problem of how to evaluate such newly designed algorithms not only with respect to
their accuracy is another open problem. Therefore, in the following chapter, we suggest
a broader set of optical flow algorithm requirements which can be used to evaluate and to
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describe optical flow algorithms. Based on these requirements and the insight that many
of todays optical flow algorithms are already implicitly designed in a modular manner
(cf. Chapter 4) we will then discuss the implementation of a modular framework in
Chapter 5. In the same chapter we will further substantiate our hypothesis postulated
here by showing some experimental results obtained by this framework.
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3. Requirements for Optical Flow
Algorithms

Every science begins as philosophy and ends
as art.

(Will Durant, The Story of Philosophy, 1926)

Occlusions and ambiguities often render the motion estimation problem unsolvable per
se and systematic ground truth generation is very difficult. To deal with application-
specific subsets of the problems described above, specialized models can be helpful in
obtaining superior results. Philosophically, motion estimation rather is the art to ade-
quately exploit known constraints of the application-specific image acquisition process
and the actual information recorded to achieve results as good as possible. Or, in other
words: We believe that (once a set of useful models has been developed by scientists) mo-
tion estimation mostly is an application specific engineering problem. How can computer
science help engineers to develop a motion estimation algorithm that perfectly meets the
requirements? As discussed above, it would be helpful to break down the whole problem
into subproblems which can be studied more thoroughly. These algorithmic elements
could then be plugged together to new motion estimation algorithms. Additionally, a set
of properties (or a specification) needs to be found that fully describes the input and the
output of each algorithm under every circumstance so that engineers can deal with them
as black boxes. The accuracy of the output is one of the most important properties.
Nevertheless, we believe that it is not the only desirable property of a motion estimation
algorithm. In the following we will suggest a general optical flow algorithm specification
scheme. A subset of these points has already been addressed in literature, some points
have not. We also shortly discuss the challenges of defining these general specifications
in the field of optical flow estimation. The algorithms described in the third part of this
work will exemplarily be tested against these algorithm requirements.

3.1. Accuracy Limits

As stated above, the study of the accuracy of the outcome of an motion estimation algo-
rithm is of major importance. There are several ways to test and compare accuracies of
such algorithms. A major problem is how to measure the error because there is no order
(or ranking) defined between two vectors. Hence, each pair of vectors (i.e. ground truth
and measured flow vector) first has to be transformed into scalar values in order to be
comparable. There are many ways to turn vectors into scalar values. One common way
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is to compute the magnitude of both vectors. This is problematic when ground truth
vector and measured flow vector are on the one hand equally long but on the other hand
point into opposite directions. The magnitude error would still be zero. Another way
would be to compute the angle between two vectors which raises the analog problem:
The vectors can be of different magnitude. Another problem here is the singularity for
vectors of very small magnitude.
To weight these two components of magnitude and angle the so-called angular error
defined by [31] has been suggested.
But this error weights both parts of the errors in a nonlinear and unintuitive manner
which is actually not motivated in the paper [33].
Recently, another effort has been made by defining the so-called endpoint error [30]
which simply is the magnitude of the difference vector between ground truth and mea-
sured flow.
Depending on the application one error measure or another might be favorable, a fact
that should be taken into account when stating the accuracy limits of the algorithm.
Once an error measure has been defined, the error distribution needs to be sufficiently
motivated. The problem here is, that this distribution actually depends on image data,
ground truth and measured flow. For example, testing of the accuracy with a highly
textured region that moves a constant velocity everywhere yields very low errors with
most algorithms. If the images were of constant color the results could be completely
wrong; if the motion of the ground truth was absolutely arbitrary, too. Hence, testing
on a sequence like Yosemite does not adequately represent the quality of the algorithm.
It just gives a hint that for this type of scene (highly textured, smooth and mostly small
motion) the algorithm might actually work well. Furthermore, representing the error
distribution only by its mean and variance is not sufficient, because only the Gaussian
distribution can be fully described by these first two moments. As motion estimation
errors are far from Gaussian it might be more helpful to actually visualize the whole
distribution (or parts of it) which in turn raises the problem of density estimation.
Finally, it would be helpful if it was known under which circumstances the most accurate
results can be achieved by an algorithm. At first sight this sounds easy to answer: Con-
stant motion through time and much texture certainly is a simple case. Yet, a Gaussian
intensity distribution in a 32 bit quantized image might even yield very accurate results
for non-constant motions such as a rotation. Furthermore, it is interesting to which
degree the results deteriorate with respect to more challenging image data.
Although the accuracy is a very important part of a motion estimation algorithm spec-
ification, and much more research efforts can be put into this topic it is not part of this
work. However, we will keep the considerations made here in mind for a new algorithm
proposed in Chapter 7.

3.2. Estimatibility and Confidence

Even though an exact solution of the optical flow problem is impossible, a host of algo-
rithms have been developed which show surprisingly high accuracies on some test image
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Figure 3.1.: Two examples for data resulting from particle tracking velocimetry exper-
iments. General optical flow estimation techniques often fail on such se-
quences. Please note that this data significantly differs from the commonly
used data sets in Figure 2.6.

sequences. Countless industrial applications for optical flow estimation exist. Hence the
question is: How do occlusion and ambiguities affect the results?
For example, a typical image sequence for particle tracking velocimetry (PTV) (cf. Fig-

ure 3.1) consists of a mainly black background and some hundred (or thousand) bright
moving spots. Occlusion occurs whenever two particles are crossing due to the projective
nature of the image acquisition. In the black (homogeneous) regions of the background
no motion can be estimated: A black spot at any location can be matched to almost any
other location in the next frame. We do not care about the occlusion of the background
and ambiguities in the background and assume that there is no motion at all. However,
when two or more particle images are crossing each other, we are interested in which
particle is which, once the crossing is over in order to properly reconstruct each of their
trajectories.
Even though there is a lot of occlusion in this image sequence, it does not matter
much because we can still quite accurately infer all particle trajectories from the images.
Hence, what matters is how much information we need to obtain from the given data,
depending on the intended later use of the resulting motion. In PTV we are satisfied
with a few but accurate trajectories of particles. In other applications, such as image
stitching, only the global affine motion, together with some lens distortion correction is
sought. In tracking, just the location or the 3d-transformation of a single object relative
to the camera is the interesting motion. In registration only the boundary motion of a
heart recorded via radiography might be of importance.
All the above examples show that occlusions can often be ignored or treated separately
by some motion postprocessing or image preprocessing. On the other hand it is obvious
that an occlusion of the object to be found in a tracking approach needs to be dealt
with or that a discontinued heart boundary should be correctly interpolated in an ultra-
sound image. From a broader perspective dealing with occlusions and ambiguities can
be understood as dealing with estimatibility: Instead of assuming that at each pixel of
an image sequence a full flow can be estimated, we pose the question whether motion
can be estimated at all and, if so, how many parameters of it. The intuition (based on
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algorithm complexity notions) here is that the decision whether motion can be estimated
at all is easier to make than to actually carry out the estimation. Details on this topic
can be found in [26].
Yet, once the flow has been estimated at all those locations which are estimatible, the
question remains on how accurate the estimate is. Here we use the notion of confidence
measures. Intuitively, the complexity of estimating the confidence of a flow vector lies
between the complexity of estimatibility and optical flow computation. Again, this is a
difficult problem and some research has focused on it up to now. Two recent publications
are [7, 8].
Hence, the notions of estimatibility and confidence somewhat relax the problem of mo-
tion estimation by introducing continuous variables that supply the user with additional
information on the success of the algorithm. Hence, a requirement of a motion estimation
algorithm would be to supply the user with such information.

3.3. Range of Applications

Most development of motion estimation algorithms is driven by the need to solve a
specific problem like weather forecasting, tumor growth analysis, industrial quality in-
spection, etc. Therefore, each algorithm focuses on a specific aspect of motion that
needs to be estimated accurately. For example, block matching (or correlation based)
algorithms as e.g. [36] are able to find very large displacements easily; yet they often
are only pixel-accurate. Another example are local least squares methods [17, 37] where
large motions cannot be estimated well but small motions are computed with very high
accuracy.
Not only the length of the flow, but also its spatial and/or temporal smoothness are of
interest. Some methods can very well deal with affine image transformations as they
directly model such motion patterns. Dealing with motion discontinuities (occlusions in
the images) can also be such a feature.
Summing up, it would be interesting to know which algorithm performs especially well
on which kind of data and also whether it can be applied to which range of other images
and flows. To broaden this range, learning might play a special role: If it where possible
to learn models of motion and image data, an algorithm could be adapted to a specific
application by choosing an appropriate training set. It is often unclear, which algorithm
is the state of the art in which type of application. Future research could therefore e.g.
focus on the design of a decision process for the choice of an appropriate algorithm given
a set of typical image sequences in a specific application. Automatizing this process
would be of great help for users with little expertise. Therefore, the range of applica-
tions is another important algorithm property that needs to be carefully described in
the algorithm specification.
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3.4. Execution Speed

The time an algorithm needs to actually estimate the motion of an image sequence usu-
ally is a major issue in industrial applications. Basically, four aspects can be addressed
to improve the speed. These aspects range from practical over completely theoretical to
technically highly intricate considerations; to each of these a complete field of research
is dedicated. Therefore, it is very difficult to judge the execution speed of an algorithm
even though it is one if its important properties.

3.4.1. Data Reduction

Sometimes, it suffices to only compute motion at a few locations. Hence, computation
time can be saved by finding algorithms that reduce the number of locations. This is a
typical approach in tracking [22] where usually only very few pixels of an image sequence
are investigated.

3.4.2. Mathematics

For example in global motion estimation techniques (which often include the solution of
a system of partial differential equations) large linear systems of equations are generated
from the image sequence. The solution of these systems of equations can be carried
out by a host of methods, ranging from Gaussian Elimination Schemes over Krylov
Subspace Methods to Algebraic Multigrid Schemes. Exploiting mathematical properties
of the problem to be solved can dramatically reduce computation times. This was for
example shown by [38, 1].

3.4.3. Parallelization

At least with the dawn of multicore desktop computers, parallelization has become a
major topic for all types of applications. Especially in image processing where huge
amounts of data are often processed with the same operations (consider e.g. the convo-
lution of an image with a mask), parallelization is surprisingly easy to implement. But
also solving large linear systems of equations can be done in parallel with a little more
effort.

3.4.4. Code Optimization

It might sound trivial to optimize source code but with the advent of a diversity of large
image processing libraries for major programming languages used for image processing
(as e.g. C++ and Matlab) code optimization is far from simple. Nonetheless, this
part can also affect theoretical considerations: If it were for example easier to optimize
code for matrices than for other data structures, the choice of the optimization method
interfered with the actual code design. The main problem today is that the programmer
needs to have a deeper understanding on how image processing libraries implement
their functionality in order to optimally exploit its internal structures. Another problem
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is that the ways in which compilers optimize code is rather unintuitive: One cannot
implement all functions in the same way to yield the same code optimizations by the
compiler. The typical approach here is trial and error - a method which is not simplified
by the fact that each compiler optimizes its code differently so that the same code can
be orders of magnitude faster when compiled with a different compiler.
Hence, investigations into the various execution speeds of an optical flow algorithm are
another property to be specified.

3.5. Modularity

A common practice in the publication of motion estimation algorithms in all fields of
research is to describe the whole algorithm and to test its output against test sequences.
Regularly a few crucial parts of the algorithm are either left out or parameterized differ-
ently in order to estimate its effect on the overall results. Without diving into details,
for example the most sophisticated optical flow algorithms are built up from many
algorithmic elements, such as multiple similarity measures, image derivative kernels, in-
terpolation techniques, pyramid computation schemes, regularization terms and so on.
Each of these elements has parameters and can even be replaced by completely different
methods. For example, subpixel image intensities can be interpolated by a large number
of interpolation schemes ranging from linear to sinc interpolation; an image pyramid can
be computed by scaling the original image down by a factor of two or smaller or it can
even scale the image up to some degree [39]; the derivative of an image can be computed
by a huge set of kernels or even other filtering techniques ranging from simple central
differences to sophisticated filters specially designed to estimate motion with a specific
similarity measure [40]. Any subtle change in these settings can influence the overall
accuracy of the results and is therefore worth further investigation.
At the core of this problem lies the fact that any motion estimation algorithm is actually
plugged together from a large set of modules available. Some of these modules as for
example image derivative computation are fields of research on their own. It would be
helpful if there were a set of known slots (constituting the elements of the most general
motion estimation algorithm and clearly defining input and output data) and a variety
of possible modules that could be plugged into each appropriate slot. Then, each slot or
module could be scientifically investigated separately and also in its combination with
other modules. We call this property modularity. A motion estimation algorithm is
modular if it fits into a general motion estimation framework and each of its algorithmic
elements can be exchanged. Furthermore, in an implementation of such an algorithm we
demand that all of its parameters can be adapted from the outside of the actual program
so that other scientists can experiment with the algorithm. One major contribution of
this work is the proposal of such a general framework in which most of todays known
algorithms fit into and a software environment in which many of these algorithms are
implemented in a modular manner. The modules of an optical flow method are another
interesting algorithm property.
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3.6. Accessibility of Implementations

Hundreds of motion estimation algorithms have been suggested in the past 30 years. A
few of them have become famous (e.g. [17, 41, 36]) as predecessor of most of todays
known techniques. A typical problem of most techniques is that papers being published
describe the idea and some results, but usually do not supply the reader with the ac-
tual implementation of the algorithm. As a result, a comparison of a large number of
algorithms is merely impossible due to two reasons: First, each implementation of the
same paper will slightly differ due to imprecise formulations in the publication, forgotten
details and so on. This is for example the case with the method of Black and Anandan
[5]: There are three implementations listed in the Middlebury data set [30] which differ
in their results. Second, the implementation of a paper can be very time-consuming.
This limits the number of algorithms that can be implemented in a reasonable amount
of time.
From an engineering perspective, this problem becomes even worse. Modern motion
estimation algorithms utilize for example new optimization techniques (as e.g. graphical
models) which had not been developed a few years ago, so that their implementation
can be very time consuming. Furthermore, as many of the above described algorithm
properties of motion estimation algorithms are unknown for many published papers,
one can easily spend large amounts of time implementing techniques which are actu-
ally inappropriate for the task at hand. Thus, the implementation and comparison of
such algorithms for any scientific or industrial applications often is extremely costly and,
therefore, infeasible.
One might argue that the purpose of public fundings of science by a country is to create
an open and free institution that allows for unconstrained research in order to discover
knowledge which turns out to be useful for its citizens in the long run. Assuming that
this philosophical understanding of science is valid at least to some degree, the acces-
sibility of implementations of motion estimation algorithms as a direct research result
should be a requirement for all involved parties, including scientists and engineers.
Accessibility has several aspects. First, the source code of an algorithm should be open
to the public to facilitate further research and industrial feasibility studies. Second, the
implementation should be as simple as possible as the theory allows and be well docu-
mented. Third, the parameters influencing the output of the algorithm should be small
in their number, intuitive to understand and insensitive with respect to input data. We
contribute to this point by defining and implementing a framework in which motion
estimation algorithms can defined in a platform-independent, open source environment.

3.7. Conclusion

In this chapter we have discussed the importance of algorithm requirements to describe
the properties of optical flow techniques. Requirements can be used by scientists as well
as engineers to design improved algorithms or choose between several options for a given
application. We have identified six algorithm properties on which requirements can be
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defined: The accuracy of an algorithm should e.g. be studied to validate the model
choice. Ideally, each algorithm should provide information about the estimatibility and
flow confidence of each image location. It should be clear in which fields of application
the algorithm can be applied. Complexity, computation speeds and possibilities for the
improvement of both properties should be investigated. The algorithm should ideally be
implemented in a modular way so that individual modules can be replaced by improved
ones upon availability. Finally, we believe that the implemented algorithms are an inte-
gral part of the research results and should therefore be made available as open source
code.
We have carefully motivated these requirements. Furthermore, we have discussed the
problems of testing for this suggested set of algorithm properties.
To overcome these problems, we will specifically address the modularity of existing tech-
niques in the following Chapter. The resulting implementation described in Chapter
5 can then be used to carefully analyze whether the algorithm requirements are ful-
filled.
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4. On the Modularity of Existing Optical
Flow Techniques

The important thing in science is not so much
to obtain new facts as to discover new ways of
thinking about them.

(William Lawrence Bragg)

Motion estimation can be divided into three main steps: First, a model is defined that
describes how the actual motion results in an image sequence. If this model is formulated
with continuous variables, these are discretized in the second step. Finally, the model is
fitted to the image data which is the optimization step.

4.1. Algorithmic Building Blocks

Hence, for a modular software an investigation of these steps is used as a guide to design
the algorithmic building blocks. We will first investigate various models in local and
global optical flow estimation. Then, we will discuss how these models are discretized
and which options exist for the optimization step.

4.1.1. Modeling

In 1981, Horn and Schunck [41] suggested to define an energy functional consisting
of two terms. The first term is called the Brightness Constancy Constraint Equation
(BCCE) and is derived as follows. Let I(~x, t) be a two-dimensional image sequence
and let ~u(~x − ~x′) be a two-dimensional flow vector at location ~x. Assuming that the
brightness of a single pixel remains constant along its trajectory of motion, the difference
of the intensity between the first image at location ~x and the second image at location
~x+~u(~x−~x′) should be small. Horn and Schunck decided to penalize the deviation from
this brightness constancy by defining an energy Edata(~x):

Edata(~x) := (I(~x, t)− I(~x+ ~u(~x− ~x′), t+ δt)) (4.1)

In a second step they chose to linearize this energy by a first-order Taylor-Expansion
which (after some rearrangements) results in the BCCE:

Ebcce(~x) := (∇x,yI(~x, t)~u(~x− ~x′)− δ

δt
I(~x, t)) (4.2)
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Here, ∇x,y defines the image derivative in x and y-direction. In a second term, they
assumed constant motion in the whole image. Any deviations from constant motion are
penalized by evaluating the derivative of the flow field:

Ereg(~x) := ∇x,y~u(~x− ~x′) (4.3)

This term relates neighboring flow vectors to each other. Both energies are weighted
quadratically and integrated over the whole image:

E :=
∫

Ω
Ereg(~x)2 + Ereg(~x)2d~x (4.4)

Due to the regularization term, the energies cannot be optimized locally. Therefore,
methods based on this technique are called global. Until today, the method of Horn and
Schunck is the basis for most global optical flow techniques.

In the same year, Lucas and Kanade proposed another method for optical flow es-
timation. It is based on the same linearized brightness constancy equation 4.2. They
also assume that motion is locally constant. The only difference between the methods
is the way how spatially connected flow vectors are related to each other. Instead of a
global regularization term that connects all pixels to each other, they proposed to collect
BCCE equations in a neighborhood around the pixel location to be estimated in order
to create an overconstrained linear system of equations which they solve by means of
a least squares fit. The system is linear because the BCCE has been linearized before
any optimization is carried out. A least squares fit of a nonlinear data term would be
possible as well.

Due to the finite neighborhood which is investigated per pixel location, the method
of Lucas and Kanade is called local. It also is the basis for many other optical flow
algorithms.

Both methods have been refined by a number of extensions which will now be reviewed.
This review is by no means exhaustive. Yet, it gives many examples for a well-motivated,
modular concept of motion estimation software.

Regularization Techniques A host of regularization terms Ereg(~x) has been suggested
for global methods. Nagel and Enkelmann [42] modified the spatially isotropic regu-
larizer based on the image gradient. Furthermore, it is possible to define anisotropic
regularization based in diffusion tensors. The diffusion direction can either be deter-
mined by the flow or by the image data. An overview of such convex regularizers can be
found in [43]. More complex regularizers have for example been developed by Cremers
et al. [44] by simultaneously segmenting the image into regions of constant motion.

Data Terms The method of Horn and Schunck as well as the method of Lucas and
Kanade rely on gray scale images. However, the BCCE can easily be extended to color
images: Since the equation should also hold for other color channels than the first, one
can simply include those constraints with additional BCCE equations. Other options
have been investigated by [45, 46, 47].

44



4.1. Algorithmic Building Blocks

Another data term is not to linearize the BCCE equation 4.2 and use the nonlinear
version 4.1 instead. This results in a nonlinear problem which has for example been
studied for global methods by Papenberg et al. [14].
To model physically meaningful brightness changes, Haussecker et al. [13] derived BC-
CEs with additional parameters that allow to simultaneously estimate brightness vari-
ations with respect to physical models. These equations have originally been designed
for local methods, but they can easily be inserted into global methods as well. Further
brightness variation models have been developed by Gennert et al.[48] and Garbe et
al.[49].
To render the data term more illumination invariant, higher order image derivatives have
been proposed as data terms [50, 51, 14].
Finally, Bruhn et al. [12] realized that a combination of local and global methods is
possible by integrating the spatial neighborhood of local methods as data term into a
global approach.
All approaches have in common that a data term per pixel location based on its local
surroundings is used as brightness variation model. This model is based on a set of two
or more (in the case of [13]) parameters that are inserted into this model.

Robust Measures Robust data terms are mainly used to deal with motion disconti-
nuities usually caused by occlusion. Seen from a more general perspective, the spatial
relation between flow vectors can no longer be described by a single set of parameters
in such cases. Therefore, the model assumptions become invalid for a subset of pixels
in the local neighborhood. For local methods this yields wrong flow vectors in those
regions. For global methods motion discontinuities have an impact on the whole flow
field.

Lai and Vemuri [52] analyzed the second image derivative to estimate whether the
image curvature at a given location is sufficient to estimate a flow at these locations. In
regions were this is not the case, they dropped the data term and used the regularizer
only. This was an early approach for robust data terms and has been followed by many
researchers.

Black et al. [53] suggested robust statistical measures such as the truncated quadratic
or the Lorentzian function to nonquadratically weight the brightness model residuals.
Other authors suggested to use various non-Euclidean norms as e.g. the L1-norm [14].
Bruhn et al. [12] chose to use the Charbonnier-function for weighting. Such functions are
not only used for the data term in global methods but also for the regularization term.
Usually, the choice of weighting function is found out experimentally and motivated by
improved results.

The same methods for weighting the residuals of brightness models can be used for
local methods. For example, a robust method has been developed by Bab-Hadiashar
and Suter [54] which iteratively samples from the set of BCCE equations and filters the
results with respect to such residuals. Other ways to weight the BCCE equations have
been analyzed by Farnebäck [6]. From a more general perspective, robust least squares
fitting is a whole field of dedicated research [55]; any of such methods can be applied
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to local methods. Here, the boundary between the optimization scheme and the actual
data term can become blurred, as the iterative refinement of the neighborhood can be
driven by the optimization process.

Motion Models Constant motion is a model so simple that it often is an invalid as-
sumptions in real world applications. Therefore, whenever neighborhoods of more than
one pixel are considered, a more accurate model of non-constant motion in this neigh-
borhood is interesting for improved results.

Cremers et al. [44] showed that with a piece-wise affine motion model in a simultaneous
segmentation framework, very good results can be achieved on suitable sequences (e.g.
the flower garden sequence www.cs.brown.edu/~black/images.html). Recently, Nir et
al. [56] incorporated motion models into a standard global approach by estimating all
model parameters at each pixel location. Instead of regularizing the flow, they regularize
the parameter set that describes the flow. With this technique, on the Yosemite sequence
they showed results superior to previous methods.

Local optical flow techniques have often been augmented by motion models as well.
Contributors are for example Bergen et al. [57] and Farnebäck [58]. An overview over
motion models is given in the review-paper of [59].

Furthermore, the estimation of multiple motions per pixel has been studied both in
global [60] and local methods [61, 5, 62, 63]. For the latter, this is for example achieved
by fitting two or more separate models to the same data while reweighing those BCCE
equations which belong to the other models respectively.

4.1.2. Discretization and Optimization

Without diving into details here, the next two steps would be discretization and opti-
mization. For discretization both image and flow derivatives need to be computed which
can be done in various ways. The optimization of global methods is usually carried
out by computing the associated Euler-Lagrange Equations, a system of partial differ-
ential equations which can be derived analytically by means of calculus of variations
(e.g. [64]). On the other hand, this energy term can be directly optimized, e.g. by gra-
dient descent. For local methods, least-squares techniques like ordinary least squares,
total least square, least median of squares and others are applied. An overview of such
methods can for example be found in [65]. In the past years, statistical methods have
become increasingly popular (e.g. [66, 67]). In recent work, the models are nonlinear,
so choosing the best suitable optimization technique is of high importance in order to
avoid the convergence to local minima. However, regardless of the chosen optimization
technique, the motion and brightness models remain the same, only the point at which
the problem is discretized varies due to the choice of optimization method.

Multiresolution Techniques A big problem of the BCCE is that it cannot capture large
motion when the image texture is too fine. The reason is the limited accuracy of the
first-order approximation of the image derivatives. To facilitate this problem, an image
pyramid is computed, following the idea that for a smaller image, the motion also is
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smaller and can hence be estimated more easily. The result on a coarse scale is then
upsampled to the next finer scale on which a new flow estimate is computed based on
the results of the coarse scale. As simple as this method sounds, it brings a number of
problems and parameters with it:

� Image and flow need to be resized. As both are defined on a discrete grid, an
interpolation scheme is needed. Especially for upsampling flows in regions with
occlusion boundaries results in large artifacts on the next finer scale. Many schemes
exist [68], but usually only linear and bicubic interpolation are used.

� A downsizing factor and a number of pyramid levels have to be decided. These
numbers can have significant effects on the overall-outcome of the algorithm. This
has for example been studied by [16]

� Following this approach, any non-linear function could be used for downsizing. It
would even be possible to try to locally find the optimal sampling parameters for
flow estimation. To the best of our knowledge this approach has not been tried
yet.

� The images could even be upsized for more accurate flows. This idea has for
example been studied by [39].

� Additional problems occur when the downsizing of the image modifies its content.
Consider for example a checkerboard-image with alternating black and white pix-
els. Downsampling by a factor of two with local averaging would yield a gray
image. This is not a purely academic problem as for example in particle image
velocimetry [23] very small image structures (which visualize a physical flow) are
of high importance for the motion estimation. Downsampling can simply remove
this information.

It is important to note that pyramids are used to overcome problems which are caused by
the linearization of an essentially nonlinear problem. Using pyramids therefore accounts
to employing more sophisticated optimization strategies while maintaining the same
model. Bruhn et al. [12] showed that such multiresolution methods are closely related to
multigrid methods for the solution of large linear systems of equations. Major differences
are that multigrid methods still solve a linear problem, iterate on the residuals of these
problems and that they cycle through the levels instead of doing a single sweep from
coarse to fine.

Computation of Derivatives The computation of image derivatives is another field of
research that plays an important role in image processing. Beginning with simple forward
difference schemes and local derivative averaging approaches (e.g. Sobel and Prewitt),
many approaches to image derivative estimation have been studied. In [33] the Sobel
filter was optimized with respect to rotational invariance. Scharr [40] as well as Krajsek
and Mester [69] constructed derivative filters specially suited for BCCE-based optical
flow estimation and showed significant accuracy increases for various applications. Farid
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and Simoncelli [70] studied the problem in a more general manner and therefore retrieved
another set of linear derivative filters.
Closely related is the field of interpolation. For example the approach of Unser [71, 72]
creates a polynomial approximation of the image where accuracies increase with the order
of the polynomial. Knowing the polynomials that constitute the image, its derivatives
can analytically be calculated at very little computational cost. Please note that knowing
the exact image derivatives at each image location is equivalent to knowing the flow, as
the BCCE can directly be solved. (Here, we still have to assume that exactly two
neighboring pixels have the same flow but linearly independent gradient vectors.)
Hence, the choice of the derivative estimation algorithm can greatly alleviate the problem
of motion estimation.

4.2. An Optical Flow Model Suited For Modular
Implementations

As described above, motion estimation can more generally be understood as the param-
eter estimation of the motion model. Therefore, let P ∈ Rn be the set of parameters
that describe the motion and U ∈ Rm be the actual motion. Please note that U can
have more than two dimensions when the motion is three-dimensional and also estimates
brightness variations. We call the mapping

M(~p(~x)) : P → U , (4.5)

which converts a parameter set into an actual motion vector, the motion model.
Furthermore, we define the brightness variation model to be the mapping

B(~u(~x)) : U → R, (4.6)

which inserts the motion vector into the image sequence at location ~x and returns a
scalar value which can for example be called matching quality, energy, potential or log-
likelihood e. In the simplest case M is the identity function and B is equivalent to
Equation 4.2.
In both global and local methods, the result of B is often nonlinearly weighted with a
function

Ψ(e) : R→ R. (4.7)

This function is regularly used to gain robustness with respect to outliers generated by B.
For B, often a local neighborhood N~x is considered around ~x. Furthermore, sometimes
more than one brightness variation model is applied with linear weights λi:

Edata =
k∑

i=1

λi

∑
~x′∈N~x

Ψi(Bi(Mi(~p(~x− ~x′)))) (4.8)
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In global methods, one or more additional regularization terms are added that relate
motion parameters or vectors locally:

Ereg =
l∑

j=1

λjRj(~p(~x),Mj(~p(~x))) (4.9)

For local methods, R is the identity function so that local optimization techniques as
for example least squares methods can be applied. These two terms describe all of the
above described models (4.1.1) for motion estimation:

E(M,B,Ψ,N~x, ~p(~x), ~x) =
k∑

i=1

λi

∑
~x′∈N~x

Ψi(Bi(Mi(~p(~x− ~x′)))) +
l∑

j=1

λjRj(~p(~x),Mj(~p(~x)))

(4.10)
This energy can be formulated using formal mathematical tools from statistics, analy-
sis, or other terms. Here, we concentrate on a way how to implement such methods,
regardless of their mathematical language used to describe the model.

4.3. Conclusion

By reviewing some exemplary publications on optical flow estimation, we have shown
that these algorithms can be described by a single equation consisting of interchange-
able functions for the various types of models. These functions define a clear interface
of input and output parameters. They formalize a large number of existing optical flow
algorithms in a common framework. Therefore, they can be implemented via abstract
base classes in an object oriented programming language as for example Java and C++.
Some methods as for example those based on Fourier Transformations [31] or correlation-
based methods [36] have not explicitly been addressed. Optical flow techniques based
on learning, such as [67] have not been mentioned as well. Yet, many of such methods
can still be implemented in this framework: For example the learning-based method [67]
consists of learned motion and brightness variation models which can directly be applied
here. Furthermore, correlation-based methods define a neighborhood and use motion
models as well - only the optimization strategy varies. In methods based on Fourier
Transformations a local neighborhood is used to define an energy which results in an
optimization problem as well. (In this case the choice of the neighborhood is restricted
so that modules for neighborhood selection need to communicate these restrictions.)
It is unlikely that any optical flow algorithm can be described by this general model
formulation. Yet, we believe that the discussed advantages of such a unifying framework
are so valuable for further research that a continued effort to unite the concepts of mo-
tion estimation is worth to be undertaken.
In the following chapter we will discuss the structure of our software library that follows
these abstractions in order to allow a modular implementation of optical flow algo-
rithms.
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5. Charon - If you want to cross the river,
you need to know the flow

Facts are not science - as the dictionary is not
literature.

(Martin H. Fischer)

To contribute to the above described aims of comparability, availability and modularity
we implemented the model in equation 4.10 and a number of optimization techniques.
We call the resulting software Charon (kaaron according to ancient Greek pronunciation).
It consists of a library and an executable, platform-independent front-end that can be
used to experiment with motion estimation techniques. A simple tool for the evaluation
of the results is provided as well. In this chapter we will describe underlying concepts
of Charon and additional tools currently being developed. Please note, that here we
describe a work in progress. With the advent of more complex optical flow techniques
we will extend the architecture of Charon and its components as becomes necessary.

5.1. Design Choices

To create a sustainable software library, the choice of tools is a first important step. As
a programming language we chose between Java, Matlab and C++. We chose the latter
due to the following reasons:

� Matlab does not provide sophisticated tools for object oriented programming.

� Some operations in Matlab require more computation time and memory as is
needed in our specialized application.

� Most implementations of algorithms available in Matlab are not accessible as source
code.

� C++ is accessible on a broader range of platforms and to a broader range of
potential users.

� Most image processing libraries are written in C++ as well. Although we did not
investigate the appropriateness of Java exhaustively, this is a strong indicator that
C++ suits our needs.
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� Finally, Java is conceptually similar to C++. We believe that the choice between
both is of little importance with respect to the final outcome.

Furthermore, data structures for image processing and tools for image loading, saving
and display are needed. Instead of reinventing the wheel, we chose an existing image
processing library. There is a large number of libraries available. We chose the CImg
library of David Tschumperlé (located at cimg.sourceforge.net) due to the following
reasons:

� It is platform-independent.

� The open source license is not restrictive (CeCILL-C which is close to the GNU
LGPL).

� It is easy to use due to its simple interface and single header file.

� It is templated and supports a large number of image formats.

� In the back-end, it optionally connects to specialized, performance-tuned libraries
such as ImageMagick imagemagick.org and fftw fftw.org.

� Its use is widely spread in the computer vision and image processing community.

� It supports OpenMP openmp.org for parallel computing on multicore-CPUs.

� Finally, the support is excellent as the author usually responds to questions within
a few hours.

Finally, as most optimization methods boil down to the solution of either small or
large linear systems of equations (or specifically the solution of discretized systems of
partial differential equations in the case of variational approaches) an appropriate library
is needed. A vast number of mathematical libraries exists. We chose the portable,
extensible toolkit for scientific computation (PETSc) for the following reasons:

� It is platform-independent.

� There is no restrictive licensing model (cf. www.mcs.anl.gov/petsc/petsc-as/).

� It is well documented.

� In the back-end, it optionally connects to a large number of mathematical libraries
(more than 30).

� Its use is widely spread and many libraries are based on PETSc itself (such as
SLEPc and TAU).

� It supports MPI open-mpi.org for parallel computing on supercomputers and
clusters.
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� PETSc allows to choose the algorithms it uses via command-line arguments which
greatly helps in experimenting with various solvers.

� Finally, PETSc is developed by the Argonne National Laboratories and the support
is excellent as the authors usually respond to questions within a few hours as well.

5.1.1. Model Implementations and Optimization Routines

In the current version Charon is implemented with a focus on optimization. Therefore,
two sets of base classes are used to model global an local motion estimation techniques
respectively. For global techniques, two base classes describe the optimization frame-
work: One is used for data terms and regularizers (shortly: terms) and one is an interface
to the solver. The term base class has methods for the computation of its energy, the
derivative of the energy and the application of robust measures (outlier functions) and
motion models. The last two are implemented in two additional classes, so that they can
be applied to local methods as well. Its properties contain information about a global
weight of the whole term and individual weights per pixel. These can for example be
used for inpainting methods.

The solver receives a list of terms. As these are additive, each term has its own
derivative that does not interfere with others. Since outlier functions can be derived by
applying the chain rule, there is no need to derive each combination of outlier function
and term. In Charon, both are derived separately and then inserted into each other
appropriately. The solver can perform any optimization task that takes the discrete
results of the terms and their derivatives. (Hence, if one or more terms are nonlinear,
the solver has to deal with this.) For the optimization of a set of terms a pyramid
class is used that offers an interface to pyramid generation from an image sequence.
A Gaussian pyramid implementation is based on this class and can be used to create
pyramids with arbitrary bases. The solver has an option to utilize this pyramid with two
options: If the terms consist of a convex optimization problem, any initial guess leads
to the same solution. In this case, each two images in the motion estimation problem
can be warped onto each other. This corresponds to a new linearization of the problem
after each pyramid level. Upsampling of intermediate motion estimates is carried out by
arbitrary interpolation schemes which are implemented in a separate interpolator class.
The second option can be used for nonlinear methods: Here, the pyramid images are
not warped. Instead, only a new initial guess for the next finer level is generated. The
rediscretization of the optimization problem is then performed by the solver itself. For
a discussion of these to options, please refer to [14]. Note that algorithms using more
than two image frames at the same time cannot be used when the algorithm is based
on warping. Specifically image derivative filters should not have a temporal support of
more than two frames. This also is the case for three-dimensional regularizers.

Currently implemented terms are the BCCE, the non-linearized image difference as
e.g. used in [14], the data term of the CLG method [12] and the regularizers of Horn
and Schunck [41] and Nagel and Enkelmann [42]. All terms can be combined with one of
the implemented outlier functions: Charbonnier, Huber, Lorentzian and P-Norm. The
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latter renders the optimization problem nonlinear, so that appropriate algorithms need
to be applied here. Additional data terms can easily be added to the library by deriving
the base class and overwriting the methods for energy and derivative computation.

For many data terms image or flow derivative filters are needed. We implemented
this based on a class named Discretizer, which essentially contains a filter kernel and its
associated properties (such as the center of the kernel and its dimensions). Appropriate
boundary handling is included. As well as the described interpolators, these discretizers
can be plugged into any of the terms described above.

Currently, we implemented the standard forward and central difference first and sec-
ond order derivative filters, the Sobel-filter and its optimized version [33] and the BCCE-
optimal filters of Scharr [40] in three different sizes. Again, further filters can be included
by simply deriving from the Discretizer class and defining the filter mask. Due to a flexi-
ble interface, filter masks which are not based on linear filter kernels can be implemented
as well.

For local linear optical flow methods, we adopted a very similar approach. The data
term of the CLG method utilizes these functions to minimize duplicated code to guar-
antee comparability between local and CLG-based methods. As described in Chapter
4, four aspects have to be modeled for local methods: The neighborhood operator, the
motion model, the data term and the optimizer. The neighborhood operator assembles
the data of those pixel locations where constant motion model parameters are assumed.
For the method of Lucas and Kanade [17] this is simply a boundary box around the cur-
rent pixel location. For the method of Bigün et al. [37] a Gaussian weighting is added
to this neighborhood. More complex methods can be based on a segmentation of the
image (e.g. [58]) or other heuristics. To collect the needed data at those pixel locations,
the neighborhood operator uses the motion model and discretizers for image derivatives,
respectively. This data can be individually weighted or masked with associated objects.
The resulting list of linear equations is then passed to the optimization routine.

For weighting we implemented constant weighting as in [17], Gaussian weighting as in
[37] and masking (i.e. pixel locations are only added to the neighborhood if the mask is
non-zero). As data terms we implemented the BCCE and those variations of Haussecker
et al. [13] that allow for the simultaneous estimation of intensity variations. Motion
models are currently not implemented (only the ”identity-model”).

Finally, block-matching methods are very similar to local linear methods. As they
have not been very popular in recent optical flow research, we implemented a simple
interface that defines a pixel neighborhood (region mask) and a similarity measure. For
optimization, only exhaustive search is implemented for now.

5.1.2. Helper Classes

To facilitate the further development of Charon, a set of platform-independent helper
classes has been implemented. Without going into details, these classes include:

� A sophisticated set of classes for the serialization of any objects into parameter
files. As each Charon object is derived from this set of classes, the library is
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able to be configured by parameter files which in turn can be created by visual
tools. Furthermore, the library can be built in a self-documentation mode so that
a detailed description of the algorithms and their parameters can be generated
automatically for novice users.

� To experiment with various combinations of parameter settings, we implemented
a tool for parameter iterations. The user supplies a set of parameter ranges and
increments for a given parameter file. The tool then automatically iterates through
all combinations of the settings and saves the results to subdirectories. Further-
more, this tool is designed to allow parallel computations of several parameter
settings at the same time on different machines.

� Many tools for enhancing the CImg library such as Region of Interest-support,
motion estimate error computation, convolution helpers and so on are implemented

� A set of regularly needed statistical functions such as for drawing from a Gaussian
distribution.

� A class for the computation of the principal component analysis.

� A set of classes that conveniently wraps the dialog capabilities of the CImg library
in an object oriented, event-driven manner.

� A tool to create simple plots either in a vector format (EPS) or rasterized format
(normal images).

� Simple convenience-tools for file handling string handling and profiling.

� A Windows-specific class for creating AVIs of image sequences from within the
library.

5.1.3. Visualization and Evaluation

Charon comes with a simple tool called WarpViewer which was designed to quickly
visualize the results of an optical flow algorithm (Figure 5.1). It offers three views:
The sequence view, the error view and the flow view. The sequence view visualizes
the post-processed image sequence. The flow can be shown as a configurable vector
overlay (color, sampling, scale). If a mask is present, it can be used to either mask the
flow, the sequence or both. The error view contains all error measures described in the
Middlebury data set [30]. Furthermore, it is able to generate an error histogram and to
visualize only a given range of errors. The flow view shows a HSV visualization of either
the ground truth, the estimated flow or the difference of both. Screenshots can easily be
saved and error statistics can be generated as text-file. An AVI-File can be generated
using the current view settings.
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Figure 5.1.: The WarpViewer tool can be used to evaluate motion estimation results.
Next to the console, where information about the current actions are dis-
played, the error and the flow window are similar to the visualizations at
the Middlebury website [30].
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5.2. Exemplary Results

As laid out in Chapter 2 we believe that general-purpose optical flow algorithms cannot
be used to obtain highly accurate motion estimates. Hence in this section we want to
show a few results that indicate that this hypothesis at least holds true for some regularly
applied algorithms. We will continue to implement more recent methods for Charon to
find further evidence.
Please note that we do not intend to provide new results on the latest optical flow tech-
niques. Instead, this section shows the versatility, modularity and ease of use of Charon.
In all experiments we compared endpoint errors as used in [30] instead of the angular
error used in many publications before. The motivation is that this error is much more
intuitive to interpret.

5.2.1. Image Derivatives

One interesting question for differential optical flow algorithms is the choice of im-
age derivative filters. To evaluate under which circumstances the best results can be
achieved, we compared all implemented filters. (i.e. central differences, Sobel, optimized
Sobel and the filters of Scharr [40] in the sizes 3x3x3, 5x5x5 and 7x7x7). As larger
filters are likely to be inaccurate on image sequences with motion boundaries, we first
applied them to the Yosemite sequence without clouds. Thus, we can see whether those
improved filters yield better results at all. We applied the methods of Bigün [37] and
Horn and Schunck [41] because they are so simple that other parts of the algorithm (as
e.g. robustness terms) are unlikely to interfere with the derivative filters. We did not ap-
ply image pyramids during the optimization because these assume that image derivative
filters only operate on the two images being evaluated. This is not the case for the filters
of Scharr. We also varied the regularization strength (in the global method) and the
integration scale (in the local method). We optimized the results for the global optimal
average endpoint error for these parameter settings. Please note that, although it is
unrealistic to choose optimal parameters in real scenarios, this approach is very helpful
in finding out the theoretic accuracy limit that can be obtained with these methods.
The results show that a larger regularization strength λ in the global method com-
pensates the improvements of image derivative filters: For the Yosemite sequence, the
optimal parameters are the central differences filters (with forward differences in time)
and a regularization strength of λ = 2000. In this case, the average endpoint error is
0.74± 0.87. As soon as we use image pyramids (as discussed in the next subsection), we
are able to obtain much smaller errors. From this point of view the choice of derivative
filter seems unimportant. However, in this case the regularization term smooths over
large areas and the average endpoint error is computed on a very large number of lo-
cations. The errors mainly occur along occlusions and in the bottom left region where
flows are large. Therefore, for data similar to the Yosemite sequence (i.e. smooth flows,
with small and large magnitudes and some occlusion boundaries) image derivatives do
not significantly improve the results.
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To see whether this statement is valid for a wider range of sequences, we applied the
same techniques with the same parameters to another synthetic sequence. Here, we re-
duced the complexity of the scene so much that we can test under which circumstances
derivative filters can still be useful. We chose to draw a Gaussian function (σ = 10px,
maximum intensity 1.0) on a float-valued image. The center of the Gaussian moves in a
circle around the center of the image. The speed of the motion is 0.75 pixels per frame.
Although the motion magnitude is constant from one frame to the next, the orientation
changes due to the circular motion. These conditions are almost ideal due to the small
magnitude of motion, the smooth gradients of the Gaussian and the lack of ambiguities,
noise or other image corruptions.
With the same parameter iteration we retrieved an almost constant endpoint error of
0.48± 2.89 · 10−5 with the 7x7x7-filter of Scharr and λ = 10. Hence, the global method
is severely biased with this filter. (Closer investigations of this effect indicate that this
is due to the anisotropy of the discretization of the regularizer in the Euler-Lagrange
Equations. Depending on the angle of the flow vector, differing biases occurred. How-
ever, further experiments have to be carried out to validate this hypothesis.)
The best results we obtained with the global method had en error of 0.0029± 7.6 · 10−6.
The small standard deviation is due to the constant motion in the image and the regular-
ization strength of λ = 50. The error was reduced by choosing central difference in space
and forward differences in time. Furthermore, we rediscretized the problem by applying
the image pyramid with a downsampling factor of 1.0 and two levels. This is similar to
the nonlinear approach of Papenberg et al. [14] where the nonlinear problems are solved
by a sequence of linearized versions of the problem. This shows on the one hand, that
the error of the linearization error of the BCCE is not necessarily negligible. On the
other hand, very accurate results can be obtained with simple derivative filters with this
global method. Yet, this method exhibits a considerable computational complexity.
Next, we applied the TLS method with the same filters to the same image sequence.
The optimal results were achieved with a large integration scale of σ = 7 and the 7x7x7-
Scharr-filters: The achieved average endpoint error is 0.012 ± 0.0029. Reducing the
integration scale to σ = 1 increased the error by roughly 23% to 0.015± 0.0074. Hence,
the best errors are still several times larger than with the global method. But, using the
central differences filters (as done in the global method), we obtain even worse errors of
0.059 ± 0.041 with σ = 7 and 0.22 ± 0.12 with σ = 1. These results are summarized in
Table 5.1.

Can we therefore conclude that the global method is always more accurate and that
optimized image derivative filters have an actually negative impact on the quality of the
results? To answer this question, we carried out a third experiment. The filter kernels
of Scharr are three-dimensional and therefore obtain information from several frames of
the image sequence. However, during filter design, it was assumed that the gradient is
constant in the whole region of support. In our experiment this assumption is violated
(especially with respect to the temporal gradient) as the direction of the motion changes
in each frame. To rule out the influence of this violation of the model used during filter
design, we created a new sequence that contains the same images. But instead of cre-
ating a circular motion, the new Gaussian moves on a straight line from top to bottom.
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Horn & Schunck (Warping) Total Least Squares (σ = 7)
Central Differences 0.0029± 7.6 · 10−6 0.059± 0.041
Scharr 7x7x7 0.48± 2.89 · 10−5 0.012± 0.0029

Table 5.1.: Average endpoint errors and standard deviations on a Gaussian image rotat-
ing in a circle with a flow magnitude of 0.75. Two methods and two sets of
derivative filters have been applied. (Warping has only been applied to the
central differences scheme with the HS method.)

Horn & Schunck (Warping) Total Least Squares (σ = 7)
Central Differences 5.6 · 10−3 ± 2.9 · 10−5 0.044± 0.026
Scharr 7x7x7 0.48± 1.4 · 10−5 1.3 · 10−5 ± 6.1 · 10−6

Table 5.2.: Average endpoint errors and standard deviations on a Gaussian image
straightly moving down with a flow magnitude of 0.75. Two methods and two
sets of derivative filters have been applied. (Warping has only been applied
to the central differences scheme with the HS method.)

The main error in the image derivative computation now stems from the fact that the
derivative of the Gaussian image is not exactly constant in space and time, whereas the
solution to the problem is now constant in space as well as time.
Thus, instead of optimizing the algorithm design to fit the data at hand, we turned
around the problem by tuning the sequence to perfectly meet the model assumptions.
Therefore, we can see which of the algorithms is more accurate under almost ideal
conditions. The results are summarized in Table 5.2. Here, the local method outper-
forms the global method by two orders of magnitude: The error of the global method is
5.6 · 10−3± 2.9 · 10−5. Even with a small integration area of σ = 1, the error of the local
method is 3.4 · 10−5 ± 2.7 · 10−5.
In some applications, as e.g. particle image velocimetry, such almost ideal conditions
with small and constant motions over several frames can be achieved with high speed
cameras and carefully designed markers. Though, in these applications noise corrupts
the image data. Therefore, we added spatially independent Gaussian noise with the
variances of 1%, 5% and 10% of the maximum image intensity to the sequences. As can
be seen in Figure 5.2, the local method performs better as soon as some noise corrupts
the image sequence.

What can we learn from these examples? First, we believe that choosing the correct
derivative filters for a given application can be very difficult for users with little expertise
in the field of motion estimation. Furthermore, image derivative filters can be used to
dramatically improve the results - but only in the special case of reasonably well met
model assumptions for both the derivative filter design and the optical flow technique.
The applied local method is easier to implement, faster to compute and (in the case of
a good model) even more accurate for small motions. Therefore, the choice of the algo-
rithm strongly depends on the kind of input data at hand. A general-purpose algorithm
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Figure 5.2.: The linear TLS method with optimized gradient filters yields highly accurate
results for a flow magnitude of 0.75px and temporally constant motion in
the presence of noise. It even outperforms the nonlinear version of the HS
method which needs considerable more computation time. Please note, that
in our case the standard deviations of the errors of the HS method can be
arbitrarily scaled with the regularization strength and are therefore omitted.
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Horn & Schunck Combined Local/Global
Yosemite 0.12± 0.26 0.09± 0.1
Rubber 0.26± 0.49 0.27± 0.5
Dimetrodon 0.16± 0.19 0.16± 0.2

Table 5.3.: Average endpoint errors and standard deviations with optimal parameters
for regularization strength and pyramids (downsampling factor and number
of levels) on three sequences with known ground truth data.

does not seem to be feasible in these scenarios. Since we have only experimented with
flows of magnitude 0.75, it remains to be analyzed how the accuracy depends on other
magnitudes. Nonetheless, knowing the model assumptions and the data can help to de-
sign a new algorithm that is simply put together with existing modules of known optical
flow techniques. Further research could for example concentrate on the automatic choice
of modules for a given image sequence. Charon can be used to experiment with such
techniques.

5.2.2. Pyramid Levels

In almost all of todays global techniques (such as [12, 14, 56]), multiresolution meth-
ods are applied to capture large motions. Yet, the choices which have to be made for
image pyramids as described in Chapter 4 are often not discussed. For example, even
though the results are tuned for accuracy and not for small computation times, in [56]
a standard downsampling factor of 2.0 is applied. Sometimes, the interpolation method
for downsampling or the one for upsampling the flow is not mentioned at all. Although
Alvarez et al. [73] proposed to downsample with other factors and to use Gaussian scale
spaces instead of image pyramids, these approaches have seldom been addressed in later
publications. To get an idea how much the pyramid implementation affects the accuracy
we ran a parameter iteration by simultaneously varying the number of levels of the pyra-
mid, the downsampling factor and the regularization strength. We experimented with
three sequences (Yosemite, Rubber Whale and Dimetrodon of the Middlebury dataset)
and applied the method of Horn and Schunck (HS) as well as the 2d, linear combined
local global method (CLG) of Bruhn et al. [12]. For the CLG method we iterated over
the integration scale of the structure tensor, the regularization strength, the number of
pyramid levels and the downsampling factor. We used bicubic interpolation.
Furthermore, before downsampling the images they are convolved with a Gaussian. The
variance of the filter kernel is the effective downsampling factor at the current level di-
vided by 1.4. Downsampling is always carried out based on the original image instead
of iteratively resizing the already downsampled image. Thus, downsizing with a factor
of 1 slightly blurs the image which effectively results in a scale space.
The optimal parameters and the results with both the HS and the CLG method are
shown in Table 5.3. In all examples, the optimal downsampling factor is smaller than
1.1. The number of pyramid levels varies between 4 and 15. We can draw two conclu-
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sions from these results: First, in our test scenarios, downsampling by a factor of two
only speeds up the computation time but does not improve the accuracy of the results.
Larger motions can hence as well be captured by the scale space and the iterative lin-
earization of the problem. Second, the number of pyramid levels (or rediscretizations)
strongly varies with the input data. In most examples the results became less accurate
for more than the optimal number of levels. On the other hand, as soon as a sufficient
number of rediscretizations has been carried out, the errors roughly converge to a con-
stant value. It remains unclear how the minimum number of levels for a given error limit
can be determined based on the original image data.
Please note that again we use simple sequences and simple methods. Yet, even for
such well-known methods the de facto standard pyramid settings are not optimal with
respect to accuracy. By starting to experiment with these simple methods, we would
like to encourage further experimentation with more sophisticated methods. But with
more and more methods, a combinatorial explosion of modules renders this task difficult.
Nevertheless, we believe that by more carefully studying existing methods and thereby
describing their properties in greater detail can facilitate further research and motivate
new approaches.

5.2.3. Parameter Choice

We have shown that the optimal choices of pyramid levels and downsampling factor for
a few test sequences are not the same as regularly employed in literature. Addition-
ally, the examples described above also vary in the optimal choice of the regularization
strength. Although Yosemite and Dimetrodon sequence are normalized to the same in-
tensity range of [0..255] (which strongly affects the regularization strength), we obtain
optimal strengths differing by an order of magnitude. If we apply the optimal parameters
of the Dimetrodon sequence to the Yosemite sequence we obtain an average endpoint
error of 0.6 ± 2.66 which is five times worse than with optimal parameters. Using the
parameters of Yosemite for Dimetrodon, we obtain an error of 0.21± 0.22 which is 30%
worse than with optimal parameters.
The CLG method is more stable with respect to the regularization strength in the three
test sequences. Yet, the additional parameters for the integration scale have to be in-
vestigated as well. For example, the Yosemite sequence needs strong regularization of
λ = 500, a large integration scale of σ = 4 and the optimized Sobel-filters as image
derivative kernels. In contrast, the rubber whale sequence needs a smaller regularization
strength of λ = 100, a much smaller integration scale of σ = 1 and the standard filter
kernels. Exchanging the parameters of Yosemite and rubber whale sequence yields the
results shown in Tables 5.5 and 5.4. Hence, applying the same parameters of these
methods to a wide range of sequences can result in quite different results.
Yet, with optimal parameters both methods perform almost equally well, except for the
Yosemite sequence where the CLG method is more accurate. Therefore, research into
the optimal choice of parameters with a given image sequence can sometimes (e.g. under
the given circumstances described here) be a fruitful approach to improve existing mo-
tion estimation techniques. We believe that comparability, availability and modularity

62



5.3. Further Developments And Additional Tools

Horn & Schunck Accuracy Loss
Yosemite (parameters for Dimetrodon) 0.6± 2.7 80.0%
Rubber (parameters for Yosemite) 0.38± 0.6 31.6%
Dimetrodon (parameters for Yosemite) 0.21± 0.22 23.8%

Table 5.4.: Average endpoint errors and standard deviations with suboptimal parameters
for the HS method applied on three sequences with known ground truth data.

Combined local/global Accuracy Loss
Yosemite (parameters for Dimetrodon) 0.19± 0.58 47.4%
Rubber (parameters for Yosemite) 0.35± 0.6 22.9%
Dimetrodon (parameters for Yosemite) 0.20± 0.22 20.0%

Table 5.5.: Average endpoint errors and standard deviations with suboptimal parameters
for the CLG method applied on three sequences with known ground truth
data.

of optical flow methods can facilitate and focus this further research.

5.3. Further Developments And Additional Tools

We consider this release of Charon as a very first step towards an open framework for
motion estimation researchers. With that in mind, we currently refactor the library to
more strictly follow the model equation 4.10 described in Chapter 4. The interoper-
ability of similarity measures (or data terms) is currently restricted to the optimization
method used. In future releases we aim at defining a single data term base class for all
optimization techniques. These data terms can easily be interpreted as unnormalized
log-likelihoods in graphical models whose interaction between nodes is defined by the dis-
crete versions of regularization terms. With a few minor modifications, our model equa-
tion can directly be interpreted as graphical model. As a result, statistical optimization
algorithms derived from graphical models are another topic for future implementations.
This would enable researchers to define models independent of the optimization method
or mathematical philosophy behind the actual idea how the optical flow problem can be
solved.
Furthermore, the support for motion models is being extended by those models described
in [59].
Finally, two additional software projects 1 are going to be fully integrated into Charon
for facilitating good documentations, intuitiveness, reproducibility of results and their
interpretation. The first program is called Argos. It implements a much more sophis-
ticated viewer for motion estimation results. The second program is Tuchulcha (whose
name also is derived from Greek mythology). It is a visual editor that helps generating
motion estimation algorithms from Charon modules.

1developed during student projects by Stephan Meister and Jens-Malte Gottfried
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5.3.1. Argos

On the one hand Argos (Figure 5.3) is a general, platform-independent, Qt-based image
viewer that can be used to view images and sequences in the CImg library format as
well as any format supported by ImageMagick. On the other hand, Argos is a tool to
specifically generate workflows for the interpretation of motion estimates. The function-
ality of the WarpViewer is implemented in a much more general way so that individual
views of flow results can be generated. With flows in mind, the analysis of sequences
with two or more dimensions per pixel and their visual connection to conventional image
sequences becomes possible with just a few mouse clicks. Motion error analysis, sophis-
ticated masking methods, information about mean and standard deviation with respect
to given masks and many more tools are included. Furthermore, the results can be saved
for figures in scientific publications or websites. As well as Charon, Argos is written in
a completely modular way so that specialized extensions can be implemented with little
knowledge about the program itself.

5.3.2. Tuchulcha

Tuchulcha (Figure 5.4) is a visual tool to generate workflow graphs based on predefined
rules. It is also Qt-based and can be used for many other applications as well, but it
tightly integrates with Charon. The generation of rules for the graph design is carried
out by simply compiling Charon. Along with the rules comes an automatically generated
documentation that describes the individual modules of Charon and their parameters.
Hence, with Tuchulcha, the learning of Charon is a lot easier. New modules of Charon
are automatically integrated into Tuchulcha without any additional steps. Finally, the
designed algorithms can be saved to a single parameter file. These can in turn be saved
to a database with experiment results, used for unit tests, or published on a website.
Researchers then only need to compile the current release of Charon and then download
parameter files of other researchers to verify their results.

5.4. Conclusion

In this chapter we have introduced Charon, a software library for the estimation of
motion in image sequences. Charon comprises a huge set of features that have been
developed during the course of the authors’ optical flow research in the past three years.
Thanks to a modular design, a large number of optical flow algorithms can be generated,
including classical [17, 37, 36, 41] and more recent algorithms [73, 12, 14]. This modular
framework derived from a general perspective on motion estimation techniques minimizes
the implementation time of new local and global optical flow techniques. Simultaneously,
it allows for a comparable experimentation with known and new algorithms where only
modules of interest are changed, while the rest of the algorithm remains exactly the
same.
Although the library is not designed for performance, it allows for the computation of
results on multicore CPUs, network clusters and supercomputers.
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Figure 5.3.: Argos is a general image viewing tool which is specifically tailored for sci-
entific image analysis. The currently implemented modules are designed for
flow vector evaluation with respect to ground truth.
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Figure 5.4.: Tuchulcha is a tool which can be used to graphically design optical flow
algorithms from known modules with integrated documentation.
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5.4. Conclusion

To encourage other researchers to use Charon for both experimentation and new algo-
rithm implementation we are willing to offer high quality future support (inspired by
the developers of CImg and PETSc) and will continue the development as laid out in
the previous Section.

Based on some preliminary experiments, we have shown that the choice of modules
has an impact on optical flow techniques that cannot be easily predicted without a
decent amount of expert knowledge or extensive experimenting. These experiments for
example show a strong dependence between the optimal regularization strength and the
given input data, the optimal choice of the best pyramid parameters and unintuitive
behaviors of derivative filters. This indicates that, for example, more research has to
be put into the automatic choice of parameters or into methods with less parameters.
Furthermore, we have shown that the accuracy of the discussed optical flow algorithms
is best optimized by choosing those modules which are best suited for the image data at
hand. In our case, the local structure tensor method with the derivative filters of Scharr
compared to any combination of modules for the HS method yielded superior results
already for small noise levels.

We believe that, given the support of the motion estimation community, Charon can
greatly facilitate further research in motion estimation by providing a set of reference
implementations and efficient evaluation tools as Open Source code. We sincerely hope
to inspire other researchers to use Charon as their software framework for new optical
flow algorithms in order to create an algorithm database similar to the reference data
sets provided by [30].
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Part III.

Applications to Fluid Flow
Estimation

The scientist is a practical man and his are
practical (i.e., practically attainable) aims. He does
not seek the ultimate but the proximate. He does
not speak of the last analysis but rather of the
next approximation. His are not those beautiful
structures so delicately designed that a single flaw
may cause the collapse of the whole. The scientist
builds slowly and with a gross but solid kind of
masonry. If dissatisfied with any of his work, even
if it be near the very foundations, he can replace
that part without damage to the remainder. On
the whole he is satisfied with his work, for while
science may never be wholly right it certainly is
never wholly wrong; and it seems to be improving
from decade to decade.

(G. N. Lewis. Quoted in Stochiometry by Leonard
K. Nash. Addison-Wesley 1966. p. vii.).)
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6. Particle Detection By Momentum
Stability

Science is simply common sense at its best.

(Thomas Huxley)

In the previous part of this work we have motivated and developed a framework for
the implementation of optical flow techniques. The resulting software library is capable
of abstracting the modules of optical flow algorithms so that the implementation of
new techniques is fast and easy to carry out. In the following two chapters we will
now demonstrate the versatility and the advantages of this framework by introducing a
new algorithm in the field of fluid flow estimation. More precisely, we will develop an
algorithm for image data with relatively few visible particles in the image sequence. This
is a rather exotic application in terms of optical flow estimation, as motion can only be
estimated at pixel locations where particle images are visible. By detecting these particle
locations we tackle the optical flow algorithm requirement of an estimatibility measure.
As this measure is an important step limiting the accuracy of PTV approaches in general,
we will discuss it in the following.

The performance of this initial part of the PTV algorithm also has significant conse-
quences for subsequent tracking algorithms, particularly in the case of dense seedings of
particles. Different PTV algorithms have been proposed in literature. But usually only
the accuracy of the whole approach is presented, including experimental set-up, segmen-
tation and tracking. Here, we will present a novel algorithm and a thorough evaluation
framework for the first step of particle detection which can be considered as an estimat-
ibility computation module of Charon. The algorithm is based on momentum stability
over a set of thresholds and exhibits superior results. With the latter the performance of
our proposed algorithm is analyzed with respect to particle image size, intensity, noise
and overlap. Our technique is thus well suited as an initial building block for PTV
algorithms. To facilitate incorporating our technique into PTV algorithms (such as the
one presented in Chapter 7) and testing this module for accuracy, we provide reference
images and C++ source code in the form of Charon modules.

6.1. Introduction

For visualizing fluid flow, neutrally buoyant particles are used to record an image se-
quence as they follow the motion of the fluid. The resulting data is studied by image
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processing algorithms which try to reconstruct the fluid flow from this data. Particle
tracking velocimetry (PTV) is a good choice whenever one wants to extract Lagrangian
particle trajectories or when the flow to be studied does not allow for high particle den-
sities. This is for example the case if the visualized flow is highly three-dimensional
and illumination is carried out with a volume light source which would results in an in-
tractable number of occlusions (regions were particle images of different depths overlap
each other). Such a PTV algorithm usually consists of the following parts:

� Preprocessing: E.g. image sensor noise is reduced and the background is sub-
tracted.

� Particle Detection: For each pixel a decision is made, whether it belongs to a
particle or not.

� Particle Localization: The center of each particle is located with sub-pixel-accuracy.

� Particle Tracking: The correspondences of the particles between image frames are
determined.

� Postprocessing: E.g. interpolation or confidence estimation of the sparse motion
estimates is performed.

Each step can significantly influence the quality of the overall results. One crucial step is
the particle detection: If particles are missing from one image frame to the next, a cor-
rect tracking step becomes much more difficult because the flow for this particle cannot
be determined on a frame to frame basis; if spurious particles are detected, the estimated
flow at this location becomes arbitrary because any correspondence with particles in the
subsequent frame is wrong. Nonetheless, locating particles correctly (or at least knowing
the typical problems with the detection step) can significantly facilitate the subsequent
tracking step. This is particularly the case when particle densities increase.
Therefore, the optimization and analysis of this single algorithmic building block promises
large quality improvements. Yet, this aspect of image processing for PTV is usually in-
cluded in the whole experimental setup and not analyzed separately. It remains uncertain
which part of the whole PTV technique yields which quality improvements. Furthermore,
particle detection often is highly adapted to actual imagery obtained by the experimen-
tal setup (cf. Section 6.2). A more general solution to the problem seems desirable.
Our contribution in this paper is twofold: In order to be able to compare the quality of

such algorithms, we suggest a test environment consisting of reference images and C++
code to evaluate the results and construct new images as was done by Okamoto et al.
[74] for PIV image data. This set of reference data is also very useful for a compara-
ble evaluation of complete PTV methods. Unfortunately, these image sequences cannot
directly be used to specifically test particle detection routines. The reason is that refer-
ence data is not given for all particles showing up in the image data (cf. Figure 6.3 for a
visualization of this problem). The estimation of false positive and false negative rates
therefore becomes impossible.
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Figure 6.1.: A particle image used for the evaluation of our algorithm. Top: original
image. Bottom: image with 800% noise and background image. The number
of correctly detected particles is 86.7% (cf. Section 6.6)

Additionally, we propose a new segmentation algorithm with a wider field of applica-
tions in mind. We evaluate this algorithm with respect to variable particle image sizes,
intensities, noise and particle overlap. The results show that our new algorithm is very
robust with respect to noise and produces almost no false positives at all. This suggests
that this method can be applied to a wide range of PTV-based applications. But, as
there is no common data basis for investigations of previous particle detection algorithms
(in contrast to data for black-box tests of whole PTV algorithms), a thorough compar-
ison remains to be undertaken. We understand this paper as a first step towards this
direction.

6.2. Related Work

Very few papers actually analyze the particle-detection part separately as will be dis-
cussed below. Possible reasons might be a lack of space, the minor importance of this
specific part in a paper with another major point of focus or the lack of reference data
from other papers. On the other hand, PTV papers analyze the overall outcome of the
whole technique in a very detailed manner, so the particle detection quality assessment
can be understood as implicitly included.
Almost every PTV algorithm uses its own, specialized particle detection algorithm.
Hence, it is very difficult to give a comprehensive overview on this topic. Nevertheless,
only a few basic principles are usually applied which will be described here exemplarily.
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first order momentum

first order momenta

Figure 6.2.: When thresholding a particle image at various thresholds, one of the invari-
ants is the the location of the first statistical momentum of the resulting
connected components.

6.2.1. Global Thresholding

One idea to seperate particle images from the background is to determine a global thresh-
old. All pixels above this threshold are assumed to be particles. The main challenge
of this approach is to determine a single optimal threshold for all pixels at once. One
step in this direction has for example been made by Guezennec et al. [75] by analyzing
the histogram of the image. They search for two modes in the histogram: The mode
of dark intensities is assumed to be the background and the one with bright intensities
is understood as particle. The optimal threshold lies at the intensity farthest away in
between both modes.
Problems occur when the background of the image is not black, e.g. to insufficient back-
ground subtraction or for pixels with shot noise. Furthermore, it can become difficult
if various particle image intensities exist, i.e. the histogram is not bimodal any longer.
In [75] this algorithm has been analyzed for 100 particles with respect to several noise
levels. A comparison or discussion with other methods was not carried out.

6.2.2. Dynamic Thresholding

When global thresholding fails, a possible solution is to determine an individual threshold
for each particle individually. For example in [76], Maas et al. search for local maxima
first and then determine a threshold based on its surroundings. To reduce the number
of false positives, the region around the maxima is tested for monotonously decreasing
intensity values. The authors state that the quality of the detection is good. Yet, they
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do not explicitly analyze this part of their algorithm.
A second approach was undertaken by Marxen et al. [77]. For each particle location
candidate, they take the average gray value of a region of 32x32 pixels into account.
The threshold is a factor f > 1 multiplied by this average and is empirically determined
based on the given particle density. No individual results for this part of the algorithm
are shown and no other possible methods are referenced.
Other dynamic thresholding approaches were introduced by Ohmi et al. [78]. In their
paper, problems of existing particle detection algorithms are discussed thoroughly and
their properties are mentioned in a qualitative manner. They apply their algorithms to
the standard PIV library [74] in order to make their results comparable.
This method was modified by Mikheev et al. [79] so that local maxima intensities are
used as input for the threshold estimate and particles too dark are removed from the list
of candidates. The paper also includes a comprehensive discussion on the difficulties of
known methods but again, the actual quality of this part of the whole PTV algorithm
is not investigated.

6.2.3. Correlation-Based Methods

In [80], Etho and Takehara proposed a completely different method to detect particle
images. They tried to analyze the visual appearance of the sought particles. From
the results a template (or mask) is created which is then correlated with the whole
image. Correlation peaks show where the template matches the image well. Thus, a
local maxima in the correlation results denotes a particle location.
Ohmi et al.[81] took up this idea of defining a correlation mask which inspired the use
of the Moravec operator. The authors state that this operator helps to identify particle
images of variables sizes and intensities.

6.2.4. Region-Growing Methods

Similar to dynamic thresholding are region growing methods. Here, pixels are seeded
into the image (usually at all local maxima locations) and then grown simultaneously by
adding pixels to each region. A first approach in this direction was carried out by Hering
et al. [82, 83]. This method was further developed by Jehle et al. by using watershed
segmentation in [84]. One of the major problems of these approaches is noise: During
the seeding, the algorithm creates regions to be grown which would eventually become
particle candidates. If noise severely corrupts these images, the growing sometimes ran-
domly stops or propagates into other particles. As a result their identification becomes
very difficult in the final decision step.

6.2.5. Learning-Based Methods

Carosone et al. [85] suggested to use artificial intelligence methods to detect particle
locations. In their approach, a Kohonen neural network is trained to detect particle loca-
tions. In experiments they found a sensitivity of 97.6% for their algorithm. Furthermore,
they state that the algorithm is very good in detecting overlapping particles. But the
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Figure 6.3.: A particle image from the PIV-STD dataset [74]. Left: simulated PIV image.
Right: locations of particles in the supplied particle list. Missing particles
make the estimation of false positives and false negatives impossible.

exact type of synthetic test-data is not exactly described in the paper. Additionally, by
just citing the sensitivity, nothing is known about the false positive rate: the number of
spurious particles can be arbitrary. Hence, the overall quality of the algorithm remains
to be investigated.
A recent approach to detect particles with neural networks was suggested by Ouellette
et al. [25]: The authors trained a multilayer perceptron with a 9x9 input region (the
intensities around each pixel location), a single hidden layer of 60 neurons and 2 output
neurons with sigmoidial activation functions. The results show very good true positive
rates but no false positive or false negative rates are shown. Hence, again the overall
quality of this algorithm is unknown. The method was not compared to other methods.

6.3. Particle Detection

The central observation in this paper is that particle images approximately maintain their
first momentum (center of gravity) when thresholded at various levels as illustrated in
Figure 6.2. Furthermore, we assume that particles are roughly Gaussians and thus are
convex in shape. Please note, that in this paper we are only interested in the particle
detection and not its localization: Subpixel-accurate particle locations can be estimated
as soon as all pixels belonging to a particle image have been determined by our algorithm.
It consists of five steps, applied to each image separately in the sequence. The choice of
parameters is discussed in the subsequent section.

Step 1: Gaussian Blur As a first step, we convolve the image with a Gaussian kernel.
On the one hand, this is merely used to increase the number of intensities from the
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discrete set of quantized camera intensities to floating point values (which is useful as
shown below). On the other hand (as this kernel is symmetric, and thus equivalent to a
correlation) Gaussian-like image structures are enhanced by this process.

Step 2: Thresholding To calculate the momentum stability in step four, we create
a stack of binarized images. The set of thresholds is determined as follows: The user
supplies the algorithm with a maximum intensity value Imax that should be used as
maximum threshold and a number of thresholds N to be computed. Thus, the ”threshold
step” can be expressed as Imax

N .

Step 3: Connected Component Analysis A connected component consists of all pixels
in a binary image that are connected in a four-neighborhood. Each pixel in a binary
image belongs to exactly one connected component. Each of the thresholded images
of the previous step is analyzed via its connected components. We now reject those
connected components which are too small or too large.
Furthermore, we generate the convex hull of each connected component and count the
number of pixels of the convex hull that do not lie inside the connected component. This
number of pixels is considered as convexity measure: If it is larger than four we reject
the component. Finally we compute the first momentum of each remaining component
by averaging all of its pixel locations.

Step 4: Momentum Stability Computation After the most obvious non-particle con-
nected components have been removed from the thresholding result, the momentum
stability for each connected component is calculated. By now, for each pixel, we have
obtained the associated connected component for each threshold. Starting out from the
smallest threshold, we now compute the difference vector between the momentum loca-
tion at a given pixel at the current threshold and the associated momentum location at
the same pixel in the next higher threshold result stored in the stack of binarized images.
If the length of this vector is smaller than two pixels, we mark this location as stable at
the current threshold. If it is larger than two, we mark it as instable at this threshold.
In the end, for each location and each threshold we have a boolean stability value. An
illustration can be found in Figure 6.4.

Step 5: Maximum Stability Range Detection Once the stability value has been cal-
culated for each pixel and threshold we search for the largest stable range of thresholds
at each pixel. This can be easily done (at each pixel) by starting at the smallest thresh-
old’s stability. If it is stable, we add one to a counter. Else, the counter is reset to
zero. Then, we go to the next higher threshold and continue (cf. Figure 6.4). Thus,
we can remember the smallest threshold for the largest stability range and the number
of thresholds over which this range was stable. The larger this number, the more likely
we identified a connected component that is a particle. If the maximum stability range
Rmax is large enough we accept the connected component with the smallest threshold
in this range as particle.
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Figure 6.4.: A visualization of the momentum stability computation and maximum sta-
bility range detection of steps four and five in the algorithm (cf. Section
6.3).

(Optional) Step 6: Noise Analysis Around each found particle, the average intensity
of all non-particle-pixels in a diameter of twice the particle radius is computed. Then,
the maximum intensity of the particle is divided by this average to get a rough idea of
the signal to noise ratio of this particle image. Based on this value, additional particle
image candidates can be neglected. Obviously this method only works for zero-mean
noise, hence (if necessary) background subtraction methods have to be applied before
this step is carried out.

6.4. Choice of Parameters and Technical Considerations

As already mentioned in Section 6.3, the choice of the parameters is quite intuitive and
robust to variations. To give a better overview, we sum up all aspects of parameter
choice in this Section.

Gaussian Blur The size of the blur in step one is mainly used to spread out the intensity
values in order to reduce the effect of quantization. We modified the parameter in the
range between σ = [0.3..2.0] and yielded essentially the same results. Only the centers
of gravity of the momentums were slightly perturbed without an effect on the detec-
tion rate. Since we are only interested in the particle centers, the decreasing intensity
and increasing size of the particle images caused by the Gaussian blur can be ignored.
Hence, the variance of the Gaussian kernel should be roughly close to the particle size.

78



6.4. Choice of Parameters and Technical Considerations

Nonetheless, as overlapping increases with larger filter kernels, this value should be as
small as possible.

Connected Component Analysis The smallest particle area allowable for the subse-
quent steps of the algorithms is usually known by the experimenter. Particles smaller
than this size are neglected because they could also be noise. The largest particle area
is useful to instantly remove particle candidates that are obviously impossibly large.
Removing them by this threshold mainly saves computation time. Furthermore, the
maximum size can be roughly determined by looking at the image data.
If the connected component is not convex, it is highly unlikely that it is a particle, hence
a very small number for non-convexity as e.g. four (for allowing four pixel difference to
the convex hull) should be used. This parameter begins to play a role when particles
touch each other or background objects were not successfully removed before the algo-
rithm started. Anyhow, it plays only a minor role in the overall results.
The connected component can be carried out highly efficiently by preallocating all mem-
ory needed throughout the routine (as memory allocations are very slow) and implement-
ing e.g. the linear-time algorithm of [86].

Thresholding and Stability Range The maximum particle intensity of the image Imax

can be easily determined by actually looking at the brightest particles in the image. For
best results, Imax is set to a rough estimate of the brightest particle intensity minus a
small offset. This offset is due to the Gaussian kernel convolution which reduces the
particle intensity. But the exact choice of this threshold does not matter: In a range of
255 intensities and a brightest particle of 200, a range of 150 to 255 yields almost the
same results.
This step can probably also be automated in a future version of this algorithm. On the
other hand this choice is highly intuitive and again has not much impact on the resulting
quality.
The most important choice is the number of thresholds N together with the stability
range Rmax: Consider Imax = 100, N = 10 and an image with only one particle with this
intensity and no noise. Thus, the stability range of this particle is 100

10 = 10 because the
momentum remains at the same location for all N = 10 thresholds. Choosing Rmax = 11
would cause the algorithm to never detect this perfectly visible particle. Hence, Rmax

should never be too large. In contrast, experiments showed that choosing Rmax relatively
small compared to the number of thresholds does not significantly decrease false positive
rates. We assume that this is due to the fact that for noise or larger image structures
occurring in particle clusters the momentum rapidly changes from one threshold to
another. As a result, very few stable momentums suffice to reliably detect a particle
image correctly. Thus, Rmax should be chosen very small compared to the N . In all our
experiments, we set Rmax = 5 and yielded very good results for all evaluated data sets.
The choice of the number of thresholds N is related to that of Rmax. It should be
sufficiently high to capture all occurring intensities in the image. On the other hand, as
only a limited number of actually differing intensities exist in the image, at some point
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increasing N will not facilitate the particle detection any longer because the thresholded
images look alike at various levels. In an extreme case this becomes disadvantageous
because in identically looking thresholded images, all momentums remain constant. As
mentioned above, we set N = 500 in our experiments. In a range of N = [300..700]
the results did not significantly change. As a rule of thumb in most cases (8 bit images
with bright particles) this value should be around two times Imax. We assume that
this parameter can be automatically selected in future implementations by counting the
number of occurring intensities in the range [0..Imax] before the Gaussian blur step.
Thus, this algorithm has basically three important parameters: Imax, N and Rmax. The
first two can be chosen easily, the latter requires some experimentation. All parameters
are intuitive and can be adjusted by looking at single frames of the image sequences at
hand.
A technical problem of the algorithm is that each frame is expanded to N images (one
for each threshold) which can consume a lot of memory for large images and large N . As
a solution, the binary images can be efficiently managed by storing 32 (or 64) boolean
variables in a single integer value. This saves memory for large numbers of thresholds if
necessary.

6.5. Evaluation Environment

As discussed in section 6.2, the PIV standard data set [74] cannot be used to fully
describe the properties of the particle detection routine. Therefore, we implemented a
new particle image generator (PG) for single images. A widely accepted way of creating
a single particle image (cf. e.g. [77] for a motivation) is to approximate it with a two-
dimensional Gaussian intensity distribution instead of using the Airy distribution. As
particles are usually very small in real data sets, it is important that particle locations
do not necessarily have to lie on the pixel grid. Other aspects are the brightness and the
size of the particle images which can be controlled by the maximum and the variance
of the Gaussian function. There are two ways to draw a Gaussian on a pixel grid: one
can either sample the Gaussian at pixel center locations or integrate the Gaussian over
the pixel area. Motivated by experiments carried out in [87] we sample the Gaussian
function. Another interesting question is where to stop sampling. At least three options
exist:

� Sampling is stopped as soon as the quantized intensity value of the Gaussian
function becomes zero.

� As camera images are noisy, another option would be to stop sampling at the noise
level.

� As it is known how much of the integral of a Gaussian is covered by a range of
n · σ around its mean, we can stop sampling at e.g. 2σ so that 95% of the particle
integral is covered.

Here, we stop sampling the Gaussian according to the first suggestion either at 10σ
or when the rounded intensity value drops below the quantization error (depending on
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which condition applies first). An appropriate notion of particle image diameters can
be chosen by the reader as it can be directly deduced from noise level, quantization bits
and Gaussian variance.
Another important consideration is how particle overlap is modeled. To the best of our
knowledge, no experiments have been carried out to find an accurate model of this event.
It is important to notice that not only the physical process of two occluding particles
itself (including diffraction and other physical phenomena) has influence on this model
but also the image acquisition including optical low passes and CCD or CMOS binning.
The simplest model is the following: Assuming that a particle is much smaller than one
pixel, we can consider it as Dirac impulse. Due to the optics, this Dirac impulse is low
pass filtered and thus convolved with a Gaussian. This conforms with the assumption
of Gaussian-shaped particles. Furthermore, they also appear larger than they actually
are. (We observed this behavior in experiments with particles of 70µm diameter which
appeared to be up to two times larger than they actually should be.) These assumptions
are obviously not valid for larger particles and in fact the simulation of particle occlusion
remains to be investigated more closely. Up to now, based on the above made assump-
tions we can simply add up particle intensities. Additionally, we avoid that particles
fully occlude each other by defining a minimum distance between each two particles
which can be passed to the PG.
A third important consideration is noise. In our case we use additive Gaussian noise
with zero mean. Nonetheless, the PG allows to use any noise with individual variance
and mean at each pixel location. Hence, camera properties can well be measured and
integrated into particle detection experiments. The mean image can for example be
interpreted as background image.
Once the whole image has been generated by randomly seeding particles (drawing from
a uniform distribution) onto a black background, the intensity values are quantized to a
given bit range (in our case always eight bit). Overshooting and values below zero (due
to noise) are truncated to this range.
The PG as well as our algorithm are available as C++ cross-platform open source code
and binary for windows and Linux upon email request. Furthermore, the images gener-
ated for the specific tests in this paper are made available.

6.6. Results and Discussion

In this section we not only test for the properties of our proposed algorithm. We also
try to make a first suggestion for a common way to analyze particle detection routines
for various applications. Important questions concern the minimum possible size of
particles, influence of noise and background images and a study of the effect of occluding
or clodding particles. Of special interest are extremes: what is the maximum noise, the
minimum size or intensity and so on. Thus, we posed the following questions.
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Figure 6.5.: Several particles with σ = 1 showing different diameters with intensity 2
(top left), 10 (top right) and 100 (bottom left). Bottom right: particles
with σ = 0.5 and intensity 100.

6.6.1. Without noise, how can we still achieve optimal results?

It is important for applications to define an upper quality limit of the algorithm under
ideal conditions. As we segment particles rather than searching for subpixel-accurate
particle positions, we define an optimal result as the right answer to the question: Have
all particles in an image been found without any false positives or false negatives? A
particle is found if the true particle location differs at most one pixel from the estimated
particle location (which is given by its momentum). Subpixel-accurate measurements
can then still be applied as a the second building block of the whole PTV algorithm.
In our experiments with synthetic data we first created a non-overlapping particle image
with 1000 particles and no noise. The size of the particles was set to σ = 1.0 and we
quantized the image with eight bits. Under these circumstances, the number of visible
pixels depends on the particle image intensity, which we varied. For an intensity of 10,
the particle diameter is four and the particle area consists of 14 to 16 pixels. For a (very
low) intensity of 2, the particle diameter is 3 and the area ranges between 4 and 6 pixels.
Example particles are shown in Figure 6.5. Under these circumstances, any algorithm
should be able to detect all particle images, which we want to prove four our algorithm.
The particle detection algorithm was configured with the following parameters: Mini-

mum and maximum area for the connected components are set to 3 and 40 respectively,
whereas the maximum area has no influence on this experiment. (This is due to the fact
that no connected components will be computed that do not belong to actual particle
images and that the size of all particle images is known and much smaller than 40.)
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The maximum distance allowed for momentum differences is set to one and the stability
threshold to five. As the image has no noise and particles do not overlap, the parameters
for convexity and noise analysis are arbitrary. The image is blurred with a Gaussian of
σb = 0.3 just to convert the quantized image into a floating point image. The two im-
portant parameters of this synthetic experiment are the number of thresholds N = 500
and the maximum occurring intensity Imax. As in real-world applications the latter can
easily be roughly evaluated by looking at the images (up to noise uncertainties), we set
Imax to the correct value (i.e. 10 and 2 respectively).
As expected, in both cases of intensity 2 and 10, the algorithm finds all particles. Nev-
ertheless, the number of particles which are between a half and one pixel distance from
the true location, increases: For an intensity of 10 only 50 of 1000 particle centers are off
by more than 0.5 pixel, whereas for an intensity of 2, 580 particle centers are off by more
than 0.5 pixel. This is due to the fact that for very small particles and intensities the
subpixel center has more influence on the fact which locations receive which value (only
a single intensity is used for all particle images as can be seen in Figure 6.5). However,
as the particles do not overlap and have at least three pixels diameter, being off by one
pixel for the location estimate can be uniquely ascribed to this phenomenon.

6.6.2. How do variable particle image intensities affect the outcome?

As the number of thresholds together with the stability threshold and the maximum
occurring intensity determine the intensity range in which particles can still be detected,
it is important to investigate this property of our algorithm. Therefore, we modified
the above described experiment, by randomly varying the intensity range (drawing from
a uniform distribution). The parameters of the detector remain the same, except that
we set Imax to 255 and the minimum connected component area to one. Each range is
between i0 and 255 with i0 ∈ [10, 7, 5, 3]. No false positives are found by the algorithm
and as can be seen in Figure 6.6, for an extreme range of [3..255], 3.6% of all particles
are missed, all of which are at the lower intensity limit. Thus, particles with intensities
around the noise level are neglected. (What is considered as noise level depends on the
number of thresholds and the stability range.)

6.6.3. How do variable particle image sizes affect the outcome?

In this experiment, instead of changing the intensity of the particle images, we vary
the particle size. Based on the first experiment we set the particle intensity to 10 were
optimal results could still be achieved. The particle size ranges where chosen to be
[σmin..σmax] = {[1.0..2.5], [1.0..4.0], [0.5..1.0]} from which we sampled randomly.
Again, the parameters of the PG remain the same, except that Imax is set to 10.
The results show that the algorithm is rather invariant with respect to particle sizes.
For the first two ranges no false positives or false negatives have been detected and all
particles are found correctly. In the first range 9.6% of all particles are off by one pixel,
whereas in the second range this value is 12.6%. This is due to the fact that quite large
particles around σ = 4.0 contain more than one pixel with maximum intensity so that
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Figure 6.6.: False negative rates for an image containing 1000 random particle images
in the intensity range [i0..255] with i0 = [3, 5, 7, 10]. Even for very small
intensities, particles are still detected accurately. (cf. Section 6.6

the center cannot be estimated as reliable as with smaller pixels.
For the third range, 2.3% of the particles (4.5% off by one) have not been detected,
showing that particle sizes around σ = 0.5 are too small to be found reliably.

6.6.4. How close are particles allowed to be to still achieve a good result?

Whenever particles overlap, the particle detection becomes more difficult. The main
problem for our algorithm is here (as illustrated in Figure 6.7), that the momentum only
is stable in the intensity range of the particle peak and the closest local minimum. (As
an example consider two close and added 1D-Gaussians: the local minimum of the valley
between the two mean values of the Gaussian is the intensity at which the two momen-
tums of the connected components start to remain constant; compared to two Gaussians
which are far away from each other this causes a significantly decreased stability range.)
Thus, the smaller and closer particles are, the more difficult the detection becomes.
In order to get an idea how much particles are allowed to overlap we carried out an ex-
periment where we specified the minimum allowed distance between particles in pixels.
As in our simulation overlapping particles add up their intensities, we set the intensity
of all particles to 128 to avoid any values above the quantization range of 8 bits. In the
first experiment the particle size was σ = 1.5 (a realistic value for many applications)
and results are also shown in Figure 6.7: For a distance of 6 pixels only 0.1% were not
detected, whereas the number of missed particles rapidly increases up to 29.3% for 1.5
pixels.
In a second experiment, we shrank the particles to a very small size of σ = 1.0. For a
distance of 4.5 pixels 7.6% of all particles are missed and for 1.5 pixels already 44.8%
cannot be found.
This shows that our algorithm neglect particle clusters caused by either lumped particles
or inherently three-dimensional overlaps of freely moving particles. Depending on the

84



6.6. Results and Discussion

44.8 45.6

33.7

7.6

0.03

29.3 29.0
26.5

7.6
2.6

0.09
0%

5

10

15

20

25

30

35

40

45

50%

1.5 2.1 3 4.5 5.1 inf

sigma = 1.5px

sigma = 1.0px

px px

Figure 6.7.: False negative rates for various minimum allowed distances between particle
images for the experiment described in Section 6.6. For small distances
overlapping particles are not detected. Nevertheless, a postprocessing of
such particle chunks could be used to improve rates for PTV-algorithms
that cannot deal with this property.

application this bias towards false negative rates can be exploited as for example with
the cross-gap tracking strategy of Li et al. [88]. Furthermore, most of these particle
clusters are rejected due to their non-convexity. Hence, for such cases an additional step
could be included in the algorithm that tries to seperate particle lumps from overlaps in
order to reconstruct several particle centers from clusters caused by overlaps. This is a
matter of future research.

6.6.5. What noise levels and background images are allowed?

To evaluate the noise sensitivity of the algorithm we created relatively small particles of
size σ = 1.0 but with a constant intensity of 255. The latter is motivated by the notion
of signal to noise ratio: The darker particles actually are, the closer they are to the noise
level. The same effect can be achieved by scaling up the noise i.e. only the relation
between signal and noise plays a role for the detection rate (up to the quantization
error). As described above, Gaussian noise is added to the image and values above 255
and below 0 are truncated.
The variance of the Gaussian noise was set to 200%, 400% and 800% of the maximum
intensity (6, 12, and 18dB SNR accordingly). As it turned out 200% noise does not
affect the detection ratio at all. For 400% noise, 12.6% of the particles are missed, but
none are hallucinated. Only at 800% noise 13.3% particles are missing, 26.2% of the
particles are spurious but still 86.7% of all particles are found correctly.
To further increase the detection difficulty, we added a background image from a real
experiment containing a strong intensity gradient and smears on a transparent surface.
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The final result (with added noise) is shown in Figure 6.1. The detection rate dropped
by 0.1% to 86.6%.

6.7. Conclusions

Similar to the discussion in Chapter 3 we suggest to analyze and validate each algorithm
module separately to successfully improve each algorithmic element of an PTV algorithm.
To this end, we propose an evaluation framework for this specific algorithmic building
block of PTV techniques and a new particle detection algorithm. The framework is
based on a particle image generator which can be parameterized to create both realistic
and ideal particle images. Three simple parameters can be used to adapt the algorithm
output to specific types of image sequences. Other intuitive parameters can be used
to fine-tune the results. Experiments showed that our algorithm is highly robust with
respect to Gaussian noise, even with spatially varying mean values. For noise levels
as high as 800% of the actual particle intensity we still achieve a true positive rate
of more than 86% whereas the algorithm only generated 12% of false positives. Under
more realistic assumptions, with 200% noise, 100% sensitivity could be obtained without
any false positives. Occluding particles are regarded as lumped cluster and therefore
rejected as soon as the distance of the particle centers becomes smaller than 4.5 pixels.
Considering such large amounts of noise given the high detection rates, our algorithm is
an ideal extension for a variety of PTV methods that can deal with particles missing due
to occlusions. Hence, subsequent PTV algorithms could either deal with this problem by
exploiting the fact that very little false positives exist in order to faciliate this problem
(cf. [88]). As such particle occlusions can be detected quite easily, another possibility
would be to include an additional step to seperate occluding particles - a matter of future
research.
To contribute to the algorithm requirement of accessibility as described in Chapter 3,
all algorithms and results are made publicly available to facilitate future research and
extensions of our proposed evaluation framework.

As the proposed particle detection routine (or estimatibility measure for PTV image
data) is just a single module of Charon we did not fully discuss the algorithm require-
ments for optical flow algorithms. Instead, in the following chapter, we will introduce a
full motion estimation algorithm specialized on PTV data which will be tested against
all requirements defined in Chapter 3.
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The most exciting phrase to hear in science,
the one that heralds the most discoveries, is not
”Eureka!” but ”That’s funny...”

(Isaac Asimov)

Until now we have concentrated on finding out those locations of an image sequence
acquired for PTV where the motion of individual particles can be estimated at all. This
chapter tackles the actual estimation of the motion at these locations. As emerging
emerging Fluid Dynamics applications often deal with highly three-dimensional flows
we will focus on this topic here. Through the projective nature of the imaging process
complex and often occluding motions of the tracer particles are visualized. Despite the
complex motion, optical flow estimators usually concentrate on spatial regularization
techniques, ignoring the rich temporal structure of such long sequences. We, therefore,
propose to bundle spatially nearby trajectories into an ensemble, parameterized by linear
subspace estimation. This accounts for defining a new neighborhood module together
with a motion model module in Charon. Thereby, we obtain an adaptable representation
of the abundant temporal information and account for diverging and converging pixel
neighborhoods. Using this model, more accurate motion estimates can be extracted
without requiring spatial smoothness or piecewise constancy. Experiments on relevant
real and synthetic data sets show the superior performance of this approach compared
to two traditional approaches.

7.1. Introduction

Traditional approaches to optical flow estimation in computer vision utilize a very short
time window of at least two frames, assuming that both the brightness of the structures
contained in these images and the motion between each two frames remains constant
[41]. To improve such methods, most research in this field concentrates on modeling
prior knowledge on typical flow fields for spatial regularization techniques [43]. In Fluid
Dynamics, this is the field of so-called particle image velocimetry (PIV).
Nonetheless, in many applications spatial regularization is problematic. This is due to
the fact that highly three-dimensional motions of tracer-particles seeded into fluids are
projected onto the image plane. Hence, in a small neighborhood, often a large number
of completely different particle motions can be observed, violating spatial smoothness
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Figure 7.1.: Example for a trajectory ensemble with l = 5 and w = 1 of a diverging
(c.f. black trajectories in front) and rotating flow modeling the training
data depicted in Figure 7.8.

assumptions. With the emergence of more transient and turbulent flows currently being
researched (e.g. [89]) the inherent three-dimensionality of particle motion can no longer
be ignored.
Image sequences obtained by such experiments are usually of very high frame rates re-
sulting in temporally smooth particle trajectories. A natural model would represent the
motion of the same particle over time, not the motion of several objects in some spatial
pixel neighborhood. Thus, applying spatial regularization is counter-intuitive, whereas
inherent temporal image information is currently not exploited adequately. In Fluid
Dynamics, one resorts to so-called particle tracking velocimetry (PTV) where individual
particles are first located and then tracked. In contrast to most computer vision tracking
algorithms, PTV methods have to be highly accurate. State-of-the-art algorithms are
able to achieve around 0.1 pixels in accuracy [90].
Our contribution is the regularization of fluid flow estimation by means of trajectory en-
semble models: Based on [?], we extend the concept of purely temporal trajectories by
bundling a set of trajectories of a local neighborhood into an ensemble, or set of coupled
trajectories (Fig. 7.1). This alleviates the problem of ambiguous intensity structures
without posing many motion model assumptions on the spatial domain.
In our approach we obtain trajectory ensembles from computational fluid dynamics
(CFD) simulations and use them as input data for a principal component analysis. The
resulting parameter set jointly describes the motion and the interaction of trajecto-
ries of the whole ensemble. This enables us to allow diverging and converging pixel
neighborhoods without the need for enforcing any kind of spatial motion constancy or
smoothness. One estimated parameter set of our method describes the whole trajectory
ensemble. Hence, this information can be explicitly exploited, as for example to initialize
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Figure 7.2.: Sub-pixel errors for noise levels of 1.0 (top left), 2.0 (top right), 4.0 (bottom
left) and 6.0 (bottom right) gray values.

the optimization routine in the next frame or to extract other motion properties such
as curvature or acceleration of the motion. This intuitive approach maintains a highly
adaptable description of motion while utilizing a higher amount of temporal image in-
formation. We tackle the problem of the resulting nonlinear optimization problem by
means of a randomized gradient descent, showing good results on relevant test sequences.
As explained in Sections 7.4 and 7.6.3, this approach works well without the need for
image derivative filters and linearizations, reducing typical problems with small particle
sizes.
In the remainder of this paper first a rather detailed overview will be given of both op-
tical flow and fluid flow estimation in order to familiarize readers from both worlds with
the most important concepts. We then formalize our approach to fluid flow estimation
and discuss experiments and results. Finally, possible uses of our concept of trajectory
ensembles in a broader computer vision context are extrapolated.

7.2. Related Work

As this work focuses on two large fields of research, namely Fluid Dynamics and Com-
puter Vision, we divide this section into two parts. The first parts discusses related
work in the field of computer vision. The second part deals with publications in Fluid
Dynamics.
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7.2.1. Optical Flow Estimation with Temporal Constraints

The application of global optical flow methods in Fluid Dynamics recently became very
popular. Since Corpetti et al. [91] stated in 2006: “The design of alternative approaches
[of optical flow estimation] dedicated to fluid motion thus remains a widely open research
domain”, many authors contributed to this topic, as for example most recently [92, 93,
94].
Other local methods based on the structure tensor approach of [37] exist, which are
especially suited for physical models of brightness changes and have originally been
derived by Haussecker and Fleet [13]. To this end, the estimation of the full three-
dimensional velocity field of particle image sequences recently became possible by means
of PIV techniques [95]. Generally, in optical flow estimation, few approaches using mainly
temporal regularization are available. Both the structure tensor [37] and the orientation
tensor [7] approach incorporating temporal information by means of temporal derivative
filters and temporal integration scales for orientation estimation. Our work is inspired by
[96], where temporal coherence of motion is enforced by assuming a constant acceleration
of moving objects, whereas in [97], spatio-temporal blocks of motion are analyzed in order
to detect motion events. Specifically, in the field of Fluid Dynamics, analytical spatio-
temporal regularization based on physics has been studied in [92], yielding very good
results on mainly two-dimensional flows. Other ideas on the use of temporal information
in global methods are presented in [98, 99, 100]. The use of motion trajectories was
firstly mentioned by Agarwal and Sklansky [101]. Their idea was to search within a
quantized set of possible flow vectors in a three-step algorithm. The last step consists of
a refinement of the motion estimates based on intensity values in a spatial and temporal
neighborhood of pixels along the motion trajectory. Chaudhury and Mehrotra [102] use
trajectory information, too and, in their introduction, refer to psychological evidences
[103, 104], that this information can more easily be extracted by the human visual system
than mainly local motion estimates. More recent psychological research further supports
this idea: for example, Verghese et al. [105] found that humans can more easily detect
long instead of short trajectories. In [102] a global approach similar to that of [41] is
formulated using two regularizers that use the Euclidean norm for spatial smoothness
and the local curvature of a three-frame-trajectory for temporal smoothness of the flow
field. Gibson and Spann [106] (by extending the work of [107]) propose to first estimate
the trajectories parameterized by the physical laws of constant acceleration along some
interest points (as is commonly done in tracking) and then to interpolate the results to
a dense motion field based on piecewise affine motion models.

Another aspect of motion model driven regularization is the creation of models based
on unsupervised learning. Our approach to learn a model is inspired by the work of Black
and Fleet [108, 109] whose ideas have proved very successful. They learn, for example,
spatial parametric models of rectangular blocks of flow fields for the classification of
motion events with applications to human motion tracking. Yacoob et al. [110, 111]
formulated a model of single trajectories and inserted it into an energy function for
optical flow estimation. They linearized the energy based on the assumption that the
local intensity distribution is sufficiently smooth and the motion accordingly small so
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that the brightness constancy constrained equation (derived by [41]) holds true at each
location. Furthermore, based on the same assumptions the flow vectors are applied
to image positions along the trajectory itself. Instead, the flow of each point of the
trajectory is inserted at the same location as the center pixel (c.f. equation 2 in [111])
in order to make linear least squares estimates possible.

7.2.2. PIV and PTV

The approach proposed in this paper comprises components from both PIV and PTV.
We shortly summarize these approaches to familiarize the reader with the most im-
portant concepts and parallels to computer vision. Please note that this review is not
intended to be comprehensive.

Particle Image Velocimetry In PIV the fundamental technique is the cross correlation
of so-called interrogation windows with a second frame. This was first carried out algo-
rithmically by [112]. (Prior to this paper mechanical/optical methods were applied for
velocimetry.) This method is very similar to the block-matching approach of Anandan
et al. [36]. However, the cross correlation technique has been further refined over the
past two decades so that PIV can today achieve average accuracies around 0.1 pixels as
mean endpoint error (cf. [30]). A few milestones in development are the following:

� Sub-pixel displacement estimation became possible by fitting an analytical function
to the correlation plane and determining its maximum. This was first suggested
by Willert and Gharib [113].

� Multipass/Multigrid interrogation is a technique similar to image pyramids for
optical flow. Here the window size is successively reduced from a large to a small
scale [114]. An image warping technique similar to many registration methods was
suggested by Jambunathan et al. [115].

� As PIV essentially is a block-matching technique, window deformation techniques
and window shifting techniques have been proposed, e.g. in [116, 114]

� Second order correlation [117] is based on the idea to find flows on a fictive third
image lying exactly in the center between the first and the second image. This
approach is very similar to the one of Alvarez et al. [93] in computer vision.
There, the concept is called symmetrical optical flow.

A common data set for all methods has been established in three so-called PIV-challenges
[118, 119, 120] where many groups contributed their flow estimates to facilitate the
comparison of state-of-the-art methods. A similar approach has been undertaken by
Baker et al. in the compute vision community [30]. A comprehensive overview on PIV
methods can be found in [23].
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Particle Tracking Velocimetry PTV is another well established approach to the fluid
flow estimation problem. This approach is typically used when particle densities are
small. Additionally, Pereira et al. [121] argue that for 3D velocimetry, particle track-
ing would the best method because the actual 3D volume being visualized contained
few particles as well and the projection onto a 2D image plane violated fundamental
assumptions of PIV techniques. PTV is typically divided into the following steps:

� Preprocessing: E.g. image sensor noise is reduced and the background is sub-
tracted.

� Particle Detection: For each pixel a decision is made, whether it belongs to a
particle or not.

� Particle Localization: The center of each particle is located with sub-pixel-accuracy.

� Particle Tracking: The correspondences of the particles between image frames are
determined.

� Postprocessing: E.g. interpolation or confidence estimation of the sparse motion
estimates is performed.

The first PTV algorithm was suggested by Adamczyk and Rimai [122] in 1988. (Prior
to this paper particle tracking was carried out manually by e.g. clicking on particle
image pairs.) The particle detection and particle tracking steps are the most crucial
steps to find correct correspondences: Whenever a spurious particle is detected or one is
missed (e.g. due to occluding particles or sensor noise), no correspondence can be found.
The tracking step quality suffers from ambiguities caused by too fast flows, and particle
detection errors. Typical approaches for particle segmentation are global thresholding
([75]), dynamic thresholding ([76, 77, 79]), correlation-based methods ([80, 81]), region-
growing methods ([82, 95]) and learning-based methods ([85, 25]). Citations in brackets
are exemplary publications, showing that this problem is not fully solved until today. A
recent paper suggests a new method for a validation and comparison framework based
on synthetic particle images [3].
The methods for tracking particles are as numerous as particle detection algorithms.
Usually, only two to four frames of the image sequence are utilized for tracking to reduce
the combinatorial complexity of the matching-problem to a manageable amount. Typical
approaches are multiframe tracking heuristics [124, 121], combinatorial [125], statistical
[126] or variational optimization [127]. An interesting fact is that in the PTV community
a lot of references to the tracking community in computer vision can be found (cf. the
PTV chapter in [24]). As our approach uses a simple nearest-neighbor particle tracking
algorithm as an initial guess for a subsequent PIV-like matching algorithm, we will not
go into detail here.

7.2.3. Relations Between Fluid Flow Research and Computer Vision

With this subsection we wish to emphasize the similarities between both fields in order
to motivate a broader research perspective that could help solve problems in both ap-
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plication domains.
Motion estimation in computer vision can be divided into three subsets: In registration,
usually a dense displacement field between two often multidimensional images (some-
times of differing modality) is sought. In tracking, high level information as for example
the three-dimensional transformation of a whole object has to be computed from a long
image sequence. In between lies the task of optical flow estimation. In most cases, a
short time window of longer unimodal image sequences is examined to calculate a dense
flow field between each two frames. It often constitutes one step in a list of low-level
algorithms being used as input for high level computer vision systems. These fields de-
veloped separately from each other since around 1980 [41].
Very similarly, fluid flow researchers started to use computers for motion estimation in
the eighties [112, 122]. In both fields of research block-matching algorithms were devel-
oped around 1986 [112] which led to a broad acceptance of motion estimation algorithms.
Local methods based on least squares methods have been applied to both computer vi-
sion and fluid flow problems [17, 95]. The same is true for global variational methods
which recently have been adapted to fluid flow problems [41, 127]. These examples show
that computer vision and fluid flow research have been closely related to each other since
the very beginning of their research.
Despite, fluid mechanics has been largely ignored by the computer vision community:
According to Google Scholar, in the past two decades only around 10 papers containing
the terms PIV or PTV have been published in four large journals (namely ”International
Journal on Computer Vision”, ”Transactions in Image Processing”, ”Pattern Analysis
and Machine Intelligence” and ”Computer Vision and Image Understanding”). In con-
trast, in fluid flow research, a recent burst of optical-flow-related papers can be observed
(e.g. [120]), signaling the interest of the researchers in alternative motion estimation
techniques.
As the estimation of fluid flow has to be highly accurate and therefore the estimation
algorithms have to be carefully validated, an abundance of related papers can be found.
Validation techniques range from synthetic image sequences (e.g. [78, 127, 121]), real
sequences with known flow characteristics (e.g. [128, 114, 95]), confidence measures (e.g.
[129]), lower accuracy limit discussions [90], detailed error analysis (such as error his-
tograms instead of mean and variance only, cf. e.g. [116]) and theoretical investigations
(e.g. [130, 131]). As a result, the algorithms in fluid flow estimation are well understood,
well established and regularly employed in commercial applications. Independently, in
computer vision similar approaches have been investigated, but have not found such a
broad acceptance. A short review on confidence measures can be found in [26].
We believe that for example the ground truth generation of complex scenes by means
of computational fluid dynamics or the experience in experimental setup design for the
generation of real world sequences with ground truth are just two interesting aspects of
which computer vision could profit. Vice versa, fluid flow estimation algorithms that uti-
lize optical flow techniques have already shown to be helpful for the recovery of physical
flows.
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Figure 7.3.: A one-dimensional example for a trajectory ensemble in a three-
neighborhood around (xc, 0, tc). Each trajectory consists of four flow vectors
relative to the position of the trajectory at time frame t. By the application
of PCA to a large set of training ensembles, this representation can finally
be described by a few parameters.

7.3. Trajectory Ensembles for Optical Flow

The idea of using trajectory ensembles as described in Section 7.1 can be formalized by
first defining a trajectory ensemble as a set of trajectories in a spatial neighborhood.
Let I ⊂ N3 denote the domain of a given image sequence and I : I → R a map to the
image intensities. Furthermore, let ~x = (xc, yc, tc) ∈ I be the location at which the flow
is to be estimated. Then we define the (frame-independent) pixel-grid neighborhood of
~x of width and height 2w as:

N~x := [xc − w, xc + w]× [yc − w, yc + w], w ∈ N (7.1)

A single trajectory of length 2l at this location can be defined as a parametric function:

T~x : [tc − l, tc + l]→ I, l ∈ N with T~x(tc) = (xc, yc, tc) (7.2)

This definition ensures that a trajectory always crosses the image plane in frame tc at
the predefined location (xc, yc, tc). Furthermore, let ~d = (xd, yd, 0) ∈ N~x be a spatial
displacement vector. Then we define a trajectory ensemble as:

TN~x
:= {T

~x+~d
(t)|~x+ ~d ∈ N~x} (7.3)

A two-dimensional example for this description is given in Figure 7.3. The resulting
trajectory ensemble model now consists of a discrete set of flow vectors. Techniques
from unsupervised learning can now be used to parameterize the flow within a neighbor-
hood of fixed size. We applied the standard technique of principal component analysis
[132]. (This technique is commonly known as proper orthogonal decomposition in the
Fluid Dynamics community.) To increase the performance in the presence of outliers
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for example robust PCA [133] can be applied instead. Based on the training data, these
subspace estimation methods yield a map from a set of k parameters to an actual tra-
jectory ensemble: M : Rk → TN~x

. The inverse mapping M−1(TN~x
) can be used to find

the best matching parameters describing a given trajectory ensemble, e.g. in order to
transform an initial guess flow field into parameter vectors p.

Several options for the choice of training data for learning M exist. The simplest
possibility is to heuristically generate synthetic trajectory ensembles (similar to [108])
that approximate a representation of the set of possible ensembles actually occurring
in the image sequence to be estimated. Another method is to learn a model based on
ground truth data [66]. The main problem of the latter is, that for a specific application
valid ground truth data might not be readily at hand. A good tradeoff turned out to
be the use of motion estimates of other algorithms. In this case, however, the problem
of outliers and underrepresentation of ensembles which cannot be estimated by a given
algorithm have to be carefully addressed. As mentioned above, in the field of Fluid
Dynamics yet another method is feasible: Many physical fluid flows can be simulated by
Computational Fluid Dynamics, allowing for highly application specific training data.
We utilized such CFD data as is described in Section 7.6.

7.4. Optimization

For the optical flow estimation proposed in this paper, we define an energy function based
on the discrete set of flow vectors of TN~x

together with a similarity measure S(~x, ~d, I):

E(p, ~x) :=
∑

~d∈M(p)=TN~x

S(~x, ~d, I) (7.4)

For the similarity measure S, many choices are possible. One possibility used by [111] is
to insert the flow into the brightness constancy constrained equation (BCCE). But as the
BCCE is simply a linearized version of the squared differences (SD) of intensities along
a given trajectory [41] and our energy function is nonlinear due to the parameterization
anyway, we directly apply SD as the similarity measure:

S(~x, ~d, I) := (I(~x)− I(~x+ ~d))2 (7.5)

In future research, other similarity measures should be examined as for example sta-
tistically robust measures proposed by [5]. In order to minimize the nonlinear energy
function E(p, ~x(t)) with SD as similarity measure, many optimization techniques can be
applied. The parameter vector p consists of a relatively small number of values (usually
k ≤ 8). As it turns out, the optimization problem can be regarded as continuous and
bounded. This becomes apparent by noting that the PCA model contains the variance
for each parameter and by projection of all training samples into the parameter space we
can obtain estimates of minimum pmin and maximum pmax values for each parameter.

To solve the resulting optimization task, a first idea would be to discretize this search
space as is done in correlation-based methods [36]. Anyhow, this requires the invention
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Figure 7.4.: The data structure of a trajectory ensemble consists of one trajectory per
row. Each row consists of two lists of flow vectors: The first list describes the
trajectory moving forward in time, the second list contains the backward-
part.

of a number of heuristics, exploiting the special properties of our energy. A more general
method based on fewer assumptions would be particle filtering, as for example used in
[134]. It is a good method for keeping the parameter set continuous but reducing the
number of parameter evaluations by means of statistical sampling. Finally, as nonlinear
optimization is yet another major field of research, more elaborate methods for energy
minimization exist, e.g. line search and trust-region methods [135].

To allow for a simple reimplementation of our method, we apply a trivial gradient
descent method with one minor modification: in order to increase the probability of
finding a global energy minimum, similar to particle filtering, we do not start our search
at a single initial guess. Instead, we seed a number of random parameters by adding
noise to the initial guess. This noise is uniformly distributed in the range [−(pmin −
pmax)σ, (pmin − pmax)σ] with σ ≈ 0.1.

7.5. Implementation

For the implementation, a data format for trajectory ensembles and a discretization
scheme for the gradient descent are necessary. An additional problem is to create trajec-
tory ensembles which are guaranteed to pierce time frame t of the image sequence at a
regular grid centered around ~x(t) (c.f. Figure 7.3). To this end, we let each trajectory of
the ensemble start on frame t at location ~x(t)+ ~d and create flow vectors simultaneously
forward and backward in time. Then, in a second array, we store inverse flow vectors
between frames t and t − l. As a result, each trajectory consists of 2l flow vectors,
“spreading” from frame t forward and backward in time. Hence, a five-frame trajectory
in a neighborhood of w = 1 has 72 values. Reducing the number of values by PCA often
results in as few as three or four parameters, containing 99 per cent of the total energy
of the eigenvalues. Nevertheless, this data format leads to one drawback: Ground truth
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Figure 7.5.: Two particles moving diagonally through the image at different constant
depths (hence one particle is brighter). They cross in the center with a
complete overlap. The ground truth flow vectors are scaled for visualization.

data of common test sequences does not contain the inverse motion vectors. This is a
problem, because the inverse for diverging or converging flow fields is not defined. As
an approximation, we map each exact inverse flow onto a non-discrete triangular mesh
and interpolate this mesh at pixel grid locations. The mesh is created by calculating
~x(t)+~u for each ~u and associating −~u with it. The mesh of the resulting two-dimensional
point cloud is computed by means of Delaunay Triangulation. Flow values at pixel grid
locations are extracted via trilinear interpolation of the flow values associated with the
points of the enclosing triangle.

For the finite difference approximation of the gradient we add a small increment h
to each dimension of p in turn, evaluate the energy and subtract it from E(p, ~x). To
alleviate the problem of local minima, we calculate the initial guess by another motion
estimation algorithm (cf. Section 7.6). As a convergence criterion we evaluate the
amount of energy change after each step. For convergence, we apply infinite iterations
until the energy change is around two to ten magnitudes smaller than the initial energy.
If no convergence is achieved, no result is saved.

The resulting algorithm is carried out on each pixel location: Firstly, an initial guess
is read and projected into parameter space by p = M−1(TN~x

). Then p is optimized
as described above, yielding p′. On convergence, the result is converted back into a
trajectory ensemble by TN~x

= M(p) and the flow vector is saved as the solution.

7.6. Experiments and Results

As described above, the model of trajectory ensembles is motivated by the presence of
highly three-dimensional motion of fluid flow experiments, rendering spatial regulariza-
tion problematic. Hence, in experiments, we evaluate the performance of the algorithm
on a synthetic three-dimensional sphere as depicted in Figure 7.6. We then analyzed the
behavior with respect to different noise levels. Finally, we applied our algorithm to real
data with known ground truth to validate the results observed in the synthetic sequence.
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7.6.1. Test Sequences

In real-world fluid experiments, a light-reflecting tracer is often added to the fluid and
recorded by high-speed video cameras. It is difficult and costly to derive highly accu-
rate ground truth for real ground truth sequences. Therefore, to simulate the image
acquisition process, we carried out the following procedure: The radius of the sphere
was adjusted so that its minimum and maximum depths yield the brightest, respectively
darkest, particle image possible according to Beer-Lambert’s Law [95]. According to [77],
the particle shape can be approximated by a 2D-Gaussian function, which we sample
with a variance σ of 2 px for each particle location. We cropped the sampling process at
3σ, where it reaches the precision of our 8-bit camera. 200 particles are randomly and
uniformly distributed within the sphere. The radius of the sphere is set to 150 px. Some
particles are partially or totally occluded, so that around 120 particle images can be rec-
ognized by the particle detection routine, depending on the noise level. To approximate
the Poisson process of light collection on the chip, we simulated Gaussian iid noise of
increasing variances between 1 and 6 levels of intensity for each experiment [136]. The
noise is added to the scene and values above and below the camera’s intensity range
were truncated. Finally, the intensities are quantized to 8 bit, i.e. to the values between
0 and 255. As visualized in Fig. 7.6, the sphere is rotated with a constant angular speed
of one degree in y-direction and 0.2 degrees in x-direction. The maximum speed of a
particle was approximately 2.6 px per frame.

Furthermore, to study the effect of ideal data, we created simple sequence with two
particles that diagonally cross each other in one-pixel steps in both x- and y-direction.
This helps to find an accuracy limit of our method and to study the effect of occlusions.

Finally, we created a real sequence of an ascending particle with known ground truth.
For this purpose, single particles are moved to defined measurement points, where they
are recorded by the wall-PIV setup described in [137]. To ensure the exact 3D-movement
of a particle, a high precision, three-dimensional traverse system is required. Using the
camera Fastcam Super10K and an inversely mounted Nikon Nikkor 50 mm 1:1.8 lens,
our setup had a fixed focal distance of 143 mm and a resolution of 68 px/mm. Aiming for
a targeted accuracy of up to 1/100 px for the reference data, a precise movement of less
than a micrometer had to be assured. This precision is reached by a high precision milling
cutter (at the Department of Precision Engineering and Micro Technology (MFG), TU
Berlin), which allows a movement accuracy up to 100 nm in all three directions. Our
optical setup was placed on this milling cutter so that single particle measurements
with a three-dimensional movement of the particle close to a transparent surface could
be realized. A particle P is mounted at the head of the milling cutter t where it can
be traversed in all three dimensions. We use the milling cutter as 3D traverse and
a chromatic sensor (Fries Research & Technology – FRT GmbH, Germany) with an
accuracy of 20 nm, measuring the particles distance to the glass surface. A visualization
of the resulting test sequence is shown in Figure 7.7
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snapshot streaklines

vectors

Figure 7.6.: Test sequence of a three-dimensional sphere rotating in space. The gray
values are inverted to optimize the representation in this paper. On the
upper left, the dots in the sphere are shown for a given position in time.
Intensities of the particles are adjusted according to their depth. On the
upper right, streak lines of the particles for a rotating sphere are shown.
The corresponding calculated vectors are shown below.
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Figure 7.7.: The traversal of a real ascending particle image with known ground truth
visualized as pixel-wise maximum image over all frames.

7.6.2. Training Data

To create realistic training data for our application, learning is based on the flow simula-
tion inside a simplified model of a blood pump currently being developed. The computa-
tion of the steady laminar flow in the blood pump was done using the FLUENT6 solver
1. An unstructured mesh of 1, 600, 000 mixed cells was generated using the preproces-
sor Gambit (Fluent Inc.), whereas the simulation was carried out using a second order
upwind discretization scheme for the convective terms of the Navier-Stokes equations
(Reynolds number Re = 600). For the pressure-velocity correction we employed the
SIMPLEC method with a no-slip boundary condition at all solid boundaries. We used
a Newtonian blood model with kinematic viscosity µ = 3.5 · 10−6 with a plug velocity
profile at the inlet.
Thus, on the one hand, we are able to exploit application specific information on the
flow field, but on the other hand effectively parameterize this knowledge to generalize
over devices of similar type.
Please note that we learned from these realistic flows but applied the final matching
algorithm to the simple sphere sequence. This was due to limited resources. In further
experiments more CFD simulations are needed.

7.6.3. Experiments

The comparison of our approach with those commonly applied in the computer vision
community is not an easy task. Firstly, as mentioned before, spatial regularization is not
appropriate for images of highly transient and turbulent fluid flows: In the scale of a few
pixels, robust regularizers [5] (as for example those used in the nonlinear CLG method
[12]) often fail, because regions of transition between two areas of consistent motion

1(ANSYS-Fluent Inc., Lebanon, USA)
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Figure 7.8.: Five sequences of varying complexity within the same physical device where
generated. The result of the Computational Fluid Dynamics simulations is
encoded by a trajectory of varying brightness: The darker a given point is
the more time has elapsed since the beginning of the simulation.

often are as large as the images of the tracer particles themselves. Furthermore, regions
of coherent motion become as numerous as the occlusions. On the other hand, simple
smoothing regularizers [41] only work well if the distance between two moving particles
is large enough to accommodate a smooth (yet physically meaningless) transition of the
flow field. Hence the regularization strength depends on the distance of particles with
differing motion: If the strength is too large, the motion is averaged too much - if the
strength is too small, smoothing has little effect, causing errors due to intensity ambi-
guities on a very small scale. These effects can for example be observed in our synthetic
sequences were as many particles moving right can be found moving into the opposite
direction. Another problem is that these methods need to evaluate image derivatives:
Usual images of tracer particles are very small (around three to five pixels in diameter).
As soon as particles are crossing or moving close to each other but in different directions,
isotropy-optimized derivative filters average over too large areas, resulting in erroneous
estimates. Finally, the application of multiresolution approaches commonly employed
for increased accuracy in global optical flow techniques does not always work for particle
image velocimetry, because as soon as particle density and particle size are decreased too
much, erroneous estimates of smaller pyramid levels (caused by disappearing or locally
accumulating particle images) have a strong impact on final results.
For the evaluation of our approach, we examined the total-least-squares method of [95]
that is able to accommodate the exponential brightness change of particles which is
caused by their three-dimensional motion. We used the same generalized brightness
change constrained equation of [13] and inserted it into the 2D linear combined lo-
cal/global (CLG) method [12]. The latter is one of the numerous global techniques
with spatial regularization. It is well known as a very accurate motion estimator in the
computer vision community and, compared to other methods, yields acceptable results
on our test sequences. Together with our extensions to 3D flows, it is able to capture
smooth 3D flows reliably. Furthermore, this technique improves on the structure tensor
method which is regularly employed in PIV literature (e.g. [95]). Thus, we applied a
local and a global optical flow technique specifically adapted to the inherent brightness
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changes to our test sequences. As initial guess for the trajectory ensemble method, we
either use a very simple nearest-neighbor-based PTV algorithm or the same CLG flows.
We only measured the accuracy at particle centers. These were obtained by the particle
detection algorithm described in [3]. In all experiments, we compare the endpoint-error
defined by [30] between the flow fields resulting from the flow estimation methods and
the ground truth flow field. It is defined as the Euclidean distance between estimated
flow vector and ground truth flow vector.
For the structure tensor in the CLG method we used the 3 × 3 × 3 isotropy-optimized
filters of Scharr [40] together with an integration scale of σ = 4.0 (using Gaussian filters,
cropped and renormalized at 3σ). We also applied the optimized Sobel-filters described
in [33].

Furthermore, we always trained our trajectory model on the CFD data (Fig. 7.8).
Preliminary experiments showed that the quality of the outcome of our algorithm is
robust with respect to different training data as long as the flow to be measured does
not behave completely different from that in the training set. (Yet, investigations into
the effect of different training data sets remain of interest.)

Crossing Particles We estimated the motion of two diagonally crossing particles (c.f.
Fig. 7.5) in order to analyze the behavior of our algorithm in the case of occlusions.
Additionally, we were able to estimate a lower accuracy limit for this type of date in the
non-occluding part of the sequence. Hence, we can learn about the appropriateness of
the energy term and the optimization technique.

Since the displacement of the ground truth is one pixel per frame in both directions, the
maximum particle centers lie exactly on integer-locations. Hence, the nearest-neighbor-
based PTV algorithm yields perfect results (zero endpoint-errors) whenever the particle
detection routine localizes the two particles correctly. This is not the case for the particle
being occluded in the middle of the sequence. Therefore, the flow estimates at these
locations are wrong.

For the standard local least squares method with the Scharr-filters we achieved a
constant endpoint-error of 0.083 pixels per non-occluding frame. This shows that a
linearization of the problem (which is implied by the brightness change constrained
equation of the structure tensor) prior to the actual optimization has some impact on
the results and should be circumvented or specifically dealt with in our application if
possible.

For the standard CLG method, we found almost constant endpoint-errors of 0.751
pixels in the non-occluding frames, depending on the type of derivative filter used. In
the occluding-frames, the motion of the occluded particle was not estimated and the
returned results were roughly those of the occluding particle image. This is due to the
regularization that averages out contradicting directions of motion. As the error of a
zero motion estimate would yield an error of

√
2, the CLG method essentially only halves

this error. The problem of these high errors is caused due to the averaging effect of the
spatial regularization even for very small regularization strength parameters.

102



7.6. Experiments and Results

0,7510,8

0,9
Endpoint Error [px]

0,6

0,7

0 3

0,4

0,5

0,083 0,0660 1

0,2

0,3

,
0,026

0

0,1

CLG TLS (with exp. decay) Optimized (our method) CLG(pyramid)

Figure 7.9.: The statistics of the endpoint-errors of the crossing particles sequence with-
out occluding particles.

To yield better results with this method, we applied a five-level, warping-based pyra-
mid scheme similar to that described in [14] together with the optimized Sobel-filters in
space and forward differences in time. On the one hand this resulted in a time-consuming
optimization process, but on the other hand the results reduced to around 0.01 to 0.07
pixels per frame (minimum and maximum error of all non-occluding frames; mean 0.026).
The averaging effect is reduced due to the iterative warping which successively minimizes
the energy.

Finally, we applied our trajectory ensemble optimization to this sequence. We used a
ensemble-size of 2 and a trajectory length of 3, resulting in 25 trajectories of length 7.
We used two eigenvectors of the trained model. These do not describe constant motions,
as one might suspect. Instead they describe the two major motions (slight rotations and
divergences/convergences) occurring in our training data. By using the perfect initial
guess from the PTV estimate, we are able to estimate a lower accuracy limit for this
data. The errors range from 0.04 to 0.07 pixels per frame (minimum and maximum error
of all non-occluding frames; mean 0.066), showing that with a good initial guess, very
good results can be achieved. (In the experiments shown on the sphere we will show
that imperfect initial guesses can be improved by our method as well.)
For a zero initial guess (resulting in the mean trajectory ensemble of the training data)
we obtained similar results. This shows that the defined energy is relatively well defined,
so that the nonlinear optimization is not problematic even for rough initial guesses. The
improved results seem to be due to the mainly temporal integration of investigated pixels:
a larger number of meaningful locations is used for the optimization process without any
noise-increasing image derivative estimation. As will be shown later this is especially
useful for noise image data.

Rotating Sphere with Noise The rotating sphere sequence contains particles with var-
ious intensities between 10 and 255 and speeds with a mean of 0.94 pixels per frame and
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Figure 7.10.: Energies for the two-dimensional search space for the crossing particle se-
quence. Top: Example for the energy for non-occluding locations. Middle:
The same as top with added noise of variance 128 intensities. Bottom:
Example energy for occluding particle.
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Scharr-Filter Sobel-Filter
Exp. BCCE 0.05± 0.06 0.2± 0.25
Const. BCCE 0.09± 0.1 0.22± 0.25

Table 7.1.: Average endpoint-errors for TLS variants applied to the artificial sphere se-
quence without noise.

a maximum speed of 2.5 pixels per frame both in dark and bright particle images. With
a zero flow the average endpoint error of the detected particles is 0.95±0.67. This value
can be used as a reference on the relative improvement caused by the motion estimation.
Using the CLG multiresolution approach described in Section 7.6.3 but modified with the
BCCE for exponential decay and the optimized Sobel-filters yields an error of 0.54±0.67.
Without the multiresolution approach the error is slightly better (0.51± 0.5). This fact
supports the thesis that too small particles or those being too close to each other cannot
always be treated correctly by such an approach. For example, close particles are warped
by the flow of the brighter, more dominant particle in the first step so that successive
pyramid levels are based on an even worse initial guess than without using a pyramid.
Together with the BCCE that does not deal with exponential decay, the error is slightly
higher (0.52 ± 0.54) showing that incorporating brightness models can principally im-
prove the motion estimates.
To yield even better results with the CLG method we used the optimized Scharr deriva-
tive filters but the results deteriorated to an error of 0.7 ± 0.4. We believe that the
reason is that the spatio-temporal neighborhood which does not follow the assumption
of parameter constancy interferes with the global smoothness constraint. Even though
all results are not very convincing we achieved the reported quality of results on the
Yosemite sequence [12], indicating that the implementation is correct.
For comparison, we also applied the local method with a total least squares (TLS) solver
with and without modified BCCE to the same data. We also used both derivative filters
(optimized Sobel and Scharr). Results are shown in Table 7.1: As expected, the TLS
result with exponential decay and the optimized Scharr-filters yields the best results
(0.05 ± 0.06) which is significantly better than the CLG result. Without brightness
model and with Sobel filters the results were still twice as accurate as those of the CLG
algorithm (0.22± 0.25). Therefore, we believe that global methods have to be carefully
evaluated and better understood when applied to particle image data in Fluid Dynamics.

In a next step we applied the nearest-neighbor PTV algorithm as initial guess for the
trajectory ensemble approach. We also added Gaussian iid noise levels with variances
of 1.0, 2.0, 4.0 and 6.0 intensities. We used the same parameters for all noise levels: A
single trajectory with a 5x5 local neighborhood in the similarity term, two eigenvectors
from the training date described above and a temporal support of five frames. For the
small noise level of 1.0 the average results of the best TLS method are very similar to
those of the initial guess (PTV) and our trajectory approach: For TLS we obtained an
error of 0.1± 0.01, for PTV and our method yielded 0.14± 0.08. From this perspective
our method performs worst. But, as all three methods are local, outliers can have a
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significant impact on the mean value. Thus, we analyzed the whole error histogram for
a more detailed evaluation. Results are shown in figure 7.2 and indicate that for about
80% of the most accurate flow estimates, our method yields the best resuls, followed by
the PTV and then the TLS algorithm. Especially for higher noise levels this behaviour
becomes more significant.
As expected, the method is more robust with respect to noise due to the larger temporal
neighborhood, even though our approach does not model brightness variations explic-
itly. Please note that further increasing the spatial neighborhood would not yield more
accurate results since the motion-information is only contained in the particle image and
not its surroundings.

Real Data Finally we evaluated the accuracy of the trajectory ensemble estimator on
the real test sequence of an ascending particle described in Section 7.6.3. The sequence
has 530 frames. In this time, the particle moved 19 pixels. This value was estimated
by comparing the particle image centers of the first and the last frame. As the particle
moves horizontally, this results in a motion of 0.038 pixels per frame. An error of this
estimate of one pixel would result in a difference smaller than 0.002. Assuming that the
positioning system works as accurate as the manufacturer’s specifications state, this is
an sufficiently accurate ground truth for this sequence.

For comparison we have used the pyramid-based CLG method with modified BCCE,
the TLS method with modified BCCE, and the nearest-neighbor PTV algorithm. To
test how the ensemble-based method compares to the single trajectory based method
described in [5], we used a single trajectory with a constant pixel-neighborhood of 49
pixels. Then, we applied the same method with the same trajectory length of 11 but
with an ensemble of 49 trajectories. As shown in figure 7.7. The ensemble based method
yields the best results of an average endpoint error over all 530 frames of 0, 003±3, 2e−6.
Again the effect of a larger neighborhood for averaging out noise along the trajectory of
the particle yields superior results. This supports the results of the synthetic sequence
described above.

7.7. Algorithm Requirements

In the previous section we have analyzed the accuracy of the newly proposed PTV
technique. As discussed in Chapter 3, we will now also investigate other properties of
the algorithm.

7.7.1. Estimatibility and Confidence

In Chapter 6, we have designed and carefully tested an estimatibility measure for this
algorithm. Due to the nature of PTV image data the technique of detecting particle
images in a first step arises naturally. The design of a confidence measure is more
intricate and not discussed in this work. Usually, confidence measures are based either
on the estimated flow, or both flow and image data. In our experiments we found that
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Figure 7.11.: Top: View of tadpoles swimming in a bassin, similar to tracer particles in
a fluid. Bottom: Zoom to the center of the bassin.

the energy defined by our approach is relatively smooth for most cases. One idea for
confidence measure would be the investigate the energy more closely. Nonetheless, the
energy would have to be sampled which is time-consuming. Another choice would be to
relate the flow vectors with respect to each other based on some model (as is done in
[7]). Here, the problem is that the motion field is sparse and such a model cannot be
learned easily. First steps towards this direction have been carried out in [139].
As there seems to be no intuitive way of defining a confidence measure, we leave this
point open as future research.

7.7.2. Range of Applications

The concept of learning models of trajectory ensembles for a nonlinear energy minimiza-
tion directly applied to the image sequence was specifically designed for the application
in fluid dynamics. However, we believe that this idea is interesting for a broader range
of problems in computer vision.

Tracking Currently, the energy minimization is carried out by directly measuring the
intensity variations along the trajectory. In a more general way, a first step could be
to compute a set of features from the image sequence. Then, the energy term could be
applied to this feature space. As a result, more complex objects than particle images
could be tracked. Furthermore, the trajectory ensemble not necessarily has to consist of
flow vectors: It can reside in any parameter space such as the space of affine transfor-
mations. Such extensions would be similar to the tracking method of Isard and Blake
[140] were a contour is parameterized by means of PCA. The difference would be that a
set of neighboring parameters would be modeled jointly as an ensemble.

Swarm Modeling In biological computer vision often the behavior of animals like birds
or insects is studied. One example is the tracking of tadpoles were hundreds of exemplars
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are swimming inside a basin (Figure 7.11). By detecting the heads of the tadpoles with
an appropriate algorithm, our method could be directly applied to this problem. Other
applications could be the tracking of cells in microscopy, the application of trajectory
ensembles as regularization in landmark based registration or similar fields of research.

Flow Representation One distinct feature of our approach is that we do not search for
single flow vectors. The solution of the optimization problem at one location directly
yields a local representation of a whole set of trajectories. These trajectories are tem-
porally centered around the location so the flow can be studied forward and backward
in time without the need for the flow inversions described in Section 7.5. Furthermore,
these trajectory ensembles overlap so that confidence measures can be developed based
on the consistency in overlapping regions.

7.7.3. Execution Speed

The most computationally demanding part of our algorithm is the evaluation of the
energy with a given set of parameters. To compute the derivative of the energy numeri-
cally, for each dimension of the parameter vector, the energy is evaluated once. Actually,
this step is very fast, as only a relatively small number of pixel locations is investigated.
But this step also is carried out during each iteration of the optimization routine. To
guarantee convergence, we applied a small step size and a large number of iterations. If
the initial guess is already good, the algorithm converges fast and few steps are needed.
The overall speed of our algorithm therefore depends on the two optimization parame-
ters, the initial guess and the number of detected particles in the scene. On a standard
machine (Intel 2GHz CPU, 2GB RAM) we observed computation times between a few
milliseconds and a few seconds per trajectory. The results therefore strongly vary and
cannot be easily predicted. Typically, on our test sequences and conservative iteration
parameters, the algorithm needed a few hours per frame.
Improvements of the computation time can be achieved by improving the optimization
routine: The fewer energy evaluations it needs and the faster it converges, the lower
the computation time will become. A more refined optimization such as the iterated
conjugate gradients method will thus improve the execution speed. Furthermore, as no
global regularization term is employed, the each trajectory location can be optimized
individually. The parallelization of the algorithm can therefore be carried out by simply
distributing all particle locations over all available CPU cores.

7.7.4. Modularity

As discussed above, the algorithm consists of an estimatibility measure, a learned motion
model, a similarity measure and a nonlinear optimization strategy. Furthermore, the
model an be learned by various techniques. We implemented these modules in Charon
to allow for experiments with other techniques. Each of these modules can be improved
separately. Therefore, our algorithm is as modular as those algorithms discussed in
Chapter 4,

108



7.8. Conclusion

7.7.5. Accessibility of Implementations

On the one hand our algorithm exhibits a few parameters which are easy to understand.
On the other hand, the technique is based on learning a model. Although the same
learned model was appropriate for all our experiments carried out in the previous sec-
tion, the selection of training data might be more difficult in other fields of application.
Therefore, we believe that more experiments with respect to those parameters related
to learning should be carried out in future research in order to better understand the
influence of this part of the algorithm.
To facilitate future research based on this algorithm we offer the code as open source to
the research community within the framework of Charon.

7.8. Conclusion

In this chapter we have presented a new motion model for optical flow estimation based
on trajectory ensembles. We implemented an optical flow estimator based on the pro-
posed model by means of a standard similarity measure and optimization technique,
showing promising results on relevant test sequences in the field of Fluid Dynamics.
Any energy functional based on trajectory ensembles becomes nonlinear. Hence, more
sophisticated optimization techniques such as the iterated conjugate gradients method
should be examined in future research. Furthermore, the energy term currently applied
does not model occlusions explicitly. We believe that a robust similarity measures would
help dealing with occluding particle images.
The low-dimensional representation of trajectory ensembles is advantageous due to sev-
eral reasons:

� It allows for spatially unconnected temporal neighborhoods which are naturally
and easily interpretable.

� The mainly temporal structures of fluid flows are explicitly exploited.

� The model can be adapted to special kinds of flows by incorporating prior knowl-
edge without the need for exact physical models.

� PCA effectively reduces the number of parameters of flow field information. This
greatly alleviates the optimization problem by significantly decreasing the dimen-
sionality of the search space.

� The use of ensembles instead of single trajectories notably reduces the risk of local
minima in the optimization problem.

� No image derivatives are needed, avoiding associated problems (c.f. Sec. 7.6.3).

Experiments indicate that the application of our model to Fluid Dynamics data yields
good results, even though a standard energy term and optimization technique were used.
To this end, we applied our method to a realistic, synthetic image sequence showing that
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the exploited temporal information helps in obtaining more accurate results. We also
verified this with a simple real sequence yielding results 15 times more accurate than
the other evaluated methods.

More refined approaches will lead to a further increase of accuracy. We, therefore,
propose to put more effort in the research of mainly temporal regularization methods
for motion estimators.

Finally, we noted that the fields of Computer Vision and Fluid Dynamics research
share a highly correlated history of image processing techniques. We believe that more
interdisciplinary research in motion estimation might be fruitful for both areas. There-
fore, we offer our source code within the framework of Charon to facilitate future research
in both areas.
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Science is always wrong. It never solves a
problem without creating ten more.

(George Bernard Shaw)

In the first part of this work we have carefully motivated the concept of modular optical
flow estimation. Based on the theoretical considerations we have implemented a software
library named Charon, which eases the implementation of new algorithms as well as
experimenting with existing techniques.
In the second part we used this implementation and the concept of modularity to derive
a new algorithm for particle tracking velocimetry which outperforms existing methods
with respect to accuracy.
We will now give a detailed conclusion of our work and discuss future research topics.

8.1. Modular Optical Flow

The range of possible applications for optical flow techniques is broad. Furthermore, the
number of developed algorithms addressing this task is huge. In chapters 2 and 5, we
have shown that a general solution of the flow problem is not only very unlikely to be
found; it can even be counterproductive in some circumstances. Since no existing method
solves all problems, one main challenge is to choose the most appropriate method for a
given type of image sequences.
To be able to choose, the characteristics of the algorithms have to be known in great
detail. Therefore, in Chapter 3, we suggested a basic set of requirements which we
believe should be used to describe an optical flow algorithm. The requirements are:

� Accuracy

� Existence of estimatibility and confidence measures

� Range of applications

� Algorithm complexity, computation speeds and possibilities for their improvement

� Modularity

� Accessibility of source code and ease of use
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We argued that all of these points have not sufficiently been addressed in prior research
and that more attention should be paid to the thorough analysis of existing methods. To
contribute to these aims we start with the last two points: modularity and accessibility.
Optical flow algorithms become more and more complex systems of combined techniques.
Hence, we identified the most prominent modules of these techniques in Chapter 4, which
are:

� Brightness Variation Models

� Neighborhood Selection Methods

� Motion Models

� Regularization Terms

� Robustness Functions

� Image Derivative Estimation

� Image Interpolation

� Multiresolution Techniques

� Optimization Methods

More modules are likely to be found with the advance of research in this field, such as
training data selection and training regime. Yet, this first classification already shows
that a huge number of optical flow algorithms can be derived simply by combining
any of these modules. To contribute to the accessibility, we have developed Charon, a
software library that implements many existing techniques in a modular way. Charon is
designed with both researches and engineers in mind, allowing for easy experimentation,
parallelization and automatization of common workflows such as the evaluation of motion
estimates based on ground truth (cf. Chapter 5).

Designing Charon with modularity and accessibility in mind not only helps in exper-
imenting with existing optical flow techniques. Further advantages are:

� The possibility of designing new algorithms by simply plugging together existing
modules.

� The implementation of new modules can easily be carried out by implementing the
appropriate interfaces.

� Algorithm requirements can be analyzed, such as the influence of free parameters.

� Methods can be compared by only modifying a single module whereas the rest
remains exactly the same.

� A database of existing algorithms becomes available in a single framework.
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We have shown exemplary results computed with Charon. On the one hand, this
shows the versatility of the library; on the other hand we used these experiments to
practically substantiate the hypothesis that general-purpose optical flow algorithms are
not feasible to design: We have shown that derivative filters can significantly improve the
accuracy on small flows with noise, but not in cases of larger flows. Furthermore, we have
experimented with pyramids and found that (in our examples) more accurate results can
be achieved without downsampling. Finally, we have evaluated the theoretical accuracy
limits on three given sequences with ground truth and found that the optimal parameters
yield significantly worse results if applied to other sequences. All these facts show that
none of the tested algorithms is general (even in simple cases of small flows) and that
a high amount of expert knowledge is necessary to optimally choose parameters for a
given image sequence.

8.2. Particle Tracking Velocimetry

In the second part of this work we applied the concepts described above to the field of
fluid dynamics. From this point of view we developed an estimatibility measure for PTV
image data (which is in fact a particle detection algorithm) and a new motion model
based on trajectory ensembles. The application to PTV data shows the versatility of
Charon and describes a case were standard optical flow methods often fail to achieve
good results.

The particle detection method is based on the stability of the center of gravity (first
momentum) of connected components obtained at various threshold levels. A few intu-
itive parameters such as the maximum intensity of all particle images and the minimum
area are needed. To analyze and validate the method, we developed an evaluation frame-
work which comprises particle simulation and accuracy evaluation code.
The results are promising: Our new technique is highly robust with respect to Gaussian
noise and can even accommodate spatially varying mean values. A very low false positive
rate helps subsequent modules to deal with false negatives.
To contribute to the aim of accessibility, we offer our source code to the research com-
munity.

To measure not only the locations of particle images, but also their motion, we im-
plemented a new PTV algorithm around the new motion model. To validate the idea of
trajectory ensembles we applied only simple modules: For learning, we applied PCA to
training data generated by CFD simulations. As similarity measure we used the squared
difference of intensities along the trajectories. For optimization we applied a gradient
descent scheme in model parameter space.
Although these other models are simple, we were able to show promising results with
accuracy gains of up to 15 times the accuracy of standard methods. These results are
based on both realistic synthetic sequences containing noise and intensity variations and
real sequences generated by a newly developed validation technique.
Beside the practical advantages we identified a number of theoretical advantages of
the representation of motion via trajectory ensembles. These are for example the in-
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tuitiveness of the parameters, the exploitation of mainly temporal structures and the
adaptability to various applications.

8.3. Future Research

As we addressed some very general problems in optical flow estimation, the possibilities
for future research are vast. We will discuss a few starting points for requirements
engineering and will then discuss future research topics more closely related to Charon
and PTV.

8.3.1. Requirements Engineering

Although the average angular error (and its standard deviation) has regularly been used
as error measure, the proposal of the endpoint error seems to be gladly embraced by the
research community. This indicates that the best choice for a performance measure is
still not fully accepted by everyone. We believe that one main problem is that usually
only average and standard deviation are shown. A first step to tackle this problem is
the Middlebury website which visualizes the error as image and furthermore offers more
than one error measure. Thus, one important future research topic is how to evaluate
the accuracy of an optical flow field in a way that is accepted by the whole optical flow
community. Additionally, it is unclear if or when one can be satisfied with the accuracy of
a method: As most presented methods today are only slightly more accurate on specific
image data like the Yosemite sequence, it largely remains unclear whether there actually
is a need for new algorithms. Obtaining knowledge about theoretical and fundamental
limits of accuracy on a given sequence would therefore be another future research topic.
Directly related is the generation of real ground truth data. The accuracy of the ground
truth in existing real data is not known. In [30] the accuracy is not even discussed. As
the technique (roughly) described there is highly similar to PIV techniques, it is likely
that it has similar error rates. However, even if ground truth data can be generated
with enough accuracy, it remains an open question which sequence is most general for
a given field of application. Current sequences look very similar as shown in Chapter 2.
It is unlikely that these sequences can be used as base for a performance measurement
for all computer vision applications.
Furthermore, it is obvious that motion cannot been estimated everywhere. Dedicated
research into estimatibility and confidence measures has just begun [7, 26, 8].

8.3.2. Choices of Appropriate Methods

As indicated in the exemplary results shown in Chapter 5, research into the automatic
choice of the parameters (such as regularization strength) based on given image data
is urgently needed for real-world applications with unknown ground truth. It would
be even more interesting to find algorithms that are able to automatically choose the
correct modules based on the image sequence.
First steps toward this direction could be the analysis of existing image data and the
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optical flow results of existing methods. It might be possible to draw features from such
data on which a learning-based approach could find the best answers.

8.3.3. Modular Optical Flow

The range of applications of most methods is unknown today. To be able to find further
applications for existing methods, accessible implementations need to be more widely
available. As we hope that more and more methods will be implemented in Charon, this
might be a first step into this direction.
Up to now, the optimization method implies the use of specific classes for modeling.
Hence, another goal for the development of Charon is to further abstract the existing
modules so that they are fully independent from the optimization technique used.
Finally, we plan to improve on the accessibility by providing a thorough documentation
integration through Tuchulcha and an improved visualization tool for flow estimates
based on Argos.

8.3.4. Particle Tracking Velocimetry

We believe that future research steps into PTV should more carefully take into account
the modularity of existing PTV algorithms. Our particle detection algorithm could be
further improved by including an additional step that either identifies occluding particle
images or even separates the found particles. The first idea might be not so difficult, but
separating the particles probably involves the fitting of several particle image models to
the image data. This could for example be carried out by expectation maximization.
For the actual motion estimation algorithms a number of possible extensions exist. One
idea would be to create a model-based initial guess: Instead of choosing the nearest
neighbor in the initial guess standard PTV approach we could first compute all possible
particle paths up to a given maximum displacement over a fixed number of frames. The
resulting trajectories could each be projected into our learned model space and then be
backprojected into trajectory space. By comparing the difference between the original
and the backprojected trajectory we can measure the ”probability” that the trajectory
can be explained by our model. Finally, we would choose the best fitting from all possi-
ble trajectories.
This idea is nice, because then the initial guess is also computed based on the trained
model and might already be of sufficient accuracy for many applications. To further
improve the results one could then apply the method described here, which searches for
a more stable fit of the given trajectory based on the unsegmented image data.
Another future research topic is to improve the simple model of brightness variation and
the optimization scheme. As the observed energies are already locally rather convex, an
iterated conjugate gradient descent could be one way to improve the convergence rate
and therefore the overall speed of the algorithm.
The brightness variation model is currently not robust with respect to particle occlu-
sions. As our particle detection technique already removes occluding particles so that
these locations are simply skipped and marked as not estimatible, this poses no great
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problem to the current implementation, but it would be desirable to deal with such cases
as well.
Finally, we believe that our method can be very easily be extended to measure the inten-
sity variations along the found trajectories in order to reconstruct the three-dimensional
motion based on a brightness variation model. Our method proved to be very robust to
intensity variations so we did not explicitly model them. Instead, we could now employ
a second step which models these variations separately: By learning from the same CFD
simulations we can learn a one-dimensional model on how the depth of particles can
vary along their trajectory. Then, we simply have to fit this model to the intensities
measured along our trajectories. This can be done linearly for example with the total
least squares method.
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