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Zusammenfassung

In dieser Arbeit wurde das Simulationsprogramm Astro-GRIPS, der General Relativistic Implicit Par-
allel Solver, entwickelt, der die dreidimensional axialsymmetrischen allgemein-relativistischen hydro-
dynamischen Euler und Navier-Stokes Gleichungen mit fester Hintergrunds-Metrik eines Schwarz-
schild oder Kerr Schwarzen Loches mit impliziten Methoden löst. Es ist eine fast vollständige Neu-
auflage eines alten ’Spaghetti-Code’ artigen seriellen Fortran 77 Simulationsprogrammes. Durch Mo-
dernisierung und Optimierung ist ein modernes, gut strukturiertes, benutzerfreundliches, flexibles und
erweiterbares Simulationsprogramm in Fortran 90/95 entstanden. Die Diskretisierung nach dem Fini-
te Volumen Verfahren gewährleistet die Erhaltungseigenschaften der Gleichungen und die Methode
der iterativen Defekt-Korrektur wird benutzt um die Nichtlinearitäten aufzulösen. Es enthält verschie-
dene Lösungsverfahren von rein explizit zu voll implizit, die bis zur dritten Ordnung im Raum und
zweiten Ordnung in der Zeit genau sind. Die großen dünn besetzten linearen Gleichungssysteme,
die bei den impliziten Methoden aufgestellt werden, könnenmit der Black-White Line-Gauß-Seidel
Relaxationsmethode (BW-LGS), der Approximate Factorization Methode (AFM) oder den Krylov
Unterraum-Methoden wie GMRES gelöst werden. Die beste Lösungsmethode und der Grad der Glei-
chungskopplung hängen vom Problem ab. Die Optimierung der Gleichungssystem-Aufstellung, die
MPI-Parallelisierung für Computersysteme mit verteiltemArbeitsspeicher und einige Newtonsche
und relativistische Testrechnungen wurden erfolgreich durchgeführt.

Abstract

In this work the development of the simulation code Astro-GRIPS, the General Relativistic Implicit
Parallel Solver, is performed, which solves the three-dimensional axi-symmetric general relativistic
hydrodynamic Euler or Navier-Stokes equations under the assumption of a fixed background metric
of a Schwarzschild or Kerr black hole using time-implicit methods. It is an almost total re-write of
an old spaghetti-code like serial Fortran 77 simulation program. By modernization and optimization
it is now a modern, well structured, user-friendly, flexibleand extensible simulation program written
in Fortran 90/95. The finite volume discretization ensures conservation and the defect-correction iter-
ation strategy is used to resolve the non-linearities of theequations. One can use a variety of solution
procedures that range from purely explicit up to fully implicit schemes with up to third order spatial
and second order temporal accuracy. The large sparse linearequation systems used for the implicit
methods can be solved by the Black-White Line-Gauß-Seidel relaxation method (BW-LGS), the Ap-
proximate Factorization Method (AFM) or by Krylov SubspaceIterative methods like GMRES. The
optimal solution method and the coupling of equations is problem-dependent. Optimizations in the
matrix construction, the MPI-Parallelization for distributed memory machines and several Newtonian
and relativistic tests were conducted successfully.



The numerical results presented here have been obtained using the here described simulation program
Astro-GRIPS, the General Relativistic Implicit Parallel Solver, developed at the Landessternwarte
as part of the GR-I-RMHD (General Relativistic - Implicit - Radiative Magneto-HydroDynamics)
project which is supervised by Priv.-Doz. Dr. Ahmad A. Hujeirat and financially supported by the
Klaus-Tschira-Stiftung: project number: 00.099.2006.
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1 Introduction

In 1609, 400 years ago, Galileo was one of the first to look intothe sky with the newly invented
telescope and to present the results to the public: On the 25th of August 1609 he conducted the first
astronomical outreach activity when he met with policy and law-makers from the Venetian Republic.
This remarkable event is now celebrated by many public events of the International Year of Astronomy
2009. But 2009 is also the 400th anniversary of Kepler’s Astronomia Nova, the cornerstone of modern
astronomy and the year of the launch of NASA’s Kepler missionto seek for habitable planets: an
optical photometer mounted on a spacecraft, to detect a dip in the lightcurve via the transit method
for the search of exoplanets, this for example shows that there was a huge development in Astronomy
since then. Before the invention of the telescope it was onlypossible to do Astronomical observations
with the bare eyes. So, for example, Tycho Brahe did a great job in astrometry by taking a precise
bearing of the stars and planets and compiling a catalogue. Using this data Kepler calculated the shape
of the planet orbits by hand or by a slide rule without the use of a computer, which resulted in the
famous Kepler laws.

In the days of Galileo, Kepler and Tycho Brahe, drawings werethe only possibility to document
observations. Only at the end of the 18th century and the beginning of the 19th century, Max Wolf, the
first director of the Landessternwarte Heidelberg, did pioneering work in the field of Astrophotography
and detected many asteroids with the Bruce telescope. Todayphoto-multipliers and CCD cameras
are used instead due to their larger quantum efficiency and the easier handling of electronic data
processing.

Since the first telescope used for Astronomy a major development in technology has happened. Nowa-
days one does not only observe in the optical wavelength regime, observations are done in the whole
spectral range: radio, microwave, infrared, visible, ultraviolet, x-rays, up to the high energy gamma
rays and also particles like neutrinos. Multi-wavelength observations give us more information and
hints on the nature of the observed objects. Since the Earth’s atmosphere blocks some spectral
regimes, it is only possible to observe in these wavelengthsfrom space. So many scientific space
missions were conducted in the last half century. In the lastfew years the Hubble space telescope, af-
ter an error in the optical system was corrected by an additionally mounted correction lens, presented
beautiful images of galaxies in the optical. But nowadays with the new instrumental techniques of
adaptive optics (AO) and interferometry used at the VLT, theVery Large Telescope of the European
Southern Observatory (ESO), one can even overcome the results of the Hubble space telescope from
the ground of the Earth, e.g. by using the FORS instruments (Appenzeller et al. 2000, 2004).

These new instrumental and data analysis techniques also benefit from the development in instrumen-
tal and computational science. But also everyday life profits from space and Astrophysical instrument
development, e.g. the Teflon-coated pan or the Ceran cookingfield.

In Astrophysics one wants to learn something about a single Astrophysical object, a special class of
Astrophysical objects or about the history and fate of the whole Universe (cosmology).
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Today many features in the cosmic microwave background (CMB), which was detected in 1963 by
Pencias and Wilson and is a relic of the Big Bang, the origin ofthe Universe, was or is observed with
satellites like COBE, WMAP and the Planck satellite, which was launched recently on the 14th May
2009, to determine and improve the precision of the basic parameters of cosmology and also to test
the standard model of particle physics.

Many philosophical questions are asked: Where are we? From where are we coming from? Are
we alone? So the SETI project, the search for extraterrestrial intelligence, was started, where many,
mostly amateur, radio telescopes collect data, which is then analysed for unusual signals that might
come from extraterrestrial civilisations. In the SETI at home project many computers all distributed
over the world help to analyse the data taken with the large Arecibo radio telescope. Up to now
over 350 exoplanets, planets around other stars, were discovered using various methods: e.g. radial
velocity or transit method.

Many phenomena in fundamental research, Astrophysics and particle physics, cannot be explained
with Newtonian gravity anymore, one needs to use general relativity (GR), which was presented by
Albert Einstein in 1915 (Einstein 1915). General relativity was tested many times. It explained an
extra term in the perihelion precession of Mercury, predicted the gravitational light deflection, which
was first measured in 1919 by Sir Arthur Eddington and his collaborators during a total solar eclipse.

Gravitational lensing, an effect of GR also based on light deflection, is used today e.g. to determine
the mass of galaxies or to observe very distant objects inspecting the Einstein arcs and rings.

With the satellite Gravity Probe B general relativistic effects on rotating gyroscopes in the gravitational
field of the Earth (see for example:Keil and Schartmann 2005) were measured 2005. The geodetic
effect could be confirmed with an accuracy of less than 0.5%. But due to problems with noise in
measuring the frame-dragging effect, also called the Lense–Thirring effect, the final results are still
not published (in 2009).

In the recent years gravitational wave detectors, like the Laser Interferometer Gravitational-wave Ob-
servatory (LIGO), have been built which try to detect gravitational waves resulting from e.g. mergers
of two black holes or neutron stars.

Compact objects are very exotic objects in the universe, they are so dense that they can only be
(partially) explained by general relativity and quantum mechanics. To this class of objects belong
white dwarfs, neutron stars and black holes.

White dwarfs are the final evolutionary states of normal stars with initial masses below about eight
solar masses. These very hot objects consist mainly of carbon and oxygen and have a typical mass
of 0.6 solar masses and a size of about the Earth (6371 km in radius), which gives a density of
approximately one metric ton per cubic centimetre, after the helium burning stopped and the star
collapsed until it is stabilized by the electron degeneracypressure of the electron gas in which the
nuclei swim.

Neutron stars, which are formed starting from normal stars with initial masses higher than about eight
solar masses, are very dense objects which consist of exoticmatter, which might be quark matter
or Bose-Einstein condensate of K-Mesons, and have a mass between about 1.2 to 2.2 solar masses,
a radius of only about 10 to 12 km and a surface temperature of about 106 K. This gives roughly
the same density as in an atomic nucleus or one Earth mass per cube of edge length 400 metres. The
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possible formation processes are: After the fusion burningof all elements down to iron, the stellar core
collapses and the density and pressure of the inner core raise so high that the electrons are pressed
into the protons to form neutrons by a process called inversebeta-decay. The resulting degeneracy
pressure can stabilize the neutron star if it has a mass of about 1.2 to 2.2 solar masses, if the mass is
higher the star collapses further and a black hole is formed.In the case of the neutron star formation,
the still from outside in-falling matter is repelled from the newly formed hard surface of the neutron
star and additionally heated by neutrinos which are a further output of the inverse beta decay. The
out-flowing matter can be observed as a supernova explosion (of type Ib, Ic or II). The other possible
formation process is as the end product of a supernova type Iaexplosion, where a white dwarf, which
accretes matter from a companion star, reaches the Chandrasekhar mass limit of 1.44 solar masses,
and therefore is not stabilized anymore by the electron degeneracy pressure and collapses to a neutron
star. Up to now only a few neutron stars are observed directlyusing X-ray satellites, seeWeisskopf
et al.(2007). If the neutron star is rapidly spinning with a period as short as a few milliseconds and it
has a large magnetic field aligned at an angle relative to the spin axis, electrons can be excited by the
periodic arrival of the magnetic field. This process leads toperiodic pulses of synchrotron radiation in
the radio and optical band of the spectrum. In this case one speaks of a pulsar. The first such object,
the Hulse-Taylor binary pulsar, was detected in 1974 and gives a good testbed for general relativity.

Black holes exist in a huge mass range: they can have masses starting from a few solar masses (stellar
black holes) or maybe even less (mini black holes) up to several billion solar masses, the so-called
super-massive black holes (SMBH), which usually are found in the centre of galaxies and might have
formed by black hole mergers and accretion over billion of years.
Black holes are so massive and dense that the spacetime is extremely bended in the vicinity of such
objects, that means that gravity is so strong that even lightcannot escape from them. So one can-
not look inside a black hole from outside, but one can study the influence on the dynamics of the
surrounding matter and radiation.

Black holes can be characterized according to the so-calledno-hair theorem by John Archibald Wheeler
(see e.g.Taylor and Wheeler 1992): "Black holes have no hair!" by only a few parameters, whichare
the mass of the black hole, its angular momentum and charge. Actually these are three hairs.
In practice there will be no charged black hole because a non-negligible amount of charge would be
immediately compensated by the surrounding charged matter.
Black holes are mathematically described by the vacuum solutions of Einstein’s field equation: The
Schwarzschild(Schwarzschild 1916) solution for stationary spherical symmetric black holes and the
Kerr (Kerr 1963) solution for rotating black holes.

Cyg X-1, a very strong X-ray source, is a binary system, wherea blue super-giant variable star orbits
at about 0.2 AU around a black hole, which is also called a microquasar. Matter from the star forms an
accretion disc around the black hole, which is then heated upto millions of Kelvin radiating X-rays.
A pair of large jets, perpendicular to the accretion disc, isobserved, too.

M 87, a giant elliptical galaxy, shows large X-ray and radio waves and also large gamma-ray emission,
which is for example observed by the H.E.S.S. Cherenkov telescopes (Aharonian et al. 2006). It has
a active galactic nucleus (AGN) with a super-massive black hole of about 6.4 billion (6.4× 109) solar
masses in its centre and also shows large jets.

Stellar dynamics around the centre of our galaxy, the Milky Way, give a hint that there is a giant
super-massive black hole in the vicinity of Sgr A* (Ghez et al. 1998).



4 1 Introduction

(a) Large scale jets of M87 in radio
(VLA image)

(b) Sketch of the inner part of an AGN

Figure 1.1: Large scale structure of accretion phenomena from pc to Mpc scale (plots taken fromHilscher
2009)

Active galactic nuclei (AGN), the central part of galaxies with a super-massive black hole in the centre
surrounded by a large accretion torus, and their ultra-relativistic jets are observed up to a redshift
factors of about 6, which makes them one of the most brightestphenomena in the Universe. According
to the AGN unification theory, an AGN is called differently by observers depending on the angle of
view and on the radio activity, see figure1.2. AGN-jets are collimated outflows, which can extend
up to a distance of several Mpc. These outflows are thought to be powered by energy extraction of
a rotating black hole by theBlandford and Znajek(1977) process and then collimated by magnetic
fields. But the detailed process is still unclear, especially the formation process of such jets from
accreting matter in the ergosphere and the vicinity of the black hole.

Also the role of turbulence in accretion discs (Frank et al. 2002) is not fully understood: Turbulence
is a mechanism to transport angular momentum outwards so that matter can be accreted inwards.
Since the microscopic viscosity is too small to explain the observed accretion rate,Shakura and Sun-
yaev(1973) parameterized the turbulence in their standardα-disc model. The Magneto-Rotational
Instability (MRI) by Balbus and Hawley(1991) (see alsoBalbus et al. 1996) provides a possible
mechanism for the generation of turbulence. But since turbulence occurs instantaneous on various
space and timescales it is very difficult to construct a proper numerical model or analytic description
for it.

A runaway reaction of thermonuclear burning on the thin atmosphere of a neutron star can be observed
as X-ray bursts, which show two prominent oscillations frequencies at about 10 Hz and about 1 kHz,
the quasi-periodic oscillations, see Fig. (1.4). There are at least two different models that explain
these oscillations:Stella and Vietri(1998) propose a precession effect of the innermost disc region
due to the frame-dragging effect of the fast-rotating neutron star. WhereasLamb and Miller(2003)
explain these oscillations by an interaction between the sonic-point and the radiation pattern of clumps
orbiting at the spin-resonance radius. From both models onecan determine an estimate of the neutron
star’s mass and radius and they might give a hint on the interior structure and the equation of state of
the neutron star.
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(a) AGN model showing its components (b) AGN unification model

Figure 1.2: Unification model of the active galactic nucleus (AGN) (seeUrry and Padovani 1995). On the left
a schematic diagram of an AGN with its components is shown: a central black hole surrounded by an accretion
disc and an obscuring dust torus. Perpendicular to the accretion disc there is a pair of ultra-relativistic jets.
The Broad Line Region (BLR) located near the black hole and the Narrow Line Region (NLR) located further
outwards consist of clouds, which show line broadening in the spectra due to their fast movements. On the
right figure the unification model of the AGN is depicted: Various different types of observed objects (radio-
loud and radio-quiet, narrow-line and broad-line) are interpreted simply due to the angle at which the AGN is
observed. If the torus blocks the light from the BLR, only narrow lines are seen in the optical spectrum one
can observe either Seyfert 2 (Sey 2) galaxies or Narrow Line Radio Galaxies (NLRG). Seyfert 1 and Broad
Line Radio Galaxies (BLRGs) show both narrow and broad components to their optical emission lines. Some
objects, the radio loud objects (shown in the top half), emitstrong radio signals, whereas others, the radio quiet
objects (shown in the bottom half), show only low or no radio emission. BL Lacs, which show no, and OVVs
(Optically Violent Variables), which show very weak emission lines, belong to a subgroup known as blazars,
that are thought to be viewed along the ultra-relativistic radio jet.

γ−ray bursts (GRBs), which are extragalactic and isotropically distributed explosion events, are one
of the most luminous phenomena in the universe. Accidently such a huge explosion (GRB 971214)
was observed together with a Supernova Ib explosion, suggesting that both phenomena might have the
same origin, which leads to the collapsar model fromBodenheimer and Woosley(1983), where the
core collapse of a rotating neutron star or a giant star to a black hole results in a supernova explosion.
Due to the distribution of angular momentum a large torus is formed in the equatorial region and matter
can escape along the axis and focused to form ultra-relativistic jets, where one of them might hit the
Earth in form of agamma-ray burst if the polar axis is directed towards the Earth. Anexplanation
for shortγ-ray burstsBrown et al.(2000) is the merging of two neutron stars or black holes, which
additionally emits gravitational waves, that the LIGO consortium wants to detect (Cutler and Thorne
2002).
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Figure 1.3: Sketch of the Jet Launching Mechanism (plot fromHujeirat 2005a)

In the field of Astrophysical Fluid Dynamics (AFD) one modelsAstrophysical flows of plasma and
matter using a variety of possible methods to explain what isobserved and predict what might be
observed.

Due to the complexity of such phenomena one is severely limited if one would rely only on analytic
solutions, so numerical methods play a more and more important role nowadays. Especially non-linear
systems cannot really be studied using only analytical methods.

Different physical descriptions and numerical approaches are used: N-body codes, where one calcu-
lates the gravitational forces between the single objects,Boltzmann lattice codes, where one looks
at the distribution function of the particles in phase space, smoothed particle hydrodynamics (SPH),
where one has pseudo particles representing a fluid, spectral methods, particle in cell methods and
grid based methods: finite element method (FEM), finite difference method (FDM) and finite volume
method (FVM). All have their advantages and disadvantages and limits on applicability to a certain
problem. There are a wide range of physical phenomena and processes to take into account in a real-
istic simulation of an Astrophysical flow, e.g. Hydrodynamics (HD), ideal Magneto-Hydrodynamics
(MHD), effects of non-ideal MHD: finite conductivity, ohmic heating and Hall term, radiative pro-
cesses and atomic and chemical networks and multi-component plasmas, all in Newtonian, special
relativistic or general relativistic formulation. In Astrophysics various processes play a role with very
different sizes and time scales and often initial and boundary conditions are not clearly given, there-
fore it is very complicated to do a really realistic simulation taking into account all physical processes.
So one does simple approximations as a first step and then addsmore complexity step by step.

To try to tackle these enormous problems the exponential development of computer systems and
programming languages was and is very important:

The first very large computer systems at the end or the 1960s filled large halls and had the power
that now easily fits in a small pocket calculator. In these days one used punchcards (in German:
Lochkarten) to program the computer and for the output simple plotters, before the first terminals and
then graphical output on a monitor was possible. Since then many things changed.
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Figure 1.4: Power spectrum of the light curves of 4U 1728-34. The spectraincludes two peaks at about10Hz
and about1kHz, the quasi periodic oscillations (plot fromStella and Vietri 1998).

In 1982 the internet arised from the ARPANET, a project to connect research institutes and universi-
ties, which was started in 1969 by the Advanced Research Project Agency (ARPA) in the USA, by
introducing the TCP/IP network protocol for communication between distant computers. In 1990 the
internet was opened to the public and so it could be used by everyone. The World Wide Web (WWW)
was developed in 1989 at CERN (Genf) by Tim Berners-Lee and 1993 the first graphic webbrowser
could be freely downloaded. This development made it possible that basically everyone and not only
specialists can use the Internet. Since then it developed very quickly. The development of the internet
was tightly coupled to the Unix operating system, whose firstversion was constructed in 1969; it was
developed at AT&T and freely distributed to universities, where it was also further developed as the
Berkeley Software Distribution (BSD). But later in the early 1980s AT&T decided to commercialize
Unix (system-V) and the source code was not published anymore. Many Unix derivates were appear-
ing, for example AIX, HP-UX and Solaris. Since it is much better for research and development (and
also for the development of the economy as a total) to have an open source code, the GNU-Projekt
(„GNU’s Not Unix“) was founded in 1983 by Richard Stallman and in 1985 the Free Software Foun-
dation (FSF), with the aim to have a free unix-compatible operating system. Until 1990 all basic parts
of this system except of the kernel were developed. In 1987 Minix, a small unix clone which runs on
normal PC hardware was developed by Andrew S. Tanenbaum at the University of Amsterdam. In
1991 Linus Torvalds published its first version of his newly created unix-like operating system called
Linux. Other free unix-like operating systems are free BSD variants, Mac OS X and OpenSolaris.
Now many Linux derivates are available and Linux can run on almost any computer platform, it is
even used in embedded devices, e.g. multimedia players.

On the hardware side the development is also extremely: it changed the whole life, not only in sci-
ence, industry and business (computer simulations, robotics, logistics, controlling, . . . ), but also in
office and at home and during travel: Today home and office computers and notebooks already con-
tain multi-core processors, mobile phones, media players,game controllers were developed and the
Global Positioning System (GPS), and other satellite positioning systems, e.g. the European Galileo
project, are applications of general relativity in ’everyday’ life. In High Performance Computing
(HPC) specialized hardware was developed, like the GRAPE board, to calculate the gravity force for



8 1 Introduction

Smoothed Particle Hydrodynamics (SPH) simulations, scalar machines and vector machines, like the
NEC SX-8 at the HLRS, the High Performance Computing Center in Stuttgart, were constructed and
optimized. The vector machine power of graphics cards, which were vastly developed for use by com-
puter games, can now also be used for computation: e.g. Nvidia TESLA graphics chips, which are
specially designed for computation and can be programmed using Cuda, or similar chips by AMD.
To have a common graphics card computation language now the OpenCL standard was published.
Another way to speed up often used program parts is to use programmable chips, e.g. FPGEs. Now
multi-core systems in clusters with fast interconnects, like Gigabit ethernet or Myrinet, are used. Par-
allel file systems were developed to have a fast I/O system for data storage.

But not only the hardware has been developed also the programming languages: One possibility to
program a computer is to use assembler, a machine near computer language, which is very fast, but
not easy to program and not portable, because it is machine specific. Therefore high level program-
ming languages were developed, where the programs have to becompiled to binary code, before they
can be executed. The first high level programming language was Plankalkül, developed by Konrad
Zuse in 1946. In 1952 Grace Hopper developed the first compiler called A-0, and already 1957 the
first FORTRAN-Compiler appeared. In 1972 the programming language C was presented by Den-
nis Ritchie, whereas C++ was invented in 1983 by Bjarne Stroustrup. Scripting languages, like Perl
(1987), Tcl (1988) and Python (1991), were developed, whichconsist of an interactive interpreter,
which analyses the script at runtime and possibly uses C and Fortran code underneath. So it is pos-
sible to program very quickly and test the program without compilation. Relatively modern is the
concept of Object Oriented (OO) Programming, which is in contrast to the conventional procedural
programming an other way to construct a program. OO-programming can for example be done with
C++, which is an extension to C. Many concepts of it are also introduced into other already existing
programming languages like Perl and even FORTRAN (in the standards Fortran 90/95 and Fortran
2003). One basic concept of Object Oriented Programming is to have objects which belong to classes
with specified properties and methods. But a object can belong to a certain subclass, which inherits
all properties and methods of the higher class. With a well-thought-out program design it is then
relatively easy to extend a program. But for problems with time-critical issues there might be — de-
pending on the programming — too much overhead by the Object Oriented Programming. Up to now
Object Oriented Programming with classes plays a minor rolein writing scientific simulation codes,
since the routines which do the actual computational calculations, which are called methods in the
OO language, are the same, only the structure and organisation of the code is different. But that might
change in the future, since one might use and already uses OO-programming or some concepts of it
to make it easier to extend simulation codes.

In the future, where the solution of larger problems is increasingly more significant, the parallelization
of a numerical code plays a crucial role: For shared memory machines one can use for example
OpenMP and other threading directives, with which one very easily can parallelize an already existing
code in total, but also only a part of it. So it is possible to dothe parallelization step by step. But
for distributed memory machines, like most High Performance Supercomputer Systems and Linux
Clusters, for parallelization the Message Passing Interface (MPI), which is the de-facto standard, has
to be used. The MPI-library defines special functions which are called from C or FORTRAN in
between the usual other code segments. Here compared to OpenMP the parallelization of an existing
code is not so easy, since one might have to restructure the whole code. One needs to invest a large
amount of programming time, to get out the right results, since this cannot be done in small steps and
therefore is very error-prone. The goal here is to distribute the workload evenly to the processes (this
is also important on shared memory systems) and to minimize the communication time between the
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processes, especially between processes on different nodes. The MPI parallelization gives the most
flexibility, since the code can either run on distributed memory machines but also on shared memory
machines. A code parallelized with OpenMP can only be run on shared memory machines. There
is also the possibility to combine the two parallelization methods MPI and OpenMP to do a hybrid
parallelization.

Also the progress made in the development of numerical methods and simulation codes in the last
decades is extreme: The development of modern computational fluid dynamic codes started in 1959,
where S. K. Godunov (Godunov 1959) presented a conservative numerical scheme for solving partial
differential equations, the so-called Godunov method. The Godunov method is a three step grid-based
method: First the variable values at the grid interfaces between the cells are reconstructed from the
piecewise constant cell values, then on each cell interfacea local Riemann problem is solved and
finally one takes the averages of the solution to get a single averaged cell value for the next time step.
This first order scheme was extended to higher orders using linear and piecewise parabolic recon-
struction (Colella and Woodward 1984). To avoid numerical artificial oscillations which result in a
numerical breakdown of the higher order method, one has to apply slope or flux limiters in the pro-
cess of reconstruction to guaranty that the scheme is total variation diminishing (TVD). The first such
higher-order scheme, the Monotone Upstream-centred Schemes for Conservation Laws (MUSCL),
which has second order spatial accuracy, was presented in 1979 by Bram van Leer (van Leer 1979).
In the field of Newtonian (magneto-) hydrodynamics up to now several quite sophisticated High Res-
olution Shock Capturing (HRSC) schemes, e.g. the PLUTO code(Mignone et al. 2007), have been
developed using different exact and approximate Riemann solvers, like Lax-Friedrichs, Roe and hllc,
and slope or flux limiters like minmod and suberbee and also different time advancement methods, for
example Runge Kutta integration, are used to improve the accuracy of the solution.

General relativistic numerical hydrodynamic codes (a goodoverview can be found inFont 2008) are
mostly based on the 3+1 (ADM Arnowitt et al. 1962) formulation, where spacetime is foliated into
non-intersecting spacelike hypersurfaces.

Already in 1966 May and White (May and White 1966) developed a time-dependent one-dimensional
general relativistic code describing an adiabatic spherical collapse using Lagrangian coordinates (these
are coordinates which are moving with the fluid element).

Multi-dimensional numerical general-relativistic hydrodynamics in Eulerian coordinates started to
develop with the pioneering work of Wilson in 1972 (Wilson 1972). He introduced basic dynamic
variables representing the relativistic density, momentaand the generalized internal energy. Even in
the case of Cartesian coordinates this system of equations is not in a strictly conservative form since
pressure gradients are treated as source terms. The conservative formulation of nonlinear hyperbolic
systems is very important to guarantee the correct jump conditions and shock speeds. Therefore using
Wilson’s scheme one has to introduce artificial viscosity terms, numerical dissipation, to damp the
oscillations and stabilize the solution near discontinuities. Many general-relativistic codes, both solv-
ing Einstein’s Field equations and using a fixed background metric of a Schwarzschild or Kerr black
hole, use the Wilson scheme and with them one can study many Astrophysical problems containing
for example also the head-on collision of two black holes. But there are also some severe limitations
in simulating ultra-relativistic flows with Eulerian Lorentz factors larger than about two: Norman and
Winkler (Norman and Winkler 1986) found out by studying special relativistic problems, likethe rel-
ativistic shock reflection problem, that the amount of errors occurring for high Lorentz factors mainly
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Figure 1.5: Numerical Relativity, Black Holes and Jets (from the GR-I-RMHD (General Relativistic - Implicit
- Radiative Magneto-HydroDynamics) project proposal to the Klaus-Tschira-Foundation, November 2006 (col-
lage by B. W. Keil)
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depend on the way in which the artificial viscosity terms are included in the Wilson scheme. The
artificial viscosity terms should be implemented in a consistent way into the equations, in order to
consider the artificial viscosity as a real viscosity, whichoccurs in the equations like additional pres-
sure terms and should not be omitted in the calculation of therelativistic enthalpy as in the original
Wilson formulation. The resulting equations are highly nonlinear due to the nonlinear function of arti-
ficial viscosity and the direct occurrence of the Lorentz factor in the convective terms and are therefore
much more coupled than their Newtonian counterparts. So Norman and Winkler proposed the use of
implicit schemes to describe this coupling more accuratelyand developed a one-dimensional code
(Winkler et al. 1984) in flat spacetime using an adaptive grid which reproduced very accurate results
up to Lorentz factors of about ten.

In 2003 Anninos and Fragile (Anninos and Fragile 2003) used their explicit three-dimensional Carte-
sian code cosmos to compare state-of-the-art artificial viscosity schemes with high-order non-oscillatory
central schemes. Simulating shock tube tests and shock reflection tests, they confirmed earlier results
for artificial viscosity schemes: the numerical solution becomes increasingly unstable for shock ve-
locities greater than about 0.95 the speed of light. But instead using the conservative formulation of
the high-order non-oscillatory central schemes they were able to handle ultra-relativistic flows up to
very large Lorentz numbers.

In 1991, Martí, Ibáñez and Miralles (Martí et al. 1991) presented a new formulation of the general
relativistic hydrodynamics equations, also called the Valencia formulation, which is a conservative
Eulerian formulation using the total energy instead of the internal energy equation. But the strict
conservation form is only possible in flat spacetime and the recovery of the primitive variables (den-
sity, velocities and internal energy) from the conservative ones (relativistic density, momenta and total
energy) might be problematic in some cases, e.g. in the calculation of the internal energy (or the
pressure) one might have to subtract some very large and almost similar numbers which numerically
can lead to a very non-accurate result, which in the extreme case might be negative and causes the
simulation code to crash. Apart from such problems this formulation is in general very accurate using
state-of-the-art high-resolution shock capturing (HRSC)schemes with exact or approximate Riemann
solvers and avoids to fine-tune an artificial viscosity parameter, since artificial viscosity is not neces-
sary in this formulation.

There exist also some more general formulations, covariantapproaches, that are not restricted to the
spacelike foliation of the 3+1 split of spacetime (see e.g.Font 2008).

But up to now almost only time-explicit methods solving the hydrodynamic Euler equations have been
used in Astrophysical Fluid Dynamics (AFD). The reason for this might be, that almost all Astrophys-
ical phenomena are studied up to now by (simple) approximations which only use the hydrodynamic
Euler equations without diffusion and without sophisticated radiative effects and only time-dependent
compressible flows were be looked at. For such strongly time-dependent and compressible flows, ex-
plicit methods are very well suited. But to do a better approximation to nature one wants to simulate
a very complex flow with magnetic fields, viscosity, radiative effects and with atomic and chemi-
cal reactions. Also diffusive and viscous effects may play an important role, so one should solve the
Navier-Stokes equations instead of the Euler equations. The different physical processes posses differ-
ent time scales and the smallest timescale dictates the Courant-Friedrichs-Levy (CFL) time step size,
the outermost limiting time step up to which explicit methods are numerically stable. Larger time
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steps lead to a numerical breakdown. For example in the case of the important Astrophysical prob-
lem of the gravitational collapse in the process of star formation, the explicit time-step size decreases
enormously, and therefore the calculations stagnate in time.

But in contrast implicit methods are unconditionally stable, and can therefore use a larger time step.
So only implicit methods have the potential to overcome the so-called time-step crisis which occurs
in the explicit calculations of the gravitational collapse. The time step should for physical reasons
not made too large, so that all physical relevant propertiesof the flow are still resolved in time. An-
other advantage of implicit methods is that there is a tighter coupling of the equations, which is very
important for an accurate description of non-linear effects.

Unfortunately one has to pay a price for the use of implicit methods: Since the solution does not
depend only on neighbouring cell values from the present time step, but also on the values of the
future time step, the equations at each grid point are coupled together and form a large linear system of
equations. Fortunately this system possesses a highly sparse and well structured matrix. In the recent
decades also huge progress was made in development of fast methods to solve large sparse systems of
equations, especially in the field of Krylov subspace iterative methods, for example: GMRES (1986),
BiCGSTAB (1992) and TFQMR (1993).

Ideally one would have an ultimate black-box algorithm, a Swiss Army knife algorithm (in Ger-
man: "Eierlegende Wollmilchsau"), which contains numerical solvers that are unconditionally sta-
ble, robust, efficient, Newtonian, special and general relativistic and capable of treating flows that
range from strongly compressible to almost incompressible, are self-gravitating, radiating, magne-
tized multi-component-plasmas taking into account atomicand chemical reactions and solving the
equations with high spatial and temporal accuracy on unstructured meshes. A further ingredient of
this ultimate black-box algorithm would be that depending on the physical properties of the flow the
optimal method is selected automatically. But unfortunately that is not the case: doing numerical sim-
ulations is not a ’push button’ technology. But maybe that isgood so, because elsewise no research
and no improvement would be done anymore.

To have such an ultimate goal, which probably can never be reached entirely, is similar to the concept
of physics in total: one makes a model of nature which describes nature up to a specific accuracy.
Then one measures or observes a contradiction or a deviationto the model. Thereafter one refines the
model to describe the measurements or observations. And with this method one gets iteratively closer
to the final aim, the right description of nature, but one willnever be able to exactly describe nature in
total. Even if one could describe it exactly, e.g. if one would have the ’world formula’, one would not
be able to calculate everything with it.

To have a better description of the Astrophysical flows one needs to include more physical processes
into the simulations, which in general possess very different time scales and so implicit methods
are very important in the solution of these phenomena, because time-explicit methods are time-step
limited.

To have an easy to use implicit simulation program well suited for general relativistic Astrophysical
problems,Astro-GRIPS, theGeneralRelativistic Implicit ParallelSolver, the numerical simulation
code described here, was developed. This simulation code solves the general relativistic hydrody-
namic Euler- or Navier-Stokes equations under the assumption of a fixed background metric of a
static Schwarzschild or rotating Kerr black hole. It can be used very flexible and can be run on various
computer platforms, compute clusters and high performancecomputers due to its MPI-Parallelization,
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which was a major task of this work. Due to the implicit methodthe simulation code is uncondition-
ally stable and also takes into account the non-linearity ofthe fluid flows by coupling of the equations.
The Hierarchical Solution Scenario (HSS:Hujeirat 2005a) can be used to find a stationary or quasi-
stationary solution quickly by gradual enhancement of the equation coupling.

The development of such an implicit simulation code gives the basis to include and study the influence
of interesting physical aspects like magnetic fields and radiative transfer, to better understand the rel-
ativistic flows around compact objects, especially the formation and acceleration of ultra-relativistic
multi-component plasma MHD-jets and compare the numericalresults with Astrophysical observa-
tions.





2 General Relativity and Fluid Dynamics

2.1 General Relativity

2.1.1 Basic Ideas and Equations

Since one intents to study the plasma flows in the vicinity of black holes and other compact object
where flow velocities near the speed of light can occur and where gravity is very strong, it is not
possible anymore to use the classical Newtonian formulation of the hydrodynamic equations. Due
to the strong gravitational field it is also not sufficient to use special relativity, since many physical
effects can only be explained by general relativity.

In general relativity gravity is not described as a force like in Newtonian mechanics, instead it is the
result of spacetime curvature.

The Riemann curvature tensor is defined as:

Rλµνρ = Γ
λ
µρ,ν − Γλµν,ρ + ΓζµρΓλζν − ΓζµνΓλζρ, (2.1)

whereΓρµν are the connection coefficients, also called the Christoffel symbols of the second kind,
which have to be taken into account if one transports a vectorfrom one point to another point in
curved space on different paths and result from the parallel transport of a vector in a curved space on
a closed path, a loop, and are defined as:

Γρµν =
1
2

gρη
(
gην,µ + gµη,ν − gµν,η

)
, (2.2)

wheregµν is the metric of the spacetime, which is symmetricgµν = gνµ (and torsion free). Distances
are measured according to the square of the line elementds2 = gµνdxµdxν, wherexµ is the 4-vector
of the location in spacetime which is given byxµ =

(
ct, ~x

)
.

By contraction of the the Riemann curvature tensor one gets the Ricci tensorRµν = Rλµνλ and its (the
Ricci tensors) trace is the Ricci scalarRwhich is given byR= Rµµ = gµνRµν.

To get a metric theory of gravitation Albert Einstein constructed a tensor, the Einstein tensorGµν, that
is divergence free:Gµ

ν;µ = 0 and is defined by:Gµν = Rµν − 1
2gµν R and represents the curvature of

spacetime.

Another important ingredient of relativity is the stress-energy tensorTµν, also called energy-momentum
tensor, which represents the density and flux of energy, including the relativistic rest mass energy, and
momentum. The equations of motion in a local inertial frame,in which gravity is absent, follow from
the condition that its covariant derivative is zeroTµν

;ν = 0.
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Combining all ingredients results in the Einstein’s field equations (Einstein 1915), which written in
the compact tensorial form are:

Gµν = −8πG
c4 Tµν, (2.3)

whereG denotes the gravitational constant.
John Archibald Wheeler noted a nice and simple explanation for this formula, which in compact form
describes the whole concept of general relativity:

”Spacetime tells mass how to move and mass tells spacetime how to curve.”

Due to the complicated structure of the Einstein Equations,they form a system of coupled non-linear
differential equations, only a few analytic solutions are known.
Already in 1916, the year after Einstein had published his theory of general relativity, Karl Schwarzschild
(Schwarzschild 1916) found the spherical symmetric vacuum solution for a non-charged and non-
rotating black hole, called the Schwarzschild solution. The other important solution for black hole
astrophysics was found in 1963 by the New Zealand mathematician Roy P. Kerr (Kerr 1963) and is
the stationary and axisymmetrical vacuum solution for a rotating, non-charged black hole.

2.1.2 Divergence of Vector and Tensor Fields

The covariant divergence of a vector fieldVν can always be expressed without referring to Christoffel
symbols:

Vν
;ν =

1√−g
∂ν

(√−gVν
)

(2.4)

For the divergence of a (2,0)-tensor

Tµν
;ν = ∂νT

µν + ΓµµαTαν + ΓνµαTµα (2.5)

follows if T is antisymmetricTµν = Aµν = −Aνµ:

Aµν;ν =
1
√−g

∂µ
(√−gAµν

)
(2.6)

and if T is symmetric (e.g. the energy-momentum tensor)Tµν = Tνµ:

Tµν
;ν =

1
√−g

∂µ
(√−gTµν

)
+ ΓµναTνα (2.7)

2.2 Rotating Black Holes: the Kerr solution of Einstein’s Field
Equation

Black holes can be characterized by the so-called ’no-hair theorem’ by John Archibald Wheeler
"Black holes have no hair!" by only a few parameters, which are the mass of the black hole, its
angular momentum and charge. Actually these are three hairs. In practice there will be no charged
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black hole because a non-negligible amount of charge would be immediately compensated by the sur-
rounding charged matter.
The Kerr solution, which was found 1963 by the New Zealand mathematician Roy Patrick Kerr (Kerr
1963), is a vacuum solution of Einstein’s field equation, which isstationary and rotationally symmet-
ric and has two free parameters, the mass of the central object MBH and the Kerr rotation parametera.
Due to the Robinson theorem (Robinson 1975) the Kerr solution is the unique solution of stationary
axisymmetric solutions of the general relativistic vacuumfield equations which are asymptotically
flat, that means that for large radii the Kerr metric goes to the flat Minkowski metric1, have a smooth
convex horizon and is regular outside the horizon and is uniquely defined by the two aforementioned
parameters.

Adopting the 3+1 split of spacetime, a line elementds(dimension: L (length)) with the metric signa-
ture (−,+,+,+) can be written as follows:

ds2 = c2dτ2 = gµνdxµdxν = −α2(cdt)2 + hik (dxi + βicdt)(dxk + βkcdt) (2.9)

wheredx0 = cdt and Greek indices run from 0 to 3 and Latin indices from 1 to 3.

For the Kerr metric in Boyer-Lindquist coordinates (Boyer and Lindquist 1967) (ct, r, θ, φ) with
dimensions [L, L, 1(radians), 1(radians)], the most famous used coordinates, the line element reads:

ds2 = −(α2 − βφβφ)(cdt)2 + 2βφdφcdt+ hikdxidxk, (2.10)

which corresponds to a spacetime metric represented in the following matrix notation:

gµν =




gtt 0 0 gtφ

0 grr 0 0
0 0 gθθ 0

gφt 0 0 gφφ


 =




βφβ
φ − α2 0 0 βφ
0 hrr 0 0
0 0 hθθ 0
βφ 0 0 hφφ


 , (2.11)

The coefficients gµν in the Boyer-Lindquist coordinates [with dimensions:gtt : 1, grr : 1, gθθ :
L2, gφφ : L2, andgtφ = gφt : L] and their related functions,not setting the speed of light c and the
gravitational constant G to unity2, are defined as follows:

α =
ρ̄
Σ

√
∆, [α : 1]

hrr =
ρ̄2

∆
, hθθ = ρ̄2, hφφ = ω̄2 with ω̄ = Σρ̄ cosθ, [hrr : 1, hθθ : L2, hφφ : L2, ω̄ : L]

βr = βθ = 0, βφ = −ωFDE
c [βφ : L−1, ωFDE : T−1]

βφ = gφiβ
i = gφφβφ = ω̄2βφ [βφ : L]

Υ =
ρ̄2Σ2

∆
cos2 θ, [L4]√−g = ρ̄2 cosθ = α

√
Υ [L2].

(2.12)

1The Minkowski tensor in Cartesian coordinates has the form

η =

0

B

B

@

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

. (2.8)

2many authors setc = 1 andG = 1, but to better understand the units of the variables and thescaling in the code (see later)
herec andG are not set to zero and in most cases the dimensions/units are given in square brackets.
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and the auxiliary functions:

∆ = r2 − 2rgr + (arg)2 [L2]
ρ̄2 = r2 + (arg)2 sin2 θ [L2]
Σ2 = (r2 + (arg)2)2 − (arg)2∆ cos2 θ [L4]

(2.13)

with the gravitational radiusrg =
GMBH

c2 [L] wherec, MBH,G are the speed of light, mass of the black
hole and the gravitational constant, respectively.α is the redshift or lapse function, which describes
the gravitational redshift or relativistic time dilatation of local clocks as compared to infinity, andβ is
the shift vector function.
The cylindrical radius ¯ω is called so because 2πω̄ = 2π

√
gφφ is the circumference of cylinders at the

radial positionr that are concentric to the axis of symmetry.
∆ is called the horizon function and in the equatorial plane ¯ρ equals the radial coordinater.
In writing these expressions, the coordinate transformation θ̄ = π/2 − θ was used, where the latitude
θ is used instead of the polar distance angleθ̄; hence the appearance of "cos" instead of "sin" in the
metric terms.
g is the determinant of the 4-metric whereasΥ is the determinant of the 3-metric. The contravariant
components of the metric, which can be derived by the property that the metric satisfiesgµνgνα =
δ
µ
α [1], are:





gtt = − 1
α2 [1]

gtφ =
βφ

α2 = −ωFDE
(cα2) [L−1]

grr = 1
grr
= ∆

ρ̄2 [1]

gθθ = 1
gθθ
= 1

ρ̄2 [L−2]

gφφ = 1
ω̄2 − βφβφ

α2 [L−2].

(2.14)

The radial dependence of the Boyer-Lindquist functions canbe seen in figure2.1 for several Kerr
parametersa.

Horizons and Ergosphere

∆ is the so-called horizon function and is zero at the horizon,where the redshift factorα vanishes,
that means the redshiftz is infinity for an observer located at infinity, where the redshift is defined as
follows:

z+ 1 =
λobs

λem
=

√
gtt(xobs)
gtt(xem)

(2.15)

(for Schwarzschild:z+ 1 = 1
α(r) )

with emitted wavelengthλem of a signal and at infinity observed wavelengthλobs. This behaviour
explains the name "black hole", since no emitted light from inside the horizon is observed at infinity.

In the Kerr case (a , 0) there exist two horizons: theCauchy horizon r− = rg (1 −
√

1− a2), the
inner horizon, and theevent horizon r+ = rg (1 +

√
1− a2), which is the outer horizon. Physically

meaningful solutions have to posses a horizon, so the parameter a is limited by |a| ≤ 1. An interesting
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Figure 2.1: Radial dependence of the Boyer-Lindquist functions for theSchwarzschild black hole a= 0, an
intermediate Kerr black hole with a= 0.75and for the extreme Kerr hole a= 1. The lapse or redshift function
α is in units of 1, the frame dragging frequency divided by the speed of light−ωFDE

c in units of rg and the function
√

grr =
ρ̄√
∆

in units of 1;
√

gθθ = ρ̄,
√

gφφ = ω̄,
√
∆ and

√
Σ have all units of rg. In the case of a Schwarzschild

black hole a= 0, there is no frame dragging frequency−ωFDE
c = 0, ρ̄ =

√
Σ = rg and ω̄ = rg cos(θ). With

increasing Kerr parameter a from 0 to 1 the horizon, the radius at which the horizon function∆ is zero, moves
from 2rg further inwards up to one rg.
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phenomenon occurs at the Cauchy horizon when it is reached from the outside: an observer witnesses
the entire history of the external world in a single flash and due to the infinite blueshift the observer is
hit by an infinite flash of radiation. These strange effects are a consequence of pure general relativity
and may give a hint that in reality quantum effects may play a role in the interior of the black hole.
For the extreme Kerr solutiona = 1, almost all radii are equal to the gravitational radiusrg, whereas
for the Schwarzschild solutiona = 0 there is only one event horizon which is at the Schwarzschild
radiusrS = 2 rg.

The ergosphere is the surface where the metric componentgtt vanishes:

gtt = βφβ
φ − α2 = ω̄2

(ωFDE

c

)2
− α2 = 0 ⇔ rE = rg(1+

√
1− a2sin2θ) (2.16)

It is dependent on the latitudeθ and has an oblate shape which touches the event horizon. The zone
between the ergosphere and the event horizon is called the ergoregion, where the rotation of the
spacetime becomes extreme. It is not possible to sustain static observers inside the ergosphere, hence
the ergosphere is also called the static limit, whereω = dφ

dt = 0. The ergoregion is also of importance
for the energetics of the processes around a black hole, since Penrose(1969) showed that energy can
be extracted from every spacetime which possesses an ergosphere.

Frame-Dragging Effect

The parametera with dimension [1] is the Kerr or spin parameter which specifies the specific angular
momentum (angular momentum per mass) with respect to the maximum specific angular momentum
rgc = GMBH

c and can have values between−1 and+1, negative values give retrograde and positive
prograde rotation. Fora = 0 one gets the Schwarzschild solution of a non-rotating black hole, which
is due to Birkhoff’s theorem the unique spherical symmetric vacuum solution.
The frame-dragging effect, also called Lense-Thirring effect, is the property that spacetime is dragged
along with a rotating object around the rotation axis and results from the non-diagonal elementsgφt

andgtφ of the Kerr metric in Boyer-Lindquist coordinates. The frame-dragging angular frequency is
defined asωFDE = 2argcrgr

Σ2 = − gtφ

gφφ
c [T−1]. Note that in the expression ofβφ there is a minus sign for

the metric signature (-,+,+,+) whereas for the metric signature (+,-,-,-) there occurs a plus sign.

In the ergoregion, inside the ergosphere, everything is rotating due to the frame-dragging effect: ob-
servers, photons, magnetic field lines and even spacetime itself. Since the velocity field must be
globally space-like (see also the normalisation conditionof the 4-velocity and settingVr andVθ to
zero):

gtt + 2gtφ
ω

c
+ gφφ(

ω

c
)2 < 0, (2.17)

there is a minimum and maximum limit of the angular velocityω:

ω− ≤ ω ≤ ω+ with ω− = ωFDE −
c α
ω̄

and ω+ = ωFDE +
c α
ω̄

(2.18)

The dependence ofωFDE, ω− andω+ on r can be seen in figure2.2
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Figure 2.2: Radial dependence of the frame-dragging angular frequencyωFDE and the minimal and maximal
allowed angular frequenciesω− andω+ for the Schwarzschild black hole a= 0, an intermediate Kerr black
hole with a= 0.75and for the extreme Kerr hole a= 1. At the horizon all three functions meet at one point, so
all matter, photons and even spacetime has to rotate with theframe-dragging frequency there.
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In the Kerr space there exist special non-static observers,called ZAMOs (zero angular momentum
observers), with angular velocityω = ωFDE (angular velocity with respect to the fixed stars, the usual
static Bardeen observer at infinity) and vanishing specific angular momentumMφ = 0:

Mφ = Duφ
= D ut [gφφ Vφ

c + gtφ] = D ut gφφ [ Vφ

c +
gtφ

gφφ
] = D ut gφφ [ Vφ

c −
ωFDE

c ]

= D ut

c gφφ [ω − ωFDE] = DΓ gφφ [ω − ωFDE] = D gφφ [ω − ωFDE]

(2.19)

with D = D h
c2 = ρΓ

h
c2 and angular velocityω = Vφ = uφ

ut c = uφ

Γ
=

dφ
dτ
Γ
=

dφ
dt .

Singularities

The Kerr solution in Boyer-Lindquist coordinates shows a coordinate singularity at the event horizon.
This can be transformed away, for example, by changing to theso-called Kerr-Schild coordinates .
But unfortunately the resulting metric has more off-diagonal elements which results in much more
complicated formulas.
For a Schwarzschild black hole, a non-rotating black hole, one has a point singularity at the origin,
where a point mass is located and the Riemann tensor diverges, e.g. the spacetime has infinite curva-
ture.
Whereas in the case of a rotating (Kerr) black hole one has a ring singularity which is located in
the equatorial plane and has a radius ofr = arg, which in Boyer-Lindquist coordinates is given by

ρ̄(r, θ) =
√

r2 + (arg)2 sin2 θ = 0.

Innermost Stable Circular Orbit (ISCO)

The innermost stable circular orbit (ISCO), also called marginally stable orbit, is the innermost cir-
cular orbit of a test particle in the equatorial plane, wherea stable rotation around a black hole is
still possible. This radius follows from the discussion of effective potentials in the Kerr spacetime
and the limiting cases are: for a extreme Kerr hole with retrograde rotationr ISCO(a = −1) = 9rg,
with prograde rotationr ISCO(a = +1) = rg and for a Schwarzschild black holer ISCO(a = 0) = 6rg.
Following Müller (2004, p. 14) orCamenzind(2007, Chap. 8), the ISCO radii in dependence of the
Kerr rotation parametera can be calculated by

rISCO = rg

(
3+ Z2 ∓

√
(3− Z1) (3+ Z1 + 2Z2)

)
, (2.20)

Z1 = 1+
(
1− a2)1/3 (

(1+ a)1/3 + (1− a)1/3) ,

Z2 =

√
3a2 + Z2

1,

The upper sign holds for prograde whereas the lower sign is for retrograde orbits.
Another characteristic radius in black hole physics is the marginally bound orbitrmb, which is the
smallest possible radius of a circular orbit at which an outward perturbation lets escape a test particle
to infinity or in other words, where a test particle starts to be gravitationally bound by the black hole.
This radius is given by:

rmb = rg

(
2− a+ 2

√
1− a

)
= rg

(
1+
√

1− a
)2
. (2.21)
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Figure 2.3: Dependence of the charac-
teristic radii on the Kerr parameter: rms

is the marginally stable orbit, also called
innermost stable circular orbit (ISCO),
rmb is the marginally bound orbit, rph is
the radius of the photon sphere, rE the
radius of the ergosphere, r+H the radius
of the event horizon, rring the radius of
the ring singularity and r−H the radius
of the Cauchy horizon. For a= 0 the
Schwarzschild black hole is reproduced.

A further radius is the radius of the photon sphere, inside which photons cannot have stable trajectories
anymore.

rph = 2 rg

[
1+ cos

(
2
3

arccos(−a)

)]
(2.22)

The dependence of the characteristic radii ona can be seen in Fig. (2.3).

2.3 The hydrodynamical equations in Kerr spacetime: Genera l
Relativistic Euler and Navier-Stokes equations

Hydrodynamics is a macroscopic description of a fluid and assumes that the mean free path of the
particles is much smaller than the length scales of relevantphysical processes and that the particles in
a small volume have a specific energy distribution, which canbe described by the thermodynamical
concept of temperature.
The hydrodynamic equations describe the conservation of mass, momentum and energy. This system
of equations is closed by an equation of state (EoS).
The Euler equations are the fundamental equations of hydrodynamics for an ideal gas whereas the
fluid motions of a viscous gas are described by the Navier-Stokes equations.

The general relativistic hydrodynamical equations are derived (following the internal energy formula-
tion of Wilson (1972) andHawley et al.(1984a,b) from the four-velocity normalisationuµuµ = −c2,
the conservation of baryonic number∇µ(ρuµ) = 0, the parallel component of the stress-energy con-
servation equationuν∇µTµν = 0 (to derive the internal energy equation) and from the transverse
components (gξν + uξuν)∇µTµν = 0 (to derive the momentum equations).
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2.3.1 Velocities and Momenta

Thefour-velocity is defined as

uµ �
dxµ

dτ
(2.23)

and satisfies thenormalisation

uµuµ = −c2. (2.24)

The units/dimensions of the four-velocity components are:ut : LT−1, ur : LT−1, uθ : T−1 anduφ :
T−1.

Defining thegeneral relativistic pseudo Lorentz factor, the non-dimensional time-component of the
4-velocityut:

Γ =
dt
dτ

(2.25)

one gets forut:

ut =
dct
dτ
= c

dt
dτ
= cΓ. (2.26)

Thetransport velocity is defined as

Vµ
�

uµ

ut c =
dxµ

dt
, (2.27)

from which follows for the four-velocity:uµ = ut(Vµ/c) = Γ Vµ.
The units are the same as for the four-velocities.

Thephysical velocitiesin the Boyer-Lindquist coordinate system for an observer atinfinity are de-
fined as the absolute values of the transport velocities and have all units of [LT−1]:
The radial velocityU is:

U =
√

U2 =
√

VrVr =
√

grr VrVr =
√

grr Vr (2.28)

the azimuthal/latitudinal velocityV:

V =
√

V2 =
√

VθVθ =
√

gθθVθVθ =
√

gθθ Vθ (2.29)

and the toroidal velocity ¯vφ:

v̄φ =
√

v̄2
φ =

√
VφVφ =

√
gφαVαVφ =

√
gφtVtVφ + gφφVφVφ =

√
gφtcVφ + gφφVφVφ, (2.30)

which gives in case of a non-rotating (Schwarzschild) blackhole:

v̄φ; Schwarzschild=

√
gφφVφVφ =

√
gφφV

φ. (2.31)
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Instead of the toroidal velocity ¯vφ the angular velocityω is used:

ω := Vφ (2.32)

The frame dragging angular velocity is:

ωFDE = −
gtφ

gφφ
c (2.33)

The absolute value of the physical velocity vector (in 3-space) (for an observer at infinity in the Boyer-
Lindquist coordinates) is

v̄ = |~̄v| =
√
~̄v̇~̄v =

√
U2 + V2 + v̄2

φ (2.34)

In the 3+1 split of spacetime, also called the ADM formalism (Arnowitt, Deser, and Misner 1962)
(see also:Gourgoulhon 2007), the 4 dimensional spacetime is foliated into non-intersecting space-
like hypersurfaces of constant coordinate timet = const . Each of such 3 dimensional hypersurfaces
have a space like metrichi j and can therefore seen as ’absolute space’ at the specified time t. The
advance of such hypersurfaces in time is parameterized by the redshift or lapse functionα = − 1√

gtt
,

which describes the distance to the next parallel hypersurface along a timelike unit vectornµ normal
to the surface. The space-like tangential shift vectorβi describes the motion of coordinates within a
hypersurface. One can define a local fiducial observer, the FIDO, who is at rest in absolute space and
has a 4-velocityuµ with ut = u0 = −αc andui = 0. So the shift vectorβi describes the shift in time of
the grid of the hypersurface relative to the local FIDO.

The three-velocity components of the plasma for alocal observer in the Euler frame(sitting on the
local grid point) are:

vE
i = −

ĥi
µu

µ

nµuµ
c, i = 1, 2, 3 (2.35)

whereĥµν = gµν + nµnν is the projection operator onto the hypersurface orthogonal to nµ.
These velocity components can also be written as:

vE
i =

(
ui

αut +
βi

α

)
c. (2.36)

Using this velocity one can define and calculate the localrelativistic Lorentz factor W in the Eulerian
frame:

W = −nµ
ut

c
= α

ut

c
= αΓ =

1√
1− vE

2

c2

, (2.37)

wherevE
2 = vEivE

i = gi j vE
ivE

j and the normalisation conditionuµuµ = −c2 was used to transform the
first term into the second, which shows that in the limit of a locally flat spacetime (with a Minkowski
metric) the general relativistic equations give the usual special relativistic equations. In the Euler
frame one gets for the 4-velocity:

uµ =W

(
1

vE
i

)
. (2.38)
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The relations between the local Eulerian velocities and theBoyer Lindquist velocities (used in the
simulation code) are:

vE
r = U

α
√

grr
UE = |vE

r | = U
α

vE
θ = V

α
√

gθθ
VE = |vE

θ | = V
α

vE
φ = dω

α Vφ
E = |vE

φ| = √gφφ dω
α

(2.39)

The velocity componentsvE
i of a local observer in the Euler frame are physically more intuitive than

the Boyer-Lindquist coordinate velocities.

Using the transformation qµ = gµνqν one can determine the covariant vectorqµ from the contravariant
vectorqν using the metric, whereas qµ = gµνqν is used to do the transformation in the other direction.

This is used for example to transform the contravariant components of the 4-velocity for a Kerr black
hole in Boyer-Lindquist coordinates to the covariant components:





ut = gtt ut + gtφ uφ = ut [gtt + gtφ (Vφ/c)] [LT−1]

ur = grr ur = grr ut (Vr/c) =
√

grr
ut

c U =
√

grr Γ U [LT−1]

uθ = gθθ uθ = gθθ ut (Vθ/c) =
√

gθθ ut

c V =
√

gθθ Γ V [L2T−1]

uφ = gtφ ut + gφφ uφ = ut [gtφ + gφφ (Vφ/c)] = gφφ Γ [ω − ωFDE] [L2T−1].

(2.40)

The relativistic mass density is:

D � ρ
ut

c
= ρΓ [ML−3]. (2.41)

The specific relativistic enthalpy (enthalpy per mass density) is:

h = c2 + ǫ +
p
ρ

[L2T−2], (2.42)

wherec2 comes from the rest-mass energy density andǫ is the specific internal energy (internal energy
per mass density).
With this one can define the variables

D � D
h
c2 [ML−3] (2.43)

and

D � D
ut

c
= DΓ = D

h
c2Γ = ρ

h
c2Γ

2 = ρh̃Γ2 [ML−3]. (2.44)

where

h̃ :=
h
c2 [1] (2.45)
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From the four-velocities and the relativistic density one can define the corresponding relativistic co-
variant 4-momenta which are defined byMµ � Duµ:





Mt = Dut = D ut [gtt + gtφ (Vφ/c)] [ ML−3LT−1]

Mr = Dur = D grr ut (Vr/c) = D
√

grr
ut

c U =
√

grr D U [ML−3LT−1]

Mθ = Duθ = D gθθ ut (Vθ/c) = D
√

gθθ ut

c V =
√

gθθ D V [ML−3L2T−1]

Mφ = Duφ = D ut [gtφ + gφφ (Vφ/c)]

= D ut

c gφφ [ω − ωFDE] = D gφφ [ω − ωFDE] [ ML−3L2T−1].

(2.46)

from which the contravariant 4-momenta may be obtained (using the orthogonalisation and normali-
sation relationgµνgνα = δ

µ
α and the symmetry relation of the metric:gµν = gνµ):





Mt = gtt Mt + gtφ Mφ = D ut (gtt [gtt + gtφ (Vφ/c)] + gtφ [gtφ + gφφ (Vφ/c)])
= D ut (gtt gtt + gtφ gtφ + [gtt gtφ + gtφ gφφ] (Vφ/c))

= D ut = D c
[ML−3LT−1]

Mr = grr Mr = D grr grr ut (Vr/c) = D ut

c Vr = D ur = D Vr = D U√
grr

[ML−3LT−1]

Mθ = gθθ Mθ = D gθθgθθ ut (Vθ/c) = D ut

c Vθ = D uθ = D Vθ = D V√
gθθ

[ML−3T−1]

Mφ = gφφ Mφ + gφt Mt = D ut (gφφ [gtφ + gφφ (Vφ/c)] + gφt [gtt + gtφ (Vφ/c)])
= D ut (gφφ gtφ + gφt gtt + [gφφ gφφ + gφt gtφ] (Vφ/c))

= D ut (Vφ/c) = D uφ = D Vφ

[ML−3T−1].

(2.47)

The corresponding physical momenta (used in the simulationcode) are defined as follows:

m̄= Mr =
√

grr D U

n̄ = Mθ =
√

gθθ D V

l̄ = Mφ = D ut [gtφ + gφφ (Vφ/c)] = D Γ gφφ [ω − ωFDE] = D gφφ [ω − ωFDE]

(2.48)

The normalisation of the 4-velocityuµuµ = −c2 yields for the Kerr metric in Boyer-Lindquist coordi-
nates:

(ut)2
[
gtt + 2 gtφ (Vφ/c) + grr (Vr/c)2 + gθθ (Vθ/c)2 + gφφ (Vφ/c)2

]
= −c2

(ut)2
[
gtt + 2 gtφ (Vφ/c) + (U/c)2 + (V/c)2 + gφφ (Vφ/c)2

]
= −c2

(2.49)

For the 4-momenta the normalisation is then:

MµMµ=Duµ Duµ = D
2

uµuµ = −c2 D
2

MµMµ=gµνMνMµ = gtt M2
t + 2 gtφMtMφ + grr M2

r + gθθM2
θ + gφφM2

φ = −c2 D
2

(2.50)

From the normalisation one can determine the general relativistic pseudo Lorentz factorΓ = ut

c .
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2.3.2 The Euler Equations

The Euler equations describe the motion for a one-componentideal fluid (non-viscous, no heat con-
duction, . . . ).
They consist of conservation equations of particle number or mass, momentum and energy.
In the Newtonian case these equations are (without gravitational force):

∂ρ

∂t
+ ∇ ·

(
ρ~u

)
= 0, (2.51a)

∂
(
ρ~u

)

∂t
+ ∇ ·

(
~u⊗

(
ρ~u

))
= −∇P, (2.51b)

∂E
∂t
+ ∇ ·

(
~u (E + P)

)
= 0, (2.51c)

whereρ is the density,~u the velocity vector,E the total energy andP the pressure.

2.3.3 Conservation of Mass

The continuity equation, which describes the conservationof mass, can be derived from the conserva-
tion of the particle number densityn:

(
nuµ

)
;µ = 0, (2.52)

whereuµ = dxµ
dτ =

(
ut

~u

)
is the 4-velocity.

In special relativity, where the metric simplifies to the Minkowski metric:gµν = ηµν in the case
of Cartesian coordinates,ut simplifies to the special relativistic pseudo Lorentz factor ΓS R times the

speed of light:ΓS R=
ut

c =

(
1− uiui

c2

)−1/2
.

In general relativity the contravariant time component of the 4-velocityut includes also other met-
ric terms which can be derived taking into account the normalisation conditionuµuµ = uµgµνuν =
gµνuνuµ = −c2 and the metric relationgµνgνα = δ

µ
α, e.g. for a gas at rest (ui = 0), ut = c√−gtt

= α c,
whereα is called thelapse function.

With the definition of the fluid densityρ = n m, wherem is the rest-mass per particle which can be
factored out in Eq. (2.52) since it is a constant, one gets the continuity equation:

(
ρuµ

)
;µ = 0. (2.53)

Using the expression of the covariant 4-velocity divergence uµ;µ =
1√−g∂µ

(√−guµ
)

and splitting-up
in temporal and spatial parts, the so-called 3+1 split of spacetime, the continuity equation can be
written as follows:

1√−g
∂t

(
√−g

ut

c
ρ

)
+

1
√−g

∂k
(√−gρuk

)
= 0. (2.54)
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Assuming that the gravitational field is dominated by the central compact object (e.g. a black hole
or a neutron star) and the contribution of the atmosphere or accretion disc to the gravitational field
and the accumulation of mass and the spin-up of the central object during the simulated time can be
neglected, one can use a static background metric (∂tg = 0).

Introducing therelativistic density D = ut

c ρ = Γ ρ and thetransport velocity Vµ = uµ/(ut

c ) = uµ/Γ
yields to thecontinuity equation in general relativity

∂tD +
1√−g

∂k
(√−gDVk

)
= 0. [ML−3 T−1] (2.55)

2.3.4 Conservation of the Stress-energy Tensor

For the derivation of the other hydrodynamical equations the stress-energy tensor is used, since it
includes the energy density, the momentum density, the energy flux and momentum flux. This tensor
makes up the right-hand side of Einstein’s field equation (2.3) and is a source of curvature of space-
time, which is neglected here, since a fixed background metric, the Kerr metric, is assumed.
The stress-energy tensor of an ideal gas has the following form:

Tµν = ρ
h
c2 uµuν + Pgµν or Tµν =

(ρ̂ + P)
c2 uµuν + Pgµν [ML−3 L2T−2], (2.56)

whereP is the pressure,h = c2+ ǫ + P
ρ is the relativistic enthalpy,ǫ is the specific internal energy,gµν

is the metric tensor anduµ is the 4-velocity.ρ is the mass density, while ˆρ is the energy density. The
entropy isH = ρh = ρc2 + ρǫ + P = ρ̂ + P.

To derive the general relativistic momentum and energy conservation equations the divergence of the
stress-energy tensor

Tµν
;µ =

[
uν∂µ

(ρ̂ + P)
c2 +

(ρ̂ + P)
c2 uν;µ

]
uµ +

(ρ̂ + P)
c2 uνuµ;µ + ∂

νP, (2.57)

(which has for example forν = r the dimensions: [ML−3L2T−2L−1]) has to beconserved,

Tµν
;µ = 0. (2.58)

Einstein assumed the simplest spacetime connection, whichmeans that he assumed spacetime to be
torsion free,Γαβγ = Γ

α
γβ, and that the inner product (norm) is preserved, which results in the metric

compatibilitygµν;µ = 0 (Camenzind 2007). This property is used in the calculation of the divergence
of the stress-energy tensor of an ideal gas (3.82).
The conservation of the stress-energy tensor can be broken up into parts: For the conservation of
energy one looks at the parallel components of the stress-energy tensor touν, while for the momentum
conservation at its components transversal touν.
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2.3.5 Conservation of Energy

Internal Energy Equation

By multiplying the conservation equation of the stress-energy tensor with the 4-velocityuν one gets:

uνT
µν

;µ =

[
uνu

ν∂µ
(ρ̂ + P)

c2 +
(ρ̂ + P)

c2 uνu
ν
;µ

]
uµ

+ (ρ̂ + P) uνuνu
µ
;µ + uν∂

νP = 0
(2.59)

Use of the normalisation of the 4-velocityuµuµ = −c2 gives

uνT
µν

;µ = −∂µ
(ρ̂ + P)

c2 uµc2 − (ρ̂ + P)
c2 c2uµ;µ + uν∂

νP = 0, (2.60)

where we got rid of the term(ρ̂+P)
c2 uνuν;µ, because ofuν;µuν =

1
2 (uνuν);µ = 0.

Next the substitution ( ˆρ + P) = hρ, whereh is the enthalpy, and the expressionuν∂νP = uµ∂µP are
used to further simplify the equation:

uνT
µν

;µ = −
(
hρuµ

)
;µ + uµ∂µP = 0. (2.61)

Using the chain ruleuµ∂µP = (Puµ);µ − uµ;µP and gather terms, one gets

[
(hρ − P) uµ

]
;µ + uµ;µP = 0. (2.62)

Adding the continuity equation(ρuµ);µ = 0 times the square of the speed of light gives

[(
hρ − P− ρc2) uµ

]
;µ + uµ;µP = 0, (2.63)

and using the definition of the internal energyρǫ = hρ − ρc2 − P yields

(
ρǫuµ

)
;µ + uµ;µP = 0. (2.64)

Finally applying the 3+1 split of spacetime and introducing therelativistic internal energy density
ǫd = ǫD = ρut

c ǫ = ρΓǫ and the transport velocityVµ = uµ/ut c = uµ/Γ gives the equation that
describes thetime evolution of the relativistic internal energy density in general relativity:

∂tǫ
d +

1√−g
∂k

(√−gǫdVk
)
= −P

[
∂t

(
ut

c

)
+

1
√−g

∂k

(√−g
ut

c
Vk

)]
. (2.65)

Assuming an ideal gas the pressure is defined asP(ǫ, ρ) = (γ − 1) ρǫ = (γ − 1) ǫd/Γ.

Note, that the equation of time evolution of the relativistic internal energy density includes the time
derivative of the pseudo Lorentz factorΓ = ut

c on the right hand side, which is highly nonlinear, so
special care has to be taken to accurately estimate∂t Γ in numerical simulations.

If using the internal energy formulation in numerics an artificial viscosity is added at shock discon-
tinuities, which acts like a scalar pressure to numericallyensure the conservation of total energy and
give the right results at shock fronts.
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Conservation of Total Energy

A disadvantage of the internal energy formulation is that one has to fine-tune the artificial viscosity
parameter at shock fronts to ensure total energy conservation.
The total energy conservation does not have this problem since it is numerically formulated in such a
way to ensure the conservation of total energy.
The equation of total energy conservationis following Font (2008) and using a static background
metric:

∂tτ +
1
√−g

∂k
(√−g (τ + P) vk) = α

(
Tρt∂ρ lnα − TρσΓt

ρσ

)
, (2.66)

whereτ = Dc2 − P− Dc2 = Γ2ρh̃c2 − P− Γρc2 is the real total energyEtot = Γ
2ρh̃c2 − P subtracted

by the relativistic rest mass energyDc2 = Γρc2

andα is the lapse function. The source terms on the RHS arise due tothe spacetime curvature, but
vanish in the case of a flat space.

Especially for high Lorentz factors but also in other circumstances the total energy formulation may
break down and gives negative pressure values and one has to use the internal energy formulation.

2.3.6 Conservation of Momentum

Extracting the transversal components of the conservationof the stress-energy tensor equation (2.57)
by using the projection tensor, which is defined ashµν = uµuν + gµνc2, one gets the equation of
momentum conservation.
Using the projection operator onuν, one can see that it only extracts only the transversal contributions:

hµνu
ν =

(
uµuν + gµνc

2) uν = (−uµ + uµ)c
2 = 0 (2.67)

Applying this operatorhµν on Tλν
;λ one gets

hµνT
λν

;λ =
(
uµuν + gµνc

2) Tλν
;λ = uµuνT

λν
;λ + gµνc

2Tλν
;λ . (2.68)

The termuµuνTλν
;λ can be identified as the energy conservation equationuµ

(
uνTλν

;λ

)
= 0 and there-

fore vanishes. For the termgµνc2Tλν
;λ one can use the metric compatibility propertygµν;µ = 0

and gets:

hµνT
λν

;λ = uµuνT
λν

;λ + gµνc
2Tλν

;λ

=
(
c2gµνT

λν
)

;λ

= c2Tλ
µ;λ. (2.69)

Renaming dummy indices firstµ to ν and thenλ to µ and expanding the stress-energy tensor and
setting the divergence to zero:

0 = Tµ
ν;µ =

(
gναTµα

)
;µ =

(
ρ

h
c2 gναuαuµ + Pgναgµα

)

;µ
=

(
ρ

h
c2 uνu

µ + Pgµν

)

;µ
. (2.70)
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Writing out the divergence of the above equation, while keeping in mind thatuνuµ is a tensor, results
in

0 =
1√−g

∂µ

(√−gρ
h
c2 uνu

µ

)
− ρ h

c2Γ
λ
µνuλu

µ + ∂νP. (2.71)

With the introduction of therelativistic momentum density Mµ = ρ
h
c2

ut

c uµ = ρ h
c2Γuµ = Duµ and the

transport velocityVµ = uµ
Γ

this equation gives

1√−g
∂µ

(√−gMνV
µ
)
= ΓλµνMλV

µ − ∂νP

= Γλµν
MλMµ c

Mt − ∂νP. (2.72)

For the next step, the connection coefficients multiplied by the symmetric tensorMλMµ can be calcu-
lated as follows:

ΓλµνMλMµ =
1
2

gλσ
(
gσµ,ν + gσν,µ − gµν,σ

)
MµMλ

=
1
2

MµMσ
(
gσµ,ν + gσν,µ − gµν,σ

)

=
1
2

MµMσgσµ,ν +
1
2

(
MµMσgσν,µ − MµMσgµν,σ

)

=
1
2

MµMσgσµ,ν

=
1
2

MµMλgλµ,ν , (2.73)

where the symmetry property ofMµMσ was used in the summation ofMµMσgσν,µ = MµMσgµν,σ.
With this formula equation (2.72) can be simplified to

1√−g
∂µ

(√−gMνV
µ
)
= +

MµMλ c
2Mt gλµ,ν − ∂νP. (2.74)

With the help of the normalisation of the metricgαβgβγ = δαγ and the symmetry properties of the metric
gαβ = gβα andgαβ = gβα one gets:

∂ν
(
gαµgµγ

)
= ∂ν

(
gαµ

)
gµγ + gαµ∂ν

(
gµγ

)
(2.75)

Since∂ν
(
gαµgµγ

)
= ∂ν

(
δαγ

)
= 0 one gets:

gαµ∂ν
(
gµγ

)
= −∂ν

(
gαµ

)
gµγ (2.76)

This can be used to get:

+
1
2

MγMµ∂ν(gµγ) = +
1
2

MγMαgαµ∂ν(gµγ) = −
1
2

MγMαgµγ∂ν(g
αµ) = −1

2
MµMα∂ν(g

αµ) (2.77)

Performing the 3+1 spacetime split and taking into account that the time component ofMt is deter-
mined by the 4-velocity normalisationuµuµ = −c2 gives thegeneral relativistic equation of momen-
tum conservationof an ideal gas:

∂tMa +
1√−g

∂k
(√−gMaVk

)
= −MλMµ c

2Mt
gλµ,a − ∂aP. (2.78)
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2.3.7 Summary of the Euler Equations

The equation of momentum conservation and the equation of energy conservation can be derived
from the conservation of the stress-energy tensor. Together with the continuity equation they form the
general relativistic Euler equations:

∂tD +
1√−g

∂k
(√−gDVk

)
= 0,

∂tMa +
1
√−g

∂k
(√−gMaVk

)
= −MλMµ c

2Mt gλµ,a − ∂aP,

∂tǫ
d +

1
√−g

∂k
(√−gǫdVk

)
= −P

[
∂t

(
ut

c

)
+

1
√−g

∂k

(√−g
ut

c
Vk

)]
,

(2.79a)

(2.79b)

(2.79c)

where the conservative variables are the relativistic density D = ut

c ρ = Γρ, the relativistic momenta

Mµ = ρ
h
c2

ut

c uµ = Duµ, and the internal energy densityǫd = ǫ D.

These equations together with an equation of state (EoS), which relates the pressureP with the density
ρ and internal energyǫ, form the system of hydrodynamic equations of an ideal fluid in general
relativity.
Note that by using this formulation of the hydrodynamics-equations, the so-called flux-conservative
form, in combination with finite volume discretization, mass and momenta are conserved up to small
discretization errors.

2.3.8 Newtonian case and Newtonian limit

From these derived general relativistic hydrodynamics equations one can easily recover the pure
Newtonian equations of a flat spacetime for very large radii (there the spherical coordinates also
go asymptotically into Cartesian ones) by setting the pseudo Lorentz-factorΓ = 1 (slow motions
relative to the speed of lightc), the enthalpyh = 1 (thermodynamical non-relativistic energy densi-
ties), the metric componentgtφ = 0 (no frame-dragging effect a = 0) and the other metric compo-
nentsgii = 1 i = 1, 2, 3. Set

√
Υ =

√−g/α to a flat space determinant of the 3-metric, but leave
gtt = −α2 = −(1 − 2rg

r ) to account for the usual Newtonian gravitational potential in the momentum
equations.

If one replaces the metric tensorg in Cartesian coordinates by the Minkowski metricη, general rela-
tivity is reduced to special relativity, which has no gravity term.

To recover the pure Newtonian equations with Newtonian gravity in spherical coordinates, i.e. also
for small radii, one has to setΓ = 1, h = 1, a = 0 and the metric components to following values:
gtt = −α2 = −(1 − 2rg

r ) = −(1+ 2Φ) with gravitational potentialΦ = − rg

r , grr = 1 (and not as in the
Schwarzschild case to:grr =

1
α2 ), gθθ = r2 andgφφ = r2 cos2 θ.
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2.4 Navier-Stokes Equations in General Relativity

The Navier-Stokes equations additionally take diffusive effects due to viscosity into account, which
can be of crucial importance in some cases. The effect of viscosity was often neglected in Astrophysi-
cal simulations up to now, because the effects of molecular viscosity are in general very low compared
to other physical processes.
Especially the impact of shear-viscosity between fluid layers with large differences in velocities on
turbulence, momentum transport or angular momentum transport can be huge and result in different
results.

For example in the Taylor-Couette flow simulations in Fig. (2.4) depending on the value of the vis-
cosity laminar or turbulent flow patterns can be obtained. Ifthe so-calledReynolds number, which
describes the ratio between the inertial forces and the viscous forces, is large enough, there can occur
turbulence.

The momentum equations of the Newtonian Navier-Stokes equations are:

ρ

[
∂~v
∂t
+

(
~v · ∇

)
~v

]
= −∇P− ∇ ×

[
η
(
∇ × ~v

)]
+ 4

3∇
(
η∇~v

)
+ ~F, (2.80)

whereη is the dynamic viscosity,~v the velocity of the fluid and~F additional external forces, like
gravity or electrical forces.

(a) Re(ν) < Re(νcrit): Laminar flow (b) Re(ν) > Re(νcrit): Taylor vortex flow

Figure 2.4: Simulation of the Taylor-Couette flow between two rotating spheres. Plotted is the density (colour)
and the velocity field (vectors). For the same time and setup we get very different flow configurations, depending
on the Reynolds number (viscosityν). For Re(ν) ≫ Re(νcrit) the flow is turbulent. (Hilscher 2009)
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The Navier-Stokes equation (seeChoudhuri 1998) is:

ρ
dvi

dt
= ρFi −

∂P
∂xi
+

∂

∂x j

[
µ

(
∂vi

∂x j
+
∂v j

∂xi
− 2

3
δi j
~∇ · ~v

)]
(2.81)

In most situations the spatial variation ofµ is not important, so one gets:

ρ
d~v
dt
= ρ~F − ~∇P+ µ

[
~∇2 ~v+

1
3
~∇(~∇ · ~v)

]
(2.82)

The term containing~∇(~∇ ·~v) is only important for flows with variable compression, for example in the
viscous dissipation of acoustic waves. So it is neglected here and one gets the simpler version of the
Navier-Stokes equations:

ρ
d~v
dt
= ρ~F − ~∇P+ µ~∇2 ~v (2.83)

which using the kinematic viscosityν = µ/ρ can also be written as:

∂~v
∂t
+ (~v · ~∇)~v = ~F − 1

ρ
~∇P+ ν~∇2 ~v (2.84)

where (~v · ~∇)~v is the vector-gradient ofv.
Note that this form of the Navier-Stokes equations only differ from the Euler equations by the addi-
tional second order spatial derivative termν~∇2 ~v. But this term leads to a totally different behaviour
of the solutions. The Navier-Stokes equations require moreboundary conditions for solutions in finite
regions. For an ideal fluid at a solid boundary the normal velocity component is set to zero, for viscous
fluids one imposes the extra boundary condition that the tangential velocity component is also zero
there, this then gives a unique solution.
There is an additional important property of viscous flows: Compared to ideal fluids where the pro-
duction and decay of vorticity is not possible due to Kelvin’s vorticity theorem for viscous fluids this
is now possible.

If one wants to write the Navier-Stokes equations in an curvilinear coordinate system special care has
to be taken about the right form of the vector-gradient and the second order operator. The easiest way
to get this transformation right is to replace these operators with the following vector identities:

(~v · ~∇)~v =
1
2
~∇(~v · ~v) − ~v× (~∇ × ~v) (2.85)

~∇2 ~v = ~∇(~∇ · ~v) − ~∇ × (~∇ × ~v) (2.86)
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The simpler version of the Newtonian Navier-Stokes equations in spherical coordinates are (see
Choudhuri 1998, Appendix C.4) where here the polar distanceθ̄ is replaced by the latitudeθ = π

2 − θ̄
andvθ = −vθ̄ and ∂

∂θ̄
= − ∂

∂θ
, so one changes from the right-hand coordinate system (r, θ̄, φ) to the other

right-hand coordinate system (r, φ, θ), so that the vectorsvr andvφ do not have to change sign!):

∂vr

∂t
+ vr

∂vr

∂r
+

vθ
r
∂vr

∂θ
+

vφ
r cos(θ)

∂vr

∂φ
−

v2
θ + v2

φ

r

= −1
ρ

∂P
∂r
+ ν

[
1
r
∂2

∂r2 (rvr ) +
1
r2

∂2vr

∂θ2 +
1

r2 cos2(θ)
∂2vr

∂φ2

− tan(θ)
r2

∂vr

∂θ
− 2

r2

∂vθ
∂θ
− 2

r2 cos(θ)
∂vφ
∂φ
− 2vr

r2 +
2 tan(θ)

r2 vθ

]
+ Fr , (2.87)

∂vθ
∂t
+ vr

∂vθ
∂r
+

vθ
r
∂vθ
∂θ
+

vφ
r cos(θ)

∂vθ
∂φ
+

vr vθ
r
+

v2
φ tan(θ)

r

= − 1
ρ r

∂P
∂θ
+ ν

[
1
r
∂2

∂r2 (rvθ) +
1
r2

∂2vθ
∂θ2 +

1
r2 cos2(θ)

∂2vθ
∂φ2

− tan(θ)
r2

∂vθ
∂θ
+

2 sin(θ)
r2 cos2(θ)

∂vφ
∂φ
+

2
r2

∂vr

∂θ
− vθ

r2 cos2(θ)

]
+ Fθ, (2.88)

∂vφ
∂t
+ vr

∂vφ
∂r
+

vθ
r

∂vφ
∂θ
+

vφ
r cos(θ)

∂vφ
∂φ
+

vr vφ
r
− vθ vφ tan(θ)

r

= − 1
ρ r cos(θ)

∂P
∂φ
+ ν

[
1
r
∂2

∂r2 (rvφ) +
1
r2

∂2vφ
∂θ2 +

1
r2 cos2(θ)

∂2vφ
∂φ2

− tan(θ)
r2

∂vφ
∂θ
+

2
r2 cos(θ)

∂vr

∂φ
− 2 sin(θ)

r2 cos2(θ)
∂vθ
∂φ
− vφ

r2 cos2(θ)

]
+ Fφ. (2.89)

The continuity equation in spherical coordinates is:

∂ρ

∂t
+

1
r2

∂

∂r
(r2 ρvr ) +

1
r cos(θ)

∂

∂θ
(cos(θ) ρvθ) +

1
r cos(θ)

∂

∂φ
(ρvφ) = 0 (2.90)

The momenta are:m= ρvr , n = rρvθ andl = r cos(θ)ρvφ

The Navier-Stokes equations can now be brought in momentum form:
The radial momentum equation can be constructed by:
ρ · (Eq. 2.87) + (Eq. 2.90) · vr :

∂m
∂t
+
∂

∂r
(vrm) +

1
r2

∂

∂r
(r2vrm) +

1
r cos(θ)

∂

∂θ
(cos(θ)vθm) +

1
r cos(θ)

∂

∂φ
(vφm) −

ρ
(
v2
θ + v2

φ

)

r

= −∂P
∂r
+ µ

[
1
r
∂2

∂r2 (rvr ) +
1
r2

∂2vr

∂θ2 +
1

r2 cos2(θ)
∂2vr

∂φ2

− tan(θ)
r2

∂vr

∂θ
− 2

r2

∂vθ
∂θ
− 2

r2 cos(θ)
∂vφ
∂φ
− 2vr

r2 +
2 tan(θ)

r2 vθ

]
+ ρ Fr , (2.91)
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The latitudinal momentum equation can be constructed by:
r ρ · (Eq. 2.88) + r · (Eq. 2.90) · vθ:

∂n
∂t
+

1
r2

∂

∂r
(r2vrn) +

1
r cos(θ)

∂

∂θ
(cos(θ)vθn) +

1
r cos(θ)

∂

∂φ
(vφn) + ρv2

φ tan(θ)

= −∂P
∂θ
+ µ

[
∂2

∂r2 (rvθ) +
1
r
∂2vθ
∂θ2 +

1
r cos2(θ)

∂2vθ
∂φ2

− tan(θ)
r

∂vθ
∂θ
+

2 sin(θ)
r cos2(θ)

∂vφ
∂φ
+

2
r
∂vr

∂θ
− vθ

r cos2(θ)

]
+ ρr Fθ, (2.92)

And finally the angular momentum equation can be constructedby:
r cos(θ) ρ · (Eq. 2.89) + r cos(θ) · (Eq. 2.90) · vφ:

∂l
∂t
+

1
r2

∂

∂r
(r2vr l) +

1
r cos(θ)

∂

∂θ
(cos(θ)vθl) +

1
r cos(θ)

∂

∂φ
(vφl)

= −∂P
∂φ
+ µ

[
cos(θ)

∂2

∂r2 (rvφ) +
cos(θ)

r
∂2vφ
∂θ2 +

1
r cos(θ)

∂2vφ
∂φ2

− sin(θ)
r

∂vφ
∂θ
+

2
r
∂vr

∂φ
− 2 tan(θ)

r
∂vθ
∂φ
− vφ

r cos(θ)

]
+ r cos(θ) ρ Fφ. (2.93)

These equations can later be used to control the Newtonian limit of the relativistic Navier-Stokes
equations.

2.4.1 Derivation of the Navier-Stokes Equations

The stress-energy tensor for a non-ideal plasma, as derivedby Misner et al.(1973), consists of
T(nid) = T(id) +T(visc)+ T(heat), whereT(id) is the stress-energy tensor for the ideal-fluid,T(visc) are the
contributions due to viscosity andT(heat) is the contribution due to heat conduction.

Tµν = ρ̂
uµuν

c2 + (P− ζΘ) hµν − 2ησµν + qµuν + qνuµ, (2.94)

wherehµν = uµuν

c2 + gµν is the spatial projection tensor,Θ = uµ;µ is theexpansion scalarof the fluid,η
is thedynamic viscosityandζ is the coefficient for thebulk viscosityandqµ is theheat flux. The shear
tensor is defined as

σµν = 1
2

[(
uµ;ρ

)
hρν +

(
uν;ρ

)
hρµ

]
− 1

3Θhµν. (2.95)

Assuming a non-conducting fluid, the bulk viscosityζ and the heat fluxqµ vanish. So withζ = 0 and
qµ = 0 equation (2.94) simplifies to

Tµν = ρ̂
uµuν

c2 + Phµν − 2ησµν. (2.96)

Similar to the derivation of the general relativistic Eulerequation, the conservation equation for the
stress-energy tensor can be decomposed into two equations:the conservation of energyuµT

µν
;µ = 0,
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given by the components parallel touν and the conservation of momentumhµνT
µν

;µ = 0,given by the
components orthogonal touν.
Since Einstein’s field equations (2.3) are locally linear in the stress-energy tensor, the additional terms
due to the non-ideal gas can be handled as a correction to the ideal stress-energy tensor.
So only the non-ideal contribution of the stress-energy tensor T̃µν = −2ησµν needs to be additionally
looked at (Hujeirat and Thielemann 2009).

Modification of the Energy Equation

Heat conduction is neglected in the derivation here since itis still an underdeveloped research field,
for an insight the reader is referred toMaartens(1996) andGeroch(1995).
Heating due to viscous terms in the stress-energy tensor is not derived from adding the longitudinal
components ofuµT̃

µν
;µ to Eq. (2.65), but is included approximately by adding a quantityΛ to the

relativistic internal energy density equation

∂tǫ
d +

1
√−g

∂xk

(√−gǫdVk) = −P

[
∂t

(
ut

c

)
+

1√−g
∂xk

(√−g
ut

c
Vk

)]
+ Λ. (2.97)

Λmay consist ofΛ = Λvisc+Λbr, whereΛvisc is theheating termdue to dissipation or viscous heating,
andΛbr is thecooling termdue to thermal bremsstrahlung.

Modification of the Momentum Equation

The modifications of the momentum conservation equation aregiven by the spatial projection of the
viscous terms of the stress-energy tensor along the vector normal to the hyperspace and are given by

L2a
rθ := T̃µa

;µ = T̃µa
,µ + T̃ζaΓ

µ
ζµ + T̃µζΓa

ζµ, (2.98)

whereL2a
rθ contains terms due to viscosity and terms with the second order derivatives of the veloc-

ity, therefore they are calledsecond order viscous operators.
For the derivation the connection coefficientsΓζµλ are calculated using equation (2.2).
For the Boyer-Lindquist coordinate system withgtt, grr , gφφ, gθθ andgφt, the result presented byRichard-
son and Chung(2002) are used. Since only 3D-axial symmetry around the rotationaxis z is considered
here3, one can set∂φgµν = 0, which then results in (Hujeirat and Thielemann 2009) (here: c=G=1
!!!):

L2r
rθ = ∇̄r · η

[
(∂ur

∂r +
1
2(grr ∂grr

∂r )ur) (urur + 1)

+∂ur
∂r −

1
2(grr ∂grr

∂r )ur) ((ur)2 + grr)
−2

3(∇̄r · ur + ∇̄θ · uθ) (urur + 1)
]

+ ∇̄θ · η
[
(∂uθ
∂r +

1
2(gθθ ∂gθθ

∂r ) (urur + 1)

+∂uθ
∂θ
+ 1

2(gθθ ∂gθθ
∂θ

) (uruθ)
+
∂ur
∂r −

1
2(grr ∂grr

∂r )ur) (uruθ)
+
∂ur
∂θ −

1
2(grr ∂grr

∂θ )ur) ((uθ)2 + gθθ)
−2

3(∇̄r · ur + ∇̄θ · uθ) (urur + 1)
]
,

(2.99)

3up to now Astro-GRIPS is 3D-axisymmetric (some people call this 2.5D) and not fully 3D. An extension to full 3D is a
future research topic
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L2θrθ = ∇̄r · η [( ∂uθ
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1
2(gθθ ∂gθθ

∂r )uθ) (ur)2 + grr)
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∂θ
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(2.100)

L2ϕrθ = ∇̄r · η [( ∂uϕ
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1
2(gϕt ∂gϕt

∂r + gϕϕ ∂gϕϕ
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∂θ )uϕ) (uruθ)

−(1
2(grr ∂gϕt
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1
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∂r + gϕϕ ∂gϕϕ
∂r ) (uruθ)

+(∂uϕ
∂θ −

1
2(gϕt ∂gϕt
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∂θ )uϕ) ((uθ)2 + gθθ

−(1
2gθθ ∂gϕt

∂θ ) uϕuϕut − (1
2gθθ ∂gϕϕ

∂θ ) uϕ(uϕuϕ + 1)],

(2.101)

Due to the lengthy form of these equations, the computational cost will be too high for an efficient
numerical simulation, so these terms will be simplified by the approximation of only using second
order, mixed-free and Laplace-like operators. This simplification is justified if one simulates in 3D-
axis symmetry and is mainly interested in the angular momentum transport, which plays the most
important role in accretion physics, and results in (here: c=G=1 !!!):

L̃2
r
rθ = ∇̄r · {η [2∂ur

∂r −
2
3(∇̄r · ur)]} (urur + 1)

+ ∇̄θ · {η (∂ur
∂θ )} ((uθ)2 + gθθ),

(2.102)

L̃2
θ
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+ ∇̄θ · {η (∂uθ
∂θ

) − 2
3∇̄θ · uθ) (uθuθ + 1)+ (∂uθ

∂θ
) (uθ)2 + gθθ)]},

(2.103)
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+ ∇̄θ · η (∂uϕ
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2gθθ ∂gϕϕ

∂θ ) uϕ(uϕuϕ + 1)].

(2.104)

2.4.2 Summary of the Navier-Stokes Equations

Thegeneral relativistic Navier-Stokes equationsfor a non-ideal, non-conducting fluid are:

∂tD +
1√−g

∂k
(√−gDVk

)
= 0,

∂tMa +
1
√−g

∂k
(√−gMaVk

)
= −SλMµ c

2Mt gλµ,a − ∂aP+ L̃2
a
rθ,

∂tǫ
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1√−g
∂k

(√−gǫdVk
)
= −P

[
∂t

(
ut

c

)
+

1√−g
∂k

(√−g
ut

c
Vk

)]
+ Λ,

(2.105a)

(2.105b)

(2.105c)

with the conservative variablesD = ut

c ρ = Γρ, Mµ = ρh̃Γuµ = Duµ, ǫd = ǫD and the second-order

approximated corrections̃L2
a
rθ due to viscosity, see (2.104). Λ = Λ1+Λ2+ . . . are additional heating

or cooling terms.
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2.5 Equation of State - the Closure of the Hydrodynamic System o f
Equations

To close the system of equations, either Euler equations or Navier-Stokes equations, one has to now
an equation of state (EoS), which describes the fluid pressure as a function of the internal properties
of the fluid. Usually the EoS is of the formP = P(ρ, ǫ, ...), but more parameters may be involved e.g.
its composition, the ionisation state of the gas or the adiabatic indexγ. Because in general the real
EoS can be quiet complex, one usually uses a simplification.
Thepolytropic equation of statehas the formP = Kργ, where K is a constant depending on the species
of the gas andγ the polytropic index.
In this case there is usually no need to solve the energy equation, since there is no coupling between it
and the momenta equations through the equation of state and if one assumes that there are no energy
(only pressure) dependent source terms in the momenta equations.
Due to its simplicity this equation of state was mostly used in the study of hydrostatic equilibria of
stellar atmospheres, neutron stars and globular clusters where it leads to the famousLane-Emden
equations.
For hydrodynamical simulations the equation of state of an ideal gasP = (γ − 1)ρǫ = (γ − 1)ǫ

d

Γ
is

often used. The adiabatic indexγ is determined by the composition of the gas, e.g. for a mononuclear
gas it has the value ofγ = 5/3.
At very high temperatures where particles move with relativistic speeds another equation of state has
to be used. In theultra-relativistic limit the equation of state is very similar to the Newtonian EoS,
but the adiabatic index for a mononuclear gas is thenγ = 4/3.
For flows with velocities between the non-relativistic and the ultra-relativistic limit a generalized EoS
has to be applied.

2.5.1 Equation of State for a relativistic fluid

With the Newtonian adiabatic index ofγ = 5/3 in the relativistic regime with high temperatures the
equation of state of an ideal gas would give a sound speed which exceeds the speed of light. To avoid
this contradiction with causality,Taub(1948) showed that the EoS of a relativistic gas has to obey
certain rules, to ensure that the speed of sound is always lower than the speed of light.

By using the relativistic Maxwell-Boltzmann distributionfunction, calledMaxwell-Juttner distribu-
tion, Synge(1957) found the correct EoS which is valid in the whole range of fluid velocities.
The relativistic enthalpy density perc2 denoted bỹh = h/c2 of the gas is given by

h̃ =
K3(1/Θ)
K2(1/Θ)

(EoS of Synge), (2.106)

whereΘ = P/ρ is the pressure-density ratio andK2,K3 are the modified Bessel functions of second
and third order.
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Figure 2.5: Adiabatic indexγ of an ideal gas dependent on the pressure-density ratioΘ = P
ρ

for the Synge
equation of state and the approximations of Mathews and Ryu.(Plot taken fromHilscher(2009))

Since the solution of this correct EoS is numerically expensive, one approximation was presented by
Mathews(1971) 4:

h̃ = 5
2Θ +

3
2

√
Θ2 + 4

9 (EoS of Mathews). (2.107)

Another approximation was found byRyu et al.(2006), which is simpler in its form but reproduces
Synge’s solution even better:

h̃ = 2
6Θ2 + 4Θ + 1

3Θ + 2
(EoS of Ryu). (2.108)

Unfortunately, it is not possible to give a direct expression for the pressure. Instead, first the relativistic
enthalpy is determined by finding the root of

h̃(Θ) − ǫd

D c2 − Θ − 1 = 0. (2.109)

Using the Newton-Raphson iteration method5 gives excellent convergence behaviour and Ryu’s EoS
performs slightly better than Mathews EoS.

The enthalpyh̃(Θ) can now be easily calculated from the found rootΘ. Solving the normalisation
equationMµMµ = −c2D

2
= −c2(Dh̃)2 for Mt and usingMt = gttMt + gtφMφ andut = Mt/(Dh̃) the

4This approximation is used byMignone et al.(2007) in the PLUTO codehttp://plutocode.to.astro.it.
5Therefore one has to calculate the derivative ofh̃(Θ), which is e.g. for Ryu’s EoS (2.108):

∂
∂Θ

“

26Θ2+4Θ+1
3Θ+2 − ǫd

Dc2 − Θ − 1
”

=
2(4+12Θ)

2+3Θ −
6(1+4Θ+6Θ2)

(2+3Θ)2
− 1

http://plutocode.to.astro.it
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pseudo Lorentz-factorΓ = ut

c can be determined and then the pressure can be calculated byP = Θ · D
Γ

.

For the ideal gas law the enthalpy is calculated byh̃ = 1+ γΘ
(γ−1), which can be solved forγ resulting

in:

γ(Θ) =
γh

γh − 1
with γh =

h̃− 1
Θ

. (2.110)

Using the generalisation that now the adiabatic indexγ is not a constant anymore, the ideal equation
of state reads:

P = (γ(Θ) − 1) ρǫ = (γ(Θ) − 1)
ǫd

Γ
. (2.111)

The dependence ofγ onΘ is shown in Fig. (2.5) for the exact Synge equations of state and the ap-
proximations ofMathewsandRyu. It can be seen that both approximations fit very well and approach
the Newtonian limit withγ = 5/3 and the ultra-relativistic limit withγ = 4/3.

The equation of state for an ideal gas is:

P = (γ − 1)ρǫ. (2.112)

Following the ideal gas law:PV = nRgasT, with pressure P, volume V and amount of gas n in moles,
temperature T and the molar gas constantRgas= 8.314 J

K mol introducing the molecular massµgas=
m
n

in g/mol and taking into account the definition of the densityρ = m
V one gets for the temperature in K:

T =
µgas

Rgas

P
ρ
. (2.113)

The molar mass for atomic hydrogen isµH = 1.00797 g/mol, for hydrogen moleculesµH2 = 2 µH and
for ionized hydrogen plasmaµgas≈ 0.5 g/mol.

The sound speed of a relativistic ideal gas is

Vs =

√
γ p

ρ h̃
=

√
γ Θ

h̃
. (2.114)

The dependence of the sound speed onΘ = P
ρ and its comparison to the Newtonian sound speed can

be seen in figure2.6.

The eigenvalues of the one-dimensional special relativistic hydrodynamic Euler equations for a sound
speedcs = vs = 0.5 c dependent on the advection speedv = vE of the fluid can be seen in figure2.7.
The eigenvalues are (seeAloy et al. 1999, Appendix A):

a1 =
(1− c2

s) v−
√

(1− v2) c2
s (1− v2 c2

s − (1− c2
s) v2)

(1− v2 c2
s)

(2.115)

a2 = a3 = a4 = v (2.116)

a5 =
(1− c2

s) v+
√

(1− v2) c2
s (1− v2 c2

s − (1− c2
s) v2)

(1− v2 c2
s)

(2.117)
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The largest eigenvalue is used in the calculation of the explicit time step.

For a fluid moving along thex-direction the eigenvalues, the characteristic speeds, ofthe conservative
Eulerian formulation of the general relativistic hydrodynamics equations are (seeFont 2008, eqns.
(36), (37)):

λ0 = αvE
x − βx (triple), (2.118)

λ± =
α

1− vE
2 c2

s

{
vE

x(1− c2
s) ± cs

√
(1− vE

2)
[
gxx(1− vE

2 c2
s) − vE

xvE
x(1− c2

s)
]}
− βx

(2.119)

wherecs is the speed of sound andvE
x the velocity component inx-direction of the velocity in the

local Euler frame.
This reduces to the special relativistic expressions if oneinserts the Minkowski metric and also to the
Newtonian ones (λ0 = vE

x, λ± = vE
x ± cs).

In the case of general relativity also the largest eigenvalue is used in the calculation of the explicit
time step.



3 Numerics of General Relativistic Euler and
Navier-Stokes Equations

In this chapter first a general overview about the numerical methods in Astrophysical Fluid Dynamics
(AFD) is given, then the discretization of the General Relativistic Euler and Navier-Stokes Equations
using a finite volume approach is shown. After the description of implicit methods used to solve these
equations several iterative linear equation solvers, which are used therefore, are presented.

3.1 Numerical Methods and Time Scales in Astrophysical Fluid
Dynamics (AFD)

3.1.1 Numerical Methods in AFD

Astrophysical fluid dynamics (AFD) deals with the properties and movement of gaseous-matter or
plasma under a wide variety of circumstances. Most astrophysical fluid flows evolve over a large
variety of different time and length scales and have a complicated structure, henceforth making their
analytical treatment unfeasible.

That is where numerical simulations come into play: Due to the rapid development of computer hard-
ware technology during the last two or three decades also thenumerical treatment of Astrophysical
problems by means of computer codes has grown exponentially.

Nowadays, a vast majority of numerical simulation codes arecapable of treating large and sophisti-
cated multi-scale fluid problems with high resolution and even in three-dimensions.

The numerical methods employed in AFD can basically be classified into two categories:

1. Microscopic methods, based on the treatment of single real or pseudo-particles:
N-body (NB), Monte-Carlo (MC) and Smoothed Particle Hydrodynamics (SPH),
which might already also belong to the second category

2. Macroscopic methods, mostly grid oriented methods basedon a common statistical treatment
of particles in a small volume element (hydrodynamics):
finite difference (FDM), finite volume (FVM) and finite-element methods(FEM).

Most numerical methods used in AFD are conditionally-stable, which means that they may converge
if the Courant-Friedrichs-Lewy condition for stability isfulfilled. For compressible flows that are
strongly time-dependent these methods are very efficient. They may stagnate however, if important
physical effects with other time-scales, like cooling, are to be considered or even if the flow is almost
incompressible (like the flow of water compared to that of theair).
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On the other hand, only a small number of the numerical methods employed in AFD are uncondition-
ally stable, the implicit methods.
But implicit methods are much more effort-demanding from the programming point of view compared
to explicit methods, since they contain a solution of a matrix equation.

It has been shown that strongly implicit (henceforth IM) andexplicit (henceforth EM) methods are
different variants of the same algebraic problem (Hujeirat 2005a,c,b), hence both methods can be
unified within one simulation code.

Table 3.1 gives an overview over several relevant properties of some of the numerical simulation
programs used in Astrophysics.

3.1.2 Time Scales in AFD

In nature there exist many different time scales in accretion phenomena. FollowingHujeirat, Keil, and
Heitsch(2007) they are described here:

Figure 3.1: The mostly used different numerical methods in Astrophysical Fluid Dynamics: finite difference
(FDM), finite volume (FVM), finite element (FEM), N-Body (NB), Monte Carlo (MCM) and the smoothed par-
ticle hydrodynamics (SPH) and their possible regime of application from the time scale point of view. The time
scales are: the radiative-τR, gravitative-τG, chemical-τCh, magnetic-τMF, hydrodynamic-τHD, thermal-τTh,

viscous-τVis, and the accretion time scale-τAcc. (plot fromHujeirat et al. 2007).

Assume a box ofL × L × L dimensions filled with a rotating multi-component gaseous-matter is
given. The fluid is said to be radiating, magnetized, chemical-reacting, partially ionized and under
the influence of its own or/and external gravitational field. The state of the gas may be described
by characteristic sizes of velocity, density, temperatureand magnetic field. The (approximate) time-
scales associated with the flow can be obtained directly fromthe dimensional analysis of the radiative
MHD-equations as follows (seeHujeirat 2005a, for detailed description of the set of equations see for
example ).
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Explicit Implicit HSS

solution
method

qn+1 = qn + δt dn qn+1 = qn + δtÃ−1d∗ qn+1 = αqn + (1− α)δtÃ−1
d d∗

Type of flows

Strongly time-
dependent,
compressible,
weakly dissipative
HD and MHD
in 1, 2 and 3 dimen-
sions

Stationary,
quasi-stationary,
highly dissipative,
radiative and
axi-symmetric MHD-
flows in 1, 2 and 3 di-
mensions

Stationary,
quasi-stationary,
weakly compressible,
highly dissipative,
radiative and
axi-symmetric MHD-
flows in 1, 2 and 3
dimensions

Stability conditioned unconditioned unconditioned
Efficiency 1 (normalized/2D) ∼ m2 ∼ m2

d

Efficiency:
Enhancement
strategies

Parallelization
Parallelization,
preconditioning,
multigrid

HSS, paralleliza-
tion, preconditioning,
prolongation

Robustness:
Enhancement
strategies

i. subtime-stepping
ii. stiff terms
are solved
semi-implicitly

i. multiple iteration
ii. reducing the time
step size

i. multiple iteration
ii. reducing the time step
size, HSS

Numerical
Codes
Newtonian

Solvers1a

ZEUS&ATHENAb,

FLASHc, NIRVANA d,

PLUTOe, VAC f

Solver2g IRMHDh

Numerical
Codes
Relativistic

Solvers3i

GRMHD j , ENZOk,

PLUTOl , HARMm,

RAISHINn, RAMo,

GENESISp, WHISKYq

Solver4r GR-I-RMHDs,
Astro-GRIPSt

Table 3.1: A list of only a part of the grid-oriented codes in AFD and their algorithmic properties. In these
equations,qn,n+1, δt, Ã, α andd∗ denote the vector of variables from the old and new time levels, time step size,
a preconditioning matrix, a switch on/off parameter and a time-modified defect vector, respectively.“m" in row
4 denotes the bandwidth of the corresponding matrix.
aBodenheimer et al.(1978); Clarke(1996), bStone and Norman(1992); Gardiner and Stone(2006), cFryxell et al.(2000),
dZiegler(1998), eMignone and Bodo(2003); Mignone et al.(2007), f Toth et al.(1998), gWuchterl(1990); Swesty(1995),
hHujeirat (1995, 2005a); Falle(2003), iKoide et al.(1999); Komissarov(2004), jDe Villiers and Hawley(2003), kO’Shea
et al.(2004), lMignone et al.(2007), mGammie et al.(2003), nMizuno et al.(2006), oZhang and MacFadyen(2006), pAloy
et al.(1999), qBaiotti et al.(2003), rLiebendörfer et al.(2002), sHujeirat et al.(2008). tAstro-GRIPS, the General Relativistic
Implicit Parallel Solver, the more user-friendly, optimized and parallelized simulation code similar to GR-I-RMHD, which
is described in this work here.
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Figure 3.2: The regime of application of the explicit methods is severely limited to Euler-type flows, whereas
sophisticated treatment of most flow-problems in AFD require the employment of much more robust methods,
like implicit methods (plot fromHujeirat et al. 2007).

• Continuity equation:

∂ρ

∂t
+ ∇(ρV) = 0, (3.1)

whereρ stands for the density andV is the velocity field. Using scaling variables (see Table
3.2), one may approximate the terms of this equation as follows:

∂ρ

∂t
∼ ρ

τ
and ∇(ρV) ∼ ρ V

L
.

Scaling variables Molecular cloud Accretion(onto SMBH) Accretion (onto UCO)
L̃ Length O(pc) O(AU) O(106, cm)
ρ̃ Density 10−22 g cm−3 10−6 g cm−3 10−8 g cm−3

T̃ Temperature 10 K 106 K 107 K
Ṽ Velocity 0.3 km s−1 102 km s−1 102−3 km s−1

B̃ Magnetic Fields 30µ G 102 G 104 G
M̃ Mass 103 M⊙ 106 M⊙ M⊙
˜̇M Accretion rate 10−2 M⊙ Y−1 10−10 M⊙ Y−1

Table 3.2: A list of possible scaling variables typical for three different astrophysical phenomena: giant molecu-
lar clouds, accretion onto super-massive black holes (SMBHs) and accretion onto ultra-compact objects (UCO).
These scaling variables are used to determine the typical time scales involved in such accretion phenomena (Hu-
jeirat et al. 2007).
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This yields the hydrodynamical time scale

τHD =
L
V
. (3.2)

The so-called accretion time scale can be obtained by integrating the continuity equation over
the whole fluid volume. Specifically,

∫

V

∂ρ

∂t
dV =

∂M
∂t
∼ M

τ
,

∫

V
(∇ · ρV) dV =

∫

S
ρV · n · dS ∼ Ṁ,

where ’V’ denotes the total volume of the gas and ’S’ corresponds to its surface.
Equating the latter two terms, one obtains:M

τ ∼ Ṁ which gives the accretion time scale:

τacc ∼
M

Ṁ
. (3.3)

In generalτacc is one of the longest time scales characterizing astrophysical flows connected to
the accretion phenomena.

• The momentum equations:

∂V
∂t
+ ∇V ⊗ V = −1

ρ
∇P+ fcent+

frad

ρ
+ ∇ψ + ∇ × B× B

4πρ
+ Qr

vis, (3.4)

whereP, fcent, frad, ψ, B, Qr
vis denote gas pressure, centrifugal force, radiative force, gravita-

tional potential, magnetic field and viscous operators, respectively. From this equation, we may
obtain the following time scales:

1. The sound speed crossing time can be obtained by comparingthe following two terms:
∂V
∂t ≈

∇P
ρ , which yields:

τs ≈ τHD

(
V
Vs

)2

, (3.5)

whereVsis the sound speed.
2. The gravitational time scale from∂V

∂t ≈ ∇ψ:

τG = τHD

(
V
Vg

)2

, (3.6)

whereV2
g = GM/L and G is the gravitational constant.

3. Similarly, the Alfv̀en-wave crossing-time from∂V
∂t ≈

∇×B×B
4πρ :

τmag= τHD

(
V
VA

)2

, (3.7)

whereV2
A(= B2/4πρ) denotes the Alfv̀en speed squared.

4. Radiative effects in moving flows propagate on the radiative scale, which is obtained from
∂V
∂t ≈

frad
ρ :

τrad = τHD

(
V
c

)2

, (3.8)

where c is the speed of light.
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5. The viscous time scale from∂V
∂t ≈ Qr

vis ∼ νV
L2 :

τvis =
L2

ν
(3.9)

whereν is a viscosity coefficient.

• The induction equation, taking into account the effects ofαdyn−dynamo, magnetic diffusivity
νdiff and of ambipolar diffusion reads:

∂B
∂t
= ∇ × 〈V × B+ αdynB− νmag∇ × B〉 + ∇ × { B

4πγρiρn
× [B× (∇ × B)]}, (3.10)

whereρi,n denote the ion and neutral densities.

Thus, the induction equation contains several important time scales:

1. The dynamo amplification time scale, which results from the equality: ∂B
∂t = ∇ × αdynB

and gives:

τdyn =
L
αdyn

(3.11)

2. The magnetic-diffusion time scale can be determined from∂B
∂t = ∇ × (νmag∇ × B):

τdi f f =
L2

νmag
(3.12)

3. The ambipolar diffusion time scale from

∂B
∂t
= ∇ × { B

4πγρiρn
× [B× (∇ × B)]}

⇔ B
τ
∼ 1

L

(
B2

4πρn

)(
1
γρi

)(
B
L

)
∼ V2

A

γρi

B
L2 = Damb

B
L2

which gives:

τamb=
L2

Damb
, (3.13)

whereDamb(= V2
A/(γρi )) is the ambipolar diffusion coefficient.

• The chemical reaction equations,
where the equation describing the chemical-evolution of species′i′ is:

∂ρi

∂t
=

∑

m

∑

n

kmnρmρn +
∑

m

Imρm, (3.14)

wherekmn denotes the reaction rate between the speciesm andn. Im stands for other external
sources. For example, the reaction equation of atomic hydrogen in a primordial gas reads:

∂ρH

∂t
=

k2

mH
ρH+ρe−

k1

mH
ρHρe⇔

ρH

τ
∼ k2

mH
ρH ρe
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which gives a time scale of:
mH

k2 ρe
, (3.15)

whereρe is the electron density andk2(= 10−10 cm3 s−1) correspond to the generation rate of
atomic hydrogen through the capture of electrons by ionizedatomic hydrogen.mH denotes the
mass of atomic hydrogen.

• Equations of relativistic MHD

The velocities in relativistic flows are comparable to the speed of light. This implies that the
hydrodynamicalτHD and radiativeτrad time scales are comparable and that both are much
shorter than in Newtonian flows.

Time scales Molecular cloud Accretion(onto SMBH) Accretion (onto UCO)
τHD ∼ 106 Yr ∼ months ∼ 1 s
τrad/τHD ∼ 10−6 ∼ 10−3 ∼ 10−3

τgrav/τHD ∼ 10−2 ∼ 10−3 ∼ 10−3

τch/τHD ∼ 10−1 ∼ 10−5 ∼ 10−4

τmag/τHD ∼ 10−2 ∼ 100 ∼ 10−1

τvis/τHD ∼ 101 ∼ 102 ∼ 102

τacc/τHD ∼ 104 ∼ 1012

Table 3.3: A list of the time scales relative to the hydrodynamical time scale for three different astrophysical
phenomena.

Why using implicit methods in General Relativity?

For velocities near the speed of light the time step has to be limited to get a physical consistent solution
e.g. for the shock propagation.
In implicit methods the physical convergence determines the time step size:
large time steps give no numerical instabilities like in explicit methods, but may give physically wrong
or too diffusive solutions if the time step size is too large.
So in time-dependent general relativistic simulations thetime step should be of orderdx/c due to
accuracy reasons even for implicit methods.
But with implicit methods it is possible to simulate large Lorentz-factor flows (with Lorentz-factors
between 100–500), like in Gamma Ray Bursts (GRBs), which usually cannot be reached by explicit
methods.

Although the dynamical time scale in relativistically moving flows is relatively short and therefore
a large time step cannot be used for physical reasons anyway,there are enough other reasons to use
implicit numerical procedures in this case:

1. The (general-) relativistic (magneto-) hydrodynamic equations are strongly non-linear, giving
rise to fast growing non-linear perturbations, imposing thereby a further restriction on the size
of the time step (for explicit methods)

2. The extreme spacetime curvature in the vicinity of the black hole, results in other non-linear
effects in fluid flows. Therefore, to accurately capture such flowstructures, a non-linear distri-
bution of the grid points is necessary, which may destabilize explicit schemes.
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3. Initially non-relativistic flows may become ultra-relativistic or vice versa. Since almost all non-
relativistic astrophysical flows known to date are considered to be dissipative and diffusive. To
track their time-evolution reliably, it is necessary that the numerical solver is capable of treating
the corresponding second order viscous terms properly.

4. The accumulated round off errors resulting from performing a large number of time-steps for
time-advancing a numerical hydrodynamical solution, which may be necessary when using
explicit methods, may easily cause divergence from the realphysical solution.
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3.2 Non-dimensional formulation (Scaling) of Equations

The numerical algorithm described here should be able to solve the time-evolution of hydrodynamical
flows both in the non-relativistic as well as in the extreme-relativistic regime. Therefore the equations
are scaled to non-dimensional units to ensure, that there are no problems with extremely small and
extremely large numerical values and that the linear equation solver is well behaved, which is the case
when the Jacobian matrix is always well diagonal dominant.

Instead of the usual convention to set the speed of light and the gravitational constant to unity, one
can use the sound speed as the basic measure for velocities. This is reasonable as the radial motion
of rotating flows around compact objects can be as low as about10−5 the speed of light, whereas that
is about 10−2 the sound speed. But close to the event horizon, all velocities become quantitatively
comparable and are almost reaching the speed of light, so there scaling with the speed of light is also
right.

With the definition of the conservative variables

D � ρ Γ [ML−3]

m� Mr =
√

grr D U [ML−3LT−1]

n � Mθ =
√

gθθ D V [ML−3L2T−1]

l � Mφ = D gφφ dω [ML−3L2T−1]

ǫd
� ǫ D [ML−3L2T−2]

(3.16)

and the primitive variablesρ,U,V, ω andP (given by the equation of state), where the velocities are
defined by

U =
√

grr Vr [LT−1]

V =
√

gθθ Vθ [LT−1]

ω = Vφ = ωFDE + dω [T−1]

(3.17)

one gets for the axi-symmetrical (∂φ = 0) general relativistic Navier-Stokes equations (see2.105) in
the so called flux-conservative form, that smoothly adapts to the Newtonian form in the non-relativistic
regime:
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∂D
∂t
+

1
√−g

∂

∂r

(√
−g
grr

U D

)
+

1
√−g

∂

∂θ

(√
−g
gθθ

V D

)
= 0

[ML−3 T−1] = [ρDIM t−1
DIM ] (3.18)

∂m
∂t
+

1√−g
∂

∂r

(√
−g
grr

U m

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V m

)
= − ∂P

∂r
+

c
2

(
MµMν

Mt

)
∂gµν
∂r
+ Qr

vis

[ML−3 LT−1 T−1] = [ρDIM VDIM t−1
DIM ] (3.19)

∂n
∂t
+

1
√−g

∂

∂r

(√
−g
grr

U n

)
+

1
√−g

∂

∂θ

( √
−g
gθθ

V n

)
= − ∂P

∂θ
+

c
2

(
MµMν

Mt

)
∂gµν
∂θ
+ Qθ

vis

[ML−3 L LT−1 T−1] = [ρDIM RDIM VDIM t−1
DIM ] (3.20)

∂l
∂t
+

1
√−g

∂

∂r

(√
−g
grr

U l

)
+

1
√−g

∂

∂θ

(√
g

gθθ
V l

)
= Qφ

vis

[ML−3 L LT−1 T−1] = [ρDIM RDIM VDIM t−1
DIM ] (3.21)

∂ǫd

∂t
+

1
√−g

∂

∂r

(√
−g
grr

U ǫd
)
+

1√−g
∂

∂θ
(

√
−g
gθθ

V ǫd) =

− P

[
∂

∂t

(
ut

c

)
+

1√−g
∂

∂r

(√
−g
grr

U
ut

c

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V
ut

c

)]
+ Φ + Γ̂ − Λ,

[ML−3 L2T−2 T−1] = [ρDIM V2
DIM t−1

DIM ] (3.22)

where+MγMµ∂ν(gµγ) = −MµMα∂ν(gαµ) and withtDIM = RDIMV−1
DIM .

The basic scaling variables are:

• the typical densityρDIM ,

• the typical length scaleRDIM , which is typically set to the inner radius,

• the typical velocity of the flowVDIM ,
typically set to the sound speedVs,DIM or to the speed of lightcDIM .

• the typical temperatureTDIM .

From these basic scaling variables one can determine derived scaling variables, e.g.:

• time scaletDIM =
RDIM
VDIM

• typical energy density and pressure scaleEDIM = PDIM = ρDIM V2
DIM

and for the scaling factors of the conservative variables one gets:

• DDIM = ρDIM
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• mDIM = ρDIM VDIM

• nDIM = ρDIM RDIM VDIM

• lDIM = ρDIM RDIM VDIM

• ǫd
DIM = ρDIM V2

DIM

But there is a slight problem:
The scaled conservative variablesD,m, n, l, ǫd should be all of the same order, so that the resulting Ja-
cobian Matrix for implicit methods is always well diagonal dominant, which is important to guaranty
(good) convergence of the iterative linear equation solver.
But since usually there are two different velocity scales in the radial and azimuthal direction, where

the velocities are of the order of the sound speedVs;DIM =

√
γ PDIM

ρDIM h̃
, and in theφ-direction, where

the accretion disc is rotating with the Keplerian velocityVK;DIM =

√
G MBH
RDIM

=

√
rg;DIM

RDIM
cDIM , which

is usually much larger than the sound speed.
To avoid such problems, one can multiply each equation with aconstant factorfieq, where the indexieq

denotes the i-th equation of the system. To avoid the aforementioned problems with different velocity
scales, one can setfD = fm = fn = fǫd = 1, so leave these equations as they are, and only multiply the
angular momentum equation byfl. To take into account the different typical velocity in theφ direction
one can define a modified angular momentum:

l̃ = fl l with fl =
VDIM

VK;DIM
(3.23)

which results in a modified angular velocity equation:

∂l̃
∂t
+

1
√−g

∂

∂r

(√
−g
grr

U l̃

)
+

1
√−g

∂

∂θ

(√
g

gθθ
V l̃

)
= fl Qφ

vis (3.24)

In that case the variablel = l̃
fl

is calculated from̃l every time l̃ is determined, to ensure that the
right l is used in the other equations. This procedure ensures that only one equation has to be scaled
differently and the other equations, e.g. the velocity normalization equation used to determine the
Lorentz factor, have not to be modified.

Note that for general relativistic simulations whereVDIM is set tocDIM one should setfl = 1, so
that all velocities are scaled with the speed of light, because in relativity all velocities are limited by
the speed of light and in the proximity of the black hole all velocities will almost reach the speed of
light.

Scaling from the dimensional variables to the non-dimensional variables is usually only done once at
the input (or maybe restart) and the back transformation to dimensional variables may be done during
data analysis and visualization.



56 3 Numerics of General Relativistic Euler and Navier-StokesEquations

3.3 Grid and Discretization

3.3.1 Grid Generation

With a few parameters either a uniform or a stretched grid canbe generated. Giving the inner and
outer radial and latitudinal limits of the computational domain, possibly some intermediate values and
the cell numbers between these values, the minimal grid spacing in r andθ direction and where this
should be located, a suitable grid is generated. See figures3.3and3.4for details.
Sometimes this can give errors if the parameters are not wellselected, because an iterative routine is
used to distribute the cells between the given points. In such a case one has to tweak the parameters
to get a successful result. In the future it might be possibleto replace this grid generation method
with a more user friendly method like the one used in the PLUTOcode (Mignone et al. 2007). It is
also possible to define more than one grid level and then laterat a specified iteration time step or a
specified physical time prolongate from one grid level to thenext level which - in general - possesses a
finer grid. With that method it is possible to save computational time, by first calculating the solution
on a coarse grid and then continue on a more refined grid.

Figure 3.3: Radial grid structure: jmax:= J2G+ 1, jin := J2G, J1G = 2. Note that the grid indices run from
outward to inwards! rin and rout are the radial grid boundaries, NZL describes the number of grid cells between
the inner boundary rin and an intermediate radius rb, NZC the number of grid cells between the inner radii
rb and ra and NZR the number of grids cells between ra and the outer boundary rout. The parameter Idrmin
describes where the minimal radial grid spacing drmin should be located. Given all this parameters an iterative
routine is used to generate the grid spacing (plot from Hujeirat for GR-I-RMHD).
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Figure 3.4: Latitudinal/vertical grid structure: kz:= K2G, K1G = 2. The latitudinal grid is setup similar to
the radial grid in figure3.3(plot from Hujeirat for GR-I-RMHD).

3.3.2 Staggered Grid and Grid Structure

For the discretization a staggered grid is used. The structure of the different staggered grid cells and
the location of the variables can be seen in figures3.6, 3.7and3.8.

For the axi-symmetric two dimensional grid there exist three different grid cells:

• the cells with centred variablesD, ǫd

and in the axi-symmetric case also for the vector componentsin φ-direction:ω andl,

• the cells shifted in the radial direction for the radial vector componentsU andm

• and the cells shifted in theθ direction for the azimuthal/latitudinal vector componentsV andn.

For a full 3 dimensional grid one would also have a further grid cell which would be shifted inφ-
directions for the vector components inφ-direction:ω andl.

The staggered grid with these different cells is used so that in most cases there is no need to interpolate
variables which therefore should give a more accurate result. E.g. in case of the continuity equation
there is no need to interpolate the velocities from the cell centre of theD-cell to the cell boundaries.

3.3.3 Finite Volume Discretization

In the Finite Volume method a cell, a small volume, is looked at.
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Figure 3.5: Five star staggered grid discretization: 1) shows the location of the grid variables: density, tem-
perature, angular momentum and forces are stored in the gridcentre of the ’density’-cell, whereas the velocity
components are stored at the cell interfaces. 2) shows the boundary cells at the polar axis and the midplane
(equator) (plots from Hujeirat for GR-I-RMHD).

The hydrodynamic equations can all be written in flux-conservative vector form:

∂~q
∂t
+ Lr,rr ~F + Lθ,θθ ~G = ~f , (3.25)

with the vector of conservative variables~q and where~F and ~G are the fluxes ofq in r andθ direction,
and Lr,rr, Lθ,θθ are first and second order operators that describe the advection and diffusion of the
vector variables~q in r andθ directions. ~f corresponds to the vector of source functions.

For clarity let us consider now only a single equation with only first order operators, for example the
continuity equation. This equation has the form:

∂Q
∂t
+ div

(
~F
)
= S, (3.26)

whereQ is the conservative variable,~F is the vector of fluxes andS is the source term, which is in
case of the continuity equation zero.
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Figure 3.6: Staggered grid structure in radial direction

Due to Gauß’ law one can transform the divergence of the fluxesintegrated over a volume to a flux
through the surface:

∫

Vcell

div
(
~F
)

dV =
∫

Scell

~Fd~S (3.27)

With this information one can interpret the equation in flux conservative form3.26 in the following
sense:
the change in time of the quantityq in a cell is equal to the net-flow of the fluxes through the cell
boundaries.
In case of the continuity equation that means, that the change of mass density in a cell is equal to the
net-flow of the mass fluxes through the cell boundaries.

An important property of this Finite Volume Discretizationmethod is that it guaranties that the con-
served variables are also numerically conserved (up to tinynumerical errors).

Therefore this method plays a crucial role if conservation is very important, e.g. one has to specify
the angular momentum as a conserved variable and not a linearmomentum inφ direction, elsewise
the angular momentum is not conserved numerically.

Discretization of the continuity equation

The continuity equation is discretized using the staggeredgrid strategy within the context of finite
volume philosophy.

The advection term inr-direction

1√−g
∂

∂r

(√
−g
grr

U D

)∣∣∣∣
j,k
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Figure 3.7: Staggered grid with all three different cell types shown.

using the integration over ther-interval [r j+1, r j ]; r j+1 < r j (attention: the indices run from outwards
to inwards!) gives:

[
√
−g/grr U

−→
Dr ]

r j
r j+1∫ r j

r j+1

√−gdr

∣∣∣∣∣
k

=
[
√
−g/grr U

−→
Dr ]r=r j − [

√
−g/grr U

−→
Dr ]r=r j+1∫ r j

r j+1

√−gdr

∣∣∣∣∣∣
k

=

[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
Dr

]

r=r j

−
[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
Dr

]

r=r j+1∫ r j

r j+1
ρ̄2 cos(θ) dr

∣∣∣∣∣∣∣∣∣
k

=

[
ρ̄
√
∆U
−→
Dr

]
r=r j

−
[
ρ̄
√
∆U
−→
Dr

]
r=r j+1∫ r j

r j+1
ρ̄2 dr

∣∣∣∣∣∣∣
k

, (3.28)

where

∫ r j

r j+1

ρ̄2 dr

∣∣∣∣∣
k

=

∫ r j

r j+1

(r2 + a2 sin2(θm
k )) dr = [

r3

3
+ a2 sin2(θm

k ) r]
r j
r j+1

=
r3

j − r3
j+1

3
+ a2 sin2(θm

k ) (r j − r j+1). (3.29)

The advection term inθ-direction

1
√−g

∂

∂θ

(√
−g
gθθ

V D

)∣∣∣∣
j,k
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D j,k-cell:

mj,k-cell:

n j,k-cell:

Figure 3.8: Staggered grid structure: separate plot for each different cell type
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using the integration over theθ-interval [θk+1, θk]; θk+1 < θk (attention: the indices run from the axis
to the midplane, whereas the latitudeθ increases from the midplane to the pole) gives:

[
√
−g/gθθ V

−→
Dθ]θk

θk+1∫ θk

θk+1

√−gdθ

∣∣∣∣∣∣
j

=
[
√
−g/gθθ V

−→
Dθ]θ=θk − [

√
−g/gθθ V

−→
Dθ]θ=θk+1∫ θk

θk+1

√−gdθ

∣∣∣∣∣∣
j

=

[
ρ̄2 cos(θ)

ρ̄
V
−→
Dθ

]

θ=θk

−
[
ρ̄2 cos(θ)

ρ̄
V
−→
Dθ

]

θ=θk+1∫ θk
θk+1

ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

=

[
ρ̄ cos(θ) V

−→
Dθ

]

θ=θk

−
[
ρ̄ cos(θ) V

−→
Dθ

]

θ=θk+1∫ θk

θk+1
ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

(3.30)

where

∫ θk

θk+1

ρ̄2 cos(θ) dθ

∣∣∣∣
j

=

∫ θk

θk+1

(
rm

j
2
+ a2 sin2(θ)

)
cos(θ) dθ =

[
rm

j
2 sin(θ) + a2 sin3(θ)

3

]θk

θk+1

= rm
j

2 (sin(θk) − sin(θk+1)) + a2

(
sin3(θk) − sin3(θk+1)

)

3
. (3.31)

In the above expressions the following upwind values were used:

−→
Dr

j,k =

{
D j−1,k + f r

j−1,k if U j,k < 0
D j,k + f r

j,k if U j,k ≥ 0
;
−→
Dθ

j,k =

{
D j,k−1 + f θj,k−1 if V j,k < 0
D j,k + f θj,k if V j,k ≥ 0

(3.32)

The functionsf r and f θ are corrections for maintaining higher order spatial accuracies.

Discretization of the radial momentum equation

For the discretization of the radial momentum equation themj,k-cell in figure3.8is used. On the stag-

gered grid the radial momentumm is located at (r j , θ
m
k ) and defined as following:m=

√
gMR

rr D
MR

U.
and the radial momentum equation is (see3.22):

∂m
∂t
+

1√−g
∂

∂r

(√
−g
grr

U m

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V m

)
= − ∂P

∂r
+

c
2

(
MµMν

Mt

)
∂gµν
∂r
+Qr

vis (3.33)

where+MγMµ∂ν(gµγ) = −MµMα∂ν(gαµ)

The advection term inr-direction

1√−g
∂

∂r

(√
−g
grr

U m

)∣∣∣∣
j,k
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using the integration over ther-interval [rm
j , r

m
j−1]; rm

j < rm
j−1 (attention: the indices run from outwards

to inwards!) gives:

[
√
−g/grr U

−→
mr ]

rm
j−1

rm
j

∫ rm
j−1

rm
j

√−gdr

∣∣∣∣∣∣∣
k

=
[
√
−g/grr U

−→
mr ]r=rm

j−1
− [
√
−g/grr U

−→
mr ]r=rm

j

∫ rm
j−1

rm
j

√−gdr

∣∣∣∣∣∣∣
k

=

[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
mr

]

r=rm
j−1

−
[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
mr

]

r=rm
j

∫ rm
j−1

rm
j
ρ̄2 cos(θ) dr

∣∣∣∣∣∣∣∣∣∣
k

=

[
ρ̄
√
∆U
−→
mr

]
r=rm

j−1

−
[
ρ̄
√
∆U
−→
mr

]
r=rm

j

∫ rm
j−1

rm
j
ρ̄2 dr

∣∣∣∣∣∣∣∣
k

, (3.34)

whereUMR
j,k � U(rm

j , θ
m
k ) = U j+1,k+U j,k

2 and

∫ rm
j−1

rm
j

ρ̄2 dr

∣∣∣∣∣
k

=

∫ rm
j−1

rm
j

(r2 + a2 sin2(θm
k )) dr = [

r3

3
+ a2 sin2(θm

k ) r]
rm

j−1

rm
j

=
rm

j−1
3 − rm

j
3

3
+ a2 sin2(θm

k ) (rm
j−1 − rm

j ). (3.35)

The advection term inθ-direction

1√−g
∂

∂θ

(√
−g
gθθ

V m

)∣∣∣∣
j,k

using the integration over theθ-interval [θk+1, θk]; θk+1 < θk (attention: the indices run from the axis
to the midplane, whereas the latitudeθ increases from the midplane to the pole) gives similar to the
advection term inθ-direction of the continuity equation:

[
√
−g/gθθ V

−→
mθ]θk

θk+1∫ θk
θk+1

√−gdθ

∣∣∣∣∣∣
j

=
[
√
−g/gθθ V

−→
mθ]θ=θk − [

√
−g/gθθ V

−→
mθ]θ=θk+1∫ θk

θk+1

√−gdθ

∣∣∣∣∣∣
j

=

[
ρ̄2 cos(θ)

ρ̄
V
−→
mθ

]

θ=θk

−
[
ρ̄2 cos(θ)

ρ̄
V
−→
mθ

]

θ=θk+1∫ θk

θk+1
ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

=

[
ρ̄ cos(θ) V

−→
mθ

]

θ=θk

−
[
ρ̄ cos(θ) V

−→
mθ

]

θ=θk+1∫ θk

θk+1
ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

(3.36)
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whereVMR
j,k � V(r j , θk) = V j,k +

dr j

2
(V j−1,k−V j,k)

drm
j

with V j,k = V(rm
j , θk) anddrm

j =

(
dr j−1

2 +
dr j

2

)

and

∫ θk

θk+1

ρ̄2 cos(θ) dθ

∣∣∣∣
j

=

∫ θk

θk+1

(
r2

j + a2 sin2(θ)
)

cos(θ) dθ =

[
r2

j sin(θ) + a2 sin3(θ)
3

]θk

θk+1

= r2
j (sin(θk) − sin(θk+1)) + a2

(
sin3(θk) − sin3(θk+1)

)

3
. (3.37)

In the above expressions the following upwind values were used:

−→
mr

j,k =

{
mj,k + f m;r

j,k if UMR
j,k < 0

mj+1,k + f m;r
j+1,k if UMR

j,k ≥ 0
;
−→
mθ

j,k =

{
mj,k−1 + f θj,k−1 if VMR

j,k < 0
mj,k + f θj,k if VMR

j,k ≥ 0
(3.38)

The functionsf m;r and f θ are corrections for maintaining higher order spatial accuracies.

The discretization of the source terms give:

For the radial pressure gradient−∂P
∂r one gets:

− P j−1 − P j

drm
j

(3.39)

The geometrical source terms including gravity are:

+
c
2

(
MµMν

Mt

)
∂gµν
∂r
= −c

2

(
MµMν

Mt

)
∂gµν

∂r
(3.40)

where+MγMµ∂ν(gµγ) = −MµMα∂ν(gαµ)

Written out this gives:

+
c
2

(
MµMν

Mt

)
∂gµν
∂r
=

c
2Mt

MµMν∂gµν
∂r

=
1

2Mt

(
MtMt ∂gtt

∂r
+ 2 MtMφ∂gtφ

∂r
+ Mr Mr ∂grr

∂r
+ MθMθ∂gθθ

∂r
+ MφMφ∂gφφ

∂r

)

=
Mt c

2
∂gtt

∂r
+ Mφ c

∂gtφ

∂r
+

Mr2 c
2Mt

∂grr

∂r
+

Mθ2
c

2Mt

∂gθθ
∂r
+

Mφ2 c
2Mt

∂gφφ
∂r

(3.41)

whereMα = Duα = DVα with Vt = c, Vr = U√
grr

, Vθ = V√
gθθ

, Vφ = ω andD = DΓ = Dh̃Γ.
All variables are located wheremj,k is located, at the point (r j , θ

m
k ).

The gravity term (Newtonian:−ρGMBH/r2) is:

MtMR c
2

∂gMR
tt

∂r
=

D
MR

c2

2
∂gMR

tt

∂r
(3.42)

a=0
=

D
MR

c2

2
−2rg

r2 =
D

MR
c2

2
−2GMBH

c2r2 = D
MR −GMBH

r2 (3.43)
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The frame dragging dependent term is (Newtonian and Schwarzschild: 0):

MφMR
c
∂gMR

tφ

∂r
= D

MR
c VφMR ∂gMR

tφ

∂r
= D

MR
cωMR ∂gMR

tφ

∂r
(3.44)

a=0
= 0 (3.45)

The pseudo ’centripetal’ force due to the motion in the radial direction in general relativity (GR)
(Newtonian: 0)
using

Mr2
= (D

MR
Vr)2 =

(D
MR

U)2

gMR
rr

=
(
√

gMR
rr D

MR
U)2

gMR
rr

2 =
m2

gMR
rr

2 (3.46)

gives:

Mr2 c

2MtMR

∂gMR
rr

∂r
=

m2 c

2D
MR

c gMR
rr

2

∂gMR
rr

∂r
=

m2

2D
MR

gMR
rr

2

∂gMR
rr

∂r
(3.47)

a=0
=

m2

2D
MR

gMR
rr

2

−2rg

r2 gMR
rr

2
=

m2

D
MR

−rg

r2 =
m2

D
MR

−GMBH

c2r2

=
gMR

rr D
MR2

U2

D
MR

−rg

r2 = D
MR

U2 gMR
rr
−rg

r2

= D
MR

U2 1(
1− 2rg

r

) −rg

r2 = D
MR

U2 1(
1− 2rg

r

) −GMBH

c2r2 (3.48)

The pseudo centrifugal force due to the motion in theta direction for GR as well as in Newtonian

(Newtonian:ρv2
θ

r )
using

MθMRθ2
= (D

MR
VθMRθ

)2 =
(D

MR
VMRθ)2

gMR
θθ

(3.49)

gives:

MθMRθ2
c

2MtMR

∂gMR
θθ

∂r
=

(D
MR

VMRθ)2 c

2D
MR

c

1

gMR
θθ

∂gMR
θθ

∂r
= D

MRVMRθ2 c
2c

1

gMR
θθ

∂gMR
θθ

∂r
(3.50)

a=0
= D

MR VMRθ2

2
1

r2
j

∂r2

∂r
= D

MR VMRθ2

2
2
r j
= D

MR VMRθ2

r j
(3.51)
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The pseudo centrifugal force term (Newtonian:ρ
v2
φ

r = ω
2 r cos2(θ) usingvφ = ω rcyl = ω r cos(θ)):

MφMR c
2

2MtMR

∂gMR
φφ

∂r
=

(D
MR

VφMR)2 c

2D
MR

c

∂gMR
φφ

∂r
= D

MR ωMR2

2

∂gMR
φφ

∂r
(3.52)

a=0
= D

MR ωMR2

2
∂r2cos2(θm

k )
∂r

= D
MR ωMR2

2
2 r j cos2(θm

k )

= D
MR

ωMR2
r j cos2(θm

k ) (3.53)

The discretization of the viscous source termsQr
vis is not presented here.

Discretization of the latitudinal/vertical momentum equa tion

For the discretization of the latitudinal/vertical momentum equation then j,k-cell in figure3.8 is used.
On the staggered grid the latitudinal momentumn is located at (rm

j , θk) and defined as following:

n =
√

gMθ
θθ D

Mθ
V. and the latitudinal momentum equation is (see3.22):

∂n
∂t
+

1√−g
∂

∂r

(√
−g
grr

U n

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V n

)
= − ∂P

∂θ
+

c
2

(
MµMν

Mt

)
∂gµν
∂θ
+Qθ

vis (3.54)

where+MγMµ∂ν(gµγ) = −MµMα∂ν(gαµ)

The advection term inr-direction

1
√−g

∂

∂r

(√
−g
grr

U n

)∣∣∣∣
j,k

using the integration over ther-interval [r j+1, r j ]; r j+1 < r j (attention: the indices run from outwards
to inwards!) gives similar to the advection term inr-direction of the continuity equation:

[
√
−g/grr U

−→
nr ]

r j
r j+1∫ r j

r j+1

√−gdr

∣∣∣∣∣
k

=
[
√
−g/grr U

−→
nr ]r=r j − [

√
−g/grr U

−→
nr ]r=r j+1∫ r j

r j+1

√−gdr

∣∣∣∣∣∣
k

=

[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
nr

]

r=r j

−
[
ρ̄2 cos(θ)√

ρ̄2/∆
U
−→
nr

]

r=r j+1∫ r j

r j+1
ρ̄2 cos(θ) dr

∣∣∣∣∣∣∣∣∣
k

=

[
ρ̄
√
∆U
−→
nr

]
r=r j

−
[
ρ̄
√
∆U
−→
nr

]
r=r j+1∫ r j

r j+1
ρ̄2 dr

∣∣∣∣∣∣∣
k

, (3.55)
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whereUMθ
j,k � U(r j , θk) = U j,k +

dr j

2
(U j,k−1−U j,k)

dθm
k

with U j,k = U(r j , θ
m
k ) anddθm

k =

(
dθk−1

2 +
dθk
2

)

and

∫ r j

r j+1

ρ̄2 dr

∣∣∣∣∣
k

=

∫ r j

r j+1

(r2 + a2 sin2(θk) dr = [
r3

3
+ a2 sin2(θk) r]

r j
r j+1

=
r3

j − r3
j+1

3
+ a2 sin2(θk) (r j − r j+1). (3.56)

The advection term inθ-direction

1
√−g

∂

∂θ

(√
−g
gθθ

V n

)∣∣∣∣
j,k

using the integration over theθ-interval [θm
k , θ

m
k−1]; θm

k < θm
k−1 (attention: the indices run from the axis

to the midplane, whereas the latitudeθ increases from the midplane to the pole) gives:

[
√
−g/gθθ V

−→
nθ]

θm
k−1
θm

k∫ θm
k−1

θm
k

√−gdθ

∣∣∣∣∣∣∣
j

=
[
√
−g/gθθ V

−→
nθ]θ=θm

k−1
− [
√
−g/gθθ V

−→
nθ]θ=θm

k∫ θm
k−1

θm
k

√−gdθ

∣∣∣∣∣∣
j

=

[
ρ̄2 cos(θ)

ρ̄
V
−→
nθ

]

θ=θm
k−1

−
[
ρ̄2 cos(θ)

ρ̄
V
−→
nθ

]

θ=θm
k∫ θm

k−1
θm

k
ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

=

[
ρ̄ cos(θ) V

−→
nθ

]

θ=θm
k−1

−
[
ρ̄ cos(θ) V

−→
nθ

]

θ=θm
k∫ θm

k−1
θm

k
ρ̄2 cos(θ) dθ

∣∣∣∣∣∣∣∣∣
j

(3.57)

whereVMθ
j,k � V(rm

j , θ
m
k ) = V j,k+V j,k+1

2 with V j,k = V(rm
j , θk) and

∫ θm
k−1

θm
k

ρ̄2 cos(θ) dθ

∣∣∣∣∣
j

=

∫ θm
k−1

θm
k

(
rm

j
2
+ a2 sin2(θ)

)
cos(θ) dθ =

[
rm

j
2 sin(θ) + a2 sin3(θ)

3

]θm
k−1

θm
k

= rm
j

2 (
sin(θm

k−1) − sin(θm
k )

)
+ a2

(
sin3(θm

k−1) − sin3(θm
k )

)

3
. (3.58)

In the above expressions the following upwind values were used:

−→
nr

j,k =

{
n j,k + f r

j,k if UMθ
j,k < 0

n j+1,k + f r
j+1,k if UMθ

j,k ≥ 0
;
−→
nθ j,k =

{
n j,k−1 + f n;θ

j,k−1 if VMθ
j,k < 0

n j,k + f n;θ
j,k if VMθ

j,k ≥ 0
(3.59)

The functionsf r and f n;θ are corrections for maintaining higher order spatial accuracies.



68 3 Numerics of General Relativistic Euler and Navier-StokesEquations

The discretization of the source terms give:

For the latitudinal pressure gradient−∂P
∂θ one gets:

− Pk−1 − Pk

dθm
k

(3.60)

The geometrical source terms are:

+
c
2

(
MµMν

Mt

)
∂gµν
∂θ
= −c

2

(
MµMν

Mt

)
∂gµν

∂θ
(3.61)

where+MγMµ∂ν(gµγ) = −MµMα∂ν(gαµ)

Written out this gives:

+
c
2

(
MµMν

Mt

)
∂gµν
∂θ
=

c
2Mt MµMν∂gµν

∂θ

=
1

2Mt

(
MtMt ∂gtt

∂θ
+ 2 MtMφ∂gtφ

∂θ
+ Mr Mr ∂grr

∂θ
+ MθMθ∂gθθ

∂θ
+ MφMφ∂gφφ

∂θ

)

=
Mt c

2
∂gtt

∂θ
+ Mφ c

∂gtφ

∂θ
+

Mr2 c
2Mt

∂grr

∂θ
+

Mθ2
c

2Mt

∂gθθ
∂θ
+

Mφ2 c
2Mt

∂gφφ
∂θ

(3.62)

whereMα = Duα = DVα with Vt = c, Vr = U√
grr

, Vθ = V√
gθθ

, Vφ = ω andD = DΓ = Dh̃Γ.
All variables are located wheren j,k is located, at the point (rm

j , θk).

The ’gravity’ term (Newtonian: 0) is:

MtMθ c
2

∂gMθ
tt

∂θ
=

D
Mθ

c2

2
∂gMθ

tt

∂θ
(3.63)

a=0
= 0 (3.64)

The frame dragging dependent term (Newtonian and Schwarzschild: 0) is:

MφMθ
c
∂gMθ

tφ

∂r
= D

Mθ
c VφMθ ∂gMθ

tφ

∂θ
= D

Mθ
cωMθ

∂gMθ
tφ

∂θ
(3.65)

a=0
= 0 (3.66)

The pseudo ’centripetal/centrifugal’ force due to the motion in the radial directionin GR
(Newtonian: 0) using

Mr MRθ2
= (D

Mθ
VMRθr

)2 =
(D

Mθ
UMRθ)2

gMθ
rr

=
(
√

gMθ
rr D

Mθ
UMRθ)2

gMθ
rr

2 =
mMRθ2

gMθ
rr

2 (3.67)
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gives:

Mr MRθ2
c

2MtMθ

∂gMθ
rr

∂θ
=

mMRθ2
c

2D
Mθ

c gMθ
rr

2

∂gMθ
rr

∂θ
=

mMRθ2

2D
Mθ

gMθ
rr

2

∂gMθ
rr

∂θ
=

D
Mθ

(UMRθ)2

2 gMθ
rr

∂gMθ
rr

∂θ
(3.68)

a=0
= 0 (3.69)

The pseudo ’centripetal/centrifugal’ force due to the motion inθ direction for GR (Newtonian: 0)
using

Mθ2 = (D
Mθ

Vθ)2 =
(D

Mθ
V)2

gMθ
θθ

(3.70)

gives:

Mθ2 c

2MtMθ

∂gMθ
θθ

∂θ
=

(D
Mθ

V)2 c

2D
Mθ

c

1

gMθ
θθ

∂gMθ
θθ

∂θ
= D

MθV2

2
1

gMθ
θθ

∂gMθ
θθ

∂θ
=

n2

2D
Mθ

gMθ
θθ

2

∂gMθ
θθ

∂θ
(3.71)

a=0
= 0 (3.72)

The pseudo centrifugal force term (Newtonian:ρv2
φ tan(θ) = ρ ω2 r2 sin(θ) cos(θ)

usingvφ = ω rcyl = ω r cos(θ)):

MφMθ c
2

2MtMθ

∂gMθ
φφ

∂θ
=

(D
Mθ

VφMθ)2 c

2D
Mθ

c

∂gMθ
φφ

∂θ
= D

Mθ ωMθ2

2

∂gMθ
φφ

∂θ
(3.73)

a=0
= D

Mθ ωMθ2

2

∂
(
rm2cos2(θk)

)

∂θ
= D

Mθ ωMθ2

2
rm

j
2 2 sin(θk) cos(θk)

= D
Mθ

ωMθ2
rm

j
2 sin(θk) cos(θk) (3.74)

The discretization of the viscous source termsQθ
vis is not presented here.

Discretization of the angular momentum equation

For the discretization of the angular momentum equation forthe axisymmetric two-dimensional grid
theD j,k-cell in figure3.8is used, for a fully 3-dimensional simulation in the contextof staggered grid
discretization one would use an inφ-direction shifted grid for the angular momentum equation.
So in axisymmetric discretization the same cell as for the continuity equation is used. The angular
momentuml is located at (rm

j , θ
m
k ) and defined as following:l � Mφ = D gφφ dω, wheredω =

Vφ − ωFDE = ω − ωFDE and the angular momentum equation equation is (see3.22):

∂l
∂t
+

1√−g
∂

∂r

(√
−g
grr

U l

)
+

1√−g
∂

∂θ

(√
g

gθθ
V l

)
= Qφ

vis (3.75)
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Due to the axisymmetric discretization, the discretization of the advection terms is similar to that of
the continuity equation, justD is replaced byl.

The discretization of the source terms give:
For axisymmetric simulations with a 2-dimensional grid inr andφ direction, there exist no gradients
and derivatives inφ direction, and so in case of no viscosity the source terms (longitudinal pressure
gradient and possibly geometrical source terms) are all zero.

The discretization of the viscous source termsQφ
vis for the Navier-Stokes equations is not presented

here.

Discretization of the internal energy equation

For the discretization of the internal energy equation theD j,k-cell in figure3.8, the same cell as for the
continuity equation is used. On the staggered grid the internal energy densityǫd is located at (rm

j , θ
m
k )

and defined as following:ǫd = ǫ D. and the internal energy equation is (see3.22):

∂ǫd

∂t
+

1√−g
∂

∂r

(√
−g
grr

U ǫd
)
+

1√−g
∂

∂θ
(

√
−g
gθθ

V ǫd) =

− P

[
∂

∂t

(
ut

c

)
+

1√−g
∂

∂r

(√
−g
grr

U
ut

c

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V
ut

c

)]
+ Φ + Γ̂ − Λ,(3.76)

The discretization of the advection terms is similar to thatof the continuity equation, justD is replaced
by ǫd.

The first part of the source term consists of the pressureP, which is for the equation of state of an
ideal gas law:P = (γ − 1) ρ ǫ = (γ − 1) ǫd

Γ
= (γ − 1) ǫd c

ut , times the advection equation for the pseudo

Lorentz factorΓ = ut

c . The relativistic Lorentz factor in the local Euler frame isW = αΓ

The time derivative ofΓ = ut

c :

∂Γ

∂t
can be discretized by:

(Γn+1 − Γn)
∆t

or by: Γ
ln

(
Γn+1

Γn

)

∆t
, (3.77)

whereas the advection terms ofΓ, the divergence of the spatial part of the 4-velocity, are discretized
in the same way the advection terms of the continuity or internal energy equation are.
Due to the time dependence of this source term there can occurproblems, if the Lorentz factor is
changing too quickly. Therefore care has to be taken in the method this term is discretized and how
the Lorentz factor is determined.
To get a decent result for quickly changing Lorentz factors for implicit methods with large time-steps
it may be necessary to do a lot of iterations.

The discretization of possible further source terms of the internal energy equation is not shown here.
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Calculation of the Lorentz factor and the primitive variabl es

The flux-conservative form of the Hydrodynamics equations describe the time-evolution of the con-
served quantitiesD,m, n, l andǫd. However, the equation of state, the rate of transport, the applied
work, cooling and heating rates used in above equations are functions of essentially the primitive
variablesρ,U,V, ω and pressureP or temperatureT.

Since the relation between the primitive and conservative variables is in most cases rather non-linear, it
is best if an iterative solution procedure is employed (which in general is only possible if the equations
are solved with an implicit method, not the explicit method).

To recover the primitive variables from the conservative ones, one first uses the normalization condi-
tion of the 4-momenta to get an updated value of the Lorentz factor:

The normalization condition of the 4-momenta is:

MµMµ=Duµ Duµ = D
2

uµuµ = −c2 D
2

MµMµ=gµνMνMµ = gtt M2
t + 2 gtφMtMφ + grr M2

r + gθθM2
θ + gφφM2

φ = −c2 D
2 (3.78)

The quantitiesMr , Mθ, Mφ are all known at the end of each time step, resulting in a quadratic equation
for Mt:

A M2
t + B Mt +C = 0, (3.79)

whereA = gtt, B = 2 gtφMφ andC = grr M2
r + gθθM2

θ + gφφM2
φ + c2 D

2
with D = Dh̃.

Having obtainedMt, the contravariant quantityMt can be computed using the transformation:Mt =

gtt Mt + gtφ Mφ. SinceMt = D ut = Dh̃ ut the Lorentz factorΓ = ut

c is the obtained from:Γ = Mt

Dh̃c
.

Knowing the densityρ = D
Γ

and the internal energy densityǫ = ǫd

D , the pressureP and the tempera-
tureT can then be calculated using the equation of state (E.o.S.),which in the case of an ideal gas is
P = (γ − 1)ρǫ andT = µgas

Rgas

P
ρ .

In the code it is also possible to use a mixed form of the normalization equation using conservative and
primitive variables to calculate the Lorentz factor, whichin some cases might give better results.

Advantages of the internal energy vs. total energy formulat ion

While analytically there is no difference if one solves an equation for the internal or the totalenergy
in Numerics there are several reasons to use the one or the other form:

Ideally - due to the fact that the total energy should be conserved - one would ideally use the dis-
cretization of the total energy conservation equation, butthere can occur some numerical problems
when using the total energy equation:

∂Et

∂t
+ ∇(Et + p)V = −L(T) + . . . (3.80)

• a problem can occur during the calculation of the internal energy if Ekin ≈ Et andEin small,
sinceEin = Et − Ekin .



72 3 Numerics of General Relativistic Euler and Navier-StokesEquations

• for implicit methods it is almost impossible to determine the heating and cooling parts of the
Jacobian, since they depend on the temperature and therefore on the internal energyEin and not
on the total energy:

∂L(T)
∂Et

=
∂L(T)
∂T

∂T
∂Et

(3.81)

Artificial Viscosity

But there is at least one drawback in using the internal energy formulation: The energy dissipation at
strong shock fronts (steep gradients in the density and pressure) is usually not calculated right and the
total energy is not conserved anymore. Usually kinetic energy should be transformed into heat there.
To correct this problem in the internal energy formulation one introduces the concept ofartificial
viscosity, which is only in effect at strong shock fronts and acts as an extra scalar pressure which
transforms kinetic energy into heat.
As an example how artificial viscosity is used see the one-dimensional Burgers’ equation on page
129. The artificial viscosity terms should be implemented in a consistent way into the equations, in
order to consider the artificial viscosity as a real viscosity, which occurs in the equations like additional
pressure terms and should not be omitted in the calculation of the relativistic enthalpy as in the original
Wilson formulation(Wilson 1972), elsewise there can occur large errors for high Lorentz factor flows
(Norman and Winkler 1986). Introducing the artificial viscosity denoted byQ, the stress-energy tensor
of an ideal gas has the following modified form:

Tµν = ρ
h
c2 uµuν+ (P+Q)gµν or Tµν =

(ρ̂ + (P+ Q))
c2 uµuν+ (P+Q)gµν [ML−3 L2T−2],

(3.82)

whereh = c2 + ǫ + (P+Q)
ρ is the relativistic enthalpy.

The artificial viscosityQ = Qr + Qθ is only non-zero at shock fronts:

Qdir ; j,k =

{
αshD j,k(∆Vdir ; j,k)2 if ∆Vdir ; j,k < 0
0 if ∆Vdir ; j,k ≥ 0

(3.83)

where

∆Vr ; j,k = ∆U j,k =
[
√
−g/grr U

−→
utr ]

r j
r j+1∫ r j

r j+1

√−gdr

∣∣∣∣∣∣
k

dr j

ut c ≈ (U j,k − U j+1,k) (3.84)

and

∆Vθ; j,k = ∆V j,k =
[
√
−g/gθθ V

−→
utθ]θk

θk+1∫ θk

θk+1

√−gdθ

∣∣∣∣∣∣
j

dθk

ut c ≈ (V j,k − V j,k+1). (3.85)

This leads to following modifications and additional terms in the equations:
The relativistic enthalpy has to be modified to give:

h = c2 + ǫ +
P
ρ
+

Q
ρ
. (3.86)
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To the radial momentum equation the radial gradient of the artificial viscosity−∂Q
∂r is added as source

term:

− Qr ; j−1,k − Qr ; j,k

drm
j

, (3.87)

whereas the latitudinal gradient−∂Q
∂θ is added as source term to the latitudinal momentum equation:

− Qθ; j,k−1 − Qθ; j,k

dθm
k

. (3.88)

Finally to the internal energy equation following heating term due to artificial viscosity is added:

−Q

[
∂ut

∂t
+

1√−g
∂

∂r

(√
−g
grr

U
ut

c

)
+

1√−g
∂

∂θ

(√
−g
gθθ

V
ut

c

)]
. (3.89)
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3.4 Explicit and Implicit Methods

3.4.1 Explicit Methods

Care has to be taken which form of equations are discretized and in which form they are discretized:
The flux-conservative form of the equations is very important to obtain the right size and location of
jump conditions for shocks. To numerically conserve the angular momentum, it is not sufficient to
solve the equation of the velocity or linear momentum, one explicitly has to discretize the angular
momentum equation, elsewise the angular momentum is not conserved numerically.

Many simulation codes are based on theGodunov type schemeGodunov(1959) , which can be
described by a three step algorithm:

• Reconstruct:
From the cell-averages given at every grid point the fluxes atthe cell interfaces have to be
reconstructed, see Figure3.9:

– donor cell: the cell average value is used as the (left or right) interface value.

– piecewise linear method (PLM): a straight line with a slope depending on the neighbouring
cell-average values is determined

– piecewise parabolic method (PPM) (Colella and Woodward 1984): a parabola is con-
structed also using the neighbouring cell-average values

As described later in the construction of the interface values slope or flux limiter are important
to guaranty numerical stability for higher order methods.

• Solve (or advect): Then the local Riemann problem is solved at each cell interface using ap-
proximate Riemann solvers:

– Lax-Friedrichs

– Roe (Roe 1981)

– HLL (Harten et al. 1983)

– HLLC (Toro et al. 1994)

– . . .

Or one can use other advection schemes like the ones from van-Leer to advect the solution.

• Average:
The last step is then to average the solution to get the cell averaged values at every grid point.

There is a problem for higher order schemes, because due to a theorem by Godunov every second or
higher order scheme gets unstable at shock discontinuities.
These numerical instabilities near shock discontinuitiescan be avoided by using so-called slope lim-
iters or flux limiters, which use higher order schemes in smooth regions and switch to first order
near shock discontinuities, so the so-called total variation diminishing (TVD) property is fulfilled
and the oscillations near shock fronts are not amplified. This approach was first introduced by van
Leer (van Leer 1979) under the name in his Monotonic Upstream-centred Scheme for Conservation
Laws (MUSCL) and the concept of flux limiter in the flux-corrected transport (FCT) algorithm by
Boris and Book. Some of the different slope limiters are: minmod limiter, superbee, monotonized
central-difference (MC-) limiter.
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Figure 3.9: Interpolation of the averaged grid cell values to the cell interfaces:
1st order donor cell, 2nd order PLM and 3rd order PPM interpolation and on the right side, the interpolated
value is reduced by the slope limiter functionφ(r) (plot fromHilscher 2009).

There are many well developed High Resolution Shock Capturing (HRSC) methods available, which
mostly use Riemann solvers.

Riemann solver based methods are best suited to resolve shocks, because shocks are itself a Riemann
problem.

But Riemann solvers cannot be used in implicit methods, since they itself rely on the time-step size.
Instead other advection methods (van Leer advection) have to be used, which do not have themself a
strong dependence on time.

Depending on the problem one wants to solve there might be another problem for explicit methods:

For explicit methods there exists a maximum allowed time step, at which the solutions from different
Riemann problems at neighbouring interfaces still do not influence each other and lead to a numerical
unstable scheme:
This limiting time step is described by theCFL condition , which is named after Courant, Friedrichs
and Lewy:

CFL =
amax∆t
∆x

(3.90)

whereamax= max|λ j | is the maximum of the modulus of the characteristic speeds atall grid cells (the
maximal modulus of the eigenvalue of the flux Jacobian matrix).
Therefore one gets for the time step:

∆t = CFL
∆x

amax
(3.91)

whereCFL is limited by 1 or an even smaller value like 0.5 depending on the numerical method
used.

More generally the CFL condition states: (seeLeveque 1998): A numerical method can only be stable
and converge if its numerical domain of dependence containsthe true domain of dependence of the
partial differential equations, at least in the limit of very fine grid spacing and very short time steps.

This condition restricts the time step for explicit methods.
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For an implicit solver the CFL condition is satisfied for any time step, because the numerical domain
of dependence is the entire grid, since, due to the coupling of the linear system, the solution at each
grid point depends on the data at all grid points.

3.4.2 Implicit methods

In explicit methods the variable values of the grid cell itself and its neighbours of the current time
level n are used to calculate the values of the state variables~q at the future time leveln+ 1
Using~qn

j,k, ~q
n
j+1,k, ~q

n
j−1,k, ~q

n
j,k+1 and~qn

j,k−1 one determines~qn+1
j,k .

The equation in flux conservative vector form is:

∆~q
∆t
+ L(~q) = ~f , (3.92)

whereL correspond to the advection operator and~f to external forces.
Defining ~RHS� ~f − L(~q) this equation can be written in a different form:

∆~q
∆t
= ~RHS. (3.93)

Note that ~RHS is zero if a stationary, that means time-independent, solution is found.

To get an explicit method by adopting a time-forward discretization procedure, the unknown vectorq
at the new time level can be extrapolated as follows using∆~qn = ~qn+1 − ~qn:

~qn+1 = ~qn + ∆t · ~RHS
n
, (3.94)

where the right hand side of this equation only depends on thevariables at the current time leveln.
Depending on the time step size and on the number of grid points, the numerical procedure can be
made sufficiently accurate in space and time.

In implicit methods the - yet not known - variable values of the grid cell neighbours already in the
future time are used.
The future value of the state variable~qn+1

j,k is determined by:~qn+1
j+1,k, ~q

n+1
j−1,k, ~q

n+1
j,k+1 and~qn+1

j,k−1 and possibly
also~qn

j,k, ~q
n
j+1,k, ~q

n
j−1,k, ~q

n
j,k+1 and~qn

j,k−1.
This is only possible by solving a linear system of equations.
The construction of implicit methods is described in the following.

The hydrodynamics equations can be written in the discretized conservative vector form:

∆~q
∆t
+ Lr,rr ~F + Lθ,θθ ~G = ~f , (3.95)

where~q is the vector of the conservative variables,∆~q the change of~q during the time step∆t, ~F and
~G are the fluxes of~q in r andθ-direction and~f denotes the vector of source terms.Lr,rr andLθ,θθ are
the first and second order operators that describe the advection and diffusion of the vector variables~q
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in r andθ-direction.
Defining the vector ~RHSas before:

~RHS� ~f − L(~q) = ~f − Lr,rr ~F − Lθ,θθ ~G (3.96)

one can write the equation in following form:

∆~q
∆t
= ~RHS, (3.97)

For the explicit method ~RHS = ~RHS
n

is calculated using the state variables at the current time level

n, whereas for implicit methods~RHS = ~RHS
n+1

is determined using the state variables at the next
time leveln+ 1. In order to obtain second order temporal accuracy, one canmix explicit and implicit
methods in the so-calledCrank-Nicolson method(seeHujeirat and Rannacher 2001, for details):

~RHS= ~RHS(~qn+1, ~qn) = ϑ · ~RHS
n+1
+ (1− ϑ) · ~RHS

n
(3.98)

where 0≤ ϑ ≤ 1 is a parameter called Crank-Nicolson number, that may depend also on the time step
size. The pure explicit method is achieved withϑ = 0, whereas the pure implicit method is retrieved
with ϑ = 1, Second temporal order is only achieved ifϑ = 0.5. But only forϑ > 0.5, when the scheme
is more implicit than explicit, the method is unconditionally stable.

The Prediction-Correction Iteration Procedure, also called defect correction strategy, is used in
order to assure the accuracy of the numerical scheme. Therefore one can re-write equation3.97in the
Residual form:

~R= L~q = ~R(~qn+1, ~qn) =
∆~q
∆t
− ~RHS=

~qn+1 − ~qn

∆t
− ~RHS(~qn+1, ~qn) = 0 (3.99)

where~R is called the residuum or the defect, therefore the name: defect correction strategy, which
would ideally be zero if the equations would have been exactly solved. But in Numerics - also due
to the errors caused by machine inaccuracy and the limited accuracy of machine numbers - it is only
possible to solve this equation up to a specified accuracy.

One can define the Jacobian matrixJ which consists of the derivatives of each equation at each grid
cell over each variable at each grid cell:

J �
∂~R
∂~q
�
∂~R(~qn+1, ~qn)

∂~qn+1 (3.100)

where~q is a vector with entries of each state variable with indexivar at each grid cellj, k (vector
size: (nvar · jsize· ksize) × 1) and~R is the residuum vector with entries of each equation with index
ieq at each grid cellj, k (vector size: (neq· jsize· ksize) × 1, whereneq = nvar) and J is a (neq·
jsize· ksize) × (nvar · jsize· ksize) matrix. and whereieq, ivar are integers that run over the number
of equations and variables. To minimize the computational effort one usually takes only the derivative
of the spatially first order form of the equations to determine the Jacobian, whereas for the calculation
of the residuum/defect one usually uses a high order accurate advection scheme.
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Using the multi-dimensional Newton-Raphson iteration procedure for finding roots one can - starting
with the values of the state vector of the old time step as initial guess~qn+1;i=0

� ~qi=0 = ~qn - determine
the values of~qn+1 at the next iteration step by:

~qi+1 = ~qi − Ji−1~Ri , (3.101)

where i, i + 1 denote the current and the next iteration index (’inside’ one time step!) andJi−1
is

the inverse of the Jacobian matrixJi , which represents the derivatives of the residuum over the state
variables~qn+1;i

� ~qi and the residuum~Ri
� ~R(~qn+1;i , ~qn)

To save computational time often the Jacobian is set constant during one time stepJi = Ji=0 = J and
only ~R is updated to the new iteration leveli + 1 using the new state values~qi+1.

Transforming this equation one gets:

~qi+1 − ~qi = −Ji−1~Ri , (3.102)

and therefore by definingδ~qi = ~qi+1 − ~qi (which should not be confused with the discretization term

∆~q in ∆~q
∆t =

~qn+1−~qn

∆t =
~qn+1;i−~qn

∆t =
~qi−~qn

∆t in the calculation of~Ri , which is the same if one does only one
iteration):

Jiδ~qi = −~Ri . (3.103)

Writing this out for each grid cell with indicesj andk using the five star staggered grid discretization
one gets following block matrix structure:

δqi
j,k

∆t
+ Srδqi

j−1,k +Drδqi
j,k + S

r
δqi

j+1,k + Sθδqi
j,k−1 +Dθδqi

j,k + S
θ
δqi

j,k+1 = −Ri
j,k, (3.104)

whereδqi = qi+1 − qi and the subscriptsj andk denote the cell numbering in ther andθ direction
respectively.
The diagonal, sub- and super-diagonal block terms are defined as following:

Sr = Sr
j,k =

∂~Ri

∂~qi
j−1,k

, Dr = Dr
j,k =

∂~Rr ;i

∂~q j,k
, S

r
= S

r
j,k =

∂~Ri

∂~qi
j+1,k

, (3.105)

Sθ = Sθ
j,k =

∂~Ri

∂~qi
j,k−1

, Dθ = Dθ
j,k =

∂~Rθ;i

∂~q j,k
, S

θ
= S

θ
j,k =

∂~Ri

∂~qi
j,k+1

, (3.106)

where~Rr ;i is ther dependent part of~Ri, whereas~Rθ;i is theθ dependent part of~Ri, to also easily allow
one dimensional simulations.
With Dmod =

1
∆t +Dr +Dθ one gets the reordered block matrix structure:

S
θ
δqi

j,k+1

+Srδqi
j−1,k +Dmodδqi

j,k +S
r
δq j+1,k = −Ri

j,k

+Sθδqi
j,k−1,

(3.107)

Writing this equation for all equations and all grid cells with indices j, k in matrix form:

Aδ~qi
= −~Ri (3.108)
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whereA = Ji .
To get a solution of this sparse linear matrix equation one constructs a simplified matrix̃A, the pre-
conditioner, which is similar toA, which means that̃A andA share the same spectral properties, i.e.
have the same eigenvalues.
The preconditioner is constructed in such a way, that the iterative solution procedure converges much
more faster to the real solution.
So following similar equation is solved:

Ãδ~qi
= −~Ri (3.109)

From the solutionδ~qi one can determine a new~qn+1:

~qi+1 = ~qi + δ~qi (3.110)

If the maximum norm of the residuum/defect||~R||∞ is not sufficiently small (because in generalÃ ,
A = Ji), or the maximum iteration numberimax is not reached, a new~R and possiblyÃ is calculated
and the matrix equation3.109is solved again.

For a stationary solution, where~q does not depend on the timet anymore ~RHSmust be zero.

Structure of the matrix equation

In this section the structure of the matrix equation, in particular the structure of the Jacobian matrix,
is looked at.

For the calculation of the Jacobian at a specified grid point not only the derivatives of the residuum
with respect to the variables at this grid point have to be considered, but also the derivative of the
residuum with respect to the variables at the neighbouring points.

The Jacobian for one equation for a 1-dimensional grid:
In the case of one equation with a 1-dimensional grid inr-direction the Jacobian entries at the grid

point j are:

Diagonal : D j =
∂Rj

∂qj
= J j, j ,

Subdiagonal : Sj =
∂Rj

∂qj+1
= J j, j+1,

Superdiagonal : Sj =
∂Rj

∂qj−1
= J j, j−1,

(3.111)

or written in matrix formJδ~q = −~R, whereA = J andδ~q = ~qi+1 − ~qi :




DJ1G SJ1G

SJ1G+1 DJ1G+1 SJ1G+1
. . .

. . .
. . .

SJ2G DJ2G







δqJ1G

δqJ1G+1
...

δqJ2G



=




−RJ1G

−RJ1G+1
...

−RJ2G



, (3.112)
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where j = J1G is the start index andj = J2G is the end index of the computational domain in
r − direction. This is a purely tridiagonal matrix, which can be solved very efficiently by the Thomas
algorithm which uses the Gaussian elimination procedure: For a matrix of the sizeN×N the algorithm
obtains the solution with a computational cost ofO(N) instead ofO(N3) for the Gaussian elimination.

The Jacobian for a system of equations for a 1-dimensional grid:
When coupling more equations together one retains for the one dimensional grid ablock tri-diagonal

matrix structure instead of only tridiagonal matrices. As an example here the radial momentum equa-
tion with conservative variablemand the continuity equation with conservative variableD are coupled,
the residuum is defined as:

~Rj =

(
Rm

j

RD
j

)
(3.113)

The resulting Jacobian matrix looks similar to the matrix in(3.112) but now theD,S,S are not scalars
anymore but block matrices of the form

D j =




∂Rm
j

∂mj

∂Rm
j

∂D j

∂RD
j

∂mj

∂RD
j

∂D j


 , S j =




∂Rm
j

∂mj−1

∂Rm
j

∂D j−1

∂RD
j

∂mj−1

∂RD
j

∂D j−1


 , S j =




∂Rm
j

∂mj+1

∂Rm
j

∂D j+1

∂RD
j

∂mj+1

∂RD
j

∂D j+1


 . (3.114)

The resulting matrix equation looks like:




DJ1G SJ1G

SJ1G+1 DJ1G+1 SJ1G+1

. . .
. . .

. . .

S j D j S j

. . .
. . .

. . .

. . .
. . . SJ2G−1

SJ2G DJ2G







...

...[
δm
δD

]

j−1[
δm
δD

]

j[
δm
δD

]

j+1
...
...




=




...

...[
−Rm

−RD

]

j−1[
−Rm

−RD

]

j[
−Rm

−RD

]

j+1
...
...




.

(3.115)

Therefore for a one-dimensional grid one gets a Jacobian matrix in block tridiagonal matrix form
which has a size ofmN×mN, whereN denotes the number of grid points andm the number of equa-
tions. The computational cost to solve the linear system increases toO((3m)2N).

The Jacobian for two-dimensions:
Since in the discretization of the equations a five-point stencil, see Fig. (3.10), is used, the Jacobian

includes contributions from the two directionsr andθ. So our system of equations will lead to the
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Figure 3.10: The five-point stencil used in the
discretization of the equations.
Note that here the grid of the indices j and k
are drawn with increasing j going from the left
to the right, if one would draw the real grid
cells, the index numbering in radial direction
would be from right to left, in the opposite di-
rection of increasing radius! Similar forθ: If
the index k increases the value ofθ decreases.

following already mentioned block structure:

S
θ
δqi

j,k+1

+Srδqi
j−1,k +Dmodδqi

j,k +S
r
δq j+1,k = −Ri

j,k

+Sθδqi
j,k−1,

(3.116)

The matrix entries are calculated by sweeping through the whole grid. First the points in ther-
direction for aθ index of K1G, then next for ther-direction with θ = K1G + 1 and so on. After
proceeding through all grid points in this way the matrix looks like:




D j̃,k̃ S
r
j̃,k̃ S

θ
j̃,k̃

Sr
j̃+1,k̃ D j̃+1,k̃ S

r
j̃+1,k̃

. . .

. . .
. . .

. . .
. . .

Sθ
j̃,k̃+1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . S

θ
J,K−1

. . .
. . .

. . .
. . .

. . .
. . .

. . . S
r
J−1,K

Sθ
J,K Sr

J,K DJ,K







δq j̃,k̃

...

δqJ,k̃

δq j̃,k̃+1

...

δqJ,k̃+1

...

δqJ,K




=




−Rj̃,k̃

...

−RJ,k̃

−RJ1G,k̃+1

...

−RJ,k̃+1

...

−RJ,K




, (3.117)

where j̃ = J1G andJ = J2G are the start and end indices inr-direction and̃k = K1G andK = K2G
are the start and end indices inθ-direction of the grid. The inclusion of the second dimension produces
two bands far apart from the diagonal, which are calledfringes. But otherwise all other entries of the
matrix are zero and so the resulting Jacobian is still a highly sparse matrix.

Boundary Conditions and their Effect on the Matrix Construc tion

Since the numerical grid stored on a computer has to have a beginning and an end, one needs to define
boundary conditions. Especially in Astrophysics one actually wants ideally simulate up to infinity
since there is no physical boundary, but the computational domain used in the simulation has to be
finite.
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To make it possible to easily define several different boundary conditions following scheme was de-
signed:

The boundary conditions are applied to the conservative variables and their effect is also taken into
account in the construction of the solution matrix.

At the outer radial boundaryRout the boundary conditions are:

DJ1G−1,k = aD;out(k) DJ1G,k + bD;out(k) DJ1G+1,k + cD;out(k) (3.118)

mJ1G,k = am;out(k) mJ1G+1,k + bm;out(k) mJ1G+2,k + cm;out(k) (3.119)

nJ1G−1,k = an;out(k) nJ1G,k + bn;out(k) nJ1G+1,k + cn;out(k) (3.120)

lJ1G−1,k = al;out(k) lJ1G,k + bl;out(k) lJ1G+1,k + cl;out(k) (3.121)

ǫd
J1G−1,k = aǫd;out(k) ǫd

J1G,k + bǫd;out(k) ǫd
J1G+1,k + cǫd;out(k) (3.122)

Note: mJ1G,k is still the boundary!

Whereas at the inner radial boundaryRin the boundary conditions are:

DJ2G+1,k = aD;in(k) DJ2G,k + bD;in(k) DJ2G−1,k + cD;in(k) (3.123)

mJ2G+1,k = am;in(k) mJ2G,k + bm;in(k) mJ2G−1,k + cm;in(k) (3.124)

nJ2G+1,k = an;in(k) nJ2G,k + bn;in(k) nJ2G−1,k + cn;in(k) (3.125)

lJ2G+1,k = al;in(k) lJ2G,k + bl;in(k) lJ2G−1,k + cl;in(k) (3.126)

ǫd
J2G+1,k = aǫd;in(k) ǫd

J2G,k + bǫd;in(k) ǫd
J2G−1,k + cǫd;in(k) (3.127)

Up to now the North and South boundaries are fixed:
At the North (θ = π/2), the pole, axi-symmetric boundary conditions and at the South (θ = 0), the
midplane, reflecting boundary conditions are applied.

Let us take a further look at how the outer radial boundary conditions influence the matrix construc-
tion by looking only at the one-dimensional radial equations for clearness:

The residuum of the continuity equation at a inner grid point( j, k) is:

RD
j,k =

Dn+1
j,k − Dn

j,k

∆t
+

[
ρ̄
√
∆U
−→
Dr

]
r=r j

−
[
ρ̄
√
∆U
−→
Dr

]
r=r j+1∫ r j

r j+1
ρ̄2 dr

∣∣∣∣∣∣∣
k

, (3.128)

which can be rewritten in case of only using the first order donor cell method: using:

[
ρ̄
√
∆U
−→
Dr

]
r=r j

∣∣∣∣
k
= −max

[
−

[
ρ̄
√
∆U

]
j,k
, 0

]
D j−1,k +max

[[
ρ̄
√
∆U

]
j,k
, 0

]
D j,k (3.129)
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gives:

RD
j,k =

Dn+1
j,k − Dn

j,k

∆t
+

1
∫ r j

r j+1
ρ̄2 dr

∣∣∣
k

·
[
−max

[
−

[
ρ̄
√
∆U

]
j,k
, 0

]
D j−1,k

+

(
max

[[
ρ̄
√
∆U

]
j,k
, 0

]
+max

[
−

[
ρ̄
√
∆U

]
j+1,k

, 0

])
D j,k

−max

[[
ρ̄
√
∆U

]
j+1,k

, 0

]
D j+1,k

]
(3.130)

whereD j,k = Dn+1
j,k .

The Jacobian entries are calculated by taking the derivative of the residuum at a grid cell with respect
to the state variables at this and all other grid cells:

∂RD
j,k

∂D j−1,k
=

−max

[
−

[
ρ̄
√
∆U

]
j,k
, 0

]

∫ r j
r j+1

ρ̄2 dr
∣∣∣
k

(3.131)

∂RD
j,k

∂D j,k
=

1
∆t
+

max

[[
ρ̄
√
∆U

]
j,k
, 0

]
+max

[
−

[
ρ̄
√
∆U

]
j+1,k

, 0

]

∫ r j

r j+1
ρ̄2 dr

∣∣∣
k

(3.132)

∂RD
j,k

∂D j+1,k
=

−max

[[
ρ̄
√
∆U

]
j+1,k

, 0

]

∫ r j

r j+1
ρ̄2 dr

∣∣∣
k

(3.133)

But at the grid point (J1G, k) at the outer radial boundary the residuum taking into account the bound-
ary condition

DJ1G−1,k = aD;out(k) DJ1G,k + bD;out(k) DJ1G+1,k + cD;out(k) (3.134)

is:

RD
J1G,k =

Dn+1
J1G,k − Dn

J1G,k

∆t
+

1
∫ rJ1G

rJ1G+1
ρ̄2 dr

∣∣∣
k

·
[
−max

[
−

[
ρ̄
√
∆U

]
J1G,k

, 0

] (
aD;out(k) DJ1G,k + bD;out(k) DJ1G+1,k + cD;out(k)

)

+

(
max

[[
ρ̄
√
∆U

]
J1G,k

, 0

]
+max

[
−

[
ρ̄
√
∆U

]
J1G+1,k

, 0

])
DJ1G,k

−max

[[
ρ̄
√
∆U

]
J1G+1,k

, 0

]
DJ1G+1,k

]
(3.135)
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whereDJ1G,k = Dn+1
J1G,k, which results in following matrix entries:

∂RD
J1G,k

∂DJ1G,k
=

1
∆t
+

max

[[
ρ̄
√
∆U

]
J1G,k

, 0

]
+max

[
−

[
ρ̄
√
∆U

]
J1G+1,k

, 0

]

∫ rJ1G
rJ1G+1

ρ̄2 dr
∣∣∣
k

+ aD;out(k)
−max

[
−

[
ρ̄
√
∆U

]
J1G,k

, 0

]

∫ rJ1G
rJ1G+1

ρ̄2 dr
∣∣∣
k

(3.136)

∂RD
J1G,k

∂DJ1G+1,k
=

−max

[[
ρ̄
√
∆U

]
J1G+1,k

, 0

]

∫ rJ1G
rJ1G+1

ρ̄2 dr
∣∣∣
k

+ bD;out(k)
−max

[
−

[
ρ̄
√
∆U

]
J1G,k

, 0

]

∫ rJ1G
rJ1G+1

ρ̄2 dr
∣∣∣
k

, (3.137)

where thered-colouredterms are additional terms due to the boundary conditions.

The boundary condition at the outer radial boundaryRout for the radial momentum equation is:

mJ1G,k = am;out(k) mJ1G+1,k + bm;out(k) mJ1G+2,k + cm;out(k), (3.138)

somJ1G,k is still the boundary. But the matrix equation is still solved also formJ1G,k, so it should be
pseudo-solved there!
This is done by setting all entries of the matrix corresponding tomJ1G,k to zero, except the diagonal
element to 1

∆t , and setting the right hand side vector entries at (J1G, k) to zero, so that the solution
δmJ1G,k of this linear equation is zero.

Depending on the values of the functionsaX;B(k), bX;B(k), cX;B(k), whereX = D,m, n, l, ǫd andB =
in, out manypossible boundary typescan be constructed, from which some are predefined.

E.g. to get afixed density boundary atRoutone sets:

aD,out(k) = 0 (3.139)

bD,out(k) = 0 (3.140)

cD,out(k) =
ρout;0

ρDIM
· ΓJ1G−1,k (3.141)

A zero gradient boundary of the conservative variable is obtained by:

aX,B(k) = 1 (3.142)

bX,B(k) = 0 (3.143)

cX,B(k) = 0 (3.144)
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For thelinear extrapolation of the conservative variable at the inner boundary one sets
(see staggered grid structure in radial direction in figure3.6):

aC,in(k) = 1+
drm

J2G+1

drm
J2G

(3.145)

bC,in(k) = −drm
J2G+1

drm
J2G

(3.146)

cC,in(k) = 0 (3.147)

with C = D, l, ǫd and also forC = n, whereas form:

am,B(k) = 1+
drJ2G

drJ2G+1
(3.148)

bm,B(k) = − drJ2G

drJ2G+1
(3.149)

cm,B(k) = 0. (3.150)

All these boundary types can also be applied to the primitivevariables by taking into account the
transformation between conservative and primitive variables. For example the linear extrapolation for

the primitive variableU, wherem=
√

gMR
rr D

MR
U, at the inner radial boundary looks like:

am,in(k) =

(
1+

drJ2G

drJ2G+1

) √
gMR

rr J2G+1 D
MR

J2G+1
√

gMR
rr J2G D

MR

J2G

(3.151)

bm,in(k) = − drJ2G

drJ2G+1

√
gMR

rr J2G+1 D
MR

J2G+1
√

gMR
rr J2G−1 D

MR

J2G−1

(3.152)

cm,in(k) = 0 (3.153)

This shows that by setting up these functions it is quite simple to setup further easily constructed
boundary conditions without bothering about the change of the solution matrix.

Explicit and implicit methods:

Depending on the choice of the preconditionerÃ a variety of solution methods can be constructed that
range from purely explicit to fully implicit, depending on how similar the preconditioner is to the real
Jacobian.
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• Explicit Method
(M5 in figure3.4.2):

Ã =
I
∆t
=

1
∆t




1
1

1
1

1
1




(3.154)

If one uses 1/∆t times identity matrixI as the preconditioner, which is similar to the real Jaco-
bian J for sufficiently small∆t, and sets the Crank-Nicolson numberϑ = 0 one gets following
matrix equation:

I
∆t

δ~q = −~Ri=0 = ~RHS
n
, (3.155)

where−~Ri=0 = ~RHS
n

since~qi=0 = ~qn and therefore∆~qi=0 = ~qi=0 − ~qn = 0. In this case, where
only the diagonal elements of the matrix are filled, the matrix equation is solved immediately
after one iteration (then the residuum~Ri=1 = 0), so essentially the matrix equation is solved
already and the result (usingδ~q = δ~qi=0 = ~qi+1=1 − ~qi=0 = ~qn+1 − ~qn) is the classical explicit
method:

~qn+1 = ~qn − ∆t ~Ri=0 = ~qn + ∆t ~RHS
n

(3.156)

This method is only numerically stable for CFL (Courant-Friedrich-Lewy) numbers smaller
than unity or even smaller than 0.5 depending on the advection scheme used.

• Semi-Explicit Method
(M4 in figure3.4.2):

Ã = (
1
∆t
+ dr + dθ) I =




d
d

d
d

d
d




(3.157)

The semi-explicit method is obtained by only preserving thediagonal elementsd = ∂Ri
∂qi

of the
block diagonal matricesDmod This method may be numerically stable even for CFL> 1, but
stability is, depending on the problem, not always guarantied. It is absolutely stable if the flow
is viscous dominated. The solution is again like in the explicit method trivial, since one can
directly specify the inverse of the matrix:̃J−1 = 1

( 1
∆t+dr+dθ) I .
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• Semi-Implicit Method
(M3 in figure3.4.2):

Ã = Dmod =




D
D

D
D

D
D




(3.158)

For the semi-implicit method only the block diagonal matrices are used, neglecting sub and
super diagonal block matrices

Dmod δq
i
j,k = −~Ri

j,k (3.159)

This method is stable even with CFL≫ 1.
But there might be problems due to the staggered grid discretization, since e.g. only the cou-
pling term betweenmandD at one cell side is taken into account.
The solution is much simpler to obtain than that of the fully implicit method.

• Fully-Implicit Method :

Ã = J =




D S S
S D S S

S D S
S D S

S S D S
S S D




(3.160)

For fully implicit methods one is retaining all block matrices, which gives still a highly sparse
global matrix, but has in case of a two-dimensional grid two fringes, for a three-dimensional
grid there will be even three fringes, which drastically increases the bandwidth and therefore
the solution cost. Therefore in most cases the matrix is simplified for computation or special
solution methods, like the Krylov subspace iterative methods, which basically only rely on the
matrix vector product, are used. The fully implicit method is the only unconditionally stable
method.
In particular implicit methods are also good suited for highly stretched grid distributions and
the multi-scale nature of astrophysical flows.
Usually one has more than one equation to solve: there is the possibility to solve each equation
separately one after the other, the so called implicit operator splitting (IOS) approach (M2 in
figure 3.4.2), where the order of the equations can be crucial, or many possibilities to couple
several equations together.
Due to the non-linear nature of the equations one has to iterate in any case to resolve the non-
linearities, since the matrix equation is only linear!
The resulting matrix is highly sparse (M1 in figure3.4.2), so one can use semi-direct iterative
splitting methods like the ’Approximate Factorization Method’ (AFM: Warming and Beam
1979) or the ’Line Gauss-Seidel Relaxation Method’ (LGS:MacCormack and Candler 1989)
as efficient methods for solving the set of radiative MHD-equations within the context of the
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defect-correction iteration method (seeHujeirat 2005a, and the references therein).
Furthermore the Krylov subspace iterative methods (KSIMs), which are projection methods,
may be more efficient and robust than the above-mentioned semi-direct methods, especially
in the case of large systems, where one uses parallelized simulation codes to solve the sparse
matrix equations, since the KSIMs are better suited for parallelization.

With the degree of implicitness also the computational costfor one time step increases, because the
calculation of the Jacobian and the solution gets more expensive, but on the other side one gets better
stability and can use larger time steps.
So - depending on the particular problem - one should carefully choose the suited method,
e.g. for a turbulent flow, where one wants to resolve turbulence, explicit methods are the right choice,
because this flows are highly time-dependent and one has to choose a small time step anyway.
Whereas if one is interested in stationary or quasi-stationary solutions, the implicit method is superior.
For that purpose one best uses the so called Hierarchical Solution Scenario (HSS), which is described
in the next section.
To accelerate the search for a stationary or quasi-stationary solution, one can also use a method called
“Residual Smoothing Method” (Hujeirat 2005a), which is also calledlocal time-stepping: For this
method not a common global time step size is used, instead a time step size associated with the local
CFL-number at each grid point is used to advance the solution. In this procedure one gets a not phys-
ically meaningful time-evolution of intermediate solutions.
If one wants to simulate time-dependent features of quasi-stationary solutions, one can use the ob-
tained quasi-stationary solution as initial configurationand re-start the calculation using a common
and physically relevant time step.

The explicit method is severely limited to Euler-type flows,whereas sophisticated treatment of most
flow-problems in AFD (see regime of applications in picture3.2) requires the employment of much
more robust methods: the implicit methods.

3.4.3 Hierarchical Solution Scenario (HSS)

The Hierarchical Solution Scenario (HSS) is a multi-stage solution procedure (solver with maximum
flexibility) consisting of following possible steps:

I implicit operator splitting (IOS)
sequentially solving the equations, order of equations is important for convergence;
for vortex-free compressible viscous and time-dependent flows

II HD as a single coupled system followed by that of the magneto component,
block sequential solution of equations;
high spatial and temporal accuracies in combination with the prolongation/restriction strategy may be
used.

III fully coupled set of MHD equations with zero moment of theradiation field
(using pre-conditioned KSIMs) to obtain final steady state solution

IV solution of the internal energy equation weakly coupled with the 5D radiative transfer equations

With the hierarchical solution scenario one has an effective way to determine a quasi-stationary solu-
tion.
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Figure 3.11: A schematic description of the clustering of the coefficient matrix. The matrix-generator calcu-
lates only the entries to be used for the construction of the matrix appropriate for the selected solution proce-
dure. In Astro-GRIPS these matrix entries are directly filled into the matrix structure of the selected solution
method, so no extra copying process (as was used in the formersimulation codes: GR-I-RMHD and before) is
necessary anymore. Depending on the matrix used, the solution method may range from purely explicit to fully
implicit (plot fromHujeirat et al. 2008).
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Figure 3.12: A schematic description of the time step size and the computational costs versus the band width
M of the Jacobian. N is the number of unknowns. Explicit methods correspond to M= 1 and large1/δt. They
require minimum computational costs (CC). Large time steps(i.e., small1/δt) can be achieved using strongly
implicit methods. These methods generally rely on the solution of large linear systems with matrices with large
band width, hence computationally expensive, and, in most cases, are inefficient (plot fromHujeirat et al. 2008).

Figure 3.13: The profile of the shock tube problem obtained with Courant-Friedrichs-Lewy numbers CFL=0.4
and 0.9 using the PLUTO code. Although both CFL-numbers are smaller than unity the numerical solution
procedure does not appear to be stable even with CFL=0.9.
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Figure 3.14: A schematic description of the Hierarchical Solution Scenario (HSS) for finding a quasi-
stationary state of the fluid motions described by the radiative MHD equations.
The abbreviation SP stands for system of parabolic equations (e.g. spherical potential (self-gravity) for Newto-
nian version of the code)). The angular momentum equation may also be solved separately for axi-symmetric
flows. In stage I, where the flow is in its early time-dependentphase, the equations are solved sequentially
using the implicit operator splitting approach (IOS). Thenin stage II, which uses the solution of stage I as
initial condition, the hydrodynamics equations are solvedas a single coupled system, followed by the coupled
magneto component equations (the induction equation). In this process high spatial and temporal accuracies in
combination with the prolongation/restriction strategy may be used. The solution is then used as starting point
of stage III, where (quasi-) steady solutions for the fully coupled set of equations consisting of the zero moment
of the radiation field and the MHD equations are sought. For this stage pre-conditioned Krylov sub-iterative
methods are considered to be robust and efficient. In the final stage IV, one seeks for the solution of the fully
coupled magneto-hydrodynamic system and the weakly to the internal energy equation coupled frequency de-
pendent radiative transfer equation (RTE), the so-called 5D radiative transfer equation, for multi-component
fluids, where the electrons and ions have different temperatures (plot fromHujeirat et al. 2008).
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Figure 3.15: With the hierarchical solution scenario (HSS) one effectively can determine a quasi stationary
solution by gradual coupling of the equations. By dynamically varying the efficiency and robustness of the
numerical method it is possible to leapfrog the transient phase very fast. This method is most suitable for
searching quasi-stationary flow-configurations that depend only weakly on the initial conditions. The coupling
between the equations is enhanced gradually, by starting solving them sequentially, then by partially coupling
in combination with the operator splitting approach (OSA),full-coupling using the Krylov-subspace iterative
methods (KSIM) and finally extending the coupling to includethe radiative transfer equation (RTE) and energy
equation of multi-temperature plasmas (plot fromHujeirat et al. 2007).
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Figure 3.16: Possible application of the Hierarchical Solution Scenario (HSS) demonstrated inHujeirat
(2005a): VLA data from the active central engine of the giant elliptical galaxy M87 and a NRAO radio im-
age of the jet apparently emanating from within 100 gravitational radii. Solid lines correspond to calculated
profiles and the asterisks to observational data. ’The profiles 01 to 06 show the spectral energy distribution cal-
culated using different magnetic field strengths, or different truncation radii, or high/low corona temperatures.
In particular, the profile 07 corresponds to a model in which the toroidal magnetic field is set to vanish artifi-
cially, whereas the poloidal magnetic field is set to be in equipartition with the thermal energy of the electrons.
The profile 08 is similar to 07, except that the toroidal magnetic field is allowed to develop and reach values
beyond equipartition with respect to the thermal energy of the electrons in the transition layer between the disk
and the overlying corona. The above spectral energy distribution has been obtained by solving the radiative
transfer equation in 5-dimensions, taking into account theKompaneets operator for consistently modelling
Comptonization. 400 non-linearly distributed frequency points have been used to cover the frequency-space,
and125× 40 finite volume cells to cover the spatial domain of the calculation.’ (plots and description from
Hujeirat 2005a)
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3.5 Iterative Linear Equation Solvers

In this section solution methods for large sparse linear systems are described.

Sometimes in literature the solution of a system of linear equations is called misleadingly Inversion
Procedure: In Numerics usually no one calculates the inverse of the complicated matrix and then
determines the solution vector, since this is extremely costly. Instead the solution vector is determined
directly or in most cases iteratively, since one is not interested in the inverse matrix.
For very large systems, where memory problems are a concern,it may be possible, that the fully
occupied matrix would not fit into memory. Especially in thiscase the construction of the inverse
matrix, which can be fully occupied even if the original matrix is highly sparse, or the use of a direct
solution method is impossible. In these cases iterative methods are the the only possible procedures
to determine the solution with a certain accuracy.

To have a stable solution procedure the matrixA must be strictly diagonally dominant, which means
that the entries in each row of the matrixA must fulfil the following condition: the module of the
diagonal elementdi,i is larger than the sum of all moduli of the off-diagonal elements

∑
j,i |ai, j |,

where i and j denote the row and column numbers of the matrix.

Although the original solution matrixA = J, the Jacobian, is a sparse matrix with only a few non-zero
matrix entries, the fringes due to the second spatial direction increase the bandwidthmof the solution
matrix dramatically, which result in a usually very expensive numerical solution.

Due to this fact, there exist approximation methods, that use solution matrices without fringes. To
these methods belong the Line Gauß-Seidel Method (LGS) (MacCormack and Candler 1989) and the
Approximate Factorization Method (AFM) (Warming and Beam 1979).

Another class of iterative solution methods, the so-calledKrylov Subspace Iterative Methods, only
rely on matrix-vector products and maximum and minimum determination and are therefore - espe-
cially in the parallel case - very efficient. The matrix-vector products are not very expensive, even
if the matrix has a large bandwidthm due to the existence of fringes, because there are also many
zero-elements between the matrix blocks of the fringes and the tridiagonal block structure on the di-
agonal of the matrix. With appropriate sparse matrix storage formats, which are ideally only storing
the non-zero matrix entries, the matrix calculations can bedone very efficiently.

3.5.1 Black-White Line Gauß-Seidel Method (BW-LGSR2)

The Black-White Line Gauß-Seidel Method (BW-LGS), also called zebra Gauß-Seidel Method, be-
longs together with the red-black LGS method, which uses a chess board distribution, to the family
of multicolour schemes, which were constructed as parallel-effective methods from the not for paral-
lelization suited classical Gauß-Seidel method.

The Black-White Line Gauß-Seidel Method (BW-LGS) uses a twostage process to update the state
values on the numerical grid. Therefore the grid is divided into rows with odd and evenk indices in
θ-direction for the LGSR2 method or into columns with odd and even j indices inr-direction for the
LGSθ2(=LGSZ2) method.



3.5 Iterative Linear Equation Solvers 95

Figure 3.17:Scheme of the Line-Gauss Seidel method (plot fromHilscher 2009)

Remember the original block matrix structure:

S
θ
δqi

j,k+1

+Srδqi
j−1,k +Dmodδqi

j,k +S
r
δq j+1,k = −Ri

j,k

+Sθδqi
j,k−1,

(3.161)

withDmod =
1
∆t +Dr +Dθ.

The two stages of the LGSR2 method are (see Fig.3.17):

• In the first half-step only the grid points on rows with oddk are taken into account. So the
Jacobian entries resulting from the neighbouring cells inθ-direction, from grid cells with even
k, can be brought to the other side of the matrix equation. Notethat in the first iteration step
these entries are zero. So one gets the following tri-diagonal block matrix equation with - due
to taking only odd rows into account - only (approximately) half the size of the original system:

δ~q j,kodd

∆t
+Sr δ~q j−1,kodd+

(
Dr +Dθ

)
δ~q j,kodd+S

r
δ~q j+1,kodd = −~Rj,kodd−S

θ
δ~q j,kodd+1−Sθ δ~q j,kodd−1 (3.162)

or usingDmod =
1
∆t +Dr +Dθ

Sr δ~q j−1,kodd +Dmod δ~q j,kodd +S
r
δ~q j+1,kodd = −~Rj,kodd −S

θ
δ~q j,kodd+1−Sθ δ~q j,kodd−1. (3.163)

This matrix equation is solved forδ~q j,kodd and then all state variables with oddk are updated.

• In the second half-step the grid points on rows with evenk are taken into account. Now the
Jacobian entries resulting from the variables on the grid cells with odd k are brought to the
other side of the matrix equation. But this time the updated values ofδ~q j,kodd are known from
the first half step. The resulting tri-diagonal block matrixequation is:

δ~q j,keven

∆t
+Sr δ~q j−1,keven+

(
Dr +Dθ

)
δ~q j,keven+S

r
δ~q j+1,keven = −~Rj,keven−S

θ
δ~q j,keven+1−Sθ δ~q j,keven−1 (3.164)

or usingDmod =
1
∆t +Dr +Dθ

Sr δ~q j−1,keven+Dmodδ~q j,keven+S
r
δ~q j+1,keven = −~Rj,keven−S

θ
δ~q j,keven+1−Sθ δ~q j,keven−1. (3.165)

This matrix equation is solved forδ~q j,keven and then all state variables with evenk are updated.
Now for all grid cells the dependent variables are calculated.
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Figure 3.18: Scheme of the approximate factorization method (plot fromHilscher 2009).

Following the defect correction strategy one can now do a further iteration to improve the solution
accuracy.

This method has a asymmetry between the directions, becausethe equations are solved fully coupled
in ther-direction, whereas theθ-terms of the Jacobian only occur on the right hand side of thematrix
equations.

This directional asymmetry is avoided in the symmetric LGS method, where the preferred direction
is switched every time step (or iteration step). But due to the reordering of the matrix entries this
symmetric method is - in contrast to the normal BW-LGS methodwith one preferred direction - not
very efficient and not well-suited for parallelization.

3.5.2 Approximate Factorization Method (AFM)

The Approximate Factorization Method (AFM) uses a factorization technique to subdivide the prob-
lem into two single directional solution equations.
The original solution matrix for a 2 dimensional grid can be approximated by a product of two matri-
ces:

A δ~q ≈ Ãr Ãθ δ~q (3.166)

whereÃr =
I
∆t + Jr andÃθ = ( I

∆t + Jθ) ∆t = I + Jθ ∆t, whereJr andJθ contain only matrix derivatives
in ther or θ-direction respectively. Inserting these matrix expressions gives:

Ãr Ãθ δ~q = (
I
∆t
+ Jr ) · (I + Jθ ∆t) =

I
∆t
+ Jr + Jθ + Jr Jθ ∆t = A+ Jr Jθ ∆t ≈ A (3.167)

so it is assumed here thatJr Jθ ∆t is small, which is certainly true if∆t is small and if steady conserved
fluxes are considered, where boundary conditions are time-independent. Elsewise for time-dependent
simulations using large time steps this term might be large,which would result in a divergence of this
method.

The two half-steps of the Approximate Factorization Methods are the following (see also figure
3.18):
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• In the first step one solves for ther-terms first by introducing an intermediate solution vector
defined byδ~̄q � Ãθ δ~q:

Ãr δ~̄q = −~R (3.168)

(
I
∆t
+ Jr ) δ~̄q = −~R (3.169)

δ~̄q j,k

δt
+ Sr δ~̄q j−1,k +Dr δ~̄q j,k + S

r
δ~̄q j+1,k = −~Rj,k (3.170)

• In the second step, knowing now the intermediate solution vector δ~̄q, the remaining matrix
solution system is solved:

I
∆t

Ãθ δ~q =
I
∆t

δ~̄q (3.171)

(
I
∆t
+ Jθ) δ~q =

δ~̄q
∆t

(3.172)

δ~̄q j,k

∆t
+ Sθ δ~q j,k−1 +Dθ δ~q j,k + S

θ
δ~q j,k+1 =

δ~̄q
∆t

(3.173)

With the obtained solution vectorδ~q the state vector~q is updated.

If the newly calculated defect, the residuumR, is still too large, then this procedure is iterated in the
concept of the defect-correction strategy until one gets tothe desired accuracy.

Note that here for the matrix solver to work, the intermediate solution vector has to be reordered with
respect to the order of the indicesj andk between the two steps.

In both steps only a tri-diagonal block matrix is occurring in the matrix equation, which can be effi-
ciently solved with a cost of the order ofO(m2N) by using either the Thomas algorithm or an iterative
algorithm like Jacobi.

3.5.3 Krylov Subspace Iterative Methods

A good overview over several direct and iterative methods for the solution of linear systems of equa-
tions can be found inMeister(2005).

There aretwo major classes of iterative methodsto solve large sparse linear systems of equations:
thesplitting methodsand theprojection methods.

Splitting Methods

The splitting methods are based on the splitting of the matrix A in the form:

A = B+ (A− B) (3.174)

so thatAx= b gives:

Bx= (B− A)x+ b (3.175)

and if B is regular, one gets:

x = B−1(B− A)x+ B−1b (3.176)
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and the linear iteration method can be defined by:

xi+1 = Φ(xm, b) = Mxi + Nb for i = 0, 1, . . . (3.177)

with

M := B−1(B− A) (3.178)

and

N := B−1. (3.179)

The matrixB should be chosen so that it is similar toA but easy to invert.

Depending on the choice ofB one gets different splitting methods:
For B = I , whereB is the unity matrixI , one gets the trivial method.
If one setsB to the diagonal partD of the matrixA, B = D, the Jacobi method is obtained.
The Gauß-Seidel method can be constructed by settingB = D + L, whereD is the diagonal part and
L is the strict lower triangular part of the matrixA. Compared to the Jacobi method, the Gauß-Seidel
method uses withD+L a better approximation of the matrixA, so a smaller spectral radius, the radius
in which the eigenvalues are contained, of the iteration matrix and therefore a faster convergence can
be expected.
There also exist so called relaxation methods, which introduce a correction factor, the relaxation
parameter, to the above mentioned methods to try to reduce the spectral radius of the iteration matrix
to get faster convergence. For example, the SOR method (successive over-relaxation method) belongs
to this class of methods.

The convergence behaviour and speed depends in general on the spectral radius and the condition
number of a matrix, which is described later.

Projection Methods:

Another class of iterative methods to solve large sparse linear systems of equations are the projection
methods.

A projection method, to solve the matrix equationAx= b, is a method, where approximate solutions
xi ∈ x0 + Ki (dimKi = i ≤ n) are calculated according to following condition:

(b− Axi)⊥ Li (3.180)

wherex0 ∈ Rn is arbitrary andKi andLi (dimLi = i ≤ n) are subspaces ofRn. The orthogonality
property is described by the Euklidian scalar product:

x⊥ y ⇔ (x, y)2 = 0 (3.181)

In the case whereKi = Li the residuum vectorr i = b − Axi is perpendicular toKi and one has an
orthogonal projection method and Eq.3.180 is called Galerkin condition. IfKi , Li one has an
inclined or tilted projection method and Eq.3.180is called Petrov-Galerkin condition.
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TheKrylov Subspace Iterative Methodsbelong to the projection methods:
A Krylov Subspace Iterative Method is a projection method tosolve the matrix equationAx = b for

which Ki is the Krylov-Subspace:

Ki = Ki(A, r0) = span
{

r0,Ar0, . . . ,A
i−1r0

}
(3.182)

with r0 = b− Ax0.

Krylov Subspace Iterative Methods can be described as a reformulation of the linear equation system
in a minimalization problem. The conjugate gradient (CG) method and the GMRES method belong to
this algorithmic group. Both methods determine the optimalapproximationxi ∈ x0+Ki to the searched
solutionA−1b by using the orthogonality condition3.180, whereas at each iteration the dimension of
the subspace is incremented by one. If one would neglect rounding errors both methods would give
the exact solution at the latest aftern iterations.

There are many Krylov Subspace Iterative Methods which differ in the stability, convergence be-
haviour and speed and usability for different types of matrixes.

For symmetric, positive definite matrices:

• The combination of the method of steepest gradient, which has a bad convergence behaviour
due to its not optimal construction of the search directions(with respect to the orthogonality to
the whole subspace), and the method of conjugate directions, which can have an unsteady error
behaviour, but does an optimal construction of the subspaces, leads to the Conjugate Gradient
(CG) method by Hestenes and Stiefel, 1952, which combines the advantages and eliminates the
disadvantages of the single methods. But this method is onlyapplicable for symmetric positive
definite matrices.

For non-symmetric, non-positive definite matrices severalother methods were invented:

• In the Generalized Minimal Residual (GMRES) method (by Saad and Schultz, 1986) the func-
tion F(x) = ||Ax−b||22 is minimized. The Arnoldi algorithm is used to calculate theorthonormal
basis of the Krylov subspace. This method requires the storage of the whole sequence of direc-
tional vectors, a large amount of memory is usually needed. Modified versions of this method,
sometimes called GMRES(l), do a restart afterl iterations. Through this technique, only a lim-
ited number of vectors have to be stored, but the performanceof the original method is reduced
and the convergence can be very slow. Choosing the best suited restart parameter is a difficult
task, which can only be done by experience. GMRES can deal with large non-symmetric ma-
trices and can easily also be implemented on vector computers because almost all arithmetic
operations are matrix-vector multiplications, vector updates and inner products.

• The Bi-Conjugate Gradient (BiCG) method (by Lanczos, 1952, reformulated by Fletcher, 1975)
is a Krylov Subspace Method based on the Bi-Lanczos algorithm, where the orthogonality

is given by the Petrov-Galerkin condition:Li = KT
m = span{r0,ATr0, . . . , (AT)i−1r0}. In this

method one simultaneously looks atAx = b andAT x = b. Compared to GMRES is uses much
less memory, but the transpose of A is needed at each iteration, it has an irregular convergence
behaviour and the method can break down before the exact solution is reached.

• The Conjugate Gradient Squared (CGS) method (by Sonneveld, 1989) improves the BiCG
method by avoiding the multiplication byAT .
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• The BiConjugate Gradient Stabilized (BiCGSTAB) method (by van der Vorst, 1992) minimizes
the oscillations of the CGS method by the one-dimensional minimalization of the residuum.

• TheBiCGSTAB(l) method (by Sleijpen, Fokkema, 1993) is the variant that is extended to the
l-dimensional minimalization of the residuum.

• The Quasi-Minimal Residual (QMR ) method (by Freund and Nachtigall, 1991) minimizes the
storage used by the GMRES method by quasi-minimalization.

• The Transpose Free Quasi-Minimal Residual (TFQMR ) method (by Freund, 1993) improves
the QMR method by avoiding the multiplication byAT using ideas of the CGS method. The
number of required iterations is similar to BiCGSTAB. For a well-conditioned problem, that
needs only a few iterations to be solved, GMRES works better than TFQMR, but if a large
number of iterations is necessary TFQMR performs better.

• TheQMRCGSTAB method (by Chan et al., 1994) combines the ideas of the BiCGSTAB and
the TFQMR methods.

Preconditioners

The convergence behaviour and speed of iterative methods, especially of the Krylov Subspace Iterative
Methods, strongly depends on the spectral radius, which is the minimal radius which contains all
eigenvalues, and the condition number of the matrix.

The bf condition number of the regular matrixA ∈ Cnxn with respect to the induced matrix norm||.||a
is defined as:

conda(A) := ||A||a ||A−1||a (3.183)

If A is a normal matrix, then

cond2(A) =
|λn|
|λ1|

(3.184)

whereλn is the eigenvalue of the matrixA with the largest modulus andλ1 the eigenvalue with the
smallest modulus.
The condition number of a regular matrix is independent of the induced matrix norm limited down-
wards:

conda(A) ≥ conda(I ) = 1. (3.185)

In praxis one uses the norm of the residuum vectorr i = b − Axi to obtain the quality of the approx-
imated numerical solution of an iterative method, since theerror vectorei = A−1b − xi is unknown,
because the real solution is not known. If the condition number of the solution matrix is small, it
makes sense to use the convergence estimation based on the residuum. However, if the condition
number is large, the error norm can increase dramatically, even if the residuum norm decreases.

So a small enough condition number of the solution matrix is mandatory for a good convergence
behaviour of iterative solvers. Therefore one uses a technique called preconditioning.

To improve the convergence behaviour and rate the original linear matrix equation is transformed by
so-called preconditioners into a system whose matrix possesses a better (reduced) condition number.
The original system of equations:

Ax= b (3.186)
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is transformed into:

(PLAPR)xP = PLb (3.187)

x = PRxP (3.188)

wherePL is the left andPR is the right preconditioner.
If settingPL = I one gets right preconditioning, which results in an unaltered residuum:

r ≡ b− Ax= b− APRP−1
R x (3.189)

But using the left preconditioning by settingPR = I can alter the residuum:

rL ≡ PLb− PLAx= PL(b− Ax) = PLr (3.190)

where, due to efficiency reasons, the matrixPX, X = R, L should be a good approximation ofA−1, the
inverse of the original matrixA, so that cond(PXA) ≪ cond(A), but still easy to construct.

Some preconditioners are:

• Jacobi,

• block Jacobi (different Krylov Subspace methods and preconditioners are applied on different
blocks),

• Successive Over Relaxation (SOR),

• Incomplete Cholesky (only for symmetric matrices),

• Incomplete Lower Upper factorization (ILU),

• Additive Schwarz Method (ASM),

• Lower Upper factorization (LU),

• Cholesky method (only for symmetric and pos. definite matrices).

In praxis the Krylov Subspace Iterative methods used in combination with suitable preconditioners
have showed that they are robust, stable and efficient methods for solutions of large sparse linear
systems.

Darbandi et al.(2006) investigated the use of several different preconditioned Krylov subspace meth-
ods to implicitly solve the fully coupled set of incompressible Navier-Stokes equations using a finite
volume discretization using PETSc (Balay et al. 2009). They found out in their extensive study that
for these kind of fluid flow problems the best performance is achieved using GMRES with incomplete
lower upper preconditioner.





4 Simulation Code Structure, Optimization and
Parallelization of Astro-GRIPS

In this chapter the Simulation Code Structure, the basic code usage, the Optimization and the Paral-
lelization of Astro-GRIPS, the General Relativistic Implicit Parallel Solver, is described.

4.1 Astro-GRIPS: Simulation Code Features

The simulation code Astro-GRIPS, the General RelativisticImplicit Parallel Solver, solves the New-
tonian or general relativistic hydrodynamical equations on a 3D axi-symmetrical spherical grid in the
background metric of a Schwarzschild or Kerr black hole using the finite volume discretization and
solving the equations with implicit methods.

It is written in Fortran-90/95 and uses the message passing interface (MPI:Forum 2008, 2009; Gabriel
et al. 2004) for parallelization on distributed memory machines.

Before compilation the Fortran code can be comfortably configured for different compilers, serial or
parallel mode and other features (e.g. using netcdf or parallel-netcdf for data output) by a configure
script using the GNU autotools system (Vaughan et al. 2000).

Initial conditions and special boundary conditions are setup in the file Setup.F90, which is usually
the only source file the user has to adopt to solve a new problem.

With the use of a parameter file one can change many parametersquite easily without re-compiling
the code.

By changing only the parameter SolMethod in the parameter file, one can select various degrees of
implicitness, from pure explicit to fully implicit, the coupling of the equations and different iterative
linear equation solvers, which are used by the implicit methods: Black-White Line-Gau"ss-Seidel,
Approximate Factorization Method (which were implementedwith the help of LAPACK (Anderson
et al. 1999) or ScaLAPACK (Blackford et al. 1997) routines in the parallel case) and various Krylov
Subspace Iterative Methods (using PETSc:Balay et al. 2009, 2008, 1997). This is a quite easy but
powerful way to investigate the behaviour of different methods.

Using the Hierarchical Solution Scenario (HSS) it is possible to find quasi-stationary solutions more
quickly by gradual enhancement of the coupling of the equations.

As data output and input format netCDF (Rew et al. 2009), a widely used portable binary format, is
used via the netcdf library in the serial or parallel case or via the parallel-netCDF library (Li et al.
2003) to do a real parallel portable input and output of data basedon MPI-I/O.
NetCDF files can be read, manipulated and visualized by many different programs, for example with
ncview or with python using matplotlib (Dale et al. 2009).
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One important feature of the code is the possibility to do arestart. Every time a netcdf data file
output is done a restart can be made from it. Since there is only one netcdf data file created, and not
for each process one, it is also very easy to do a restart with another number of processes and because
netcdf is a portable file format, the restart can even be done easily on another architecture or computer
platform (no transformation from big-endian to little-endian byte ordering or vice-versa is necessary
as one might need for simple binary output).

Another interesting feature is theprolongation, where the grid can be refined (or made coarser) at a
specified simulated time or time iteration number and the data of the previous grid level is interpolated
(or extrapolated) to the new grid points.
This can be used for example to do first very coarse simulationsay on a single-processor machine,
and then later continue the simulation by restarting on a computer cluster and then do a refinement of
the grid to get a more detailed view of e.g. a stationary solution.

Astro-GRIPS was designed in such a way, that it is a flexible, extensible, stable and robust algorithm
for general relativistic (M)HD flows, but still easy to use.

Summary of simulation code features:

Astro-GRIPS is an implicit solver for modelling:

• 3D axi-symmetric,

• strongly time-dependent,

• quasi-stationary and steady state,

• compressible,

• weakly compressible,

• dissipative and diffusive,

• Newtonian, special relativistic and

• general-relativistic flows (background metric of a Schwarzschild or Kerr black hole)

A non-linear Newton-iterative numerical tool for solving:

• Newtonian Euler,

• Newtonian Navier-Stokes,

• General Relativistic Euler,

• and General Relativistic Navier-Stokes equations.

Discretization method:

• 3D axi-symmetrical spherical grid

• Finite Volume Method using a conservative formulation (butwith internal energy equation)

• First and second order temporal accuracy

• up to 3rd order spatial accuracy

Properties of the solution method:
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• Various degrees of implicitness:
implicit, semi-implicit, semi-explicit and explicit methods

• Hierarchical Solution Scenario:
enables gradual coupling of the equations

Implicit iterative solution procedures (methods to solve the large sparse linear system of equations):

• Black-White Line Gaüss-Seidel method (BW-LGS)

• Approximate Factorization Method (AFM)

• Krylov Subspace Iterative Methods (KSIM,KSP): GMRES, Bi-CGSTAB, TF-QMR, . . .

Basic properties of the simulation code:

• Fortran 90/95

• parallelized using MPI

• use of LAPACK or ScaLAPACK routines for BW-LGS and AFM

• PETSc library for Krylov methods

• netCDF data I/O (serial and parallel-netCDF)

• visualization scripts using python/matplotlib

Although the program itself is quite complex, it will be clearly structured and easy to use, but still
very powerful and flexible.
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4.2 Simulation Code Structure of Astro-GRIPS

4.2.1 Basic code structure

The simulation code Astro-GRIPS is written in Fortran-90/95 and uses the message passing interface
(MPI) for parallelization on distributed memory machines.

Before compilation the Fortran code can be comfortably configured for different compilers, serial or
parallel mode and other features (e.g. using netcdf or parallel-netcdf for data output) by a configure
script using the GNU autotools system.

The Fortran code is distributed in several source code files and structured in the following way:

The main file is called AstroGRIPS.F90 and defines the basic flow structure of the simulation.

• (MPI): Initialization of Parallel mode (including BLACS setup for ScaLAPACK)

• Setup of basic Parameters (from parameter file)

• Dynamical memory allocation of grid and geometry related variables

• Grid generation

• (MPI): Perform domain decomposition with initialization of halo/boundary values

• Dynamical memory allocation, setup and initialization of global and local data, log and auxil-
iary variables

• Calculation of grid and geometry related variables

• Setup initial conditions (primitive variables) or if restart: read in data values

• Compute conservative variables from primitives

• (MPI): Halo Communication (update halo data: so all conservative variables are set right also
in halo cells, before the dependent/related variables are calculated

• compute all other dependent variables

• (MPI): Halo Communication (update halo data)

• Print out Settings and Solver Info

• (MPI:PETSc): initialize PETSc (has to be called after domain decomposition is done)

• calculate explicit time step (if no restart)

• setup output data and log netcdf files and write out initial data (if no restart)

• if prolongation directly after restart is requested: do prolongation

• Time-Iteration Loop:

– calculate explicit time step

– determine and set time step

– Solve equations (dependent on SolMethod setting in parameter file)

– Print information out to Terminal

– Data and log output

– if prolongation is requested: do prolongation
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– if end time or maximum time step is reached: leave time-iteration loop

• Finalization: free memory: deallocate variables; (MPI): finalize PETSc and MPI

4.2.2 The SolMethod parameter

The routine Solve analysis the parameter SolMethod and setsup the corresponding parameters and
auxiliary variables and calls the appropriate solver routine(s): explicit, LGSR2, AFM, KSP, . . . ; with
the specified parameters and equations.

The parameter SolMethod, set in the parameter file, specifiesthe equation coupling, the order and the
methods and which solution parameters to use.

Since the parameter SolMethod can be easily changed in the parameter file the code has not to be
recompiled to use another equation coupling or another iterative method or another solution parame-
ter.

The SolMethod parameter is constructed in such a way, that itreally enables the user to have a large
and easy to use flexibility in selecting and trying out different solvers, different orders of the equations,
different parameters or even solver combinations.

The parameter SolMethod is constructed by considering following rules:

! SolMethod "{SolMethod}"

!

! attention:

! put {SolMethod} in double quotes, since elsewise it is not read in

! as a total string, since commas separate the string

!

! with

!

! {SolMethod} = {igroup1};{igroup2}; ... ,{igroupn}

!

! {igroup} = {giter_max(igroup)}:{imethod1},{imethod2}, ... ,{imethodn}

!

! {imethod} = {method(igroup,imethod}({ieqns})({opts})

!

! {ieqns} = {eqngrp1}, {eqngrp2}, ... , {eqngrpn}

! {eqngrp} = {eqns(igroup,imethod,ieqn=1}_{eqns(igroup,imethod,ieqn=2}

! _ ... _{eqns(igroup,imethod,ieqn=Neqns(igroup,imethod)}

!

! {opts} = {opt1}, {opt2}, ... , {optn}

! {opt} = i={iter_max(igroup,imethod)}

! = mf={KSP_MATRIX_FORMAT(igroup,imethod)}

! = ksp_rtol={ksp_rtol(igroup,imethod)}

! = acc={accuracy(igroup,imethod)}
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!

!

! Global equation numbers:

! 1 = relativistic density

! 2 = radial momentum

! 3 = vertical/latitudinal momentum

! 4 = angular momentum

! 5 = internal energy

!

!

! attention:

! SolMethod "2:AFM<2_3,1_5>(i=2)"

! is the same as:

! SolMethod "2:AFM<2_3>(i=2),AFM<1_5>(i=2)"

!

! and gives:

! Ngroup = 1

! giter_max(igroup=1) = 2

! Nmethod(igroup=1) = 2

!

! method(igroup=1,imethod=1) = AFM

! Neqns(igroup=1,imethod=1) = 2

! eqns(igroup=1,imethod=1,ieqn=1) = 2

! eqns(igroup=1,imethod=1,ieqn=2) = 3

! opts(igroup=1,imthod=1) = i=2, so iter_max(igroup=1,imethod=1) = 2

!

! method(igroup=1, imethod=2) = AFM

! Neqns(igroup=1,imethod=2) = 2

! eqns(igroup=1,imethod=2,ieqn=1) = 1

! eqns(igroup=1,imethod=2,ieqn=2) = 5

! opts(igroup=1,imthod=2) = i=2, so iter_max(igroup=1,imethod=2) = 2

The global equation numbers used in the simulation code and in the construction of the SolMethod
parameter are the following:

1. relativistic densityD

2. radial momentumm

3. vertical/latitudinal momentumn

4. angular momentuml

5. internal energy densityǫd

For example:

SolMethod "2:AFM<2_3,1_5>(i=2)"

is the same as:
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SolMethod "2:AFM<2_3>(i=2),AFM<1_5>(i=2)"

and means, that there is one global group iteration loop which is iterated twice. There are 2 methods
used in this global group, the first method uses AFM to solve equation 2, the radial momentumm
equation,coupled together with equation 3, the latitudinal momentumn equation using two ’internal’
iterations, the second method couples equations 1, the relativistic density D equation, and 5, the
internal energyǫd equation together which are also solved with AFM using two ’internal’ iterations.

Similar to that many different solution methods can be considered, which can be triedout. Some
might give a better result other a much worse.

Here another example:

SolMethod "5:AFM<4>,KSP*bjacoby+gmres<2_1_5>(i=1)"

Here the solution method exists of one global group, which isiterated 5 times. It consists of two
methods, first the equation 4, the angular momentum equation, is solved with AFM (using a default
of 2 iterations), then the system of equations: the radial momentum (2), the relativistic density (1) and
the internal energy (5), is solved with one iteration using GMRES with a block jacobi preconditioner,
which by default uses ILU inside a block, using the PETSc library.

When using PETSc one can additionally specify many options at the command line, e.g. to view the
log summary, options table and monitor the residual:

> ./run-intel_mpi.sh 2 AstroGRIPS.ini \

" -log_summary -options_table -ksp_monitor_true_residual"

or to graphically view the structure of the Matrix A, Preconditioner Matrix A_PC, RHS vector b
and Solution vector x in X-Window windows and report these into files, one specifies (for a small
problem):

> ./run-intel_mpi.sh 2 AstroGRIPS.ini " -my_ksp_draw -draw_pause -1"

The KSP Matrix format used by PETSc, which can have possible values of: MPIAIJ, MPIBAIJ,
MPIBDiag, MPIRowbs, can be set by specifying the SolMethod option mf, e.g.:

SolMethod "2:AFM<4>(i=3),KSP*bjacobi+gmres<2_3_1_5>(i=2,mf=MPIBAIJ)"

Here the equations are solved within one group (igroup=1) with a maximum group iteration number
of giter_max(igroup=1) = 4.
Within the group iteration loop:

• imethod=1:
eqn. 4 is solved with AFM
with iter_max(igroup=1,imethod=1) = 3 iterations
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• imethod=2:
eqns. 2,3,1 and 5 are coupled solved with KSP
with pc_type=bjacobi and ksp_type=gmres
with iter_max(igroup=1,imethod=2) = 2 iterations
using KSP_Matrix_Format= MPIBAIJ.

Using the ’acc’ option one can set the requested accuracy of the defect-correction iteration procedure:
it is iterated until the requested accuracy is reached or until the maximum iteration number (set by the
’i’ option) is reached. Ifacc is not set or set to 0, then it is iteratedi-times.

With the ’ksp_rtol’ option the relative tolerance of the KSPsolution method of PETSc can be set.

4.2.3 The parameter file

To easily control the parameters of the simulation a parameter file, which should have the suffix .ini,
is used. In the example directory there exists the parameterfile AstroGRIPS-all.ini, which describes
all possible parameters.

One can also include comments into the parameter file:
Commentary lines start with !,% or #<space>

! Comment

% another comment

# yet another comment

but

#nocomment

is no commentary line!

A typical parameter file looks like:

!

! parameter file: RelativisticShockTube_alfsh2.0_CNU0.6.ini

!

outfilenamebase RelativisticShockTube_alfsh2.0_CNU0.6

IStart 0

Iprolong 0

! ..... Physical Parameters .......

IGravity 0

IGR 1

ISR 1
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Kerr 0

Spinh2 0.d0

IOmg_FDE 0

SpinNS 0.0

! set EoS_Type = ideal_gas (default), polytropic_gas, isothermal_gas

EoS_Type ideal_gas

! Adiabatic index

gamma 1.66666666666666666666d0

! Viscosity

alftr 0.0d0

! set Art_Visc_Type = Q_art, Q_art2, Eta_art

Art_Visc_Type Q_art

alfsh 2.0d0

! ### Time step control ###

dtmax 5.d-4

dtmin 0.9d-9

! start time step (if dtstart is zero then dtstart = dtmin)

dtstart 1.d-6

timstepcor 1.025d0

CFL 0.4d0

Timmax 0.2d0

! ### Data management ###

NNtime 1000000000

Iter_write 1000000000

Iter_show 1000000000

Iter_log 1

!

! data output in physical time intervals dtwrite

dtwrite 0.2d0

! terminal output in physical time intervals dtshow

dtshow 0.05d0

! log variable output in physical time intervals dtlog

dtlog 1.0d+12

! LogVars parameter with space separated names of logvars

! or "all" for all log variables which should be saved

LogVars "Ntime dt dtexp CFL_No MinL MaxL xxm dfm"

!LogVars "all"

! set solution method direction(s)
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! for 1D (for 1 dimensional solution):

SolMethod_dir R

!SolMethod_dir Z

! for 2D:

!SolMethod_dir RZ (default, necessary for LGSR2)

!SolMethod_dir ZR

! set solution method

SolMethod "5:LGSR2<2,1,5>"

! ### Spatial and temporal accuracies ###

Iordrr 93

Iordzz 93

CNU 0.6d0

! ### Grid Distribution ###

! number of grid levels

Nlev 1

! radial direction

!

! uniform grid in R direction with NZL(lev) grid cells:

! do only edit NZL(lev), Rout(lev) and Rin(lev) here !!!

!Rin 1 1.000d3

!Rout 1 1.001d3

! for Rb-Rout and Ra-Rout in units of Rout need to set Rout first!

!Rb-Rout 1 1.00d0

!Ra-Rout 1 1.00d0

!NZEXT 0

!NZINP 1 0

!NZR 1 0

!NZRC 1 0

!NZL 1 1000

! drmin in units of (Rout(ilev)-Rin(ilev))/NZL(ilev)

!drmin-dRtNZL 1 1.d0

!alf_EXT 1.d0

! Idrmin(1) = 4

!Idrmin 1 4

Rin 1 1.000d3

Rout 1 1.001d3

! for Rb-Rout and Ra-Rout in units of Rout need to set Rout first!

Rb 1 1.00032d3



4.2 Simulation Code Structure of Astro-GRIPS 113

Ra 1 1.00072d3

NZEXT 0

NZINP 1 0

NZR 1 1

! equivalent to 1000 uniform:

NZRC 1 400

drmin 1 1.d-3

! equivalent to 2000 uniform:

!NZRC 1 800

!drmin 1 0.5d-3

! equivalent to 4000 uniform:

!NZRC 1 1600

!drmin 1 0.25d-3

NZL 1 1

alf_EXT 1.d0

! Idrmin(1) = 3

Idrmin 1 3

! vertical direction

!

! uniform grid in Z direction with NZD(lev) grid cells:

! do only edit NZD(lev) (, Zout(lev) and Zin(lev) ) here !!!

NZU 1 0

NZZC 1 0

NZD 1 3

! dzmin(ilev) = (pi/2.d0)/(NZD(ilev)-1)

! for dzmin-pit2tbNZDm1b need to set NZD first!

dzmin-pit2tbNZDm1b 1 1.d0

! Zout(ilev) = pi/2.d0 + dzmin(ilev)/2.d0

! for Zout-pit2+dzmint2 need to set dzmin first!

Zout-pit2+dzmint2 1 1.d0

! for Za-Zout and Zb-Zout need to set Zout first!

Za-Zout 1 1.d0

Zb-Zout 1 1.d0

! Zin(ilev) = -dzmin(ilev)/2

! for Zin-dzmin need to set dzmin first!

Zin-dzmin 1 -0.5d0

! Idzmin(1) = Idzmin(lev) = 4

Idzmin 1 4

! Setting Boundary types:

! e.g.: boundary_type_Rout reflective

! possible types: reflective, zero_gradient, default, fixed

boundary_type_Rout zero_gradient

boundary_type_Rin zero_gradient
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! other parameters:

EM_S 3.d8

R_S 2.00d0

Spinh2 0.0d0

! ## scaling variables ##

R_Dim_in-R_g 2.d0 ! in units of the gravitational radius R_g (set EM_S before!)

V_Dim_in-Clight 1.d0 ! in units of the speed of light Clight

!V_Dim_in-Vs 1.d0 ! in units of the Newtonian/relativistic sound speed

! of an ideal gas calculated using gamma and T_Dim

Ro_Dim_in 1.d0 ! in g/(cm^3)

T_Dim_in 1.d0 ! in K (Kelvin)

4.2.4 The problem dependent user input file: Setup.F90

The file src/Setup.F90 in a specific problem directory contains the initial conditions. Here also the user
has the possibility to setup modified restart conditions andspecial boundary conditions depending on
the problem.

Here an example Setup.F90 file is shown:

#include "config.h"

#include "AstroGRIPS.h"

! Specify the initial distributions of the variables

subroutine setVariables

use Parameters

use Constants, only : one, small, zero

use Geometry

use Grid

use Variables

implicit none

integer :: j, k, iVar

double precision :: rmid

rmid = (Rout(1)+Rin(1))/2.d0

! Set Variables

Omg = zero

V(:,:,2) = zero

Ed = one

do k = k1LT, k2LT

do j = j1LT, j2LT
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V(j,k,1) = 0.d0

if(rh(j,1) > rmid) then

Ro(j,k) = 1.d0

Pr(j,k) = 2.0d-6/3.d0

else

Ro(j,k) = 10.d0

Pr(j,k) = 40.d0/3.d0

endif

enddo

enddo

! activate additional netcdf data output:

do iVar=1,NumVar

if( Var(iVar)%name == ’D1Ro’ ) Var(iVar)%netcdf_out = .true.

if( Var(iVar)%name == ’D2Ro’ ) Var(iVar)%netcdf_out = .true.

if( Var(iVar)%name == ’D2ROMR’ ) Var(iVar)%netcdf_out = .true.

enddo

return

end

! sets SolveEqns(j,k):

! variable SolveEqns(j,k) determines,

! if equations are solved at gridpoint (j,k):

! if SolveEqns(j,k) <= 0.d0, the equations are not solved at this gridpoint

! whereas if SolveEqns(j,k) > 0.d0 e.g. 1.d0 the equations are solved.

! This variable is used for example for the Forward Facing Step Problem,

! where a cold "accretion" disc, the area where the equations are not solved,

! is put into the computational domain to study the shock which is occurring

! at this ’Forward Facing Step’. The size of this disc is determined by

! the variables Rin_STEP, Rout_STEP, ThetaMin_STEP and ThetaMax_STEP.

subroutine setSolveEqns

use Constants

implicit none

SolveEqns = one

return

end subroutine setSolveEqns

! while re-starting, you may still modify/change several parameters

subroutine setVariablesOnRestart

use Grid

use Parameters

use Geometry

use Variables
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use Constants

implicit none

return

end

! sets user specified boundaries

! if boundary_type(ind) == BC_user

subroutine setBoundaryUser(var_ind, bc_ind, j, k)

use Grid

use Parameters

use Geometry

use Variables

use Boundary

use Constants

implicit none

integer :: j, k

integer :: var_ind

integer :: bc_ind

double precision :: Temp_Dim, V_r_Rout_Dim

Temp_Dim = 1.d9 ! Temperature in K (Kelvin)

V_r_Rout_Dim = -1.0d+5 ! radial velocity at outer boundary in cm/s

! var_ind name

! 1 Dro

! 2 Em

! 3 En

! 4 El

! 5 Ed

! ...

! bc_ind = Rout_ind, Rin_ind, North_ind, South_ind

select case(var_ind)

case(1)

! Dro

! Rout:

! DRo(J1G-1,k) = a_q_out(k,1)*DRo(J1G,k) &

! + b_q_out(k,1)*DRo(J1G+1,k) &

! + c_q_out(k,1)

! Rin:

! DRo(J2G+1,k) = a_q_in(k,1)*DRo(J2G,k) &

! + b_q_in(k,1)*DRo(J2G-1,k) &

! + c_q_in(k,1)

! DRo(j,k) = Ro(j,k)*Lorentz(j,k)

select case(bc_ind)
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case(Rout_ind)

! fixed Ro(J1G-1,k) to value of initial condition

a_q_out(k,1) = 0.d0

b_q_out(k,1) = 0.d0

c_q_out(k,1) = 1.d-9/Ro_Dim*Lorentz(J1G-1,k)

case(Rin_ind)

! zero gradient:

! to get Ro(J2G+1,k)=Ro(J2G,k):

a_q_in(k,1) = Lorentz(J2G+1,k)/Lorentz(J2G,k)

b_q_in(k,1) = 0.d0

c_q_in(k,1) = 0.d0

end select

case(2)

! Em

! Rout:

! Em(J1G,k) is still the boundary

! Em(J1G,k) = a_q_out(k,2)*Em(J1G+1,k) &

! + b_q_out(k,2)*Em(j1G+2,k) &

! + c_q_out(k,2)

! Rin:

! Em(J2G+1,k) = a_q_in(k,2)*Em(J2G,k) &

! + b_q_in(k,2)*Em(J2G-1,k) &

! + c_q_in(k,2)

! Em(j,k) = V(j,k,1) * D2ROMR(j,k)*DSQRT(gdrrmr(j,k))

select case(bc_ind)

case(Rout_ind)

! fixed inflow velocity at Rout: V_r_Rout_Dim

a_q_out(k,2) = 0.d0

b_q_out(k,2) = 0.d0

c_q_out(k,2) = V_r_Rout_Dim/V_Dim

case(Rin_ind)

! linear extrapolation of Em:

a_q_in(k,2) = (1.d0 + drh(J2G,1)/drh(J2G-1,1))

b_q_in(k,2) = - drh(J2G,1)/drh(J2G-1,1)

c_q_in(k,2) = 0.d0

end select

case(3)

. . .

case(5)

! Ed

select case(bc_ind)

case(Rout_ind)

! fixed T(J1G-1,k):

a_q_out(k,5) = 0.d0
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b_q_out(k,5) = 0.d0

c_q_out(k,5) = Temp_Dim/T_Dim*Rgas/Emugas &

* DRo(J1G-1,k)/gamam1 * T_Dim/V_Dim**2

case(Rin_ind)

! zero gradient:

! T(J2G+1,k) = T(J2G,k)

a_q_in(k,5) = DRo(J2G+1,k)/DRo(J2G,k)

b_q_in(k,5) = 0.d0

c_q_in(k,5) = 0.d0

end select

case default

print *, "setBoundaryUser: varind does not exist! "

end select

return

end subroutine setBoundaryUser
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4.3 Basic Usage of Astro-GRIPS

According to the Readme.txt file in the example directory thebasic usage of the code is explained
here:

4.3.1 Basic usage for example problems

• Setting up the environment variable AstroGRIPS_DIR
can be done by sourcing the setup-AstroGRIPS.sh script,
which may setup further necessary variables
e.g. source $HOME/Astro-GRIPS/svn/trunk/setup-AstroGRIPS.sh
(which can be put in∼/.bashrc)

• current location should be the directory examples,
elsewise change to it:
> cd $AstroGRIPS_DIR/examples

• go into the specific example directory
> cd<specific_example_dir>
it should contain at least the following files:
AstroGRIPS AstroGRIPS.ini configure run-intel_mpi.sh run.sh src/Setup.F90
where AstroGRIPS is a symbolic link to src/AstroGRIPS
(which can be generated, if it is missing, with> ln -s src/AstroGRIPS AstroGRIPS )
Instead of or additionally to AstroGRIPS.ini there can be other parameter files ending with .ini

• one may have to update the autotools system in the main directory:
> (cd $AstroGRIPS_DIR; autoreconf--install)

• one may have to do a make distclean in the main directory,
if . /configure shows following error:
configure: error: source directory already configured;
run "make distclean" there first
> (cd $AstroGRIPS_DIR; make distclean)

• configure program, e.g.

for serial run optimized using default compiler:
> ./configure

for serial run using gfortran compiler:
> env FC=gfortran ./configure--enable-debug

for serial run using ifort compiler and Intel Math Kernel Library:
> env FC=ifort ./configure--enable-imkl--enable-debug

for parallel run using mpiifort compiler, Intel-MPI
with Cluster Intel Math Kernel Library:
> env FC=ifort ./configure--enable-mpi--enable-debug

with option--disable-pnetcdf
parallel-netcdf can be disabled and serial netcdf is used instead.
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for parallel run with PETSC use:
> env FC=ifort ./configure--enable-mpi--enable-petsc--enable-debug

for production and profiling runs omit the option--enable-debug!

further configure options like setting library paths are listed by running
> ./configure--help

• compile program

(>make clean)
> make 2>&1 | tee make.log

• run example using default parameter file AstroGRIPS.ini:

for serial run:
> ./AstroGRIPS
or using run script
(which also saves a log file<outfilenamebase>.log
of what is seen on the terminal):
> ./run.sh

for parallel run use e.g. run script:
> ./run-intel_mpi.sh<nprocs>

• output is a netcdf file<outfilenamebase>.nc
which can be viewed with netcdf viewers like ncview
(http://meteora.ucsd.edu/~pierce/ncview_home_page.html)
or read in and visualized by e.g. the python scripts found in
$AstroGRIPS_DIR/scripts/python-scripts/

4.3.2 Modification of parameters and initial and boundary co nditions

• for modifying parameters e.g. the initial time step size tmin
change the parameter values
in the parameter file AstroGRIPS.ini (or in a copy of it)

• for a description and other parameter file options
look into $AstroGRIPS_DIR/examples/AstroGRIPS-all.ini
(if changing only parameter values in the parameter file
program recompilation is not necessary)

• to change the initial condition one has to
change the file src/Setup.F90 and recompile the program

• run with non-default parameter file e.g. AstroGRIPS-run01.ini:

for serial run:
> ./AstroGRIPS -f AstroGRIPS-run01.ini
or using run script:
> ./run.sh AstroGRIPS-run01.ini

for parallel run use e.g. run script:
> ./run-intel_mpi.sh<nprocs> AstroGRIPS-run01.ini

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
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4.4 Optimization

For implicit methods much computation time is spent in the setup of the solution matrix.

In the old code first all possible matrix entries, all Jacobian coefficients, were calculated and then
copied in the solution matrix structure of the appropriate solution method (for LGSR2 and AFM the
matrix structure is quite different). This copying process takes a long time, which can be avoided:
With the use of a newly introduced matrix function now the necessary matrix elements are directly
filled in the appropriate solution matrix structure of the selected solution method. No copying is
necessary anymore!

The matrix function calculates the appropriate matrix element depending on the solution method and
the boundary effects on the matrix construction by calling the Jacobian function. This split also
simplifies the setup of new equations: since for a new equation in general only the new Jacobian
function entries have to be specified and the matrix functionwith all its complicated solution method
and boundary dependent settings basically remains as it is.

This restructure of matrix element calculation was also a necessary step for the MPI parallelization of
the simulation code.

The recursive function

recursive function calcJacobian (idir, ieqG, ivarG, iblock, j, k) &

result(A_FCTN)

calculates the matrix element of the global general coefficient matrix A, the Jacobian matrix, for
the ieqG (e.g. ieqG=1 is Dro) equation after the ivarG-th variable (where ivarG corresponds to the
conserved variable of the ivarG-th equation).

It has following parameters:

• idir = specifies direction of direction-dependent part of Jacobian Matrix

{
1 for r-direction
2 for θ-direction

• ieqG= global index of equation (eqno), ieq= index of equation

• ivarG= global index of variable (varno), ivar= index of variable

• iblock =





−1 for sub-diagonal block
0 for diagonal block
+1 for super-diagonal block



 of the Jacobian Matrix

• j = index inr-direction

• k = index inθ-direction

Recall the definition of the diagonal, sub- and super-diagonal block terms of the Jacobian in equations
3.105and3.106:

Sr = Sr
j,k =

∂~Ri

∂~qi
j−1,k

: calcJacobian(idir=1, ieqG, ivarG, iblock=-1, j, k)

Dr = Dr
j,k =

∂~Rr;i

∂~qj,k
: calcJacobian(idir=1, ieqG, ivarG, iblock=0, j, k)

S
r
= S

r
j,k =

∂~Ri

∂~qi
j+1,k

: calcJacobian(idir=1, ieqG, ivarG, iblock=+1, j, k)

(4.1)
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Sθ = Sθ
j,k =

∂~Ri

∂~qi
j,k−1

: calcJacobian(idir=2, ieqG, ivarG, iblock=-1, j, k)

Dθ = Dθ
j,k =

∂~Rθ;i

∂~qj,k
: calcJacobian(idir=2, ieqG, ivarG, iblock=0, j, k)

S
θ
= S

θ
j,k =

∂~Ri

∂~qi
j,k+1

: calcJacobian(idir=2, ieqG, ivarG, iblock=+1, j, k)

(4.2)

where~Rr ;i is ther dependent part of~Ri, whereas~Rθ;i is theθ dependent part of~Ri .

This Jacobian matrix element function is used inside the matrix function:

double precision function calcMatrix &

(qdefcorr, idir, ieqG, ivarG, iblock, j, k) result(A_FCTN)

which calculates the matrix elements of the matrix to be solved or the defect correction (which is
for example used in the case of AFM) depending on the parameter qdefcorr: 0=matrix 1=defect
correction. Depending on the solution method the appropriate matrix element construction is applied
also taking into account the matrix modifications at the boundaries. This function is used to directly
fill in the matrix elements into the corresponding matrix structure of the selected solution method
so the calculate and copy approach of the old code is not used anymore which speeds up the matrix
construction.
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4.5 Parallelization

If one wants to solve a problem, where an extremely large gridis necessary to resolve the fine flow
structures in space or if many time steps are necessary to follow very fast changing flows in time,
like in simulating the details of turbulent flows, there is nofeasible way to perform such a simulation
without the help of parallel computers. Especially if the size of the problem is so large that it does not
fit in the memory of one computer or one time step will take extremely long there is no way around
parallelization.

In comparison to explicit Computational Fluid Dynamics (CFD) codes, which are the most other
codes in Astrophysics, the parallelization of implicit methods, which are used in Astro-GRIPS, is not
so easy, since it contains the solution of linear systems of equations.

The code was parallelized using the Message Passing Interface (MPI)1, the de-facto standard for
parallel computing for distributed (and shared) memory machines.

To get an optimal and very flexible solver the code was re-organized to make it possible to solve
either each separate equation or one or several coupled systems of equations sequentially. For each
coupled system of equations one can decide which method should be used, e.g. one could solve first
the angular momentum equation with AFM (Approximate Factorization Method) and then the other
equations as a coupled system (the equations appearing in the matrix in a specified order) with a
Krylov Subspace Iterative Method (KSP or KSIM). This can be easily done by just changing one line
in the parameter file. To optimize this process, not the wholeglobal Jacobian matrix, but only the
necessary matrix values are calculated and directly filled into the corresponding matrix array of the
particular solution method.

For the parallelization the grid and therefore also the corresponding matrix is divided among the used
ranks (processes). There are some overlapping cells, the socalled halo cells, sometimes also called
ghost cells, at the border of the grid on a particular rank. The values of these cells are updated at least
once each time step by communication between the processes.

For the solution methods BW-LGS (Black-White Line Gauß-Seidel) and AFM (Approximate Factor-
ization Method) a parallel band-matrix solver from ScaLAPACK, the parallel version of LAPACK,
is used. These methods, particularly AFM, are not very well suited for parallelization, since a lot of
communication between processes is necessary, which slowsdown the total runtime extremely, es-
pecially on distributed memory machines with slow interconnect between the nodes, like most Linux
clusters.

Therefore the Krylov Subspace Iterative Methods (KSIM or KSP), e.g. GMRES or BiCG-stab, were
incorporated using the PETSc library, a well tested and veryportable and flexible library for solving
sparse linear systems. These methods are particularly wellsuited for parallelization since they only
use matrix-vector multiplication and minimum/maximum value determination, which result in very
low communication times for sparse matrices.

Due to this large flexibility in using several available solvers one can exploit which solvers are best
suited in accuracy and speed and which do not work at all, e.g.give numerical artefacts, for a particular
problem.

1Good parallel programming workshops are held at the HLRS, the Hochleistungsrechenzentrum Stuttgart (Rabenseifner
(ed.) 2007).
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To further speed-up the code the data in- and output is now also done in parallel using parallel-netCDF.
The netCDF data format (originally only used by the weather and climate forecast community) is a
widely used platform independent binary data format, that also allows a short description of the dataset
inside the netCDF-file.

Due to this re-organisation and these modifications, especially the parallelization, of the general rel-
ativistic implicit code and the usage of High-Performance Computers it is now possible to explore a
wide range of new exciting problems in Astrophysics and other related research areas, which were not
possible to solve before.

Summary of the parallelization of Astro-GRIPS:

• Computational Domain/Matrix - Decomposition

• Halo Cells and Halo Communication

• BW-LGSR2 and AFM
implemented using parallelized BLACS/ScaLAPACK routines

• KSIMs/KSP are implemented by the PETSc library,
which is very flexible and allows to use
different Krylov Subspace iterative methods: GMRES, BiCGStab,TF-QMR, . . .
with a variety of preconditioners: Jacobi, Block Jacobi, ILU, . . . .

Runtime, speed up and scalability of Astro-GRIPS

To investigate the parallel performance of Astro-GRIPS a Taylor Couette problem (3 dimensional
axisymmetric) was executed repeatedly in parallel using different number of processes. The grid size
was chosen to be 144x1152, that is 144 cells in radial direction with radii from 1.0 to 1.2 and 1152
cells in latitudinal direction ranging from the midplane tothe polar axis. The simulation was run up to
a physical time of 0.5 which corresponds to 272 time steps using either the Krylov Subspace Iterative
Method (KSP), GMRES with Block Jacobi as preconditioner implemented by the PETSc library, or
the Approximate Factorization Method (AFM).

The test runs were performed on the Helics II cluster of the Interdisciplinary Center for Scientific
Computing (IWR) at the University of Heidelberg consistingof 160 nodes of 2 CPUs Dual Core
AMD Opterons with 10 Gbit Myrinet interconnect switch. Equivalent runs were also performed on
our local Dual Quad Core Intel Xeon compute server. Due to thepresence of nodes with multiple
multi-core CPUs on this system it is possible e.g. to run a jobwith 16 processes on 16 nodes using
only one core on each node (processes per node number: ppn=1), on 4 nodes using all available cores
on the nodes (ppn=4) or on 8 nodes using 2 cores on each node (ppn=2). Since the communication
times for the processes in one CPU/one node itself are smaller than between CPUs/nodes, using a
different ppn number will lead to a different performance result.

The runtime plot shows the runtimetN (excluding initialization and terminal and data I/O times, but
could be also the total runtime in this particular test case,since the time needed for these tasks is
minimal) of the parallel job executed on N processes dividedby the runtimet1 on only one process.
In the speed up plot the reciprocal of the runtime (1runtime =

t1
tN

) is plotted which gives a straight
line if one would have ideal speed up. The scalability of a parallel job is defined as t1

(tNN) and should
always stay at one if one could have ideal performance. For efficient runs the scalability is at least



4.5 Parallelization 125

70-80%. Runs with lower scalability, but larger than 50%, still provide some increase in speed, but
very disproportional with respect to the number of used nodes. Scalability of under 50% means hat
the runs are slower than runs on less processes.

Amdahl’s law states that the increase of computational speed is most likely not proportional to the
increase of used processes. So a point, the scalability limit, can be reached, where the increase of
processes does not bring any speed increase but stagnation or even decrease. This has to do with the
fact, that there is a parallel overhead due to interprocess communication and/or double calculation of
halo cell values or there is only a very tiny part in the code that is not (or cannot) be parallelized. The
scalability of parallel jobs depends on various parameters, like the computer system (CPUs, memory,
interconnect), compilers and used compiler flags, but also on the problem size. The chosen problem
size is actually too small for running the problem on too manyprocesses since the ratio of halo cells
to physical cells increases with the number of processes andreaches very large values for the used
problem size on parallel runs on too many processes (e.g. saymaybe larger than 32). So for a larger
problem one would expect the scalability limit should actually be reached only for a much larger
number of used processes.

Halo to data cell ratio for a problem size of 1152 grid cells inlatitudinal direction

number of
processes

number of
radial halo cells

number of radial
halo cells per process

number of radial
data cells per process

ratio of
halo to data cells

1 0 0 1152 0.00%
2 4 2 576 0.35%
4 12 3 288 1.04%
8 28 3.5 144 2.43%

16 60 3.75 72 5.21%
32 124 3.875 36 10.76%
64 252 3.9375 18 21.88%
96 380 3.9583 12 32.99%

Table 4.1: Halo to data cell ratio for a problem size of 1152 grid cells in latitudinal direction. The cells are
divided among the processes and at each process boundary (except for the real boundary) there is a layer of 2
halo cells, which are communicated to the neighbour at leastonce at every time-step iteration. From the table
can be seen that the halo to data cell ratio is increasing withthe number of used processes. If this ratio is too
large, too much communication in comparison to the calculation has to be done and therefor the simulation
slows down. This is the reason why this problem shows only good scalability up to about 32 processes, where
the halo to data cell ratio is already about 10%.
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Figure 4.1: Taylor-Couette Flow parallel Astro-GRIPS runs: executiontime on Helics II
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the scalability is at least 70-80%. Runs with lower scalability, but larger than 50%, still provide some increase
in speed, but very disproportional with respect to the number of used nodes. Scalability of under 50% means hat
the runs are slower than runs on less processes. In this plot one clearly sees that the Approximate Factorization
Method (AFM) is not so well suited for parallelization (since a lot of data communication between the processes
is necessary) whereas Krylov Subspace Iterative Methods are very well suited, because they basically only
consist of matrix-vector multiplication and maximum/minimum determination, which can be implemented very
efficiently in a parallel way. The downturn of the curves for morethan about 32 processes is caused by the bad
ratio between halo cells and real data cells on a single process which is a result of the too small problem size
of 144x1152 and increases the halo communication time. So that means that for small problems there exists
an optimal number of processes to run on and running on more processes may not help to increase the speed
effectively.





5 Test Problems and Applications

5.1 One-Dimensional Problems

In this section several one-dimensional test problems are presented, which in most cases are compared
with their analytical solution.
First on the Burgers’ equation is shown the shock capturing,the effect of artificial viscosity.
Then standard shock tube test problems are solved: the standard Newtonian Sod Shock Tube problem
is followed by its special relativistic counterpart.
To test the effect of radial pressure terms and gravity, first the Newtonianand then the general rela-
tivistic spherical Bondi accretion onto a central object ispresented.

5.1.1 Burgers’ Equation

With the solution of the Burgers’ equation it is shown the technique of shock capturing, the effect of
artificial viscosity to correct for the loss of energy at shock fronts due to the use of the internal energy
instead of the total energy equation.

The Burgers’ Equation is:

∂u
∂t
+ u

∂u
∂x
= ν

∂2u
∂x2 with ν = 10−3 (5.1)

In figure 5.1 starting from the initial conditiont = 0 (dark blue) a time series with timest = 0.2
(green), 0.4 (red) and 0.6 (light blue) can be seen.
On the left the velocity of the Burgers’ equation solved withthe explicit method without shock cap-
turing (αsh = 0) is plotted. One can clearly see the velocity oscillationsat the shock front.
The middle plot shows the same solution now with applied shock capturing withαsh = 1. The artifi-
cial viscosity can be seen in the right plot, which shows, that the artificial viscosity is only applied at
the shock front and smoothes out the occurring oscillations.
When using implicit methods with shock capturing which can be seen in figure5.2, one gets even
better results for the velocity distribution, since there are no oscillations at the shock front seen at
all.
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Figure 5.1: Burgers’ equation solved with the explicit method using a CFL number of 0.45 without (top) and
with shock capturing with alfsh=1 (middle) with corresponding artificial viscosity (bottom).
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Figure 5.2: Burgers’ equation solved with the implicit method with a CFLnumber of 0.45 without (top) and
with shock capturing with alfsh=1: velocity (top) and corresponding artificial viscosity (bottom).
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5.1.2 Shock Tube Problem

The Shock Tube problem describes a one-dimensional flow in a tube. As initial conditions a fluid is
separated by a diaphragm dividing it in left and right homogeneous states with different density and
pressure values. At the start time of the simulation the diaphragm is removed in no-time. Usually
the fluid is initially at rest in both parts, but due to the stepin density and pressure the fluid begins to
move and tries to cancel out the differences on the left and the right side. This problem, where one
has initially step functions of the state variables, is called Riemann Problem.

The Riemann Problem

The standard form of a conservation law is:

qt + f (q)x = b (5.2)

with vector of conservative statesq = q(x, t) ∈ Rm and flux-function f (q) andb denotes the source
terms, which should usually be zero for real conservation laws (but there can also occur geometrical
source terms due to a curved coordinate system).

Linearizing the flux functionf (q) = Aq, the corresponding linearized hyperbolic system is:

qt + Aqx = b (5.3)

with a m×m-matrix A, which is the (constant) Jacobian matrix of the flux function, and hasm right
eigenvectorsrp andm different real eigenvaluesλp; p = 1, 2, . . . ,mwith λ1 ≤ λ2 ≤ . . . λm, that means
the system is hyperbolic, and if the eigenvalues are all distinct one speaks of a strictly hyperbolic
system.

The initial data isq(x, 0) = q0(x).

Now remember the three-step principle of a Godunov type scheme (see page74): reconstruct-solve-
average.

First from cell-averaged values at each grid point one constructs the state (or flux) values at the cell
interfaces, and then at each interface local Riemann problems are solved. After that an average is
applied to get the new cell-averaged values at each grid point. Then one can continue with the next
time-step.

The Riemann problem is described by the above linearized hyperbolic system with following initial
conditions:

q(x, 0) = q0(x) =

{
ql : x < 0
qr : x ≥ 0

(5.4)

The left and the right state can be written in the basis of the eigenvalues ofA:

ql =

m∑

p=1

vl
prp (5.5)

qr =

m∑

p=1

vr
prp (5.6)
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The solution can be constructed by the method of characteristics:
the system of coupled equations can be transformed in a system with equations that are decoupled,
which is done by determining the eigenvalues and the eigenvectors of the Jacobian matrix of the flux
function. For each equation of that decoupled system the solution can be found very easily, since each
equation is a simple advection equation which advances the solution along the characteristics, in the
case of a linear system the solution is shifted with a constant speed.

The decomposed state vector is:

q(x, t) =
m∑

p=1

vp(x− λpt)rp (5.7)

Then from the initial conditions:

vp(x, 0) =

{
vl

p : x < 0
vr

p : x ≥ 0
(5.8)

the decoupled advection equations are advanced (with the speedλp):

vp(x, t) =

{
vl

p : x− λpt < 0
vr

p : x− λpt ≥ 0
(5.9)

P(x, t) should be the largest value ofp for which x− λpt > 0, then the solution is:

q(x, t) =
P(x,t)∑

p=1

vr
prp +

m∑

p=P(x,t)+1

vl
prp (5.10)

In each wedge of thex−t plane the solution is constant. At thep-th characteristics (the lines separating
the wedges), the solution jumps with a step of:

[q] = (qr − ql) = (vr
p − vl

p)rp (5.11)

For the flux function one gets:

[ f ] = ( f (qt) − f (ql)) = (vr
p − vl

p)Arp = A[q] = λp[q] (5.12)

whereλp is the speed with which thep-th jump is moving (thep-th discontinuity is propagating).
This condition is called the Rankine-Hugoniot jump condition.

Finally one gets for the solution of the Riemann problem:

q(x, t) = ql +
∑

λp<
x
t

(vr
p − vl

p)rp (5.13)

= qr −
∑

λp>
x
t

(vr
p − vl

p)rp (5.14)

For the Godunov type schemes now one has to apply an average toget the cell-averaged values at
each grid point. Due to the fact, that it is not allowed that the local Riemann solution overlaps with
the neighbouring Riemann solution, the time-step has to be limited:

∆t ≤ ∆x
2 max(|λp|)

(5.15)
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where max(|λp|) is the maximum of the largest modulus of the eigenvalues (characteristic speeds) at
each grid point.
This is a general constraint for Riemann solver based methods and is consistent with the CFL-
condition. It shows, that Riemann solvers are not suitable for implicit methods, which usually use
large timesteps, therefore other advection methods are used for implicit methods.

Shock Tube problem

This procedure to solve the Riemann problem can now be applied to the hydrodynamic Euler equations
to get the solution of the shock tube problem (actually it hasto be slightly modified since one solves
now a non-linear system of equation):

The eigenvalues of the 1D Euler equations with equation of state of an ideal gasP = (γ − 1)ρǫ are:

λ1 = u− a (5.16)

λ2 = u (5.17)

λ3 = u+ a (5.18)

which correspond to the flow speedu and two acoustic waves travelling with sound speed±a relative

to the flow. The sound speed can be calculated bya =
√

γP
ρ .

The solution can possess three different kind of waves, depending on the difference of the eigenvalues
of the left and the right state.
The characteristic frontSp which separatesql from qr is

• a contact discontinuity, ifλp(ql) = λp(qr )

• a shock wave, ifλp(ql ) > Sp > λp(qr )

• a rarefaction wave, ifλp(ql) < λp(qr )

For the 1D Euler equation one can get, depending on the initial conditions, four possible solutions:

1. a rarefaction wave moving to the left and a shock travelling to the right.

2. a shock travelling to the left and a rarefaction wave moving to the right.

3. two rarefaction waves, one moving to the left and one to theright.

4. two shocks, one propagating to the left and one to the right.

All left and right states are separated by a contact surface.

In the case of non-linear systems, which for example the Euler or Navier-Stokes equations are, the
construction of the solution is a little bit more complicated because additionally one has to fulfil the
so-called entropy condition across the discontinuities toget the right physical weak solution (see for
example:Leveque 1998).
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Sod Shock Tube Problem

In 1978 Sod (Sod 1978) compared different numerical methods applied to the shock tube problem.
Since then this problem with his initial conditions is used as a general test problem for hydrodynami-
cal simulation codes.

The Sod Shock Tube Problem is a Riemann problem with following initial conditions:




ρL

PL

uL


 =




1

1

0


 for x < 0.5,




ρR

PR

uR


 =




1
8
1
10

0


 for x ≥ 0.5. (5.19)

Using Sod’s initial conditions for the Shock Tube Problem one gets following results (see figure
5.3):

• a rarefaction wave moving to the left,

• a contact discontinuity propagating slowly to the right,

• a shock wave travelling fast to the right.

Simulation results:

For all simulations a domain of [0,1] (or a domain of [1000,1001] in radial direction to minimize
curvature effects due to the spherical grid) and 400 grid cells were used. As equation of state (EoS)
an ideal gas withγ = 1.4 was selected. The final integration time was set to 0.2.

In figures5.4 and5.5 the Sod Shock Tube Problem is solved with PLUTO (Mignone et al. 2007), a
very flexible, well-documented and user-friendly explicitsolver for Newtonian and special relativistic
Astrophysical (magneto-) hydrodynamic flows. In figure5.4one sees the optimal solution, whereas in
5.5 the instability problems of some explicit methods (Euler type time-stepping, linear interpolation)
even for CFL numbers smaller than one is demonstrated.

In figure 5.6 the Sod Shock Tube problem is solved with Astro-GRIPS using the explicit method.
Since the internal energy equation is used, one has to tune the shock capturing parameterαsh to an
appropriate value.

Figure5.7shows the result obtained with Astro-GRIPS using an implicit method using the third order
spatial van Leer advection scheme, a Crank-Nicolson numberof ϑCN = 0.75 and a CFL number of 0.8,
where the artificial viscosity parameterαsh was set to a suitable value to account for the correction of
the energy loss due to the internal energy formulation. Note, that since this is a highly time-dependent
problem a higher CFL number was not used here due to physical accuracy, although it would not
result into numerical instabilities.

For better comparison the analytic solution for all variables is plotted together with the simulation
results in one plot. This shows that Astro-GRIPS can reproduce Sod’s solution with high accuracy.
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Figure 5.3: Riemann problem: In the top plot the initial condition, a step in density and pressure at point xD

usually with zero velocity, in the middle plot the solution and in the bottom plot the Riemann fan in the x− t
plane, which describes the time-development of the solution, is shown. The density (dashed-dotted line), the
pressure (solid line) and the velocity (dotted line) are shown. There are 5 regions of the solution: region 1
contains the unperturbed left state, region 2 consists of the rarefaction wave travelling to the left, region 3 and
4 are separated by a jump in the density, the contact discontinuity, but have constant pressure and velocity, The
front of the shock separates region 4 and the unperturbed right state in region 5. Note that this plot is for the
solution of the Special Relativistic Riemann Problem, in the Newtonian case the shape of the rarefaction wave
is not very curved, but almost linear instead! (plot for the Special Relativistic Riemann Problem fromMartí
and Müller(2003))
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Figure 5.4: Sod Shock Tube from Pluto test gallery: Time stepping with charact. tracing, Interpol.: parabolic
on primitive variables, Riemann Solver: two-shock, CFL=0.8
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Figure 5.6: Sod Shock Tube problem solved with Astro-GRIPS using the explicit method, third order in space
and second temporal order with shock capturingαsh=32 and CFL=0.4 (for CFL> 0.55 the solution is oscillat-
ing very much or the code is aborted due to negative pressure)
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Figure 5.7: Sod Shock Tube problem solved with Astro-GRIPS using the implicit method, third order in space
and second temporal order with shock capturingαsh=1 and CFL=0.8.
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Figure 5.8: Sod Shock Tube Problem simulations performed with Astro-GRIPS using different spatial orders,
different artificial viscosity and different number of grid cells.
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5.1.3 Relativistic Shock Tube Problem

With the Relativistic Shock Tube Problem the non-linear wave advection and the conservation laws
of one-dimensional special relativity (without gravity) can be tested.

For the Relativistic Shock Tube Problem now the specific internal energyǫ can be large, and does
not have to be small as in the Newtonian case:ǫ ≪ c2. The speed of the shocks in the Newtonian
Shock Tube Problem can be made arbitrary large, depending onthe initial ratio of the pressure in the
tube. While non-relativistic solvers may produce propagating velocities that exceed the speed of light,
a conservative and accurate relativistic solver produces velocities that can be extremely close to but
never exceed the speed of light and therefore the flow can havea very high Lorentz numberΓ.

The initial conditions of the simulations in figure5.9and following figures are:


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 for x ≥ 0.5. (5.20)

where the factorf is changed to get different maximum Lorentz factors:
for figure5.9: f = 1, which results in a maximum Lorentz factorΓmax≈ 1.4,
for figure5.10: f = 10, Γmax≈ 2.3, figure5.11: f = 100, Γmax≈ 3.8,
figures5.12, 5.13, 5.14and5.15: f = 1000, Γmax≈ 6.8 and for figure5.16: f = 100000, Γmax ≈ 21.
In the simulations an equation of state of an ideal gas with adiabatic indexγ = 5

3 was used.

The simulations were run up to a time of 0.2 and, since this is a very time-dependent problem and to
be sure, that there are no numerical instabilities due to theCFL condition are occurring, a maximum
CFL time step of 0.4 was used.
The equations were solved with an implicit method using the Black-White Line-GaußSeidel method
for the solution of the linear matrix equations with 5 globaliterations using the implicit operator
splitting (IOS) technique with the equation order 2, 1, 5: first radial momentumm equation, then the
continuity equation and finally the energy equation are solved in each global iteration step.
The spatially third order van Leer advection scheme (Iordrr = 93) and a non-unity Crank-Nicolson
numberϑCN , 1 was used, so explicit and implicit methods were mixed. The artificial viscosity
parameterαsh and the Crank-Nicolson numberϑCN were varied to find the best solutions which are
presented here.

For one-dimensional special relativity (ISR=1 and IGravity=0) in Astro-GRIPS the metric entries are
set to:gtt = −1, gtφ = gφt = 0, grr = gθθ = gφφ = 1
and to get a 1D radial solution one sets in the parameter file:
SolMethod_dir R

Since up to now Astro-GRIPS uses only spherical shaped cellsin the calculation of the volumes/areas
and interface areas/lines, one has to use a large radius (e.g. 1000 or larger) together with a small
radial computational domain (e.g. 1) to approximate a Cartesian behaviour in the one-dimensional
simulations.

For the calculation of the Lorentz factorΓ in these simulations a mixed scheme is applied where
conservative and primitive variables are used. Another scheme uses only the conservative variables
and can be easily switched on by a flag in the parameter file (calcLorentz_Type Lorentz_mixed or
calcLorentz_Type Lorentz_cons).
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The analytic solution is constructed using the Fortran program riemann.f byMartí and Müller(2003)
where also the derivation of the analytic solution is described.

Compared to the Newtonian case the maximum compression ratio of the gas in not limited anymore
and thus in the relativistic case it is much more difficult to numerically determine the solution due to
the appearance of stronger shock discontinuities.

Note that in these simulations the pressure and energy density is not artificially limited to floor values
at each cycle to ensure only positive values, as for example is done inAnninos and Fragile(2003).
For the right artificial viscosity and Crank-Nicolson parameters there is no need to limit any variables
to floor values.

The higher the initial pressure ratio is, the thinner the density shock feature and the higher the maxi-
mum Lorentz factor gets. So for very large initial pressure ratios one has to use an enormous fine grid,
so that the extremely thin density shock feature is resolvedwell. The lack of spatial resolution is the
cause for the density undershoot in the simulations and therefore also the Lorentz factor might not be
calculated well enough.

That is probably the reason, whyAnninos and Fragile(2003) have only performed simulations of
the relativistic shock tube problem for maximum Lorentz factors of about 1.43 and 3.59. They used
another problem to test their explicit Cosmos code for largeLorentz factor flows: the Relativistic Wall
Shock Problem.

Explicit methods are not able to handle these type of flows with strong shocks and very high Lorentz
factors, due to the strong nonlinearity of the equations. There are various explicit codes, which will
break down for high Lorentz factors, e.g. PLUTO (http://plutocode.to.astro.it), which gives
usually very good results, breaks down for Lorentz factors that are larger than about 15 (Hilscher
2009).

http://plutocode.to.astro.it
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Figure 5.9: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 1.4; non-uniform grid
distribution with 402 grid points corresponding in the relevant region to a uniform grid of 1000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 2.0 and a Crank-Nicolson
factorϑCN = 0.6
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Figure 5.10: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 2.3; non-uniform grid
distribution with 402 grid points corresponding in the relevant region to a uniform grid of 1000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 2.0 and a Crank-Nicolson
factorϑCN = 0.55
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Figure 5.11: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 3.8; non-uniform grid
distribution with 402 grid points corresponding in the relevant region to a uniform grid of 1000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 2.5 and a Crank-Nicolson
factorϑCN = 0.6



5.1 One-Dimensional Problems 145

0.0 0.2 0.4 0.6 0.8 1.0
x

0

20

40

60

80

100

120

140

D
ro

Analytic solution

402 grid points; CFL = 0.40

(a) Relativistic Density D= ρΓ

0.0 0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

6

7

Lo
re

n
tz

 F
a
ct

o
r

Analytic solution

402 grid points; CFL = 0.40

(b) Lorentz FactorΓ = ut

c

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20

D
e
n
si

ty

Analytic solution

402 grid points; CFL = 0.40

(c) Densityρ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

V
e
lo

ci
ty

Analytic solution

402 grid points; CFL = 0.40

(d) Velocity V

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2000

4000

6000

8000

10000

12000

14000

P
re

ss
u
re

Analytic solution

402 grid points; CFL = 0.40

(e) Pressure P

0.0 0.2 0.4 0.6 0.8 1.0
x

0

500

1000

1500

2000

In
te

rn
a
l 
E
n
e
rg

y

Analytic solution

402 grid points; CFL = 0.40

(f) Internal Energyǫ = 1
γ−1

P
ρ

Figure 5.12: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 6.8; non-uniform grid
distribution with 402 grid points corresponding in the relevant region to a uniform grid of 1000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 1.0 and a Crank-Nicolson
factorϑCN = 0.65
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Figure 5.13: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 6.8; non-uniform grid
distribution with 802 grid points corresponding in the relevant region to a uniform grid of 2000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 2.5 and a Crank-Nicolson
factorϑCN = 0.6
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Figure 5.14: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 6.8; non-uniform grid
distribution with 1602 grid points corresponding in the relevant region to a uniform grid of 4000 cells between
0 and 1; the optimal solution is obtained for an artificial viscosity parameterαsh = 1.5 and a Crank-Nicolson
factorϑCN = 0.6
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Figure 5.15: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 6.8;logarithmic plots
(except for velocity); non-uniform grid distribution with 1602 grid points corresponding in the relevant region
to a uniform grid of 4000 cells between 0 and 1; the optimal solution is obtained for an artificial viscosity
parameterαsh = 1.5 and a Crank-Nicolson factorϑCN = 0.6
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Figure 5.16: Relativistic Shock Tube Problem with maximum Lorentz factor of approx. 21;logarithmic plots
(except for velocity); non-uniform grid distribution with 1602 grid points corresponding in the relevant region
to a uniform grid of 4000 cells between 0 and 1; the optimal solution is obtained for an artificial viscosity
parameterαsh = 0.125and a Crank-Nicolson factorϑCN = 0.625
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5.1.4 General Relativistic Spherical Accretion

The general relativistic steady-state spherical symmetric accretion onto a Schwarzschild black hole
or neutron star is essentially a one dimensional radial problem to test the right implementation of the
gravity terms in the general relativistic solver.

Bondi(1952) described the analytical solution to the Newtonian spherical accretion andMichel (1972)
extended this to the general relativistic spherical accretion onto a Schwarzschild black hole. The
solution is similar to that of Parker’s solar wind model as itis also a sonic point flow, but here in the
opposite direction: from outwards to inwards. From the outer subsonic inflow there is a transition to
a supersonic inflow at a critical radius, the so-called critical or sonic point.

In figure 5.17c the analytic solution of fig. 1 ofMichel (1972) is reproduced (using a self-written
python-script).

For the simulation the same parameters as inMichel (1972): fig. 1 are used: The velocity at the
critical pointvc = 4.6 · 10−5 c, which is located at the radiusrc = 2AU ≈ 2.29 · 108 rg. The mass of
the central object isMBH ≈ 0.884M⊙. The adiabatic (polytropic) index is that of an ultra-relativistic
plasmaγ = 4

3 (n = 1
γ−1 = 3). This gives an asymptotic gas temperature at infinity of 10−9 mp c2/kB ≈

10−9 · 1013 K = 104 K

For the simulations the innermost part, fromr in = 2.2 rg to rout = 10.0 rg, of this solution is simulated
using the polytropic equation of state as in the analytic solution only solving the continuity equation
and the radial momentum equation coupled.

Some other simulations were performed using the ideal gas law and therefore additionally solving the
internal energy equation.

At the outer radial boundary atr = rout = 10.0 rg the analytic values of the conservative variables were
set (taking into account the staggered grid structure) for auniform grid of 64 cells in code units:

DRout = 10.240 (5.21)

mRout = −5.785 (5.22)

ǫd
Rout = 2.470· 10−4 (5.23)

As initial conditions a homogeneous density ofρ ≈ 8.2 · 10−9 g
cm3 and a temperature ofT ≈ 4.355 ·

107K, which gives a pressure ofP ≈ 6.0 · 107 g cm2

s2 = 6.0 · 107 dyn
cm2 = 60bar = 6.0 · 106 Pa, corre-

sponding to the analytic outer boundary values at 10rg and zero velocity was used. Here the pres-

sure was calculated from the temperature using the relationP = Rgas

µgas
ρT with the molecular mass

(molecular weight)µgas= 0.5 · 10−3kg/mol = 0.5g/mol (for ionized hydrogen) and the gas constant
Rgas= 8.34472J/(Kmol) = 8.314472· 107erg/(Kmol).

Whereas at the inner boundary atr = 2.2 rg = 1.1 rS S zero gradient of the primitive variablesρ,VEr ,P
were used (zero gradient of the conservative variables gives not so good results).
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The used scaling variables are:

RDim = 130566.75 cm= rg (5.24)

ρDim = 1.0 · 10−9 g
cm3 (5.25)

VDim = 29979245800.0
cm
s
= c (5.26)

TDim = 1.0 · 109 K (5.27)

Time is then scaled bytimeDim = RDim/VDim =
rg

c ≈ 4.355 · 10−6s = 4.355 µs, pressure and energy
densities byρDim · V2

Dim = ρDim · c2 ≈ 8.988· 1011 g
cms2 = 8.988· 1011 erg

cm3 = 8.988· 1010 J
m3 .

Figures5.18, 5.19 and 5.20 show the excellent numerical results in comparison with theanalytic
solution for 64, 128 and 256 uniform grid cells for the polytropic equation of state and figure5.21
the results for 256 uniform grid cells in the case of an ideal gas law, where additionally the internal
energy equation was solved.

In figure5.22one sees the huge difference in the vicinity of the black hole, where the redshift factor
α plays a big role, between the Boyer-Lindquist coordinate observer located at infinity fixed to the
grid and the local Euler frame observer: The pseudo Lorentz factor of the Boyer-Lindquist observer
Γ = ut

c and the corresponding velocityVr and the local Lorentz factorW = αut

c in the Euler frame
with the velocityVEr , which gives from the point of the fluid a more natural and intuitive description:
the radial velocity in the local Euler framevEr will approach the speed of lightc at the event horizon,
which is located at the Schwarzschild radiusrS S = 2 rg; so there the local Lorentz factorW will be
infinity.

Some log variables are plotted in figure5.23: In figure 5.23athe maximum of the moduli of the
residuum ofm is plotted, which is a measure of how good the linear equationsystem is solved. Note
that here the values are always below 10−5, the requested accuracy set by the the ’acc’ option in the
SolMethod parameter in the parameter file. In figure5.23bthe maximum of the moduli of the RHS
of the radial momentum equation is plotted versus the simulated physical time, which is a measure of
how far away the solution is from the steady-state. If this parameter is tiny the steady-state solution is
reached.
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Figure 5.17: General Relativistic Spherical Accretion analytic solution of a own written python script repro-
ducing the results ofMichel (1972): fig. 1



5.1 One-Dimensional Problems 153

2 3 4 5 6 7 8 9 10
r/rg

0

10

20

30

40

50

60

70

80

90

D
64 grid points
Analytic solution

(a) Densityρ

2 3 4 5 6 7 8 9 10
r/rg

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
re

n
tz

 F
a
ct

o
r 

W

64 grid points
Analytic solution

(b) Lorentz Factor W= αΓ = α ut

c

2 3 4 5 6 7 8 9 10
r/rg

E1.0

E0.9

E0.8

E0.7

E0.6

E0.5

E0.4

V
E
r

64 grid points
Analytic solution

(c) Velocity VEr

2 3 4 5 6 7 8 9 10
r/rg

0.04

0.05

0.06

0.07

0.08

0.09

0.10

T

64 grid points
Analytic solution

(d) Temperature T

2 3 4 5 6 7 8 9 10
r/rg

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

P
r

64 grid points
Analytic solution

(e) Pressure P

2 3 4 5 6 7 8 9 10
r/rg

0.000020

0.000025

0.000030

0.000035

0.000040

0.000045

0.000050

0.000055

In
te

rn
a
l 
E
n
e
rg

y

64 grid points
Analytic solution

(f) Internal Energyǫ = 1
γ−1

P
ρ

Figure 5.18: General Relativistic Spherical Accretion: analytic and numerical solution of Astro-GRIPS using
the polytropic equation of state and64 uniform grid cells



154 5 Test Problems and Applications

2 3 4 5 6 7 8 9 10
r/rg

0

10

20

30

40

50

60

70

80

90

F
128 grid points
Analytic solution

(a) Densityρ

2 3 4 5 6 7 8 9 10
r/rg

1.0

1.5

2.0

2.5

3.0

3.5

Lo
re

n
tz

 F
a
ct

o
r 

W

128 grid points
Analytic solution

(b) Lorentz Factor W= αΓ = α ut

c

2 3 4 5 6 7 8 9 10
r/rg

G1.0

G0.9

G0.8

G0.7

G0.6

G0.5

G0.4

V
E
r

128 grid points
Analytic solution

(c) Velocity VEr

2 3 4 5 6 7 8 9 10
r/rg

0.04

0.05

0.06

0.07

0.08

0.09

0.10

T

128 grid points
Analytic solution

(d) Temperature T

2 3 4 5 6 7 8 9 10
r/rg

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

P
r

128 grid points
Analytic solution

(e) Pressure P

2 3 4 5 6 7 8 9 10
r/rg

0.000020

0.000025

0.000030

0.000035

0.000040

0.000045

0.000050

0.000055

In
te

rn
a
l 
E
n
e
rg

y

128 grid points
Analytic solution

(f) Internal Energyǫ = 1
γ−1

P
ρ

Figure 5.19: General Relativistic Spherical Accretion: analytic and numerical solution of Astro-GRIPS using
the polytropic equation of state and128 uniform grid cells
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Figure 5.20: General Relativistic Spherical Accretion: analytic and numerical solution of Astro-GRIPS using
the polytropic equation of state and256 uniform grid cells
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Figure 5.21: General Relativistic Spherical Accretion: analytic and numerical solution of Astro-GRIPS using
the ideal gas lawand the internal energy equation and256 uniform grid cells
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Figure 5.22: The differences between the Boyer-Lindquist coordinate observer frame, an observer at infinity
fixed to the grid, (plots on the left) and the local Euler fluid frame (plots on the right).
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Figure 5.23: Some log variables for the simulation run of the general relativistic spherical accretion with
polytropic equation of state and 256 grid cells.
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5.2 More-Dimensional Problems

5.2.1 Taylor Couette Flow

The Taylor-Couette Flow problem is a well known more-dimensional problem in computational fluid
dynamics to test the (Newtonian) Navier-Stokes equations (without gravity).

In the usual Taylor–Couette flow a viscous fluid is moving between two rotating cylinders. At low
angular velocities, where the fluid shows a circular Couetteflow, this setup was used by Couette to
determine the viscosity of fluids.

Taylor(1923) described the instabilities, which occur for higher angular velocities of the inner cylinder
in the circular Couette flow. First one gets Taylor vortices,then more complicated wavy vortex flows
and at a certain high enough Reynolds number there is the onset of turbulence.

Here a Taylor-Couette Flow is simulated in 3D axi-symmetry between two concentric spheres instead
of the usual cylinders. The inner radius isRin = 1 and the outer radius isRout = 1.2 and the latitude
θ ranges only from 0 toπ2. For the simulation 144x1152 grid cells, a 3rd order spatialand 1st order
temporal accurate scheme, an adiabatic index ofγ = 5

3 and at the polar axis and the equator reflecting
boundaries are used and the inner and outer sphere is handledas a rigid wall, which means that there
are also reflecting boundaries applied. The outer sphere is left staticΩout = 0, whereas the inner
sphere is rotating with an angular velocity ofΩin = 5. The simulation is started with an initially linear
Ω-distribution. The viscous fluid has an initial density of one and a temperature of 10, the turbulent
viscosity parameter was set toαtr = 0.05 or 0.01. The scale of the turbulent velocity was set to be
equal to the sound speed (Vtur = Vs) and the turbulent length scale to half the gap space:Ltur = 0.1.

The turbulent viscosity is defined as:

ν = αtrVturLtur (5.28)

and the Reynolds number for this flow can be calculated as:

Re=
|∆Ω|Rin|∆R|

ν
=
|Ωout −Ωin|Rin|Rout − Rin|

ν
(5.29)

which for the aforementioned parameters is≈63 forαtr = 0.05 for the non-turbulent case in fig.5.24
and≈316 forαtr = 0.01 for the turbulent case in fig.5.25.

This problem was also used to test the parallelization of Astro-GRIPS, which is described in the
section4.5about parallelization on page123.
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Figure 5.24: Laminar Taylor-Couette Flow withαtr = 0.05 (Re≈63): Ω-distribution and velocity arrows
(arctan scaling)

Figure 5.25: Turbulent Taylor-Couette Flow withαtr = 0.01 (Re≈316): Ω-distribution and velocity arrows
(arctan scaling)
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5.2.2 General Relativistic Standing Shocks at Cold Discs ar ound Black Holes

In this two dimensional problem a elsewise spherically infalling flow forms a standing shock at a cold
disc around a Schwarzschild black hole. The plasma surrounding the disc is taken to be inviscid,
thin, hot and non-rotating. This flow configuration is similar to the forward facing step problem in
computational fluid dynamics.

For this simulation a cold and dense disc has been placed in the innermost equatorial region. It is a
region, where no equations are solved and which acts like a reflecting barrier for the elsewise radial
inflow, so a curved standing shock is formed.

The computational domain reaches from an inner radius at 2.2 rg = 1.1 rS S to an outer radius of
10.0 rg = 5.0 rS S, whereRg =

GM
c2 is the gravitational radius andRS S = 2Rg the Schwarzschild radius,

and inθ direction from zero (midplane) to 90 degrees (polar axis).

The same parameters as for the general relativistic spherical accretion (see5.1.4) were used.

The cold disc, the region where nothing is calculated, extends out to a radius of 6.0 rg = 3.0 rS S and
has an angle above the midplane of 10 degrees.

At the outer radial boundary there are set fixed boundary conditions as in the case of the general
relativistic spherical accretion and the latitudinal velocity is set to zero there. At the inner radial
boundary there are zero gradient boundary conditions for the conservative variables except for the
latitudinal velocity which was fixed to zero. In the midplanethere are set symmetric and at the polar
axis are set axi-symmetric boundary conditions.

As equation of state an ideal gas law with an adiabatic coefficient of γ = 4
3 for an ultra-relativistic

plasma was used.

The steady state solution was obtained with a fully coupled system solved with the AFM method
using a 3rd order spatial van Leer advection scheme and a Crank-Nicolson numberϑCN = 0.5, which
results in second order temporal accuracy.

Figures5.27, 5.28and5.29show the density, velocity arrows, velocity components of the local Euler
frame, the pressure and the temperature distribution of thesteady state solution on a uniform 64x64
grid. One clearly sees the standing shock around the cold disc.

These numerical results show that the simulation code is also capable of simulating 3D axi-symmetric
general relativistic flows.
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Figure 5.27: General Relativistic Standing Shock at a Cold Disc around a Schwarzschild Black Hole: Astro-
GRIPS simulation with a uniform grid size of 64x64 cells: density in code units and velocity arrows (arctan
scaling)
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Figure 5.28: General Relativistic Standing Shock at a Cold Disc around a Schwarzschild Black Hole: Astro-
GRIPS simulation with a uniform grid size of 64x64 cells: radial and latitudinal velocity components in the
local Euler frame in units of the speed of light.
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Figure 5.29: General Relativistic Standing Shock at a Cold Disc around a Schwarzschild Black Hole: Astro-
GRIPS simulation with a uniform grid size of 64x64 cells: pressure and temperature in code units.



6 Summary and Conclusion

In this thesis the importance of general relativistic effects and the necessity for implicit methods
especially in the simulation of accretion flows in the vicinity of compact objects and the jet launching
process is pointed out.

For that purpose — as a first step — the user-friendly implicitsimulation code Astro-GRIPS, the
General Relativistic Implicit Parallel Solver, was developed, which solves the three-dimensional axi-
symmetric general-relativistic hydrodynamic Euler- or Navier-Stokes equations under the assumption
of a fixed background metric of a Schwarzschild or Kerr black hole using time-implicit methods. It is
an almost total re-write of an old spaghetti-code like serial Fortran 77 simulation program. By mod-
ernisation and optimization it is now a modern, well structured, user-friendly, flexible and extensible
simulation program written in Fortran 90/95.

The general relativistic hydrodynamic Euler- and Navier-Stokes equations were derived under the
assumption of a fixed background metric of a Schwarzschild orKerr black hole using Boyer-Lindquist
coordinates. According to the finite volume method a 3D axi-symmetric staggered grid discretization
was performed using the internal energy formulation. This was done in such a way that it is easy to
reduce the system to the usual Newtonian equations. Different equations of state can be used to close
the system: ideal gas, polytropic, isothermal and an approximation of the Synge equation of state, a
generalization of the ideal gas law to correctly describe the region between the Newtonian (γ = 5/3)
and the ultra-relativistic (γ = 4/3) flow states. Also a tabulated equation of state could be easily
included.

For the solution of the hydrodynamic Euler equations without diffusion and without sophisticated ra-
diative effects for time-dependent compressible flows explicit methods are very well suited. But to
simulate a very complex flow with magnetic fields, diffusive and viscous effects (Navier-Stokes equa-
tions) and with atomic and chemical reactions with radiative transfer taken into account, one has to
use the numerically unconditionally stable implicit methods: In contrast to explicit methods, implicit
methods are not numerically limited by the Courant-Friedrichs-Lewy (CFL) time step size, and so
simulations with physical phenomena, that posses various different time scales, are possible without
stagnation. In the future implicit methods can also help to overcome the so-called "time-step crisis"
in gravitational collapse simulations (but therefor one has to implement a Poisson solver in the New-
tonian case or solve the Einstein’s field equations in the general relativistic case). Another advantage
of implicit methods is that there is a tighter coupling of theequations, which is very important for an
accurate description of non-linear effects.

The system of large sparse linear equations, which is constructed for the implicit method, is solved
with the defect-correction iteration procedure using the Black-White Line-Gauß-Seidel (BW-LGS),
the Approximate Factorization Method (AFM) or the Krylov Subspace Iterative Methods (KSIMs)
like GMRES, BiCGSTAB and TFQMR. The equations can be solved sequentially (the implicit oper-
ator splitting approach) or solved together as one large coupled system. It is also possible to group
some equations together and solve them with one method and the other equations with another method.
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Here a superior feature of Astro-GRIPS is the large flexibility in choosing the solution coupling and
method by only changing one line in the parameter file, the SolMethod parameter. The hierarchical
solution scenario (HSS), the gradual enhancement of the equation coupling, can be used together with
the restart possibility and the prolongation to a finer grid,to find a stationary or a quasi-stationary
state more quickly.

The optimization of the matrix construction by function calls, and separating the pure Jacobian el-
ement calculation from the calculation of the matrix elements, where the boundary conditions are
additionally be considered, makes the algorithm better maintainable and extendable. Now the matrix
elements are directly calculated during the fill-in of the matrix structure of the selected method. This
optimization results in a faster matrix construction compared to the before used calculate and copy
approach and was a necessary step for the parallelization.

Large amount of time was spent to perform the MPI-parallelization for distributed (and shared) mem-
ory machines. Here a domain- and matrix-decomposition withhalo cell communication was imple-
mented and the ScaLAPACK band matrix solver is used in the parallel implementation of the BW-
LGS and AFM methods. When the program is compiled with PETSc support, then the interface to use
the PETSc-library is compiled in and the full range of KrylovSubspace Iterative Methods (KSIMs,
KSP) with preconditioners from PETSc can be used, but if one has no PETSc library one can already
use BW-LGS and AFM. The efficient scaling of the algorithm was shown. As expected, the KSIM
show the best scaling, BW-LGS is not suitable for all problems and AFM cannot be parallelized very
efficiently due to its two-step algorithm in the two different directions, where the matrix has to be
re-ordered in-between, which results in large communication costs.

Many improvements were applied to the simulation program totry to make the code usage very easy
and comfortable:
After setting up some environment variables using a small shell script (this step is usually only done
once), one can easily configure the code using a configure script, which has several options e.g. to
change the used compiler and library paths, to request a debug compilation or MPI parallel mode
and PETSc support. For each problem there is a separate directory with a problem dependent sr-
c/Setup.F90 file, which contains the initial conditions (and special boundary conditions when nec-
essary) and one or more parameter files, where one can specifyalmost all parameters used for a
simulation run. This has the advantage that one can change many parameters of a simulation without
re-compiling the code.
For serial and parallel data input and output the NetCDF dataformat, a portable standard binary data
format, is used. This format is better than ASCII-data output, which is large, and better than direct
binary-data, which is not portable. There are many data manipulation and analysing programs and
visualization tools available which can handle NetCDF data. To have an easy start in visualization
one can either use netcdf viewers like ncview or the suppliedpython scripts, which use matplotlib for
the visualization.

It was shown that Astro-GRIPS was able to solve special relativistic shock tube problems for Lorentz
factors up to at least about 21 although the numerical algorithm solving the internal energy equation
with the use of artificial viscosity to replace the lost energy at shock fronts is not so well suited
for shock problems than the high resolution shock capturing(HRSC) schemes, which are solving
Riemann problems and are therefore especially adapted for shock problems by construction. The
general relativistic spherical accretion shows that the general relativistic source terms are implemented
right and that the code is capable of finding a general relativistic steady state. The two-dimensional
Taylor-Couette problem, where here one looks at a viscous flow between two concentric spheres
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instead of the usual cylinders, where one is static and one isrigidly rotating, shows the laminar and
turbulent behaviour of such systems and is an application ofthe Newtonian Navier-Stokes equations.
The 2D simulation of the elsewise spherical accretion flow around a static cold disc in the case of a
Schwarzschild black hole is shown. There one gets a shock around the disc, like in the forward facing
step model in computational fluid dynamics.
These test problems show that the simulation code is workingright and that it can now be applied to
more complicated problems.

Possible further developments of Astro-GRIPS in the futuremay include:

• use of Kerr-Schild instead of Boyer-Lindquist coordinates
to overcome the potential problems of Boyer-Lindquist coordinates near the black hole, espe-
cially in the ergosphere.

• use of the total energy formulation (might be better for someproblems, but it might be more
difficult to construct the Jacobian for the implicit method)

• further test problems, e.g. for dissipative general relativistic flows (Navier-Stokes equations)

• general relativistic magneto-hydrodynamics (MHD)
with several methods to ensure the div~B = 0 constraint.

• non-ideal general relativistic MHD: reconnection, ohmic heating, Hall term

• include different cooling and heating processes or approximations thereof, for example relativis-
tic bremsstrahlung, heat conduction or synchrotron emission, which should be easy to include
since the internal energy equation is used. These thermodynamical relevant processes are con-
sidered to be very relevant e.g. in polar accretion onto neutron stars, X-ray bursts and GRBs.
They are mostly not considered up to now, since most of the Astrophysical solvers are only
time-explicit and therefore have problems with the different timescales of such problems com-
pared to the hydrodynamical timescale. Here implicit methods are best suited to overcome this
time-step problem.

• add Newtonian and general relativistic radiative transferequations (gray approximation and
frequency dependent)

• extend the system of equations to multi-component plasmas:
In situations where the cooling and heating processes around compact objects like black holes
or neutron stars posses timescales that are longer than the corresponding dynamical time scale,
electrons and ions of the plasma may decouple thermally and therefore creation and annihilation
processes must be taken into account more frequently. Such situations can occur for example in
the ergosphere of a Kerr black hole or in boundary layers and at the polar caps of neutron stars.
Astro-GRIPS is designed in such a way, that it is relatively easy to add further equations to it.
Therefore the implementation of such multi-component equations should be straightforward, if
one has calculated the Jacobian entries needed for the implicit solver.

• include atomic and chemical networks

• extend to fully 3D (or 4D in the case of frequency dependent radiative transfer)

• non-fixed spacetimes (coupling with solution of Einstein’sfield equations or with some approx-
imations thereof)



168 6 Summary and Conclusion

Astro-GRIPS, the GeneralRelativistic Implicit Parallel Solver, the numerical simulation code de-
scribed here, is a fully implicit solver for flows in general relativistic Astrophysics, that is parallelized,
can be used very flexible and runs on various computer platforms. Due to the implicit method the code
is unconditionally stable and takes into account the coupling of equations and therefore the non-linear
behaviour of the fluid flows.

With the Hierarchical Solution Scenario (HSS) which consists of the gradual coupling of the equa-
tions, one has a powerful method for quickly finding quasi-stationary solutions.

The development of such an implicit simulation code is important to advance the numerical simula-
tion techniques in Astrophysical Fluid Dynamics, so that one has the basis to include and study the
influence of interesting physical aspects: magnetic fields,radiative processes, heating and cooling and
atomic and chemical reactions (all in Newtonian as well as ina general relativistic formulation).

The aim is to understand the nature of the flows around compactobjects, especially the formation
and acceleration of ultra-relativistic multi-component plasma MHD-jets around spinning black holes
and other ultra-compact objects and finally compare the numerical results with Astrophysical obser-
vations.
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