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Zusammenfassung

In dieser Arbeit wurde das Simulationsprogramm Astro-GRIéer General Relativistic Implicit Par-
allel Solver, entwickelt, der die dreidimensional axiatsyetrischen allgemein-relativistischen hydro-
dynamischen Euler und Navier-Stokes Gleichungen mit fddtetergrunds-Metrik eines Schwarz-
schild oder Kerr Schwarzen Loches mit impliziten Methodést.|Es ist eine fast vollstandige Neu-
auflage eines alten 'Spaghetti-Code’ artigen serielletr&o77 Simulationsprogrammes. Durch Mo-
dernisierung und Optimierung ist ein modernes, gut strigties, benutzerfreundliches, flexibles und
erweiterbares Simulationsprogramm in Fortraf@8Centstanden. Die Diskretisierung nach dem Fini-
te Volumen Verfahren gewéhrleistet die Erhaltungseigeaiten der Gleichungen und die Methode
der iterativen Defekt-Korrektur wird benutzt um die Niéhdaritaten aufzulésen. Es enthalt verschie-
dene Losungsverfahren von rein explizit zu voll implizite ¢is zur dritten Ordnung im Raum und
zweiten Ordnung in der Zeit genau sind. Die groRen dinn biesetinearen Gleichungssysteme,
die bei den impliziten Methoden aufgestellt werden, konmaéinder Black-White Line-Gaul3-Seidel
Relaxationsmethode (BW-LGS), der Approximate FactoidratMethode (AFM) oder den Krylov
Unterraum-Methoden wie GMRES geldst werden. Die beste hgsmethode und der Grad der Glei-
chungskopplung hédngen vom Problem ab. Die Optimierung deicikdingssystem-Aufstellung, die
MPI-Parallelisierung fur Computersysteme mit verteiltémbeitsspeicher und einige Newtonsche
und relativistische Testrechnungen wurden erfolgreiatchyefihrt.

Abstract

In this work the development of the simulation code AstrolBR the General Relativistic Implicit
Parallel Solver, is performed, which solves the three-disienal axi-symmetric general relativistic
hydrodynamic Euler or Navier-Stokes equations under teamption of a fixed background metric
of a Schwarzschild or Kerr black hole using time-implicit thneds. It is an almost total re-write of
an old spaghetti-code like serial Fortran 77 simulatiorgpon. By modernization and optimization
it is now a modern, well structured, user-friendly, flexibled extensible simulation program written
in Fortran 9995. The finite volume discretization ensures conservatimhthe defect-correction iter-
ation strategy is used to resolve the non-linearities ottiigations. One can use a variety of solution
procedures that range from purely explicit up to fully inetlischemes with up to third order spatial
and second order temporal accuracy. The large sparse kageation systems used for the implicit
methods can be solved by the Black-White Line-Gaul3-Seélakation method (BW-LGS), the Ap-
proximate Factorization Method (AFM) or by Krylov Subspatarative methods like GMRES. The
optimal solution method and the coupling of equations idblenm-dependent. Optimizations in the
matrix construction, the MPI-Parallelization for distited memory machines and several Newtonian
and relativistic tests were conducted successfully.



The numerical results presented here have been obtaingglthsi here described simulation program
Astro-GRIPS, the General Relativistic Implicit Paralladh\&r, developed at the Landessternwarte
as part of the GR-I-RMHD (General Relativistic - Implicit -aBiative Magneto-HydroDynamics)
project which is supervised by Priv.-Doz. Dr. Ahmad A. Heggéiand financially supported by the
Klaus-Tschira-Stiftung: project number: 00.099.2006.
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1 Introduction

In 1609, 400 years ago, Galileo was one of the first to look th®sky with the newly invented
telescope and to present the results to the public: On thed%ugust 1609 he conducted the first
astronomical outreach activity when he met with policy aad-makers from the Venetian Republic.
This remarkable event is now celebrated by many public evarthe International Year of Astronomy
2009. But 2009 is also the 400th anniversary of Kepler'séwsimia Nova, the cornerstone of modern
astronomy and the year of the launch of NASA's Kepler misgmiseek for habitable planets: an
optical photometer mounted on a spacecraft, to detect andipei lightcurve via the transit method
for the search of exoplanets, this for example shows thag tivas a huge development in Astronomy
since then. Before the invention of the telescope it was pagsible to do Astronomical observations
with the bare eyes. So, for example, Tycho Brahe did a gréainj@strometry by taking a precise
bearing of the stars and planets and compiling a catalogsieglthis data Kepler calculated the shape
of the planet orbits by hand or by a slide rule without the usa computer, which resulted in the
famous Kepler laws.

In the days of Galileo, Kepler and Tycho Brahe, drawings whaeeonly possibility to document
observations. Only at the end of the 18th century and thenbawi of the 19th century, Max Wolf, the
first director of the Landessternwarte Heidelberg, did peing work in the field of Astrophotography
and detected many asteroids with the Bruce telescope. Taluatyp-multipliers and CCD cameras
are used instead due to their larger quantufitiency and the easier handling of electronic data
processing.

Since the first telescope used for Astronomy a major devedopim technology has happened. Nowa-
days one does not only observe in the optical wavelengtmesgbbservations are done in the whole
spectral range: radio, microwave, infrared, visible,aviolet, x-rays, up to the high energy gamma
rays and also particles like neutrinos. Multi-wavelengtiservations give us more information and

hints on the nature of the observed objects. Since the Baatimosphere blocks some spectral
regimes, it is only possible to observe in these wavelenfytita space. So many scientific space
missions were conducted in the last half century. In theftagtyears the Hubble space telescope, af-
ter an error in the optical system was corrected by an addiip mounted correction lens, presented
beautiful images of galaxies in the optical. But nowadaythhie new instrumental techniques of

adaptive optics (AO) and interferometry used at the VLT,\they Large Telescope of the European

Southern Observatory (ESO), one can even overcome thege$the Hubble space telescope from

the ground of the Earth, e.g. by using the FORS instrumekppdnzeller et al. 2002004).

These new instrumental and data analysis techniques atsditdieom the development in instrumen-
tal and computational science. But also everyday life mdftim space and Astrophysical instrument
development, e.g. the Teflon-coated pan or the Ceran cofikiig

In Astrophysics one wants to learn something about a singteofhysical object, a special class of
Astrophysical objects or about the history and fate of theleluniverse (cosmology).



2 1 Introduction

Today many features in the cosmic microwave background (LMBich was detected in 1963 by

Pencias and Wilson and is a relic of the Big Bang, the origithefUniverse, was or is observed with
satellites like COBE, WMAP and the Planck satellite, whichsviaunched recently on the 14th May
2009, to determine and improve the precision of the basiamaters of cosmology and also to test
the standard model of particle physics.

Many philosophical questions are asked: Where are we? Frbartenare we coming from? Are

we alone? So the SETI project, the search for extrateraggttelligence, was started, where many,
mostly amateur, radio telescopes collect data, which is #malysed for unusual signals that might
come from extraterrestrial civilisations. In the SETI abf@project many computers all distributed
over the world help to analyse the data taken with the largecibo radio telescope. Up to now
over 350 exoplanets, planets around other stars, wereveisab using various methods: e.g. radial
velocity or transit method.

Many phenomena in fundamental research, Astrophysics ariitlp physics, cannot be explained
with Newtonian gravity anymore, one needs to use generafivigy (GR), which was presented by
Albert Einstein in 1915Kinstein 191% General relativity was tested many times. It explained an
extra term in the perihelion precession of Mercury, preidhe gravitational light deflection, which
was first measured in 1919 by Sir Arthur Eddington and hisbaliators during a total solar eclipse.

Gravitational lensing, anfiect of GR also based on light deflection, is used today e.geterchine
the mass of galaxies or to observe very distant objects dtisigethe Einstein arcs and rings.

With the satellite Gravity Probe B general relativistifeets on rotating gyroscopes in the gravitational
field of the Earth (see for examplieil and Schartmann 200%vere measured 2005. The geodetic
effect could be confirmed with an accuracy of less th&%0 But due to problems with noise in
measuring the frame-draggingfect, also called the Lense—Thirringfect, the final results are still
not published (in 2009).

In the recent years gravitational wave detectors, like thsek Interferometer Gravitational-wave Ob-
servatory (LIGO), have been built which try to detect gratiitnal waves resulting from e.g. mergers
of two black holes or neutron stars.

Compact objects are very exotic objects in the universey #re so dense that they can only be
(partially) explained by general relativity and quantumchmnics. To this class of objects belong
white dwarfs, neutron stars and black holes.

White dwarfs are the final evolutionary states of normalssteith initial masses below about eight
solar masses. These very hot objects consist mainly of naabhd oxygen and have a typical mass
of 0.6 solar masses and a size of about the Earth (6371 km insjadvhich gives a density of
approximately one metric ton per cubic centimetre, after tielium burning stopped and the star
collapsed until it is stabilized by the electron degenena®ssure of the electron gas in which the
nuclei swim.

Neutron stars, which are formed starting from normal statis iitial masses higher than about eight
solar masses, are very dense objects which consist of exatiter, which might be quark matter
or Bose-Einstein condensate of K-Mesons, and have a massdretabout 1.2 to 2.2 solar masses,
a radius of only about 10 to 12 km and a surface temperaturdaital® K. This gives roughly
the same density as in an atomic nucleus or one Earth massipeo€edge length 400 metres. The



possible formation processes are: After the fusion burafradl elements down to iron, the stellar core
collapses and the density and pressure of the inner com saibigh that the electrons are pressed
into the protons to form neutrons by a process called invieesa-decay. The resulting degeneracy
pressure can stabilize the neutron star if it has a mass ot dbd to 2.2 solar masses, if the mass is
higher the star collapses further and a black hole is formrethe case of the neutron star formation,
the still from outside in-falling matter is repelled fromethhewly formed hard surface of the neutron
star and additionally heated by neutrinos which are a furtiput of the inverse beta decay. The
out-flowing matter can be observed as a supernova explosfappe b, Ic or 1l). The other possible
formation process is as the end product of a supernova tygeplasion, where a white dwarf, which
accretes matter from a companion star, reaches the Chakbessmass limit of 1.44 solar masses,
and therefore is not stabilized anymore by the electronmEgey pressure and collapses to a neutron
star. Up to now only a few neutron stars are observed direstlyg X-ray satellites, sed/eisskopf

et al.(2007. If the neutron star is rapidly spinning with a period asrslas a few milliseconds and it
has a large magnetic field aligned at an angle relative topimeasis, electrons can be excited by the
periodic arrival of the magnetic field. This process leadsaiiodic pulses of synchrotron radiation in
the radio and optical band of the spectrum. In this case osakspof a pulsar. The first such object,
the Hulse-Taylor binary pulsar, was detected in 1974 anelsgivgood testbed for general relativity.

Black holes exist in a huge mass range: they can have maasisgfrom a few solar masses (stellar
black holes) or maybe even less (mini black holes) up to séwdlion solar masses, the so-called
super-massive black holes (SMBH), which usually are fourtthé centre of galaxies and might have
formed by black hole mergers and accretion over billion afrge

Black holes are so massive and dense that the spacetimedamely bended in the vicinity of such
objects, that means that gravity is so strong that even tighthot escape from them. So one can-
not look inside a black hole from outside, but one can studyitifiuence on the dynamics of the
surrounding matter and radiation.

Black holes can be characterized according to the so-aadldthir theorem by John Archibald Wheeler
(see e.gTaylor and Wheeler 1992"Black holes have no hair!" by only a few parameters, wtdoh
the mass of the black hole, its angular momentum and charcfeally these are three hairs.

In practice there will be no charged black hole because anegtigible amount of charge would be
immediately compensated by the surrounding charged matter

Black holes are mathematically described by the vacuuntisakiof Einstein’s field equation: The
Schwarzschildbchwarzschild 1916solution for stationary spherical symmetric black holed ¢he
Kerr (Kerr 1963 solution for rotating black holes.

Cyg X-1, a very strong X-ray source, is a binary system, whadskie super-giant variable star orbits
at about 0.2 AU around a black hole, which is also called aooigasar. Matter from the star forms an
accretion disc around the black hole, which is then heatei upillions of Kelvin radiating X-rays.
A pair of large jets, perpendicular to the accretion disohiserved, too.

M 87, a giant elliptical galaxy, shows large X-ray and radeves and also large gamma-ray emission,
which is for example observed by the H.E.S.S. Cherenkogtefees Aharonian et al. 2006 It has

a active galactic nucleus (AGN) with a super-massive bladk bf about 6.4 billion (64 x 10°) solar
masses in its centre and also shows large jets.

Stellar dynamics around the centre of our galaxy, the MilkeppM\give a hint that there is a giant
super-massive black hole in the vicinity of Sgr ABljez et al. 1998



4 1 Introduction

(a) Large scale jets of M87 in radio (b) Sketch of the inner part of an AGN
(VLA image)

Figure 1.1: Large scale structure of accretion phenomena from pc to Myades(plots taken frontilscher
2009

Active galactic nuclei (AGN), the central part of galaxieshna super-massive black hole in the centre
surrounded by a large accretion torus, and their ultraiveddc jets are observed up to a redshift
factors of about 6, which makes them one of the most brigptemtomena in the Universe. According
to the AGN unification theory, an AGN is calledfidirently by observers depending on the angle of
view and on the radio activity, see figute2 AGN-jets are collimated outflows, which can extend
up to a distance of several Mpc. These outflows are thought faolvered by energy extraction of
a rotating black hole by thBlandford and ZnajeK1977 process and then collimated by magnetic
fields. But the detailed process is still unclear, espacitlé formation process of such jets from
accreting matter in the ergosphere and the vicinity of tlhaelohole.

Also the role of turbulence in accretion diségdnk et al. 200Ris not fully understood: Turbulence
is a mechanism to transport angular momentum outwards $arth@ier can be accreted inwards.
Since the microscopic viscosity is too small to explain theayved accretion rat&hakura and Sun-
yaev (1973 parameterized the turbulence in their standardisc model. The Magneto-Rotational
Instability (MRI) by Balbus and Hawley(1991) (see alsdBalbus et al. 1996provides a possible
mechanism for the generation of turbulence. But since tarme occurs instantaneous on various
space and timescales it is venfidiult to construct a proper humerical model or analytic dpton

for it.

A runaway reaction of thermonuclear burning on the thin aphere of a neutron star can be observed
as X-ray bursts, which show two prominent oscillations frexcies at about 10 Hz and about 1 kHz,
the quasi-periodic oscillations, see Fidl.4). There are at least two fiierent models that explain
these oscillationsStella and Vietri(1998 propose a precessioitect of the innermost disc region
due to the frame-draggingtect of the fast-rotating neutron star. Whereasnb and Miller(2003
explain these oscillations by an interaction between th&suoint and the radiation pattern of clumps
orbiting at the spin-resonance radius. From both modelsaneletermine an estimate of the neutron
star's mass and radius and they might give a hint on the artstiucture and the equation of state of
the neutron star.
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(a) AGN model showing its components (b) AGN unification model

Figure 1.2: Unification model of the active galactic nucleus (AGN) (4érey and Padovani 1996 On the left

a schematic diagram of an AGN with its components is showengal black hole surrounded by an accretion
disc and an obscuring dust torus. Perpendicular to the agmmedisc there is a pair of ultra-relativistic jets.
The Broad Line Region (BLR) located near the black hole apd\tarrow Line Region (NLR) located further
outwards consist of clouds, which show line broadening & ghectra due to their fast movements. On the
right figure the unification model of the AGN is depicted: Was dfferent types of observed objects (radio-
loud and radio-quiet, narrow-line and broad-line) are inpeeted simply due to the angle at which the AGN is
observed. If the torus blocks the light from the BLR, onlyroarlines are seen in the optical spectrum one
can observe either Seyfert 2 (Sey 2) galaxies or Narrow LiagidRGalaxies (NLRG). Seyfert 1 and Broad
Line Radio Galaxies (BLRGs) show both narrow and broad corapts to their optical emission lines. Some
objects, the radio loud objects (shown in the top half), estnitng radio signals, whereas others, the radio quiet
objects (shown in the bottom half), show only low or no radiassion. BL Lacs, which show no, and OVVs
(Optically Violent Variables), which show very weak enaisdines, belong to a subgroup known as blazars,
that are thought to be viewed along the ultra-relativistidio jet.

y—ray bursts (GRBs), which are extragalactic and isotrolyiadistributed explosion events, are one
of the most luminous phenomena in the universe. Accidenity s huge explosion (GRB 971214)
was observed together with a Supernova Ib explosion, stiggebat both phenomena might have the
same origin, which leads to the collapsar model frBodenheimer and Woosl€$983, where the
core collapse of a rotating neutron star or a giant star taekidole results in a supernova explosion.
Due to the distribution of angular momentum a large torusrisied in the equatorial region and matter
can escape along the axis and focused to form ultra-redeitijets, where one of them might hit the
Earth in form of agammaray burst if the polar axis is directed towards the Earth. ekplanation
for shorty-ray burstsBrown et al.(2000 is the merging of two neutron stars or black holes, which
additionally emits gravitational waves, that the LIGO aamisim wants to deteciGutler and Thorne
2002.
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Figure 1.3: Sketch of the Jet Launching Mechanism (plot fitdujeirat 20053

In the field of Astrophysical Fluid Dynamics (AFD) one mod@lstrophysical flows of plasma and
matter using a variety of possible methods to explain whabserved and predict what might be
observed.

Due to the complexity of such phenomena one is severelydiriftone would rely only on analytic
solutions, so numerical methods play a more and more imptaxtée nowadays. Especially non-linear
systems cannot really be studied using only analytical ousth

Different physical descriptions and numerical approachessa@ IN-body codes, where one calcu-
lates the gravitational forces between the single objdddézmann lattice codes, where one looks
at the distribution function of the particles in phase spaoceoothed particle hydrodynamics (SPH),
where one has pseudo particles representing a fluid, spewtthods, particle in cell methods and
grid based methods: finite element method (FEM), finiffeedtnce method (FDM) and finite volume
method (FVM). All have their advantages and disadvantagéslieits on applicability to a certain
problem. There are a wide range of physical phenomena amégses to take into account in a real-
istic simulation of an Astrophysical flow, e.g. Hydrodynami{HD), ideal Magneto-Hydrodynamics
(MHD), effects of non-ideal MHD: finite conductivity, ohmic heatingdaHall term, radiative pro-
cesses and atomic and chemical networks and multi-compgh@smas, all in Newtonian, special
relativistic or general relativistic formulation. In Asphysics various processes play a role with very
different sizes and time scales and often initial and boundarglitons are not clearly given, there-
fore itis very complicated to do a really realistic simutattitaking into account all physical processes.
So one does simple approximations as a first step and thermamidscomplexity step by step.

To try to tackle these enormous problems the exponentiatldpment of computer systems and
programming languages was and is very important:

The first very large computer systems at the end or the 1988d fdrge halls and had the power
that now easily fits in a small pocket calculator. In thesesdaye used punchcards (in German:
Lochkarten) to program the computer and for the output srpfitters, before the first terminals and
then graphical output on a monitor was possible. Since themyrthings changed.
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Figure 1.4: Power spectrum of the light curves of 4U 1728-34. The spéctlades two peaks at abolilOHz
and aboutl kHz, the quasi periodic oscillations (plot fro&tella and Vietri 1998

In 1982 the internet arised from the ARPANET, a project torami research institutes and universi-
ties, which was started in 1969 by the Advanced Researced@rdpency (ARPA) in the USA, by
introducing the TCRP network protocol for communication between distant catags. In 1990 the
internet was opened to the public and so it could be used byave. The World Wide Web (WWW)
was developed in 1989 at CERN (Genf) by Tim Berners-Lee af®@ 18e first graphic webbrowser
could be freely downloaded. This development made it ptestilat basically everyone and not only
specialists can use the Internet. Since then it developgdqueckly. The development of the internet
was tightly coupled to the Unix operating system, whose ¥iession was constructed in 1969; it was
developed at AT&T and freely distributed to universitied)ese it was also further developed as the
Berkeley Software Distribution (BSD). But later in the gatP80s AT&T decided to commercialize
Unix (system-V) and the source code was not published arginiany Unix derivates were appear-
ing, for example AIX, HP-UX and Solaris. Since it is much befor research and development (and
also for the development of the economy as a total) to havepan source code, the GNU-Projekt
(,GNU'’s Not Unix“) was founded in 1983 by Richard Stallmandain 1985 the Free Software Foun-
dation (FSF), with the aim to have a free unix-compatiblerafpeg system. Until 1990 all basic parts
of this system except of the kernel were developed. In 198%xyla small unix clone which runs on
normal PC hardware was developed by Andrew S. Tanenbaune &frilversity of Amsterdam. In
1991 Linus Torvalds published its first version of his newlgated unix-like operating system called
Linux. Other free unix-like operating systems are free BShiants, Mac OS X and OpenSolaris.
Now many Linux derivates are available and Linux can run onoat any computer platform, it is
even used in embedded devices, e.g. multimedia players.

On the hardware side the development is also extremely:aingid the whole life, not only in sci-
ence, industry and business (computer simulations, rdhadtgistics, controlling, ...), but also in
office and at home and during travel: Today home afidecomputers and notebooks already con-
tain multi-core processors, mobile phones, media plagEnie controllers were developed and the
Global Positioning System (GPS), and other satellite sitg systems, e.g. the European Galileo
project, are applications of general relativity in ’eveayd life. In High Performance Computing
(HPC) specialized hardware was developed, like the GRAREd)®o calculate the gravity force for
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Smoothed Particle Hydrodynamics (SPH) simulations, seaichines and vector machines, like the
NEC SX-8 at the HLRS, the High Performance Computing Cent&tuttgart, were constructed and
optimized. The vector machine power of graphics cards, wviere vastly developed for use by com-
puter games, can now also be used for computation: e.g. NVIHSLA graphics chips, which are
specially designed for computation and can be programmieg) @uda, or similar chips by AMD.
To have a common graphics card computation language now pea@. standard was published.
Another way to speed up often used program parts is to usegsmgable chips, e.g. FPGEs. Now
multi-core systems in clusters with fast interconnecks (Gigabit ethernet or Myrinet, are used. Par-
allel file systems were developed to have a fA3tdystem for data storage.

But not only the hardware has been developed also the progiragnianguages: One possibility to
program a computer is to use assembler, a machine near cemtgguage, which is very fast, but
not easy to program and not portable, because it is machewifisp Therefore high level program-
ming languages were developed, where the programs havectintygled to binary code, before they
can be executed. The first high level programming languageRienkalkil, developed by Konrad
Zuse in 1946. In 1952 Grace Hopper developed the first comgalbed A-0, and already 1957 the
first FORTRAN-Compiler appeared. In 1972 the programmimglege C was presented by Den-
nis Ritchie, whereas €+ was invented in 1983 by Bjarne Stroustrup. Scripting laggsalike Perl
(1987), Tcl (1988) and Python (1991), were developed, whimsist of an interactive interpreter,
which analyses the script at runtime and possibly uses C artdaR code underneath. So it is pos-
sible to program very quickly and test the program withounpdation. Relatively modern is the
concept of Object Oriented (OO) Programming, which is int@st to the conventional procedural
programming an other way to construct a program. OO-progriaign can for example be done with
C++, which is an extension to C. Many concepts of it are also thtoed into other already existing
programming languages like Perl and even FORTRAN (in thedstals Fortran 905 and Fortran
2003). One basic concept of Object Oriented Programminmghsite objects which belong to classes
with specified properties and methods. But a object can bdiom certain subclass, which inherits
all properties and methods of the higher class. With a viitght-out program design it is then
relatively easy to extend a program. But for problems witeticritical issues there might be — de-
pending on the programming — too much overhead by the Objgenht@d Programming. Up to now
Object Oriented Programming with classes plays a minoriroleriting scientific simulation codes,
since the routines which do the actual computational cafuis, which are called methods in the
OO language, are the same, only the structure and orgamis#tthe code is dierent. But that might
change in the future, since one might use and already usegr@fbamming or some concepts of it
to make it easier to extend simulation codes.

In the future, where the solution of larger problems is iasiegly more significant, the parallelization
of a numerical code plays a crucial role: For shared memorghinas one can use for example
OpenMP and other threading directives, with which one vasilg can parallelize an already existing
code in total, but also only a part of it. So it is possible totde parallelization step by step. But
for distributed memory machines, like most High Perforrea&upercomputer Systems and Linux
Clusters, for parallelization the Message Passing Iraerf&1PI), which is the de-facto standard, has
to be used. The MPI-library defines special functions whidh @lled from C or FORTRAN in
between the usual other code segments. Here compared td/@pbe parallelization of an existing
code is not so easy, since one might have to restructure thiewbde. One needs to invest a large
amount of programming time, to get out the right results;esitinis cannot be done in small steps and
therefore is very error-prone. The goal here is to distalibie workload evenly to the processes (this
is also important on shared memory systems) and to minirhizedmmunication time between the



processes, especially between processes fégrelit nodes. The MPI parallelization gives the most
flexibility, since the code can either run on distributed meyrmachines but also on shared memory
machines. A code parallelized with OpenMP can only be runh@mesi memory machines. There
is also the possibility to combine the two parallelizatioethrods MPI and OpenMP to do a hybrid
parallelization.

Also the progress made in the development of numerical ndstland simulation codes in the last
decades is extreme: The development of modern computhflaithdynamic codes started in 1959,
where S. K. GodunovGodunov 1959 presented a conservative numerical scheme for solvirtgapar
differential equations, the so-called Godunov method. The @donethod is a three step grid-based
method: First the variable values at the grid interfacesvéen the cells are reconstructed from the
piecewise constant cell values, then on each cell interfalmeal Riemann problem is solved and
finally one takes the averages of the solution to get a singleaged cell value for the next time step.
This first order scheme was extended to higher orders usiegdiand piecewise parabolic recon-
struction Colella and Woodward 1984 To avoid numerical artificial oscillations which resutt &
numerical breakdown of the higher order method, one haspty aope or flux limiters in the pro-
cess of reconstruction to guaranty that the scheme is tat&tion diminishing (TVD). The first such
higher-order scheme, the Monotone Upstream-centred Szhémn Conservation Laws (MUSCL),
which has second order spatial accuracy, was presentedth9Bram van Leernan Leer 1978

In the field of Newtonian (magneto-) hydrodynamics up to newesal quite sophisticated High Res-
olution Shock Capturing (HRSC) schemes, e.g. the PLUTO ¢blignone et al. 200)] have been
developed using ffierent exact and approximate Riemann solvers, like LaxdRdles, Roe and hllc,
and slope or flux limiters like minmod and suberbee and al§erdnt time advancement methods, for
example Runge Kutta integration, are used to improve theracg of the solution.

General relativistic numerical hydrodynamic codes (a gogetview can be found irfFont 2008 are
mostly based on the+d (ADM Arnowitt et al. 1962 formulation, where spacetime is foliated into
non-intersecting spacelike hypersurfaces.

Already in 1966 May and WhiteMay and White 196pdeveloped a time-dependent one-dimensional
general relativistic code describing an adiabatic sphéciallapse using Lagrangian coordinates (these
are coordinates which are moving with the fluid element).

Multi-dimensional numerical general-relativistic hydymamics in Eulerian coordinates started to
develop with the pioneering work of Wilson in 197@/{lson 1973. He introduced basic dynamic
variables representing the relativistic density, momemiz the generalized internal energy. Even in
the case of Cartesian coordinates this system of equasamst in a strictly conservative form since
pressure gradients are treated as source terms. The cativsefermulation of nonlinear hyperbolic
systems is very important to guarantee the correct jumpitons and shock speeds. Therefore using
Wilson’s scheme one has to introduce artificial viscositynte numerical dissipation, to damp the
oscillations and stabilize the solution near discontiegit Many general-relativistic codes, both solv-
ing Einstein’s Field equations and using a fixed backgrouetrimof a Schwarzschild or Kerr black
hole, use the Wilson scheme and with them one can study mamgphysical problems containing
for example also the head-on collision of two black holest tBare are also some severe limitations
in simulating ultra-relativistic flows with Eulerian Lorenfactors larger than about two: Norman and
Winkler (Norman and Winkler 198&ound out by studying special relativistic problems, ltke rel-
ativistic shock reflection problem, that the amount of exrmecurring for high Lorentz factors mainly



10 1 Introduction
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Figure 1.5: Numerical Relativity, Black Holes and Jets (from the GRMHD (General Relativistic - Implicit
- Radiative Magneto-HydroDynamics) project proposal ® Kiaus-Tschira-Foundation, November 2006 (col-
lage by B. W. Keil)
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depend on the way in which the artificial viscosity terms aduded in the Wilson scheme. The
artificial viscosity terms should be implemented in a caesisway into the equations, in order to
consider the artificial viscosity as a real viscosity, whiciturs in the equations like additional pres-
sure terms and should not be omitted in the calculation ofdladivistic enthalpy as in the original
Wilson formulation. The resulting equations are highly limegar due to the nonlinear function of arti-
ficial viscosity and the direct occurrence of the Lorentzdaa the convective terms and are therefore
much more coupled than their Newtonian counterparts. Sonidorand Winkler proposed the use of
implicit schemes to describe this coupling more accuraselg developed a one-dimensional code
(Winkler et al. 1984 in flat spacetime using an adaptive grid which reproducey aecurate results
up to Lorentz factors of about ten.

In 2003 Anninos and Fragilédfininos and Fragile 20Q3ised their explicit three-dimensional Carte-
sian code cosmos to compare state-of-the-art artificiabgisy schemes with high-order non-oscillatory
central schemes. Simulating shock tube tests and shocktrefieests, they confirmed earlier results
for artificial viscosity schemes: the numerical solutiortdm@es increasingly unstable for shock ve-
locities greater than about 0.95 the speed of light. Butambtusing the conservative formulation of
the high-order non-oscillatory central schemes they wble @ handle ultra-relativistic flows up to
very large Lorentz numbers.

In 1991, Marti, Ibafiez and Miralledarti et al. 199]) presented a new formulation of the general
relativistic hydrodynamics equations, also called theelala formulation, which is a conservative
Eulerian formulation using the total energy instead of thierinal energy equation. But the strict
conservation form is only possible in flat spacetime and ¢éoevery of the primitive variables (den-
sity, velocities and internal energy) from the consenetines (relativistic density, momenta and total
energy) might be problematic in some cases, e.g. in the lasilmu of the internal energy (or the
pressure) one might have to subtract some very large andstabimilar numbers which numerically
can lead to a very non-accurate result, which in the extremse might be negative and causes the
simulation code to crash. Apart from such problems this fdation is in general very accurate using
state-of-the-art high-resolution shock capturing (HRS€jemes with exact or approximate Riemann
solvers and avoids to fine-tune an artificial viscosity pagtm since artificial viscosity is not neces-
sary in this formulation.

There exist also some more general formulations, covasigptoaches, that are not restricted to the
spacelike foliation of the 81 split of spacetime (see elgont 2008.

But up to now almost only time-explicit methods solving tlyelfodynamic Euler equations have been
used in Astrophysical Fluid Dynamics (AFD). The reason liig ight be, that almost all Astrophys-
ical phenomena are studied up to now by (simple) approxanativhich only use the hydrodynamic
Euler equations without ffusion and without sophisticated radiatieets and only time-dependent
compressible flows were be looked at. For such strongly tlependent and compressible flows, ex-
plicit methods are very well suited. But to do a better appnation to nature one wants to simulate
a very complex flow with magnetic fields, viscosity, radiatigfects and with atomic and chemi-
cal reactions. Also diusive and viscousfiects may play an important role, so one should solve the
Navier-Stokes equations instead of the Euler equations.dfiferent physical processes possdiedi
ent time scales and the smallest timescale dictates thea@ehriedrichs-Levy (CFL) time step size,
the outermost limiting time step up to which explicit meteaate numerically stable. Larger time
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steps lead to a numerical breakdown. For example in the dabe important Astrophysical prob-
lem of the gravitational collapse in the process of star fdiom, the explicit time-step size decreases
enormously, and therefore the calculations stagnate i.tim

But in contrast implicit methods are unconditionally se&akdnd can therefore use a larger time step.
So only implicit methods have the potential to overcome thealed time-step crisis which occurs
in the explicit calculations of the gravitational collaps€he time step should for physical reasons
not made too large, so that all physical relevant propedfdke flow are still resolved in time. An-
other advantage of implicit methods is that there is a tigbteipling of the equations, which is very
important for an accurate description of non-linefieets.

Unfortunately one has to pay a price for the use of implicithmods: Since the solution does not
depend only on neighbouring cell values from the preseng ttep, but also on the values of the
future time step, the equations at each grid point are cduptgether and form a large linear system of
eqguations. Fortunately this system possesses a highlgespad well structured matrix. In the recent
decades also huge progress was made in development of fhstdado solve large sparse systems of
equations, especially in the field of Krylov subspace iteeainethods, for example: GMRES (1986),
BICGSTAB (1992) and TFQMR (1993).

Ideally one would have an ultimate black-box algorithm, aisSwArmy knife algorithm (in Ger-
man: "Eierlegende Wollmilchsau"), which contains numarisolvers that are unconditionally sta-
ble, robust, #icient, Newtonian, special and general relativistic andabég of treating flows that
range from strongly compressible to almost incompressiile self-gravitating, radiating, magne-
tized multi-component-plasmas taking into account atoamd chemical reactions and solving the
eqguations with high spatial and temporal accuracy on ucistred meshes. A further ingredient of
this ultimate black-box algorithm would be that dependimgtite physical properties of the flow the
optimal method is selected automatically. But unfortulyateat is not the case: doing numerical sim-
ulations is not a 'push button’ technology. But maybe thajaed so, because elsewise no research
and no improvement would be done anymore.

To have such an ultimate goal, which probably can never tehegbentirely, is similar to the concept
of physics in total: one makes a model of nature which dessritature up to a specific accuracy.
Then one measures or observes a contradiction or a deviatthe model. Thereafter one refines the
model to describe the measurements or observations. Ahdhigt method one gets iteratively closer
to the final aim, the right description of nature, but one wéler be able to exactly describe nature in
total. Even if one could describe it exactly, e.g. if one vebldve the 'world formula’, one would not
be able to calculate everything with it.

To have a better description of the Astrophysical flows oretlado include more physical processes
into the simulations, which in general possess vefiedint time scales and so implicit methods
are very important in the solution of these phenomena, Isectime-explicit methods are time-step
limited.

To have an easy to use implicit simulation program well sufter general relativistic Astrophysical
problems Astro-GRIPS, the GeneralRelativistic I mplicit Parallel Solver, the numerical simulation
code described here, was developed. This simulation cdsessthe general relativistic hydrody-
namic Euler- or Navier-Stokes equations under the assompt a fixed background metric of a
static Schwarzschild or rotating Kerr black hole. It can beduvery flexible and can be run on various
computer platforms, compute clusters and high performaapguters due to its MPI-Parallelization,
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which was a major task of this work. Due to the implicit methibd simulation code is uncondition-
ally stable and also takes into account the non-linearithefluid flows by coupling of the equations.
The Hierarchical Solution Scenario (HS3ujeirat 2005a can be used to find a stationary or quasi-
stationary solution quickly by gradual enhancement of tigaéion coupling.

The development of such an implicit simulation code givesdhsis to include and study the influence
of interesting physical aspects like magnetic fields anihtae transfer, to better understand the rel-
ativistic flows around compact objects, especially the fafian and acceleration of ultra-relativistic
multi-component plasma MHD-jets and compare the numer&zllts with Astrophysical observa-
tions.






2 General Relativity and Fluid Dynamics

2.1 General Relativity

2.1.1 Basic Ideas and Equations

Since one intents to study the plasma flows in the vicinity latk holes and other compact object
where flow velocities near the speed of light can occur andrevigeavity is very strong, it is not
possible anymore to use the classical Newtonian formulatifothe hydrodynamic equations. Due
to the strong gravitational field it is also notfBaient to use special relativity, since many physical
effects can only be explained by general relativity.

In general relativity gravity is not described as a force lik Newtonian mechanics, instead it is the
result of spacetime curvature.

The Riemann curvature tensor is defined as:
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wherel"p#v are the connection céiients, also called the Chridtel symbols of the second kind,
which have to be taken into account if one transports a vdobon one point to another point in
curved space on flerent paths and result from the parallel transport of a véota curved space on
a closed path, a loop, and are defined as:

1
rpyv = Egm] (gr]v,p + Qupy — gpv,n) > (22)

whereg”” is the metric of the spacetime, which is symmetfit = g# (and torsion free). Distances
are measured according to the square of the line eled@nt g dx‘dx’, wherex is the 4-vector
of the location in spacetime which is given kY = (ct, X).

By contraction of the the Riemann curvature tensor one get&icci tensoR,, = R',,, and its (the
Ricci tensors) trace is the Ricci scaRwvhich is given byR = R; = g,,,R".

To get a metric theory of gravitation Albert Einstein consted a tensor, the Einstein ten&st’, that
is divergence freeGj., = 0 and is defined byG* = R — %g/” R and represents the curvature of
spacetime.

Another important ingredient of relativity is the stresgeryy tensoll#”, also called energy-momentum
tensor, which represents the density and flux of energyjdiaty the relativistic rest mass energy, and
momentum. The equations of motion in a local inertial framayhich gravity is absent, follow from
the condition that its covariant derivative is z&%)’ = 0.
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Combining all ingredients results in the Einstein’s fieldiagons Einstein 191% which written in
the compact tensorial form are:
8nG
G = ——TH, 2.3

2 (23)
whereG denotes the gravitational constant.
John Archibald Wheeler noted a nice and simple explanatiothfs formula, which in compact form
describes the whole concept of general relativity:

"Spacetime tells mass how to move and mass tells spacetiméohcurve.”

Due to the complicated structure of the Einstein Equatitnsy form a system of coupled non-linear
differential equations, only a few analytic solutions are known

Already in 1916, the year after Einstein had published sty of general relativity, Karl Schwarzschild
(Schwarzschild 1906found the spherical symmetric vacuum solution for a noargled and non-
rotating black hole, called the Schwarzschild solution.e Bither important solution for black hole
astrophysics was found in 1963 by the New Zealand matheigatiRoy P. Kerr Kerr 1963 and is

the stationary and axisymmetrical vacuum solution for atiog), non-charged black hole.

2.1.2 Divergence of Vector and Tensor Fields

The covariant divergence of a vector fi&ll can always be expressed without referring to Chfiisto
symbols:

1
V= =
Y /_g

For the divergence of a (2,0)-tensor

9, (V=9V") (2.4)

T = 8, TH + TH T + T, THe (2.5)

follows if T is antisymmetricT#” = A" = —A¥:

1
A = ——a, (V-gAY 2.6
) \/_—g H ( g ) ( )
and if T is symmetric (e.g. the energy-momentum ten3$él)= T“:
1
T = —3a, (V-9T") + I, T (2.7
; \/_—g H ( )

2.2 Rotating Black Holes: the Kerr solution of Einstein’s Field
Equation

Black holes can be characterized by the so-called 'no-tgorem’ by John Archibald Wheeler
"Black holes have no hair!" by only a few parameters, which e mass of the black hole, its
angular momentum and charge. Actually these are three. Haiggractice there will be no charged



2.2 Rotating Black Holes: the Kerr solution of Einstein’eli Equation 17

black hole because a non-negligible amount of charge waulchmediately compensated by the sur-
rounding charged matter.

The Kerr solution, which was found 1963 by the New Zealandheraiatician Roy Patrick Kerierr
1963, is a vacuum solution of Einstein’s field equation, whickta&tionary and rotationally symmet-
ric and has two free parameters, the mass of the centraltddjggand the Kerr rotation parametar
Due to the Robinson theorer®@binson 197pthe Kerr solution is the unique solution of stationary
axisymmetric solutions of the general relativistic vacufietld equations which are asymptotically
flat, that means that for large radii the Kerr metric goes &ofldt Minkowski metrié, have a smooth
convex horizon and is regular outside the horizon and isueijgdefined by the two aforementioned
parameters.

Adopting the 31 split of spacetime, a line elemeth$ (dimension: L (length)) with the metric sigha-
ture (, +, +, +) can be written as follows:

ds = Zdr? = g, dx¥dx’ = —a?(cdt)? + hy (dX + g'cdt)(dX + gkcd) (2.9)

wheredx? = cdtand Greek indices run from 0 to 3 and Latin indices from 1 to 3.

For the Kerr metric in Boyer-Lindquist coordinateBofyer and Lindquist 1967(ct, r, 6, ¢) with
dimensions [, L, 1(radian9, 1(radiang], the most famous used coordinates, the line element reads

ds’ = —(a? - BsB%)(cdt)? + 28,dpcdt + hycd X dx, (2.10)
which corresponds to a spacetime metric represented irollog/fng matrix notation:
gt 0 O gy BB’ —a® 0 0 B,
_ 0 grr 0 0 _ 0 hrr O 0
%=1 0 0 gy 0 |~ 0 0 hy 0 |° (211)
Gt 0 0 gy By 0 0 hy

The codficients g,, in the Boyer-Lindquist coordinates [with dimensiong; : 1, g : 1, Qg -
L2, Ops - L2, andgy = gyt - L] and their related functions)ot setting the speed of light ¢ and the
gravitational constant G to unity?, are defined as follows:

he = 2, hy=p% hyy = @? witha = Lcosd, [N : Lhg 1 L% hyy L2600 L]

B = p'=0p= —wFEDZE 8% : LY wrpe : T (2.12)

By = %pi,g' = Gy’ = WP’ [Bs i L]

T = £ cod, [L4]

V=g = p2cost =a VT [L2].

1The Minkowski tensor in Cartesian coordinates has the form
-1 0 0 O
0 1 0 O
=1 0o o010 (28)

0 O 0 1

2many authors s&t= 1 andG = 1, but to better understand the units of the variables anddakng in the code (see later)
herec andG are not set to zero and in most cases the dimensioits are given in square brackets.
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and the auxiliary functions:

A = r?-2rgr + (arg)? [L2]
p? = 1?2+ (arg)?sirte [L?] (2.13)
2 = (r?+(arg)?)? - (arg)®Acog6 [L4Y

with the gravitational radiusy = % [L] wherec, Mgy, G are the speed of light, mass of the black
hole and the gravitational constant, respectivelys the redshift or lapse function, which describes
the gravitational redshift or relativistic time dilatatiof local clocks as compared to infinity, agds
the shift vector function.

The cylindrical radiusy is called so becauser@ = 2 /Gy is the circumference of cylinders at the
radial positionr that are concentric to the axis of symmetry.

A is called the horizon function and in the equatorial plaregjuals the radial coordinate

In writing these expressions, the coordinate transfoonati= 7/2 — 6 was used, where the latitude
0 is used instead of the polar distance ar@jlbence the appearance of "cos" instead of "sin" in the
metric terms.

g is the determinant of the 4-metric wheréags the determinant of the 3-metric. The contravariant

components of the metric, which can be derived by the prgpbet the metric satisfieg’g,, =
54 [1], are:

(¢" = % [1]

¢¢ = L=-g5 LY

¢ = 4 =5 [1] (2.14)
¢ = 5= L7

¢ = Z-F5 LA

The radial dependence of the Boyer-Lindquist functions learseen in figur@.1 for several Kerr
parameters.

Horizons and Ergosphere

A is the so-called horizon function and is zero at the horizemere the redshift factar vanishes,

that means the redshittis infinity for an observer located at infinity, where the faftss defined as
follows:

Aobs _ [ Gt(Xobs)
Aem Ot (Xem)

zZ+1=

(2.15)

(for Schwarzschildz+ 1 = —1

with emitted wavelengthier, of a signal and at infinity observed wavelengifys. This behaviour
explains the name "black hole", since no emitted light froside the horizon is observed at infinity.

In the Kerr cased # 0) there exist two horizons: th@auchy horizonr_ = rg(1 - V1-a?), the

inner horizon, and thevent horizonr, = rq(1+ V1-a?), which is the outer horizon. Physically
meaningful solutions have to posses a horizon, so the paeaais limited by|al < 1. An interesting
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Kerr parameter a = 0.00, latitude §= 0.0

*‘F
o e
8 o
A —
= 7b ] WrDE
5 P R
£ 6 o 2
S ;g# X X FA
& 5 b
g ) o7 o+ W
5 47 *#42)‘
g 3 X " +# vV A
3 e
= e VE
2r + >$$<><><
BN
1 ///
0 i L L ; ; i i i
1 2 3 4 5 6 7 8 9 10

-
e
9r o i
F
J’Jf
8 L
= ST @
c I ,;*f' WrDE
=] A c
o _
L p
g 6 *;“‘;j X X
9] i VA
o 5f & e
= 5 - P
(= x ++ _
S 4t j{‘ + v W
o &+ /
5 3 : u*f} A
L : e
=4 watﬁ/ V4>
2k +t‘3+,'}3g<x |
A S%
S
| S .
e ]

radius/r,

Kerr parameter a = 1.00, latitude 4= 0.0

e
o S
8 e
S — a
.‘é’ 7+ 1;,{'} _ WwroE
3 - c
é 6 X X p
9 s va
g :
= - f
"g 4 + W
: V&
- VE
2
1
L
O TETTSTTTS e T TR Ty o

radius/r,

Figure 2.1: Radial dependence of the Boyer-Lindquist functions forSbtlewarzschild black hole a 0, an
intermediate Kerr black hole with & 0.75and for the extreme Kerr holea 1. The lapse or redshift function
aisin units of 1, the frame dragging frequency divided by theesl of light-“£2= in units of iy and the function

\VOr = ‘% in units of 1; \/Gss = p, \/0gp = W, VA and VZ have all units of §. In the case of a Schwarzschild
black hole a= 0, there is no frame dragging frequeney*>= = 0, p = VI = rg andw = rgcos@). With
increasing Kerr parameter a from 0 to 1 the horizon, the radat which the horizon functioh is zero, moves
from 2r further inwards up to oneyt
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phenomenon occurs at the Cauchy horizon when it is reacbedtfre outside: an observer witnesses
the entire history of the external world in a single flash and tb the infinite blueshift the observer is
hit by an infinite flash of radiation. These strangkeets are a consequence of pure general relativity
and may give a hint that in reality quanturfiexts may play a role in the interior of the black hole.
For the extreme Kerr solutioa = 1, almost all radii are equal to the gravitational radigiswhereas

for the Schwarzschild solutioa = 0 there is only one event horizon which is at the Schwarzgchil
radiusrs = 2rg.

The ergosphere is the surface where the metric compaperanishes:

2
Ot = BB’ — @® = @? (wFCDE) -a?=0 & rg=rg(l+ V1-aZsirte) (2.16)

It is dependent on the latitudkand has an oblate shape which touches the event horizon.ofiee z
between the ergosphere and the event horizon is called tjuzegion, where the rotation of the
spacetime becomes extreme. It is not possible to sustdio skservers inside the ergosphere, hence
the ergosphere is also called the static limit, where % = 0. The ergoregion is also of importance
for the energetics of the processes around a black hole Benros€1969 showed that energy can
be extracted from every spacetime which possesses an begesp

Frame-Dragging Effect

The parametea with dimension [1] is the Kerr or spin parameter which spesithe specific angular
momentum (angular momentum per mass) with respect to theémax specific angular momentum
rec = M and can have values betweett and+1, negative values give retrograde and positive
prograde rotation. Fax = 0 one gets the Schwarzschild solution of a non-rotatingkbtente, which

is due to Birkhdf’s theorem the unique spherical symmetric vacuum solution.

The frame-draggingftect, also called Lense-Thirringfect, is the property that spacetime is dragged
along with a rotating object around the rotation axis andltsgrom the non-diagonal elemerdg
andg of the Kerr metric in Boyer-Lindquist coordinates. The fexaragging angular frequency is
defined asvrpe = 2argcrzg—2r = —gfﬁc[T‘l]. Note that in the expression gf there is a minus sign for
the metric signature ,+,+) whereas for the metric signature,{,-,-) there occurs a plus sign.

In the ergoregion, inside the ergosphere, everything atiraf due to the frame-draggindfect: ob-
servers, photons, magnetic field lines and even spacetseH. itSince the velocity field must be
globally space-like (see also the normalisation conditbthe 4-velocity and settiny" and V¢ to
zero):

w w
Ot + 29t¢E + g¢¢(E)2 <0, (2.17)
there is a minimum and maximum limit of the angular veloeity
Ca

. Ca
w_-<w<w, Wth w_.=wfppg-—= and w,; = wWrpg + — (2.18)
w w

The dependence afgpg, w_ andw, onr can be seen in figur2.2
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Kerr parameter a = 0.00, latitude §= 0.0
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Figure 2.2: Radial dependence of the frame-dragging angular frequengy: and the minimal and maximal
allowed angular frequencies_ and w. for the Schwarzschild black hole-a 0, an intermediate Kerr black
hole with a= 0.75and for the extreme Kerr hole-a 1. At the horizon all three functions meet at one point, so

all matter, photons and even spacetime has to rotate witliréimee-dragging frequency there.
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In the Kerr space there exist special non-static obsereatied ZAMOs (zero angular momentum
observers), with angular velocity = wgpe (angular velocity with respect to the fixed stars, the usual
static Bardeen observer at infinity) and vanishing specifguéar momentunM, = O:

M¢ = 5U¢
= ¢ = ¢ = ¢
= Du'[gys % + 0yl = DU gy [% + 3‘73] = DU gyy [ — “E5E] (2.19)

= DY gy [w— wrpel = DT gy [@ — wrpe] = D gy [@ — wrpE]

—[gig
o
S

withD = D& = pI'l} and angular velocity = V¢ = ¥ c = ¥ =

Il
Q|
=

Singularities

The Kerr solution in Boyer-Lindquist coordinates shows ardinate singularity at the event horizon.
This can be transformed away, for example, by changing tedhealled Kerr-Schild coordinates .
But unfortunately the resulting metric has mof§-diagonal elements which results in much more
complicated formulas.

For a Schwarzschild black hole, a non-rotating black hotes leas a point singularity at the origin,
where a point mass is located and the Riemann tensor divergeshe spacetime has infinite curva-
ture.

Whereas in the case of a rotating (Kerr) black hole one haagagingularity which is located in
the equatorial plane and has a radiug ef arg, which in Boyer-Lindquist coordinates is given by

o(r, 6) = \/r2 + (arg)?sir? 6 = 0.

Innermost Stable Circular Orbit (ISCO)

The innermost stable circular orbit (ISCO), also calledgirally stable orbit, is the innermost cir-
cular orbit of a test particle in the equatorial plane, whargtable rotation around a black hole is
still possible. This radius follows from the discussion ffieetive potentials in the Kerr spacetime
and the limiting cases are: for a extreme Kerr hole with grtrde rotatiorm;sco(a = -1) = 9ry,
with prograde rotatiomisco(a = +1) = rg and for a Schwarzschild black halgsco(a = 0) = 6rg.
Following Mller (2004 p. 14) orCamenzind2007, Chap. 8), the ISCO radii in dependence of the
Kerr rotation parametea can be calculated by

lNsco="Tg (3+Zz¢ \/(3—21) (3+Zl+ 222)) R (220)

Zy=1+ (1 - a2) 3 ((1 +a)3+(1- a)1/3) ’

Z, = /382 +Z2,

The upper sign holds for prograde whereas the lower sigmr iefograde orbits.

Another characteristic radius in black hole physics is trergimally bound orbitr,, Which is the
smallest possible radius of a circular orbit at which an @uthperturbation lets escape a test particle
to infinity or in other words, where a test particle starts éogbavitationally bound by the black hole.
This radius is given by:

Fmb = g (2—a+2\/m> = 1g (1+ \/ﬁ)z. (2.21)
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—ry Figure 2.3: Dependence of the charac-
< 6r... o o Tring teristic radii on the Kerr parameter: s
T R I NS I I Ty is the marginally stable orbit, also called
3 T innermost stable circular orbit (ISCO),
++++++++++HH+H ......... I'mb IS the marginally bound orbit, g, is
5l * the radius of the photon sphere; the
2 radius of the ergospherej;rthe radius
1/’”"W Sy of the event horizon, kg the radius of
T oooooooooo?????o??--“ the ring singularity and f, the radius
90 o5 G 05 10 of the Cauchy horizon. For & 0 the

Schwarzschild black hole is reproduced.

A further radius is the radius of the photon sphere, insidielvphotons cannot have stable trajectories
anymore.

ph = 2Ig [l + cos(% arccos&a))} (2.22)

The dependence of the characteristic radiaaran be seen in Fig2(3).

2.3 The hydrodynamical equations in Kerr spacetime: Genera I
Relativistic Euler and Navier-Stokes equations

Hydrodynamics is a macroscopic description of a fluid andirags that the mean free path of the

particles is much smaller than the length scales of relgvlaysical processes and that the particles in
a small volume have a specific energy distribution, which lsaescribed by the thermodynamical

concept of temperature.

The hydrodynamic equations describe the conservation s§ymomentum and energy. This system
of equations is closed by an equation of state (E0S).

The Euler equations are the fundamental equations of hydewdics for an ideal gas whereas the
fluid motions of a viscous gas are described by the NaviekeStequations.

The general relativistic hydrodynamical equations arévddr(following the internal energy formula-
tion of Wilson (1972 andHawley et al.(19843ab) from the four-velocity normalisation*'u,, = -c2,

the conservation of baryonic numbej(ow) = 0O, the parallel component of the stress-energy con-
servation equatiom,V, T#” = 0 (to derive the internal energy equation) and from the trarse
componentsd;, + U:u,)V, T = 0 (to derive the momentum equations).
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2.3.1 Velocities and Momenta

Thefour-velocity is defined as

W= d_)«” (2.23)
dr

and satisfies therormalisation
wu, = -2 (2.24)

The unitgdimensions of the four-velocity components avé:: LT~L, u" : LT3, v/ : T-2andw’ :
TL

Defining thegeneral relativistic pseudo Lorentz factor, the non-dimensional time-component of the
4-velocity ut:

dt
r=— 2.25
dr ( )
one gets fou':
dct dt
= —— =c— =dl. 2.26
u=-=cp=c (2.26)
Thetransport velocity is defined as
w dx
He _Cc=—— 2.27
ViEEeT T (2.27)

from which follows for the four-velocityw# = u(V¥/c) = T V.
The units are the same as for the four-velocities.

The physical velocitiesin the Boyer-Lindquist coordinate system for an observenfatity are de-
fined as the absolute values of the transport velocities awe &ll units of [T1]:
The radial velocityJ is:

U= VU2= W,V = /g V'VT = g, V' (2.28)

the azimuthdlatitudinal velocityV:

V= W2 = VoVl = /gooVOVO = /g V° (2.29)

and the toroidal velocity,:

Up = B = VeV = (/00 VOVe =\ JGaVIVE +0sgVOVe = | [gueVe + gugVeVe, (2.30)

which gives in case of a non-rotating (Schwarzschild) blacle:

Vg: Schwarzschild= 1/ Gpg VPV = \/9¢¢V¢- (2.31)
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Instead of the toroidal velocity, the angular velocity is used:
w:=V? (2.32)
The frame dragging angular velocity is:

WEDE = —%C (233)
9s9

The absolute value of the physical velocity vector (in 3eg)dfor an observer at infinity in the Boyer-
Lindquist coordinates) is

V== V= U2+ V242 (2.34)

In the 3+1 split of spacetime, also called the ADM formalis#rijowitt, Deser, and Misner 1962
(see alsoGourgoulhon 200) the 4 dimensional spacetime is foliated into non-inteling space-
like hypersurfaces of constant coordinate titre const . Each of such 3 dimensional hypersurfaces
have a space like metrig; and can therefore seen as 'absolute space’ at the specified. tiThe
advance of such hypersurfaces in time is parameterizededgettshift or lapse function = —#,
which describes the distance to the next parallel hypexsarélong a timelike unit vector normal

to the surface. The space-like tangential shift vegtatescribes the motion of coordinates within a
hypersurface. One can define a local fiducial observer, tB®FWho is at rest in absolute space and
has a 4-velocity, with u; = ug = —ac andy; = 0. So the shift vectos' describes the shift in time of
the grid of the hypersurface relative to the local FIDO.

The three-velocity components of the plasma ftwaal observer in the Euler frame (sitting on the
local grid point) are:
S AT _
VE = ———¢, i=123 (2.35)
n,w
whereﬁw = gu + NN, is the projection operator onto the hypersurface ortholgtorat'.
These velocity components can also be written as:

a

Ve = (ai:ﬁ + /i'> C. (2.36)

Using this velocity one can define and calculate the Iggativistic Lorentz factor W in the Eulerian
frame:

W:—n—: — = in’ 237
ve T T 1 we? (2:37)
C2
whereve? = vgiVe' = gijVe've! and the normalisation conditiapu* = —c? was used to transform the
first term into the second, which shows that in the limit of @alty flat spacetime (with a Minkowski
metric) the general relativistic equations give the uspaicgl relativistic equations. In the Euler
frame one gets for the 4-velocity:

u“:W< 1 > (2.38)

VEi
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The relations between the local Eulerian velocities andBbger Lindquist velocities (used in the
simulation code) are:

VE" =~ ug” Ug ==Y
VEG = a\\//% VE = |VE9| = % (239)
vg? = W VE = Ved| = Ogg L

The velocity componentg:' of a local observer in the Euler frame are physically moreiiive than
the Boyer-Lindquist coordinate velocities.

Using the transformation,g= g,,q” one can determine the covariant veajgfrom the contravariant
vectorg” using the metric, wherea$ ¢ ¢¥q, is used to do the transformation in the other direction.

This is used for example to transform the contravariant aomepts of the 4-velocity for a Kerr black
hole in Boyer-Lindquist coordinates to the covariant congras:

W = GuU+0yW = u[ge+ 0y (VO/0)] (LT
U = grU = gr U (V/) = yGr $U= ygrTU (LT 2.40)
U = Gl = g U (V/0) = VO £V = G [V [L2TY
Up = O U +0pp W = UGy +0pg (VO/C)] =0y T [w-wprpe]  [LPT7Y].
The relativistic mass density is:
ut
D=p_=pl [ML73]. (2.41)
The specific relativistic enthalpy (enthalpy per mass dgnis:
h=c+e+ P [L2T77, (2.42)
P

wherec? comes from the rest-mass energy density aisdhe specific internal energy (internal energy
per mass density).
With this one can define the variables

BiDC—hZ [ML™3] (2.43)
and

= U — h h_» ) -3

D=D_ =DIr=D;l=p5I*=phr* [ML™]. (2.44)
where

~ h

h.:? [1] (2.45)
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From the four-velocities and the relativistic density oa@ clefine the corresponding relativistic co-
variant 4-momenta which are defined By, = Du,:

((M¢ = Du =Du[gu + g (V¢/0)] [ML-3LT-Y
M = Du=Dgy ' (V'/Q)=DyBr YU=yGr DU  [ML3LTY
My = Duy=Dggu (V/0)=D Gw i V=+y@wDV [ML3L2T (2.46)
Mgy = Duy = DU [y + gy (V*/0)]

\ = DY gyy [ — wrpe] = D gyy [w - wroE] [ML3L2T-1).

from which the contravariant 4-momenta may be obtainech{uiie orthogonalisation and normali-
sation relatiorg®”’g,, = &, and the symmetry relation of the metri;, = g,,):

(MY = g"M+g“¥ My = Du (9" [g + G (VO/O)] + g [ + g (V?/C)])
D u' (9" gi + 9 Gy +[9" Gy + 9 Ggs] (V?/0))
= Du=Dc
[ML3LT Y]
M = g" M, = Bg”gnut(Vr/c):ﬁ%Vrzﬁur:BVrzﬁ\/%T
[ML3LT-Y]
t o _ (2.47)
Mé = g% M, = Do (V/)=D SV =Du=DV'=D &
[ML=3T-1]
M = g My+0g" My = DU (g% [gy + Gps (V¢/O)] + 0" [ + Gy (V¢/0)])
= DU (0 gy + 9" g + [7 gss + 0 ais] (V4/0))
= Du(V¢/c)=Duw =D V¢
[ML=3T-1.

The corresponding physical momenta (used in the simulatoie) are defined as follows:
M=M= yGr DU
M=M= G DV (2.48)
= M¢ =Du [gt¢ + Opg (V¢/C)] =DT Ope [cu - a)FDE] = 6 Oy [cu - a)FDE]

The normalisation of the 4-velocity‘'u, = —c? yields for the Kerr metric in Boyer-Lindquist coordi-
nates:

(U)? [grt + 2 g (V9/C) + O (V'/C)% + Gog (VO/C)? + Gy (V9/C)?] = —C2

(2.49)
(U)? [gr + 2 Gy (V9/C) + (U/C)? + (V/C)? + Ggg (V4/C)?] = —C?
For the 4-momenta the normalisation is then:
M#“M,=Du* Du, = D’ wu, = -2 D"
(2.50)

MM, =g M, M, = gtMZ + 2 g MM, + g M2 + M2 + g**M2 = —c2 D’

From the normalisation one can determine the generalvisiiti pseudo Lorentz factdr = %
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2.3.2 The Euler Equations

The Euler equations describe the motion for a one-compddeat fluid (non-viscous, no heat con-
duction, ...).

They consist of conservation equations of particle numbenass, momentum and energy.

In the Newtonian case these equations are (without grerittforce):

Py (i) =0 (2.51a)
20 v (g (o)) =P (2.510)

oE

PR (W(E+P) =0, (2.51c)

wherep is the densityfi the velocity vectorE the total energy an@ the pressure.

2.3.3 Conservation of Mass

The continuity equation, which describes the conservaifanass, can be derived from the conserva-
tion of the particle number density

(nu)., =0, (2.52)

t
wherew = 2 = ( lé > is the 4-velocity.

In special relativity where the metric simplifies to the Minkowski metrig?” = 5*” in the case
of Cartesian coordinates! simplifies to the special relativistic pseudo Lorentz fadtgrtimes the

speed of lightTsg= ¥ = (1— ?)
In general relativity the contravariant time componenttaf #-velocityu! includes also other met-
ric terms which can be derived taking into account the nosaabn condition'u, = ug,u" =
gu,u, = —c® and the metric relatiog’g,, = &4, €.g. for a gas at resti(= 0), u* = «/%gn = ac,

whereq is called thdapse function

With the definition of the fluid density = nm, wheremis the rest-mass per particle which can be
factored out in Eq.4.52) since it is a constant, one gets the continuity equation:

(ou)., = 0. (2.53)

QS|ng the expressmn.of the covariant 4-velocity .dlvermni‘(;:,, = \/—__gaﬂ (\/—g.u“). and spll.ttlng-up
in temporal and spatial parts, the so-callegll 3plit of spacetime, the continuity equation can be
written as follows:

()

i

ﬁak (V=gou*) = 0. (2.54)
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Assuming that the gravitational field is dominated by theti@@rcompact object (e.g. a black hole
or a neutron star) and the contribution of the atmosphereaeton disc to the gravitational field
and the accumulation of mass and the spin-up of the centjattoturing the simulated time can be
neglected, one can use a static background megc 0).

. e s . t . t
Iqtroducmg there_latl_wstlc de.n5|t.y D=Yp= 1",9 gnd thetransport velocity V¥ = /(%) = w*/T
yields to thecontinuity equation in general relativity

&HD + \/i__gak (v=gDV¥) = 0. [ML™3T7Y] (2.55)

2.3.4 Conservation of the Stress-energy Tensor

For the derivation of the other hydrodynamical equatiores dtress-energy tensor is used, since it
includes the energy density, the momentum density, theggrilerx and momentum flux. This tensor
makes up the right-hand side of Einstein’s field equati)(@nd is a source of curvature of space-
time, which is neglected here, since a fixed background meitie Kerr metric, is assumed.

The stress-energy tensor of an ideal gas has the followimg: fo

h o+ P
T :p?u“uv +Pg”  or TH= (p;; )u“u" +Pg”  [ML3L?T?, (2.56)

whereP is the pressurd) = ¢ + € + £ is the relativistic enthalpy is the specific internal energy"”
is the metric tensor ang is the 4-velocity.p is the mass density, whijeiS the energy density. The
entropy isH = ph = pc® + pe + P = p + P.

To derive the general relativistic momentum and energy @masion equations the divergence of the
stress-energy tensor

o =g, @*P) 0P @)

” 2 z U, + P (2.57)

(which has for example for = r the dimensions: MIL~3L?T2L"1]) has to beconserved

T =0 (2.58)

Einstein assumed the simplest spacetime connection, wiéans that he assumed spacetime to be
torsion free,l"“ﬂy =TI, and that the inner product (norm) is preserved, which tesualthe metric
compatibility g, = 0 (Camenzind 2007 This property is used in the calculation of the divergence
of the stress-energy tensor of an ideal ga83).

The conservation of the stress-energy tensor can be brgkémtai parts: For the conservation of
energy one looks at the parallel components of the stremgpeitensor tar”, while for the momentum
conservation at its components transversal'to
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2.3.5 Conservation of Energy
Internal Energy Equation

By multiplying the conservation equation of the stressrgyéensor with the 4-velocity, one gets:

m;m+m;mww !

i (2.59)
+(+P)uu,u, +u,0"P =0

uyT“V;ﬂ = |u,u'd,

Use of the normalisation of the 4-velocityw* = —c? gives

y G+P) 2 ©0+P) v
UTH, =~ we? - =, + u,d'P =0, (2.60)

where we got rid of the ten#fz—P)uyuv;H, because of”.,u, = % (W), =0.

Next the substitutiono(3+ P) = hp, whereh is the enthalpy, and the expressio@” P = ud,P are
used to further simplify the equation:

u, T, = - (hott"), +U'9,P = 0. (2.61)

Using the chain ruleto,P = (PW)., — u”.,P and gather terms, one gets

[(ho-P)U]., + 1, P=0. (2.62)

Adding the continuity equatio(ppu*)., = 0 times the square of the speed of light gives
[(ho =P —-p)u]  +u, P=0, (2.63)
and using the definition of the internal eneygy= hp — pc® — P yields

(peu“),ﬂ +Uu P=0. (2.64)
Finally applying the 31 split of spacetime and introducing thelativistic internal energy density

t . . .
ed = eD = p'ce = pl'e and the transport velocity* = w/utc = /T gives the equation that
describes thé&me evolution of the relativistic internal energy densityin general relativity:

&£+:%ﬁm(¢§éWS:-P[a<%>+:%§m<wcggvg]. (2.65)

Assuming an ideal gas the pressure is definel(as) = (y — 1) pe = (y — 1) €4/T..

Note, that the equation of time evolution of the relatidstiternal energy density includes the time
derivative of the pseudo Lorentz factbr= ‘S on the right hand side, which is highly nonlinear, so
special care has to be taken to accurately estigdtén numerical simulations.

If using the internal energy formulation in numerics anfaiil viscosity is added at shock discon-
tinuities, which acts like a scalar pressure to numericafigure the conservation of total energy and
give the right results at shock fronts.
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Conservation of Total Energy

A disadvantage of the internal energy formulation is that bas to fine-tune the artificial viscosity
parameter at shock fronts to ensure total energy consenvati

The total energy conservation does not have this probleae siris numerically formulated in such a
way to ensure the conservation of total energy.

The equation of total energy conservatias following Font (2008 and using a static background
metric:

ot + \/i__gak ( V-g(r +P) Vk) = (Tptap Ina - TpUFtprr) ’ (2.66)

wherer = DE2 - P - D2 = I’2ph — P — Tpc? is the real total energior = I2phc — P subtracted
by the relativistic rest mass enerf¢? = I'pc?

anda is the lapse function. The source terms on the RHS arise dtreetspacetime curvature, but
vanish in the case of a flat space.

Especially for high Lorentz factors but also in other ciratamces the total energy formulation may
break down and gives negative pressure values and one hss theuinternal energy formulation.

2.3.6 Conservation of Momentum

Extracting the transversal components of the conservafitime stress-energy tensor equatiarb()

by using the projection tensor, which is definedhgs = u,u, + gwcz, one gets the equation of

momentum conservation.

Using the projection operator afi, one can see that it only extracts only the transversal ibomitons:
U = (Ul + gy C) U = (—U, +U,)c? = 0 (2.67)

Applying this operatoh,, on T, one gets
ho TV, = (Ul + @) TV, = U, T, + g, TV, (2.68)

The termu,u, T*., can be identified as the energy conservation equajq, T*",,) = 0 and there-
fore vanishes. For the terg;],yczT”V;ﬁ one can use the metric compatibility propegty., = 0

and gets:
hy TV, = U U, T, + g AT,
— v
= (PguT"),,
=T (2.69)

Renaming dummy indices firgt to v and thend to 4 and expanding the stress-energy tensor and
setting the divergence to zero:

h h
0=T,, = (ngﬂd);ﬂ = (pggmuau“ + Pgmg#a> = (logu\,uu + Pgﬁf) ) (2.70)
H

u
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Writing out the divergence of the above equation, while kegm mind thatu, W is a tensor, results
in

1 h h
0= \/—__ga‘u < \/—gp?u,,u“> —p?lﬂwuﬁu“ + ayP (271)
With the introduction of theelativistic momentum density M,, = pc—hz%tu,l = pc—hzl“u,l = Du, and the
transport velocity* = % this equation gives

1
\/—__gaﬂ (V=gMV#) =T, MV - 6,P

M, M# ¢
_rt M

=T M
For the next step, the connection fia@ents multiplied by the symmetric tenskt, M# can be calcu-
lated as follows:

~o,P. (2.72)

1
FA;WM/I MH = 59/10' (gO'/l,V + g(TV,;l - g/tv,O') M#M/l

1
= 5 Mll MO— (gO'/l,V + go'v,y - g;lV,O')

1 1
= LM G+ S (MIM7G, — MG, )

1
= E Mll Mo—go—#’v
1
=5 MAMAga,. (2.73)

where the symmetry property d“M? was used in the summation b*M7q,,, = M¥M7q,, .
With this formula equation?.72 can be simplified to
M“M1 ¢

1
\/—__gaﬂ (V=M VH) = ot G — 0,P. (2.74)

With the help of the normalisation of the metg# g, = 6y and the symmetry properties of the metric
g% = ¢®® andg,s = gs. ONe gets:

3y (0" Guy) = v (9™) Guy + 9™y (Guy) (2.75)
Sinced, (9™g,y) = dy (67) = 0 one gets:
gaﬂav (gpy) = _av (gaﬂ) gm/ (2-76)

This can be used to get:
1 1 1 1 N
+§ MyMyav(guy) = +§MyMagaﬂ6v(gyy) = _EMyMagyyav(g(w) = _EMy M.d,(g™) (2.77)

Performing the 31 spacetime split and taking into account that the time camapbof M is deter-
mined by the 4-velocity normalisatian ¥ = —c? gives thegeneral relativistic equation of momen-
tum conservation of an ideal gas:

1
OMg + —— 0 (V=gMaVK) =
tVla \/_—gk( gVla )

M,IM#C 1
— 2Mt_g /"a - 04P. (278)
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2.3.7 Summary of the Euler Equations

The equation of momentum conservation and the equation efygrconservation can be derived
from the conservation of the stress-energy tensor. Togetitie the continuity equation they form the
general relativistic Euler equations

1
8tD+\/—__gak(\/_—gDVk) =0, (2.79a)
1 M, M, ¢
OMa + —==0ic (V=GMaV") = - 5= 0" 2~ 6aP (2.79b)
el + 1 9 (\/__ dvk)—_P o Et +i3 A= EtVk (2.79¢)
€ =i k ge = t\ G Nas k g c ) .

where the conservative variables are the relativistic itheis = %p = T'p, the relativistic momenta
M, = pc—hz%tuﬂ = Du,, and the internal energy densiy = e D.

These equations together with an equation of state (Eo$ghwalates the pressuRewith the density

p and internal energy, form the system of hydrodynamic equations of an ideal flaidyéneral
relativity.

Note that by using this formulation of the hydrodynamicstaitpns, the so-called flux-conservative
form, in combination with finite volume discretization, nsaand momenta are conserved up to small
discretization errors.

2.3.8 Newtonian case and Newtonian limit

From these derived general relativistic hydrodynamicsagguns one can easily recover the pure
Newtonian equations of a flat spacetime for very large radiere the spherical coordinates also
go asymptotically into Cartesian ones) by setting the psdumtentz-factorl’ = 1 (slow motions
relative to the speed of light), the enthalpyh = 1 (thermodynamical non-relativistic energy densi-
ties), the metric componert, = 0 (no frame-draggingféecta = 0) and the other metric compo-
nentsgi =1 i=123. Set VT = v/—0/a to a flat space determinant of the 3-metric, but leave
Ot = —a? = -(1- 2%’) to account for the usual Newtonian gravitational potéritidhe momentum
equations.

If one replaces the metric tensgin Cartesian coordinates by the Minkowski metfiaggeneral rela-
tivity is reduced to special relativity, which has no grgigrm.

To recover the pure Newtonian equations with Newtonianityraw spherical coordinates, i.e. also
for small radii, one has to s€t= 1,h = 1, a = 0 and the metric components to following values:
Ot = —a® = —(1- 2%’) = —(1 + 2®) with gravitational potentialD = —rr—g, or = 1 (and not as in the
Schwarzschild case t@; = %), ggs = > andggy = r? cos’ 6.
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2.4 Navier-Stokes Equations in General Relativity

The Navier-Stokes equations additionally takédiive dfects due to viscosity into account, which
can be of crucial importance in some cases. Titeceof viscosity was often neglected in Astrophysi-
cal simulations up to now, because tlizets of molecular viscosity are in general very low compared
to other physical processes.

Especially the impact of shear-viscosity between fluid layeith large diferences in velocities on
turbulence, momentum transport or angular momentum taahsgn be huge and result infidirent
results.

For example in the Taylor-Couette flow simulations in Fig.4( depending on the value of the vis-
cosity laminar or turbulent flow patterns can be obtainedhdf so-calledReynolds numbemwhich
describes the ratio between the inertial forces and thewsstorces, is large enough, there can occur
turbulence.

The momentum equations of the Newtonian Navier-Stokestemsaare:
p| Y @0-9) 0] = —VP =V x [ (Vx V)] + 4V (nVV) + E (2.80)
il s ’

wheren is the dynamic viscosityy the velocity of the fluid and® additional external forces, like
gravity or electrical forces.

0.0 0.5 1.0 1.5 0.0 0.5
Radius [Rs] Radius [Rs]

(a) Rgv) < Rev¢rit): Laminar flow (b) Rev) > Re(v¢rit): Taylor vortex flow

1.0 1.5

Figure 2.4: Simulation of the Taylor-Couette flow between two rotatiplgeses. Plotted is the density (colour)
and the velocity field (vectors). For the same time and seageatvery dferent flow configurations, depending
on the Reynolds number (viscosi)y For R€y) > Rgvcit) the flow is turbulent.Hlilscher 2009
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The Navier-Stokes equation (s€bdoudhuri 1998is:
dv; oP 0 oV f)Vj 2 o
1 F - — _ —_ 1 — ——=5iV-V 2.81
Par =P a>q+axj["<axj+axi 371 (281)
In most situations the spatial variationgfs not important, so one gets:

pgzpﬁ—ﬁpw {62\7%6(6.\7)] (2.82)

The term containingf(ﬁ -V) is only important for flows with variable compression, faaeple in the
viscous dissipation of acoustic waves. So it is neglected Ard one gets the simpler version of the
Navier-Stokes equations:

o
Pt

which using the kinematic viscosity= u/p can also be written as:

= pF — VP + uV2 v (2.83)

%7 +(V-V)W=F- 19p 42y (2.84)
P

where ¢ - ﬁ)\? is the vector-gradient of.

Note that this form of the Navier-Stokes equations onfjedifrom the Euler equations by the addi-
tional second order spatial derivative teri#? V. But this term leads to a totally fierent behaviour
of the solutions. The Navier-Stokes equations require rowmdary conditions for solutions in finite
regions. For an ideal fluid at a solid boundary the normalaiglaomponent is set to zero, for viscous
fluids one imposes the extra boundary condition that theetatig) velocity component is also zero
there, this then gives a unique solution.

There is an additional important property of viscous flowsnpared to ideal fluids where the pro-
duction and decay of vorticity is not possible due to Kelginorticity theorem for viscous fluids this
is now possible.

If one wants to write the Navier-Stokes equations in an @ineér coordinate system special care has
to be taken about the right form of the vector-gradient ardsitcond order operator. The easiest way
to get this transformation right is to replace these opesaidth the following vector identities:

(V- V)V = %6(\7-\7) —Vx (V x V) (2.85)
V2U=9V(V-V) - Vx(VxV) (2.86)
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The simpler version of the Newtonian Navier-Stokes equatim spherical coordinates are Lsee
Choudhuri 1998Appendix C.4) where here the polar distadds replaced by the latitudeé= 7 —
andvy = —Vgandaa—g = ae’ so one changes from the right-hand coordinate systeing) to the other
right-hand coordinate system ¢, 6), so that the vectorg andv, do not have to change sign!):

Mo e Va0 Vo v VitV
gt~ "or r 80 rcosp) d¢ r
__loP 132(r v + 162vr+ 1 v
T opor ar2x " r2 962 7 r2co(0) d¢2
tan@) ovy 2 dvy 2 0vgy 2vy 2tan@)
—— - = — + ——— F 2.87
2 90 200 ricosg) dp 2 12 v " (2.87)
V2 tan@
Ny Mo VedNg Vg Do Ve Vy Vg tanb)
ot or r 00 rcos@) d¢ r r
1 9P 1 92 1 8%vy 1 8%
=———+V (rve) + = +
pr oo ror2 r2 9602 r2co(h) d¢?
tan(e) vy 2 sin@) ovy 2 0v Vg
— +———-—=——>—|+F 2.88
2 90 12 coZ(6) d¢ T2 1 co(0) Tre (2.88)
Ve +Vr% L Ve Vg OV LV Oy L ViVe VoV tan@)
ot or r 96 rcosg@) d¢ r r
~ 1 9P 1 92 (V) + 1 82v¢ 1 8%
~ pr cos@) d¢ ror2 T2 T co(f) d¢?
tan@) ov, 2 ov 2 sin@) ovy Vg
- — — - — - F 2.89
2 80 @ 12 cos@) dp 12 co2(6) ¢ 2 co(H) (2.89)
The continuity equation in spherical coordinates is:
dp 10 1 1 9
(4 — =0 2.90
ot 2 ar(r ) + r cosf) 69(005( ) Vo) + r cosg) 6¢(pv¢) (2.90)
The momenta arem = pV;, N = rpvy andl = r cosp)pv,
The Navier-Stokes equations can now be brought in momerdom: f
The radial momentum equation can be constructed by:
o (Eq.2.87 + (EQ.2.90 - v;:
om 1 1 4 p (V5 +V3)
rev, cos pM) — ———=
e ( ' )+ ( )+ r cosg) 69( Ovem) + - r cosg) 6¢( ) r
~ a_P 152( v+ 162vr+ 1 v
or r or2 r2 902  r2co(6) d¢?
_tan(@)%_g%_ 2 %_ﬁJthanG) vo| +pF. (2.91)

r2 06 12060 r2cosf) dp r? r2
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The latitudinal momentum equation can be constructed by:
ro-(Eq.2.88 +r - (Eq.2.90 - vy:

‘;n r2 ar( i) + rcos(9) 89((:08(9)\/9 N+ cc1>s(9) 8¢(V¢n) +pVgtane)
_ _@ o —(rvg) + _62Vg + 1 (92V9
a6 or? r 062  rco(0) 6¢?
tan@) ovy 2 sin@) ovy 20v; Vg

r 90 " rcof®) dp rae rcog@| " Fo. (2.92)

And finally the angular momentum equation can be construayed
r cos@) p - (Eq.2.89 + rcos@) - (Eq. 2.90 - vy:

a 14, 1 9, 1
at TrzaruhE rcosp) 96" osg)vel) + r cos) a¢( o)
AP g cosf) 9%y 1 6%
= _% + u cos@)ﬁ(rvqj) + 92 * T cos) 942
B sin@) ovy  20v; 2 tanf) dvy Vg

2 +F%_fﬁ_m +rcosf) p Fy. (2.93)

These equations can later be used to control the Newtonizgih df the relativistic Navier-Stokes
equations.

2.4.1 Derivation of the Navier-Stokes Equations

The stress-energy tensor for a non-ideal plasma, as debyedisner et al.(1973, consists of
Tnid) = T(d) 4 Tvisc) ¢ T(heat) whereT(d) js the stress-energy tensor for the ideal-fldift’sC) are the
contributions due to viscosity arfkd"®®is the contribution due to heat conduction.

JUHUY
T =p 2

+ (P = LO) WY — 2po™ + U’ + QU (2.94)

whereh” = ¥ 4 ¢ is the spatial projection tensdd, = u’,, is theexpansion scalaof the fluid,n
is thedynamlc viscositgnd¢ is the codicient for thebulk viscosityandd is theheat flux The shear
tensor is defined as

o = 3 [(U,) 7+ (U,) W] — 30N (2.95)

Assuming a non-conducting fluid, the bulk viscosjtand the heat flug* vanish. So withv = 0 and
o = 0 equation 2.94) simplifies to

LIHV
T = f
pC

+ PhY — 2pat”. (2.96)

Similar to the derivation of the general relativistic Euégjuation, the conservation equation for the
stress-energy tensor can be decomposed into two equati@nsonservation of energy, 7", = 0,
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given by the components paralleltb and the conservation of momentum T, = 0,given by the
components orthogonal tg.

Since Einstein’s field equationg.Q) are locally linear in the stress-energy tensor, the aattiliterms
due to the non-ideal gas can be handled as a correction tdebkstress-energy tensor.

So only the non-ideal contribution of the stress-energgden*” = —2no** needs to be additionally
looked at Hujeirat and Thielemann 20D9

Modification of the Energy Equation

Heat conduction is neglected in the derivation here singestill an underdeveloped research field,
for an insight the reader is referredMaarteng1996 andGeroch(1995.

Heating due to viscous terms in the stress-energy tensat idamived from adding the longitudinal
components oﬂﬂf“v;ﬂ to Eq. @.69, but is included approximately by adding a quantiyto the
relativistic internal energy density equation

1 ut 1 ut
Ol + —=0,, (V=geiV¥) =P |a —9 —g—VkK A. 2.97
e (V) = e o () + —an (vEEVE) | 4 @97)
A may consist o\ = Ayisc+ Apr, WhereA,isc is theheating termdue to dissipation or viscous heating,
andAy is thecooling termdue to thermal bremsstrahlung.

Modification of the Momentum Equation

The modifications of the momentum conservation equatiorgiaen by the spatial projection of the
viscous terms of the stress-energy tensor along the veotarai to the hyperspace and are given by

L2%, = THe, =T, + TY, + THT?,, (2.98)
wherel 2%, contains terms due to viscosity and terms with the seconer aterivatives of the veloc-
ity, therefore they are callesecond order viscous operators

For the derivation the connection (fﬁeientsl"»(ﬂ , are calculated using equatio?.?).

For the Boyer-Lindquist coordinate system with g™, g?¢, g andg?, the result presented IRichard-
son and Chun¢002 are used. Since only 3D-axial symmetry around the rotatios z is considered
heré, one can sef,g* = 0, which then results inHujeirat and Thielemann 20pghere: &G=1

1m):

L2l = V.n [ o 2(g”ag’r")ur) (uu" + 1)
+8ﬂ_ E(grri)grr)ur) ((ur)Z +g")
—£(Ve- U+ Vg - ) (upul + 1))
+ Voo [ aairﬁ %(geeﬁgee) (uru + 1) (2.99)
4 KGO ()
+ aaL:r 2(grrr 2)ur) (uru’)

%—mmmMMHﬁ)
—£(Vr - U + Vg - ) (uU" + 1),

3up to now Astro-GRIPS is 3D-axisymmetric (some people ¢adl 2.5D) and not fully 3D. An extension to full 3D is a
future research topic
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L2(r’9 = Vip [(%__ %(geéagee)u ) (ur)z +g")
B —£(Vr - U + Vg - U) (upU)]
+ Vg [(%’f (g %) (upuf + 1) (2.100)
(Vr U+ Vg - u?) (ugu? + 1)]
+(GF - 3@ F) W) + g,
L2l = Veen (G - 375 + 07 8)u,) () + g)

o 0 0
+H 3075 + 0T, (UW)

~(3(g" %) wuu - (G(g" %ee) w(upu? + 1)
+ Veen [ ",,“f - z(g«’“,?rt + g "QW) (')
+(3_ — _(gwt 0%t + gwwagw)u ) ((u")z + gee

) 0
_(2999(351) Uwuwut (2999(3?) U¢(u¢u¢ + 1)],

(2.101)

Due to the lengthy form of these equations, the computatioost will be too high for an icient
numerical simulation, so these terms will be simplified by &pproximation of only using second
order, mixed-free and Laplace-like operators. This sifigaliion is justified if one simulates in 3D-
axis symmetry and is mainly interested in the angular moorerttansport, which plays the most
important role in accretion physics, and results in (heggs€1 !!!):

Eé:e = V:r {n [ZW - ‘(Vr unl} (uu' + 1) 2.102
+ Vo-ln (G5 ((UO)2 +g"), ( :
L2y = Ve-ln I au”) (U)? +g" (2.103)

+ Vol (95) =3V 1) (Ul + 1)+ (%) (U)2 + o)),

[\é‘fe _ Vr 7 [({)ﬁ 1 g¢t(g¢t g%o (79W)u‘p) (ur)Z + grr)
-G 3;"‘) WUl (5(g" o WU + 1)) (2.104)
b Taen (O g et (U2 + o) '
~(Lg” 5gwt) weu Ut — (3o 39w) U (U, + 1)].

2.4.2 Summary of the Navier-Stokes Equations

Thegeneral relativistic Navier-Stokes equationgor a non-ideal, non-conducting fluid are:

1
oD + ——dk (v=gDV¥) =0, (2.105a)
V-9
1 S,M, c ~
OtMa + \/—__gak (VEgMaV¥) = —;T‘igﬁ“,a —0aP + 12, (2.105b)

1 ut 1 ut
Oe? + ——=0dk (V=g €e4VK) = -P |4, +—— | V=g=VX) | + A, (2.105c)
V-9 V-9 c
with the conservative variabld3 = itp =I'p, M, = phl'u, = Du,, ¥ = D and the second-order
C H M M

approximated correctiorfséam due to viscosity, se€(104. A = A1+ Ay +... are additional heating
or cooling terms.
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2.5 Equation of State - the Closure of the Hydrodynamic System o f
Equations

To close the system of equations, either Euler equationsagiel Stokes equations, one has to now
an equation of state (EoS), which describes the fluid presssia function of the internal properties
of the fluid. Usually the EoS is of the ford = P(p, ¢, ...), but more parameters may be involved e.g.
its composition, the ionisation state of the gas or the adiatindexy. Because in general the real
EoS can be quiet complex, one usually uses a simplification.

Thepolytropic equation of statkas the formP = Kp”, where K is a constant depending on the species
of the gas ang the polytropic index.

In this case there is usually no need to solve the energyieguatnce there is no coupling between it
and the momenta equations through the equation of statd and assumes that there are no energy
(only pressure) dependent source terms in the momentai@ugiat

Due to its simplicity this equation of state was mostly usethie study of hydrostatic equilibria of
stellar atmospheres, neutron stars and globular clusthesewit leads to the famousane-Emden
eqguations

For hydrodynamical simulations the equation of state ofdmali gas® = (y — 1L)oe = (y — 1)% is
often used. The adiabatic indexs determined by the composition of the gas, e.g. for a motieau
gas it has the value of = 5/3.

At very high temperatures where particles move with reistiiv speeds another equation of state has
to be used. In thaltra-relativistic limit the equation of state is very similar to the Newtonian EoS,
but the adiabatic index for a mononuclear gas is then4/3.

For flows with velocities between the non-relativistic ahd tltra-relativistic limit a generalized EoS
has to be applied.

2.5.1 Equation of State for a relativistic fluid

With the Newtonian adiabatic index ¢f= 5/3 in the relativistic regime with high temperatures the
eqguation of state of an ideal gas would give a sound speechvelimeeds the speed of light. To avoid
this contradiction with causalityfaub (1948 showed that the EoS of a relativistic gas has to obey
certain rules, to ensure that the speed of sound is alwayer lihan the speed of light.

By using the relativistic Maxwell-Boltzmann distributidonction, calledMaxwell-Juttner distribu-
tion, Synge(1957 found the correct EoS which i~s valid in the whole range ofdfluelocities.
The relativistic enthalpy density pef denoted byh = h/c? of the gas is given by

K3(1/0)
K2(1/0)

h= (EoS of Synge) (2.106)

where® = P/p is the pressure-density ratio aKd, K3 are the modified Bessel functions of second
and third order.
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Figure 2.5: Adiabatic indexy of an ideal gas dependent on the pressure-density @tie S for the Synge
equation of state and the approximations of Mathews and @fat taken fronHilscher(2009)

Since the solution of this correct EoS is numerically expenne approximation was presented by
Mathews(1971) 4:

=
I

NSy
©)
+

Nl

02+ 3 (EoS of Mathews) (2.107)

Another approximation was found WByu et al.(2006, which is simpler in its form but reproduces
Synge’s solution even better:
~ . 602+40+1

Unfortunately, it is not possible to give a direct expresdiar the pressure. Instead, first the relativistic
enthalpy is determined by finding the root of

d
~ €
h©)- 55 -0-1=0. (2.109)

Using the Newton-Raphson iteration methajves excellent convergence behaviour and Ryu’'s EoS
performs slightly better than Mathews EoS.

The enthalpyh(®) can now be easily calculated from the found r@ot Solving the normalisation
equationM,M# = —c2D° = —c3(Dh)2 for M; and usingM! = g*M; + g¥M, andu' = M/(Dh) the

4This approximation is used dvlignone et al(2007 in the PLUTO codérttp://plutocode.to.astro.it.
STherefore one has to calculate the derivativi(@f), which is e.g. for Ryu's EoSX(108:

0 (po02a041 _ & g 1) = 24:120) _ §(L+40+60%) 4
90 30+2 Dc2 T T 2430 (2+30)2
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pseudo Lorentz-factdr = % can be determined and then the pressure can be calculafed I6y- %

For the ideal gas law the enthalpy is calculatechby 1 + (77—?1)’ which can be solved foy resulting
in:

2

Yh -1
Q) = e
¥(0) - o

Using the generalisation that now the adiabatic indéx not a constant anymore, the ideal equation
of state reads:

with y = (2.110)

d
P=(2(0) - Dpe = ((0) - 1) . (2.111)

The dependence of on © is shown in Fig. 2.5) for the exact Synge equations of state and the ap-
proximations oMathewsandRyu It can be seen that both approximations fit very well and @gogin
the Newtonian limit withy = 5/3 and the ultra-relativistic limit witly = 4/3.

The equation of state for an ideal gas is:
P=(y-1)pe. (2.112)

Following the ideal gas lawPV = nRgasT, with pressure P, volume V and amount of gas n in moles,
temperature T and the molar gas consfgys = 8.314,—; introducing the molecular maggas =
in g/mol and taking into account the definition of the dengity ; one gets for the temperature in K:

_ Hgas P

Rgas p
The molar mass for atomic hydrogenug = 1.00797 gmol, for hydrogen moleculesy, = 2 uy and
for ionized hydrogen plasmayas ~ 0.5 gmol.

T (2.113)

The sound speed of a relativistic ideal gas is

YP Y
Vo=, /15 = — 2.114
s oh \/ F ( )

The dependence of the sound speedon % and its comparison to the Newtonian sound speed can
be seen in figur@.6.

The eigenvalues of the one-dimensional special relativistdrodynamic Euler equations for a sound
speedcs = vs = 0.5 ¢ dependent on the advection speed ve of the fluid can be seen in figu?7.
The eigenvalues are (sédoy et al. 1999 Appendix A):

(1-Av-/1-¥)cZ(1-v2cZ-(1-c) W)

ap = v (2.115)
& = g=au=V (2.116)
o - LmVH VAV EA-VE-(1-)V) (2.117)

-V
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Figure 2.6: Relativistic and Newtonian sound spegdnd \; Newtonian in units g8 = ¢ dependento® = /—F)’
for an adiabatic indey = 5—33 In the relativistic case there exists a limiting sound spe®sjimit = vy —1c<cC.

Eigenvalues of relativistic hydrodynamic Euler equations (1D) v, =0.50
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Figure 2.7: Eigenvalues of the special relativistic hydrodynamic Eelguations for a sound speed € vs =
0.5 c dependent on the advection speed v of the fluid. If the flyicbaphes the speed of light ¢ all eigenvalues
will fall together to c.
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The largest eigenvalue is used in the calculation of thei@kgime step.

For a fluid moving along th&-direction the eigenvalues, the characteristic speedbeafonservative
Eulerian formulation of the general relativistic hydrodymics equations are (sé®nt 2008 egns.
(36), (37)):

Ao = avg*-p* (triple), (2.118)
@
Ay = m {VEX(]- - Cﬁ) +GCs \/(1 - VE?) [gxx(l — Vg2 ¢3) — VEXVEX(1 - C%)] } -p

(2.119)

wherecs is the speed of sound ang* the velocity component ix-direction of the velocity in the
local Euler frame.

This reduces to the special relativistic expressions ifingerts the Minkowski metric and also to the
Newtonian onesAp = VE*, 1. = VE* + Cg).

In the case of general relativity also the largest eigemvéduused in the calculation of the explicit
time step.



3 Numerics of General Relativistic Euler and
Navier-Stokes Equations

In this chapter first a general overview about the numeriaghds in Astrophysical Fluid Dynamics
(AFD) is given, then the discretization of the General Reistic Euler and Navier-Stokes Equations
using a finite volume approach is shown. After the desciptibimplicit methods used to solve these
eqguations several iterative linear equation solvers, whie used therefore, are presented.

3.1 Numerical Methods and Time Scales in Astrophysical Fluid
Dynamics (AFD)

3.1.1 Numerical Methods in AFD

Astrophysical fluid dynamics (AFD) deals with the propestend movement of gaseous-matter or
plasma under a wide variety of circumstances. Most astisipalyfluid flows evolve over a large
variety of diferent time and length scales and have a complicated steudtenceforth making their
analytical treatment unfeasible.

That is where numerical simulations come into play: Due &rtpid development of computer hard-
ware technology during the last two or three decades alsauhwerical treatment of Astrophysical
problems by means of computer codes has grown exponentially

Nowadays, a vast majority of numerical simulation codescapmble of treating large and sophisti-
cated multi-scale fluid problems with high resolution andrein three-dimensions.

The numerical methods employed in AFD can basically be ifledsnto two categories:

1. Microscopic methods, based on the treatment of singleorgeseudo-particles:
N-body (NB), Monte-Carlo (MC) and Smoothed Particle Hydnaamics (SPH),
which might already also belong to the second category

2. Macroscopic methods, mostly grid oriented methods basel common statistical treatment
of particles in a small volume element (hydrodynamics):
finite difference (FDM), finite volume (FVM) and finite-element meth@egM).

Most numerical methods used in AFD are conditionally-galthich means that they may converge
if the Courant-Friedrichs-Lewy condition for stability fslfilled. For compressible flows that are
strongly time-dependent these methods are véigient. They may stagnate however, if important
physical éfects with other time-scales, like cooling, are to be considl@r even if the flow is almost
incompressible (like the flow of water compared to that ofahg
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On the other hand, only a small number of the numerical metleatployed in AFD are uncondition-
ally stable, the implicit methods.

But implicit methods are much moréert-demanding from the programming point of view compared
to explicit methods, since they contain a solution of a matguation.

It has been shown that strongly implicit (henceforth IM) angblicit (henceforth EM) methods are
different variants of the same algebraic probld#ujéirat 2005z,b), hence both methods can be
unified within one simulation code.

Table 3.1 gives an overview over several relevant properties of sofrtheonumerical simulation
programs used in Astrophysics.

3.1.2 Time Scales in AFD

In nature there exist manyftiérent time scales in accretion phenomena. Followdogeirat, Keil, and
Heitsch(2007) they are described here:

AFD
Microscopic oriented
metiods methods

FDM, FVM, FEM NB, MCM, SPH
Conditionally stable
Methods

Unconditionally stable
Methods

A
v

Figure 3.1: The mostly used glerent numerical methods in Astrophysical Fluid Dynamicsitdi djfference
(FDM), finite volume (FVM), finite element (FEM), N-Body (NBJpnte Carlo (MCM) and the smoothed par-
ticle hydrodynamics (SPH) and their possible regime of igagibn from the time scale point of view. The time
scales are: the radiativer, gravitativerg, chemicalrcn, magneticeye, hydrodynamiceyp, thermalet,
viscouszyis, and the accretion time scatex.c. (plot fromHujeirat et al. 2007.

Assume a box oL x L x L dimensions filled with a rotating multi-component gasemater is
given. The fluid is said to be radiating, magnetized, chelngacting, partially ionized and under
the influence of its own gand external gravitational field. The state of the gas mayédseribed

by characteristic sizes of velocity, density, temperaamd magnetic field. The (approximate) time-
scales associated with the flow can be obtained directly frendimensional analysis of the radiative
MHD-equations as follows (sddujeirat 2005afor detailed description of the set of equations see for
example ).
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Explicit Implicit HSS
solution il oon 1 ~ 1 N
=q"+otd" Mt =q"+6tA—d ML= og + (1 - a)tAd*
method q q q q g™t =g + (1- @)sthAy
Strongly time- Stationary, Stathnary_,
) : guasi-stationary,
dependent, guasi-stationary, .
: ) o weakly compressible,
compressible, highly dissipative, hiahlv dissipative
Type of flows | weakly dissipative radiative and g_ y P '
: . radiative and
HD and MHD axi-symmetric MHD- . .
. . . .| axi-symmetric MHD-
in 1, 2 and 3 dimen4 flows in 1, 2 and 3 di- .
. . flows in 1, 2 and 3
sions mensions ) .
dimensions
Stability conditioned unconditioned unconditioned
Efficiency 1 (normalizeg2D) ~ P ~ Mg
Efficiency: Parallelization, HSS, paralleliza-
Enhancement Parallelization preconditioning, tion, preconditioning,
strategies multigrid prolongation
Robustness: | . su_btlme-steppmg i. multiple iteration i. multiple iteration
ii. stiff terms .. . . .. . .
Enhancement ii. reducing the time| ii. reducing the time step
. are solved . .
strategies L step size size, HSS
semi-implicitly
. Solvers®
Numerical ZEUS&ATHENAP
Codes ’ Solver® IRMHDP
. FLASHS, NIRVANAY,
Newtonian
PLUTC?, VAC'
Solvers3
Numerical GRMHDI, ENZCK, GR-I-RMHD®,
Codes PLUTO, HARM™, Solver4
- Astro-GRIPS
Relativistic RAISHIN", RAMO,

GENESI®, WHISKYY

Table 3.1: A list of only a part of the grid-oriented codes iRIAand their algorithmic properties. In these
equationsg™™?, 6t, A, @ andd* denote the vector of variables from the old and new time g\@he step size,
a preconditioning matrix, a switch (ff parameter and a time-modified defect vector, respectitelyin row

4 denotes the bandwidth of the corresponding matrix.

aBodenheimer et a(1979; Clarke (1996, °Stone and Normafl992; Gardiner and Ston€006, ‘Fryxell et al.(2000),
dZiegler (1998, *Mignone and Bod@2003; Mignone et al (2007, fToth et al.(1998, 9Wuchterl(1990; Swesty(1995,
PHujeirat (1995 20053; Falle (2003, 'Koide et al.(1999; Komissarov(2004), iDe Villiers and Hawley(2003, O’Shea
et al.(2004, 'Mignone et al(2007), "Gammie et al(2003, "Mizuno et al.(2006, °Zhang and MacFadyef2006, PAloy

et al.(1999, “Baiotti et al.(2003, ' Liebendorfer et al(2002), SHujeirat et al (2008. 'Astro-GRIPS, the General Relativistic
Implicit Parallel Solver, the more user-friendly, optiraizand parallelized simulation code similar to GR-I-RMHDigh

is described in this work here.
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Implicit solution
procedure

\

flows

Weakly
compressible

(stellar interior)

Reacting flows
(Primordial gas)

conductive flows
Corona, stellar
interior)

Explicit

Euler type
equations

Radiative diffusion,

Partially ionized
molecular clouds
(Ambipolar
diffusion)

(Navier-Stokes

General
relativistic
flows

Figure 3.2: The regime of application of the explicit methods is seydmlited to Euler-type flows, whereas
sophisticated treatment of most flow-problems in AFD regjtlie employment of much more robust methods,
like implicit methods (plot frorfujeirat et al. 2007.

e Continuity equation:

dp

V(pV) =0

(3.1)

wherep stands for the density and is the velocity field. Using scaling variables (see Table

3.2), one may approximate the terms of this equation as follows:

% 2 andvipv) ~ LY.
t 7 L

Scaling variables Molecular cloud| Accretion(onto SMBH)| Accretion (onto UCO)
L Length O(po) O(AU) O(10% cm)
p Density 1022 g e 10%gcms 108gcms
T Temperature | 10 K 10° K 10" K
\Y, Velocity 0.3kms* 1P km st 1073 kmst
B Magnetic Fields| 30 G 17 G 10 G
M Mass 10° Mg, 10° M, Mo
M Accretion rate 102 Mg Y1 1010Mm, YL

Table 3.2: Alist of possible scaling variables typical forge diterent astrophysical phenomena: giant molecu-
lar clouds, accretion onto super-massive black holes (SB)BHd accretion onto ultra-compact objects (UCO).
These scaling variables are used to determine the typisalgcales involved in such accretion phenomeéha (

jeirat et al. 200Y.
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This yields the hydrodynamical time scale
L

THD = v (32)

The so-called accretion time scale can be obtained by etiegrthe continuity equation over

the whole fluid volume. Specifically,

/‘9”olv—a'vI M /(V oV)dV = /pV-n-dS~M,
S

where 'V’ denotes the total volume of the gas and 'S’ corresjzoto its surface

Equating the latter two terms, one obtaiﬁ\jé:~ M which gives the accretion time scale

M
M .

Tacc ~

(3.3)
In generalracc is one of the longest time scales characterizing astropalyfows connected to
the accretion phenomena.
The momentum equations:
ov 1 f VxBxB
VL IVOV = —“VP+ foemt 1wy + ~2X2XP o (3.4)
ot o o 4o
whereP, feent frad, ¥, B, Q) denote gas pressure, centrifugal force, radiative fonaeitg-
tional potential, magnetic field and viscous operatorgeetvely. From this equation, we may
obtain the following time scales:
1. The sound speed crossing time can be obtained by compagnigllowing two terms
% ~ %, which yields:

v\ 2
Ts ® THD Vo)
S

(3.5)
whereVsis the sound speed.
. The gravitational time scale frofif

V2
6= THD () o
9

(3.6)
whereV2 GM/L and G is the gravitational constant.
3. Similarly, the Alfven-wave crossing-time froff ~ VETB;B:
2
Vv
Tmag = THD <V_A> s (3.7)

whereV2(= B2/4np) denotes the Alfven speed squared
4. iati

Radiative fects in moving flows propagate on the radiative scale, whidiiained from
N o frad.
ot~ p -

V2
Trad = THD )
rau c

v (3.8)
where c is the speed of light.



50 3 Numerics of General Relativistic Euler and Navier-Stokgsations

5. The viscous time scale frofif ~ Q[ ~ %¥:

L2
Tvis = — (3.9)
v
wherev is a viscosity cofficient.

e The induction equation, taking into account tifteets ofaqyn—dynamo, magnetic Gusivity
vair and of ambipolar dfusion reads:
0B

— =Vx(VxB+ B- VxB)+V x
It ( @dyn Vmag ) { Aypipn

x [B x (V x B)]}, (3.10)

wherep; , denote the ion and neutral densities.

Thus, the induction equation contains several importamt scales:

1. The dynamo amplification time scale, which results from dlquality: % = V X agynB

and gives:

L
Qdyn

2. The magnetic-diiusion time scale can be determined fréﬁn: V X (VmagV X B):

L2
Tditf = (3.12)
Vmag
3. The ambipolar diusion time scale from
0B B
— =V x{ x [Bx (V x B)]}
ot Arrypipn [Bx( )
B 1/ B? 1 B Vi B B
-~ = — T ~_A_2:Z)amb_2
T L \4mon/) \ypoi/ \L Ypi L L
which gives:
L2
= , 3.13
Tamb Damp, ( )

whereDamy(= Vz/(ypi)) is the ambipolar dfusion codicient.

e The chemical reaction equations,
where the equation describing the chemical-evolution et&s'i’ is:

% = Em: ; Kmnomon + Emj lmorm, (3.14)

whereknn, denotes the reaction rate between the speuniesdn. |, stands for other external
sources. For example, the reaction equation of atomic Igyuirin a primordial gas reads:

oo _ ke ket e
ot mHHemHHe TmHHe
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which gives a time scale of:
My
ko Pe’

wherepe is the electron density arid(= 10°1° cm?® s71) correspond to the generation rate of

atomic hydrogen through the capture of electrons by ion&ecthic hydrogenmy denotes the
mass of atomic hydrogen.

(3.15)

e Equations of relativistic MHD

The velocities in relativistic flows are comparable to theespof light. This implies that the
hydrodynamicalkyp and radiativer;5q time scales are comparable and that both are much
shorter than in Newtonian flows.

Time scales| Molecular cloud| Accretion(onto SMBH)| Accretion (onto UCO)
THD ~ 10 Yr ~ months ~1s

Trad/THD ~ 106 ~ 1073 ~ 1073

Tgrav/THD | ~ 1072 ~ 1073 ~ 1073

Tch/THD ~ 101 ~10° ~ 1074

Tmag/THD | ~ 1072 ~ 10 ~ 101

Tyis/THD ~ 10t ~ 10 ~ 107

Tacc/ THD ~10¢ ~ 10%2

Table 3.3: A list of the time scales relative to the hydrodyial time scale for three fferent astrophysical
phenomena.

Why using implicit methods in General Relativity?

For velocities near the speed of light the time step has trbted to get a physical consistent solution
e.g. for the shock propagation.

In implicit methods the physical convergence determinedithe step size:

large time steps give no numerical instabilities like inleipmethods, but may give physically wrong
or too difusive solutions if the time step size is too large.

So in time-dependent general relativistic simulationsttiree step should be of ordelx/c due to
accuracy reasons even for implicit methods.

But with implicit methods it is possible to simulate largerentz-factor flows (with Lorentz-factors
between 100-500), like in Gamma Ray Bursts (GRBs), whiclallysaannot be reached by explicit
methods.

Although the dynamical time scale in relativistically mogiflows is relatively short and therefore
a large time step cannot be used for physical reasons anyweg are enough other reasons to use
implicit numerical procedures in this case:

1. The (general-) relativistic (magneto-) hydrodynamicapns are strongly non-linear, giving
rise to fast growing non-linear perturbations, imposingréioy a further restriction on the size
of the time step (for explicit methods)

2. The extreme spacetime curvature in the vicinity of thelblaole, results in other non-linear
effects in fluid flows. Therefore, to accurately capture such #twctures, a non-linear distri-
bution of the grid points is necessary, which may destab#izplicit schemes.
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3. Initially non-relativistic flows may become ultra-relastic or vice versa. Since almost all non-
relativistic astrophysical flows known to date are congdeo be dissipative andftlisive. To
track their time-evolution reliably, it is necessary tHa humerical solver is capable of treating
the corresponding second order viscous terms properly.

4. The accumulated roundtaerrors resulting from performing a large number of timepstéor
time-advancing a numerical hydrodynamical solution, Whicay be necessary when using
explicit methods, may easily cause divergence from thepi@gdical solution.
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3.2 Non-dimensional formulation (Scaling) of Equations

The numerical algorithm described here should be able te@dbk time-evolution of hydrodynamical
flows both in the non-relativistic as well as in the extrerakivistic regime. Therefore the equations
are scaled to non-dimensional units to ensure, that thera@problems with extremely small and
extremely large numerical values and that the linear egaatlver is well behaved, which is the case
when the Jacobian matrix is always well diagonal dominant.

Instead of the usual convention to set the speed of light badjtavitational constant to unity, one
can use the sound speed as the basic measure for velocitissis Teasonable as the radial motion
of rotating flows around compact objects can be as low as dlfbdthe speed of light, whereas that
is about 102 the sound speed. But close to the event horizon, all vedscliecome quantitatively

comparable and are almost reaching the speed of light, se $lealing with the speed of light is also
right.

With the definition of the conservative variables
D=pl [ML™9]
m=M = yGrDU [ML3LT
n=My= \G@DV [ML3L2T (3.16)
| =My =Dy dw [ML3L2TY
ed=eD [ML-3L2T-9]

and the primitive variableg, U, V, w andP (given by the equation of state), where the velocities are
defined by

U= Gr V' LT
V = G V! [LTY] (3.17)

w=V?= wEDE + dw [T_l]

one gets for the axi-symmetrical{ = 0) general relativistic Navier-Stokes equations (3€®5 in
the so called flux-conservative form, that smoothly adaptis¢ Newtonian form in the non-relativistic
regime:
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aD 1 4 = ) 1 a( —g >
UD |+ —— —VD|=0
\/_6r< grr \/_a g@@

[ML™3 T = [opim tohu] (3.18)
om, 1 0( |9 L o ( 79, \_ _0P c(MMdg,
atW——gar( grrum>+v——gae< geevm>_ ar+2< Mt) * Qlis

ML LT T = [ppim Voim toiw] (3.19)
8n 1 9 [— -9 1 0 [— -9 _ 0P c /MM agﬂv

\/_ar < Orr v n> \/_(99 < (o7} v n> B a0 * 2 < Mt > QVIS

ML= LLT 2T = [ppim Roim Voim toim] (3.20)
ol 1 0 /-9 1 0 /9
ot ¥ \V=gor < Orr Y I> " \/__969< Joe > QVIS

ML= LLT 2T = [ppim Roim Voim toim] (3.21)

o 1 o6 ( [—g d)
ot \/—gar< Orr ¢ V-9 59( gee )
9 (Ut 1 0 —g  u 1 9 —g  , u -
25 () o (Var v o) Jman (Vo vE) ot
ML L2T2 T = [ppim Viu toiu] (3.22)

where+M?M#d,(g,,) = —M,M,d,(g%*) and withtpim = RoimVoiy-
The basic scaling variables are:

¢ the typical densitypwv,
¢ the typical length scalBp u, which is typically set to the inner radius,

e the typical velocity of the flow/pyv,
typically set to the sound spe&t p;u or to the speed of lightp .

e the typical temperaturépy .
From these basic scaling variables one can determine desgaading variables, e.g.:
Roim
e time scaldp;y = Vo

e typical energy density and pressure sd@igy = Poim = ppoim V%u\n

and for the scaling factors of the conservative variablesgmis:

e Dpim =ppim
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e Mpm = ppim VbIm

e Npim = ppoim Roim Voim

¢ Ipim = poiv Roim Voim

o eim =poim V3iu
But there is a slight problem:
The scaled conservative variabBsm, n, I, €9 should be all of the same order, so that the resulting Ja-
cobian Matrix for implicit methods is always well diagonardinant, which is important to guaranty

(good) convergence of the iterative linear equation solver
But since usually there are twoffirent velocity scales in the radial and azimuthal directiwhere

the velocities are of the order of the sound sp¥egim = ,/ZD%%, and in theg-direction, where

the accretion disc is rotating with the Keplerian velodity.pim = \/G Men — \/rg?D'M Coim, Which

Roim Roim
is usually much larger than the sound speed.
To avoid such problems, one can multiply each equation watbnstant factof,,, where the indekq
denotes the i-th equation of the system. To avoid the afonéored problems with dierent velocity
scales, one can sé = f, = f, = fa = 1, so leave these equations as they are, and only multiply the
angular momentum equation ly To take into account thefligrent typical velocity in the direction
one can define a modified angular momentum:

(= §1 with f = DM (3.23)
Vk:pim

which results in a modified angular velocity equation:

a1 4 By ~> 10 < g ~> 0
—t—— (/2 Ul)+—== (/= VIi)|=1Q 3.24
ot -gar < Orr V=996 Qo0 | Quis (3.24)

In that case the variable= 1 is calculated fromi every timel is determined, to ensure that the

fi
right | is used in the other equations. This procedure ensuresthabpe equation has to be scaled

differently and the other equations, e.g. the velocity noratitim equation used to determine the
Lorentz factor, have not to be modified.

Note that for general relativistic simulations whargy is set tocpm one should sef; = 1, so
that all velocities are scaled with the speed of light, beean relativity all velocities are limited by
the speed of light and in the proximity of the black hole alloegties will almost reach the speed of
light.

Scaling from the dimensional variables to the non-dimerai@ariables is usually only done once at
the input (or maybe restart) and the back transformatiomnb@dsional variables may be done during
data analysis and visualization.
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3.3 Grid and Discretization

3.3.1 Grid Generation

With a few parameters either a uniform or a stretched gridlmagenerated. Giving the inner and
outer radial and latitudinal limits of the computationahaizin, possibly some intermediate values and
the cell numbers between these values, the minimal gridrspécr andé direction and where this
should be located, a suitable grid is generated. See figuBesd3.4 for details.

Sometimes this can give errors if the parameters are notsgkdtted, because an iterative routine is
used to distribute the cells between the given points. I sucase one has to tweak the parameters
to get a successful result. In the future it might be posdibleeplace this grid generation method
with a more user friendly method like the one used in the PLIWEBGe Mignone et al. 200) It is
also possible to define more than one grid level and then #tarspecified iteration time step or a
specified physical time prolongate from one grid level tortbet level which - in general - possesses a
finer grid. With that method it is possible to save computwldime, by first calculating the solution
on a coarse grid and then continue on a more refined grid.

______ . m
lu.in | | |r 1 , l:out
! I I '  _ | 1
rj max jin rj+l rj - I3 Ty
lu.m l..b l,.a l:out
Numberof_ | wzL )10 NZC T wzm

orid points
4 If the drmin should be located at rill

3 If the drmin should be located at rb

Idrmin =

2 If the drmin should he located at ra

1 If the drmin should be located at rout

Input: 1) r,=one, r,,, , ; should be given in r; units
2) the number of points NZR, NZC and NZL
should be given
3) Idrmin should be given (1,2,3 or 4)
Output: I, 1™, er and l:h""J will be specified.

Figure 3.3: Radial grid structure: jmax= J2G + 1, jin := J2G, J1G = 2. Note that the grid indices run from
outward to inwards! § and ro, are the radial grid boundaries, NZL describes the numberriaf cells between
the inner boundary§ and an intermediate radiug,y NZC the number of grid cells between the inner radii
rp, and r, and NZR the number of grids cells betwegrand the outer boundary,;.. The parameter Idrmin
describes where the minimal radial grid spacing.grshould be located. Given all this parameters an iterative
routine is used to generate the grid spacing (plot from Hajefior GR-1-RMHD).
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Vertical grid-point distribution

o Tkl 5 TO=w2
@ |
S
=
o —0=8,
L]
X
=
o -—9:93
£
% lo=0

Idzmin

Figure 3.4: Latitudinavertical grid structure: kz= K2G, K1G = 2. The latitudinal grid is setup similar to
the radial grid in figure3.3 (plot from Hujeirat for GR-I-RMHD).

3.3.2 Staggered Grid and Grid Structure

For the discretization a staggered grid is used. The stictiithe diferent staggered grid cells and
the location of the variables can be seen in figl€s3.7and3.8.

For the axi-symmetric two dimensional grid there exist ¢hdéterent grid cells:

e the cells with centred variablds,
and in the axi-symmetric case also for the vector comporiertsdirection: w andl,

¢ the cells shifted in the radial direction for the radial weatomponentt) andm
e and the cells shifted in thedirection for the azimuthAhtitudinal vector componentg andn.

For a full 3 dimensional grid one would also have a furthed gl which would be shifted -
directions for the vector componentsdrdirection: w andl.

The staggered grid with thesel@irent cells is used so that in most cases there is no nee@tpatdte
variables which therefore should give a more accuratetreBuj. in case of the continuity equation
there is no need to interpolate the velocities from the aaitie of theD-cell to the cell boundaries.

3.3.3 Finite Volume Discretization

In the Finite Volume method a cell, a small volume, is looked a
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Discretization:

1y

along the equator
V.

.
2)

along the polar axis

Figure 3.5: Five star staggered grid discretization: 1) shows the lomabf the grid variables: density, tem-
perature, angular momentum and forces are stored in the ggitre of the 'density’-cell, whereas the velocity
components are stored at the cell interfaces. 2) shows thedary cells at the polar axis and the midplane
(equator) (plots from Hujeirat for GR-I-RMHD).

The hydrodynamic equations can all be written in flux-covestare vector form:

(9 2 =

a_? + Lr’rrﬁ+ Le’ggG = f, (3.25)
with the vector of conservative variablgsnd where= andG are the fluxes ofj in r andé direction,
andLy,, Lggy are first and second order operators that describe the @mtvetd difusion of the
vector variablegfin r andé directions.f corresponds to the vector of source functions.

For clarity let us consider now only a single equation witlydirst order operators, for example the
continuity equation. This equation has the form:

‘Z_‘f +div (F) =, (3.26)

whereQ is the conservative variabld,ff is the vector of fluxes an8 is the source term, which is in
case of the continuity equation zero.
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Figure 3.6: Staggered grid structure in radial direction

Due to Gaul¥' law one can transform the divergence of the flinkegrated over a volume to a flux
through the surface:

/div(lf') dv = / Fds

Veell Scell

(3.27)

With this information one can interpret the equation in fleaservative fornB8.26in the following
sense:

the change in time of the quantityin a cell is equal to the net-flow of the fluxes through the cell
boundaries.

In case of the continuity equation that means, that the ahafhgiass density in a cell is equal to the
net-flow of the mass fluxes through the cell boundaries.

An important property of this Finite Volume Discretizatiomethod is that it guaranties that the con-
served variables are also numerically conserved (up tatimgerical errors).

Therefore this method plays a crucial role if conservat®mréry important, e.g. one has to specify
the angular momentum as a conserved variable and not a limeaentum ing direction, elsewise
the angular momentum is not conserved numerically.

Discretization of the continuity equation

The continuity equation is discretized using the staggerédl strategy within the context of finite
volume philosophy.

The advection term in-direction
1 6

v——gﬁ<\/gw>

ik
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(o) Dy MY 5 M5 G

o DMRLk; m,; nMRei’k; guVMRLk
DMei,k; mMRei’k; e guvmei,k
DMRBi,k; mmei,k; nMRiyk; guvMRei,k

ek+1

Figure 3.7: Staggered grid with all three gferent cell types shown.

using the integration over theinterval [rj.1,rj]; rj<1 < r; (attention: the indices run from outwards
to inwards!) gives:

[ V=0/g UD']}, _ [V=97on UD'rr, - [ V=07Gr UD]1—r,.,
rrji-l \/__gdr k rer+1 \/__gdr K
7 cost) an . [Mug}
[ P2/A r=rj VP2 /A r=rj
frj1+1,52 cosg) dr
k
[pVEUD| - [pVAUDT|
_ r_rri _ r=rj ’ (3.28)
j;’j+1p dr K
where
", N 2o r* o T
/ prdr| = / (r? + @ sin(6y)) dr = [ + & sirf(6) rlel.,
a1 K a1 3
(3_ 3
= g a st (1) 1), (3.29)

The advection term iA-direction

ik
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using the integration over thginterval [Pk, 1, 6k]; ki1 < 6k (attention: the indices run from the axis
to the midplane, whereas the latitu@lancreases from the midplane to the pole) gives:

[ V—g/999 VDg]em _ [V=09/96s VD] ek — [ V=079 VD"]¢-0,..

9k+1 VT w i 9k+1 V— w i
[ﬁ?cose) ng] _ {ﬁzcos@ Vgé}
_ i 0=0k i O=6k+1
- o)
6., P €Osp) do

[,5 cos@) V@] - {E cose)vgﬂ
= 0=tk 0=t (3.30)
fek 02 cosf) do

where

/gk <r5“2+a S|n2(9)) cos@) do = { sin@) + a2 =—= sir'(0) ]
Ok+1

Ok
/ p? cos@) do
6

k+1

j Ok+1

2 (sin3(9k) - sin3(9k+1))

= " (sin@k) - sin@k:1)) + & 3 (3.31)
In the above expressions the following upwind values weeglus
= [ Djak+ fjr—l,k ifUk<0 3 [ Djka+t ffk—l if Vik<O
D jk = { Djk + ik if Ujx20 D k= Djk + ffk if Vik>0 (3.32)

The functionsf" and f¢ are corrections for maintaining higher order spatial aacies.

Discretization of the radial momentum equation

For the discretization of the radial momentum equatiomthecell in figure3.8is used. On the stag-

—MR
gered grid the radial momentumis located atxj, 6;") and defined as followingm = MRD  U.
and the radial momentum equation is (8c22):

ML 0 (8N, L0 [T P (MM g
6t+v——gar<\/gnum>+v——gae< geevm>_ o 2 <Mt> + Qi (3:33)

where+MYM#d,(g,,) = —M,M,d,(g™)

The advection term in-direction

1 0 -9 >
—Um
\/ or ( Orr

jk
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using the integration over threinterval [r{", ri",]; ri" < ril, (attention: the indices run from outwards
to inwards!) gives:

[ V_g/g” Um]:iﬁl [ V_g/grr Um]r:rgﬁl - [ V_g/grr UR]r:rE“
Jef ™t v=gdr S y=gar

2 cos) Uﬁ] _ [Ecos@) Uﬂ
[ P2IA r=rm V’?/A r=rm

frr_n%’l p? cos@) dr
]

pvAuN] - [pvAUm]
_ =1 i (3.34)

rm,
Jbt g2 dr
j

UiriktUj
whereUJ!V'kR = U(rm, om) = Yskik ang

T
/ p?dr
rm

J

I‘nll 3 m
- / "2 + a2 sink(el) dr = [% + a? Si(e) 1] i’
k T
m. 3 _m3
- HTJ + a? sirf(g) (r'"y — 1. (3.35)

The advection term iA-direction

1 —
V=g a6 o1
using the integration over thginterval [Pk 1, 6k]; ki1 < Ok (attention: the indices run from the axis

to the midplane, whereas the latitudéncreases from the midplane to the pole) gives similar to the
advection term i-direction of the continuity equation:

ik

[ V—0/9% Vm(’]giﬂ ~ [V=9790 VLo, — [ V=0/G06 V1o,
oo VOH | e VO

[M Vr?p] _ [u V@}
P P

0=6k
6
g, P2 COSP) do

0=0ks1

{p_ cosp) V@} - [,5 cos@) Vrr_)ﬁ]
_ 0=6k 0=0k+1 (3.36)
fei‘ilﬁz cos@) d¢
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. drj (Vi-Lk-Vjg) . dr dr
whereVMR = V(r},6) = Vi + S w with Vjy = V(r, ) anddr = (% + %)
and

Ok

/gk (2 + a2 sir2(6)) cosp) do = [rjz sin@) + & ﬂg(e)}
[

k+1

Ok
/ p? cos@) do
6

k+1

] Ok+1

(Sin*(6k) — Sin*(6is1) )

= r#(sin@k) - sinEk,1)) + & 3 . (3.37)
In the above expressions the following upwind values weeglus
Rj’k B { Mj 1k + fJ'T;Lk if URAKR >0’ mﬁj’k - Mmjk + ffk if VN(R >0 (3.38)
The functionsf™" and f? are corrections for maintaining higher order spatial aacies.
The discretization of the source terms give:
For the radial pressure gradieng one gets:
Pj_1 - P
- 3.39
dri" (3.39)
The geometrical source terms including gravity are:
c (MM dg,,  C (MM, ag”
et _ =__ 3.40
+2< Mt>ar 2( Mt ) Tor (3.40)
where+MYM#0,(d,y) = —M,M,0,(g)
Written out this gives:
c (MM 89, C Qv
il - M“MY
+2< M > ar  2M ar
1 00t 5o OYrr 090 09s¢
= ([ M'M'Z2 £ 2M'M? =2+ MTMT 2+ MOIMO 2 MM =22
2M ( ar ar ar ar ar
Mt ¢ ogy %y M2 cogy M?? cog M? C 9940
2 o " ar T 2MU ar | 2Mt ar | 2Mt or (3.41)
@ _ P — TN/ \nsi t_ r_ U 9 _ NV \¢ _ B _DPr — ph
whereM = Du® = DV? with V _F’V = \/QT,V = @,V = w andD = DI" = DHI".
All variables are located whergjy is located, at the point (, 67").
The gravity term (Newtonian:pGMgn/r?) is:
=MR
MMRc agR D c? agyR (3.42)
2 o 2 or '
—MR —MR
a;O D ¢ —2rg _ D ¢ -2GMgH :EMR —-GMgH (3.43)

2 r2 2 c?r2 r2
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The frame dragging dependent term is (Newtonian and Sclsalaiid: 0):

"”Vch—agt,\gR = EMRCV"jMR—agt’\gR:EMRCwMR—agt’\gR
or or or

a0 o (3.45)

M (3.44)

The pseudo ’'centripetal’ force due to the motion in the radieection in general relativity (GR)
(Newtonian: 0)

using
—MR —MR
=MR O U? (o¥RD U ¥
r2 _ n2 _ _ rr _
M“=(D V"= L = P{'Rz = P{'RZ (3.46)
gives:
Mr2¢c ggMR mPc  ag\R P AR (3.47)
MR = —MR = =MR :
2Mt or 2D c |\I{|R2 or 2D PI{IRZ or
a:O rnz _2rg MR2 _ m2 —rg _ mz —G MBH
= —MR 2 91 T =MR 2 =~ =MR 2,2
2D l|¥|R2 r D r D cer
—MR2
gytD U2 -rg  =MR , o —Ig
= ”T — =D Ugr" —
—MR 1 —r —MR 1 -GM
= D U3—— _—9_-D U2 BH (3.48)

The pseudo centrifugal force due to the motion in theta doerdor GR as well as in Newtonian

(Newtonian:pVTs)
using
—MR
2  —=MR D VMR2
MM~ D VHMRQ)ZZ% (3.49)
Gg6
gives:
gMRH2 MR SMRUMRoY2 MR MR§2 MR
M C 00y B (D V)¢ 1 0dgy —EMRV c 1 0Jgy (3.50)
2MtMR g B g o 2c  gyR or '
0 =MR VMR? 1 512 _Mmr YMRZ 5 _yR yMRe2
a0 g L =D =D (3.51)

2 rj2 or 2 r|
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. .V .
The pseudo centrifugal force term (Newtoniar? = w? 1 co(6) usingVvy = w ey = w r cOYH)):

MMt gt @ VMR e gl S MR gl (352)
MR = —MR = .

2Mt or oD e or 2 or

a0 =MR WMR® 9r2co@(0") =MR MR?

= D =D 2r; co (6

2 ar 2 j cos (6ic)
—MR
= D o"r; cod(el (3.53)

The discretization of the viscous source tei@jg is not presented here.

Discretization of the latitudinal/vertical momentum equa tion

For the discretization of the latitudigaértical momentum equation tmgy-cell in figure3.8is used.
On the staggered grid the latitudinal momentans located at r(]“ 6) and defined as following:

=Mé
n=/gM?D V. and the latitudinal momentum equation is (8e22):

on, 1 o( |9 Lo 29y ) S0P S (MM 90w
5t+x/—_96r< grrun>+\/__969< geevn>_ ae+2< Mt ) go + Qs (3:54)

where+MYM#d,(g,) = —M,M,d,(g™)

The advection term in-direction

1 9 -
\V=gor Orr
using the integration over theinterval [rj.1,rj]; rj«1 < r; (attention: the indices run from outwards
to inwards!) gives similar to the advection termridlirection of the continuity equation:

j.K

[ V-0/0 UH?]::}-A _ [ V=0/0r Uﬁ?]r:rj —[V-9/0r Uﬁg]r:rm
Jeb, vFadr | Ji}, v=gdr k
p2cos6) _ | p%cosf) U_?]
[ Vo2 /A n]r:r- [ Vp?/A " r=rja

rrj"ﬂﬁz cosp) dr

pyau| - [pVEUd|
_ = , (3.55)
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whereUM’ = U(rj,6) = Ujy + 5 (U’kdo%“‘) with U = U(r;, 67) andde] = <d"k-1 + dgk)

and
rj rj 3
/ p2 dr
Mj+1

= (r? + a2 sir?(6y) dr = [ + a2 sinf(6) 11,
Kk Mj+1
(3 _ 3

- ’T“l + a2 sirP(6k) () = Tjen). (3.56)

The advection term iA-direction

1 0 -
V-gao Qoo
using the integration over thgeinterval [6", 6. ,1; 67" < 6" ; (attention: the indices run from the axis
to the midplane, whereas the latitu@lencreases from the midplane to the pole) gives:

jk

— om — -
[ V-9/90 Vne]ehl_l [ V=079 Vo=, — [ V=0/Ges V] ggp

ek 1 ‘\/_w ek 1 ‘\/_w )
j ]
{ﬁzcos@ Vﬁé} _ {ﬁzcos@ Vﬁé}
g =61 | g =6

9: 1 p2 cosg) do

_ — _ —
[p cosG)Vne} - [p cosG)VnO]
6=6" f=6"
= ol S K (3.57)
feﬂh‘ 1 p2 cosg) do
j
whereVM = V(r'™, o) = % with Vjk = V(r", 6) and
01 O sin3(6
/ 72 cosp) do| = / ( m2 | 4 S|n2(9)> cosg) do = [ 2 sin() + a2 sirf(e) | *
o i 6 o
3 m
sin°(6y sin°(6)
=1 2 (sin@ 1) - sin@EM) + ( G )3 i )) (3.58)
In the above expressions the following upwind values weeglus
Nk + ff if UM<0 — Nik_ if VM9 <0
H?jk: J’k+ J’kr . ’k9< ) nejk: bk 1+nék 1 . k/l|(9< (359)

The functionsf" and f™¢ are corrections for maintaining higher order spatial sacigs.
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The discretization of the source terms give:

For the latitudinal pressure gradien%—g one gets:

Pr-1 — Pk
L S 3.60
a7 (3.60)
The geometrical source terms are:
c (MEMY 89, € (MM, ag™
+2< M ) a6 ‘_2< Mt ) a0 (3.61)
where+MYM#9,(g,y) = —M,M,0,(g*)
Written out this gives:
c (MM 89,y C Oy
d - MHMY =
"2 ( M ) 96~ 2Mt a6
1 O Oy O 0040 90p
=— (MMZ 1 2MIM? =2 L MTMTEE 4 MOIMOZE 4 Me e =22
2M < 56 56 56 96 a6
M! ¢ agy 0%y M'2cagy  MPcags MO Cagss
=—— 1+ M’ .62
2 a0 " %0 T 2Mt @6 T 2Mt ap T 2Mt a6 (3.62)
@ _ T — D/ i t _ r_ U \o_ _V  \¢é_ D _Pr - Pk
WhereM = Du®* = DV¢ with V __c,V = \/gT’V = @,V =wandD = DI' = DHhI'.
All variables are located whergy is located, at the pomrT, ).
The 'gravity’ term (Newtonian: 0) is:
=Mé
MtME & ggMe D 2 Mo
o _ D _C (3.63)
2 a0 2 a0
2 9 (3.64)
The frame dragging dependent term (Newtonian and Schwaldse) is:
Mé Mé Mé
MeMé % _ 5™ c oMo 99 _o™ c M 99" (3.65)
or 00 00
0 (3.66)

The pseudo 'centripetaentrifugal’ force due to the motion in the radial directiorGR
(Newtonian: 0) using

—Mao —M®6 2
MRO2 —Me MRST2 (D UMR9)2 B ( P'{leD UMRB)Z ~ mMR9
M - (D VMRY2 _ T 2 =7 (3.67)
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gives:

2 2 2 =Mé
MrMRH C ag;\ﬁl@ mMR@ C Cf)gi[\'{lé _ mMR@ Cf)gi[\'{lé B D (UMR9)2 Cf)gi[\'{lé

amtMe g9 zﬁMgcgppez 90 _ZEMOQM(’Z Y 90

(3.68)
a0 (3.69)

The pseudo 'centripetaentrifugal’ force due to the motion #hdirection for GR (Newtonian: 0)
using

—M6 (EMOV)Z
MPZ =D V2 = L (3.70)
66
gives:
—Méo
M% ¢ aghe O V)?c 1 agyy EMOVZ 1 agyy n? ag? (3.71)
M@ = —M& M0 = 5 MO = —Me :
ZMt 89 2D o 999 89 2 999 89 2D gglle(-)z 89
= (3.72)
The pseudo centrifugal force term (Newtonians tan@) = p w? r? sin() cosg)
usingvy = w eyl = w I cosp)):
oMo 2 HMe =MoL sMoyo oMo _ M2 ggMe
M cC 99 (D V?27)7c 095 BMO w Qs (3.73)
VLT —Mo = YR -
2Mt 00 D e 00 2 00
a0 =Mo WMO? 9 (rM2cof(B)) =Mmo MO
= D =D me 2
5 50 5 1] sin(fk) cog6k)
= D oM '™ sin(6y) cog6k) (3.74)

The discretization of the viscous source tei@fs is not presented here.

Discretization of the angular momentum equation

For the discretization of the angular momentum equatiotHeraxisymmetric two-dimensional grid
the Dj-cell in figure3.8is used, for a fully 3-dimensional simulation in the contekstaggered grid
discretization one would use angnrdirection shifted grid for the angular momentum equation.

So in axisymmetric discretization the same cell as for thatinaity equation is used. The angular
momentuml is located at 1", 6") and defined as followingl = M, = D g4y dw, Wheredw =
V¢ — wrpe = w — wepe and the angular momentum equation equation is $s22:

ol 1 0 -g > 1 0 ( g > P
S — —~ Ul + —-—— = VIl = . 3.75
ot ~-gor ( Orr V=906 \ '\ Qoo Qs (579
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Due to the axisymmetric discretization, the discretizaid the advection terms is similar to that of
the continuity equation, judd is replaced by.

The discretization of the source terms give:

For axisymmetric simulations with a 2-dimensional grid iand¢ direction, there exist no gradients
and derivatives i direction, and so in case of no viscosity the source termg{fodinal pressure
gradient and possibly geometrical source terms) are ail zer

The discretization of the viscous source ter@ﬁg for the Navier-Stokes equations is not presented
here.

Discretization of the internal energy equation

For the discretization of the internal energy equationDhe-cell in figure3.8, the same cell as for the
continuity equation is used. On the staggered grid theriatesnergy density! is located at r(]“ o)
and defined as followinge® = € D. and the internal energy equation is (8e29):

ged 1 9 -9 d) 1 0, [0, 4
—t—— (/=2 U —=—=—(,/ = Ve)=
ot v—90 or ( Orr € V_g 69( Oo ¢ )

0 (U 1 9 -g . u 1 —g . u

P .
-P {a <E>+ \/—_g§< aUE>+\/—__Q%< @VEH + O +T - AN3.76)

The discretization of the advection terms is similar to tifahe continuity equation, juf is replaced
by 9.

The first part of the source term consists of the presBunehich is for the equation of state of an
idealgaslawP =(y-1pe=(y-1) % =(y-1) Ei—tc times the advection equation for the pseudo
Lorentz factol” = “Et The relativistic Lorentz factor in the local Euler frameAs= al’

The time derivative of = “Et:

n+l _ n In l;l
=10 by rﬁ, (3.77)

o can be discretized by; ———=
At At

ot
whereas the advection termslafthe divergence of the spatial part of the 4-velocity, aseditized
in the same way the advection terms of the continuity or iidkenergy equation are.
Due to the time dependence of this source term there can pcohtems, if the Lorentz factor is
changing too quickly. Therefore care has to be taken in thihadethis term is discretized and how
the Lorentz factor is determined.
To get a decent result for quickly changing Lorentz factorsrplicit methods with large time-steps
it may be necessary to do a lot of iterations.

The discretization of possible further source terms ofiternal energy equation is not shown here.
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Calculation of the Lorentz factor and the primitive variabl es

The flux-conservative form of the Hydrodynamics equatioaesctbe the time-evolution of the con-
served quantitie®, m,n,| and 9. However, the equation of state, the rate of transport, tiieap
work, cooling and heating rates used in above equationsusieidéns of essentially the primitive
variableso, U, V, w and pressur® or temperaturd’ .

Since the relation between the primitive and conservatiwv@ables is in most cases rather non-linear, it
is best if an iterative solution procedure is employed (Whiicgeneral is only possible if the equations
are solved with an implicit method, not the explicit method)

To recover the primitive variables from the conservativegrone first uses the normalization condi-
tion of the 4-momenta to get an updated value of the Loremtoifa

The normalization condition of the 4-momenta is:

M#M,=Dw Du, = D° wu, = -2 D

) 5 5 5 ) (3.78)
M*M, =g’ M,M,, = g"MZ + 2 g¥MM,, + g" M7 + g M7 + g‘fﬁ‘ijqj =-c?°D
The quantitiesvl,, My, M, are all known at the end of each time step, resulting in a quigdgquation
for My:

AMZ+B M +C =0, (3.79)

whereA = g, B=2g"“M, andC = g" M2 + g M7 + g’ M3 + 2 D’ with D = Dh.
Having obtainedVl, the contravariant quantitil' can be computed using the transformatidt =

g M + g M,. SinceM! = D ut = Dh U the Lorentz factof’ = ¥ is the obtained fromr = BMh't‘c'

Knowing the density = % and the internal energy density= %, the pressur® and the tempera-
ture T can then be calculated using the equation of state (E.@vBig¢h in the case of an ideal gas is

P=(y-1peandT = %ZZ 5.

In the code itis also possible to use a mixed form of the namatbn equation using conservative and
primitive variables to calculate the Lorentz factor, whikalsome cases might give better results.

Advantages of the internal energy vs. total energy formulat ion

While analytically there is no elierence if one solves an equation for the internal or the &tatgy
in Numerics there are several reasons to use the one or thefotm:

Ideally - due to the fact that the total energy should be cmese- one would ideally use the dis-
cretization of the total energy conservation equation,tbete can occur some numerical problems
when using the total energy equation:
0E
8_tt +V(E + pV =-L(T) +... (3.80)
e a problem can occur during the calculation of the internargy if Eyxin ~ E; andEj, small,
sinceEj, = E: — Exin .
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o for implicit methods it is almost impossible to determine theating and cooling parts of the
Jacobian, since they depend on the temperature and tremfdhe internal enerdyi, and not
on the total energy:

JL(T) _ aL(T) T

- 3.81
O0E; 0T Ok ( )

Artificial Viscosity

But there is at least one drawback in using the internal grfamgnulation: The energy dissipation at
strong shock fronts (steep gradients in the density andprepsis usually not calculated right and the
total energy is not conserved anymore. Usually kineticg@nehould be transformed into heat there.
To correct this problem in the internal energy formulatiareantroduces the concept aftificial
viscosity, which is only in dfect at strong shock fronts and acts as an extra scalar peessich
transforms kinetic energy into heat.

As an example how artificial viscosity is used see the onesd#ional Burgers’ equation on page
129 The artificial viscosity terms should be implemented in asistent way into the equations, in
order to consider the artificial viscosity as a real visgpsitich occurs in the equations like additional
pressure terms and should not be omitted in the calculafitreoelativistic enthalpy as in the original
Wilson formulation{Vilson 1973, elsewise there can occur large errors for high Lorentiofetows
(Norman and Winkler 1986 Introducing the artificial viscosity denoted By the stress-energy tensor
of an ideal gas has the following modified form:

h o+ (P
T =pauu+(P+Qg” or TV = Wuﬂm(m Qg”  [MLLAT,
(3.82)
whereh = ¢% + € + @ is the relativistic enthalpy.
The artificial viscosityQ = Q; + Qg is only non-zero at shock fronts:
| asDjk(AVairjK)? if AVgirjk <0
Quir;jk = { 0 if AVqirsjk > O (3.83)
where
576 U
[V-9/9 Uu"]r,, | dr;
AVr;j,k = AUj’k = - ! — C~ (Uj,k - Uj+1’k) (3.84)
frjlﬂ \/—gdr ) u
and
V=0/G0 ay
[V=0/90 VU'Tg, | db
AVgjk = AVjk = o e u—tk c~ (Vik — Vjks1)- (3.85)
o V|
This leads to following modifications and additional termghe equations:
The relativistic enthalpy has to be modified to give:
P
h:CZ+e+—+9. (3.86)

p P
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To the radial momentum equation the radial gradient of ttiécal viscosity—%? is added as source
term:

Qr:j-1k — Qrijk
_ riLk T ik (3.87)
drﬁ“

whereas the latitudinal gradien%% is added as source term to the latitudinal momentum equation

Qp;jk-1 — Qu;jk
AT U B AT 3.88
o (3.88)

Finally to the internal energy equation following heatiegm due to artificial viscosity is added:

ot 1 9 —g ut> 1 9 < -g ut)]
Q|+ —— (]2 U =)+ —= |, J=V=]]|. 3.89
© [ﬁt V-gor ( Or C V-9 390 Ow C (3.89)
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3.4 Explicit and Implicit Methods

3.4.1 Explicit Methods

Care has to be taken which form of equations are discretimddrawhich form they are discretized:
The flux-conservative form of the equations is very impdrtarobtain the right size and location of
jump conditions for shocks. To numerically conserve theutargmomentum, it is not ghicient to
solve the equation of the velocity or linear momentum, ongieitly has to discretize the angular
momentum equation, elsewise the angular momentum is neecagd numerically.

Many simulation codes are based on thedunov type schemeGodunov(1959 , which can be
described by a three step algorithm:

e Reconstruct
From the cell-averages given at every grid point the fluxethatcell interfaces have to be
reconstructed, see FiguBed:

— donor cell: the cell average value is used as the (left ot)igkerface value.

— piecewise linear method (PLM): a straight line with a slopp&hding on the neighbouring
cell-average values is determined

— piecewise parabolic method (PPMZdlella and Woodward 1984 a parabola is con-
structed also using the neighbouring cell-average values

As described later in the construction of the interface eslsiope or flux limiter are important
to guaranty numerical stability for higher order methods.

e Solve (or advect) Then the local Riemann problem is solved at each cell iaterfusing ap-
proximate Riemann solvers:

— Lax-Friedrichs
— Roe Roe 198)
— HLL (Harten et al. 1983
— HLLC (Toro et al. 1994

Or one can use other advection schemes like the ones frorhe@rto advect the solution.

e Average
The last step is then to average the solution to get the cethged values at every grid point.

There is a problem for higher order schemes, because dudémeetn by Godunov every second or
higher order scheme gets unstable at shock discontinuities

These numerical instabilities near shock discontinuiti@s be avoided by using so-called slope lim-
iters or flux limiters, which use higher order schemes in gm@egions and switch to first order
near shock discontinuities, so the so-called total vamatiiminishing (TVD) property is fulfilled
and the oscillations near shock fronts are not amplified.s Bipproach was first introduced by van
Leer (van Leer 1979under the name in his Monotonic Upstream-centred Schem@daservation
Laws (MUSCL) and the concept of flux limiter in the flux-corted transport (FCT) algorithm by
Boris and Book. Some of the fierent slope limiters are: minmod limiter, superbee, momiatx
central-diference (MC-) limiter.
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‘‘‘‘‘

Donor PLM PPM Slope
Limited

Figure 3.9: Interpolation of the averaged grid cell values to the cetenfaces:
1st order donor cell, 2nd order PLM and 3rd order PPM interatidbn and on the right side, the interpolated
value is reduced by the slope limiter functigfr) (plot fromHilscher 2009.

There are many well developed High Resolution Shock CamiuiHRSC) methods available, which
mostly use Riemann solvers.

Riemann solver based methods are best suited to resolviessthecause shocks are itself a Riemann
problem.

But Riemann solvers cannot be used in implicit methodsgsthey itself rely on the time-step size.
Instead other advection methods (van Leer advection) fealse tised, which do not have themself a
strong dependence on time.

Depending on the problem one wants to solve there might bihanproblem for explicit methods:

For explicit methods there exists a maximum allowed timp,stéwhich the solutions from filerent
Riemann problems at neighbouring interfaces still do nitiémce each other and lead to a numerical
unstable scheme:

This limiting time step is described by ti@&FL condition, which is named after Courant, Friedrichs
and Lewy:

AmaxAt
AX

CFL= (3.90)

whereamax = max|4;| is the maximum of the modulus of the characteristic speedt atid cells (the
maximal modulus of the eigenvalue of the flux Jacobian mpatrix
Therefore one gets for the time step:

AX

ax

At =CFL (3.91)

whereCFL is limited by 1 or an even smaller value like50depending on the numerical method
used.

More generally the CFL condition states: (d¢&weque 1998 A numerical method can only be stable
and converge if its numerical domain of dependence conthms$rue domain of dependence of the
partial diferential equations, at least in the limit of very fine grid@pg and very short time steps.

This condition restricts the time step for explicit methods
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For an implicit solver the CFL condition is satisfied for aimé step, because the numerical domain
of dependence is the entire grid, since, due to the couplirigedinear system, the solution at each
grid point depends on the data at all grid points.

3.4.2 Implicit methods

In explicit methods the variable values of the grid cell litsmd its neighbours of the current time
level n are used to calculate the values of the state variapétshe future time leveh + 1

Usingdiy. df',1 - -1k Ojk+1 @nddy_;, one determineé’l{]gl.

The equation in flux conservative vector form is:

Ad+u®_f (3.92)

whereL correspond to the advection operator drid external forces.
DefiningRAS = f— L(q) this equation can be written in afférent form:

Aq

= RAS. (3.93)
At

Note thatRHSis zero if a stationary, that means time-independent, isolug found.

To get an explicit method by adopting a time-forward diszegton procedure, the unknown vectpr
at the new time level can be extrapolated as follows ugigly= g™ — g™

gt =g+ At- RAS, (3.94)

where the right hand side of this equation only depends omdtiables at the current time level
Depending on the time step size and on the number of grid dimé numerical procedure can be
made sfficiently accurate in space and time.

In implicit methods the - yet not known - variable values of tirid cell neighbours already in the
future time are used.

The future value of the state vanahi{'ﬁ;l is determined byq”Jr1 o T q”m andq’”*ll and possibly
alsodfy, a1 o A1 o e ANy 5

This is onIy pOSSIble by solving a linear system of equations

The construction of implicit methods is described in théofeing.

The hydrodynamics equations can be written in the dis@étconservative vector form:

A > -
g + Lr’rrlf'i' Le’ggG = f, (3.95)

whered is the vector of the conservative variablag the change off during the time stept, F and
G are the fluxes off in r andé-direction andf denotes the vector of source ternhs,, andLg g are
the first and second order operators that describe the dalvextd difusion of the vector variables
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in r andg-direction.
Defining the vectoRH S as before:

RAS= f— (@) = - LiyF - LoaG (3.96)
one can write the equation in following form:

Ad o
1 _RASs 3.97
At ' (3.97)

For the explicit methodRHAS = RAS' is calculated using the state variables at the current tave |

. .. - > 1. . . .
n, whereas for implicit methodRHS = RAS" is determined using the state variables at the next
time leveln + 1. In order to obtain second order temporal accuracy, onentaexplicit and implicit
methods in the so-calledrank-Nicolson method(see Hujeirat and Rannacher 200for details):

RAS=RAS{™, ") = ¢-RAS™ + (1-9) - RAS' (3.98)

where 0< ¢ < 1is a parameter called Crank-Nicolson nhumber, that mayrdkpkso on the time step
size. The pure explicit method is achieved with= 0, whereas the pure implicit method is retrieved
with ¢ = 1, Second temporal order is only achieved i 0.5. But only ford > 0.5, when the scheme
is more implicit than explicit, the method is unconditidgastable.

The Prediction-Correction Iteration Procedure, also called defect correction strategy, is used in
order to assure the accuracy of the numerical scheme. Therefie can re-write equati@97in the
Residual form:

A S 1 ,

R=Lq=Ra"".q") = A—?—RHS= w—RHS(d””,d”hO (3.99)
whereR is called the residuum or the defect, therefore the namesctiebrrection strategy, which
would ideally be zero if the equations would have been exatlved. But in Numerics - also due
to the errors caused by machine inaccuracy and the limitegracy of machine numbers - it is only
possible to solve this equation up to a specified accuracy.

One can define the Jacobian matiixvhich consists of the derivatives of each equation at eaich gr
cell over each variable at each grid cell:

g2 R RA@L A (3.100)

- aq - aqml
whered is a vector with entries of each state variable with inde at each grid cellj, k (vector
size: qwar- jsize- ksiz§ x 1) andR is the residuum vector with entries of each equation witleind
ieq at each grid cellj, k (vector size: fleq- jsize- ksizg x 1, whereneq = nvar) and J is a (eq-
jsize- ksizg x (nvar - jsize- ksiz§ matrix. and wheréeg, ivar are integers that run over the number
of equations and variables. To minimize the computatioffareone usually takes only the derivative
of the spatially first order form of the equations to detemrtime Jacobian, whereas for the calculation
of the residuunfdefect one usually uses a high order accurate advectiomsche
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Using the multi-dimensional Newton-Raphson iterationcgdure for finding roots one can - starting
with the values of the state vector of the old time step amlrguess™1'=0 = ¢=C = " - determine
the values off™*! at the next iteration step by:

g =g -J7R, (3.101)

wherei,i + 1 denote the current and the next iteration index (insidee ime step!) and ' is
the inverse of the Jacobian matdk which represents the derivatives of the residuum overttite s
variablesg™i = d and the residuurl® = R(@+', g")

To save computational time often the Jacobian is set cangtaimg one time steg’ = J=0 = J and
only Ris updated to the new iteration leviet 1 using the new state valugs?.

Transforming this equation one gets:
¢ -d =-J7'R, (3.102)

and therefore by definingg = ¢+ — g (which should not be confused with the discretization term
+1 +1i i . . ‘ . . .

Agin ﬁ—? = ant_qn - ¢ At—d" = ‘T;Sn in the calculation oR¥, which is the same if one does only one

iteration):

Joq = -R. (3.103)

Writing this out for each grid cell with indicepandk using the five star staggered grid discretization
one gets following block matrix structure:

6 . o . . .

A—t + §r5qu_1’k + Dr(squ’k + Sr5qu+l’k + §06qu,k—l + De(squ’k +S 6qu,k+l = _le,k’ (3104)
wheresq = g*+! — g and the subscript§ andk denote the cell numbering in theandé direction
respectively.

The diagonal, sub- and super-diagonal block terms are diefiséollowing:
R R o o o
§f:§§k:a__, D = Ek=a—, sf:sgk: 0 , (3.105)
L T 0bik T 0,k
R IR - =b R
sf=gs? = — D=9 = —, S =S, ,=—, (3.106)
= T o Y W odix a 0t 141

whereR' is ther dependent part d®, whereas¥" is theg dependent part d¥, to also easily allow
one dimensional simulations.
With Dmog = ﬁ + D" + DY one gets the reordered block matrix structure:

: S 5ql.iqk+_1 —r ,
+S'60_1 i | +Dmodddjy| +S 60,1 = —Rjy (3.107)
+S%dq.

~ i.k=1°

Writing this equation for all equations and all grid cellglwindicesj, k in matrix form:

Asq = -R (3.108)
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whereA = J'.

To get a solution of this sparse linear matrix equation onmestacts a simplified matri, the pre-
conditioner, which is similar t&, which means thaf and A share the same spectral properties, i.e.
have the same eigenvalues.

The preconditioner is constructed in such a way, that thatite solution procedure converges much
more faster to the real solution.

So following similar equation is solved:

Asd = -R (3.109)
From the squtionSC{i one can determine a neft:

gt =g +sd (3.110)

If the maximum norm of the residuydefect||R||.. is not sifficiently small (because in general+
A = J'), or the maximum iteration numb@fax is Not reached, a nei and possiblyA is calculated
and the matrix equatioB.109is solved again.

For a stationary solution, wheggdoes not depend on the tirhanymoreRHS must be zero.

Structure of the matrix equation

In this section the structure of the matrix equation, inipatar the structure of the Jacobian matrix,
is looked at.

For the calculation of the Jacobian at a specified grid patomly the derivatives of the residuum
with respect to the variables at this grid point have to besitmred, but also the derivative of the
residuum with respect to the variables at the neighbouroigtg.

The Jacobian for one equation for a 1-dimensional grid:
In the case of one equation with a 1-dimensional grid-direction the Jacobian entries at the grid
point j are:

ORj

Diagonal : D = 7 Jij»

Subdiagonal :  _§ = 02% = Jjj+1, (3.111)
- S =R g

Superdiagonal :  S; = gog = Jii-b

or written in matrix formJsg = —R, whereA = J andsg = g+ — g

Duc  Sue B o0du1G -Riic
Sjice1 Die+1 Sic+ 0031G+1 -RyiG+1
: S ], (3.112)

S Dic 00326 -Ric
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where j = J1G is the start index and = J2G is the end index of the computational domain in
r — direction This is a purely tridiagonal matrix, which can be solvedywficiently by the Thomas
algorithm which uses the Gaussian elimination proceduneaknatrix of the sizé&l x N the algorithm
obtains the solution with a computational cos§N) instead of0(N?) for the Gaussian elimination.

The Jacobian for a system of equations for a 1-dimensional gt:

When coupling more equations together one retains for teedomensional grid alock tri-diagonal
matrix structure instead of only tridiagonal matrices. Assaample here the radial momentum equa-
tion with conservative variablmand the continuity equation with conservative varidblare coupled,
the residuum is defined as:

- (3)

I

(3.113)

The resulting Jacobian matrix looks similar to the matrigdri12 but now theD, S, S are not scalars
anymore but block matrices of the form

(')RE" (')R'j“ (')R'j“ (')R'j“ (')R'j“ (')R'j“
om;  9Dj dmj-1  dDj_1 dmjs1 ODji1
Dj = , Sj= , Sj = (3.114)
oRP oRD oRP oRP oRP oRP
om;  9Dj omj-1  dDj_1 dmjs1 ODji1
The resulting matrix equation looks like:
Dyuc  Suc
§31(;+1 DiG+1 §JlG+l - :_ - : _
om -RM
_pD
D] 4 R
= om -RM
S D §j =
=] i j _5D_j __RD_J
[om] [—RM]
D
— _6D_ j+1 __R dj+1
SiG-1
Sic  Dix
(3.115)

Therefore for a one-dimensional grid one gets a Jacobianixmiatblock tridiagonal matrix form
which has a size ahN x mN, whereN denotes the number of grid points amdhe number of equa-
tions. The computational cost to solve the linear systemeases t@((3m)?N).

The Jacobian for two-dimensions:
Since in the discretization of the equations a five-poimiatesee Fig. 8.10), is used, the Jacobian
includes contributions from the two directionandd. So our system of equations will lead to the
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T © ® ® ® ® ® Figure 3.10: The five-point stencil used in the
discretization of the equations.

(-1k) (k) (j+1.,k) Note that here the grid of the indices j and k

T ® ® ® ® ® ® are drawn with increasing j going from the left

to the right, if one would draw the real grid
( cells, the index numbering in radial direction
® ® ® ® ® ® would be from right to left, in the opposite di-
I I ! ! !  —>» rection of increasing radius! Similar fo#: If
jim  the index k increases the valuetodlecreases.

j.k-1)

following already mentioned block structure:

. S 6k _ .
+§r5qu_1,k +Demoq5qu’k +S 60,1 = _le,k (3.116)
+§ 5qu’k_]_9

The matrix entries are calculated by sweeping through thelevgrid. First the points in the-
direction for a@ index of K1G, then next for the-direction withd = K1G + 1 and so on. After
proceeding through all grid points in this way the matrixdedike:

. —0 e _R-~
Dk Si Sik 0%k Rik
=TI
S;Jrl,g Di+1,ﬁ Si+1,R
0k -Rik
§1Q,R+1 0] k1 —Rycii1
= : , (3.117)
0 00341 —Rigi1
Sik-1
=TI
Si1k
S Sik Dk 003K -Riyk

where] = J1G andJ = J2G are the start and end indicesritirection andk = K1G andK = K2G
are the start and end indicesghdirection of the grid. The inclusion of the second dimengiooduces
two bands far apart from the diagonal, which are caltedhes But otherwise all other entries of the
matrix are zero and so the resulting Jacobian is still a klighlrse matrix.

Boundary Conditions and their Effect on the Matrix Construc tion

Since the numerical grid stored on a computer has to haveiartyeg and an end, one needs to define
boundary conditions. Especially in Astrophysics one dituaants ideally simulate up to infinity
since there is no physical boundary, but the computatiooaiain used in the simulation has to be

finite.
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To make it possible to easily define severdfatient boundary conditions following scheme was de-
signed:

The boundary conditions are applied to the conservativiabias and their fect is also taken into
account in the construction of the solution matrix.

At the outer radial boundarg,; the boundary conditions are:

Dic-1k = apout(K) Daigk + bp;out(K) Daig+1k + Co:out(K) (3.118)
Mk = amout(K) Myic+1k + Bmout(K) Myzg+2x + Cmout(K) (3.119)
NiGc-1k = @nout(K) Naick + Brout(K) Ny1G+1k + Crout(K) (3.120)
liic-1k = &out(K) lasck + Biout(K) laic+1k + Cirout(K) (3.121)
o1k = BwoulK) efick + Deoulk) Srgir + CeosoulK) (3.122)

Note: myick is still the boundary!

Whereas at the inner radial bound#&y the boundary conditions are:

Dig+ik = @p:in(K) Dizgk + Po:in(K) Dyzg-1k + Co;in(K) (3.123)
Mizg+1k = @min(K) Mazg k + Brmyin(K) Muzg-1k + Cmin(K) (3.124)
N1k =  @nin(K) Na2k + brin(K) Na2c-1k + Crin(K) (3.125)
lizgs1k = &:in(K) lazek + brin(K) li2g-1k + Ciin(K) (3.126)
€Sociik = Ain(K) gk + Deain(K) €Sog_1x + Cetin(K) (3.127)

Up to now the North and South boundaries are fixed:
At the North @ = n/2), the pole, axi-symmetric boundary conditions and at thetls @ = 0), the
midplane, reflecting boundary conditions are applied.

Let us take a further look at how the outer radial boundanditmms influence the matrix construc-
tion by looking only at the one-dimensional radial equatifor clearness:

The residuum of the continuity equation at a inner grid pQjrk) is:

ooy, [0, - [T
RD L S — — (3.128)

bk = = ;
At i P dr )

which can be rewritten in case of only using the first orderadaell method: using:

[EVZUB?]

:—max[— P VAU k,o} D,-_l,k+maxHﬁx/Zu] ,o] Dy (3.129)

r=rj|g s Jk
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gives:
Dn+1 1
D _ Jk
Rik = AT 2
rj+lp K

. [_ max[— [ﬁ«/&u]j’k,o] D1k
n (max“ﬁ\/ﬂu} j’k,O} + max[— [EVKU} j+1’k,OD Djk

—max[ [p‘\/Z U} ,o] D ,-+1,k] (3.130)

j+1.k

whereDjx = D!,

The Jacobian entries are calculated by taking the derévafithe residuum at a grid cell with respect
to the state variables at this and all other grid cells:

—-max|- [pVAU| ,0

R [ VU] ik ] (3.131)
oDi_1k B " 524 .

= \/;j+1p r‘k

Ry 1 + maXHp\/ZU]Lk’O] e [_ [pﬂu]iﬂ,k’o} (3.132)

dDjk At *[;'rjill;z dr‘k
R _maXHp\/ZU]HLk’O} (3.133)
IDjr1k PP dr‘ '

k

But at the grid point J1G, k) at the outer radial boundary the residuum taking into astthe bound-
ary condition

DJic-1k = ap;out(K) Dyick + bpout(K) Dyic+1.k + Co:out(K) (3.134)
is:
RD _ DGI&,k - DYiek 1
JIGKk T At t G
[22°7 p2 dr‘
rJlG+1 K

: [— max {— [P_‘/Z U] ek’ 0} (ap;out(K) D16k + bp:out(K) Daic+1k + Coout(K))

n (mapr_\/ZU} oK’ O] + max [— [p_\/Z U] Hok’ OD DJick

—max[ [p VA U} ok’ 0} D 31G+1,k] (3.135)
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whereD g x = D} ,, Which results in following matrix entries:

IRk _ 1 max[[p_\/ZU]JlG’k,O} *max {_ [’O_\/ZU}nGu,k’o}

0D 16k At frrjle 02 dr‘

JIG+1 k

- max {_ [E\/ZU} Gk’ O}

+ ap:out(K 3.136

D,out( ) ;’rJlG — dr‘ ( )

JIG+1 k
- 0 VA
ORYck _ max[[p\/_u]neu,k’o]
0D y1G+1k frfﬂG 52 dr‘
JIG+1 k
—max|— {/7 VA U} ,0
JIGk

+ bp;out(K) (3.137)

131G
S 72 dr|
JIG+1 k

where thered-colourederms are additional terms due to the boundary conditions.

The boundary condition at the outer radial boundasy for the radial momentum equation is:

Myck = a8mout(K) Mitc+1k + Bmout(K) Myrg+2k + Crout(K), (3.138)

somyigk is still the boundary. But the matrix equation is still salvaso form;y;ck, so it should be
pseudo-solved there!

This is done by setting all entries of the matrix corresppngdob my;c k to zero, except the diagonal
element toAit, and setting the right hand side vector entriesJAty( k) to zero, so that the solution
émyc k Of this linear equation is zero.

Depending on the values of the functiomgsg(k), bx:a(K), cx:a(k), whereX = D,m,n,l, % andB =
in, out manypossible boundary typescan be constructed, from which some are predefined.

E.g. to get dixed density boundary @Routone sets:

apout(k) = O (3.139)

bpou(k) = O (3.140)

Cpout(K) = Poutd ‘TG 1k (3.141)
PDIM

A zero gradientboundary of the conservative variable is obtained by:

axp(k) = 1 (3.142)
bxg(k) = O (3.143)
cxgk) = O (3.144)
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For thelinear extrapolation of the conservative variable at the inner boundary one sets
(see staggered grid structure in radial direction in fiiGy

dripc.a
acin (k) = 1+ drT (3145)
J2G
drize.1
bein(k) = ——5— (3.146)
drizs
CC,in(k) = 0 (3.147)

with C = D, |, €4 and also folIC = n, whereas fom:

amp() = 1+ 002 (3.148)
drisc+1

(k) = —-9H2 (3.149)
drizc+1

cma) = O. (3.150)

All these boundary types can also be applied to the primitsmgéables by taking into account the
transformation between conservative and primitive véeimbFor example the linear extrapolation for

o . =MR . . .
the primitive variableJ, wherem= /gMRD U, at the inner radial boundary looks like:

—MR
- dryoc VIR 12641 Dazga1
amink) = |1+ =R (3.151)
G+ VIR 126 D
—MR
b (K) = drioc VOMR5o6.1 Daogat
min(k) = -5 —WR (3.152)
32G+1 - /gMR 106 1 Daxg-1

This shows that by setting up these functions it is quite fnip setup further easily constructed
boundary conditions without bothering about the changéetblution matrix.

Explicit and implicit methods:

Depending on the choice of the preconditioAex variety of solution methods can be constructed that
range from purely explicit to fully implicit, depending o' similar the preconditioner is to the real
Jacobian.
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e Explicit Method

(M5 in figure 3.4.2:

A=— == (3.154)

1

If one uses 1At times identity matrid as the preconditioner, which is similar to the real Jaco-
bian J for suficiently smallAt, and sets the Crank-Nicolson numigee 0 one gets following
matrix equation:

I _ =0 _
A_téq ~R=0 = RAS, (3.155)

where—R=0 = RAS' sinced=° = §" and therefore\d=° = G=° — " = 0. In this case, where
only the diagonal elements of the matrix are filled, the magguation is solved immediately
after one iteration (then the residuu®t! = 0), so essentially the matrix equation is solved
already and the result (usidgj = 6g=° = =1 — =0 = g1 - @") is the classical explicit
method:

gl =" - AtR0 = q" + At RAS' (3.156)

This method is only numerically stable for CFL (Couranteéirich-Lewy) numbers smaller
than unity or even smaller than80depending on the advection scheme used.

Semi-Explicit Method
(M4 in figure 3.4.2:

d

= (Ait +d +d) 1= (3.157)

d

The semi-explicit method is obtained by only preservingdiagonal elementd = "ff of the
block diagonal matrice®mog This method may be numerically stable even for CFIL, but
stability is, depending on the problem, not always guaeahtlt is absolutely stable if the flow
is viscous dominated. The solution is again like in the etpinethod trivial, since one can

. . . . ""_ _ l
directly specify the inverse of the matri¥-1 = (Lrdrd) l.
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e Semi-Implicit Method
(M3 in figure 3.4.2:

A= Dmog = D o (3.158)
D
D

For the semi-implicit method only the block diagonal masicare used, neglecting sub and
super diagonal block matrices

Drnod 6 = —Ri (3.159)

This method is stable even with CE: 1.

But there might be problems due to the staggered grid dizatiemn, since e.g. only the cou-
pling term betweemn andD at one cell side is taken into account.

The solution is much simpler to obtain than that of the futhplicit method.

¢ Fully-Implicit Method :

D S S
S » S S
. S D S
A=J= s » S (3.160)
S S D S
S S D

For fully implicit methods one is retaining all block magi, which gives still a highly sparse
global matrix, but has in case of a two-dimensional grid twoges, for a three-dimensional
grid there will be even three fringes, which drasticallyremses the bandwidth and therefore
the solution cost. Therefore in most cases the matrix is Ifiegh for computation or special
solution methods, like the Krylov subspace iterative mdghaevhich basically only rely on the
matrix vector product, are used. The fully implicit methadtie only unconditionally stable
method.

In particular implicit methods are also good suited for hygstretched grid distributions and
the multi-scale nature of astrophysical flows.

Usually one has more than one equation to solve: there isasiljlity to solve each equation
separately one after the other, the so called implicit dpersplitting (I0S) approach (M2 in
figure 3.4.2, where the order of the equations can be crucial, or mangilpitises to couple
several equations together.

Due to the non-linear nature of the equations one has tdetaraany case to resolve the non-
linearities, since the matrix equation is only linear!

The resulting matrix is highly sparse (M1 in figuset.2, so one can use semi-direct iterative
splitting methods like the 'Approximate Factorization Met’ (AFM: Warming and Beam
1979 or the 'Line Gauss-Seidel Relaxation Method’ (L@%acCormack and Candler 1989
as dficient methods for solving the set of radiative MHD-equadiavithin the context of the
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defect-correction iteration method (sdgjeirat 2005a and the references therein).
Furthermore the Krylov subspace iterative methods (KS)]Mshich are projection methods,
may be more ficient and robust than the above-mentioned semi-direct adsthespecially
in the case of large systems, where one uses parallelizadatiom codes to solve the sparse
matrix equations, since the KSIMs are better suited forljsdization.

With the degree of implicitness also the computational émsbne time step increases, because the
calculation of the Jacobian and the solution gets more estyesrbut on the other side one gets better
stability and can use larger time steps.

So - depending on the particular problem - one should cdyetbbose the suited method,

e.g. for a turbulent flow, where one wants to resolve turtzderxplicit methods are the right choice,
because this flows are highly time-dependent and one hastseta small time step anyway.
Whereas if one is interested in stationary or quasi-statipsolutions, the implicit method is superior.
For that purpose one best uses the so called Hierarchiaati®@oScenario (HSS), which is described
in the next section.

To accelerate the search for a stationary or quasi-stajicmdution, one can also use a method called
“Residual Smoothing Method (Hujeirat 2005 which is also callediocal time-stepping For this
method not a common global time step size is used, insteadlesstiep size associated with the local
CFL-number at each grid point is used to advance the solutiiothis procedure one gets a not phys-
ically meaningful time-evolution of intermediate solut®

If one wants to simulate time-dependent features of quatibeary solutions, one can use the ob-
tained quasi-stationary solution as initial configuratend re-start the calculation using a common
and physically relevant time step.

The explicit method is severely limited to Euler-type flowdereas sophisticated treatment of most
flow-problems in AFD (see regime of applications in pict@t8) requires the employment of much
more robust methods: the implicit methods.

3.4.3 Hierarchical Solution Scenario (HSS)

The Hierarchical Solution Scenario (HSS) is a multi-stagjatgn procedure (solver with maximum
flexibility) consisting of following possible steps:

| implicit operator splitting (10S)
sequentially solving the equations, order of equationsiirtant for convergence;
for vortex-free compressible viscous and time-dependewisfl
Il HD as a single coupled system followed by that of the magemponent,
block sequential solution of equations;

high spatial and temporal accuracies in combination wighaitolongatiofrestriction strategy may be

used.
[l fully coupled set of MHD equations with zero moment of tfaliation field
(using pre-conditioned KSIMs) to obtain final steady statetton

IV solution of the internal energy equation weakly coupleathwhe 5D radiative transfer equations

With the hierarchical solution scenario one has fieative way to determine a quasi-stationary solu-
tion.
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Figure 3.11: A schematic description of the clustering of thefoent matrix. The matrix-generator calcu-
lates only the entries to be used for the construction of ta&imappropriate for the selected solution proce-
dure. In Astro-GRIPS these matrix entries are directly dilleto the matrix structure of the selected solution
method, so no extra copying process (as was used in the faimatation codes: GR-I-RMHD and before) is

necessary anymore. Depending on the matrix used, the @oloethod may range from purely explicit to fully
implicit (plot fromHujeirat et al. 2008.
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Figure 3.12: A schematic description of the time step size and the coripuighcosts versus the band width
M of the Jacobian. N is the number of unknowns. Explicit matlomrrespond to M= 1 and largel/ét. They
require minimum computational costs (CC). Large time s{eps smalll/st) can be achieved using strongly
implicit methods. These methods generally rely on theisolaif large linear systems with matrices with large
band width, hence computationally expensive, and, in nasgs; are ingicient (plot fromHujeirat et al. 2008.

"CFL=0.4' ——
CFL=0.9 -

09

08

07

06

05

density p

04

03

Sod Shock Tube Problem:
Time-stepping: Euler
Riemann solver: hilc
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Figure 3.13: The profile of the shock tube problem obtained with Couraigefichs-Lewy numbers CH0.4
and 0.9 using the PLUTO code. Although both CFL-numbers @ux@lsr than unity the numerical solution
procedure does not appear to be stable even with €F8.
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Figure 3.14: A schematic description of the Hierarchical Solution ScendHSS) for finding a quasi-
stationary state of the fluid motions described by the radiefMHD equations.

The abbreviation SP stands for system of parabolic equaijery. spherical potential (self-gravity) for Newto-
nian version of the code)). The angular momentum equationatsm be solved separately for axi-symmetric
flows. In stage I, where the flow is in its early time-depengéwatse, the equations are solved sequentially
using the implicit operator splitting approach (10S). Thienstage I, which uses the solution of stage | as
initial condition, the hydrodynamics equations are solascdh single coupled system, followed by the coupled
magneto component equations (the induction equationhisrprocess high spatial and temporal accuracies in
combination with the prolongatigstriction strategy may be used. The solution is then usestaating point

of stage Ill, where (quasi-) steady solutions for the futtypled set of equations consisting of the zero moment
of the radiation field and the MHD equations are sought. Fas $tage pre-conditioned Krylov sub-iterative
methods are considered to be robust agfiteent. In the final stage 1V, one seeks for the solution of titlg f
coupled magneto-hydrodynamic system and the weakly totieal energy equation coupled frequency de-
pendent radiative transfer equation (RTE), the so-callBdr&diative transfer equation, for multi-component
fluids, where the electrons and ions havgatent temperatures (plot frolujeirat et al. 2008.
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Hierarchical solution scenario
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ov Solution
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ull coupling (KSIM)
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[ Partial coupling + OSA
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Figure 3.15: With the hierarchical solution scenario (HSS) onfeetively can determine a quasi stationary
solution by gradual coupling of the equations. By dynanhjcaarying the @iciency and robustness of the
numerical method it is possible to leapfrog the transienagehvery fast. This method is most suitable for
searching quasi-stationary flow-configurations that depenly weakly on the initial conditions. The coupling
between the equations is enhanced gradually, by startihgrgpthem sequentially, then by partially coupling
in combination with the operator splitting approach (OS#jl-coupling using the Krylov-subspace iterative
methods (KSIM) and finally extending the coupling to inclideradiative transfer equation (RTE) and energy
equation of multi-temperature plasmas (plot frbtuajeirat et al. 2007.
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Figure 3.16: Possible application of the Hierarchical Solution ScewatHSS) demonstrated iHujeirat
(20059: VLA data from the active central engine of the giant eilipt galaxy M87 and a NRAO radio im-
age of the jet apparently emanating from within 100 gravaaal radii. Solid lines correspond to calculated
profiles and the asterisks to observational data. 'The peflll to 06 show the spectral energy distribution cal-
culated using dferent magnetic field strengths, oyffgirent truncation radii, or highow corona temperatures.
In particular, the profile 07 corresponds to a model in whible toroidal magnetic field is set to vanish artifi-
cially, whereas the poloidal magnetic field is set to be inipauition with the thermal energy of the electrons.
The profile 08 is similar to 07, except that the toroidal magngeld is allowed to develop and reach values
beyond equipartition with respect to the thermal energyefdlectrons in the transition layer between the disk
and the overlying corona. The above spectral energy digtidin has been obtained by solving the radiative
transfer equation in 5-dimensions, taking into account Koenpaneets operator for consistently modelling
Comptonization. 400 non-linearly distributed frequenoynps have been used to cover the frequency-space,
and 125 x 40 finite volume cells to cover the spatial domain of the caltaie (plots and description from
Hujeirat 20053
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3.5 lterative Linear Equation Solvers

In this section solution methods for large sparse lineatesys are described.

Sometimes in literature the solution of a system of linearagigns is called misleadingly Inversion
Procedure: In Numerics usually no one calculates the iavef¢he complicated matrix and then
determines the solution vector, since this is extremelylydsistead the solution vector is determined
directly or in most cases iteratively, since one is not iegéed in the inverse matrix.

For very large systems, where memory problems are a coniterray be possible, that the fully
occupied matrix would not fit into memory. Especially in tioizse the construction of the inverse
matrix, which can be fully occupied even if the original niats highly sparse, or the use of a direct
solution method is impossible. In these cases iterativénoast are the the only possible procedures
to determine the solution with a certain accuracy.

To have a stable solution procedure the ma#imust be strictly diagonally dominant, which means
that the entries in each row of the mat#xmust fulfil the following condition: the module of the
diagonal element; is larger than the sum of all moduli of thetaliagonal elementgj-;ti [ay,jl,
where i and j denote the row and column numbers of the matrix.

Although the original solution matriA = J, the Jacobian, is a sparse matrix with only a few non-zero
matrix entries, the fringes due to the second spatial dinedhcrease the bandwidth of the solution
matrix dramatically, which result in a usually very expe&rsiumerical solution.

Due to this fact, there exist approximation methods, thatsmution matrices without fringes. To
these methods belong the Line Gaul3-Seidel Method (L8&yCormack and Candler 1988nd the
Approximate Factorization Method (AFMWarming and Beam 1979

Another class of iterative solution methods, the so-calleglov Subspace Iterative Methods, only
rely on matrix-vector products and maximum and minimum wheteation and are therefore - espe-
cially in the parallel case - veryfitcient. The matrix-vector products are not very expensivene

if the matrix has a large bandwidth due to the existence of fringes, because there are also many
zero-elements between the matrix blocks of the fringes hedridiagonal block structure on the di-
agonal of the matrix. With appropriate sparse matrix stefagmats, which are ideally only storing
the non-zero matrix entries, the matrix calculations caddree very éiciently.

3.5.1 Black-White Line Gaul3-Seidel Method (BW-LGSR2)

The Black-White Line Gau3-Seidel Method (BW-LGS), alsdethlzebra Gau3-Seidel Method, be-
longs together with the red-black LGS method, which useseashoard distribution, to the family
of multicolour schemes, which were constructed as pareffettive methods from the not for paral-
lelization suited classical Gaul3-Seidel method.

The Black-White Line Gaul3-Seidel Method (BW-LGS) uses a $tage process to update the state
values on the numerical grid. Therefore the grid is dividetd rows with odd and evekindices in
g-direction for the LGSR2 method or into columns with odd awmergj indices inr-direction for the
LGSH2(=LGSZ2) method.
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Figure 3.17: Scheme of the Line-Gauss Seidel method (plot Fdsther 2009

Remember the original block matrix structure:

. S 6k . .
+§r5qu_1,k +Dmod5qu,k +S 60,1 = _le,k (3.161)
+S%dq.

~ ],k—l’

With Do = = + D" + DI

The two stages of the LGSR2 method are (see Fifj7):

¢ In the first half-step only the grid points on rows with okldre taken into account. So the
Jacobian entries resulting from the neighbouring cell-direction, from grid cells with even
k, can be brought to the other side of the matrix equation. Mwein the first iteration step
these entries are zero. So one gets the following tri-diabblock matrix equation with - due
to taking only odd rows into account - only (approximatelgjftihe size of the original system:

6q', =r —0
% +§r 6qj_1skodd + (Dr + Z)e) 6qjskodd+ S 6q\j+l»kodd = _ﬁjskodd -S 6qjskodd+1_§9 6qj»kodd—l (3.162)

or usingDmog = 3; + D + D’

& =
S" 60i-1.k00a + Dimod s + S s 1koa = ~Rijkoaa =S 0fjkeaar1 =S 6jkeaq-1. (3.163)

This matrix equation is solved fél;,,, and then all state variables with olldre updated.

¢ In the second half-step the grid points on rows with ekeare taken into account. Now the
Jacobian entries resulting from the variables on the gril$ e@th odd k are brought to the
other side of the matrix equation. But this time the updat@ides of5Gj,,, are known from
the first half step. The resulting tri-diagonal block magguation is:

54 _
qJA’—tkeve" +8 60—kt (D + D) 6GjirS 6+ 1kner = ~Rikoror— S 0jrart1—S’ 6kt (3.164)

or UsiNgDmod = = + D" + D°

= =0
§r 6qj—l,keven+ DmOd 5qjskeven+ Sr 6qj+1akeven = _ﬁjakeven_ S 6qjskeven+l - §€ 6qjakeven—l' (3 165)

This matrix equation is solved f@qj k.., and then all state variables with evieare updated.
Now for all grid cells the dependent variables are calcdlate
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Figure 3.18: Scheme of the approximate factorization method (plot #islscher 2009.

Following the defect correction strategy one can now do théuriteration to improve the solution
accuracy.

This method has a asymmetry between the directions, betazisguations are solved fully coupled
in ther-direction, whereas th@&terms of the Jacobian only occur on the right hand side ofrthtrix
equations.

This directional asymmetry is avoided in the symmetric LG&hnd, where the preferred direction
is switched every time step (or iteration step). But due ®réordering of the matrix entries this
symmetric method is - in contrast to the normal BW-LGS metivitth one preferred direction - not
very dficient and not well-suited for parallelization.

3.5.2 Approximate Factorization Method (AFM)

The Approximate Factorization Method (AFM) uses a factation technique to subdivide the prob-
lem into two single directional solution equations.

The original solution matrix for a 2 dimensional grid can lpp@ximated by a product of two matri-
ces:

AsG~ A A 56 (3.166)

whereA, = L+ Jr andA, = (3; + J) At = | + Jy At, whereJ; andJ, contain only matrix derivatives
in ther or #-direction respectively. Inserting these matrix exp@ssigives:

- | |
ABgod= (g +3) (1 +3A) =+ J+3p+ J JyAt= A+ Jy At~ A (3.167)

soitis assumed here thatJy At is small, which is certainly true it is small and if steady conserved
fluxes are considered, where boundary conditions are timiepiendent. Elsewise for time-dependent
simulations using large time steps this term might be lardech would result in a divergence of this
method.

The two half-steps of the Approximate Factorization Meth@de the following (see also figure
3.18:
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e In the first step one solves for tmeterms first by introducing an intermediate solution vector
defined bysq = A, 64
A s = -R (3.168)

(Al—t+Jr)6G = -R (3.169)

Ok | S 6§ 1k + DF STy + S 641k

S ~Rik (3.170)

e In the second step, knowing now the intermediate solutiartovesq, the remaining matrix
solution system is solved:
I

| . "
G Aod = 60 (3.171)
| 6q
(A_t +J) 69 = X (3.172)
5"‘. _ (54
—th’k +8° 8j-1+ D 6+ S ljes = A—? (3.173)

With the obtained solution vectéq the state vectoq is updated.

If the newly calculated defect, the residutRnis still too large, then this procedure is iterated in the
concept of the defect-correction strategy until one gethealesired accuracy.

Note that here for the matrix solver to work, the intermeslsdlution vector has to be reordered with
respect to the order of the indicgandk between the two steps.

In both steps only a tri-diagonal block matrix is occurrimgthhe matrix equation, which can béie
ciently solved with a cost of the order {n?N) by using either the Thomas algorithm or an iterative
algorithm like Jacobi.

3.5.3 Krylov Subspace Iterative Methods

A good overview over several direct and iterative methodsHe solution of linear systems of equa-
tions can be found iMeister(2005.

There arewo major classes of iterative methodgo solve large sparse linear systems of equations:
the splitting methods and theprojection methods

Splitting Methods

The splitting methods are based on the splitting of the matin the form:

A=B+(A-B) (3.174)
so thatAx = b gives:

Bx=(B-A)X+b (3.175)
and if B is regular, one gets:

x=BYB-Ax+Bh (3.176)
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and the linear iteration method can be defined by:

Xir1 = P(Xm,b) = MXx, + Nb  fori=0,1,... (3.177)
with

M:=B}B-A) (3.178)
and

N:=BL (3.179)

The matrixB should be chosen so that it is similarAdout easy to invert.

Depending on the choice &one gets dferent splitting methods:

For B = |, whereB is the unity matrixl, one gets the trivial method.

If one setsB to the diagonal pard of the matrixA, B = D, the Jacobi method is obtained.

The Gaul3-Seidel method can be constructed by seltiagD + L, whereD is the diagonal part and

L is the strict lower triangular part of the matx Compared to the Jacobi method, the GauR3-Seidel
method uses with + L a better approximation of the matix so a smaller spectral radius, the radius
in which the eigenvalues are contained, of the iteratiorrimmahd therefore a faster convergence can
be expected.

There also exist so called relaxation methods, which initeda correction factor, the relaxation
parameter, to the above mentioned methods to try to redecgpitctral radius of the iteration matrix
to get faster convergence. For example, the SOR methodgssiee over-relaxation method) belongs
to this class of methods.

The convergence behaviour and speed depends in genera¢ @pebtral radius and the condition
number of a matrix, which is described later.

Projection Methods:

Another class of iterative methods to solve large spargatisystems of equations are the projection
methods.

A projection method, to solve the matrix equatid® = b, is a method, where approximate solutions
X € Xo + Kj (dimK; =i < n) are calculated according to following condition:

(b—Ax) LL (3.180)

wherexy € R" is arbitrary and; andL; (dimL; = i < n) are subspaces @". The orthogonality

property is described by the Euklidian scalar product:
XLy © (xy)2=0 (3.181)

In the case wher&; = L; the residuum vector; = b — Ax is perpendicular td; and one has an
orthogonal projection method and E®.180is called Galerkin condition. IK; # L; one has an
inclined or tilted projection method and E8.180is called Petrov-Galerkin condition.
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TheKrylov Subspace lterative Methodsbelong to the projection methods:
A Krylov Subspace Iterative Method is a projection methoddtve the matrix equatioAx = b for
which K; is the Krylov-Subspace:

Ki = Ki(A,ro) = span{ro, Aro, ..., A= ro} (3.182)
withrg = b — Ax.

Krylov Subspace Iterative Methods can be described as amafation of the linear equation system
in a minimalization problem. The conjugate gradient (CG}hnd and the GMRES method belong to
this algorithmic group. Both methods determine the optiapgiroximationx; € xo+K; to the searched
solution A~tb by using the orthogonality conditic®118Q whereas at each iteration the dimension of
the subspace is incremented by one. If one would neglectdingrerrors both methods would give
the exact solution at the latest afteiterations.

There are many Krylov Subspace lIterative Methods whidfedin the stability, convergence be-
haviour and speed and usability foffdrent types of matrixes.

For symmetric, positive definite matrices:

e The combination of the method of steepest gradient, whishahbad convergence behaviour
due to its not optimal construction of the search directi@rith respect to the orthogonality to
the whole subspace), and the method of conjugate directidrish can have an unsteady error
behaviour, but does an optimal construction of the subspadeads to the Conjugate Gradient
(CG) method by Hestenes and Stiefel, 1952, which combines tengabes and eliminates the
disadvantages of the single methods. But this method isaplicable for symmetric positive
definite matrices.

For non-symmetric, non-positive definite matrices sevatiar methods were invented:

¢ Inthe Generalized Minimal ResidudbMRES) method (by Saad and Schultz, 1986) the func-
tion F(X) = ||AX— b||§ is minimized. The Arnoldi algorithm is used to calculate ¢thonormal
basis of the Krylov subspace. This method requires thegtasfthe whole sequence of direc-
tional vectors, a large amount of memory is usually needeadifi¢d versions of this method,
sometimes called GMREB( do a restart afteriterations. Through this technique, only a lim-
ited number of vectors have to be stored, but the performahite original method is reduced
and the convergence can be very slow. Choosing the bestl saitart parameter is afficult
task, which can only be done by experience. GMRES can dehllarje non-symmetric ma-
trices and can easily also be implemented on vector comgpbtrause almost all arithmetic
operations are matrix-vector multiplications, vector ajgs$ and inner products.

e The Bi-Conjugate GradienB{CG) method (by Lanczos, 1952, reformulated by Fletcher, 1975)
is a Krylov Subspace Method based on the Bi-Lanczos algoritivthere the orthogonality
is given by the Petrov-Galerkin conditio; = KT = sparirg, ATro,...,(AT)"trg}). In this
method one simultaneously looksAx = b andA" x = b. Compared to GMRES is uses much
less memory, but the transpose of A is needed at each iterdtizas an irregular convergence
behaviour and the method can break down before the exadiosois reached.

e The Conjugate Gradient SquaredGS) method (by Sonneveld, 1989) improves the BiCG
method by avoiding the multiplication b4 .
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e The BiConjugate Gradient StabilizeBiCGSTAB) method (by van der Vorst, 1992) minimizes
the oscillations of the CGS method by the one-dimensionalmdlization of the residuum.

e The BiCGSTAB(l) method (by Sleijpen, Fokkema, 1993) is the variant that isreded to the
I-dimensional minimalization of the residuum.

e The Quasi-Minimal ResiduatMR) method (by Freund and Nachtigall, 1991) minimizes the
storage used by the GMRES method by quasi-minimalization.

e The Transpose Free Quasi-Minimal Residdd#QMR ) method (by Freund, 1993) improves
the QMR method by avoiding the multiplication BY using ideas of the CGS method. The
number of required iterations is similar to BICGSTAB. For allaconditioned problem, that
needs only a few iterations to be solved, GMRES works befian fTFQMR, but if a large
number of iterations is necessary TFQMR performs better.

e TheQMRCGSTAB method (by Chan et al., 1994) combines the ideas of the BiGB3hd
the TFQMR methods.

Preconditioners

The convergence behaviour and speed of iterative methspiscially of the Krylov Subspace Iterative
Methods, strongly depends on the spectral radius, whichasmtinimal radius which contains all
eigenvalues, and the condition number of the matrix.

The bf condition number of the regular matédxe C™" with respect to the induced matrix notfi,
is defined as:

conch(A) := [|Alla Al (3.183)

If Ais a normal matrix, then

A
cona(A) = [nl (3.184)
| 1]
where ., is the eigenvalue of the matriX with the largest modulus anti the eigenvalue with the
smallest modulus.
The condition number of a regular matrix is independent efittduced matrix norm limited down-
wards:

condy(A) > condy(l) = 1. (3.185)

In praxis one uses the norm of the residuum vecgter b — Ax to obtain the quality of the approx-
imated numerical solution of an iterative method, sinceetrer vectorg = A-1b — x; is unknown,
because the real solution is not known. If the condition neindf the solution matrix is small, it
makes sense to use the convergence estimation based orsithaine. However, if the condition
number is large, the error norm can increase dramaticayn & the residuum norm decreases.

So a small enough condition number of the solution matrix @datory for a good convergence
behaviour of iterative solvers. Therefore one uses a tgaentalled preconditioning.

To improve the convergence behaviour and rate the origimaht matrix equation is transformed by
so-called preconditioners into a system whose matrix sssea better (reduced) condition number.
The original system of equations:

Ax=D (3.186)
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is transformed into:

(PLAPR)X” = PLb (3.187)
X = Prx" (3.188)
whereP| is the left andPr is the right preconditioner.
If setting P = | one gets right preconditioning, which results in an unatleesiduum:
r =b— Ax=b - APrPR!x (3.189)
But using the left preconditioning by settifg = | can alter the residuum:
r. = PLb— PLAx= P (b— AX) = P.r (3.190)

where, due tofficiency reasons, the matri, X = R L should be a good approximation Af?, the
inverse of the original matri, so that condPxA) <« cond@), but still easy to construct.

Some preconditioners are:

e Jacobi,

block Jacobi (dferent Krylov Subspace methods and preconditioners aréedpmh diferent
blocks),

Successive Over Relaxation (SOR),

Incomplete Cholesky (only for symmetric matrices),

Incomplete Lower Upper factorization (ILU),
Additive Schwarz Method (ASM),
Lower Upper factorization (LU),

e Cholesky method (only for symmetric and pos. definite masjc

In praxis the Krylov Subspace Iterative methods used in d¢oation with suitable preconditioners
have showed that they are robust, stable affidient methods for solutions of large sparse linear
systems.

Darbandi et al(2006 investigated the use of severaffdrent preconditioned Krylov subspace meth-
ods to implicitly solve the fully coupled set of incomprdsei Navier-Stokes equations using a finite
volume discretization using PETSB4lay et al. 200R They found out in their extensive study that
for these kind of fluid flow problems the best performance lBe@d using GMRES with incomplete
lower upper preconditioner.






4 Simulation Code Structure, Optimization and
Parallelization of Astro-GRIPS

In this chapter the Simulation Code Structure, the basie emhge, the Optimization and the Paral-
lelization of Astro-GRIPS, the General Relativistic IngiiParallel Solver, is described.

4.1 Astro-GRIPS: Simulation Code Features

The simulation code Astro-GRIPS, the General Relativistiplicit Parallel Solver, solves the New-
tonian or general relativistic hydrodynamical equationa@D axi-symmetrical spherical grid in the
background metric of a Schwarzschild or Kerr black hole gisfre finite volume discretization and
solving the equations with implicit methods.

Itis written in Fortran-9(B5 and uses the message passing interface (MéHim 20082009 Gabriel
et al. 2004 for parallelization on distributed memory machines.

Before compilation the Fortran code can be comfortably goméid for diferent compilers, serial or
parallel mode and other features (e.g. using netcdf orlparadtcdf for data output) by a configure
script using the GNU autotools systeMa(ghan et al. 2000

Initial conditions and special boundary conditions arewgetn the file Setup.F90, which is usually
the only source file the user has to adopt to solve a new problem

With the use of a parameter file one can change many parangtiéeseasily without re-compiling
the code.

By changing only the parameter SolMethod in the parameterdihe can select various degrees of
implicitness, from pure explicit to fully implicit, the cqling of the equations and fiierent iterative
linear equation solvers, which are used by the implicit rod¢h Black-White Line-Gau'"ss-Seidel,
Approximate Factorization Method (which were implementéth the help of LAPACK @Anderson

et al. 1999 or ScaLAPACK Blackford et al. 199¥routines in the parallel case) and various Krylov
Subspace lterative Methods (using PETRalay et al. 20092008 1997). This is a quite easy but
powerful way to investigate the behaviour offdrent methods.

Using the Hierarchical Solution Scenario (HSS) it is padssib find quasi-stationary solutions more
quickly by gradual enhancement of the coupling of the equati

As data output and input format netCDRgw et al. 2008 a widely used portable binary format, is
used via the netcdf library in the serial or parallel caseiarthie parallel-netCDF libraryL{ et al.
2003 to do a real parallel portable input and output of data baselliPI-I/O.

NetCDF files can be read, manipulated and visualized by m#fsreint programs, for example with
ncview or with python using matplotliiale et al. 2009
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One important feature of the code is the possibility to destart. Every time a netcdf data file
output is done a restart can be made from it. Since there ysad netcdf data file created, and not
for each process one, itis also very easy to do a restart witthar number of processes and because
netcdf is a portable file format, the restart can even be dasiéyeon another architecture or computer
platform (no transformation from big-endian to little-ésa byte ordering or vice-versa is necessary
as one might need for simple binary output).

Another interesting feature is tholongation, where the grid can be refined (or made coarser) at a
specified simulated time or time iteration number and tha déthe previous grid level is interpolated
(or extrapolated) to the new grid points.

This can be used for example to do first very coarse simulaignon a single-processor machine,
and then later continue the simulation by restarting on aprder cluster and then do a refinement of
the grid to get a more detailed view of e.g. a stationary smiut

Astro-GRIPS was designed in such a way, that it is a flexibiwresible, stable and robust algorithm
for general relativistic (M)HD flows, but still easy to use.

Summary of simulation code features:

Astro-GRIPS is an implicit solver for modelling:

¢ 3D axi-symmetric,

e strongly time-dependent,

e (uasi-stationary and steady state,

e compressible,

e weakly compressible,

¢ dissipative and diusive,

e Newtonian, special relativistic and

e general-relativistic flows (background metric of a Schwahild or Kerr black hole)

A non-linear Newton-iterative numerical tool for solving:

e Newtonian Euler,

e Newtonian Navier-Stokes,

e General Relativistic Euler,

e and General Relativistic Navier-Stokes equations.

Discretization method:

3D axi-symmetrical spherical grid

Finite Volume Method using a conservative formulation (with internal energy equation)

First and second order temporal accuracy
e up to 3rd order spatial accuracy

Properties of the solution method:



4.1 Astro-GRIPS: Simulation Code Features 105

e Various degrees of implicitness:
implicit, semi-implicit, semi-explicit and explicit metils

¢ Hierarchical Solution Scenario:
enables gradual coupling of the equations

Implicit iterative solution procedures (methods to solve large sparse linear system of equations):
e Black-White Line Ga#s-Seidel method (BW-LGS)
e Approximate Factorization Method (AFM)
¢ Krylov Subspace lterative Methods (KSIM,KSP): GMRES, BESTAB, TF-QMR, ...
Basic properties of the simulation code:
e Fortran 9095
e parallelized using MPI
e use of LAPACK or ScaLAPACK routines for BW-LGS and AFM
e PETSc library for Krylov methods
e netCDF data/O (serial and parallel-netCDF)

e visualization scripts using pythgmatplotlib

Although the program itself is quite complex, it will be atastructured and easy to use, but still
very powerful and flexible.
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4.2 Simulation Code Structure of Astro-GRIPS

4.2.1 Basic code structure

The simulation code Astro-GRIPS is written in Fortranf@®®and uses the message passing interface
(MPI) for parallelization on distributed memory machines.

Before compilation the Fortran code can be comfortably goméid for diferent compilers, serial or
parallel mode and other features (e.g. using netcdf orlparadtcdf for data output) by a configure
script using the GNU autotools system.

The Fortran code is distributed in several source code fildstuctured in the following way:

The main file is called AstroGRIPS.F90 and defines the basicdtoucture of the simulation.

e (MPI): Initialization of Parallel mode (including BLACS &# for ScaLAPACK)

e Setup of basic Parameters (from parameter file)

e Dynamical memory allocation of grid and geometry relatexdakdes

e Grid generation

¢ (MPI): Perform domain decomposition with initializatiof lealo/boundary values

e Dynamical memory allocation, setup and initialization @dtgal and local data, log and auxil-
iary variables

e Calculation of grid and geometry related variables
e Setup initial conditions (primitive variables) or if regtaread in data values
e Compute conservative variables from primitives

e (MPI): Halo Communication (update halo data: so all coretre variables are set right also
in halo cells, before the dependgatated variables are calculated

e compute all other dependent variables

e (MPI): Halo Communication (update halo data)

e Print out Settings and Solver Info

¢ (MPI:PETSCc): initialize PETSc (has to be called after dam@g@composition is done)
e calculate explicit time step (if no restart)

e setup output data and log netcdf files and write out initidhd#d no restart)

e if prolongation directly after restart is requested: dolgngation

e Time-lteration Loop:

— calculate explicit time step

— determine and set time step

— Solve equations (dependent on SolMethod setting in pasarfik)
Print information out to Terminal

Data and log output

if prolongation is requested: do prolongation
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— if end time or maximum time step is reached: leave time-i@ndoop
e Finalization: free memory: deallocate variables; (MPhafize PETSc and MPI

4.2.2 The SolMethod parameter

The routine Solve analysis the parameter SolMethod andugetise corresponding parameters and
auxiliary variables and calls the appropriate solver re(g): explicit, LGSR2, AFM, KSP, .. .; with
the specified parameters and equations.

The parameter SolMethod, set in the parameter file, spetigesquation coupling, the order and the
methods and which solution parameters to use.

Since the parameter SolMethod can be easily changed in taenpter file the code has not to be
recompiled to use another equation coupling or anotheatiter method or another solution parame-
ter.

The SolMethod parameter is constructed in such a way, theality enables the user to have a large
and easy to use flexibility in selecting and trying oufelient solvers, dierent orders of the equations,
different parameters or even solver combinations.

The parameter SolMethod is constructed by consideringiatig rules:

SolMethod "{SolMethod}"

attention:
put {SolMethod} in double quotes, since elsewise it is not read in
as a total string, since commas separate the string

with
{SolMethod} = {igroupl};{igroup2}; ... ,{igroupn}
{igroup} = {giter_max(igroup)}:{imethodl},{imethod2}, ... ,{imethodn}

{imethod} = {method(igroup,imethod}({ieqns}) ({opts})

{iegns} = {egngrpl}, {eqngrp2}, ... , {eqngrpn}
{egngrp} = {egns(igroup,imethod,ieqn=1}_{eqns(igroup,imethod,ieqn=2}
_ ... _{eagns(igroup,imethod, iegn=Neqns(igroup,imethod)}

{opts} = {optl}, {opt2}, ... , {optn}

{opt} = i={iter_max(igroup,imethod)}
mf={KSP_MATRIX_FORMAT (igroup, imethod) }
ksp_rtol={ksp_rtol (igroup,imethod)}
acc={accuracy(igroup,imethod)}
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Global equation numbers:

= relativistic density

= radial momentum

= vertical/latitudinal momentum
= angular momentum

= internal energy

vl B W N =

attention:

SolMethod "2:AFM<2_3,1_5>(i=2)"

is the same as:

SolMethod "2:AFM<2_3>(i=2),AFM<1_5>(i=2)"

and gives:

Ngroup = 1
giter_max(igroup=1) = 2

Nmethod (igroup=1) = 2

method(igroup=1,imethod=1) = AFM

Neqns (igroup=1,imethod=1) = 2

egns (igroup=1,imethod=1,iegn=1) 2

eqns (igroup=1, imethod=1,ieqn=2) 3

opts(igroup=1,imthod=1) = i=2, so iter_max(igroup=1,imethod=1) = 2

method(igroup=1, imethod=2) = AFM

Negns(igroup=1,imethod=2) = 2

egns (igroup=1,imethod=2,iegn=1) 1
egns(igroup=1,imethod=2,ieqn=2) = 5

opts(igroup=1,imthod=2) = i=2, so iter_max(igroup=1,imethod=2)

1l
N

The global equation numbers used in the simulation code ratitkei construction of the SolMethod
parameter are the following:

1. relativistic densityD

2. radial momentunm

3. verticallatitudinal momentunm
4. angular momenturh

5. internal energy densitf

For example:
SolMethod "2:AFM<2_3,1_5>(i=2)"

is the same as:
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SolMethod "2:AFM<2_3>(i=2),AFM<1_5>(i=2)"

and means, that there is one global group iteration loopmisidterated twice. There are 2 methods
used in this global group, the first method uses AFM to solugatgn 2, the radial momentum
eqguation,coupled together with equation 3, the latitudimamentumn equation using two 'internal’
iterations, the second method couples equations 1, thtvigtia density D equation, and 5, the
internal energy equation together which are also solved with AFM using twieginal’ iterations.

Similar to that many dferent solution methods can be considered, which can be dtied Some
might give a better result other a much worse.

Here another example:
SolMethod "5:AFM<4>,KSP*bjacoby+gmres<2_1_5>(i=1)"

Here the solution method exists of one global group, whicteisted 5 times. It consists of two
methods, first the equation 4, the angular momentum equasi@olved with AFM (using a default

of 2 iterations), then the system of equations: the radiahertum (2), the relativistic density (1) and
the internal energy (5), is solved with one iteration usifgRES with a block jacobi preconditioner,

which by default uses ILU inside a block, using the PETSalijar

When using PETSc one can additionally specify many optiotiseacommand line, e.g. to view the
log summary, options table and monitor the residual:

> ./run-intel_mpi.sh 2 AstroGRIPS.ini \
" -log_summary -options_table -ksp_monitor_true_residual”

or to graphically view the structure of the Matrix A, Precdimher Matrix A_PC, RHS vector b
and Solution vector x in X-Window windows and report thes® ifiles, one specifies (for a small
problem):

> ./run-intel_mpi.sh 2 AstroGRIPS.ini " -my_ksp_draw -draw_pause -1"

The KSP Matrix format used by PETSc, which can have possialaeg of: MPIAIJ, MPIBAIJ,
MPIBDiag, MPIRowbs, can be set by specifying the SolMethptiom mf, e.g.:

SolMethod "2:AFM<4>(i=3) ,KSP*bjacobi+gmres<2_3_1_5>(i=2,mf=MPIBAI])"

Here the equations are solved within one group (iged)pwith a maximum group iteration number
of giter_max(igroupl) = 4.
Within the group iteration loop:

e imethod=1:
eqgn. 4 is solved with AFM
with iter_max(igroup-1,imethod:1) = 3 iterations



110 4 Simulation Code Structure, Optimization and Paralléitizaof Astro-GRIPS

e imethod=2:
egns. 2,3,1 and 5 are coupled solved with KSP
with pc_type=bjacobi and ksp_typegmres
with iter_max(igroug-1,imethod-2) = 2 iterations
using KSP_Matrix_Format MPIBAIJ.

Using the 'acc’ option one can set the requested accuratyeafdfect-correction iteration procedure:
it is iterated until the requested accuracy is reached drthetmaximum iteration number (set by the
‘i option) is reached. Ifaccis not set or set to 0, then it is iteratetimes.

With the 'ksp_rtol’ option the relative tolerance of the KS&lution method of PETSc can be set.

4.2.3 The parameter file

To easily control the parameters of the simulation a paranii¢, which should have the §ix .ini,
is used. In the example directory there exists the pararfiEgekstroGRIPS-all.ini, which describes
all possible parameters.

One can also include comments into the parameter file:
Commentary lines start with !,% or#&pace

I Comment
% another comment
# yet another comment

but
#nocomment

is no commentary line!

A typical parameter file looks like:

! parameter file: RelativisticShockTube_alfsh2.0_CNU®.6.ini
!

outfilenamebase RelativisticShockTube_alfsh2.0_CNUO.6

IStart O
Iprolong 0

[ Physical Parameters .......
IGravity 0

IGR 1

ISR 1



4.2 Simulation Code Structure of Astro-GRIPS 111

Kerr 0

Spinh2 0.d0
IOmg_FDE O
SpinNS 0.0

! set EoS_Type = ideal_gas (default), polytropic_gas, isothermal_gas
EoS_Type ideal_gas

! Adiabatic index
gamma 1.66666666666666666666d0

| Viscosity

alftr 0.0d0

! set Art_Visc_Type = Q_art, Q_art2, Eta_art
Art_Visc_Type Q_art

alfsh 2.0d0

| ### Time step control ###

dtmax 5.d-4

dtmin 0.9d-9

| start time step (if dtstart is zero then dtstart = dtmin)
dtstart 1.d-6

timstepcor 1.025d0

CFL 0.4d0

Timmax 0.2d0

! ### Data management ###
NNtime 1000000000

Iter_write 1000000000

Iter_show 1000000000

Iter_log 1

!

! data output in physical time intervals dtwrite
dtwrite 0.2d0

! terminal output in physical time intervals dtshow
dtshow 0.05d0

! log variable output in physical time intervals dtlog
dtlog 1.0d+12

! LogVars parameter with space separated names of logvars
! or "all" for all log variables which should be saved
LogVars "Ntime dt dtexp CFL_No MinL MaxL xxm dfm"
!LogVars "all"

! set solution method direction(s)
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! for 1D (for 1 dimensional solution):
SolMethod_dir R

!SolMethod_dir Z

! for 2D:

!SolMethod_dir RZ (default, necessary for LGSR2)
!SolMethod_dir ZR

! set solution method
SolMethod "5:LGSR2<2,1,5>"

| ### Spatial and temporal accuracies ###
Iordrr 93
Tordzz 93
CNU 0.6d0

| ### Grid Distribution ###

! number of grid levels
Nlev 1

! radial direction

|

! uniform grid in R direction with NZL(lev) grid cells:
! do only edit NZL(lev), Rout(lev) and Rin(lev) here !!!
!Rin 1 1.000d3

!Rout 1 1.001d3

! for Rb-Rout and Ra-Rout in units of Rout need to set Rout first!
!Rb-Rout 1 1.00d0

!Ra-Rout 1 1.00d0

INZEXT O

INZINP 1 ®

INZR 1 0

INZRC 1 0

INZL 1 1000

! drmin in units of (Rout(ilev)-Rin(ilev))/NZL(ilev)
!drmin-dRtNZL 1 1.d®

'lalf_EXT 1.d0

! Idrmin(l) = 4

!Idrmin 1 4

Rin 1 1.000d3
Rout 1 1.001d3
! for Rb-Rout and Ra-Rout in units of Rout need to set Rout first!
Rb 1 1.00032d3
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Ra 1 1.00072d3
NZEXT ®

NZINP 1 O

NZR 11

equivalent to 1000 uniform:

NZRC 1 400
drmin 1 1.d-3

equivalent to 2000 uniform:

INZRC 1 800
ldrmin 1 0.5d-3

equivalent to 4000 uniform:

INZRC 1 1600
!drmin 1 0.25d-3
NZL 1 1

alf_EXT 1.d0

Idrmin(l) = 3

Idrmin 1 3

vertical direction

uniform grid in Z direction with NZD(lev) grid cells:

do only edit NZD(lev) (, Zout(lev) and Zin(lev) ) here !!!

NZU 1 0
NzzC 1 0
NZD 1 3

dzmin(ilev) = (pi/2.d0®)/(NZD(ilev)-1)
for dzmin-pit2tbNZDmlb need to set NZD first!

dzmin-pit2tbNZDmlb 1 1.d0

Zout(ilev) = pi/2.d0 + dzmin(ilev)/2.d0®
for Zout-pit2+dzmint2 need to set dzmin first!

Zout-pit2+dzmint2 1 1.d0

for Za-Zout and Zb-Zout need to set Zout first!

Za-Zout 1 1.d®
Zb-Zout 1 1.d0

Zin(ilev) = -dzmin(ilev)/2
for Zin-dzmin need to set dzmin first!

Zin-dzmin 1 -0.5d®

Idzmin(l) = Idzmin(lev) = 4

Idzmin 1 4

! possible types: reflective, zero_gradient, default, fixed

Setting Boundary types:
e.g.: boundary_type_Rout reflective

boundary_type_Rout zero_gradient
boundary_type_Rin zero_gradient
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! other parameters:
EM_S 3.d8

R_S 2.00d0

Spinh2 0.0d0

! ## scaling variables
R_Dim_in-R_g 2.d0® !
V_Dim_in-Clight 1.d0 !
'V_Dim_in-Vs 1.d0 !
!

Ro_Dim_in 1.d0® !
T_Dim_in 1.d0 !

##
in
in
in
of
in
in

units of the gravitational radius R_g (set EM_S before!)
units of the speed of light Clight

units of the Newtonian/relativistic sound speed

an ideal gas calculated using gamma and T_Dim

g/ (cm*3)

K (Kelvin)

4.2.4 The problem dependent user input file: Setup.F90

The file sr¢Setup.F90 in a specific problem directory contains theahitbnditions. Here also the user
has the possibility to setup modified restart conditions spetial boundary conditions depending on

the problem.

Here an example Setup.F90 file is shown:

#include "config.h"

#include "AstroGRIPS.h"

! Specify the initial distributions of the variables
subroutine setVariables

use Parameters

use Constants, only :

use Geometry
use Grid

use Variables
implicit none

one, small, zero

integer :: j, k, iVar
double precision ::

rmid

rmid = (Rout(1)+Rin(1))/2.d®

! Set Variables
Omg = zero
V(:,:,2) = zero
Ed = one

do k = kI1LT, k2LT
do j = jILT, j2LT
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V(j,k,1) = 0.d0
if(rh(j,1) > rmid) then
Ro(j,k) = 1.d®

Pr(j,k) = 2.0d-6/3.d0
else
Ro(j,k) = 10.d0
Pr(j,k) = 40.d0/3.d0
endif
enddo

enddo

! activate additional netcdf data output:
do iVar=1,NumVar

if( Var(iVar)%name == ’D1Ro’ ) Var(iVar)%netcdf_out = .true.
if( Var(iVar)%name == ’D2Ro’ ) Var(iVar)%netcdf_out = .true.
if( Var(iVar)%name == ’D2ROMR’ ) Var(iVar)%netcdf_out = .true.
enddo
return

end

sets SolveEgns(j,k):
variable SolveEgns(j,k) determines,

if equations are solved at gridpoint (j,k):

if SolveEgns(j,k) <= 0.d0®, the equations are not solved at this gridpoint
whereas if SolveEgns(j,k) > 0.d0® e.g. 1.d® the equations are solved.
This variable is used for example for the Forward Facing Step Problem,
where a cold "accretion" disc, the area where the equations are not solved,
is put into the computational domain to study the shock which is occurring
at this ’Forward Facing Step’. The size of this disc is determined by
the variables Rin_STEP, Rout_STEP, ThetaMin_STEP and ThetaMax_STEP.

subroutine setSolveEgns
use Constants
implicit none

SolveEqns = one

return
end subroutine setSolveEgns

! while re-starting, you may still modify/change several parameters
subroutine setVariablesOnRestart
use Grid
use Parameters
use Geometry
use Variables
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use Constants
implicit none

return
end

! sets user specified boundaries
! if boundary_type(ind) == BC_user
subroutine setBoundaryUser(var_ind, bc_ind, j, k)

use Grid
use Parameters
use Geometry
use Variables
use Boundary
use Constants
implicit none

integer :: j, k

integer :: var_ind

integer :: bc_ind

double precision :: Temp_Dim, V_r_Rout_Dim

Temp_Dim = 1.d9 ! Temperature in K (Kelvin)

V_r_Rout_Dim = -1.0d+5 ! radial velocity at outer boundary in cm/s
! var_ind name

1 Dro

12 Em

'3 En

1 4 El

!5 Ed

!

!

bc_ind = Rout_ind, Rin_ind, North_ind, South_ind

select case(var_ind)

| + c_qg_in(k,1)
DRo(j,k) = Ro(j,k)*Lorentz(j,k)
select case(bc_ind)

case(l)
I Dro
I Rout:
! DRo(J1G-1,k) = a_q_out(k,1)*DRo(J1G,Kk) &
! + b_g_out(k,1)*DRo(J1G+1,k) &
! + c_qg_out(k, 1)
! Rin:
! DRo(J2G+1,k) = a_q_in(k,1)*DRo(J2G,k) &
! + b_q_in(k,1)*DRo(J2G-1,k) &
|
|
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case(Rout_ind)
| fixed Ro(J1G-1,k) to value of initial condition
a_q_out(k,1) = 0.d0
b_q_out(k,1) = 0.d0
c_g_out(k,1) 1.d-9/Ro_Dim*Lorentz(J1G-1,k)
case(Rin_ind)
| zero gradient:
I to get Ro(J2G+1,k)=Ro(J2G,k):
a_g_inck,1) = Lorentz(J2G+1,k)/Lorentz(J2G,k)
b_q_in(k,1) = 0.d0®

! + c_q_in(k,2)
Em(j,k) = V(j,k,1) * D2ROMR(j,k)*DSQRT(gdrrmr(j,k))
select case(bc_ind)
case(Rout_ind)
| fixed inflow velocity at Rout: V_r_Rout_Dim
a_q_out(k,2) = 0.d0
b_g_out(k,2) 0.d0
c_q_out(k,2) = V_r_Rout_Dim/V_Dim
case(Rin_ind)
| linear extrapolation of Em:
a_g_inck,2) = (1.d® + drh(J2G,1)/drh(J2G-1,1))
b_g_in(k,2) - drh(J32G,1)/drh(J2G-1,1)
c_g_in(k,2) 0.do
end select
case(3)

c_g_in(k,1) = 0.d0
end select
case(2)
I Em
I Rout:
! Em(J1G,k) is still the boundary
! Em(J1G,k) = a_q_out(k,2)*Em(J1G+1,k) &
! + b_q_out(k,2)*Em(j1G+2,k) &
! + c_g_out(k,2)
! Rin:
! Em(J2G+1,k) = a_g_in(k,2)*Em(J2G,k) &
! + b_g_in(k,2)*Em(J2G-1,k) &
|
|

case(5)
! Ed
select case(bc_ind)
case(Rout_ind)
| fixed T(J1G-1,k):
a_q_out(k,5) = 0.d0
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b_g_out(k,5) = 0.d0
c_g_out(k,5) = Temp_Dim/T_Dim*Rgas/Emugas
* DRo(J1G-1,k)/gamaml * T_Dim/V_Dim**2
case(Rin_ind)
| zero gradient:
I T(J2G+1,k) = T(J2G,k)

a_g_in(k,5) = DRo(J2G+1,k)/DRo(J2G,k)
b_q_in(k,5) = 0.d0®
c_g_in(k,5) = 0.d0

end select
case default

print *, "setBoundaryUser: varind does not exist! "
end select

return
end subroutine setBoundaryUser
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4.3 Basic Usage of Astro-GRIPS

According to the Readme.txt file in the example directory lsic usage of the code is explained
here:

4.3.1 Basic usage for example problems

e Setting up the environment variable AstroGRIPS_DIR
can be done by sourcing the setup-AstroGRIPS.sh script,
which may setup further necessary variables
e.g. source SHOMBRAstro-GRIP3sviytrunk/setup-AstroGRIPS.sh
(which can be put in-/.bashrc)

e current location should be the directory examples,
elsewise change to it:
> cd $AstroGRIPS_DIRexamples

e go into the specific example directory
> cd <specific_example_dir
it should contain at least the following files:
AstroGRIPS AstroGRIPS.ini configure run-intel_mpi.sh.slmsr¢Setup.F90
where AstroGRIPS is a symbolic link to gfstroGRIPS
(which can be generated, if it is missing, withn -s sr¢AstroGRIPS AstroGRIPS)
Instead of or additionally to AstroGRIPS.ini there can beeotparameter files ending with .ini

e one may have to update the autotools system in the main aliyect
> (cd $AstroGRIPS_DIR; autoreconfinstall)

e one may have to do a make distclean in the main directory,
if ./configure shows following error:
configure: error: source directory already configured;
run "make distclean” there first
> (cd $AstroGRIPS_DIR; make distclean)

e configure program, e.g.

for serial run optimized using default compiler:
> /configure

for serial run using gfortran compiler:
> env FC=gfortran /configure--enable-debug

for serial run using ifort compiler and Intel Math Kernel Lilpy:
> env FC=ifort ./configure--enable-imkl--enable-debug

for parallel run using mpiifort compiler, Intel-MPI
with Cluster Intel Math Kernel Library:
> env FC=ifort ./configure--enable-mpi--enable-debug

with option - -disable-pnetcdf
parallel-netcdf can be disabled and serial netcdf is usetdaal.
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for parallel run with PETSC use:
> env FC=ifort ./configure--enable-mpi--enable-petse -enable-debug

for production and profiling runs omit the optierenable-debug!

further configure options like setting library paths aréelisby running
> /configure--help

e compile program

(>make clean)
> make 2-&1 | tee make.log

e run example using default parameter file AstroGRIPS.ini:

for serial run:

> JAstroGRIPS

or using run script

(which also saves a log fileoutfilenamebaselog
of what is seen on the terminal):

> ./run.sh

for parallel run use e.g. run script:
> ./run-intel_mpi.sh<nprocs-

e output is a netcdf filecoutfilenamebasenc
which can be viewed with netcdf viewers like ncview
(http://meteora.ucsd.edu/~pierce/ncview_home_page.html)
or read in and visualized by e.g. the python scripts found in
$AstroGRIPS_DIRscriptgpython-scripts

4.3.2 Modification of parameters and initial and boundary co nditions

¢ for modifying parameters e.g. the initial time step sizertmi
change the parameter values
in the parameter file AstroGRIPS.ini (or in a copy of it)

e for a description and other parameter file options
look into $AstroGRIPS_DIRxamplegAstroGRIPS-all.ini
(if changing only parameter values in the parameter file
program recompilation is not necessary)

¢ to change the initial condition one has to
change the file sySetup.F90 and recompile the program

¢ run with non-default parameter file e.g. AstroGRIPS-rumdl.

for serial run:

> /AstroGRIPS -f AstroGRIPS-run01.ini
or using run script:

> ./run.sh AstroGRIPS-run01.ini

for parallel run use e.g. run script:
> ./run-intel_mpi.sh<nprocs- AstroGRIPS-run01.ini


http://meteora.ucsd.edu/~pierce/ncview_home_page.html
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4.4 Optimization

For implicit methods much computation time is spent in thegef the solution matrix.

In the old code first all possible matrix entries, all Jacobiadficients, were calculated and then
copied in the solution matrix structure of the appropriatitson method (for LGSR2 and AFM the
matrix structure is quite €fierent). This copying process takes a long time, which carnvbiled:
With the use of a newly introduced matrix function now theassary matrix elements are directly
filled in the appropriate solution matrix structure of théested solution method. No copying is
necessary anymore!

The matrix function calculates the appropriate matrix eletdepending on the solution method and
the boundary #ects on the matrix construction by calling the Jacobian tionc This split also
simplifies the setup of new equations: since for a new eguatiaqyeneral only the new Jacobian
function entries have to be specified and the matrix funatith all its complicated solution method
and boundary dependent settings basically remains as it is.

This restructure of matrix element calculation was alsoaegsary step for the MPI parallelization of
the simulation code.

The recursive function

recursive function calcJacobian (idir, ieqG, ivarG, iblock, j, k) &
result (A_FCTN)

calculates the matrix element of the global generalffitment matrix A, the Jacobian matrix, for
the ieqG (e.g. ieg&l is Dro) equation after the ivarG-th variable (where ivagsresponds to the
conserved variable of the ivarG-th equation).

It has following parameters:

1 forr-direction

¢ idir = specifies direction of direction-dependent part of JacoMatrix { > foro-direction

ieqG = global index of equation (egno), iegindex of equation

ivarG = global index of variable (varno), ivar index of variable

-1 for sub-diagonal block
iblock = 0 for diagonal block of the Jacobian Matrix
+1 for super-diagonal bloc

e j =index inr-direction

e k = index ing-direction

Recall the definition of the diagonal, sub- and super-diagblock terms of the Jacobian in equations
3.105and3.106

s = §§k = agﬁ : calcJacobian(iditl, ieqG, ivarG, iblock-1, j, k)

’ -1k
D = Dl = ggk' : calcJacobian(idi1, ieqG, ivarG, iblock0, j, k) (4.1)
S = S, =9 . calcJacobian(idisl, ieqG, ivarG, iblock+1, j, k)

k= (')ijﬂ’k
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S@ — S@ _ OR

calcJacobian(id#2, ieqG, ivarG, iblock-1, j, k)

= =jk ™ (')ij’k71
Y = D]?’k = g%l : calcJacobian(idi2, ieqG, ivarG, iblock0, j, k) (4.2)
s = Sj= ﬁﬁi— : calcJacobian(idi2, ieqG, ivarG, iblock+1, j, k)

? jk+1

whereR' is ther dependent part d®, whereas®" is thed dependent part d¥.

This Jacobian matrix element function is used inside theirfamnction:

double precision function calcMatrix &
(qdefcorr, idir, ieqG, ivarG, iblock, j, k) result(A_FCTN)

which calculates the matrix elements of the matrix to beesblgr the defect correction (which is
for example used in the case of AFM) depending on the parangetefcorr: G=matrix l=defect

correction. Depending on the solution method the apprtpriaatrix element construction is applied
also taking into account the matrix modifications at the lfauies. This function is used to directly
fill in the matrix elements into the corresponding matrixusture of the selected solution method

so the calculate and copy approach of the old code is not usgdaae which speeds up the matrix
construction.
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4.5 Parallelization

If one wants to solve a problem, where an extremely largeigritecessary to resolve the fine flow
structures in space or if many time steps are necessaryltovfokry fast changing flows in time,
like in simulating the details of turbulent flows, there isfeasible way to perform such a simulation
without the help of parallel computers. Especially if theesof the problem is so large that it does not
fit in the memory of one computer or one time step will take exiely long there is no way around
parallelization.

In comparison to explicit Computational Fluid Dynamics @Fcodes, which are the most other
codes in Astrophysics, the parallelization of implicit imeds, which are used in Astro-GRIPS, is not
S0 easy, since it contains the solution of linear systemsj@dions.

The code was parallelized using the Message Passing lege(faPI), the de-facto standard for
parallel computing for distributed (and shared) memory mraes.

To get an optimal and very flexible solver the code was rerorga to make it possible to solve

either each separate equation or one or several coupleshsystf equations sequentially. For each
coupled system of equations one can decide which methoddshewsed, e.g. one could solve first
the angular momentum equation with AFM (Approximate Faz#ation Method) and then the other

eqguations as a coupled system (the equations appearing@ imalkrix in a specified order) with a

Krylov Subspace Iterative Method (KSP or KSIM). This can bsily done by just changing one line

in the parameter file. To optimize this process, not the wiytdbal Jacobian matrix, but only the

necessary matrix values are calculated and directly filial the corresponding matrix array of the
particular solution method.

For the parallelization the grid and therefore also theasgonding matrix is divided among the used
ranks (processes). There are some overlapping cells, tballsd halo cells, sometimes also called
ghost cells, at the border of the grid on a particular ranle \dlues of these cells are updated at least
once each time step by communication between the processes.

For the solution methods BW-LGS (Black-White Line GauRdgBiand AFM (Approximate Factor-
ization Method) a parallel band-matrix solver from ScaLAR the parallel version of LAPACK,
is used. These methods, particularly AFM, are not very wetkd for parallelization, since a lot of
communication between processes is necessary, which dloms the total runtime extremely, es-
pecially on distributed memory machines with slow intemect between the nodes, like most Linux
clusters.

Therefore the Krylov Subspace Iterative Methods (KSIM oS.g. GMRES or BiCG-stab, were
incorporated using the PETSc library, a well tested and peryable and flexible library for solving
sparse linear systems. These methods are particularlyswiedid for parallelization since they only
use matrix-vector multiplication and minimymaximum value determination, which result in very
low communication times for sparse matrices.

Due to this large flexibility in using several available sy one can exploit which solvers are best
suited in accuracy and speed and which do not work at allgézg.numerical artefacts, for a particular
problem.

1Good parallel programming workshops are held at the HLRSHbchleistungsrechenzentrum Stuttg&algenseifner
(ed.) 2007.
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To further speed-up the code the data in- and output is nawdalse in parallel using parallel-netCDF.
The netCDF data format (originally only used by the weathet elimate forecast community) is a
widely used platform independent binary data format, thet allows a short description of the dataset
inside the netCDF-file.

Due to this re-organisation and these modifications, eajiethe parallelization, of the general rel-
ativistic implicit code and the usage of High-Performanauters it is now possible to explore a
wide range of new exciting problems in Astrophysics and otékated research areas, which were not
possible to solve before.

Summary of the parallelization of Astro-GRIPS:

e Computational Domajivatrix - Decomposition
¢ Halo Cells and Halo Communication

e BW-LGSR2 and AFM
implemented using parallelized BLACSalL APACK routines

e KSIMs/KSP are implemented by the PETSc library,
which is very flexible and allows to use
different Krylov Subspace iterative methods: GMRES, BIiCGSI&QMR, ...
with a variety of preconditioners: Jacobi, Block JacobiJIL. ..

Runtime, speed up and scalability of Astro-GRIPS

To investigate the parallel performance of Astro-GRIPS gdraCouette problem (3 dimensional
axisymmetric) was executed repeatedly in parallel usifigidint number of processes. The grid size
was chosen to be 144x1152, that is 144 cells in radial doeatiith radii from 1.0 to 1.2 and 1152
cells in latitudinal direction ranging from the midplanetie polar axis. The simulation was run up to
a physical time of 0.5 which corresponds to 272 time stepsusither the Krylov Subspace Iterative
Method (KSP), GMRES with Block Jacobi as preconditioner lempented by the PETSc library, or
the Approximate Factorization Method (AFM).

The test runs were performed on the Helics Il cluster of therétisciplinary Center for Scientific
Computing (IWR) at the University of Heidelberg consistiofy160 nodes of 2 CPUs Dual Core
AMD Opterons with 10 Gbit Myrinet interconnect switch. Egalient runs were also performed on
our local Dual Quad Core Intel Xeon compute server. Due toptiesence of nodes with multiple
multi-core CPUs on this system it is possible e.g. to run awith 16 processes on 16 nodes using
only one core on each node (processes per node numbetlppn 4 nodes using all available cores
on the nodes (pp) or on 8 nodes using 2 cores on each node £2pnSince the communication
times for the processes in one CBble node itself are smaller than between CRbdes, using a
different ppn number will lead to aftierent performance result.

The runtime plot shows the runtintg (excluding initialization and terminal and day®Itimes, but
could be also the total runtime in this particular test casece the time needed for these tasks is
minimal) of the parallel job executed on N processes divibgdhe runtimet; on only one process.
In the speed up plot the reciprocal of the runtimﬁ]—n% tl) is plotted which gives a straight
line if one would have ideal speed up. The scalability of aatbalrjob is defined ag; gy and should
always stay at one if one could have ideal performance. Fmient runs the scalablllty is at least
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70-80%. Runs with lower scalability, but larger than 50%| gtovide some increase in speed, but
very disproportional with respect to the number of used sod@xalability of under 50% means hat
the runs are slower than runs on less processes.

Amdahl’'s law states that the increase of computational Geenost likely not proportional to the
increase of used processes. So a point, the scalability, loan be reached, where the increase of
processes does not bring any speed increase but stagnatwarodecrease. This has to do with the
fact, that there is a parallel overhead due to interprocessraunication angr double calculation of
halo cell values or there is only a very tiny part in the cods th not (or cannot) be parallelized. The
scalability of parallel jobs depends on various parameliesthe computer system (CPUs, memory,
interconnect), compilers and used compiler flags, but atsthe problem size. The chosen problem
size is actually too small for running the problem on too mprgcesses since the ratio of halo cells
to physical cells increases with the number of processegeauhes very large values for the used
problem size on parallel runs on too many processes (e.gnagige larger than 32). So for a larger

problem one would expect the scalability limit should atijuae reached only for a much larger
number of used processes.

Halo to data cell ratio for a problem size of 1152 grid cells inatitudinal direction

number of | number of number of radial number of radial ratio of
processes | radial halo cells| halo cells per process data cells per procegshalo to data cells
1 0 0 1152 0.00%
2 4 2 576 0.35%
4 12 3 288 1.04%
8 28 3.5 144 2.43%
16 60 3.75 72 5.21%
32 124 3.875 36 10.76%
64 252 3.9375 18 21.88%
96 380 3.9583 12 32.99%

Table 4.1: Halo to data cell ratio for a problem size of 1158 gells in latitudinal direction. The cells are
divided among the processes and at each process boundeep{éar the real boundary) there is a layer of 2
halo cells, which are communicated to the neighbour at least at every time-step iteration. From the table
can be seen that the halo to data cell ratio is increasingtivitihumber of used processes. If this ratio is too
large, too much communication in comparison to the calmnabas to be done and therefor the simulation
slows down. This is the reason why this problem shows onlydgmalability up to about 32 processes, where
the halo to data cell ratio is already about 10%.
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Figure 4.3: Taylor-Couette Flow parallel Astro-GRIPS runs: Scaledyﬂ&—) on Helics II: For gficient runs

the scalability is at least 70-80%. Runs with lower scaligyibut larger than 50%, still provide some increase
in speed, but very disproportional with respect to the nunolbased nodes. Scalability of under 50% means hat
the runs are slower than runs on less processes. In this plettearly sees that the Approximate Factorization
Method (AFM) is not so well suited for parallelization (sén& lot of data communication between the processes
is necessary) whereas Krylov Subspace lterative Methoelsrary well suited, because they basically only
consist of matrix-vector multiplication and maximgmnimum determination, which can be implemented very
efficiently in a parallel way. The downturn of the curves for mibv@n about 32 processes is caused by the bad
ratio between halo cells and real data cells on a single pssoshich is a result of the too small problem size
of 144x1152 and increases the halo communication time. &mtlkeans that for small problems there exists
an optimal number of processes to run on and running on maregases may not help to increase the speed

effectively.






5 Test Problems and Applications

5.1 One-Dimensional Problems

In this section several one-dimensional test problemsrasepted, which in most cases are compared
with their analytical solution.

First on the Burgers’ equation is shown the shock captutmggfect of artificial viscosity.

Then standard shock tube test problems are solved: theasthN@wtonian Sod Shock Tube problem
is followed by its special relativistic counterpart.

To test the #ect of radial pressure terms and gravity, first the Newtoaiadh then the general rela-
tivistic spherical Bondi accretion onto a central objeqgbrissented.

5.1.1 Burgers’ Equation

With the solution of the Burgers’ equation it is shown thent@ique of shock capturing, thefect of
artificial viscosity to correct for the loss of energy at shéonts due to the use of the internal energy
instead of the total energy equation.

The Burgers’ Equation is:

ou  ou  0’u . 3
E + U& = VW with v = 10~ (51)

In figure 5.1 starting from the initial conditiort = O (dark blue) a time series with timeés= 0.2
(green), ™ (red) and @ (light blue) can be seen.

On the left the velocity of the Burgers’ equation solved vilie explicit method without shock cap-
turing (ash = 0) is plotted. One can clearly see the velocity oscillatianthe shock front.

The middle plot shows the same solution now with applied klvapturing withas, = 1. The artifi-
cial viscosity can be seen in the right plot, which showst tha artificial viscosity is only applied at
the shock front and smoothes out the occurring oscillations

When using implicit methods with shock capturing which cansleen in figuré.2, one gets even
better results for the velocity distribution, since there ao oscillations at the shock front seen at
all.
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Figure 5.1: Burgers’ equation solved with the explicit method using & @ember of 0.45 without (top) and
with shock capturing with alfskl (middle) with corresponding artificial viscosity (botthm
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Figure 5.2: Burgers’ equation solved with the implicit method with a Ofitmber of 0.45 without (top) and

with shock capturing with alfskl: velocity (top) and corresponding artificial viscosityotbom).
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5.1.2 Shock Tube Problem

The Shock Tube problem describes a one-dimensional flowube tAs initial conditions a fluid is
separated by a diaphragm dividing it in left and right homagmis states with fierent density and
pressure values. At the start time of the simulation thehdigm is removed in no-time. Usually
the fluid is initially at rest in both parts, but due to the siteplensity and pressure the fluid begins to
move and tries to cancel out thefférences on the left and the right side. This problem, wheee on
has initially step functions of the state variables, isalRiemann Problem.

The Riemann Problem

The standard form of a conservation law is:

G+ f(@)x=Db (5.2)

with vector of conservative states= q(x,t) € R™ and flux-functionf(g) andb denotes the source
terms, which should usually be zero for real conservatiars lgbut there can also occur geometrical
source terms due to a curved coordinate system).

Linearizing the flux functionf(g) = Aq, the corresponding linearized hyperbolic system is:
G +Agc=Db (5.3)

with am x m-matrix A, which is the (constant) Jacobian matrix of the flux functiand hasm right
eigenvectors, andm different real eigenvaluek,; p=1,2,...,mwith 11 < 1> < ... Ay, that means
the system is hyperbolic, and if the eigenvalues are allndisbne speaks of a strictly hyperbolic
system.

The initial data igj(x, 0) = qo(X).

Now remember the three-step principle of a Godunov typersehi@ee pagé4): reconstruct-solve-
average.

First from cell-averaged values at each grid point one cootst the state (or flux) values at the cell
interfaces, and then at each interface local Riemann prabkre solved. After that an average is
applied to get the new cell-averaged values at each grid.pdhlren one can continue with the next
time-step.

The Riemann problem is described by the above linearizedrbgtic system with following initial
conditions:

_ _ q X< 0
ax0-w={ & 1 550 (5.4
The left and the right state can be written in the basis of ipernzalues ofA:
m
G=> Vofp (5.5)
p=1

m
0 =Y Vilp (5.6)
p=1
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The solution can be constructed by the method of charatitsris

the system of coupled equations can be transformed in ansysith equations that are decoupled,
which is done by determining the eigenvalues and the eigéorgeof the Jacobian matrix of the flux

function. For each equation of that decoupled system theignlcan be found very easily, since each
eqguation is a simple advection equation which advancesdlian along the characteristics, in the
case of a linear system the solution is shifted with a consiaeed.

The decomposed state vector is:
m
a0 t) = > vp(x = Apt)rp (5.7)
p=1

Then from the initial conditions:

w1 x<0
- p
Vp(X,0) = { v, x>0 (5.8)
the decoupled advection equations are advanced (with texlgp):
Vo Xx—Apt<0
_ p p
P(x, 1) should be the largest value pffor which x — At > 0, then the solution is:
P(xt) m
axt) = > Vhrp+ > Virp (5.10)
p=1 p=P(x,t)+1

In each wedge of the—t plane the solution is constant. At tpeth characteristics (the lines separating
the wedges), the solution jumps with a step of:

[d] = (o —a1) = (Vp, = Vp)rp (5.11)
For the flux function one gets:
[f] = (f(a) — F(@)) = (v}, — Vp)Arp = Ald] = Ap[q] (5.12)

where;, is the speed with which thp-th jump is moving (thep-th discontinuity is propagating).
This condition is called the Rankine-Hugoniot jump coruditi

Finally one gets for the solution of the Riemann problem:

axt) = g+ > (Vh-Vprp (5.13)
Ap<¥

= - (h-Vp)p (5.14)
Ap>%

For the Godunov type schemes now one has to apply an averag toe cell-averaged values at
each grid point. Due to the fact, that it is not allowed that kbcal Riemann solution overlaps with
the neighbouring Riemann solution, the time-step has tintiged:

AX

At ———— 5.15
~ 2max(apl) ( )
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where max,|) is the maximum of the largest modulus of the eigenvalueargatteristic speeds) at
each grid point.

This is a general constraint for Riemann solver based metlaod is consistent with the CFL-
condition. It shows, that Riemann solvers are not suitatarfiplicit methods, which usually use
large timesteps, therefore other advection methods atefasémplicit methods.

Shock Tube problem

This procedure to solve the Riemann problem can now be ajolighe hydrodynamic Euler equations
to get the solution of the shock tube problem (actually ittealse slightly modified since one solves
now a non-linear system of equation):

The eigenvalues of the 1D Euler equations with equationatésif an ideal gaB = (y — 1)pe are:

A1 = u-a (5.16)
A3 = u+a (5.18)

which correspond to the flow speadnd two acoustic waves travelling with sound speadelative
to the flow. The sound speed can be calculated by , /%’.

The solution can possess threffalient kind of waves, depending on th&elience of the eigenvalues
of the left and the right state.
The characteristic frors, which separateg from g; is

¢ a contact discontinuity, it p(q)) = Ap(ar)

e ashock wave, iftp(q)) > Sp > 1p(0r)

e ararefaction wave, ip,(q)) < Ap(0r)
For the 1D Euler equation one can get, depending on theliadiaitions, four possible solutions:

1. ararefaction wave moving to the left and a shock travgtiothe right.
2. a shock travelling to the left and a rarefaction wave mgwathe right.
3. two rarefaction waves, one moving to the left and one taitite.

4. two shocks, one propagating to the left and one to the.right
All left and right states are separated by a contact surface.

In the case of non-linear systems, which for example therkuléavier-Stokes equations are, the
construction of the solution is a little bit more complichigecause additionally one has to fulfil the
so-called entropy condition across the discontinuitiegdbthe right physical weak solution (see for
example:Leveque 1998
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Sod Shock Tube Problem
In 1978 Sod $od 1978 compared dferent numerical methods applied to the shock tube problem.

Since then this problem with his initial conditions is usasdhageneral test problem for hydrodynami-
cal simulation codes.

The Sod Shock Tube Problem is a Riemann problem with follgvimitial conditions:

PL 1 PR 3
P. | =] 1 | forx<0.5, Pr | =| & | forx>05 (5.19)
UL 0 Ur 0

Using Sod’s initial conditions for the Shock Tube Problere ayets following results (see figure
5.3:

e ararefaction wave moving to the left,
e a contact discontinuity propagating slowly to the right,
¢ a shock wave travelling fast to the right.

Simulation results:

For all simulations a domain of [0,1] (or a domain of [L00@M1Pin radial direction to minimize
curvature €ects due to the spherical grid) and 400 grid cells were usedegdation of state (EoS)
an ideal gas witly = 1.4 was selected. The final integration time was set2o0 0

In figures5.4 and5.5the Sod Shock Tube Problem is solved with PLUTMIgnone et al. 200) a
very flexible, well-documented and user-friendly explgmtver for Newtonian and special relativistic
Astrophysical (magneto-) hydrodynamic flows. In figbrd one sees the optimal solution, whereas in
5.5the instability problems of some explicit methods (Eulgrettime-stepping, linear interpolation)
even for CFL numbers smaller than one is demonstrated.

In figure 5.6 the Sod Shock Tube problem is solved with Astro-GRIPS udimegexplicit method.
Since the internal energy equation is used, one has to tenghibck capturing parameteg, to an
appropriate value.

Figure5.7 shows the result obtained with Astro-GRIPS using an imphi@thod using the third order
spatial van Leer advection scheme, a Crank-Nicolson nuofligfy = 0.75 and a CFL number of 0.8,
where the artificial viscosity parameteg, was set to a suitable value to account for the correction of
the energy loss due to the internal energy formulation. Nb#g since this is a highly time-dependent
problem a higher CFL number was not used here due to physicakacy, although it would not
result into numerical instabilities.

For better comparison the analytic solution for all varéabls plotted together with the simulation
results in one plot. This shows that Astro-GRIPS can regredtnd’s solution with high accuracy.
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Figure 5.3: Riemann problem: In the top plot the initial condition, agste density and pressure at poing x
usually with zero velocity, in the middle plot the solutiamdan the bottom plot the Riemann fan in the x
plane, which describes the time-development of the saluisoshown. The density (dashed-dotted line), the
pressure (solid line) and the velocity (dotted line) arewsho There are 5 regions of the solution: region 1
contains the unperturbed left state, region 2 consists @fénefaction wave travelling to the left, region 3 and
4 are separated by a jump in the density, the contact disooityi but have constant pressure and velocity, The
front of the shock separates region 4 and the unperturbeut Stpte in region 5. Note that this plot is for the
solution of the Special Relativistic Riemann Problem, & krewtonian case the shape of the rarefaction wave
is not very curved, but almost linear instead! (plot for thge8ial Relativistic Riemann Problem frolharti

and Miiller(2003)
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Figure 5.4: Sod Shock Tube from Pluto test gallery: Time stepping wistnadit. tracing, Interpol.: parabolic
on primitive variables, Riemann Solver: two-shock, €BL8
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Figure 5.6: Sod Shock Tube problem solved with Astro-GRIPS using thieierpethod, third order in space
and second temporal order with shock capturing=32 and CFI=0.4 (for CFL> 0.55 the solution is oscillat-
ing very much or the code is aborted due to negative pressure)
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Figure 5.7: Sod Shock Tube problem solved with Astro-GRIPS using tHeitmpethod, third order in space
and second temporal order with shock capturing=1 and CFL=0.8.
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Figure 5.8: Sod Shock Tube Problem simulations performed with AstrtiPGRising dfferent spatial orders,
different artificial viscosity and gierent number of grid cells.
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5.1.3 Relativistic Shock Tube Problem

With the Relativistic Shock Tube Problem the non-linear evadvection and the conservation laws
of one-dimensional special relativity (without gravitygrcbe tested.

For the Relativistic Shock Tube Problem now the specificrivdbenergye can be large, and does
not have to be small as in the Newtonian casex ¢®. The speed of the shocks in the Newtonian
Shock Tube Problem can be made arbitrary large, dependitigednitial ratio of the pressure in the
tube. While non-relativistic solvers may produce propiggtelocities that exceed the speed of light,
a conservative and accurate relativistic solver produedscities that can be extremely close to but
never exceed the speed of light and therefore the flow candagey high Lorentz numbdr.

The initial conditions of the simulations in figuse9 and following figures are:

pL 10 PR 1
P |=| f% |forx<05 | Pr |=] 22 [ forx>05. (5.20)
Up 0 UR 0

where the factoff is changed to get ffierent maximum Lorentz factors:

for figure5.9 f = 1, which results in a maximum Lorentz faciogax ~ 1.4,

for figure5.1Q f = 10, T'nax~ 2.3, figure5.11 f = 100 T'nax~ 3.8,

figuresb5.12 5.13 5.14and5.15 f = 100Q 'max ~ 6.8 and for figures.16 f = 1000001 nax ~ 21.
In the simulations an equation of state of an ideal gas withledic indexy = % was used.

The simulations were run up to a time aR@nd, since this is a very time-dependent problem and to
be sure, that there are no numerical instabilities due t&te condition are occurring, a maximum
CFL time step of 0 was used.

The equations were solved with an implicit method using tlecBWhite Line-GaulRSeidel method
for the solution of the linear matrix equations with 5 gloliterations using the implicit operator
splitting (10S) technique with the equation ordeds: first radial momentunm equation, then the
continuity equation and finally the energy equation areesbin each global iteration step.

The spatially third order van Leer advection schetoedrr = 93) and a non-unity Crank-Nicolson
numberdcy # 1 was used, so explicit and implicit methods were mixed. Thidicial viscosity
parameteirs, and the Crank-Nicolson numbégy were varied to find the best solutions which are
presented here.

For one-dimensional special relativity (ISR and IGravity=0) in Astro-GRIPS the metric entries are
setto:gt = 1,0 =0st = 0,0 = 0op = Uy = 1

and to get a 1D radial solution one sets in the parameter file:

SolMethod_dir R

Since up to now Astro-GRIPS uses only spherical shapedinélte calculation of the volumgareas
and interface areflies, one has to use a large radius (e.g. 1000 or largerjhtegeiith a small
radial computational domain (e.g. 1) to approximate a Gatebehaviour in the one-dimensional
simulations.

For the calculation of the Lorentz factdrin these simulations a mixed scheme is applied where
conservative and primitive variables are used. Anotheemehuses only the conservative variables
and can be easily switched on by a flag in the parameter filel(ce#ntz_Type Lorentz_mixed or
calcLorentz_Type Lorentz_cons).
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The analytic solution is constructed using the Fortran mogriemann.f byMarti and Mller(2003
where also the derivation of the analytic solution is déxsati

Compared to the Newtonian case the maximum compressianafiihe gas in not limited anymore
and thus in the relativistic case it is much moréidult to numerically determine the solution due to
the appearance of stronger shock discontinuities.

Note that in these simulations the pressure and energytdémsiot artificially limited to floor values
at each cycle to ensure only positive values, as for examnspii®me inAnninos and Fragil¢2003.
For the right artificial viscosity and Crank-Nicolson paeters there is no need to limit any variables
to floor values.

The higher the initial pressure ratio is, the thinner thesitgrshock feature and the higher the maxi-
mum Lorentz factor gets. So for very large initial pressatéos one has to use an enormous fine grid,
so that the extremely thin density shock feature is resolvell The lack of spatial resolution is the
cause for the density undershoot in the simulations anéfiwer also the Lorentz factor might not be
calculated well enough.

That is probably the reason, wiynninos and Fragil€2003 have only performed simulations of
the relativistic shock tube problem for maximum Lorentztdas of about 43 and 359. They used
another problem to test their explicit Cosmos code for laigentz factor flows: the Relativistic Wall
Shock Problem.

Explicit methods are not able to handle these type of flowk stitong shocks and very high Lorentz
factors, due to the strong nonlinearity of the equationseré&tare various explicit codes, which will
break down for high Lorentz factors, e.g. PLUTXx ¢p://plutocode.to.astro.it), which gives
usually very good results, breaks down for Lorentz factbet fare larger than about 18li(scher
2009.


http://plutocode.to.astro.it
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distribution with 402 grid points corresponding in the redant region to a uniform grid of 1000 cells between
0 and 1; the optimal solution is obtained for an artificial aissity parametews, = 2.5 and a Crank-Nicolson

factordcn = 0.6
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Figure 5.14: Relativistic Shock Tube Problem with maximum Lorentz famtapprox. 6.8; non-uniform grid
distribution with 1602 grid points corresponding in theeeant region to a uniform grid of 4000 cells between
0 and 1; the optimal solution is obtained for an artificial aissity parametews, = 1.5 and a Crank-Nicolson

factordcn = 0.6
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Figure 5.15: Relativistic Shock Tube Problem with maximum Lorentz faaftapprox. 6.8;ogarithmic plots
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to a uniform grid of 4000 cells between 0 and 1; the optimalsoh is obtained for an artificial viscosity
parametefxsy, = 1.5 and a Crank-Nicolson factafcy = 0.6
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5.1.4 General Relativistic Spherical Accretion

The general relativistic steady-state spherical symmetcretion onto a Schwarzschild black hole
or neutron star is essentially a one dimensional radiallprotio test the right implementation of the
gravity terms in the general relativistic solver.

Bondi (1952 described the analytical solution to the Newtonian spiadEeccretion anichel (1972
extended this to the general relativistic spherical ammednto a Schwarzschild black hole. The
solution is similar to that of Parker’s solar wind model ass iilso a sonic point flow, but here in the
opposite direction: from outwards to inwards. From the patdsonic inflow there is a transition to
a supersonic inflow at a critical radius, the so-calledealtor sonic point.

In figure 5.17cthe analytic solution of fig. 1 oMichel (1972 is reproduced (using a self-written
python-script).

For the simulation the same parameters aMiahel (1972: fig. 1 are used: The velocity at the
critical pointve = 4.6 - 107 ¢, which is located at the radiug = 2AU ~ 2.29- 10° rg. The mass of
the central object i81gy ~ 0.884Mg. The adiabatic (polytropic) index is that of an ultra-relistic
plasmay = % (n= y—fl = 3). This gives an asymptotic gas temperature at infinity of’]:q)cz/kg ~
10°. 108K = 10K

For the simulations the innermost part, from= 2.2rg to roy = 10.0rg, of this solution is simulated
using the polytropic equation of state as in the analytiatimh only solving the continuity equation
and the radial momentum equation coupled.

Some other simulations were performed using the ideal gaarta therefore additionally solving the
internal energy equation.

At the outer radial boundary at= rqyt = 10.0rg the analytic values of the conservative variables were
set (taking into account the staggered grid structure) foriftorm grid of 64 cells in code units:

Drost = 10240 (5.21)
Qo = 2470-107 (5.23)

As initial conditions a homogeneous densitypof 8.2 - 107° % and a temperature df ~ 4.355-
10°K, which gives a pressure ¢f ~ 6.0 - 107g% =6.0-10 % = 60bar = 6.0 - 10° Pa, corre-
sponding to the analytic outer boundary values atglénd zero velocity was used. Here the pres-
sure was calculated from the temperature using the reldicn %::p-l— with the molecular mass
(molecular weightlgas = 0.5 - 10-3kg/mol = 0.5g/mol (for ionized hydrogen) and the gas constant
Ryas= 8.34472J(Kmol) = 8.314472- 10’erg/(Kmol).

Whereas at the inner boundaryrat 2.2ry = 1.1rss zero gradient of the primitive variablesVe,, P
were used (zero gradient of the conservative variablesgigeso good results).
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The used scaling variables are:

Rom = 13056675cm= rq (5.24)

m = 10.10°-9_ 5.25
PDim P ( )
Voim = 2997924580@%1:c (5.26)
Toim = 1.0-10°K (5.27)

Time is then scaled byimepim = Rpim/Vpim = %—’ ~ 4.355- 10°%s = 4.355 us, pressure and energy
densities bypim - V3, = poim - ¢ ~ 8.988- 1013, = 8.988- 101129 = 8.988- 10103,

cmg

Figures5.18 5.19 and 5.20 show the excellent numerical results in comparison withahalytic
solution for 64, 128 and 256 uniform grid cells for the pabgic equation of state and figuse21
the results for 256 uniform grid cells in the case of an ides law, where additionally the internal
energy equation was solved.

In figure5.220ne sees the hugeft#rence in the vicinity of the black hole, where the redsfaitttér

a plays a big role, between the Boyer-Lindquist coordinateeoker located at infinity fixed to the
grid and the local Euler frame observer: The pseudo Lorexttof of the Boyer-Lindquist observer
I = “Et and the corresponding velocit} and the local Lorentz factoN = a%t in the Euler frame
with the velocityVg,, which gives from the point of the fluid a more natural anditita description:
the radial velocity in the local Euler framw, will approach the speed of ligltat the event horizon,
which is located at the Schwarzschild radigg = 2rg; so there the local Lorentz factdY will be
infinity.

Some log variables are plotted in figuse23 In figure 5.23athe maximum of the moduli of the
residuum ofmis plotted, which is a measure of how good the linear equatystem is solved. Note
that here the values are always below>@he requested accuracy set by the the 'acc’ option in the
SolMethod parameter in the parameter file. In figbr2g3bthe maximum of the moduli of the RHS
of the radial momentum equation is plotted versus the siradlphysical time, which is a measure of
how far away the solution is from the steady-state. If thimpeeter is tiny the steady-state solution is
reached.
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Figure 5.19: General Relativistic Spherical Accretion: analytic andmerical solution of Astro-GRIPS using
the polytropic equation of state ari@8 uniform grid cells



5.1 One-Dimensional Problems

155

90

80f \
70r
60f
50F
40r
30
20f

10p

% x 256 grid points
—— Analytic solution

6
r/r,

(a) Densityp

—0.5
—0.6]
L8 =07}
_og

—0.9r

4
x x 256 grid points
—— Analytic solution

-1.0

r/r,

(c) Velocity &,

0.0016
0.0014
0.0012
0.0010
& 0.0008
0.0006
0.0004

0.0002

0.0000.

x  x 256 grid points
— Analytic solution | |

r/r!l

(e) Pressure P

N N w
o w o

Lorentz Factor W

=
19

1.0

% x 256 grid points
—— Analytic solution

0.10

6
r/r,

(b) Lorentz Factor W= oI = a“—ct

X

0.09r

= 0.07

0.06r

x  x 256 grid points
Analytic solution

3 4 5 6 7 8 9 10

r/r,

(d) Temperature T

0.000055

0.000050F

0.000045f

Internal Energy

0.000030F

0.000025f

0.000020:

0.0000401

0.000035f

x x 256 grid points
Analytic solution

2

r/r,

(f) Internal Energye = -1; 2

Figure 5.20: General Relativistic Spherical Accretion: analytic andmerical solution of Astro-GRIPS using
the polytropic equation of state arb6 uniform grid cells
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5.2 More-Dimensional Problems

5.2.1 Taylor Couette Flow

The Taylor-Couette Flow problem is a well known more-dimenal problem in computational fluid
dynamics to test the (Newtonian) Navier-Stokes equatiaith@ut gravity).

In the usual Taylor—Couette flow a viscous fluid is moving kestw two rotating cylinders. At low
angular velocities, where the fluid shows a circular Couitke, this setup was used by Couette to
determine the viscosity of fluids.

Taylor (1923 described the instabilities, which occur for higher aagwklocities of the inner cylinder
in the circular Couette flow. First one gets Taylor vortidbgn more complicated wavy vortex flows
and at a certain high enough Reynolds number there is thé¢ ohisgbulence.

Here a Taylor-Couette Flow is simulated in 3D axi-symmetfween two concentric spheres instead
of the usual cylinders. The inner radiusRg = 1 and the outer radius Ry = 1.2 and the latitude

6 ranges only from 0 td. For the simulation 144x1152 grid cells, a 3rd order spatial 1st order
temporal accurate scheme, an adiabatic indax:@fg and at the polar axis and the equator reflecting
boundaries are used and the inner and outer sphere is hasdedgid wall, which means that there
are also reflecting boundaries applied. The outer sphewftisthaticQq,: = 0, whereas the inner
sphere is rotating with an angular velocity®@f, = 5. The simulation is started with an initially linear
Q-distribution. The viscous fluid has an initial density ofeoand a temperature of 10, the turbulent
viscosity parameter was setdég = 0.05 or Q01. The scale of the turbulent velocity was set to be
equal to the sound speed,( = Vs) and the turbulent length scale to half the gap spagg:= 0.1.

The turbulent viscosity is defined as:
v = at ViurLtur (5.28)

and the Reynolds number for this flow can be calculated as:

_ AQIRnIAR] _ [Q0ut — Cin|Rin|Rout — Rinl
14 Vv

Re (5.29)

which for the aforementioned parameters:&3 for o, = 0.05 for the non-turbulent case in fi§.24
and~316 foray = 0.01 for the turbulent case in fi.25

This problem was also used to test the parallelization of AGRIPS, which is described in the
sectiond.5about parallelization on pade3
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Figure 5.24: Laminar Taylor-Couette Flow witly, = 0.05 (Rex63): Q-distribution and velocity arrows
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5.2.2 General Relativistic Standing Shocks at Cold Discs ar  ound Black Holes

In this two dimensional problem a elsewise sphericallylimia flow forms a standing shock at a cold
disc around a Schwarzschild black hole. The plasma suringrttie disc is taken to be inviscid,
thin, hot and non-rotating. This flow configuration is simita the forward facing step problem in
computational fluid dynamics.

For this simulation a cold and dense disc has been placea imtiermost equatorial region. It is a
region, where no equations are solved and which acts lik#ecti@g barrier for the elsewise radial
inflow, so a curved standing shock is formed.

The computational domain reaches from an inner radiuszig2= 1.1rss to an outer radius of
100rg = 5.0rss, whereRy = GC—ZM is the gravitational radius arigs s = 2Ry the Schwarzschild radius,
and ing direction from zero (midplane) to 90 degrees (polar axis).

The same parameters as for the general relativistic sphedcretion (seb.1.4 were used.

The cold disc, the region where nothing is calculated, eldeut to a radius of.8ry = 3.0rss and
has an angle above the midplane of 10 degrees.

At the outer radial boundary there are set fixed boundary iiond as in the case of the general

relativistic spherical accretion and the latitudinal \a@p is set to zero there. At the inner radial

boundary there are zero gradient boundary conditions ®rctnservative variables except for the
latitudinal velocity which was fixed to zero. In the midplaihere are set symmetric and at the polar
axis are set axi-symmetric boundary conditions.

As equation of state an ideal gas law with an adiabati¢haent of y = % for an ultra-relativistic
plasma was used.

The steady state solution was obtained with a fully couplestesn solved with the AFM method
using a 3rd order spatial van Leer advection scheme and &®liaolson numbercy = 0.5, which
results in second order temporal accuracy.

Figuresb.27, 5.28and5.29show the density, velocity arrows, velocity componentsheflocal Euler
frame, the pressure and the temperature distribution oftéedy state solution on a uniform 64x64
grid. One clearly sees the standing shock around the coid dis

These numerical results show that the simulation codeascalgable of simulating 3D axi-symmetric
general relativistic flows.
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Figure 5.27: General Relativistic Standing Shock at a Cold Disc arouncatlawrzschild Black Hole: Astro-
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In this thesis the importance of general relativistiteets and the necessity for implicit methods
especially in the simulation of accretion flows in the vigimdf compact objects and the jet launching
process is pointed out.

For that purpose — as a first step — the user-friendly imp§uitulation code Astro-GRIPS, the
General Relativistic Implicit Parallel Solver, was deyed, which solves the three-dimensional axi-
symmetric general-relativistic hydrodynamic Euler- ovi#a-Stokes equations under the assumption
of a fixed background metric of a Schwarzschild or Kerr blagletusing time-implicit methods. Itis
an almost total re-write of an old spaghetti-code like $dtatran 77 simulation program. By mod-
ernisation and optimization it is now a modern, well struetly user-friendly, flexible and extensible
simulation program written in Fortran @ib.

The general relativistic hydrodynamic Euler- and NavieskBs equations were derived under the
assumption of a fixed background metric of a Schwarzschikkor black hole using Boyer-Lindquist
coordinates. According to the finite volume method a 3D grimmetric staggered grid discretization
was performed using the internal energy formulation. Thas wone in such a way that it is easy to
reduce the system to the usual Newtonian equation$etient equations of state can be used to close
the system: ideal gas, polytropic, isothermal and an apmaton of the Synge equation of state, a
generalization of the ideal gas law to correctly descrilgerdgion between the Newtoniap £ 5/3)

and the ultra-relativisticy( = 4/3) flow states. Also a tabulated equation of state could biyeas
included.

For the solution of the hydrodynamic Euler equations withdiffusion and without sophisticated ra-
diative dfects for time-dependent compressible flows explicit metherg very well suited. But to
simulate a very complex flow with magnetic fieldsffdsive and viscousfiects (Navier-Stokes equa-
tions) and with atomic and chemical reactions with radatransfer taken into account, one has to
use the numerically unconditionally stable implicit medbolIn contrast to explicit methods, implicit
methods are not numerically limited by the Courant-FrigusiLewy (CFL) time step size, and so
simulations with physical phenomena, that posses varitterent time scales, are possible without
stagnation. In the future implicit methods can also helpwercome the so-called "time-step crisis"
in gravitational collapse simulations (but therefor one tmimplement a Poisson solver in the New-
tonian case or solve the Einstein’s field equations in thegdmelativistic case). Another advantage
of implicit methods is that there is a tighter coupling of #wguations, which is very important for an
accurate description of non-lineaffects.

The system of large sparse linear equations, which is aaristt for the implicit method, is solved
with the defect-correction iteration procedure using theckB-White Line-Gaul3-Seidel (BW-LGS),
the Approximate Factorization Method (AFM) or the KrylovI&ypace Iterative Methods (KSIMs)
like GMRES, BIiCGSTAB and TFQMR. The equations can be sohaggligntially (the implicit oper-
ator splitting approach) or solved together as one larg@ledusystem. It is also possible to group
some equations together and solve them with one method amdtbr equations with another method.
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Here a superior feature of Astro-GRIPS is the large flextibih choosing the solution coupling and
method by only changing one line in the parameter file, thé8tiod parameter. The hierarchical
solution scenario (HSS), the gradual enhancement of thetiegLcoupling, can be used together with
the restart possibility and the prolongation to a finer gtidfind a stationary or a quasi-stationary
state more quickly.

The optimization of the matrix construction by functionlsalnd separating the pure Jacobian el-
ement calculation from the calculation of the matrix eletagmhere the boundary conditions are
additionally be considered, makes the algorithm bettenta@iable and extendable. Now the matrix
elements are directly calculated during the fill-in of thetmxastructure of the selected method. This
optimization results in a faster matrix construction coregato the before used calculate and copy
approach and was a necessary step for the parallelization.

Large amount of time was spent to perform the MPI-parabi¢ilan for distributed (and shared) mem-
ory machines. Here a domain- and matrix-decomposition fhaétlo cell communication was imple-
mented and the ScaLAPACK band matrix solver is used in thallehimplementation of the BW-
LGS and AFM methods. When the program is compiled with PET®part, then the interface to use
the PETSc-library is compiled in and the full range of KrylBubspace Iterative Methods (KSIMs,
KSP) with preconditioners from PETSc can be used, but if @gero PETSc library one can already
use BW-LGS and AFM. Theflcient scaling of the algorithm was shown. As expected, théVKS
show the best scaling, BW-LGS is not suitable for all proldeand AFM cannot be parallelized very
efficiently due to its two-step algorithm in the twoffgirent directions, where the matrix has to be
re-ordered in-between, which results in large commurocatiosts.

Many improvements were applied to the simulation progratnytéo make the code usage very easy
and comfortable:

After setting up some environment variables using a small skript (this step is usually only done
once), one can easily configure the code using a configunet,satich has several options e.g. to
change the used compiler and library paths, to request agdatmpilation or MPI parallel mode
and PETSc support. For each problem there is a separatéodyracith a problem dependent sr-
¢/Setup.F90 file, which contains the initial conditions (apécal boundary conditions when nec-
essary) and one or more parameter files, where one can spédwifst all parameters used for a
simulation run. This has the advantage that one can changg paaameters of a simulation without
re-compiling the code.

For serial and parallel data input and output the NetCDF fiaitaat, a portable standard binary data
format, is used. This format is better than ASCII-data oytpthich is large, and better than direct
binary-data, which is not portable. There are many data podation and analysing programs and
visualization tools available which can handle NetCDF ddfa have an easy start in visualization
one can either use netcdf viewers like ncview or the suppligdon scripts, which use matplotlib for
the visualization.

It was shown that Astro-GRIPS was able to solve specialivedtic shock tube problems for Lorentz
factors up to at least about 21 although the numerical dlgarsolving the internal energy equation
with the use of artificial viscosity to replace the lost eneay shock fronts is not so well suited
for shock problems than the high resolution shock captu¢itig@SC) schemes, which are solving
Riemann problems and are therefore especially adaptechémksproblems by construction. The
general relativistic spherical accretion shows that theega relativistic source terms are implemented
right and that the code is capable of finding a general réditivsteady state. The two-dimensional
Taylor-Couette problem, where here one looks at a viscows fletween two concentric spheres
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instead of the usual cylinders, where one is static and origiiy rotating, shows the laminar and
turbulent behaviour of such systems and is an applicatidheoNewtonian Navier-Stokes equations.
The 2D simulation of the elsewise spherical accretion flosuad a static cold disc in the case of a
Schwarzschild black hole is shown. There one gets a shocikdithe disc, like in the forward facing
step model in computational fluid dynamics.

These test problems show that the simulation code is working and that it can now be applied to
more complicated problems.

Possible further developments of Astro-GRIPS in the fumay include:

¢ use of Kerr-Schild instead of Boyer-Lindquist coordinates
to overcome the potential problems of Boyer-Lindquist damates near the black hole, espe-
cially in the ergosphere.

e use of the total energy formulation (might be better for sgrablems, but it might be more
difficult to construct the Jacobian for the implicit method)

o further test problems, e.g. for dissipative general naktic flows (Navier-Stokes equations)

e general relativistic magneto-hydrodynamics (MHD)
with several methods to ensure theBli¢ 0 constraint.

e non-ideal general relativistic MHD: reconnection, ohméating, Hall term

¢ include diferent cooling and heating processes or approximationsdhdor example relativis-
tic bremsstrahlung, heat conduction or synchrotron eomssivhich should be easy to include
since the internal energy equation is used. These therraouigal relevant processes are con-
sidered to be very relevant e.g. in polar accretion ontornauttars, X-ray bursts and GRBs.
They are mostly not considered up to now, since most of theopbysical solvers are only
time-explicit and therefore have problems with thatient timescales of such problems com-
pared to the hydrodynamical timescale. Here implicit méghare best suited to overcome this
time-step problem.

e add Newtonian and general relativistic radiative trangfgnations (gray approximation and
frequency dependent)

e extend the system of equations to multi-component plasmas:

In situations where the cooling and heating processes droampact objects like black holes
or neutron stars posses timescales that are longer thaortespgonding dynamical time scale,
electrons and ions of the plasma may decouple thermallyterdfore creation and annihilation
processes must be taken into account more frequently. Sualiens can occur for example in
the ergosphere of a Kerr black hole or in boundary layers atitegoolar caps of neutron stars.
Astro-GRIPS is designed in such a way, that it is relativelgyeto add further equations to it.
Therefore the implementation of such multi-component &gna should be straightforward, if
one has calculated the Jacobian entries needed for thecihgaliver.

¢ include atomic and chemical networks
e extend to fully 3D (or 4D in the case of frequency dependedittive transfer)

¢ non-fixed spacetimes (coupling with solution of Einstefiedd equations or with some approx-
imations thereof)
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Astro-GRIPS, the GeneralRelativistic Implicit Parallel Solver, the numerical simulation code de-
scribed here, is a fully implicit solver for flows in generalativistic Astrophysics, that is parallelized,
can be used very flexible and runs on various computer ptafoDue to the implicit method the code
is unconditionally stable and takes into account the cogpdf equations and therefore the non-linear
behaviour of the fluid flows.

With the Hierarchical Solution Scenario (HSS) which cotss the gradual coupling of the equa-
tions, one has a powerful method for quickly finding quaatiehary solutions.

The development of such an implicit simulation code is intgnatr to advance the numerical simula-
tion technigues in Astrophysical Fluid Dynamics, so that tias the basis to include and study the
influence of interesting physical aspects: magnetic fieliliative processes, heating and cooling and
atomic and chemical reactions (all in Newtonian as well asgeneral relativistic formulation).

The aim is to understand the nature of the flows around congigetts, especially the formation
and acceleration of ultra-relativistic multi-componefagma MHD-jets around spinning black holes
and other ultra-compact objects and finally compare the nigalegesults with Astrophysical obser-
vations.
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