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Abstract

Subject of this work is the development of numerical methods for efficiently solving nonstationary
incompressible flow problems. In contrast to stationary flow problems, here errors due to discretiza-
tion in time and space occur. Furthermore, especially three-dimensional simulations lead to huge
computational costs. Thus, adaptive discretization methods have to be used in order to reduce the
computational costs while still maintaining a certain accuracy.

The main focus of this thesis is the development of an a posteriori error estimator which is
computable and able to assess both discretization errors separately. Thereby, the error is measured
in an arbitrary quantity of interest (such as the drag-coefficient, for example) because measuring
errors in global norms is often of minor importance in practical applications. The basis for this is a
finite element discretization in time and space. The techniques presented here also provide local
error indicators which are used to adaptively refine the temporal and spatial discretization. A key
ingredient in setting up an efficient discretization method is balancing the error contributions due
to temporal and spatial discretization. To this end, a quantitative assessment of the individual
discretization errors is required.

The described methods are validated by several numerical tests. These also include established
Navier-Stokes benchmarks as well as a two-phase flow problem with complex three-dimensional
geometry.

Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung numerischer Verfahren zur effizienten Lösung insta-
tionärer inkompressibler Strömungsprobleme. Im Gegensatz zu stationären Strömungsproblemen
entstehen hier Diskretisierungsfehler sowohl durch die Diskretisierung in der Zeit als auch durch
die Diskretisierung im Ort. Außerdem führen insbesondere dreidimensionale Simulationen zu ei-
nem hohen Rechenaufwand. Dies erfordert die Verwendung adaptiver Diskretisierungen, um den
Rechenaufwand zu reduzieren und gleichzeitig eine gewisse Genauigkeit beizubehalten.

Der Schwerpunkt dieser Dissertation besteht in der Entwicklung eines auswertbaren a posteriori-
Fehlerschätzers, der die getrennte Erfassung beider Diskretisierungsfehler ermöglicht. Der Fehler wird
dabei in einer beliebigen Größe (wie etwa dem Widerstandsbeiwert) gemessen, da Fehlerangaben in
globalen Normen in praktischen Anwendungen meist von geringerer Bedeutung sind. Grundlage
dafür ist die Verwendung von Finite-Elemente-Diskretisierungen in Ort und Zeit. Die vorgestellten
Techniken liefern außerdem lokale Fehlerindikatoren, die zur adaptiven Verfeinerung der Zeit- bzw.
Ortsdiskretisierung verwendet werden. Zur Gestaltung eines effizienten Diskretisierungsverfahren ist
die Balancierung der Fehlerbeiträge durch Zeit- bzw. Ortsdiskretisierung nötig, was eine zuverlässige
quantitative Erfassung der einzelnen Diskretisierungsfehler erfordert.

Die präsentierten Methoden werden anhand verschiedener numerischer Tests validiert. Dabei werden
auch etablierte Navier-Stokes-Benchmarks sowie ein Zweiphasenströmungsproblem mit komplexer,
dreidimensionaler Geometrie betrachtet.
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1 Introduction

This work is devoted to the development of efficient discretization techniques for numerically
solving nonstationary incompressible flow problems. Since in contrast to stationary problems
we have to deal with the discretization in time as well as in space, one of the main topics
in setting up such an efficient algorithm is to obtain quantitative information about the
temporal and spatial discretization error. This is a key ingredient because within an
efficient algorithm one has to decide which discretization has to be refined to reduce the
discretization error in the most efficient way.

The computational costs of numerically solving nonstationary flow problems are com-
paratively high due to the complex structure of such problems, especially when dealing
with nonstationary three-dimensional flow problems. Thus, it is crucial to apply adaptive
refinement techniques to reduce the size of the approximative problems without reducing
the accuracy of the approximation.

Adaptive methods are widely used in the context of finite element discretizations of partial
differential equations, see, for example, Verfürth [102] or Eriksson, Estep, Hansbo, and
Johnson [41] for an overview. In Bänsch [6], an adaptive strategy for the nonstationary
Navier-Stokes equations is developed which is based on a posteriori error estimates in the
energy-norm.

However, error estimation with respect to global norms such as the energy-norm sometimes
is not very efficient since in flow problems one is often only interested in a specific functional
value of the solution, the so-called quantity of interest. Hence, the goal of the numerical
simulation of a flow problem is the efficient computation of this single number. This
quantity might, for instance, be the mean drag- or lift-coefficient of an obstacle which
is surrounded by the fluid. In this case, the efficiency of an algorithm for numerically
computing this quantity has to be measured by means of the reduction of the discretization
error in the quantity of interest rather than in global norms since the latter usually do not
provide useful bounds for the error in the quantity of interest.

The basis for such a posteriori error estimation was given in Becker and Rannacher [13].
Besides the simulation of elliptic problems, this result has been successfully applied to
parameter estimation (Becker and Vexler [14]), optimal control problems (Becker [8]),
stationary flow problems (Richter [93]), chemically reacting flows (Braack [17]), and many
others. Considering time-dependent problems, Hartmann [64] derived a posteriori error
estimators for the heat equation. In Schmich and Vexler [96], this approach was extended to
general nonlinear parabolic problems. Meidner [78] developed efficient adaptive algorithms
for optimal control problems governed by nonlinear parabolic problems. An application
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1 Introduction

of the abstract theory to fluid-structure interaction problems can be found in Dunne [38]
who however only considered spatial adaptivity.

This work extends the methodology developed in Schmich and Vexler [96] to nonstationary
flow problems allowing for the simultaneous adaptation of the temporal and spatial
discretization. Furthermore, we will derive a posteriori error estimators which quantitatively
assess the discretization error measured in the quantity of interest and separate the influence
of the temporal and the spatial discretization. This separation will allow us to set up an
efficient algorithm for the adaptive refinement of the temporal and the spatial discretization.
Applying the approach derived in this thesis, we are able to compute the mean drag-
coefficient in a three-dimensional time-dependent benchmark configuration from Schäfer
and Turek [95] up to an accuracy of a few percent on a standard personal computer.

The key to rigorous a posteriori error estimation is a coupled variational formulation of
the underlying equations. It allows to apply Galerkin finite element methods not only for
the discretization in space, but also for the discretization in time. The use of space-time
finite element discretizations enables the application of residual based a posteriori error
estimation. Discontinuous Galerkin methods for the discretization of ordinary differential
equations have been used by Delfour, Hager, and Trochu [37] whereas Estep and French [49]
applied continuous Galerkin methods to ordinary differential equations. In the context of
parabolic problems, the works of Eriksson and Johnson [43, 44, 45, 46], Eriksson, Johnson,
and Larsson [47], Eriksson, Johnson, and Thomée [48], and Thomée [100] as well as Akrivis,
Makridakis, and Nochetto [1] and Aziz and Monk [4] have to be mentioned. Space-time
Galerkin methods have already been applied successfully to the simulation of incompressible
flows, see, for example, Mittal, Ratner, Hastreiter, and Tezduyar [79], Mittal and Tezduyar
[80], Behr and Tezduyar [15], or N’dri, Garon, and Fortin [84] as well as Hoffman [68]
(referred to as General Galerkin G2 ). While the first references do not consider adaptivity,
Hoffman [68] also develops an adaptive algorithm for nonstationary flow problems based
on a posteriori error estimation. However, he does not separate the temporal and spatial
discretization error. Instead, the temporal refinement is linked to the spatial refinement.

The novelty of the approach presented in this thesis is the development of a posteriori error
estimators for nonstationary incompressible flow problems which separate and quantitatively
assess the temporal and spatial discretization error. This allows for the construction of
efficient discretization methods because the temporal and spatial discretization error can
be balanced.

To be most efficient in capturing the dynamics of a nonstationary flow problem, it seems
desirable to use so-called dynamic meshes for the discretization in space. That is, one uses
possibly different meshes for different time points. Thus one can efficiently resolve and
track fronts marching through the domain, for example. In the context of parabolic partial
differential equations one is easily led to the fully discrete problem (that is discretized in
time and space) by taking the variational formulation of the semi-discrete problem (that is
discretized in time, but still continuous in space) and simply restricting the corresponding
function spaces to the ones involving the finite-dimensional fully discrete spaces. Proceeding
in a similar way for incompressible flow problems leads to appropriate approximations of
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the velocity while the approximation of the pressure deteriorates. The numerical analysis
of the phenomenon as well as a theoretical investigation is a main subject of this thesis.

In the sequel, we give a summary of the remaining chapters of this thesis.

Theoretical Results

In Chapter 2, we first give an overview of the basic notation used throughout this thesis.
Then, we formulate the incompressible Navier-Stokes equations which are based on the
physical conservation laws of mass and momentum. Finally, we present the variational
formulation of the incompressible Navier-Stokes equations which forms the basis for the
Galerkin finite element discretization in space and time.

Space-Time Finite Element Discretization

Chapter 3 presents the discretization of the incompressible Navier-Stokes equations in
space and time. For the temporal discretization we consider continuous or discontinuous
Galerkin finite element methods. The spatial discretization on dynamic meshes is based on
continuous Galerkin finite element methods. Since we use equal order polynomials for the
velocity and the pressure, the resulting fully discrete formulations need to be stabilized.
This is done by means of the so-called local projection stabilization, see Becker and Braack
[10, 11]. We conclude this chapter by giving some information on implementational
aspects.

A Posteriori Error Estimation

One of the main topics of this thesis is the derivation of an a posteriori error estimator
which assesses both the temporal and the spatial discretization error with respect to a
given quantity of interest. This is based on an abstract result of Becker and Rannacher
[12, 13]. We also present an adaptive algorithm which uses the a posteriori error estimators
for successive refinement of the temporal and spatial discretization. This algorithm leads
to equilibrated spatial and temporal discretization errors which is crucial for the efficiency
of the solution strategy. However, this requires quantitative error estimators. In contrast
to the error estimators developed in this thesis, simple heuristic error indicators based on
smoothness of the solution do in general not fulfill this requirement. The same holds true
for error estimators involving unknown interpolation or stability constants. We close this
chapter with a numerical validation of the developed quantitative error estimators and a
numerical comparison with heuristic error indicators.

Issues on Dynamic Meshes

This chapter is dedicated to the numerical and theoretical investigation of a phenomenon
that occurs when solving the incompressible Navier-Stokes equations on dynamically
changing meshes. We present a numerical simulation of a two-dimensional benchmark
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1 Introduction

configuration from Schäfer and Turek [95] in which we aim at computing the (mean) lift-
coefficient. We note oscillations in the lift-coefficient when switching the spatial mesh which
can be shown to originate from a disturbed approximation of the pressure. We numerically
investigate two model problems involving the Stokes equations in which the same effect can
be observed. To exclude stabilization artifacts, we introduce the inf-sup-stable Taylor-Hood
element, see Hood and Taylor [69]. For completeness, the second-order fractional-step-θ
scheme (Müller-Urbaniak [81]) for the discretization in time is also considered which is a
popular method in computational fluid dynamics. The final section of this chapter gives a
theoretical investigation of this phenomenon.

All computations in this thesis have been done with the software package Gascoigne
[56] except for the computations with the Taylor-Hood element which have been carried
out using the software package deal.II [36]. For visualizing the numerical solutions, the
visualization tool VisIt [103] was used.

Applications

In Chapter 6, we apply the developed a posteriori error estimators and adaptive refinement
techniques to some applications.

The first examples are the two- and three-dimensional time-dependent benchmark configu-
rations from Schäfer and Turek [95] in which we compute mean drag- and lift-coefficients.

The last example simulates the filling process of a so-called lab-on-a-chip, like the mi-
crodiagnosis chip Lilliput®, see Figure 1.1. This reaction platform, which is of size
20 mm× 37 mm× 3 mm, consists of 96 cavities like ordinary platforms, but uses less than

1
100 of the usual volume, namely 1.8 µl.

Figure 1.1. Microdiagnosis chip Lilliput® (photos by courtesy of Boehringer
Ingelheim microParts GmbH)
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At the beginning of the simulation, the whole chip is filled with gas. Then the liquid
enters the chip via the larger channels, is distributed through the thin channels, and finally
reaches one of the reaction chambers. This process is modeled as a two-phase flow with
one liquid phase and one gaseous phase.

Before showing numerical results of the simulation of the filling process, we first present
the governing equations as well as the fully discrete model including a level set approach
for separating the two phases.

Conclusions and Outlook

In the final chapter of this thesis, we summarize the presented results and discuss possible
extensions and future work.
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2 Theoretical Results

In this chapter, we derive the fundamental equations describing the motion of fluids and
discuss some theoretical results.

In Section 2.1, we present some basic notation used throughout this thesis. Section 2.2 is
dedicated to the formulation of the incompressible Navier-Stokes equations. We also show
their variational formulation which is the basis for the discretization in space and time
presented in Chapter 3.

2.1 Basic notations

Throughout this thesis, Ω ⊆ Rd, d ∈ { 2, 3 }, denotes a bounded domain with boundary ∂Ω.
If no further information is given, we will generally assume the boundary to be Lipschitzian,
see Grisvard [60] for a precise definition. The outer unit normal vector to ∂Ω is denoted
by n.

The standard Lebesgue space Lp(Ω), 1 ≤ p ≤ ∞, consists of measurable functions u which
are Lebesgue-integrable to the p-th power. This is a Banach space with the norm

‖u‖Lp(Ω) :=

∫
Ω

∣∣u(x)
∣∣p dx

 1
p

, 1 ≤ p <∞,

‖u‖L∞(Ω) := ess sup
x∈Ω

∣∣u(x)
∣∣ .

For p = 2, L2(Ω) is a Hilbert space with the inner product

(u, v)L2(Ω) :=
∫
Ω

u(x)v(x) dx.

The Sobolev space Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, is the space of functions in Lp(Ω) whose
distributional derivatives of order up to m belong to Lp(Ω). It is a Banach space with the
norm

‖u‖Wm,p(Ω) :=

 ∑
|α|≤m

‖∂αu‖pLp(Ω)

 1
p

, 1 ≤ p <∞,

‖u‖Wm,∞(Ω) := max
|α|≤m

‖∂αu‖L∞(Ω) .

7



2 Theoretical Results

Here, α = (α1, . . . , αd) ∈ Nd denotes a multi-index. We set

|α| :=
d∑
j=1

αj , ∂α := ∂|α|

∂xα1
1 . . . ∂xαdd

.

For p = 2, Hm(Ω) := Wm,2(Ω) is a Hilbert space with the inner product

(u, v)Hm(Ω) :=
∑
|α|≤m

(∂αu, ∂αv)L2(Ω).

Let us also introduce the semi-norms

|u|Wm,p(Ω) :=

 ∑
|α|=m

‖∂αu‖pLp(Ω)

 1
p

, 1 ≤ p <∞,

|u|Wm,∞(Ω) := max
|α|=m

‖∂αu‖L∞(Ω) .

For sake of brevity, we use the following shorter notation:

(u, v) := (u, v)L2(Ω), ‖u‖ := ‖u‖L2(Ω) .

The corresponding spaces of d-dimensional vector functions are denoted by Lp(Ω)d,
Wm,p(Ω)d, and Hm(Ω)d. They are equipped with the usual product norm. The norms
and inner products on these spaces are denoted in the same way as for scalar functions.

The space Ck(Ω), k ∈ N, denotes the space of functions whose derivatives up to order k
are continuous on Ω. We set

C∞(Ω) :=
⋂
k∈N

Ck(Ω).

For simplicity, we set C(Ω) := C0(Ω).

The space Ck(Ω) consists of all functions from Ck(Ω) whose derivatives up to order k
possess continuous extensions onto Ω. It is a Banach space with the norm

‖f‖Ck(Ω) := max
|α|≤k

sup
x∈Ω

∣∣∂αf(x)
∣∣ .

The space C∞0 (Ω) ⊆ C∞(Ω) is the subspace of functions which are non-zero only in a
compact subset of Ω. The closure of C∞0 (Ω) inWm,p(Ω) is denoted byWm,p

0 (Ω) or Hm
0 (Ω)

if p = 2.

The dual space of Hm
0 (Ω) is denoted by H−m(Ω). It is a Banach space with its norm

‖u‖H−m(Ω) := sup
ϕ∈Hm

0 (Ω)

〈u, ϕ〉
|ϕ|Hm(Ω)

,

where 〈·, ·〉 denotes the duality pairing between H−m(Ω) and Hm
0 (Ω).
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2.2 The incompressible Navier-Stokes equations

When dealing with the incompressible Navier-Stokes equations (see Section 2.2), the
following function spaces are of fundamental importance:

V :=
{
v ∈ C∞0 (Ω)d

∣∣∣ ∇ · v = 0
}
,

V := V ‖·‖H1
0 (Ω) ,

H := V ‖·‖L2(Ω) .

(2.1)

The spaces H and V are Hilbert spaces with the inner products induced by L2(Ω)d and
H1

0 (Ω)d, respectively.

Moreover, let I := (0, T ) with 0 < T < ∞ be a bounded time interval. For any Banach
space X and 1 ≤ p ≤ ∞, Lp(I,X) denotes the space of Lp-integrable functions f from I
into X. This is a Banach space with the norm

‖f‖Lp(I,X) :=

∫
I

∥∥f(t)
∥∥p
X dt

 1
p

, 1 ≤ p <∞,

‖f‖L∞(I,X) := ess sup
t∈I

∥∥f(t)
∥∥
X .

For a detailed derivation of these spaces by means of the Bochner integral, we refer to
Dautray and Lions [35] and Wloka [108].

The space Ck(Ī , X), k ∈ N, consists of functions from Ī intoX that are k times continuously
differentiable on I and whose derivatives ∂jt f(t) of order 0 ≤ j ≤ k possess continuous
extensions onto Ī. This is a Banach space with the norm

‖f‖Ck(Ī,X) := max
0≤j≤k

sup
t∈Ī

∥∥∥∂jt f(t)
∥∥∥
X
.

We set C(Ī , X) := C0(Ī , X).

2.2 The incompressible Navier-Stokes equations

This section is devoted to the incompressible Navier-Stokes equations and their variational
formulation.

The incompressible Navier-Stokes equations describe the motion of incompressible fluids
and are based on the physical conservation laws of mass and momentum. A detailed
derivation can be found in the standard literature, see, for instance, Chorin and Marsden
[31] or Feistauer [51].

The conservation of mass is equivalent to the so-called continuity equation

∂tρ+∇ · (ρv) = 0 (2.2)

9



2 Theoretical Results

where ρ describes the density and v the velocity of the fluid. The balance of momentum
leads to the momentum equation

ρ∂tv + ρ(v · ∇)v −∇ · σ(v, p) = ρf (2.3)

with the stress tensor σ(v, p) and external forces f . In the sequel, we will only consider
Newtonian fluids. For such fluids, the stress tensor σ(v, p) is given by

σ(v, p) = (−p+ λ∇ · v)I + µ(∇v +∇vT ),

where p denotes the pressure and λ and µ are constants.

Incompressible fluids are characterized by the fact that the volume of subregions occupied
by the fluid does not change in time. Using Reynolds’ transport theorem, this leads to the
incompressibility condition

∇ · v = 0. (2.4)

Inserting this into the momentum equation (2.3) yields

ρ∂tv − µ∆v + ρ(v · ∇)v +∇p = ρf . (2.5)

Inserting the incompressibility condition (2.4) into the continuity equation (2.2), we obtain

∂tρ+ v · ∇ρ = 0. (2.6)

If the fluid under consideration is homogeneous, i. e., the density ρ is constant in space,
then the density is also constant in time due to (2.6). In this case, (2.5) can be simplified
to

∂tv − ν∆v + (v · ∇)v + ρ−1
0 ∇p = f ,

where ν := ρ−1
0 µ denotes the kinematic viscosity and ρ ≡ ρ0 denotes the constant density.

The corresponding dimensionless form reads

∂tv −
1

Re∆v + (v · ∇)v +∇p = f . (2.7)

Here, the so-called Reynolds number Re is given by

Re = LU

ν
= LUρ0

µ

with a characteristic length L and a characteristic velocity U .

In the remaining part of this section, we present the variational formulation of the incom-
pressible Navier-Stokes equations (2.7) involving the pressure. This will be the basis for
the discretization presented in Chapter 3.

Let us assume that v ∈ C1(I, C(Ω)) ∩C(I, C2(Ω)) ∩C(Ī , C(Ω)) and p ∈ C(I, C1(Ω)) are
classical solutions of the incompressible Navier-Stokes equations (2.7). For any ψ ∈ V we
then have after integration by parts (ν = Re−1)

(∂tv,ψ) + ν(∇v,∇ψ) + ((v · ∇)v,ψ) = (f ,ψ). (2.8)
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2.2 The incompressible Navier-Stokes equations

Due to the Hölder inequality and the continuous embedding H1
0 (Ω) ↪→ L4(Ω) for Ω ⊆ Rd,

d ∈ { 2, 3 },
((v1 · ∇)v2,v3)

is a continuous trilinear form on V and hence the identity (2.8) is true also for all ψ ∈ V
by continuity. Clearly there holds

(∂tv,ψ) = d
dt (v,ψ).

Obviously, a classical solution v also fulfills v ∈ L2(I, V ). This gives rise to the following
weak formulation:

Problem 2.1. For f ∈ L2(I, V ∗) and v0 ∈ H find v ∈ L2(I, V ) with

d
dt (v,ψ) + ν(∇v,∇ψ) + ((v · ∇)v,ψ) = 〈f ,ψ〉 ∀ψ ∈ V, (2.9a)

v(0) = v0. (2.9b)

Before introducing the pressure, let us first state the following fundamental lemma:

Lemma 2.1 (“Inf-Sup” Condition). For each f ∈ H−1(Ω)d with 〈f ,ψ〉 = 0 ∀ϕ ∈ V
there is a unique p ∈ L2(Ω)/R such that

f = ∇p, i. e., 〈f ,ψ〉 = 〈∇p,ψ〉 = −(p,∇ ·ψ) ∀ψ ∈ H1
0 (Ω)d.

Furthermore, the “inf-sup” stability condition holds:

‖p‖L2(Ω)/R ≤ C ‖∇p‖H−1(Ω) = C sup
ψ∈H1

0 (Ω)d

∣∣(p,∇ ·ψ)
∣∣

‖∇ψ‖
.

Proof. Proofs of this fundamental property can be found, for instance, in Girault and
Raviart [58] or Temam [99].

By integrating (2.9a) with respect to t and applying Lemma 2.1, we obtain the pressure

p := ∂tP

as the distributional derivative of a function P ∈ C(Ī , L2(Ω)/R) (see Temam [99] for more
details on the introduction of the pressure). Together with v ∈ L2(I, V ) there holds

∂tv − ν∆v + (v · ∇)v +∇p = f

in the distribution sense on I ×Ω.

Under additional requirements on the data one can show that the weak solution of
Problem 2.1 possesses further regularity and that the pressure can be viewed as an almost
everywhere defined function rather than only as a distribution. The results differ between
the two-dimensional and the three-dimensional case and are collected in the following
proposition:

11



2 Theoretical Results

Proposition 2.2. Let Ω be a bounded domain in Rd with boundary of class C2 and
v0 ∈ V .

(i) d = 2: For f ∈ L2(I,H) there exists a unique solution to Problem 2.1 which satisfies

v ∈ L2(I,H2(Ω)2 ∩H1
0 (Ω)2) ∩ L∞(I, V ) and ∂tv ∈ L2(I,H).

For the corresponding pressure we obtain p ∈ L2(I,H1(Ω)2).

(ii) d = 3: For f ∈ L∞(I,H) there exists T ∗ ≤ T such that Problem 2.1 possesses a
unique solution v on I∗ := (0, T ∗). Moreover,

v ∈ L2(I∗, H2(Ω)3 ∩H1
0 (Ω)3) ∩ L∞(I∗, V ) and ∂tv ∈ L2(I∗, H).

For the corresponding pressure we obtain p ∈ L2(I∗, H1(Ω)3).

Proof. We refer to Cattabriga [29] or Temam [99] for a proof of this regularity and
uniqueness result.

Remark 2.1. The prerequisites concerning the regularity of the boundary ∂Ω can be
weakened. The statement of Proposition 2.2 remains true if Ω ⊆ Rd is a polygonally
bounded convex domain or its boundary is of class C1,1, see Heywood and Rannacher [65]
as well as Kellogg and Osborn [76] for the case d = 2 and Dauge [34] for the case d = 3.

This allows us to set up a variational formulation incorporating the pressure: Under
the assumptions of Proposition 2.2 (or Remark 2.1) the solution u := (v, p)T ∈ X of
Problem 2.1 satisfies∫

I

{
(∂tv,ψ) + ν(∇v,∇ψ) + ((v · ∇)v,ψ)− (p,∇ ·ψ) + (∇ · v, χ)

}
dt

+ (v(0)− v0,ψ(0)) =
∫
I

(f ,ψ) dt ∀ϕ := (ψ, χ)T ∈ X, (2.10)

where

X :=
{
u = (v, p)T

∣∣∣ v ∈ L2(I,H1
0 (Ω)d), ∂tv ∈ L2(I, L2(Ω)d), p ∈ L2(I, L2(Ω)/R)

}
with I replaced by I∗ for d = 3. For simplicity, we will assume I∗ = I in what follows.

Remark 2.2. It is well known that the space X is continuously embedded in C(Ī , L2(Ω)d)×
L2(I, L2(Ω)/R), see, for instance, Dautray and Lions [35]. Hence, the expression v(0)
makes sense for functions u = (v, p)T ∈ X.

Remark 2.3. In applications, we will sometimes be confronted with configurations in which
Dirichlet boundary conditions for the velocity are not prescribed on the whole boundary.
Instead, there will be some part Γout of the boundary representing an outlet. Then, we
apply natural boundary conditions on Γout:

ν∂nv − pn = 0.
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2.2 The incompressible Navier-Stokes equations

This type of boundary condition implicitly normalizes the pressure such that it is already
uniquely determined without the usual mean value constraint. Hence, the spaces in which
the solutions are sought have to be modified to

v ∈
{
v ∈ H1(Ω)d

∣∣∣∣ v∣∣∣∂ΩrΓout
= 0

}
and p ∈ L2(Ω).

However, the description of the discretization in the next chapter will be based on the case
where Dirichlet boundary conditions for v are posed on the whole boundary ∂Ω.

For more information on this free outflow boundary condition as well as results concerning
existence and uniqueness of solutions, we refer to Heywood, Rannacher, and Turek [67].

To shorten the notation, we will frequently use the semi-linear form defined by

a(u)(ϕ) :=
∫
I

ā(u(t))(ϕ(t)) dt

with
ā(u)(ϕ) := ν(∇v,∇ψ) + ((v · ∇)v,ψ)− (p,∇ ·ψ) + (∇ · v, χ).

13





3 Space-Time Finite Element Discretization

In this chapter, we describe the discretization of the weak formulation of the incompressible
Navier-Stokes equations (2.10) involving the pressure. The discretization in space as well
as in time will be done by means of Galerkin finite element methods.

In Section 3.1, we present the semi-discretization in time by continuous Galerkin (cG) and
discontinuous Galerkin (dG) methods. Section 3.2 then deals with the discretization in
space of the arising semi-discrete problems. This is done by continuous Galerkin finite
element methods. For technical reasons, we use piecewise polynomial functions of the same
degree for the velocity and the pressure component. Hence, the Babuška-Brezzi stability
condition is not fulfilled. Therefore, we have to apply stabilization techniques. This is done
by the so-called local projection stabilization (LPS) and is described in Section 3.3 in more
detail. In Section 3.4, we give the precise time-stepping formulation of the fully discrete
problems for the cG(s)dG(0), cG(s)dG(1), and cG(s)cG(1) discretization. Section 3.5
finally deals with implementational aspects of the discretization such as the computation
on dynamic meshes, i. e., spatial meshes that change in time.

3.1 Discretization in time

This section is devoted to the semi-discretization in time of the incompressible Navier-Stokes
equations (2.10) by means of Galerkin finite element methods. A more detailed introduction
and motivation of these concepts in the context of ordinary differential equations or parabolic
partial differential equations is presented in the textbooks of Eriksson, Estep, Hansbo, and
Johnson [42] or Thomée [100].

The first type of discretization which we call discontinuous Galerkin method of degree
r or dG(r) method uses discontinuous trial and test functions for the velocity and the
pressure which are piecewise polynomials of degree r; see Section 3.1.1. The second method
uses continuous trial functions (piecewise polynomials of degree r) for the velocity and
discontinuous trial functions for the pressure as well as discontinuous test functions for the
velocity and the pressure (piecewise polynomials of degree r − 1). We call this method
continuous Galerkin method of degree r or simply cG(r) method; see Section 3.1.2.

To introduce these semi-discretizations in time, we partition the time interval Ī = [0, T ]
into

Ī = { 0 } ∪ I1 ∪ · · · ∪ Im ∪ · · · ∪ IM
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3 Space-Time Finite Element Discretization

with subintervals Im := (tm−1, tm] of length km := tm − tm−1 using time points

0 = t0 < t1 < · · · < tm < · · · < tM = T.

The discretization parameter k is given as a piecewise constant function by setting k
∣∣∣
Im

:=
km for m = 1, . . . ,M .

Using the subintervals Im, let us define the following semi-discrete spaces Xr
k and X̃r

k for
r ∈ N:

Xr
k :=

{
uk = (vk, pk)T ∈ C(Ī , L2(Ω)d)× L2(I, L2(Ω)/R)

∣∣∣∣ vk∣∣∣Im ∈ Pr(Im, H1
0 (Ω)d),

pk
∣∣∣
Im
∈ Pr−1(Im, L2(Ω)/R), m = 1, . . . ,M

}
,

X̃r
k :=

{
uk = (vk, pk)T

∣∣∣∣ vk(0) ∈ L2(Ω)d, vk
∣∣∣
Im
∈ Pr(Im, H1

0 (Ω)d),

pk
∣∣∣
Im
∈ Pr(Im, L2(Ω)/R), m = 1, . . . ,M

}
⊆ L2(I,H1

0 (Ω)d × L2(Ω)/R),

where Pr(Im, Y ) denotes the space of polynomials up to degree r on Im with values in Y .
The space Xr

k is used as trial space in the continuous Galerkin method whereas the space
X̃r
k is used as trial and test space in the discontinuous Galerkin method and as test space

in the continuous Galerkin method.

Remark 3.1. The spaces for the semi-discrete pressure pk are chosen to allow discontinuous
functions in both discontinuous and continuous Galerkin methods due to the missing initial
conditions for p.

To account for the possible discontinuity of a function uk at time points tm, we introduce
the notation

u+
k,m := lim

ε↓0
uk(tm + ε), u−k,m := lim

ε↓0
uk(tm − ε), [uk]m := u+

k,m − u
−
k,m.

Thus, u+
k,m is the limit “from above” while u−k,m denotes the limit “from below”. [uk]m then

is the “jump” of uk(t) at t = tm, see Figure 3.1.

����
����
����

����
����
����

tm−1 tm tm+1

Im

uk

[uk]m

u+
k,m

u−k,m

Figure 3.1. Notation of discontinuous functions uk in the case r = 1
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3.1 Discretization in time

3.1.1 Discontinuous Galerkin methods

The dG(r) semi-discretization of the incompressible Navier-Stokes equations (2.10) reads:
Find uk = (vk, pk)T ∈ X̃r

k such that
M∑
m=1

∫
Im

(∂tvk,ψ) dt+ a(uk)(ϕ) +
M−1∑
m=0

([vk]m,ψ+
m) + (v−k,0,ψ

−
0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r
k . (3.1)

Remark 3.2. Many authors use the formulation
M∑
m=1

∫
Im

(∂tvk,ψ) dt+ a(uk)(ϕ) +
M∑
m=2

([vk]m−1,ψ
+
m−1) + (v+

k,0,ψ
+
0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ+
0 ) ∀ϕ = (ψ, χ)T ∈ X̃r

k (3.2)

and eliminate vk(0) in the definition of X̃r
k . The equivalence of (3.1) and (3.2) can be seen

as follows:

By subtracting equation (3.2) from (3.1), we obtain
(v−k,0,ψ

−
0 −ψ

+
0 ) = (v0,ψ−0 −ψ

+
0 ). (3.3)

If this equation is valid, the equivalence of both formulations is shown. But this is either
directly fulfilled due to formulation (3.1) since the terms containing ψ−0 can be separated
from the remainder and hence

(v−k,0,ψ) = (v0,ψ) ∀ψ ∈ L2(Ω)d,

or by simply setting the undefined values v−k,0 in the case of formulation (3.2).

However, we prefer formulation (3.1) especially for implementational reasons. This is
because the same data structures can then be used as for the continuous Galerkin methods
introduced in the next section.

3.1.2 Continuous Galerkin methods

With the semi-discrete spaces defined at the beginning of this section, the cG(r) formulation
can directly be stated as follows: Find uk = (vk, pk)T ∈ Xr

k such that∫
I

(∂tvk,ψ) dt+ a(uk)(ϕ) + (vk(0),ψ−0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r−1
k . (3.4)
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3 Space-Time Finite Element Discretization

Remark 3.3. In the formulation (3.4), the polynomial degree of the test functions for the
velocity is reduced by one compared to the corresponding polynomial degree for the trial
functions. This is done to obtain the well-posedness of the problem which requires the
compensation of the additional degrees of freedom in X̃r

k for the velocities due to their
possible discontinuity.

3.2 Discretization in space

So far, we have only considered semi-discretization in time. Hence, the spaces Xr
k and

X̃r
k still contain the continuous spatial spaces H1

0 (Ω)d and L2(Ω)/R. In this section, we
present the discretization in space of the semi-discrete problems obtained in the previous
section. This is again done by means of continuous Galerkin finite element methods. To
this end, we introduce finite dimensional subspaces V s

h ⊆ H1(Ω) of piecewise polynomial
functions up to order s.

3.2.1 Finite element spaces

The definition of finite element spaces is closely linked to the decomposition of the com-
putational domain Ω ⊆ Rd, d ∈ { 2, 3 }. For sake of simplicity, let us for the moment
assume the boundary ∂Ω to be polygonal. The case of non-polygonally bounded domains
is discussed later on.

The computational domain Ω is partitioned into open cells K which are depending on the
spatial dimension d either quadrilaterals (d = 2) or hexahedrons (d = 3). All cells together
form the mesh Th = {K } of the domain, where the parameter h is given as a cell-wise
constant function h

∣∣∣
K

= hK := diam(K) with the diameter hK of a cell. The symbol h
also denotes the maximum cell diameter, that is

h := max
K∈Th

hK .

Following standard literature like Braess [23], Brenner and Scott [24], or Ciarlet [32], we
formulate the following definition:

Definition 3.1 (Regularity). A mesh Th = {K } is called regular if the following
conditions are fulfilled:

i) Ω =
⋃

K∈Th

K.

ii) K1 ∩K2 = ∅ for all cells K1,K2 ∈ Th with K1 6= K2.

iii) Any face of any cell K1 ∈ Th is either a subset of the boundary ∂Ω or a face of another
cell K2 ∈ Th.
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3.2 Discretization in space

The last condition is weakened for two reasons: In order to facilitate adaptive mesh
refinement and to avoid connecting elements, we introduce so-called hanging nodes. Cells
are allowed to have nodes which lie on midpoints of faces or edges of neighboring cells. At
the most one hanging node is allowed on each face or edge. Also note that there are two
types of hanging nodes in three dimensions (on faces or edges), while in two dimensions
there is only one type of hanging nodes (only on edges, see Figure 3.2).

Figure 3.2. Two- and three-dimensional meshes with hanging nodes.

The second reason concerns the case of a non-polygonal boundary ∂Ω. In such a case, we
alleviate the third condition of a face being a subset of the boundary to only requiring the
vertices of such a face (and possibly some inner points) to be located on the boundary.
This is discussed in more detail later.

In addition, we will require that the mesh is organized in a patch-wise manner. That is, Th
is obtained by uniform refinement of a coarser mesh T2h, such that we can always combine
four (d = 2) or eight (d = 3) adjacent cells of Th to obtain one cell of T2h. Such macro-cells
are called patches (see Figure 3.3). This construction will be of essential importance in the
context of a posteriori error estimation, see Chapter 4.

Th T2h

Figure 3.3. Two-dimensional mesh Th (with hanging nodes) organized in a
patch-wise manner with corresponding coarser mesh T2h

Following Brenner and Scott [24], Ciarlet [32], or Johnson [74], we define continuous
H1-conforming finite element spaces V s

h by

V s
h :=

{
uh ∈ C(Ω)

∣∣∣∣ uh∣∣∣K ∈ Qs(K) ∀K ∈ Th
}
⊆ H1(Ω).
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3 Space-Time Finite Element Discretization

Here, Qs(K) denotes the space of polynomial-like functions on K ∈ Th. To give a more
precise definition of Qs(K), we introduce the space Q̂s(K̂) of tensor product polynomials
up to degree s on the reference cell K̂ = (0, 1)d given as

Q̂s(K̂) := span


d∏
i=1

x̂αii

∣∣∣∣∣∣ αi ∈ { 0, 1, . . . , s }

 .
The lowest order case s = 1 results in the space of bi- (d = 2) or tri-linear (d = 3)
functions

Q̂1(K̂) = span { 1, x̂1, x̂2, x̂1x̂2 } (d = 2) or
Q̂1(K̂) = span { 1, x̂1, x̂2, x̂3, x̂1x̂2, x̂1x̂3, x̂2x̂3, x̂1x̂2x̂3 } (d = 3).

Then, the space Qs(K) is obtained using transformations TK : K̂ → K (see Figure 3.4)
by

Qs(K) :=
{
uh : K → R

∣∣∣ uh ◦ TK ∈ Q̂s(K̂)
}
.

If the transformation TK itself is an element of Q̂s(K̂)d, the resulting finite element space
is called isoparametric.

K̂ K

TK

Figure 3.4. Transformation TK from the reference cell K̂ to a computational
cell K

Let us now consider the case of domains with non-polygonal boundary. Regarding higher
order elements (s > 1), we have degrees of freedom associated to points on edges or faces
of elements. In the context of curved boundaries, there are two possibilities to distribute
these degrees of freedom (see Figure 3.5 for the case s = 2). Using only bi- or trilinear
transformations (which means only the vertices of the “physical” cell are located on the
boundary, see Figure 3.5(a)), may lead to the wrong approximation order and reduced
accuracy. In contrast, using isoparametric finite element spaces allows us to choose the
transformation in such a way that also the degrees of freedom located on edges or faces are
located on the real boundary. We also adjust the position of the inner degrees of freedom
(see Figure 3.5(b)). In this thesis, we always use isoparametric finite element spaces.

The definition of the finite element spaces in the case of hanging nodes needs some remarks.
To enforce global continuity and hence global conformity, the degrees of freedom located on
the interface between cells of different refinement levels have to fulfill additional constraints,
roughly spoken they are determined by interpolation of neighboring degrees of freedom.

20



3.2 Discretization in space

(a) Bilinear transformation (b) Isoparametric transformation

Figure 3.5. Two possible distributions of the degrees of freedom in connection
with curved boundaries forQ2(K) elements in two spatial dimensions

Hence, hanging nodes actually do not carry any degrees of freedom. For details on this
concept, we refer to Carey and Oden [27].

For ensuring approximation properties of the finite element spaces, additional conditions on
the geometry of the cells are required. We state two classical assumptions in this context,
namely the so-called uniformity and the weaker quasi-uniformity, see, for example, Braess
[23]:

Definition 3.2 (Quasi-Uniformity). A family of meshes { Th | h ↓ 0 } is called quasi-
uniform if there is a constant κ such that the following two conditions are fulfilled:

i) For each transformation TK : K̂ → K it holds

sup
{ ∥∥∇TK(x̂)x

∥∥ ∣∣∣ x̂ ∈ K̂, ‖x‖ = 1
}

inf
{ ∥∥∇TK(x̂)x

∥∥ ∣∣∣ x̂ ∈ K̂, ‖x‖ = 1
} ≤ κ ∀K ∈

⋃
h

Th.

ii) With the diameter ρK of the biggest ball inscribed into the cell K there holds

hK
ρK
≤ κ ∀K ∈

⋃
h

Th.

Definition 3.3 (Uniformity). A quasi-uniform family of meshes { Th | h ↓ 0 } is called
uniform if there is a constant κ such that

h

ρK
≤ κ ∀K ∈

⋃
h

Th.

By using the lemmas of Lax-Milgram and Céa (see, for example, Alt [2] or Braess [23]), it
is possible to estimate the approximation error of finite elements by interpolation errors.
For continuous functions u ∈ C(Ω) the point-wise interpolation operator Ih : C(Ω)→ V s

h

is well-defined. It satisfies the approximation properties stated in the following lemma:
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3 Space-Time Finite Element Discretization

Lemma 3.1. Let Th be a quasi-uniform family of triangulations of the domain Ω and V s
h

be the spaces of isoparametric finite elements of order s. Then, there exists a constant C,
only depending on Ω and s, such that for u ∈ Hm(Ω) with 2 ≤ m ≤ s+ 1 and 0 ≤ j ≤ m
there holds

|u− Ihu|Hj(Ω) ≤ Ch
m−j ‖u‖Hm(Ω) .

Proof. The proof of this classical result can be found, for instance, in Braess [23].

Clément [33] introduced a generalized interpolation operator Ĩh : H1(Ω) → V 1
h which is

also applicable for functions u ∈ H1(Ω) which are not continuous. Its approximation
properties are summarized in the following lemma:

Lemma 3.2. Let Th be a quasi-uniform family of triangulations of the domain Ω and V 1
h

be the space of isoparametric finite elements of order 1. Then, there exists a constant C,
only depending on Ω, such that for u ∈ H1(Ω) and 0 ≤ j ≤ 1 there holds∣∣∣u− Ĩhu∣∣∣

Hj(Ω)
≤ Ch1−j ‖u‖H1(Ω) .

Proof. For a proof of this lemma, we refer to the literature cited above.

On uniform meshes, we are able to estimate stronger norms of finite element functions in
terms of weaker norms. Such estimates are called inverse estimates:

Lemma 3.3 (Inverse Estimate). Let Th be a uniform family of triangulations of the
domain Ω and V s

h be the space of isoparametric finite elements of order s. Then, there
exists a constant C such that for any uh ∈ V s

h ∩Hm(Ω) and 0 ≤ i ≤ j ≤ m there holds

|uh|Hj(Ω) ≤ Ch
i−j |uh|Hi(Ω) .

The constant C only depends on Ω, s, i, and j.

Proof. The proof can be found in standard finite element textbooks like Braess [23] or
Ciarlet [32].

3.2.2 Discretization on dynamic meshes

This section is devoted to the formulation of the fully discrete problems arising by spatial
discretization of the semi-discrete problems presented in Section 3.1. For efficiency reasons,
it is desirable to allow the spatial meshes to change in time. To this end, we introduce
the concept of dynamic meshes. This is done in the same way as in Schmich and Vexler
[96] where these concepts are successfully used in the numerical simulation of nonlinear
parabolic problems.

For implementational simplicity, we allow the spatial meshes to change in time whereas the
time steps km are kept constant in space. Thus, let us associate with each time point tm
a spatial mesh T mh and corresponding conforming finite element spaces V sv ,m

h and V sp,m
h
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3.2 Discretization in space

which will be used as trial and test spaces on the time interval Im. This allows us to define
the following fully discrete space-time finite element space

X̃r,s
kh :=

{
ukh = (vkh, pkh)T

∣∣∣∣ vkh(0) ∈ (H0
h)d, vkh

∣∣∣
Im
∈ Pr(Im, (Hm

h )d),

pkh
∣∣∣
Im
∈ Pr(Im, Lmh ), m = 1, . . . ,M

}
⊆ L2(I,H1

0 (Ω)d × L2(Ω)/R),

where
Hm
h := V sv ,m

h ∩H1
0 (Ω) and Lmh := V

sp,m
h ∩ L2(Ω)/R.

Because of the conformity of Hm
h and Lmh , we have X̃r,s

kh ⊆ X̃r
k .

Hence, the cG(s)dG(r) formulation of problem (2.10) is easily obtained from the dG(r)
semi-discretization in time by simply adding the additional index h to the variables and
by replacing the semi-discrete space X̃r

k by X̃r,s
kh . Thus, the cG(s)dG(r) formulation of

problem (2.10) reads: Find ukh = (vkh, pkh)T ∈ X̃r,s
kh such that

M∑
m=1

∫
Im

(∂tvkh,ψ) dt+ a(ukh)(ϕ) +
M−1∑
m=0

([vkh]m,ψ+
m) + (v−kh,0,ψ

−
0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r,s
kh . (3.5)

Remark 3.4. The notation cG(s)dG(r), representing a space-time finite element discretiza-
tion with continuous piecewise polynomials of degree s in space and discontinuous piecewise
polynomials of degree r in time, is taken from Eriksson, Estep, Hansbo, and Johnson [42]. In
a similar way, we use the notation cG(s)cG(r) for a space-time finite element discretization
which uses continuous piecewise polynomials of degree s in space and continuous piecewise
polynomials of degree r in time for the velocity and discontinuous piecewise polynomials of
degree r − 1 in time for the pressure.

When setting up the corresponding fully discrete formulation for the cG(r) semi-discreti-
zation, we have to ensure the global continuity of the trial functions for the velocity. In
the sequel, we describe an approach already presented in Schmich and Vexler [96] which is
similar to the one of Becker [8]. We also refer to Bangerth [5] for an application of this
approach to the wave equation.

Let { τ0, . . . , τr } be a basis of Pr(Im,R) with

τ0(tm−1) = 1, τ0(tm) = 0, τi(tm−1) = 0, i = 1, . . . , r.

By means of this basis, we define the spaces Xr,s,m
kh ⊆ Pr(Im, H1

0 (Ω)d) by

Xr,s,m
kh := span

{
τiψi

∣∣∣ ψ0 ∈ (Hm−1
h )d, ψi ∈ (Hm

h )d, i = 1, . . . , r
}
.
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3 Space-Time Finite Element Discretization

Using these spaces, we give the definition of the fully discrete space Xr,s
kh used as trial space

in the cG(s)cG(r) formulation of problem (2.10) by

Xr,s
kh :=

{
ukh = (vkh, pkh)T ∈ C(Ī , L2(Ω)d)× L2(I, L2(Ω)/R)

∣∣∣∣ vkh∣∣∣Im ∈ Xr,s,m
kh ,

pkh
∣∣∣
Im
∈ Pr−1(Im, Lmh ), m = 1, . . . ,M

}
.

(3.6)

This definition ensures the global continuity of the trial functions for the velocity. This is
due to the fact that the spatial degrees of freedom which vanish when stepping from Hm−1

h

to Hm
h are coupled only with the temporal basis function τ0 which is zero at tm. On the

other hand, the spatial degrees of freedom in Hm
h appearing when coming from Hm−1

h are
coupled only with temporal basis functions τi that disappear at tm−1.

For convenience of the reader, the actual distribution of degrees of freedom in the case of a
cG(1)cG(1) discretization in one spatial dimension is illustrated in Figure 3.6.

T m+1
h

Im+1

T mh

Im

T m−1
h

Im−1

T m−2
h

t

x

Figure 3.6. Hanging nodes in time: Distribution of degrees of freedom for the
cG(1)cG(1) discretization in one spatial dimension (•: degree of
freedom, ◦: no degree of freedom)

Remark 3.5. A possible choice for a basis { τ0, . . . , τr } of Pr(Im,R) which fulfills the
prerequisites is the Lagrange basis. In the case r = 1, this results in

τ0(t) = tm − t
km

and τ1(t) = t− tm−1
km

.

Remark 3.6. If all meshes are identical and hence all spatial finite element spaces coincide,
i. e., Hm

h = Hh and Lmh = Lh, m = 0, . . . ,M , the definition of Xr,s
kh given in (3.6) reduces

to the following more familiar one:

Xr,s
kh :=

{
ukh = (vkh, pkh)T ∈ C(Ī , L2(Ω)d)× L2(I, L2(Ω)/R)

∣∣∣∣ vkh∣∣∣Im ∈ Pr(Im, Hd
h),

pkh
∣∣∣
Im
∈ Pr−1(Im, Lh), m = 1, . . . ,M

}
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3.3 Stabilization

We now state the cG(s)cG(r) formulation of problem (2.10) as follows: Find ukh =
(vkh, pkh)T ∈ Xr,s

kh such that∫
I

(∂tvkh,ψ) dt+ a(ukh)(ϕ) + (vkh(0),ψ−0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r−1,s
kh . (3.7)

Both fully discrete formulations cG(s)dG(r) and cG(s)cG(r) do not lead to a stable approx-
imation of problem (2.10) unless the spatial finite element spaces Hm

h and Lmh fulfill the
Babuška-Brezzi inf-sup-stability condition. This condition states (see, for example, Girault
and Raviart [58]) that there is a constant β independent of h such that

inf
ph∈Lmh

sup
vh∈(Hm

h
)d

(ph,∇ · vh)
‖ph‖ ‖∇vh‖

≥ β > 0. (3.8)

Especially the cases of equal-order trial spaces, i. e., sv = sp = s, which are favorable
from the implementational point of view, do not fulfill condition (3.8). To obtain stable
approximations using the presented fully discrete formulations, one has to use mixed finite
element methods like the Taylor-Hood element (sv = 2, sp = 1, for example). For more
details on this topic, we refer to Hood and Taylor [69] and Brezzi and Fortin [25] or Girault
and Raviart [58].

3.3 Stabilization

As already mentioned, it is desirable for implementational reasons to use the same trial
functions for both velocity and pressure. Such combinations of trial spaces do not fulfill
the Babuška-Brezzi condition (3.8). In this section, we present two modifications of the
cG(s)dG(r) and cG(s)cG(r) formulation which will allow us to obtain a stable approxima-
tion of the continuous problem (2.10) using equal-order trial functions. This is done by
adding stabilization terms to the fully discrete formulations. In addition to the already
mentioned instability for equal-order trial functions for velocity and pressure, we also have
to add stabilization terms in the case of higher Reynolds number, i. e., convection dominant
flows, since the pure Galerkin formulation there also suffers from instability.

3.3.1 Residual based stabilization

The first modification goes back to ideas of Brooks and Hughes [26] and Hughes, Franca,
and Balestra [70] who added mesh-dependent residual terms to the Galerkin formulation in
order to obtain a stable discretization. Since this modification includes streamline diffusion
terms for the stabilization of the convection terms as well as pressure stabilization due
to the missing inf-sup-stability for equal-order trial functions, it is often referred to as
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3 Space-Time Finite Element Discretization

streamline upwind Petrov-Galerkin (SUPG)/pressure stabilization Petrov-Galerkin (PSPG)
method. In the case of the nonstationary Navier-Stokes equations, the additional terms
are given as

sSUPG/PSPG(ukh)(ϕ) :=
M∑
m=1

{∫
Im

∑
K∈T m

h

(∂tvkh − ν∆vkh + (vkh · ∇)vkh +∇pkh

− f , αK,m∇χ+ δK,m(vkh · ∇)ψ)K
}
.

The term (∇pkh,∇χ)K represents the stabilization due to equal-order trial functions,
whereas the term ((vkh · ∇)vkh, (vkh · ∇)ψ)K is a streamline diffusion term. All other
terms are just present to provide consistency, i. e., the additional terms vanish if we insert
the continuous solution u = (v, p)T . The parameters αK,m and δK,m are given cell-wise as

αK,m = α0
h2
K

6ν + hK ‖vkh‖K
and δK,m = δ0

h2
K

6ν + hK ‖vkhK‖+ hK
km

(3.9)

with some constants α0 and δ0. For details on the choice of these parameters, we refer, for
instance, to Franca and Frey [52] or Braack, Burman, John, and Lube [19].

The modified fully discrete formulations then read as follows:

cG(s)dG(r): Find ukh = (vkh, pkh)T ∈ X̃r,s
kh such that

M∑
m=1

∫
Im

(∂tvkh,ψ) dt+ a(ukh)(ϕ) + sSUPG/PSPG(ukh)(ϕ) +
M−1∑
m=0

([vkh]m,ψ+
m)

+ (v−kh,0,ψ
−
0 ) =

∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r,s
kh . (3.10)

cG(s)cG(r): Find ukh = (vkh, pkh)T ∈ Xr,s
kh such that∫

I

(∂tvkh,ψ) dt+ a(ukh)(ϕ) + sSUPG/PSPG(ukh)(ϕ) + (vkh(0),ψ−0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r−1,s
kh . (3.11)

A well known drawback of this kind of stabilization is the introduction of boundary layers
in the pressure approximation due to the artificial boundary condition

∂npkh = 0 on ∂Ω

which arises from the stabilization terms and is fulfilled in the discrete sense. This leads to
a decrease in accuracy near the boundary.
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3.3 Stabilization

From the computational point of view, another disadvantage is the necessity to compute
second derivatives appearing in the additional terms because for higher order trial functions
(s > 1) or even for bi- or tri-linear finite elements on arbitrary quadrilaterals or hexahedrons
they do not vanish. This is especially serious because they are only needed for the
consistency terms in the stabilization and not even for the pure Galerkin formulation.
However, neglecting them would result in a decreased accuracy.

Furthermore, these additional terms possess a quite nasty algebraic structure: Artificial
non-symmetric terms are introduced as well as artificial couplings between velocity and
pressure. This has a negative influence on the behavior of the solver of the algebraic
equations arising from these discretizations.

3.3.2 Local projection stabilization

In Becker and Braack [10, 11], a new stabilization based on local projections was proposed.
To give a precise definition of the modified fully discrete formulations, we introduce a
spatial interpolation operator Ih : V s,m

h → Ṽ s,m
h into a subspace Ṽ s,m

h ⊆ V s,m
h which is

given as

Ṽ s,m
h :=

V
1,m

2h for s = 1,
V 1,m
h for s = 2.

The interpolation onto the mesh T2h in the case s = 1 is easily computable if the mesh
possesses the patch structure introduced in Section 3.2. Using the interpolation operator
Ih, we define the filtering operator π : V s,m

h → V s,m
h by

π := id−Ih.

The filtering operator π : (V s,m
h )d → (V s,m

h )d is defined analogously component-wise. Let
us further extend these operators in time by defining point-wise

(πpkh)(t) := πpkh(t) and (πukh)(t) := πukh(t).

This allows us to state the following modified fully discrete formulations of problem (2.10):

cG(s)dG(r): Find ukh = (vkh, pkh)T ∈ X̃r,s
kh such that

M∑
m=1

∫
Im

(∂tvkh,ψ) dt+ a(ukh)(ϕ) + sLPS(ukh)(ϕ) +
M−1∑
m=0

([vkh]m,ψ+
m)

+ (v−kh,0,ψ
−
0 ) =

∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r,s
kh . (3.12)
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3 Space-Time Finite Element Discretization

cG(s)cG(r): Find ukh = (vkh, pkh)T ∈ Xr,s
kh such that∫

I

(∂tvkh,ψ) dt+ a(ukh)(ϕ) + sLPS(ukh)(ϕ) + (vkh(0),ψ−0 )

=
∫
I

(f ,ψ) dt+ (v0,ψ−0 ) ∀ϕ = (ψ, χ)T ∈ X̃r−1,s
kh . (3.13)

Here, the additional terms are given by

sLPS(ukh)(ϕ) :=
M∑
m=1

∫
Im

smh (ukh(t))(ϕ(t)) dt,

where

smh (U)(Φ) :=
∑

K∈T m
h

{
(∇πP, αK,m∇πX)K + ((V · ∇)πV , δK,m(V · ∇)πΨ)K

}

with U = (V , P )T and Φ = (Ψ , X)T . The cell-wise stabilization parameters αK,m and
δK,m are given in the same way as in (3.9).

The structure of the stabilization terms is very easy. No artificial couplings are introduced
and we do not need to compute second derivatives of the trial functions. The boundary
layer in the approximation of the pressure mentioned in the last section is not present in
this case. However, this stabilization is not consistent, i. e., the continuous solution does
not fulfill the modified fully discrete formulations, but the additional error is of the same
order as the discretization error.

This is why, in our computations, we always use this local projection stabilization technique.
For convenience, we introduce the abbreviations

ah(ukh)(ϕ) :=
M∑
m=1

∫
Im

amh (ukh(t))(ϕ(t)) dt

with
amh (U)(Φ) := ā(U)(Φ) + smh (U)(Φ)

such that
ah(ukh)(ϕ) = a(ukh)(ϕ) + sLPS(ukh)(ϕ).

3.4 Formulation as time-stepping schemes

In this section, we present the precise formulation as time-stepping schemes of the space-
time Galerkin finite element discretizations of the incompressible Navier-Stokes equations
presented in the last section. In this thesis, we will consider the cases cG(s)dG(0) (which
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3.4 Formulation as time-stepping schemes

corresponds to a variant of the backward Euler scheme), cG(s)dG(1), and cG(s)cG(1)
(which actually is a variant of the Crank-Nicolson scheme). For the spatial discretization,
we will consider s = 1 (bi- or tri-linear finite elements) and s = 2 (bi- or tri-quadratic finite
elements) in combination with the local projection stabilization.

Each time step results in a quasi-stationary nonlinear problem. These nonlinear problems
are solved with a quasi-Newton iteration. For details on solving the linear subproblems
occurring within the quasi-Newton iteration, we refer to Section 3.5.3.

3.4.1 cG(s)dG(0) discretization

In the case r = 0, we use trial and test functions which are piecewise constant in time.
Hence, we have ∂tvkh

∣∣∣
Im

= 0. Introducing the notation

Um = (Vm, Pm)T with Vm := v−kh,m, Pm := p−kh,m,

we obtain the following set of equations that should be valid for all ϕ = (ψ, χ)T ∈
(Hm

h )d × Lmh :
m = 0:

(V0,ψ) = (v0,ψ)

m = 1, . . . ,M :

(Vm,ψ) + km

{
ν(∇Vm,∇ψ) + ((Vm · ∇)Vm,ψ)− (Pm,∇ ·ψ)

+
∑

K∈T m
h

δK,m((Vm · ∇)πVm, (Vm · ∇)πψ)K
}

= (Vm−1,ψ) +
∫
Im

(f ,ψ) dt

km

{
(∇ · Vm, χ) +

∑
K∈T m

h

αK,m(∇πPm,∇πχ)K
}

= 0

If we approximate the temporal integral by the box rule, i. e.,∫
Im

(f ,ψ) dt ≈ km(f(tm),ψ),

we obtain the backward Euler scheme.

The backward Euler scheme is known to be of first order and strongly A-stable. In Eriksson
and Johnson [46], the authors show for a scalar linear ordinary differential equation that
the approximation of the temporal integral by the box rule has disadvantages compared to
the exact evaluation of the integral. Thus, especially for long time integrations, the use of
higher order quadrature is advisable.
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3 Space-Time Finite Element Discretization

3.4.2 cG(s)dG(1) discretization

In the case r = 1, vkh and pkh can be expressed on each subinterval Im as

vkh
∣∣∣
Im

= t− tm−1
km

V −m + tm − t
km

V +
m−1 and pkh

∣∣∣
Im

= t− tm−1
km

P−m + tm − t
km

P+
m−1

with the abbreviations

V −m := v−kh,m, V +
m−1 := v+

kh,m−1, P−m := p−kh,m, P+
m−1 := p+

kh,m−1.

Hence
∂tvkh

∣∣∣
Im

= 1
km

(V −m − V +
m−1).

Let us now derive the time-stepping formulation. The following equations should again be
valid for all ϕ = (ψ, χ)T ∈ (Hm

h )d × Lmh :

m = 0: As in the case r = 0, we obtain for t = 0:

(V −0 ,ψ) = (v0,ψ).

m = 1, . . . ,M : Choosing the test function

ϕ1(t) :=


t− tm−1
km

ϕ for t ∈ Im,

0 otherwise

with ϕ = (ψ, χ)T ∈ (Hm
h )d × Lmh , we obtain the equation

1
2(V −m − V +

m−1,ψ) +
∫
Im

amh (ukh)(ϕ1) dt =
∫
Im

(
f ,
t− tm−1
km

ψ

)
dt. (3.14a)

Similarly for

ϕ2(t) :=


tm − t
km

ϕ for t ∈ Im,

0 otherwise,

we obtain
1
2(V −m + V +

m−1,ψ) +
∫
Im

amh (ukh)(ϕ2) dt = (V −m−1,ψ) +
∫
Im

(
f ,
tm − t
km

ψ

)
dt.

(3.14b)

The cG(s)dG(1) discretization is of second order in time and strongly A-stable. Actually, in
the time points tm, this method shows a super-convergence property of order three. For a
detailed analysis in the context of ordinary differential equations, see, for example, Johnson
[75].

For implementational aspects of assembling and solving the system of equations (3.14), we
refer to Section 3.5.
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3.4 Formulation as time-stepping schemes

3.4.3 cG(s)cG(1) discretization

Here, we use trial functions which are continuous piecewise linear in time for the velocity and
discontinuous piecewise constant for the pressure. The test functions for both unknowns are
discontinuous piecewise constant in time. Hence, also this globally formulated discretization
reduces to a time-stepping scheme. Using the notation

Vm := vkh(tm) and Pm := p−kh,m

and noting that
∂tvkh

∣∣∣
Im

= 1
km

(Vm − Vm−1),

we obtain the following system of equations which should be valid for all ϕ = (ψ, χ)T ∈
(Hm

h )d × Lmh :
m = 0:

(V0,ψ) = (v0,ψ)

m = 1, . . . ,M :

(Vm,ψ) +
∫
Im

amh (ukh)(ϕ) dt = (Vm−1,ψ) +
∫
Im

(f ,ψ) dt

If we approximate the temporal integrals by the trapezoidal rule∫
Im

f(t) dt ≈ km
2
{
f(tm−1) + f(tm)

}
,

we obtain a variant of the well known Crank-Nicolson scheme which reads as follows:

(Vm,ψ) + km
2

{
ν(∇Vm,∇ψ) + ((Vm · ∇)Vm,ψ)

+
∑

K∈T m
h

δK,m((Vm · ∇)πVm, (Vm · ∇)πψ)K
}
− km(Pm,∇ ·ψ)

= (Vm−1,ψ)− km
2

{
ν(∇Vm−1,∇ψ) + ((Vm−1 · ∇)Vm−1,ψ)

+
∑

K∈T m
h

δK,m((Vm−1 · ∇)πVm−1, (Vm−1 · ∇)πψ)K
}

+ km
2 (f(tm−1) + f(tm),ψ)

km
2 (∇ · Vm, χ) + km

∑
K∈T m

h

αK,m(∇πPm,∇πχ)K = −km2 (∇ · Vm−1, χ)

The Crank-Nicolson scheme is known to be of second order, but in contrast to time-stepping
schemes resulting from dG(r) semi-discretizations in time it is only A-stable, not strongly
A-stable.
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3 Space-Time Finite Element Discretization

3.5 Implementational aspects

This section is devoted to the discussion of some implementational aspects coming up when
dealing with the discretizations presented in the previous sections. These are mainly the
questions on how to do computations on dynamic meshes, on assembling the system of
equations arising in the cG(s)dG(1) time-stepping formulation, and on how to solve the
linear subproblems arising within the quasi-Newton iteration. Each topic is discussed in a
separate section below.

3.5.1 Computations on dynamic meshes

The discussion in this section is done exemplarily for the cG(s)dG(r) discretizations.
However, the cG(s)cG(r) discretizations can be handled in a similar way.

When doing computations on dynamic meshes, the main difficulty is the evaluation of
the inner product (V −m−1,ψ). Since V −m−1 is given as coefficient vector with respect to
the nodal basis of (V s,m−1

h )d, this problem reduces to the evaluation of inner products of
basis functions ψm−1 ∈ V s,m−1

h with basis functions ψm ∈ V s,m
h . These integrals cannot

be evaluated cell-wise on T mh by applying quadrature rules, since ψm−1 is not necessarily
smooth on each cell K ∈ T mh .

To overcome this difficulty, we require that all meshes T mh originate from one common
mesh T̃h by hierarchical refinement or coarsening. Thus, we can build a temporary mesh
T m−

1
2

h as the common refinement of T m−1
h and T mh , see Figure 3.7.

T m−1
h T m−

1
2

h T mh

Figure 3.7. Construction of temporary mesh T m−
1
2

h

Looking at the corresponding finite element spaces, there holds by construction V s,m−1
h ⊆

V
s,m− 1

2
h as well as V s,m

h ⊆ V s,m− 1
2

h . Therefore, we can express both ψm−1 and ψm as linear
combinations of nodal basis functions ψm−

1
2

i of V s,m− 1
2

h :

ψm−1 =
N∑
i=1

ξ
(m−1)
i ψ

m− 1
2

i , ψm =
N∑
i=1

ξ
(m)
i ψ

m− 1
2

i ,
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where ξ(m−1)
i , ξ

(m)
i ∈ R and N = dimV

s,m− 1
2

h . Since V s,m−1
h , V s,m

h , and V s,m− 1
2

h are finite
element spaces, these linear combinations can be computed locally on patches because
every basis function has only local support. For example, in the case of bi-linear trial
functions on the reference cell K̂ = (0, 1)2, we have


ψm−1

1
ψm−1

2
ψm−1

3
ψm−1

4

 =


1 1

2 0 1
2

1
4 0 0 0 0

0 1
2 1 0 1

4
1
2 0 0 0

0 0 0 1
2

1
4 0 1 1

2 0
0 0 0 0 1

4
1
2 0 1

2 1





ψ
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2
1

ψ
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2
2
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2
3
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m− 1

2
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ψ
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2
5

ψ
m− 1

2
6

ψ
m− 1

2
7

ψ
m− 1

2
8

ψ
m− 1

2
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.

ψm−1
3

ψ
m− 1

2
7

ψ
m− 1

2
1 ψ

m− 1
2

2 ψ
m− 1

2
3

ψ
m− 1

2
4 ψ

m− 1
2

5 ψ
m− 1

2
6

ψ
m− 1

2
8 ψ

m− 1
2

9

ψm−1
1 ψm−1

2

ψm−1
4

Figure 3.8. Representation of basis functions on a coarse mesh by basis functions
of a finer mesh in the case of bi-linear finite elements

See Figure 3.8 for the numbering of the corresponding basis functions. Of course, this
matrix—which is identical for all elements in the mesh—is not computed, but the repre-
sentation is rather assembled by, e. g.,

ψm−1
2 = 1

2ψ
m− 1

2
2 + ψ

m− 1
2

3 + 1
4ψ

m− 1
2

5 + 1
2ψ

m− 1
2

6 .
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After these preparations, we can evaluate the inner product (ψm−1, ψm) as

(ψm−1, ψm) =
N∑
i=1

ξ
(m−1)
i (ψm−

1
2

i , ψm) =
N∑

i,j=1
ξ

(m−1)
i ξ

(m)
j (ψm−

1
2

i , ψ
m− 1

2
j ),

where the inner products (ψm−
1
2

i , ψ
m− 1

2
j ) can be evaluated cell-wise on T m−

1
2

h by applying

quadrature rules since ψm−
1
2

i and ψm−
1
2

j are smooth on each cell K ∈ T m−
1
2

h .

3.5.2 Assembling and solving the system of equations in the time-stepping
formulation of the cG(s)dG(1) method

In this section, some details on the process of assembling and solving the arising system of
equations in the time-stepping formulation of the cG(s)dG(1) discretization are given.

Let us first recall the system of equations to be solved on the subinterval Im: Given V −m−1,
find ukh

∣∣∣
Im

= (vkh, pkh)T
∣∣∣
Im
∈ P1(Im, (Hm

h )d × Lmh ) such that for all ϕ = (ψ, χ)T ∈
(Hm

h )d × Lmh there holds

1
2(V −m − V +

m−1,ψ) +
∫
Im

amh (ukh)( t−tm−1
km

ϕ) dt =
∫
Im

(f , t−tm−1
km

ψ) dt

and

1
2(V −m + V +

m−1,ψ) +
∫
Im

amh (ukh)( tm−tkm
ϕ) dt = (V −m−1,ψ) +

∫
Im

(f , tm−tkm
ψ) dt.

For solving this system of equations, we apply Newton’s method. Given an approximation
u

(i)
kh for ukh on Im, we compute a correction δu(i)

kh as the solution of the following system
of equations:

1
2(δV (i)−

m − δV (i)+
m−1,ψ) +

∫
Im

amh
′(u(i)

kh)(δu(i)
kh ,

t−tm−1
km

ϕ) dt =
∫
Im

(f , t−tm−1
km

ψ) dt

− 1
2(V (i)−

m − V (i)+
m−1,ψ)−

∫
Im

amh (u(i)
kh)( t−tm−1

km
ϕ) dt (3.15a)

1
2(δV (i)−

m + δV (i)+
m−1,ψ) +

∫
Im

amh
′(u(i)

kh)(δu(i)
kh ,

tm−t
km

ϕ) dt = (V −m−1,ψ) +
∫
Im

(f , tm−tkm
ψ) dt

− 1
2(V (i)−

m + V (i)+
m−1,ψ)−

∫
Im

amh (u(i)
kh)( tm−tkm

ϕ) dt (3.15b)
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Here, we have used the notation

δu
(i)
kh

∣∣∣
Im

= t− tm−1
km

δU (i)−
m + tm − t

km
δU

(i)+
m−1

with
δU (i)−

m = (δV (i)−
m , δP (i)−

m )T and δU
(i)+
m−1 = (δV (i)+

m−1, δP
(i)+
m−1)T

and the directional derivatives

amh
′(u)(δu,ϕ) := lim

ε→0

1
ε

{
amh (u+ εδu)(ϕ)− amh (u)(ϕ)

}
= d

dε a
m
h (u+ εδu)(ϕ)

∣∣∣
ε=0

.

Afterwards we set u(i+1)
kh := u

(i)
kh + δu(i)

kh and repeat the iteration with i replaced by i+ 1
until convergence.

The temporal integrals in equations (3.15a) and (3.15b) are approximated by quadrature
rules:∫
Im

amh
′(u(i)

kh)(δu(i)
kh ,

t−tm−1
km

ϕ) ≈ km
n∑
l=1

ωla
m
h
′(u(i)

kh(tm−1 + kmxl))(δu(i)
kh(tm−1 + kmxl), xlϕ),

where xl ∈ [0, 1] denote the integration points and ωl ∈ R the corresponding weights. A
similar formula holds for ∫

Im

amh
′(u(i)

kh)(δu(i)
kh ,

tm−t
km

ϕ).

Noting that
δu

(i)
kh(tm−1 + kmxl) = xlδU

(i)−
m + (1− xl)δU (i)+

m−1,

we see that by linearity

amh
′(u(i)

kh(tm−1 +kmxl))(δu(i)
kh(tm−1 +kmxl), xlϕ) = x2

l a
m
h
′(u(i)

kh(tm−1 +kmxl))(δU (i)−
m ,ϕ)

+ xl(1− xl)amh ′(u
(i)
kh(tm−1 + kmxl))(δU (i)+

m−1,ϕ).

Since δU (i)−
m , δU

(i)+
m−1 ∈ (Hm

h )d ×Lmh , both can be expressed as a linear combination of the
basis functions:

δU (i)−
m =

Nm∑
j=1

ξ−j ϕj , δU
(i)+
m−1 =

Nm∑
j=1

ξ+
j ϕj .

Hence, for assembling the matrix which determines the coefficients ξ−j and ξ+
j , one has to

compute the terms
amh
′(u(i)

kh(tm−1 + kmxl))(ϕk,ϕj)

only once for each l and simply put them into the system matrix with the right scaling.
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3 Space-Time Finite Element Discretization

The computational effort can be further reduced by not using the exact Jacobian within
the Newton iteration. If we fix the linearization point and approximate∫

Im

amh
′(u(i)

kh)(δu(i)
kh ,

t−tm−1
km

ϕ) dt ≈
∫
Im

amh
′(Û (i)

m )(δu(i)
kh ,

t−tm−1
km

ϕ) dt,

∫
Im

amh
′(u(i)

kh)(δu(i)
kh ,

tm−t
km

ϕ) dt ≈
∫
Im

amh
′(Û (i)

m )(δu(i)
kh ,

tm−t
km

ϕ) dt,

with Û (i)
m := 1

2(U (i)−
m +U (i)+

m−1), we can exactly compute∫
Im

amh
′(Û (i)

m )(δu(i)
kh ,

t−tm−1
km

ϕ) dt = km
3 amh

′(Û (i)
m )(δU (i)−

m ,ϕ) + km
6 amh

′(Û (i)
m )(δU (i)+

m−1,ϕ),

∫
Im

amh
′(Û (i)

m )(δu(i)
kh ,

tm−t
km

ϕ) dt = km
6 amh

′(Û (i)
m )(δU (i)−

m ,ϕ) + km
3 amh

′(Û (i)
m )(δU (i)+

m−1,ϕ).

Hence, in this case, the terms
amh
′(Û (i)

m )(ϕk,ϕj)

have to be computed only once and put into the system matrix with the appropriate
scaling.

3.5.3 Solving the linear subproblems

In this section, we give some details on solving the linear subproblems arising in each
Newton step.

To this end, we write the nonlinear quasi-stationary problem which corresponds to one
time step of the cG(s)dG(0) or cG(s)cG(1) discretization as: Find Um ∈ (Hm

h )d×Lmh such
that

b(Um)(ϕ) = g(ϕ) ∀ϕ ∈ (Hm
h )d × Lmh

where the right-hand side g depends on already known quantities from the last time-step
and the original right-hand side f . Applying Newton’s method to this nonlinear problem
reads: Given an initial guess U (0), find for l = 0, 1, 2, . . . the solution δU (l) ∈ (Hm

h )d×Lmh
of

b′(U (l))(δU (l),ϕ) = g(ϕ)− b(U (l))(ϕ) ∀ϕ ∈ (Hm
h )d × Lmh (3.16)

and set U (l+1) := U (l) + δU (l). Here, b′(U)(δU ,ϕ) again denotes the directional deriva-
tive

b′(U)(δU ,ϕ) := lim
ε→0

1
ε

{
b(U + εδU)(ϕ)− b(U)(ϕ)

}
= d

dε b(U + εδU)(ϕ)
∣∣∣
ε=0

.

Let us for the moment ignore the Dirichlet boundary conditions for the velocity and the
mean value constraint for the pressure which are both incorporated later. Employing the
fact that the finite element spaces used in this thesis involve equal order polynomials for the
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velocity and the pressure approximation, a basis of the finite element space (Hm
h )d ×Lmh is

given by {
ϕ

(p)
i ,ϕ

(v1)
i , . . . ,ϕ

(vd)
i

∣∣∣∣ i = 1, . . . , N
}

with N = dimV m
h and

ϕ
(p)
i =


ψi
0
...
0

 , ϕ
(v1)
i =



0
ψi
0
...
0


, . . . , ϕ

(vd)
i =


0
...
0
ψi

 ,

where { ψi } is a basis of V m
h . Using this basis, we can transform (3.16) into an equivalent

algebraic system Bξ = c. The right-hand side vector c is then given by

c =


c1
...
cN


where the entries ci itself are small vectors

ci =


g(ϕ(p)

i )− b(U (l))(ϕ(p)
i )

g(ϕ(v1)
i )− b(U (l))(ϕ(v1)

i )
...

g(ϕ(vd)
i )− b(U (l))(ϕ(vd)

i )

 .

The matrix B also has the following block structure

B =


B11 . . . B1,N
...

...
BN,1 . . . BNN


where the blocks Bij are given by

Bij =


b′(U (l))(ϕ(p)

j ,ϕ
(p)
i ) b′(U (l))(ϕ(v1)

j ,ϕ
(p)
i ) . . . b′(U (l))(ϕ(vd)

j ,ϕ
(p)
i )

b′(U (l))(ϕ(p)
j ,ϕ

(v1)
i ) b′(U (l))(ϕ(v1)

j ,ϕ
(v1)
i ) . . . b′(U (l))(ϕ(vd)

j ,ϕ
(v1)
i )

...
... . . . ...

b′(U (l))(ϕ(p)
j ,ϕ

(vd)
i ) b′(U (l))(ϕ(v1)

j ,ϕ
(vd)
i ) . . . b′(U (l))(ϕ(vd)

j ,ϕ
(vd)
i )

 .

The degrees of freedom ξ
(vj)
i corresponding to Dirichlet boundary conditions are now

enforced strongly by replacing the corresponding rows and columns within the matrix B
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3 Space-Time Finite Element Discretization

by 

0
...
0

0 · · · 0 1 0 · · · 0
0
...
0


and the corresponding entries in the right-hand side c by 0. Note that even in the case of
inhomogeneous Dirichlet boundary conditions this is correct because the initial guess U (0)

already fulfills the right Dirichlet boundary conditions and hence the updates δU (l) must
satisfy homogeneous Dirichlet boundary conditions.

In the case of a cG(s)dG(1) discretization, we can proceed in a similar way. However, the
resulting matrix B consists of 2(d+ 1)× 2(d+ 1) blocks Bij instead of (d+ 1)× (d+ 1)
blocks because in each time step U+

m−1 and U−m have to be computed.

For solving the linear subproblems Bξ = c, we apply the Generalized Minimal Residual
Method (GMRES) of Saad [94]. Actually, we solve the preconditioned system

CBξ = Cc

where a multigrid iteration is applied as preconditioner C. As smoother in the multigrid
iteration, we use a fixed-point iteration based on a block-ILU decomposition. The idea is
to compute a decomposition

B = LU +R

where L is a lower and U is an upper triangular matrix. While in a full LU decomposition
L and U are dense matrices, in the incomplete version they have the same structure as
B. Hence, we have R 6= 0. However, the matrix R is not computed, but neglected within
the fixed-point iteration. Hence, the fixed-point iteration performs steps of the following
form:

ξ(s+1) = (I −U−1L−1B)ξ(s) +U−1L−1c.

Such incomplete LU factorizations lead to robust smoothers for fluid-mechanical prob-
lems, see, for example, Wesseling [105] or Wittum [106, 107]. Compared to the classical
ILU factorization, the block-ILU factorization is more expensive, but also more robust,
see Hackbusch [63].

The robustness can be further improved by a simple trick: Instead of computing an
incomplete decomposition of the matrix B, we compute a factorization of a modified
matrix Bω := B + ωD where D = diag(di) is a diagonal matrix with entries di which
itself are diagonal blocks. The entries of these blocks are given by

(di)l =
∑
j 6=i

∣∣(Bij)ll∣∣ .
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3.5 Implementational aspects

Numerical tests show ω ≈ 0.1 to be a good choice. While computing the block-ILU
factorization, the diagonal blocks Bii have to be inverted. This is done exactly by Gaussian
elimination.

The mean value constraint for the pressure is re-established in each linear iteration step by
subtracting the mean value of the actual pressure approximation.

For optimal complexity of the multigrid iteration, the number of unknowns must be reduced
by a certain factor when going from one mesh to the next coarser one. To achieve this, the
meshes used in the multigrid iteration are created by global coarsening, see Figure 3.9. For
further details on the construction of efficient multigrid methods on locally refined meshes,
we refer to Becker and Braack [9].

Th1 Th2 Th3 Th4

Figure 3.9. Global coarsening for meshes with patch structure
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4 A Posteriori Error Estimation

Most often, the aim of simulations in computational fluid dynamics is the efficient com-
putation of functional values of the solution, such as the drag- or lift-coefficient in flow
problems around an obstacle, see Schäfer and Turek [95] for benchmark configurations.
This chapter is dedicated to the development of an a posteriori error estimator which
measures the discretization error exactly in the functional value one is interested in. The
application of adaptive methods in the context of finite element discretizations of partial
differential equations is well accepted and widely used, see Chapter 1 for references.

The error estimator developed in this chapter is an extension of these concepts to nonsta-
tionary flow problems and is mainly based on the results already published in Schmich
and Vexler [96] for nonlinear parabolic partial differential equations. It separates the
total discretization error into contributions due to the discretization in time and in space.
The reliable quantitative error estimation is the key ingredient in setting up an adaptive
algorithm during which the temporal and spatial discretization errors are balanced and
simultaneously decreased. For the evaluation of the developed error estimator, a linear
auxiliary problem has to be solved.

The outline of this chapter is as follows: In Section 4.1, we first recall an abstract error
representation formula. Section 4.2 is devoted to the application of the abstract error
representation formula to the problem under consideration and the development of the a
posteriori error estimator with respect to the functional value of interest for both continuous
and discontinuous Galerkin discretizations in time. The derivation is given in detail for
the dG(r) case whereas for the cG(r) method we only present the results since they can
be derived in a similar way. In Section 4.3, we present the numerical evaluation of the
arising terms in the a posteriori error estimator. Section 4.4 then is dedicated to the
localization of the obtained error estimator needed for adaptive refinement of the temporal
and spatial discretizations. The following Section 4.5 presents an adaptive algorithm for
the simultaneous refinement of both discretizations. For comparison, we introduce a simple
smoothness-based error indicator in Section 4.6. The final Section 4.7 shows results and a
comparison of both a posteriori error estimators derived in Sections 4.2 and 4.6.

4.1 Abstract error representation

In this section, we recall an abstract result concerning error representation from Becker
and Rannacher [13]. Here, we present a slightly more general form which is able to cover
the case of inconsistently stabilized discretizations and will be used in the sequel to obtain
error representation formulas for the discretization error in the quantity of interest.
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4 A Posteriori Error Estimation

Lemma 4.1. Let Y be a function space and L and L̃ be three times Gâteaux differentiable
functionals on Y . We seek a stationary point y1 of L on a subspace Y1 ⊆ Y : Find y1 ∈ Y1
such that

L′(y1)(δy1) = 0 ∀δy1 ∈ Y1. (4.1)
This equation is approximated by a Galerkin method using the functional L̃ on a subspace
Y2 ⊆ Y . Hence, the discrete problem seeks y2 ∈ Y2 such that

L̃′(y2)(δy2) = 0 ∀δy2 ∈ Y2. (4.2)

If the continuous solution y1 additionally fulfills

L′(y1)(y2) = 0 (4.3)

with the approximative solution y2, we have for arbitrary ỹ2 ∈ Y2 the error representation

L(y1)− L̃(y2) = 1
2L
′(y2)(y1 − ỹ2) + 1

2(L− L̃)′(y2)(ỹ2 − y2) + (L− L̃)(y2) +R, (4.4)

where the remainder term R is given by means of e := y1 − y2 as

R = 1
2

1∫
0

L′′′(y2 + se)(e, e, e) · s · (s− 1) ds.

Proof. We write by the main theorem of calculus

L(y1)− L̃(y2) = L(y1)− L(y2) + (L− L̃)(y2) =
1∫

0

L′(y2 + se)(e) ds+ (L− L̃)(y2).

Using the trapezoidal rule
1∫

0

f(s) ds = 1
2f(0) + 1

2f(1) + 1
2

1∫
0

f ′′(s) · s · (s− 1) ds

for approximating the integral, supplies

L(y1)− L̃(y2) = 1
2L
′(y2)(e) + 1

2L
′(y1)(e) +R+ (L− L̃)(y2).

Because of (4.1) and (4.3), we have

L′(y1)(e) = 0.

Due to assertion (4.2), we may replace L′(y2)(e) by

L′(y2)(y1 − ỹ2) + L′(y2)(ỹ2 − y2) = L′(y2)(y1 − ỹ2) + (L− L̃)′(y2)(ỹ2 − y2)

for arbitrary ỹ2 ∈ Y2. This completes the proof.

Remark 4.1. The presented version of Lemma 4.1 is more general than the version in
Becker and Rannacher [13], where it is formulated using the stronger requirement Y1 = Y
instead of (4.3) as well as L = L̃. However, since we cannot always ensure Y2 ⊆ Y1 in
our discretizations considered and we want to consider the inconsistent local projection
stabilization, this simple modification is necessary.
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4.2 Derivation of the a posteriori error estimator

4.2 Derivation of the a posteriori error estimator

In this section, we want to apply the abstract result of Section 4.1 in the derivation of
an a posteriori error estimator which measures the temporal and spatial discretization
errors with respect to a given functional value J(u) of the solution and separates the
contributions due to both discretizations. Hence, we actually want to construct two error
estimators ηk and ηh such that

J(u)− J(ukh) ≈ ηk + ηh.

Throughout this thesis, we assume the functional J to be of the form

J(u) =
∫
I

J1(u(t)) dt+ J2(u(T ))

where of course J1 or J2 may be zero.

Remark 4.2. The derivation of the error estimator is done in a purely formal fashion. The
discussion of existence or uniqueness of solutions to the arising continuous, semi-discrete,
and fully discrete problems would require more assumptions, e. g., on the functional J .

To this end, we introduce the Lagrangians L : X × X → R, Lh : Xr,s
kh × X̃

r−1,s
kh → R,

L̃ : X̃r
k × X̃r

k → R, and L̃h : X̃r,s
kh × X̃

r,s
kh → R by

L(u, z) := J(u) +
∫
I

(f − ∂tv,w) dt− a(u)(z)− (v(0)− v0,w(0)),

Lh(ukh, zkh) := L(ukh, zkh)− Sh(ukh, zkh),

L̃(uk, zk) := J(uk) +
M∑
m=1

∫
Im

(f − ∂tvk,wk) dt− a(uk)(zk)−
M−1∑
m=0

([vk]m,w+
k,m)

− (v−k,0 − v
0,w−k,0),

L̃h(ukh, zkh) := L̃(ukh, zkh)− Sh(ukh, zkh)

with

Sh(ukh, zkh) :=
M∑
m=1

∫
Im

smh (ukh)(zkh) dt.

Remark 4.3. The Lagrange multipliers z = (w, q)T , zk = (wk, qk)T , and zkh = (wkh, qkh)T
introduced in this context, are usually called dual variables in contrast to the primal variables
u = (v, p)T , uk = (vk, pk)T , and ukh = (vkh, pkh)T .
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Using the Lagrangians, we can express the functional values of the continuous, semi-discrete,
and fully discrete solution in the case of a dG(r) time discretization as follows:

J(u) = L(u,ϕ) ∀ϕ ∈ X, (4.5a)
J(uk) = L̃(uk,ϕ) ∀ϕ ∈ X̃r

k , (4.5b)
J(ukh) = L̃h(ukh,ϕ) ∀ϕ ∈ X̃r,s

kh . (4.5c)

In the case of a cG(r) semi-discretization in time, we have to replace (4.5b) and (4.5c)
by

J(uk) = L(uk,ϕ) ∀ϕ ∈ X̃r−1
k and

J(ukh) = Lh(ukh,ϕ) ∀ϕ ∈ X̃r−1,s
kh .

Since we want to separate the influences of the temporal and spatial discretization, we split
the total discretization error as

J(u)− J(ukh) = (J(u)− J(uk)) + (J(uk)− J(ukh)),

where u denotes the continuous solution, uk the semi-discrete solution of the dG(r)
discretization in time, and ukh the fully discrete solution of the cG(s)dG(r) discretization.
Note that these solutions are given as the first component of stationary points of the
corresponding Lagrangians, since

L′z(u, z)(ϕ) = 0 ∀ϕ ∈ X,
L̃′z(uk, zk)(ϕ) = 0 ∀ϕ ∈ X̃r

k ,

L̃′h,z(ukh, zkh)(ϕ) = 0 ∀ϕ ∈ X̃r,s
kh

are just the equations for the continuous, semi-discrete and fully discrete problem.

We are now able to state the following
Theorem 4.2. Let (u, z)T , (uk, zk)T , and (ukh, zkh)T denote stationary points of L, L̃,
and L̃h on different discretization levels, i. e.,

L′(u, z)(δu, δz) = L̃′(u, z)(δu, δz) = 0 ∀(δu, δz)T ∈ X ×X,
L̃′(uk, zk)(δuk, δzk) = 0 ∀(δuk, δzk)T ∈ X̃r

k × X̃r
k ,

L̃′h(ukh, zkh)(δukh, δzkh) = 0 ∀(δukh, δzkh)T ∈ X̃r,s
kh × X̃

r,s
kh .

Then, there hold the following error representation formulas for the discretization errors in
time and space:

J(u)− J(uk) = 1
2 L̃
′(uk, zk)(u− ũk, z − z̃k) +Rk,

J(uk)− J(ukh) = 1
2 L̃
′(ukh, zkh)(uk − ũkh, zk − z̃kh)

+ 1
2S
′
h(ukh, zkh)(ũkh − ukh, z̃kh − zkh) + Sh(ukh, zkh) +Rh.

Here, (ũk, z̃k)T ∈ X̃r
k × X̃r

k and (ũkh, z̃kh)T ∈ X̃r,s
kh × X̃

r,s
kh can be chosen arbitrarily and

the remainder terms Rk and Rh have the same structure as in Lemma 4.1.

44



4.2 Derivation of the a posteriori error estimator

Proof. Due to (4.5), we may especially write

J(u)− J(uk) = L(u, z)− L̃(uk, zk) = L̃(u, z)− L̃(uk, zk), (4.6a)
J(uk)− J(ukh) = L̃(uk, zk)− L̃h(ukh, zkh). (4.6b)

Here, we have used the fact that

J(u) = L(u, z) = L̃(u, z),

since the first component v of u ∈ X is continuous and hence the additional jump terms
in L̃ compared to L vanish. Next, we apply Lemma 4.1 with

L = L̃, L̃ = L̃, Y1 = X ×X, Y2 = X̃r
k × X̃r

k for (4.6a),
L = L̃, L̃ = L̃h, Y1 = X̃r

k × X̃r
k , Y2 = X̃r,s

kh × X̃
r,s
kh for (4.6b).

In the second case, we have Y2 ⊆ Y1 since X̃r,s
kh ⊆ X̃r

k . Hence, we can take Y := Y1 and
condition (4.3) is fulfilled automatically.

For the first case, he have to choose Y := Y1 + Y2 since X̃r
k 6⊆ X. Thus, we must check

condition (4.3) which reads
L̃′(u, z)(uk, zk) = 0

or equivalently
L̃′u(u, z)(uk) = 0 and L̃′z(u, z)(zk) = 0.

We only show the proof of the second condition

L̃′z(u, z)(zk) = 0. (4.7)

The first one can be handled analogously. Due to the continuity of the first component of
the continuous solution u with respect to time, the jump terms and the initial condition in
L̃ vanish on u ∈ X. Hence, equation (4.7) may be rewritten as

M∑
m=1

∫
Im

(f − ∂tv,wk) dt− a(u)(zk) = 0.

By construction, the continuous solution u fulfills∫
I

(∂tv,ψ) + a(u)(ϕ) =
∫
I

(f ,ψ) dt ∀ϕ = (ψ, χ)T ∈ X. (4.8)

Since X is dense in L2(I,H1
0 (Ω)d×L2(Ω)/R) with respect to the norm of L2(I,H1

0 (Ω)d×
L2(Ω)/R) and since there are no time derivatives on ψ in (4.8), this equation also holds true
for all ϕ ∈ L2(I,H1

0 (Ω)d×L2(Ω)/R). The inclusion zk ∈ X̃r
k ⊆ L2(I,H1

0 (Ω)d×L2(Ω)/R)
then implies that condition (4.7) is fulfilled.

Finally, the assertion of the theorem is a direct consequence of Lemma 4.1 applied to the
separated errors (4.6).
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4 A Posteriori Error Estimation

Introducing the primal and dual residual

ρ(u)(ϕ) := L̃′z(u, z)(ϕ),
ρ∗(u, z)(ϕ) := L̃′u(u, z)(ϕ),

the result of Theorem 4.2 may be rewritten as

J(u)− J(uk) ≈ 1
2
{
ρ(uk)(z − z̃k) + ρ∗(uk, zk)(u− ũk)

}
, (4.9a)

J(uk)− J(ukh) ≈ 1
2
{
ρ(ukh)(zk − z̃kh) + ρ∗(ukh, zkh)(uk − ũkh)

}
, (4.9b)

where we have neglected the remainder terms Rk and Rh as well as the additional
terms due to stabilization which can be assumed to be small because they contain small
stabilization parameters. At least, numerical results show that they are indeed negligible,
see Section 4.7.

In the case of a cG(r) discretization in time, we obtain a similar result which is summarized
in the following corollary:

Corollary 4.3. Let (u, z)T , (uk, zk)T , and (ukh, zkh)T denote stationary points of L and
Lh on different discretization levels, i. e.,

L′(u, z)(δu, δz) = 0 ∀(δu, δz)T ∈ X ×X,
L′(uk, zk)(δuk, δzk) = 0 ∀(δuk, δzk)T ∈ Xr

k × X̃r−1
k ,

L′h(ukh, zkh)(δukh, δzkh) = 0 ∀(δukh, δzkh)T ∈ Xr,s
kh × X̃

r−1,s
kh .

Then, there hold the following error representation formulas for the discretization errors in
time and space:

J(u)− J(uk) = 1
2L
′(uk, zk)(u− ũk, z − z̃k) +Rk,

J(uk)− J(ukh) = 1
2L
′(ukh, zkh)(uk − ũkh, zk − z̃kh)

+ 1
2S
′
h(ukh, zkh)(ũkh − ukh, z̃kh − zkh) + Sh(ukh, zkh) +Rh.

Here, (ũk, z̃k)T ∈ Xr
k × X̃

r−1
k and (ũkh, z̃kh)T ∈ Xr,s

kh × X̃
r−1,s
kh can be chosen arbitrarily

and the remainder terms Rk and Rh have the same structure as in Lemma 4.1.

Of course, we also obtain a similar representation as in (4.9) for the case of a cG(r)
discretization in time, this time involving the primal and dual residuals defined via the
continuous Lagrangian:

ρ(u)(ϕ) := L′z(u, z)(ϕ),
ρ∗(u, z)(ϕ) := L′u(u, z)(ϕ).
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4.3 Evaluation of the error estimators

In this section, we give details on the numerical evaluation of the a posteriori error
estimators developed in the previous section. The error estimators involve the continuous,
semi-discrete, and fully discrete dual solutions z ∈ X, zk ∈ X̃r

k or X̃r−1
k (depending on

whether a dG(r) or cG(r) discretization in time is used), and zkh ∈ X̃r,s
kh or X̃r−1,s

kh . In the
case of a dG(r) semi-discretization in time, they are given as solutions of

L′u(u, z)(ϕ) = 0 ∀ϕ ∈ X,
L̃′u(uk, zk)(ϕ) = 0 ∀ϕ ∈ X̃r

k ,

L̃′h,u(ukh, zkh)(ϕ) = 0 ∀ϕ ∈ X̃r,s
kh ,

while for cG(r) case the characterizing equations are

L′u(u, z)(ϕ) = 0 ∀ϕ ∈ X,
L′u(uk, zk)(ϕ) = 0 ∀ϕ ∈ Xr

k ,

L′h,u(ukh, zkh)(ϕ) = 0 ∀ϕ ∈ Xr,s
kh .

We want to show the precise form of these derivatives, i. e., the equations the dual solutions
have to fulfill. The continuous dual solution z = (w, q)T ∈ X is the solution of∫

I

(ψ,−∂tw) dt+ a′(u)(ϕ, z) + (ψ(T ),w(T ))

=
∫
I

J ′1(u)(ϕ) dt+ J ′2(u(T ))(ϕ(T )) ∀ϕ = (ψ, χ)T ∈ X, (4.10)

where we have integrated by parts which is admissible for functions in X, see, for in-
stance, Wloka [108]. Let us next consider the case of a dG(r) time discretization. Then
the semi-discrete dual solution zk = (wk, qk)T ∈ X̃r

k and the fully discrete dual solution
zkh = (wkh, qkh)T ∈ X̃r,s

kh fulfill

M∑
m=1

∫
Im

(ψ,−∂twk) dt+ a′(uk)(ϕ, zk)−
M−1∑
m=0

(ψ−m, [wk]m) + (ψ−M ,w
−
k,M )

=
∫
I

J ′1(uk)(ϕ) dt+ J ′2(u−k,M )(ϕ−M ) ∀ϕ = (ψ, χ)T ∈ X̃r
k (4.11)

and

M∑
m=1

∫
Im

(ψ,−∂twkh) dt+ a′h(ukh)(ϕ, zkh)−
M−1∑
m=0

(ψ−m, [wkh]m) + (ψ−M ,w
−
kh,M )

=
∫
I

J ′1(ukh)(ϕ) dt+ J ′2(u−kh,M )(ϕ−M ) ∀ϕ = (ψ, χ)T ∈ X̃r,s
kh , (4.12)
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respectively. In the context of a cG(r) semi-discretization in time, the semi-discrete dual
solution zk = (wk, qk)T ∈ X̃r−1

k and the fully discrete dual solution zkh = (wkh, qkh)T ∈
X̃r−1,s
kh instead satisfy

M∑
m=1

∫
Im

(ψ,−∂twk) dt+ a′(uk)(ϕ, zk)−
M−1∑
m=0

(ψ(tm), [wk]m) + (ψ(tM ),w−k,M )

=
∫
I

J ′1(uk)(ϕ) dt+ J ′2(u−k,M )(ϕ−M ) ∀ϕ = (ψ, χ)T ∈ Xr
k (4.13)

and

M∑
m=1

∫
Im

(ψ,−∂twkh) dt+ a′h(ukh)(ϕ, zkh)−
M−1∑
m=0

(ψ(tm), [wkh]m) + (ψ(tM ),w−kh,M )

=
∫
I

J ′1(ukh)(ϕ) dt+ J ′2(u−kh,M )(ϕ−M ) ∀ϕ = (ψ, χ)T ∈ Xr,s
kh . (4.14)

The precise time-stepping formulation of these dual problems in the considered cases
cG(s)dG(0), cG(s)dG(1), and cG(s)cG(1) with s ∈ { 1, 2 } can be obtained in a similar
way as for the primal problem, see Section 3.4.

Note that for solving the dual problems (4.12) or (4.14), the primal solution ukh is needed
on the whole time interval Ī due to the nonlinear structure of the primal problem. A
common way to deal with this difficulty is to apply checkpointing techniques which reduce
the required amount of memory because the primal solution is only stored on so-called
checkpoints. The drawback is that we have to solve the (nonlinear) primal problem
more often to recover the primal solution between two checkpoints. More information on
checkpointing can be found, for instance, in Griewank [59], Berggren, Glowinski, and Lions
[16] or Walther and Griewank [104]. However, since in the last years the capacities of main
memory and hard disk drives have been growing rapidly, we propose to store the primal
solution over the whole time interval. For two-dimensional simulations, this can often be
done by only using the main memory, while in three spatial dimensions we suggest storing
the data on hard disk. Even though the access of reading and writing from and to hard
disk is much slower than the access to main memory, this can be assumed to be still much
faster than solving several time steps of the nonlinear primal problem more than once. For
a discussion of this topic, we also refer to Meidner [78].

Let us now consider the numerical evaluation of the error estimator developed in the
previous section. Since the quantities ũk, z̃k, ũkh, and z̃kh can be chosen arbitrarily in
the corresponding spaces, the so-called weights, that is u − ũk, z − z̃k, and so on, are
mainly interpolation errors. We approximate these interpolation errors by higher order
reconstructions of the discrete solutions. This approach relies on the “super-closeness” of
the derivatives of these higher order interpolations to those of the continuous solution,
see Becker and Rannacher [13] for more details on this topic and alternative approaches.
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We introduce the following linear operators for approximating the weights in the error
estimator:

v − ṽk ≈Π
(v)
k vk, vk − ṽkh ≈Π

(v)
h vkh,

p− p̃k ≈ Π
(p)
k pk, pk − p̃kh ≈ Π

(p)
h pkh,

w − w̃k ≈Π
(w)
k wk, wk − w̃kh ≈Π

(w)
h wkh,

q − q̃k ≈ Π
(q)
k qk, qk − q̃kh ≈ Π

(q)
h qkh.

The operators Π(v)
k , Π(p)

k , Π(w)
k , Π(q)

k as well as Π(v)
h , Π(p)

h , Π(w)
h , and Π(q)

h are chosen
as

cG(s)dG(0):

Π
(v)
k := I

(1)
k − id, Π

(v)
h := I

(2s)
2h − id,

Π
(p)
k := I

(1)
k − id, Π

(p)
h := I

(2s)
2h − id,

Π
(w)
k := I

(1)
k − id, Π

(w)
h := I

(2s)
2h − id,

Π
(q)
k := I

(1)
k − id, Π

(q)
h := I

(2s)
2h − id,

where I(1)
k is given as in Figure 4.1(a) and I(1)

k acts component-wise as I(1)
k .

cG(s)dG(1):

Π
(v)
k := I

(2)
2k − id, Π

(v)
h := I

(2s)
2h − id,

Π
(p)
k := I

(2)
2k − id, Π

(p)
h := I

(2s)
2h − id,

Π
(w)
k := I

(2)
2k − id, Π

(w)
h := I

(2s)
2h − id,

Π
(q)
k := I

(2)
2k − id, Π

(q)
h := I

(2s)
2h − id,

where I(2)
2k is given as in Figure 4.1(b) and I(2)

2k acts component-wise as I(2)
2k .

cG(s)cG(1):

Π
(v)
k := I

(2)
2k − id, Π

(v)
h := I

(2s)
2h − id,

Π
(p)
k := I

(1)
k − id, Π

(p)
h := I

(2s)
2h − id,

Π
(w)
k := I

(1)
k − id, Π

(w)
h := I

(2s)
2h − id,

Π
(q)
k := I

(1)
k − id, Π

(q)
h := I

(2s)
2h − id,

where I(2)
2k is given as in Figure 4.1(c) and I(2)

2k acts component-wise as I(2)
2k .
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tm tm+1tm−1

Im

uk

I
(1)
k uk

(a) Continuous piecewise linear interpolation of a discontinuous piecewise
constant function

tm tm+1tm−1

Im

uk

I
(2)
2k uk

(b) Continuous piecewise quadratic interpolation of a discontinuous
piecewise linear function

tm tm+1tm−1

Im

uk

I
(2)
2k uk

(c) Continuous piecewise quadratic interpolation of a continuous piece-
wise linear function

Figure 4.1. Interpolation operators I(1)
k and I(2)

2k
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The spatial interpolation operators I(2)
2h : V 1

h → V 2
2h (for s = 1) into the space of bi- or tri-

quadratic trial functions and I(4)
2h : V 2

h → V 4
2h (for s = 2) into the space of bi- or tri-quartic

trial functions can easily be computed if the underlying mesh possesses a patch structure,
see Figure 3.3. These spatial interpolation operators are extended into time point-wise
by

(I(2s)
2h ukh)(t) := I

(2s)
2h (ukh(t)).

The last step in making the derived a posteriori error estimators computable is to replace
all unknown solutions appearing either in the weights or in the residuals by the fully
discrete versions, i. e., we replace

ρ(uk)(z − z̃k) by ρ(ukh)(Πkzkh) and ρ∗(uk, zk)(u− ũk) by ρ∗(ukh, zkh)(Πkukh)

with Πkzkh := (Π(w)
k wkh, Π

(q)
k qkh)T and Πkukh := (Π(v)

k vkh, Π
(p)
k pkh)T . The replace-

ment in the weights is well accepted while the replacement in the residuals, i. e., the
replacement of the linearization point, might seem critical. One could think of replacing the
unknown solutions also by higher order interpolations as we did in the weights. However,
in our numerical examples we see that this additional effort is not necessary to obtain
quantitatively good results.

Remark 4.4. This observation is also substantiated by the fact that the replacement of the
linearization point introduces an additional error which usually is of higher order. This
can be seen as follows: The introduced error can be expressed as

L̃′(ζk)(ζ − ζ̃k)− L̃′(ζkh)(ζ − ζ̃k) =
1∫

0

L̃′′(ζkh + s(ζk − ζkh))(ζk − ζkh, ζ − ζ̃k) ds

with ζ = (u, z)T , ζk = (uk, zk)T , and ζkh = (ukh, zkh)T . By choosing an appropriate
interpolant for ζ̃k, this identity shows that the discussed replacement introduces an error of
the order O(h2k) whereas the total discretization error usually is not better than O(h2 + k)
in the case of a cG(1)dG(0) discretization. For more details, we refer to Meidner [78] or
Schmich and Vexler [96].

Proceeding as proposed, we obtain the following a posteriori error estimator

J(u)− J(ukh) ≈ ηk + ηh

with

ηk := 1
2
{
ρ(ukh)(Πkzkh) + ρ∗(ukh, zkh)(Πkukh)

}
,

ηh := 1
2
{
ρ(ukh)(Πhzkh) + ρ∗(ukh, zkh)(Πhukh)

}
.

To get an impression of what terms have to be evaluated, we present exemplarily for the
backward Euler variant of the cG(s)dG(0) discretization their precise form. To this end,
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temporal integrals involving ukh and zkh are approximated by the box rule whereas those
involving I(1)

k ukh and I(1)
k ukh are evaluated using the trapezoidal rule. This leads to the

following representation:

ρ(ukh)(Πkzkh) =
M∑
m=1

{
(Vm − Vm−1,Wm −Wm−1) + km

2 ā(Um)(Zm −Zm−1)

+ km
2 (f(tm−1),Wm−1)− km

2 (f(tm),Wm)
}
,

ρ∗(ukh, zkh)(Πkukh) =
M∑
m=1

{
km
2 ā′(Um)(Um −Um−1,Zm)

− km
2 J ′1(Um)(Um −Um−1)

}
,

ρ(ukh)(Πhzkh) =
M∑
m=1

{
km(f(tm), I(2s)

2h Wm −Wm)− kmā(Um)(I(2s)
2h Zm −Zm)

− (Vm − Vm−1, I
(2s)
2h Wm −Wm)

}
− (V0 − v0, I

(2s)
2h W0 −W0),

ρ∗(ukh, zkh)(Πhukh) =
M∑
m=1

{
kmJ

′
1(Um)(I(2s)

2h Um −Um)

− kmā′(Um)(I(2s)
2h Um −Um,Zm)

+ (I(2s)
2h Vm−1 − Vm−1,Wm −Wm−1)

}
+ J ′2(UM )(I(2s)

2h UM −UM )− (I(2s)
2h VM − VM ,WM ).

Similar expressions are obtained for the cG(s)dG(1) and cG(s)cG(1) discretizations. Of
course, quadrature rules of higher order have to be applied in order to exactly evaluate the
temporal integrals.

4.4 Localization of the error estimators

The a posteriori error estimators developed in Section 4.2 serve for two purposes: Firstly,
the quantitative assessment of the discretization error and secondly the adaptive refinement
of the underlying discretizations in order to efficiently improve the accuracy. For the second
aim, the information of the error estimators has to be localized to cell-wise or node-wise
contributions. These quantities are then called local error indicators.

To this end, we split the overall error estimators into their contributions on each subinterval
Im by

ηk =
M∑
m=1

ηmk and ηh =
M∑
m=0

ηmh ,
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where the interval-wise error estimators are defined analogously to the global error estima-
tors by

ηmk := 1
2
{
ρm(uk)(z − z̃k) + ρ∗m(uk, zk)(u− ũk)

}
,

ηmh := 1
2
{
ρm(ukh)(zk − z̃kh) + ρ∗m(ukh, zkh)(uk − ũkh)

}
,

but involve only those parts ρm and ρ∗m of the global residuals ρ and ρ∗ belonging to the
subinterval Im or to the initial time t = 0 for m = 0.

While the hereby obtained local contributions ηmk for the temporal discretization error
can directly be used for an adaptive refinement of the temporal discretization, the spatial
contributions have to be localized further. However, a simple splitting into cell-wise
contributions leads to a large overestimation of the actual error due to oscillatory behavior
of the residuals (see Carstensen and Verfürth [28] for details on this). A commonly used
way to overcome this difficulty is to apply cell-wise integration by parts in space (see, for
example, Becker and Rannacher [12, 13]). The resulting local error indicators involve the
strong residual of the equation as well as jumps of the discrete solution over faces of cells.

In Braack and Ern [20], a new way of overcoming this problem was presented without
having to evaluate strong residuals and jumps over faces of cells and still obtaining the
right local order of convergence. For simplicity, we restrict the description of this method
to the case of a cG(s)dG(0) discretization. To this end, let us introduce the Lagrange
nodal bases {

ϕmi

∣∣∣ i = 1, . . . ,dimV s,m
h

}
of V s,m

h for m = 1, . . . ,M . By application of the operator I(2s)
2h , these bases define the

following set of bi- or tri-quadratic (s = 1) or bi- or tri-quartic (s = 2) nodal functions{
ψmi := I

(2s)
2h ϕmi

∣∣∣∣ i = 1, . . . ,dimV s,m
h

}
⊆ V 2s,m

2h .

Let Ψm and Ψ∗m denote the difference of the primal and dual residual between the basis{
ϕmi

}
of degree s and the basis

{
ψmi

}
of degree 2s of the corresponding product spaces

(V s,m
h )d × V s,m

h and (V 2s,m
2h )d × V 2s,m

2h , respectively. Thus, we have

Ψm,i = ρm(ukh)(ψmi −ϕ
m
i ) and Ψ∗m,i = ρ∗m(ukh, zkh)(ψmi −ϕ

m
i ).

Since for the considered discretization ukh and zkh are constant on each subinterval, we
have

ukh
∣∣∣
Im

=
Nm∑
i=1

Umi ϕ
m
i , zkh

∣∣∣
Im

=
Nm∑
i=1

Zmi ϕ
m
i ,

I
(2s)
2h ukh

∣∣∣
Im

=
Nm∑
i=1

Umi ψ
m
i , I

(2s)
2h zkh

∣∣∣
Im

=
Nm∑
i=1

Zmi ψ
m
i ,
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where Nm = dim(V s,m
h )d×V s,m

h = dim(V 2s,m
2h )d×V 2s,m

2h and Um,Zm ∈ RNm represent the
nodal coefficient vectors of ukh

∣∣∣
Im

and zkh
∣∣∣
Im

, respectively. By means of these definitions,
we can express the error indicators in space as

ηmh = 1
2
{
〈Ψm,Zm〉+ 〈Ψ∗m,U

m〉
}

with 〈·, ·〉 being the Euclidean inner product on RNm .

Let us further introduce a filtering operator π by

π := id− I(s)
2h with I

(s)
2h : X̃0,s

kh → X̃0,s
k,2h,

see also the description of the local projection stabilization in Section 3.3.2. This con-
struction again uses the patch-wise structure of the mesh. This structure also implies
V s,m

2h ⊆ V s,m
h . Hence, for the filtered solutions πukh

∣∣∣
Im

and πzkh
∣∣∣
Im

, we also have an

expression with respect to the nodal basis
{
ϕmi

}
, denoted by Uπ,m and Zπ,m, respec-

tively:

πukh
∣∣∣
Im

=
Nm∑
i=1

Uπ,mi ϕmi and πzkh
∣∣∣
Im

=
Nm∑
i=1

Zπ,mi ϕmi .

Noting that I(2s)
2h is the identity on (V s,m

2h )d × V s,m
2h , we conclude

I
(2s)
2h πϕmi − πϕ

m
i = I

(2s)
2h ϕmi − I

(2s)
2h I

(s)
2h ϕ

m
i −ϕ

m
i + I(s)

2h ϕ
m
i

= I
(2s)
2h ϕmi −ϕ

m
i = ψmi −ϕ

m
i .

Then, using the linearity of the residuals in the second argument, we obtain by simple
calculations (see Braack and Ern [20])

ηmh = 1
2
{
〈Ψm,Zm〉+ 〈Ψ∗m,U

m〉
}

= 1
2
{
〈Ψm,Zπ,m〉+ 〈Ψ∗m,U

π,m〉
}
.

This leads us to the definition of the local error indicators as

ηmh,i := 1
2
{
Ψm,iZ

π,m
i + Ψ∗m,iU

π,m
i

}
,

satisfying the following upper bound for the error estimator ηmh :

|ηmh | ≤
Nm∑
i=1

∣∣∣ηmh,i∣∣∣ .
For setting up an efficient adaptive algorithm, it is essential that the temporal error
estimator ηk is independent of the refinement of the spatial discretization and vice versa.
We will see in Section 4.7, that this is (almost) the case for both ηk and ηh. However, the
local contributions ηmh depend linearly on the local size km of the subintervals Im because

ηh =
M∑
m=0

ηmh .
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It is important to get rid of this dependence since otherwise the spatial error indicators would
decrease, for instance, while keeping the spatial discretization fixed and only refining the
temporal discretization. Therefore, we introduce spatial error indicators η̂mh independent of
km and hence usable in a simultaneous mesh adaption algorithm as presented in Section 4.5
by rescaling:

η̂mh,i := T

km
ηmh,i, i = 1, . . . , Nm, m = 0, . . . ,M.

This scaling has the following special property: If the rescaled spatial error indicators η̂mh
fulfill

η̂mh < TOL,

we then have for the whole spatial error estimator

ηh =
M∑
m=0

ηmh =
M∑
m=0

km
T
η̂mh <

TOL
T

M∑
m=0

km = TOL.

Remark 4.5. If the cells to be refined within an adaptive mesh refinement procedure are
not chosen by a tolerance-based selection criterion, the simpler rescaling

η̂mh,i := 1
km

ηmh,i

is sufficient.

Cell-wise error indicators η̂mh,K for cells K ∈ T mh usable in an adaptive mesh refinement
procedure are obtained by reassembling the scaled node-wise contributions η̂mh,i.

This supplies us with two sets of error indicators which will be used within the adaptive
algorithm presented in the next section for an efficient automatic adaptation of the temporal
and spatial discretizations. These sets are given by

Σk := { ηmk | m = 1, . . . ,M } and Σh :=
{
η̂mh,K

∣∣∣ K ∈ T mh , m = 0, . . . ,M
}
.

Remark 4.6. Note that for efficiency reasons it is necessary to treat the cell-wise error
indicators of all spatial meshes simultaneously rather than for each mesh separately. If we
used M + 1 different sets of cell-wise error indicators

Σm
h :=

{
η̂mh,K

∣∣∣ K ∈ T mh }
, m = 0, . . . ,M,

for deciding which cells should be refined, we would probably obtain a rather inefficient
spatial discretization. This becomes clear if we assume, for example, that the error
indicators on one subinterval are much smaller than those on another subinterval. Using,
for instance, a fixed fraction strategy for selecting the cells to be refined leads to cells that
are marked to be refined although the corresponding error indicators are smaller than
the error indicators of cells in other meshes which might not be refined. The other way
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around, we also observe inefficiency when marking cells for coarsening. Even if their error
indicators might be small compared to other cells in the same mesh, their contribution
to the spatial discretization error still might be large compared to cells in other meshes.
However, applying a fixed fraction strategy to the full set of error indicators Σh does not
produce such inefficient meshes because the error indicators are sorted “globally”.

4.5 Adaptive algorithm

In this section, we present an adaptive refinement algorithm which uses the developed
a posteriori error estimators of Section 4.2 to automatically adjust the temporal and
spatial discretizations in order to efficiently increase the accuracy. To obtain efficient
discretizations, it is essential to equilibrate the temporal and spatial discretization errors
and keep them balanced under further refinement. This requires a precise quantitative
assessment of both discretization errors as it is available with the derived error estimators
(see Section 4.7 for numerical results).

If the functional value J(u) is to be computed to a given accuracy TOL, this can be
achieved by refining each discretization as long as the corresponding part of the error is
greater than TOL

2 . However, this might lead to an inefficient algorithm, especially in the
case when the temporal and spatial discretization error are unbalanced in the beginning.
Furthermore, the desired accuracy TOL might be too small to be achieved with the given
computational resources. In the sequel, we present an adaptive algorithm which balances
the initial temporal and spatial discretization errors and keeps them balanced during
further refinement without having to prescribe a certain accuracy TOL. This leads to
an algorithm which uses the given computational resources efficiently in order to achieve
an accuracy as good as possible. The stopping criterion therefore is based on reaching a
prescribed maximum number of degrees of freedom (determined by the given architecture)
which must not be exceeded rather than on reaching the desired accuracy TOL. Of course,
these stopping criterions can easily be exchanged by instead checking if

|η| = |ηk + ηh| ≤ TOL,

at least under consideration of the problem mentioned above.

As already mentioned, the goal of an efficient adaptive refinement algorithm has to be the
equilibrated reduction of the temporal and spatial discretization error. To this end, we
introduce an equilibration constant κ ≥ 1 (usually κ ≈ 3 in our numerical examples) and
propose to proceed as in Algorithm 4.1.

Remark 4.7. The behavior of Algorithm 4.1 strongly depends on the choice of κ. Choosing
κ too small, results in a slower reduction of the overall discretization error because only the
temporal or spatial discretization is refined while the temporal and spatial discretization
error actually are of the same size. On the other hand, choosing κ too large, makes the
algorithm inefficient because both discretizations are refined although the total discretization
error is dominated by only the temporal or the spatial discretization error. Numerical tests
show κ ≈ 3 to be a good choice.
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Algorithm 4.1. Adaptive refinement algorithm

1: Choose an initial temporal and spatial discretization Tk0,h0 .
2: Set n = 0.
3: loop
4: Compute the primal and dual solution uknhn and zknhn .
5: Evaluate the a posteriori error estimators ηkn and ηhn .
6: if the maximum number of degrees of freedom is reached then
7: return
8: if

∣∣ηkn∣∣ > κ
∣∣ηhn∣∣ then

9: Adapt the temporal discretization.
10: else if

∣∣ηhn∣∣ > κ
∣∣ηkn∣∣ then

11: Adapt the spatial discretization.
12: else
13: Adapt the temporal and spatial discretization.
14: Increase n.

When refining a discretization, the cells (or time intervals) which are to be refined are
chosen using sets Σk or Σh of error indicators like the ones shown at the end of the previous
section. Thus, we have to select subsets ΣR

k ⊆ Σk or ΣR
h ⊆ Σh indicating which cells (or

time intervals) should be refined. As already noted in Remark 4.6, the selection of the
spatial cells to be refined is done simultaneously on all meshes T mh , m = 0, . . . ,M .

For the selection of the subsets ΣR
k or ΣR

h , several standard approaches are available like
error balancing or fixed fraction strategies. However, for the computations in this thesis, a
quite different approach was used which is described in Richter [92, 93], for example. In
the remaining part of this section, we will shortly present its main ideas based on the set
of error indicators Σ = { η1, . . . , ηN } which is thought of as the localization of an error
estimator η. In a first step, we compute a permutation (i1, . . . , iN ) of (1, . . . , N) such that
the local error indicators are sorted in descending order according to their absolute value:∣∣ηi1∣∣ ≥ · · · ≥ ∣∣ηiN ∣∣ .
Then, the subset ΣR =

{
ηi1 , . . . , ηir

}
⊆ Σ is chosen as coherent queue where the index r

is given by
r := arg min

1≤r≤N
E(r)N (r)β. (4.15)

Here, E(r) is a prediction of the error on the refined discretization which is given by

E(r) =
N∑
i=1
|ηi| −

r∑
i=1

(1− 2−α) |ηi| .

The parameter α denotes the expected order of convergence, i. e., we assume∑
K′⊆K

|ηK′ | = 2−α |ηK |
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after refining a cell K into 2d cells K ′. N (r) is the number of degrees of freedom of the
refined discretization and the parameter β is given as the quotient of the order of the finite
element space and the dimension d of the discretized domain. The optimal value of r is
determined by successively testing (4.15) with r = 1, . . . , N .

More details can be found in Richter [93]. Braack [17] gives an analytical justification of
this approach under certain regularity assumptions.

4.6 Heuristic error indicators

This section is dedicated to the derivation of heuristic error indicators. Such error indicators
which can be evaluated without solving the additional dual problem are only smoothness
based, of course. They are not able to quantitatively assess the discretization error. In
addition, they cannot detect where large errors have large influence on the discretization
error measured in a functional value and especially where this is not the case. Let us briefly
present their derivation before we compare them in the next section to the quantitative
error estimators developed in Section 4.2.

Let us for simplicity consider the stationary Poisson problem

−∆u = f in Ω,
u = 0 on ∂Ω.

An a posteriori error estimator assessing the error in the energy norm
∥∥∇(u− uh)

∥∥ is given
by ∥∥∇(u− uh)

∥∥ ≤ C( ∑
K∈Th

h2
K{ρK(uh)2 + ρ∂K(uh)2}

) 1
2

(4.16)

with the cell residuals ρK(uh) and jump residuals ρ∂K(uh) defined as

ρK(uh) := ‖f + ∆uh‖L2(K) and ρ∂K(uh) := 1
2h
− 1

2
K

∥∥[∂nuh]
∥∥
L2(∂Kr∂Ω) ,

see, for example, Verfürth [101]. The value of the constant C appearing in (4.16) is in
general unknown since it involves an interpolation constant CI and a stability constant CS .
While the interpolation constant CI can be approximated quite well, bounding the stability
constant CS would require bounds on higher order derivatives of the dual solution.

For the case of bi- or tri-linear finite elements it is known (Carstensen and Verfürth [28])
that the contributions of the cell residuals ρK(uh) can be neglected compared to the jump
residuals ρ∂K(uh). Furthermore, the jumps of the normal derivatives [∂nuh] over faces can
be estimated by a recovery of the second derivatives on the cells. One possible way to do
this is the application of the patch-wise interpolation operator I(2)

2h (see Section 4.3):

ρ∂K(uh) ≈ ‖∇2I
(2)
2h uh‖L2(K).
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This leads to the following error estimator:

∥∥∇(u− uh)
∥∥ . C

( ∑
K∈Th

η̃2
h,K

) 1
2

with the error indicators
η̃h,K := hK‖∇2I

(2)
2h uh‖L2(K).

Similar recovery techniques can be found, for instance, in Zienkiewicz and Zhu [110, 111].

Even though the derivation of this heuristic error indicator was based on a stationary
problem, we use this error indicator for the spatial refinement in time-dependent problems
to compare the results to those obtained by the application of the quantitative error
estimator derived in Section 4.2.

In a similar fashion, one can derive an heuristic error indicator η̃k for the temporal
refinement which for first-order methods like the dG(0) discretization in time is given by

η̃k,m = km
∥∥∥umkh − um−1

kh

∥∥∥ .
4.7 Numerical results

In this section, we present some numerical results achieved by applying the proposed
adaptive algorithm in combination with different temporal and spatial discretizations to
the incompressible Navier-Stokes equations. After showing the very good quantitative
assessment of both the temporal and spatial discretization errors with respect to a given
functional in Section 4.7.1, we compare these results in Section 4.7.2 with those obtained by
adaptive refinement controlled by the heuristic error indicators developed in Section 4.6.

To this end, let us consider the following model problem on the two-dimensional unit square
Ω = (0, 1)2 and final time T = 1: Find (v, p)T such that

∂tv −∆v + (v · ∇)v +∇p = f in (0, 1)×Ω,
∇ · v = 0 in (0, 1)×Ω,

v = 0 in { 0 } ×Ω,
v = 0 on (0, 1)× ∂Ω.

(4.17)

Let the force f be given in such a way that the exact solution (v, p)T is given by

v(t,x) =
(

sin(t) sin2(πx1) sin(πx2) cos(πx2)
− sin(t) sin(πx1) cos(πx1) sin2(πx2)

)
,

p(t,x) = sin(t) sin(πx1) cos(πx1) sin(πx2) cos(πx2).

We aim at computing the functional value

J(u) = 1
2

∫
Ω

∣∣v(1,x)
∣∣2 dx
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at final time T = 1. The exact value can be computed to be

J(u) = 3
64 sin2(1) ≈ 0.03319094148157365.

In our computations, the constants in the stabilization parameters α and δ are chosen as
α0 = δ0 = 0.2.

4.7.1 Numerical results employing the quantitative error estimator

First, we present the numerical justification for the splitting of the total discretization
error into a temporal and spatial contribution. In Tables 4.1–4.3, the independence of the
temporal error estimator on the refinement of the spatial discretization and vice versa can
be seen. This is an important feature in equilibrating both discretization errors during
the adaptive algorithm presented in Section 4.5. Here and in the rest of this thesis, N
denotes the number of degrees of freedom of one spatial mesh while M denotes the number
of subintervals. Also note the very good agreement of the spatial error estimators between
all three temporal discretizations (columns three and four in Tables 4.1–4.3) as well as the
agreement of the temporal error estimators (columns five and six of these tables) when
using either the cG(1) or the cG(2) discretization in space.

Table 4.1. Independence of one part of the error estimator on the refinement of
the other discretization: dG(0) discretization in time, cG(1) or cG(2)
discretization in space

N M ηh ηk
cG(1) cG(2) cG(1) cG(2)

243 40 3.8136 ·10−04 4.2374 ·10−04

867 40 4.1703 ·10−04 4.2887 ·10−04

3267 40 — — 4.2620 ·10−04 4.2922 ·10−04

12675 40 4.2848 ·10−04 4.2924 ·10−04

49923 40 4.2905 ·10−04 4.2924 ·10−04

3267 10 1.9876 ·10−04 1.5554 ·10−06

3267 20 2.0636 ·10−04 1.6150 ·10−06

3267 40 2.1009 ·10−04 1.6442 ·10−06 — —
3267 80 2.1194 ·10−04 1.6586 ·10−06

3267 160 2.1286 ·10−04 1.6656 ·10−06

In Tables 4.4–4.6, we present the development of the total discretization error J(u)−J(ukh)
as well as the spatial and temporal error estimators ηh and ηk during an adaptive run with
local refinement of the temporal and spatial discretization using dynamic meshes for the
cG(1)dG(0), cG(2)dG(1), and cG(2)cG(1) discretization, respectively. Here, Nmax denotes
the number of degrees of freedom of the finest spatial mesh used whereas Ntot denotes the
total number of degrees of freedom of the space-time discretization. The last column shows
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4.7 Numerical results

Table 4.2. Independence of one part of the error estimator on the refinement of
the other discretization: dG(1) discretization in time, cG(1) or cG(2)
discretization in space

N M ηh ηk
cG(1) cG(2) cG(1) cG(2)

243 40 −5.4041 ·10−07 −5.7303 ·10−07

867 40 −5.6914 ·10−07 −5.7818 ·10−07

3267 40 — — −5.7621 ·10−07 −5.7851 ·10−07

12675 40 −5.7795 ·10−07 −5.7853 ·10−07

49923 40 −5.7839 ·10−07 −5.7853 ·10−07

3267 10 2.1389 ·10−04 1.6741 ·10−06

3267 20 2.1379 ·10−04 1.6732 ·10−06

3267 40 2.1377 ·10−04 1.6731 ·10−06 — —
3267 80 2.1377 ·10−04 1.6730 ·10−06

3267 160 2.1377 ·10−04 1.6728 ·10−06

Table 4.3. Independence of one part of the error estimator on the refinement of
the other discretization: cG(1) discretization in time, cG(1) or cG(2)
discretization in space

N M ηh ηk
cG(1) cG(2) cG(1) cG(2)

243 40 −2.3392 ·10−06 −2.5911 ·10−06

867 40 −2.6453 ·10−06 −2.7200 ·10−06

3267 40 — — −2.7104 ·10−06 −2.7295 ·10−06

12675 40 −2.7254 ·10−06 −2.7302 ·10−06

49923 40 −2.7290 ·10−06 −2.7302 ·10−06

3267 10 2.1415 ·10−04 1.6755 ·10−06

3267 20 2.1387 ·10−04 1.6731 ·10−06

3267 40 2.1380 ·10−04 1.6724 ·10−06 — —
3267 80 2.1378 ·10−04 1.6721 ·10−06

3267 160 2.1377 ·10−04 1.6719 ·10−06
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the effectivity index Ieff which is given by

Ieff := J(u)− J(ukh)
ηk + ηh

.

Looking at Tables 4.4 and 4.5, we observe for finer discretizations Ieff ≈ 1 which shows the
very good quantitative estimation of the discretization error. We also note the equilibration
of the temporal and spatial discretization error achieved during refinement.

On the other hand, Table 4.6 shows very bad results. The error is even increasing under
refinement of the discretizations. This is due to oscillations occurring in the solution under
change of the mesh. This instability for rough data is well known for the Crank-Nicolson
scheme, see, for example, Luskin and Rannacher [77], Rannacher [91], or Heywood and
Rannacher [66]. It is mainly caused by the missing strong A-stability of the Crank-Nicolson
scheme. This can be seen by looking at the results for a computation on fixed spatial
meshes, shown in Table 4.7. Due to this instability, we are going to use the cG(s)cG(1)
discretization only on fixed spatial meshes.

Table 4.4. Adaptive refinement on dynamic meshes with equilibration for the
cG(1)dG(0) discretization

Ntot Nmax M ηh ηk J(u)− J(ukh) Ieff

2673 243 10 2.82 ·10−03 1.39 ·10−03 5.42 · 10−03 1.29
5655 867 12 8.26 ·10−04 8.33 ·10−04 1.96 · 10−03 1.18

18621 3267 14 2.25 ·10−04 5.04 ·10−04 8.05 · 10−04 1.10
91113 12435 18 6.32 ·10−05 2.71 ·10−04 3.57 · 10−04 1.07

162657 12435 26 6.07 ·10−05 1.41 ·10−04 2.08 · 10−04 1.03
767913 47859 34 1.94 ·10−05 8.51 ·10−05 1.03 · 10−04 0.98

1402389 47859 54 1.87 ·10−05 4.48 ·10−05 6.23 · 10−05 0.98
7419177 177627 82 6.36 ·10−06 2.63 ·10−05 3.18 · 10−05 0.97

Table 4.5. Adaptive refinement on dynamic meshes with equilibration for the
cG(2)dG(1) discretization

Ntot Nmax M ηh ηk J(u)− J(ukh) Ieff

5103 243 10 4.49 ·10−04 −1.71 ·10−05 3.84 · 10−04 0.89
6975 867 10 3.03 ·10−05 −2.89 ·10−05 4.12 · 10−06 2.81

27243 3267 12 1.68 ·10−06 −3.47 ·10−06 −2.43 · 10−06 1.35
106167 12675 14 1.12 ·10−07 −6.20 ·10−07 −5.12 · 10−07 1.01
233067 12675 20 1.21 ·10−07 −8.82 ·10−08 3.76 · 10−08 1.15

1028019 49923 24 1.01 ·10−08 −1.77 ·10−08 −8.78 · 10−09 1.15
7651347 197571 40 7.57 ·10−10 −2.56 ·10−09 −1.92 · 10−09 1.07

A comparison of different refinement strategies for the cG(1)dG(0), cG(2)dG(1), and
cG(2)cG(1) discretization is depicted in Figures 4.2–4.4. We use the following labeling:
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Table 4.6. Adaptive refinement on dynamic meshes with equilibration for the
cG(2)cG(1) discretization

Ntot Nmax M ηh ηk J(u)− J(ukh) Ieff

9537 867 10 2.93 ·10−05 −3.23 ·10−05 −2.37 · 10−05 7.76
41805 3267 14 1.76 ·10−06 −9.67 ·10−06 −1.17 · 10−05 1.48
48339 3267 16 1.76 ·10−06 −2.74 ·10−06 −1.44 · 10−06 1.48

156201 12675 18 −7.22 ·10−07 −1.02 ·10−05 −4.67 · 10−06 0.43
274119 12675 28 −1.58 ·10−06 −8.23 ·10−06 3.09 · 10−07 −0.03
546075 12675 56 −8.51 ·10−06 −2.24 ·10−05 7.13 · 10−07 −0.02

2773779 49923 112 2.43 ·10−05 −2.51 ·10−04 1.63 · 10−04 −0.72

Table 4.7. Adaptive refinement on fixed spatial meshes with equilibration for
the cG(2)cG(1) discretization

N M ηh ηk J(u)− J(ukh) Ieff

867 10 2.93 ·10−05 −3.23 ·10−05 −2.37 · 10−05 7.76
3267 14 1.68 ·10−06 −9.66 ·10−06 −1.17 · 10−05 1.46
3267 16 1.67 ·10−06 −2.72 ·10−06 −1.45 · 10−06 1.37

12675 18 1.01 ·10−07 −8.57 ·10−07 −9.19 · 10−07 1.21
12675 26 1.03 ·10−07 −2.43 ·10−07 −1.43 · 10−07 1.02
49923 40 6.41 ·10−09 −6.47 ·10−08 −6.07 · 10−08 1.04
49923 62 6.46 ·10−09 −1.95 ·10−08 −1.27 · 10−08 0.97

• “uniform”: We apply uniform refinement to the temporal and spatial discretization
in each iteration.

• “adaptive”: We apply adaptive refinement to the temporal and spatial discretization
together with the proposed equilibration strategy. The spatial mesh is fixed on the
whole time interval.

• “dynamic”: We apply adaptive refinement to the temporal and spatial discretization
together with the proposed equilibration strategy. The spatial meshes may vary from
subinterval to subinterval.

Even for this example with smooth solution, we achieve a reduction factor of about 50–100
in the degrees of freedom needed for reaching a certain accuracy when using adaptive
refinement in time and space compared to uniform meshes. In situations where the dynamics
in space are larger than here, one can also achieve a greater reduction factor between the
adaptive refinement on a fixed spatial mesh and dynamic meshes.

The size of the time steps obtained in the last iteration for the cG(1)dG(0) discretization
is depicted in Figure 4.5. The other discretizations lead to similar adaptive refinement at
the end of the time interval. This is not very surprising since the functional J only acts
at final time T = 1 and the solution is mainly driven by the force f and not by problem
inherent dynamics.
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Figure 4.2. Comparison of the error
∣∣J(u)− J(ukh)

∣∣ for different refinement
strategies with the cG(1)dG(0) discretization
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Figure 4.3. Comparison of the error
∣∣J(u)− J(ukh)

∣∣ for different refinement
strategies with the cG(2)dG(1) discretization
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Figure 4.4. Comparison of the error
∣∣J(u)− J(ukh)

∣∣ for different refinement
strategies with the cG(2)cG(1) discretization
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Figure 4.5. Adaptively determined time step size k with the cG(1)dG(0) dis-
cretization
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Finally, we show in Figure 4.6 exemplarily for the cG(1)dG(0) discretization a sequence of
adaptively refined meshes obtained in the last iteration using dynamic meshes. Note that
the mesh is much more refined to the end of the time interval. Actually, the mesh is kept
coarse and constant for t ∈ [0, 0.6].

4.7.2 Comparison with heuristic error indicators

In this section, we compare the results of the quantitative error estimator of Section 4.2
with those of the heuristic error indicators of Section 4.6. The benefit of the heuristic
error indicators is that we do not need to solve the dual problem additionally, but can
evaluate the indicators by only using information of the primal solution. To compare
the quantitative error estimator and the heuristic error indicator, we reconsider model
problem (4.17). The results presented in this section are obtained using the cG(1)dG(0)
discretization.

First, we choose a rather fine temporal discretization (M = 640) which yields a temporal
discretization error of approximately 3·10−5 and apply both the quantitative error estimator
ηh and the heuristic error indicator η̃h to adaptively refine the spatial meshes. We allow
dynamic change of the meshes. The results are depicted in Figure 4.7.

We observe that the meshes created on the basis of the quantitative error estimator ηh are
much more efficient in reducing the discretization error than those created by the heuristic
error indicator. Figure 4.7 even shows a slightly better order of convergence on the meshes
built by the quantitative error estimator. Furthermore, the reduction of the discretization
error is “smoother” when applying the quantitative error estimator.

We get a hint for the slower reduction of the discretization error when using the heuristic
error indicator as refinement criterion if we look at the meshes created by it. Figure 4.8
shows a sequence of meshes created by the quantitative error estimator ηh and the heuristic
error indicator η̃h after five refinement cycles which both lead to a space-time discretization
with approximately 2 · 106 degrees of freedom.

The heuristic error indicator leads to a stronger refinement already at the beginning of the
time interval, whereas the quantitative error estimator here leads to rather coarse meshes.
In contrast, the situation near final time T = 1 is completely contrary. Here, the heuristic
error indicator leads to coarser meshes than the quantitative error estimator. Since the
functional J only evaluates for T = 1, this is not an efficient discretization. This behavior
although is clear since the heuristic error indicator only measures the smoothness of the
solution and cannot incorporate sensitivity information from the dual solution.

Now, we choose a fixed spatial mesh with 12675 degrees of freedom leading to a spatial
discretization error of about 5 · 10−5 and apply adaptive refinement in time by means of
either the quantitative error estimator ηk or the heuristic error indicator η̃k. The results are
shown in Figure 4.9. Again, we note a better order of convergence using the quantitative
error estimator to trigger the refinement of the temporal discretization compared to the
refinement based on the heuristic error indicator. These results become clear when noting
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(a) t = 0.00 (b) t = 0.80 (c) t = 0.85

(d) t = 0.90 (e) t = 0.92 (f) t = 0.94

(g) t = 0.96 (h) t = 0.98 (i) t = 1.00

Figure 4.6. Spatial meshes at different time points obtained with the cG(1)dG(0)
discretization
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Figure 4.7. Comparison of the discretization errors
∣∣J(uk)− J(ukh)

∣∣ obtained
by adaptive spatial refinement using the quantitative error estimator
ηh or the heuristic error indicator η̃h

that the quantitative error estimator leads to adaptive refinement of the time interval
only near final time T = 1 whereas the heuristic error indicator in fact leads to uniform
refinement of the time interval. This is more or less obvious since the temporal smoothness
of the exact solution is quite similar on the whole time interval I = (0, 1). Only the
quantitative error estimator ηk detects by using sensitivity information from the dual
solution that a large discretization error near t = 0 (nearly) does not influence the accuracy
of the functional value J(ukh) which only acts on final time T = 1. Hence, the quantitative
error estimator leads to an incomparably more efficient discretization.

The most severe drawback of the heuristic error indicators is that they are not able to
quantitatively assess the discretization error. This is due to the fact that the constant C
in their development usually is unknown. Hence, it is not possible to use η̃h or η̃k in an
adaptive algorithm like Algorithm 4.1 to equilibrate the temporal and spatial contribution
of the total discretization error. Thus, using only heuristic error indicators may be suitable
for stationary problems, but in the context of time-dependent problems they hardly lead
to efficient adaptive discretizations. To obtain efficient discretizations for nonstationary
problems, the adaptive refinement of the temporal and spatial discretization has to be
based on quantitative error estimators like the ones developed in Section 4.2.

We have seen that the use of the proposed quantitative error estimators leads to more
efficient discretizations. This quickly compensates the additional computational costs due
to the additional dual problem that has to be solved and finally saves time when doing
simulations in computational fluid dynamics.
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(a) t = 0.00 (b) t = 0.25

(c) t = 0.50 (d) t = 0.75

(e) t = 1.00

Figure 4.8. Comparison of spatial meshes created by the quantitative error
estimator ηh (left) and the heuristic error indicator η̃h (right) after
five refinement cycles using dynamic meshes with the cG(1)dG(0)
discretization
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Figure 4.9. Comparison of the discretization errors
∣∣J(uh)− J(ukh)

∣∣ obtained
by adaptive temporal refinement using the quantitative error esti-
mator ηk or the heuristic error indicator η̃k
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In this chapter, we discuss a particular problem which arises when using dynamic meshes
in the approximation of solutions of the incompressible Navier-Stokes equations. The
outline of this chapter is as follows: In the first Section 5.1, we present a simulation of the
benchmark problem “Laminar Flow Around a Cylinder“ (see Schäfer and Turek [95] and
Section 6.1) using the cG(1)dG(1) discretization on dynamic meshes. In Section 5.2, we
show that the effects shown in Section 5.1 are not specifically related to the Navier-Stokes
equations, but can already be seen when solving the linear Stokes equations on dynamic
meshes. We will see that while the approximations of the velocities are quite satisfactory,
the approximation of the pressure on dynamic meshes deteriorates. Section 5.3 focuses on
the precise numerical analysis of the error that occurs after changing the spatial mesh. For
this, we apply the cG(s)dG(0) and the cG(s)dG(1) discretization to two model problems.
We especially investigate the behavior of the error under systematic refinement of the
temporal and the spatial discretization. Furthermore, we present some results using the
inf-sup-stable Q2/Q1-Taylor-Hood element (see, for instance, Hood and Taylor [69]) for
the spatial discretization to show that the effects are not induced by stabilization. In
addition to the already presented Galerkin finite element discretizations in time, we also
study the fractional-step-θ scheme (see, for example, Müller-Urbaniak [81]) in combination
with dynamic meshes which is a widely used finite difference scheme for the temporal
discretization in computational fluid dynamics. The following Section 5.4 then presents
some attempts to solve the problem discussed in this chapter. In the final Section 5.5, we
analytically investigate the phenomenon discussed in this chapter.

5.1 Description of the problem

In this section, we aim at computing the mean lift-coefficient in the two-dimensional
benchmark problem “Laminar Flow Around a Cylinder”, see Schäfer and Turek [95] and
Section 6.1.1 for a detailed description of the setting as well as the precise formula for the
lift-coefficient.

The time-dependent inflow condition is given by

v1(t,x) =
6 sin( πt8 s)
(0.41 m)2x2(0.41 m− x2) m s−1, v2(t,x) = 0 m s−1

which yields a time-dependent Reynolds number of 0 ≤ Re(t) ≤ 100 for t ∈ I = (0 s, 8 s).
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In this example, we apply the cG(1)dG(1) discretization. After five iterations of adaptive
temporal and spatial refinement using dynamic meshes, the temporal evolution of the
lift-coefficient looks as depicted in Figure 5.1.
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Figure 5.1. Lift-coefficient clift after five adaptation cycles

We note slight oscillations in the lift-coefficient, for example, near t = 7.25 s. Further
investigations show that such oscillations especially occur when switching from one spatial
mesh to another. In the following sections, we are going to numerically analyze these
oscillations.

5.2 Reduction to model problem

In this section, we will show that the oscillations in the lift-coefficient shown in the last
section are caused by errors solely located in the discrete pressure when switching from one
spatial mesh to another. This effect can already be observed when solving the linear Stokes
equations instead of the nonlinear Navier-Stokes equations. Furthermore, these errors also
arise when applying uniform refinement of a mesh. We state two model problems: one on
a domain with curved boundary and one on a polygonally bounded domain.

Let us first show that the arising problems are not related to the time-dependent inflow
boundary condition. To this end, we remove the oscillatory sine-term from the inflow
condition and reduce the inflow velocity to

v1(t,x) = 1.2
(0.41 m)2x2(0.41 m− x2) m s−1, v2(t,x) = 0 m s−1.
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5.2 Reduction to model problem

This yields a constant Reynolds number of Re = 20 with a stationary solution. Since the
effects we want to study can already be seen when working with the simplest temporal
discretization, we apply the cG(1)dG(0) discretization which here coincides with the
backward Euler scheme since there are no forces f depending on time. We now focus
on computing the drag-coefficient whose reference value in this configuration is given as
c

(ref)
drag = 5.57953523384, see, for example, Nabh [82].

We use the time interval I = (0 s, 8 s) with different spatial meshes. Denoting the meshes on
(1 s, 2 s] ∪ (3 s, 4 s] ∪ (5 s, 6 s] ∪ (7 s, 8 s] with Th, we use the mesh T2h on [0 s, 1 s] ∪ (2 s, 3 s] ∪
(4 s, 5 s] ∪ (6 s, 7 s]. That is, we perform uniform refinement of the spatial mesh at t = 1 s,
t = 3 s, t = 5 s, and t = 7 s, whereas at t = 2 s, t = 4 s, and t = 6 s uniform coarsening is
applied. The evolution of the drag-coefficient for a uniform time step size of k = 6.25 ·10−3 s
on the time interval [0.5 s, 4.5 s] is shown in Figure 5.2. We neglect the beginning of the
time interval where a singularity in the pressure evolves for t → 0 due to compatibility
conditions that are not fulfilled with the initial condition v0 = 0, see, for instance, Heywood
and Rannacher [65]. The evolution for t > 4.5 s is exactly the same as shown in Figure 5.2,
since the discrete solution always reaches the steady state on Th or T2h before the spatial
mesh is changed again. The spatial meshes T2h and Th used in these computations are
depicted in Figure 5.3.
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Figure 5.2. Temporal evolution of the drag-coefficient

We observe that precisely in the first time step on the new mesh the drag-coefficient
deteriorates. We also note that these errors are even larger than in the example presented
in the previous section.

In the remaining part of this section, we will show that these errors occurring when
switching the spatial mesh are solely located in the discrete pressure. Furthermore, we will
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5 Issues on Dynamic Meshes

(a) Mesh T2h

(b) Mesh Th

Figure 5.3. Spatial meshes used for the computation of the drag-coefficient

show that these effects are not specifically related to the nonlinearity of the Navier-Stokes
equations or to higher Reynolds numbers, but also arise when solving the linear Stokes
equations with ν = 1. Therefore, we introduce two linear model problems with known
analytical (stationary) solution: one on a domain with curved boundary and one on a
polygonally bounded domain. These simple configurations allow us to study the presented
phenomenon. For sake of simplicity, we use the cG(1)dG(0) discretization here, too.

Hence, we want to find (v, p)T such that

∂tv −∆v +∇p = f in I ×Ω,
∇ · v = 0 in I ×Ω,

v = 0 in { 0 } ×Ω,
v = 0 on I × ∂Ω.

(5.1)

The two configurations mentioned above are the following ones:

Configuration I: Let I = (0, 9) and Ω = (−1, 1)2. Let f be given in such a way that (5.1)
possesses the stationary solution

v(x) =
(

cos2(πx1
2 ) cos(πx2

2 ) sin(πx2
2 )

− cos(πx1
2 ) sin(πx1

2 ) cos2(πx2
2 )

)
,

p(x) = cos(πx1
2 ) sin(πx1

2 ) cos(πx2
2 ) sin(πx2

2 ).
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5.2 Reduction to model problem

Configuration II: Let I = (0, 9) and Ω = B1(0) ⊆ R2. Let f be given in such a way
that (5.1) possesses the stationary solution

v(x) =
(
−x2(1− |x|2)
x1(1− |x|2)

)
,

p(x) = cos(π |x|2).

We subdivide Ī = I(1) ∪ I(2) ∪ I(3) with
I(1) = [0, 3], I(2) = (3, 6], I(3) = (6, 9].

On I(1) and I(3) we use a uniform spatial mesh of cell size 2h, whereas on the subinterval
I(2) a uniform spatial mesh of cell size h is used. That is, we switch the spatial mesh
uniformly from 2h to h at t = 3 and from h to 2h at t = 6. The subintervals are chosen
long enough for the discrete solution to reach the stationary limit on each mesh. The
spatial meshes Th used on the subinterval I(2) are depicted in Figure 5.4.

(a) Configuration I (b) Configuration II

Figure 5.4. Spatial meshes Th used on I(2)

The errors
∥∥∇(v − vkh)

∥∥ and ‖p− pkh‖ for a uniform step size of k ≈ 2 · 10−4 are shown
in Figure 5.5. As we can see, both the velocity and the pressure approximation show a
transient phenomenon when switching the spatial mesh. However, while the approximation
of the velocity component is quite satisfactory, the transient phenomenon in the pressure
component is superposed by an additional error which causes the approximation of the
pressure to deteriorate under a change of the spatial mesh, see Figure 5.6. The larger
errors near t = 0 stem from the fact that we do not start the simulation with the stationary
solution, but rather with v0 = 0. Hence the error compared to the stationary limit is large.
We can conclude that the effect seen here does not originate from the approximation of the
curved boundary, since we observe the same behavior in Configuration I and Configuration
II.

In the next section, we will further analyze how these errors behave under systematic
refinement of the temporal and spatial discretization.
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(b) Configuration II

Figure 5.5. Errors
∥∥∇(v − vkh)

∥∥ (left) and ‖p− pkh‖ (right)
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Figure 5.6. Errors
∥∥∇(v − vkh)

∥∥ (left) and ‖p− pkh‖ (right) near t = 6
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5 Issues on Dynamic Meshes

5.3 Behavior of the error under temporal and spatial
refinement

In this section, we numerically analyze the behavior of the error described in the last
section. We especially consider systematic uniform refinement of the temporal and spatial
discretization. The analysis will be done by means of the Configurations I and II presented
in the previous section. Thereby, we are going to consider the equal-order cG(1) and
cG(2) discretizations in space together with the local projection stabilization as well as the
inf-sup-stable Q2/Q1-Taylor-Hood element. For the temporal discretization we will apply
the dG(0) and dG(1) method as well as the fractional-step-θ scheme which for convenience
of the reader is briefly presented below.

Let the parameters

θ = 1− 1
2
√

2, θ′ = 1− 2θ, α = θ′

1− θ , β = 1− α

be given. Then one fractional-step-θ time step (Vm−1, Pm−1)T → (Vm, Pm)T for the
incompressible Navier-Stokes equations consists of the following three sub-steps tm−1 →
tm−1+θ → tm−θ → tm (where the equations should be fulfilled for all ϕ = (ψ, χ)T ∈
(Hm

h )d × Lmh ):

tm−1 → tm−1+θ:

(Vm−1+θ,ψ) + αθkm
{
ν(∇Vm−1+θ,∇ψ) + ((Vm−1+θ · ∇)Vm−1+θ,ψ)

}
+ θkm(Pm−1+θ,∇ ·ψ) = (Vm−1,ψ)− βθkm

{
ν(∇Vm−1,∇ψ)

+ ((Vm−1 · ∇)Vm−1,ψ)
}

+ θkm(fm−1,ψ)

(∇ · Vm−1+θ, χ) = 0

tm−1+θ → tm−θ:

(Vm−θ,ψ) + βθ′km
{
ν(∇Vm−θ,∇ψ) + ((Vm−θ · ∇)Vm−θ,ψ)

}
+ θ′km(Pm−θ,∇ ·ψ) = (Vm−1+θ,ψ)− αθ′km

{
ν(∇Vm−1+θ,∇ψ)

+ ((Vm−1+θ · ∇)Vm−1+θ,ψ)
}

+ θ′km(fm−θ,ψ)

(∇ · Vm−θ, χ) = 0

tm−θ → tm:

(Vm,ψ) + αθkm
{
ν(∇Vm,∇ψ) + ((Vm · ∇)Vm,ψ)

}
+ θkm(Pm,∇ ·ψ) = (Vm−θ,ψ)− βθkm

{
ν(∇Vm−θ,∇ψ)

+ ((Vm−θ · ∇)Vm−θ,ψ)
}

+ θkm(fm−θ,ψ)

(∇ · Vm, χ) = 0
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5.3 Behavior of the error under temporal and spatial refinement

For simplicity, we have omitted terms arising from stabilization.

In the following two sections, the behavior of the error in the pressure under systematic
uniform refinement of the spatial or the temporal discretization is studied for different
spatial and temporal discretizations. Since the error is concentrated to the first time step
on a new mesh, we especially focus on its development there.

5.3.1 Spatial refinement

This section is dedicated to the numerical analysis of the error in the pressure under uniform
refinement of the spatial discretization. To this end, we fix the temporal discretization
which is either the dG(0), dG(1), or fractional-step-θ method. We always use a uniform
time step size of k = 3 · 10−2. As in the previous section, we use the mesh T2h on I(1) and
I(3), whereas on I(2) the mesh Th is used. We study the development of the error in the
pressure component for h→ 0.

Let us first consider Configuration I. When using the dG(0) discretization in time, we obtain
the results shown in Table 5.1. The corresponding results for the dG(1) time discretization
are given in Table 5.2. Using the fractional-step-θ scheme for the temporal discretization
leads to the results which are presented in Table 5.3. The orders of convergence given in
the last lines are numerically computed from the values on the two finest discretizations.

Table 5.1. Configuration I: ‖p− pkh‖ under spatial refinement for the dG(0)
time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.88 ·10−01 4.94 ·10−01 2.44 ·10−02 5.47 ·10−02 2.95 ·10−02 5.19 ·10−02

2 5.67 ·10−02 1.82 ·10−01 3.41 ·10−03 1.21 ·10−02 2.81 ·10−03 9.15 ·10−03

3 1.89 ·10−02 5.74 ·10−02 7.45 ·10−04 2.95 ·10−03 5.24 ·10−04 2.08 ·10−03

4 6.00 ·10−03 1.77 ·10−02 1.84 ·10−04 7.36 ·10−04 1.27 ·10−04 5.10 ·10−04

order 1.66 1.70 2.02 2.00 2.04 2.03

Table 5.2. Configuration I: ‖p− pkh‖ under spatial refinement for the dG(1)
time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 4.51 ·10−01 4.78 ·10−01 4.34 ·10−02 4.53 ·10−02 5.41 ·10−02 3.85 ·10−02

2 3.96 ·10−02 1.31 ·10−01 4.53 ·10−03 1.19 ·10−02 4.28 ·10−03 8.74 ·10−03

3 1.51 ·10−02 4.87 ·10−02 7.75 ·10−04 2.95 ·10−03 5.68 ·10−04 2.07 ·10−03

4 5.81 ·10−03 1.73 ·10−02 1.85 ·10−04 7.36 ·10−04 1.28 ·10−04 5.10 ·10−04

order 1.38 1.49 2.07 2.00 2.15 2.02
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Table 5.3. Configuration I: ‖p− pkh‖ under spatial refinement for the fractional-
step-θ time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 8.00 ·10−02 3.45 ·10−01 1.04 ·10−02 4.43 ·10−02 9.27 ·10−03 4.46 ·10−02

2 3.27 ·10−02 1.40 ·10−01 2.51 ·10−03 9.76 ·10−03 2.11 ·10−03 8.72 ·10−03

3 1.34 ·10−02 4.24 ·10−02 6.25 ·10−04 2.39 ·10−03 5.33 ·10−04 2.07 ·10−03

4 5.15 ·10−03 1.40 ·10−02 1.50 ·10−04 5.96 ·10−04 1.28 ·10−04 5.10 ·10−04

order 1.38 1.60 2.06 2.00 2.06 2.02

If we perform the same tests with Configuration II, we obtain for the dG(0), dG(1), and
fractional-step-θ time discretization the results shown in Tables 5.4–5.6, respectively.

We can conclude that the error in the pressure component in the first time step on a new
spatial mesh converges for h → 0 (at least) with the same order as the overall spatial
discretization error.

Table 5.4. Configuration II: ‖p− pkh‖ under spatial refinement for the dG(0)
time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 1.48 ·10−01 2.81 ·10−01 4.72 ·10−02 1.04 ·10−01 4.59 ·10−02 1.12 ·10−01

2 5.53 ·10−02 9.85 ·10−02 1.17 ·10−02 4.35 ·10−02 1.16 ·10−02 4.48 ·10−02

3 1.56 ·10−02 3.97 ·10−02 2.89 ·10−03 1.16 ·10−02 2.89 ·10−03 1.15 ·10−02

4 4.03 ·10−03 1.14 ·10−02 7.21 ·10−04 2.90 ·10−03 7.20 ·10−04 2.88 ·10−03

order 1.95 1.80 2.00 2.00 2.01 2.00

Table 5.5. Configuration II: ‖p− pkh‖ under spatial refinement for the dG(1)
time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 1.53 ·10−01 2.73 ·10−01 4.87 ·10−02 1.00 ·10−01 4.79 ·10−02 1.48 ·10−01

2 5.56 ·10−02 9.57 ·10−02 1.18 ·10−02 4.31 ·10−02 1.16 ·10−02 4.42 ·10−02

3 1.57 ·10−02 3.92 ·10−02 2.89 ·10−03 1.16 ·10−02 2.87 ·10−03 1.13 ·10−02

4 4.04 ·10−03 1.14 ·10−02 7.21 ·10−04 2.90 ·10−03 7.19 ·10−04 2.86 ·10−03

order 1.96 1.78 2.00 2.00 2.00 1.98
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Table 5.6. Configuration II: ‖p− pkh‖ under spatial refinement for the fractional-
step-θ time discretization with different spatial discretizations

Refinement cG(1) cG(2) Q2/Q1
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 1.47 ·10−01 2.63 ·10−01 4.70 ·10−02 1.05 ·10−01 4.46 ·10−02 1.10 ·10−01

2 5.60 ·10−02 9.83 ·10−02 1.19 ·10−02 4.46 ·10−02 1.15 ·10−02 4.46 ·10−02

3 1.57 ·10−02 4.15 ·10−02 2.92 ·10−03 1.16 ·10−02 2.89 ·10−03 1.15 ·10−02

4 4.10 ·10−03 1.15 ·10−02 7.23 ·10−04 2.90 ·10−03 7.20 ·10−04 2.88 ·10−03

order 1.94 1.85 2.01 2.00 2.00 2.00

5.3.2 Temporal refinement

In this section, the development of the pressure error under systematic uniform refinement
of the temporal discretization is considered, that is we consider the case k → 0. To
this end, we fix the spatial discretization which is either the equal-order cG(1) or cG(2)
method together with local projection stabilization or the inf-sup-stable Q2/Q1-Taylor-
Hood element. The spatial meshes Th used on the subintervals I(2) are the ones depicted in
Figure 5.4. On the subintervals I(1) and I(3) the corresponding meshes T2h are employed.

Firstly, we consider again Configuration I. For the cG(1) discretization in space, we obtain
the results of Table 5.7. The corresponding results for the cG(2) discretization are given in
Table 5.8, whereas Table 5.9 shows the results obtained with the inf-sup-stable Q2/Q1-
Taylor-Hood element. As in the previous section, the order of convergence is numerically
computed from the values of the two finest discretizations.

Table 5.7. Configuration I: ‖p− pkh‖ under temporal refinement for the cG(1)
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.12 ·10−01 5.16 ·10−01 4.75 ·10−01 6.39 ·10−01 1.04 ·10−01 1.48 ·10−01

2 5.52 ·10−01 8.86 ·10−01 9.83 ·10−01 1.39 ·10+00 1.75 ·10−01 1.49 ·10−01

3 1.02 ·10+00 1.63 ·10+00 1.97 ·10+00 2.89 ·10+00 2.33 ·10−01 1.49 ·10−01

4 1.96 ·10+00 3.14 ·10+00 3.90 ·10+00 5.90 ·10+00 2.71 ·10−01 1.49 ·10−01

order −0.94 −0.95 −0.99 −1.03 −0.22 0.00

Performing the same tests with Configuration II, leads to similar results which are presented
in Tables 5.10–5.12 for the cG(1), cG(2), and Q2/Q1 discretization in space, respectively.

We observe that under uniform refinement of the temporal discretization the error in the
pressure component when uniformly refining the spatial mesh increases like O(k−1) for the
dG(0) and the dG(1) discretization whereas for the fractional-step-θ scheme this error is
almost independent of k. For uniform coarsening of the spatial mesh we observe the same
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Table 5.8. Configuration I: ‖p− pkh‖ under temporal refinement for the cG(2)
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.56 ·10−02 2.38 ·10−02 4.31 ·10−02 3.15 ·10−02 5.41 ·10−03 1.07 ·10−02

2 4.87 ·10−02 4.00 ·10−02 8.66 ·10−02 6.12 ·10−02 8.44 ·10−03 1.16 ·10−02

3 9.38 ·10−02 7.28 ·10−02 1.75 ·10−01 1.24 ·10−01 1.05 ·10−02 1.24 ·10−02

4 1.83 ·10−01 1.38 ·10−01 3.54 ·10−01 2.54 ·10−01 1.16 ·10−02 1.29 ·10−02

order −0.96 −0.92 −1.02 −1.03 −0.14 −0.06

Table 5.9. Configuration I: ‖p− pkh‖ under temporal refinement for the Q2/Q1
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.80 ·10−02 2.35 ·10−02 4.70 ·10−02 2.97 ·10−02 5.26 ·10−03 1.00 ·10−02

2 5.35 ·10−02 4.05 ·10−02 9.42 ·10−02 5.94 ·10−02 8.33 ·10−03 1.12 ·10−02

3 1.03 ·10−01 7.38 ·10−02 1.91 ·10−01 1.23 ·10−01 1.04 ·10−02 1.22 ·10−02

4 2.01 ·10−01 1.40 ·10−01 3.85 ·10−01 2.51 ·10−01 1.15 ·10−02 1.28 ·10−02

order −0.96 −0.92 −1.01 −1.03 −0.15 −0.07

Table 5.10. Configuration II: ‖p− pkh‖ under temporal refinement for the cG(1)
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 9.43 ·10−02 1.11 ·10−01 1.36 ·10−01 1.06 ·10−01 6.19 ·10−02 1.09 ·10−01

2 1.52 ·10−01 1.18 ·10−01 2.51 ·10−01 1.17 ·10−01 7.04 ·10−02 1.16 ·10−01

3 2.73 ·10−01 1.26 ·10−01 4.90 ·10−01 1.37 ·10−01 8.16 ·10−02 1.20 ·10−01

4 5.17 ·10−01 1.43 ·10−01 9.75 ·10−01 1.86 ·10−01 9.20 ·10−02 1.23 ·10−01

order −0.93 −0.18 −0.99 −0.44 −0.17 −0.04

Table 5.11. Configuration II: ‖p− pkh‖ under temporal refinement for the cG(2)
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.15 ·10−02 4.55 ·10−02 3.29 ·10−02 4.41 ·10−01 1.22 ·10−02 4.55 ·10−02

2 3.63 ·10−02 4.68 ·10−02 6.07 ·10−02 4.61 ·10−02 1.34 ·10−02 4.68 ·10−02

3 6.68 ·10−02 4.86 ·10−02 1.17 ·10−01 4.96 ·10−02 1.59 ·10−02 4.85 ·10−02

4 1.27 ·10−01 5.08 ·10−02 2.32 ·10−01 5.61 ·10−02 1.91 ·10−02 4.99 ·10−02

order −0.93 −0.06 −0.99 −0.18 −0.26 −0.04
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Table 5.12. Configuration II: ‖p− pkh‖ under temporal refinement for theQ2/Q1
discretization with different temporal discretizations

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.29 ·10−02 4.52 ·10−02 3.72 ·10−02 4.47 ·10−02 1.18 ·10−02 4.47 ·10−02

2 4.02 ·10−02 4.64 ·10−02 7.02 ·10−02 4.60 ·10−02 1.22 ·10−02 4.50 ·10−02

3 7.62 ·10−02 5.02 ·10−02 1.38 ·10−01 5.13 ·10−02 1.29 ·10−02 4.59 ·10−02

4 1.48 ·10−01 6.06 ·10−02 2.76 ·10−01 7.01 ·10−02 1.42 ·10−02 4.69 ·10−02

order −0.96 −0.27 −1.00 −0.45 −0.14 −0.03

behavior in Configuration I, whereas in Configuration II the occurring error seems to be
bounded.

Since the support of this error is exactly one time step, this shows the behavior of a Dirac
approximation and hence the error, for example, in mean functional values involving the
pressure does not vanish for k → 0.

5.4 Attempts to solve this problem

We have seen in the previous sections that the error in the pressure occurring when switching
the spatial mesh decreases with (at least) the same order as the spatial discretization
error for h→ 0, but increases like O(k−1) for k → 0. We showed that this effect does not
originate from the stabilization since the inf-sup-stable Taylor-Hood element also produces
qualitatively the same error. In this section, we discuss some attempts to overcome this
problem and obtain pressure approximations which remain bounded for k → 0.

Since the approximation of the velocity component is quite satisfactory and only the
pressure approximation deteriorates and since the error is solely located in the first time
step on the new spatial mesh, one is lead to the assumption that the problem arises from
the fact that the velocity field from the last time step is not divergence-free with respect
to the test functions of the new finite element space. We present three “ideas” that might
be able to deal with this phenomenon:

Repeating one time step: After computing (Vm−1, Pm−1)T ∈ (Hm−1
h )d × Lm−1

h repeat
the current time step to determine approximations (Ṽm−1, P̃m−1)T ∈ (Hm

h )d × Lmh
for t = tm−1, but already in the finite element spaces corresponding to t = tm. One
can hope that then only P̃m−1 contains this error and since Ṽm−1 is divergence-free
with respect to test functions in (Hm

h )d this error probably does not occur again
when computing (Vm, Pm)T ∈ (Hm

h )d × Lmh using the initial values Ṽm−1.

Divergence-free L2-projection (H-projection): After computing (Vm−1, Pm−1)T ∈
(Hm−1

h )d × Lm−1
h first compute a projection Ṽm−1 of Vm−1 into (Hm

h )d which is
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divergence-free with respect to test functions in (Hm
h )d and use this projection as

initial values for the next time step. The projection is determined by

(Ṽm−1,ψ)− (P̃ ,∇ ·ψ) = (Vm−1,ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lmh .
(5.2)

Divergence-free H1
0 -projection (V -projection): Same procedure as for “Divergence-

free L2-projection”, but this time the projection is determined by

(∇Ṽm−1,∇ψ)− (P̃ ,∇ ·ψ) = (∇Vm−1,∇ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lmh .
(5.3)

In the sequel, we denote the divergence-free L2-projection by H-projection and the
divergence-free H1

0 -projection by V -projection. For the definition of the spaces H and
V see (2.1). For the equal-order spatial discretizations cG(1) and cG(2) the variational
formulations given above have to be stabilized, of course. This is also done by means of
the local projection stabilization.

Since the behavior of the pressure error already is of the right order for h→ 0, we discuss
in this section only the influence of the presented “ideas” on the development of the error
under uniform temporal refinement. To this end, we consider only Configuration I because
the results for Configuration II are similar to those of Configuration I and perform the
same numerical analysis as in Section 5.3.2. The spatial meshes used are again the ones
depicted in Figure 5.4.

5.4.1 Repeating one time step

In this section, we present the development of the pressure error when repeating the last
time step of the old spatial mesh on the new one to determine the initial values for the
first real time step on the new mesh.

The results under uniform temporal refinement are listed in Tables 5.13–5.15 for the cG(1),
cG(2), and Q2/Q1 spatial discretization, respectively.

We observe for all spatial discretizations that repeating one time step leads to a slower
increase of the error in the pressure when switching the spatial mesh from T2h to Th and
to an almost constant error when switching from Th to T2h.

5.4.2 H-projection

In this section, we present the development of the pressure error when using the H-
projection of the old velocity field into the new finite element space as initial values when
switching the spatial mesh.
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Table 5.13. Configuration I: ‖p− pkh‖ for the cG(1) discretization with different
temporal discretizations and repeating one time step

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 8.57 ·10−02 7.47 ·10−01 4.66 ·10−02 7.48 ·10−01 4.64 ·10−02 1.47 ·10−01

2 1.52 ·10−01 7.50 ·10−01 1.01 ·10−01 7.51 ·10−01 9.90 ·10−02 1.48 ·10−01

3 2.45 ·10−01 7.52 ·10−01 2.11 ·10−01 7.52 ·10−01 1.71 ·10−01 1.49 ·10−01

4 3.36 ·10−01 7.52 ·10−01 3.21 ·10−01 7.52 ·10−01 2.31 ·10−01 1.49 ·10−01

order −0.46 0.00 −0.61 0.00 −0.43 0.00

Table 5.14. Configuration I: ‖p− pkh‖ for the cG(2) discretization with different
temporal discretizations and repeating one time step

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 4.14 ·10−03 4.41 ·10−01 3.26 ·10−03 4.46 ·10−01 2.95 ·10−03 1.01 ·10−02

2 6.06 ·10−03 4.36 ·10−01 5.09 ·10−03 4.39 ·10−01 5.14 ·10−03 1.05 ·10−02

3 8.40 ·10−03 4.31 ·10−01 7.96 ·10−03 4.33 ·10−01 8.11 ·10−03 1.14 ·10−02

4 1.04 ·10−02 4.27 ·10−01 1.03 ·10−02 4.28 ·10−01 1.03 ·10−02 1.22 ·10−02

order −0.31 0.01 −0.37 0.02 −0.34 −0.10

Table 5.15. Configuration I: ‖p− pkh‖ for the Q2/Q1 discretization with differ-
ent temporal discretizations and repeating one time step

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.61 ·10−03 9.33 ·10−03 2.53 ·10−03 9.01 ·10−03 4.10 ·10−03 9.60 ·10−03

2 5.74 ·10−03 1.00 ·10−02 4.70 ·10−03 9.66 ·10−03 7.12 ·10−03 1.07 ·10−02

3 8.16 ·10−03 1.10 ·10−02 7.72 ·10−03 1.08 ·10−02 9.66 ·10−03 1.18 ·10−02

4 1.01 ·10−02 1.20 ·10−02 1.00 ·10−02 1.19 ·10−02 1.11 ·10−02 1.26 ·10−02

order −0.31 −0.13 −0.37 −0.14 −0.20 −0.09

Table 5.16. Configuration I: ‖p− pkh‖ for the cG(1) discretization with different
temporal discretizations and H-projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.47 ·10−02 1.27 ·10−01 3.77 ·10−02 1.28 ·10−01 3.08 ·10−02 1.25 ·10−01

2 3.42 ·10−02 1.25 ·10−01 3.51 ·10−02 1.25 ·10−01 3.12 ·10−02 1.24 ·10−01

3 3.48 ·10−02 1.24 ·10−01 3.49 ·10−02 1.24 ·10−01 3.28 ·10−02 1.24 ·10−01

4 3.57 ·10−02 1.24 ·10−01 3.57 ·10−02 1.24 ·10−01 3.42 ·10−02 1.24 ·10−01

order −0.04 0.00 −0.03 0.00 −0.06 0.00
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Table 5.17. Configuration I: ‖p− pkh‖ for the cG(2) discretization with different
temporal discretizations and H-projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 5.73 ·10−03 1.48 ·10−02 5.54 ·10−03 1.30 ·10−02 5.29 ·10−03 1.27 ·10−02

2 6.97 ·10−03 1.73 ·10−02 7.82 ·10−03 1.59 ·10−02 7.81 ·10−03 1.64 ·10−02

3 7.67 ·10−03 1.99 ·10−02 8.72 ·10−03 1.93 ·10−02 8.64 ·10−03 1.98 ·10−02

4 7.69 ·10−03 2.19 ·10−02 8.36 ·10−03 2.17 ·10−02 8.24 ·10−03 2.20 ·10−02

order 0.00 −0.14 0.06 −0.17 0.07 −0.15

Table 5.18. Configuration I: ‖p− pkh‖ for the Q2/Q1 discretization with differ-
ent temporal discretizations and H-projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 6.44 ·10−03 1.03 ·10−02 4.74 ·10−03 9.63 ·10−03 5.23 ·10−03 9.83 ·10−03

2 8.48 ·10−03 1.12 ·10−02 7.79 ·10−03 1.08 ·10−02 8.27 ·10−03 1.10 ·10−02

3 1.02 ·10−02 1.21 ·10−02 1.01 ·10−02 1.19 ·10−02 1.04 ·10−02 1.20 ·10−02

4 1.13 ·10−02 1.27 ·10−02 1.13 ·10−02 1.26 ·10−02 1.14 ·10−02 1.27 ·10−02

order −0.15 −0.07 −0.16 −0.08 −0.13 −0.08

The results under uniform temporal refinement are listed in Tables 5.16–5.18 for the cG(1),
cG(2), and Q2/Q1 spatial discretization, respectively.

We can conclude that using the H-projection of the velocity of the last time step into the
new finite element space as initial values leads to pressure errors which are bounded for
k → 0. Actually, the pressure error becomes almost independent of k.

5.4.3 V -projection

In this section, we present the development of the pressure error when using the V -projection
of the old velocity field into the new finite element space as initial values when switching
the spatial mesh.

The results under uniform temporal refinement are listed in Tables 5.19–5.21 for the cG(1),
cG(2), and Q2/Q1 spatial discretization, respectively.

Using the V -projection of the old velocity into the new finite element space also leads to
pressure errors which remain bounded for k → 0.

We have seen that all three “ideas” are able to (almost) remove the O(k−1) increase in the
pressure error while the H-projection performs best compared to the other strategies. This
also substantiates the fact that the fractional-step-θ scheme leads to bounded pressure
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Table 5.19. Configuration I: ‖p− pkh‖ for the cG(1) discretization with different
temporal discretizations and V -projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 1.18 ·10−01 1.47 ·10−01 7.23 ·10−02 1.47 ·10−01 8.35 ·10−02 1.24 ·10−01

2 1.59 ·10−01 1.47 ·10−01 1.32 ·10−01 1.47 ·10−01 1.33 ·10−01 1.24 ·10−01

3 1.99 ·10−01 1.47 ·10−01 1.87 ·10−01 1.47 ·10−01 1.73 ·10−01 1.24 ·10−01

4 2.28 ·10−01 1.47 ·10−01 2.24 ·10−01 1.47 ·10−01 1.99 ·10−01 1.24 ·10−01

order −0.20 0.00 −0.26 0.00 −0.20 0.00

Table 5.20. Configuration I: ‖p− pkh‖ for the cG(2) discretization with different
temporal discretizations and V -projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 6.08 ·10−03 1.20 ·10−02 4.86 ·10−03 1.19 ·10−02 4.90 ·10−03 9.98 ·10−03

2 7.84 ·10−03 1.21 ·10−02 7.39 ·10−03 1.21 ·10−02 7.65 ·10−03 1.01 ·10−02

3 9.34 ·10−03 1.22 ·10−02 9.33 ·10−03 1.22 ·10−02 9.49 ·10−03 1.02 ·10−02

4 1.03 ·10−02 1.23 ·10−02 1.04 ·10−02 1.23 ·10−02 1.04 ·10−02 1.03 ·10−02

order −0.14 −0.01 −0.16 −0.01 −0.13 −0.01

Table 5.21. Configuration I: ‖p− pkh‖ for the Q2/Q1 discretization with differ-
ent temporal discretizations and V -projection

Refinement dG(0) dG(1) fractional-step-θ
level t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 5.78 ·10−03 8.83 ·10−03 4.34 ·10−03 8.81 ·10−03 4.74 ·10−03 8.82 ·10−03

2 7.61 ·10−03 8.87 ·10−03 7.11 ·10−03 8.86 ·10−03 7.53 ·10−03 8.87 ·10−03

3 9.10 ·10−03 8.92 ·10−03 9.11 ·10−03 8.91 ·10−03 9.37 ·10−03 8.92 ·10−03

4 1.00 ·10−02 8.95 ·10−03 1.01 ·10−02 8.95 ·10−03 1.02 ·10−02 8.95 ·10−03

order −0.14 0.00 −0.15 −0.01 −0.12 0.00
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errors for k → 0 without any additional effort. Here, the pressure error is hidden in the
first sub-step and hence cannot be seen.

In the remaining part of this section, we want to compare all strategies. To this end,
we return to the benchmark configuration “Laminar Flow Around a Cylinder” with
constant inflow and Reynolds number Re = 20 which possesses a stationary solution.
The discretization used here is again the cG(1)dG(0) method involving local projection
stabilization. In Figure 5.7, the temporal evolution of the drag-coefficient is depicted for
different choices of the initial value. For completeness, we also show the results of the
fractional-step-θ scheme combined with a cG(1) discretization in space and local projection
stabilization. The upper picture shows the development when switching the spatial mesh
from T2h to Th which corresponds to a uniform refinement, while the lower picture shows the
drag-coefficient when switching from Th to T2h which corresponds to a uniform coarsening.
The labeling of the different curves is as follows:

• “original”: No additional operations are performed when switching the spatial mesh.

• “repeat”: When switching the spatial mesh, the last time step is repeated already on
the new mesh to obtain initial values.

• “H-projection”: When switching the spatial mesh, theH-projection of the old velocity
into the new finite element space is used as initial values for the new time step.

• “V -projection”: When switching the spatial mesh, the V -projection of the old velocity
into the new finite element space is used as initial values for the new time step.

When looking at the upper picture of Figure 5.7, we note the large error in the drag-
coefficient for the “original” method. Despite the first time step on the new mesh, the
curves of the “H-projection” and “V -projection” are relatively close to each other while
the “H-projection” is closest to the “original” curve. Repeating one time step leads to
a slightly different temporal evolution of the drag-coefficient which is close to the values
produced by the fractional-step-θ scheme.

If we consider the lower picture of Figure 5.7 which shows the temporal evolution of the
drag-coefficient under a uniform coarsening of the spatial mesh, we observe quite large
differences between the different strategies. While the “H-projection” mainly eliminates
the large error of the “original” curve and stays very close to it elsewhere, the other “ideas”
lead to completely different temporal evolutions of the drag-coefficient. Of course, for
t → ∞, those values converge to the same stationary limit as the other methods. The
fractional-step-θ scheme mainly leads to the same evolution of the drag-coefficient as the
“H-projection”.

In the next section, we will theoretically investigate this error and see that using the
H-projection of the old velocity into the new finite element space leads to exactly the same
velocity in the first time step on the new spatial mesh as for the “original” method, but
also to a bounded approximation of the pressure.
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Figure 5.7. Temporal evolution of the drag-coefficient for different initial values
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5.5 Theoretical investigation

This section presents a theoretical investigation of the behavior of the pressure approx-
imation when switching the spatial mesh. To this end, we consider the inf-sup-stable
Q2/Q1-Taylor-Hood element for the spatial discretization in combination with the backward
Euler time-stepping scheme. As in the previous sections, we consider uniform refinement
or coarsening of a uniformly refined mesh. Furthermore, we assume the domain Ω ⊆ Rd,
d ∈ { 2, 3 } to be polygonally bounded and convex.

Let (v, p)T ∈ H1
0 (Ω)d × L2(Ω)/R be the unique solution of the stationary Stokes problem

for ν = 1:
(∇v,∇ψ)− (p,∇ ·ψ) = (f ,ψ) ∀ψ ∈ H1

0 (Ω)d,
(∇ · v, χ) = 0 ∀χ ∈ L2(Ω)/R.

(5.4)

Then, this solution also satisfies (v, p)T ∈ H2(Ω)d ×H1(Ω) as well as the a priori estimate

‖v‖H2(Ω) + ‖p‖H1 ≤ C ‖f‖ , (5.5)

see Kellogg and Osborn [76] and Dauge [34].

Let a uniform decomposition TH of Ω ⊆ Rd into cells be given. We define the following
conforming finite element spaces for the Taylor-Hood element:

HH :=
{
vH ∈ C(Ω)

∣∣∣∣ vH ∣∣∣K ∈ Q2(K) ∀K ∈ TH
}
∩H1

0 (Ω),

LH :=
{
pH ∈ C(Ω)

∣∣∣∣ pH ∣∣∣K ∈ Q1(K) ∀K ∈ TH
}
∩ L2(Ω)/R.

Let (vH , pH)T ∈ Hd
H × LH be the approximate solution on the mesh TH , that is

(∇vH ,∇ψ)− (pH ,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
H ,

(∇ · vH , χ) = 0 ∀χ ∈ LH .
(5.6)

Uniformly refining or coarsening the mesh TH yields a spatial mesh Th and the corresponding
finite element spaces

Hh :=
{
vh ∈ C(Ω)

∣∣∣∣ vh∣∣∣K ∈ Q2(K) ∀K ∈ Th
}
∩H1

0 (Ω),

Lh :=
{
ph ∈ C(Ω)

∣∣∣∣ ph∣∣∣K ∈ Q1(K) ∀K ∈ Th
}
∩ L2(Ω)/R.

Performing one backward Euler step with step size k, seeks the solution (vkh, pkh)T ∈ Hd
h×Lh

of

1
k

(vkh,ψ) + (∇vkh,∇ψ)− (pkh,∇ ·ψ) = 1
k

(vH ,ψ) + (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · vkh, χ) = 0 ∀χ ∈ Lh.
(5.7)
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Using the H-projection P̃hvH of vH into Hd
h as initial value in the backward Euler step,

yields the solution (v̂kh, p̂kh)T ∈ Hd
h × Lh of

1
k

(v̂kh,ψ) + (∇v̂kh,∇ψ)− (p̂kh,∇ ·ψ) = 1
k

(P̃hvH ,ψ) + (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · v̂kh, χ) = 0 ∀χ ∈ Lh.
(5.8)

Hereby, P̃hvH is given as the first component of the solution (P̃hvH , p̃Hh )T ∈ Hd
h × Lh of

(P̃hvH ,ψ)− (p̃Hh ,∇ ·ψ) = (vH ,ψ) ∀ψ ∈ Hd
h,

(∇ · P̃hvH , χ) = 0 ∀χ ∈ Lh.
(5.9)

If we subtract equation (5.8) from (5.7), we obtain

1
k

(vkh − v̂
k
h,ψ) + (∇(vkh − v̂

k
h),∇ψ)− (pkh − p̂kh,∇ ·ψ) = −1

k
(p̃Hh ,∇ ·ψ) ∀ψ ∈ Hd

h,

(∇ · (vkh − v̂
k
h), χ) = 0 ∀χ ∈ Lh,

(5.10)
where we have applied (5.9) to obtain the right-hand side. Testing (5.10) with ψ =
vkh − v̂kh ∈ Hd

h and χ = pkh − p̂kh leads to

1
k

∥∥∥vkh − v̂kh∥∥∥2
+
∥∥∥∇(vkh − v̂

k
h)
∥∥∥2

= 0,

where the other terms cancel out due to the second equation of (5.10). Hence, we have
vkh = v̂kh.

When testing equation (5.7) with ψ = vkh and χ = pkh, we obtain

1
k

∥∥∥vkh∥∥∥2
+
∥∥∥∇vkh∥∥∥2

= 1
k

(vH ,vkh) + (f ,vkh)

and hence ∥∥∥vkh∥∥∥ ≤ ‖vH‖+ k ‖f‖ .

Since vH and f do not depend on time, we conclude that
∥∥∥vkh∥∥∥ remains bounded for k → 0.

Hence, there is at least one subsequence (which we also denote by vkh) and a function
v0
h ∈ Hd

h such that ∥∥∥vkh − v0
h

∥∥∥→ 0 (k → 0).

Since Hd
h is finite dimensional, vkh converges to v0

h in every norm, even point-wise.

Now let vkh denote such an arbitrary subsequence and v0
h ∈ Hd

h the corresponding limit.
Equation (5.7) is equivalent to the algebraic system(

M + kA kB

−BT 0

)(
xk

yk

)
=
(
bk

0

)
(5.11)
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with

M =
(
(ψj ,ψi)

)
i,j=1,...,NH

, A =
(
(∇ψj ,∇ψi)

)
i,j=1,...,NH

, B =
(
−(χj ,∇ ·ψi)

)
i=1,...,NH ,
j=1,...,NL

and right-hand side
bk =

(
(vH ,ψi) + k(f ,ψi)

)
i=1,...,NH

where we use the representations

vkh =
NH∑
j=1

xkjψj and pkh =
NL∑
j=1

ykj χj .

Here,
{
ψj

∣∣ j = 1, . . . , NH

}
is a basis of Hd

h while
{
χj
∣∣ j = 1, . . . , NL

}
is a basis of Lh.

This especially means
Mxk + kAxk + kByk = bk. (5.12)

Since vkh converges point-wise to v0
h, we have xk → x0 with

v0
h =

NH∑
j=1

x0
jψj .

For k → 0, we have
bk → b0 =

(
(vH ,ψi)

)
i=1,...,NH

,

because vH and f do not depend on time. Introducing the L2-projection PhvH ∈ Hd
h of

vH onto Hd
h determined by

(PhvH ,ψ) = (vH ,ψ) ∀ψ ∈ Hd
h,

we may write b0 = Mx̄ where x̄ ∈ RNH is given through the relation

PhvH =
NH∑
j=1

x̄jψj .

In virtue of (5.12), we conclude that kyk also converges for k → 0. By passing to the limit
k → 0 in (5.12), we obtain

Mx0 +By0 = Mx̄. (5.13)

y0 hereby is the limit of kyk for k → 0. Equation (5.13) may equivalently be written as

(v0
h,ψ)− (p0

h,∇ ·ψ) = (PhvH ,ψ) = (vH ,ψ) ∀ψ ∈ Hd
h,

which together with the second equation in (5.11) states that v0
h is just the H-projection

of vH into Hd
h. The Lagrange multiplier p0

h ∈ Lh herein is given as

p0
h =

NL∑
j=1

y0
jχj .
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If y0 = 0, we then have x0 = x̄ or equivalently v0
h = PhvH . Furthermore, this implies

(∇ · PhvH , χ) = (∇ · v0
h, χ) = 0 ∀χ ∈ Lh.

This in general will not be true. Hence, we conclude y0 6= 0 in general. Thus, there is
j ∈ { 1, . . . , NL } with y0

j 6= 0 and hence

kykj 6→ 0.

Then, we obviously obtain ∣∣∣ykj ∣∣∣ ≥ C 1
k

or
∥∥∥pkh∥∥∥ ≥ C 1

k
.

Remark 5.1. If Th is obtained from TH by uniform refinement, then we obviously have
HH ⊆ Hh as well as LH ⊆ Lh and thus the L2-projection from HH onto Hh is the identity
mapping. As a consequence, we have PhvH = vH . However, in general, we have

(∇ · vH , χ) 6= 0

for χ ∈ Lh r LH also in this case.

In the remaining part of this section, we want to show that the pressure approximations
p̂kh obtained through equation (5.8) remain bounded for k → 0.

Subtracting 1
k times the first equation of (5.9) from the first equation of (5.7) leads to

1
k

(vkh − P̃hvH ,ψ) + (∇vkh,∇ψ)− 1
k

(kpkh − p̃Hh ,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
h

or equivalently

1
k

(vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH),∇ψ)− 1
k

(kpkh − p̃Hh ,∇ ·ψ)

= (f ,ψ)− (∇P̃hvH ,∇ψ) ∀ψ ∈ Hd
h.

By testing with ψ = vkh − P̃hvH ∈ (Hk
h)d, we obtain

1
k

∥∥∥vkh − P̃hvH∥∥∥2
+
∥∥∥∇(vkh − P̃hvH)

∥∥∥2

= (f ,vkh − P̃hvH)− (∇P̃hvH ,∇(vkh − P̃hvH)), (5.14)

because the other terms cancel out due to the second equations of (5.7) and (5.9). For
the further analysis we need to introduce some auxiliary quantities: Let the approximate
solution (vh, ph)T ∈ Hd

h × Lh of the Stokes problem on the mesh Th be given by

(∇vh,∇ψ)− (ph,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · vh, χ) = 0 ∀χ ∈ Lh.
(5.15)
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The H-projection P̃hv of the continuous velocity v into Hd
h is given as the first component

of the solution (P̃hv, p̃h)T ∈ Hd
h × Lh of

(P̃hv,ψ)− (p̃h,∇ ·ψ) = (v,ψ) ∀ψ ∈ Hd
h,

(∇ · P̃hv, χ) = 0 ∀χ ∈ Lh.
(5.16)

Similarly, the V -projection R̃hv of the continuous velocity v into Hd
h is given as the first

component of the solution (R̃hv, r̃h)T ∈ Hd
h × Lh of

(∇R̃hv,∇ψ)− (r̃h,∇ ·ψ) = (∇v,∇ψ) ∀ψ ∈ Hd
h,

(∇ · R̃hv, χ) = 0 ∀χ ∈ Lh.
(5.17)

We then have for arbitrary ψ ∈ Hd
h∣∣∣(∇P̃hvH ,∇ψ)

∣∣∣ =
∣∣∣(∇(P̃hvH − R̃hv),∇ψ) + (∇(R̃hv − v),∇ψ) + (∇v,∇ψ)

∣∣∣
≤
{∥∥∥∇(P̃hvH − R̃hv)

∥∥∥+
∥∥∥∇(R̃hv − v)

∥∥∥} ‖∇ψ‖+
∣∣(∆v,ψ)

∣∣
≤ C

{
h−2

∥∥∥P̃hvH − R̃hv∥∥∥+ h−1
∥∥∥∇(R̃hv − v)

∥∥∥+ ‖∆v‖
}
‖ψ‖

≤ Ch−2
{∥∥∥P̃hvH − P̃hv∥∥∥+

∥∥∥P̃hv − v∥∥∥+
∥∥∥v − R̃hv∥∥∥

+ h
∥∥∥∇(R̃hv − v)

∥∥∥+ h2 ‖∆v‖
}
‖ψ‖ ,

(5.18)

where in the penultimate line inverse estimates have been used. We will now treat each
term separately.

By subtracting equation (5.16) from (5.9), we obtain

(P̃hvH − P̃hv,ψ)− (p̃Hh − p̃h,∇ ·ψ) = (vH − v,ψ) ∀ψ ∈ Hd
h,

(∇ · (P̃hvH − P̃hv), χ) = 0 ∀χ ∈ Lh.
(5.19)

Testing with ψ := P̃hvH − P̃hv and χ := p̃Hh − p̃h yields∥∥∥P̃hvH − P̃hv∥∥∥2
= (vH − v, P̃hvH − P̃hv)

and hence due to the Cauchy-Schwarz inequality∥∥∥P̃hvH − P̃hv∥∥∥ ≤ ‖vH − v‖ .
Using standard approximation results (see, for instance, Girault and Raviart [58] as well
as Lemma 3.1 and Lemma 3.2) and the a priori estimate (5.5), we obtain∥∥∥P̃hvH − P̃hv∥∥∥ ≤ ‖v − vH‖ ≤ CH2

{
‖v‖H2 + ‖p‖H1

}
≤ CH2 ‖f‖ . (5.20)

In order to estimate the next term, we note that from (5.16) we have

(P̃hv − v,ψ) = (p̃h,∇ ·ψ) ∀ψ ∈ Hd
h.
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Testing with ψ := vh − P̃hv and recalling that

(∇ · vh, χ) = (∇ · P̃hv, χ) = 0 ∀χ ∈ Lh,

we conclude
(P̃hv − v,vh − P̃hv) = (p̃h,∇ · (vh − P̃hv)) = 0.

Thus, we have∥∥∥P̃hv − v∥∥∥2
= (P̃hv − v, P̃hv − v) = (P̃hv − v,vh − v) ≤

∥∥∥P̃hv − v∥∥∥ ‖vh − v‖
and therefore ∥∥∥P̃hv − v∥∥∥ ≤ ‖v − vh‖ ≤ Ch2 ‖f‖ . (5.21)

Similarly, from (5.17) we see that

(∇(R̃hv − v),∇ψ) = (r̃h,∇ ·ψ) ∀ψ ∈ Hd
h (5.22)

and hence by testing with ψ := vh − R̃hv

(∇(R̃hv − v),∇(vh − R̃hv)) = (r̃h,∇ · (vh − R̃hv)) = 0.

This yields∥∥∥∇(R̃hv − v)
∥∥∥2

= (∇(R̃hv − v),∇(R̃hv − v)) = (∇(R̃hv − v),∇(vh − v))

≤
∥∥∥∇(R̃hv − v)

∥∥∥ ∥∥∇(vh − v)
∥∥

and thus ∥∥∥∇(R̃hv − v)
∥∥∥ ≤ ∥∥∇(v − vh)

∥∥ ≤ Ch ‖f‖ . (5.23)

Before estimating
∥∥∥R̃hv − v∥∥∥, we recall equations (5.22) and (5.23) as well as the inf-sup

stability condition (3.8) which allows us to bound ‖r̃h‖:

β ‖r̃h‖ ≤ sup
ψ∈Hd

h

(r̃h,∇ ·ψ)
‖∇ψ‖

= sup
ψ∈Hd

h

(∇(R̃hv − v),∇ψ)
‖∇ψ‖

≤
∥∥∥∇(R̃hv − v)

∥∥∥ ≤ Ch ‖f‖ .
(5.24)

In order to estimate
∥∥∥R̃hv − v∥∥∥, we use a duality argument due to Aubin [3] and Nitsche

[85]: Let (w, q)T ∈ H1
0 (Ω)d × L2(Ω)/R be the unique solution of

(∇ψ,∇w) + (∇ ·ψ, q) = 1∥∥∥v − R̃hv∥∥∥(ψ,v − R̃hv) ∀ψ ∈ H1
0 (Ω)d,

−(χ,∇ ·w) = 0 ∀χ ∈ L2(Ω)/R.
(5.25)

Since v−R̃hv

‖v−R̃hv‖
∈ L2(Ω)d, we have as for the primal problem (5.4) the a priori estimate

‖w‖H2 + ‖q‖H1 ≤ C
∥∥∥∥ v−R̃hv

‖v−R̃hv‖

∥∥∥∥ = C. (5.26)
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5 Issues on Dynamic Meshes

Testing the first equation of (5.25) with v − R̃hv ∈ H1
0 (Ω)d, we obtain∥∥∥v − R̃hv∥∥∥ = (∇(v − R̃hv),∇w) + (∇ · (v − R̃hv), q).

Recalling (5.22) and the fact that (∇ · v, χ) = (∇ ·w, χ) = (∇ · R̃hv, χ) = 0 ∀χ ∈ Lh, we
may write for arbitrary ŵh ∈ Hd

h and q̂h ∈ Lh∥∥∥v − R̃hv∥∥∥ = (∇(v − R̃hv),∇(w − ŵh) + (∇ · (v − R̃hv), q − q̂h)− (r̃h,∇ · (w − ŵh))

≤ C
{∥∥∥∇(v − R̃hv)

∥∥∥+ ‖r̃h‖
}{∥∥∇(w − ŵh)

∥∥+ ‖q − q̂h‖
}
.

Inserting the approximation properties of Lemma 3.1 and Lemma 3.2∥∥∇(w − ŵh)
∥∥ ≤ Ch ‖w‖H2 ,

‖q − q̂h‖ ≤ Ch ‖q‖H1

as well as the estimates (5.23) and (5.24), we have∥∥∥v − R̃hv∥∥∥ ≤ Ch2 ‖f‖
{
‖w‖H2 + ‖q‖H1

}
≤ Ch2 ‖f‖ , (5.27)

where the last inequality is obtained by applying the a priori estimate (5.26). Finally, we
obviously have

‖∆v‖ ≤ ‖v‖H2 ≤ C ‖f‖ . (5.28)

Inserting the estimates (5.20), (5.21), (5.23), (5.27), and (5.28) into (5.18) then yields∣∣∣(∇P̃hvH ,∇ψ)
∣∣∣ ≤ C(1 + (Hh )2

)
‖f‖ ‖ψ‖ .

Since we only consider uniform refinement or uniform coarsening, we have H = 2h or
H = 1

2h and thus ∣∣∣(∇P̃hvH ,∇ψ)
∣∣∣ ≤ C ‖f‖ ‖ψ‖ . (5.29)

This allows us to conclude from (5.14):

1
k

∥∥∥vkh − P̃hvH∥∥∥2
+
∥∥∥∇(vkh − P̃hvH)

∥∥∥2
≤ ‖f‖

∥∥∥vkh − P̃hvH∥∥∥+
∣∣∣(∇P̃hvH ,∇(vkh − P̃hvH))

∣∣∣
≤ C ‖f‖

∥∥∥vkh − P̃hvH∥∥∥
and hence

1
k

∥∥∥vkh − P̃hvH∥∥∥ ≤ C ‖f‖ . (5.30)

By using the Poincaré inequality, we also obtain from (5.29)∣∣∣(∇P̃hvH ,∇ψ)
∣∣∣ ≤ C ‖f‖ ‖∇ψ‖ (5.31)

and therefore from (5.14) also ∥∥∥∇(vkh − P̃hvH)
∥∥∥ ≤ C ‖f‖ . (5.32)
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To show that
∥∥∥p̂kh∥∥∥ remains bounded for k → 0, we use the inf-sup condition and the fact

that vkh = v̂kh which allows us to replace v̂kh by vkh in (5.8):

β
∥∥∥p̂kh∥∥∥ ≤ sup

ψ∈Hd
h

(p̂kh,∇ ·ψ)
‖∇ψ‖

= sup
ψ∈Hd

h

1
k (vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH),∇ψ) + (∇P̃hvH ,∇ψ)− (f ,ψ)

‖∇ψ‖

≤ C 1
k

∥∥∥vkh − P̃hvH∥∥∥+
∥∥∥∇(vkh − P̃hvH)

∥∥∥+ sup
ψ∈Hd

h

∣∣∣(∇P̃hvH ,∇ψ)
∣∣∣

‖∇ψ‖
+ C ‖f‖

≤ C ‖f‖ .

Here, the estimates (5.30), (5.31), and (5.32) have been used. Since the right-hand side is
independent of k, we have shown that

∥∥∥p̂kh∥∥∥ remains bounded for k → 0.

Remark 5.2. The arguments used above to show that
∥∥∥pkh∥∥∥ ≥ C 1

k if there is a χ ∈ Lh such
that (∇·vH , χ) 6= 0 are not restricted to the case of uniform refinement or coarsening of the
meshes. Actually, they directly carry over to the case of arbitrary refinement or coarsening
of cells. The estimate for the boundedness of

∥∥∥p̂kh∥∥∥ can be generalized as long we are able
to bound

∥∥∥∇P̃hvH∥∥∥ and
∥∥∥∆̃hP̃hvH

∥∥∥ where ∆̃hP̃hvH denotes the discrete Stokes operator
of P̃hvH given by

(∆̃hP̃hvH ,ψ) = −(∇P̃hvH ,∇ψ) ∀ψ ∈ Hd
h ∩

{
ψ
∣∣ (∇ ·ψ, χ) = 0 ∀χ ∈ Lh

}
.

This theoretical result also substantiates the numerical experiences of the previous section
where we obtained bounded approximations of the pressure by applying the H-projection
for determining the initial value when switching the spatial mesh. We showed that on
dynamic spatial meshes bounded pressure approximations are only possible if the velocity
from the first mesh is divergence-free with respect to the test functions of the new mesh.
Otherwise, the pressure approximation contains 1

k times the Lagrange multiplier occurring
in the H-projection of the old velocity field into the new finite element space which leads
to the unbounded behavior for k → 0.
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6 Applications

In this chapter, we apply the developed adaptive algorithm and a posteriori error estimators
to three concrete applications.

The first two applications are the two- and three-dimensional benchmark configurations
“Laminar Flow Around a Cylinder”, see Schäfer and Turek [95]. Here, a time-dependent
inflow profile is prescribed leading to a nonstationary flow. Aim of the simulation is the
efficient computation of the mean drag- and lift-coefficients in the two-dimensional case as
well as the mean drag-coefficient in the three-dimensional case.

As the third application we consider the simulation of the filling process of a lab-on-a-chip.
This problem is formulated as a two-phase flow problem involving two incompressible
phases, namely the liquid and the gaseous phase. At the beginning of the simulation, the
computational domain is completely filled with the gaseous phase which is expelled by the
liquid phase. Aim of the simulation here is the precise capturing of the interface between
both phases.

6.1 Laminar flow around a cylinder

In these applications, the flow of an incompressible Newtonian fluid around an obstacle is
considered. The governing equations are the incompressible Navier-Stokes equations for
homogeneous fluids:

∂tv − ν∆v + (v · ∇)v + ρ−1∇p = 0,
∇ · v = 0.

The kinematic viscosity is set to ν = 10−3 m2 s−1 while the density is given by ρ = 1 kg m−3.
As initial condition v(0 s,x) = 0 m s−1 is chosen.

6.1.1 Two-dimensional test case

For the two-dimensional case, flow around an obstacle with circular cross-section is consid-
ered. The geometry is depicted in Figure 6.1.

The inflow condition on the left side of the domain is prescribed as

v1(t,x) =
6 sin( πt8 s)
(0.41 m)2x2(0.41 m− x2) m s−1, v2(t,x) = 0 m s−1.
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2.2m

0.16m

0.15m

0.15m x2

x1

S

0.41m 0.1m

(0m,0.41m)

(0m,0m)

Figure 6.1. Geometry for the two-dimensional benchmark configuration

On the outflow boundary on the right side of the computational domain, we apply natural
boundary conditions. We refer to Heywood, Rannacher, and Turek [67] for more information
on these boundary conditions. On all other boundaries, we prescribe no-slip Dirichlet
boundary conditions. The final time is set to T = 8 s. This setting leads to a Reynolds
number Re(t) = Ū(t)D

ν based on the mean inflow velocity

Ū(t) = 2
3v1(t, 0 m, 0.205 m) = sin

(πt
8 s
)

m s−1

and the diameter of the obstacle D = 0.1 m of 0 ≤ Re(t) ≤ 100 for 0 s ≤ t ≤ 8 s.

Remark 6.1. Due to the nonhomogeneous Dirichlet boundary conditions, the variational
formulation has to be modified. Instead of seeking u = (v, p)T ∈ X satisfying∫

I

(∂tv,ψ) dt+ a(u)(ϕ) + (v(0)− v0,ψ(0)) = 0 ∀ϕ = (ψ, χ)T ∈ X, (6.1)

we seek a solution u = (v, p)T ∈ (vΓ , 0)T +X satisfying (6.1) where vΓ is a divergence-free
extension of the Dirichlet boundary conditions.

This modification also influences the derivation of the a posteriori error estimators because
now the primal solution no longer is an admissible test function for the dual problem and
hence in Lemma 4.1, we have

L′(y1)(e) 6= 0.

This leads to additional terms in the a posteriori error estimators which are of the following
form:

ρ∗(u, z)(u− ũk) and ρ∗(uk, zk)(uk − ũkh). (6.2)

However, these terms can be approximated using the same higher order reconstruction
techniques as in Section 4.3 to replace (6.2) by

ρ∗(Ikukh, Ikzkh)(Πkukh) and ρ∗(Ihukh, Ihzkh)(Πhukh)

with some interpolation operators Ik and Ih.

In Figure 6.2, we present the temporal development of the flow for 0 s ≤ t ≤ 8 s. At t = 2 s
we note the development of two vortices behind the obstacle. Due to the increasing inflow
velocity, these vortices detach from the obstacle between t = 4 s and t = 5 s and a van
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(a) t = 1 s

(b) t = 2 s

(c) t = 3 s

(d) t = 4 s

Figure 6.2. Two-dimensional test case: Streamlines at different times t
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(e) t = 5 s

(f) t = 6 s

(g) t = 7 s

(h) t = 8 s

Figure 6.2. Two-dimensional test case: Streamlines at different times t (cont.)
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6.1 Laminar flow around a cylinder

Kármán vortex street develops. From t = 6 s on, vortices near the boundary develop and
get stronger while the inflow velocity is further decreased. At final time t = 8 s, the vortices
are still visible even though the maximum velocity is much slower now.

The drag- and lift-coefficient are given as

cdrag = C

∫
S

(ρν∂n(v · t)n2 − pn1) do and clift = −C
∫
S

(ρν∂n(v · t)n1 + pn2) do,

where S denotes the surface of the obstacle, n = (n1, n2)T is the normal vector on S, (v · t)
denotes the tangential component of v with tangential vector t = (n2,−n1)T , and the
constant C is chosen as

C = 2
ρŪ2D

.

Hence, the quantities of interest are given by

J̃drag(u) = 1
|I|

∫
I

cdrag dt and J̃lift(u) = 1
|I|

∫
I

clift dt.

Note that these values can also be expressed using the semi-linear form a(u)(ϕ) via

Jdrag(u) = −
∫
I

(∂tv, ψ̂drag) dt− a(u)(ϕ̂drag) and

Jlift(u) = −
∫
I

(∂tv, ψ̂lift) dt− a(u)(ϕ̂lift)
(6.3)

with ϕ̂drag = (ψ̂drag, 0)T and ϕ̂lift = (ψ̂lift, 0)T fulfilling

ψ̂drag
∣∣∣
S

=
(
|I|−1C

0

)
, ψ̂drag

∣∣∣
∂ΩrS

= 0

and

ψ̂lift
∣∣∣
S

=
(

0
|I|−1C

)
, ψ̂lift

∣∣∣
∂ΩrS

= 0.

On the discrete level, both representations are not equivalent anymore. However, it can be
shown that formulas (6.3) lead to a higher order of convergence with respect to h. Actually,
we have

J̃drag(uk)− J̃drag(ukh) = O(hs)

whereas
Jdrag(uk)− Jdrag(ukh) = O(h2s).

The same holds true for J̃lift and Jlift. For further information on this technique, we refer
to Giles, Larson, Levenstam, and Süli [57].
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Mean drag-coefficient

Let us first consider the mean drag-coefficient. Using the cG(2)dG(1) discretization with
uniform refinement of the temporal and spatial discretizations, we obtain for the mean
drag-coefficient the values listed in Table 6.1. As in Chapter 4, N denotes the number of
spatial degrees of freedom and M denotes the number of time steps.

Table 6.1. Mean drag-coefficient obtained with the cG(2)dG(1) discretization
and uniform refinement

N M Jdrag(ukh)
2124 80 1.6178974
8088 160 1.5695421

31536 320 1.6048954
124512 640 1.6071242
494784 1280 1.6072465
extrapolated 1.6072872

Now we employ the cG(1)cG(1), cG(2)cG(1), cG(1)dG(1), and cG(2)dG(1) discretization
in combination with the adaptive Algorithm 4.1 to this problem. The results of these
computations using adaptively refined spatial meshes which are kept constant over the
whole time interval I = (0 s, 8 s) are shown in Tables 6.2–6.5. In these tables, we use the
extrapolated value Jdrag(u) = 1.6072872.

Remark 6.2. The dG(0) discretization in time is not considered in this chapter due to
its high numerical dissipation which makes the use of this discretization unfavorable for
simulations in computational fluid dynamics.

Table 6.2. Mean drag-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(1)cG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

582 80 −1.92 ·10−01 7.61 ·10−05 2.75 ·10−01 −1.43
1374 80 −8.74 ·10−02 1.60 ·10−04 1.77 ·10−01 −2.03
2238 80 −1.02 ·10−02 1.72 ·10−04 6.78 ·10−02 −6.75
5586 80 5.40 ·10−03 −7.86 ·10−03 3.47 ·10−02 −14.10

13872 132 4.20 ·10−03 −7.52 ·10−04 1.11 ·10−02 3.22
41340 132 8.80 ·10−04 −8.00 ·10−04 8.53 ·10−03 107.77

100794 134 3.46 ·10−04 −6.39 ·10−04 8.21 ·10−03 −27.96
322278 268 5.90 ·10−05 8.54 ·10−04 1.99 ·10−03 2.18
322278 452 6.87 ·10−05 2.98 ·10−04 5.64 ·10−04 1.54
322278 460 6.82 ·10−05 2.94 ·10−04 5.74 ·10−04 1.58
322278 920 6.79 ·10−05 1.06 ·10−04 2.10 ·10−04 1.20
993468 922 6.20 ·10−06 1.06 ·10−04 1.61 ·10−04 1.43
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Table 6.3. Mean drag-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(2)cG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

2124 80 −4.73 ·10−02 −5.43 ·10−03 4.26 ·10−02 −0.81
5304 80 2.64 ·10−02 −1.12 ·10−02 5.55 ·10−02 3.66

10992 160 2.79 ·10−03 −4.44 ·10−05 9.18 ·10−03 3.35
27000 160 −6.75 ·10−05 −1.88 ·10−04 8.02 ·10−03 −31.36
76080 268 −2.63 ·10−05 8.22 ·10−04 1.93 ·10−03 2.42
76080 450 −1.85 ·10−05 2.97 ·10−04 4.69 ·10−04 1.68
76080 460 −1.76 ·10−05 2.94 ·10−04 4.72 ·10−04 1.70
76080 920 −1.19 ·10−05 1.06 ·10−04 1.15 ·10−04 1.22
76080 922 −1.19 ·10−05 1.06 ·10−04 1.15 ·10−04 1.23
76080 1844 −5.31 ·10−06 3.00 ·10−05 2.84 ·10−05 1.15

Table 6.4. Mean drag-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(1)dG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

582 80 −2.99 ·10−01 2.16 ·10−04 1.35 ·10−01 −0.45
1302 80 −9.15 ·10−02 2.80 ·10−04 1.54 ·10−01 −1.69
2280 80 −7.39 ·10−03 3.26 ·10−04 7.03 ·10−02 −9.94
5394 80 4.29 ·10−03 3.96 ·10−03 3.64 ·10−02 4.41

10998 120 4.78 ·10−03 5.82 ·10−03 1.11 ·10−02 1.05
25044 128 1.64 ·10−03 4.76 ·10−03 6.89 ·10−03 1.08
70146 256 1.14 ·10−04 7.48 ·10−04 8.34 ·10−04 0.97
70146 258 1.14 ·10−04 7.32 ·10−04 8.15 ·10−04 0.96
70146 516 1.22 ·10−04 9.85 ·10−05 1.68 ·10−04 0.76

235554 1032 4.25 ·10−05 1.33 ·10−05 6.93 ·10−05 1.24

Table 6.5. Mean drag-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(2)dG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

2124 80 −6.19 ·10−02 9.37 ·10−04 −1.06 ·10−02 0.17
5448 80 2.40 ·10−02 8.20 ·10−03 5.50 ·10−02 1.71

11148 160 2.38 ·10−03 4.22 ·10−03 5.47 ·10−03 0.83
27132 252 −2.29 ·10−04 7.79 ·10−04 2.09 ·10−04 0.38
27132 258 −2.29 ·10−04 7.31 ·10−04 1.55 ·10−04 0.31
27132 516 −1.92 ·10−04 9.88 ·10−05 −4.06 ·10−04 4.33
76656 1032 −3.08 ·10−05 1.33 ·10−05 −2.52 ·10−05 1.44
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We observe that for the cG(1) discretizations in space the spatial and the temporal dis-
cretization error are quite equilibrated, see Tables 6.2 and 6.4. On the other hand, Tables 6.3
and 6.5 show that for the cG(2) discretizations in space, the spatial discretization error
converges with a higher order than the temporal discretization error. This is due to the
evaluation of the mean drag-coefficient by Jdrag instead of J̃drag. Consequently, the equili-
bration algorithm keeps the spatial discretization fixed from time to time and only refines
the temporal discretization. For all discretizations, we observe quite a good agreement of
the estimated and the actual discretization error especially on finer discretizations which is
indicated by Ieff ≈ 1.

In Figure 6.3, we show the temporal evolution of the drag-coefficient cdrag for all four
discretizations considered here. These values correspond to the finest adaptive discretization
described in the last lines of Tables 6.2–6.5 with a relative error in the mean drag-coefficient
of less than 5 · 10−5 which corresponds to an absolute error of less than 8 · 10−5 except for
the cG(1)cG(1) discretization where we did not reach this accuracy. We note a perfect
agreement of all four curves.
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Figure 6.3. Temporal evolution of the drag-coefficient cdrag in the two-
dimensional test case obtained by different discretizations with
adaptive refinement

Even though we aim at efficiently computing the mean drag-coefficient in this example, the
maximum drag-coefficient is also computed very accurately. A comparison of the results
produced by the presented adaptive discretizations with the reference values of John [73]
is given in Table 6.6.

Figures 6.4–6.7 show a comparison of different refinement strategies for the cG(1)cG(1),
cG(2)cG(1), cG(1)dG(1), and cG(2)dG(1) discretization, respectively. We use the same

106



6.1 Laminar flow around a cylinder

Table 6.6. Maximum drag-coefficient in the two-dimensional test case: Compar-
ison with reference values for different discretizations

c
(ref)
drag,max = 2.950921575 t(ref)(cdrag,max) = 3.93625 s

Discretization cdrag,max

∣∣∣∣ cdrag,max−c(ref)
drag,max

c
(ref)
drag,max

∣∣∣∣ t(cdrag,max)
∣∣∣∣ t(cdrag,max)−t(ref)(cdrag,max)

t(ref)(cdrag,max)

∣∣∣∣
cG(1)cG(1) 2.950897238 8.2 · 10−6 3.9375 s 3.2 · 10−4

cG(2)cG(1) 2.950899555 7.5 · 10−6 3.9375 s 3.2 · 10−4

cG(1)dG(1) 2.950833347 3.0 · 10−5 3.9375 s 3.2 · 10−4

cG(2)dG(1) 2.950914600 2.4 · 10−6 3.9375 s 3.2 · 10−4

labeling as in Chapter 4:

• “uniform”: We apply uniform refinement to the temporal and spatial discretization
in each iteration.

• “adaptive”: We apply adaptive refinement to the temporal and spatial discretization
together with the proposed equilibration strategy. The spatial mesh is fixed on the
whole time interval.

• “dynamic”: We apply adaptive refinement to the temporal and spatial discretization
together with the proposed equilibration strategy. The spatial meshes may vary from
subinterval to subinterval.
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Figure 6.4. Comparison of the error
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dimensional test case for different refinement strategies with the
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107



6 Applications

10−5

10−4

10−3

10−2

105 106 107 108 109

∣ ∣ ∣J dra
g(
u

)−
J
dr
ag

(u
k
h
)∣ ∣ ∣

degrees of freedom

uniform
adaptive

Figure 6.5. Comparison of the error
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dimensional test case for different refinement strategies with the
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Figure 6.6. Comparison of the error
∣∣∣Jdrag(u)− Jdrag(ukh)

∣∣∣ in the two-
dimensional test case for different refinement strategies with the
cG(1)dG(1) discretization
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Figure 6.7. Comparison of the error
∣∣∣Jdrag(u)− Jdrag(ukh)

∣∣∣ in the two-
dimensional test case for different refinement strategies with the
cG(2)dG(1) discretization

If we compare the number of degrees of freedom needed to reach a relative error of 1%, the
required degrees of freedom can be reduced by a factor of 5–15 using adaptive refinement
with equilibration instead of uniform refinement, depending on the chosen discretization.
This ratio increases when aiming at higher accuracies. Using uniform refinement, we were
not even able to reach an accuracy of 5 · 10−5.

In Figure 6.8, the adaptive distribution of the time steps is depicted exemplarily for the
cG(1)cG(1) discretization. The other discretizations lead to qualitatively similar results.
The smallest time steps are obtained for t ∈ [3 s, 6 s] where the dynamics of the flow are
highest and most of the energy in concentrated in the vortices.

We do not use dynamic spatial meshes in this example for two reasons: On the one
hand, recalling the results of Chapter 5, the use of dynamic meshes leads to wrong
approximations of the drag- and lift-coefficient if no additional projection steps are applied
each time the spatial mesh is changed. However, this would be too costly. The other
reason becomes clear if we have a look at Figure 6.9 where the adaptive spatial meshes
corresponding to the last lines in Tables 6.2–6.5 are presented. Of course, the meshes
corresponding to cG(2) discretizations in space are much coarser than those corresponding
to cG(1) discretizations. Note, however, the similarity between the meshes produced by
the cG(1)cG(1) and cG(1)dG(1) (Figures 6.9(a) and 6.9(c)) as well as the cG(2)cG(1) and
cG(2)dG(1) discretization (Figures 6.9(b) and 6.9(d)). Furthermore, we observe that in
order to precisely determine the mean drag-coefficient it is not necessary to resolve the
whole van Kármán vortex street. Only a small recirculation zone behind the obstacle is
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Figure 6.8. Mean drag-coefficient for the two-dimensional test case: Adaptively
determined time step size k with the cG(1)cG(1) discretization

strongly refined. Since the vortices in this region develop relatively early, we may conclude
that allowing dynamic meshes would not provide a further notable reduction in the degrees
of freedom needed to reach the same accuracy as with adaptively refined, but fixed spatial
meshes. In virtue of the additional effort on dynamic meshes due to more frequent matrix
reassembling and the additional projection steps, we arrive at the conclusion that the use
of dynamic spatial meshes does not make sense in this case.

To substantiate this conclusion, we again apply exemplarily the cG(1)dG(1) discretization
to this example, but now allow dynamic spatial meshes. Each time the spatial mesh is
changed, we use the H-projection of the old velocity as initial value on the next mesh. The
results of this computation are given in Table 6.7. In Figure 6.10, we show a sequence
of adaptively refined spatial meshes generated by the adaptive algorithm. These meshes
correspond to the discretization described in the last line of Table 6.7 leading to an absolute
error of 2 · 10−3 which corresponds to an accuracy of about 0.1 %.

We observe that the meshes are strongly refined around the obstacle over the whole time
interval. Furthermore, the meshes show strong refinement in the recirculation zone behind
the obstacle for approximately t ∈ [0 s, 5 s] as well as refinement in front of the obstacle at
the beginning of the computation. Near the end of the time interval, the meshes become
coarser. As already mentioned before, the meshes do not track the whole vortex street.
Instead, they are kept relatively constant, except for the end of the time interval where
they are coarsened. This explains why we do not benefit from using dynamic meshes. If
we compare the required degrees of freedom to reach a certain accuracy, we observe that
there is not much difference between fixed adaptively refined meshes and dynamic meshes,
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6.1 Laminar flow around a cylinder

(a) cG(1)cG(1) discretization

(b) cG(2)cG(1) discretization

(c) cG(1)dG(1) discretization

(d) cG(2)dG(1) discretization

Figure 6.9. Spatial meshes for the computation of the mean drag-coefficient
with different discretizations
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(a) t = 1 s

(b) t = 2 s

(c) t = 3 s

(d) t = 4 s

Figure 6.10. Two-dimensional test case: Dynamic meshes at different times t
for the cG(1)dG(1) discretization
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6.1 Laminar flow around a cylinder

(e) t = 5 s

(f) t = 6 s

(g) t = 7 s

(h) t = 8 s

Figure 6.10. Two-dimensional test case: Dynamic meshes at different times t
for the cG(1)dG(1) discretization (cont.)
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Table 6.7. Mean drag-coefficient for the two-dimensional test case: Adaptive
refinement with dynamic meshes and equilibration for the cG(1)dG(1)
discretization

Ntot Nmax M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

93702 582 80 −2.99 ·10−01 2.16 ·10−04 1.35 ·10−01 −0.45
189414 1374 80 −9.09 ·10−02 −1.34 ·10−04 1.54 ·10−01 −1.69
340254 2994 80 7.48 ·10−03 4.44 ·10−03 5.65 ·10−02 4.74

1265994 7362 122 2.02 ·10−03 5.74 ·10−03 1.61 ·10−03 0.21
3042798 20766 134 −1.88 ·10−03 3.56 ·10−03 1.24 ·10−02 7.34
7915890 58236 150 3.52 ·10−03 3.88 ·10−03 9.72 ·10−03 1.31

40086354 163386 300 1.16 ·10−03 6.72 ·10−04 2.08 ·10−03 1.13

see Figure 6.11. Actually, the use of dynamic meshes leads to a slightly higher number of
degrees of freedom required to obtain the same accuracy as with adaptively refined, but
fixed spatial meshes.
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Figure 6.11. Comparison of the error
∣∣∣Jdrag(u)− Jdrag(ukh)

∣∣∣ in the two-
dimensional test case for adaptive refinement without and with
dynamic meshes in the case of a cG(1)dG(1) discretization

Before we focus on the mean lift-coefficient, we like to point out another remarkable
feature of the developed error estimator. To this end, we consider the following quantity of
interest:

J
(sub)
drag (u) = −

∫
Isub

{
(∂tv, ψ̂(sub)

drag ) + ā(u)(ϕ̂(sub)
drag )

}
dt
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6.1 Laminar flow around a cylinder

with Isub = [7 s, 8 s] where ϕ̂(sub)
drag = (ψ̂(sub)

drag , 0)T fulfills

ψ̂
(sub)
drag

∣∣∣
S

=
(
|Isub|−1C

0

)
, ψ̂

(sub)
drag

∣∣∣
∂ΩrS

= 0.

In this way, we compute the mean drag-coefficient not over the whole time interval, but
only on the subinterval Isub = [7 s, 8 s]. Here, we also apply exemplarily the cG(1)dG(1)
discretization. Allowing dynamically changing meshes and adaptive refinement of the
temporal discretization yields the results presented in Table 6.8. As reference value, an
extrapolated value of J (sub)

drag (u) = 0.11936 is used.

Table 6.8. Mean drag-coefficient on Isub for the two-dimensional test case:
Adaptive refinement with dynamic meshes and equilibration for the
cG(1)dG(1) discretization

Ntot Nmax M ηh ηk J
(sub)
drag (u)− J (sub)

drag (ukh) Ieff

93702 582 80 −1.16 ·10−02 2.69 ·10−03 9.52 ·10−02 −10.72
127470 1458 80 3.02 ·10−02 6.01 ·10−03 6.15 ·10−02 1.70
279822 2772 80 1.13 ·10−02 7.23 ·10−03 4.02 ·10−02 2.17
771474 5046 114 5.24 ·10−03 −7.86 ·10−05 2.41 ·10−02 4.67

1316082 11496 114 5.12 ·10−03 4.57 ·10−03 1.89 ·10−02 1.95
3911514 28878 146 1.40 ·10−03 7.31 ·10−04 7.47 ·10−03 3.51
9922530 77826 156 3.43 ·10−04 5.78 ·10−04 3.97 ·10−03 4.31

29345742 229542 162 1.01 ·10−04 4.85 ·10−04 2.16 ·10−03 3.69
30976470 229542 176 1.07 ·10−04 3.11 ·10−04 1.25 ·10−03 2.98

A sequence of dynamic spatial meshes for different times t produced by the adaptive
algorithm is depicted in Figure 6.12. These meshes correspond to the discretization
described in the last line of Table 6.8. One might suppose that only meshes on the
subinterval Isub are strongly refined because the chosen functional only acts here. However,
in order to capture the correct drag-coefficient on Isub, also the spatial meshes at the
beginning of the time interval have to be refined because there a bifurcation occurs which
mainly determines the overall flow behavior at later times. If the flow at this early time
is not resolved correctly, the flow pattern and hence the drag-coefficient will also not be
determined correctly for t ∈ Isub. Due to the sensitivity information available through
the dual solution, the application of the developed a posteriori error estimator thus leads
to refinement also at early times. If we compare the corresponding meshes with those of
Figure 6.10, we actually observe not much difference until approximately t = 5 s. However,
the meshes at the end of the time interval are stronger refined because errors occurring
there now have a larger influence on the mean drag-coefficient over Isub than on the mean
drag-coefficient over the whole time interval.

Thus, it becomes clear that the use of dynamic meshes again does not make sense for
computing the mean drag-coefficient on Isub. This is confirmed by a computation without
dynamic meshes whose results are given in Table 6.9 and Figure 6.13.
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(a) t = 1 s

(b) t = 2 s

(c) t = 3 s

(d) t = 4 s

Figure 6.12. Mean drag-coefficient over subinterval: Dynamic meshes at different
times t for the cG(1)dG(1) discretization
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6.1 Laminar flow around a cylinder

(e) t = 5 s

(f) t = 6 s

(g) t = 7 s

(h) t = 8 s

Figure 6.12. Mean drag-coefficient over subinterval: Dynamic meshes at different
times t for the cG(1)dG(1) discretization (cont.)
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Table 6.9. Mean drag-coefficient on Isub for the two-dimensional test case: Adap-
tive refinement with equilibration for the cG(1)dG(1) discretization

N M ηh ηk J
(sub)
drag (u)− J (sub)

drag (ukh) Ieff

582 80 −1.16 ·10−02 2.69 ·10−03 9.52 ·10−02 −10.72
1374 80 −2.07 ·10−03 2.98 ·10−03 6.86 ·10−02 75.04
2712 82 7.83 ·10−03 9.51 ·10−03 3.31 ·10−02 1.91
6822 122 1.69 ·10−03 2.33 ·10−03 7.45 ·10−03 1.85

17454 136 1.90 ·10−04 3.30 ·10−04 3.81 ·10−03 7.31
58410 146 8.54 ·10−05 5.57 ·10−04 2.29 ·10−03 3.57
58410 168 8.80 ·10−05 3.02 ·10−04 1.28 ·10−03 3.29
58410 176 9.40 ·10−05 2.71 ·10−04 8.85 ·10−04 2.43

205764 184 3.54 ·10−05 2.80 ·10−04 5.76 ·10−04 1.83
205764 278 4.53 ·10−05 1.20 ·10−04 1.91 ·10−04 1.15
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Figure 6.13. Comparison of the error
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drag (ukh)

∣∣∣ in the two-
dimensional test case for adaptive refinement without and with
dynamic meshes in the case of a cG(1)dG(1) discretization
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6.1 Laminar flow around a cylinder

Mean lift-coefficient

We now turn to the mean lift-coefficient. We proceed in the same way as for the mean
drag-coefficient and apply the cG(2)dG(1) discretization with uniform spatial and temporal
refinement. The obtained values are given in Table 6.10.

Table 6.10. Mean lift-coefficient obtained with the cG(2)dG(1) discretization
and uniform refinement

N M Jlift(ukh)
8088 80 −1.2531245 · 10−3

31536 160 −1.1119757 · 10−2

124512 320 −1.0361390 · 10−2

494784 640 −1.0245390 · 10−2

extrapolated −1.0206723 · 10−2

Now, we employ the cG(2)cG(1) and the cG(2)dG(1) discretization in combination with
the adaptive algorithm. The results of these computations using adaptively refined spatial
meshes which are kept constant over the whole time interval I = (0 s, 8 s) are shown in
Tables 6.11 and 6.12. By comparing the results, we observe that only the first three digits
of the extrapolated value −1.0206723 · 10−2 of the mean lift-coefficient seem to be correct.
The “true” mean lift-coefficient is rather given by Jlift(u) ≈ −1.023 · 10−2. This shows that
the computation of the mean lift-coefficient is a much harder task than the computation of
the mean drag-coefficient. In Tables 6.11 and 6.12, the value Jlift(u) = −1.023 · 10−2 is
used as reference value.

Table 6.11. Mean lift-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(2)cG(1) discretization

N M ηh ηk Jlift(u)− Jlift(ukh) Ieff

8088 80 −6.16 ·10−04 −3.98 ·10−03 3.71 ·10−04 −0.08
8088 160 −1.18 ·10−03 7.72 ·10−03 −8.38 ·10−03 −1.28
8088 254 −2.95 ·10−04 −3.81 ·10−03 −1.54 ·10−03 0.37
8088 508 −7.06 ·10−04 −1.80 ·10−05 5.82 ·10−04 −0.80

13572 508 −4.76 ·10−05 4.32 ·10−04 1.22 ·10−03 3.17
13572 516 −4.66 ·10−05 4.30 ·10−04 1.20 ·10−03 3.13
13572 1032 −2.23 ·10−05 1.91 ·10−04 7.31 ·10−04 4.33
13572 1036 −1.88 ·10−05 1.90 ·10−04 7.29 ·10−04 4.26
13572 2072 −2.58 ·10−05 5.41 ·10−05 5.56 ·10−04 19.60
32328 2084 2.08 ·10−05 6.43 ·10−05 1.70 ·10−04 2.00
32328 4168 1.48 ·10−05 1.65 ·10−05 1.11 ·10−04 3.53
84240 4172 2.21 ·10−06 1.67 ·10−05 2.78 ·10−05 1.47
84240 8344 9.56 ·10−07 4.22 ·10−06 1.29 ·10−05 2.48
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Table 6.12. Mean lift-coefficient for the two-dimensional test case: Adaptive
refinement with equilibration for the cG(2)dG(1) discretization

N M ηh ηk Jlift(u)− Jlift(ukh) Ieff

8088 80 −7.57 ·10−04 −9.83 ·10−03 −8.98 ·10−03 0.85
8088 124 −7.79 ·10−04 −1.00 ·10−03 −6.26 ·10−05 0.04

15996 134 −6.69 ·10−05 6.47 ·10−04 9.22 ·10−04 1.59
15996 136 −6.57 ·10−05 6.42 ·10−04 8.84 ·10−04 1.53
15996 272 −4.01 ·10−05 1.08 ·10−04 1.94 ·10−04 2.88
15996 296 −4.40 ·10−05 8.50 ·10−05 1.65 ·10−04 4.03
35520 314 2.93 ·10−05 7.43 ·10−05 1.55 ·10−04 1.49
35520 320 2.94 ·10−05 7.05 ·10−05 1.51 ·10−04 1.51
89748 492 4.64 ·10−06 1.66 ·10−05 3.37 ·10−05 1.59
89748 602 4.12 ·10−06 8.92 ·10−06 2.53 ·10−05 1.94

268248 686 3.00 ·10−07 6.28 ·10−06 6.43 ·10−06 0.98
268248 1004 3.71 ·10−07 1.93 ·10−06 2.24 ·10−06 0.97

For the mean lift-coefficient, we observe that the temporal discretization error is more
dominant than for the mean drag-coefficient, especially for the cG(1) time discretization.
The error estimator again yields results which quantitatively assess the true discretization
error quite accurately.

In Figure 6.14, we show the temporal evolution of the lift-coefficient clift. As in the previous
section, these values correspond to the finest adaptive discretizations described in the last
lines of Tables 6.11 and 6.12 with a relative error in the mean lift-coefficient of less than
2 · 10−3. This corresponds to an absolute error of less than 2.046 · 10−5. Actually, for the
cG(2)dG(1) discretization, these values correspond to a relative error of approximately
2 · 10−4. Both curves again match very well. However, we note a slight phase shift between
the different discretizations.

We also compare the maximum lift-coefficient computed by our adaptive discretizations
with the reference values of John [73]. Even though the adaptive discretizations were
chosen in order to efficiently compute the mean lift-coefficient, the maximum lift-coefficient
is also assessed quite accurately as Table 6.13 shows. However, note that although the
cG(2)dG(1) leads to a smaller error for the mean lift-coefficient, the cG(2)cG(1) yields a
more accurate maximum lift-coefficient.

Table 6.13. Maximum lift-coefficient in the two-dimensional test case: Compari-
son with reference values for different discretizations

c
(ref)
lift,max = 0.47795 t(ref)(clift,max) = 5.693125 s

Discretization clift,max

∣∣∣∣ clift,max−c(ref)
lift,max

c
(ref)
lift,max

∣∣∣∣ t(clift,max)
∣∣∣∣ t(clift,max)−t(ref)(clift,max)

t(ref)(clift,max)

∣∣∣∣
cG(2)cG(1) 0.47807 2.6 · 10−4 5.69375 s 1.1 · 10−4

cG(2)dG(1) 0.47702 1.9 · 10−3 5.70000 s 1.2 · 10−3
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Figure 6.14. Temporal evolution of the lift-coefficient clift in the two-dimensional
test case obtained by different discretizations with adaptive refine-
ment

Figures 6.15 and 6.16 show a comparison of different refinement strategies for the cG(2)cG(1)
and the cG(2)dG(1) discretization, respectively. Here, the labeling is again the same as
in Chapter 4. Concerning the computational costs, we observe a reduction in the degrees
of freedom needed to reach a relative error of 1% by a factor of approximately 5 for the
cG(2)dG(1) discretization. For the cG(2)cG(1) discretization, the required degrees of
freedom are reduced by a factor of 50.

In Figure 6.17, the adaptive distribution of the time steps is depicted exemplarily for the
cG(2)dG(1) discretization. The other discretization leads to qualitatively similar results.
The smallest time steps are again obtained for t ∈ [3 s, 6 s] where the dynamics of the flow
are highest and most of the energy is concentrated in the vortices.

Figure 6.18 shows the adaptive spatial meshes corresponding to the last lines in Tables 6.11
and 6.12. We observe that the meshes are strongly refined only around the obstacle as well
as in a small zone behind the obstacle. Hence, we can conclude as for the computation of
the mean drag-coefficient that the use of dynamic meshes will not lead to a notable benefit
in this case, either.

6.1.2 Three-dimensional test case

For the three-dimensional case, flow around an obstacle with square cross-section is
considered. The geometry is depicted in Figure 6.19.
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Figure 6.15. Comparison of the error
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cG(2)cG(1) discretization
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Figure 6.16. Comparison of the error
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dimensional test case for different refinement strategies with the
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Figure 6.17. Mean lift-coefficient for the two-dimensional test case: Adaptively
determined time step size k with the cG(2)dG(1) discretization

(a) cG(2)cG(1) discretization

(b) cG(2)dG(1) discretization

Figure 6.18. Spatial meshes for the computation of the mean lift-coefficient with
different discretizations
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0.16 m

0.15 m

0.1 m

0.45 m

0.1 m

1.95 m

Figure 6.19. Geometry for the three-dimensional benchmark configuration

The inflow condition on the front plane is prescribed as

v1(t,x) =
36 sin( πt8 s)
(0.41 m)4 x2x3(0.41 m− x2)(0.41 m− x3) m s−1,

v2(t,x) = 0 m s−1,

v3(t,x) = 0 m s−1.

On the outflow boundary on the back plane of the computational domain, we again
apply natural boundary conditions. On all other boundaries, no-slip Dirichlet boundary
conditions are prescribed. The final time is set to T = 8 s. As for the two-dimensional case,
this setting leads to a Reynolds number Re(t) = Ū(t)D

ν based on the mean inflow velocity

Ū(t) = 4
9v1(t, 0 m, 0.205 m, 0.205 m) = sin

(πt
8 s
)

m s−1

and the side length of the obstacle D = 0.1 m of 0 ≤ Re(t) ≤ 100 for 0 s ≤ t ≤ 8 s.

The drag-coefficient is given as

cdrag = C

∫
S

(ρν∂n(v · t)n2 − pn1) do,

where S denotes the surface of the obstacle, (v · t) is the tangential component of v for the
tangent vector t = (n2,−n1, 0)T , and the constant C is chosen as

C = 2
ρŪ2DH
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6.1 Laminar flow around a cylinder

with the height and width H = 0.41 m of the channel. Hence, the quantity of interest is
given as in the two-dimensional case by

J̃drag(u) = 1
|I|

∫
I

cdrag dt.

Of course, this value can also be expressed by

Jdrag(u) = −
∫
I

(∂tv, ψ̂drag) dt− a(u)(ϕ̂drag)

with ϕ̂drag = (ψ̂drag, 0)T fulfilling

ψ̂drag
∣∣∣
S

=

|I|
−1C
0
0

 , ψ̂drag
∣∣∣
∂ΩrS

= 0.

In Figure 6.20, we show the temporal development of the flow by visualizing |v| in the
planes x1 = 0.5 m and x3 = 0.205 m. Compared to the two-dimensional case, the three-
dimensional flow shows much less dynamics. It tends to become almost stationary, at least
for t ∈ (4 s, 6 s).

The obstacle with square cross-section brings about singularities in the pressure as well as
in the derivatives of the velocity. This leads to a reduction of the order of convergence to
approximately O(h) with respect to uniform refinement of the spatial discretization, see, for
instance, Braack and Richter [21]. Thus, it becomes impossible to obtain reliable values for
the mean drag-coefficient by extrapolation of values computed on a sequence of uniformly
refined discretizations. In what follows, we use an estimated value of Jdrag(u) ≈ 2.3182
as reference value. This value was deduced by comparing the results of all discretizations
with adaptive as well as uniform refinement.

Due to the singularities mentioned above, the spatial discretization error is very dominant
in the three-dimensional test case while the temporal discretization error becomes very
small compared to the two-dimensional case. Therefore, we start the computations with
a much coarser time step size which leads to more or less balanced temporal and spatial
discretization errors. The development of the discretization errors in the mean drag-
coefficient during an adaptive run with equilibration is shown in Tables 6.14 and 6.15 for
the cG(1)cG(1) and cG(1)dG(1) discretization, respectively.

We can see that the overall discretization error is dominated by the spatial discretization
error. Also note that the temporal discretization is almost uniformly refined, however,
the adaptive algorithm keeps the temporal discretization fixed sometimes. This can be
explained by the already mentioned singularities occurring in the solution at the corners
and edges of the obstacle. On the other hand, the temporal variation of the flow is rather
small and consequently the almost uniform refinement of the temporal discretization makes
sense because the quantity of interest is acting over the whole time interval. Furthermore,
we observe that the quantitative assessment of the discretization error by the a posteriori
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(a) t = 1 s

(b) t = 2 s

(c) t = 3 s

(d) t = 4 s

Figure 6.20. Three-dimensional test case: |v| at different times t (red: high
velocity, blue: low velocity)
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6.1 Laminar flow around a cylinder

(e) t = 5 s

(f) t = 6 s

(g) t = 7 s

(h) t = 8 s

Figure 6.20. Three-dimensional test case: |v| at different times t (red: high
velocity, blue: low velocity) (cont.)
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Table 6.14. Mean drag-coefficient for the three-dimensional test case: Adaptive
refinement with equilibration for the cG(1)cG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

3696 8 −3.55 ·10+00 −1.67 ·10−01 −4.35 ·10+00 1.17
17040 8 −6.92 ·10−01 8.24 ·10−02 −5.04 ·10−01 0.83
71080 8 −1.95 ·10−01 4.09 ·10−02 −3.39 ·10−01 2.19

194472 8 −8.35 ·10−02 3.22 ·10−02 −1.63 ·10−01 3.17
590952 16 −3.86 ·10−02 9.90 ·10−03 −4.05 ·10−02 1.41

1498440 16 4.73 ·10−04 9.73 ·10−03 9.58 ·10−03 0.94
1498440 18 5.01 ·10−04 6.58 ·10−03 1.07 ·10−02 1.51
1498440 36 5.29 ·10−04 1.60 ·10−03 7.86 ·10−03 3.70
1498440 62 6.02 ·10−04 4.41 ·10−04 6.83 ·10−03 6.55

Table 6.15. Mean drag-coefficient for the three-dimensional test case: Adaptive
refinement with equilibration for the cG(1)dG(1) discretization

N M ηh ηk Jdrag(u)− Jdrag(ukh) Ieff

3696 8 −3.35 ·10+00 1.47 ·10−01 −4.90 ·10+00 1.53
17040 8 −5.63 ·10−01 6.67 ·10−02 −7.70 ·10−01 1.55
71960 8 −1.01 ·10−01 6.55 ·10−02 −4.56 ·10−01 13.07

202296 16 −6.22 ·10−02 1.56 ·10−02 −2.23 ·10−01 4.81
601728 16 −3.63 ·10−02 1.50 ·10−02 −6.24 ·10−02 2.97

1501504 32 −8.51 ·10−04 3.64 ·10−03 3.53 ·10−03 0.98
1501504 64 −7.50 ·10−04 9.11 ·10−04 1.82 ·10−04 1.12
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6.1 Laminar flow around a cylinder

error estimator is still quite good, however, the effectivity index Ieff is not always as good
as in the two-dimensional test case.

Figure 6.21 shows the temporal evolution of the drag-coefficient for both discretizations
under consideration. The values depicted there correspond to the finest discretizations
which are described in the last lines of Tables 6.14 and 6.15. As in the two-dimensional
case, there is a quite good agreement of both curves, at least until t = 7 s.
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Figure 6.21. Temporal evolution of the drag-coefficient cdrag in the three-
dimensional test case obtained by different discretizations with
adaptive refinement

The adaptive spatial meshes corresponding to the finest discretizations in Tables 6.14 and
6.15 are depicted in Figure 6.22. Since it is difficult to visualize three-dimensional meshes,
we also present close-ups of the area around the obstacle viewed in the plane x3 = 0.205 m.
We observe that for both discretizations the meshes are strongly refined especially in the
neighborhood of the corners and edges of the obstacle, while in the rest of the domain the
cells are kept rather coarse. Looking at the presented meshes, we conclude that allowing
dynamic spatial meshes will not provide a remarkable benefit—this is even more obvious
here in the three-dimensional case than it was in the two-dimensional case.

Finally, we present in Figures 6.23 and 6.24 a comparison of different refinement strategies
for the cG(1)cG(1) and the cG(1)dG(1) discretization, respectively. In these figures, the
dotted line corresponds to an accuracy of 1 %. Even though the adaptive refinement
of the temporal discretization leads to almost uniform refinement, we benefit from the
application of the a posteriori error estimators. Firstly, the spatial discretization error
is reduced much faster when using adaptive refinement. This of course is due to the
corner singularities. Secondly, we also benefit from the temporal error estimator because
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(a) cG(1)cG(1) discretization

(b) cG(1)dG(1) discretization

Figure 6.22. Spatial meshes for the computation of the mean drag-coefficient
with different discretizations (left: whole computational domain,
right: close-up of the area around the obstacle in the plane x3 =
0.205 m)

without having quantitative information about the temporal discretization error, one would
probably have started with a much finer time step size. However, this amounts to higher
computational costs because then the temporal and spatial discretization errors would not
be balanced.

Keeping this in mind, the reduction in degrees of freedom required to reach a certain
accuracy would be even larger than what we obtain here: For reaching an error of 10 %,
the uniformly refined discretizations need about 10 times as many degrees of freedom as
the corresponding adaptive discretizations. Applying only uniform refinement, we were not
even able to reach an accuracy of 1 % on a standard personal computer.
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6.1 Laminar flow around a cylinder
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Figure 6.23. Comparison of the error
∣∣∣Jdrag(u)− Jdrag(ukh)

∣∣∣ in the three-
dimensional test case for different refinement strategies with the
cG(1)cG(1) discretization (dotted line: 1 % accuracy)

10−4

10−3

10−2

10−1

100

105 106 107 108

∣ ∣ ∣J dra
g(
u

)−
J
dr
ag

(u
k
h
)∣ ∣ ∣

degrees of freedom

uniform
adaptive

Figure 6.24. Comparison of the error
∣∣∣Jdrag(u)− Jdrag(ukh)

∣∣∣ in the three-
dimensional test case for different refinement strategies with the
cG(1)dG(1) discretization (dotted line: 1 % accuracy)
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6.2 Filling process of a lab-on-a-chip

We consider the filling process of a lab-on-a-chip. This process is modeled as a two-phase
flow problem. The first phase is the gaseous phase, for instance, air. At the beginning of
the simulation, the whole chip is filled with this phase. The second phase is the liquid
phase, for instance, water or blood. The liquid phase enters the chip through some inlet.
During the simulation, an increasing part of the chip is occupied by the liquid phase due
to capillary forces.

In this example, we have to deal with two main difficulties: First of all, the geometry of
such a microdiagnosis chip is very complex as we have already shown in the introduction,
see Figure 1.1 in Chapter 1. We will therefore only consider a representative cut-out of
the whole geometry. Furthermore, the equations we have to deal with exhibit a highly
nonlinear and indefinite structure. The next section gives more details on the implemented
model for this two-phase flow problem.

We like to emphasize that the simulations presented here have to be understood as feasibility
tests which show that the methods derived in this thesis are also applicable to “real-life”
two-phase flow problems. The model developed in the next section incorporates microfluidic
effects like surface tension and contact angles and allows for adaptive refinement based
on the developed error estimator. However, especially the level set method employed for
tracking the interface between the liquid and the gaseous phase is kept rather simple, see
Section 6.2.3. The main focus here is to show how residual based error estimation can be
performed for two-phase flow problems. In contrast to the previous examples, we do not
consider simultaneous adaptation of the temporal and spatial discretization, but rather
confine ourselves to adaptive refinement of the spatial discretization. It turns out that
the use of the developed error estimator is advantageous compared to heuristic refinement
strategies which, for example, only perform refinement of cells near the interface between
both phases.

We refer to the survey article of Erickson [40] for an overview of numerical methods for
simulating integrated microfluidic devices.

6.2.1 Formulation of the model

We consider each phase as an incompressible Newtonian fluid. So the motion of each phase
is described by the incompressible Navier-Stokes equations. However, the domains occupied
by each of the phases change in time. From the implementational point of view, another
approach is therefore more desirable. We treat both phases together as one fluid, but with
variable density ρ(x) and viscosity µ(x). Using the precise form of the stress tensor for
incompressible fluids

σ(v, p) = −pI + µ(∇v +∇vT ),
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6.2 Filling process of a lab-on-a-chip

the flow is governed by

∂t(ρv) + ρ(v · ∇)v + (v · ∇ρ)v +∇p−∇ · (µ(∇v +∇vT )) = ρf ,

∇ · v = 0.

This approach requires a method to identify whether a point x ∈ Ω belongs to the liquid
phase Ωliquid or the gaseous phase Ωgas. We will come back to this topic later.

Since both fluids are immiscible, there exists an interface Γ between both fluids or phases.
On this internal boundary, we have to prescribe some conditions to link both phases
together. For incompressible fluids which do not gain or lose mass, the normal component
of the velocity on both sides of the interface must be equal:

[v · nΓ ]
∣∣∣
Γ

= 0,

where [·]
∣∣∣
Γ
denotes the jump of some quantity across the interface Γ and nΓ describes the

unit normal vector on Γ . Furthermore, the internal forces must be balanced. If we also
consider surface tension effects, this can be written as[

−pI + µ(∇v +∇vT )
]∣∣∣
Γ
nΓ = σκnΓ .

This essentially states that the difference of the pressure and the viscous forces between
both phases is equal to a product of the surface tension coefficient σ and the curvature κ
of the interface Γ .

Remark 6.3. Because of this interface condition, we have to work with the full symmetric
tensor σ(v, p). If we used only the unsymmetric tensor −pI + µ∇v and omitted the term
µ∇vT (like it is usually done in the formulation of the Navier-Stokes equations (2.5)), the
forces on the interface would not be represented correctly. However, in two-phase flow
problems, these forces essentially determine the overall flow dynamics.

Following the works of Brackbill, Kothe, and Zemach [22] and Chang, Hou, Merriman, and
Osher [30], the surface tension force term can be rewritten as a volume force which reads

fst(t,x) = σκ(t,x)δΓ (t)(x)nΓ (t,x),

where the Dirac delta distribution δΓ is used which fulfills∫
Ω

f(x)δΓ (x) dx =
∫
Γ

f(x) do.

We also refer to Hysing [72] or Smolianski [97] who used this approach in the simulation of
interfacial two-phase flow problems, too. This reinterpretation of surface tension forces as
volume forces allows us to easily incorporate them into the variational formulation leading
to just another force term on the right-hand side. However, here again, we need a way to
approximate the Dirac delta function which requires locating the interface between both
phases.
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The boundary ∂Ω is divided into the inflow boundary Γin, the outflow boundary Γout,
and the fixed boundary Γfixed. Here, we also have to prescribe boundary conditions. As
a simplified model for the capillary pressure, the flow will be driven not only by surface
tension effects, but also by a prescribed pressure drop P between the inflow and the outflow
boundary. Hence, on Γin and Γout, we use the following boundary conditions:

σ(v, p)n = −Pn on Γin,
σ(v, p)n = 0 on Γout.

(6.4)

To allow so-called wetting effects, we use free-slip boundary conditions on Γfixed together
with some condition on the tangential stresses instead of no-slip conditions:

v · n = 0, ti · σ(v, p)n = 0, i = 1, . . . , d− 1, (6.5)

where ti, i = 1, . . . , d− 1 are unit tangential vectors on Γfixed.

Remark 6.4. These boundary conditions indeed lead to the mean pressure P on Γin and
mean pressure 0 on Γout if the inflow and outflow boundary are perpendicular to the
fixed boundary Γfixed and the interface between both phases does not cross the inflow or
outflow boundary. For simplicity, we present the arguments for the two-dimensional case
as depicted in Figure 6.25. However, they are easily transfered to the three-dimensional
case.

Γfixed

Γfixed

x1

x2

ΓoutΓin

(0, 0) (L1, 0)

(L1, L2)(0, L2)

Figure 6.25. Rectangular domain with inflow boundary Γin, outflow boundary
Γout, and fixed boundary Γfixed

Since σ(v, p)n = −Pn on Γin, we have by employing the precise form of σ(v, p)∫
Γin

pn do =
∫
Γin

Pn do+
∫
Γin

µ(∇v +∇vT )n do.

Using the fact that n =
(
−1
0

)
on Γin, we obtain

∫
Γin

p do = P |Γin|+
∫
Γin

2µ∂x1v1 do.
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6.2 Filling process of a lab-on-a-chip

Because the interface between both phases does not cross the inflow boundary, µ is constant
on Γin. Employing the incompressibility condition ∇·v = 0 or equivalently ∂x1v1 = −∂x2v2
yields

∫
Γin

p do = P |Γin| − 2µ
L2∫
0

∂x2v2(0, x2) dx2

= P |Γin| − 2µv2(0, L2) + 2µv2(0, 0)
= P |Γin| .

Here, the boundary condition v · n = 0 on Γfixed has been used to conclude v2(x1, 0) =
v2(x1, L2) = 0. Thus, we have

1
|Γin|

∫
Γin

p do = P.

In a similar way, the mean pressure condition on Γout
1
|Γout|

∫
Γout

p do = 0

can be derived.

6.2.2 Nondimensionalization for two-phase flow problems

For the numerical simulation, it is necessary to introduce a nondimensional form of the
problem under consideration. Let us recall the equations describing the two-phase flow
problem including gravitational and surface tension forces:

∂t(ρv) + ρ(v · ∇)v + (v · ∇ρ)v +∇p−∇ · (µ(∇v +∇vT )) = ρf + σκδΓnΓ ,

∇ · v = 0.
(6.6)

We choose a characteristic length L, a characteristic velocity U , a characteristic density
ρref, and a characteristic viscosity µref. The scales automatically also define a characteristic
time scale as LU−1. With the help of these scales, we define the following nondimensional
variables:

x̂ := L−1x, v̂ := U−1v, t̂ := L−1Ut, ρ̂ := ρ−1
refρ, µ̂ := µ−1

refµ, p̂ := ρ−1
refU

−2p.

Simple calculations show that (6.6) is equivalent to

∂t̂(ρ̂v̂) + ρ̂(v̂ · ∇̂)v̂ + (v̂ · ∇̂ρ̂)v̂ + ∇̂p̂− µref
ρrefLU

∇̂ · (µ̂(∇̂v̂ + ∇̂v̂T )) = ρ̂f̂ + σ

ρrefLU2 κ̂δΓnΓ ,

∇̂ · v̂ = 0.

Here, we have used the notations

f̂ := L

U2f and κ̂ := L2κ.
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Since f represents gravitational forces, we may write

f = geg

with the gravitational constant g and a unit vector eg pointing in the direction in which
the gravitational forces act. Hence, we have

f̂ = gL

U2eg.

If we relabel all variables and again write v instead of v̂, for example, the nondimensional
form of the two-phase flow problem (6.6) is given by

∂t(ρv) + ρ(v · ∇)v + (v · ∇ρ)v +∇p− 1
Re∇ · (µ(∇v +∇vT )) = ρ

Freg + 1
WeκδΓnΓ ,

∇ · v = 0.
(6.7)

In this form, the Reynolds number Re, the Froude number Fr, and the Weber number We,
given by

Re := ρrefLU

µref
, Fr := U2

gL
, We := ρrefLU

2

σ
,

respectively, have been introduced. These nondimensional numbers are used to characterize
the flow. The Reynolds number Re relates inertial to viscous forces while the Froude
number Fr and the Weber number We relate inertial to gravitational effects and inertial to
surface tension effects, respectively.

In our case, we choose the characteristic scales as

L := 10−3 m, U := 10−3 m s−1, ρref := 103 kg m−3, µref := 10−3 kg m−1 s−1

which leads to a Reynolds number of Re = 1.

6.2.3 Discretization of the model

In this section, we give details on several aspects of the discretization of the two-phase flow
model.

Starting point again is a variational formulation of the governing equations. For its
derivation, we assume we have a smooth solution and multiply equations (6.7) with
appropriate test functions ϕ = (ψ, χ)T satisfying

ψ ∈ Hslip :=
{
v ∈ H1(Ω)d

∣∣∣ v · n = 0 on Γfixed
}

and χ ∈ Lslip := L2(Ω).

Using integration by parts, we obtain

(∂t(ρv),ψ) + (ρ(v · ∇)v + (v · ∇ρ)v,ψ) + (µ(∇v +∇vT ),∇ψ)− (p,∇ ·ψ)

− (µ(∇v +∇vT )n,ψ)∂Ω + (pn,ψ)∂Ω = 1
Fr(ρeg,ψ) + 1

We(κδΓnΓ ,ψ) (6.8)
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6.2 Filling process of a lab-on-a-chip

and
(∇ · v, χ) = 0. (6.9)

Recalling the boundary conditions (6.4) on Γin and Γout and the definition of the stress
tensor σ(v, p) = −pI + µ(∇v +∇vT ), (6.8) can be modified to

(∂t(ρv),ψ) + (ρ(v · ∇)v + (v · ∇ρ)v,ψ) + (µ(∇v +∇vT ),∇ψ)− (p,∇ ·ψ)

− (σ(v, p)n,ψ)Γfixed = −(Pn,ψ)Γin + 1
Fr(ρeg,ψ) + 1

We(κδΓnΓ ,ψ) (6.10)

On Γfixed, we decompose ψ ∈ Hslip as

ψ = (ψ · n)n+
d−1∑
i=1

(ψ · ti)ti =
d−1∑
i=1

(ψ · ti)ti.

Inserting this into (σ(v, p)n,ψ)Γfixed and recalling the free-slip boundary condition (6.5)
yields

(σ(v, p)n,ψ)Γfixed =
d−1∑
i=1

(σ(v, p)n, (ψ · ti)ti)Γfixed

=
d−1∑
i=1

(ti · σ(v, p)n,ψ · ti)Γfixed

= 0.

(6.11)

Hence, the variational formulation (6.10) reduces to

(∂t(ρv),ψ) + (ρ(v · ∇)v + (v · ∇ρ)v,ψ) + (µ(∇v +∇vT ),∇ψ)− (p,∇ ·ψ)

= −(Pn,ψ)Γin + 1
Fr(ρeg,ψ) + 1

We(κδΓnΓ ,ψ) (6.12)

Let us now come back to the problem of identifying which phase a point x ∈ Ω belongs
to. This is done by a level set approach. Level set methods were introduced by Osher
and Sethian [90]. There is a wide variety of articles and books coping with this topic, for
example, Chang, Hou, Merriman, and Osher [30], Evans and Spruck [50], Groß, Reichelt,
and Reusken [62], Hysing [71, 72], Nagrath, Jansen, and Lahey Jr. [83], Olsson and Kreiss
[87], Olsson, Kreiss, and Zahedi [88], Smolianski [97], Sussman, Smereka, and Osher [98],
Zhao, Chan, Merriman, and Osher [109], as well as the textbook of Osher and Fedkiw [89].
The main idea of the level set approach is to represent the interface Γ (t) between both
phases by the zero level set of a function φ : I ×Ω → R:

Γ (t) :=
{
x ∈ Ω

∣∣ φ(t,x) = 0
}
.

The level set function is usually initialized as a signed distance function:

φ(0,x) :=


dist(Γ,x) x ∈ Ωliquid,

0 x ∈ Γ,
−dist(Γ,x) x ∈ Ωgas.
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However, it is sufficient for the level set function to be close to a signed distance function
near Γ . In Figure 6.26, a signed distance function corresponding to a circular interface Γ
is shown.

Ωliquid

Γ

Ωgas

Figure 6.26. Circular interface Γ and corresponding signed distance function

To derive an equation for the level set function φ, we first observe that the following
equation holds for points x(t) on the moving interface Γ (t):

φ(t,x(t)) = 0.

Differentiation with respect to t then yields by applying the chain rule:

∂tφ+ ∂tx · ∇φ = 0.

Since the points x ∈ Ω are moving with speed v(x), we obtain

∂tφ+ v · ∇φ = 0.

Using the level set function φ, we are able to express the density and viscosity by

ρ(x) = ρgas + (ρliquid − ρgas)H(φ(x)),
µ(x) = µgas + (µliquid − µgas)H(φ(x)),

where the Heaviside function H : R→ R with

H(s) =

0 s < 0,
1 s > 0
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6.2 Filling process of a lab-on-a-chip

is used and ρliquid, µliquid and ρgas, µgas denote the constant density and viscosity of the
liquid and the gaseous phase, respectively. Additionally, the level set approach allows us to
globally define the normal vectors and curvature by

n = ∇φ
|∇φ|

and κ = −∇ · n = −∇ ·
(
∇φ
|∇φ|

)
. (6.13)

Remark 6.5. As already pointed out above, the level set approach employed here is rather
simple. Usually one has to reinitialize the level set function after some time steps to
keep it close to a signed distance function. This is necessary in order to obtain good
approximations of the normal vectors and to keep the width of the interface fixed, see below
for further details. Fortunately, due to the specific velocity field which develops in this
example, we can omit this step, because the level set function does not deviate too much
from a signed distance function, at least in the neighborhood of the interface. If we had to
apply reinitialization procedures, we would not be able to use the developed a posteriori
error estimators because they rely on a coupled variational formulation. However, the
established reinitialization methods do not fit into this framework, see, for example, Hysing
[72] for an overview of reinitialization schemes.

Furthermore, we do not consider the aspect of mass conservation. We refer to Olsson and
Kreiss [87] and Olsson, Kreiss, and Zahedi [88] for a conservative level set method. This
method also relies on some sort of reinitialization step. However, this intermediate step
allows for a better conservation of mass.

We will now concentrate on the surface tension term and present a method which avoids
explicitly evaluating the curvature κ of the interface Γ . This is especially important in the
spatially discretized problem because the evaluation of the curvature via (6.13) obviously
requires the evaluation of second derivatives which in general will not provide accurate
approximations of the continuous curvature. The modification we present here is due
to Dziuk [39] and has also been used by many others, for example, Bänsch [7], Ganesan
and Tobiska [55], Groß [61], and Hysing [71]. See also the literature cited therein.

Before introducing this approach, we give some definitions from differential geometry.

Definition 6.1 (Tangential Gradient). Let f be a function which is differentiable in
an open neighborhood of Γ . Then the tangential gradient of f is defined as

∇f(x) := ∇f(x)− (nΓ (x) · ∇f(x))nΓ (x), x ∈ Γ.

Definition 6.2 (Laplace-Beltrami Operator). Let f be a function which is two times
differentiable in an open neighborhood of Γ . Then the Laplace-Beltrami operator of f is
defined as

∆f(x) := ∇ · (∇f(x)), x ∈ Γ.

Using these definitions, we can state a well-known result from differential geometry:

139



6 Applications

Lemma 6.1. Let idΓ : Γ → Γ be the identity mapping on Γ . There holds

∆idΓ = κnΓ .

Proof. A proof can be found, for instance, in Gallot, Hulin, and Lafontaine [54].

Inserting this relation into the surface tension term above yields

(κδΓnΓ ,ψ) =
∫
Γ

κnΓ ·ψ do =
∫
Γ

∆idΓ ·ψ do.

Using integration by parts on Γ (see Gallot, Hulin, and Lafontaine [54]) supplies∫
Γ

∆idΓ ·ψ do = −
∫
Γ

∇idΓ · ∇ψ do+
∫
γ

(nγ · ∇)idΓ ·ψ ds

= −
∫
Γ

∇idΓ · ∇ψ do+
∫
γ

nγ ·ψ ds,
(6.14)

because there holds (nγ · ∇)idΓ = nγ for the intrinsic outer unit normal vector nγ of Γ at
γ = ∂Γ , see Figure 6.27.

Γ

Γfixed

Γfixed

θ1

nγ

t1

n

nΓ

θ1

Ωliquid Ωgas

Figure 6.27. Normal and tangential vectors at the interface Γ in two spatial
dimensions

Remark 6.6. If Γ possesses a closed shape or Dirichlet boundary conditions are given on
Γfixed and hence ψ = 0 on Γfixed, the last term in (6.14) vanishes.

We recall the decomposition

ψ = (ψ · n)n+
d−1∑
i=1

(ψ · ti)ti on Γfixed
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6.2 Filling process of a lab-on-a-chip

with the outer unit normal vector n of Γfixed and unit tangential vectors t1, . . . , td−1.
Testing (6.14) with test functions ψ ∈ Hslip fulfilling ψ · n = 0 on Γfixed leads to∫

Γ

∆idΓ ·ψ do = −
∫
Γ

∇idΓ · ∇ψ do+
d−1∑
i=1

∫
γ

(nγ · ti)(ψ · ti) ds

= −
∫
Γ

∇idΓ · ∇ψ do+
d−1∑
i=1

∫
γ

cos(θi)(ψ · ti) ds
(6.15)

with the contact angles θi, see also Figure 6.27.

The complete variational formulation of the two-phase flow problem hence reads: Find
u = (v, p, φ)T ∈ Hslip × Lslip ×H1(Ω) such that v(0,x) = v0(x), φ(0,x) = φ0(x), and

a(u)(ϕ) = −(Pn,ψ)Γin ∀ϕ = (ψ, χ, ξ)T ∈ Hslip × Lslip ×H1(Ω), (6.16)

where

a(u)(ϕ) := (∂t(ρ(φ)v),ψ) + (ρ(φ)(v · ∇)v + (v · ∇ρ(φ))v,ψ)
+ (µ(φ)(∇v +∇vT ),∇ψ)− (p,∇ ·ψ)

− 1
Fr(ρ(φ)eg,ψ) + 1

We

∫
Γ

∇idΓ · ∇ψ do− 1
We

d−1∑
i=1

cos(θi)
∫
γ

ψ · ti ds

+ (∇ · v, χ) + (∂tφ, ξ) + (v · ∇φ, ξ).

For the temporal discretization, we choose the fractional-step-θ scheme while the spatial
discretization is done using a cG(1) method for all unknowns on dynamic meshes. This
selection is reasonable because on the one hand, we want to accurately resolve the interface
between the liquid and the gaseous phase over the whole time interval while at the same time
keep the number of degrees of freedom as small as possible. On the other hand, the dynamics
of the flow do not change much in time and hence an equidistant temporal discretization
is sufficient, see Section 6.2.4 for results. Therefore, we do not need a posteriori error
estimates for adaptive refinement of the temporal discretization. Furthermore, we do not
have to worry about bad approximations of the pressure on dynamic meshes because of
the fractional-step-θ scheme used for the temporal discretization, see Chapter 5.

Before introducing the spatial discretization, we note that the semi-linear form a(·)(·)
involves integration of discontinuous functions due to the discontinuous density and viscosity.
In practice, integration is done by cell-wise applying quadrature rules. However, those
quadrature rules rely on the boundedness of higher order derivatives of the integrand. A
usual way to overcome this difficulty is to smoothen the Heaviside function H and to
replace the discontinuous density and viscosity by their smoothed counterparts. We use
the following regularized Heaviside function

Hε(s) :=


0 s < −ε,
1
2

(
1 + x

ε + sin(πs
ε

)
π

)
|s| ≤ ε,

1 s > ε
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and set

ρε(φ) := ρgas + (ρliquid − ρgas)Hε(φ) and µε(φ) := µgas + (µliquid − µgas)Hε(φ).

The regularization parameter should be chosen according to the cell size h. By differentiation
of the regularized Heaviside function, we obtain a regularized approximation of the Dirac
delta function:

δε(s) :=

0 |s| > ε,
1
2ε(1 + cos(πsε )) |s| ≤ ε.

Employing the regularized delta function, we are able to replace the integrals over Γ by
integrals over Ω via ∫

Γ

f(x) do ≈
∫
Ω

f̃(x)δε(φ(x)) dx

where f̃ is an extension of f from Γ onto Ω. Hence, the surface tension terms can be
approximated by ∫

Γ

∇idΓ · ∇ψ do ≈
∫
Ω

(∇ĩdΓ · ∇ψ)δε(φ) dx and

d−1∑
i=1

cos(θi)
∫
γ

ψ · ti ds ≈
d−1∑
i=1

cos(θi)
∫
∂Ω

(ψ · ti)δε(φ) do,

where ĩdΓ is the extension of idΓ onto Ω simply given by idΩ.

This spatial discretization again needs stabilization due to the inf-sup condition which is
not fulfilled as well as stabilization of the convective terms. This is again done by the local
projection stabilization method. The free-slip boundary conditions on Γfixed are imposed
weakly following the approach presented in Freund and Stenberg [53]. This method is based
on a technique introduced by Nitsche [86]. The main idea is to consistently add symmetric
terms which vanish on the continuous solution. Recalling (6.5) and the decomposition

ψ = (ψ · n)n+
d−1∑
i=1

(ψ · ti)ti,

we have

(σ(v, p)n,ψ)Γfixed = (σ(v, p)n, (ψ · n)n)Γfixed +
d−1∑
i=1

(σ(v, p)n, (ψ · ti)ti)Γfixed

= (n · σ(v, p)n,ψ · n)Γfixed +
d−1∑
i=1

(ti · σ(v, p)n,ψ · ti)Γfixed

= (n · σ(v, p)n,ψ · n)Γfixed .

Hence, we conclude that the discrete version of (6.16) may be formulated as

ah(uh)(ϕ) = −(Pn,ψ)Γin ∀ϕ = (ψ, χ, ξ)T ∈ V d
h × Vh × Vh, (6.17)
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6.2 Filling process of a lab-on-a-chip

where Vh =
{
vh ∈ C(Ω)

∣∣∣∣ vh∣∣∣K ∈ Q1(K) ∀K ∈ Th
}

and

ah(u)(ϕ) := (∂t(ρε(φ)v),ψ) + (ρε(φ)(v · ∇)v + (v · ∇ρε(φ))v,ψ)
+ (µε(φ)(∇v +∇vT ),∇ψ)− (p,∇ ·ψ)

− 1
Fr(ρε(φ)eg,ψ) + 1

We(∇idΩ, δε(φ)∇ψ)− 1
We

d−1∑
i=1

cos(θi)(ψ, δε(φ)ti)∂Ω

+ (∇ · v, χ) + (∂tφ, ξ) + (v · ∇φ, ξ)

+
∑
K∈Th

{
(∇πp, αK∇πχ)K + (ρε(φ)(v · ∇)πv, δ(v)

K ρε(φ)(v · ∇)πψ)K

+ (v · ∇πφ, δ(φ)
K v · ∇πξ)K

}
− (n · σ(v, p)n,n ·ψ)Γfixed

− (n · v,n · σ(ψ, χ)n)Γfixed + β(n · v,n ·ψ)−1,h,Γfixed

with the obvious modifications if dynamic spatial meshes are used and hence the finite
element spaces V m

h do not coincide. Here, (f, g)−1,h,G is defined as

(f, g)−1,h,G :=
∑
E⊆G

h−1
E (f, g)E ,

where hE is the size of the edge or face E and β > 0 is a constant. The stabilization
parameters αK , δ(v)

K , and δ(φ)
K are chosen in the same way as in (3.9).

Remark 6.7. In Braack [18], a variant of the local projection stabilization for anisotropic
meshes was proposed. However, in our numerical examples we did not observe any
considerable difference between the isotropic and the anisotropic variant of the local
projection stabilization, neither concerning the behavior of the solver nor in the solution.
This can be explained due to the rather small aspect ratio of approximately 1:10.

We refrain from presenting the precise fractional-step-θ formulation of the problem because
it becomes quite lengthy. The a posteriori error estimator for the spatial discretization
error can be derived in the same way as in Chapter 4 taking the Lagrangian based on the
fractional-step-θ time-stepping formulation as basis. Due to the consistent implementation
of the free slip-boundary conditions, we obtain a similar expression for the spatial a
posteriori error estimator as in Section 4.3. Again, we neglect the h-dependent terms
arising due to stabilization and regularization of the Heaviside function. However, since
the continuous solution does not vanish on the semi-discrete fractional-step-θ formulation,
we are not able to transfer the derivation of the temporal a posteriori error estimator of
Chapter 4 to this situation. On the other hand, as already pointed out above, we apply an
equidistant discretization in time and hence, this does not matter.

6.2.4 Numerical results

Before we present the results of the simulation of the filling process of a prototypical
microdiagnosis chip, we validate in a first step the numerical model, especially the treatment
of the surface tension and the inflow and outflow boundary conditions.
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Numerical validation

In this first test case, we consider a two-dimensional rectangular domain Ω = (0, 2)× (0, 1),
see Figure 6.28. At the beginning, the subdomain Ωliquid = (0, 1

2) × (0, 1) is filled with
liquid, the rest of the domain Ωgas = (1

2 , 2)× (0, 1) is occupied by the gaseous phase. Both
phases are separated by the interface Γ = { 1

2 } × (0, 1). The boundary of the domain
∂Ω = Γin ∪ Γfixed ∪ Γout is decomposed as indicated in Figure 6.28. The initial velocity is
set to zero, so the whole system is at rest.

Ωliquid Ωgas ΓoutΓin

Γfixed

Γfixed

Γ

Figure 6.28. Computational domain and initial configuration

By prescribing a contact angle of θ = 45°, the interface starts to get curved and a flow
is developing without setting a non-trivial pressure drop between the inflow and outflow
boundary. The flow makes the interface move from the left to the right. In the computation,
the dimensionless parameters are set to

ρliquid = 1, ρgas = 10−3, µliquid = 1, µgas = 10−1, We = 1.

The gravitational forces are set to zero. Since we only aim at verifying the model developed
in the previous section, we do not consider adaptivity here. Instead, we use a uniformly
refined grid with 8192 cells yielding 33540 degrees of freedom and equidistant time steps
of size k = 0.1. The parameter in the weak implementation of the free-slip boundary
conditions is set to β = 10000. The results of the computation are shown in Figure 6.29.
There, the liquid phase is shown in red while the gaseous phase is depicted in blue. The
actual flow direction is also indicated by the arrows.

First of all, we observe that the developed model reproduces the expected results quite
well since the prescription of the given contact angle leads to wetting of the lower and
upper boundary and induces a flow in the corresponding direction. Furthermore, we also
note that the applied inflow and outflow boundary conditions lead to a parallel inflow and
outflow as intended.

Besides this purely qualitative test case, we intend to verify the developed model also
quantitatively. To this end, we consider in the second test case a stationary circular bubble
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6.2 Filling process of a lab-on-a-chip

(a) t = 0.0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5

(g) t = 0.6 (h) t = 0.7

(i) t = 0.8 (j) t = 0.9

(k) t = 1.0

Figure 6.29. First test case: Results of the computation (red: liquid phase, blue:
gaseous phase)
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at equilibrium. This configuration is taken from Hysing [72]. Due to the Laplace-Young
law, the pressure inside the bubble is given by

pin = pout + σ

r
,

where r denotes the radius of the circle. In our configuration, we choose r = 1
4 for a circle

located in the center of the unit square Ω = (0, 1)2. The dimensionless densities are set to
104, while the viscosities are set to 1. Since the interface Γ between both phases is closed,
there are no contact angles to be prescribed. Again, we do not consider gravitational forces.
The Reynolds and Weber numbers are set to 1.

We prescribe free-slip boundary conditions on the whole boundary ∂Ω = Γfixed. Hence, the
pressure is sought in the space Lslip := L2(Ω)/R because it is only uniquely determined up
to an additive constant.

The quantity of interest is set to

J(u) = p(1,xgas)− p(1,xliquid)

with
xgas = (1

2 ,
1
2)T and xliquid = (1, 1

2)T

which corresponds to the difference of the pressure in the liquid and the gaseous phase
at final time T = 1. The size of the time steps is chosen as k = 0.1. Since everything is
stationary in this configuration, we keep the spatial meshes fixed in time.

In Table 6.16, we present the results of the computation with adaptive spatial refinement.
The notation used therein is the same as in previous parts of this thesis. We again observe
the very good quantitative assessment of the discretization error by the developed error
estimator.

Table 6.16. Static bubble: Adaptive spatial refinement

N ηh J(u)− J(ukh) Ieff

324 −7.76 ·10−01 −2.61 ·10+00 3.37
652 3.24 ·10−01 3.52 ·10−02 0.11
996 5.65 ·10−02 7.03 ·10−02 1.24

2020 −1.64 ·10−02 9.17 ·10−03 −0.56
5348 2.12 ·10−03 7.81 ·10−03 3.68

11676 −2.71 ·10−04 −5.54 ·10−04 2.04
28948 −6.97 ·10−05 −3.07 ·10−05 0.44
73820 −2.06 ·10−05 −2.07 ·10−05 1.01

208532 −7.57 ·10−06 −7.88 ·10−06 1.04

In Figure 6.30, this computation with adaptive spatial refinement is compared to a
computation based on uniform refinement of the spatial mesh. In both cases, the temporal
discretization is kept fixed with the size of the time steps set to k = 0.1. Again, the benefit
of applying the quantitative error estimator can be seen: For obtaining an error of 3 · 10−5,
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6.2 Filling process of a lab-on-a-chip

the computational costs counted in spatial degrees of freedom can be reduced by a factor
of 10 when using adaptive refinement instead of uniform refinement.

10−5

10−4

10−3

10−2

10−1

100

103 104 105

∣ ∣ J(u
)−

J
(u
k
h
)∣ ∣

spatial degrees of freedom

uniform
adaptive

Figure 6.30. Static bubble: Comparison of the error
∣∣J(u)− J(ukh)

∣∣ for differ-
ent refinement strategies

Figure 6.31 shows the distribution of the pressure at final time T = 1 and an adaptively
refined mesh, corresponding to the last line in Table 6.16. We like to emphasize an additional
advantage of the developed error estimator compared to heuristic error indicators: Due to
the special structure of the solution, one obviously has to refine the mesh near the interface
between both phases. Additionally, it is clear that refinement near the evaluation points
xgas and xliquid is important. However, balancing both effects can be difficult, especially
in situations where the exact solution is not known in advance. The quantitative error
estimator on the other hand is able to estimate the influence of errors produced in both
regions by incorporating information of the dual variable. As can be seen, the mesh is only
slightly refined near the evaluation points, but strongly refined near the interface.

In the next two sections, we present the simulation of the filling process of a prototypical
subregion of a lab-on-a-chip. Here, we first consider a two-dimensional simplification before
we show the results in the full three-dimensional case.

Two-dimensional simplification

We consider the filling process of the prototypical two-dimensional cut-out of a microdi-
agnosis chip shown in Figure 6.32. The liquid phase enters the domain through the inlet
Γin which is located at the lower left side of the domain. At the same time, the gaseous
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Figure 6.31. Static bubble: Pressure distribution at final time T = 1 and
adaptively refined mesh

phase escapes through the outlet Γout situated at the upper left side of the domain. The
remaining part of the boundary forms the free-slip boundary Γfixed.

For the computation, the dimensionless parameters are set to

ρliquid = 1, ρgas = 10−3, µliquid = 1, µgas = 10−1, We = 10.

The mean pressure on the inflow boundary is given by P = 200 while the contact angle of
the interface is set to θ = 45°. The constant β arising in the weak implementation of the
free-slip boundary conditions is chosen as β = 10000. In this two-dimensional simplification
we do not consider gravitational forces.

Γin

Γout

Figure 6.32. Mesh of a prototypical two-dimensional cut-out of a microdiagnosis
chip
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6.2 Filling process of a lab-on-a-chip

As quantity of interest, we look at the averaged volume occupied by the liquid phase

J(u) =
T∫

0

∫
Ωliquid

dx dt =
T∫

0

∫
Ω

H(φ) dx dt,

which should lead to a precise tracking of the interface between the liquid and the gaseous
phase. The final time is set to T = 60. The size of the time steps is chosen as k = 0.3.
For the spatial discretization, we use dynamic meshes because this allows us to capture
the movement of the interface by adaptive refinement without increasing the degrees of
freedom excessively.

In contrast to the two- and three-dimensional benchmark configurations “Laminar Flow
Around a Cylinder” discussed in Section 6.1, we cannot give the usual plots on the
convergence history here because there is no reference solution given nor are we able to
perform computations on meshes fine enough to produce reliable reference values. Instead,
this example has to be seen as a feasibility test which allows only for a qualitative discussion
of the results.

Figure 6.33 shows the results of the simulation of the filling process by presenting a sequence
of filling states at different times. We observe that the meshes used at the beginning
of the simulation are stronger refined than those used at the end. This, of course, is
meaningful because errors produced at early times have a greater influence on the overall
discretization error than those occurring at later times. We also note another phenomenon
which might seem surprising at first thought: The application of the developed a posteriori
error estimator leads to refinement of cells which are far away from the current interface
position. However, a closer look shows that the areas of strong refinement are always
located near corners. This helps understanding why refining these areas is important: The
propagation speed of the interface in such a two-phase flow setting is mainly determined by
the pressure distribution in the whole system. The reentrant corners lead to singularities
in the pressure which have to be captured by adaptive refinement of the cells to obtain a
good approximation of the overall pressure distribution. Hence, for precisely tracking the
interface one must on the one hand refine the cells in the neighborhood of the interface
in order to be able to precisely represent the shape of the interface. On the other hand,
however, one also has to refine the areas near corners in order to resolve the pressure
singularities which mainly determine the propagation of the interface. Balancing both
criteria is hardly possible without the information of an a posteriori error estimator. For
example, using only information from the level set function—like it is usually done in
two-phase flow simulations—would lead to refinement around the interface, but then the
propagation speed of the interface might be wrong because the overall flow pattern is not
computed correctly.

To substantiate this statement, we repeat the simulation of the filling process, but this
time we do not apply the developed a posteriori error estimator to trigger the adaptive
refinement of the spatial discretization. Instead, a cell is marked to be refined if the level
set function φ takes positive as well as negative values on it. Since the interface between
both phases is given by the zero level set of φ, this corresponds to refining those cells which
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(a) t = 0 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 15 (f) t = 21

(g) t = 24 (h) t = 30

Figure 6.33. Filling process of the two-dimensional configuration (red: liquid
phase, blue: gaseous phase)
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(i) t = 36 (j) t = 39

(k) t = 45 (l) t = 48

(m) t = 51 (n) t = 54

(o) t = 57 (p) t = 60

Figure 6.33. Filling process of the two-dimensional configuration (red: liquid
phase, blue: gaseous phase) (cont.)
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are crossed by the interface. In Figure 6.34, we show a comparison of the filling states
computed either with uniform refinement, with adaptive refinement based on the developed
a posteriori error estimator or with adaptive refinement based on the information of the
level set function. We observe a pretty good agreement of the computations involving
uniform and adaptive refinement based on the a posteriori error estimator. On the other
hand, the computation with adaptive refinement based on the information of the level set
function leads to a completely different propagation speed of the interface between the
liquid and the gaseous phase.

(a) t = 0

(b) t = 3

(c) t = 21

(d) t = 30

(e) t = 51

Figure 6.34. Comparison of the filling states obtained with uniform refinement
(middle), adaptive refinement based on the a posteriori error esti-
mator (left) and information of the level set function (right)
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Three-dimensional results

In this section, we consider the filling process of a prototypical three-dimensional cut-out
of a microdiagnosis chip as it is shown in Figure 6.35. Here, the inlet boundary Γin is given
as the front plane of the right main channel, while the outlet boundary Γout is represented
by the front plane of the left main channel.

Γin

Γout

Figure 6.35. Mesh of a prototypical three-dimensional cut-out of a microdiag-
nosis chip

For the computation, the dimensionless parameters are set to

ρliquid = 1, ρgas = 10−3, µliquid = 1, µgas = 10−1, Fr = 1
98.1 .

Here, the flow is driven only by the pressure drop between the inflow and outflow boundary
where the mean pressure on the inflow boundary is given by P = 400. As in the two-
dimensional case, the constant β arising in the weak implementation of the free-slip
boundary conditions is chosen as β = 10000.

As quantity of interest, we look again at the averaged volume occupied by the liquid
phase

J(u) =
T∫

0

∫
Ωliquid

dx dt =
T∫

0

∫
Ω

H(φ) dx dt.

The final time is set to T = 600. The size of the time steps is chosen as k = 1. As in the
two-dimensional case, dynamic meshes are used for the spatial discretization.

In Figure 6.36, the results of the simulation of the filling process are shown. There, we
present a sequence of filling states at different times. We observe that first the liquid phase
which enters the domain through the inlet Γin passes through the main channel. Then,
the flow separates and the thin channels are filled. Finally, under the influence of gravity,
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(a) t = 0 (b) t = 9

(c) t = 150 (d) t = 300

(e) t = 399 (f) t = 405

(g) t = 414 (h) t = 417

Figure 6.36. Filling process of the three-dimensional configuration
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(i) t = 420 (j) t = 423

(k) t = 441 (l) t = 450

(m) t = 456 (n) t = 459

(o) t = 462 (p) t = 600

Figure 6.36. Filling process of the three-dimensional configuration (cont.)
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the liquid flows into the reaction chambers and fills them bottom up. This shows that the
model developed in Section 6.2.1 is well suited for the simulation of such filling processes.

As in the two-dimensional case, the meshes used at the beginning of the time interval
are stronger refined than those used at the end. Since the propagation speed of the
interface between the liquid and the gaseous phase is mainly determined by the overall
pressure distribution, the zones of strong refinement are not only concentrated to the
interface. Instead, the meshes are also refined in the neighborhood of corners. This is
necessary to resolve the singularities arising in the pressure. As already pointed out in the
two-dimensional case, this is essential in order to obtain a meaningful approximation of
the overall pressure distribution.

The last example shows that even for such complex “real-life” problems, the a posteriori error
estimator developed in this thesis is a powerful tool in producing efficient discretizations
based on dynamic meshes.
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In this thesis, we developed an efficient numerical method for solving nonstationary incom-
pressible flow problems. The proposed method uses Galerkin finite element discretizations
in time and space. Based on these discretizations, we derived a posteriori error estimators
which are able to separate and quantitatively assess the temporal and spatial discretization
errors measured in some quantity of interest. The information from the error estimators
was then used within an adaptive algorithm which balances the error contributions of both
the temporal and the spatial discretization and keeps both discretization errors equilibrated
under further adaptive refinement of the discretizations. To this end, the information
from the error estimators was localized to interval-wise or cell-wise contributions. For the
proposed adaptive algorithm, an important property is the quantitative reliability of the
error estimators as well as their independence of the refinement of the other discretization.

We also introduced the concept of dynamic spatial meshes, i. e., meshes that change in
time. We showed that the approximation of the velocity field on such dynamic meshes is
satisfactory while the approximation of the pressure deteriorates when changing the spatial
mesh. We numerically and theoretically investigated this phenomenon and showed that
this error in the pressure approximation occurs if the velocity from the first mesh is not
divergence-free with respect to the test functions on the second mesh. We also numerically
investigated several attempts to overcome this difficulty where it turned out that using the
divergence-free L2-projection (H-projection) of the velocity from the first mesh onto the
second mesh performed best.

The efficiency of the developed numerical method was demonstrated by applying it to
academic test cases as well as well-known benchmark configurations. In both cases, we
achieved a significant saving considering the required degrees of freedom and hence also in
the time needed for computation. We were even able to compute the mean drag-coefficient
in the three-dimensional benchmark configuration up to a few percent on a standard
personal computer.

Finally, we also considered two-phase flow problems. We developed a model for simulating
the filling process of a microdiagnosis chip incorporating surface tension and wetting effects
as well as contact angles. For separating both phases, a level set approach was used. We
showed that the application of the developed a posteriori error estimator is advantageous
compared to simply refining cells near the interface—as it is often done in two-phase
flow simulations—because the latter method possibly leads to wrong propagation speeds
because the flow pattern away from the interface might not be resolved accurately.

Based on the results achieved in this thesis, the following topics can be regarded as
promising future development:
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7 Conclusion and Outlook

Optimal Control of Nonstationary Flow Problems

In this thesis, we considered only the efficient simulation of nonstationary incompressible
flow problems. However, in practice, one might be interested in minimizing specific
quantities (for example, the drag coefficient of an obstacle) or in estimating some parameter
(like the viscosity, for instance). We regard the combination of the results of this thesis
with the concepts derived in Meidner [78] for optimal control problems with parabolic
partial differential equations as a promising approach to optimal control problems involving
nonstationary flows.

Space-Time-Adaptivity for Two-Phase Flow Problems

We showed how residual based a posteriori error estimation is applicable to two-phase
flow problems and what benefit we can get from it. However, in this thesis, the error
estimation and adaptive refinement for two-phase flow problems was restricted to the
spatial discretization. For setting up efficient adaptive algorithms on the other hand, one
has to cover the estimation of the temporal discretization error as well. One important
point here is posing a coupled space-time-variational formulation of the governing equations.
To this end, it is necessary to replace the level set method by a method which does not
require intermediate reinitialization steps like the initial position set method developed
by Dunne [38] in the context of fluid-structure-interaction problems.

Nonstationary Reactive Flow Problems

In industrial applications of multi-phase flow problems, there are often chemical reactions
between some of the phases. The discretization of the governing system of equations leads
to extremely large and complex systems of algebraic equations. Hence, to accurately resolve
the reactions and the overall flow pattern, the use of adaptive refinement techniques is
mandatory. Combining the methods developed in this thesis with those presented in Braack
[17] and Richter [93] for stationary reactive flows seems to be a promising way to cope
with nonstationary reactive flow problems. Especially in three spatial dimensions, even
with adaptive discretizations the computational costs will usually be too high to solve the
problems on standard personal computers. Thus, employing parallel computing techniques
is a fundamental topic here.
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