
Dissertation

submitted to the Combined Faculties
for the Natural Sciences and for Mathematics

of the Ruperto–Carola University of Heidelberg, Germany

for the degree of Doctor of Natural Sciences

Put forward by
Diplom–Physiker Peter C. Seitz

Born in Heidenheim an der Brenz
Oral examination: . . 





The Physical Role of Lipopolymers in
the Modulation of Interfacial Forces

and Dissipative Pattern Formation
in Biomembrane Models

Peter C. Seitz

Referees:
Prof. Dr. Annemarie Pucci
Prof. Dr. Motomu Tanaka





Zusammenfassung
Es wurde eine neue Klasse von Zellmembranmodellen eingeführt, die von einer festen
Unterlage durch lineare polymer Abstandshalter mit definierter Länge getrennt sind.
Das Ziel war die physikalische Rolle von weichen Polymeren die an eine Membran-
oberfläche gebunden sind (z.B. Glycocalix) bei der Regulierung von Zell–Zell Wech-
selwirkungen zu enträtseln. Mit spekulärer Neutronen- und Röntgenstreuung sowie
Ellipsometrie wurde der Einfluss der lateralen Dichte und der Länge der Polymerket-
ten auf die Wechselwirkungen zwischen Membran und Unterlage systematisch un-
tersucht. Die Kombination unterschiedlicher Reflektivitätstechniken unter verschie-
denen osmotischen Drücken und unter Wasser ermöglichte die Berechnung quan-
titativer Kraft–Abstands Beziehungen. Diese machen das Zusammenspiel der wich-
tigsten Oberflächenkräfte deutlich, wodurch der Gleichgewichtsabstand bestimmt ist.
Bei dem Übertrag der Lipid–Lipopolymer Monolagen von der Wasser–Luft Grenz-
fläche auf feste Unterlagen durch vertikales Ziehen entstehen Streifenmuster parallel
zur Übertragsrichtung. Durch zwei speziell dafür konstruierte experimentelle Auf-
bauten, welche die Beobachtung der Phasentrennung in situ ermöglichen, konnte ein
tieferer Einblick in den Prozess der Strukturbildung gewonnen werden. Die quanti-
tative Abhängigkeit der charakteristischen Länge von den Präparationsbedingungen
wurde systematisch im Rahmen der Theorie der Phasentrennung diskutiert: Tatsäch-
lich konnten die experimentellen Ergebnisse bei kleinen Übertragsgeschwindigkeiten
gut mit der Cahn–Hilliard Gleichung erklärt werden.

¹
Abstract
A new class of model cell membranes which is separated from the solid substrate via
linear polymer spacers of defined lengthwas established in order to unravel the physical
role of soft polymers attached to the membrane surface (e.g. glycocalyx) in modulat-
ing cell–cell interactions. Using specular neutron and X–ray reflectometry as well as
ellipsometry the influence of the lateral density and length of the polymer chains on
the membrane–substrate interactions was systematically investigated. The combina-
tion of different reflectivity techniques at various osmotic pressures and in bulk water
enabled the calculation of quantitative force–distance relationships which reveal the
interplay of the major interfacial forces determining the equilibrium distance. Dur-
ing the transfer of lipid–lipopolymer monolayers from the air–water interface to solid
substrates by vertical lifting, stripe patterns parallel to the transfer direction appear. A
deeper insight into the pattern formation process is taken by two uniquely designed
experimental setups that allow for the in situ observation of phase separation during
film transfer. The dependence of the characteristic length on the preparation parame-
ters was systematically discussed in the theoretical framework of phase separation: In
fact, the experimental results at low transfer speeds could be well explained with the
Cahn–Hilliard equation.
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Introduction

What is life?—This still open question has troubled generations of researchers by trying
to grasp and answer it using physical concepts 1. On the way to an answer, a detailed un-
derstanding of the mechanisms taking place on the molecular level has been obtained
by intensive study over several decades. Cells, the fundamental units of life consist of
four major families of molecules apart from the overall abundant water 2,3. These four
families are carbohydrates, amino acids, nucleotides and lipids. The first three are sets of
monomers that combine to macromolecules which, assembled to structures, exhibit a
great diversity. Carbohydrates (oligo- and polysaccharides) are used for energy storage
(dextran), structural stability (chitin, cellulose) and for specific recognition between
cells. Amino acids are the building blocks for peptides and proteins which in turn pro-
vide versatile functionality (enzymes, ion channels, cell adhesion receptors, molecular
motors). DNA (Deoxyribonucleic acid) and RNA (Ribonucleic acid) are composed of
a linear sequence of nucleotides and mainly responsible for information storage.

Unlike the other three families, lipids self–assemble into structures by physical (non–
covalent) interactions which is in contrast to the chemical (covalent) bonds in the
macromolecules. Lipids consist of two parts, a hydrophobic alkyl chain and a hy-
drophilic head group of various phosphate derivatives. The amphiphilic character of
lipid molecules leads to the formation of self–assembled structures, in order to min-
imize the contact between hydrophobic (non–polar) chains and polar solvents (wa-
ter). This entropic effect, called hydrophobic effect4, and the lipid molecular struc-
ture (cylindrical, conical) determines the arrangement of the resulting aggregates, like
spherical micelles, planar bilayers, inverted micelles, etc. Bilayer membranes are the
common border of cells and organelles to separate their interior from the exterior.

To gain deeper insight into the physical principles that determine structure and
function of cell membranes in a quantitative manner, the design of well–defined bio-
membrane models with a reduced number of molecular components is very helpful.
One such model is established and characterized in this thesis, in order to unravel how
soft, hydrophilic oligomers and polymers adjacent to the lipid head groups modulate
the interfacial forces acting at biological interfaces, such as the glycocalyx coating the

1



2 Introduction

Extracellular Domain

Intracellular Cytoplasm

Figure 1 – A simplified diagram of a cell plasma membrane (modified from 5 according
to 6). The lipid bilayer is densely packed with proteins. On the intracellular side the lipid
bilayer is attached via protein assemblies to the cytoskeleton. The extracellular side exhibits
different sugar residues which form the glycocalyx.

cell surface (see Figure 1).
Artificial biomembrane models have to fulfill some or all of the basic requirements

of lipid membranes in cells, as suggested by the fluid mosaic model 7 and the later re-
finements 8,9. There, fluidity refers to the lateral mobility of the membrane constituents
and themosaicity describes the arrangement of a lipid bilayer densely packed with pro-
teins and attached carbohydrates. In addition, heterogeneity of the membrane seems
important for specific biological interactions such as lipid rafts 10.

Among the model membranes are free–standing black lipid membranes 11, spheri-
cal lipid vesicles 12 and Langmuir monolayers at the air–water interface 13. Vesicles have
been widely used to study the phase behavior of lipid mixtures and to determine the
borders of fluidity and heterogeneity induced by demixing. Black lipid membranes
are ideally suited for monitoring the selective and non–selective transport of charged
species (e.g. ions) across the membrane 14. But these model systems lack mechanical
stability. This stability is found in solid–supported membranes either on planar sup-
ports 15,16 or on spherical beads 17–19. For the structural analysis the planar geometry is
advantageous and has been used successfully for decades to study many of the key bio-
logical processes (e.g. cell adhesion) 20. A diagram is shown in the left panel in Figure 2
on the next page. The deposition on a solid support, though, introduces a problem
not encountered in free–standing membranes: the close contact to the substrate. The
distance between solid support and lipid bilayer is on the order of several Ångstrom 21.
Such a small gap is sufficient as a lubricating layer for a simple model membrane com-
prised only of lipids or molecules coupled to the distal membrane surface 22. However,
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Figure 2 – Diagram of supported membranes. Left: solid–supported membrane, only a
thin lubricating layer between the solid substrate and the membrane is present. Right:
polymer–tethered membrane, the spacing can be adjusted by varying polymer length and
lateral density resulting in amore fluidmembrane capable of incorporating transmembrane
proteins with large protrusions.

the addition of integral transmembrane proteins with protrusions from themembrane,
with the protrusions reaching up to 10nm, lead to a contact with the substrate. The
strong interaction with the solid substrate can easily lead to denaturation of the pro-
tein and loss of functionality 23,24. Additionally, the mobility of the proteins, one of the
fundamental requirements in nature, is hampered 25.

As a remedy, a spacing between the solid support and the bilayer which provides
a non–denaturing environment for proteins needs to be introduced by a soft and hy-
drophilic interlayer 26. This can be realized by the addition of either polymeric cushions
deposited underneath the membrane or tethers keeping the membrane at a certain dis-
tance from the solid support.

Cushions are deposited separately from the membrane. This requires that the poly-
mer forms a stable film on the solid support and that the membrane wets the polymer.
As reported by Wong et al.27 in the case of polyethyleneimine the required change in
properties to support formation of a membrane can be achieved by a simple prepa-
rational step of letting the polymer film dry before depositing the membrane, but in
general demands a well considered choice of polymer. Cushions underneath mem-
branes have been prepared from various hydrated polymer films: polyethyleneimine 27,
dextran 28, polyacrylamide 29, agarose 30 and cellulose 25,26,31–33. Especially cellulose has
proven to be a very useful material for polymer cushions supporting artificial and na-
tive membranes 33–35. The observation of homogeneously distributed, highly mobile,
transmembrane proteins integrin αIIbβ3 retaining their natural function on a cellulose
cushion can be taken as a proof of sufficient spacing. The deposition of cellulose using
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Langmuir–Blodgett transfers gives good control over the thickness of the cellulose film
by the number of successive transfers. However, a systematic variation of the density
and lubricating properties is impossible since the density and viscosity of the polymer
cushions cannot be adjusted flexibly.

A more tunable soft interlayer can be introduced by tethering the membrane to the
solid support via linear polymer chains coupled to the lipid alkyl chains, as displayed
in the right panel of Figure 2 on the preceding page. The membrane model established
in this thesis can offer a unique advantage over polymer cushioned membranes to con-
trol the density of the polymer interlayer via the density of the polymer tethers. For
the preparation of a well ordered structure of a membrane on top of a polymer layer,
the polymer tether needs to be hydrophilic to undergo a clear phase separation from
the hydrophobic alkyl chains. As tethers, lipids with a polymeric head group are used.
The hydrophobic part of these lipopolymers anchors the molecule in the membrane
and the polymer acts as a spacer between the solid support and the membrane. Ad-
ditionally a surface coupling group on the polymer provides firm attachment to the
support. Tethers that have previously been used by other groups consist of oligopep-
tides 36, oligo(ethylene oxide) 37–39 and poly(ethylene oxide)40,41, glycoacrylates42 as
well as poly(alkyl oxazolines)43–46. The separations attainable with oligomers are short
compared to the protrusions of transmembrane proteins and are therefore not the ma-
terial of choice for supported membranes with incorporated proteins. Poly(ethylene
oxide) based lipopolymers with a silane surface coupling group have successfully been
used for the preparation of mixed monolayers of lipids and lipopolymers on the air–
water interface andwere transferred by a Langmuir–Blodgett transfer to a solid support
with completion to a bilayer by vesicle fusion41. The Langmuir–Blodgett transfer allows
a fine control over the composition of the monolayer and the two step process of com-
pleting the bilayer the preparation of asymmetric membrane leaflets. The application
of these membranes was shown by the incorporation of protein cytochrome b5 and the
binding of annexin A541 as well as VAMP binding reversibly to incorporated syntaxin
1A/SNAP-2540. However, the use of poly(ethylene oxide) is problematic since the ad-
sorption of poly(ethylene oxide) chains at the air–water interface can lead to defects
in the membrane41. The same holds true for poly(2-ethyl-2-oxazolines) used by Nau-
mann et al.44 which forms aggregates inwater47. Naumann et al.44 used even a coupling
to the surface at a random position on the polymer resulting in an undefined spacing
under various conditions. A combination of hydrophilic polymers with precisely con-
trolled length and surface coupling groups based on poly(2-methyl-2-oxazoline) was
first presented by Purrucker et al.46. Although its applicability was shown by incorpo-
rating integrin αIIbβ3 receptors, a quantitative measurement of themembrane–support
distance and the physical role of polymer spacers in the modulation of interfacial in-
teractions still remain as an open question.

This foremost question of thickness and composition of the spacing layer has been
rather neglected. Atomic forcemicroscopy has been used to scrape an area free ofmem-
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brane andmeasure the height difference42 but giving no information about the compo-
sition. The separation has also been tried to be measured by fluorescence interference
contrast microscopy, but this technique strongly depends upon the location and orien-
tation of the transitional dipole moments of the fluorescent probes in the membrane48.
Alternative ways to evaluate structures of supported membranes are techniques based
on reflectivity, such as ellipsometry49–51, specular X–ray 21,52–55 and neutron reflectom-
etry 27,39,56. With these techniques not only the thickness is measured but also the re-
fractive index, the volume fraction of water in the interlayer and the roughness of the
layers can be obtained.

In this thesis, a thorough investigation on the separation of a membrane from a
solid support by lipopolymer tethers and the composition of this interlayer is presented.
To this end poly(2-methyl-2-oxazoline) lipopolymers were used 57. The lipopolymers
were synthesized by the group of Prof. R. Jordan at the TU Munich (now Professur
für Makromolekulare Chemie, TU Dresden). Their synthesis via living cationic ring–
opening polymerization results in a precisely controlled length and allows a flexible
end functionalization45,58–60. The methyl side group was chosen as it renders the poly-
mer hydrophilic and thus separates well from the alkyl chains. The polymer–tethered
membranes were prepared by Langmuir–Blodgett transfer of lipid–lipopolymer mix-
tures from the air–water interface. Completion to a bilayer proceeded either by vesicle
fusion or Langmuir–Schaefer transfer.

After an introduction to the experimental techniques in Chapter 1, in Chapter 2 the
focus is on the transversal structure of the polymer–tethered membranes (normal to
the membrane plane). In this part, the influence of the degree of polymerization (n =
14 . . . 104), surface coupling group (covalent: silane, adsorption: piperidine) and com-
position of lipid–lipopolymer mixtures on the membrane–substrate distance and the
resulting net forces acting at the interface were investigated systematically. The char-
acterization starts with the intermediate stages in preparation of a monolayer at the
liquid–gas interface and at the solid–gas interface. Combined with the measurements
of the polymer–tethered membrane at the solid–liquid interface a more complete pic-
ture of the structure and interfacial interactions is obtained. Experiments using neu-
tron reflectometry are presented in Appendix B supporting the findings of X–ray and
ellipsometry measurements.

Chapter 3 deals with a very unique phenomenon observed during Langmuir–Blod-
gett transfer of the lipid–lipopolymermixtures as depicted in Figure 3 on the next page.
Parallel stripe patterns exhibiting long–range ordering emerge, reminiscent of many
phase separating phenomena inmulti–cellular organisms like the stripes of zebras61 or,
in condensed matter, like domains in ferromagnetic garnet films62. Indeed the stripes
were previously found to consist of one phase enriched in lipid and the other enriched
in lipopolymer63. To gain a deeper insight into the pattern forming process, two unique
experimental setups were constructed for this thesis by the combination of observa-
tional techniques with a Langmuir trough. The first setup uses imaging ellipsometry
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Experiment

Simulation

Figure 3 – Langmuir–Blodgett transfer of a lipid–lipopolymer mixture (left) results in
a stripe pattern due to demixing of lipids and lipopolymer along the transfer direction
(right). Shown below is the result of a 1D simulation of the Cahn–Hilliard equation.

which is a very powerful tool to reconstruct the local height profiles of the wetting films
on the substrate with a vertical resolution of several Ångstrom and a lateral resolution
in the µm range. It is demonstrated that this custom–made instrument can measure
extremely small contact angles well below one degree near the three–phase contact
line. Complementary to the height information, the lateral reorganization process is
revealed by the combination of a fluorescence microscope with a Langmuir trough.
The experimental findings were systematically compared with a theoretical framework
of phase separation based on the Cahn–Hilliard equation. This phenomenological ap-
proach is employed to establish a theoretical explanation of the observed stripe patterns
in dependence on the preparation conditions.



Chapter 1

Experimental Techniques
& Material

In this chapter the utilized material and experimental techniques are presented along
with procedures used for data analysis.

1.1 Material

The most abundant substance used for the experiments in this thesis is purified wa-
ter. Purified water is drawn from a water purification system either produced by Milli-
pore (Schwalbach/Ts., Germany) or by TKA (TKA GenPure, Niederelbert, Germany).
The specific electrical resistance upon drawing exceeded 18MΩcm. Lipids other than
lipopolymerswere ordered throughAvanti Polar Lipids (Alabaster, AL,USA). 1-stearoyl-
2-oleoyl-sn-glycero-3-phosphocholine (SOPC) and 1,2-diphytanoyl-sn-glycero-3-pho-
sphate (DPhPC) are in the Lα liquid crystalline phase64 at all conditions prevalent
in the experiments. The transition temperature of SOPC is 7 °C65 while the methyl
side groups of DPhPC decrease its transition temperature to below −120 °C66. For
the preparation of working solutions the lipid concentration of all mixtures was di-
luted to 1mgml−1. Fluorescence markers Texas Red® 1,2-dihexadecanoyl-sn-glycero-3-
phosphoethanolamine (Texas Red®-dhpe) and N-(6-tetramethylrhodaminethiocarba-
moyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (tritc-dhpe)were pur-
chased from Invitrogen (Karlsruhe, Germany). The excitation (ex) and emission (em)
maxima are forTexasRed®-dhpe ex: 595 nm, em: 615 nmand fortritc-dhpe ex: 555 nm,
em: 580nm. All other chemicals were purchased in bulk quantities and were of analyt-

7
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Figure 1.1 – Chemical structures of the lipopolymers used with monomer number n. A)
Distearyl-poly(2-methyl-2-oxazoline)-trimethoxysilane, n = 14, 33, 104. B) Diphytanyl-
poly(2-methyl-2-oxazoline)-piperidine, n = 60.

ical grade.

1.1.1 Lipopolymers

Lipopolymers were synthesized at theWacker–Chair ofMacromolecular Chemistry at
the Technical University Munich, Germany. Details about the synthesis can be found
elsewhere45,46,59. PMOx14, PMOx33 and PMOx104 with a trimethylsiloxane surface
coupling group were synthesized by Anton Förtig while all other lipopolymers used in
this study were prepared and characterized by Michael Reif, both under supervision
of Rainer Jordan. The synthesis is done using the living cationic ring–opening poly-
merization67. Starting with a lipid moiety as initiator the monomers are formed by
breaking the ring structure of 2-substituted 2-oxazoline . This method results in a very
low polydispersity index close to 1 and allows termination by a functional group. For
the current study distearyl (2 × C18:0) and diphytanyl (2 × 4Me C16:0) were used as
lipid anchors. As monomer 2-methyl-2-oxazoline was incorporated into the lipopoly-
mers unless denoted otherwise. As a termination on the other side either trimethoxysi-
lane or a piperidine group were attached. While trimethoxysilane binds covalently to
the silicon dioxide surface of the solid substrate, piperidine offers only a nonspecific
adsorption onto the substrate but has the advantage of a longer shelf life since no poly-
condensation of the lipopolymers can occur. The chemical structures are shown in
Figure 1.1.

1.1.2 Solid Substrates

As solid substrates, glass cover slips and polished silicon wafers were used. Glass cover
slips made from borosilicate glass were obtained from Marienfeld (Lauda–Königshof-
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en, Germany) with a thickness of 0.16mm–0.19mm, suitable for fluorescence micro-
scopy. Silicon wafers were supplied by Si–Mat (Landsberg am Lech, Germany) with a
native oxide layer of ≈ 15Å thickness. The wafers were broken into rectangular pieces of
24mm×20mm. Before use, solid substrates were cleaned to remove any contaminants
still present from the production and to create a homogeneously hydrophilic surface.
Amodified protocol based on the RCA Standard Clean 1 bath has been adopted68. The
cleaning procedure consists of successive ultrasonication for five minutes in acetone,
ethanol, methanol and purified water, followed by half an hour in a (1:1:5 v/v) mixture
of (30% ammonia : 30% hydrogen peroxide : purified water) at 60 °C. Intensive rins-
ing with purified water and storage in vacuum completes the cleaning procedure. The
substrates were used within several days after being cleaned.

1.2 Preparative Techniques

1.2.1 Langmuir–Blodgett Transfer

As the first step in sample preparation the solid substrate was coated by an amphiphilic
monolayer by a Langmuir–Blodgett (LB) transfer69,70. With the LB transfer technique
the composition of the monolayer can be controlled with high precision. By adjust-
ing the surface pressure of the monolayer in the Langmuir trough the density can be
set, which is retained in the transferred monolayer. The Langmuir trough consists of a
Teflon (polytetrafluoroethylene) basin with a movable barrier also made out of Teflon
as shown schematically in Figure 1.2 on the next page. When filled with an aqueous
medium, amphiphilic molecules can be spread on the fluid. Due to their amphiphilic
nature the molecules orient themselves to face their hydrophobic part away from the
aqueous subphase. The hydrophobicity of Teflon prevents the adsorption of the spread
molecules onto the walls of the basin. Dependent on the amount of spread molecules
per trough area, the surface tension of the subphase γ0 is decreased to γ. This decrease
is denoted as surface pressure Π = γ0 − γ. The surface pressure is measured by the im-
mersedWilhelmy plate. The force acting on this completely wetted plate are gravity and
the surface tension trying to minimize the surface area. With an increase of the surface
pressure, the surface tension of the subphase is reduced and with it the force pulling the
Wilhelmy plate downward. The surface tension is given by γ = Force/Perimeter where
the force acting on theWilhelmy plate is measured in situ and divided by the perimeter
of the plate.

To coat a substrate with a monomolecular film, the trough (Model 311D, Nima,
Coventry, UK) was cleaned by repetitive aspiration and refilling of the subphase. The
subphase was equilibrated to the desired temperature. To ensure the cleanness of the
trough the barrier was moved from the maximum area to the minimum area with only
the subphase present. If this compression resulted in an increase of surface pressure
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Moving barrier

Dipper

Substrate

Langmuir
trough

F

Wilhelmy 
plate

Subphase

Figure 1.2 – Schematic illustration of the Langmuir trough with dipper. By moving the
barrier the surface pressure Π is adjusted which is measured by the Wilhelmy plate. The
dipper with attached substrate is moved upwards for LB deposition on hydrophilic sub-
strates. For Langmuir–Schaefer transfers the substrate is manually placed slightly oblique
over the subphase and dropped gently.

below 0.2mNm−1 the subphase was considered clean. The surface pressure at this con-
dition was set to Π = 0mNm−1. A substrate was attached to the dipper and immersed
into the subphase. Lipid solution was spread on the subphase without increasing the
surface pressure significantly. After evaporation of the solvent the compression was
started with a compression rate of 10 cm2min−1. After reaching the preset pressure of
30mNm−1 the barrier stopped. The pressure versus area data was saved and is referred
to as isotherm. The substrate was withdrawn at the specified transfer speed with the
barrier moving to keep the surface pressure constant. The coated substrate was allowed
to dry for a short time before being further processed. To assess the quality of the trans-
ferred film a transfer ratio was calculated. This is defined as the area reduction by the
transfer on the Langmuir trough divided by the surface area of the immersed substrate.
While the first is given by the barrier position before and after the transfer, the surface
area of the substrate has to be calculated taking into account the thickness of the sub-
strate and the immersion depth (wetted length). The transfer ratio has been unity for
all transfers within the experimental error of 2%.

1.2.2 Langmuir–Schaefer Transfer

Similar to the LB transfer, the Langmuir–Schaefer (LS) transfer transplants an am-
phiphilic monolayer from the air–water interface onto a solid substrate. For the LS
transfer a hydrophobic substrate is required. Here, previously LB coated substrates are
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used. Themonolayer on the subphase is prepared as outlined in the previous section but
without immersing the substrate into the subphase before. After reaching the desired
surface pressure, the substrate is placed with the surface to be coated facing downward,
slightly oblique above the subphase and dropped gently. The substrate is allowed to
float on the subphase for several seconds before being pressed into the subphase. The
substrate is moved in the subphase to the other side of the barrier and transferred to
the corresponding observation chamber without exposing the coated surface to air.

1.2.3 Vesicle Fusion
Beside the methods discussed in the previous sections for preparation of supported
membranes, vesicle fusion is an alternative method which can be used for the comple-
tion of an already present monolayer to a bilayer or for the full deposition of a bilayer
on a substrate 71,72. Vesicle fusion allows fast and parallel preparation of samples with
the drawback of only minor control over the film properties. It is not possible to con-
trol nor measure the lateral pressure in the resulting bilayer. Furthermore, no quality
control comparable to the transfer ratio of a LB transfer is available.

First, the desired mixture of lipid molecules is prepared in chloroform. The chlo-
roform is slowly evaporated using dried nitrogen or by applying vacuum while rotat-
ing the flask. For complete removal of the solvent the mixture is stored in vacuum
overnight. To prepare vesicles the dry lipids are resuspended in water or aqueous buffer
to a concentration of 1mgml−1. A turbid suspension is formed which contains multi-
lamellar lipid vesicles with a broad size distribution. In order to reduce the size and
make the vesicles unilamellar the suspension is sonicated using a titanium tip sonifier
until it becomes clear. Titanium fragments of the sonicator tip present in the suspen-
sion can be separated by short centrifugation with several thousand g. The suspension
is added to a substrate with a lipid monolayer transferred by LB transfer. The surface
is incubated for one hour at 40 °C. To avoid deposition of more than one bilayer the
suspension is then exchanged by water or aqueous buffer.

1.3 Reflection Based Techniques
Many of the observational techniques used in this work measure a property of a re-
flected electromagnetic wave or the analogous description of neutrons. The analysis of
this data relies on the theory of Fresnel reflectivity irrespective of the used property 73.
The basic geometry is an incident beam being reflected from the sample as in Figure 1.3
on the following page. The detector is placed at an angle equal to the incident angle to
measure the specularly reflected beam. Depending on the method, different properties
of the reflected beam are measured. In the case of ellipsometry the polarization state
is measured while for X–ray and neutron reflectivity the intensity is of interest. As all
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Figure 1.3 – Schematic illustration of the reflectivity geometry. An electromagnetic wave
in ambient medium with refractive index n0 is incident on a sample at an angle Θin . The
wave is reflected at an angle Θreflected = Θin and refracted at an angle Θtransmitted .

thesemethods share the same theoretical foundation, first an introductionwill be given
to the Fresnel reflectivity followed by an elegant treatment of multilayer systems based
on the Abelès matrix method 74. After this the experimental methods are discussed in
detail in the following sections.

Fresnel Reflectivity

We consider the geometry shown in Figure 1.3. The angle of incidence Θin and angle of
reflection Θreflected are equal in magnitude while the relation to the angle of refraction
Θtransmitted is given by Snell’s law

n0 cosΘin = n1 cosΘtransmitted . (1.1)

Starting from the Maxwell equations boundary conditions that must be met can be
derived 75. Notably this is the continuity of the electric field component parallel to the
interface across the interface and that the normal component of the electric field times
the electric permittivity єE is the same on both sides of the interface. The resulting
ratios of reflected to incident and transmitted to incident amplitude of the electric field
depend on the orientation with respect to the plane of incidence. Therefore we get four
Fresnel equations. For the electric field components parallel to the plane of incidence
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this results in

r∥ =
n1 sinΘin − n0 sinΘtransmitted

n0 sinΘtransmitted + n1 sinΘin
and (1.2)

t∥ =
2n0 sinΘin

n0 sinΘtransmitted + n1 sinΘin
(1.3)

with the amplitude reflection coefficient r∥ and the amplitude transmission coefficient
t∥. Similar for the electric field normal to the plane of incidence the amplitude coeffi-
cients are given by

r⊥ =
n0 sinΘin − n1 sinΘtransmitted

n0 sinΘin + n1 sinΘtransmitted
and (1.4)

t⊥ =
2n0 sinΘin

n0 sinΘin + n1 sinΘtransmitted
. (1.5)

The intensity of the reflected wave R is given by the square of the amplitude coeffi-
cients. The intensity of the transmitted wave T has to be corrected for the change in
propagation direction

R∥,⊥ = r2∥,⊥ , T∥,⊥ =
n1 cosΘtransmitted

n0 cosΘin
t2
∥,⊥ . (1.6)

Fresnel Reflectivity with Abelès Matrix Method

To account for a more complex sample with several changes in refractive index normal
to the interface the formulas derived for Fresnel reflectivity must be applied to each in-
terface. To avoid the tedious explicit consideration of back reflections an elegant frame-
work dealing intrinsically with multiple reflections is presented 76. This framework has
been first introduced byAbelès74. Consider a planar structure of layers on a substrate in
an environment as shown in Figure 1.4 on the following page. The layers and bordering
media are homogeneous, linear and isotropic with complex refractive indices n j and
the layers have thicknesses d j . The distinction into the two polarizations is not explic-
itly denoted in the remainder of this paragraph. Each of the following equations relates
therefore to two equations, one for each polarization. A two component vector repre-
sents the electric field E in a plane with constant z. Forward traveling waves which are
directed towards the substrate constitute the first component denoted by (+) whereas
waves traveling backwards form the second component and are denoted by (−)

E = ( E+(z)
E−(z) ) . (1.7)

The change in electric field across an interface and through media with a certain thick-
ness can now be written as a matrix multiplication. The characteristic matrix for an



14 Chapter 1. Experimental Techniques & Material

Θ
in

n
1

n
0

n
3

n
2

E+
ambient

E+
substrate

E-
ambient

Θ
2

d
1

d
2




z

x

Figure 1.4 – Schematic illustration of the reflectivity geometry considered for the Abelès
matrix method. An electromagnetic wave is incident on a sample with several layers at an
angle Θin . The wave is reflected and refracted at each interface.

interface between layer ( j − 1) and j, I( j−1) j reads

I( j−1) j = (
1/t( j−1) j r( j−1) j/t( j−1) j

r( j−1) j/t( j−1) j 1/t( j−1) j
) (1.8)

with the amplitude coefficients r and t defined in the previous paragraph. In a similar
fashion the characteristic matrix for the change due to a layer with thickness d j and
refractive index n j can be written as

L j = (
e iβ 0
0 e−iβ

) (1.9)

with β = 2πd jn j

λ
sinΘ j where λ is the wavelength of the electromagnetic wave and Θ j is

the angle between the direction of propagation and the interface in layer j. By multi-
plying the characteristic matrices of the components, the characteristic matrix for the
complete layer system is obtained:

S = I01L1I12 . . . Ln−1I(n−1)nIn . (1.10)
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As in the substrate no reflected wave is traveling backward we can write the change in
electric field over the system as

( E+Ambient
E−Ambient

) = ( S11 S12
S21 S22

)( E+Substrate
0 ) . (1.11)

Analogous to the Fresnel reflectivity for one interface we can now write the amplitude
coefficients of the layer system for either state of polarization as

r = E−Ambient
E+Ambient

= S21

S11
, (1.12)

t = E+Substrate
E+Ambient

= 1
S11

. (1.13)

1.3.1 X–Ray Reflectivity
For X–rays the refractive index n can be written as n = 1−δ+ iβ where δ is positive and
on the order of 10−5 and β, the absorption coefficient, is in many cases even smaller.
Instead of the geometric angle Θ we consider in X–ray reflectivity the wave vector and
especially its component normal to the interface kz which are related by

k j = n j sinΘ jk0 . (1.14)

Taking the Fresnel equation for normally polarized reflected light, Equation (1.4), we
can write

r⊥ =
k0 − k1
k0 + k1

. (1.15)

In the case of parallel polarized reflected light, Equation (1.2), we get

r∥ =
k0

n1
n0
− k1 n0

n1

k0
n1
n0
+ k1 n0

n1

. (1.16)

Multiplying denominator and nominator with n1
n0

results in

r∥ =
k0 ( n1

n0
)
2
− k1

k0 ( n1
n0
)
2
+ k1

. (1.17)

The term ( n1
n0
)
2
can be approximated by 1 since refractive indices for X–rays are small

deviations from 1. As first derived by Parratt77, we find that the polarization state needs
not to be considered for X–ray reflectivity since r = r∥ = r⊥ in good approximation.
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The small wavelength of X–raysmake the technique sensitive to interface roughness
on an atomic level and require the roughness to be considered. This can be done by
modifying the reflection amplitude coefficient according to Croce & Névot78

r j( j+1) =
k j − k( j+1)
k j + k( j+1)

exp (−2k jk j+1σ
2
j( j+1)). (1.18)

In the picture of the interface thismodels a gaussian roughness bymodifying the abrupt
and stepwise change from one index of refraction to another into a smooth transition
with width σ . Mathematically an error function is multiplied with the refractive index
profile. From the reflection amplitude coefficient r of the complete system, the intensity
of the reflected wave is given by R(qz) = ∣r∣2 with qz = 2k0 sinΘ0.

Experimental Setup

X–ray reflectivity measurements were carried out at the ID10b beamline of the Eu-
ropean Synchrotron Radiation Facility (ESRF, Grenoble, France) and at the Institut
für Röntgenphysik (Georg–August–Universität Göttingen, Göttingen, Germany) in
the group of Prof. Tim Salditt using a Bruker AXS D8 Advance X–ray reflectometer
equipped with aMolybdenum anode and Göbel mirrors (Bruker AXS, Karlsruhe, Ger-
many). The energy of the synchrotron beamline was set to 20 keV while the in–house
reflectometer uses the Mo Kα line with an energy of 17.48 keV 79. These high energies
were used in favor to the commonly used 8 keV of the Cu Kα line as the absorption in
water is significantly reduced 80. For the measurement the sample was placed on the
stage in a cell bounded by Kapton (Kapton® polyimide film, DuPont, Luxembourg) in
beam direction analogous to the design presented by Miller et al.53, 54. The length in
beam direction was 10mm for measurements in Göttingen, and 20mm for measure-
ments in Grenoble, taking advantage of the higher flux. The measurement commenced
after placing the samples at their designated place and having been aligned with respect
to the X–ray beam in all three degrees of freedom using the control software of the in-
strument. Starting froman incident angleΘin = 0 corresponding to qz = 0, the incident
angle was increased stepwise and the reflected intensity was recorded. For larger angles
the counting times were increased to counter the decrease in reflected intensity. The
measured reflectivity intensity was divided by the intensity of the incoming beam and
the ratio plotted versus qz as reflectivity curve. The analysis is model based, requiring
knowledge of the measured sample in terms of refractive index and layer structure. Re-
cently model–free approaches have become popular allowing a less biased analysis 81.
Starting from a model based on rough estimates the reflectivity curve of the model can
be calculated and compared to the measured data. Variation of the model parameters
can then be used to increase the match between model and experiment. These steps
were performed using motofit 82 running on Igor Pro (Wavemetrics, Lake Oswego,
Oregon, USA).
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Figure 1.5 – Schematic illustration of an ellipsometer in the PCSA configuration.
Monochromatic light at arbitrary polarization passes through a polarizer and a λ/4 wave
plate denoted compensator. This results in a elliptic polarization between linear polarized
and circular polarized depending on the orientation of the polarizer to the compensator.
The light is reflected at a sample S at an angle Θin = Θreflected before passing through a sec-
ond polarizer denoted analyzer and the intensity of the light being measured by a detector.

1.3.2 Ellipsometry
As a further reflection based technique, ellipsometry relies on the change in polariza-
tion by the sample. As such, its resolution is not limited by the wavelength of the elec-
tromagnetic wave but by the ability to discriminate between different polarization states
and the strength with which the polarization is affected by the sample. In practical in-
struments the resolution can reach down to several Ångstrom. Long before being used
to measure layer thicknesses, this method has been useful for the determination of re-
fractive indices 83. In this section we discuss first the experimental arrangement before
proceeding to the theoretical description of the measurement process. Furthermore
extensions to the technique are introduced to achieve lateral resolution and to measure
thicknesses on the order of the wavelength of the used light.

Experimental Setup

In this study the ellipsometer used is a Multiskop from Optrel (Kleinmachnow, Ger-
many) 84. The setup is equipped with a Helium–Neon–laser operating at a wavelength
of 6328Å. Light is emitted with random polarization as shown schematically in Fig-
ure 1.5. This light passes through a polarizer fromwhich linear polarized light emerges.
The polarizer can be rotated to select any plane for the polarized light by a computer
controlled rotary stage. Depending on the plane of polarization with which the wave
enters the λ/4 wave plate denoted as compensator, any state of elliptical polarization
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from linear polarized to circular polarized light can be emitted. This light is directed
onto the sample at an angle Θin. The reflected wave is modified by the sample accord-
ing to the Fresnel equations as discussed in Section 1.3 on page 12. The reflected light
passes through a rotatable polarizer (analyzer) before being detected by a photodiode.
Precise sample alignment is facilitated by a quadrant photo diode used as detector. This
configuration is called PCSA configuration derived from the arrangement of the opti-
cally active elements. The principle of an null–ellipsometric measurement is to set the
polarization of the incident light such that the reflected light is linear polarized. Set-
ting the analyzer normal to the plane of polarization of the reflected light leads to an
extinction and thus a minimum in intensity at the detector.

Samples were either placed directly on the specimen holder, or for under water
measurements, inside a prismatic quartz cuvette (Hellma, Müllheim, Germany) with a
70° angle between the base and the two observation windows. The front of the cuvette
was sealed with a piece of glass spread with silicon grease (Baysilone silicone paste,
low viscosity, Bayer, Leverkusen, Germany). The back reflection of the laser from the
cuvette was directed as close as possible to but not into the laser exit aperture.

The first step for an ellipsometry measurement is the alignment of the sample with
respect to the incident beam analogous to the X–ray measurement. The position in
z–direction is adjusted by setting Θin = Θreflected = 0 and positioning the sample in
z–direction such that it reduces the detected intensity to half compared to an unob-
structed beam path. Then by setting Θin = Θreflected to the desired value the sample is
adjusted to be normal to the z–axis. This ensures that the reflected light is detected in
the center of the detector. The analyzer and polarizer are rotated tominimize the inten-
sity at the detector. In the vicinity of the minima for polarizer and analyzer a parabolic
dependency of the intensity on the angular position can be used to determine the po-
sition of the minima at αA and αP with high precision.

Ellipsometric Angles

The change of polarization state by the sample is parametrized by the ellipsometric
angles Ψ and ∆. They are related to the reflection amplitude coefficients discussed in
previous sections via

tanΨe i∆ =
r∥

r⊥
=
∣r∥∣
∣r⊥∣

e i(ϕ∥−ϕ⊥) . (1.19)

The change in polarization of the electromagnetic wave on the way through the ex-
perimental setup is followed using Jones calculus 73,85. This results in a relation be-
tween the orientation of the optical components and the ellipsometric angles. For null–
ellipsometry with the compensator oriented at −45° with respect to the plane of inci-
dence the relation is

tanΨe i∆ = tan αA exp(i(2αP +
π

2
)) (1.20)
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with the orientation of the analyzer αA and the orientation of the polarizer αP with
respect to the plane of incidence.

Determination of n and d from the ellipsometric angles

Since it is only possible to invert the Fresnel equations and the extension of the Abelès
matrix method in few special cases, the analysis has to be model based as in the case of
X–ray reflectivity. First, a suitable layer system according to the Abelès matrix method
with refractive indices n and thicknesses d is set up. From this the amplitude coeffi-
cients are calculated and, using Equation (1.19), converted to the ellipsometric angles.
The deviation from the measured ellipsometric angles is weighted by

χ2 =
(ΨMeasured −ΨModel(n ,d))

2

ΨModel(n ,d)
+
(∆Measured − ∆Model(n ,d))

2

∆Model(n ,d)
. (1.21)

The model parameters n and d are then varied in order to minimize χ2. This analysis
relies on a good previous knowledge of the sample structure and certain ambiguities
cannot be resolved using this technique. As discussed in the following section, the
periodicity of the ellipsometric angles with film thickness allows an identification of
film thickness only up to a repetition length. Model based fitting was done using the
self–written software Ell which is attached to this thesis in Appendix A.

Ellipsometric Period

When the nulling condition is fulfilled for a layer with thickness d a change of the layer
thickness by a repeat length given by

D = 1
2

λ√
n2
j − n2

0 cosΘ2
(1.22)

results in repeated fulfillment. The repeat length D is called the ellipsometric period
and depends on the angle of incidence Θ and the wavelength λ, as well as the refrac-
tive index n0 of the ambient medium and the refractive index n j of the layer whose
thickness is considered.

Imaging Ellipsometry

The diameter of the laser beam of the Multiskop is 1300µm. Lateral features below this
size are averaged within the measurement. A higher lateral resolution can be achieved
with little trade–off in resolution normal to the interface by replacing the point de-
tector by a 2D position sensitive detector (EHD®kamPro02, EHD imaging, Damme,
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Germany) and adding an image forming optic (M-Plan APO 10×, Mitutoyo, Neuss,
Germany) in the beam path after the sample. In this case the incident angles acces-
sible are restricted by the extent of the image forming objective. For smaller angles
Θin a large working distance in comparison to the physical diameter of the objective
has to be chosen. This limits the available numerical aperture by which the maximum
lateral resolution is defined. In the current setup the nominal numerical aperture is
na = 0.28 but the objective–sample distance is much larger than the indicated work-
ing distance resulting in a significant reduction of achievable lateral resolution. A sec-
ond drawback is the tilt between objective and sample. The depth of focus limits the
area in the plane of incidence on the sample which can be observed sharply. Other
ways to achieve microscopic resolution parallel to the interface have been suggested
by Neumaier et al.86, Linke & Merkel87 without the drawbacks of the simple extension
mentioned above.

While for single spot ellipsometry each measurement can be analyzed as outlined
before, the simple extension to imaging ellipsometry used in this study results in an in-
tensity image for a given pair of ellipsometric angles. If the lateral gradient in thickness
change is smaller than half of the ellipsometric period over the lateral distance of the
microscopic resolution, a height profile can be extracted from the positions where the
nulling condition is met and which are therefore minimal in intensity. For a water film
(nH2O = 1.333) in air (nAir = 1.000) the ellipsometric period becomes D = 2900Å with
the used setup. A finer resolution can be obtained by off–null ellipsometry 88 where the
parabolic relationship of the intensity minimum around the nulling condition is used.
For a quantitative analysis a set of two ellipsometric images is necessary which were
taken when the nulling condition was met at two distinct positions.

Ellipsometry of theThree–Phase Contact Line

The description of the combination of the preparational Langmuir trough used for LB
transfers with the observation using imaging ellipsometry is postponed to Section 3.2.1
on page 59. There, a motivation for this design is given followed by a detailed charac-
terization of the setup.

1.4 Fluorescence Microscopy

To assess the distribution of lipids and the homogeneity of membranes, fluorescent
markers were incorporated into the samples and observed with microscopy. A Zeiss
Axiovert 200 (Göttingen, Germany) with a mercury lamp (HBO 100, Osram, Munich,
Germany ) for illumination and suitable filter sets was used. Details of the filter sets
are shown in Table 1.1 on the facing page. Images were recorded with a CCD–camera
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Table 1.1 – Filter sets used for fluorescence microscopy. The wavelength for excitation filter
and emission filter denote the center wavelength and the width of the bandpass.

Fluorescent
marker

Excitation
/ nm

Dichroic
mirror / nm

Emission /
nm Producer

Texas Red® 560/40 585 630/75 Carl Zeiss
TRITC 525/45 560 595/60 Omega Optical

(Orca ER, Hamamatsu Photonics, Herrsching, Germany) and transferred via a frame
grabber card (Coreco Imaging, Gröbenzell, Germany) to digital storage.

Fluorescence Microscopy of theThree–Phase Contact Line

Similar to the combination of ellipsometer and Langmuir trough, this setup was specif-
ically designed for the observation of stripe pattern formation discussed in Section 3.2.2
on page 64. There, a detailed description of this setup is given.
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Chapter 2

Transversal Structure of
L ipopolymer Layers

To overcome the implications accompanying the close membrane substrate contact in
supportedmembranes, polymer–supportedmembraneswere used. The foremost ques-
tion is regarding the distance between membrane and substrate upon addition of the
polymer support. To this end, two reflection based experimental methods which com-
plement each other were utilized. The variation inmembrane to substrate distance with
polymer length and polymer content in the membrane was studied.

The stepwise preparation of the membrane via Langmuir–Blodgett transfer + vesi-
cle fusion or Langmuir–Blodgett (LB) transfer + Langmuir–Schaefer (LS) transfer al-
lows the characterization of the intermediate preparation state of a polymer supported
monolayer. Furthermore, composition in the leaflets can be varied separately allowing
a more realistic replica of membranes found in living organisms. The variation of am-
bient conditions allows the extraction of the behavior of the polymer support and can
be used to gain a deeper insight into the membrane substrate interactions.

Samples where prepared as outlined in Chapter 1 by coating cleaned substrates with
a LB transfer. To avoid demixing of lipid and lipopolymer the substrates were with-
drawn swiftly with 30mmmin−1 from the subphase while keeping the surface pressure
constant at 30mNm−1. The samples were allowed to dry for at least several minutes
before being measured. In the case of X–ray reflectivity the monolayer was transferred
several days before themeasurement. From ellipsometry no degradation of the samples
could be observed over several months when stored at normal lab conditions of 20 °C
and 30%RH–70%RH. Completion to a bilayer proceeded either by vesicle fusion or by
a LS transfer.

23
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Figure 2.1 – Area per molecule as a function of lipopolymer concentration at a surface
pressure of Π = 25mNm−1 . At low lipopolymer concentrations almost no change in area
per molecule is observed. For higher concentrations (c ⪆ 1mol%) the area per molecule
increases strongly. The black solid line indicates the area per molecule for pure SOPC, i.e.,
0mol%.

2.1 Monolayers at the L iquid–Gas Interface

The isotherms of the mixtures including lipopolymers show two distinct differences to
the isotherm of SOPC. First, depending on the concentration of lipopolymer, the area
per molecule at a given surface pressure increases. Second, a plateau may be observed
reminiscent of a phase transition of either component. The second observation has
been shown by Wurlitzer et al.89 to be due to a reorganization of the alkyl chains as
a result of the decreased conformational freedom of the polymer chains, excluding a
phase transition. This is closely related to the increased area per molecule in the pres-
ence of lipopolymers where the polymer chains constitute a significant contribution
near the interface. A similar area per molecule for lipopolymers has also been reported
by Lüdtke et al.90.

The variation of the area per molecule with lipopolymer concentration is shown in
Figure 2.1. The resulting area per molecule can be understood as a balance between en-
tropic desire of the polymer chain to take a globular shape and the steric interaction in
the alkyl chain region. For low concentrations of lipopolymers almost no change in area
per molecule is found46. There, the reduction in entropy due to the confinement of the
polymers is small and the area per molecule is defined by the alkyl chain interactions.
Even in the absence of polymer–polymer interactions, because of the direct coupling of
the polymer chain to the alkyl chain, the head groups of the surrounding lipids reduce
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Figure 2.2 – Isotherms of lipid–lipopolymer mixtures at 20 °C. Solid line: SOPC with
6mol% PMOx60. Dashed line: SOPC with 80mol% PMOx60. The films used for record-
ing these isotherms were transferred and measured using X–ray reflectivity.

the possible polymer conformations. The same holds for higher lipopolymer concen-
trations of short polymer chains46. In this case, the reduction in entropy to accommo-
date the polymer chain in the remaining volume is smaller than the steric interaction
of the lipids. With increasing concentration of long lipopolymer the area per molecule
at a constant surface pressure increases as the reduction of available conformations for
the polymer chain becomes a significant contribution. In Figure 2.1 on the preceding
page this transition is seen below 3mol%which corresponds to an average distance dlat
between the lipopolymers of one Flory radius R f . The polymers are in contact when
dlat < 2R f . The deformation of the polymer from its unperturbed globular shape to the
confined volume available at high concentrations becomes increasingly more energet-
ically costly and results in a higher area per molecule. The overestimation of the area
per molecule for a pure SOPC monolayer by a factor of 1.3 compared to Smaby et al.91
and Marsh92 is most likely due to an increased concentration of lipids in the stock so-
lution used to prepare the mixtures. Especially for the calculation of the volume of a
single polymer chain at high polymer concentrations the change in area per molecule
becomes significant. This is discussed in detail in Section 2.4.1 on page 43. In Figure 2.2
isotherms of PMOx60 for two concentrations are shown. The isotherm for the lower
concentration of 6mol% shows only marginal differences to the isotherm of the lipid
matrix whereas the onset of the surface pressure for the high concentration is at large
areas per molecule. The higher compressibility can be interpreted to be caused by the
decrease in conformational freedom of the polymer chain. The aforementioned plateau
is not observed here for the polymer chain with 60monomer units, as the surface pres-
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sure required to induce this change in conformation in the alkyl chain arrangement is
more than required for a film breakdown at ≈ 40mNm−1. This is also consistent with
the observations of Lüdtke et al.90 and Wurlitzer et al.89.

2.2 Monolayers at the Solid–Gas Interface

2.2.1 Ellipsometry
Prior to the LB transfer of the proximal monolayer the substrates were measured using
ellipsometry to gain the thickness and refractive index of the oxide layer. This infor-
mation is required for the subsequent analysis of the measured data based on a layer
model using the formalism outlined in Section 1.3 on page 13. The refractive index of
the crystalline silicon was set to nSi = 3.882 − i0.01993. The thickness of the oxide
layer of the cleaned substrate was found to be dSiO2 = 13.8Å ± 1.1Å for a refractive in-
dex nSiO2 = 1.457 averaged over several samples93. This is about 2Å less than the oxide
layer thickness before the cleaning procedure. As a reference for aminimalmembrane–
substrate separation a transferred monolayer of pure SOPCwas measured. The param-
eters from this measurement for the lipid layer were used in all analyses of monolayers
with polymer present. Since the lipid anchors of the lipopolymers used, distearyl (2 ×
C18:0) and dipythanyl (2 × 4Me C16:0), are different from the alkyl chains present in
SOPC (C18:0, C18:1), DPhPC with a diphytanoyl lipid moiety which is fluid at the ex-
perimental conditions was measured for comparison. The difference in ellipsometric
angles shown in Figure 2.3 is small and results in a thickness difference well below 1Å
for the two lipids. The use of SOPC as a reference instead of the alkyl chain analogue
DSPC is therefore justified. For SOPC the thickness resulting from a three layer model
with a refractive index nSOPC = 1.4494 for the lipid layer is dSOPC = 18.1Å ± 1.3Å. To
account for the presence of lipopolymer an additional layer between the silicon dioxide
and the lipid layer is introduced into the model used for analysis. The parameters of
the model are presented in Table 2.1 on the facing page summarizing the above men-
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Figure 2.3 – Ψ vs. ∆ plot measured from monolayers of SOPC and DPhPC on silicon sub-
strate. Only a slight difference can be seen between the two lipid anchors.
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Table 2.1 – Layer model used for ellipsometric measurements on dry monolayers show-
ing the layer thickness d, the real part of the refractive index n and the imaginary part
k. The parameters for the lipid layer were obtained from a reference measurement on a
pure SOPC monolayer prepared under the same conditions. The illumination wavelength
is λ = 6328Å and the incident angle on the substrate Θ = 20°. The parameters for the poly-
mer layer nPolymer and dPolymer were used as fitting parameterss.

Layer d / Å n k

Air ∞ 1.000 0
Lipid 18.1 1.440 0

Polymer dPolymer nPolymer 0
SiO2 13.8 1.457 0
Si ∞ 3.882 −0.019

tioned reference measurements. To assess the effect of concentration and number of
monomer units, a concentration series was measured for each lipopolymer at ambient
humidity conditions. The Ψ and ∆ values for the four series are displayed in Figure 2.4
on the next page. Already from these raw data a clear trend can be observed. Start-
ing from a fixed (Ψ, ∆) pair for 0mol% lipopolymer (black diamonds), ∆ is shifted to
lower and Ψ to higher values with increasing polymer concentration. Comparing the
data between different number of monomer units, a larger shift for a higher number
of monomer units is found. The concentration series for the four lipopolymers were
analyzed using the parameters for a three layer model presented in Table 2.1. As the re-
sulting thicknesses for the polymer layer nPolymer are well below 100Å an independent
determination of thickness and refractive index is not possible from these monochro-
matic measurements at one angle of incidence95. The refractive index was therefore
fixed to nPolymer = 1.50 as the measurements were performed in an ambient humidity
of ≈ 60%RH96. The resulting thicknesses for the polymer layer dPolymer are presented
in Figure 2.5 on page 29. A linear dependence of the thickness on the lipopolymer
concentration is expected for low concentrations where the average distance is larger
than the extent of the lipopolymers given by their Flory radius R f and where the area
per molecule is virtually unchanged by the presence of the lipopolymers. Based on the
present data an analytical relationship for the thickness at higher concentrations can-
not be given. But the qualitative effect of the increase in area per molecule is a decline
in growth of polymer thickness with concentration.

For one lipopolymer (PMOx60) the influence of ambient humidity was studied.
The ambient humidity has the effect of an osmotic pressure onto the sample counter-
acting the interactions of the sample components97. Control of the ambient humidity
was provided by saturated salt solutions as listed in Table 2.2 on page 30. The sample
was placed inside a prismatic cuvette together with the salt solution and the cuvette
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Figure 2.4 – Ψ vs. ∆ plots for number of monomer units n = 14, 33, 104 from top to bottom
and different concentrations for each polymer length as indicated in the graph. Measure-
ments were done under ambient conditions with a relative humidity around 60% at 20 °C.
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Figure 2.5 – Polymer layer thickness for nPolymer = 1.50 and number of monomer units
n = 14, 33and104. The increase with polymer concentration is not linear due to the si-
multaneous expansion of the area per molecule. A clear ordering can be observed with a
stronger build up of the polymer layer for longer polymers.

was sealed using low viscosity silicon grease. The equilibration of the sample was mon-
itored by repeated ellipsometric measurements. Especially for low relative humidities
long equilibration times were required to ensure the homogeneous prevalence of the
desired humidity. The ellipsometric angles were analyzedwith themodel defined by the
parameters shown in Table 2.1 on page 27. The fit quality as assessed from the function
of merit χ2 (Equation (1.21)) is shown in Figure 2.6 on the following page for a range
of refractive indices nPolymer and thicknesses dPolymer. Going from low humidity in the
upper left panel to high humidity in the lower right panel, an increase in thickness can
be observed due to hydration of the polymer layer. Along with the increase in water
content the refractive index becomes restrained to values close to the refractive index
of water (nH2O = 1.333). The indefiniteness of the refractive index at lower humidities is
due to the loss of sensitivity for thin layers95. Figure 2.7 on page 31 shows the thicknesses
for 6mol% and 80mol% lipopolymer plotted against the relative humidity. Variation
in thickness can be attributed to the presence of water in the polymer layer. Defining
the thickness measured at the lowest relative humidity of 11.3%RH as a reference, a
swelling ratio can be calculated. For the low polymer concentration the uncertainty of
themeasurement is comparable to the absolute value resulting in high fluctuations. The
swelling between 11.3%RH and 97.6%RH is by a factor of 3.1–4.7 for 80mol% PMOx60
which is significantly higher compared to 1.6–1.8 of PMOx30 homopolymers covalently
grafted onto the substrate96. This difference can be due to different chain lengths and
lower lateral density of polymer chains. A complete discussion of the results is post-
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Table 2.2 – Relative humidities of saturated salt solutions and resulting osmotic pressures
of water at 20 °C. Relative humidities are taken from Greenspan98 .

Salt Relative humidity / % Osmotic pressure / MPa

LiCl 11.31(31) 294
MgCl2 33.07(18) 149
NaCl 75.47(14) 38
KCl 85.11(29) 21
KNO3 94.62(66) 7.5
K2SO4 97.59(53) 3.3
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Figure 2.6 – Dependence of the function of merit χ2 used for assessing the model quality
on the refractive index nPolymer and the thickness dPolymer of the polymer interlayer. The
sensitivity on the refractive index increases with increasing humidity and layer thickness.
The vertical lines denote the area used for obtaining equilibrium distances. The brightness
coding indicates the lowest value in black up two twice the minimum value of χ2 in grey.
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Figure 2.7 – Polymer layer thickness in dependence on the relative humidity measured
at 20.0 °C. The thickness of the polymer layer increases by hydration at higher relative
humidities.

poned to Section 2.4.1 on page 43 as the inclusion of the results for bilayers under water
as a limiting case of vanishing osmotic pressure provide a valuable contribution.

2.2.2 X–Ray Reflectivity
Ellipsometry measurements were confirmed by X–ray reflectivity measurements. Two
samples were measured at ambient conditions of about 70%RH. Clearly visible Kies-
sig fringes substantiate the homogeneity of the stratified structure of the transferred
monolayers. The higher vertical resolution compared to ellipsometry requires the sep-
aration of lipid head groups and alkyl chains into distinct layers. To model the data
shown in Figure 2.8 on the next page and Figure 2.9 on page 33, a four layer model was
used analogous to the model used for ellipsometry measurements but with the lipid
layer split into two to account for head groups and alkyl chains separately. The position
of the Kiessig fringes in each reflectivity curve defines the overall thickness. Assum-
ing the lipid monolayer remains intact upon the addition of lipopolymer, the change in
overall thickness can be attributed to the change in thickness of the polymer layer.

According to the model used for evaluating ellipsometry measurements summa-
rized in Table 2.1 on page 27, first the electron density and thickness of the layer repre-
senting the head groups were assumed to be ρhead = 13.5 × 10−6 Å

−2 and dhead = 10Å.
The values for the layer representing the alkyl chains were ρchain = 7 × 10−6 Å−2 and
dchain = 8Å. The silicon dioxide was modeled with the same thickness dSiO2 = 13.8Å
and electron density ρSiO2 = 20 × 10−6 Å

−2 as used for ellipsometry. A lower limit for
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Figure 2.8 – X–ray reflectivity measurement of a monolayer doped with 6mol% PMOx60
on silicon substrate. Top: X–ray reflectivity data and best fitting model. Bottom: Scat-
tering length density (SLD) profile of the best fitting model. The bars in the background
correspond to the underlying layers of the SLD model.

the roughness between two layers was set to 2Å. Starting from these values, a reason-
able agreement could be achieved with the measured reflectivity curves. The obtained
parameters for the polymer layers are summarized in Table 2.3 on the facing page. The
scattering length density profiles reconstructed from these parameters are presented
in the lower panels in Figure 2.8 and Figure 2.9 on the facing page. At high polymer
concentrations the thickness of lipid monolayers was slightly thinner (∆d ≈ 3Å). This
is due to the fact that the polymer head group is directly linked to the glycerol junc-
tion via a stable ether bond. However, the fit result shows no remarkable change in the
scattering length density of the head group layer (∆ρ/ρ < 5%) because the scattering
length density contrast at the alkyl chain–polymer interface is poorer than that at the
alkyl chain–head group interface. Thus, changes in the global shape of the reflectivity
curves can mainly be attributed to the polymer layers.

The discussion of the datawith varying osmotic pressure is pickedup in Section 2.4.1
on page 43. Leaving the variation of osmotic pressure aside, a nontrivial change in lat-
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Figure 2.9 –X–ray reflectivitymeasurement of amonolayer dopedwith 80mol% PMOx60
on silicon substrate. Top: X–ray reflectivity data and best fittingmodel. Bottom: Scattering
length density (SLD) profile of the best fitting model. The bars in the background corre-
spond to the underlying layers of the SLD model.

Table 2.3 – Layer thicknesses obtained fromX–ray reflectivity measurements of drymono-
layers.

Concentration dPolymer / Å ρPolymer / 10−6Å−2 σ / Å

6mol% 4.7 11.5 6.0
80mol% 32.9 11.8 5.1
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eral density of lipopolymers has been found. As a result, the thickness of the polymer
layer does not follow a simple linear dependence on the concentration. Based on the
presented data the thickness to be expected can be estimated as a function of lipopoly-
mer concentration, number of monomer units and surface pressure during LB transfer.
In the following section this will be extended to the biologically more relevant case of
lipid bilayers under water.

2.3 Bilayers at the Solid–L iquid Interface

2.3.1 X–Ray Reflectivity

Surface Coupling Group

Alternative to the trimethylsiloxane terminated lipopolymers, polymers with a passive
end group functionalization were used. A piperidine termination shows no chemical
interaction with the substrate and attachment is only via physisorption. The advantage
is the stability in the presence of water which leads to polycondensation in the case of
trimethylsiloxane. A series of samples was measured using X–ray reflectometry where
the distal layer was formed by vesicle fusion on top of a LB transferred monolayer with
varying content of a piperidine terminated lipopolymer. The resulting reflectivities are
shown in Figure 2.10 on the facing page. With increase of lipopolymer content from
bottom to top the features in the reflectivity curves fade away. A three layer model can
account for the data where onlyminor variation in the thickness is necessary. Themain
change in appearance of the data is accounted for by a change in electron density to-
wards the electron density of water for higher polymer concentrations. The underlying
change in surface morphology is expected to be due to the harsh conditions of vesicle
fusion. The lack of a chemical surface coupling allows the lipopolymers to rearrange
laterally and loose their homogeneity adapted on the air–water interface. As a result the
lipopolymers cluster and leave patches of bare substrate. The bare substrate is covered
by a lipid bilayer whereas the lipopolymer is hydrated and extends far from the surface.
The area fraction of bare substrate diminishes with increasing lipopolymer concentra-
tion. The hydrated lipopolymer without a clear boundary to the engulfing water is not
distinguishable from water by X–ray reflectivity.

Monomer Length

To elucidate the effect of varying number of monomer units, three lipopolymers with
surface coupling group were added at 0.5mol% concentration to the proximal leaflet.
The lipopolymers have 14, 33 or 104 monomer units. As a reference, a sample without
lipopolymer consisting only of SOPC was measured. The reflectivity curves in Fig-
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Figure 2.10 – X–ray reflectivity measurements on SOPC bilayers with varying concentra-
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Figure 2.11 – X–ray reflectivity measurements on SOPC bilayers doped with 0.5mol%
lipopolymers of varying number of monomer units in the proximal leaflet. The data is
offset successively by one decade to avoid an overlap. Best fits are shown as solid lines.
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Table 2.4 – Layers of the model system used to fit the data shown in Figure 2.11 on the pre-
vious page. Background was set to 1 × 10−9 . Numbers without errors were fixed, numbers
with errors were linked between all reflectivity curves and numbers where a range is given
were fitted independently for each sample resulting in the given range.

Layer d / Å ρ /10−6Å−2 σ /Å

Water ∞ 9.40
Distal Head group 11.49(105) 11.48(38) 3.01 . . . 4.03

Alkyl Chains 27.85(308) 7.33(12) 4.16 . . . 5.99
Proximal Head group 7.17(1458) 12.75(490) 2.55 . . . 4.46

Polymer 2.00 . . . 3.00 9.04 . . . 11.00 3.74 . . . 6.00
SiO2 18.7 8.00(367) 2.78(239)
Si ∞ 19.81 2.89(266)

ure 2.11 on the previous page exhibit clear first minima at qz ≈ 0.18Å−1 and a second
at qz ≈ 0.32Å−1. The position of the minima does not change with the number of
monomer units indicating a fixed thickness for all samples. The variations in depth
of the minima are not overly pronounced and can be ascribed to variations in sample
preparation. The data presented in Figure 2.11 on the preceding page was fitted using a
five layer model system and co–fitted with only the parameters related to the polymer
layer and the roughnesses above being independent. Parameters of the best co–fitted
result are arranged in Table 2.4. Numbers that were held constant during the fitting pro-
cedure are given without error, whereas numbers being linked between the datasets but
allowed to change are given with an error. Values given as a range show the variation
of the unlinked parameters over the four reflectivity curves to achieve best agreement.
As can be seen from the ranges of the parameters describing the polymer layer, the
variation is small and particularly the thickness shows no significant variation with the
number of monomer units. The polymers which are all in the mushroom regime at
0.5mol% seem to have no effect on the membrane, leaving it unaltered in roughness
and separation from the solid substrate. This finding was confirmed by a second mea-
surement series carried out at the ID10b beamline of the ESRF in September 2007.

Lipopolymer Concentration

To extend this picture and get an idea of the role of polymers in these low concentra-
tions we look at a second series of experiments. Here, the concentration of lipopolymer
with n = 104 was varied from the mushroom regime below approximately 1mol% deep
into the brush regime at 12.2mol%. The reflectivity curves of these experiments are
presented in Figure 2.12 on page 38. While for 0.2mol% and 3.0mol% the reflectivity
curves take the same shape as seen for the reflectivities presented in Figure 2.11, a qual-
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Table 2.5 – Layers of the model system used to fit the data shown in Figure 2.12 on the fol-
lowing page. Background was set to 1 × 10−9 . Numbers without errors were fixed, numbers
with errors were linked between all reflectivity curves and numbers where a range is given
were fitted independently for each sample resulting in the given range.

Layer d / Å ρ / 10−6Å−2 σ / Å

Water ∞ 9.40
Distal Head group 10.46(260) 11.70(91) 2.01 . . . 7.05

Alkyl Chains 26.93(388) 7.63(8) 3.86 . . . 7.21
Proximal Head group 8.71(1009) 11.00(241) 2.01 . . . 5.36

Polymer dPolymer ρPolymer σPolymer
SiO2 18.7 10.54(160) 3.43(86)
Si ∞ 19.81 2.00(73)

Table 2.6 – Parameters found for the polymer layer by co–fitting all four reflectivity curves
in Figure 2.12 on the next page. The complete model is shown in Table 2.5.

Concentration dPolymer / Å ρPolymer / 10−6Å−2 σPolymer /Å

0.2mol% 2.62 11.00 2.57
3.0mol% 2.23 9.96 4.51
12.2mol% 3.56 9.00 5.99

itative change can be seen at 12.2mol%. The otherwise clear features are significantly
suppressed and the position slightly shifted to lower qz values. As before, the similar-
ity of the samples enabled the convenient co–fitting with all parameters except for the
polymer layer linked. While the change in distance is marginal, the electron density is
considerably reduced. At the same time, the roughness of the polymer layer and all sub-
sequent layers above increases. The slight increase in thickness can be taken as a sign
of the onset of an increase in thickness with even higher lipopolymer concentrations.
But more likely is the lateral rearrangement of the lipopolymers as it has been seen
for lipopolymers without surface coupling group. This is supported by the increase in
roughness. The surface coupling group can lead to a polycondensation of the lipopoly-
mers in the presence of water. Even if stored appropriately and only for short times,
the lipopolymer is eventually immersed into bulk water for compression and transfer
on the Langmuir trough. There a higher concentration of lipopolymer enhances the
formation of polycondensates. For those polycondensated lipopolymers attachment to
the surface of the substrate is, like discussed before, only due to physisorption. As a
result, their lateral mobility is kept and under the harsh conditions of vesicle fusion the
lipopolymers can rearrange.
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Figure 2.12 – X–ray reflectivity measurements on SOPC bilayers doped with PMOx104 of
varying concentration in the proximal leaflet. The data is offset successively by one decade
to avoid an overlap. Values of best fits are given in Tables 2.5 and 2.6 and are shown as solid
lines.

To avoid the harsh conditions present during vesicle fusion, distal layers can be
formed by LS transfer or a second Y–type LB transfer. The combination of this prepa-
ration method with X–ray reflectivity has so far not been feasible. A modification of
the sample environment where an assembly under water is viable, is a prerequisite.

2.3.2 Ellipsometry

The limitations regarding the sample environment are not present in the case of ellip-
sometry. In this section a comparison will be made between bilayers formed by vesicle
fusion and by LS transfer. As in the case of monolayers examined in Section 2.2.1 on
page 26, the parameters for the layer model are obtained by reference measurements.
The oxide layer is modeled as before using nSiO2 = 1.457 and dSiO2 = 13.8Å. For the
lipid bilayer a sample prepared only from SOPC was taken as reference. What could be
seen already from a detailed analysis of the X–ray measurements on polymer–tethered
bilayers in the previous section becomes here apparent in the raw data in yet another
way. For a membrane consisting solely of SOPC only a small variation in Ψ and ∆ is
observed. SOPC is represented by black diamonds in Figure 2.13 on the facing page.
With increasing polymer content and also increasing number of monomer units, the
measurement results in (Ψ, ∆) pairs spread along a line extending mainly along ∆ in
the (Ψ, ∆) plane. The poor statistic in terms of spots measured on the samples makes a
detailed analysis difficult. Instead the measured data is compared to a simulation of the
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Figure 2.13 – Ψ vs. ∆ plots for bilayers with increasing number of monomer units from
top to bottom. The concentration of lipopolymer in the proximal leaflet is indicated in the
graphs. The bilayer was completed by a LS transfer.
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Figure 2.14 – Simulation of Ψ, ∆ of a three layer system. Parameters are taken as reported
in the previous sections. The solid line shows a variation in bilayer thickness from dLipid =

40Å to dLipid = 80Å with nLipid = 1.44 and no polymer layer present. The dashed line
shows a variation in polymer layer thickness from dPolymer = 40Å to dPolymer = 200Å with
a lipid layer thickness of dLipid = 52.5Å.

expected model which allows a qualitative description of the data. Figure 2.14 shows
Ψ vs. ∆ for a three layer model. The solid line is a variation of the lipid layer thick-
ness in the range dLipid = 40Å–80Å. A second simulation takes a lipid layer thickness
of dLipid = 52.5Å and varies the polymer layer thickness from dPolymer = 0Å–200Å,
shown as dashed line. Comparison of the variation in lipid layer thickness with the
experimental data in Figure 2.13 on the preceding page shows good agreement suggest-
ing a lateral heterogeneity of the samples. The apparent thinning of the lipid layer is
likely due to an averaging over areas with a complete bilayer and areas filled by hy-
drated polymer which show almost no contrast to water in terms of refractive index.
The small number ≈ 5 ofmeasurements at different spots on the sample does not allow a
quantitative analysis in terms of surface coverage. The sample with 70mol% PMOx104
shows a different behaviorwhich agrees well with the simulationwere the polymer layer
thickness was varied. While still exhibiting a high heterogeneity, this sample appears to
have a complete bilayer as well as the variation being due to undulations in the polymer
layer. The width of the fluctuations reaches from a vanishing polymer layer to approx-
imately 200Å which is below the length of a single stretched polymer chain of around
300Å.

Contrasting the samples where the distal layer was formed by vesicle fusion, Fig-
ure 2.15 on the next page shows Ψ vs. ∆ measured from a bilayer completed via LS
transfer. Three distinct clusters can be seen corresponding to three samples with differ-
ent concentration of lipopolymer in the proximal leaflet. The small scatter of the data
over many spots on the sample provides a good rationale for the lateral homogeneity
of the samples. Due to the otherwise identical preparation of the samples this can be
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Figure 2.15 – Ψ vs. ∆ plot of ellipsometric measurement on bilayer doped with PMOx60 in
the proximal leaflet under water on silicon substrate. Completion to a bilayer was done via
a LS transfer. Each sample was measured at least at ten different spots. The small scatter of
data shows the lateral homogeneity of the bilayer.

accredited to the deposition of the distal leaflet by LS transfer instead of vesicle fusion.
The result of an analysis with a three layer model for the polymer layer thickness is
presented in Table 2.7. For 0.5mol% no difference to the reference measurement on
a bilayer of SOPC could be found, leading to a undetectable polymer layer thickness
and an undefined refractive index. For the high lipopolymer fractions of 6mol% and
80mol%, an increase in polymer layer thickness was observed by a factor of 7–10 upon
complete hydration. This swelling ratio is significantly higher compared to the ratio
found for swelling of 80mol% in an atmosphere with 98%RH of about 3.1–4.7 as dis-
cussed in Section 2.2.1 on page 26.

A further proof of the homogeneity of the samples is given by fluorescence mi-

Table 2.7 – Layer thicknesses and refractive indices obtained from ellipsometry measure-
ments for bilayers under water. For the lowest polymer concentration a two layer model is
sufficient corresponding to a vanishing polymer layer thickness and a therefore undefined
refractive index.

Concentration dPolymer / Å nPolymer

0.5mol% 0 -
6mol% 69(13) 1.340(2)
80mol% 176(18) 1.348(2)
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0.5 mol% 80 mol% 

20µm 20µm 

Figure 2.16 – Fluorescence micrograph of PMOx60 doped bilayer under water. TexasRed-
DHPE was used as a fluorescent marker in the proximal layer with a concentration of
0.2mol%. The distal layer was formed by LS transfer of SOPC. On the left side a detail
is shown for 0.5mol% doping ratio and on the right side for 80mol% polymer content in
the proximal layer.

croscopy. This is also a validation for the applicability of the reflectivity based tech-
niques which rely on stratified structures. LB films on glass cover slides were com-
pleted to bilayers by a LS transfer of SOPCwith 0.2mol% of fluorescently labeled lipids
TexasRed-DHPE. Two representative micrographs are presented in Figure 2.16. The
homogeneous distribution of fluorescent label purports the lateral homogeneity of the
other membrane constituents.

2.4 Discussion

Summarizing the experiments regarding the structure of polymer–tetheredmembranes
normal to the membrane it can be concluded that the use of a LS transfer for the distal
layer is necessary for lipopolymers without a surface coupling group as in the case of
PMOx60 which possesses a piperidine termination. For these lipopolymers the com-
pletion via vesicle fusion results in a reorganization of the polymer and loss of lateral
homogeneity. In the presence of a surface coupling group this lateral reorganization
should be impossible. For low lipopolymer concentrations of 0.5mol% the effect of a
lateral reorganization is not visible and can therefore not be assessed from the experi-
ments presented. At concentrations of lipopolymer in the brush regime a lateral reor-
ganization is clearly seen in both, X–ray reflectivity and ellipsometry measurements.
This is likely due to the loss of surface coupling groups which are engaged in the poly-
condensation. For polycondensation to occur water has to be present. To avoid this,
strict storage and handling in water free solvents and atmospheres has to be ensured.
Due to the ever present water in chloroform used as a solvent, an inevitable aging pro-
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cess leading to a irreversible degradation of the lipopolymer occurs. Even if freshly
synthesized lipopolymer is used and handled appropriately, the LB transfer makes the
contact with bulk water unavoidable. Especially in high concentrations the possibility
of polycondensation is high and may be sufficient to cause the observed deactivation
of the surface coupling group.

These difficulties can be overcome by the use of a different surface coupling group.
Including an activation barrier for the coupling ensures the non–reactivity before the
transfer is completed. The activation energy can take the form of a photoactivation
or the requirement of a certain chemical environment like a defined pH. The synthe-
sis of the lipopolymer is specifically advantageous for such variations in the choice of
termination 59,99,100.

2.4.1 Interfacial Forces

In the following section selected results from the previously discussed experiments are
combined to gain a deeper insight into the interactions taking place on the solid sup-
port. The thicknesses of the polymer layer presented in Figure 2.7 on page 31 are shown
again but this time on the ordinate axis versus the osmotic pressure corresponding to
the relative humidity in Figure 2.17 on page 46. Under bulk water the osmotic pres-
sure on the sample vanishes and the equilibrium thickness of the corresponding bilayer
measurement is included at the lowest displayed pressure. The equilibrium distances
have to be the result of a balance of all interfacial forces. We consider four important
contributors

1. osmotic pressure,
2. van der Waals interaction,
3. hydration repulsion and
4. undulation repulsion.

An electrostatic contribution is not considered as the lipopolymers are neutral and the
phospholipids are zwitterionic 89. The osmotic pressure is used as regulator and coun-
terbalances the other three. At the equilibrium distance dequil the following has to be
satisfied

ΠOsmotic(rh) = ΠvdW +ΠHydration +ΠUndulation . (2.1)

Except for the osmotic pressure, which is a function of the relative humidity, the com-
ponents are parametrized by the distance to the solid substrate.
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Osmotic Pressure

The osmotic pressure is given by

ΠOsmotic = −
kbT

VH2O
ln( rh

rhH2O
) (2.2)

where kb is the Boltzmann constant and T the temperature in Kelvin. VH2O = 29.9Å
3 is

the volume of one water molecule and rh the relative humidity with rhH2O = 100%97.

van der Waals

The van derWaals pressure is calculated on the basis of a five layermodel. Layer one and
two are the bulk crystalline silicon and silicondioxide (thicknessT1), respectively. Layer
three consists of the polymer spacer, layer four is the lipid membrane with thickness T2
and layer five is either air (monolayer) or water (bilayer). The van der Waals pressure
for a five layer model is approximated by

ΠvdW(d) =
1
6π
⎛
⎝
A234

d3 −
√
A121A343

(d + T1)3
−
√
A545A323

(d + T2)3
−
√
A545A121

(d + T1 + T2)3
⎞
⎠

(2.3)

given by Israelachvili101. The Hamaker constants Ax yz are listed in Table 2.8 on the
next page. Ax yz denotes the Hamaker constant of medium x interacting with medium
z through medium y. Except for A234 all Hamaker constants were calculated from
material properties. A234 was calculated using the combining relation

A234 = (
√
A2v2 −

√
A3v3) (

√
A4v4 −

√
A3v3)

where v denotes the interaction across vacuum 101.

Hydration Repulsion

The hydration repulsion due to the swelling of polymer chains can be modeled by an
exponential decay with the distance

ΠHydration(d) = Π0 exp(−
d

λ
) (2.4)

parametrized by a pressure constant Π0 and a decay constant λ 102. The values for Π0
and λ are extracted from the force–distance relationships, whichwere obtained bymea-
suring the equilibrium thicknesses of the polymer layer at different osmotic pressures.
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Table 2.8 – Hamaker constants used in the asymmetric five layer model. Ax yz denotes the
Hamaker constant of medium x interacting with medium z through medium y. For the
bilayer covered polymer film under water the polymer layer (3′) was modeled as water, as
the content of water is high.

Hamaker constant / J Media (x/y/z) Name

5.99 × 10−19 Si/SiO2/Si A121
2.79 × 10−21 Polymer/Lipid/Polymer A343
1.40 × 10−19 Air/Lipid/Air A545
1.87 × 10−21 SiO2/Polymer/Lipid A234
1.73 × 10−21 Polymer/SiO2/Polymer A323

5.93 × 10−21 Polymer/Lipid/Polymer A3′43′

5.93 × 10−21 Water/Lipid/Water A5′45′

6.21 × 10−21 SiO2/Water/Lipid A23′4
7.95 × 10−21 Polymer/SiO2/Polymer A3′23′

Undulation Repulsion

The undulation pressure according to Helfrich is calculated using

ΠUndulation(d) =
2N
N + 1αN

(kbT)2
κd3 (2.5)

for N = 1 membrane and α1 = π2

128 as predicted by Bachmann et al.103. Where kb is the
Boltzmann constant, T the temperature and κ the bending rigidity of the membrane.
The bending rigidity for SOPC is taken as κ = 1.2 × 10−19 J 104.

In Figure 2.17 on the following page, each of the three interfacial pressures and
their sum are plotted versus the thickness of polymer interlayers dPolymer for polymer
concentrations of 6mol% and 80mol%. In both panels, the data points from the ex-
perimentally determined force–distance relationships are plotted as green (respectively
blue) symbols, which can be fitted with exponential functions in the hydration repul-
sion regime. Data points above 5 × 107 Pa were not included in the fit, since the force–
distance relationship in such a high pressure regime is governed by steric repulsion
due to the finite compressibility of the polymer chains. As indicated by the shaded ar-
eas, the exponential fits of the measured data points yielded the characteristic param-
eters for each polymer fraction; Π0 = 2.1 × 107 Pa–2.2 × 107 Pa and λ = 4.8Å–7.0Å for
6mol% and Π0 = 32.5 × 107 Pa–43.2 × 107 Pa and λ = 15.2Å–17.2Å for 80mol%. At the
lipopolymer fraction of 6mol%, the extrapolation of the sum of aforementioned three
pressures to zero predicts the equilibrium distance of about 30Å–100Å, which shows
good agreement with the polymer layer thickness obtained by ellipsometry (Table 2.7
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Figure 2.17 – Polymer layer thicknessmeasured at different osmotic pressures for 0.5mol%
PMOx60 (left panel) and 80mol% PMOx60 (right panel). The contributions to the total
pressure (black) are the attractive van der Waals pressure (blue), the undulation pressure
(red) and the hydration pressure (yellow and shaded area). The van der Waals pressure is
displayed with opposite sign to make a comparison possible. The polymer thickness for the
bilayer under water is shown as a line above the ordinate axis.
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on page 41). As presented in Figure 2.17, the scatter of the data points at higher humidity
is more pronounced at the lipopolymer fraction of 80mol%. The range of the equilib-
rium thickness calculated for the zero pressure condition is around 21 nm showing the
experimentally determined equilibrium polymer thickness (176Å ± 18Å) to be limited
by the stretched polymer length (≈ 180Å). Apart from this limit this calculation sug-
gests that the equilibrium thickness of the membrane–substrate distance maintained
by the polymer spacers can quantitatively be explained in terms of the interplay of the
major interfacial forces presented here.

2.4.2 Polymer Volume

One of the advantages of the successive deposition of the monolayers into a membrane
is the capability to precisely control the lateral density of lipopolymer tethers in asym-
metric membranes. Here, the volume occupied by one polymer chain can be calculated
from the lateral density of polymer chains and the experimentally determined polymer
layer thickness. Since such a calculation becomes erroneous at lower lipopolymer frac-
tions where the errors in the layer thickness are comparable to the absolute values, we
focus in the discussion on the case of the highest lipopolymer content of 80mol%.
The area per polymer chain at a lateral pressure of Π = 30mNm−1 can be obtained
from the pressure–area isotherm in Figure 2.2 on page 25 to be APolymer = 166Å2.
Taking the polymer layer thickness from X–ray reflectivity in an ambient atmosphere,
dRefl = 32.9Å, the corresponding chain volume VExp/Ell = 5461Å

3 can be calculated.
In order to estimate the volume fraction of hydrating water, the volumes obtained

by experiments were compared to the volume predicted by the calculation method
proposed by Connolly105. Using a probe radius of 1.4Å for water, the excluded vol-
ume of one dry poly(2-methyl-2-oxazoline) chain with 60 monomers can be calcu-
lated to be VConnolly = 5140Å3. Comparison with the experimental chain volume at
85%RH suggests that the volume increases by 6% due to the uptake of water. How-
ever, the calculation of polymer chain volume fails under dry conditions. For example,
the chain volume calculated from the thickness measured by ellipsometry at 11.3%RH,
VExp/Ell = 3652Å3, is much smaller than VConnolly. This discrepancy suggests that the
polymer layer thickness is underestimated in the used slab model. One possible sce-
nario would be that polymer chains are partially immersed into the layer represent-
ing the head groups of phospholipids. This actually seems reasonable since polymer
chains are directly connected to the glycerol junction via ether bonds. In fact, if one
assumes that approximately 80% of the head group layer with a thickness of 11Å is
filled with polymers, the expected volume of 1461Å3 agrees very well with the differ-
ence VConnolly − VExp/Ell = 1488Å

3.
After the deposition of the distal monolayer, the polymer layer, now under bulk

water, becomes thicker by a factor of 6 (dExp/Ell = 176Å). This corresponds to VExp/Ell =
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29 216Å3. Here, the influence of the polymers immersed in the head group layer on the
entire volume of polymer is merely 5%, and we obtain the volume fraction of water,
ΦH2O/Ell = 82% ( 5140

29216 ≈ 0.18). This value is larger than those reported for a supported
membrane tethered with short hexa(ethyleneoxide) spacers using neutron reflectivity;
ΦH2O/Neutron = 4% for membranes with 100mol% tethers, and 50%–60% for 50mol%
tethers. 39 A distinct difference in the degrees of hydration suggests that longer poly(2-
oxazoline) head groups can uptake more water than oligo(ethylene oxide) head groups
possessing much less conformational degrees of freedom46,100.

2.5 In Situ Control Using Switchable Polymers

The present membrane model can be further tailored by the choice of polymer. The
living ionic ring–opening polymerization67 allows many variations in the preparation
of polymers. So far the side group of the polymers was methyl but larger side groups
can be taken. Apart from polymers with identical monomer units, a statistical mix-
ture of different monomers can be copolymerized by which an extreme fine tuning of
the desired properties can be achieved. Making the polymer switchable from a loose
state, in which it occupies a large volume to a compact state where the solvent is ex-
pelled, the thickness of the polymer layer can be actively switched. There are several
properties in question which are interesting to trigger such a change in conformation.
Among them are the pH of the surrounding, irradiation by light and temperature. In
the following we will focus on a change induced by temperature. As a cause for the
switching the presence of a lower critical solution temperature (LCST) in the polymer
is utilized. Below the LCST, the polymer is mixed with the solvent occupying a volume
larger than its molecular volume. Increasing the temperature above the LCST results
in a demixing of polymer and solvent, as the mixture is in the spinodal regime. For the
present lipopolymers this transition can be visualized in bulk solutions by measuring
the cloud point with temperature 106. The transition in three dimensions occurs in a
narrow temperature range justifying the view as a binary switch. In order to induce a
variation in polymer layer thickness in a polymer–tetheredmembrane, this effect has to
be present in the two dimensional geometry and has to be strong enough to overcome
the the resistance of the other interfacial forces as discussed in Section 2.4.1 on page 43.

First the isotherms of a poly(2-isopropyl-2-oxazoline) lipopolymer, RIM-291 were
recorded. The chemical structure is shown below the isotherms in Figure 2.18 on the
facing page. Below the LCST the polymer should be hydrophilic and in the water phase.
When heated above the LCST the compaction and removal of water is expected to drive
the polymer towards the air–water interface. Along with this a significant increase in
surface pressure is expected. Isotherms above and below the LCST of a monolayer of
RIM-291 corrected for the change in surface tension of water show nomajor deviations
from each other. In Figure 2.18 on the next page isotherms are only presented up to a
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Figure 2.18–Top: Isotherms ofRIM-291 at temperatures below and above the LCST≈ 31 °C.
Bottom: Chemical structure of the lipopolymer RIM-291 with isopropyl side group.
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Figure 2.19 – Top: Isochore of RIM-342. The temperature is indicated by dashed red line
scaled by the axis on the right side. The blue solid line shows the surface pressure. Bottom:
Chemical structure of the lipopolymer RIM-342.

surface pressure of≈ 18mNm−1 as above this pressure lipopolymers are lost irreversibly
to the subphase. At pressures below 18mNm−1 the area per molecule is more than one
order of magnitude larger than expected for phospholipids. This indicates the presence
of polymer at the air–water interface even below the LCST. Consequently, water is not
a good solvent for the polymer with 2-isopropyl side group.

In order to get stable monolayers up to high surface pressures at the air–water in-
terface which have a distinct layer of alkyl chains, a less hydrophobic polymer chain
has to be used. To make the polymer more hydrophilic, the 2-isopropyl side group
was replaced by an ethyl side group. This has the additional effect of a shift of the
LCST to higher temperatures. With n = 25 monomer units the temperature rises to
TLCST = 51 °C. In Figure 2.19 a pressure isochore of a lipopolymer with ethyl side group
is displayed. The pressure is corrected for the variation of water surface tension with
temperature. The pressure changes continuously proportional to the temperature as
expected for a fixed area per molecule. The clear effect of the LCST seen in a bulk so-
lution of this lipopolymer could not be observed here. A more direct approach is the
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Figure 2.20 – Ψ vs. ∆ plot measured on a bilayer under water. The proximal layer consists
of 100mol% RIM-342 transferred by LB, the distal layer is SOPC transferred by LS. The
LCST is expected at 51 °C.

measurement of the polymer layer thickness below a lipid bilayer on a solid support.
A monolayer consisting of RIM-342 transferred via LB transfer onto a silicon substrate
was completed to a bilayer via LS transfer of a SOPCmonolayer. This sample was mea-
sured using ellipsometry in a temperature range 20 °C–64 °C. Figure 2.20 shows the Ψ
vs. ∆ graph of themeasurement with temperature encoded by color in the range 40 °C–
64 °C. Only a small variation in ellipsometric angles can be observedwith no clear trend
regarding temperature. The analysis is complicated by the temperature dependent vari-
ation in refractive index of the bulk water covering the polymer–tethered bilayer. With
a thinning of the polymer layer an increase in the refractive index is expected. These
two effects counteract each other minimizing the contrast in ellipsometry. From the
present data it is therefore not possible to discriminate between fluctuations occurring
during the time required for measurement of about 1 h or an actual sudden change in
polymer layer thickness. The reduction in contrast due to two counteracting effects ap-
plies likewise to X–ray reflectivity. As a resort to get information about the thickness
change of the polymer layer a macroscopic probe can be used. Ishida & Kobayashi107
used a colloidal probe coupled to an atomic force microscope to measure the force dis-
tance curves on a LCST polymer covered substrate. A simpler approach is the use of
colloidal particles with reflection interference contrast microscopy where the interfer-
ence pattern of the probe with the substrate will vary according to their separation.
Depending on the analysis method a resolution down to ≈ 2Å can be achieved 108.
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2.6 Conclusion
In this chapter the transversal membane structure and substrate–membrane interac-
tions were investigated. This was done using lipopolymers forming a soft interlayer be-
tween solid support and membrane. The lipopolymers have a narrow size distribution
making them suitable for accurately controlled spacing. The polymer–tethered mem-
branes were prepared by LB transfer of lipid–lipopolymer mixtures from the air–water
interface. Completion to a bilayer proceeded either by vesicle fusion or LS transfer. The
combination of different reflectivity techniques presented here, X–ray reflectivity and
ellipsometry as well as neutron reflectivity (in Appendix B), leads to a detailed picture
of the polymer–tethered membranes.

The presence of a surface coupling group was shown to be vital to avoid a lateral
rearrangement of the lipopolymers in the case of vesicle fusion. In the case of com-
pletion via LS transfer the physisorption of the lipopolymer to the surface is sufficient.
For small concentrations the polymer layer cannot be resolved with the experimen-
tal techniques. For a monolayer with 70mol% PMOx104 the polymer layer thickness
reaches 46Å ± 1Å. It was shown that the thickness of the polymer interlayer increases
with increasing polymer length and polymer concentration. This increase is non–linear
due to an increase in area per molecule with increasing lipopolymer concentration. A
clear dependency of the polymer layer thickness on the humidity was observed. From
the combined data, the thickness to be expected can be estimated as a function of
lipopolymer concentration, number of monomer units and surface pressure during LB
transfer. Calculation of the van der Waals interaction from material parameters and
the contribution of the undulation repulsion allowed the estimation of the hydration
forces present in the polymer interlayer. The results obtained predict the equilibrium
thickness of a complete bilayer under water with reasonable agreement. For 80mol%
PMOx60 the distance measured amounts to 176Å ± 18Å which will be sufficient as a
spacing even for large protein domains protruding from the membrane. Furthermore,
the knowledge of the lateral density and thickness of the polymer interlayer allows the
estimation of the volume fraction of hydrating water. For 80mol% PMOx60 this yields
a volume fraction of 82% filled with hydrating water. This shows that the lipopolymers
used are suitable for creating a soft interlayer with tunable properties.



Chapter 3

Lateral Structure of
L ipopolymer Layers

During the preparation of polymer–tetheredmembranes a phase separation can be ob-
served. While the mixture of lipids and lipopolymers is homogeneously mixed at the
air–water interface of the Langmuir trough, the LB transfer can induce a phase sepa-
ration of the two constituents. The dissociation occurs steadily and results in stripes
enriched in lipopolymer separated by stripes with an enrichment in lipid. In this chap-
ter the main focus is on the quantitative control of this pattern formation. The de-
pendencies on transfer speed, subphase viscosity as well as on dipping angle were de-
termined experimentally. Furthermore a detailed picture of the three–phase contact
line region has been obtained providing the frame for further theoretical considera-
tions. A few qualitative effects of the structuring have already been studied. There,
the chemical structure was varied to exclude condensation effects of the lipid anchor
and to assess the influence of the polymer46,63. By changing the lipid anchor from Di-
stearyl (2 × C18:0) to Di-phytanyl (2 × 4Me C16:0) the phase separation of the alkyl
chains can be excluded as the driving force for the pattern formation. Substitution of
the trimethoxysilane coupling group by a piperidine termination did not alter the ob-
served patterns. An increase in polymer length resulted in a lower contrast of the stripe
patterns as well as an increase in the number of branches. However, the mean stripe
distance remained unchanged. Substitution of the polymer backbone by ethylene gly-
col and the addition of a phosphoethanolamine group resulted in a still structured yet
much less well defined pattern.

The preparation ofmonolayers using the LB transfer technique offers several unique
advantages, especially the precise control of many relevant parameters opens the way

53
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to study underlying phenomena. In the following chapter we will focus on the lateral
structures formed by transferring a mixture of lipopolymers embedded in a lipid ma-
trix. Using fluorescence microscopy the phase separation between lipopolymers and
lipids on the transferred film can be observed as the fluorescent marker is preferen-
tially embedded in one of the phases. Along the direction of transfer stripes with a
characteristic mean distance are formed. The continuity of these stripes extends over
the complete substrate length of several cm. Parameters influencing the stripe to stripe
distance were found to be transfer speed and viscosity of the subphase. Their depen-
dence is shown in detail in the following sections. The origin of the structure formation
can be narrowed down to occur in the meniscus region as the mixture shows no sign of
separation on the air–water interface of the Langmuir trough over the whole pressure
range where a stable monolayer is formed.

3.1 Quantitative Dependence on
Preparation Parameters

To quantify the impact on the separation process three well controllable parameters
were varied over the experimentally accessible range. The three parameters are transfer
speed v, subphase viscosity µ and the dipping angle Ω. The experimental geometry
with the parameters indicated is shown in Figure 3.1 on the facing page. Stripe patterns
were analyzed for all conditions and are presented in the following sections.

Determination of StripeDistances To determine the average stripe to stripe distance
from the fluorescence images, an intensity line profile perpendicular to the stripes was
extracted. A profile length of approximately 140µm was used. The maxima on this
profile were selected manually and their lateral position plotted against the peak num-
ber. A line was fitted to the lateral position data whose slope gives the average stripe
to stripe distance. The deviation of the measured maxima from an equidistant pattern
with this determined distance is shown as error bar in the graphs showing stripe dis-
tances. The contrast in the fluorescence micrographs was determined with respect to
a background value taken at one corner of the micrograph outside of the illuminated
area. The contrast ratio is defined as

(Max − Base
Min − Base ) ∶ (

Min − Base
Min − Base ≡ 1) (3.1)

where Base is the background intensity value and Max is the intensity recorded at the
center of a stripe whereas Min is the minimum intensity between two stripes.
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Substrate  
(silicon or glass) 
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Transfer speed v z 

Figure 3.1 – Schematic view of the LB transfer indicating the parameters varied for stripe
pattern formation. The lipid–lipopolymermixture forms a homogeneousmonolayer on the
subphase–superphase interface and is transferred onto the substrate during slow removal
with transfer speed v. The substrate is immersed at a dipping angle Ω into the subphase.
The subphase viscosity µ is controlled via composition and/or temperature.
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Figure 3.2 – Fluorescence images from transfers at different speeds. The transfer direction
is to the top. A) A high contrast and widely spaced, equidistant stripes are observed for
v = 1mmmin−1 . B) A low contrast and small spaced stripes yet highly regular are observed
for v = 20mmmin−1 .
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Figure 3.3 – Stripe to stripe distance d as a function of transfer speed v. Above v =

30mmmin−1 stripe patterns are not discernible by fluorescence microscopy as the con-
trast is too low. Error bars show the standard deviation from a regular pattern with stripe
distance d.

3.1.1 Transfer Speed
Transfer speed v was varied from 1mmmin−1 to beyond 30mmmin−1. As can be seen
from the fluorescence micrographs taken from samples transferred at 1mmmin−1 and
20mmmin−1, shown in Figure 3.2 on the previous page, not only the stripe distance
diminishes with increasing speed but also the contrast. Along the direction of transfer
the emergence of new stripes can be observed. To recover the equilibrium distance two
stripes will merge shortly after. The frequency of the emergence and merging events
increases with the increase of transfer speed. In Figure 3.3 data up to 28mmmin−1 is
shown since for faster transfer speeds no pattern could be perceived in the fluorescence
micrographs. As subphase purified water with a viscosity of approximately 1mPa s was
used. The dipping angle was Ω = 90° which is the commonly used geometry for LB
transfers. Below 5mmmin−1 stripe pattern formation appears to be sensible to vibra-
tions which lead to stripe distances close to the value obtained for 5mmmin−1. In Fig-
ure 3.3 only transfers not suffering from vibrations are shown.

3.1.2 Subphase Viscosity
Variation of subphase viscosity µwas accomplished bymixing purifiedwater with glyc-
erol 109. Starting from µ = 1.005mPa s for purified water at 20 °C the subphase viscosity
was increased up to µ = 3.72mPa s for a mixture with 40% weight glycerol. For high
subphase viscosities above µ = 2.5mPa s the contrast was to low to recognize stripe
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Figure 3.6 – Dependence of stripe to stripe distance d on the dipping angle Ω (see Fig-
ure 3.1 on page 55 for definition) between subphase and substrate. The transfer speed of
5mmmin−1 was applied in the plane of the substrate. The stripe distance is not signifi-
cantly influenced by the dipping angle Ω.

patterns. The decrease of contrast as a function of subphase viscosity is displayed in
Figure 3.4 on the preceding page. A second approach to vary the subphase viscosity is
the variation of subphase temperature 109. This gives only access to a very limited range
of subphase viscosities. On the other hand the chemical properties of the subphase
remain unchanged and the range can be extended to below µ = 1mPa s. The results
from both variation methods are shown in Figure 3.5 on the previous page. In both
cases the change in surface tension is neglected. The largest deviation of 72.8mNm−1–
69.3mNm−1 = 3.5mNm−1 for 40%weight glycerol is still small compared to the surface
pressure during transfer (30mNm−1) and the surface tension of water.

3.1.3 Dipping Angle

The third parameter varied is the dipping angle Ω. The sample was moved out of the
subphase at v = 5mmmin−1 in the direction given by the dipping angle Ω. Results are
shown in Figure 3.6 for a variation of Ω from 15° to 150°. Within the experimental error
no variation of the stripe to stripe distance with the dipping angle can be observed.
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3.2 Observation of the Three–Phase
Contact L ine

Observing the monolayer formed by the lipid lipopolymer mixture at the air–water in-
terface using fluorescence microscopy, a homogeneous distribution of the fluorescent
marker is detected indicative of a mixing of the two components. After the deposition
of the monolayer by LB transfer a stripe pattern is clearly discernible. These two ob-
servations limit the transition to the demixed state to the meniscus region during the
LB transfer. To further narrow down the location and cause of the phase separation
two experimental setups were specifically prepared to allow the close observation of
the meniscus region. Imaging ellipsometry allows the laterally resolved measurement
of the height on the substrate with a resolution down to several Ångstrom, as discussed
in Section 1.3.2 on page 19. Complementary to this, fluorescence microscopy shows
the lateral distribution of the fluorescent marker which indicates the phase separation.
Combining these two methods a detailed picture of the dynamic occurring during the
transfer is gained. In the following sections the experimental setups will be outlined in
detail followed by the measurements performed with these instruments.

3.2.1 Langmuir Trough Combined with Ellipsometer

Experimental Setup

In this section the combination of a preparational with an observational instrument
is presented which has been specifically designed for the observation of stripe pattern
formation. A schematic is shown in Figure 3.7 on the following page. AMultiskop (Op-
trel, Kleinmachnow, Germany) was used for ellipsometric imaging. The ellipsometer
works in PCSA configuration and image forming capabilities are introduced by an ob-
jective (M-Plan APO 10×, Mitutoyo, Neuss, Germany) and a position sensitive detector
(EHD®kamPro02, EHD imaging, Damme, Germany). The sample is illuminated by a
HeNe–laser operating at 6328Å as shown schematically in Figure 3.7 on the next page.
The dipper holding the substrate was attached to the goniometer ring of the Multiskop.
A modified mirror holder (KMS/M, Thorlabs, Dachau, Germany) attached to the dip-
per allowed precise adjustment of the substrate with respect to the ellipsometer frame.
Due to geometric constraints the dipping angle Ω was set to 75°. The incident angle Θ
was 40°. The Langmuir troughwas adjusted in height to see the onset of themeniscus in
the ellipsometric image on the substrate. The nulling conditions were set to be fulfilled
on the bare substrate. Using off–null ellipsometry and the repeat length for successive
fulfilling of the nulling condition, the ellipsometric period, a height profile can be re-
constructed. This is limited to small contact angles below ≈ 10° by the ratio between
microscopic resolution and increase in height. The increase in film thickness has to be
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Figure 3.7 – Schematic illustration of the ellipsometer combined with the Langmuir trough
used for LB transfers. Monochromatic light from a HeNe–laser passes through a polarizer
and compensator before being reflected on the sample at an angle of incidence Θ. Reflected
light is collected by an objective and after passing through the analyzer forms an image on
the CCD–camera. The sample is immersed into the subphase as shown in the left panel at
an angle Ω. The optical path is split showing the path of the incident light above the dashed
line and the path of the reflected light below.
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less than half of the ellipsometric period over the lateral distance of the microscopic
resolution according to the Nyquist theorem.

Experiments are performed analogous to themonolayer deposition using LB trans-
fer as explained indetail in Section 1.2.1 on page 9. The substrate attached to the mod-
ified dipper was adjusted in all three degrees of freedom to be normal to the plane of
incidence of the ellipsometer and to reflect the incident beam into the center of the
CCD–camera. The ellipsometer was set to fulfill the nulling condition on the bare sub-
strate. The subphase fluid was poured into the Langmuir trough and the substrate im-
mersed into the subphase. Spreading of the lipid lipopolymer mixture was followed
by compression to 30mNm−1. Keeping the surface pressure constant the deposition
on the substrate proceeded by slow removal of the substrate from the subphase. The
position of the meniscus on the substrate was adjusted by adding or removing sub-
phase fluid to the Langmuir trough behind the barrier confining the monolayer. Once
the meniscus was adjusted to be visible in the field of view, images were taken while
proceeding with the transfer.

Experiments

Pure Subphase Before spreading amphiphile mixtures on the subphase the contact
line of the subphase with the substrate was observed. From this the contact angle can
be calculated and the reliability of the measurement can be assessed. The ellipsometric
image of water in contact with a cleaned silicon substrate is shown in panel A) of Fig-
ure 3.8 on the next page. In the top part of the image the substrate is uncoated. This
appears black as the ellipsometer has been set to fulfill the nulling condition on the
substrate. Going downwards, more than twenty interference stripes can clearly be dis-
tinguished. The distance between the interference becomes smaller as the angle of the
meniscus with the substrate becomes larger. Between the red lines a line profile is taken
which is plotted in panel B) of Figure 3.8 on the following page. The intensity minima
indicated by blue dots require fulfillment of the ellipsometric nulling–condition which
is repetitively fulfilled for an increase in height by the ellipsometric period (see Sec-
tion 1.3.2 on page 19). For a water film (nH2O = 1.333) in air (nAir = 1.000) the ellip-
sometric period becomes D = 2900Å. From this we can reconstruct the form of the
meniscus which is shown in panel C) of Figure 3.8 on the following page. To check the
reliability of the measurement, the analytical description for the shape of the meniscus
given by Equation (3.4) has been fitted to the experimental data with only the contact
angle as a parameter. The capillary constant for water is a = 3.9mm with which the fit
results in a contact angle of αr = 2.34° ± 0.02°.

Monolayer Covered Subphase A transfer of 94.8mol% SOPC with 5mol% PMOx14
and 0.2mol% tritc-dhpe at Π = 30mNm−1 and v = 5mmmin−1 was observed using
imaging ellipsometry. A single image taken during the transfer is shown in panel A) of



62 Chapter 3. Lateral Structure of L ipopolymer Layers

100

80

60

40

20

0

Po
si

ti
on

 o
n 

su
b

st
ra

te
 / 

µ
m

6543210
Thickness of water film / µm

 Measurement
 Fitted theory

200

150

100

50

In
te

ns
it

y

806040200-20
Vertical position / µm

15
0

10
0

50
0

-5
0

-1
00

µm

350300250200150
µm

A
B

C

Figure 3.8 –A) Ellipsometric image around the three–phase contact line of pure water with
a silicon substrate in air. B) Intensity profile along z around the three–phase contact line.
The intensity profile is taken between the two red lines in panel A). Eighteen clear minima,
where the ellipsometric conditions are repetitively fulfilled, are marked with blue circles.
C) Vertical position on the substrate plotted against the reconstructed water film thickness
(blue circles). The green solid line is a fit to the data of the analytical description of the
meniscus form with the contact angle as parameter. The contact angle with the substrate is
αr = 2.34° ± 0.02°.
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Figure 3.9 – A) Ellipsometric image around the three–phase contact line during LB trans-
fer. The transfer direction is along z. Horizontal stripe patterns in the upper part are not
due to the separation of the components in the monolayer but are an optical artifact. B)
Intensity profile along z around the three–phase contact line. The intensity profile is taken
between the two blue lines in panel A). Seven clear minima, where the ellipsometric con-
ditions are repetitively fulfilled, are marked with green circles. C) Thickness of the water
film calculated from the interference minima in panel B) plotted against the position along
z. The height profile in this region can be approximated by a line. The contact angle with
the substrate is αr = 2.5° in this region.
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Figure 3.9 on the previous page. The ellipsometric image shows the coated substrate.
Starting at the bottom, the substrate is covered by a thick subphase film (meniscus).
Going upwards along z, the film becomes thinner. At the position indicated by the
arrow the film is thin and the angle with the substrate is sufficiently small to result in
interference stripes. The intensity minima in the region above the arrow are indicated
by green circles in panel B) of Figure 3.9 on the preceding page. From the ellipsometric
period of a water film in air (D = 2900Å) a height profile in this region can be recon-
structed as plotted in panel C) of Figure 3.9 on the previous page. This height profile is
approximated by a line. The slope of the line corresponds to a contact angle of αr = 2.5°
between the substrate and the subphase. The vertical parallel lines are not the stripe
patterns due to lipid–lipopolymer demixing but are an optical artifact.

3.2.2 Langmuir Trough Combined with Fluorescence Microscope

Experimental Setup

A self–built fluorescence microscope attached to the Multiskop analogous to the setup
for imaging ellipsometry was used to study the lateral rearrangement of lipopolymers
during transfer. The setup is shown schematically in Figure 3.10 on the facing page. The
same objective (M-PlanAPO 10×, Mitutoyo, Neuss, Germany) as for imaging ellipsom-
etry was used but correctly positioned with respect to the sample to create parallel light
in the back focal plane of the objective. Therefore the effective numerical aperture was
na = 0.28 with a diffraction limited resolution of 1.4µm. The image is formed on a
CCD–camera (Orca 285, Hamamatsu Photonics, Herrsching, Germany) by focusing
through a tube lens ( f = 150mm). The optical components were mounted in a cage sys-
tem (Linos Photonics, Göttingen, Germany) which was attached to the detector arm of
the Multiskop via an adapter built in the local mechanical workshop. A mercury va-
por arc lamp (EXFOX-cite 120, Mississauga, Ontario, Canada) illuminated the sample.
Köhler illumination is achieved by focusing through a condenser lens. After passing
through an excitation filter (531 nm, width: 40nm) and being reflected by a dichroic
mirror (562nm) the light reaches the sample. Emitted fluorescent light passes through
the dichroic mirror and is filtered by an emission filter (593 nm, width: 40nm) be-
fore reaching the CCD–camera. The filterset is fromAHFAnalysentechnik (Tübingen,
Germany).

Experiments

Analogous to imaging ellipsometry a closer look at the dynamics of the pattern forma-
tion was taken using fluorescence microscopy. Figure 3.11 on page 66 shows the menis-
cus in the lower part with the subphase thickness on the substrate becoming increas-
ingly thinner until reaching the three–phase contact line. No demixing of the lipid–
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Figure 3.10 – Schematic illustration of the fluorescence microscope combined with the
Langmuir trough. Light is generated by amercury vapor arc lamp. A narrow band of wave-
length passes through the excitation filter and the dichroic mirror. The light is focused
into the back focal plane of the objective to achieve Köhler illumination. The fluorescently
emitted light from the sample is collected by the objective and reflected from the dichroic
mirror. After passing through an emission filter the image is formed by a tube lens on the
CCD–camera.
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Figure 3.11 –Top: A snapshot fluorescencemicrograph near the three–phase contact line of
a lipid–lipopolymer mixture during transfer. No separation of the two components can be
observed below the arrowwhile above, close to the substrate, a clear stripe pattern is visible.
Bottom: Integrated intensity line profile taken between the two red lines in themicrograph
above. Periodic maxima correspond to an increased concentration of fluorescently labeled
lipids.
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lipopolymer film can be observed while the subphase layer is thick. The top part of the
image shows the fluorescently labeledmonolayer with lateral structure. Within the res-
olution of the instrument the transition region from a homogeneous lipid–lipopolymer
mixture to a stripe pattern can be restricted to be less than 5µm.

At the onset of the meniscus with a larger contact angle an increased fluorescence
intensity is expected due to the tilt of the lipidmonolayerwith respect to the observation
plane. The positions coinciding based on this premise are marked with an arrow in
panel A) of Figure 3.9 on page 63 and Figure 3.11 on the preceding page.

3.3 Theoretical Modeling of Stripe Pattern
Formation

3.3.1 General Considerations

For the physical origin of the stripe formation through LB transfer several possible
scenarios have been identified.

1. The separation is driven by the underlying subphase which exhibits a pattern on
the same length scale as observed on the transferredmonolayer along the contact
line.

2. By the transfer the conformal space of the polymers is changed leading to a vari-
ation in entropy which drives them towards each other as being solved in water
is less preferential.

3. There exists a difference in wetting towards the surface between the lipopolymers
and the lipids. This leads to an instability of the contact line with the observed
spatial pattern.

The last scenario can already be excluded from the experiments presented in Section 3.2
on page 59 as the contact line was found to be homogeneous. This however does not
exclude a difference in wetting. In the following sections a route of explanation is taken
which does not start from a rigorous physical basis but uses a more phenomenological
approach. The explanation is based on a mathematical description of a phase separa-
tion. This equation—the Cahn–Hilliard equation—is derived in Appendix C. Turn-
ing back to the experiments in Section 3.3.2 on the next page a relation is established
between the experiments and the parameters encountered in the Cahn–Hilliard equa-
tion. With these considerations the Cahn–Hilliard equation is solved and the results
are compared to the experiments in Section 3.3.3 on page 71.
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3.3.2 Relationships Between Experiment andTheory
Before using the Cahn–Hilliard equation to account for the observations, the physical
processes taking place during the transfer are considered. Furthermore the parameters
controlled in the experiments are related to the parameters found in the Cahn–Hilliard
equation. Apart from the focus on the direct applicability on the Cahn–Hilliard equa-
tion the following considerations will be valid and requisite for any theoretical descrip-
tion of the stripe pattern formation.

Diffusion at the Air–Water Interface

Diffusion constants of lipids at the air–water interface were measured by Peters & Beck
on the order of D = 50µm2 s−1 for a C16 chain in fluid state 110. The results could
be accounted for by a free volume model. The influence of the subphase viscosity on
the viscosity of a monolayer at the interface was studied by Sacchetti et al.111. They
found that up to a 2.5 fold increase in subphase viscosity the surface viscosity of the
monolayer was unchanged. As in this study the area per molecule was constant in
this regime one can conclude that the diffusion constant according to the free volume
model stays also constant. Further, Kang & Majda112 studied the effect of immersion
depth on the diffusivity of a diffusant in the monolayer and extended the Saffman–
Delbrück theory 113 to account for a cylinder that protrudes from the monolayer. This
results in a strong dependency of the diffusion constant D on the subphase viscosity µ.
The viscosity of air (0.017mPa s) can be neglected since it is two orders of magnitude
smaller than the subphase viscosity (water at 20 °C: 1mPa s). Since this model is only a
minor variation to the model by Saffman–Delbrück, it has the same limitation of being
valid only for the dimensionless particle radius є ≪ 1. Therefore the lipopolymers
extending into the subphase are assumed to feel the increased viscosity while the lipid
matrix is not influenced. The diffusion coefficient according to Kang & Majda is given
by

D = kT

4π(ηh1 + µh2)
[ln 2

є
− γ + 4є

π
− (є

2

2
) ln 2

є
] (3.2)

with the dimensionless particle radius є = µa/(ηh1 + µh2). h1 and h2 are the immer-
sion depth into themonolayer and the subphase and γ is Euler’s constant γ = 0.57721 . . .
From the experiment the subphase viscosity µ is well defined. The monolayer viscosity
η can be estimated to be 40mPa s 114. Assuming h1 = 20Å and h2 = 10Å for PMOx14
the dependency on the subphase viscosity as shown in Figure 3.12 on the next page
is obtained. This seems to agree with diffusion measurements on pure lipopolymer
monolayers which can be expected to have a higher viscosity and were measured at
higher areas per molecule90. Based on this calculation a roughly inverse relationship
between the polymer diffusion coefficient D and the subphase viscosity µ can be as-
sumed.
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Figure 3.12 – Diffusion constant in dependence on the subphase viscosity according to
Kang & Majda112 . Calculated using Equation (3.2). For parameters defining this depen-
dency see text. A power law was fitted in the range from 1mPa s to 2.5mPa s yielding an
exponent β = −0.247(1).

Evolution of the Free Energy during Transfer

From the well mixed state on the air–water interface we can conclude that the free en-
ergy of the system has only a singleminimumon energy scales well beyond the thermal
energy. On the other side we have two separated minima for high and low concen-
trations of lipopolymer at some point during the transfer. The barrier separating the
minima should not depend on the details of the transfer as long as the geometry is not
changed significantly. This applies for example to the contact angle during the transfer.
From a fixed form of the free energy at a certain point during transfer follows directly
the reciprocal relation of the change in free energy to the transfer speed. The actual
parametrization of the free energy with time cannot be derived and several options are
considered in Section 3.3.3 on page 71.

Hydrodynamics in the Meniscus

A purely hydrodynamic origin, in the sense that the flow pattern of the subphase ex-
hibits structures that lead to the observed stripe patterns, can be excluded from an
experiment with a different lipopolymer. Furthermore it should have led to the obser-
vation of such stripe patterns in arbitrary binary mixtures much earlier. Since in exper-
iments with poly(ethylene oxide) as a polymer of a lipopolymer no long range ordering
is observed, no organized flow pattern along the three–phase contact line should be
present41. To test whether the polymers enrich in the presence of a vortex flow, a sim-



70 Chapter 3. Lateral Structure of L ipopolymer Layers

pler geometry at the air–water interface can be used which allows in situ fluorescence
microscopy observation.

In terms of hydrodynamics the geometry is similar to the problem considered by
Landau & Lifshitz115. Their prediction of film thickness by dip–coating is important for
industrial surface coating. Due to its widespread application a large body of literature
related to this problem can be found 116–120. Even the effect of (unwanted) surfactants
has been considered 121 but the extrapolation to LB transfers as a high concentration
impurity of insoluble surfactants and low speeds has so far only been marginally men-
tioned by de Gennes122. The characteristic form of a Landau–Levich film (cf. Figure 3
of Delon et al.120) is observed for the longer of the here considered lipopolymers during
LB transfer by eye. This might indicate a paradox situation. For a Landau–Levich film
to appear, the transfer speed needs to be sufficiently high to prevent the subphase from
dewetting the substrate. On the other hand to achieve a transfer ratio of unity for the
Langmuir monolayer, the transfer speed needs to be considerably below this threshold.

Dimensional Analysis

A dimensional analysis was first done for the Landau–Levich problem, i.e., without
surfactant present. This can be modeled using five dimensional parameters 118: pulling
speed v, acceleration due to gravity g, and to characterize the fluid, its density ρ, its
viscosity µ and the surface tension γ. From these, two dimensionless constants can be
formed: The capillary number Ca = µv/γ and the Reynolds number Re = ρva/µ with
the characteristic length scale, the capillary constant a, given by a =

√
γ/ρg. While

the study of Landau and Levich is concerned with the entrained film thickness by a fast
transfer we consider here the stripe to stripe distance occurring at small transfer speeds.
From the definition of the Reynolds number Re it is directly clear that it cannot be used
as a universal constant for our problem since speed and viscosity enter reciprocal to
each other which is not consistent with the experimental data. The capillary number
Ca does not lead to a collapse of the data onto amaster curve. Amuch better agreement
yet no collapse is found by plotting the data against µ3v

γ
. If this holds some meaning an

additional factor making this expression nondimensional is required.
To account for the quasi two dimensionality of the film, we can replace the viscosity

by the 2D viscosity of the monolayer and replace the surface tension by a line tension.
The capillary number stays a dimensionless constant with these replacements. But the
2D viscosity of the monolayer is not dependent on the subphase viscosity in the range
the experiments were performed as demonstrated by Sacchetti et al.111. So the influence
of the viscosity is only on the protruding lipopolymers or has a hydrodynamic effect
during the transfer. This already renders the attempt to define a 2D analogon to the
capillary number useless for our purpose.

Starting from the physical parameters studied and known to play a role in the pro-
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Table 3.1 – Physical quantities entering into a description of the LB transfer with the
medium defining the quantity and the dimension.

Quantity Defining medium Dimension

Density Subphase M L−3
Viscosity µ Subphase M L−1 T−1
Surface tension Subphase M T−2
Surface viscosity Monolayer M T−1
Surface pressure Monolayer M T−2
Gravitational acceleration L T−2
Transfer speed v L T−1
Stripe distance d L

cess we can derive the following. We consider the stripe distance d, the transfer speed
v, and the subphase viscosity µ. These have the dimensions:

d ∶ [L] v ∶ [LT−1] µ ∶ [ML−1T−1]. (3.3)

As only the viscosity involves mass, a further parameter involving mass is necessary.
The two quantities v and µ define also the shear stress τ = v ∂µ

∂y
. This is not only relevant

between substrate and subphase but also between subphase and monolayer respective
superphase. An interfacial velocity proportional to the transfer speed has been ob-
served by Fuentes & Cerro123. Possible additional quantities involved in the process are
shown in Table 3.1. Resulting in seven quantities for the whole system. As there are
three physical quantities, four dimensionless variables for this system can be defined.
This has not yet been studied systematically due to the large number of possible com-
binations and the unknown effect of some of the physical parameters. Furthermore
the list given in Table 3.1 might be incomplete. For a similar geometry the analysis is
performed by Naire et al.124, 125 with the focus on the fabrication of foams.

3.3.3 Comparison to Experiments

Linearized Cahn–Hilliard Equation

As a first step to assess whether the Cahn–Hilliard equation is a suitable description
of the experimental observation we look at the linearized version given by Equation
(C.14) in Appendix C. Since the linearized version exhibits not the same rich features
as the full equation only an agreement of basic tendencies between experiment and
theory can be expected. For the experiments we can safely assume that there is always
a fluctuation present at the beginning which is required to drive the system out of the
metastable state at c = 0. From Equation (C.14) we have to consider three parameters:
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◆ the mobility L,
◆ the gradient energy coefficient γ and
◆ the second derivative of the free energy with respect to concentration f ′′(cm).

Looking at Equation (C.17) we can easily see the effect of two of the parameters on the
wavelength of the structure observed in experiments. The wavelength l̄ is proportional
to the square root of the gradient energy coefficient l̄ ∝√γ. The proportionality to the
second derivative of the free energy is just reciprocal l̄ ∝ ( f ′′(cm))−1⁄2 . The mobility
L is not directly related to the most unstable wavelength l̄ and has only an effect in the
time domain. Equation (C.16) shows that upon an increase of L the amplitude of the
corresponding wavevector is increased. From this one can expect a larger L to lead to a
faster transition from a homogeneous to a patterned distribution. For the comparison
to the experiment we consider only the parameters L and f ′′(cm). The gradient energy
coefficient γ is not accessible from the experiments reported here and is therefore kept
as a constant with time.

Mobility L As outlined in Section 3.3.2 on page 68, the mobility L is roughly inverse
proportional to the subphase viscosity µ. Varying the subphase viscosity µ linearly
from 1mPa s–2.5mPa s we observe an increase in wavelength. This is consistent with
the expected tendency of an increasing structural size at higher mobilities.

Free Energy f ′′(cm) A more negative second derivative of the free energy with re-
spect to concentration f ′′(cm) is the result of a more strongly curved free energy f (c).
This means a local change in composition is energetically more favorable. Therefore we
can expect the separation to happen faster, and as this process is opposed by the mass
transport, also on shorter length scales. As we saw on page 69, we cannot assume the
free energy to be constant over the time of the transfer. Instead we start from a single
minimum which in the course of the transfer is separated by an increasing energy bar-
rier into twominima. The development of the free energy with respect to time reduced
by the duration of the transfer is always the same. For faster transfer speeds v the rate
of change in f (cm) and therefore also in f ′′(cm) is larger. The time average ⟨ f ′′(cm)⟩
increases with the transfer speed v and matches the experimental observation.

Numerical Simulations

To explore the rich behavior of the Cahn–Hilliard equation, numerical simulations
were performed, since no analytical solution of this fourth order partial differential
equation is known. The simulations used the FiPy framework 126 which is developed at
the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA).
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Figure 3.13 – Geometry of the LB transfer used in the numerical simulation. The substrate
is moved upwards at a speed v. In the 1D simulation a line along x is followed by its tra-
verse over the kink in the meniscus on the air–water interface. In the 2D simulations the
conditions of the kink are moved over the simulation area.

FiPy contains a solver for partial differential equations based on a standard finite vol-
ume approach. The finite volume method (FVM) is a special case of the finite element
method. The FVM dissects the simulation volume into discrete finite volumes. Us-
ing the divergence theorem parts of the equation containing a divergence term can be
transformed into a surface integral. These surface integrals can then be evaluated as the
fluxes at the volume boundaries. Introductions to the FVM can be found in Versteeg
& Malalasekera127 or Patankar128.

Simulation Geometry The time evolution of the concentration of the lipopolymer
was simulated in one or two dimensions. In one dimension this is analogous to a line
on the air–water interface along the direction of the substrate. As time evolves, this line
is moved upwards the meniscus and is eventually fixed on the substrate and moves up-
ward with it. The position of the line at time t = 0 and t = T is not known but an upper
boundary to the length scale between the two timepoints can be given from the fluo-
rescence microscope experiments on the three–phase contact line. From these experi-
ments not more than 5µmare between the homogeneous distribution on the air–water
interphase and the separated structure. The geometry considered in the simulation is
shown in Figure 3.13. For simulations in two dimensions an area of the air–water in-
terface is considered which is moved over the conditions representing the kink in the
meniscus. In the simulations we set cm = 0 without loss of generality. To trigger the
evolution of the instability we set the initial concentration of lipopolymer c(x) to be
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Figure 3.14 – Left: Result of the numerical simulation of the Cahn–Hilliard equation.
Bright corresponds to a high concentration of lipopolymer whereas dark corresponds to
a high concentration in lipid. Parameters used in this simulation are: L = 0.2, α = (t/T),
γ = 1. Right: Normalized autocorrelation of a one dimensional concentration profile. An
exponentially decaying sine is fitted to approximately the first two periods. The frequency
of the sine relates to the spatial length scale observed in the pattern. Here approximately
l = 27 points.

randomly distributed along x with the distribution being gaussian with a variance of
σ 2 = 0.01.

Data Evaluation The one dimensional simulation results in a concentration profile
c(x ,t) of the lipopolymer. We are only interested in the final state so only the profile
at t = T , as shown left in Figure 3.14, is considered. We calculate the spatial autocor-
relation of this final profile ⟨c(x , T)c(x + x0 , T)⟩. Onto the autocorrelation an expo-
nentially decaying cosine is fitted starting at x0 = 0 up to a position corresponding to
approximately 2 phases of the cosine as shown right in Figure 3.14. From the frequency
of the cosine (corresponding to x0 of the first maximum) we get the average spatial
separation of the pattern.

Transfer Speed Asoutlined in Section 3.3.2 on page 68, the free energy changes during
the transfer process from a single minimum to a form with two minima. Since it is not
possible to change an analytical function c(α) continuously from a single minimum
at a fixed position cm to a form with two minima located at two other fixed positions
c0 and c1, the free energy is modeled as given in Equation (C.11). The parameter α
is set to α = 0 at t = 0. As within the range of transfer speed the dynamic contact
angle is almost unchanged we can assume a fixed characteristic length on which the
transition takes place. The different transfer speeds are therefore linear proportional to
the reciprocal time required to traverse this transition region. A fast transfer speed is
simulated by a small T whereas a slow transfer speed requires simulation to a large T .
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Figure 3.15 –Top: Variation of the free energy parameter α with time. Bottom: Wavelength
of the stripe pattern in dependence on the simulation time T and the temporal evolution of
the free energy parameter α as shown on the top. For comparison the late stage coarsening
rate of t 1⁄3 is shown as a solid line.

For the simulations we set the parameters arbitrarily to

γ = 1 , L = 0.5.

The time evolution of α is displayed on the top in Figure 3.15. The resulting wavelength
dependency on duration is shown on the bottom in Figure 3.15.

For long times the evolution with time is proportional to t 1⁄3 in accordance with
Lifshitz & Slyozov129. For shorter times different exponents in the transition to the late
stage were found 130. Here, exponents of approximately 0.2 are found and the transition
to the late stage is not completed in the simulations presented. For the initial stage
differences in the minimal occurring wavelength can be observed. These differences
can be explained by the linearizedCahn–Hilliard equationwhich predicts a wavelength
as given by Equation (C.17). The effective value of the second derivative of the free
energy f ′′(cm) depends on the temporal evolution of α for short times. Comparing
the top and bottom graphs in Figure 3.15 this can be seen as for larger average α up to
0.1T the wavelength becomes smaller. The exponents found for the intermediate state
increase in the same order as the initial minimal wavelength. As these results show,



76 Chapter 3. Lateral Structure of L ipopolymer Layers

20

30

40

50

60

W
av

el
en

g
th

 / 
p

oi
nt

s 

0.001 0.01 0.1 1 10 
Mobility / L 

Figure 3.16 – Wavelength as a function of the mobility L.

only marginal differences upon a change in the time evolution of the free energy occur.
Since the scale in time and space can be chosen arbitrarily no further information can be
gained from the simulations regarding the experiments. Especially no discrimination
of how the free energy evolves during the LB transfer can be made.

Subphase Viscosity The mobility L is closely related to the diffusion of the particles.
The dependency of the wavelength on the mobility is shown in Figure 3.16. The param-
eters for the simulation were

γ = 1 , α = (t/T)2 , T = 6000

with L ∈ [10, 0.005]. Analogous to the increase in simulation time the effect of an
increase in mobility is a larger wavelength. This can be understood as the particles can
move faster and the same state of coarsening can be reached at an earlier timepoint.
The functional dependence is well captured by a power law with an exponent 0.16(1)
similar to the exponents found for the variation in T . Again this observation matches
the experimental data qualitatively. A closer relationship cannot be established since
the scaling can be chosen arbitrarily.

2D Simulations Anarrow strip where demixing is favorable wasmoved over the sim-
ulation area. The strip is parametrized by a gaussian function of α with a width of ap-
proximately one tenth of the simulation length. Within the duration of the simulation
the peak of the strip was moved from one end to the other of the simulation area. As
the strip width where demixing can occur is narrow, the total simulation time required
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to observe demixed structures increases. After the demixing the particles diffuse freely
and start to mix, therefore the time until fixing them (attachment to the substrate) as
well as their mobility are important parameters. A few configurations were simulated
and representative results at t = T are shown in Figure 3.17 on the next page. The demix-
ing zone moved from top to bottom. Variation of the mobility was done in the range of
L ∈ {0.1, 0.01,0.001} and T ∈ [100, 30000]. In the studied parameter space no signifi-
cant demixing can be observed apart from a stripe pattern parallel to the transfer direc-
tion. This is most likely a simulation artifact due to the periodic boundary conditions
and is not considered further. The coupling of one spatial dimension with the direction
of moving the zone where demixing occurs introduces effectively a new parameter. If
this parameter can lead to the merging events observed in the experiments is yet an
open question. As it was found in the simulations in one dimension the late stage is not
reached yet and requires even longer simulation times. Due to the high computational
expenses further variations should therefore be based on a more detailed theoretical
analysis decreasing the number of configurations needed to be simulated.
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Figure 3.17 – 2D simulation of the Cahn–Hilliard equation for durations T =

100, 600, 2000, and6000 and L = 0.01. The free energy was varied with time and decompo-
sition only favorable in a narrow strip which moved from top to bottom over the duration
T of the entire simulation. After passing this strip the particles diffuse freely andmix again.
The horizontal stripes towards the end of the simulation for long durations are artifacts of
the chosen boundary conditions. The scaling in the figure is set for all simulations such
that black corresponds to a fraction of 0.48 whereas white corresponds to 0.52 of one com-
ponent.
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3.4 Discussion
The dependency of the stripe distance on transfer speed v and subphase viscosity µ

suggests a hydrodynamic process underlying the pattern formation. More time given
to the process, i.e., slower transfer speeds lead to larger separations of the stripes. Like-
wise the mobility of the particles is important and, if reduced, the particles can move
only smaller distances in the same time. On the other hand no effect was found for the
variation of the dipping angle Ω. While the change of dipping angle has an effect on
the macroscopic geometry of the meniscus the microscopic contact angle is solely de-
termined according to Young’s law at a simple three–phase contact line. In the case of a
pure subphase the increase in film thickness h(z) on a substrate immersed at Ω = 90°
follows the analytical expression

h(z) = − a√
2
cosh −1

√
2a
z
+ a
√
(2 − z2

a2
) + x0 (3.4)

where a is the capillary constant and x0 is set by the contact angle 131. For purified water
on silicon substrates contact angles on the order of 2° were measured by fitting Equa-
tion (3.4) to the thickness profile. Here, we have an additional amphiphilic monolayer
which has yet another effect on the microscopic form of the meniscus. A large con-
tact angle (approximately 30°) can be observed when looking at the substrate from the
side. This is due to the presence of the monolayer at the air–water interface which re-
duces the surface tension. In the current experiments the surface tension was reduced
to γ = 72.7mNm−1 − 30.0mNm−1 = 42.7mNm−1. Close to the substrate an extremely
small contact angle of 2.5° could be measured with high precision using imaging ellip-
sometry. When the subphase is covered with amphiphiles their presence seems to be
non dominating in the uppermost part of the meniscus. At a water film thickness of
≈ 2µm a change occurs. A kink in the meniscus leads to the much larger contact an-
gle observed so far for successful LB transfers 132. From observations using fluorescence
microscopy one can conclude that this kink is the origin of the stripe pattern formation.

The drag from the moving substrate drives the molecules at the air–water interface
through this kink. The passage through the kink plays the role of a quench into the or-
dered phase for the lipid–lipopolymermixture. An obvious change occurs in the geom-
etry while all other physical parameters (temperature, surface pressure, film velocity)
are expected to be constant or change only slightly and steadily. From the orientation of
the amphiphiles and the direction of the kink, a strong reduction of space in the alkyl
chain region is apparent or equivalent an increase in area in the head group region.
The average distance of the polymers in the experiments is about four times their lat-
eral extent which allows us to exclude steric interactions of the polymers to dominate.
If only curvature is responsible for a quench into the ordered phase, a phase separation
between lipids and lipopolymers should also occur in vesicles below a threshold size at
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the same conditions of temperature, surface pressure and composition.
Following an argumentation by de Gennes122, one can relate a contact angle to a

maximum transfer velocity. Below this maximum transfer velocity a LB transfer is suc-
cessful, i.e., resulting in a transfer ratio on the order of 1, and above which the substrate
is dip coated, leaving a subphase film on the substrate according to Landau & Levich 115.
This relation is given by

vMax =
γ

36√3 12µ α
3 . (3.5)

Whenwe calculate themaximumvelocities for contact angles of α = 2.5° and α = 30°we
find us well below the dip coating threshold for 30° at vMax ≈ 2000mmmin−1 whereas
all presented experiments except one lie above vMax = 1.1mmmin−1 for 2.5°. This para-
dox situation might hold the key to the observed phase separating phenomena.

Plotting the experimental data of the stripe pattern formation against the time re-
quired to cover a distance of 1µmin a double logarithmic plot, two regimes can be iden-
tified as shown in Figure 3.18 on the facing page. For short times (fast transfer speeds) a
stronger increase in stripe distance is found than for slower transfer speeds (long times).
For long time scales the experimental findings can be explained by a power law with an
exponent of β = 1⁄3 . This suggests that the stripe formation is due to a spinodal decom-
position following the Cahn–Hilliard equation 133,134. For the Cahn–Hilliard equation
Lifshitz & Slyozov129 showed that the growth of the observed structure follows t 1⁄3 for
long times. For short times (fast transfer speeds) a different exponent β ≈ 0.8 ± 0.1 was
found. This requires another dominating mechanism for the separation of the con-
stituents. Along with this change in growth rate an increase in merging events during
the transfer is observed. In panel B) of Figure 3.2 on page 55 the emergence of new
stripes can be seen which join with other stripes shortly after in the course of transfer
to retain the equilibrium distance. An explanation for the merging events requires at
least a second independent variable which describes the evolution in transfer direction,
coinciding with the temporal axis.

Transitions in growth rates of phase separating systems were observed in different
experiments and simulations 135. Experiments deal often with structures in three di-
mensions where binary or ternary mixtures in bulk are observed. 136–138 A number of
reports also investigated the structure formation in two dimensions which is normally
driven by the dewetting of a thin film 139,140. In contrast, here experiments take place
in a quasi one dimensional geometry. So far the effect of the shear exerted by the sub-
phase on the monolayer during transfer was not considered. The shear is intrinsically
coupled to the time in the experiments making a separate observation impossible. The
increase of shear with decreasing time enhances the relevancy for the growth regime
with β ≈ 0.8. This may be a lead to an extension of the Cahn–Hilliard equation de-
scribing both, the short time regime as well as the accompanying variation in merging
frequency.
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3.5 Conclusion
A phase separation was observed during LB transfer of lipid-lipopolymer monolay-
ers on a substrate. Parallel stripe patterns in the micrometer range are observed along
the direction of transfer with long–range ordering continuous over the entire substrate
length of several centimeters. The quantitative dependency between three prepara-
tional parameters and the characteristic length of stripe patterns was investigated. An
increase in transfer speed is accompanied by a decrease in mean stripe distance. The
variation of the subphase viscosity showed smaller stripe separations and less contrast
for higher viscosities, clearly indicating a hydrodynamic origin of the patterning pro-
cess. The stripe distance was found to be independent of the dipping angle which is
understandable as the microscopic geometry is solely determined by the interfacial en-
ergies. This led to the design of two unique experimental setups with which a detailed
view of the region where the phase separation takes place became possible.

A closer look at the dynamics of the separation process was taken with imaging
ellipsometry and fluorescence microscopy combined to a Langmuir trough to observe
the transfer process in situ. With imaging ellipsometry the height profile of the wetting
film was reconstructed and small contact angles were measured with high accuracy.
For lipid–lipopolymer mixtures on the air–water interface this revealed a region with
an extremely small contact angle of 2.5° close to the substrate. At a water film thickness
of about 2µm a sudden increase in contact angle is observed. In the region around this
kink in the meniscus profile the phase separation occurs. Analysis of fluorescence mi-
croscopy images of the phase separating zone gives an upper estimate of 5µm for the
length scale on which the separation takes place. These experiments give a clear pic-
ture of the geometry leading to the phase separation. An attempt was made to explain
the observed phenomenon in the theoretical framework of phase separation. After a
systematic assessment of the parameters it was found that for low transfer speeds the
pattern formation can be understood as a spinodal decomposition described by the
Cahn–Hilliard equation with a coarsening proportional to t 1⁄3 .



Chapter 4

Outlook

Based on the results of this work the usability of the studied membrane model was
enhanced. Nevertheless several points can be identified which have to be addressed
to facilitate the hassle free application as a plasma membrane model and deepen the
physical understanding of membranes on solid supports.

Providing Surface Attachment

The currently available options of end functionalization of the polymer chain for at-
tachment of the polymer to the substrate have been shown to have fundamental draw-
backs. The use of piperidine provides only an adsorption to the surface which cannot
withstand the harsh conditions present in vesicle fusion. Deposition of the distal leaflet
by vesicle fusion on the other hand is a requirement for the incorporation of trans-
membrane proteins as they can only be kept in vesicles in an aqueous environment.
Replacing piperidine by trimethoxysilane binds the polymer covalently to the surface
exposed hydroxyl groups. In the presence of water the binding is likely to occur be-
tween the polymers leading to polycondensation. This becomes especially problematic
for high concentrations of lipopolmyers which are required for large substrate mem-
brane separations. As the polycondensated polymers are only adsorbed to the substrate
the same problems observed with piperidine occur. A possible remedy is the use of a
different surface coupling group where an activation is required to initiate the covalent
coupling to the surface. The activation can take the form of a photon pulse or a change
in chemical environment like pH.

83
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Quantifying Membrane Substrate Interactions

The herein presented study of the interfacial forces between substrate and membrane
modified by the polymer can only be an initial step highlighting the principal applica-
bility. A systematic and detailed variation of polymer chain length and concentration
will give a clearer picture of the forces present between membrane and substrate. The
basic framework of measuring force–distance curves and attribution to three contrib-
utors can be extended to include smaller osmotic pressures. These can be attained by
using solutes in water which cannot penetrate through themembrane and therefore ex-
ert an osmotic pressure 141. Furthermore, adaption of the sample environments used for
X–ray and neutron reflectivity to measure bilayers under water promise determination
of substrate membrane distances with higher precision as available from ellipsometry.

Enhancing Anchoring in the Membrane

The stability of the Langmuir monolayers at the air–water interface has been seen to
decrease with increasing number of monomer units. As the hydrophilic polymer be-
comes larger themolecule is easier to solvate inwater. With the current lipid anchor (2×
C18:0) one hundredmonomers seem to be the limit. To add a hydrophobic counterbal-
ance to longer polymer chains, lipid anchors can be formed by transmembrane lipids.
First steps towards this goal have already been taken. Michael Reif under supervision of
Rainer Jordan (wacker–Chair of Macromolecular Chemistry, TU Munich (now Pro-
fessur für Makromolekulare Chemie, TU Dresden) has purified caldarchaeol from the
bacterial strainMethanothermobacter thermautotrophicus whose chemical structure is
depicted in Figure 4.1 on the facing page. Also the asymmetric polymerization to trans-
membrane lipopolymers was successful. A first specimen with n = 73 monomer units
(Ca-PMOx73) could therefore be already investigated at the air–water interface. For
higher degrees of polymerization n > 100, the stability of the protection group (tert-
butyl(methoxy)diphenylsilane) attached to the transmembrane lipid becomes an issue
limiting the length of the synthesis. Isotherms of caldarchaeol and Ca-PMOx73 were
recorded and are shown in Figure 4.2 on the next page and Figure 4.3 on page 86. Both
form stable monolayers at the air–water interface. Caldarchaeol starts building up a
surface pressure at an area of ≈ 110Å2 per molecule, which is slightly higher than the
onset observed for conventional lipids with a single hydrophilic group. This can be a
sign of a ‘U’–shape bending where the two hydrophilic groups are exposed to the wa-
ter while the hydrocarbon chain is bent and extends into the gas phase. Following the
compression to lower areas per molecule a transition below ≈ 80Å2 can be seen. This
might be indicative of a switch from the ‘U’–shape to an ‘I’–shape of the molecules
by which the area per molecule is halved whereas the monolayer thickness is doubled.
This matches to the areas per molecule reported by Tomoaia-Cotisel et al.142 who only
observed ‘U’–bent membrane spanning lipids on the air–water interface. For a detailed
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Figure 4.1 – Top: Chemical structure of caldarchaeol purified from Methanothermobac-

ter thermautotrophicus. Bottom: Chemical structure of Ca-PMOx73 with BOC-piperazine
end group.
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Figure 4.3 – Isotherm of the caldarchaeol based lipopolymer Ca-PMOx73 with BOC-
piperazine end group. The polymer leads to an increase in surface pressure starting from
areas per molecule in excess of 1000Å2 . The film collapses at 36mNm−1 . The chemical
structure is shown in Figure 4.1 on the preceding page.

analysis the thickness of this monolayer has to be measured.

Application as Functional Membrane

To reach the ultimate goal of a membrane model, mimicking a living exemplar, func-
tionality has to be included in the membrane. This means the incorporation of trans-
membrane proteins and/or the presentation of binding motifs in the form of carbo-
hydrates. This is especially interesting in combination with the stripe patterns formed
where two distinct environments are created. As shown before63 and used thoroughly
in this work, a third component (fluorescently labeled lipids, transmembrane protein
integrin αIIbβ3) added to the membrane accumulates in the stripes formed during LB
transfer. While components anchored only in one leaflet can be added using the LB–
LS transfer method, membrane spanning molecules like integrin αIIbβ3 can only be
added via vesicle fusion requiring first a suitable surface attachment of the polymer as
discussed above.

Adding Functionality to the Polymer

As outlined in Section 2.5 on page 48 the use of thermoresponsive or chemoresponsive
polymers will allow locally varying properties which can lead to induced or inhibited
binding. So far the problem for thermoresponsive polymers exhibiting a LCST is the
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observation in the confined geometry. The low contrast between water and polymer
and the counteracting change in thickness make the observation of a change in poly-
mer layer thickness using ellipsometry or X–ray reflectivity almost impossible. Here,
methods which employ a macroscopic probe like reflection interference contrast mi-
croscopy with a bead of defined size offer a higher sensitivity. An alternative detection
method is photonic forcemicroscopywhere the bead position can be tracedwith higher
temporal and spatial resolution 143.

Understanding the Physical Origin of Stripe Pattern Formation

A basic agreement has been found between the experiments and the description via the
Cahn–Hilliard equation. Though no quantitative description based on fundamental
physical concepts is present. On the phenomenological level the Cahn–Hilliard equa-
tion has to be extended with the aim of providing the same initial growth stage with an
exponent of β ≈ 0.8. A possible addition is the consideration of the shear induced onto
the monolayer by the LB transfer 144. A more fundamental approach is the consider-
ation of the implications of the observed form of the meniscus including a kink. The
expected change in conformal space of the polymers has to be considered on a more
detailed level.
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Appendix A

Ell Software

For the evaluation of ellipsometry measurements the software Ell was written. It uses
the Abelès matrix formalism as outlined in Chapter 1. On the following pages the man-
ual accompanying the software is presented. The software itself is attached to this doc-
ument although a more recent version might be available.

◆

◆

The definition of the optical quantities used in Ell follows the Nebraska convention.
This is notably different to the definition of the incident angle Θin used in this thesis
where the reference is the substrate plane (cf. Equations (1.22) on page 19 and (A.3)).
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Ell Manual

Peter C. Seitz

July 24, 2009

Version 0.25

Ell - Ellipsometry analysis software
Copyright ©2009 Peter C. Seitz
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/
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A.1 What Ell Can Be Used For

Ell calculates the ellipsometric angles Ψ and ∆ for given layer models using the Abelès
matrix formalism. It can perform least square fitting for up to two model parameters
and can calculate maps of a function of merit (χ2 maps) for those parameters. Layer
models can be saved for later use and loaded into Ell.

A.2 Installation

Ell comes as an executable installer for Microsoft® Windows and as a Disk Image for
Mac OS™. A prerequisite is a Igor Pro 6 (or newer) installation which will be checked
during the installation. Ell makes use of the XMLutils which can be obtained from
http://www.igorexchange.com/project/XMLutils. Alternatively the user can choose to install
XMLutils 5.04 during the installation process of Ell.

A.3 Loading Data

To load data measured with an ellipsometer from a file into Ell, select in the Menu (see
Figure A.1) Ell→Load Ellipsometric Data... Further datasets can be loaded using the
Load Data button in the Ellipsometry Panel (see Figure A.2) or again via the Ell menu.
Upon loading you will be prompted for the wavelength used to measure the data. The
default value is 6328Å. The dataset will be assigned a name close to the name of the
file it is loaded from. If the first character is a number an ‘X’ will be prefixed. The total
length is limited to 27 characters. If a dataset name is already in use the data will not be
loaded and the message "This file has already been loaded. It is stored in the datafolder:
..." appears.

Figure A.1 – Ell Menu added to the Menu of Igor Pro.

Data saved from the Multiskop by Optrel can be loaded. If a kinetic measurement
is detected, you will be asked for the angle of incidence used in this measurement since
this information is not contained in the file written by the Multiskop control software.

http://www.igorexchange.com/project/XMLutils
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In case an unsupported file is opened the loading process will be canceled with an error
message.

Ifmore than one dataset is loaded you can select the dataset toworkwith in the drop
down menu in the Ellipsometry Panel. In the lower part of the Ellipsometry Panel the
data will be shown in a graph Ψ versus ∆ as shown in Figure A.2.

Figure A.2 – Ell Ellipsometry Panel with dataset named Simulate and corresponding layer
model with one layer. Incident angle Θ = 70° and wavelength λ = 6328Å are displayed in
the right upper part.
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A.4 Layer Models

Layer models are displayed in the upper half of the Ellipsometry panel and are specific
to the dataset selected. First the appropriate number of layers has to be set. Zero layers
means only ambientmedium and subphase are present. Each layer is characterized by a
thickness d, real refractive index n and absorption coefficient k. The ambient medium
and substrate fill the half space above and below the interfaces of the system and have
no variable thickness.

Behind every entry a check box indicates whether this value should be kept fixed as
a property of the system (☑) or should be fitted as a parameter (☐). In Figure A.2 only
the real refractive index of layer 1 is a parameter, all other values are fixed properties of
the model.

Refractive indices are entered in the form n+ ik, e.g. 3.882− i0.019 has to be entered
as 3.882 and −0.019. Thicknesses are all in Å. Every entry has to be filled. In case the
value is expected to be zero, 0 has to be entered. Layer models can be saved using the
Save Model button on the Ellipsometry Panel. Likewise a previously stored model can
be loaded using the Load Model button.

A.5 Fitting Data

Tofit ellipsometric data, a dataset has to be selected and a layermodel entered. When all
entries are checked, the values of Ψ and ∆ for this model are calculated upon pressing
the Fit Data button and added as green squares to the Ψ versus ∆ graph. Up to two
entries can be unchecked to perform a minimization using the Levenberg–Marquardt
algorithm on the function of merit

S(p1,p2) = (∆Meas − ∆Model)2 + (ψMeas − ψModel)2 . (A.1)

The values displayed in the Ellipsometry panel for the fitted parameters are the average
over all data in the dataset. The values for each data point are stored in thewave fit_Coef
in the datafolder named after the dataset.

A.6 Simulation

Calculation of ellipsometric angles without experimental data is possible by selecting
Simulate... from the Ell menu. If no data has been loaded so far, the Ellipsometry panel
will be displayed and you will be asked for the wavelength and incident angle to be used
for the simulation. After entering these values a layer model can be entered. For the
simulation any property or parameter of the layer model can be chosen and varied over
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a user defined range. The values of Ψ and ∆ for this variation using the displayedmodel
are calculated and added as a black line to the Ψ versus ∆ graph.

A.7 Calculating Chi Square Maps
A systematic variation of parameters and visualization of the effect on the ellipsometric
angles can be done by calculating χ2 maps. χ2 is defined by the function of merit

χ2(p1,p2) = (∆Meas − ∆Model)2
∆Model

+ (ψMeas − ψModel)2
ψModel

. (A.2)

To calculate a χ2–square map use Ell→Calculate Chi Square Map.... A dialog asking
for which parameters to use and start and stop values is presented. The calculation
takes some time. A new image showing the result is displayed and updated during
calculation. The scaling is set to show data from the minimum to twice the minimum
value.

A.8 Ellipsometric Period
The measurement of Ψ and ∆ is unambiguous up to an offset in layer thickness. Ad-
dition of a whole–number multiple of the thickness D to the film thickness results in
the same values for Ψ and ∆. The thickness D is called the ellipsometric period and is
given by

D = 1
2

λ√
n2
j − n2

0 sinΘ2
(A.3)

with the refractive index n j of the film, the refractive index of the ambient medium
n0 and the angle of incidence Θ of the light with wavelength λ. When choosing Ellip-
sometric Period... you will be asked for those four parameters. Upon providing them
and pressing Continue the value for D will be printed to the history of the command
window.
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Appendix B

Neutron Reflectivity at
the Gas–Solid Interface

To complement X–ray reflectivity measurements, neutron reflectivity was used. The
theoretical background and measurement technique are the same as in the case of X–
ray reflectivity which is discussed in Section 1.3 on page 11. Instead of electromagnetic
waves, neutrons with a certain kinetic energy are regarded asmatter waves with a wave-
length given by the de Broglie equation

λ = h

p
. (B.1)

The wavelength λ is associated with the particle, h = 6.626 × 10−34m2 kg s−1 is the
Planck constant and p the momentum of the particle.

Themeasurementswere carried out at theD17 beamline of the Institut Laue–Langevin
(ILL, Grenoble, France) in Time–of–Flight (TOF) mode. Due to the smaller flux avail-
able compared to X–ray reflectivity the sample size was much bigger. Silicon blocks
with 5 cm×8 cmwere used as substrates. The blocks were obtained with a polished sur-
face and native oxide from Siliciumbearbeitung Andrea Holm (Tann, Germany). Prior
to use they were cleaned using the same procedure as for all other solid substrates.

Samples with 0.5mol% of PMOx14 and PMOx104 were measured. Analogous to
the ellipsometry and X–raymeasurements first the LB transferredmonolayer wasmea-
sured in air. The resulting reflectivity curve shown in Figure B.1 on the next page is free
of features in the accessible range of qz due to the small thickness of the collapsed poly-
mers and the lipid monolayer.
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Figure B.1 –Neutron reflectivity curve of amonolayer dopedwith 0.5mol% PMOx14 (red)
or PMOx104 (blue) on silicon substrate. The reflectivities show no features and are almost
identical.

After this measurement the completion to a bilayer was done by vesicle fusion with
small unilamellar vesicles of SOPC prepared in D2O. After incubating for one hour at
room temperature the sample was rinsed with D2O. The measurement geometry is re-
versed compared to X–ray reflectivity as shown in the inset of Figure B.2 on the facing
page with the beam being reflected from the substrate side. The reflectivity curves are
displayed in Figure B.2 on the next page. The data was analyzed using motofit 82 run-
ning on Igor Pro. A three box model was sufficient to model the data. The oxide layer
thickness and roughness was determined by previous ellipsometric and X–ray reflec-
tivity measurement to be dSiO2 = 10.0Å and σPMOx14 = 5.1Å, σPMOx104 = 5.7Å. The
modeling of the membrane as a single layer leads to an underestimation of its thick-
ness 27. Using a model with five layers a thickness of 46Å is obtained for the SOPC
lipid bilayer. The best fitting parameters are listed in Table B.1 on the facing page for a
co–fitting of the datasets. Parameters except the ones defining the polymer layer and
the roughnesses were linked and/or fixed during the fit. The independent parameters
for the two samples are separated by a comma where the first value refers to PMOx14
and the second to PMOx104. No significant change due to the length of the polymer
can be seen. Clearly a layer hydrated with D2O between membrane and substrate is
present. An accurate determination of its thickness on the contrary is not possible as
the resolution of the data is limited. The neutron reflectivity measurements can there-
fore be taken as a support to the X–ray reflectivity measurements. It can however not
be taken as an independent proof of a particular model since the almost featureless
reflectivity curves support a multitude of models. A few scenarios can be excluded,
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Figure B.2 – Neutron reflectometry of a SOPC bilayer doped with 0.5mol% of PMOx14
(red, upper curve) or PMOx104 (blue, lower curve) in the proximal leaflet on silicon sub-
strate. The best fitting model is overlaid as a solid line, parameters forming the model are
compiled in Table B.1. The experimental geometry is sketched in the upper right. The neu-
trons impinge on the sample through the silicon substrate.

Table B.1 – Best fit results for bilayers under water with 0.5mol% of PMOx14 or PMOx104.
Entries with two values indicate the value for PMOx14 before the comma and the value for
PMOx104 after the comma.

Layer d / Å ρ / 10−6Å−2 Solvent penetration / % σ / Å

D2O ∞ 6.36 0
Lipid Bilayer 40.0 0.12 0 9.0, 9.5
Polymer 6.4, 8.8 2.50, 2.40 95, 83 5.0, 1.0
SiO2 10.0 3.47 0 5.1, 5.7
Si ∞ 2.07 0 9.5
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most notably the presence of a thick hydrated polymer layer underneath a lipid bi-
layer membrane. This is in contradiction to the separation distances reported by flu-
orescent interference contrast (FLIC) microscopy 145 of several nanometers 24. Taking
a closer look at the experimental method of FLIC, several problems become apparent.
First, the expected uncertainties for the determination of distances in FLICmicroscopy
amount easily to several nanometres most notably entering through the aperture used
for excitation and detection but also through the assumptions made for the refractive
indices 146. Second, as presented by Kiessling & Tamm48 the same result of a collapsed
polymer layer as found in this thesis can be obtained by FLICmicroscopy but has in this
case been discarded in favor of a thick polymer layer found by a less reliable measure-
ment based on four data points instead of sixteen data points used where the collapsed
polymer layer was observed. The values reported by Purrucker et al.24 were obtained
from measurements on a sixteen terraced support with the bilayer doped by 0.5mol%
1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine (DiL)(unpublished results). The
orientation of the transition dipole of the dye was assumed to be at 62° to themembrane
normal whereas Axelrod147 reported an orientation of 90° to the membrane normal.
Putting these doubts of a sound analysis of the FLICmeasurements against the body of
evidence provided by the three herein presentedmeasurement techniques, the strongly
favored interpretation is that of a collapsed polymer layer underneath a supported bi-
layer for low polymer concentrations.



Appendix C

Cahn–Hilliard Equation

The Cahn–Hilliard equation follows from the description of diffusive processes in a bi-
narymixture. In contrast to the diffusion equation, the driving force formass flux is not
a different concentration of species but a different chemical potential which depends
on the local concentration of the two components and the concentration gradient. The
diffusion equation is obtained as a special case where the chemical potential depends
only on the local concentration. In the following section we derive the Cahn–Hilliard
equation and perform a linear stability analysis on it. The presentation follows Eck
et al.148 and Anthony & Jones149.

C.1 Derivation

We assume a binary mixture with the concentrations of the components denoted by c1
and c2. We require the system to be isobar and isotherm in an area Ω ⊂ Rd . Then the
change in concentration over time is equal to the change in flux over space

∂tc i +∇ ⋅ j i = 0 , i = 1, 2. (C.1)

We assume the amount of molecules of each species is conserved, i.e.,

⟨c i⟩ =
1
Ω ∫

Ω

c i dx = const. , i = 1,2. (C.2)

As we consider a binary systemwe require the sum of the fluxes of the two components
to result in no net flux ( j1 + j2 = 0) to ensure the system is isobaric (∂t(c1 + c2) = 0).
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Now we can reduce the system to the independent variables

c = c1 − c2 and j = j1 − j2 . (C.3)

With c now ranging from −1 (pure component 2) to 1 (pure component 1). The free
energy is of the form ∫Ω f (c) dx, the integral over the energy density f (c) in the con-
sidered space. Material is now driven by a gradient in the free energy density, given by
the first derivative of the free energy density with respect to concentration f ′(c) ≡ ∂ f

∂c
.

This gradient results in a flux j proportional to it by a factor L, j = −L∇ ∂ f

∂c
, where L ≥ 0

is the mobility (Fick’s first law). Inserting into Equation (C.1), we obtain

∂tc +∇(−L∇ f ′(c)) = 0. (C.4)

which is closely related to the diffusion equation (Fick’s second law) with the difference
of being driven by the free energy density gradient instead of composition. Themobility
L is the Onsager coefficient. The behavior of Equation (C.4) depends on the form of
the free energy density f (c). For a convex ( f ′′(c) > 0) free energy density, diffusion
movesmaterial from areas with high concentration to areas of low concentration. For a
concave ( f ′′(c) < 0) free energy density we obtain ‘uphill’ diffusion where mass moves
from areas with low concentration to areas with high concentration. Solutions to this
case do not depend continuously on the initial conditions and for non convex energy
densities f (c) the equation is in general not solvable. This counterintuitive case of
diffusion can be explained by not looking at the concentration but at the free energy
density gradient f ′(c) which needs to be minimized.

Separating the two molecular components gives rise to an additional contribution
which is associated with the interface between the domains of the components. The
energy depends on how sharp this interface is. This addition results in a dependency
of the local free energy on the local concentration c and the local composition gradient
∇c. From a Taylor expansion series of the free energy per molecule in a solution of
uniform composition c, Cahn & Hilliard133 obtained as the lowest order the square of
the gradient ∣∇c∣2. This can be also understood from the fact that the free energy density
f (c), which is scalar, must be invariant to the direction of the gradient. Therefore only
even powers can occur of which the lowest is the second. This formulation of the free
energy has been used by van derWaals for studying the liquid-gas interface, Landau and
Ginzburg in the context of magnetic domain walls and by Cahn & Hilliard to describe
interfaces in metals. The free energy is given by

F(c) = ∫
Ω

( f (c) + γ

2
∣∇c∣2) dx with γ > 0 constant. (C.5)

The constant γ is denoted the gradient energy coefficient. First we look at the change
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in free energy caused by an infinitesimal change in concentration δc

δF(c) = ∫
Ω

( f (δc) + γ

2
∣∇(δc)∣2) dx (C.6)

= ∫
Ω

[( f ′(c)δc + 1
2
f ′′(c)δc) + γ

2
((∇c)(∇δc) + (∇δc)(∇c) + (∇δc)2)] dx .

This corresponds to a Taylor expansion around a concentration c0, with c = c0+δc and
subtracting the contribution of the constant concentration c0. Dropping orders higher
than one in δc, we get

δF(c) = ∫
Ω

( f ′(c)δc + γ((∇c)(∇δc)) dx . (C.7)

Integration by parts of the second term gives

δF(c) = ∫
Ω

( f ′(c) − γ(∇2c)) (δc) dx (C.8)

from which we get the chemical potential µ

µ = δF(c)
δc(r) = −γ∇

2c + f ′(c). (C.9)

Using Equations (C.4, C.9) it follows the Cahn–Hilliard equation

∂tc = ∇L∇ (−γ∇2c + f ′(c)) . (C.10)

One can see that when dropping the gradient term γ∇2c, Equation (C.4) is recovered.
An effective diffusion coefficient Deff can be defined by Deff = L f ′′(c).

C.2 L inear Stability Analysis

In the following we consider f (c) to be the non convex double well potential (see Fig-
ure C.1)

f (c) = α(c2 − 1)2 , α ∈ R+ (C.11)

in the area Ω = [0,l]d , l > 0. We consider homogeneous stationary solutions

c ≡ cm , cm ∈ R (C.12)

with
f ′′(cm) < 0. (C.13)
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Figure C.1 – Free Energy f (c) as given by Equation (C.11). c is defined in Equation (C.3),
c = -1 corresponds to pure component 2 whereas c = 1 corresponds to pure component 1.
An instability emerges for concentrations between the inflection points located at c =

√

1⁄3
and c = −

√

1⁄3 .

Small fluctuations c = cm + u with ∫Ω u dx = 0 to conserve the total mass can lead to
development of spatial structures. Now we linearize Equation (C.10) around cm and
get the linearized Cahn–Hilliard equation

∂tu = −L(∇2)(γ∇2u − f ′′(cm)u). (C.14)

This can be solved by
u(t,x) = ∑

k∈ 2π
l

Zd∖{0}
eλk te ik⋅x (C.15)

with the Eigenvalues
λk = L∣k∣2(−γ∣k∣2 − f ′′(cm)), (C.16)

shown in Figure C.2. The maximum of Equation (C.16) is located at k =
√
− f ′′(cm)

γ
.

This wave vector is most strongly amplified and dominates the observed spectrum. The
most unstable wavelength l̄ = 2π/∣k∣ is for f ′′(cm) < 0 given by

l̄ = 2π
√
− 2γ
f ′′(cm)

. (C.17)

We expect to find spatial structures on this length scale. Of course the area Ω has to
be large enough to support this wavenumber. Finally we summarize the dimensions of
the parameters and variables occurring in the Cahn–Hilliard equation in Table C.1.



C.2. L inear Stability Analysis 105

|k|2f‘‘(c
m

) 
2 γ

- 
f‘‘(c

m
) 

γ
- 

λ k

Figure C.2 – Eigenvalues λk as a function of the squared wavenumber ∣k∣2 .

Table C.1 – Dimensions of the quantities involved in the Cahn–Hilliard equation and the
linear stability analysis.

Quantity Description Dimension

x Spatial coordinate L
t Time T
c Concentration
L Mobility (Onsager coefficient) M−1 T1

γ Gradient energy coefficient M L4 T−2
f Free energy M L2 T−2
f ′ 1st derivative of the free energy M L2 T−2
f ′′ 2nd derivative of the free energy M L2 T−2
λ Eigenvalues T−1
k Wave vector L−1
α Free energy parameter M L2 T−2
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