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Zusammenfassung

In seiner kubischen Form ist Bornitrid (BN) nach Diamant das zweithärteste

bekannte Material. Die Struktur des hexagonalen BNs ist der des Graphits sehr

ähnlich. Doch im Gegensatz zu dessen Kohlenstoff-Allotropen muss BN künst-

lich erzeugt werden, da natürliche Vorkommen nicht existieren. Erste Hinweise

auf die Erzeugung von Diamant in mit Schwerionen bestrahltem Graphit gaben

Anlass zu Experimenten an hexagonalem (hBN), mit dem Ziel, kubisches BN

zu erzeugen. Zusätzlich angewandter Druck sollte diesen Prozess katalytisch be-

günstigen. Jedoch konnte eine solche Umwandlung nicht nachgewiesen werden.

Dennoch verursacht die von Schwerionen an das Kristallgitter abgegebene Ener-

gie sichtbare Änderungen, wie eine stark orientierungsabhängige Verfärbung im

hBN, die mit unterschiedlich ausgeprägten Gitterführungseffekten erklärt wer-

den kann. Sowohl orientierungs- als auch druckabhängig entwickeln sich Intensi-

täten charakteristischer Ramanbanden mit zunehmender Fluenz. Des Weiteren

konnte mittels Raman-Spektroskopie und Synchrotron-Röntgenbeugung in situ

gezeigt werden, dass Ionenbeschuss den Phasenübergang von hBN zum wurtzi-

tischen BN (wBN) in dem Sinne erleichtert, dass dieser im Gegensatz zu unbe-

strahltem hBN bei Druckerhöhung vollständiger abläuft.

Abstract

Cubic boron nitride (cBN) is the second hardest material after diamond. The

hexagonal form (hBN) resembles graphite. However, due to speculations, de-

rived from the generation of diamond in trajectories of energetic ions in graphite,

irradiation experiments were initialized, aiming a hBN → cBN transition. Si-

multaneous pressurization were suggested to trigger such transitions. Neverthe-

less, this goal could not be reached, but several other, irradiation and pressure-

induced effects have emerged. A strongly orientation dependent colourization is

explained by ion channeling, which is believed to be also responsible for alter-

ations in the Raman spectra of hBN crystals, irradiated under different orien-

tations under simultaneous high pressure conditions. Furthermore, the pressure

phase transition from hBN to wurtzitic BN is effected by ion irradiation, ob-

served in-situ by XRD as well as Raman spectroscopy.
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1 Introduction

Investigation of materials, irradiated with relativistic heavy ions under high

pressure conditions is a novel and promising field. Recently, it has been shown

in several experiments that certain physical properties can alter in specific ways

when a material is exposed simultaneously to both extreme conditions. E.g.,

the quenching of high-pressure phases in solids [66], which recover entirely af-

ter pressure release without ion bombardment. Furthermore, the temperature

phase transition from monoclinic to tetragonal zirconia (ZrO2), which has been

triggered by sole exposure to high-energetic charged particles [6, 8, 9], occurs

at fluences one order of magnitude lower when additionally pressurized [106].

Furthermore, the irradiation of zircon (ZrSiO4) at 14GPa with 2×109 uranium

ions per cm2 quenched its high-pressure polymorph reidite, which is not possible

without heavy ion irradiation.

The initial idea of such experiments originated, however, from geosciences.

More precisely, from geochronology where fission tracks in track forming min-

erals are used to estimate the age of the inclusion and hence the age of the sur-

rounding rock. Since during the Earth’s genesis isotopes of the most prevalent

elements accumulated within the mantle of our planet [55], the track-causing

fission process takes place in different possible depths and therefore at different

pressures. Thus, it was under debate, if fission fragments behave in the same

manner when the surrounding material is highly compressed. Due to its capa-

bility of delivering accelerated heavy ions, that bevave like fission fragments,

energetic enough to interpenetrate the first gem of a diamond anvil cell, irra-

diation experiments were conducted at GSI, using the heavy ion synchrotron

SIS18.

Due to the request for the beam exposure of larger sample chambers, a new

class of pressure generating devices has been introduced to swift heavy ion

1



2 1 Introduction

irradiation experiments. These so-called Paris Edinburgh presses are suited

to contain specimens in the order of several mm3 which, on the other hand

turns out to be a drawback with respect to the anvil material. Since diamond

of the necessary size is not available, new substances have to be established,

suitable for extreme conditions as high pressure, high temperature as well as

large doses of heavy ion irradiation. Cubic boron nitride is the second-hardest

material after diamond, and therefore withstands very high pressures and shear

forces. Furthermore, it is insoluble in iron, nickel, and related alloys at high

temperatures, whereas diamond is soluble in these metals to create carbides.

These properties in combination with a moderate price for the acquisition make

cubic boron nitride the ideal anvil material for higher dimensioned pressure

applications. Though it does not exist in nature, one has to produce it in a high

temperature - high pressure procedure using multi anvil presses and catalysts.

In 1957, Wentorf [135] succeeded with the first fabrication of cBN1 and named

his discovery “Borazon”. A long and fruitful time of research began and brought

forward the high-pressure community. In the near future, cBN may replace ruby

as pressure calibrant since it possesses a higher temperature resistance and via

Anti-Stokes scattering it is possible to establish a straightforward temperature

probe for measurements within the pressure chamber. Unlike ruby, cBN delivers

‘true’ Raman bands instead of luminescence lines.

However, irradiation experiments on the hBN counterpart graphite by Wang

et al. [133], that resulted in nano-diamond generation, encouraged us to repeat

such investigations on pressurized hBN, in order to obtain cBN. Unfortunately,

even with the application of additional pressure, which was suggested to lower

the transformation threshold, this goal could not be reached so far. Nevertheless,

the focus on the pressure phase transition hBN → wBN lead us to in-situ in-

vestigations using Raman spectroscopy on single crystals as well as synchrotron

X-ray diffraction on powder samples. It could have been shown that irradiation

with energetic Au+ ions prior pressurization results in an entirely proceeded

phase transition at a considerably lower pressure than for non-irradiated hBN

samples, though the initial pressure for the transformation is not affected by

heavy ion bombardment. An explanation is given by a lattice collapse and

1The first synthesis of hexagonal BN has been managed by Balmain in 1842 [4].
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buckling of the hexagonal planes in hBN.

Furthermore, irradiation experiments utilising the non-isotropic character of

the hBN lattice, revealed pressure dependences by means of luminescence back-

ground increase and decreasing Raman band intensities. It turned out, that

hBN single crystals resist ion bombardment the better the higher the applied

pressure, but only when irradiated along the direction of the crystallographic c-

axis. Interestingly, hBN also changes its color from grayish-white into a deep red

tone, when ions traverse the crystal parallel to c. The well known ion-channeling

effect can therefore be used in order to explain such processes, originating from

lattice defects, which can be F-centers.

Cubic BN possesses, up to fluences of ≈ 1.5 × 1013 ions/cm2, high irradiation

hardness. Both hBN and cBN does not amorphize by ion bombardment on the

above metioned fluences, proved via ex-situ Cu-kα X-ray diffraction.

The ion irradiation itself took place at the GSI’s Unilac accelerator (X0) for

those samples not being under pressure, and at the SIS (Cave A) for the samples

exposed to high pressure.





2 Theory

2.1 Boron Nitride

2.1.1 Introduction

Boron nitride (BN) does not exist in nature and is therefore produced synthet-

ically, which succeeded first Balmain in the year 1842 [4]. At first sight the

position of boron (B) and nitrogen (N) in the periodic table of the elements

is noticeable due to its vicinity to carbon, which is in terms of the atomic

number the average of both B and N. Expectedly, BN emulates all carbon al-

lotropes such as graphite and diamond. Even BN-nanotubes [18] as well as

BN-fullerenes [37, 119] are known. In the following the hexagonal graphite-like

BN is mentioned as hBN and the cubic BN counterpart of diamond as cBN.

Furthermore, two different BN structures are well-known: The wurtzite type

wBN and the rhombohedral phase rBN. The former is the high-pressure phase

of hBN [15,128], and cBN can be formed when rBN is exposed to high pressure.

However, both wBN and rBN are metastable phases at ambient conditions, and

the growth of single-crystalline bulk material is realisable only in hBN as well as

cBN. Table 2.2 displays the lattice parameters of the most common BN phases.

Remarkably, it is a moot question whether hBN or cBN is the stable modifi-

cation at standard conditions. Corrigan and Bundy [19] predicted hBN as the

thermodynamically stable structure in analogy to the carbon phase diagram.

In contrast, Solozhenko [113, 114] presented a phase diagram with cBN as the

theromdynamically stable structure, while the equilibrium line between both

phases intersects the temperature axis at 1600 K.

Regarding these differences, it seems inevitable to draw some conclusions from

cohesive energy calculations (see Table 2.4). Equilibrium properties of a crystal

5



6 2 Theory

can be derived from thermodynamic potentials, e.g. the Helmholtz free energy

F (T, V ) = F0(V ) + Fvib(T, V ), where F0 is the static lattice energy without

vibrational contributions, Fvib.

The transition between both cubic and hexagonal phase of BN is always a

phase transition of first order [126]. Therefore, the line between cBN and hBN

in the p -T diagram indicates the equlibrium of the thermodynamic potentials

of the coexisting phases, determined by the equilibrium condition

Gcubic (p, T ) = Ghexagonal (p, T ) (2.1)

wheras G (p, T ) is the free enthalpy under given pressure and temperature con-

ditions. G is the sum of the Helmholtz free energy and the product of pressure

p and unit cell volume V .

G (p, T ) = F0 + Fvib + pV (2.2)

The static part of the Helmholtz free energy F0 (V ) was calculated by Albe [1]

and is plotted in Figure 2.3. In order to discuss the vibrational contributions of

the zero point Helmholtz free energies, the empirical Debye-Grüneisen approxi-

mation was used [1].

Fvib = 2× 3NkBT
∫

2 sinh
(

~ω
2kBT

)
g (ω) dω (2.3)

For cubic systems the phonon density of states g (ω) can be derived from the

three-dimensional Debye model

g
(3D)
D =

 3 ω2

ω3
D

ω 6 ωD

0 ω > ωD

(2.4)

The cutoff frequency ωD is linked to the Debye temperature ΘD by

kBΘD = ~ωD (2.5)
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With the proposed cBN Debye temperature of 1700K [36] we obtain a zero

point vibrational energy

Fvib = 0.33 eV/unitcell (2.6)

For graphitelike structures as hBN a two-dimensional Debye-approximation is

more suitable due to the weak interplanar binding. The phonon density of states

is here

g
(2D)
D =

 2 ω
ω2

D
ω 6 ωD

0 ω > ωD

(2.7)

The suggested Debye temperature for hBN of 1900K [1] yields a zero point

vibrational energy of

Fvib = 0.32 eV/unitcell (2.8)

Finally, free enthalpy calculations of Albe [1] deliver an equilibrium line which

crosses the temperature axis at ca. 1450K, indicating cBN as the stable form

at standard conditions. This is in contrast to the calculations of Corrigan and

Bundy [19], who pronounced hBN as the stable phase at room temperature and

pressure.

2.1.2 Cohesive properties

Hexagonal hBN allocates carbon. It also consists of a layered planar comb-like

structure (Figure 2.1), in which the B and N atoms are arranged alternately.

However, in contrast to graphite, the hexagons in hBN are not staggered but

lying right upon each other, that above and below of each N atom a B atom is

placed (and vice versa). The physical properties of hBN and graphite are very

similar (Table 2.3). Their densities are virtually identical and both exhibit a

very high melting point which is beyond 3000K. The hBN c axis length, which

is determined by a mixture of ionic attraction between oppositely charged ions

in adjacent planes, and weak van der Waals interaction such as in graphite,

varies much more under hydrostatic pressure than the a-axis length, which is

given by the extremely short and strong ionic-covalent sp2 bondings. This is

found both experimentally and theoretically [117]. Up to 12GPa the relative
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compression of the a axis is insignificant, while the c axis is compressed to about

85%. This strong directional bonding between adjacent coplanar atoms shows

charge localization closer to the N atom than the B atom, and depending on

the radii assumed for these atoms, each B atom loses 1-2 electrons to its three

neighbouring N atoms. Electrons in π orbitals are also localized closer to the

N atoms than the B atoms [80]. Unlike graphite, hBN occurs due to its bi-

atomic character in various stacking orders as specified in Table 2.1, whereas

the energetically preferred way of stacking is not yet known nowadays [88].

The cohesive energy of the atoms within a hBN plane has been the subject

of a variety of works and differs between 6.41 eV/atom [1] and 1.794 eV/atom [31].

However, the cohesive energy between the hBN layers is with 0.024 eV/atom, as

expected, drastically lower and was calculated with the van der Waals density

function (vdW-DF) [103].

Cubic The zinc blende modification of boron nitride, commonly referred to

as cubic boron nitride (cBN), is the second-hardest known material after dia-

mond. For this reason and due to other outstanding properties like chemical

inertness, high-temperature stability, wide band gap and low dielectric constant,

it has attracted a large interest in both fundamental as well as applied fields.

Whether cBN is thermodynamically the most stable structure at 0K among all

BN phases is still up for debate. As in diamond the atoms in BN are connected

via sp3 bonds. But diamond forms a strong covalent bond through sharing of

its electrons, whereas cBN appears to an appreciable extent on ionic interaction

for its bonding energy.

Wurtzitic The lattice energy of the wurtzitic structure is slightly higher than

for cBN [1] and is known as a metastable phase under ambient conditions.

Experiments [115] and calculations [1] yield that the unit cell axes scale in the

same fashion as those of cBN with increasing hydrostatic pressure. This is less

surprising due to the sp3-bonded structure of this modification. Although the

wBN bonding is predominantly sp3 in nature it differs from that of cBN [75].

The c-axis bond of wBN may possess more ionic characteristics than other

bonds, whereas all bonds in cBN are identical.
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Table 2.1: Symmetries of different hBN stackings [88]. E.g.: AA stacking is tantamount

to indistinguishable layers, AB means every second layer is located in the same manner,

and AJ stands for the tenth layer which lies exactly underneath the first one.

Hermann-Mauguin Schoenflies

Stacking Space group Point group Point symmetry Point group

AA P6m2 6m2 D3h X

AB P63/m2/m2/c 6/mmm D3d D6h

AC P1 1 C1h D2h

AD P3m1 3m1 C3v D3h

AE P63/m2/m2/c 6/mmm D3d D6h

AF P63/m2/m2/c 6/mmm D3d D6h

AG P121/m1 2/m C1 C2h

AH C2/m2/c21/m Mmm C1h C2v

AI C2/m2/c21/m mmm C1h D2h

AJ P121/m1 2/m C2h D2h

Rhombohedral Since rBN is akin to hBN, the cohesive energy of both struc-

tures are nearly the same. Calculations based on a density functional theory [1]

revealed only a very small difference to hBN because of a higher bulk modulus

for rBN in comparison to hBN.

Table 2.2: Lattice parameters for perfect crystalline samples of BN at 298K [64].

phase a (Å) c (Å)

hBN 2.50428 (5) 6.6562 (10)

rBN 2.5042 (2) 9.99 (1)

cBN 3.6153 (1)

wBN 2.5505 (3) 4.210 (1)
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Figure 2.1: Structures of boron nitride. Both rhombohedral and hexagonal BN possess

weak sp2 bonds. Cubic as well as wurtzitic BN are bound via very strong sp3 bonds.
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Table 2.3: Some mechanical, electrical and thermodynamical properties of BN modifica-

tions in comparison with the common carbon phases. (aBN: amorphous BN) All data

are measured at ambient conditions, or calculated for such conditions.

aBN hBN wBN rBN cBN graphite diamond

density 2.28 2.1 3.39 2.28 3.45 2.1 3.52

(g/cm3) [134] [102] [102] [32] [102] [93] [93]

Mohs 1 - 2 10 n.a. 10 1 - 2 10

hardness [134] [36] [36] [93] [93]

Knoop 10 34 n.a. 45 100

hardness

(GPa) [134] [36] [36] [93]

Thermal 0.03 ‖ 6 7.4 ‖ 2-20 ≤ 12

conductivity ⊥ 0.3 ⊥ 0.02-0.8

(W/cmK) [41] [102] [102] [93] [17]

Bandgap 5.05 5.2 5.0 n.a. 6.4 0 5.5

(eV) [142] [124] [139] [29] [93]

Refractive 1.7 ‖ 2.13 2.05 n.a. 2.1 2.0 2.4

index ⊥ 1.65

[41] [52] [140] [36] [93] [93]

Static ‖ 5.09 7.0 7.1 0 5.68

dielectric ⊥ 7.04

constant [33] [3] [36] [11]

Magnetic ‖ -0.48 ‖ -(0.2-2.7) -1.6

susceptibility ⊥ -17.3 ⊥ -(20-28)

(µemu/g) [146] [42] [42]

Heat 19.85 16.45 20.63 15.95 10.24 8.03

capacity

(J K−1 mol−1) [32] [32] [32] [32] [96] [96]
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Table 2.4: Calculated structural and cohesive properties of several BN phases: Volume per

atom V , lattice constant a, cohesive energy Ec (for hBN and rBN between the atoms

within a layer), ratio of interlayer distance to lattice constant c/a, energy difference to

the cohesive energy of cBN ∆E, bulk modulus B, and pressure derivative of the bulk

modulus B′.

Albe Furthmüller Xu and van Camp and

[1] et al. [31] Ching [139] van Doren [127]

cubic BN

V (Å3) 5.797 5.718 5.905 5.954

a (Å) 3.593 3.576 3.615 3.625

Ec (eV/atom) -6.47 -8.152 -7.00 n.a.

B (GPa) 395 397 370 392

B′ 3.65 3.59 3.8 3.31

∆E (eV/atom) 0 0 0 0

wurtzitic BN

V (Å3) 5.813 5.731 5.845 6.73

a (Å) 2.532 2.521 2.536 2.6883

c/a 0.827 0.826 0.828 0.8

B (GPa) 394 401 390 107

B′ 3.68 3.59 6.3 4.24

∆E (eV/atom) 0.011 0.020 0.075 n.a.

hexagonal BN

V (Å3) 8.747 8.613 8.970 10.02

a (Å) 2.496 2.468 2.494 2.592

c/a 1.300 1.295 1.335 1.330

B (GPa) 30.1 26.1 335 77

B′ 10.1 3.66 3.76 4.41

∆E (eV/atom) 0.057 0.055 -0.35

rhombohedral BN

V (Å3) 8.693 8.603 n.a. n.a.

a (Å) 2.493 2.495 n.a. n.a.

c/a 1.296 1.294 n.a. n.a.

B (GPa) 32.3 26.2 n.a. n.a.

B′ 10.3 3.87 n.a. n.a.

∆E (eV/atom) 0.057 0.052 n.a. n.a.
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Figure 2.2: Boron nitride phase diagram according to Eremets [28]. Black solid lines mark

the edges of both stable phases cBN and hBN. Furthermore, the metastable phase wBN

can be produced using path a). In order to obtain cBN an additional temperature

increase is required b). Here the blurry fields indicate the domains for phase transitions

from hBN⇒wBN i as well as from wBN⇒ cBN ii [19]. The green arrow c) is a possible

cBN production path starting with rBN and crossing the necessary barrier (green dashed

line) [125].

2.1.3 The hBN - wBN phase transition

As displayed in Figure 2.2, hBN undergoes a phase transition to the hexagonal

close-packed polymorph wBN, starting at a pressure of ca. 9.5GPa and room

temperature. The wBN obtained in such a manner is quenchable after releasing

the pressure, though only in powder samples. No single crystal bulk material

of wBN has been produced until today. Within this work, the transformation

hBN⇒wBN was the only phase change we have observed. In the literature, two

possible mechanisms were proposed by which the hBN to wBN transformation

could proceed: The chair deformation [54] that may only involve the direct

bonding between the layers, and the boat deformation [94] that may require the

relative rotation and displacement between the layers.

The chair deformation Near K-edge spectroscopy using inelastic X-ray scat-

tering (IXS or X-ray Raman spectroscopy) provides information about the char-
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Figure 2.3: Cohesive energies of BN as a function of cell volume in the cubic, wurtzitic,

hexagonal, and rhombohedral structure; calculated by Albe [1].

acteristics of the BN π and σ bonds, which has been investigated by Meng et

al. [75]. It is described that the sole displacement of N atoms along the c direc-

tion will transform hBN into wBN. In hBN, B and N form strong covalent sp2

bonding (σ state) within the plane; however, there is a weak interlayer p bond-

ing (π state) with significant ionic characteristics. As the pressure increases, the

van der Waals interaction between the layers becomes small compared to the

dominant electrostatic repulsion. Wang et al. [130] managed to observe strong

directional bonding between adjacent coplanar atoms in hBN resulting in charge

accumulation closer to the N atoms, owing to the electron deficient nature of

B atoms. With the displacement of N atoms along the transition path, each N

atom gradually bonds to a B atom in the adjacent plane, and at the transition

sp2 hybridization in hBN evolves into sp3 hybridization in wBN.

The boat deformation This mechanism involves lateral motion between the

layers, that may be activated at high temperatures depending on the PT path

and on the crystalline quality of the starting hBN phase [75].

2.1.4 The hBN - cBN phase transition

It is argued that during the synthesis of cBN by HTHP methods hBN first

transforms by compression along the c-axis into wBN [67]. The subsequent

wBN⇒ cBN transition occurs by a so-called dislocation mechanism [46, 50].
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Under 7.7GPa the formation of cBN starts at 1250℃. Defects in the wBN

lattice are accounted for the forming of nucleation centres. When pressure is

sufficiently high, the wBN will convert into cBN around these nucleation centres

by increasing the temperature. Thus, without using catalysts the transformation

path from hBN to cBN must be directed over the generation of wBN.

2.2 Stopping of Charged Particles in Matter

Charged particles, when traversing matter, release their kinetic energy in a

strong velocity-dependent manner (Figure 2.4 a). Two major decelerating pro-

cesses are to be distinguished: The first process is called nuclear stopping, and

occurs for ion velocities v sufficiently lower than the Bohr velocity v0
1, which

implies an energy transfer to recoiling nuclei. Or in other words - the incoming

ion is slow enough to perceive the lattice atoms as neutral solid spheres. Since

nuclear stopping affects only a very small part of the irradiated crystal and cov-

ers a comparatively diminutive range of ion energies, it is of minor importance

in the situations considered in this thesis. A theoretical treatment of the nuclear

stopping mechanism is given by Sigmund [109].

On the other hand, when v � v0, the electronic stopping process becomes

the dominating mechanism of energy exchange between the traversing ion and

the target atoms. Commonly expressed, the projectile and the irradiated atom

see each other more and more as an electromagnetic field between the positive-

charged nucleus and the negative-charged electron cloud with increasing velocity,

causing interpenetration followed by energy transfer to the electron shell. This

process has been described by H. Bethe for non-relativistic projectiles in 1930

[10], and subsequently for relativistic particles (2.9) in 1932 (Sigmund 2004)

[109].

1Bohr velocity v0 is defined as the classical speed of the electron on the innermost shell of a

hydrogen atom. v0 = 2.42×108 cm/sec.
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−dE
dx

=
4π
mec2

· nz
2

β2
·
(

e2

4πε0

)2

·
[
ln
(

2mec
2β2

I · (1− β2)

)
− β2

]
(2.9)

β = v
c

v particle velocity

E particle energy

x distance travelled by the particle

c speed of light

z particle charge

e elementary charge (1.602×10−19 C)

me rest mass of the electron (9.109×10−31 kg)

n electron density of the target

I mean excitation potential of the target

Here, the electron density of the material can be calculated by n = NAZρ
A , where

% is the density of the material, Z the atomic number, and A the mass number

of the target material, respectively. NA is the Avogadro number. The mean

excitation potential I describes the target material and was given by Bloch [12]

in 1933 as I = (10 eV) · Z. Hence, (2.9) is called the Bethe-Bloch equation.

Nevertheless, due to the existence of more accurate tables of I as a function of

Z [84], obtained by experimental and theoretical investigations, the use of such

tables yields more reliable results. The mean excitation potential versus Z shows

a more oscillating behaviour due to necessary corrections from (2.9). Detailed

descriptions of these corrections are found elsewhere [109]. Since Bethe assumed

that the projectile is a point charge without shell electrons, the real stopping

power is somewhat reduced taking into account a decreased effective charge due

to shielding shell electrons [109]. Furthermore, the Barkas-Andersen effect needs

to be considered for energy loss calculations of heavy ions, which gives rise to

a z3 correlation in (2.9) instead of ∝ z2. For extreme relativistic velocities, the

Fermi density effect has to be taken into account in the calculations, [51], which

is no longer negligible beyond 10GeV/u.

An important property of the energy loss function is its profoundly non-linear

way to release the ion energy - as depicted in Figure 2.4 (a) and (b). Unlike
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photons, which spend their energy in a negative exponential manner, ions reach

their maximum of energy loss per unit length at a certain velocity within the

crystal - if the initial velocity was high enough. Furthermore, the energy loss

as a function of penetration depth depends on the density of the material as

well as on the mass of the impinging ion. Both dependencies are displayed in

Figure 2.5.

Energy transfer mechanisms In the electronic stopping regime, which is the

dominating deceleration process in our experiments, the energy of the moving

ion is transferred to the material. Two major mechanisms have been developed

in order to describe the energy transfer from the moving ion to the lattice.

Dessauer [22] proposed the fulminant heating of the material around the ion

path, which was later called the thermal spike model [26,132], at which the en-

ergy is being transmitted via electron-phonon coupling. The time scale of a ther-

mal spike is very short since the energy is deposited by the heavy ion projectiles

within 10−16 s, shared between the electrons within 10−15 s, and thermalization

in the lattice occurs within 10−13 s [76]. The energy diffusion in the electronic

and atomic subsystems at time t and at a distance r from the ion track assuming

cylindrical geometry is described by two coupled differential equations,

Ce (Te)
∂

∂t
Te =

1
r

∂

∂r

[
rKe (Te)

∂

∂r
Te

]
− g · (Te − Tl) +A (r, t) (2.10)

Cl (Tl)
∂

∂t
Tl =

1
r

∂

∂r

[
rKl (Tl)

∂

∂r
Tl

]
+ g · (Te − Tl) (2.11)

where Te,l, Ce,l, andKe,l are the temperature, specific heat, and thermal conduc-

tivity for the electronic system and the lattice, respectively. The initial energy

density A (r, t) is taken from a spatial distribution function F (r) [129]:

A (r, t) = b ·
(
dE
dx

)
electr.

· exp
[
− (t− t0)2 /2t20

]
· F (r) (2.12)

with t0 = 10−15 s as the time required for the electrons to reach thermal equi-

librium. b is a normalization constant so that the total energy input is equal
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Figure 2.4: Characteristics of the energy loss function in boron nitride.

to (dE/dx)electr.. The electron-phonon coupling value g can be calculated using

specific material parameters [132]:

g =
π4 (kBznlvs)

2

18Ke (Te)
(2.13)

where vs is the sound velocity, nl the atomic density and z the number of

electrons participating in the thermal spike, which can be seen as z = 1 for

most situations [14]. Due to a variety of experimental difficulties by means of

temperature measurements in the wake of moving ions, numerical calculations

are the method of choice. Dufour et al. [26] obtained temperatures in irradiated

metals of up to 2,000K for the lattice atoms and even up to 20,000K for the

electronic subsystem.

In contrast to the thermal spike model, which deals with temperature effects,

another model has been developed in order to take into account the pressure

effects, caused by a transversal shock wave, which is triggered by the travers-

ing ion. Fleischer et al. introduced therefore the “Ion explosion spike mecha-

nism” [30], which is nowadays known as the Coulomb explosion model. This is

useful particularly with regard to the treatment of insulators since the inserted

energy cannot be transferred via the electronic subsystem. The assumption is

that the mutual repulsion of the positive (lattice) ions catapults them into the

surrounding lattice. Hence, if the stress, induced by the electrostatic force of
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the moving ion, is greater than the local bonding strength, the crystal matrix

reacts by displacements of the constituents causing modified chemical bonds,

melting, and vapourization, and may trigger phase transitions or latent track

formation. When two ions in a material of dielectric constant ε and average

atomic spacing a0 have received an average ionization of z unit charges e, the

force between them is z2e3/εa2
0 or a local force per unit area (the electrostatic

stress σe) of z2e3/εa4
0. By noting that the theoretical mechanical tensile strength

σm of material of Young’s modulus E is approximately 1
10E [95], the electronic

stress turns out to be larger than σm if z2e2/εa4
0 >

1
10E or if

z2 > R ≡ 1
10
εa4

0

e2
(2.14)

where R is defined as the stress ratio. Relation (2.14) thus indicates that tracks

should be formed most easily in materials of low mechanical strength, low di-

electric constant and close interatomic spacing.

Channeling The impact-parameter distribution between the ion projectile and

the target atoms is orientation independent if the traversed specimen is homo-

geneous and isotropic. Unlike materials such as graphite or hBN, which are

composed of highly non-isotropic distributed constituents. Here, the stopping

process of the impinging ions is known to be significantly orientation dependent.

This effect was predicted theoretically by J. Stark [118] in 1912, and approved

experimentally by Piercy et al. [92] in 1963.

Positivelly-charged particles like ions are repulsed from the nuclei of the plane,

and after entering the space between two adjacent planes, they will be repulsed

from the second plane. The moving ions thus tend to follow the direction be-

tween two neighboring crystalline planes at the largest possible distance from

each of them.

At low energies the channeling effects in crystals are not present, but particle

diffraction is dominating, since small-angle scattering at low energies requires

large impact parameters, which become bigger than typical interplanar dis-

tances. At high energies the quantum effects and diffraction are less effective

and therefore the channeling effect is present.
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Simulation codes Trajectory simulation codes are conventionally classified

into molecular-dynamics, binary-collision and Monte Carlo codes [109]. Molecular-

dynamics codes solve Newton’s equation of motion. This technique requires con-

siderable computing power and is therefore not much in use. Binary-collision

codes operate on a given target structure. The domain of this type of code is

the slowing down in a regular crystal lattice, in particular under channeling2

conditions.

Monte Carlo simulations for particle penetration imply a medium with ran-

domly distributed constituents to be traversed. The prime input is a table

of differential cross sections for elastic nuclear scattering as well as a table of

electronic stopping cross sections and, possibly, electronic straggling. The best

known simulation program is the TRIM/SRIM3 code, developed by Ziegler and

Biersack [144].

2.3 High Pressure

Pressure induces a variety of alterations in materials. First, compression involves

typically the tendency to higher unit cell symmetries as well as to closer packing

of atoms or molecules in the solid state, but furthermore, a higher pressure

is tantamount to changes in electron hybridization, represented in the basic

Hamiltonian at the level of elementary nuclear and electronic charges [40]:

Ĥ = Ĥnn + Ĥen + Ĥee (2.15)

where Ĥnn and Ĥee are the kinetic energy of the nuclei and the electrons, respec-

tively. Ĥen denotes the mutual Coulomb attractions. Due to the confinement

of the constituents described by (2.15) in the volume V , the stationary states

of the fundamental Schrödinger equation

Ĥψ (V ) = E (V )ψ (V ) (2.16)

2Charged particles moving along planes of symmetry in a crystal behave in an unusual way:

They interact with nuclear planes or chains instead of with separate atoms.
3abbreviation for TRansport of Ions in Matter, in more recent versions called Stopping and

Range of Ions in Matter. SRIM download from http://www.srim.org
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(a) SRIM code calculations for different ions in

cBN

(b) SRIM code calculations for Pb irradiation

in cBN at different pressures

Figure 2.5: Total energy loss as a function of the incident ion (a) and of the material

density (b).

are functions of V and therefore alterable by pressure. Under this condition,

electrons tend toward states of lower kinetic energy. This means, in general,

a destabilization of intramolecular bonds [39] (Figure 2.6). Compression also

alters both bandwidths and bandgaps, associated with major changes in elec-

tronic and magnetic states, including the formation of conductors [63] or even

superconductors [70] from materials originally possessing substantial bandgaps.

Wigner and Huntington suggested the phenomenon of pressure induced met-

allization already in 1935 [136]. Finally, pressure can affect the chemistry of

substances by accelerating or kinetically inhibiting reactions, depending on the

activation volume [137].

The stress and strain in a sample, caused by application of pressure, which is in

general non-hydrostatic, is mathematically described by Cauchy’s stress tensor

σij (2.17). Each individual tensor element represents the strain and the stress

on a side of an infinitesimal cube, which itself is an infinitesimal constituent of

the crystal as displayed in Figure 2.7. At perfect hydrostatic conditions only

the tensor elements on the diagonal σi=j are unequal to zero. A more extensive

description is given elsewhere [77].

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ≡

σx τxy τxz

τyx σy τyz

τzx τzy σz

 (2.17)
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(a) (b)

Figure 2.6: Schematic of the effect of decreasing interatomic distance on the (repulsive)

kinetic and (attractive) Coulomb exchange energies (a), and effect of compression on

a chain of molecules showing the buildup of electron density between the molecules,

and the possibility of symmetry breaking to form a charge transfer state (charge density

wave) (b) (reference: [39]).

Figure 2.7: Stress and strain tensor component σij represents the strain caused by a force

acting along xi on a face element normal to xj .

2.4 Raman Spectroscopy

The phenomenon of inelastic scattering of light was first postulated by Smekal

in 1923 [111] and first observed experimentally in 1928 by Raman and Krishnan

[97].

Photons may be absorbed or scattered when interacting with matter. Oth-

erwise, they will pass straight through, and the material appears transparent.

Scattered photons can be observed by collecting light at an angle to the incident

light beam. Provided there is no absorption from any electronic transitions, the

efficiency increases with the fourth power of the incident light frequency. Un-
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like infrared spectroscopy, which uses a wide range of frequencies of the beam

applied to the sample in order to detect real vibration states of molecules by

measuring the absorption frequencies, Raman spectroscopy works with a sole

wavelength and therefore a laser beam of fixed wavelength is used in almost ev-

ery application. In Raman scattering, the light interacts with the molecule and

distorts (polarizes) the electron cloud around the nuclei to form a so-called vir-

tual state which is not an eigenstate of the molecule. Further, the actual shape

of the distorted electron arrangement will depend on how much energy is trans-

ferred to the molecule and hence is dependent on the applied laser frequency.

The nuclei themselves possess too much inertial mass, making it impossible to

follow the electron cloud movement. This results in a high-energy form of the

molecule with a different electron geometry but almost always without any nu-

clear movement. Since no energy has been transferred after the electron cloud

has relaxed and returned to its initial state, this is essentially an elastic process,

which is called Rayleigh scattering.

The actual Raman scattering on the other hand is a much rarer event which

involves only one out of 106 − 108 of the photons scattered [112]. This occurs

when the light and the electrons interact and the nuclei begin to move at the

same time. Thus the relaxing electron cloud will end up at an appreciable

higher (Stokes) or lower (anti-Stokes) vibrational state of the electronic ground

state, which is illustrated in Figure 2.8. Most molecules at rest prior to inter-

action with the exiting light and at room temperature are likely to be in the

vibrational ground state. Therefore the majority of Raman scattering will be

Stokes Raman scattering. Nevertheless, since thermal energy is tantamount to

vibrational energy, Raman spectroscopy can be seen as an outstanding tool for

non-contacting temperature measurements even on microscopic specimens, only

by comparing both Stokes- and anti-Stokes signals. The intensity ratio of the

Stokes and anti-Stokes Raman scattering depends on the number of molecules

in the ground and the excited vibrational levels and can be calculated with the

Boltzmann equation,
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Nn

Nm
=
gn
gm

exp
[
− (En − Em)

kBT

]
(2.18)

Nn is the number of molecules in the excited vibrational energy level (n)

Nm is the number of molecules in the ground vibrational energy level (m)

g is the degeneracy of the levels n and m

(En − Em) is the difference in energy between the vibrational energy levels

kB is the Boltzmann constant (1.3807×10−23 J/K)

Some vibrations can occur in more than one way but the energies of the different

ways are the same, so that the individual components cannot be separately

identified. The number of these components is called the degeneracy and is

denoted by the symbol g in equation (2.18).

In Raman spectroscopy, a broad energy range of the scattered beam is being

examined, beginning in the far anti-Stokes region and ending up with high

energies of the Stokes region. The commonly used unit of the Raman shift (the

difference to the Rayleigh scattered beam) is the wavenumber ν with the unit

cm−1 (light waves per cm). Since anti-Stokes scattering is the less probable

the colder the molecule or the crystal appears, it can be neglected even at room

temperature. Furthermore, regarding the masses of the vibrating constituents it

can be pointed out that heavier nuclei cause Raman modes emerging at higher

wavenumbers due to a deeper quantum well with steeper walls, described by

the Morse potential and accompanied by larger differences between each energy

level.

Figure 2.9 illustrates the contrast to infrared spectroscopy. In order to yield

a Raman signal, the dipole moment of the observed molecule must sustain,

whereas the polarizability changes drastically when excited.

2.4.1 The polarizability tensor

When polarized light interacts with a molecule or with a bond in a crystal, the

surrounding electron cloud will be distorted to a degree, that depends on the

ability of the electrons to polarize - expressed by the polarizability α. Though
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Figure 2.8: Principle of Rayleigh scattering (upper graph) and Raman scattering (lower

graphs). In case the initial electronic state is below the state after excitation to the virtual

state and subsequent relaxation, the process is called Stokes Raman scattering. When

excitation and relaxation end up on a lower energy level as the initial state, the process

is called anti-Stokes. ξ is the internuclear separation for the case of linear vibrations.

The level of the virtual state depends only on the energy of the exciting photon.
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Figure 2.9: Electron cloud model of a boron nitride bond showing IR and Raman active

vibrations. In order to obtain a Raman resonance, the dipole moment must not change

when excited but the polarizability must change. Vice versa for obtaining an infrared

signal.

the light causing the effect is polarized in one plane, the effect on the electron

cloud is in all directions, and can be described as a dipole change in the molecule

(or bonding) in each of the three Cartesian coordinates x, y and z. Therefore,

three dipoles have to be considered in order to describe the effect on molecular

polarizability. Simplified, a dipole µ occurs in the bond induced by the field

from the incident photon E.

µ = αE (2.19)

In order to connect the direction of the polarisability of the molecule and the

polarization of the incident light, the polarizability of the molecule becomes a

tensor,

αij (2.20)

at which the first subscript i refers to the direction of polarisability of the

molecule and j stands for the polarization of the incident light. Hence, the

expression for the induced dipole in x direction is µx = αxxEx+αxyEy+αxzEz.

µy and µz can be derived by the same rule, which means conclusively
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µx

µy

µz

 =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz



Ex

Ey

Ez

 (2.21)

2.4.2 Lattice modes in single crystals

In a single crystal all molecular axes are lined up within the unit cell. Thus, the

polarization direction of the incident beam has a relationship to the molecular

axes. Hence it is possible to analyse each component of the tensor (2.20). The

induced vibration (or stopped vibration in the anti-Stokes case) corresponds to

the hole lattice of the bulk, and can propagate in the same direction as the

applied radiation, or perpendicular to it. The former results in a longitudinal

or L Raman mode, and the latter in a transversal or T Raman mode.

Each mode consists of a very large number of vibrations of similar energy

which occupy a band of energies in the material. The band width varies de-

pending on the material, and each of these bands is called a lattice mode. If

the electron cloud excitation takes place in such a manner that the ions vi-

brate against each other causing a charge separation, the modes are called optic

modes and labelled LO or TO, which occur in the Raman spectrum at higher

energies. On the other hand, vibrations with ions oscillating in phase cause so-

called acoustic modes at lower energies in the Raman spectrum. These acoustic

modes are tagged as LA or TA (longitudinal acoustic and transversal acoustic,

as for the optic modes, respectively).

Cubic boron nitride

cBN belongs to the zinc blende structure (Figure 2.1) and exhibits one Raman

active optical phonon at Γ in the Brillouin zone, which is triply degenerated

due to three possible spatial dimensions of vibration. Nevertheless, this mode

splits into a transversal and a longitudinal phonon [98]. The TO phonon is at

1055 cm−1 and the LO phonon at 1304 cm−1 (Figure 3.7).
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Hexagonal boron nitride

hBN, which consists of graphite-like planes, provides one major Raman reso-

nance at 1364 cm−1. Since the hexagonal layers posses a two-dimensional ge-

ometry, the phonon eigenvector of this mode is a doubly degenerated in-plane

optical mode and reveals E2g symmetry. As displayed in Figure 2.10 a and Fig-

ure 3.7, the B and N atoms of each plane oscillate in opposite directions within

the plane but parallel with the atoms of the adjacent layer. And exactly this

parallel movement is responsible for the dipole cancellation observed perpendic-

ular to the layers. Thus, the E2g mode does not have an LO-TO splitting. In

contrast, the anti-parallel optic vibrational E1u mode (Figure 2.10 b) is infrared

active and has a large LO-TO splitting.

A second Raman active vibration at very low wavenumbers (55 cm−1) was

detected by Nemanich [82]. This acoustic phonon, where the two BN planes

slide against each other, as depicted in Figure 2.10 c, was not detectable within

our investigations due to the cutoff of the notch filter at ca. 80 cm−1. Further ab

initio calculations [98] predict another low-energy vibration caused by a rigid

movement of the planes against each other in c axes direction (Figure 2.10)

at 125 cm−1, which is neither Raman nor infrared active and therefore not de-

tectable in our experiments. Finally, the acoustic mode E1u at which the atoms

move parallel and without any difference in phase is of course not measurable

using Raman spectroscopy.

Wurtzitic boron nitride

Karch et al. [56] suggested four Raman active phonon modes in wBN, resulting

from the splitting of both A1 and E1 modes into LO and TO components. Ohba

et al. [87] came to the same conclusion with analog results for the corresponding

Raman shifts. Both calculations confirm the first experimental data for the E1

LO as well as the A1 TO mode measured by Doll [23]. Another investigation

by Sachdev [104] yields similar Raman shifts for each mode. These findings are

summarized in Table 2.5. Since wBN does not decompose only when existent

as nano size powder, it is very difficult to obtain Raman signals.
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Figure 2.10: Vibrational modes in boron nitride. Only the E2g phonon in a) is detectable

using our Raman spectrometer. The E2g phonon in cI is cut off by the notch filter, and

the contributions of the B2g phonons cancel each other.

Table 2.5: Calculated and measured Raman active modes for wBN (A1, E1).

Raman shift / cm−1

modes E1 (LO) A1 (LO) E1 (TO) A1 (TO)

Karch [56] (calc.) 1281 1258 1053 1006

Ohba [87] (calc.) 1293 1280 1075 1043

Doll [23] (exp.) 1295 − − 1015

Sachdev [104] (exp.) 1285 1246 1108 1016
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2.5 X-ray Diffraction

Due to their wave character, X-rays obey Huygens’ principle, and thus scatter

on a diffraction grating when the lattice parameters are in the range of the

wavelength of the incident beam. Since X-ray wavelengths are in the range

of 1 pm up to 10 nm they can be used for resolving crystal structures. Unlike

neutron diffraction, where the scattering takes place on the nuclei of the solid-

state body, the X-rays scatter on the electron clouds of the material, and the

scattered waves interfere with each other. This interference is constructive when

the phase shift of two parallel reflected beams is a multiple of 2π. This condition

is expressed by Bragg’s law [13]:

nλ = 2d sin θ (2.22)

where n is an integer determined by the order given, λ is the wavelength of

the X-rays, d is the spacing between the planes in the atomic lattice, and θ is

the angle between the incident ray and the scattering planes. The principle of

Bragg’s interference conditions is displayed in Figure 2.11. If a bundle of parallel

lattice planes fulfills the Bragg equation, the contributions of each single plane

superimpose in a manner that constructive interference gives rise to detectable

signals under the so-called Bragg angles with a value of 2θ between the scattered

and the non-scattered beam. Since the wavelength λ is known, one can easily

obtain the lattice plane spacings dhkl. (hkl) are the Miller indices, specifying

the position of the parallel lattice planes in the reciprocal lattice. Therefore,

if the crystal system is known, the lattice constants of the crytallographic unit

cell can be derived from dhkl. E.g., for the cubic crystal system via

1
d2
hkl

=
h2 + k2 + l2

a2
(2.23)

with a denoting the lattice constant of the cubic unit cell.

2.5.1 Analysing methods

Depending on whether the system to investigate is a single crystal or a pow-

der sample, mainly two analysing methods are of particular interest. On the
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one hand, the Laue method is applied for single crystals using white, non-

monochromatic X-ray radiation (bremsstrahlung) as depicted in Figure 2.12

(a). Thereby, constructive interference appears if and only if the change in the

wave vector during the scattering process is equal to a reciprocal lattice vector.

The result is a scattering image of point reflections.

On the other hand, when powder samples are to be investigated (which was

the case in this study), the Debye-Scherrer method is of particular interest (Fig-

ure 2.12 (b)). Unlike single crystals, a powder sample possesses ideally every

possible crystalline orientation randomly distributed and therefore the result-

ing diffraction image consists of smooth concentric rings around the beam axis.

Powder diffraction data are usually presented as a diffractogram in which the

diffracted intensity is shown as function either of the scattering angle 2θ or of

the scattering value d fulfilling (2.22). The latter variable has the advantage

that the diffractogram does no longer depend on the value of the wavelength λ

and therefore is independent of the X-ray source. The major difference to the

Laue method is the monochromatic beam.

2.5.2 The phase problem

The primary object of the crystal structure analysis is to find the positions of the

centers of the atoms given by the maxima in the electron density function % (r)4

and to identify the atoms present from the relative weights of these maxima. Due

to the lack of applicable optical devices to steer the X-rays, only the intensity of

the scattered beam is detectable. All other information such as phase relations is

not accessible, in spite of their importance in terms of determining the electron

density % (r). This phenomenon is known as the phase problem [20]. However,

the measured intensity I is proportional to the square of the structure factor F ,

Ihkl ∝ |Fhkl|2 (2.24)

and the structure factor F is the Fourier transform of the electron density % (r):

4Except the hydrogen atoms, where the maximum of the electron density is on the bonding

to the neighbouring atom.
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Figure 2.11: Principle of Bragg’s scattering geometry. d is the lattice plane spacing and

theta the scattering angle. Positive interference occurs if the phase shift of the emitted

beams is a multiple of 2π. The black spheres represent the atoms of the material.

(a) Laue method (b) Debye-Scherrer

method

Figure 2.12: X-ray diffraction methods using a "white" X-ray beam for single crystals (a)

and monochromatic X-rays for powder samples (b).

Fhkl =
∫ a

0

∫ b

0

∫ c

0
ρ (x, y, z) exp

[
2πi

(
hx

a
+
ky

b
+
lz

c

)]
dxdydz (2.25)

Here, abc are the lattice constants, xyz the spatial coordinates in the unit cell,

and hkl the Miller indices. Hence, the phase problem has to be solved in order

to derive the structure factors from the measured intensities. Besides the direct

methods, developed by Hauptmann and Karle [38] as well as the Patterson

method [90, 91], which both solve the Fourier transform (2.25), methods using

structure refinement have been prevailing. The refinement methods use the

structure factor F as a sum of all atomic scattering factors f of a unit cell:

Fhkl =
N∑
j

fj exp [2πi (hxj + kyj + lzj)] (2.26)
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Thus it is to sum over all N atoms j in the unit cell. xyz are the coordinates of

the atom j, and f is the Fourier transform of the electron density of one atom.

Structure refinement methods now change the coordinates until the difference

between the experimentally obtained structure factor Fhkl and the structure

factor Fhkl derived from (2.26) is minimized. A mathematical tool, which is used

to solve this problem is the method of the least squares, applied in procedures

as the Rietveld refinement method.
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3.1 Specimen Fabrication

3.1.1 Single crystals

The temperature gradient method was applied by Taniguchi et al. in order

to grow high-purity hBN and cBN single crystals using a modified belt-type

HP-HT apparatus with a 60mm bore diameter [122,123]. As a BN source, hot

pressed hBN discs (Denka Co. Ltd., Japan, type N1) and powder hBN (Denka

Co. Ltd., Japan, type JP) were heated at 2100℃ for 2 h in a nitrogen flow in

order to remove residual oxygen. Remanent oxygen as well as carbon were of the

order of 1019 and 1021 atoms/cm3, respectively1. The carbon impurities originated

from the graphite furnace used for this work. As solvent served a barium boron

nitride (Ba3B2N4)2. Both the samples and the solvent were embedded in a

molybdenum sample chamber inside a nitrogen purged glove box in order to

keep the oxygen and humidity level as low as possible. The specimen was then

compressed between 4 and 5.5GPa while heated between 1500 and 1650℃ for up

to 80 h. The detailed experimental procedure has been described by Taniguchi

in Ref. [123]. As displayed in Figure 3.2, exposure to pressures up to 4.6GPa

resulted in the growth of hBN crystals, regardless of the applied temperatures.

On the other hand, when pressure exceeded 4.6GPa, Taniguchi obtained cBN

single crystal samples, whereas there is a small region in the P -T diagram

1SIMS standard specimen for meassuring the oxygen and carbon concentrations was prepared

by HP reaction sintering from hBN at 7.7GPa and 2100℃ without additives. Samples

implanted with 60 keV 16O or 55 keV 12C ions were prepared to achieve concentrations of

1015 ions/cm2 [121].
2(Ba3B2N4) was synthesized by reacting barium nitride (Ba3N2) and BN at 1000℃ in a dry

N atmosphere [121].

35
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which delivers a mixture of both hBN and cBN crystals. After the HP-HT

procedure, the molybdenum sample chamber was dissolved using hot aqua regia

in order to obtain the crystals, which were subsequently characterized using

SEM, cathodoluminescence spectroscopy, and Raman spectroscopy.

Near the phase equilibrium line between cBN and hBN at ca. 4.5GPa and

1500℃, both cBN and hBN crystals precipitated simultaneously in the growth

chamber.

3.1.2 Powder samples

Both cBN and hBN powder samples (Figure 3.1 (a–e)) were obtained from

Sigma-Aldrich®. The wBN powder samples (Figure 3.1 (f)) were made by

a HPHT synthesis by Dubrovinskaia [25] starting with pyrolytic graphitelike

boron nitride (pBN) precursor material, which was exposed to pressures from 7

up to 20GPa for several hours using a multianvil press [24]. For the samples at

7GPa no phase transformation into wBN was observed below a temperature of

1900K, wheras the samples at the highest pressure of 20GPa already initiated

phase transition into wBN at a temperature of 1600K.

3.2 Generation of High Pressure

Among various types of pressure generating devices, the diamond anvil cell

(Figure 3.3) turned out to be most suitable for heavy ion irradiation experiments.

On the one hand, the highest static pressures of up to 550GPa [138] have been

induced with a DAC3. Compared to other techniques, the usage as well as

the transport of DACs is easy, and moderate pressures can be reached quickly.

Another big advantage, the transparency of the diamond anvils, allows a direct

view into the sample chamber, and several optical methods as laser heating or

Raman spectroscopy can be realised in-situ. Not least these virtues give rise to

the occurrence of many interesting discoveries [5].

3The highest pressure reached during working on this thesis was ≈100GPa in a DAC with

cullet sizes of 450 µm.



3.2 Generation of High Pressure 37

1 µm

(a) hexagonal

10 µm

(b) hexagonal

5 µm

(c) hexagonal

5 µm

(d) cubic

5 µm

(e) cubic

5 µm

(f) wurtzitic

Figure 3.1: SEM micrographs of several BN powder samples. (a)–(c) hexagonal BN, (d)

and (e) cubic BN, (f) wurtzitic BN.
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Figure 3.2: Reaction boundary in the P-T phase diagram for the single crystals obtained

from Taniguchi [121]. The two-colored octagons correspond to co-existing of hBN and

cBN in the recovered sample.

Alignment The main parts of a DAC are two opposing diamonds, each mounted

on a backing plate, which itself is moveable and tiltable usually via screws in

order to ensure parallel cullet areas as well as accurate alignment in which a

diamond facet has to be right over a facet of the opposing diamond. Control

of parallelism is managed using Newton’s rings. In order to prevent damage of

the diamond, and because the gems have to be very close to each other, it is

recommended to place a thin, soft, and transparent plastic snippet between the

diamonds during the procedure of alignment. An insufficient positioning of the

anvils causes damage of the (below mentioned) gasket.

Gasket The gasket serves for many reasons: encapsulating the specimen, addi-

tional anvil stabilization, and delivering of force perpendicular to the diamonds.

As gasket material was applied stainless steel for moderate pressures4, or rhe-

nium for highest pressures.

The first step of preparation is the preindentation of the gasket material down

to a thickness of typically 60 - 110µm using the anvil cell with the already aligned

diamonds. It is important to pay attention to a uniform turning of the setscrews
4up to 20GPa for powder samples without pressure transmitting medium and up to 10GPa

for samples with pressure transmitting medium
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(a)

Figure 3.3: Different types of diamond anvil cells (a), and an opened DAC with its con-

stituents (b).

in order to remain parallelism. Now a small hole has to be drilled through the

indented gasket area. In order to do so, we used mechanical drills with diameters

of 100 - 300µm when using gaskets made of stainless steel. Rhenium gaskets

were “drilled” using a spark erosion machine or a pulsed laser beam.

Sample insertion After a thorough gasket and diamond cleaning as well as the

gasket re-positioning onto a diamond, the two anvils have to be put together

again to ensure a perfect fit of the gasket on the diamond. Specimen(s) can now

be given into the bore using a very thin needle. Ruby chips, serving as pressure

calibrants are put beside the crystal or into the powder as well.

Pressure transmitting medium Since the crystal in the sample chamber needs

to be surrounded by non-compressible matter, which ensures hydrostatic con-

ditions around the sample and the pressure marker, a pressure transmitting

medium has to be added. A mixture of methanol and ethanol at a ratio of 4 to

1 provides hydrostaticity up to ≈10GPa, which can be improved to a certain de-

gree by adding water up to a ratio of 16:3:1 for methanol:ethanol:water. In case

the experiment requires hydrostaticity5 of up to 30GPa, argon is an appropriate

5sufficient hydrostatic conditions be given if P does not differ more than 0.5GPa within a

sample chamber of ∅ = 200 µm
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pressure transmitting medium [108], which has to be loaded cryogenically. How-

ever, helium is unquestionably the best available pressure transmitting medium,

even in its solid state above 12.1GPa at 300K. It provides hydrostaticity up to

pressures of 50GPa [120]. Helium has not been applied within this thesis. How-

ever, the most established pressure transmitting media were studied thoroughly

by Klotz et al. [59].

Pressure adjustment The small ruby chips serve for the pressure setting using

the R1 luminescence line, which is easily collected with a spectrometer. This

line is strongly pressure dependent and obeys (3.1) according to investigations

of Mao et al. [72, 73].

P =
19.04GPa

B

([
λ0 + ∆λ

λ0

]B
− 1

)
(3.1)

After experiments in 1978 using a methanol-ethanol blend, the value B was

set to 5. Measurements, carried out in 1986 with argon as pressure transmit-

ting medium, which sustains hydrostaticity up to 77GPa and delivers quasi-

hydrostatic conditions at higher pressures, gave rise to a value of 7.665. P in

(3.1) is in Mbar and λ is the wavelength in nm. λ0 = 694.2 nm is the wavelength

of the R1 luminescence ruby line at a pressure of 1 bar. Current standard for

pressure determination is a value of B = 7.715 [143]. Nevertheless, improve-

ment of the ruby scale is a continuous request. Holzapfel et al. [43] proposed an

extension of eq. (3.1) as:

P =
A

B + C

(
exp

{
B + C

C

[
1−

(
λ

λ0

)−C]}
− 1

)
(3.2)

With A = 1820GPa, B = 14, and C = 7.3, at which the latter is pressure

dependent. Eq. (3.2) has not been used because of uncertainties and high error

values.

A different approach to measure the pressure has been undertaken to use the

diamond Raman mode of the anvil itself [2,27]. Though it is very tempting, the

difficulties due to the emerging and by no means negligible pressure gradient
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within the anvil, it is not recommended to use it for pressure measurements.

Nevertheless, Baer et al. [2] suggested the formula

ν
(
cm-1) = ν0 + aP + bP 2 (3.3)

which describes the Raman band shift as a function of pressure, where a ranges

between 2.301 for a 50µm bevel on a 400µm culet area, and 2.709 for a non-

bevelled culet face with ∅ = 300 µm (b from −1.702× 10−3 and −0.517× 10−3,

respectively; ν0 is a constant of 1332.4 cm-1).

3.3 Swift Heavy Ion Irradiation

3.3.1 Unilac

The Universal Linear Accelerator (abbr. Unilac) (Figure 3.4 a) of the GSI

Helmholtz Centre for Heavy Ion Research6 has been built in order to accelerate

ionised atoms up to energies of 11.4MeV/u without limits regarding the nucleus

mass. This enables us to irradiate samples at ambient pressure conditions with

virtuelly all stable elements of the periodic table. The main Unilac components

comprise one high-charge injector, two high-current injectors, a gas stripper as

well as foil strippers serving for ionisation of the projectiles. The actual speed-

up is realised by an Alvarez accelerator7 of 120m length. Irradiations took place

in the X0 site in the Unilac experimental hall. For more detailed information

see [47].

3.3.2 SIS18

The heavy ion synchrotron of GSI (Figure 3.5 a) delivers ions within energy

regimes of 50 up to 2GeV/u for all elements up to uranium, and up to 4.5GeV

for protons [48], which is tantamount to 90% of the speed of light. Energies of

this magnitude are necessary in order to interpenetrate the first diamond of the

DAC. Irradiation site is the cave A inside the SIS target hall.
6www.gsi.de
7a cavity resonance accelerator
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Figure 3.4: Scheme of the Unilac, taken from [47]. HSI - high current injector; LEBT -

low energy beam transport; HLI - high charge injector; TK - beam transfer line.

3.4 Examination Methods

3.4.1 Raman spectroscopy

In order to obtain information about polarizability properties of the samples

we used the Raman spectrometer HR800 from HORIBA Jobin Yvon™. It works

with red light of a laser at the wavelength λ = 632.817 nm, polarized 500:1.

Though the device itself is designed to use multiple lasers with different wave-

lengths, in our case only the above mentioned laser is available, which is a 17mW

He/Ne laser. An integrated holographic band-stop or notch filter is applied in

order to cut off the Rayleigh scattered beam. Since a notch filter is specific for

one wavelength, changing the exciting wavelength requires changing the notch

filter. Six further neutral optical density filters (Table 3.1) are available for the

reduction of the laser beam intensity, whereas the optical density D affects the

intensity in the manner of I = I0 × 10−D.

For microscopy needs, short working distance objectives with magnifications

of ×5, ×10, ×50, and ×100 are available, as well as two objectives with long

working distances and magnifications of ×25 and ×50. Long working distances

are necessary in order to focus into the DACs. Sample illumination is realised

in the transmission as well as in the reflection mode. Using these objectives,

beam spots of 2 µm are realisable.

The spectrograph entrance confocal aperture is furthermore adjustable be-

tween 0 and 1,000 µm in a stepless mode in order to change spatial and spectral

resolution as well as to manipulate the intensity of the re-emitted Raman signals.

The spectograph is an asymmetric Czerny Turner optimized for flat field and
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Figure 3.5: Scheme of the SIS18 with its adjacent beamlines and irradiation sites. SIS -

Schwerionensynchrotron; FRS - Fragmentseparator; ESR - Elektronenspeicherring.

optical aberrations. Gratings are mounted one kinematic interchangeable hold-

ers. Standard grating is 1800 grooves/mm, while the second on is 600 grooves/mm.

The former grating delivers exemplarily and in combination with a 100 µm hole

a spectral resolution of 0.6 cm-1 and 3.9 cm-1 at the spectral positions of 810 nm

and 400 nm, respectively.

Signal detection is carried out using a cooled CCD detector with a standard of

1024×256 pixels of 26 µm each. The collected data are displayed and the sample

is being moved via the LabSpec software, allowing data mapping, spectrometer

calibration8, and data analysis. This program is a product of HORIBA Jobin

Yvon™, too.

Detailed information about the device usage as well as the software applica-
8calibration via the 520.7 cm-1 Raman band of Si and the zero point, where Rayleigh scattered

light is being collected.
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(a) (b)

Figure 3.6: High energy irradiation site “cave A” (a) and close-up of the Paris Edinburgh

press (b), which contains anvils made of sintered cBN.

tions are displayed in the manuals [44, 45].

3.4.2 X-ray diffractometry

Ex-situ

Powder XRD was conducted on a Philips™PW 3710 diffractometer with a Cu

anode using 40 kV generator voltage, 30mA generator current and a secondary

monochromator.

In-situ

Since both boron and nitrogen are weak X-ray scatterers and the diamond anvils

absorb too much beam intensity, very intensive high-energy X-rays are neces-

sary in order to obtain insight into pressurized BN samples. Only synchrotron

sources deliver beams with these properties, and among them, the European

Synchrotron Radiation Facility (ESRF) is one of the most powerful facilities.

We used beamline ID27 (Figure 3.8), which is meant for high-pressure exper-

iments. The wavelength of the X-rays was constant over the entire beamtime
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Table 3.1: Available neutral density filters and the resulting intensity reduction.

optical density – D0.3 D0.6 D1 D2 D3 D4

attenuation/I0 no 1
2

1
4

1
10

1
100

1
1,000

1
10,000

Figure 3.7: First-order Raman spectra of (left) cubic and (right) hexagonal boron nitride

excited with λexc = 0 nm. The insets show the crystal structures of the BN allotropes

and the vibration mode.

with 0.3738Å, and the beam spot diameter was 6 µm. The distance between

specimen and detector was 352.583mm; gauged with a Si standard.
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Figure 3.8: Plan of the ESRF experimental hall, taken from www.esrf.eu. Measurements

took place at the high-pressure beamline ID27.



4 Results

4.1 Structural Changes under Ambient Pressure

Conditions

Amorphization and irradiation hardness

All three available boron nitride allotropes have been exposed to several ener-

gies, ion masses and fluences in order to observe structure changes via Raman

spectroscopy and X-ray diffraction. First experiments were carried out on pow-

der samples, which adhere on stainless steel plates using isopropanol. After

irradiation with 8.6MeV/u Pb ions at the Unilac and a deactivation time of

one month, Raman spectra have been recorded in the 20 s mode. Figure 4.1

displays spectra of samples before and after irradiation at fluences of up to

1.5×1013 ions per cm2, all showing increased Raman background and decreased

Raman bands. Wurtzitic BN powder does not show prominent Raman bands,

and Pb ion irradiation did not reveal changes in the spectra (not shown here).

X-ray diffraction data are displayed in Figures 4.2, 4.3 and 4.4 for hBN,

cBN and wBN powder samples, respectively. Due to instrumental standards,

the powder samples had to be placed on glass plates, and therefore a significant

longer deactivation time was necessary since glass is more easily to activate than

steel. Unfortunately, effects originated from ionizing radiation of the activated

glass can not be excluded entirely. Each diffractogram of the different BN forms

shows slightly decreased reflections, although this effect is less pronounced than

the band maximum decrease in the Raman spectra.

47
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Figure 4.1: Raman spectra of hBN (a) and cBN (b) irradiated with 8.6MeV/u Pb ions at

Unilac. Energy loss at the surface of the material was 21.0± 2.1 keV/nm for hBN and

32.5± 3.3 keV/nm for cBN, respectively.

Colourization

Single crystal cBN specimens have been glued on glass fiber (Figure 4.8) and irra-

diated at the irradiation site cave A with uranium ions of energies of 218MeV/u.

In addition to a color change from brownish-white to orange, Raman spec-

troscopy revealed a significantly increased LO band compared to the TO band

as displayed in Figure 4.9. Furthermore, all measurements reveal new Raman

bands at 1712 cm-1 and 2080 cm-1. The hBN single crystals, on the other hand,

have been irradiated in an orientation dependent manner, because physical prop-

erties are strongly anisotropic (see Table 2.4). After irradiation with 1013 Au

ions per cm2 at X0, the difference due to orientation is visible to the naked eye

as depicted in Figure 4.5. Crystals exposed to the beam perpendicular to the a

axis (parallel to the hexagonal, graphite-like layers) turned the color from white

into a deep crimson tone. Astonishingly, crystals, that have been irradiated

parallel to the a axis retained white.

In order to investigate such a phenomenon more systematically, a second
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Figure 4.2: Powder XRD on hBN at atmospheric pressure. The (002) reflection as the

major signal before ion bombardment and after two different fluences of nickel ions shows

a decrease in height, but the diffraction background remains constant.

irradiation series has been conducted at X0 with fluences of up to 1× 1013 Au

ions per cm2 and energies of 11.1MeV/u. Figure 4.6 depicts the six crystals,

of which three have been irradiated perpendicular to a and three parallel to a.

Exemplarily one pristine crystal is also shown. As observed earlier, the color

change took place again only for the hBN crystals with the hexagonal layers

perpendicular to the ion beam. Nevertheless, the ratio between the E2g Raman

band and the Raman background converges to 1 in terms of fluence for both

orientations with respect to the ion beam. The Raman scattered light has been

also collected from both orientations, the ratio ζ behaving in the same manner

for both cases (see Figure 4.7). Error bars for the ζ values are in all cases the

root mean square deviations derived from at least five measurements on each

sample and each orientation. Due to the obvious hexagonal shape of the hBN

(Figures 4.5 and 4.6) no orientation check via e.g. XRD was necessary. Fluences,

derived by a SETRAM and calibrated using a Faraday cup, are in the range of

10% of the plotted value.
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(a) (220) reflection (b) (111) reflection

Figure 4.3: Powder XRD on cBN at atmospheric pressure, representing the most intense

cBN reflections.

4.2 hBN Single Crystals Irradiated Under Different

Pressures and Orientations

Investigations of crystals, irradiated at different orientations, have been ex-

tended to the influence ot the parameter pressure. Two hBN crystals were

inserted in a DAC - one with the hexagonal layers perpendicular and the other

parallel to the ion beam. The former lays on the diamond surface, the latter

clamps on the inner gasket wall. Figure 4.10 illustrates this arrangement. After

filling the gasket aperture with a methanol-ethanol mixture, the samples have

been pressurised, irradiated in cave A and, after a sufficient deactivation time,

investigated by Raman spectroscopy. However, since the diamond Raman back-

ground differs too much from point to point of the anvil area, and interferes

with the signal from the hBN E2g vibration, no useable informations could be

obtained under in-situ conditions. Therefore, the cells had to be opened, and

the samples were being investigated under ambient pressure conditions. Com-

parisons of the E2g Raman band before and after irradiations at three different

pressures and for both orientations are depicted in Figures 4.11 and 4.12. All

irradiations cause a trend to equalization of the Raman band maximum and the

surounding Raman background, which is summarised in Figure 4.13. Here, the
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(a) entire diffractogram

(b) (102) reflection (c) (101) reflection (d) (002) reflection (e) (100) reflection

Figure 4.4: Powder XRD on wBN at atmospheric pressure before ion irradiation (a), and

reflection close-ups showing comparisons to irradiated material (b–e). No significant

evidence of ion-induced amorphization can be deduced by XRD.

crystals irradiated parallel to the a axis behave pressure independent, whereas

the samples with the a axis perpendicular to the ion beam seem to resist the

beam influence, the more likely the higher the pressure. A summary of the ex-

perimental parameters is given in Table 4.1, where the errors being about 2%

for Eion, 10 µm for the diamond length, and 10% for the fluences. The error for

the energy loss can reach values of 20% due to many steps in the calculations

for the SIS irradiations.
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Figure 4.5: First orientation dependent irradiation with 11.1MeV/u Au ions at 1 bar. Top

left: Pristine hBN single crystals before irradiation. Top right: The same crystals, but

irradiated with gold ions. Obvious coloring of the samples irradiated perpendicular to

the hexagonal layers (a). Crystals with hexagonal layers oriented parallel to the ion beam

(b) mostly withstand and retained grayish-white. Bottom: Close-up view of (a) and (b),

in (b) the sample is being photograghed in a tilted position. All samples are glued to

stainless steel with nail varnish.
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(a) pristine (b) after 1 × 1012

Au ions / cm2

(c) after 5 × 1012

Au ions / cm2

(d) after 1 × 1013

Au ions / cm2

(e) pristine (f) after 1 × 1012

Au ions / cm2

(g) after 5 × 1012

Au ions / cm2

(h) after 1 × 1013

Au ions / cm2

Figure 4.6: Fluence series of hBN single crystals irradiated parallel (a–d) to the hexagonal

layers, and perpendicular (e–h) to the hexagonal layers.
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Figure 4.7: The ratio (ζ = E2g Raman band maximum / Raman background) after several

fluences of 11.1MeV/u Au ion irradiations on hBN single crystals (Figure 4.6); taking

two orientations into account (regarding irradiation and Raman scattering).
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(a) (b)

Figure 4.8: cBN single crystal before (a) and after (b) irradiation with 5× 1011 uranium

ions per cm2. Eion = 218MeV/u.

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

1 x 1 0 1 2  U / c m 2

5 x 1 0 1 1  U / c m 2

 

 

Int
en

sity
 / a

.u.

R a m a n  s h i f t  /  c m - 1

c u b i c  b o r o n  n i t r i d e  s i n g l e  c r y s t a l

T O L O

p r i s t i n e

Figure 4.9: Raman spectra of cBN single crystal sample before irradiation (lower graph)

and after a fluence of 5 × 1011cm-2 (red) and 1 × 1012cm-2 (blue). Ion bombardment

equalizes the LO/TO intensity and induces two new Raman bands at 1712 cm-1 and

2080 cm-1.
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Figure 4.10: hBN crystals in a gasket hole - with the hexagonal layers oriented perpendic-

ular (a), and parallel (b) with respect to the direction of ion beam propagation.

Table 4.1: Parameters of the orientation dependent irradiation experiment. Energy de-

grading at the Unilac irradiations habe been realised by aluminium foils.

P Ion Eion ldiamond
dE
dx fluence

[GPa] [MeV/u] [mm] [keV/nm] [ions/cm2]

0 Unilac Au

– – – 0

11.1 – 15 1×1012

11.1 – 15 5×1012

11.1 – 15 1×1013

4.3 SIS Xe

– – – 0

172 2.51 15 1×1011

185 2.64 15 3×1011

183 2.64 15 5×1011

141 1.71 15 1×1012

8.7 SIS Xe

– – – 0

172 2.51 15 1×1011

185 2.64 15 2×1011

183 2.64 15 6×1011

173 2.51 15 1×1012

172 2.51 15 1.2×1012
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(a) 1 bar (b) 4.3 GPa

(c) 8.7 GPa

Figure 4.11: E2gRaman band of hBN after different fluences and pressures. Irradiation as

well as both incident and scattered Raman beam perpendicular to the hBN c-axis.
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(a) 1 bar (b) 4.3 GPa

(c) 8.7 GPa

Figure 4.12: E2gRaman band of hBN after different fluences and pressures. Irradiation as

well as both incident and scattered Raman beam parallel to the hBN c-axis.
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(b) Irradiation and Raman scattering ‖ c

Figure 4.13: ζ = Raman band maximum/Raman background after exposure to different

fluences of gold (P = 1 bar) and xenon (P > 1 bar) ions. Irradiation and both Raman

laser excitation and scattering was carried out perpendicular to c (a) as well as parallel to

the c-axis (b) of the hexagonal BN layers. Unlike parallel irradiation and measurement,

the perpendicular exposure shows a clear pressure dependency in terms of the behaviour

of ζ.
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4.3 Pressurization of BN, Irradiated Under Ambient

Conditions

4.3.1 Cubic BN

As summarized in Table 4.2, three single crystal samples have been compared by

means of irradiation conditions in order to obtain information about the Raman

band shift, when pressurized. The first sample was not exposed to swift heavy

ion irradiation, the second one was exposed to 1×1012 nickel ions per cm2 at

ambient conditions, and a third specimen was first pressurized to 16.49GPa in a

diamond anvil cell, then irradiated with 1.5×1012 uranium ions, and after some

deactivation time released to 1 bar again. The pressure was somewhat less than

before the irradiation. This might be due to a relaxation of the gasket. However,

the Raman spectra of these three crystals are displayed in Figure 4.14, and the

positions of the TO as well as the LO bands as a function of the pressure can

be seen in Figure 4.15.

4.3.2 Hexagonal BN

Further subjects under study were the stability field of the hexagonal phase, and

the question whether this field is constant when the crystal structure is affected

by high energy deposition caused by swift heavy ions. Raman spectroscopy was

applied for single crystal probing, and powder samples have been investigated

using synchrotron X-ray radiation in order to observe the transformation from

hexagonal to wurtzitic BN directly.

Raman spectroscopy

For Raman spectroscopic measurements, we irradiated several hBN single crys-

tals in vacuum and room temperature at the Unilac of GSI, using different

fluences of xenon ions as summarized in Table 4.3. All samples were arranged

with the hexagonal layers perpendicular to the beam as has been proved to

be the most effective orientation with respect to crystal alterations (Figures

4.5 and 4.6). After the samples as well as the sample holders had recovered



60 4 Results

1 0 4 0 1 0 6 0 1 0 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 2 8 0 1 2 9 0 1 3 0 0 1 3 1 0 1 3 2 0 1 3 3 0 1 3 4 0

 

 

 in
ten

sity
 / a

.u.

 R a m a n  s h i f t  /  c m - 1

d i a m o n dT O L O

0  G P a
2 . 6 7  G P a

1 4 . 5 5  G P a
2 3 . 1 4  G P a 3 1 . 6 8  G P a

(a) Pristine sample - no irradiation.
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(c) (1.) pristine cBN at increasing pressure. (2.) The same sample

after in-situ irradiation with 1.5×1012 U ions per cm2 at 16GPa and

decreasing pressure.

Figure 4.14: Raman spectra of cBN single crystal samples at different conditions.



4.3 Pressurization of BN, Irradiated Under Ambient Conditions 61

(a) TO Raman band position

(b) LO Raman band position

Figure 4.15: cBN Raman bands as a function of pressure. Different irradiation conditions

are indicated.
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Table 4.2: Parameters of the cBN single crystal irradiation.

fluence ion dE
dx

∆ω
∆P

[cm-2] [ keVnm ]
ˆ

1
GPa·cm

˜
TO LO

no irradiation – – – 3.08± 0.04 3.07± 0.03

ex-situ irradiated
1× 1012 nickel 18± 1.8 3.06± 0.02 3.00± 0.04

at 1 bar

in-situ irradiated
1.5× 1012 uranium 24± 2.4 2.52± 0.27 –

at 16GPa

from the irradiation and were safe for transportion and handling, four crystals

were put into a sample chamber of a stainless steel gasket, together with a

methanol-ethanol-water pressure transmitting medium and a small ruby chip

for pressure gauging. Starting off with 6.17GPa, the E2g Raman vibration has

been monitored until its disappearance at higher pressures, which is displayed

in Figure 4.17 and subsumed in Figure 4.18. Obviously, irradiation with heavy

ions does not only result in an evidently decreased maximal pressure for hBN

detection, but also in a sharper area of transformation as seen in Figure 4.17

(d). The time, necessary for accumulating the Raman scattered light, has been

adjusted to a signal that is the weaker the more the sample was exposed to

irradiation (Figure 4.1 (a)).

Table 4.3: Parameters of the irradiation experiment on hBN single crystals, aiming at

information about the phase stability field. Irradiations took place at the Unilac of GSI.

P(max)hBN is the highest pressure, at which traces of hBN were detected.

fluence
ion

Eion
dE
dx P(max)hBN

(ions/cm-2) [MeV/u] [keV/nm] [GPa]

– – – – 11.89

5× 1011 Xe 11.1 14.3± 1.4 11.71

1× 1012 Xe 11.1 14.3± 1.4 11.53

1× 1013 Xe 11.1 14.3± 1.4 10.76
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ruby

(a)

(b)

(c)

(d)

50 µm

Figure 4.16: View into the sample chamber, containing four hBN single crystals and a

ruby pressure marker. The crystals were exposed to different fluences of 11.1MeV/u

Xe+ ions per cm2: (a) no irradiation; (b) 5× 1011; (c) 1× 1012; (d) 1× 1013.

X-ray diffraction

Powder hBN samples were irradiated with gold ions at room temperature and

without applied pressure. Gasket material was rhenium, pressure transmitting

medium was a methanol-ethanol mixture (4:1), and a small ruby chip served

for pressure measurements. After each pressure increase the material was kept

under these conditions for at least one hour in order to stabilize the lattice struc-

ture. Each diffractogram was measured in a full 360◦ mode. The investigation

of the non-irradiated sample and the material with exposure to 1×1012 ions per

cm2 was conducted at the European Synchrotron Radiation Facility (ESRF).

The sample irradiated with 5×1011 ions per cm2 was investigated at the Ad-

vanced Photon Source (APS) of Argonne National Laboratory. The integrated

diffraction patterns are summarized in Figure 4.19.
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Figure 4.17: E2g Raman band of hBN single crystal samples, seen in Figure 4.16 at dif-

ferent pressures. The disappearance of this vibrational mode occurs at lower pressures

when irradiated with gold ions prior to compression. At highest fluences (d), the Raman

band loss takes place significantly more abruptly.
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Figure 4.18: Positions of the E2g Raman bands of hBN crystals, exposed to different

fluences of gold ions. The hatched areas mark the pressure range with detectable hBN

traces. At higher compressions no signs of the primary phase were measurable. Obviously,

the highest pressure of hBN detection and the exposed irradiation dose are related with

each other. (a) no irradiation, (b) 5×1011 Au/cm2, (c) 1×1012 Au/cm2, (d) 1×1013

Au/cm2. This figure summarizes the findings of Figure 4.17.

Table 4.4: Samples for the in-situ XRD measurements. Each sample was embedded in

rhenium gaskets. Pressure transmitting medium: methanol:ethanol (4:1).

material fluence ion irradiation- XRD

[Au+/cm2] facility

hBN – – – ESRF

hBN 5×1011 Au Unilac APS

hBN 1×1012 Au Unilac ESRF
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(a) no irradiation

(b) Ex-situ irradiation with 5×1011 Au ions per cm2

(c) Ex-situ irradiation with 1×1012 Au ions per cm2

Figure 4.19: Synchrotron X-ray diffraction: Pure hexagonal BN (purple curves), pure

wurtzitic BN (orange curves), and BN samples with both hexagonal and wurtzitic traces

(black curves). The samples (b) and (c) were irradiated ex-situ with different fluences.
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Figure 4.20: Intensities of the hBN and wBN reflections in comparison, integrated and

normalized to the maximal value, as a function of pressure. Upper graph: [110], medium

graph: [100], lower graph: [002]. This illustrates the pressure phase transition for three

samples, pristine and irradiated with Au+ ions of two different fluences.





5 Discussion

The very first idea to irradiate boron nitride was the query, whether traversing

ions can trigger phase transitions if the pressure of a hBN sample is adjusted

in such a way, that the material is near the transformation boundary to wBN

(see Figure 2.2). Shock waves can propagate along the ion track according to

the Coulomb explosion model [30], and therefore an additional pressure effect is

supposed to occure. Due to the irreversibility of the hBN-wBN transformation,

the wurtzitic structure thus should be detectable even when the pressure is

released and the sample has returned into the stability field of its hexagonal

phase. The temperature increase on the other hand, which is described by the

thermal spike model [26, 132], may then bring the thermodynamic conditions

of the sample towards higher thermal energies. Hence, simultaneous pressure

and temperature effects of traversing charged particles give rise to aim for an

ambigious goal: the fabrication of cubic boron nitride1.

However, this aim could not be realised. Even wBN powder samples, irradi-

ated at 21GPa did not show any trace of cBN using ex-situ Raman spectroscopic

measurements, which were carried out after a deactivation time of two months.

Moreover, the wurtzitic phase could not have been desolved by ex-situ Raman

spectroscopy either. Nevertheless, powder XRD clearly revealed the transforma-

tion from hBN into wBN and documented the quenching of the latter structure

after sole pressurization. Figure 5.1 compares X-ray diffractograms of plain,

non-irradiated hBN powder with those samples that were either only pressur-

ized to 21.1GPa or both irradiated with a high fluence of heavy ions (4.5×1011

Pb+/cm2) and pressurized to 21.0GPa simultaneously. Obvious changes oc-

cured taking into account the single peak intensities, which entailed further
1A successful experiment would have raised hopes for the transformation of graphite into

diamond induced by swift heavy ions on samples under pressure.

69
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investigations concerning samples exposed to swift heavy ion irradiation and

high pressure at the same time.
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Figure 5.1: X-ray diffraction on pristine hBN powder (a), which as well serves as the

starting material for a sole pressurization up to 21.1GPa (b), and an irradiation with

4.5×1011 Pb ions at 21.0 GPa (c). For reasons of comparison: chemically generated

wBN (Dubrovinskaia et al. [25]. The polymorph reflexion in (b) has disappeared almost

entirely.

5.1 Radiation Stability examined by XRD

Besides ion-beam induced crystalline to crystalline phase transformations in

insulators [6, 7, 9, 131] and metals [21], intense exposure to this kind of ioniz-

ing radiation can amorphize initially crystalline samples [68, 74]. In analogy to

metallic phases, which are commonly believed to be nearly insensitive to elec-

tronic energy loss, compounds with strong ionic binding and directed orientation

of the interatomic bonds also tend to withstand high S e [81]. Very mobile charge



5.1 Radiation Stability examined by XRD 71

carriers thus prevent the absorbed energy to be transferred from the electron

subsystem to the atomic lattice, and therefore no fulminant melting within the

wake of the ion can occur. Moreover, temperature influence plays a crucial role

by means of melting the material. Since our irradiations took place at room

temperature, no elevated degree of amorphization could be expected and, as

depicted in Figures 4.2, 4.3 and 4.4, no amorphization was detected via X-ray

diffraction, since no significant broadening and no decreasing of the reflections

in the diffraction patterns emerged.

On the other hand, due to the ionic and covalent character of the BN-bonds,

ion beam-induced amorphization could not be excluded entirely. Hexagonal

BN in particular, which possesses very weak interlayer attraction, has been

proven to be prone to amorphization under the application of mechanical forces

[49], resulting in deformation, shearing along the basal planes, and twinning

in the crystal. Nevertheless, noticeable mechanical stress is not supposed to

be introduced into the hBN lattice via ion beam transit. Cubic as well as

wurtzitic BN are, due to their outstanding hardness (Table 2.3), less susceptible

to mechanical influences.

Graphite whose crystal structure is similar to that of hBN, nevertheless amor-

phized under ion bombardment, but only after exposure to fluences higher than

1×1013 ions per cm2 [86] and in the regime of nuclear stopping using He ions,

which are essentially lighter than the projectiles utilized in this work. Ni-

wase [86] therefore proposed a model in order to describe the amorphization

process in basal planes as a function of ion fluence, which results in emanated

lattice defects:

Lattice defects Irradiation-induced defects are classified into three types of

interstitial defects (single- and double-interstitials, interstitial loops) as well as

three types of vacancy defects (single vacancies, collapsed lines and vacancy

loops). The h-regions are areas of structures with hexagonal shape, whereas

d-regions are characterized by disorder.

Amorphization process Due to a relatively high activation energy for vacancy

hopping from one layer to its neighbouring one, such a defect is capable only
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to move intralayer-wise, wheras interstitial atoms are forced to settle between

the basal planes. However, has the energy loss of the impinging ion once caused

the displacement of a B or N atom off its site, it is supposed to form a double-

interstitial with an atom of the different species. The single-vacancy concentra-

tion, which is thus twice the number of the double-interstitial concentration [86],

reaches a quasi-steady state at a certain fluence. In graphite, the hexagons be-

gin to collapse when a significant amount of double-vacancies has emerged. The

h-regions will then transform to d-regions, and the entire system eventually

amorphizes. Although this process is described for graphite, it is likely to occur

in hBN in a similar fashion (see Figure 5.2).

Figure 5.2: Proposed structure of the collapsed line induced by a double-vacancy in hBN.

Due to repulsive interaction between energetic ions and nuclei of the basal planes

Our measurements clearly showed consistent results, which can be described

by the above mentioned processes. On the one hand, XRD-patterns of irradi-

ated BN powder samples do not give rise to significant amorphization in all three

allotropes up to fluences of 1×1013 Ni ions per cm2 (Figures 4.2, 4.3 and 4.4).

The decreased Raman band intensities (Figure 4.1) can be interpreted as the ac-

cumulation of vacancies within the lattice under irradiation with up to 1.5×1013

Pb ions per cm2, restraining the E2g vibrations in hBN. The increased back-

ground is as well attributed to the generation of defects, which can become

visible in colour centers (F-centers).
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5.2 Ion-induced Colour Change

Ion irradiation apparently causes coloration of hBN (Figures 4.5 and 4.6) as well

as cBN crystals (Figure 4.8).

For cubic BN, Nistor et al. [85] discovered several new, radiation-induced,

isotropic paramagnetic centers via high-frequency electron spin resonance. UV

irradiation of both p- and n-type cBN yields centers involving “very likely“ pro-

tons. Irradiation of n-type cBN on the other hand with 1MeV electrons results

in the formation of vacancy associated paramagnetic defects and quasi-free elec-

trons in colloidal particles. Protons of 2MeV have been used by Manfredotti et

al. [71] in order to investigate the irradiation hardness of luminescence peaks.

In cBN it was found that ion beam-induced luminescence is dominated by three

bands, one at approximately 2 eV, and the other two at higher energies. These

three bands seem to be relatively radiation-hard and to be related to defects

induced by doping. It is worth mentioning that we attempted to collect iono-

luminescence signals using an ellipsoidal mirror and light amplifiers, focussing

on a cBN single crystal when irradiated with carbon ions. Unfortunately, no

signal could be detected. Shishonok and Steeds [107] irradiated cBN with elec-

trons and discovered interstitial-related optical centres. It is thus very likely to

induce color centers due to vacancies in the cBN lattice, caused by swift heavy

ion irradiation, accompanied by decreased LO and TO Raman band intensities

and simultaneously increasing luminescence backgroung (Figure 4.9).

Hexagonal BN however, is capable to develop color centers in nitrogen va-

cancies [58], where electrons of the boron shells can remain due to its partly

ionic character. The fact that hBN irradiation yields a strong orientation de-

pendent colouring effect (Figures 4.5 and 4.6) is suggested to result from the

anisotropic electron density [16]. As known from (2.13), the energy of a travers-

ing charged particle is transferred to the actual atomic lattice of the crystal via

electron-phonon coupling according to the thermal spike model.

An ion, hitting the hexagonal layer parallel to c, suffers a larger electronic

energy loss because of a higher “effective electron density“ than an ion, which

traverses the crystal perpendicula to c, i.e. parallel to the hexagonal layers,

where the electron density is inhomogeneously distributed, ranging from its
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maximum along the hexagonal planes and its minimum in between two layers.

The well known channeling effect [92, 100, 101, 118] can be used to describe

the observed orientation dependent colouring effect. An ion, entering the hBN

crystal perpendicular to c, is forced in between two neighbouring layers due

to their repulsive charges (Figure 5.3). Hence, it is unlikely to transfer energy

from the energetic ion to the lattice, preventing it from F-center generation.

Otherwise, defects, leading to an increased Raman luminescence background,

accompanied by a depressed E2g band intensity (Figure 4.7) must have been

produced. In summary it can be suggested, that irradiation along the hexagonal

layers most likely induces only one-boron centers (Figure 5.9), which are not

known to be colour centers. On the other hand, irradiation parallel to the hBN

c-axis may generate both one-boron centers as well as three-boron centers. The

latter is proved to be a colour-center [58] and therefore most likely the reason

for the obvious color change.

c

Figure 5.3: Principle of the channeling process in hBN. The impinging ions are constrained

to move in between the hexagonal layers, reducing their ability to transfer kinetic energy

to the lattice.

Vacancy creation is essential for the forming of colour centres, and therefore

needs to imply good electron phonon coupling. Atomic displacement, directly

transferred by nuclear collision is negligible due to the very little cross section

for such a process and the fact, that the ion transit is in the electronic energy

loss regime (Figure 2.4 (a)).

In general, the exposure of BN to ion irradiation introduces several changes

within the volume of the material determined primarily by the penetration depth

of the impinging ions. Such effects are local densification, compressive stress or
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production of point defects. The production of such point defects in hBN and

cBN has been studied theoretically, using for example the density functional

theory [69, 89, 105]. Orellana and Chacham [89] found that the self-interstitials

Ni and Bi in hBN have lower formation energies than those of the vacancies VB

and VN.

5.3 Irradiations under Different Pressures and

Orientations

Raman spectroscopic measurements, depicted in Figures 4.11 and 4.12, and

summarized in Figure 4.13, clearly reveal orientation and pressure dependent

processes, triggered by heavy ion irradiation. As under exposure to energetic

Xe+ ions at vacuum conditions, experiments at elevated pressures showed similar

tendencies by means of equalization of the E2g Raman band intensity and the

luminescence background. Differences only emerge, when ions traverse the hBN

crystal parallel to the c-axis. Here, the above mentioned equalization seems to

be the more detained the higher the pressure.

The development of the luminescence background as well as the decreasing E2g

intensities for the three pressures are plotted seperately in Figure 5.4 up to the

fluence of 1.2 ions/cm2. As predicted, irradiation leads to tendentiously decreasing

Raman band intensities, accompanied by increasing luminescence background.

However, the crystals, exposed to the heavy ion beam perpendicular to their

c-axes react more distinctly. E.g., after exposure to 1.2Xe+/cm2, the area of the

E2g band has drop to 26% of the value measured on the pristine sample, when

irradiated ⊥ c at 8.7GPa. The same fluence and pressure, but irradiated ‖ c,

causes a Raman band intensity of 91% of the value of the virgin crystal.

Obviously, ions interact with the basal planes in a strong orientation depen-

dent manner, leading to the generation of F-centers only when moving along

c. However, when pressure is applied to a solid state body, atoms are pushed

together, which increases the charge density between them. The accompanying

reduced electron-nucleus distance again increases the electron-electron repul-

sion and induces orbital overlap and hybridisation. Eventually pressure leads
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to closing of band gaps, converting the material more and more into a metal.

Pressurization therefore strengthens chemical bonds and cohesive properties of

cBN [141,145], which possesses similar σ-bonds as hBN within its hexagons. On

this note, pressurization should detain the hBN structure from being damaged

by heavy ion irradiation. The behaviour of the hBN crystals, oriented to the

incident beam parallel to c is thus consistent with this suggestion.

On the other hand, the uniform reaction of the hBN samples with the c-axis

oriented perpendicular to the ion beam, regardless of the pressure, implies a dif-

ferent defect accumulation process. The strongly non-isotropic compressibility

of hBN is well known [116, 117]. At a pressure of 4.3GPa the unit cell dimen-

sion are c/c0 = 0.91 and a/a0 = 0.995. Furthermore, a pressure of 8.7GPa

means c/c0 = 0.87 and a/a0 = 0.99. Considering the above mentioned channel-

ing effect, an appreciable contraction of the inter-layer distance in hBN must

reduce the possibility of the impinging ion to traverse the crystal in between

two layers without contacting them. Thus, pressure increases the cross-section

for ion-target interactions when irradiated perpendicular to c. In contrast to

the irradiation along the c-axis, at which the effective density remains nearly

constant.

5.4 The hBN → wBN Phase Transformation

In-situ powder XRDmeasurements clearly show pure hBN up to (10.2±0.2)GPa

in all samples, regardless if they were exposed to swift heavy ion irradiation or

not. These findings are in good agreement with the pioneering work of Corrigan

& Bundy [19]. Though Raman spectroscopy on single crystals, however, can

not resolve the wurtzitic phase, the E2g Raman band of hBN could be detected

with almost constant intensities up to (10.87± 0.05)GPa. Again, regardless of

the irradiation fluence. Nevertheless, the deviating E2g intensity curve can be

explained by the incipient transition into the wurtzitic phase in this pressure

regime, which reduces the single crystal hBN sample to wBN powder. In accor-

dance with our in-situ XRD data, the phase transition into wBN is a lingering

process.
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Figure 5.4: Developments of the normalized E2g Raman band intensity (left axis of or-

dinate) and the luminescence backgroung (right axis of ordinate) of the orientation

dependent hBN crystals, and as a function of ion fluences. These values are seperated

from the ratio ζ of Figure 4.13.
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Figure 5.5: Proportions of the hBN phase in comparison to the wBN fraction as a function

of pressure, and for powder samples, non-irradiated as well as exposed to two different

fluences of Au+ ions. Based on the normalized intensities of the hBN and wBN [110]

reflections (upper graph), and [100] reflections (lower graph).
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5.4.1 X-ray diffraction

Prior irradiation with energetic Au+ ions (11.1MeV/u) causes a more abrupt

transformation as the development of the [100] and [110] reflections points out.

Figure 5.5 compares intensities of the hexagonal [100] and [110] reflections with

those of the wBN phase as a function of pressure. The diagram can be distin-

guished in three pressure regimes: The first regime is characterized by constant

value of 1 of the ratio between the intensities of the hexagonal lattice reflections

and those of the sum of both the hBN and wBN peaks together. This indicates

no transformation to wBN and a pure hBN phase.

The second pressure regime begins around a pressure of (10.2 ± 0.2)GPa,

indicated by the emergence of wBN reflections. The hexagonal lattice begins

to alter its structure. The pressure at this point overcomes the repulsive force

between the stacked B and N atoms of adjecent layers, and the weak inter-

layer π-bondings, which exhibit significant ionic charecteristics are on the verge

of changing into covalent sp3 hybridizations. The initiation of the hBN →

wBN phase transformation is not affected by ion irradiation on the samples

before pressurization. The declining slope between 10.2GPa and 12.5GPa in

the IhBN/(IhBN+IwBN) vs. pressure diagram is also irradiation independent and

goes over in a lower, but still exponentially declining curve, which marks the

third and highest pressure regime.

Nevertheless, at a pressure of (17.9± 0.1)GPa, the sample exposed to the

highest fluence of 1×1012 ions per cm2 has converted to wBN entirely, whereas

both the powder suffering from bombardment with 5×1011 ions per cm2 and

the pristine sample still possess fractions of hBN, indicated by the remaining

h(100) and h(110) reflections up to P = (24.9± 1.0) GPa.

Meng et al. [75] investigated the formation of sp3 bonding during the hBN

→ wBN phase transition on powder samples, using inelastic X-ray scattering

and near K-edge spectroscopy. The results are in good agreements with our

findings. Furthermore, Meng et al. observed a strong orientation dependence

of the emergence of the σ and π components, representing hBN and wBN,

respectivelly. This behaviour is explained by the geometric properties of the

hBN crystals, which are flat grains with the tendency to align preferentially with
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their c-axis along the direction of the applied pressure (Figure 5.8). Therefore,

these crystals transform into wBN at the lowest forces, applied to the diamond

anvils.

Hence, the remaining [002] reflection (lower graph in Figure 4.20) of the pris-

tine sample and the of the powder, which was exposed to 5×1011 ions/cm2, up to

a pressure of (24.9± 0.5)GPa is due to the non-isotropic pressure within the

sample chamber, and the higher pressure along the anvil axis (see Figure 5.8).

The hexagonal crystals therefore tend to allign their c-axis perpendicular to

the anvil surface. Only the few crystals, which remain somehow with c paral-

lel to the surface of the diamond anvils, are those crystals, which transform to

wurtzitic BN at last, when overall pressure is rising.

In order to understand the possible role of irradiation on the hBN → wBN

phase transition, it is worthwhile to recapitulate the transformation process

considering the generation of defects, induced by decelerated charged particles

in matter.

As described elsewhere [57, 89], nitrogen interstitials (Ni) are the most sta-

ble defects in hBN. Being arranged between adjacent layers, these interstitials

can induce buckling (Figure 5.6) of the basal planes [79]. Though Mosuang &

Lowther investigated the hBN to cBN phase transition2, their findings are suit-

able for the understanding of the mechanism behind the transition into wBN.

As described in the theory chapter of this work, the transformation of hBN into

wBN implies the approach of B and N atoms of adjacent layers, which requires

buckling of the hexagons in the plane [75,130]. Hence, irradiation is suggested to

ease the conversion of the interlayer π bonds, which is partial ionic into stronger

and predominantly covalent σ bonds, necessary for the forming of sp3 orbitals

in wBN.

5.4.2 Raman spectroscopy

Raman spectroscopic measurements do not differ considerably from XRD re-

sults. Unlike the XRD measurements, where powder samples were investigated,
2Mosuang & Lowther also proposed ion bombardment to serve as a catalyst in the hBN →

cBN phase transition [79].
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Figure 5.6: Top view along [1120] in the crystal structures of hBN (left) and wBN (right).

Buckling (middle) can be induced by interstititials [75,130], and therefore ion irradiation

prior pressurization can make the pressure driven hBN → wBN phase transition more

abrupt.

Raman spectroscopic probing was applied on single crystals (Figure 4.16), which

were all oriented with its c-axis parallel to the diamond axis along the direction

of the highest pressure gradient. Thus, all crystals were exposed to the same

conditions. Nevertheless, as seen in Figure 5.7, a trend towards lower pressure

in terms of the accomplishment of the phase transition into wBN is observable.

The Raman spectra, where the integral E2g band intensity, normalized to the

first measurement at (6.71± 0.05)GPa, is plotted as a function of pressure, can

be divided in two regimes. The first one comprehends data points, recorded at

P ≤ 10.2GPa, and the second one at P ≥ 10.78GPa. Data points of the first

regime do not reveal significant differences by means of irradiation fluences, but

the well-defined transition from the lower-pressure to the higher-pressure regime

is again the more abrupt the higher the fluence of Xe+ ions, which was applied to

the crystals prior pressurization. In the second pressure regime, the unirradiated

sample showed a tendency to the highest, normalized intensities; followed by the

crystal, irradiated with 5×1011 Xe+ ions per cm2, and the crystal, irradiated

with 1×1012 Xe+ ions per cm2. The single crystal, irradiated with 1×1013 Xe+

ions per cm2, does not reveal traces of the hexagonal phase beyond a pressure
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Figure 5.7: E2g Raman band intensities of the four irradiated hBN crystals (Figure 4.16).

Each intensity of Figure 4.17 is normalized to the Raman band area of the value, obtained

at P = 6.17GPa and displayed vs. pressure.

of (10.78± 0.05)GPa.

The sharp edge in the curvature of the Raman spectra can be explained by

a powderization of the hBN crystal, when transforming into wBN. However,

the remaining fraction of the hexagonal phase is not fluence indipendent. It

is suggested, therefore, that irradiation-induced defects [79] can weaken the

hexagonal lattice. Apparently, this does not result in a significantly depressed

phase boundary by means of pressure. On the other hand, ion bombardment

and the induced lattice damage can form smaller grains, as known from ion-

beam milling [35,110], which eventually reduces the Raman scattered intensity.

However, this would not explain the analogies to the XRD-data. It is more

likely, that interstitial atoms, kicked off their original sites by traversing ions,

act on the process of phase transition catalytically, as proposed by Mosuang &

Lowther [79].
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Figure 5.8: Inhomogeneity of the pressure distribution within the sample chamber in the

gasket, causing the hBN c-vector to be aligned along the diamond axis (left). Those

hBN crystals, oriented with the c-axis perpendicular to the diamond anvil axis (σ3) can

resist transformation to wBN due to minor effective pressure applied in c direction of

the crystal (right).

5.5 Nature of the Defects

Geist and Römelt [34] identified and studied two types of paramagnetic centers

in hexagonal BN (Figure 5.9). In one type, an unpaired electron was shown to in-

teract with a single 11B nucleus, giving rise to a four-line electron-paramagnetic

(EPR) spectrum, and the defect was called a “one-boron center”. A ten-line

EPR spectrum occurs, if three 11B nuclei share one unpaired electron, which

is referred to as a “three-boron center” . Boron possesses two stable isotropes:
11B and 10B, with natural abundances of 81.17% and 18.83%, respectively [83].

With their different nuclear spins and magnetic moments, the two types of

centers can be clearly identified using EPR. Khushidman et al. [58] suggested

that the three-boron centers are actually F-centers. Furthermore, Moore and

Singer [78] assumed on one hand the thermal production of the three-boron

centers to be due to diffusion of carbon into hBN, and on the other hand by the

effect of ionizing radiation. Here, the paramagnetic centers produced by irradia-

tion appeared to be identical to those produced thermally. Their hypothesis was

based on simplified π-electron quantum-chemical calculations which suggested

that a nitrogen atom carries a negative charge in the hexagonal structure. Elec-

trons can therefore be trapped in nitrogen vacancies – thus forming F-centers.

The energy difference between the defect state and the conduction band is

evaluated as 1.0 eV for three-boron centers, and 0.7 eV for a one-boron cen-
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ter [57]. However, pure white hBN was not affected by prolonged ionizing irradi-

ation. Carbon impurities are thus considered as responsible for the stabilization

of such F-centers. Jiménez et al. [53] proposed different types of nitrogen vacan-

cies and showed that such vacancies are common defects in ion bombarded hBN,

and part of the nitrogen atoms displaced from their crystalline sites moved to

interstitial positions along with a fraction of the impinging ions that can remain

embedded in the material. However, this group used low-energy N ions and

therefore enriched the hBN matrix with nitrogen.

Displacement of a nitrogen atom from its site within the crystal requires

6.4 eV [1], necessary to surmount the strong σ-bonds. This cohesive energy is

similar to that of cBN, but considerably higher than the cohesive energy between

the adjacent hexagonal layers, which is reflected in the short distance to the

neighbouring boron atom of 1.45Å, and a wide interlayer spacing of 3.33Å [99],

produced by weak π-bonds. Therefore, the electron density in hBN is concen-

trated within instead of in between the layers [16]. Hence, a charged particle,

traversing the system hBN, is being decelerated in a strongly anisotropic man-

ner.

e-

(a) one-boron center

e-

(b) three-boron center

Boron

Nitrogen

Nitrogen-
vacancy

Figure 5.9: Different types of boron centers in BN. Only the three-boron center is known

to be a F-center [58].
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Though these experiments on boron nitride shed light on irradiation-induced

processes as colourization, channeling, and a pressure related phase transition,

the influences are not fully understood. Therefore, further investigations on

irradiation damages and alterations in boron nitride are a matter of particular

interest. Also, due to applications like the usage of cBN as anvil material in

Paris-Edinburgh-presses, that are exposed to swift heavy ion irradiation and

simultaneously applied high pressure, results of future research on this field

may be beneficial.

As demonstrated, no traces of amorphization could be revealed in all three

BN allotropes. Since such effects, however, were shown in graphite [86], but

after treatment with higher fluences as applied in this work, it is interesting

to learn, if irradiation doses of two orders of magnitude are capable for hBN

amorphization. The newly installed XRD and SEM working sites at the GSI’s

novel facility M-branch offer possibility for on-line investigations even on single

crystal specimens. However, in order to obtain a more detailed impression of

radiation damage, several other methods have to be introduced.

SAXS

Small-angle X-ray scattering (SAXS) benefits from X-rays, scattered on density

discontinuities and is therefore the ideal ion track detection method [60–62].

Recent SAXS measurements at the Australian Synchrotron facility revealed ob-

vious differences in the patterns of the hBN crystals, displayed in Figure 4.6

(a)–(c). The samples, which were irradiated with 1 × 1012 and 5 × 1012 Au+

ions per cm2 show evidence for the existence of ion track related damage for-

mation indicated by the high anisotropy of the scattering.

85
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First and preliminary analysis (Figure 6.1) revealed track radii of ≈ (21)Å,

as suggested by Kluth & Rodriguez. Interestingly, no difference were measured

between samples of diffent orientations during ion bombardment (perpendicular

and parallel to the hBN c-axis).

Differences, however, occured in the scattering spectra for different fluences,

and it could be said that at the highest fluence (5× 1012 Au+/cm2) two popu-

lations of particles are present with an important scattering contribution.

In any case, further SAXS measurements of BN as function of ion fluence

(lower fluences in order to avoid track overlap) on thinned samples, and/or

additional TEM measurements can yield further information.

a) b)

c) d)

Figure 6.1: SAXS images of hBN single crystals: a) unirradiated sample, b) sample irradi-

ated to a fluence of 5×1012 Au+/cm2, c) and d) sample irradiated to a fluence of 1×1012

Au+/cm2. The halo in a) around the center comes from the unscattered X-ray beam.

Figures b), c) and d) show streaks, intersecting the center, which is a clear proof of

density discontinuities, most probably derived from ion tracks. All randomly distributed

lines around the center are negligible Kossel-lines.
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TEM

Transmission electron microscopy is a capable method for the investigation in

atomic dimensions, and therefore useful for promising investigations on ion

tracks in boron nitride. Though we could not verify any phase transition in

BN, which was irradiated without subsequent or simultaneous pressurization, it

might be possible to amorphize hBN in the wake of the traversed ion, as the

detected density inhomogeneities suggest.

In graphite, which resembles hBN, irradiation with high fluences of Ar+ ions

triggered the growth of nanocrystalline diamond [133]. Therefore, further TEM

investigations on irradiated hBN may eventually reveal the production of the

cubic phase, which is the diamond counterpart of boron nitride.

TEM also confirmed quenching of a Gd2Zr2O7 high pressure phase after simul-

taneous pressurization and ion irradiation [66], which additionally encourages

continuative research.

Channeling

The surprisingly arisen effect of the clearly orientation dependent irradiation

behaviour in hBN certainly deserves further regards, because hereby one can

access molecular information of the partly ionic and partly covalent character

of the sp2-bonds of hBN. Due to suggested channeling effect, ions, traversing

the crystals, are supposed to be decelerated in a different manner, depending

whether impinging parallel or perpendicular to the c-axis of hBN. On this note

it would be interesting to repeat the stopping experiment for heavy ions in

diamond [65], with hBN crystals, exposed to the ion beam with different orien-

tations. However, due to the small size of the crystals, such an experiment will

turn out ambitious.
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