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SUMMARY 
 

The process of gene expression in the nucleus consists of gene transcription into 

mRNA, posttranscriptional modification of transcripts and finally export of mRNA 

through the nuclear pore complex into the cytoplasm before translation into proteins 

can occur.  

Two of the protein complexes proposed to be involved in coupling of transcription 

and mRNA export are the SAGA complex (Spt-Ada-Gcn5-acetyltransferase) 

mediating transcription activation through histone acetylation and deubiquitination, 

and the TREX-2 (Sac3-Thp1-Cdc31-Sus1) complex, which interacts with the nuclear 

pore complex and is involved in the export of mRNA. 

Sac3, which is a central subunit of TREX-2, is suggested to integrate transcription and 

mRNA export through the CID (Cdc31-interacting domain) motif, which comprises 

~80 amino acids in the C-terminal part of the protein. This motif recruits Cdc31, a 

calmodulin-like protein, and Sus1, a protein functioning in transcription as well as 

mRNA export. In addition, the CID motif is required for correct targeting of TREX-2 

to nuclear pore complexes. 

The observation that Sac3CID acts as a crucial binding platform in TREX-2 and is also 

responsible for the interaction with nuclear pores makes it an attractive target to 

further unravel the genetic network of factors involved in transcription-coupled 

mRNA export. Mutants from a synthetic lethal (SL) screen with a sac3Δ allele have 

been analyzed for a genetic interaction with SAC3CID to identify factors that are 

specifically linked to transcription-coupled mRNA export. 

Among the SL strains that proved to be genetically interacting with SAC3CID, one 

strain was complemented by BUR6, the gene for a transcriptional regulator. Another 

strain could be complemented by SPE3, encoding the spermidine synthase. The small 

and basic molecule spermidine, produced by Spe3, was suggested to be involved in 

various nuclear processes like transcriptional repression and global chromatin 

organisation by interaction of spermidine with chromatin. These novel findings 

strengthen the connection of Sac3CID with transcriptional regulation. 

In addition to the search for novel genetic interactions, a complementary biochemical 

approach to study the link between transcription and export of mRNA was applied. 

Through a mutational analysis of Sus1, a factor interacting with Sac3CID inside 
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TREX-2 as well as with the transcriptional coactivator SAGA, it was possible to 

identify conserved residues that are crucial for the interaction of Sus1 with its partner 

proteins. One of the engineered sus1 alleles showed significant loss of interaction 

with both SAGA and TREX-2. In contrast, two other alleles yielded highly reduced 

interaction with TREX-2 while interaction with SAGA remained undisturbed. 

Biochemical, cell biological and genetic experiments with these alleles substantiated 

that the binding of Sus1 to Sac3CID (and therefore TREX-2) was disrupted without 

affecting the interaction with the SAGA complex. A mutational analysis of the single 

amino acid mutations revealed their contribution to the defects of the combined 

alleles. These findings will help to define the selectivity and specificity of how Sus1 

interacts with the complexes SAGA and TREX-2.  

Taken together, the results of my PhD thesis have revealed novel interactions for the 

genetic network of the pivotal motif SAC3CID while the creation of alleles that 

selectively uncouple Sus1 from TREX-2 provides the basis for a detailed analysis of 

the functions of the versatile protein Sus1 in transcription and mRNA export. 
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ZUSAMMENFASSUNG 
 

Der Prozess der Genexpression im Zellkern besteht aus der Transkription eines Genes 

in mRNA, posttranskriptionellen Modifikationen der Transkripte und schließlich dem 

Export der mRNA durch den nukleären Porenkomplex ins Cytoplasma, bevor die 

Proteintranslation ablaufen kann. 

Zwei der Proteinkomplexe, die vermutlich an der Kopplung zwischen Transkription 

und Export von mRNA beteiligt sind, sind der SAGA-Komplex (Spt-Ada-Gcn5-

Acetyltransferase), der die Transkriptionsaktivierung durch Acetylierung und 

Deubiquitinierung von Histonen vermittelt, und der TREX-2- oder auch Sac3-Thp1-

Cdc31-Sus1-Komplex, der mit der nukleären Pore interagiert und am Export von 

mRNA beteiligt ist. 

Es scheint, dass Sac3, eine zentrale Untereinheit von TREX-2, die 

Transkriptionsaktivierung und den Export von mRNA mittels des CID-Motivs 

(Cdc31-Interaktionsdomäne), welches ~80 Aminosäuren im C-terminalen Anteil des 

Proteins umfasst, integriert. Dieses Motiv rekrutiert Cdc31, ein dem Calmodulin 

ähnliches Protein, und Sus1, ein Protein mit Funktionen in der Transkription als auch 

im Export von mRNA. Außerdem wird das CID-Motiv für die korrekte Zielsteuerung 

von TREX-2 zu nukleären Porenkomplexen benötigt. 

Die Beobachtung, dass Sac3CID eine äußerst wichtige Bindungsfläche in TREX-2 

darstellt und zusätzlich verantwortlich ist für die Interaktion mit der nukleären Pore, 

macht es zu einem attraktiven Ziel, um das genetische Netzwerk von Faktoren, die im 

Transkriptions-gekoppelten Export von mRNA involviert sind, noch weiter 

aufzuklären. Mutanten aus einem „synthetic lethal screen“ (SL screen) mit dem 

sac3Δ-Allel wurden im Hinblick auf eine genetische Interaktion mit SAC3CID 

untersucht, um weitere Faktoren zu identifizieren, die in einer genetischen Beziehung 

mit Transkriptions-gekoppeltem mRNA-Export stehen. 

Von den SL-Stämmen, bei denen eine genetische Beziehung mit SAC3CID gezeigt 

werden konnte, wurde ein Stamm durch BUR6, dem Gen für einen transkriptionellen 

Regulator, komplementiert. Ein anderer Stamm konnte durch SPE3, dem Gen für 

Spermidinsynthase, komplementiert werden. Das kleine, basische Molekül Spermidin, 

das von Spe3 produziert wird, wird mit verschiedenen nukleären Prozessen wie 

transkriptioneller Repression und globaler Organisation von Chromatin durch 
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Interaktion mit Spermidin in Zusammenhang gebracht. Diese neuen Ergebnisse 

stärken die Verbindung von SAC3CID mit transkriptionellen Mechanismen. 

Zusätzlich zu der Suche nach neuen genetischen Interaktionen wurde ein ergänzender 

Ansatz verfolgt, um die Verbindung zwischen Transkription und Export von mRNA 

zu untersuchen. Mittels einer Mutationsanalyse von Sus1, einem Faktor, der mit 

Sac3CID innerhalb TREX-2 als auch mit dem Transkriptions-Koaktivator SAGA 

interagiert, war es möglich, konservierte Aminosäuren zu identifizieren, die wichtig 

für die Interaktion von Sus1 mit seinen Partnerproteinen sind. Eins der erzeugten 

Allele von sus1 wies einen signifikanten Verlust der Interaktion mit sowohl SAGA als 

auch TREX-2 auf. Im Gegensatz dazu ergaben zwei andere Allele eine stark 

reduzierte Interaktion mit TREX-2, während die Interaktion mit SAGA ungestört 

blieb. Biochemische, zellbiologische und genetische Experimente mit diesen Allelen 

erhärteten die Vermutung, dass die Bindung von Sus1 an Sac3CID (und dadurch an 

TREX-2) gestört wurde ohne die Interaktion mit dem SAGA-Komplex zu 

beeinflussen. Eine Mutationsanalyse der einzelnen konservierten Aminosäuren 

machten deren Beitrag zu den Alleldefekten deutlich. Diese Ergebnisse werden dabei 

helfen, die Selektivität und Spezifität der Interaktionen von Sus1 mit den Komplexen 

SAGA und TREX-2 zu definieren. 

Zusammenfassend haben die Ergebnisse meiner Dissertation neue Interaktionen im 

genetischen Netzwerk des zentralen Motivs SAC3CID offenbart, während die 

Erzeugung von Allelen, die Sus1 selektiv vom TREX-2-Komplex entkoppeln, die 

Basis für eine selektive Analyse der Funktionen des vielseitigen Proteins Sus1 in der 

Transkription und dem Export von mRNA zur Verfügung stellt. 
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1. INTRODUCTION 
 

A significant step in the evolution from prokaryotes to eukaryotes is the appearance of 

intracellular organelles confined by membranes. The introduction of membrane-

confined organelles entails a spatial segregation of intracellular processes that 

previously interlocked in the single prokaryotic cellular interior. The separation of 

processes by a membrane barrier allows for and requires a more fine-tuned regulation 

of sequential processes. Through compartmentalization, eukaryotic cells could afford 

a complex and fine-tuned interplay between separate processes that would be 

impossible to achieve without confined territories inside the cell. 

The most dramatic consequence of compartmentalization for eukaryotes concerns the 

process of gene expression. Genomic DNA is surrounded by the nuclear envelope, a 

double lipid bilayer, leading to a spatial and functional separation of transcription and 

translation. This situation makes an effective and selective transport across the nuclear 

membrane vitally important for the cell. 

Nuclear import and nuclear export happen through huge protein complexes spanning 

the nuclear membrane called nuclear pore complexes (NPCs). NPCs are the only way 

in and out of the nucleus for trafficking molecules as well as a site of extensive 

regulation and coupling of different cellular processes. 

 

 

1.1 The nuclear pore complex 
 

Roughly 200 nuclear pore complexes are embedded in the nuclear membrane of a 

typical yeast cell (Lim et al., 2008) and guarantee the perpetuation of transport 

between the nucleoplasm and the cytoplasm. These general mediators of 

nucleocytoplasmic transport show an eightfold rotational symmetry around the central 

cavity through which the transport processes across the membrane take place 

(Suntharalingam and Wente, 2003). The central framework of the NPC contains eight 

spokes which are clamped between a nuclear ring and a cytoplasmic ring on the 

respective sides of the membrane. Pointing out from the membrane-encircled nuclear 

pore complex is the so-called nuclear basket on the nuclear side of the membrane and 

the cytoplasmic fibrils reaching into the cytoplasm. Both of these terminal structures 
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serve to interact with proteins involved in nuclear transport (D'Angelo and Hetzer, 

2008; Fahrenkrog et al., 2001). 

 

 
Figure 1  Schematic of the nuclear pore complex (NPC) 
The figure shows a rough representation of the regions of a nuclear pore with the respective 
sizes given for S. cerevisiae (green) and a metazoan (X. laevis; red).  
Adapted from: http://sspatel.googlepages.com/nuclearporecomplex 
 

Nuclear pore complexes in yeast have a molecular weight of ~60 MDa while 

vertebrate NPCs come up to ~120 MDa (Hetzer et al., 2005; Tran and Wente, 2006). 

A nuclear pore is constructed from ~30 different proteins called nucleoporins and this 

number is roughly the same for yeast and higher eukaryotes (Cronshaw et al., 2002; 

Rout et al., 2000). All nucleoporins were previously shown to be present in 8, 16 or 

32 copies per NPC consistent with the structural symmetry.  

According to a structure prediction by Devos and collaborators, yeast nucleoporins 

contain at least one of eight different fold types and have different structural and 

functional roles in the nuclear pore complex (Devos et al., 2006): nucleoporins with 

transmembrane helices and cadherin folds localize to the exterior of the central 

framework and are thought to anchor the NPC to the nuclear envelope. The 

nucleoporins that are predicted to form the structural scaffold of the NPC are 

composed of α-solenoid or β-propeller fold domains. A large group of 12 of the ~30 

nucleoporins in yeast contains repeats of phenylalanine-glycine motifs (FG repeats), 

often in combination with coiled-coil domains that might anchor these nucleoporins to 
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the NPC. FG nucleoporins are suggested to line the pore channel and extend their 

natively unfolded FG repeat domains into the channel. These domains form a 

selective permeability barrier and are thought to be transiently interacting with 

transport factors during their passage through the pore channel (Denning et al., 2003; 

Frey and Görlich, 2009; Grant et al., 2003; Miao and Schulten, 2009). 

 

 
Figure 2  Distribution of nucleoporins of the nuclear pore complex 
Depicted are nucleoporins that contain phenylalanine-glycine (FG) repeats. FG repeats are 
thought to fill the pore channel and extend somewhat to the nucleoplasm and the cytoplasm. 
Note that Nup2 can asymmetrically localize to the nuclear or the cytoplasmic side (see text).  
Figure adapted from Stewart, 2007a. 
 

Some of the nucleoporins containing FG repeats are distributed symmetrically on the 

cytoplasmic and the nuclear side of the nuclear pore complex while others reside 

exclusively on one side (Fig. 2; reviewed in Stewart, 2007a). FG repeats of certain 

nucleoporins were shown to have an important function as docking and interaction 

sites for various general transport factors (Isgro and Schulten, 2007). 

Further functions of certain nucleoporins in nucleocytoplasmic transport have been 

revealed in detail (reviewed in Tran and Wente, 2006): nucleoporins positioned on the 

nuclear side of the NPC have functions in mRNP quality control (Nup60; Galy et al., 

2004) or recruitment of the mRNA export factor Sac3 to NPCs (Nup1; Fischer et al., 

2002; see below). The localization of Gle1 and Dbp5, two factors involved in mRNP 

remodelling (see below), at the cytoplasmic face of the NPC by interaction with 

Nup42 and Nup159 could assist to generate directionality on mRNP transport 

(reviewed in Stewart, 2007b). Another yeast nucleoporin Nup2 was found to localize 

to the cytoplasmic or the nuclear side of the NPC, dependent on its interaction with 

the GTP-bound form of the small GTPase Ran (RanGTP; see below). The dynamic 

localization of Nup2 (Dilworth et al., 2001) together with the involvement of this 
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nucleoporin in import termination (Hahn et al., 2008) could participate to ensure 

directionality of nuclear import through the nuclear pore channel. 

 

 

1.2 Transport through nuclear pore complexes 
 

Nuclear pore complexes have to provide a high rate of macromolecular transport 

while maintaining high selectivity at the same time. The rate of transport through a 

single NPC can add up to nearly 100 MDa per second (Ribbeck and Görlich, 2001).  

Various models for a conceivable mechanism of facilitated transport across the 

nuclear membrane are proposed and discussed extensively (reviewed in Weis, 2007). 

All models currently under discussion share the formation of a selective barrier by a 

meshwork of FG repeats that selectively restricts passage to macromolecules. The 

phenylalanine-glycine repeats (FG repeats) are natively unfolded structures that are 

present in nucleoporins that line the NPC channel and extend into its interior 

(Denning et al., 2003; Miao and Schulten, 2009; Tran and Wente, 2006). Passage 

through this meshwork of unstructured polypeptides by diffusion is limited to 

molecules smaller than 30-40 kDa (Ribbeck and Görlich, 2001) or ~2.5nm in radius 

(Mohr et al., 2009). Molecules of a greater molecular mass can only efficiently cross 

this barrier when bound to transport receptors that transiently interact with FG 

repeats. All nucleocytoplasmic transport receptors form a complex with their cargo 

and cross the nuclear pore channel by transient interactions with FG repeats inside the 

channel (Peters, 2009).  

Transport receptors can generally be classified by the direction of cargo transport that 

they help to accomplish (nuclear import or nuclear export) and differ in the way they 

mediate translocation of their substrates across the nuclear membrane. 

 

1.2.1 Karyopherin-dependent nucleocytoplasmic transport mechanisms 

 

Nuclear transport receptors that are carrying various kinds of macromolecules through 

NPCs are called karyopherins (meaning nuclear carrier; Radu et al., 1995) and belong 

to the importin β-like family of proteins, named after the first transport receptor that 

was identified to be mediating import into the nucleus (Görlich et al., 1994). The 14 
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proteins from this family in yeast (>20 in mammals) are responsible for the majority 

of macromolecular transport across the nuclear membrane. Of the 14 identified 

karyopherins in yeast, nine were shown to mediate nuclear export, four work in 

nuclear import and one functions in both import and export (Caesar et al., 2006; 

Mosammaparast and Pemberton, 2004; Pemberton and Paschal, 2005). The transport 

factors are usually named according to the process they are involved in, exportins in 

export from the nucleus and importins in nuclear import.  

Karyopherins exhibit structural homology of their N-terminal parts. These contribute 

to binding to the small GTPase Ran in complex with GTP (RanGTP; Cook et al., 

2007). The C-terminal parts are responsible for selective interaction with certain 

targeting signals in their cargo molecules.  

The processes of import into and export from the nucleus share certain common 

features but differ in the way that cargo is bound and released. The transport process 

starts when a cargo is bound by its corresponding karyopherin. The karyopherin 

mediates transport of its cargo across the nuclear membrane before it is finally 

released in the target compartment. The main difference between the properties of 

nuclear import and export consists of the binding to and release of the cargo from the 

karyopherin. These steps are regulated by and depend on interaction of the 

karyopherin with the small protein Ran in its GTP-bound form (RanGTP),. 

 

1.2.1.1 The Ran cycle in nucleocytoplasmic transport 

 

The small 25kDa GTPase Ran is essential for nucleocytoplasmic transport processes 

involving karyopherins. In the cell, Ran exists in two different forms, bound to the 

nucleotide GTP (RanGTP) or to GDP (RanGDP). Binding of RanGTP to 

karyopherins is needed for directional nucleocytoplasmic transport and a 

concentration gradient of the two forms between the nucleus and the cytoplasm is 

maintained by the following mechanism. 
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Figure 3  The Ran cycle 
Gradients of RanGDP (higher in the cytoplasm) and RanGTP (higher in the nucleus) are 
provided by the depicted mechanisms and factors. RCC1 bound to chromatin in the nucleus 
acts as a RanGEF (guanine nucleotide exchange factor), turning RanGDP into RanGTP. 
RanGAP localizes to the cytoplasmic face of NPCs and with the help of Ran-binding proteins 
(RanBP) induces GTP hydrolysis changing RanGTP to RanGDP. Adapted from Jeon, 2005. 
 

The two forms of Ran, RanGTP and RanGDP, can be converted into each other 

through the action of additional proteins in the Ran cycle (Fig. 3). RanGTP is 

transformed into RanGDP by the action of a RanGAP (GTPase-activating protein) 

and the Ran-binding protein RanBP1. RanGAP and RanBP1 are situated at the 

cytoplasmic side of the NPC (Mahajan et al., 1997) and can stimulate the weak 

GTPase activity of Ran by the factor 105 (Bischoff and Görlich, 1997; Bischoff et al., 

1994; Bischoff et al., 1995). Upon entry into the nucleus, RanGDP is converted into 

RanGTP by the RanGEF (guanine nucleotide exchange factor) RCC1, finalizing the 

Ran cycle (reviewed in Pemberton and Paschal, 2005). RCC1, as well as its yeast 

homologue Prp20 (Kadowaki et al., 1993), associates with chromatin by interaction 

with histones H2A and H2B, thus securing its nuclear localization (Bischoff and 

Ponstingl, 1991; Nemergut et al., 2001). 

To maintain the directionality and efficiency of nucleocytoplasmic transport it is 

crucial that the concentrations of RanGTP and RanGDP in the nucleus and the 

cytoplasm show a distinct gradient. This gradient is provided by the different 

localization of the accessory proteins RanGEF (nuclear) and RanGAP (cytoplasmic). 

The resulting concentration gradient of RanGTP and RanGDP serves as a cargo-

binding or -release signal for karyopherins (see above) and ensures the directionality 

of nucleocytoplasmic transport. Additionally, the concentration of Ran itself is higher 
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in the nucleus than in the cytoplasm because RanGDP is transported from the 

cytoplasm into the nucleus by the small protein NTF2 (nuclear transport factor; 

Ribbeck et al., 1998). 

 

1.2.1.2 Karyopherin-dependent import into the nucleus 

 

The majority of cargos for nucleocytoplasmic transport are mRNAs (exported to the 

cytoplasm) and nuclear proteins (imported into the nucleus). While the nuclear export 

of mRNA constitutes a different mechanism without involving karyopherins (see 

below), the import of soluble proteins into the nucleus follows the classical import 

route. Initially, the nuclear localization signal (NLS) of a cargo protein is recognized 

either directly by an importin β protein or through the adaptor protein importin α. In 

the classical import pathway, importin α binds to the NLS cargo and forms a 

transport-competent heterodimer with importin β (Goldfarb et al., 2004). The classical 

NLS for import of proteins into the nucleus is usually a short stretch that contains 

either one cluster of basic amino acids or a bipartite motif of two basic clusters 

separated by a linker of 10-12 residues (reviewed in Hahn et al., 2008). Next, the 

ternary NLS cargo:importin α:importin β complex moves through the pore by 

transient interactions with the FG repeats inside the pore channel. The exact process 

of translocation through the NPC is still poorly understood (see above and in Fried 

and Kutay, 2003; Weis, 2007) but it is clear that protein cargo generally traverses the 

nuclear membrane in a folded conformation, contrary to mitochondrial import 

(Görlich and Kutay, 1999). Binding of RanGTP in the nucleus subsequently induces a 

structural change in importin β that leads to dissociation of the NLS cargo (Cook et 

al., 2007), thus finalizing the import process. 

 

1.2.1.3 Karyopherin-dependent export from the nucleus 

 

The range of cargos for export from the nucleus into the cytoplasm includes proteins 

shuttling between the nucleus and the cytoplasm and different types of RNA such as 

tRNA, rRNA assembled in ribosomal subunits and mRNA. The exportin Cse1 (or 

CAS in humans) is responsible for the export of only one cargo, importin α (Kutay et 

al., 1997; Solsbacher et al., 1998; reviewed in Cook et al., 2007). Due to the 

significance of importin α for nuclear import, blocking its export by deleting Cse1 
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cannot be tolerated by the cell and leads to cell death. A second exportin with a whole 

plethora of export substrates is Crm1 (or exportin 1). More than 75 potential export 

cargos for Crm1 carrying the leucine-rich recognition motif called nuclear export 

signal (NES; Fornerod et al., 1997; Kosugi et al., 2008; Wen et al., 1995) could be 

identified (la Cour et al., 2003). Recently, the structure of Crm1 in complex with 

RanGTP and its cargo snurportin (an import adapter for small nuclear 

ribonucleoproteins, snRNPs) was solved (Dong et al., 2009; Monecke et al., 2009). 

This structure indicates that Crm1 recognizes and binds its cargo through a 

hydrophobic cleft accommodating an N-terminal, hydrophobic and NES-like stretch 

of the cargo protein. Crm1 recognizes its NES-cargo in the presence of RanGTP, thus 

initiating the export process. After the formation of the Crm1: RanGTP:cargo export 

complex, it is then translocated to the cytoplasm through the nuclear pore channel 

where GTP is hydrolyzed and Crm1, RanGDP and the cargo dissociate from each 

other (Matsuura and Stewart, 2004; Nigg, 1997; Ohno et al., 1998). The differential 

role of RanGTP or RanGDP in the processes of nuclear import and export likely 

contributes to the directionality of nucleocytoplasmic transport. An overview of the 

processes of karyopherin-dependent nucleocytoplasmic transport is shown in Fig. 4. 
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Figure 4  The Importin-Exportin cycle 
The export of cargo from the nucleus and the return of its exportin to the cytoplasm is 
depicted in the upper part, import of cargo from the cytoplasm into the nucleus and recycling 
of the respective importin in the lower part. For a more detailed account of the Ran cycle, see 
Fig. 3. IMP – Importin; EXP – Exportin; from Hill, 2009. 
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Similar to the export of protein cargo, tRNA transcripts form a ternary complex with 

RanGTP and the specific tRNA exporter exportin-t in the nucleus which dissociates 

upon GTP hydrolysis in the cytoplasm (Kutay et al., 1998). The structure of exportin-t 

from Schizosaccharomyces pombe (Xpot) alone and in complex with RanGTP and a 

tRNA could recently be solved, revealing new mechanistic details of this complex 

formation (Cook et al., 2009). Structural and biochemical data from this study 

indicate that Xpot associates with RanGTP before tRNA can be bound by the Xpot-

RanGTP heterodimer, indicating a defined order of complex formation. In the ternary 

complex, Xpot contacts the 5’ and 3’ ends of a mature tRNA, ensuring the correct 

processing of a tRNA before export can occur and thus connecting tRNA export to 

quality control.  

Interestingly, the Saccharomyces cerevisiae exportin-t homologue Los1 is not 

essential for the cell (Hurt et al., 1987). This indicates the existence of an alternative 

route for tRNA export. A linkage of tRNA export to tRNA aminoacylation was 

suggested as Los1 was shown to become essential when the function of a member of 

the aminoacylation machinery (Arc1) is perturbed (Simos et al., 1998). Other studies 

also connect Los1-independent export of a subset of tRNAs to aminoacylation 

although the export receptor for this pathway remains to be determined (Feng and 

Hopper, 2002; Grosshans et al., 2000). An additional factor involved in tRNA export, 

Cex1, was recently shown to channel aminoacylated tRNAs from the NPC to the 

ribosomal elongation factor eEF1α (McGuire and Mangroo, 2007) and thus to make 

exported tRNAs available for translation. 

Ribosome biogenesis and the export of pre-ribosomal subunits are complex and 

highly regulated processes. At this point, not much is known about the export 

mechanism of the 40S subunit but it seems clear that it involves the exportin Crm1 

and depends on a functional Ran cycle (Moy and Silver, 1999). Export of the large 

60S ribosomal subunit is better understood: the classical exportin Crm1 can bind to 

the pre-ribosomal subunit through the NES-containing adaptor Nmd3 and assists 

export in a RanGTP-dependent manner (Gadal et al., 2001). Recent findings from our 

laboratory could show that two other nuclear export receptors are involved in the 

export of the large pre-ribosomal particle. One of them, Arx1, is a rather unique 

export receptor as it does not show structural homology to any of the known transport 

receptors but to methionine aminopeptidases. In contrast to these, Arx1 does not have 

enzymatic activity and its central cavity does not interact with methionine. Instead, 
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the central cavity of Arx1 is predicted to be involved in binding to the late 60S 

particle and FG repeats, possibly facilitating the passage of the 60S particle through 

the nuclear pore (Bradatsch et al., 2007). A third export receptor for the 60S pre-

ribosomal particle was found to be the heterodimer Mex67-Mtr2, the general export 

receptor for mRNPs (see below). Mex67-Mtr2 contains a previously uncharacterized 

interaction surface with the pre-60S particle in the middle, NTF2-like domain (Yao et 

al., 2007). This surface is characterized by loop insertions which are important for 

pre-60S export and absent from the human homologue of Mex67-Mtr2, TAP-p15. 

Positively charged amino acids inside the loop insertions were shown to mediate the 

association of Mex67-Mtr2 with the pre-60S particle, presumably through direct 

contacts with the 5S rRNA. Additionally, the loop insertions of Mex67-Mtr2 could be 

shown to harbour a binding site for a structural nucleoporin that does not contain FG 

repeats (Yao et al., 2008). This interaction was shown to be required for efficient 

mRNA export and demonstrates a dual role for this surface of Mex67-Mtr2 in pre-60S 

and mRNA export from the nucleus. 

While the majority of nucleocytoplasmic transport of macromolecules involves 

karyopherins and a RanGTP gradient, there are examples for transport independent of 

the mechanisms described above. An important and well-studied example for a 

karyopherin-independent mechanism is the export of mRNAs assembled into mRNPs 

(messenger ribonucleoprotein particles) from the nucleus using a general mRNA 

export receptor that is structurally different from karyopherins (Herold et al., 2000). 

 

1.2.2 Karyopherin-independent export of mRNA from the nucleus 

 

The majority of mRNAs is exported from the nucleus independent of karyopherin β 

proteins or Ran. mRNA export is a complex process involving many RNA-binding 

and modifying proteins necessary to form export-competent mRNPs that can be 

translocated to the cytoplasm. 

 

1.2.2.1 mRNP composition and assembly 

 

The formation of an mRNP that is eventually exported from the nucleus is closely 

linked to the transcription of a nascent mRNA transcript. mRNAs are transcribed by 
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the RNA polymerase II as pre-mRNAs that become co- and post-transcriptonally 

modified. Modifications of the mRNA include the addition of 7-methylguanosine 

(m7G) to the 5’ end (5’ capping), cleavage of the 3’ end and subsequent addition of 

~200 adenine nucleotides in yeast (3’ polyadenylation) and removal of non-coding 

introns by splicing (Cheng et al., 2006; Cole and Scarcelli, 2006; Luna et al., 2008; 

Saguez et al., 2005). During the processing steps and packaging of the transcript into 

an mRNP, proteins involved in the mRNP export pathway are recruited to the particle. 

Among these are certain factors of the exon-junction complex (EJC) and SR proteins 

(for serine-arginine rich proteins) that assemble with the mRNA during splicing 

(Huang et al., 2003; Tange et al., 2004) and accompany the mRNP to the cytoplasm 

(Caceres et al., 1998; Dreyfuss et al., 2002; Windgassen et al., 2004). One of these 

factors in yeast, the protein Npl3, associates with the mRNA early in the transcription 

process (Lei et al., 2001) and was suggested to recruit the export receptor Mex67 to 

the nascent transcript. Upon exit from the nucleus, Npl3 is phosphorylated by the 

cytoplasmic kinase Sky1 and causes disassembly of the mRNP (Gilbert et al., 2001; 

Siebel et al., 1999; Yun and Fu, 2000). Phosphorylated Npl3 is subsequently 

reimported into the nucleus and recycled by dephosphorylation by Glc7 in the nucleus 

(Gilbert and Guthrie, 2004). An additional factor escorting the mRNP through the 

NPC is the DEAD-box helicase Dbp5, thought to dismantle the mRNP and release it 

from the cytoplasmic side of the pore, thus conferring directionality to mRNP export 

(Tran et al., 2007; reviewed in Stewart, 2007b). Dbp5 is recruited to the mRNP in the 

nucleus (Cole and Scarcelli, 2006) and exhibits RNA helicase activity that is activated 

by Gle1, a factor located on the cytoplasmic side of the NPC, and its cofactor IP6 

(inositol hexakisphosphate; Alcazar-Roman et al., 2006; Weirich et al., 2006). The 

mRNP remodelling activity of Dbp5 and active displacement of the poly (A)-binding 

protein Nab2 from the mRNP at the cytoplasmic side of the NPC (Tran et al., 2007) 

could be important for unidirectional transport and release of the mRNP from the 

NPC.  

An important process which is closely connected with and necessary for efficient 

mRNP formation and export, is the quality control of mRNPs. The quality control 

machinery monitors the correct assembly of mRNPs and makes sure that improperly 

processed or assembled mRNPs are retained in the nucleus and targeted for 

degradation (Schmid and Jensen, 2008). Surveillance steps take place throughout the 

generation and assembly of an mRNP, very early by exosome recruitment to nascent 
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pre-mRNPs (Andrulis et al., 2002; Hessle et al., 2009) as well as just before exit of 

the mRNP by the NPC-anchored Mlp1 protein which was shown to be important for 

the retention of unspliced mRNAs in the nucleus (Galy et al., 2004). An additional 

involvement of Mlp1 in the mRNA export process by interaction with the mRNA 

binding protein Nab2 was recently identified and found to be essential for mRNA 

export (Fasken et al., 2008). The dual role of Mlp1 is a good example of the interplay 

between different steps and processes involved in mRNA export mediated by the 

general export receptor Mex67-Mtr2 (reviewed in Luna et al., 2008). 

 

1.2.2.2 The general mRNA export receptor Mex67-Mtr2 

 

The heterodimer Mex67-Mtr2 (functionally homologous to metazoan TAP-p15) was 

first identified in yeast as the general mRNA export receptor to be necessary for 

export of nuclear mRNA through nuclear pore complexes (Grüter et al., 1998; Santos-

Rosa et al., 1998; Segref et al., 1997). The general mRNA export receptors, in yeast 

as well as in metazoans, consist of an amino-terminal (N) domain, a leucine-rich 

repeat (LRR) domain, an NTF2-like middle (M) domain and a UBA-like carboxy-

terminal (C) domain (Katahira et al., 1999; Santos-Rosa et al., 1998; Segref et al., 

1997).  

The N-terminal and LRR domains are important for the interaction with mRNA 

cargoes mediated by the RNA-binding protein Yra1 (see below and Strässer and Hurt, 

2000). The middle domain of Mex67 and its binding partner Mtr2 are both 

structurally related to the fold of NTF2 (Fribourg and Conti, 2003; Senay et al., 2003), 

the import factor for RanGDP (see above). Mex67 and Mtr2 interact with each other 

through their NTF2-like domains and both NTF2-like domains were shown to interact 

with FG repeat nucleoporins (Fribourg et al., 2001; Santos-Rosa et al., 1998; Strässer 

et al., 2000). Additional functions of yeast-specific loop insertions in the NTF2-like 

domains of Mex67 and Mtr2 in the export of the 60S preribosomal subunit have 

recently been demonstrated (see above and Yao et al., 2008; Yao et al., 2007).  

The C-terminal part of Mex67 has a UBA-like (ubiquitin-associated) fold that was 

shown to interact with nucleoporin FG repeats (Grant et al., 2003) as well as with 

Hpr1, a member of the TREX/THO complex involved in coupling of transcription and 

mRNA export (Hobeika et al., 2009). The FG repeat-binding domains situated in 

Mtr2 and the NTF2-like middle domain as well as in the C-terminal UBA domain of 
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Mex67 are necessary for transport of cargo through the nuclear pore and shuttling of 

the mRNA export receptor between the nucleus and the cytoplasm (Hobeika et al., 

2009; Terry and Wente, 2007).  

Mex67-Mtr2 accomplishes its classical role as the main export receptor for mRNPs 

with the significant contribution of the TREX complexes (TREX and TREX-2), 

connecting transcription and mRNA export. 

 

1.2.2.3 The role of the TREX complex in mRNA export 

 

The export receptor Mex67-Mtr2 can only fulfil its role in mRNA export efficiently 

when it is targeted to nascent transcripts by adaptor proteins. 

One of these adaptors is Yra1, an RNA-binding protein shown to be recruited to 

actively transcribed genes (Abruzzi et al., 2004; Lei et al., 2001; Zenklusen et al., 

2002) by interaction with an RNA polymerase II-associating factor, Pcf11 (Johnson et 

al., 2009) and the DEAD box RNA helicase Sub2 (Strässer and Hurt, 2001). Yra1 and 

Sub2 interact with the THO complex to be targeted to transcribing genes and nascent 

mRNAs. This complex consists of the four proteins Tho2, Hpr1, Mft1, and Thp2, and 

was reported to be involved in transcription elongation, mRNP biogenesis and mRNA 

export (Chavez et al., 2000; Hobeika et al., 2009; Jimeno et al., 2002; Rondon et al., 

2003; Rougemaille et al., 2008; Strässer et al., 2002). The export factors Yra1 and 

Sub2 associate with theTHO complex to form the larger TREX complex (together 

with Tex1; Strässer et al., 2002) and are subsequently loaded onto the early mRNP. 

After Yra1 and Sub2 bind to the mRNP, the export receptor Mex67-Mtr2 is recruited 

to the particle through binding to Yra1 (Strässer and Hurt, 2000) and most likely 

displaces Sub2 from the mRNA as both Sub2 and Mex67-Mtr2 were shown to 

interact with the same domains of Yra1 (Strässer and Hurt, 2001). Mex67-Mtr2, 

bound to the mRNP, subsequently assists in exporting the mRNA through the nuclear 

pore channel. Yra1 (Aly or REF1 in metazoans) as well as Sub2 (UAP56) are 

conserved in higher eukaryotes and their homologues were found to link splicing to 

mRNA export rather than transcription as in yeast (Luo et al., 2001; Masuda et al., 

2005; Zhou et al., 2000). This might be due to a higher percentage of intron-

containing genes dependent on the splicing machinery in higher eukaryotes than in 

yeast. 
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An additional role of the THO/TREX complex for genomic stability was analyzed in 

mutants of subunits of the complex. Disrupting the function of the THO/TREX 

complex by mutation of single components was shown to lead to DNA-RNA hybrid 

formation (R loops; Huertas and Aguilera, 2003) involving nascent mRNAs. 

Disturbed release of the mRNP from the chromatin template and incorrect assembly 

of the nascent mRNAs into mRNPs could make them available for DNA-RNA hybrid 

formation, leading to reduced transcription efficiency and genome instability (Jimeno 

et al., 2002; Libri et al., 2002; Tous and Aguilera, 2007; Wellinger et al., 2006). Thus, 

a functional interplay of transcription and export of correctly assembled mRNPs is 

necessary for genome stability and efficient delivery of translation-competent mRNPs 

to the cytoplasm. 

 

1.2.2.4 The role of the TREX-2 complex in mRNA export 

 

A second complex important for efficient mRNA export is represented by the  

TREX-2 complex, alternatively termed Sac3-Thp1-Cdc31-Sus1 complex (Fischer et 

al., 2002; Köhler and Hurt, 2007). The complex was found to assemble around the 

protein Sac3 which was originally identified as a suppressor of an actin mutation 

(Novick et al., 1989) and reported to be associated with leucine transport (Stella et al., 

1999). Sac3 is located at the nuclear side of the NPC by interaction with the nuclear 

basket protein Nup1 and directs mRNPs for export in cooperation with Mex67-Mtr2 

(Fischer et al., 2004; Fischer et al., 2002; Gallardo et al., 2003). 

 

 
Figure 5  Overview of the domains of Sac3 and their binding partners 
The protein Sac3 can be separated in a conserved middle domain and flanking N-terminal and 
C-terminal regions. Proteins depicted to be interacting with the C-terminal region were shown 
to bind to the CID (Cdc31-interacting domain) motif (see text). The boundaries are annotated 
below the sequence, numbers for the CID motif from Fischer et al., 2002. 
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The interaction with the general export receptor Mex67 and Thp1 is mediated by N-

terminal and middle regions (N+M domain) of Sac3, while the C-terminus was shown 

to be necessary for localization to the nuclear pore complex (Fischer et al., 2002; Fig. 

5). An additional putative member of the TREX-2 complex, Sem1, was recently 

shown to associate with Sac3 and Thp1 and might facilitate interaction of Sac3 and 

Thp1 with each other (Faza et al., 2009). An overview of the two complexes coupling 

transcription and mRNA export, TREX and TREX-2, is shown in Figure 6. 

 

 
Figure 6  The TREX complex and the TREX-2 complex and their functional 
environment 
The individual components of the THO/TREX and the TREX-2 complexes are depicted with 
their interactions towards chromatin-interacting complexes, the general mRNA exporter 
Mex67-Mtr2 and the nuclear pore complex (for TREX-2). Dotted lines represent predicted 
interactions between complexes. Adapted from Köhler and Hurt, 2007. 
 

A distinct C-terminal region of Sac3 termed the CID motif (for Cdc31-interacting 

domain) was identified as the platform for nuclear pore localization of the whole 

complex as well as for the interaction with the remaining TREX-2 members Cdc31 

and Sus1 (Fischer et al., 2004; Fig. 6). Cdc31 as well as Sus1 fulfil additional roles to 
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their TREX-2 functions in the cellular context. While Cdc31 is involved in the 

duplication of microtubule-organizing centers (Spang et al., 1993; reviewed in 

Helfant, 2002), Sus1 was originally found to be a functional member of TREX-2 as 

well as the transcriptional coactivator SAGA (Spt-Ada-Gcn5 acetyltransferase) which 

mediates histone acetylation and deubiquitination (Rodriguez-Navarro et al., 2004). 

Inside SAGA, Sus1 forms a deubiquitinating module (DUB module) with Ubp8 and 

Sgf11 which is anchored to SAGA by Sgf73 and mediates deubiquitination of histone 

H2B (Köhler et al., 2008; Zhao et al., 2008). Correct formation of the DUB module is 

essential for deubiquitination of H2B by the ubiquitin-specific protease Ubp8 which is 

in turn required for optimal transcriptional activation and regulation (see below and 

Daniel et al., 2004; Henry et al., 2003; Köhler et al., 2006; Köhler et al., 2008; Wyce 

et al., 2007). Performing these two functions, Sus1 was suggested to form a bridge 

between SAGA-dependent transcription inititation and the mRNA export machinery 

at the nuclear side of NPCs (Rodriguez-Navarro et al., 2004). 

A recent study from Jani and collaborators (Jani et al., 2009) revealed the atomic 

structure of the central scaffold Sac3CID bound to Cdc31 and Sus1 (see below). This 

study narrowed the boundaries of the interaction platform CID further and showed 

that it forms an extended α-helix with one copy of Cdc31 and two copies of Sus1 

sequentially wrapped around the helical rod formed by Sac3CID in the complex. 

Deletions of distinct binding surfaces of the CID motif for its partner proteins show 

that disruption of Sus1 or Cdc31 binding to Sac3CID can abolish NPC positioning and 

inhibit mRNA export, albeit to different extents (see Discussion and Jani et al., 2009). 

Notably, the presence of orthologues of Sac3, Cdc31 and Sus1 in higher eukaryotes 

suggests that this interaction platform might be conserved. In fact, a putative CID 

motif could be identified in the human Sac3 orthologue GANP and was able to bind 

to ENY2, the human Sus1 orthologue, in vitro (Jani et al., 2009). Similar results were 

previously obtained for the orthologues of Sac3 (Xmas-2) and Sus1 (E(y)2) in 

Drosophila and, in analogy to their counterparts in yeast, both proteins localize to the 

NPC and function in mRNA export (Kurshakova et al., 2007). 

On all accounts, the Sac3CID motif is a central platform inside the yeast TREX-2 

complex which has an important role in the integration of SAGA-dependent 

transcription and Mex67-dependent mRNA export. 
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1.3 Coupling of TREX-2 to the transcriptional coactivator SAGA 
 

The various processes taking place from the transcription initiation of a given gene to 

the passage of its mRNA transcript through the nuclear pore channel were shown to 

be functionally and physically coupled. There is a complex network of regulation and 

crosstalk between these processes which is necessary for efficient mRNP formation 

and export (reviewed in Luna et al., 2008; Maniatis and Reed, 2002).  

Lately, repositioning of genes to the nuclear periphery was shown to have an 

important role in the regulation and integration of transcription and mRNA export. 

The transcriptional coactivator complex SAGA and the mRNA export complex 

TREX-2 were concomitantly shown to be involved in this process and necessary for 

efficient transcription-coupled mRNA export from the nucleus. 

 

1.3.1 The concept of gene gating 

 

The distribution of chromosomes in the nucleus is known to be non-random and they 

are organized in so-called “chromosomal territories” in higher eukaryotes (Lamond 

and Earnshaw, 1998). These chromosomal territories seem to be absent in S. 

cerevisiae, however genomic loci could be shown to localize to so-called “gene 

territories” in yeast that become remodelled upon transcriptional activation (Berger et 

al., 2008). In the context of territorial localization of active and inactive genes, the 

nuclear periphery was thought to be connected with transcriptional silencing 

(Andrulis et al., 1998; Cockell and Gasser, 1999). This might be true for regions of 

constitutive heterochromatin like telomeres or other silenced loci that can become 

statically tethered to the nuclear periphery mediated by the heterochromatin-binding 

SIR complex in yeast (Ahmed and Brickner, 2007; Taddei et al., 2009; Towbin et al., 

2009). However, recent developments seem to nurture an earlier hypothesis of so-

called “gene gating” (Blobel, 1985). This hypothesis stated that the non-random 

distribution of chromatin in the nucleus results from the specific interaction of active 

chromatin regions with a nuclear pore complex which would gate a given gene and its 

transcripts to a single NPC in the nuclear membrane. This model might not apply to 

all genes but recent findings largely comply with the gene gating postulate: Various 

studies demonstrated that a whole set of genes was shown to rapidly reposition 
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towards the nuclear periphery upon transcriptional activation (Brickner and Walter, 

2004; Cabal et al., 2006; Casolari et al., 2005; Dieppois et al., 2006; Drubin et al., 

2006; Taddei et al., 2006). Repositioning to NPCs seems to be functionally coupled 

with the mRNA export machinery as it was shown to require the mRNA export 

receptor Mex67 (Dieppois et al., 2006) as well as the TREX-2 subunits Sac3 and Sus1 

(Cabal et al., 2006). The recruitment of genes to the nuclear periphery and their tether 

to NPCs was reported to depend on the promoter (Dieppois et al., 2006) or 3’UTR 

sequences (Abruzzi et al., 2006; Taddei et al., 2006).  

Dynamic repositioning to the vicinity of the NPC seems to be connected to 

transcriptional activation (see above) while the regions that are more statically bound 

to regions in between nuclear pore complexes tend to be silenced (reviewed in 

Towbin et al., 2009). These observations indicate that the connection between NPC 

positioning and gene activation, as suggested by the gene gating hypothesis, might 

serve as a general mechanism in eukaryotic cells. 

 

1.3.2 SAGA-dependent transcriptional activation 

 

The SAGA complex (Spt-Ada-Gcn5 acetyltransferase) is a modular ~1.8MDa 

multiprotein complex with diverse roles in transcriptional activation like recruitment 

of the transcription machinery to activated genes and chromatin remodelling 

(reviewed in Daniel and Grant, 2007). Remodelling of chromatin in the course of 

transcriptional activation mediated by SAGA includes histone acetylation and 

deubiquitination in promoter and coding regions of target genes (Govind et al., 2007; 

Grant et al., 1997; Huisinga and Pugh, 2004; Wyce et al., 2007). In yeast, SAGA is 

one of four complexes containing the histone acetyltransferase Gcn5 as a catalytic 

subunit (Lee and Workman, 2007). Acetylation of lysine residues of histone H3 by 

Gcn5 in promoter and coding regions of genes induces nucleosome eviction and 

transcriptional activation of the respective gene (Govind et al., 2007). These acetyl-

lysines can subsequently be recognized by a so-called bromodomain, a region present 

in Gcn5 and other factors that mediate chromatin remodelling and transcriptional 

activation (Mujtaba et al., 2007). In the case of SAGA, the bromodomain of Gcn5 

serves to retain the SAGA complex at acetylated histones H3 to cooperatively 

acetylate nucleosomes to fully activate affected genes (Li and Shogren-Knaak, 2009) 
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An additional function of SAGA lies in the deubiquitination of ubiquitinated histone 

H2B by the ubiquitin protease Ubp8 as part of the deubiquitinating (DUB) 

subcomplex of SAGA (Ingvarsdottir et al., 2005; Köhler et al., 2006; Lee et al., 2005; 

Shukla et al., 2006). The integrity of the DUB module containing Sus1, Sgf11, Sgf73 

and Ubp8 was shown to be important for correct deubiquitination by Ubp8 in vivo and 

in vitro as Ubp8 is enzymatically inactive when the module is not assembled (Köhler 

et al., 2008). Recent studies were able to show that the DUB module components 

have human orthologues which include ATXN7 (Sgf73), ATXN7L3 (Sgf11), USP22 

(Ubp8) and ENY2 (Sus1; Zhao et al., 2008). Similar to the role of Ubp8 in yeast, its 

human homologue USP22 is responsible for histone H2B deubiquitylation. Notably, 

the function of USP22 was shown to be required for progression through the cell 

cycle and found to be linked to diverse types of cancer which could be due to the role 

of USP22 in transcription regulation (Zhang et al., 2008). 

In yeast, efficient transcriptional activation and elongation seems to require a 

regulated sequence of ubiquitination of lysine 123 in histone H2B by Rad6/Bre1 

(Robzyk et al., 2000; Wood et al., 2003) and removal of ubiquitin by Ubp8 (Daniel et 

al., 2004; Henry et al., 2003; Weake and Workman, 2008). Furthermore, the 

ubiquitination of H2B seems to be linked to methylation of lysine 4 of histone H3 

(H3K4me), another histone modification associated with transcriptional activation 

(reviewed in Shilatifard, 2008). Thus, a functional DUB module is required for 

coordinated histone deubiquitination and subsequent steps necessary for the efficient 

activation of transcription. 

Transcriptional coactivation involving SAGA functions was shown to be needed for 

full expression of heat-shock genes (Zanton and Pugh, 2004), the PHO genes 

(Barbaric et al., 2003) and other genes important for a rapid response of the cell to 

altered environments (Lo et al., 2001; Qiu et al., 2004; Taddei et al., 2006). The best 

studied among the SAGA-dependent genes are the GAL genes as they are easily 

inducible by galactose and dependent on activation by SAGA (Bhaumik and Green, 

2001; Larschan and Winston, 2001). A physical link of SAGA components to NPC-

bound Mlp1 was recently shown to be involved in the repositioning of GAL1 to the 

nuclear pore (Luthra et al., 2007).  

Another link between SAGA and NPCs appears to involve the mRNA export 

machinery. Sus1 was reported to be a functional member of the mRNA export 
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complex TREX-2 as well as of SAGA (Rodriguez-Navarro et al., 2004). These 

findings moved the transcriptional coactivator into the center of our interest. 

Unexpected new aspects connecting SAGA with the mRNA export complex TREX-2 

came from a study performed in our laboratory which indicates that a region in the 

deubiquitinating (DUB) module component Sgf73 has a role in the association of the 

TREX-2 proteins Sac3 and Thp1 with SAGA (Köhler et al., 2008). Surprisingly, the 

dissociation of Sus1 from SAGA in a ubp8Δ background leaves this interaction intact, 

indicating that there is a TREX-2-SAGA connection that is not primarily mediated by 

Sus1. Still, a different study could indeed demonstrate that the TREX-2 components 

Sac3 and Sus1 are needed for gene repositioning and tethering of the GAL1 locus to 

the nuclear pore (Cabal et al., 2006). 

The connection of SAGA with the mRNA export machinery involving the TREX-2 

components Sac3 and Sus1 represents the coupling of two processes to recruit 

transcribing genes to the nuclear periphery, thus integrating transcription and mRNA 

export. This coupling could enhance efficient gene expression and subsequent mRNA 

export. 

 

1.3.3 TREX-2 subunits are involved in transcription-coupled mRNA 

export 

 

The identification of Sus1 as a member of the SAGA and TREX-2 complexes 

(Rodriguez-Navarro et al., 2004) argued for a role of Sus1 and its binding partner in 

TREX-2, Sac3 (Fischer et al., 2004), in the bridging of transcription and mRNA 

export. In fact, both proteins were shown to be important for repositioning of the 

GAL1 locus to the NPC upon transcriptional activation (Cabal et al., 2006; Drubin et 

al., 2006). Sac3 brings different protein machineries together and contains in its CID 

motif a connection to NPC positioning and the interaction surface with Sus1 (see 

above). Yet, it remains to be shown if the function of the CID is confined to being the 

interaction scaffold for Cdc31 and Sus1 or if additional processes are associated with 

this region of Sac3.  

Sus1, being a functional member of SAGA and TREX-2, represents an intriguing 

example of a protein with a dual function. Most interestingly, these two functions 

seem to be closely connected during gene activation. Sus1 was shown to be present at 
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the GAL1 promoter and reported to be required for transcription activation and full 

expression of GAL1 which is probably attributable to its role in histone 

deubiquitylation by the SAGA complex (Köhler et al., 2006; Rodriguez-Navarro et 

al., 2004; reviewed in Rodriguez-Navarro, 2009).  

However, the dual function of Sus1 in SAGA and TREX-2 poses a problem for a 

detailed analysis of its separate roles. A complete deletion of Sus1 affects both 

complexes at the same time, complicating the examination of the roles of Sus1 in the 

separate complexes. In recent studies on functions of Sus1 in transcription elongation 

(Pascual-Garcia et al., 2008), genome integrity (Gonzalez-Aguilera et al., 2008) and 

association of active genes with the nuclear rim (Chekanova et al., 2008) it was 

difficult to analyze the specific role of Sus1 in TREX-2 independent of its SAGA 

function. Therefore, a way to study the function of Sus1 in one of its complexes 

(SAGA or TREX-2) without affecting the other is a prerequisite to understand the 

interesting and two-sided function of the small protein connecting transcription and 

mRNA export. 
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1.4. Aim of this work 
 

The TREX-2 (Sac3-Thp1-Cdc31-Sus1) complex plays an important role in the export 

of mRNA (Fischer et al., 2002) and could couple transcription with mRNA export 

(Rodriguez-Navarro et al., 2004). The C-terminal CID (Cdc31-interacting domain) 

motif of the TREX-2 protein Sac3 acts as an interacting surface for Sus1 and Cdc31 

(Fischer et al., 2004) and could integrate transcription with mRNA export. 

At the beginning of my PhD thesis, I sought to analyze how TREX-2 and SAGA 

could functionally interact with each other by exploiting the SAC3CID motif to identify 

additional factors involved in transcription-coupled mRNA export. In a second 

approach that was based on a comprehensive mutational analysis of Sus1 I aimed to 

find out how Sus1 interacts with either TREX-2 or SAGA. Overall, these studies 

should further elucidate the mechanisms by which transcription and mRNA export are 

coupled. 
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2. RESULTS 

 

2.1 Novel genetic interactions between SAC3CID and factors 

involved in transcriptional regulation 

 
Sac3 is a central component of the mRNA export complex TREX-2 and its C-terminal 

CID motif was identified as the binding site for Sus1, which is also a subunit of the 

transcriptional co-activator SAGA and suggested to physically connect SAGA and 

TREX-2 (Fischer et al., 2004; Fischer et al., 2002; Rodriguez-Navarro et al., 2004). 

Because of the direct interaction of the CID motif with Sus1, the Sac3CID was thought 

to be involved in the physical coupling of TREX-2 and SAGA. Therefore, I sought to 

identify and analyze factors that are genetically linked to this domain and thus to 

transcription-coupled mRNA export. 

Before I started my PhD work, a synthetic lethal (SL) screen with the sac3 null allele 

(sac3Δ) has been performed in our laboratory by Tamas Fischer and Attila Rácz as 

previously described (Doye and Hurt, 1995; Wimmer et al., 1992). This genetic 

screen is based on the phenomenon of synthetic lethality which describes the genetic 

interaction of two nonlethal mutations that lead to cell death when combined in the 

same cell. In the past, synthetic lethal screen have been successfully used to identify 

additional factors in the genetic network of a gene of interest.  

Notably, the sac3Δ SL screen previously led to the identification of novel genetic 

interactions, e.g. between SAC3 and a recently identified RNA endoribonuclease 

involved in mRNP quality control (SWT1; Skruzny et al., 2009). 

After the SAC3CID was identified as the binding site for Sus1 and Cdc31 and found to 

be important for nuclear pore targeting of TREX-2 (Fischer et al., 2004), I sought to 

rescreen the collection of sac3Δ SL mutants for specific genetic interactions with this 

motif. 

To this end, I transformed 50 sac3Δ SL mutants with an allele of SAC3 lacking the 

CID motif (sac3ΔCID) and checked for viability of these strains on 5-FOA plates 

after shuffling out the wild-type copy of SAC3 (Fig. 7).  
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Figure 7  Strategy of the screen for genetic interaction with Sac3CID 

SL mutants of the initial sac3Δ SL screen (see above and Materials and Methods) which 
harbour a genomic mutation (designated as mut1) leading to an SL phenotype with sac3Δ 
were examined. All mutants carry a URA3 plasmid with a wild-type copy of SAC3 and were 
transformed with a LEU2 plasmid carrying sac3ΔCID (see text). If the SL mutant is 
complemented by sac3ΔCID, the wild-type SAC3 plasmid can be lost and cells grow on 5-
FOA. Mutants that could not be complemented by sac3ΔCID were selected for further 
analysis. 
 

Of the 50 strains tested, ten were synthetically lethal with sac3ΔCID while growth 

could be restored by transformation with SAC3, indicating that they depend on a 

functional CID for complementation. These SL mutants were selected for further 

analysis by transformation with a yeast genomic library to clone the genes that are 

genetically interacting with SAC3CID. From four of these ten strains, complementing 

plasmids could be isolated and single genes were identified that could rescue growth 

of these SL candidates on 5-FOA plates (Fig. 8). 
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Figure 8  Complementation of sac3Δ SL mutants by VPS53, BUR6 and SPE3.  
sac3Δ SL mutants were transformed with the empty vector pRS315 or pRS315 carrying the 
genes of SAC3, sac3ΔCID and (A+B) VPS53, (C) BUR6 or (D) SPE3. The same number of 
transformed cells was spotted to SDC-Leu plates (as loading control) and 5-FOA plates in 
tenfold serial dilutions and incubated for 4 days at 30°C. No growth on 5-FOA indicates 
synthetic lethality. 
 

The gene VPS53, found to complement the mutants SL2 and SL4 (Fig. 8A and 8B), 

codes for a protein which was originally identified as a component of the GARP 

(Golgi-associated retrograde protein) complex. This complex is required for 

retrograde transport of proteins from endosomes to the Golgi apparatus by interaction 

with Tlg1, a Golgi-standing SNARE mediating membrane fusion of vesicles with the 

late Golgi membrane (Liewen et al., 2005; Siniossoglou and Pelham, 2002). The link 

to vesicular trafficking documented here is difficult to interpret and could be due to an 

indirect effect of the function of SAC3CID in transcription-coupled mRNA export. 

BUR6, the gene complementing the sac3Δ SL mutant SL7 (Fig. 8C), encodes a 

subunit of the yeast homologue of the NC2 transcriptional regulator complex in 
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mammals (Goppelt and Meisterernst, 1996). In yeast, Bur6 forms a heterodimer with 

the second subunit of yeast NC2, Ncb2, and interacts with and selectively inhibits 

TATA-binding protein (TBP) complexes leading to a negative regulation of 

transcription (Geisberg et al., 2001; Goppelt et al., 1996). BUR6 has previously been 

found in an SL screen with an allele of the DEAD-box RNA helicase DBP5, 

suggesting a connection of the transcription factor BUR6 with mRNA export (Estruch 

and Cole, 2003). 

The SL phenotype of mutant SL12 could be complemented by SPE3, the gene coding 

for spermidine synthase (Fig. 8D). This enzyme of 293 amino acids catalyzes the 

reaction of putrescine and decarboxylated S-adenosylmethionine to spermidine 

(Hamasaki-Katagiri et al., 1997). Spermidine is a small and basic molecule required 

for the hypusination of eIF5A, the eukaryotic translation initiation factor 5A 

(Chattopadhyay et al., 2008; Chattopadhyay et al., 2003), and was also implied in 

nuclear processes like transcriptional repression of sporulation-specific genes (Friesen 

et al., 1998) and global chromatin reorganisation by interaction with nucleosomes 

(Morgan et al., 1987; reviewed in Childs et al., 2003). In a recent study, 

administration of spermidine to yeast cells was furthermore found to change the 

acetylation status of histone H3 by inhibition of histone acetyltransferases (Eisenberg 

et al., 2009). Due to the interesting roles of Spe3 in nuclear processes, I sought to 

characterize the mutant SL12 and the genetic interaction of SAC3 and SPE3 further.  

SL12 was found to contain a nonsense mutation in the genomic SPE3 locus (Q181-

stop), leading to a C-terminal truncation of 113 amino acids, presumably disturbing 

the function of Spe3. To test the dependence on spermidine synthase activity for 

complementation of SL12, I transformed the SL mutant with the allele spe3D168A. 

This allele contains a mutation in the predicted catalytic center of the yeast 

spermidine synthase, which should inactivate the enzymatic activity of Spe3 

(Ikeguchi et al., 2006; Korolev et al., 2002). When the allele was tested in SL12, it 

could not complement the SL phenotype (data not shown), suggesting that the 

spermidine synthase activity of Spe3 is responsible for complementation. However, 

the analysis of a distinct spe3Δsac3Δ double knockout strain which was subsequently 

generated in the same genetic background as the original SL screening strain (see 

Table III, Materials and Methods) revealed that the distinct combination of the two 

deletions remained viable after losing the URA3 plasmid carrying wild-type SAC3 

(data not shown). A possible explanation for the discrepancy between SL12 and 
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spe3Δsac3Δ could be an additional mutation in the SL mutant which is not present in 

the double deletion. Nevertheless, the effect of SPE3 on the described sac3Δ SL 

candidate still represents an indication that Spe3 might be linked to transcription-

coupled mRNA export. Due to the genetic complexity of this interaction, which could 

not be further narrowed down, I did not continue with the analysis of a possible 

functional link between SAC3CID and SPE3. 

Taken together, this genetic approach yielded novel genetic interactions of SAC3CID 

stressing the connection of this motif with transcriptional regulation. While the 

interaction between SAC3CID and VPS53 is difficult to interpret, the genetic relations 

of SAC3CID with BUR6 and SPE3 indicate a functional link of these factors to 

transcription-coupled mRNA export and could be interesting to follow in future 

studies. 

 

 

2.2 Comprehensive mutagenesis of Sus1 to identify crucial residues 

for the interaction with TREX-2 or SAGA 
 

The protein Sus1 functions in transcription as well as mRNA export through its 

interaction with the transcriptional coactivator SAGA and the mRNA export complex 

TREX-2 (Rodriguez-Navarro et al., 2004). In order to better understand how Sus1 

binds to Sac3CID within TREX-2 and whether this interaction is similar or different to 

how Sus1 interacts with SAGA, I performed a mutagenesis approach with Sus1. As a 

goal, I wanted to obtain information on how Sus1 can interact with SAGA and 

TREX-2 and whether binding to one or the other complex can be selectively disrupted 

by specific mutations of Sus1. To identify regions or residues of Sus1 important for 

the association with SAGA or TREX-2, I used three different mutagenesis strategies: 

truncations from the N- and the C-terminus (Fig. 9A), mutagenesis of clusters of 

charged residues to alanine (Fig. 9B) and mutagenesis of residues in putative turn 

regions of the Sus1 secondary structure to alanine (Fig. 9B+9C). 
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Figure 9  Overview of the generated truncations and site-directed mutations of Sus1. 
(A) Schematic overview of N- and C-terminal truncations. Shown on top is the amino acid 
sequence, bars represent full-length Sus1 (FL) or N- and C-terminal truncations (N1-N3, C1-
C3). Dashed lines show borders of the truncations, numbers on the right indicate amino acids 
comprised by the truncation constructs. (B) Schematic overview of charge-to-alanine 
mutations. In the protein sequence of Sus1, clusters of charged amino acids selected for 
mutation are shaded in grey and individual charged residues are highlighted in red. Resulting 
mutated residues are indicated below the protein sequence. Charge-to-alanine mutants are 
numbered according to their position in Sus1 (1-9). A secondary structure prediction of Sus1 
is shown above the protein sequence of Sus1. (C) Schematic overview of mutations of 
conserved residues. Identical and similar residues in the primary sequence of Sus1 in different 
species are highlighted (protein sequence alignment of Sus1 from representative species 
including fungi, protozoa, plants and metazoans). Arrows indicate the individual residues 
mutated to alanine and are shown in boxes with the corresponding allele number (Sus1-10, 
Sus1-11 and Sus1-12). 
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The different strategies shown in Fig. 9 were used to generate a series of mutants of 

Sus1. All mutants were subsequently tested for their interaction with the SAGA or 

TREX-2 complex by affinity purification. The study of these mutants should reveal if 

there are residues or regions that affect binding of Sus1 to TREX-2 or SAGA 

differently.  

 

 

2.3 The less conserved N- and C-terminal residues of Sus1 are not 

involved in the association with TREX-2 or SAGA 
 

Initially, I sought to determine which parts of the 96-residue protein Sus1 are 

necessary for the interaction with SAGA or TREX-2. To test for the individual 

contribution of N- or C-terminal portions of Sus1 to binding to the partner complexes, 

I progressively truncated Sus1 from the N-terminus as well as from the C-terminus 

(Fig. 9A) and tested these constructs for interaction with SAGA and TREX-2. 
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Figure 10  Truncation of less conserved N-or C-terminal residues of Sus1 leave the 
association with SAGA and TREX-2 largely unaffected 
Affinity purifications from sus1Δ cells expressing plasmid-bourne TAP-tagged full length or 
indicated N- or C-terminal truncation constructs of Sus1. Protein constructs were purified 
according to the TAP method (see Materials and Methods) and final eluates were analyzed by 
SDS-PAGE (4-12% gradient gel, MOPS buffer) and Coomassie staining. Truncation 
constructs are numbered according to Figure 9A, borders of truncations are shown in 
parentheses. Indicated Coomassie-stained bands were determined by mass spectrometry. The 
asterisk labels a contaminant of the purification, Crn1, and filled circles indicate a degradation 
product of Sac3. Open circles show the position of Sus1 truncation constructs. Full length 
Sus1 was purified and shown for comparison. Purified protein eluates (TAP) were analyzed 
by Western blotting using α-Sac3 and α-Cdc31 antibodies. Expression levels in whole cell 
extracts (WCE) were analyzed by Western blotting followed by detection of the protein A tag 
and compared to Arc1 (yeast cytosolic marker protein). 
 

When Sus1 is purified by the TAP method, it efficiently co-enriches both SAGA and 

TREX-2 complex subunits (Rodriguez-Navarro et al., 2004; Fig. 10, lane 4). The 

deletion of the 10 N-terminal residues (Sus1-N1; aa11-96) or 6 C-terminal residues 

(Sus1-C1, aa1-90) of Sus1 did not cause major changes in the pattern of co-purified 

proteins, indicating that these constructs were still stably associated with SAGA and 

TREX-2 (Fig. 10, lane 3 and lane 5). However, more extensive truncations of Sus1 
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(Sus1-N3, Sus1-N2 and Sus1-C3; see Fig. 9A for a schematic of the truncations) 

caused a concomitant decrease of co-purified SAGA and TREX-2 proteins (Fig. 10, 

lane 1, lane 2 and lane 7). In the case of Sus1-C2, the truncation of Sus1 led to a 

marked decrease in the yield of the purification and decreased expression levels of the 

truncation construct (Fig. 10, lane 6).  

Taken together, the truncation of the less conserved 10 N-terminal amino acids or 6 

amino acids from the C-terminus of Sus1 leaves the interaction with SAGA and 

TREX-2 largely intact, while more extensive truncations that affect conserved core 

residues of Sus1 lead to a concomitant decrease of association with SAGA and 

TREX-2 subunits or decreased expression levels of the mutant proteins.  

 

 

2.4 Mutations of charged amino acid clusters to alanine do not 

impair the functions of Sus1 
 

Since N- and C-terminal truncations of Sus1 did not lead to a selective dissociation of 

Sus1 from TREX-2 or SAGA, I sought to employ site-specific mutagenesis to 

generate further mutants of Sus1. David Botstein and colleagues developed a so-

called “clustered charge-to-alanine” mutagenesis protocol to mutate crucial amino 

acid clusters on the protein surface of actin that impair the function of the protein 

(ACT1; Wertman et al., 1992). The rationale of this mutagenesis was to mutate 

clusters of charged residues in the primary sequence to alanine. Charged clusters tend 

to be on the surface of proteins and could be involved in mediating protein-protein 

interactions. The mutations of these residues to alanine should abolish interactions 

that are mediated by the charge of the residues without disturbing the overall 

structural fold of the protein, as was shown for example for the human tissue 

plasminogen activator (tPA; Bennett et al., 1991). 

This described approach was adopted for Sus1 to mutate charged residues that could 

be involved in the interaction with SAGA or TREX-2, respectively. 

According to the “clustered charge-to-alanine” strategy, I selected clusters of charged 

residues in the protein sequence of Sus1 (Wertman et al., 1992): these were identified 

by looking at segments of five residues and defining them as clusters if any given 

segment contained two or more charged amino acids (aspartate, glutamate, lysine or 
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arginine). The charged residues of an identified cluster were consequently mutated to 

alanine and resulting mutants were analyzed experimentally. Applying this approach, 

I could scan the Sus1 sequence for charged residues that are potentially involved in 

protein-protein interactions. Overall, 9 charged clusters were delineated and charged 

residues were mutated to alanine (Fig. 9B). A cluster of charged residues at the very 

C-terminus was not mutated due to the dispensability of this region for interaction 

with TREX-2 and SAGA (see Fig. 10). Representative affinity purifications of five 

charge-to-alanine mutants are shown in Fig. 11. 

 

 
Figure 11  Charge-to-alanine mutations of Sus1 do not significantly affect SAGA or  
TREX-2 interaction 
Affinity purifications from sus1Δ cells expressing plasmid-bourne TAP-tagged wild-type 
(WT) Sus1 or indicated mutants. Proteins were purified according to the TAP method (see 
Materials and Methods) and final eluates were analyzed by SDS-PAGE (4-12% gradient gel, 
MOPS buffer) and Coomassie staining. Mutations are numbered according to Fig. 9B. Protein 
bands are indicated according to the molecular mass of proteins reproducibly appearing in 
Sus1-TAP purifications and previously identified by mass spectrometry (Köhler et al., 2008). 
 

Unexpectedly, all nine charge-to-alanine Sus1-TAP mutants co-purified similar 

amounts of TREX-2 (Sac3, Thp1 and Cdc31) and SAGA components (e.g. Tra1 and 

Spt7) as compared to wild-type Sus1-TAP (Fig. 11 and data not shown). These results 

indicate that the selected charged residues do not play a major role in the association 

of Sus1 with SAGA and TREX-2.  
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Next, I wanted to find out whether the charge-to-alanine mutations impair cell growth 

at elevated temperatures. To this end, sus1Δ cells shown to exhibit a slight growth 

defect at 30°C and a temperature-sensitive (ts) phenotype at 37°C (Rodriguez-

Navarro et al., 2004), were transformed with plasmids expressing charge-to-alanine 

mutants 1 to 9 and growth was analyzed at 30°C and 37°C. 

 

 
Figure 12  Growth analysis of charge-to-alanine sus1 mutants in sus1Δ cells 
sus1Δ cells were transformed with the empty vector pRS315 or pRS315 carrying the indicated  
SUS1 constructs. The same number of transformed cells was spotted to SDC-Leu plates in 
tenfold serial dilutions and incubated for 2 days at 30°C or 37°C. sus1Δ transformed with 
empty vector, untagged SUS1 and wild-type SUS1-TAP are shown for comparison. 
 

Consistent with the biochemical data, no apparent growth defect at 37°C was 

observed when sus1Δ cells were expressing charge-to-alanine mutants 1-9 (Fig. 12). 

Moreover, the TAP tag attached to Sus1 does not interfere with the function of the 

protein. In conclusion, site-directed mutagenesis of Sus1 covering nearly all charged 

residues in clusters did not lead to an impairment of the functions of Sus1. 

Alternatively, the mutation of a combination of charged clusters may generate a 

phenotype not seen with the mutations of single clusters.  
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Taken together, the interaction of Sus1 with its binding partners appears not to be 

disturbed by mutation of the selected charged clusters. Thus, we were wondering 

which types of interaction could be involved in the interaction of Sus1 with its 

partners.  

 

 

2.5 Conserved residues in predicted secondary structure turn 

regions of Sus1 differentially regulate the interaction with TREX-2 

or SAGA 
 

Since neither short N- and C-terminal truncations nor charge-to-alanine scan 

mutagenesis impaired the interaction of Sus1 with TREX-2 and SAGA, I generated 

site-directed mutations in putative turn regions between α-helices of Sus1 predicted 

by sequence analysis (Fig. 9B; Sus1-10, Sus1-11 and Sus1-12). Each of these 

mutations involves residues that are often found in flexible turn regions, as glycine or 

aspartate. Furthermore, the residues that were selected for mutagenesis are 

evolutionary conserved (Fig. 9C). These Sus1 mutants were tested for interaction with 

SAGA and TREX-2 factors. 
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Figure 13  Mutations of conserved residues in predicted turn regions of Sus1 
differentially affect the association with SAGA or TREX-2 
Affinity purification of genomically expressed TAP-tagged wild-type Sus1 (WT), Sus1-10, 
Sus1-11 or Sus1-12. Proteins were purified according to the TAP method (see Materials and 
Methods) and final eluates were analyzed by SDS-PAGE (4-12% gradient gel, MOPS buffer) 
and Coomassie staining. Bands are indicated according to the molecular mass of proteins 
reproducibly appearing in Sus1-TAP purifications and previously identified by mass 
spectrometry (Köhler et al., 2008). Filled circles indicate Ubp8 and open circles indicate 
Thp1. The asterisk indicates a contaminant, eEF-1α, running slightly below Thp1. In this 
experiment, Ubp8, Thp1 and eEF-1α have been identified by mass spectrometry. Purified 
protein eluates (TAP) were analyzed by Western blotting using α-Sac3 and α-Cdc31 
antibodies. Expression levels of Sus1-TAP in whole cell extracts (WCE) were analyzed by 
Western blotting followed by protA detection (protein A is part of the TAP tag) and compared 
to Arc1 (yeast cytosolic marker protein). 
 

Strikingly, the affinity purifications of TAP-tagged Sus1-10, Sus1-11 and Sus1-12 

differed substantially from wild-type Sus1. Sus1-10-TAP and Sus1-12-TAP co-

purified typical SAGA subunits (e.g. Tra1 and Spt7), including the DUB module 

components Sgf73, Ubp8 and Sgf11 while the co-purification of TREX-2 factors 

(Sac3, Thp1 and Cdc31) was significantly reduced. Western blot detection of Sac3 

and Cdc31 revealed that the loss of TREX-2 factors was more pronounced for Sus1-

10 than for Sus1-12 (Fig. 13). These data suggest that the association of Sus1-10 and 
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Sus1-12 with the DUB module (Sus1-Sgf11-Sgf73-Ubp8) inside the SAGA complex 

remains largely unaffected while the interaction with TREX-2 was perturbed.  

Unlike Sus1-10 and Sus1-12, TAP-tagged Sus1-11 exhibited a striking loss of both 

SAGA and TREX-2 factors, which is apparent both on the Coomassie-blue stained 

gel and immunoblots against Sac3 and Cdc31 (Fig. 13). The reduction or absence of 

co-purified proteins from one or the other complex was not due to lower protein levels 

of mutant Sus1 versions as these showed similar expression levels in yeast with a 

marginal reduction for Sus1-11 (Fig. 13).  

These results suggest that for Sus1-11, biochemical interaction with SAGA and 

TREX-2 was disrupted while mutations in Sus1-10 and Sus1-12 selectively disturb 

binding to TREX-2. Decrease or loss of Sus1 interaction with SAGA or TREX-2 

might have been due to reduced or abolished interaction of the mutant proteins with 

the respective binding partners Sgf11 (Köhler et al., 2006; Köhler et al., 2008) and the 

CID motif of Sac3 (Fischer et al., 2004). 

 

 

2.6 Mutants of Sus1 bind to Sac3 and Sgf11 with different affinities 

in vitro 
 

After three mutants of Sus1 could be identified that show impaired binding to TREX-

2 (Sus1-10 and Sus1-12) or TREX-2 and SAGA (Sus1-11), we sought to confirm that 

the impaired association of the Sus1 mutants with TREX-2 or SAGA was mainly 

caused by a reduced affinity between Sus1 and Sac3 or Sus1 and Sgf11, respectively. 

To this end, recombinant wild-type or mutant Sus1 proteins were first tested for their 

ability to bind to a Sac3 (573-805)-Cdc31 heterodimer. The C-terminal fragment of 

Sac3 used in this experiment contains the binding sites for Sus1 and Cdc31 (Fischer et 

al., 2004). Heterodimer formation between Sus1 mutants and Sgf11, the binding 

partner of Sus1 in SAGA (Köhler et al., 2006; Köhler et al., 2008), was also tested in 

this in vitro experiment. 
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Figure 14  Mutants of Sus1 bind to Sac3 and Sgf11 with different affinities in vitro 
Purified GST-Sac3 (573-805)-Cdc31 complex or GST-Sgf11 expressed in E. coli were bound 
to GSH agarose and incubated with recombinant wild-type (WT) or mutant 6xHis-Sus1 
(input). Proteins were eluted from the beads with GSH and analyzed by SDS-PAGE (12% 
gel, MES buffer) and Coomassie staining. Asterisks indicate Sac3 and Sgf11 degradation 
products (identified by mass spectrometry). This experiment was done in collaboration with 
A. Köhler and M. Schneider (Hurt laboratory). 
 

Wild-type Sus1 bound to the Sac3 (573-805)-Cdc31 heterodimer very efficiently, 

while the binding was reduced with Sus1-10 and Sus1-12 and largely abolished for 

the Sus1-11 mutant. The binding of Sus1-10 and Sus1-12 to Sgf11, on the other hand, 

was largely unaffected, whereas Sus1-11 failed to interact with Sgf11 (Fig. 14). 

Misfolding of mutant Sus1 proteins as a reason for disturbed Sus1-ligand interactions 

appears improbable because the CD spectra of wild-type and mutant Sus1 were 

determined and found to be virtually indistinguishable (prominent negative 

ellipticities at 220 nm consistent with the presence of an α-helical conformation; 

personal communication with D. Jani, group of M. Stewart, MRC-LMB, Cambridge). 

We observed that the dissociation of Sus1-10 and Sus1-12 from Sac3 (573-805)-

Cdc31 in this in vitro assay is not as pronounced as would have been expected from 
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the yeast affinity purifications. This might be due to an excess of ligand protein in this 

assay.  

Taken together, the in vitro reconstitution of mutants with their ligands showed 

similar interaction defects as the in vivo affinity purification experiment. Sus1-11 

failed to interact with both Sgf11 (the binding partner in SAGA) and Sac3 (the 

binding partner in TREX-2) while the interaction deficiency of Sus1-10 and Sus1-12 

only affects the interaction with the binding partner in TREX-2. 

 

 

2.7 Sus1 dissociation from TREX-2 does not affect the association 

of Sac3, Thp1 and Cdc31 with each other 
 

The co-enrichment of TREX-2 components with the alleles Sus1-10, -11 and -12 is 

significantly reduced in yeast affinity purifications (Fig. 13). This was shown to be 

caused by a reduced affinity of these mutants to the binding partner of Sus1 in TREX-

2, Sac3 (Fig. 14). As Sus1 was previously shown to bind to the same C-terminal 

region of Sac3 as Cdc31, the Sac3CID motif (Fischer et al., 2004), it seemed possible 

that a disturbed Sus1-Sac3CID interaction would influence binding of Cdc31 to this 

motif. To characterize the effects of the different sus1 alleles on TREX-2 subunit 

composition, TREX-2 was purified over TAP-tagged Thp1 and the amount of co-

purified FLAG-tagged wild-type or mutant Sus1 protein was determined by Western 

analysis.  
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Figure 15  Sac3, Thp1 and Cdc31 remain associated in the absence of Sus1 
Affinity purification of Thp1-TAP from strains genomically expressing FLAG-tagged wild-
type Sus1, Sus1-10, Sus1-11 or Sus1-12. Proteins were purified according to the TAP method 
(see Materials and Methods) and final eluates were analyzed by SDS-PAGE (4-12% gradient 
gel, MOPS buffer) and Coomassie staining. Indicated Coomassie stained protein bands were 
identified by mass spectrometry. Asterisks label unspecific contaminants of the purification 
(from top to bottom: keratin, Eno2 and Tdh3). Purified protein eluates (TAP) were analyzed 
by Western blotting using α-FLAG and α-Cdc31 antibodies. Expression levels of Thp1-TAP 
in whole cell extracts (WCE) were analyzed by Western blotting followed by protA detection 
(protein A is part of the TAP tag) and compared to Arc1 (yeast cytosolic marker protein). 
 

Thp1-TAP co-purifies the TREX-2 subunits Sac3, Cdc31 and Sus1 when expressed in 

a wild-type background (Fig. 15, lane 1). When Thp1-TAP was purified from cells 

expressing the FLAG-tagged mutants Sus1-10, Sus1-11 or Sus1-12, these were not 

detectable (Fig. 15, lanes 2-4). However, Sac3 and Cdc31 could be co-purified with 

Thp1-TAP independent of the association with Sus1. Disruption of Sus1 binding to 

TREX-2 did not have an influence on the stability of Thp1-TAP as expression levels 

of Thp1-TAP were similar in all sus1 backgrounds. 

In summary, the absence of Sus1 from TREX-2 does not affect the association of the 

other TREX-2 subunits Sac3, Thp1 and Cdc31 with each other. 
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2.8 Association of Sus1 with TREX-2 is required for NPC 

localization and mRNA export 
 

Sus1 was previously shown to be required for targeting of Sac3-GFP and Thp1-GFP 

to the nuclear periphery (Köhler et al., 2008). Sac3-GFP shows a typical nuclear rim 

stain when expressed in a wild-type SUS1 background while the fluorescent signal is 

shifted to the cytoplasm and the nucleoplasm in sus1Δ cells. To test the impact of 

mutant sus1 alleles on NPC targeting of TREX-2, I examined the localization of Sac3-

GFP in sus1-10-TAP, sus1-11-TAP and sus1-12-TAP cells. 

 

 
Figure 16  Uncoupling of Sus1 from TREX-2 causes mislocalization of Sac3-GFP  
Subcellular localization of Sac3-GFP in in the indicated wild-type SUS1-TAP and sus1-TAP 
mutant strains was analyzed by Nomarski imaging and fluorescence microscopy. Cells were 
grown at 30°C before analysis. SUS1-TAP and sus1Δ cells are shown for comparison. Scale 
bar, 2µm. 
 

All three sus1 alleles tested lead to an altered pattern of Sac3-GFP staining, 

confirming the requirement of Sus1 binding to Sac3 for correct localization of TREX-

2 to nuclear pore complexes (Fig. 16). sus1-11-TAP led to the most pronounced 

mislocalization of Sac3-GFP, comparable to the situation in sus1Δ cells. Targeting of 

TREX-2 to the nuclear pore was previously shown to be independent of Sus1 

interaction with SAGA as deletion of UBP8 (leading to dissociation of Sus1 from 

SAGA) leaves Sac3-GFP localization to NPCs intact (Köhler et al., 2008). Thus, 

mislocalization of Sac3-GFP in sus1-11-TAP cells should be solely attributed to 

defects of the mutant in TREX-2. sus1-10-TAP caused a slightly stronger defect of 

Sac3-GFP targeting to the nuclear periphery than sus1-12-TAP, consistent with a 

lower residual interaction with TREX-2 seen in Sus1-TAP experiments (Fig. 13).  
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In summary, defective association of Sus1 with Sac3CID and the TREX-2 complex 

leads to impaired targeting of Sac3-GFP to the nuclear periphery. The mislocalization 

of Sac3-GFP in sus1-10-TAP, sus1-11-TAP and sus1-12-TAP cells (Fig. 16), taken 

together with the TREX-2 association defects of the mutant sus1 alleles seen in Fig. 

15, suggests a requirement for correct assembly of Sus1 into TREX-2 for correct NPC 

targeting of the whole complex. 

The incorrect localization of the TREX-2 complex to NPCs was previously observed 

to be connected to an mRNA export defect (Köhler et al., 2008). To test the influence 

of Sus1-10, Sus1-11 and Sus1-12 on nuclear mRNA export, the localization of 

poly(A)+ RNA was analyzed in the respective strains. 

 

 
Figure 17  Impaired association of Sus1 with TREX-2 leads to mRNA export defects 
Analysis of nuclear poly(A)+ RNA export in the indicated wild-type SUS1-TAP and sus1-
TAP mutant strains. Cells growing in mid-log phase were shifted to 37°C for 2 hours and 
poly(A)+RNA was detected by fluorescent in situ hybridization with Cy3-labeled oligo (dT) 
probes. DNA was visualized using 4,6-diamidino-2-phenylindole (DAPI). Percentages 
indicate the ratio of cells (~200 cells counted per strain) that exhibit a clear mRNA export 
defect. SUS1-TAP and sus1Δ are shown for comparison. Scale bar, 2µm. 
 

In wild-type cells, mRNA is rapidly exported from the nucleus. When assayed by 

fluorescent in situ hybridization for poly(A)+ RNA, mRNA is detected mainly in the 

cytoplasm with a certain degree of nuclear exclusion (Fig. 17, SUS1-TAP). When 

mRNA export is impaired, the fluorescent signal accumulates in the nucleus and 

decreases in the cytoplasm. As shown in Fig. 17, all mutants analyzed exhibited 

poly(A)+ RNA retention in the nucleus after a 2 hour shift to the restrictive 

temperature, however to different extents. sus1-10-TAP and sus1-11-TAP cells 

displayed a strong export defect while the mutations in sus1-12-TAP led to a milder 
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impairment in mRNA export with less cells affected. These observations are 

consistent with results obtained with the sus1-12-TAP allele in previous experiments. 

Taken together, the mRNA export defect caused by mutants of SUS1 can be attributed 

to their impaired assembly into TREX-2 and consequent mislocalization of the 

complex, as Sus1-10-TAP and Sus1-12-TAP were previously shown to be selectively 

uncoupled from TREX-2 and to cause impaired NPC targeting of the complex. 

 

 

2.9 Mutants of Sus1 influence the deubiquitination of histone H2B 
 

The co-enrichment of factors from the DUB module (Sus1-Sgf11-Ubp8-Sgf73) of 

SAGA with Sus1-10-TAP and Sus1-12-TAP in affinity purifications (Fig. 13) 

indicated a correct structural assembly of the module. However, it was still possible 

that the enzymatic activity of Ubp8 is disturbed. It was recently shown that a deletion 

of SUS1 leads to higher levels of global Ub-H2B due to dissociation of Ubp8 from the 

DUB module and SAGA (Köhler et al., 2008). This dissociation was furthermore 

shown to lead to enzymatic inactivition of the deubiquitinating protease Ubp8 (Köhler 

et al., 2006; Lee et al., 2005). To test for intact Ubp8 function, global levels of 

ubiquitinated H2B (Ub-H2B) were assayed in mutant sus1 backgrounds. 

 

 
Figure 18  Deubiquitination of histone H2B is slightly impaired in sus1-10-TAP and 
sus1-12-TAP 
Analysis of global histone H2B ubiquitin levels in strains expressing mutant sus1 alleles. 
Anti-FLAG-H2B immunoprecipitates from mutant sus1-TAP cells were analyzed by SDS-
PAGE and Western blotting. Unmodified FLAG-H2B and ubiquitinated FLAG-H2B were 
detected using an α-FLAG antibody. Wild-type SUS1-TAP and sus1Δ are shown for 
comparison. This experiment was performed by A. Köhler and M. Schneider (Hurt 
laboratory). 
 

As expected, the complete dissociation of Sus1-11-TAP from the DUB module led to 

a defective deubiquitination of Ub-H2B and levels of FLAG-H2B-Ubiquitin 
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comparable to sus1Δ (Fig. 18). Although biochemical and functional assays 

performed with Sus1-10-TAP and Sus1-12-TAP indicated a correct assembly into the 

DUB module, levels of Ub-H2B slightly higher than the wild-type reference point to a 

reduction of Ubp8 activity. 

Taken together, the levels of Ub-H2B seen in a sus1-11-TAP background are 

consistent with its disturbed association with the DUB module and SAGA (Fig. 13). 

Ub-H2B levels in sus1-10-TAP and sus1-12-TAP backgrounds are slightly increased 

compared to wild-type, although their biochemical association with the DUB module 

appears intact. Correct Ubp8 function was previously shown to depend on the 

interaction with Sgf73, Sgf11 and Sus1 (Köhler et al., 2008). A slightly altered 

conformation of mutant Sus1 could allow for normal assembly into the DUB module 

but nevertheless have an influence on Ubp8 activity. 

 

 

2.10 Cell growth is impaired in sus1 mutant strains 
 

Next, the functional consequences of Sus1 dissociation from its interacting partners 

were examined by analyzing the growth phenotypes of mutant sus1 alleles. As 

described above, sus1Δ cells exhibit a mild growth defect at 30°C, while a 

temperature-sensitive phenotype develops when cells are grown at 37°C (Rodriguez-

Navarro et al., 2004). 

 

 
Figure 19  Sus1 mutant alleles with defects in SAGA or TREX-2 association exhibit a 
temperature-sensitive growth defect  
Growth analysis of cells carrying genomically integrated wild-type SUS1-TAP (WT-TAP) or 
the indicated mutants. The same number of cells was spotted to YPD plates in tenfold serial 
dilutions and incubated for 2 days at 30°C or 37°C. Wild-type and sus1Δ cells are shown for 
comparison. 
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While epitope-tagging of SUS1 (SUS1-TAP) did not cause a growth defect compared 

to wild-type cells, all three mutants tested displayed significant retardation of growth 

at the restrictive temperature of 37°C (Fig. 19). Analogous to previous results, sus1-

11-TAP showed the strongest effect, comparable to sus1Δ cells. The growth of sus1-

12-TAP was slightly less affected than sus1-10-TAP, consistent with a greater extent 

of uncoupling from TREX-2 for the sus1-10-TAP allele. 

In summary, the functional defects of the mutant alleles in SAGA or TREX-2 cause a 

significant growth defect at elevated temperatures. 

 

 

2.11 Mutant sus1 alleles differentially affect genetic interactions 

with factors involved in transcription or mRNA export 
 

The dual function of Sus1 as a member of the SAGA and of the TREX-2 complex is 

reflected in a widespread network of genetic interactions with key factors involved in 

transcription and mRNA export (Collins et al., 2007; Köhler et al., 2006; Köhler et al., 

2008; Rodriguez-Navarro et al., 2004; S. Lutz and E. Hurt, unpublished data). To test 

how mutant sus1 alleles would affect this genetic network, their growth phenotypes 

were analyzed in combination with a mutant allele of a factor involved in mRNA 

export (Yra1) or with a bona fide subunit of SAGA (Ada3). While interaction defects 

of mutant sus1 alleles with SAGA were thought to negatively influence cell growth in 

combination with ADA3, the TREX-2 association defects that were shown to lead to 

impaired mRNA export could cause a growth defect in combination with the mutant 

allele of YRA1. sus1Δ was previously shown to be synthetically lethal in combination 

with the yra1ΔRBD allele (Rodriguez-Navarro et al., 2004) and synthetically 

enhanced in combination with ada3Δ (identified by S. Lutz, Hurt laboratory).  
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Figure 20  Mutant sus1 alleles differentially influence the genetic interacions of SUS1 
Genomically integrated wild-type or mutant sus1-TAP in (A) a yra1Δ shuffle strain (carrying 
YRA1 on a URA3 plasmid) or (B) an ada3Δ shuffle strain (carrying SUS1 on a URA3 
plasmid). yra1Δ strains were transformed with the yra1ΔRBD allele (TRP1 plasmid). The 
same number of transformed cells was spotted to SDC-Trp or SDC-Ura plates (as loading 
control) and 5-FOA plates in tenfold serial dilutions and incubated for 2 days or 3 days 
(ada3Δ on 5-FOA) at 30°C. No growth on 5-FOA indicates synthetic lethality. 
 

sus1-11-TAP shows severe growth retardation in combination with yra1ΔRBD as well 

as with ada3Δ which parallels the biochemical data indicating that this allele failed to 

interact with SAGA and TREX-2. sus1-10-TAP and sus1-12-TAP, on the other hand, 

do not show impaired growth in combination with ada3Δ. However, these alleles 

proved to be synthetically lethal with yra1ΔRBD (Fig. 20). This is consistent with 

their rather selective uncoupling from TREX-2 and observed functional defects of 

these alleles. Taken together, the genetic data underline the necessity of intact 

interaction of Sus1 with its ligands for an intact function of the protein. Moreover, the 

biochemical defects of the mutant sus1 alleles are reflected by differential genetic 

defects that affect the mRNA export pathway alone (YRA1) or in combination with 

the transcription and chromatin remodelling pathway (ADA3). 
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2.12 Defects caused by the mutant alleles sus1-11 and sus1-12 can be 

attributed to single point mutations 
 

 

In the preceding section, three mutants of Sus1 were characterized with respect to 

their function as part of the complexes SAGA and TREX-2. The results show that the 

mutations present in Sus1-11 lead to a loss of interaction with both TREX-2 and 

SAGA while for Sus1-10 and Sus1-12 the interaction with TREX-2 is selectively 

disturbed. All three mutant versions of Sus1 (Sus1-10, -11, -12) contain two or more 

mutated residues. Subsequently, we created single point mutations to narrow down 

the residues that are critical in Sus1 function.  

In the course of generating these mutations, the crystal structure of Sus1 bound to 

Sac3CID was solved (for details of the Sac3CID:Cdc31:Sus1 structure, see Discussion 

and Jani et al., 2009). Four additional mutations of Sus1 were generated with respect 

to the novel structural data. 

 

 
Figure 21  Overview of the generated single point mutations of Sus1 
Protein sequence alignment is identical to the graph shown in Figure 9C. Black arrows 
indicate the individual conserved residues mutated to alanine in the mutants Sus1-10, Sus1-11 
and Sus1-12 (shown in boxes). The newly generated separate mutations of conserved residues 
are indicated with blue arrows and depicted in blue.  
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The mutations of separate residues that were deduced from the combined alleles Sus1-

10, Sus1-11 and Sus1-12 are E18A (glutamate 18 to alanine), E18A/S19A, G20A 

(derived from Sus1-10), G37A, W38A (derived from Sus1-11), V73A and D75A 

(derived from Sus1-12) as is shown in Fig. 21. 

The additional mutations that were generated with respect to the solved crystal 

structure of the Sac3CID:Cdc31:Sus1 complex are W38D, V73D, D75G and D75P 

(Fig. 21). Aspartate at position 75 (D75) could be crucial for the correct formation of 

the turn between helix α4 and helix α5 (covered by the mutations of the allele Sus1-

12). Due to the high rotational flexibility of aspartate, this residue is often found in 

turn regions of proteins (Hovmöller et al., 2002). To analyze the contribution of D75 

to the formation of this turn, I generated mutations of this residue to proline (D75P) 

and to glycine (D75G). 

As the Sac3CID-Sus1 interaction was shown to be mainly based on hydrophobic 

interactions (see Discussion), conserved hydrophobic residues (W38, V73) are likely 

to be involved in the binding of Sus1 to Sac3CID. These hydrophobic residues were 

replaced by the hydrophilic amino acid aspartate. Their replacement was thought to 

increase the effects seen with the mutations of these residues to alanine. 

The newly generated Sus1 mutants were tested for interaction with SAGA and  

TREX-2.  
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Figure 22  Single point mutations differentially contribute to the phenotypes of the 
combined mutants of Sus1 
Affinity purification of genomically expressed Sus1-TAP from wild-type (WT) or indicated 
mutant sus1 strains. Proteins were purified according to the TAP method (see Materials and 
Methods) and final eluates were analyzed by SDS-PAGE (4-12% gradient gel, MOPS buffer) 
and Coomassie staining. Bands are indicated according to the molecular mass of proteins 
reproducibly appearing in Sus1-TAP purifications and previously identified by mass 
spectrometry (Köhler et al., 2008). Purified protein eluates (TAP) were analyzed by Western 
blotting using α-Sac3 and α-Cdc31 antibodies. Expression levels of Sus1-TAP in whole cell 
extracts (WCE) were analyzed by Western blotting followed by protA detection (protein A is 
part of the TAP tag) and compared to Arc1 (yeast cytosolic marker protein). Original 
combined alleles of sus1 comprising the individual mutations are shown above their derived 
mutants. 
 

In contrast to the TAP results from Sus1-10 (Fig. 13, lane 2), the separate mutations 

E18A, E18A/S19A, S19A or G20A co-enriched subunits of both complexes, SAGA 

and TREX-2 (verified by Western analysis for Sac3 and Cdc31; Fig. 22, lanes 2-5). 

The affinity purification of the TAP-tagged mutants G37A and W38A, derived from 

Sus1-11, showed a co-purification pattern that differed from the combined mutant 

(Fig. 13, lane 3 and Fig. 22, lanes 6 and 7). While G37A-TAP co-purified TREX-2 
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and SAGA factors similar to wild-type Sus1-TAP, W38A-TAP caused a significant 

decrease in binding to TREX-2 and SAGA factors. However, W38A-TAP still co-

purified residual amounts of SAGA subunits.  

In the case of Sus1-12, the biochemical defects seem to be caused by only one of the 

two mutations present in the combined mutant. The mutation V73A leads to a reduced 

co-purification of TREX-2 subunits while the co-enrichment with typical SAGA 

factors remains largely unaffected (Fig. 22, lane 9). In contrast, D75A does not cause 

an apparent biochemical defect when affinity purified from yeast (Fig. 22, lane 11).  

The mutation of the hydrophobic residues W38 or V73 to aspartate, thought to disrupt 

binding of Sus1 to TREX-2 (for V73D) or TREX-2 and SAGA (for W38D), both 

showed a loss of TREX-2 factors with a concomitant decrease in the amount of co-

purified SAGA factors (Fig. 22, lanes 8 and 10), however not to the extent seen with 

Sus1-11. 

The amino acid change of aspartate 75 to glycine (D75G) or proline (D75P) did not 

show association defects with SAGA or TREX-2 (Fig. 22, lane 12+13). While D75G-

TAP produced a pattern of co-purified proteins comparable to the wild-type Sus1-

TAP purification, D75P led to slightly decreased interaction with SAGA and TREX-2 

subunits. Thus, selective defects of Sus1 binding to TREX-2, as seen in Sus1-12, 

cannot be generated by a mutation of aspartate 75 to glycine or proline.  

In summary, the biochemical defects observed with the mutant alleles sus1-10 and 

sus1-11 can not be elicited by single or separate mutations but probably require a 

combination of these mutations. In contrast, the mutation V73A seems to be causing 

the uncoupling from TREX-2 observed with sus1-12. Further amino acid changes 

suggested by the crystal structure of the Sac3CID:Sus1 complex (D75G, D75P) did not 

show significant interaction defects with TREX-2 or SAGA. 

The single residue mutations that produced a protein pattern significantly different 

from wild-type Sus1-TAP in affinity purifications (W38A-TAP, W38D-TAP, V73A-

TAP, V73D-TAP; Fig. 22) were subsequently analyzed for their growth phenotypes 

in combination with yra1ΔRBD or ada3Δ, as described earlier. 
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Figure 23  The influence of selected single point mutations on genetic interactions of 
Sus1 matches their specific or general association defects with TREX-2 or SAGA 
Genomically integrated wild-type or mutant SUS1-TAP in (A) a yra1Δ shuffle strain (carrying 
YRA1 on a URA3 plasmid) or (B) an ada3Δ shuffle strain (carrying SUS1 on a URA3 
plasmid). yra1Δ strains were transformed with the yra1ΔRBD allele (TRP1 plasmid). The 
same number of cells was spotted to SDC-Trp or SDC-Ura plates (as loading control) and 5-
FOA plates in tenfold serial dilutions and incubated for 2 days or 3 days (ada3Δ on 5-FOA) at 
30°C. No growth on 5-FOA indicates synthetic lethality. 
 

In combination with the yra1ΔRBD allele, the growth of W38A-TAP (derived from 

sus1-11) was impaired (Fig. 23A), while growth of W38A-TAP/ada3Δ was 

comparable to wild-type SUS1-TAP (Fig. 23B). Thus, the residual biochemical 

association of this mutant with SAGA seems to be sufficient to rescue growth in 

combination with ada3Δ. W38D-TAP, in contrast, led to synthetic lethality in both 

combinations tested, underlining the pronounced loss of association with SAGA and 

TREX-2 in this mutant. The allele V73A-TAP caused a pronounced growth defect in 

combination with yra1ΔRBD but did not affect growth in combination with ada3Δ 

and thus reflects the rather selective biochemical defects of this mutant with TREX-2. 

V73D-TAP finally impaired growth when combined with yra1ΔRBD but also in 

combination with ada3Δ which is consistent with the biochemical defects of this 

mutant. 

Taken together, the analysis of the influence of single residue mutations of SUS1 on 

genetic interactions in the context of transcription and mRNA export shows that 

W38A-TAP causes milder growth phenotypes than the allele sus1-11-TAP while the 

single residue mutation V73A-TAP indeed largely recapitulates the defects shown for 

sus1-12-TAP.
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3. DISCUSSION 
 

There is an emerging consensus that the processes of transcription and subsequent 

export of mRNA in yeast are tightly coupled to enable efficient gene expression 

(Brown and Silver, 2007; Köhler and Hurt, 2007; Luna et al., 2008; Luna et al., 2009; 

Perales and Bentley, 2009). An interesting example of a protein that functions in both 

processes is represented by Sus1, which acts as a functional subunit of the 

transcriptional co-activator SAGA as well as the nuclear pore-associated mRNA 

export complex TREX-2 (Rodriguez-Navarro et al., 2004). As part of SAGA, Sus1 is 

necessary for the formation and enzymatic activity of the histone H2B 

deubiquitinating module (Sgf73-Ubp8-Sgf11-Sus1) which is required for optimal 

transcription (Daniel et al., 2004; Köhler et al., 2008). Sus1 is also found to associate 

with the CID motif of Sac3, a crucial binding platform in TREX-2 which is 

responsible for the interaction of the complex with nuclear pores (Fischer et al., 

2004).  

Due to the association of Sus1 with SAGA and TREX-2, it was initially thought that 

Sus1 could bridge these two complexes and functionally couple transcription and 

mRNA export (Rodriguez-Navarro et al., 2004). Moreover, the repositioning of an 

activated gene locus to the nuclear periphery was shown to depend on Sus1 as well as 

other SAGA and TREX-2 subunits (Cabal et al., 2006). Understanding the 

characteristics of how Sus1 associates with SAGA or TREX-2 and how the protein 

functions in the respective complexes are important steps to clarify how transcription 

and mRNA export are integrated to provide optimal gene expression. 

This study presents a comprehensive mutational analysis of Sus1 that successfully 

identified key residues for the interaction with TREX-2 or SAGA. Using novel Sus1 

mutants that were selectively uncoupled from TREX-2, I was able to analyze the 

function of Sus1 in TREX-2 independent of its function in SAGA.  

Results from this analysis help to understand how Sus1 could function at the interface 

of transcription and mRNA export.  
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3.1 Sus1 can be selectively uncoupled from TREX-2 by mutations 

in interhelical turn regions 
 

Apart from extending the genetic network around the SAC3CID motif, this work 

successfully generated mutant alleles of Sus1 that lead to a specific disruption of the 

interaction with TREX-2 while the interaction with SAGA remained largely 

undisturbed or a general loss of binding to both complexes. 

In the course of the mutagenesis of Sus1, it turned out that the less conserved N- or C-

terminal parts of the protein (amino acids 1-10 or 91-96, Fig. 9A) can be deleted from 

the protein without significantly affecting the binding of Sus1 to SAGA and TREX-2. 

Furthermore, it could be shown that the systematic replacement of charged residues of 

Sus1 by alanine does not disturb the interaction with SAGA and TREX-2 which 

argues against a predominantly ionic interaction of Sus1 with its partner complexes.  

Eventually, I was able to identify mutations that lead to an uncoupling of Sus1 from 

Sac3 (the binding partner in TREX-2) while leaving the interaction with Sgf11 (the 

binding partner in SAGA) largely intact. The mutations that cause this selective 

dissociation from TREX-2, via the sus1-10 and sus1-12 alleles, are clustered in 

putative turns between α-helices predicted by sequence analysis. Interestingly, the 

alleles that were selectively uncoupled from TREX-2 contain mutations that are 

situated in the turns that connect the N-terminal helix (helix α1) or the C-terminal 

helix (helix α5) with the rest of the protein. In contrast, the sus1-11 allele, in which 

two highly conserved residues of the central turn between helix α2 and helix α3 

(glycine 37 and tryptophane 38) were mutated, was concomitantly impaired in its 

interaction with both TREX-2 and SAGA.  

The selective or general defects observed with these mutants of Sus1 speak for a high 

relevance of the turn region residues for Sus1 function. The relevance of these 

residues for the interaction of Sus1 with TREX-2 or SAGA could either consist in 

direct molecular contacts to Sac3 or Sgf11 or a requirement of these particular 

residues for the correct conformation of Sus1 which is needed for binding to its 

partners. The exact contribution of Sus1 turn region residues to the association with 

TREX-2 can now be viewed in the context of the crystal structure of the Sac3CID-

Cdc31-Sus1 complex that was recently solved. 
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3.2 The crystal structure of Sus1 bound to Sac3CID demonstrates how 

mutations of Sus1 affect this binding 
 

In the course of this work, the crystal structure of Sus1 in a complex with Cdc31 and 

Sac3CID became available which revealed how Sus1 associates with Sac3. This novel 

data helps to put the mutations of Sus1 and their effects on Sus1 function in a 

structural context (Jani et al., 2009). 

 

 
Figure 24  Sus1 shows an articulated five-helix hairpin fold as was previously predicted 
by sequence analysis 
(A) Comparison of the predicted secondary structure of Sus1 with the crystal structure data. 
The predicted secondary structure of Sus1 (from Fig. 9B) and the secondary structure 
deduced from the crystal structure are aligned with and shown above the protein sequence of 
Sus1. α-helices of Sus1 are numbered from the N-terminus to the C-terminus. (B) front and 
(C) rear view of one molecule of Sus1 (shown in blue) binding to the Sus1A binding site of 
Sac3 (aa 723-752; shown in red); N- and C-termini are indicated, α-helices are labelled as in 
(A). 
 

The secondary structure prediction that was originally done for Sus1 (Fig. 9B) was 

largely confirmed by the crystal structure (Fig. 24A). The fold of Sus1 was indeed 

based on five α-helices that are separated by interhelical turns of varying size. The α-

helices of Sus1 arrange into an articulated antiparallel hairpin structure that curves 
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around the helix that is formed by the Sac3CID (Fig. 24B+C). This five-helix hairpin 

fold of Sus1 could represent a novel fold type as it does not appear to have close 

parallels in the protein structure database and is ideally suited to wrap around the 

Sac3CID helix. The interhelical turns (except for the turn between helix α3 and α4 

which appears considerably disordered in the crystal structure) have an important role 

for the characteristic fold of Sus1, allowing the protein to curve around the helix 

formed by Sac3CID. This is corroborated by our previous observation that some 

residues that are situated in these interhelical turns are conserved among different 

species (Fig. 9C). The residue proline 67 of Sus1 introduces a kink in helix α4 which 

further helps to wrap intimately around the Sac3 helix (Fig. 24B+C). The two arms of 

the antiparallel hairpin of Sus1 were mainly held together by hydrophobic interactions 

which involve, among others, the highly conserved residue tryptophane 38 (Jani et al., 

2009). 

The extended fold of the small protein Sus1 provides a surprisingly large surface area 

which is available for the interaction of Sus1 with its partner complexes SAGA or 

TREX-2. The structure of the whole Sac3CID:Cdc31:Sus1 complex reveals further 

details of the association of these proteins inside TREX-2.  

 

 



Discussion 

 62

 
Figure 25  Crystal structure of the Sac3CID:Cdc31:Sus1 complex 
Overview of the crystal structure of the Sac3CID:Cdc31:Sus1 complex. (A) Surface 
representation of Cdc31 (yellow, on top) and two copies of Sus1 (Sus1B in cyan and Sus1A 
in blue; middle and bottom) bound to the Sac3CID helix (shown in red). (B) Secondary 
structure representation. (C) Residues involved in the interaction between Sac3 and its 
ligands. Principal interaction interfaces are depicted as solid lines, putative H bonds are 
depicted as dashed lines. Residues mutated in the course of the charge-to-alanine mutagenesis 
are highlighted by yellow boxes. The hydrophobic residus W38 and V73 are highlighted by 
red boxes and indicated by red arrows (adapted from Jani et al., 2009). 
 

The Sac3CID forms an extended α-helix with one Cdc31-binding site and two binding 

sites for Sus1 (Sus1A and Sus1B; Fig. 25). Interestingly, Sus1A and Sus1B as well as 

Sus1B and Cdc31 exhibit only negligible interaction with each other when bound to 

Sac3CID (Jani et al., 2009).  

Cdc31 as well as the two molecules of Sus1 wrap around the elongated α-helix that is 

formed by Sac3CID in a side-by-side fashion. In this complex, the binding of both 

copies of Sus1 to Sac3 was found to be mainly based on hydrophobic interactions 

(Fig. 25C). The large contact surface created by the wrapping of Sus1 around Sac3CID 

could explain the results from the charge-to-alanine mutagenesis. If residues along the 

whole sequence of Sus1 contribute to stable interaction with Sac3CID, the mutation of 
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a single charged residue or a cluster of charged residues of Sus1 involved in the 

interaction (highlighted in yellow in Fig. 25C) will not be sufficient to abolish the 

interaction. 

A detailed inspection of the respective turn regions of Sus1 can potentially explain 

how the mutations of Sus1 could lead to a selective dissociation from TREX-2 or 

TREX-2 and SAGA. 

 

 
Figure 26  The crystal structure of Sus1 bound to Sac3CID reveals the involvement of key 
residues of Sus1 in the interaction with Sac3CID 
Details from the structure of Sus1 (shown in dark blue) bound to the Sus1A binding site of 
Sac3CID (aa723-752; shown in red) with a focus on the (A) turn between helix α1 and α2 
containing residues E18, S19 and G20 (shown in shades of green); (B) turn between helix α2 
and α3 containing residues G37 (orange) and W38 (yellow); (C) turn between helix α4 and α5 
containing residues V73 (light blue) and D75 (grey). Selected turn region residues are 
depicted with their respective side chains and indicated by the one-letter amino acid code and 
their position in the amino acid sequence of Sus1. 
 

The residues in the turn region between helix α1 and α2 (E18, S19, G20) do not seem 

to be in close contact with the Sac3CID α-helix (Fig. 26A). Therefore, it is unlikely that 

these residues are involved in the interaction with Sac3. Rather, the collective 

mutation of all three turn residues to alanine (as in Sus1-10) could considerably alter 

the conformation of the turn between helix α1 and helix α2 of Sus1. This might lead 

to a distorted angle of helix α1 towards the rest of the structure, preventing the 

interaction of this helix with the Sac3CID and thus compromising the association of 

Sus1 with Sac3. 
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The side chain of the hydrophobic residue W38 in the turn region between helix α2 

and α3 is oriented towards the Sac3CID helix and involved in intermolecular binding to 

both potential Sus1 binding sites of Sac3CID (Fig. 25C and 26B). Furthermore, this 

residue was suggested to have an additional intramolecular role and could be 

important to keep the hairpin fold of Sus1 together tightly (Jani et al., 2009). Indeed, a 

reduction or disruption of the hydrophobic character of this residue by a mutation to 

alanine or aspartate impaired binding to SAGA and TREX-2, presumably caused by a 

reduced affinity towards the binding sites in Sac3CID (Sus1A and Sus1B) and a 

concomitant weakening of the compact hairpin fold of Sus1. The involvement of W38 

in intermolecular as well as intramolecular contacts serves to explain why the 

mutations W38A and W38D affect binding to SAGA and TREX-2 simultaneously. 

However, the combination of the mutations G37A and W38A seems to be needed to 

cause the striking loss of binding of Sus1 to both complexes, as in Sus1-11. 

The hydrophobic residue V73, situated in the turn between helix α4 and α5, was 

reported to be involved in binding to the Sus1A site but not to the Sus1B site (Fig. 

25C; Jani et al., 2009). Functional data from the same study shows that a deletion of 

the Sus1A site does not lead to the severe defects observed when Sus1B is removed, 

suggesting a lesser involvement of the SUS1A binding site in robust Sac3CID-Sus1 

interaction. The data presented in this study in contrast shows that the mutation of 

V73 to alanine leads to a significant decrease in association with Sac3CID and thus 

TREX-2 (see above). This indicates that the binding of Sus1 to the Sus1A binding site 

of Sac3 is indeed essential for the interaction with TREX-2. 

The suspected role of the hydrophobic residue V73 for the interaction with Sac3CID 

could be corroborated by the available crystal structure of Sus1 bound to Sac3. 

Indeed, the side chain of V73 is oriented towards the Sac3CID helix (Fig. 26C) and was 

reported to interact with the elongated Sac3CID helix (Fig. 25C). The side chain of 

D75, the second residue mutated to alanine in Sus1-12, points away from the Sac3CID 

helix and is not involved in the interaction between the two proteins. A proposed 

requirement of this specific residue for correct turn formation at this position was 

contradicted by results that show that mutations of D75 to alanine, glycine or proline 

did not have a significant influence on binding to TREX-2 or SAGA. 

Taken together, the results of this study indicate a differential relevance of the 

residues in turn regions of Sus1 for the binding to SAGA or TREX-2. The combined 

mutation Sus1-10 might cause a distorted orientation of helix α1 which selectively 
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disturbs the interaction with TREX-2 but not SAGA. This would suggest that helix α1 

of Sus1 is more involved in the binding to Sac3CID than to Sgf11, as the interaction 

with Sgf11 and other SAGA factors remains largely undisturbed in this mutant. The 

hydrophobic residue V73 (in the turn between helix α4 and α5) was reported to make 

direct molecular contacts with Sac3CID and shown to be a key residue for the 

interaction with TREX-2 as its mutation to alanine (in Sus1-12 or V73A) produces 

selective defects of TREX-2 association. Although both Sus1-10 and V73A cause 

similar biochemical defects, the molecular basis of how these mutations selectively 

uncouple Sus1 from TREX-2 seem to be different. Lastly, the disturbed association of 

the combined mutant Sus1-11 with both partner complexes was shown to be mainly 

caused by a mutation of the residue W38, which is in direct hydrophobic contact with 

Sac3CID and also suggested to be important for the compact fold of Sus1 (Jani et al., 

2009). This additional intramolecular role of W38 could explain the disturbed 

interaction with Sac3CID as well as with Sgf11 caused by a mutation of this residue. 

The fact that mutants selectively disturbing the binding of Sus1 to Sgf11 in the SAGA 

complex could not be identified might point to a different way of interaction of Sus1 

with this complex through additional contacts with Ubp8 and Sgf73 in the DUB 

module. If residues in the sequence of Sus1 that are mainly involved in the binding to 

Sgf11 exist, solving the structure of Sus1 in complex with Sgf11 will help to identify 

those residues. Recently, the crystal structure of the Sus1:Sgf11 complexe revealed 

the differences of the binding of Sus1 to Sgf11 compared to the binding to Sac3CID 

(Ellisdon et al., 2009). 

 

 

3.3 The association of Sus1 with TREX-2 is crucial for targeting of 

the complex to NPCs and efficient mRNA export 
 

With the mutants Sus1-10 and Sus1-12 that selectively reduce binding to Sac3CID in 

TREX-2, powerful tools were made available to assay the function of Sus1 in this 

complex largely independent of its function in SAGA. During the analysis of these 

mutants of Sus1, their interference with TREX-2 functions was further corroborated. 

Sus1 was previously shown to be necessary to target the TREX-2 subunits Sac3 and 

Thp1 to the nuclear periphery. This targeting was suggested to depend on the function 
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of Sus1 in TREX-2 as the uncoupling of Sus1 from SAGA (in ubp8Δ cells) does not 

lead to mislocalization of Sac3-GFP or Thp1-GFP (Köhler et al., 2008). 

However, the mutants described above permitted for the first time a direct analysis of 

the consequences of Sus1 dissociation from TREX-2 for the localization of the 

complex. This work demonstrates that alleles significantly impaired in interaction 

with TREX-2, while still being largely associated with SAGA, lead to a defective 

localization of Sac3-GFP to NPCs. In addition, a graded defect in TREX-2 association 

(more articulate for Sus1-10, less for Sus1-12) is reflected as a graded mislocalization 

of TREX-2 to the nucleoplasm and the cytoplasm. This confirms the essential role of 

Sus1 in TREX-2 for correct targeting to the nuclear periphery. 

Another effect of a deletion of Sus1 that was predicted to be linked to its function in 

TREX-2 is a defect in exporting mRNA out of the nucleus (Rodriguez-Navarro et al., 

2004). Correct mRNA export was previously shown to be closely linked to the 

localization of TREX-2 at nuclear pores (Fischer et al., 2002). Analogously, the 

disturbed association of mutant sus1 alleles with TREX-2 was shown to cause a bulk 

mRNA export block. As in the biochemical analysis of assembly of the alleles into 

TREX-2 and nuclear pore localization of the complex, cells carrying sus1-10 or sus1-

12 again show graded degrees of mRNA accumulation in the nucleus matching the 

different association defects of the alleles with TREX-2. 

In summary, using the two mutants Sus1-10 and Sus1-12, it could be demonstrated 

that the loss of association of Sus1 with TREX-2 is reflected by the extent of 

mislocalization of TREX-2 from nuclear pores and a consequent mRNA export 

defect. These results further strengthen the previously suggested key role for the 

function of Sus1 in TREX-2 for NPC tethering of the complex and efficient mRNA 

export. 

 

 

3.4 A model of Sus1 function between TREX-2 and SAGA 
 

Over the past years, multiple different studies have reported that a number of genes 

are dynamically repositioned to the nuclear periphery upon transcriptional activation 

(reviewed in Akhtar and Gasser, 2007; Köhler and Hurt, 2007) as suggested by the 

classic “gene gating” hypothesis (Blobel, 1985) which proposes that activated genes 



Discussion 

 67

in the nucleus are gated (i.e. physically connected) to a particular NPC in the nuclear 

membrane. This connection appears to promote optimal transcription and efficient 

export of the nascent transcript from the nucleus (Brickner and Walter, 2004; Taddei 

et al., 2006). Although the molecular mechanisms of how activated genes can be 

targeted and subsequently tethered to the nuclear periphery are not fully understood, 

multiple factors have recently been reported to be involved in this repositioning. 

Among these factors is the nuclear basket protein Mlp1 which is also proposed to be 

involved in nuclear mRNA quality control (Galy et al., 2004; Vinciguerra et al., 

2005). Mlp1 has been shown to mediate the association of active genes with the 

nuclear pore together with the general mRNA export receptor Mex67 (Dieppois et al., 

2006) or subunits of the transcriptional co-activator SAGA (Luthra et al., 2007). 

Additional factors that were reported to be required for NPC localization of active 

genes include the nucleoporin Nup2 and the histone variant H2A.Z (Brickner et al., 

2007), the Nup84 complex and the transcriptional regulator Rap1 (Menon et al., 2005) 

and the protein Sus1, which has a role in transcription as well as mRNA export.  

Sus1 was initially found to be a member of both SAGA and TREX-2 and these 

complexes were reported to be physically connected (Rodriguez-Navarro et al., 2004). 

While Sus1 was recently shown to be important for dynamic repositioning of 

activated GAL genes and retention at the nuclear periphery (Cabal et al., 2006; 

Chekanova et al., 2008), the exact role of Sus1 in the functional coupling of 

transcription, gene gating and mRNA export is still unclear. 

The central question that arises is if the roles of Sus1 in SAGA and TREX-2 are 

entirely separate from each other. Upon the identification of Sus1 as a subunit of 

SAGA as well as TREX-2, it was suggested that a SAGA-TREX-2 supercomplex 

might exist with Sus1 as the bridging factor (Rodriguez-Navarro et al., 2004). 

However, recent data from our lab indicate that SAGA-associated Sgf73 is necessary 

for a recruitment of Sac3 and Thp1 to SAGA and an interaction of SAGA and TREX-

2 with each other (Köhler et al., 2008). Disruption of the DUB subcomplex in ubp8Δ 

cells on the other hand shows dissociation of Sus1 from SAGA but no significant 

effects on the composition of TREX-2. These data argue against a model of a SAGA-

bound Sus1 being the sole bridging factor towards TREX-2.  

Taking this into account, how could the dual role of Sus1 in SAGA and TREX-2 

contribute to gene gating and transcription-coupled mRNA export? It was previously 

reported that Sus1 is required for the formation of the DUB module and its 
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deubiquitination activity in vivo and in vitro (Köhler et al., 2006; Köhler et al., 2008) 

and this activity was shown to be necessary for efficient transcriptional activation and 

elongation (Daniel et al., 2004; Henry et al., 2003; Wyce et al., 2007). This study 

presents similar findings for the role of Sus1 for TREX-2 complex function: While 

Sac3, Thp1 and Cdc31 can still interact with each other when Sus1 is uncoupled from 

TREX-2, the NPC targeting of the complex and efficient mRNA export is 

compromised in the absence of Sus1. These data suggest that both the DUB module 

as well as TREX-2 require the association with Sus1 for their respective function. 

Thus, Sus1 has an important role for the integration of optimal transcription and 

efficient mRNA export. 

 

 
Figure 27  The function of Sus1 in the SAGA and TREX-2 complexes mediates optimal 
transcription and efficient mRNA export 
As part of the DUB module (Sgf73-Ubp8-Sus1-Sgf11) within SAGA, Sus1 (shown in red) is 
required for the deubiquitination of histone H2B by Ubp8 (dashed arrows) which facilitates 
transcription elongation by RNA polymerase II and optimal transcription of messenger RNA. 
The assembly of Sus1 with the TREX-2 complex (Sac3-Thp1-Cdc31-Sus1) mediates 
targeting of this complex to the NPC and is required for efficient export of nascent mRNA. At 
the nuclear pore, SAGA-bound Sgf73 recruits the TREX-2 complex to SAGA (grey dotted 
lines) and might thus contribute to NPC repositioning of active genes. Through the formation 
of a SAGA-TREX-2-intermediate, the functions of Sus1 in transcription and mRNA export 
could be coordinated to provide optimal gene expression. 
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Upon transcriptional activation, SAGA is thought to form a transient intermediate 

with TREX-2 through the Sgf73-dependent recruitment of Sac3 and Thp1 to SAGA. 

This would bring the actively transcribed gene and the mRNA export machinery as 

well as the nuclear pore in close proximity with each other, allowing for the capture of 

nascent transcripts by the mRNA export complex TREX-2 and subsequent export out 

of the nucleus (Fig. 27). Because Sus1 is necessary for functional transcription 

elongation and mRNA export, a speculative model could involve a dynamic exchange 

of Sus1 between SAGA and TREX-2. Bound to SAGA, Sus1 would allow for optimal 

transcription of an activated gene and, upon transcription termination, the function of 

Sus1 in TREX-2 would ensure efficient export of nascent mRNAs out of the nucleus. 

The association of Sus1 with one or the other complex could be a way how different 

stages of gene expression are coordinated. 

The recent determination of the crystal structure of a Sus1:Sgf11 subcomplex 

showing the differences and similarities of binding of Sus1 to Sgf11 or to Sac3CID will 

further elucidate the dynamics of Sus1 in transcription-coupled mRNA export 

(Ellisdon et al., 2009). In any case, the small protein Sus1, being able to associate 

with SAGA and TREX-2, appears to play an important role in transcription-coupled 

export and gene gating. The mutant alleles presented here constitute convenient and 

necessary tools to assay the individual contributions of Sus1 to transcription and 

mRNA export as well as their connection. 
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4. MATERIALS AND METHODS 
 

4.1 DNA manipulation and plasmid cloning 
 

Recombinant DNA techniques, like polymerase chain reaction (PCR), restriction 

digest of PCR fragments and plasmids, separation of DNA fragments by agarose gel 

electrophoresis and ligation of DNA fragments, as well as microbiological methods in 

E. coli like production of electrocompetent cells, electrotransformation with plasmids 

and propagation of cells, were done as previously described (Sambrook and Russell, 

2001). All these DNA manipulation techniques were done in Escherichia coli DH5α 

cells. 

Plasmid DNA was isolated from E. coli using the Promega Wizard Plus SV Minipreps 

DNA purification system and DNA fragments from PCR amplifications and agarose 

gels were purified using the Wizard SV Gel and PCR clean-up system (Promega, 

Madison, USA). 

Restriction enzymes were obtained from Fermentas (St. Leon-Rot, Germany). The 

system employed for PCR amplifications was Phusion High Fidelity DNA 

polymerase (Finnzymes, Espoo, Finland). Oligonucleotides were synthesized by 

biomers (Ulm, Germany) and Eurofins MWG Operon (Ebersberg, Germany) and 

DNA sequencing was also provided by Eurofins MWG Operon (Ebersberg, 

Germany). 

 

4.1.1 Introduction of internal point mutations by a two-step PCR method 

 

For the directed mutagenesis of nucleotides of SUS1 that are positioned inside the 

gene, a two-step PCR method adapted from a previously described protocol (Horton 

et al., 1989) was employed. 

In the first PCR, two primary products are generated that comprise the 5’ end or the 3’ 

end of the gene with the introduced mutation. Both also include overlapping 

sequences to be able to anneal with each other at their 5’ or 3’ termini, respectively. 

After separation of the primary products from the original template DNA, two 

external primers (SUS1-TAP-for and SUS1-TAP-rev) extend the primary products 
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and amplify the complete DNA length including the internally mutagenized residues 

in a second PCR. The resulting DNA fragment containing 499 base pairs of the 

5’UTR, the SUS1 gene with a TAP tag and 350 base pairs of the 3’UTR could 

subsequently be cloned using XhoI and NotI sites. 

 

4.1.2 Plasmids used in this study 

 

Plasmids used in this study are listed in table I.The following plasmids were generated 

during this study as follows: SPE3 was amplified from genomic DNA of a yeast wild-

type strain (W303) with ~500 base pairs of its 5’UTR and 3’UTR and cloned into the 

PstI and XhoI sites of pRS315 (pRS315-VPS53 was created analogously with HindIII 

and ApaI sites). The mutations D168A and Q181* of SPE3 were generated according 

to 5.1.2 and cloned into PstI and XhoI sites. Truncations of SUS1 in pNOPPATA1L 

were generated by amplifying full-length or truncated versions of SUS1 (N1-3, C1-3) 

from pRS424-SUS1-cDNA and inserting the DNA fragments in BamHI/NcoI sites of 

pNOPPATA1L. The plasmid pFA6a-klURA3 was generated by inserting klURA3 

(amplified with URA3-for and URA3-rev oligos) from pBS1539 into BglII/EcoRI 

sites of pFA6a-KANMX6. For a plasmid containing a TAP-tagged version of SUS1 

with the natural promoter and terminator, SUS1 was amplified with 499 base pairs of 

its 5’UTR from a genomic DNA template of a S. cerevisiae Sus1-TAP strain and 

cloned into XhoI/NotI sites of pRS315. Following this, 350 base pairs of SUS1 3’UTR 

were amplified and cloned into PstI and BamHI (upstream of NotI) sites. The 

resulting PSUS1-SUS1-TAP-TSUS1 was easily excisable using XhoI and NotI restriction 

enzymes. FLAG-tagged versions of SUS1 were generated by a PCR using an oligo 

replacing the TAP-tag by a FLAG-tag and a novel PstI site. This DNA fragment was 

cloned into XhoI and PstI sites of pRS315-SUS1-TAP resulting in a PSUS1-SUS1-

FLAG-TSUS1. 

Site-directed mutagenized versions of SUS1-TAP and SUS1-FLAG were generated as 

described in 5.1.2 and subsequently cloned into XhoI and NotI sites of pRS315. 

Plasmids for heterologous expression in E. coli were generated by amplifying wild 

type or mutant sus1 from cDNA of SUS1 and fusing the product in frame behind a 

hexa-histidine tag into NcoI and BamHI sites of a pET9d-6His vector. 

The correctness of all plasmids generated was verified by sequencing. 
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Table I: Plasmids used in this study 
Name Relevant information Reference 

pRS315 ARS/CEN LEU2 Sikorski and 

Hieter, 1989 

pHT4467-SAC3 ARS/CEN6 (instable) URA3 ADE3 SAC3 lab collection 

pRS315-SAC3 ARS/CEN LEU2 SAC3 Fischer et al., 

2002 

pRS315-sac3ΔCID ARS/CEN LEU2 sac3Δaa733-851 Fischer et al., 

2004 

pRS315-VPS53 ARS/CEN LEU2 PVPS53 VPS53 TVPS53 This study 

pRS315-BUR6 ARS/CEN LEU2 BUR6 lab collection 

pRS315-SPE3 ARS/CEN LEU2 PSPE3 SPE3 TSPE3 This study 

pRS315-spe3D168A ARS/CEN LEU2 PSPE3 spe3 (D168A) TSPE3 This study 

pRS424-SUS1 (cDNA) ARS/CEN LEU2, SUS1 (cDNA) lab collection 

pNOPTAP-SUS1 (FL) ARS/CEN LEU2, PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 1-96, TADH1 

This study 

pNOPTAP-SUS1 (N1) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 11-96, TADH1 

This study 

pNOPTAP-SUS1 (N2) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 36-96, TADH1 

This study 

pNOPTAP-SUS1 (N3) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 58-96, TADH1 

This study 

pNOPTAP-SUS1 (C1) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 1-90, TADH1 

This study 

pNOPTAP-SUS1 (C2) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 1-72, TADH1 

This study 

pNOPTAP-SUS1 (C3) ARS/CEN LEU2 PNOP1 N-terminal TAP tag, SUS1 

(cDNA) aa 1-57, TADH1 

This study 

pRS315-SUS1-TAP ARS/CEN LEU2 PSUS1 SUS1-TAP TSUS1 This study 

pRS315-sus1-10-TAP ARS/CEN LEU2 PSUS1 sus1 (E18A, S19A, G20A)-

TAP TSUS1 

This study 

pRS315-sus1-11-TAP ARS/CEN LEU2 PSUS1 sus1 (G37A, W38A)-TAP 

TSUS1 

This study 

pRS315-sus1-12-TAP ARS/CEN LEU2 PSUS1 sus1 (V73A, D75A)-TAP TSUS1 This study 

pRS315-sus1-E18A-TAP ARS/CEN LEU2 PSUS1 sus1 (E18A)-TAP TSUS1 This study 

pRS315-sus1-

E18A/S19A-TAP 

ARS/CEN LEU2 PSUS1 sus1 (E18A, S19A)-TAP TSUS1 This study 

pRS315-sus1-G20A-TAP ARS/CEN LEU2 PSUS1 sus1 (G20A)-TAP TSUS1 This study 

pRS315-sus1-G37A-TAP ARS/CEN LEU2 PSUS1 sus1 (G37A)-TAP TSUS1 This study 



Materials and Methods 

 73

pRS315-sus1-W38A-TAP ARS/CEN LEU2 PSUS1 sus1 ( W38A)-TAP TSUS1 This study 

pRS315-sus1-W38D-TAP ARS/CEN LEU2 PSUS1 sus1 ( W38D)-TAP TSUS1 This study 

pRS315-sus1-V73A-TAP ARS/CEN LEU2 PSUS1 sus1 (V73A)-TAP TSUS1 This study 

pRS315-sus1-V73D-TAP ARS/CEN LEU2 PSUS1 sus1 (V73D)-TAP TSUS1 This study 

pRS315-sus1-D75A-TAP ARS/CEN LEU2 PSUS1 sus1 (D75A)-TAP TSUS1 This study 

pRS315-sus1-D75G-TAP ARS/CEN LEU2 PSUS1 sus1 (D75G)-TAP TSUS1 This study 

pRS315-sus1-D75P-TAP ARS/CEN LEU2 PSUS1 sus1 (D75P)-TAP TSUS1 This study 

pRS316-SUS1 ARS/CEN URA3 PSUS1 SUS1 TSUS1 This study 

pRS316-SUS1-TAP## ARS/CEN URA3 PSUS1 SUS1-TAP TSUS1 This study 

pRS316-SUS1-FLAG ARS/CEN URA3 PSUS1 SUS1-FLAG TSUS1 This study 

pRS316-sus1-10-FLAG ARS/CEN URA3 PSUS1 sus1 (E18A, S19A, G20A)-

FLAG TSUS1 

This study 

pRS316-sus1-11-FLAG ARS/CEN URA3 PSUS1 sus1 (G37A, W38A)-FLAG 

TSUS1 

This study 

pRS316-sus1-12-FLAG ARS/CEN URA3 PSUS1 sus1 (V73A, D75A)-FLAG 

TSUS1 

This study 

pRS316-YRA1 ARS/CEN YRA1 Strässer and 

Hurt, 2000 

pRS314-yra1ΔRRM ARS/CEN TRP1 yra1ΔRRM Strässer and 

Hurt, 2001 

pFA6a-TAP-natNT2 natNT2, TAP tag, TADH1; for genomic C-terminal 

tagging  

Kressler et al., 

2008 

pFA6a-klURA3 URA3 from K. lactis; for deletion disruption This study 

pBS1539 URA3 from K. lactis, TAP tag Rigaut et al., 

1999 

pGEX-TEV-SAC3 (573-

805) 

Ampr GST-TEV-sac3 (aa573-805) generated by 

A. Köhler, 

Hurt lab 

pET30a-TEV-CDC31 Kanr CDC31 lab of  

M. Stewart, 

Cambridge 

pET24d-GST-TEV-

SGF11 

Kanr GST-TEV-SGF11 generated by 

A. Köhler, 

Hurt lab 

pET9d-6His-SUS1 Kanr SUS1 (from cDNA)  This study 

pET9d-6His-sus1-10 Kanr SUS1 (from cDNA) (E18A, S19A, G20A) This study 

pET9d-6His-sus1-11 Kanr SUS1 (from cDNA) (G37A, W38A) This study 

pET9d-6His-sus1-12 Kanr SUS1 (from cDNA) (V73A, D75A) This study 
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4.1.3 Oligonucleotides used in this study 

 

All oligonucleotides shown in Table II were synthesized by biomers, Ulm, Germany 

or Eurofins MWG Operon, Ebersberg, Germany. Primers used to synthesize the 

coding strand were named 5’, primers to synthesize the noncoding strand were named 

3’. Directed point mutations that were introduced using the respective nucleotides that 

were used to introduce directed point mutations in the PCR product are written in 

lower case letters, all others in upper case letters. 

 

Table II: Oligonucleotides used in this study 
Name Sequence Direction 

SPE3-for GTTCTTCTGCAGACACAAACGTTCCTTAATAG 5’ 

SPE3-rev GAACTCGAGATTTATCAAATAATCGATATATGATTTC 3’ 

VPS53-for GTAAATAAGCTTGTATTTGTATTTGTATGTG 5’ 

VPS53-rev CTTCAAAGGGGCCCAATAGCACATTTAATG 3’ 

spe3D168A-for CATTTGACGTAATCATTACTGCCTCTTCTGACCCAGAAG 5’ 

spe3D168A-rev CTTCTGGGTCAGAAGAGGCAGTAATGATTACGTCAAATG 3’ 

URA3-for CATTGCAGATCTGGAGACAATCATATGGGAGAAGC 5’ 

URA3-rev CATTGCGAATTCGAGCTCGCTTGTTGTTCCTTACCATTAA

GTTG 

3’ 

SUS1-TAP-for AGTCTCGAGCGTCTACACCACCGGAACTTCTAG 5’ 

SUS1-TAP-rev GTTCCGCGGCCGCTCTAGAACTAG 3’ 

SUS1 (cDNA)-

for 

GACTTGCCATGGAGATGACTATGGATACTGCGC 5’ 

SUS1 (cDNA)-

rev 

GTCGACGGATCCTCATTGTGTATCTACAATC 3’ 

sus1-C1-rev GTCGACGGATCCTCATTCAAGAAATTCCCTTATTTGC 3’ 

sus1-C2-rev GTCGACGGATCCTCACATTTCTAATGCTTTGGGTTC 3’ 

sus1-C3-rev GTCGACGGATCCTCAGTTCGTAGATTCATTTATG 3’ 

sus1-N1-for GACTTGCCATGGAGATGCAACAATATCTTGTAG 5’ 

sus1-N2-for GACTTGCCATGGAGATGGAAGGTTGGGTGGATAAAG 5’ 

sus1-N3-for GACTTGCCATGGAGATGTTTACCCAAATTTTATCC 5’ 

sus1-1-for AGAATTTCAAACGcACTAgcAGCCAGACTACTTCAAGAA

G 

5’ 

sus1-1-rev CTTCTTGAAGTAGTCTGGCTgcTAGTgCGTTTGAAATTCT 3’ 

sus1-2-for CGAACTAAAAGCCgcACTACTTCAAGcAGGTTGGGTGGA

T 

5’ 
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sus1-2-rev ATCCACCCAACCTgCTTGAAGTAGTgcGGCTTTTAGTTCG 3’ 

sus1-3-for CTTCAAGAAGGTTGGGTGGcTgcAGTCAAAGATTTGACC 5’ 

sus1-3-rev GGTCAAATCTTTGACTgcAgCCACCCAACCTTCTTGAAG 3’ 

sus1-4-for GGTTGGGTGGATAAAGTCgcAGcTTTGACCAAATCAGAG 5’ 

sus1-4-rev CTCTGATTTGGTCAAAgCTgcGACTTTATCCACCCAACC 3’ 

sus1-5-for GTCAAAGATTTGACCgcATCAGcGATGAACATAAATG 5’ 

sus1-5-rev CATTTATGTTCATCgCTGATgcGGTCAAATCTTTGAC 3’ 

sus1-6-for CAAATTTTATCCACCGTAGcACCCgcAGCATTAGAAATGG 5’ 

sus1-6-rev CCATTTCTAATGCTgcGGGTgCTACGGTGGATAAAATTTG 3’ 

sus1-7-for GAATTTTTTTTTCTAGcAATGGTATCGGcTTCAACAAGG 5’ 

sus1-7-rev CCTTGTTGAAgCCGATACCATTgCTAGAAAAAAAAATTC 3’ 

sus1-8-for GGTATCGGATTCAACAgcGGcAACCGTTTTAAAGC 5’ 

sus1-8-rev GCTTTAAAACGGTTgCCgcTGTTGAATCCGATACC 3’ 

sus1-9-for GGAAACCGTTTTAgcGCAAATAgcGGcATTTCTTGAAGAG 5’ 

sus1-9-rev CTCTTCAAGAAATgCCgcTATTTGCgcTAAAACGGTTTCC 3’ 

sus1-10-for CAACAATATCTTGTAGcAgCAGcAAACTATGAACTGTATG 5’ 

sus1-10-rev CATACAGTTCATAGTTTgCTGcTgCTACAAGATATTGTTG 3’ 

sus1-11-for CCAGACTACTTCAAGAAGcTgcGGTGGATAAAGTCAAAG 5’ 

sus1-11-rev CTTTGACTTTATCCACCgcAgCTTCTTGAAGTAGTCTGG 3’ 

sus1-12-for GAATTTTTTTTTCTAGAAATGGcATCGGcTTCAACAAGG 5’ 

sus1-12-rev CCTTGTTGAAgCCGATgCCATTTCTAGAAAAAAAAATTC 3’ 

sus1(E18A)-for CAACAATATCTTGTAGcATCAGGAAACTATGAACTGTAT

G 

5’ 

sus1 (E18A)-rev CATACAGTTCATAGTTTCCTGATgCTACAAGATATTGTTG 3’ 

sus1 

(E18A/S19A)-

for 

CAACAATATCTTGTAGcAgCAGGAAACTATGAACTGTAT

G 

5’ 

sus1 

(E18A/S19A)-

rev 

CATACAGTTCATAGTTTCCTGcTgCTACAAGATATTGTTG 3’ 

sus1 (S19A)-for CAACAATATCTTGTAGAAgCAGGAAACTATGAACTGTAT

G 

5’ 

sus1 (S19A)-rev CATACAGTTCATAGTTTCCTGcTTCTACAAGATATTGTTG 3’ 

sus1 (G20A)-for CAACAATATCTTGTAGAATCAGcAAACTATGAACTGTAT

G 

5’ 

sus1 (G20A)-rev CATACAGTTCATAGTTTgCTGATTCTACAAGATATTGTTG 3’ 

sus1 (G37A)-for CCAGACTACTTCAAGAAGcTTGGGTGGATAAAGTCAAAG 5’ 

sus1 (G37A)-rev CTTTGACTTTATCCACCCAAgCTTCTTGAAGTAGTCTGG 3’ 

sus1 (W38A)-for CCAGACTACTTCAAGAAGGTgcGGTGGATAAAGTCAAAG 5’ 
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sus1 (W38A)-rev CTTTGACTTTATCCACCgcACCTTCTTGAAGTAGTCTGG 3’ 

sus1 (W38D)-for CCAGACTACTTCAAGAAGGTgacGTGGATAAAGTCAAAG 5’ 

sus1 (W38D)-rev CTTTGACTTTATCCACgtcACCTTCTTGAAGTAGTCTGG 3’ 

sus1 (V73A)-for GAATTTTTTTTTCTAGAAATGGcATCGGATTCAACAAGG 5’ 

sus1 (V73A)-rev CCTTGTTGAATCCGATgCCATTTCTAGAAAAAAAAATTC 3’ 

sus1 (V73D)-for GAATTTTTTTTTCTAGAAATGGatTCGGATTCAACAAGG 5’ 

sus1 (V73D)-rev CCTTGTTGAATCCGAatCCATTTCTAGAAAAAAAAATTC 3’ 

sus1 (D75A)-for GAATTTTTTTTTCTAGAAATGGTATCGGcTTCAACAAGG 5’ 

sus1 (D75A)-rev CCTTGTTGAAgCCGATACCATTTCTAGAAAAAAAAATTC 3’ 

sus1 (D75G)-for GAATTTTTTTTTCTAGAAATGGTATCGGgTTCAACAAGG 5’ 

sus1 (D75G)-rev CCTTGTTGAAcCCGATACCATTTCTAGAAAAAAAAATTC 3’ 

sus1 (D75P)-for GAATTTTTTTTTCTAGAAATGGTATCGccTTCAACAAGG 5’ 

sus1 (D75P)-rev CCTTGTTGAAggCGATACCATTTCTAGAAAAAAAAATTC 3’ 

6xHIS-SUS1-for CTAGCCCATGGGGATGACTATGGATACTGCGCAATTAAA

G 

5’ 

6xHIS-SUS1-rev CAGAGTGGATCCTCATTGTGTATCTACAATCTCTTC 3’ 

 

 

 

4.2 Genetic methods 
 

 

4.2.1 Growth media for S.cerevisiae and E.coli  

 

E.coli cells were grown at 37°C and 150 rpm in liquid culture of LB medium (0.5% 

yeast extract, 1% tryptone, 0.5% sodium chloride) supplemented with antibiotics to 

select for respective plasmids (100 μg/ml ampicillin, 30 μg/ml kanamycin, 34 μg/ml 

chloramphenicol) or on agar plates made accordingly. E. coli cells used for expression 

of heterologous proteins were grown in minimal medium (0.2% glucose, 0.4% 

casamino acids). 

Liquid cultures of S. cerevisiae cells were grown at 30°C (if not indicated otherwise) 

and 120 rpm in rich YPD medium (1% yeast extract, 2% peptone, 2% glucose) or 

selective synthetic medium (2% glucose, 0.67% yeast nitrogen base) supplemented 

with all missing amino acids except the ones to select for. The final concentration of 

amino acids was set as previously described (Sherman, 1991). For a selection against 
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the URA3 gene, SDC+all was additionally supplemented with 2 mg/ml of 5-fluoro-

orotic acid (5-FOA). The URA3 gene product can convert 5-FOA into the toxic 

substance 5-fluorouracil, causing cell death.  

Antibiotics used for selection in yeast cells were geneticin (0.2 mg/ml) and 

nourseothricin (clonNAT; 0.1 μg/ml). For induction of sporulation I incubated the 

cells on YPA (1% yeast extract, 2% peptone, 1% potassium acetate) or SPOR (0.022 

% raffinose, 0.3% potassium acetate) plates. Tetrad dissection was performed using a 

Singer MSM micromanipulator. 

Cell density in liquid culture was determined by measuring light absorption at 600 nm 

(OD600). 

 

 

4.2.2 Genomic gene replacement 

 

To replace genomic wild-type SUS1 with untagged and TAP-or FLAG-tagged alleles 

of SUS1, we used a strategy based on the fact that it is possible to select for (on -Ura 

plates) and also against the URA3 gene (on 5-FOA plates). 

First, we sought to obtain haploid W303 (MATa and MATα) sus1::klURA3 (URA3 

gene from K. lactis) deletion disruption strain by sporulation and tetrad dissection of a 

heterozygous diploid SUS1/sus1::klURA3. The original heterozygous diploid strain 

was created by transformation of the diploid wild-type W303 strain with a klURA3 

PCR cassette (from pFA6a-URA3) that was flanked by short sequences homologous 

to SUS1 5’ and 3’UTR, respectively. 

The haploid sus1::URA3 (MATa/α) strains were then co-transformed with integration 

cassettes of TAP- or FLAG-tagged wild-type and mutant versions of SUS1 (cassettes 

were excised by XhoI/BamHI digestion of pRS315-SUS1/sus1-TAP or pRS316-

SUS1/sus1-FLAG) and 100 ng of empty pRS315 for selection of transformants on -

Leu plates. Living clones on SDC-Leu were subsequently replica-plated to 5-FOA 

containing plates to select for clones that had lost the klURA3 gene due to site-

specific recombination of the integration cassette with the original SUS1 gene locus. 

To verify the correct integration of the various versions of SUS1 or sus1 and complete 

genomic loss of klURA3, yeast clones were analyzed by colony PCR and sequencing. 
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4.2.3 Yeast strains and basic yeast methods 

 

Yeast strains used in this study are shown in Table III. Transformation of yeast cells 

with plasmid DNA was done as previously described (Ito et al., 1983). Plasmid 

recovery and genomic DNA preparation from yeast cells was performed as previously 

described (Hoffman and Winston, 1987). 

Genomic deletion disruption and C-terminal TAP-tagging of genes was carried out as 

previously described (Janke et al., 2004; Kressler et al., 2008; Longtine et al., 1998). 

 

 

Table III: Yeast strains used in this study 
Name Genotype Reference 

sac3Δsl MATa his3-11, 15, ura3-52, leu2-3, 112, trp1-

1,ade2-1, ade3, sac3::kanMX4 (pHT4467-

SAC3) 

generated by A. 

Racz and T. 

Fischer, Hurt lab 

sac3Δspe3Δ MATa his3-11, 15, ura3-52, leu2-3, 112, trp1-

1, ade2-1, ade3, sac3::kanMX4, spe3::natNT2 

(pHT4467-SAC3) 

This study 

SAC3-GFP MATα ade2-1, ade3, his3-11, 15, ura3-52, 

leu2-3, 112, trp1-1, SAC3-GFP::TRP1 

Cabal et al., 2006 

SAC3-GFP sus1Δ sus1Δ::klURA3 in SAC3-GFP This study 

SAC3-GFP SUS1-TAP SUS1-TAP in SAC3-GFP This study 

SAC3-GFP sus1-10-TAP sus1-10-TAP in SAC3-GFP This study 

SAC3-GFP sus1-11-TAP sus1-11-TAP in SAC3-GFP This study 

SAC3-GFP sus1-12-TAP sus1-12-TAP in SAC3-GFP This study 

W303 a MATa, ade2-1, ura3-1, leu2-3, 112, his3-11, 

15, trp1-1 

Thomas and 

Rothstein, 1989 

W303 a sus1Δ sus1::klURA3 in W303a This study 

SUS1-TAP SUS1-TAP in W303a This study 

sus1-10-TAP sus1-10 (E18A, S19A, G20A)-TAP in W303a This study 

sus1-11-TAP sus1-11 (G37A, W38A)-TAP inW303a  This study 

sus1-12-TAP sus1-12 (V73A, D75A)-TAP in W303a This study 

sus1 (E18A)-TAP sus1 (E18A)-TAP in W303a This study 

sus1 (E18A/S19A)-TAP sus1 (E18A, S19A)-TAP in W303a This study 

sus1 (S19A)-TAP sus1 (S19A)-TAP in W303a This study 

sus1 (G20A)-TAP sus1 (G20A)-TAP in W303a This study 

sus1 (G37A)-TAP sus1 (G37A)-TAP inW303a  This study 
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sus1 (W38A)-TAP sus1 (W38A)-TAP inW303a  This study 

sus1 (W38D)-TAP sus1 (W38D)-TAP inW303a  This study 

sus1 (V73A)-TAP sus1 (V73A)-TAP in W303a This study 

sus1 (V73D)-TAP sus1 (V73D)-TAP in W303a This study 

sus1 (D75A)-TAP sus1 (D75A)-TAP in W303a This study 

sus1 (D75G)-TAP sus1 (D75G)-TAP in W303a This study 

sus1 (D75P)-TAP sus1 (D75P)-TAP in W303a This study 

W303 α MATα, ade2-1, ura3-1, leu2-3, 112, his3-11, 

15, trp1-1 

Thomas and 

Rothstein, 1989 

W303 α sus1Δ sus1::klURA3 in W303 α This study 

SUS1-FLAG SUS1-FLAG in W303 α This study 

sus1-10-FLAG sus1-10 (E18A,S19A,G20A)-FLAG in W303α This study 

sus1-11-FLAG sus1-11 (G37A, W38A)-FLAG in W303 α This study 

sus1-12-FLAG sus1-12 (V73A, D75A)-FLAG in W303 α This study 

THP1-TAP MATα, ade2-1, ura3-1, leu2-3, 112, his3-11, 

15, trp1-1 THP1-TAP::natNT2 

Fischer et al., 2002 

THP1-TAP sus1Δ sus1::klURA3 in THP1-TAP This study 

THP1-TAP SUS1-FLAG SUS1-FLAG in THP1-TAP This study 

THP1-TAP sus1-10-FLAG sus1-10 (E18A, S19A, G20A)-FLAG in 

THP1-TAP 

This study 

THP1-TAP sus1-11-FLAG sus1-11 (G37A, W38A)-FLAG in THP1-TAP This study 

THP1-TAP sus1-12-FLAG sus1-12 (V73A, D75A)-FLAG in THP1-TAP This study 

yra1Δ MATα, ade2, leu2, trp1, ura3, yra1::HIS3 

(pRS316-YRA1) 

This study 

sus1Δyra1Δ MATα, ade2, leu2, trp1, ura3, sus1::kanMX4, 

yra1::HIS3 (pRS316-YRA1) 

Rodriguez-Navarro 

et al., 2004 

yra1Δ SUS1-TAP SUS1-TAP in sus1Δyra1Δ This study 

yra1Δ sus1-10-TAP sus1-10 (E18A, S19A, G20A)-TAP in 

sus1Δyra1Δ 

This study 

yra1Δ sus1-11-TAP sus1-11 (G37A, W38A)-TAP in sus1Δyra1Δ This study 

yra1Δ sus1-12-TAP sus1-12 (V73A, D75A)-TAP in sus1Δyra1Δ This study 

yra1Δ sus1 (W38A)-TAP sus1 (W38A)-TAP in sus1Δyra1Δ This study 

yra1Δ sus1 (W38D)-TAP sus1 (W38D)-TAP in sus1Δyra1Δ This study 

yra1Δ sus1 (V73A)-TAP sus1 (V73A)-TAP in sus1Δyra1Δ This study 

yra1Δ sus1 (V73D)-TAP sus1 (V73D)-TAP in sus1Δyra1Δ This study 

ada3Δ MATα, his3Δ1, 15, leu2Δ0, ura3Δ0, lys2Δ0, 

ada3::natNT2 

This study 

sus1Δada3Δ  MATα, his3Δ1, 15, leu2Δ0, ura3Δ0, lys2Δ0, 

sus1::kanMX4 (pRS316-SUS1), ada3::natNT2 

generated by S. 

Lutz, Hurt lab 
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ada3Δ SUS1-TAP SUS1-TAP in sus1Δada3Δ This study 

ada3Δ sus1-10-TAP sus1-10-TAP (E18A, S19A, G20A) in 

sus1Δada3Δ 

This study 

ada3Δ sus1-11-TAP sus1-11-TAP (G37A, W38A) in sus1Δada3Δ This study 

ada3Δ sus1-12-TAP sus1-12-TAP (V73A, D75A) in sus1Δada3Δ This study 

ada3Δ sus1 (W38A)-TAP sus1 (W38A) in sus1Δada3Δ This study 

ada3Δ sus1 (W38D)-TAP sus1 (W38D) in sus1Δada3Δ This study 

ada3Δ sus1 (V73A)-TAP sus1 (V73A) in sus1Δada3Δ This study 

ada3Δ sus1 (V73D)-TAP sus1 (V73D) in sus1Δada3Δ This study 

YZS276 MATa his3-11, -15 leu2-3, -112 trp1-1 ura3-1 

ade2-1 hta-1htb-1::LEU2 hta-2htb-2 + 

pRS413-FLAG-HTB1-HTA1 

Robzyk et al., 2000 

YZS276 sus1Δ MATa his3-11, -15 leu2-3, -112 trp1-1 ura3-1 

ade2-1 hta-1htb-1::LEU2 hta-2htb-2 + 

pRS413-FLAG-HTB1-HTA1 sus1::natNT2 

generated by A. 

Köhler, Hurt lab 

 

 

4.2.4 Isolation of synthetic lethal mutants with the sac3ΔCID allele 

 

Genetic interactions are termed synthetic lethal (SL) if two or more alleles that do not 

lead to cell death when appearing independently, become lethal when they are 

combined in one cell. A genetic SL screen as it is described here is a powerful tool to 

identify genes coding for proteins of a complementing pathway or even proteins 

interacting directly with the protein of interest.  

The SL screen for SAC3 had already been performed in the Hurt group by T. Fischer 

and A. Rácz as previously described (Appling, 1999; Guarente, 1993; Segref et al., 

1997; Wimmer et al., 1992) and 50 SL mutants were available for further 

characterization. 

sac3Δ SL mutants were selected for successful complementation of the strain by 

SAC3 but not by a mutant of SAC3 lacking the CID domain (sac3ΔCID). This was 

done by transforming all strains either with a plasmid containing SAC3 (pRS315-

SAC3) or a version of SAC3 without the CID domain (pRS315-sac3ΔCID). 

Transformants on SDC-Leu were then restreaked to 5-FOA plates so that only cells 

could grow that were able to lose pHT4467-SAC3, carrying the URA3 marker and a 

wild type copy of SAC3.  
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From the 50 sac3Δ SL mutant strains that analyzed, ten strains showed at least a 

significantly weaker complementation by sac3ΔCID than by SAC3. 

The SL strains that were shown to require a functional SAC3 for complementation 

were subsequently transformed with a yeast genomic library. This library contains 

genomic fragments of approximately 6 to 10kb inserted into an ARS/CEN vector 

pUN100 with a LEU2 marker (Jansen et al., 1993). Once a library plasmid allowed 

for loss of the URA3 plasmid carrying a wild type copy of SAC3 and therefore growth 

on 5-FOA plates, the complementing plasmid was recovered, amplified and 

sequenced. Genes encoded by the recovered plasmid were cloned and tested 

individually for complementation of the SL strain. 

 

 

 

4.3 Biochemical methods 
 

Protein separation by SDS gel electrophoresis and staining of protein gels with 

Coomassie Blue was performed as previously described (Sambrook and Russell, 

2001). 

 

4.3.1 Whole yeast protein extract 

 

For the analysis of total proteins from yeast cells, a liquid culture of YPD was 

inoculated with yeast cells and grown overnight at 30°C in YPD or selective medium 

to an OD600 between 0.5 and 1.0. A cell suspension equaling 5 OD600 units was 

harvested in a centrifuge tube, washed with 1ml H2O and pelleted at 10000 rpm for 1 

minute. After discarding the supernatant, the cells were lysed by vortexing for 3 

minutes at RT in 400µl of 20% TCA (-20°C) and 200µl of glass beads. The 

precipitated protein was spun down for 5 minutes at 13000 rpm and 4°C. The 

supernatant was discarded and the pellet was washed with 1ml of 100% ethanol (-

20°C). Following another centrifugation step at 13000 rpm and 4°C for 5 minutes, the 

supernatant was pipetted off and the pellet was dried in a Speed Vac (GMI Inc., 

Ramsey, USA) for 25 minutes. The dried pellet was resuspended in 150µl 1M Tris-
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HCL (pH9.4) and 150µl 4xLaemmli sample buffer (Laemmli, 1970) and was then 

ready to use for gel electrophoresis and Western blotting. 

 

4.3.2 Tandem Affinity Purification of TAP fusion proteins 

 

Yeast cells from a 2l liquid culture of YPD were harvested at an OD600 between 3.5-

4.0 by centrifugation for 4 minutes at 4°C and 5000 rpm. After a washing step with 

50ml 1xLB + 0.5mM PMSF and another round of centrifugation, the supernatant was 

discarded and the cell pellet was flash frozen in liquid nitrogen and stored at -20°C 

overnight. 

On the second day, yeast pellets were thawed at 37°C and ~15ml of cold 1xLB + 

protease inhibitor mix FY (Serva, Heidelberg, Germany) + 1mM DTT was added to 

the cell suspension. Cell breakage was performed in a beater mill (Pulverisette, 

Fritsch, Idar-Oberstein, Germany) by glass bead lysis at 4°C (program: 500 rpm, 4 

minutes, 1 minute break, 2 repetitions). The cell lysate was separated and the beads 

were additionally washed with 10ml 1xLB. Two centrifugation steps (4000 rpm, 10 

minutes, 4°C and 19000 rpm, 45 minutes, 4°C) were applied to pellet crude yeast cell 

fragments. The supernatant of the lysate was then incubated with 300µl of 

equilibrated IgG-SepharoseTM 6 FastFlow beads for 1h at 4°C on a turning wheel. 

After this incubation, sepharose beads were washed with 15ml 1xLB + 0.5 mM DTT 

by gravity flow in 1ml Mobicol columns (MoBiTec, Göttingen, Germany). The 

column was plugged and the washed beads were resuspended in 300µl 1xLB + 

0.5mM DTT + 20ng/µl TEV protease and incubated for 90 minutes at 16°C on a 

turning wheel to allow for selective cleavage of the TEV protease recognition site 

inside the TAP tag. The eluate from this TEV cleavage was eluted from the column 

by a centrifugal spin of 2000 rpm for 1 minute into a microcentrifuge tube and 

adjusted to 2mM CaCl2 before the adjusted TEV eluate was incubated with 

equilibrated Calmodulin Sepharose 4B Resin (GE Healthcare, Chalfont St Giles, UK) 

for 1 hour at 4°C in a fresh Mobicol column. This resin was washed with 7.5ml 1xLB 

+ 1mM DTT + 2mM CaCl2 and finally, binding of the bait protein to the resin was 

disrupted by incubation of the beads with 600µl 10mM Tris-HCl (pH8) + 5mM 

EGTA (pH8) for 30 minutes at 37°C on a turning wheel. The purified protein solution 
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was eluted into a microcentrifuge tube by centrifugation at 2000 rpm for 1minute at 

4°C. 

 

 

1xLB: 

100mM NaCl 

50mM Tris-HCl (pH7.5) 

1.5mM MgCl2 

0.15% NP-40 

 

4.3.3 Trichloroacetic acid (TCA) protein precipitation 

 

This method to concentrate proteins by precipitation in aqueous solution was used to 

obtain a higher concentration of proteins purified by the TAP method. The solution 

was adjusted to 10% TCA to precipitate the protein and centrifuged for 15 minutes at 

13000 rpm and 4°C to pellet the precipitate. After discarding the supernatant, the 

pellet is carefully washed by addition of 1ml of 100% acetone (-20°C) and another 

centrifugation step for 5 minutes at 13000 rpm and 4°C. The dried pellet was finally 

resuspended in 1x NuPAGE® Sample Buffer (Invitrogen, Carlsbad, USA) and 

analysed by SDS-PAGE on 4-12% gradient or 12% NuPAGE® Novex® Bis-Tris 

Gels (Invitrogen, Carlsbad, USA) run in MOPS or MES buffers (Good et al., 1966). 

 

4.3.4 In vitro binding assays of recombinantly expressed proteins 

 

Recombinant proteins were expressed in E. coli BL21 codon plus RIL cells 

(Stratagene, La Jolla, USA). Cells were grown in minimal medium (MM; Sambrook 

and Russell, 2001) at 37°C to an OD600 of 0.3 before expression was induced by 

addition of 0.5mM IPTG at 23°C for 3 hours. 

Harvested cells were resuspended in 1xNB + 0.1% NP-40 + 1mM β-mercaptoethanol 

+ protease inhibitor mix HP (Serva) and lysed using a Microfluidizer® 

(Microfluidics, Newton, USA). Lysates were then incubated with NiNTA agarose 

beads (Qiagen, Hilden, Germany) or with Glutathione Agarose 4B (Macherey-Nagel, 
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Düren, Germany) for 1 hour at 4°C on a turning wheel (for hexa-histidine tagged 

alleles of Sus1, GST-Sgf11 or co-expressed GST-SAC3573-805 and Cdc31, 

respectively). After incubation, the NiNTA agarose was washed four times with 5ml 

of the lysis buffer with 30mM imidazole to reduce unspecific binding to the beads. 

GSH agarose was washed four times with 5ml of the lysis buffer. Proteins were eluted 

from NiNTA beads by incubation with 600µl of the lysis buffer with 150mM 

imidazole for 15 minutes at 4°C. The elution of the GST-SAC3573-805-Cdc31 

heterodimer or GST-Sgf11 from glutathione beads was done in two cycles of 

incubation with 400µl lysis buffer containing 20mM glutathione and subsequent 

separation of eluate from the beads. 

For the in vitro binding assays, purified Sus1 proteins and GST-Sgf11 or the SAC3573-

805-Cdc31 heterodimer were combined at a 2:1 molar ratio and incubated with 300µl 

GSH beads for 30 minutes at 16°C in 1x binding buffer. The GSH agarose was 

washed as described above and eluted by incubation with 600µl lysis buffer 

containing 20mM glutathione. The protein eluates were concentrated by TCA 

precipitation and then analyzed by SDS-PAGE and Coomassie staining. 

 

1xNB:  1x binding buffer: 

150mM NaCl    100mM NaCl 

50mM CH3COOK     50mM HEPES (pH7.5) 

20mM Tris-HCl (pH7.5)   0.5mM DTT 

2mM (CH3COO)2Mg 

 

4.3.5 Analysis of changes in global ubiquitin levels 

 

Immunoprecipitation of FLAG-tagged histone H2B in sus1Δ, SUS1-TAP or mutant 

sus1-TAP backgrounds was performed as previously described (Kao and Osley, 

2003). Proteins from yeast cells purified by the FLAG tag were separated on SDS-

PAGE and FLAG-tagged proteins (unmodified and ubiquitinated FLAG-H2B) were 

further analyzed by Western blotting and detection by an α-FLAG antibody. 
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4.4 Miscellaneous 
 

4.4.1 Western blotting 

 

Proteins were transferred from SDS-PAGE to a PROTRANTM nitrocellulose 

membrane (GE Healthcare, Chalfont St Giles, UK) by electric current as previously 

described (Sambrook and Russell, 2001). After blotting the proteins to the membrane 

for 45 minutes at 11V using a TransBlotSD semi-dry blotting apparatus (BIO-RAD, 

Munich, Germany), the membrane was stained with Ponceau Red (Serva, Heidelberg, 

Germany) and rinsed with H2O to reversibly stain and visualize blotted proteins. For 

size comparison, I ran a PageRulerTM Prestained Protein Ladder (Fermentas, 

Burlington, Canada) with every protein gel. The immobilized proteins were detected 

by an indirect enzyme-linked immunological method. Unspecific binding of the 

antibody to the membrane was reduced by incubating the membrane for 1 hour at RT 

or overnight rocking at 4°C in blocking buffer (1xPBS + 0.1% Tween-20 + 5% milk 

powder). After blocking, the membrane was incubated with a primary antibody in 

blocking buffer rocking for 1 hour at RT or overnight at 4°C. Three washing steps of 

12 minutes each at RT with 1xPBS + 0.1% Tween-20 were performed to wash away 

unspecifically bound antibody. If a secondary antibody was necessary for detection, 

this antibody which was conjugated with horseradish peroxidise, was again added in 

blocking buffer and the membrane was incubated rocking for 1 hour at RT or 

overnight at 4°C. Excess antibody was washed off by washing the membrane as 

described above and detection of HRP-conjugated antibodies bound to proteins on the 

membrane was performed using the ECL chemiluminescence system (GE Healthcare, 

Chalfont St Giles, UK). Documentation of luminescent signals was done by 

exposition to Amersham Hyperfilm ECL films (GE Healthcare, Chalfont St Giles, 

UK) for 5 seconds to 30 minutes. 
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Table IV: Antibodies used in this study 
Primary antibody 

(with dilutions) 

Source Secondary antibody 

(with dilutions) 

Source 

α-protein A (1:3000) DAKO, Hamburg, 

Germany 

no secondary antibody 

necessary 

 

α-Sac3 (1:2000) R. Kölling, U. of 

Hohenheim, Germany 

goat α-rabbit (1:8000) Bio-Rad, Munich, 

Germany 

α-Cdc31 (1:300) E. Schiebel, ZMBH, 

Heidelberg, Germany 

mouse α-goat (1:3000) dianova, Hamburg, 

Germany 

α-CBP (1:10000) BioCat, Heidelberg, 

Germany 

goat α-rabbit (1:8000) Bio-Rad, Munich, 

Germany 

α-Arc1 (1:5000) Hurt laboratory goat α-rabbit (1:8000)  Bio-Rad, Munich, 

Germany 

α-FLAG (1:1000) Sigma-Aldrich, St. Louis, 

USA 

goat α-mouse (1:3000) Bio-Rad, Munich, 

Germany 

 

 

4.4.2 Fluorescence microscopy 

 

Fluorescence microscopy was performed using an Imager Z1 microscope (Carl Zeiss, 

Oberkochen, Germany) equipped with a 100x/63x NA 1.4 Plan-Apo-Chromat oil 

immersion lens (Carl Zeiss, Oberkochen, Germany) and using HE-eGFP (for GFP 

microscopy), HE-DsRed (for Cy3-oligo-dT microscopy), DICIII (for Nomarski 

images) or DAPI filters. Images were acquired with an AxioCam MRm camera and 

AxioVision 4.3 software (Carl Zeiss, Oberkochen, Germany). 

 

4.4.2.1 GFP microscopy 

 

For the analysis of the localization of proteins, yeast strains expressing fusion proteins 

with GFP (see table III) were grown to mid-logarithmic phase (OD6000.3-0.5) in SDC-

leu liquid medium. Cells were harvested by centrifugation, washed with H2O and 

applied onto glass slides (ROTH, Karlsruhe, Germany). Localization of the 

fluorescent proteins was documented as described above (exposition time for 

Nomarski filter: 20 ms, HE-eGFP filter: 1400 ms). 
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4.4.2.2 In situ hybridization of poly(A)+ RNA 

 

On the first day, yeast strains expressing wild-type or mutant Sus1 were grown at 

30°C in YPD to an OD600 of 0.3 before shifting to 37°C for 2 hours. A first fixation 

step was performed by adding 37% formaldehyde to a final concentration of 4% 

formaldehyde and incubation at 37°C for 15 minutes. Cells were harvested and further 

fixated by resuspending in 4%formaldehyde + 0.1M KPi (pH6.4, potassium phosphate 

buffer) and incubating for 1.5 hours at RT on a turning wheel. Following two rounds 

of washing in 0.1M KPi pH6.4, the cells were washed again in 1ml washing buffer 

(0.1M KPi + 1.2M sorbitol) and then resuspended in 1ml washing buffer + 500µg of 

100T zymolyase (Seikagaku, Tokyo, Japan). The enzymatic digest of the cell wall 

took place for 30 minutes at 30°C on a turning wheel. The spheroplasts are 

centrifuged for 3 minutes at RT and 3300 rpm, washed with wash buffer and 

resuspended in 2 vol. of wash buffer. 20µl of the cell suspension was pipetted onto 5-

well glass slides (Thermo Fisher Scientific, Waltham, USA) coated with poly-L-

lysine and incubated for 5 minutes at RT. Excess cell suspension was removed by 

aspiration and non-adhering cells were further washed away by addition of 100µl of 

2xSSC and removal by aspiration. After another round of addition of 100µl of 2xSSC 

and subsequent removal, each well was covered in 12µl of prehybridization buffer 

and incubated for 1 hour at 37°C in a humid chamber. 1µl of 1µM 5’ Cy3-labelled 

oligo-dT per well was added to the prehybridization mix and incubated overnight at 

37°C in a dark humid chamber. 

On the second day, the glass slide carrying the hybridized spheroblasts was 

stringently washed by rocking in 2xSSC for 5 minutes. Another washing step was 

done in 1xSSC before the slide was incubated in 1xSSC + 2µl of 2.5mg/ml DAPI (4', 

6-diamidino-2-phenylindole; Merck, Darmstadt, Germany) for 3 minutes rocking at 

RT. Subsequently, the glass slide was washed with 1xSSC and finally with 0.5xSSC. 

All these steps were done in a staining jar (ROTH, Karlsruhe, Germany) in the dark. 

The slide was dried for ~60 minutes at RT, wells were coated with 10µl Mowiol 

solution and a cover slip (ROTH, Karlsruhe, Germany) was mounted onto the glass 

slide. The Mowiol was hardened at RT and spheroplasts were analyzed under a 

fluorescence microscope (see above). Images were acquired for (exposition time for 

DAPI filter: 60 ms, HE-DsRed filter: 500 ms). 
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1xSSC: 

150mM  NaCl 

  15mM trisodium citrate (Na3C6H5O7) 

 

prehybridization buffer: 

      50%  formamide 

       10%  dextrane sulphate 

125µg/ml E. coli tRNA (Sigma-Aldrich, St. Louis, USA) 

     500µg herring sperm DNA (Sigma-Aldrich, St. Louis, USA) 

    4x SSC 

      0.02% polyvinyl pyrrolidone 

      0.02% Ficoll-400 (GE Healthcare, Chalfont St Giles, UK) 

       1mM DTT 

 

Mowiol solution 

6g glycerol and 2.4g Mowiol (Calbiochem, San Diego, USA) were mixed, 6ml H2O 

added and the mix stirred for 2 hours at RT. After this time, the solution was stirred 

with 12ml 0.2M Tris-HCl (pH8.5) for 1 hour at 50°C. When the solution cleared, it 

was centrifuged for 15 minutes at 5000rpm and the supernatant aliquotted and stored 

at -20°C. 

 

4.4.3 in silico analysis 

 

Secondary structure prediction of the sequence of Sus1 was done using the program 

PsiPred (http://bioinf.cs.ucl.ac.uk/psipred/). Sequences of Sus1 from selected species 

including protozoa, fungi, plants and metazoan were aligned with ClustalW2 

(www.ebi.ac.uk/clustalw2/) and shaded using JalView (Waterhouse et al., 2009). 

Images showing details from the crystal structure of the Sac3 (723-805):Cdc31:Sus1 

complex (Jani et al., 2009; protein data bank accession number 3FWC) were 

generated with PyMOL (http://pymol.sourceforge.net/). 
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5. ABBREVIATIONS 
 

5-FOA   5’ fluoroorotic acid 

CBP   calmodulin binding protein 

CD   circular dichroism 

CID   Cdc31-interacting domain 

Da   Dalton 

DAPI   4,6-diamidino-2-phenylindole 

DNA   deoxyribonucleic acid 

DTT   dithiothreitol 

DUB module  deubiquitinating module 

eIF5A   eukaryotic translation initiation factor 5A 

EJC   exon-junction complex 

FG repeats  phenylalanine-glycine repeats  

FRET   fluorescence resonance energy transfer 

GDP   guanosine diphosphate 

GFP   green fluorescent protein 

GSH   glutathione 

GTP   guanosine triphosphate 

HCl   hydrochloric acid 

HRP   horseradish peroxidise 

IPTG   Isopropyl β-D-1-thiogalactopyranoside 

LB medium  lysogeny broth medium 

LRR   leucine-rich repeat 

MES   2-(N-morpholino) ethanesulfonic acid 

MOPS   3-(N-morpholino) propanesulfonic acid 

mRNA   messenger RNA 

mRNP   messenger ribonucleoprotein particle 

NES   nuclear export signal 

NLS   nuclear localization signal 

NPC   nuclear pore complex 

OD   optical density 

ORF   open reading frame 
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pA   protein A 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PMSF   phenylmethylsulphonyl fluoride 

RBD   RNA-binding domain 

RIL   revolutions per minute 

RNA   ribonucleic acid 

rpm   revolutions per minute 

rRNA   ribosomal RNA 

RT   room temperature 

SAGA   Spt-Ada-Gcn5 acetyltransferase 

SDC   synthetic defined complete (medium) 

SDS-PAGE  sodium dodecylsulfate polyacrylamide gel electrophoresis 

SE   synthetic enhancement / synthetically enhanced 

SL   synthetic lethality / synthetically lethal 

SNARE  soluble N-ethylmaleimide-sensitive-factor attachment receptor 

SSC   saline sodium citrate 

TAP   tandem affinity purification 

TBP   TATA-binding protein 

TCA   trichloroacetic acid 

TEV   tobacco etch virus 

TREX   transcription and mRNA export complex 

tRNA   transfer RNA 

ts   temperature-sensitive 

UBA   ubiquitin-associated 

UTR   untranslated region 

WCE   whole cell extract 

WT   wild-type 

YPD   yeast peptone dextrose 
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6. OWN PUBLICATION ON THE TOPIC 
 
Klöckner, C., Schneider M., Lutz S., Jani D., Kressler D., Stewart M., Hurt E. and  

Köhler A. (2009). Mutational Uncoupling of the Role of Sus1 in Nuclear Pore 

Complex Targeting of an mRNA Export Complex and Histone H2B Deubiquitination. 

J Biol Chem, 284(18):12049-56
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