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Zusammenfassung 

L-α-Amino-3-Hydroxy-5-Methylisoxazol-4-Propionsäure (AMPA) und N-Methyl-D-

Aspartat (NMDA) Rezeptoren gehören zu der Familie der ionotropen Glutamat-

rezeptoren, die erregende Signalweiterleitung im Zentralen Nervensystem vermitteln 

und an vielen Mechanismen beteiligt sind, die dem kognitiven Lernen und Gedächtnis 

unterliegen. Mit Hilfe genetischer Manipulationen dieser Rezeptoren, sowohl global 

in allen Zellen der Maus, als auch spezifisch in Prinzipalneuronen des Vorderhirns, 

wurden molekulare Mechanismen im dorsalen Hippokampus unterschieden, die dem 

Referenz- und dem Arbeitsgedächtnis im räumlichen Verhalten zugrunde liegen. In 

dieser Doktorarbeit wird die Beteiligung der hauptsächlichen ionotropen Glutamat-

Rezeptoren (AMPA Rezeptoren, die GluR-A oder GluR-B enthalten und NMDA 

Rezeptoren) in Prinzipalneuronen spezifischer Hippokampusregionen (DG, CA1 und 

CA2) in diesen prominenten Gedächtnisformen in erwachsenen Mäusen untersucht. 

Gezielte genetische Manipulation mittels Cre Rekombinase in spezifischen 

Regionen der Hippokampalen Formation und des Olfaktorischen Systems wurde 

durch die Kombination von transgenen Mäusen der Linien TgCN12-itTA und TgLC1 

erreicht, die basierend auf dem zeitlich regulierbaren tet-Sytem eine Rekombination 

im gesamten Vorderhirn in embryonalen Stadien verhindern. Die sukzessive zeitliche 

Anhäufung von Rekombinationsereignissen wurde mit Hilfe der genetisch 

veränderten Rosa26R Maus (Soriano et al., 1999) sichtbar gemacht. Rekombination 

wurde zwar auch in weiteren Teilen des Vorderhirns beobachtet, jedoch waren nur 

sehr wenige Nervenzellen betroffen. Diese Spezifität blieb auch noch in einjährigen 

Mäusen erhalten. 

Die Herstellung von Mausmodellen für die drei prominenten Glutamatrezeptor-

Untereinheiten im Hippokampus (GluR-A in Gria1ΔHipOlf; GluR-B in Gria2ΔHipOlf; 

NR1 in Grin1ΔHipOlf Mäusen) ermöglichte es, die erregende Signalweiterleitung in drei 

entscheidenden Eigenschaften mit relativ gleicher räumlicher und zeitlicher Spezifität 

im erwachsenen Mausgehirn genetisch zu verändern. 

Die Mausmodelle Gria1ΔHipOlf, Gria2ΔHipOlf und Grin1ΔHipOlf wurden in 

verschiedenen Tests auf räumliches Arbeits- und Referenzgedächtnis untersucht. 

Unerwartet von früheren Beobachtungen (Reisel et al, 2002) zeigten Gria1ΔHipOlf 

Mäuse keinerlei Beeinträchtigung im räumlichen Arbeitsgedächtnis. Jedoch werden 
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sie, wie globale GluR-A KO Mäuse, hyperaktiv in neuen Umgebungen, und 

alternierten wenig im spontanen T-Maze Test. Im Gegensatz dazu zeigten Gria2ΔHipOlf 

Mäuse ein vermindertes Arbeitsgedächtnis unter Standardbedingungen. Das Entfernen 

der NMDA Rezeptoren in hippokampalen Regionen der Grin1ΔHipOlf Mäusen führte zu 

einem differenzierteren Phänotyp. Grin1ΔHipOlf Mäuse konnten sich an räumliche 

Informationen im T-Maze für etwa drei Sekunden erinnern und entsprechend handeln, 

aber nicht mehr nach einer Minute. Entgegen einer populären Hypothese, lernten 

Grin1ΔHipOlf Mäuse die Position einer verdeckten Plattform im Morris Wasserlabyrinth 

im mehrtägigen Versuchsprotokoll. Allerdings hatten sie anschließend mehr 

Schwierigkeiten als ihre Kontrollmäuse, eine neue Position für die Fluchtmöglichkeit 

aus dem Wasser zu erlernen. 

Mit Hilfe genetischer Manipulation der hauptsächlichen Glutamatrezeptoren in 

den drei Mausmutanten Gria1ΔHipOlf, Gria2ΔHipOlf and Grin1ΔHipOlf wurde aufgezeigt, 

daß AMPA Rezeptoren, die GluR-B enthalten und NMDA Rezeptoren in DG, CA1 

und CA2 Prinzipalneuronen der hippokampalen Formation essentiell am räumlichen 

Arbeitsgedächtnis beteiligt sind. AMPA Rezeptoren, die GluR-A enthalten und 

NMDA Rezeptoren in diesen Nervenzellen scheinen jedoch nicht am räumlichen 

Referenzgedächtnis beteiligt zu sein.  
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Summary 

AMPA and NMDA receptors are ionotropic glutamate receptors, respectively 

sensitive to the glutamate analogue α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) or N-methyl-D-aspartate (NMDA), and are essential for 

hippocampus-dependent learning and memory. As indicated by global and forebrain-

specific mutant mouse models of AMPA and NMDA receptors, distinct molecular 

mechanisms coexist in the dorsal hippocampus, underlying spatial behavior in 

working and reference memory tasks. The present study is focused on the main 

ionotropic glutamate receptors (AMPA receptors with GluR-A or GluR-B subunit or 

NMDA receptors) in principal neurons (DG, CA1, CA2) of the hippocampus in adult 

mice and the role of these receptors in spatial working and reference memory. 

Cre recombinase expression in restricted sublayers of the hippocampal 

formation and the olfactory system was achieved by the use of transgenes of mouse 

lines TgCN12-itTA and TgLC1 employing the tet-system to prevent widespread 

recombination in the mouse embryo. Minor recombination, monitored by the use of 

gene-targeted Rosa26R mice, accumulated in additional forebrain structures but 

remained sparsely located in one-year-old mice. 

By employing the TgCN12-itTA / TgLC1 mouse model to deplete GluR-A in 

Gria1ΔHipOlf mice, GluR-B in Gria2ΔHipOlf mice or all NMDA receptors by NR1 

ablation in Grin1ΔHipOlf mice, excitatory neurotransmission was modified in three 

major ways. Depletion of these receptor subunits was observed with similar spatial 

and temporal specificity in hippocampal sublayers of adult mice. 

With these three iGluRΔHipOlf mouse models in hands, behavioral consequences 

were investigated in spatial working and reference memory tasks in two independent 

laboratories (Heidelberg, Germany; Oxford, England). Unexpected from our previous 

observations (Reisel et al. 2002), GluR-A depleted Gria1ΔHipOlf mice performed well 

in all cognitive tasks of spatial working behavior independent of delay and task 

composition. However, Gria1ΔHipOlf mice still expressed hyperactivity in a novel 

environment and little spontaneous alternation. In contrast, GluR-B depletion in 

Gria2ΔHipOlf mice became manifest in impairment in spatial working memory. 

Unfortunately, testing of spatial reference memory in Gria2ΔHipOlf mice is still 

missing. Grin1ΔHipOlf mice exhibited delay- and task-dependent impairment of the 
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spatial working memory and in reversal reference learning. Nevertheless, the 

acquisition of spatial reference memory in Morris watermaze and Y-maze was not 

affected upon NR1 depletion in dorsal CA1, CA2 and the entire DG subfield of the 

hippocampal formation. 

In summary, genetic manipulation of the main ionotropic glutamate receptors in 

the three mutant mouse models Gria1ΔHipOlf, Gria2ΔHipOlf and Grin1ΔHipOlf 

demonstrated the essential role of AMPA receptors containing the GluR-B subunit 

and NMDA receptors in principal DG, CA1 and CA2 neurons of the hippocampal 

formation in spatial working memory. Spatial reference memory, however, was still 

intact upon depletion of AMPA receptors containing the GluR-A subunit in 

Gria1ΔHipOlf mice and NMDA receptors in Grin1ΔHipOlf mice. 
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1. Introduction 

The brain is the central and most complex organ in the mammalian body that 

regulates most physiological processes (e.g. movement, digestion, breathing, heart 

rate, blood pressure, the endocrine system) and promotes learning and memory-based 

cognitive functions including consciousness and mind. Underlying mechanisms on the 

network of over 100 billion interconnected nerve cells in the human brain have been 

investigated on multiple levels of complexity. Our knowledge of brain systems, local 

neuronal networks, and cellular and molecular properties in the brain increased 

extensively over the last two centuries. Excitatory neurotransmission mediated by 

ionotropic glutamate receptors plays an essential role in hippocampus-dependent 

spatial forms of cognitive behavior. The main focus of this Ph.D. thesis is the role of 

ionotropic glutamate receptors in principal DG, CA1 and CA2 neurons of the 

hippocampal formation in adult mice and its role in spatial working and reference 

memory. Three mutant mouse models of the main ionotropic glutamate receptors 

(AMPA receptors that contain the GluR-A or GluR-B subunit and all NMDA 

receptors) were generated with similar spatial and temporal specificity. 

1.1. Signal transmission in the nervous system 

The nervous system is composed of individual nerve cells called neurons and neuro 

glia. Whereas neurons (Greek for „nerve“) are the main structural and functional 

units of the nervous system that acquire, store and pass on information (neuron 

doctrine, Cajal 1911), the roughly ten times more abundant glia (Greek for „glue“) 

were long considered as „brain glue“ providing exclusively structural, metabolic and 

neuro-protective support. However, recent reports highlighted a more direct role of 

glia cells in the interplay with neuronal networks. Glia cells secrete trophic factors, 

promote axonal outgrowth (development of the nervous system), form axonal 

myelination to enable long-range signaling and were even shown to secrete 

neurotransmitter and coordinate neuronal activity (reviewed in Fields and Stevens-

Graham, 2002; Haydon and Carmignoto 2006). 

Nevertheless, the network of interconnected neurons fulfills the main properties 

of the nervous system. Neurons convert stimuli of various sensory modalities (e.g. 

visual, auditory, olfactory, endocrine), integrate multiple inputs of neurons or other 
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cells and generate directed output signals. These ’integrated information-processing 

units’ are organized in discrete cellular layers forming local networks and discrete 

brain systems to separate brain functions with highly balanced hierarchy. 

1.1.1. Neurons 

Neurons developed into a broad class of electrochemically responsive cells with 

different shapes, sizes, morphologies and functions to process stimuli of different 

qualities, control the homeostasis and refine the action of the animal’s body. Based on 

their function in the signal transmission in a neuronal network, neurons can be divided 

into two main classes: principal (or projection) neurons and interneurons. Principal 

neurons convey information to the next processing stage in neuronal networks and 

usually, activate other neurons by excitatory neurotransmission. In contrast, 

interneurons connect mainly local neurons in a discrete neuronal cell layer and inhibit 

their target neurons. 

Although neurons differ from one another, depending on location and discrete 

function, they share some morphological features. In addition to the cell body (termed 

soma) that contains the nucleus and most of the protein synthesis machinery, neurons 

extend differentiated structures for receiving input (dendrites) and transmitting output 

(axons). Signals are received in the highly branched, tree-like dendrites (also called 

dendritic tree) and the soma. Thereby, little membranous protrusions, so-called 

spines, on the dendritic tree are the main input structures and get innervated typically 

by single axon terminals (boutons) of other cells. Up to 10.000 of these synapses 

receive signals in a single neuron (Stevens 1979) that are transmitted via electrical 

discharges across the plasma membrane to the neuron’s soma. Combined with 

received signals on dendritic shafts and somatic contacts, electrical signals are 

processed at the axon hillock where the axon emerges from the soma. This zone is the 

most electrically sensitive part of the neuron and initiates the regenerative, all-or-none 

output signal, the so-called action potential or electrical spike. Usually a single axon 

transmits the action potential in one direction, away from the soma (law of dynamic 

polarization, Cajal 1911). To enable the communication with many target neurons, 

the axon usually branches in multiple axon terminals. Axons of many projection 

neurons, involved in fast, long-range signaling, are insulated by a myelin sheet (80% 

lipids and 20% proteins), which is regularly interleaved by the so-called nodes of 
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Ranvier. Here, electrical signals are transmitted via saltatory conduction from node to 

node in direction to axonal terminals. Myelinated axons form the white matter in the 

brain. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Morphological features of 

neurons 

The cell body (soma) contains the 

nucleus and perikaryon, and gives rise to 

two types of processes: dendrites (apical 

and basal) and axons. The axon is the 

transmitting element of the neuron. 

Axons vary greatly in length, with some 

extending > 1 meter. The axon hillock, 

the region of the soma where the axon 

emerges, is the initiation site for action 

potentials, based on the high density of 

voltage-gated Na+ and K+ channels. 

Many axons are insulated by a fatty 

myelin sheath, which is interrupted at 

regular regions known as nodes of 

Ranvier. Branches of the axon form synaptic connections with dendrites of postsynaptic neurons. The 

branches of the axon may form synapses with as many as 1000 other neurons (adapted from “Principles 

of Neural Science”, E.R. Kandel, J.H. Schwartz, T.M. Jessel). 
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1.1.2. Transient changes in the membrane potential 

Double-layered lipid membranes (6-8 nm thin), permeable per se only for small gases 

and dipolar substances (e.g. chloroform, ethanol), separate the interior from the 

exterior of all living cells and serve as a physical barrier for the highly conductive 

fluids on both sides. By consuming energy (mainly ATP), selective ion pumps and 

transporters (e.g. sodium potassium pump) embedded in the double-layered lipid 

membrane accumulate ion gradients of mono- and divalent ions (mainly K+, Na+, H+, 

Ca2+, Cl-) in both directions across the membranes. In turn, additional membrane-

spanning protein complexes, forming ion channels and transporters with regulated and 

selective permeability, allow for the facilitated diffusion along the electrochemical 

gradient across the membrane. While an ion crosses the membrane through a protein 

pore (ion pump, transporter or channel) and separates the charge of the interior and 

the exterior of a cell, the lipid double layer works like a dielectric phase in a plate 

capacitor. The electrical field across the membrane aligns electrons differently in both 

layers, whereas the strong hydrophobic characteristic of the lipid layer prevents the 

electron transition into the hydrophilic space. The electrical force (charge difference) 

effective in the plasma membrane i.e. the membrane potential, stores potential energy 

that counterbalances the molecular force (concentration difference) of the 

electrochemical ion gradient. The potential energy is coupled to thermodynamically 

unfavorable processes like passive transport (e.g. other ions or metabolites) and even 

ATP synthesis (proton-motive force in F1F0-ATP synthase; reviewed in Devenish et 

al., 2008). 

While most living cells depend on a cell type-specific resting potential (between 

-50 and -100 mV) to ensure the continuous exchange with the environment, 

electrically-excitable cells like neurons, muscle or certain gland cells in addition, are 

capable to communicate via transient changes in the membrane potential. In 

particular, neurons differentiated to highly specialized ’microprocessors’ that form 

highly compartmentalized and selective membrane permeabilities for Na+, K+, Ca2+ 

and Cl- (ligand- and voltage-gated ion channels) and membrane conductance (density 

of ion channels and pumps, lipid composition, myelination) to receive, process and 

transmit transient changes in the membrane potential. 
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First, neurons are capable to receive electrical signals and to convert chemical 

signals of connected cells in local transient deviations from the resting potential, so-

called graded potential. So, if opening of ion channels results in a net gain of positive 

charge (mainly influx of Na+), the membrane becomes depolarized. Depolarization 

changes the resting potential in direction to the firing threshold (typically -50mV) and 

is therefore referred to as excitatory postsynaptic potential (EPSP). In turn, if selective 

ion channels mediate a net loss of positive charge (e.g. efflux of K+) or a net gain of 

negative charge (influx of Cl-), the membrane is hyperpolarized; the evoked potential 

is called inhibitory postsynaptic potential (IPSP). Neurons experience several 

hundreds or thousands of EPSPs and IPSPs at the same time that are spatially and 

temporally summated. 

The axon initial segment close to the soma, the axon hillock, receives the 

incoming EPSPs and IPSPs and „compares“ them to the firing threshold of the 

neuronal output signal across the membrane, the action potential or firing spike. The 

action potential is an all-or-none, stereotyped, transient depolarizing electrical signal, 

which spreads along the axon without attenuation. The underlying generation and 

propagation of action potentials reflect the interplay of voltage-gated Na+ and K+ 

channels. Above a certain membrane potential threshold (typically -50 mV), which is 

reached upon depolarizing postsynaptic signals terminating on the neuron, voltage-

gated Na+ channels have a higher probability to be in the open conformation (i.e. the 

channels open). This results in further depolarization, since the membrane potential is 

driven towards the reversal potential of Na+ (around +60 mV). Neighboring stretches 

of the membrane, which also contain voltage-gated Na+ channels, are subsequently 

equally depolarized resulting in a spread of the excitation along the membrane. By 

way of this regenerative self-amplifying process, most of the Na+ channels can switch 

to their open state in less than 1 ms. Then the voltage-gated Na+ channels rapidly 

inactivate, thereby reducing the Na+ permeability of the membrane. Voltage-gated K+ 

channels, which have opened during the depolarization, lead to a K+ efflux into the 

cell and cause a rapid hyperpolarization of the membrane back to the resting potential. 

Action potentials do not just travel down the axon to cause transmitter release at 

the presynaptic boutons and terminals; they also invade the dendritic tree, which is 

mainly the input region of a neuron. Dendrites of most neurons also contain voltage-

gated Na+ channels, which allow the back-propagation of action potentials initiated at 
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the soma (Stuart, Sakmann, 1994). The back-propagating action potential signals the 

state of activity (i.e. firing of an action potential) of a neuron back to its input region. 

 

Fig. 1.2. Action potentials 

(A) The shape of an action potential can be calculated from the changes in gNa and gK that result from 

the opening and closing of voltage-gated Na+ and K+ ion channels. The Na+ current is responsible for 

the depolarizing and the K+ current for the hyperpolarizing phase of the action potential, respectively. 

(B) When a nerve is depolarized above a certain threshold (typically -50 mV) action potentials are 

generated. In this case, the depolarization was provided by current injections into the soma in a current-

clamp experiment. Action potentials are all-or-none events having the same shape and amplitude, 

which are characteristic for each cell type, as is the firing frequency (adapted from “Principles of 

Neural Science”, E.R. Kandel, J.H. Schwartz, T.M. Jessel). 

1.2. Synaptic neurotransmission 

Synapses (synapsis, Greek for conjunction) form the main point of contact between 

neurons. Transmission via synaptic connections can be mediated either electrically or 

chemically. While the direct electrical coupling of connected neurons via electrical 

synapses allows for fast, bi-directional transmission of neuronal activity (action 

potentials and graded, sub-threshold deviations from the resting potential) without 

latency, signal transmission via chemical synapses is delayed and unidirectional 

because the presynaptically released neurotransmitter diffuses across the synaptic 

cleft (10 nm gap) to activate specific neurotransmitter receptors embedded in the 

postsynaptic membrane. Since the two main classes of neurotransmitter receptors acts 

either fast as selective ion channels (ionotropic receptors) or slower as G protein-

coupled metabotropic receptor, released neurotransmitters can induce postsynaptic 

changes with various latencies and decays dependent on the activated postsynaptic 

receptors. Chemical synapses are more abundant in the central nervous system and 
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implement numerous features for a major role in activity-dependent prolonged 

changes in the synaptic transmission between neurons (synaptic plasticity). 

1.2.1. Chemical synapses 

Chemical synapses are specialized structures, where the membrane of the presynaptic 

neuron is in close apposition to the postsynaptic membrane of the connected neuron, 

being just separated, and thus electrically isolated, by the 10 nm synaptic cleft. At the 

point of contact, both membranes contain a high density of proteins for signal 

transduction linked to synaptic transmission (reviewed in Specht and Triller, 2008). 

The presynaptic active zone is characterized by a cluster of vesicles containing 

neurotransmitter close to the membrane and a high density of voltage-gated Ca2+ 

channels. The postsynaptic density is composed of neurotransmitter receptors, their 

scaffolding molecules, various down-stream signaling complexes and cell adhesion 

molecules. 

When an action potential reaches a bouton or axonal terminal, the voltage-gated 

Ca2+ channels open. This results in Ca2+ influx into the presynaptic active zone. Ca2+ 

binds to proteins (e.g. synaptobrevin, -tagmin) that trigger the fusion of the transmitter 

vesicle with the plasma membrane. Subsequently, a fusion pore opens, expands and 

releases neurotransmitter into the synaptic cleft. This mechanism of neurotransmitter 

release is called exocytosis, a highly regulated process of multiple protein-protein 

interactions for which influx and binding of Ca2+ is prerequisite. The vesicle 

membrane is usually recovered from the plasma membrane by endocytosis and 

reloaded with neurotransmitter. The neurotransmitter diffuses across the synaptic cleft 

and binds to specific receptors on the postsynaptic membrane, mainly located on a 

spine head or a dendritic shaft of the connected neuron. 

In the CNS, synaptic transmission can either be excitatory or inhibitory. The 

main excitatory transmitter in the brain is glutamate, which acts on three different 

types of ionotropic receptors termed α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors and on 

metabotropic (G-protein coupled) glutamate receptors (mGluRs). The main inhibitory 

transmitters in the CNS are γ-amino butyric acid (GABA) and glycine. GABA 

receptors are divided into ionotropic GABAA receptors and metabotropic GABAB 

receptors. 
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1.2.2 Ionotropic glutamate receptors 

Ionotropic glutamate receptors (iGluR) are ligand-gated channels that are selectively 

permeable for cations, principally Na+, K+ and sometimes Ca2+. On the basis of their 

responsiveness to certain glutamate derivatives, iGluRs are classified into AMPA, 

NMDA and kainate receptors. The ionotropic glutamate receptors are encoded by six 

gene families of which a single one encodes all AMPA receptors, three for NMDA 

receptors and two for kainate receptors (reviewed in Dingledine et al., 1999). All 

ionotropic glutamate receptors share certain structural features. AMPA, NMDA and 

kainate receptors form functional, tetrameric receptor complexes. Each subunit of 

ionotropic glutamate receptors consists of three transmembrane segments (M1, M3 

and M4) and one intra-membranous loop (M2). In addition, each subunit contains a 

bipartite ligand-binding site formed by two domains (S1 and S2, reviewed in Mayer, 

2005). 

AMPA and kainate receptors have fast activation and deactivation kinetics 

(Trussel and Fischbach, 1989) as well as usually low Ca2+ permeability (Jonas and 

Burnashev, 1995). In contrast, NMDA receptors exhibit voltage-dependent, slow 

gating kinetics with prolonged channel opening after binding of agonists (Jonas and 

Burnashev, 1995), high Ca2+ permeability (MacDermott et al., 1986) and a need for 

glycine as a co-activator (Benveniste and Mayer, 1991). 

 
Fig. 1.3. Schematic representation of the common structure of ionotropic glutamate receptors 

(A) Linear arrangement of a single subunit from the amino- (N) to the carboxyl-terminus (C). Gray 

barrels indicate the transmembrane segment (M1, M3, M4), the purple barrel the membrane loop (M2) 
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forming the channel pore in functional, tetrameric receptors. The segments S1 and S2 form the 

glutamate-binding site. (B) Schematic arrangement of a single subunit in the plasma membrane. The 

amino-terminus (N) is located on the extracellular side, the carboxyl-terminus (C) on the cytoplasmatic 

side of the membrane. (C) Schematic arrangement of functional ionotropic glutamate receptors. 

AMPA, NMDA and kainate receptors form tetrameric receptor complexes permeable for Na+, K+ and 

sometimes for Ca2+ by non-edited GluR-B containing or GluR-B lacking AMPA and NMDA receptors 

(adapted from Mihaljevic, MD thesis, Uni Heidelberg, 2005). 

1.2.2.1. AMPA receptors 

AMPA receptors are glutamate-gated cation channels that are sensitive to the 

glutamate analogue α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA). Four different AMPA receptor subunits, termed GluR-A to GluR-D or 

GluR-1 to GluR-4 (novel nomenclature GluA1 to GluA4), are encoded in the 

mammalian genome (Keinanen et al., 1990) and assemble the functional tetrameric 

AMPA receptors. GluR-A and GluR-B subunits are ubiquitously expressed in the 

mammalian CNS, GluR-C mRNA is found in hippocampal and cortical cell layers as 

well as in the Purkinje cell layer of the cerebellum and GluR-D mRNA mainly in 

GABAergic interneurons. While most principal neurons in the hippocampus express 

mainly GluR-A/-B heteromers, some GluR-B/-C heteromers, and a few GluR-A 

homomeric channels (Derkach et al., 2007; Petralia and Wenthold, 1992; Wenthold et 

al., 1996), GluR-D-containing AMPA receptors are found in hippocampal 

interneurons (Jensen et al., 2003). 

Upon binding of glutamate, AMPA receptors are permeable for Na+ and K+, 

typically with rapid onset, offset, and desensitization kinetics (Dingledine et al., 1999; 

Gouaux, 2004; Sprengel, 2006). Opening of these channels at resting potential leads 

to a rapid depolarization of the postsynaptic membrane. The cationic depolarization 

current flowing through AMPA receptors can be measured in voltage-clamped 

condition as EPSC (excitatory postsynaptic current). 

Ca2+ entry through AMPA receptors is restricted by the GluR-B subunit. While 

GluR-B-lacking AMPA receptors are permeable for Ca2+, incorporation of RNA-

edited GluR-B(R) into functional AMPA receptors decreases single channel 

conductance (Swanson et al., 1997) and renders the channel impermeable to Ca2+ 

(Burnashev et al., 1992b). Hydrolytic deamination of adenosine to inosine by 

enzymes termed adenosine deaminases acting on RNA (ADARs) changes the coding 

information on the GluR-B transcript from a glutamate (Q) residue at position 607 
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(CAG) to arginine (R; CIG). The Q/R editing site is located in the pore forming 

segment M2 and RNA editing of GluR-B transcripts converts the Ca2+ permeable 

GluR-B(Q) to the impermeable GluR-B(R). Q/R editing is developmentally, cell- and 

region-specifically regulated (Lerma et al., 1994; Nutt and Kamboj, 1994), in the 

adult hippocampus however ~ 99 % of the GluR-B mRNA is edited (Sommer et al., 

1991; Higuchi et al., 1993). 

Additional editing (reviewed in Seeburg et al., 1998) and alternative splicing of 

pre-mRNA (Sommer et al., 1990; Mosbacher et al., 1994; Kohler et al., 1994) as well 

as cell- and region-specific and developmentally regulated expression of all receptor 

subunit isoforms generates a remarkable variability of functional AMPA receptors 

that differ in many properties, including single channel conductance and 

desensitization properties (Lomeli et al., 1994; Mosbacher et al., 1994). In addition, 

AMPA receptors embedded in the postsynaptic membrane undergo various 

posttranslational modifications (reviewed in Palmer et al., 2005). Most prominent in 

hippocampal processing, GluR-A and GluR-B contain two phosphorylation sites 

within the C-terminal domain. Protein Kinase C (PKC) and Calcium/Calmodulin-

dependent Protein Kinase II (CaMKII) mediate phosphorylation of the GluR-A 

protein at Ser 831 and Protein Kinase A (PKA) at Ser 845. Modification of GluR-A-

containing AMPA receptors at these phosphorylation sites increases channel open 

probability and single channel conductance (Mammen et al., 1997; Roche et al., 

1996). The GluR-B subunit is phosphorylated at Ser 880 and Tyr 876. 

Phosphorylation regulates the interaction of GluR-B with the binding proteins 

ABP/GRIP1 and PICK1, causing internalization of GluR-B-containing AMPA 

receptors from synaptic sites (Chung et al., 2000; Matsuda et al., 1999; Seidenman et 

al., 2003). 

Global inactivation of the GluR-A gene mostly affected AMPA receptors in the 

hippocampus and amygdala, where GluR-A expression is high (Molnár et al., 1993). 

In the absence of GluR-A, in global GluR-A-deficient mice (GluR-A-/-, Zamanillo et 

al., 1999), the expression of the other AMPAR subunits is not only delayed, but also 

the final expression level of GluR-A partners, GluR-B and GluR-D, is reduced 

compared to wild-type mice (Jensen et al., 2003). Because GluR-B and GluR-D are 

the principal GluR-A partners in hippocampal AMPA receptors, absence of GluR-A 

leaves much of the GluR-B and GluR-D unassembled, resulting in a shorter half-life 

of these subunits. Depletion of GluR-A also impairs the cellular localization of the 
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other AMPAR subunits, as immunolabelling studies showed that GluR-B subunits are 

largely restricted to soma in the absence of GluR-A (Zamanillo et al., 1999, Jensen et 

al., 2003). 

1.2.2.2. NMDA receptors 

NMDA receptors, sensitive to the glutamate analogue N-methyl-D-aspartate, form 

heteromeric channel complexes combined of the principal subunit NR1 and NR2 (A 

to D) or NR3 (A, B) subunits (Seeburg et al., 1995). In principal neurons of the 

forebrain, functional NMDA receptors are mainly formed by two NR1 and two NR2A 

or NR2B subunits. Interestingly, NR2B containing receptors are expressed 

predominately in the mouse brain until the end of the second postnatal week (Monyer 

et al., 1982). As for AMPA receptors, heterogeneity of NMDA receptors is based on 

combination of different subunit isoforms (alternative splicing variants) and various 

post-translational modifications. However, RNA editing of NMDA receptor 

transcripts does not occur. 

AMPA and NMDA receptors exhibit a number of unique electrophysiological 

features that make them key players in activity-dependent prolonged changes in 

synaptic neurotransmission (synaptic plasticity). Both receptor types colocalize at 

most synapses of the CNS (Chen et al., 2000; Liao et al., 1999; Petralia et al., 1999). 

Both are activated by the neurotransmitter glutamate but differ in their affinity for that 

ligand, their channel kinetics and ion permeability. Furthermore, NMDA receptors 

require glycine as a co-activator. 

Upon binding of glutamate, AMPA receptors open and close rapidly (Mayer 

and Westbrook, 1987), thereby leading to a depolarization of the postsynaptic 

membrane creating an excitatory postsynaptic potential (EPSP). Activated NMDA 

receptors on the other hand open at resting potential but Na+, K+ or Ca2+ cannot pass 

the cannel pore since Mg2+ blocks it. A simultaneous depolarization of the membrane, 

however, removes the Mg2+ block and leads to high permeability to Na+, K+ and also 

to Ca2+. Thus, NMDA receptors act as coincidence detectors: presynaptic release of 

glutamate must coincide with postsynaptic depolarization in order to unblock NMDA 

receptors and to increase postsynaptic depolarization (Koester et al. 1998). While 

most AMPA receptors are Ca2+ impermeable due to the incorporation of edited GluR-

B subunits, NMDA receptors are permeable to Ca2+. The Ca2+influx through NMDA 



12 

receptors activates second messenger cascades such as the Calcium/Calmodulin-

dependent protein kinase II (CaMKII, Lisman et al., 2002; Malenka and Nicoll, 1999) 

and is an essential step in some forms of activity-dependent changes in synaptic 

strength at the single synaptic contact level. 

 

Fig. 1.4. Coincidence detection of the NMDA receptor 

Model of the activity-dependent increase in transmission at a AMPA and NMDA receptor co-localized, 

glutamatergic synapse. L-glutamate release from the presynaptic membrane opens AMPA receptors but 

not NMDA receptors that are blocked by Mg2+ in the channel pore at resting membrane potential (left 

diagram). Sufficient depolarization of the postsynaptic membrane by AMPA receptor activation 

releases the Mg2+ block at the NMDA receptor channel pore and permits high membrane permeabilities 

for Na+, K+ and in particular, for Ca2+ that are essential for the activation of intracellular signaling 

processes (second messenger function) (adapted from Shimshek, PhD thesis, Uni Heidelberg, 2003). 

1.2.3. Synaptic plasticity: Activity-dependent modulations of synaptic 

transmission evoke prolonged changes in the efficacy of synaptic contacts 

Synaptic plasticity, i.e. activity-dependent changes in synaptic efficacy, is an 

intriguing feature of neuronal networks and is believed to be the neurophysiologic 

correlate underlying memory and behavior. Originally hypothesized by Cajal (neuron 

doctrine, 1913), information storage between two active neurons is based on changes 

of their synaptic connections. Hebb (1949) supported this hypothesis and proposed 

that time-dependent, local and highly interactive mechanisms as a function of 

repeated pre- and post-synaptic activity lead slowly to the formation of ``cell-

assemblies''. In his book, The Organization of Behaviour, Hebb postulated how 

learning could occur. Specifically; 

“When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 
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place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased.” 

One usually refers to changes in synaptic efficacy that last for a short time window 

(milliseconds or several seconds) as short-term plasticity, whereas changes lasting for 

hours or even days are considered as long-term plasticity. 

Activity-dependent short-term plasticity was demonstrated by an increase 

(facilitation) or a decrease (depression) of synaptic transmission between two 

subsequently administered action potentials in field or cellular recordings (Thomson 

et al., 2003; Stevens and Wang, 1995; Markram and Tsodyks, 1996). Short-term 

effects are mainly accounted by the release probability of transmitter vesicle as a 

function of presynaptic mechanisms (Katz and Miledi, 1968; Betz, 1970; Zucker, 

1989). However, the exact determinants of facilitation and depression at a synapse are 

more complex. Observations in cortical layers II and III between principal and 

inhibitory neurons indicated that the action potential frequency of postsynaptic cells 

determines the direction of the short-term plasticity (Reyes et al., 1998). 

Several distinct types of activity-dependent long-term plasticity have been 

described (reviewed in Malenka, 2004) of which long-term potentiation (LTP) (Bliss 

and Lomo, 1970, 1973) is the most prominent. LTP describes the observation that a 

brief high-frequency train of stimuli increases the amplitude of the excitatory 

postsynaptic potential (EPSP) in an input-specific manner. It has become clear that 

various forms of LTP exist dependent on synaptic connectivity, developmental stage 

and induction protocol (Esteban et al., 2003; Jensen et al., 2003; Yasuda et al., 2003). 

Bliss and Lomo first reported LTP experimentally in the hippocampus (Bliss and 

Lomo, 1970). Since then LTP and the contrary long-term depression (LTD) have been 

observed at many synapses in different brain regions. It is widely believed that these 

phenomena provide an important key to our understanding of the cellular and 

molecular mechanisms by which memories are formed and stored (Bliss and 

Collingridge, 1993). Furthermore, LTP and LTD might underlie the development and 

refinement of neuronal networks (Crair and Malenka, 1995). 
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1.2.5. The role of AMPA and NMDA receptors in hippocampal long-term 

potentiation (LTP) 

The LTP model comprises an early phase (E-LTP) and a late phase (L-LTP) that are 

further divided in 3 distinct parts: induction, expression and maintenance. While E-

LTP (first 30 to 60 minutes) is thought to rely mainly on direct changes in the 

membrane permeability for Na+, K+ and Ca2+ via ionotropic glutamate receptors in the 

hippocampus, the prolonged increase in synaptic strength lasting over hours, days or 

weeks (late phase, L-LTP) is a much more complex structural process including gene 

transcription and protein synthesis (Deadwyler et al., 1987; Frey et al., 1988; Stanton 

and Sarvey, 1984; reviewed in Lynch 2004). 

LTP in the hippocampus was induced by different patterns of stimulation in 

field or cellular (patch clamp) recordings. Widely used induction protocols are 

presynaptic tetanization1 or pre- and postsynaptic pairing such as low frequency 

stimulation2 and theta burst pairing3 (TBP). Although each of the protocols induces 

long lasting synaptic changes, the time course of expression of the early phase (0-

5 min) LTP differs. After tetanic stimulation the peak increase in synaptic efficacy is 

expressed rapidly (1-3 min) after the stimulation and then drops gradually over time 

(Malenka and Nicoll, 1999). The pairing protocol results in a gradual, saturating 

increase in synaptic efficacy without a large initial peak (Chen et al., 1999; Hoffman 

et al., 2002). Finally, theta-burst pairing generates a rapid potentiation of synaptic 

strength, which then increases with time (Magee and Johnston, 1997; Pike et al., 

1999). The difference in the time course of LTP expression induced by different 

protocols suggests different molecular pathways involved in the expression of these 

different forms of LTP. 

With the exception of cAMP-dependent LTP at mossy fiber-CA3 synapses, all 

described forms of LTP in the hippocampus of wild-type mice are NMDA receptor-

dependent (for review Malenka and Bear, 2004; Sprengel 2006). Application of the 

                                                             
1 Tetanization consists of a 1 s long high frequency (100 Hz) stimulation of presynaptic neurons. 
2 Pairing protocol is a low frequency (0.7-1.5 Hz) presynaptic stimulation paired with prolonged 

(~ 3 min) postsynaptic depolarization at 0 mV, which aims to mimic postsynaptic action potential 

initiation upon presynaptic neural input to the postsynaptic neuron. 
3 Theta-burst pairing is a theta rhythm-mimicking train of 5 action potential bursts delivered at 5 Hz, 

with each burst consisting of 5 presynaptic EPSPs and postsynaptic action potentials paired at 100 Hz. 
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competitive NMDA receptor antagonist AP5 or the non-competitive NMDA channel 

blocker MK801 blocks LTP substantially in cellular or field recordings (Coan and 

Collingridge, 1987; Collingridge et al., 1983; Errington et al., 1987). The synaptic 

connections of principal neurons between the CA3 region and the CA1 region of the 

hippocampus (Schaffer collateral/commissural - CA1 synapses) are the most studied 

synapses to elucidate mechanisms of field and cellular LTP (Bliss and Collingridge, 

1993). The CA1 principal neurons gain further impact for neurobiological research 

since transgenic mice with restricted ablation of NMDA receptors failed to induce 

Schaffer collateral - CA1 LTP and exhibited severe impairment in spatial behavior 

(Tsien et al., 1996). This was the first finding of a molecular and neurophysiologic 

correlate in a single cell layer that underlies memory-based behavior (for more details, 

please refer to 1.3.4.). 

Successful LTP induction has been shown to require a rapid rise in the 

concentration of Ca2+ in the postsynaptic cell. Here, the capability of NMDA 

receptors to act as molecular coincidence detector is essential. Repeated stimulation at 

Schaffer collateral - CA1 synapses depolarizes the postsynaptic membrane by 

activation of AMPA receptors. This then causes the release of the Mg2+ blocking 

NMDA receptors in the postsynaptic membrane and allows the influx of Ca2+ via 

NMDA receptor channels (Collingridge et al., 1983; Ascher and Nowak, 1986). 

Hence, LTP is only induced if two time-dependent events occur, AMPA and 

subsequently additional NMDA receptor activation. 

In principle, a rapid rise in the concentration of Ca2+ in the postsynaptic cell can 

also be mediated by AMPA receptors lacking GluR-B. In GluR-B KO mice, the 

AMPA receptor-mediated Ca2+ influx leads to an enhanced NMDA receptor-

independent CA3-to-CA1 LTP (Jia et al., 1996). This form of NMDA receptor-

independent LTP was also observed in the wild-type situation outside the 

hippocampus. In cerebellar interneurons, high frequency, presynaptic stimulation 

induces a rapid rise in local postsynaptic Ca2+ via GluR-B lacking AMPA receptors 

that triggers the insertion of GluR-B containing AMPA receptors at the synapse (Liu 

and Cull-Candy, 2002). 

In the hippocampus however, enhanced and NMDA receptor-independent LTP 

was not reproduced in forebrain-specific GluR-B mutant mice (Shimshek et al., 

2006). Here, GluR-B depletion was restricted to principal forebrain neurons by the 

use of transgenic TgCre4 mice (Mantamadiotis et al., 2002) directing Cre recombinase 
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under the αCaMKII promoter to excitatory neurons. Even though we do not have any 

evidence for the neurophysiologic differences in global (Jia et al., 1996) and 

forebrain-specific GluR-B mutants (Shimshek et al., 2006), one might speculate that 

the interplay between excitatory and inhibitory circuits or developmental, long-term 

changes induced by AMPA receptor-mediated Ca2+ influx (e.g. observed in kainate 

acid-mediated status epilepticus, Friedman et al., 1994; Friedman and Koudinov, 

1999) are responsible for this kind of ’enhanced’ LTP that was observed in global 

GluR-B mutant mice. 

Following a rapid and strong Ca2+ influx4, intracellular, Ca2+-dependent 

signaling complexes convey the increase of Ca2+ into prolonged changes in synaptic 

efficacy. The most prominent candidate among protein kinases is the 

calcium/calmodulin-dependent protein kinase II (CaMKII), since pharmacological 

and genetic experiments indicated that its activation is essential for LTP induction 

(Fukunaga et al., 1993; Lledo et al., 1995; Otmakhov et al., 1997). CaMKII 

phosphorylates AMPA receptors and thereby, increases their single-channel 

conductance (Barcia et al., 1997; Benke et al., 1998). In addition, activation of 

CaMKII leads to insertion of GluR-A containing AMPA receptors at extrasynaptic 

sites, followed by lateral diffusion into synaptic sites (Chen et al., 2000; Passafaro et 

al., 2001). However, many other Ca2+-dependent kinases are implemented in the LTP 

expression and maintenance. These include tyrosine kinases of the Src family (Salter 

and Kalia, 2004), protein kinase C (PKC, Bliss and Collingridge, 1993; Malenka and 

Nicoll, 1999), the protein kinase M zeta (PKMζ, Hrabetova and Sacktor, 1996; Ling 

et al., 2002), mitogen-activated protein kinase (MAPK, Sweat 2004) and cAMP-

dependent protein kinase A (PKA, Roberson et al., 1999). 

Nevertheless, like LTP induction, LTP expression at the Schaffer collateral - 

CA1 synapses relies heavily on ionotropic glutamate receptors. The discovery of 

silent synapses lacking AMPA receptors, and the evidence that LTP un-silences these 

synapses (Isaac et al., 1995; Liao et al., 1995), convinced most researchers that LTP 

involves the activity-dependent rapid recruitment of synaptic GluR-A containing 

AMPA receptors. Direct support comes from physiologically tagged AMPA receptor 

subunits (Liu and Cull-Candy, 2000) and experimentally un-caging glutamate onto 

                                                             
4 It was hypothesized that a fast and strong influx of Ca2+ leads to LTP, whereas a smaller and more 

prolonged increase in intracellular Ca2+ ions induces LTD (Ismailov et al., 2004). 
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single spines (Bagal et al., 2005; Matsuzaki et al., 2004). It appears that there is a 

fairly constant turnover of GluR-B/C AMPA receptors at the synapse, whereas the 

trafficking of GluR-A/B AMPA receptors requires neural activity (Shi et al., 2001). 

Interestingly, while LTP expression has been associated with an increased number of 

GluR-A-containing AMPA receptors in synapses, there is also evidence that NMDA 

receptor-dependent LTD is associated with a decrease in AMPA receptors (Carroll et 

al., 1999). 

Complete inactivation of the GluR-A gene in global GluR-A-/- mice impaired 

the NMDA receptor-dependent LTP in the tetanus as well as in the low frequency 

pairing protocol (Zamanillo et al., 1999; Mack et al., 2001). However, significant 

CA3-CA1 LTP could be induced in young (P14-P28) GluR-A-/- mice in both LTP 

protocols (Jensen et al., 2003). This ‘juvenile’ GluR-A-independent form of LTP was 

shown to be NMDA receptor-dependent, postsynaptically expressed and, likely to rely 

on different molecular mechanisms than GluR-A-dependent LTP in adult wild-type 

mice. In addition, theta burst pairing of hippocampal CA3-CA1 synapses elicited 

robust LTP in adult GluR-A-/- mice (P41-56). The initial component was substantially 

reduced and hence, GluR-A dependent. However, the slow developing LTP 

component in adult GluR-A-/- mice was indistinguishable from control mice (Hoffman 

et al., 2002). It was hypothesized that GluR-A dependent and GluR-A independent 

LTP might be relevant for different forms of information storage and that a specific 

LTP deficit might result in the impairment of only a certain memory type, while 

preserving others (Hoffman et al., 2002). 

1.3. The hippocampal formation in mice and rats: model system for 

anterograde amnesia 

The hippocampal formation is located in the medial temporal lobe of the cerebellar 

cortex, part of the forebrain (telencephalon) and contains the entorhinal cortex, the 

hippocampus, the dentate gyrus (DG) and the subicular complex. Together with the 

adjacent amygdala, it forms the central axis of the limbic system (Squire et al., 2004). 

In contrast to the six-layered neocortical brain areas and the entorhinal cortex, the 

central parts of the hippocampal formation belongs to the allocortical brain areas of 

the cerebellar cortex and exhibits a characteristic three-layered structure (principal 

cell layer II and inhibitory cell layers I and III that include the principal fibers). The 
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entorhinal cortex connected to the perirhinal and parahippocampal cortex within the 

temporal lobe, receives neocortical information via monosynaptic inputs from higher-

order sensory areas of each modality and pre-processed multimodal information from 

cortical association areas (e.g. frontal association cortex). Subcortical information, 

mainly from the septum, is transmitted via the fimbria-fornix bundle into the 

hippocampus. A rudimentary component of the hippocampus, the so-called 

‘hippocampal attenuation’ (indusium griseum or supracallosal gyrus) located above 

the corpus callosum, connects the olfactory system with hippocampal processing 

(reviewed in Cenquizca and Swanson, 2007). Most hippocampal research in the last 

fifty years was directed to the hippocampus and the DG, the central structures of the 

hippocampal formation. Both structures form the most prominent internal circuit of 

the hippocampal formation, the excitatory trisynaptic loop that is believed to be the 

relay station of polymodal stimuli in cognitive brain functions. 

The hippocampal formation, in particular the hippocampus, has long been 

recognized as a key structure in the human brain for its capacity of conscious 

recollection of facts and autobiographical events (declarative memory). The 

observations of patients HM (Scoville and Milner, 1957) and RB (Zola-Morgan et al., 

1986), which suffered from anterograde amnesic syndromes related to damage to their 

temporal lobes, explicitly identified the important role of the hippocampus and medial 

temporal lobe structures in memory. In HM, a large portion of the hippocampus was 

lesioned whereas damage in RB was just restricted to the CA1 subfield. Studies of 

HM and RB demonstrated that the hippocampus was important for the formation and 

retrieval of memories. HM was unable to retain and recall new information over a 

delayed period of time and RB could not acquire new long-term memories. Aside 

from memory formation and recall however, both patients had normal levels of 

perceptual and cognitive ability, and some remote memory sparing (Scoville and 

Milner, 1957; Zola-Morgan et al., 1986). 

In rodents, the hippocampal formation is involved specifically in spatial forms 

of episodic memory (Morris et al., 1982; O'Keefe and Nadel, 1978). With 

improvement of lesion and transgenic techniques and development of various 

cognitive tasks of spatial behavior, the rodent’s hippocampal formation became an 

attractive model to investigate acquisition, consolidation and recall of spatial short- 

and long-term memory. 
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Fig 1.6. Three-dimensional location of the hippocampus (including the Dentate Gyrus) in the 

mouse brain 

dHC/vHC, dorsal/ventral hippocampus; fi, fimbria; fx, fornix; mEC/lEC, medial/ventral entorhinal 

cortex; MS, medial septum (adapted from Amaral and Witter, 1989). 

1.3.1. Hippocampus - the central processing unit of the hippocampal 

formation 

The hippocampus (seahorse, Greek: hippos for horse, kampos for sea monster) 

including DG is a curved, tube-like structure deeply buried in the temporal lobe. 

Located along the rostro-caudal plane of the rodent’s brain in a way that, roughly, one 

end is near the top of the brain (the dorsal hippocampus or septal pole) and another 

end near the bottom of the brain (the ventral hippocampus or the temporal pole). This 

structure consists of two C-shaped interlocking regions, the Ammon’s horn (cornu 

ammonis, CA) of the hippocampus and the fascia dentata of dentate gyrus (DG). Both 

composed of one principal cell layer; the pyramidal cell layer in CA (stratum 

pyramidale) and the granular cell layer in DG (stratum granulosum) (Ramón y Cajal, 

1893). CA is further subdivided in the subfields CA1-CA3 (Amaral and Wittner, 

1989), based on the classification of the arrangement of different cells in each area 

(Lorente de Nó, 1934). Pyramidal cells extend their main apical dendritic shafts in 

stratum radiatum, terminating in stratum lacunosum-moleculare, and basal dendrites 

in stratum oriens. Axons of pyramidal cells run in stratum alveus where they form 

numerous collaterals before leaving the hippocampus. Granule cell dendrites stretch 
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out to stratum moleculare and axons (mossy fibers) runs through the polymorphic cell 

layer in the DG hilus that is often considered a separated subfield (CA4). 

The most prominent pathway of informational processing through the 

hippocampus forms an excitatory feed-forward circuit, which has been termed the 

’trisynaptic loop or circuit’ (Andersen, Holmqvist and Verhoeve, 1966; Andersen, 

1975; Swanson et al., 1978). First, granule cells in DG receive synaptic input from 

layer II of the entorhinal cortex via the perforant path (Stewart and Scoville, 1976). 

DG granule cells send axonal mossy fibers terminating in str. radiatum on the 

proximal apical dendrites of the large CA3 pyramidal cells. Finally, CA3 pyramidal 

cells project to the pyramidal CA1 neurons via the Schaffer collateral system (Lorente 

de Nó, 1934; Blackstad, 1956; Amaral, 1978) terminating in the distal two-third of str. 

radiatum. CA1 pyramidal neurons send their axons to the subiculum and deep layers 

of the entorhinal cortex. This unidirectional loop is thought to process most of the 

hippocampal information (Amaral and Wittner, 1989). Within all fields of the 

hippocampus a large number of interneurons are present. These interneurons often 

have extensive axon arborization, usually staying within the boundary of a given 

region. They can interact with many hippocampal principal neurons modulating 

hippocampal activity both by feed-forward and feedback inhibition (Lopes da Silva et 

al., 1990). 

Fig 1.6. The most prominent, unidirectional pathway in the hippocampus, originally based on the 

‘trisynaptic loop’ (Andersen et al., 1966) 

The main cortical information, converged in the entorhinal cortex, is received via the Perforant Path 

(PP, splits into lateral and medial) that innervate mainly the granule cells of the Dentate Gyrus (DG) as 

well pyramidal CA3 neurons. Axons of DG neurons (mossy fibers, MF) innervates CA3 pyramidal 
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neurons that send Schaffer Collateral (SC) axons to the CA1 pyramidal neurons in the same transversal 

plane and axons via the Associational Commissural pathway (AC) to CA1 neurons of the contra lateral 

hippocampus. CA1 neurons send hippocampal information via principal neurons in the subicular 

complex (subiculum, pre- and parasubiculum) and directly back to the entorhinal cortex, forming the 

mainly unidirectional loop. CA1 pyramidal neurons receive pre-processed information via DG and 

CA3 neurons from layer II and also V of the entorhinal cortex but also directly from layer III and V of 

similar regions in the entorhinal cortex and are hypothesized as the central relay station of hippocampal 

processing (adapted from Collingridge G, MRC laboratory, Bristol). 

The observation of preserved connections in thin, electrophysiological slices 

was the basis of the lamellar hypothesis for the anatomical organization of the 

hippocampus (Andersen et al., 1971). It proposes a functionally independent 

operation of a series of parallel stripes and hence, hippocampal processing 

predominately via the ’trisynaptic loop’ in the transversal plane. 

However, in the last decade, more insight was gained on additional intrinsic 

connection in the longitudinal axis of the hippocampus connecting the transverse 

planes of the trisynaptic loops. For example, DG granule and CA3 pyramidal cells 

have extensive associational fibers projecting widely in the longitudinal direction 

(Swanson et al., 1978). These recurrent and distributed sites along the dorso-ventral 

axis of the hippocampal formation could become associated during spatial learning 

(McNaughton and Morris, 1987; Hasselmo et al., 1995). In addition, neurons in the 

hippocampus receive input from commissural afferents from the contra lateral 

hippocampus. Therefore, it is most reasonable to consider the hippocampus as a three-

dimensional subcortical structure with important informational processing taking 

place in both the transverse and longitudinal axis (Amaral and Witter, 1989). 

Originally indicated by Tolman (1948) and hypothesized by O´Keefe and 

Dostrovsky (1971) with the discovery of hippocampal place cells, the whole 

hippocampus is thought to generate a cognitive map of the environment that aids the 

animal to navigate flexibly. Place cells fire whenever the animal is in a particular 

location of the environment. Interestingly, spatially-related firing cells (place, grid 

and head-direction cells) were discovered throughout the hippocampal formation, 

including the entorhinal cortex (Quirk et al., 1992; Fyhn et al., 2004; Hafting et al., 

2005; Sargolini et al., 2006), the presubiculum (Cacucci et al., 2004), the 

postsubiculum (Sharp, 1996), the parasubiculum (Taube et al., 1995; Cacucci et al., 

2004) and the subiculum (Sharp and Green, 1994). These findings supported the view 
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of the hippocampal formation as ’whole structure’ with the hippocampus in its central 

position. 

1.3.3. Behavioral studies of hippocampal lesion and drug infusion in 

rodents 

Hippocampal lesion and drug infusion studies in rodents are studied as models for 

human amnesic syndromes. Behavioral analysis in rodents included various 

spontaneous (e.g. spatial open-field, Save and Poucet, 1992), associative (e.g. 

Pavlovian fear conditioning, plus maze, reviewed in Bannerman et al., 2004) and 

cognitive forms of spatial and non-spatial behavior (t-maze, Morris watermaze, 

differential reinforcement of low rates of responding (DRL) task; reviewed in 

Bannerman et al., 1999; 2004). Most prominent in comparison to memory deficits in 

human patients suffering from anterograde amnesia, rodents are studied mainly in two 

spatial types of cognitive learning and memory: spatial reference memory - where the 

relationship between a goal and the environment is consistent throughout the trials 

(matching-to-place paradigm, MTP; Morris et al., 1982); and the spatial working 

memory - where the relationship between the goal and the environment in a first, 

sample run has to be stored flexibility and remembered for successful performance in 

the subsequent choice run after a certain delay. Thereby, the relationship between 

spatial cues and goal changes on a trail-to-trail basis (delayed non-matching-to-place 

paradigm, DNMTP, Rawlins and Olton, 1982)5. Spatial working and reference 

memory were tested in various behavioral tasks with different complexity like the 

elevated T-maze, Y-maze, radial maze, watermaze (reviewed in Bannerman et al., 

2004; Reisel et al., 2002; Deacon et al., 2002) that use sweet milk as reward 

(appetitive) or water as motivation to escape onto a hidden platform (aversive). 

With improvement of lesion techniques by e.g. fiber-sparing ibotenic acid (IBO, 

a kainate acid derivate extracted from mushroom Amanita muscaria), discrete lesions 

of certain parts of the hippocampus were performed to elucidate function of those 

areas (Jarrad et al., 1989). Behavioral experiments have shown that both aspiration 

and IBO lesions of dorsal and ventral parts of the hippocampus have different effects 

                                                             
5 Notably, many researchers, in particular working with primates, often use the term working memory 

for a short-term, on-line memory supported by frontal lobe structures (Goldman-Rakic, 1987) in 

contrast to the flexible memory system dependent on the hippocampal formation. 
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(Moser et al., 1993, 1995). Dorsal hippocampal lesions in rats disrupted the learning 

of appetitive and aversive spatial memory tasks (elevated T-maze, six-arm radial 

maze and watermaze; Bannerman et al., 1999, 2002; Pothuizen et al., 2004). These 

animals performed at a level resembling complete hippocampal lesions (Olton and 

Papas, 1979; Rawlins and Olton, 1982; Morris et al., 1982; reviewed in Bannerman et 

al., 2004). Yet, ventral lesions showed no effect on performance in these tasks 

(Bannerman et al., 2004). These findings suggested that the dorsal hippocampus has a 

greater role in spatial learning and memory than the ventral portion. 

The ventral hippocampus however has been implicated in some spatial learning 

tasks (Frebinteanu and McDonald, 2001; de Hoz et al., 2003), indicating that the 

ventral hippocampus contributes at least under certain conditions to the learning of 

spatial reference memory tasks. Moser and Moser (1998) found that small 

hippocampal lesions disrupted retrieval of a previously learned spatial reference 

memory task in a retention test. But these lesions did not affect the learning or 

retrieval of a new task post-operatively. These data suggested that spatial memory 

was encoded, stored and retrieved in the hippocampus-wide network and that 

disruption of this network by a lesion affects retrieval of previously learned tasks. 

However, new tasks were encoded and stored in the available network, they were 

retrieved effectively as without disruption (Moser and Moser 1998). 

The ventral hippocampus might be involved in the processing of information 

during fear conditioning. Reduced levels of freezing were observed in the contextual 

conditioning task (Richmond et al. 1999). Discrete lesions to the ventral portion of the 

hippocampus resulted in attenuated responses in the conditioned freezing task but 

normal levels of learning in the watermaze task (Richmond et al., 1999). It was 

concluded that the connection between the ventral portion of the hippocampus and the 

amygdala is involved in anxiety-related behaviors (Bannerman et al., 2003, 2004). 

Discrete lesion studies suggested that the ventral and dorsal hippocampus support 

separate learning and memory systems of spatial behaviors, but are not mutually 

exclusive in function. 

Techniques that prevent LTP by NMDA receptor blockage showed similar, 

although not identical, results as hippocampal lesion studies. Using the NMDA 

receptor antagonist 2-Amino-5-phosphonopentanoic acid (AP5), Morris et al. (1986) 

found spatial reference learning in the watermaze was disrupted by blockage of LTP. 

The rats failed to learn to locate the submerged platform, in a similar manner as rats 
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with hippocampal lesions, indicating that LTP may be a crucial factor in spatial 

learning. Bannerman et al. (1995) found that blocking NMDA receptors did not 

completely disrupt spatial reference learning in the watermaze, however. Saucier and 

Cain (1995) also found that pharmacological blockage of NMDA receptor activity 

blocked dentate gyrus LTP but had no effect in spatial learning. These results were 

both attributed to the pre-training, the animals had received prior to treatment and 

testing. It was hypothesized that hippocampal NMDA receptor-dependent synaptic 

plasticity is not necessary for spatial reference memory (reviewed in Bannerman et 

al., 2006). There is also the implication that AP5 affects sensorimotor skills, and that 

pre-treatment allows the animals to develop the procedural skills effectively prior to 

drug treatment (Bannerman et al. 2006). 

However, Hippocampal-dependent spatial working memory requires NMDA 

receptors. Steele and Morris (1999) found impairment in watermaze performance 

using a delayed matching-to-place paradigm with AP5-treated rats. Their results 

showed that the impairment was delay-dependent and that animals, which had 

received pre-training on the task prior AP5 infusion, were still impaired in spatial 

working memory. Tonkiss and Rawlins (1991) also used AP5 and found impairment 

in choice accuracy and a delay-dependent impairment: a small retention interval 

impaired the AP5-treated animals initially but they recovered over days. However a 

second 20 s retention interval did impair the choice accuracy of the AP-treated 

animals significantly. 

1.3.4. Spatial working and reference memory in iGluR mutant mice 

Genetic engineering of the mouse genome allowed the generation of mice with 

selective deletion of distinct AMPA and NMDA receptor subtypes. Initially, global 

gene knock-out (KO) mice of distinct AMPA and NMDA receptor subtypes were 

generated to investigate the overall role of certain glutamate receptors in the mouse 

brain. 

Behavioral testing of GluR-A-/- mice was performed in a variety of 

hippocampus-dependent tasks. First of all, adult GluR-A-/- mice were found to be 

normal with respect to most behavioral patterns (Bannerman et al., 2004). Despite the 

lack of CA3-CA1 LTP, the GluR-A-/- mice exhibited normal spatial reference memory 

performance in the Morris water maze and Y-maze tasks (Schmitt et al., 2004; 
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Schmitt et al., 2003; Zamanillo et al., 1999). Nevertheless, GluR-A-/- mice showed 

specific and profound spatial working memory impairment, as tested on the T-maze 

alternation task and six-arm radial maze (Reisel et al., 2002; Schmitt et al., 2003). 

Importantly, both LTP and spatial working memory was partially restored by 

transgenic expression of GluR-A in the forebrain, providing direct evidence that 

GluR-A-containing AMPA receptors are critical for spatial working memory (Mack et 

al., 2001; Schmitt et al., 2005). 

 

Fig 1.7. Hippocampal lesions and GluR-A deletion both impair spatial working memory 

performance during the DNMTP task on the elevated T-maze (rewarded alternation).  

Top: The mouse is forced into either the left or right goal arm, according to a pseudorandom sequence, 

and receives a milk reward. During the choice run (right) the mouse has to go directly to the opposite 

(previously unvisited) goal arm to find a second milk reward. Both runs are delayed by the standard 

inter run interval (IRI) of 15 seconds. 40 trials in total on 5 successive days were performed. Bottom: 

Mean percentage of trials on which the mouse alternated successfully (± SEM). Left: Performance of 

sham, complete (cHPC), dorsal (dHPC) and ventral (vHPC) lesioned rats (data taken from Bannerman 

et al., 2002). Center left: performance of sham and complete (cHPC) hippocampal-lesioned mice. 

Center right: performance of wild-type and GluR-A-/- mice (data taken from Reisel et al., 2002). Right: 

Performance of wild-type (WT), GluR-A-/- mice and GFP-labeled GluR-A rescued GluR-A-/- mice (data 

taken from Schmitt et al. 2005). Broken line equates to chance performance of 50% (adapted from 

Sanderson et al., 2008). 
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However, global KO mice had certain drawbacks. For example, global NR1-/- 

mice displayed a lethal phenotype. These mice died around birth from respiratory 

failure (Forrest et al., 1994). Global GluR-B-/- mice had poor motor coordination, 

exhibited low explorative activity, and did not breed (Jia et al., 1996; Shimshek et al., 

2005). However, GluR-A-/- mice displayed only a slight hyperactivity but otherwise 

appeared normal (Bannerman et al., 2004). With improvement of transgenic 

techniques (pronucleus injection, use of spatially- and temporally-restricted promoters 

and induction systems), more selective mouse models with gene inactivation of 

distinct receptor subtypes were generated to test animals in adulthood and to avoid 

compensatory and developmental effects. 

Forebrain principal neuron-specific inactivation of the GluR-B gene in Gria2ΔFb 

(Shimshek et al., 2006) was generated by transgenic expression of the Cre 

recombinase driven by a 3.5kb αCaMKII promoter fragment in the homozygous 

background of floxed Gria2loxP/loxP mice. The GluR-B mutant mice displayed both, 

impairment in spatial working memory on the elevated T-maze and in spatial 

reference memory tested on the elevated Y-maze. However, the strong GluR-B 

lacking AMPA receptor-mediated Ca2+ influx evoked long-lasting changes in the 

hippocampal circuitry, either direct (moderate mossy fiber sprouting in DG; loss of 

CA3 neurons) or indirect (loss of parvalbumin-positive interneurons in DG; reduced 

neurogenesis). Therefore, behavioral deficits in spatial memory might be due to 

developmental, second-order failures rather than changes in synaptic 

neurotransmission (Sprengel et al., 2006). 

Arguably the most discussed mutant mouse model of hippocampal processing 

features the CA1-restricted deletion of the NR1 gene (Tsien et al., 1996). These CA1-

KO mice were severely impaired in the acquisition of spatial reference memory in the 

Morris watermaze. By contrast, AP5 infusion in the dorsal hippocampus did not 

produce this impairment (Bannerman et al., 1995), and even the effect in dorsally 

lesioned rats was weaker than in CA1-KO mice (Bannerman et al., 1999). Notably, 

AP5-infused mice received pre-training prior to treatment and testing, that CA1-KO 

mice did not receive. Furthermore, CA1-KO mice also showed evidence of a mild and 

transient deficit in a visible platform version of the watermaze task. A later study 

(Fukaya et al., 2003) investigated the age-dependent gene manipulation in these 

mutants. In the brains of one-month-old mutants, the levels of NR1 mRNA were 
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significantly reduced in CA1 and subiculum. At two months of age, however, the 

reduction of NR1 mRNA was further decreased in these areas but reduction was also 

observed in other brain areas, most conspicuously in the deep layers of the neocortex. 

At later age (2-4 months), the NR1 knock-out extended to other telencephalic 

structures (e.g. CA3, DG). Therefore, it was speculated that the strong effect in 

acquisition to find the hidden platform and the mild and transient deficit in the visible 

platform version may be due, at least partially, to the nature of the mutation, which 

spread to the cortex with age. Hence, the contribution of a cortical NR1 deletion 

cannot be excluded. 

 

Fig 1.8. Age-dependent depletion of the NR1 subunit in the CA1-NR1 KO mice (Tsien et al., 

1996) 

(A) In situ-hybridization with antisense NR1 probe. (B) Immunoperoxidase stainings against the 

principal NMDA receptor subunit NR1. Pairs of control (floxed) and mutant mouse brains at different 

ages (1, 1.5, 2 and 4 months) are depicted. Arrows and arrowheads indicate the hippocampal CA1 

region at stages when NR1 reduction is first observed or reaches the lowest level, respectively. Cb, 

cerebellum; CP, caudate putamen; Cx, cortex; Hi, hippocampus; Th, thalamus. Scale bars, 1 mm 

(adapted from Fukaya et al., 2003). 

Deletion of the NR1 subunit in CA3 (Nakazawa et al., 2002) allowed normal 

Morris watermaze performance under training conditions. Yet, with the removal of 

the spatial guiding cues, the animals revealed a clear deficit in the same task. It was 

hypothesized that NMDA receptors in CA3 are important for pattern completion. The 
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mutant mice were unable to form a representation of the environment to solve the 

maze when some of the cues were absent. In a later study, these CA3-NR1 mutant 

mice exhibited impaired spatial working memory in a delayed matching-to-place 

watermaze task (Nakazawa et al., 2003). 

NMDA receptor mutant mice with NR1 deletion in the DG showed a spatial 

working memory deficit on a radial maze task, but intact spatial reference memory on 

the same maze (Niewoehner et al., 2007). McHugh et al. (2007) found that mice 

having NR1 deleted in the DG showed normal spatial reference memory performance 

in the watermaze and acquired and retained a contextual fear-conditioning task. These 

animals did, however, show a transient, significant deficit when required to 

distinguish between two slightly different contexts in the fear-conditioning task. It has 

been proposed that this deficit reflects the role of NMDA receptors of the DG in 

pattern separation. However, one should note, that ’classical’ pattern separation in 

spatial behavior was not observed by Niewoehner et al. (2007) or McHugh et al. 

(2007) and that the applied electric foot shock in the contextual fear conditioning 

paradigm was relatively high and the training relatively long (0.75 mA on day 1; 

0.65 mA on days 2-17). 

Taken together, gene activation of prominent AMPA and NMDA receptors in 

the hippocampus of transgenic mice demonstrated the important role of excitatory 

glutamatergic neurotransmission in different spatial forms of cognitive memory. It has 

been hypothesized that spatial working memory is dependent on GluR-A containing 

AMPA and NMDA receptors (delay- and task-dependent), whereas spatial reference 

memory is only dependent on NMDA receptors (at least to some extent). The exact 

role of GluR-B containing AMPA receptors in spatial behavior could not be addressed 

properly since GluR-B depletion evoked an altered hippocampal circuitry. 

1.4. Aim of thesis 

The primary objective of this work is to contribute to the understanding how the main 

excitatory glutamate receptors (AMPA that contain the GluR-A or GluR-B subunit 

and NMDA receptors) in restricted sublayers of the hippocampal formation of adult 

mice are involved in distinct spatial forms of cognitive memory. The Ph.D. thesis is 

composed of three parts: 



29 

1. Generation and evaluation of a selective model system that allows for 

restricted recombination of floxed target genes in prominent sublayers of the 

hippocampus. Transgenic targeting should include at least the CA1 pyramidal 

cells of the hippocampal formation and has to be as little invasive as possible 

(no surgery). In addition, gene manipulation should not be effective in early 

postnatal or pubertal ages but has to remain stable until at least 10-12 months 

to assess extensive behavioral analysis in adult mice. 

2. Use of the established, selective genetic model system to generate three 

conditional mutant mouse models in parallel, each deficient in one of the three 

main iGluR subunits GluR-A, GluR-B and NR1 in the hippocampal 

formation. 

3. Analysis of these three adult iGluR mutant mouse models in various spatial 

forms of cognitive behavior. 

1.4.1 Induction of transgenic gene expression in restricted sublayers of the 

hippocampal formation and the olfactory cortex in TgCN12-itTA mice 

The most important step in the Ph.D. thesis is the genetic approach to manipulate the 

endogenous genes for GluR-A (Gria1), GluR-B (Gria2) or the principal NR1 subunit 

(Grin1). In order to investigate the role of functionally dissected glutamatergic 

neurotransmission in cognitive memory in the adult mouse, specific and stable 

transgenic targeting of principal cell layers in the hippocampal formation is required. 

In addition, the genetic system should be temporally controlled but any traumatic 

event (e.g. surgery) should be avoided. 

Jinhyun Kim, a previous member of our lab, generated two transgenic founder 

mouse lines, TgCN10-itTA and TgCN12-itTA, in her Ph.D. thesis (Ruprecht-Karls-

Universität, Heidelberg, 2001) that might fulfill these requirements. The pronucleus-

injected CN construct contains an improved version of the tetracycline-dependent 

transactivator (itTA; Shimshek et al., 2002) under the control of a chimeric, so called 

αCaMKII-NRSE promoter to allow for the temporal control of gene manipulation, 

specifically in forebrain principal neurons. 

Temporal control of transgenic gene expression can be achieved by use of the 

tTA system in mammalian cells (Gossen and Bujard, 1992). This binary system is 

based on the prokaryotic Tn10 tetracycline resistance operon of Escherichia (E.) coli 



30 

and makes use of its repressor protein (tetR) and the tetR-binding operator sequence 

(tetO). Usually, tetR binds to the tetO sequence and blocks downstream transcription. 

However, tetR is released and transcription is unblocked by presence of tetracycline 

that binds to tetR with high affinity, changes its conformation and thereby induces 

transcription of proteins for its own export (tetracycline resistance).  

In the tTA system (Gossen and Bujard, 1992), the tetR protein is combined with 

an activation domain of the virion protein (VP) 16 of the herpes simplex virus in the 

tTA fusion protein to induce transgenic transcription from a minimal promoter 

composed of adjacent tetO (usually five or seven; TetO5, TetO7) and promoter 

sequences of the human cytomegalovirus (hCMV). Furthermore, flanking the seven-

tetO target sequences with two minimal promoters (bi-directional PtetBi) allows the co-

regulation of two transgenes at the same time (Baron et al., 1995; Krestel et al., 2001). 

Transactivation of PtetBi-controlled genes can be blocked with tetracycline derivates 

like doxycycline that can be administered via the drinking water (usually 50mg/l dox). 

By modification of the prokaryotic tTA sequence according the mammalian codon 

usage and replacement of the VP16 domain (high quenching of cellular transcription 

factors) by three minimal F domains (Baron, Gossen and Bujard, 1997) the improved 

version of tTA, termed itTA, was developed (J. Kim, Ph.D. thesis, Ruprecht-Karls-

Universität, Heidelberg, 2001). 
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Fig. 1.9. Temporal control of transgenic activity using the tet-system 

(A) Schematic construct of the 8.5kb αCaMKII promoter, neuron-restrictive silencing element (NRSE) 

of the NR2C gene, itTA minigene used for pronucleus injection to generate TgCN12-itTA mice. (B) 

Representation of domains in the transgenic itTA fusion protein. The 207 amino acid (aa) repressor of 

the Tn10 tetracycline (tet) operon of E. coli (tetR) is fused C-terminally to the 9 aa nuclear location 

sequence (NLS, gray box) and three minimal activation domains of VP16 (F domains, 13 aa each). 

Numbers indicate position of amino acids (aa) and capital letters are single letter aa. (C) Schematic 

outline of the itTA regulatory activity (tTA system). ItTA fusion protein (red circle and open hexagon) 

forms dimers, which elicit transactivation activity in absence of tetracycline or its derivates. ItTA binds 

to an array of seven tet operator sequences (TetO7, O in open box) flanked by minimal CMV promoter  

(bidirectional PtetO7; Ptet-Bi), recruit other endogenous transcription factors and enable Ptet-Bi promoter 

activity (right panel). In presence of 50 mg/l Doxycycline (Dox, black, open box) in the drinking water 

of transgenic mice itTA undergoes conformational change whereby losing its DNA-binding ability 

(black circle). Hence, transgenic expression of Ptet-Bi regulated genes can be suppressed efficiently (left 

panel). 

The forebrain-specific αCaMKII promoter has been widely used to direct 

forebrain-specific expression of the tTA (Mayford et al., 1996); rtTA (Malleret et al., 

2001; Mansuy et al., 1998), Cre recombinase (Minichiello et al., 1999; Mantamadiotis 

et al., 2002) and many other transgenic proteins. To further restrict transgenic itTA 

expression in TgCN12-itTA mice, the chimeric promoter in the CN minigene was 

composed of the 8.5 kb αCaMKII promoter fragment, followed by the tripartite leader 

sequence of the adenovirus known to enhance mRNA stability and translation 

efficiency (Choi et al., 1991; Sheay et al., 1993), and the 1.0 kb untranslated fragment 

(exons 1-3) of mouse NMDA receptor subunit NR2C which contains a neuron-

restrictive silencer element (NRSE)-like sequence. The chimeric αCaMKII-NRSE 

promoter was thought to suppress transcription selectively in low αCaMKII-

expressing principal neurons in the forebrain and to permit a more restricted 

transgenic expression as observed in previous αCaMKII-driven transgenes. 

Indeed, transgenic itTA expression under this αCaMKII-NRSE promoter in 

both founder lines, TgCN10-itTA and TgCN12-itTA, induces tissue-restricted expression of 

transgenic responder elements. TgCN10-itTA was used to drive Cre recombinase from 

TgLC1 (Schoenig et al., 2002) and delete the NR1 subunit selectively in the DG 

(Niewoehner et al., 2007). But even more suitable for this Ph.D. thesis, TgCN12-itTA-

induced expression from the bidirectional responder element in TgOCN1, encoding β-

galactosidase and GFP-tagged GluR-B protein, was restricted to DG and CA1 of the 
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hippocampus and piriform cortex (PC) of the olfactory system. Expressed in genetic 

background of forebrain-specific GluR-B deletion in Gria2ΔFb mice, the combination 

of TgCN12-itTA / TgOCN1 mice was able to rescue partially the previously observed GluR-

B dependent olfactory memory deficit of simple odor discrimination, presumably by 

transgenic GluR-B restoration in the central part of the primary olfactory cortex (PC). 

Unfortunately, spatial behavior was not analyzed in these GluR-BRescue mice 

(Shimshek et al., 2005). 

 

Fig. 1.10. Specific expression of transgenic GFPGluR-B in hippocampus and piriform cortex 

(A) Diagram depicting itTA-dependent expression of nucleus-localized β-Galactosidase (nLacZ) and 

GFP-tagged GluR-B in TgCN12-itTA / TgOCN mice. (B) In coronal sections of TgCN12-itTA / TgOCN mice, β-

galactosidase activity (blue, X-gal, counterstained with eosin) is restricted to hippocampal neurons in 

CA1, DG and neurons in the piriform cortex. The same brain regions show GFP-GluR-B expression 

when adjacent sections were stained with an antibody against GFP. Scale bars 500 µm (adapted from 

Shimshek et al., 2005). 
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2. Results 

2.1. Generation and evaluation of the TgCN12-itTA / TgLC1-driven, 

conditional KO mouse model 

In a previous study, we used transgenic itTA expressed by a chimeric αCaMKII-

NRSE promoter in the TgCN12-itTA mouse model to induce transgenic GFP-tagged 

GluR-B and β-gal expression from the bidirectional tet-responder element (PtetBi) in 

TgOCN mice specifically in sublayers of the hippocampal formation (DG, CA1, CA2) 

and the olfactory cortex (PC) (Shimshek et al. 2005). To engage the restricted itTA-

dependent transactivation for generation of conditional gene knock out (cKO) via the 

Cre/loxP system, TgCN12-itTA mice were bred with transgenic TgLC1 mice (Schoenig et 

al. 2002) that expressed Cre recombinase and luciferase (luci) from the transgenic 

PtetBi minimal promoter upon induction by itTA. The combination of itTA-system and 

Cre/loxP recombination allowed the temporal control of irreversible gene 

manipulations in cKOs by application of dox via the drinking water. Binding of dox 

changed the itTA conformation along with its DNA-binding ability to tet-responder 

elements (as PtetBi) and thus, prevented the itTA-dependent irreversible recombination 

of loxP-flanked target genes. 

Sensitive monitoring of accumulated Cre/loxP recombination events during the 

animal’s life was achieved by the use of gene-targeted Rosa26R mice (Soriano et al. 

1999). The ubiquitously expressed Rosa26 locus was modified by insertion of a gene 

construct that contains a loxP-flanked transcriptional stop cassette upstream of the β-

gal coding sequence. Thereby, even transient Cre expression that mediated 

recombination was detected. The irreversible recombination of the modified Rosa26R 

locus induced constitutive β-gal expression until the animal is death. 
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2.1.1. Adult, sublayer-specific recombination by embryonic Cre 

suppression 

To assess the accumulated maximal recombination potential6 of TgCN12-itTA / TgLC1-

mediated recombination, coronal sections of dox-naive TgCN12-itTA / TgLC1 / Rosa26R 

mice were analyzed by X-gal staining at postnatal day 45 (P45). The sensitive 

approach utilizes the β-gal enzymatic activity to convert colorless X-gal to a blue 

precipitate. Surprisingly, positive X-gal signals accumulated in a much more 

widespread manner in the forebrain of TgCN12-itTA / TgLC1 / Rosa26R mice than 

expected from the X-gal pattern of GluR-BRescue mice that used TgCN12-itTA to induce β-

Galactosidase from the TgOCN1 responder element (Shimshek et al., 2005; please refer 

to 1.4.1.). Next to X-gal signals in the piriform cortex (PC) as well as CA1/2 and 

dentate gyrus (DG) of the hippocampal formation, the olfactory bulb (OB, data not 

shown), caudate putamen (CPu), amygdala (Amy), hypothalamus and septum 

appeared intensively blue, and even cortical areas showed elaborate X-gal staining. 

Unexpected recombination was presumably induced from transient itTA expression in 

late embryonic or early postnatal days. The nuclear Cre protein (temporal 

recombination potential) was not detected in adjacent slices. In fact, positive Cre 

signals (visualized as brown dots with diameters of 2-6 µm) at P45 were observed 

only in PC, OB, CA1/2, DG, CPu, around lateral ventricles and very sparsely in 

cortical areas. 

These results indicated that the exclusion of transgenic activity at early ages 

might reveal the sublayer-restricted recombination, as expected from previous work 

using TgCN12-itTA-driven transgenes (Krestel et al. 2004, Shimshek et al. 2005). 

Therefore, we applied 50 mg/l dox in the drinking water during breeding of TgCN12-itTA 

/ TgLC1 / Rosa26R mice and removed dox from the drinking water of the mothers 

when offspring was born. Triple positive animals (termed Rosa26RΔHipOlf mice) were 

analyzed for X-gal activity and Cre immunostaining at P45. And indeed, we observed 

the expected recombination potential in restricted sublayers of the hippocampal 

formation (CA1/2, DG) and the olfactory cortex (PC) in both stainings of 
                                                             
6Maximal recombination potential represents the accumulated efficiency of itTA-induced Cre activity 

to recombine the single allele in heterozygous Rosa26R mice. In functional cKO mouse models, one 

needs to consider that two alleles have to be recombined and that the endogenous loci might show 

different accessibility in certain brain areas. 
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Rosa26RΔHipOlf mice. Very sparse labeling was observed in posterior CPu, Amy and 

cortical areas. 

Slow induction of Ptet-bi-regulated gene expression in the brain after suppression 

in the mouse embryo has been described previously (Krestel et al. 2004). To evaluate 

the first time point of Ptet-bi-induction in Rosa26RΔHipOlf mice, we analyzed animals by 

enhanced Cre immunostaining at two (P14), three (P21) and four (P28) weeks of age. 

We isolated the offspring from their mothers at birth and nursed them by dox-naive 

NMRI foster mothers to exclude further dox exposure. Cre recombinase protein is 

first detected in four-week-old Rosa26RΔHipOlf mice. Dense brown signals in the 

dentate gyrus (DG) and looser pattern in CA1/2 of the hippocampal formation were 

observed as well as single positive signals in PC and CPu. Cre suppression in the 

mouse embryo together with the slow Ptet-Bi initiation in the TgCN12-itTA / TgLC1 model 

allowed the generation of conditional gene knock-outs (cKOs) in well-established 

neuronal networks of adult mouse brains. 
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Fig. 2.1.1 Sublayer-restricted recombination in TgCN12-itTA / TgLC1 / Rosa26R mice (P45) by Cre 

suppression in the mouse embryo (now called Rosa26ΔHipOlf mice) 

(A) Genetic elements and temporal regulation of mouse models used to establish sublayer-restricted 

recombination by TgCN12-itTA-induced Cre expression. Luci, luciferase; pA, polyadenylation signal; 

pApA, floxed transcriptional stop cassette (B) Evaluation of maximal (X-gal, left hemisphere) and 

temporal (rαCre, right hemisphere) TgCN12-itTA / TgLC1-mediated recombination potential in absence of 

dox (left panel) and by Cre suppression in the mouse embryo (middle panel, 50mg/l dox until birth). 

Postulated initiation time point of TgCN12-itTA-induced transactivation was investigated by nursing 

Rosa26ΔHipOlf offspring from dox-naive foster mothers and detection using enhanced Cre 

immunostaining. Ctx, cortex; Amy, amygdala, Hypo, hypothalamus Scale bar, overviews, 1 mm; 

higher magnifications, 100 µm. 



37 

2.1.2. Stability of sublayer-restricted recombination in Rosa26RΔHipOlf mice 

during behavioral testing 

Using conditional recombination systems to generate cKOs requires transgenic 

specificity at early time points as well as stability of the system during the time of 

analysis. In particular, temporally controlled gene manipulation at an age when the 

functional gene product already exists, requires a critical time period before the 

manifestation of functional consequences. The duration of protein depletion depends 

on expression levels and specific turnover rate of the protein of interest. In addition, 

analysis of behavioral consequences usually involves handling time and long lasting 

test protocols. Hence, gene manipulation of excitatory glutamate receptors in 

restricted hippocampal sublayers of adult mice and analysis of the behavioral impact 

requires a recombination system with extraordinary stability of transgenic activity for 

at least several months. 

To evaluate the stability of sublayer-restricted recombination in Rosa26RΔHipOlf 

mice, we analyzed the accumulated maximal recombination efficiency in animals at 

several ages (P150, P180, P240, data not shown) until the very end of behavioral 

analysis (P365, fig. 2.1.3). β-gal expression upon recombination was not confined to 

the nucleus in Rosa26R mice (Soriano  et al. 1999) but precipitated within the entire 

cell shape of recombined neurons in Rosa26RΔHipOlf mice at older age. X-gal signals 

increased with age in the recombined sublayers (CA1, CA2, DG, PC) and 

accumulated in basal and apical fibers. Light blue labeling was visible in dendritic and 

axonal processes of excitatory CA1, CA2 and DG neurons in the corresponding layers 

(so, stratum oriens; sr, stratum radiatum; ml, molecular layer; ff, fimbria-fornix; mf, 

DG mossy fibers). At P365, even hippocampal connections into the lateral part of the 

substantia nigra (SNL) were labeled. Compared to the highly restricted X-gal pattern 

at P45, TgCN12-itTA / TgLC1-mediated recombination in Rosa26RΔHipOlf mice targeted 

additional sublayers of the hippocampal formation (IG, S) and in particular, of the 

olfactory system (e.g. OB, DTT, VTT, Tu) until the beginning of behavioral analysis 

(P150). Sparse cellular X-gal signals were also detected in the CA3 subfield and in 

defined layers (II and V/VI) of cortical (e.g. FrA, M1, M2, AuD) and subcortical (e.g. 

BLA) structures. Nevertheless, recombination was highly concentrated in restricted 

sublayers of the hippocampal formation and the olfactory system, and this pattern 

remained stable until the very end of behavioral testing at P365. To evaluate the 
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contribution of TgCN12-itTA / TgLC1-targeted cells in their neuronal networks, we had a 

closer look into the accumulated X-gal pattern of Rosa26RΔHipOlf mice at P365 and 

performed various co-localization studies to quantify and verify the nature of 

recombined cells at ages of stable transgenic activity (P150-P365). 

2.1.3. TgCN12-itTA / TgLC1-driven recombination in the hippocampal 

formation 

Strong recombination in the hippocampal formation of Rosa26RΔHipOlf mice at P365 

was restricted to DG, CA1 and, to a lesser extent, also to CA2. As observed with other 

transgenes that employed the αCaMKII promoter (Krestel et al. 2004, Shimshek et al. 

2005), the X-gal profile in CA1 proceeded gradually along the dorso-ventral axis, 

whereas it remained relative stable in DG (fig.2.5). In CA3 and CA4 hardly any 

recombination was observed indicating that the functional networks were not 

essentially affected. Recombination in the subiculum was restricted to a small region 

adjacent to dorsal CA1. Other regions of the subicular complex (inclusive of 

presubiculum, PrS and parasubiculum, PaS) remained free from transgenic activity. 

The main relay station of cortical information, the entorhinal cortex (Ent), exhibited 

sparse recombination events in specific layers of its lateral part (lEnt). Superficial 

pyramidal cell layer II and deeper layers V and VI showed only isolated X-gal 

signals. The medial area (mEnt) that is potentially more important for spatial behavior 

was not targeted by TgCN12-itTA / TgLC1-driven recombination in Rosa26RΔHipOlf mice. 

Additionally to the main components of the hippocampal formation, the X-gal pattern 

of Rosa26RΔHipOlf mice revealed also the remnant structure of the indusium griseum 

(IG) that extends centered on top of the corpus callosum (cc) to the dorsal tenia tecta 

(DTT, fig. 2.1.5). Usually, hippocampal investigations did not refer to this structure, 

even though it forms a direct link to olfactory cortices. 
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Fig. 2.1.2. Recombination in the posterior forebrain of Rosa26RΔHipOlf mice at the very end of 

behavioral analysis (P365) 

Amy, amygdala; APir, amygdalopiriform transition area; AuD, secondary auditory cortex, dorsal area; 

CPu, caudate putamen; FF, fimbria-fornix; LEnt, lateral entorhinal cortex; MEnt, medial entorhinal 

cortex; PaS, parasubiculum; PPC, posterior piriform cortex; PrS, presubiculum; S, subiculum; S2, 

secondary somatosensory cortex; SNL, substantia nigra, lateral part; so, stratum oriens; pcl, pyramidal 

cell layer; srad, stratum radiatum; mf, DG mossy fibers. Scale bar, overviews, 1 mm; higher 

magnifications, 100 µm. 

The accumulation of β-gal along the entire cell and the high sensitivity of X-gal 

staining hindered cellular resolution of recombined neurons in hippocampal sublayers. 

To estimate the ratio of affected neurons, double immunostainings against the 
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transgenic Cre protein and the neuronal nuclear marker protein (NeuN) were 

performed in Rosa26RΔHipOlf mice (n = 6, P 180 - P 240). By use of horizontal slices, 

transgenic expression ratios of dorsal and ventral regions were separated. TgCN12-itTA / 

TgLC1-driven Cre expression was observed exclusively in NeuN-stained neurons in the 

hippocampal formation. As expected from the X-gal pattern in Rosa26ΔHipOlf mice, 

high co-localization was found in the granule cell layer (gcl) of DG (97.8 ± 2.9%; 

mean ± SD) and in the pyramidal cell layer (pcl) of dorsal CA1 (dCA1, 85.1 ± 

12.1%). However, transgenically affected neurons in the CA1 subfield did not show 

homogeneous co-localization throughout the three-dimensional structure. Within 

dCA1, Cre expression exhibited a slight anterior-posterior gradient (97.2 ± 2.5% vs. 

77 ± 8.6%), but along the dorso-ventral axis it decreased substantially (medial, 53.4 ± 

19.1%; ventral, 19.2 ± 9.8%). In CA2, co-labeling also decreased from its dorsal (41 ± 

21%) to ventral part (19.5 ± 14.1%). All other parts of the hippocampal formation 

(CA3, lEnt, mEnt, Sub) feature negligible recombination (<1% co-labeling). 

 

Fig. 2.1.3 Quantification of TgCN12-itTA-driven Cre expression in the dorsal and ventral 

hippocampal formation 
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Horizontal vibratome sections of six Rosa26RΔHipOlf mice were immunostained against NeuN (Cy3, red) 

and Cre (Alexa488 or FITC, green). Images were recorded within a single optical plane using confocal 

microscopy for four to six slices per animals at various depth. Cre-expressing neurons in individual 

sublayers were counted manually. Data reflect mean values. Scale bar, overviews, 1 mm; higher 

magnifications, 50 µm. 

As expected from various transgenic models employing the αCaMKII promoter 

(Krestel et al. 2004, Shimshek et al. 2005, Mayford et al. 1996), TgCN12-itTA-driven Cre 

expression in the hippocampal formation was detected exclusively in excitatory 

neurons3. In co-localization studies against the glial cell-specific fibrillary acidic 

protein (GFAP) and interneuronal markers (GAD67, Parvalbumin, Calretinin), no 

overlapping signals with transgenic Cre protein were observed. 

 

Fig. 2.1.4 Co-labeling of transgenic Cre recombinase and GFAP- or GAD67-positive cells 

TgCN12-itTA-driven Cre expression (Alexa488, green) in the hippocampal formation did not colocalize 

with marker proteins of glial cells (GFAP, Cy3, red, left panel) or inhibitory neurons (GAD67, Cy3, 

red, right panel). Scale bar, overviews, 500 µm; higher magnifications, 50 µm. 
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2.1.4. TgCN12-itTA / TgLC1-driven recombination in the olfactory system 

Strong recombination in P365 Rosa26RΔHipOlf mice was observed in various brain 

structures responsible for discrimination, learning and memory of olfactory 

information. Unexpected from the highly restricted X-gal pattern at P45, various 

structures of the olfactory cortex showed strong accumulation of recombination 

events7. Interestingly, the anterior olfactory cortex (AOC, dorsal, external and lateral 

parts of the anterior olfactory nucleus (AON), AOD, AOE, AOL) remained mainly 

unstained, but the medial (MOC) and the primary olfactory cortex (POC) showed 

strong X-gal staining. Positive signals in MOC were detected in neurons of the dorsal 

and ventral tenia tecta (DTT, VTT), whereas the medial part of AON (AOM) and the 

dorsal peduncular cortex (DP) exhibited only sparse labeling. POC, comprised of the 

olfactory tubercle (Tu), anterior and posterior PC (APC, PPC), showed recombination 

events along its longitudinal brain axis. Location and shape of X-gal signals as well as 

positive co-localization of TgCN12-itTA / TgLC1-driven Cre expression with the neuronal 

marker protein NeuN (data not shown) indicated transgenic activity in excitatory layer 

II neurons of the medial and primary olfactory cortices (OC). 

Furthermore, also projection neurons in several transition zones of the olfactory 

cortex exhibited strong accumulation of X-gal signals. Direct connection from the 

dorsal tenia tecta (DTT) of the medial olfactory cortex to the indusium griseum (IG) 

of the hippocampal formation, as well as the islands of Calleja (ICj) and ventral 

pallidum (VP) that link the olfactory tubercle (Tu) and anterior piriform cortex (APC) 

to limbic and basal forebrain structures, were stained intensively blue. Multiple 

connections from the primary olfactory cortex to the amygdala were also affected in 

Rosa26RΔHipOlf mice. Cortex-amygdala transition zone (CxA) and anterior cortical 

amygdaloid nucleus (ACo) are connected to the olfactory tubercle (Tu) and anterior 

piriform cortex (APC) as well as amygdalopiriform transition area (APir) that is 

linked to the posterior piriform cortex (PPC). 

                                                             
7 Classification of subregions of the olfactory cortex was reviewed by Brunjes et al. 2005 and was 

based on the wiring model proposed by Haberly 2001 (Please refer to the discussion). 
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Fig. 2.1.5 Recombination in the anterior forebrain of Rosa26RΔHipOlf mice at the very end of 

behavioral analysis (P365) 

ACo, anterior cortical amygdaloid nucleus; AOB, accessory olfactory bulb; AOD, anterior olfactory 

nucleus, dorsal part; AOE, external part; AOL, lateral part; AOM, medial part; CxA, cortex-amygdala 

transition zone, DTT, dorsal tenia tecta; FF, fimbria-fornix; FrA, frontal association area; GrO, 

granular OB cell layer; ICj, islands of Calleja; IG, indusium griseum; Ld, lambdoid septal zone; lot, 

lateral olfactory tract; M1, primary motor cortex; RMS, rostral migratory stream; S1, primary 

somatosensory cortex; Tu, olfactory tubercle; VTT, ventral tenia tecta. Scale bar, overviews, 1 mm; 

higher magnifications, 100 µm. 

But even more striking, positive X-gal signals appeared in the posterior caudate 

putamen (pCPu), around lateral ventricles and in the main olfactory bulb (MOB), and 

increased with age. The temporal increase of recombination events along these 

structures of the rostral migratory stream (RMS) and subsequently, in all cellular 

layers of the MOB, indicated transgenic activity in migratory, neural stem cells (nES) 
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and not in the established networks of the MOB per se. Further co-localization studies 

underlined this hypothesis. 

Non-neuronal TgCN12-itTA-driven Cre expression was detected in structures of 

adult neurogenesis in the olfactory system (pCPu, along lateral ventricles and MOB). 

In the MOB, it was concentrated in the deepest area, the subependymal layer (SEL) 

that includes the intrabulbar portion of the RMS. In contrast, Cre expression in all 

processing MOB layers was decreased drastically and only a few Cre-positive cells 

co-localized with NeuN. Similar pattern of Cre immunostaining was observed during 

all tested ages (P100-P365). 

Further confirmation of TgCN12-itTA-driven Cre expression in olfactory 

neuroblasts was obtained by co-localization studies against the marker protein 

doublecortin (DCX) and against the SVZ astrocyte marker protein GFAP. Transgenic 

activity is observed in all DCX-positive neuroblasts and even a subset of GFAP-

positive cells in SEL of the main olfactory bulb showed overlapping Cre expression 

(fig. 2.1.6). 
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Fig. 2.1.6. Recombination in olfactory neurogenesis 

All structures that contribute to the replacement of inhibitory MOB neurons were targeted in 

Rosa26RΔHipOlf mice and increased with age. A. X-gal staining of sagittal section of Rosa26RΔHipOlf mice 

(P180) showed labeling of the rostral migratory stream (RMS) and MOB, next to hippocampal 

sublayers. B. Temporal increase of recombination events in all cellular MOB layers (first four panel). 

Cre expression was found mainly in non-neuronal cells (rαCre, Alexa488, green, mαNeuN, Cy3, red, 

fifth panel). A small subset of Cre expressing cells in the inner supendymal layer (SUB) colocalized 

with a glial cell marker (mαGFAP, Cy3, red, sixth panel). C. Immunostaining against TgCN12-itTA / 

TgLC1-driven Cre expression (Alexa488, green) colocalized mainly in the SUB where newborn cells 

migrate and differentiate into the MOB layers involved in olfactory processing. In SEL, all visible 

migratory neural stem cells (nES) expressing doublecortin (DCX, Cy3, lower panel) contained the 
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transgenic Cre protein. EPL, external plexiform layer; GCL, granular cell layer; GL, glomerular layer; 

IPL, internal plexiform layer; MCL, mitral cell layer; ONL, outer nerve layer. Scale bar, overviews, 1 

mm; higher magnifications in B, 100 µm; magnification in C, 20 µm. 

2.2. Depletion of excitatory receptor pools in adult neuronal networks 

Restricted recombination in adult Rosa26RΔHipOlf mice was achieved by transgenes of 

mouse lines TgCN12-itTA and TgLC1 that utilize the tet system to arrest Cre expression in 

the mouse embryo. Cre-mediated recombination remained highly concentrated in 

restricted sublayers of the hippocampal formation and the olfactory system until the 

very end of behavioral analysis. In the following, this mouse model was employed to 

manipulate prominent, excitatory glutamate receptors in these restricted areas 

(iGluRΔHipOlf) by generating double transgenic mice of lines TgCN12-itTA and TgLC1 in 

homozygous background of loxP-flanked receptor gene alleles. Embryonic Cre 

recombinase was suppressed with 50 mg/l dox in the drinking water of the mothers 

until birth of the offspring. Negative and single transgene-positive individuals served 

as litter controls. 

 

Fig. 2.2. Breeding scheme of iGluRΔHipOlf mice 

Mice homozygous for the floxed receptor gene (iGluRloxP/loxP) and heterozygous for one transgene of 

the TgCN12-itTA/ TgLC1 model (inactive) were bred with their counterparts to generate TgCN12-itTA / TgLC1 / 
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iGluRloxP/loxP mice. Embryonic Cre recombinase was suppressed by 50 mg/l dox. On average, ~25% 

iGluRΔHipOlf mice were born. 

2.2.1. GluR-A depletion in Gria1ΔHipOlf mice 

The AMPAR subunit GluR-A is encoded by the Gria1 locus on mouse chromosome 

11 (57.02-57.14Mb). In gene-targeted Gria1loxP mice, exon 11 encoding the 

membrane domains 2 and 3 (M2, M3) of GluR-A were flanked with loxP sites to 

enable conditional gene KO upon Cre activity. To direct GluR-A depletion to 

hippocampal and olfactory sublayers in the adult mouse brain, Gria1ΔHipOlf mice were 

generated by breeding double transgenic mice of lines TgCN12-itTA and TgLC1 in the 

homozygous background of Gria1loxP/loxP mice and Cre suppression in the embryo 

with 50mg/l dox. 

Slow and gradual depletion of the GluR-A protein was observed in restricted 

hippocampal sublayers of Gria1ΔHipOlf mice. Whereas GluR-A signals remained stable 

in the CA3 and CA4 regions, elaborate GluR-A depletion occured in dCA1, dCA2, 

DG but was not completed before P150. However, loss of the GluR-A protein in the 

cell bodies (gcl, pcl) was detected even at the first time point of analysis (P60), 

although GluR-A signals persisted in the neuronal processes of DG granule cells (ml) 

as well as of dCA1 and dCA2 principal neurons (so, srad). Surprisingly, the GluR-A 

signals declined very slowly in these neuronal processes. Additional loss of the GluR-

A protein was observed in the neuronal cell layers (gcl, pcl) at P100, whereas no 

remarkable difference was seen in the layers of corresponding processes. At P150, 

however, GluR-A staining decreased enormously in these layers (ml, so, srad). Now, 

even the entire cell shape of sparse GluR-A expressing neurons was visible along all 

layers of hippocampal subfields (so, pcl, srad, gcl, ml). The location and shape of 

these residual neurons indicated an interneuronal character. In co-localization studies 

against inhibitory neuronal marker proteins (GAD67, parvalbumin), further evidence 

was collected. Most of the remaining GluR-A neurons were co-localized with GAD67 

or parvalbumin (data not shown). 

The GluR-A depletion in the hippocampal sublayers leveled off at P150 since 

the pattern of DAB immunostainings remained stable at older ages (P240 – P320 

tested, not all data shown). The loss of GluR-A in additional TgCN12-itTA / TgLC1-
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affected brain regions (vCA1, MOB, PC etc.) with lower recombination efficiency 

was barely visible. 

 

Fig. 2.1.1. GluR-A depletion in hippocampal sublayers of adult Gria1ΔHipOlf and litter control 

(Gria1loxP/loxP) mice 

(A) Diagram of the GluR-A protein with its four transmembrane domains (M1-M4) and the gene-

targeted Gria1 alleles in Gria1loxP/loxP mice. N, amino-terminus; C, carboxyl-terminus; M1-M4, 

membrane domains 1-4; Q, glutamine in channel pore (B) Temporal depletion of the GluR-A protein in 
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hippocampal sublayers visualized by DAB immunostaining at different ages (P60, P100, P150). (C) 

DAB immunostaining against the GluR-A protein in P240 mice. The magnification in the inner panel 

indicated elaborate loss of GluR-A in DG, dCA1 and dCA2 in conditional GluR-A KO but not in 

controls. No obvious depletion was observed in extrahippocampal brain regions in these stainings. 

Scale bar, hippocampal and coronal slice overviews, 1 mm; magnifications of individual sublayers, 

100 µm. 

Quantification of GluR-A depletion in the hippocampal formation was 

performed by immunoblotting of whole-cell lysates from Gria1ΔHipOlf and litter control 

mice (>P150). As expected from the immunostainings against the GluR-A protein, 

strong depletion was detected in the dorsal hippocampus (13.9 ± 4.4% residual GluR-

A signal) and more modest depletion in the ventral hippocampus (39.4 ± 21.8%). 

 

 

Fig. 2.1.2. Quantification of GluR-A in the hippocampal formation of adult Gria1ΔHipOlf mice 

(>P150) 

Whole cell lysates were prepared from dorsal (upper third) and ventral hippocampus (lower third). 

Residual GluR-A protein was determined by calculation of rα-GluR-A/mα−p38 ratios and comparison 

to litter control mice. 

Although anatomical changes in the hippocampal formation have not been 

reported for the complete Gria1 KO mice (Zamanillo et al. 1999, Mack et. al. 2001), 

immunostaining against different markers of interneurons (GAD67, Parvalbumin, 

Calbindin) and of glial cells (GFAP) were performed to evaluate potential 

consequences in Gria1ΔHipOlf mice. Compared to litter control mice, the elaborate 

GluR-A depletion in excitatory neurons of the dCA1, dCA2 and DG sublayers did not 

result in obvious changes of the inhibitory networks or the glial system (data not 

shown)
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2.2.2. GluR-B depletion in Gria2ΔHipOlf mice 

The main AMPA receptor subunit GluR-B regulating Ca2+-impermeability of 

functional AMPA receptors is encoded by the Gria2 locus on mouse chromosome 3 

(80.77-80.89Mb). In Gria2loxP mice, exon 11 encoding the membrane domains 2 and 

3 (M2, M3) of the GluR-B protein was flanked with loxP sites to allow for gene 

manipulation upon Cre activity (Shimshek et al. 2005). To deplete the GluR-B protein 

leading to Ca2+-permeable AMPA receptor in olfactory and hippocampal networks of 

adult mice, double transgenic mice of lines TgCN12-itTA and TgLC1 were bred in 

homozygous background of gene-targeted Gria2loxP/loxP and suppressed embryonic 

itTA activity by administration of 50mg/l dox-containing drinking water (termed 

Gria2ΔHipOlf ). 

The spatial and temporal pattern of GluR-B depletion, observed in DAB 

immunostainings of vibratome sections in Gria2ΔHipOlf mice, was similar to the 

depletion of the GluR-A protein in Gria1ΔHipOlf mice. At higher age (≥P150), 

extensive loss of the GluR-B protein remained restricted to dCA1, dCA2 and DG of 

the hippocampal formation. Notably, residual GluR-B expression was only detected in 

the cell bodies and initial dendritic or axonal segment of sparse neurons. GluR-B 

signals in vCA1, vCA2 or additional TgCN12-itTA/LC1-affected brain regions (RMS 

neuroblasts, Tu, PC etc.) were indistinguishable from those of DAB stainings in the 

litter control mice. Depletion of the GluR-B protein in dorsal CA1/2 and DG was not 

visualized explicitly at younger age (P60-P120, data not shown), mainly due to the 

low signal-to-noise ratio of the anti-GluR-B antibody. 

Quantification of GluR-B depletion in the hippocampal formation was 

performed by immunoblotting of hippocampal protein lysates of adult Gria2ΔHipOlf and 

litter control mice (n=2, each genotype, >P150). Ratios of GluR-B vs. β-Actin levels 

were examined and compared between genotypes. The GluR-B protein level in the 

hippocampal formation of adult Gria2ΔHipOlf mice was decreased to 32.3 ± 21.2% of 

control mice. 
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Fig. 2.2.1. GluR-B depletion in adult Gria2ΔHipOlf mice 

(A) Diagram of the GluR-B protein with its four membrane domains (M1-M4) and the gene-targeted 

Gria2 alleles in Gria2loxP/loxP mice. N, amino-terminus; C, carboxyl-terminus; M1-M4, membrane 

domains 1-4; Q/R, critical amino acid (RNA-editing from glutamine/Q to arginine/R (B) 
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Immunostaining against the GluR-B protein in sagittal vibratome sections of Gria2ΔHipOlf and litter 

control mice (>P150). Higher magnifications demonstrated elaborate loss of GluR-B in CA1, CA2 and 

DG in conditional GluR-B KO but not in controls. Scale bar, 1mm, sagittal and hippocampal 

overviews, 100 µm, sublayer magnifications. (C) Quantification of GluR-B depletion in the 

hippocampus of Gria2ΔHipOlf and litter control mice (>P150). GluR-B expression was examined relative 

to β-actin by immunoblotting. Residual GluR-B expression in Gria2ΔHipOlf and litter control mice is 

depicted in the diagram. 

Previous observations in Gria2ΔFb mice (Shimshek et al. 2006) revealed long-

lasting consequences upon GluR-B depletion in the hippocampal formation. Next to a 

loss of parvalbumin-positive DG interneurons, moderate DG mossy fiber sprouting 

was observed. To check these parameters in the hippocampal formation of adult 

Gria2ΔHipOlf and litter control mice (9-11 months old), the number of parvalbumin-

positive interneurons in CA1/2 (so and pcl) and DG in DAB stainings (fig. 2.2.2.B) 

and Timm-stained granules in the inner molecular layer (iml, fig.2.2.2.A) were 

quantified. Neither the number of parvalbumin-positive interneurons nor the extent of 

DG mossy fiber sprouting and number of Timm-stained granules in the DG inner 

molecular layer (iml) were significantly different between adult Gria2ΔHipOlf (n = 2-4, 

9-11 months old) and litter control mice (n = 2). 

In addition, immunostainings against marker proteins of the glial system (glial 

fibrillar acidic protein, GFAP) and the inhibitory networks (67 kDa glutamic acid 

decarboxylase, GAD67, calbindin, parvalbumin) were performed in vibratome 

sections of adult Gria2ΔHipOlf and control mice. No obvious changes in GFAP-, 

GAD67- and calbindin-expressing components of the hippocampal formation were 

observed upon GluR-B depletion (data not shown). 

In summary, inactivation of the Gria2 locus in Gria2ΔHipOlf mice resulted in 

GluR-B depletion in restricted sublayers of hippocampal and olfactory sublayers at 

adult age (≥P150). The AMPA receptor-mediated Ca2+-influx upon GluR-B depletion 

did not mediate any structural or cellular changes in the dorsal hippocampal 

formation, as described upon forebrain, principal neuron-specific Gria2 inactivation 

at early postnatal ages (Gria2ΔFb; Shimshek et al. 2006). 
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Fig. 2.2.2. Anatomical consequences in the hippocampal formation of adult Gria2ΔHipOlf and litter 

control mice (8-11 months old) 

(A) No difference in number of parvalbumin-positive interneurons. DAB immunostaining of 8-15 

slices of different coronal or sagittal hippocampal levels were performed and cell numbers of 

parvalbumin-stained interneurons were counted in so and pcl of CA1/2 and in gcl of DG. (B) Normal 

mossy fiber sprouting. Timm staining revealed no aberrant sprouting of DG mossy fibers in the granule 

cell layer (gcl) and no difference in Timm-stained granules in the inner molecular layer (iml) 

representing axon terminals of DG mossy fibers. Scale bar, 1 mm, DG overview of Timm stainings, 

100 µm, higher magnifications. 
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2.2.3. NR1 depletion in Grin1ΔHipOlf mice 

The principal subunit NR1 is essential for the formation of functional tetrameric 

NMDA receptors. The Grin1 gene on mouse chromosome 2 (25.11-25.14Mb) 

encodes the NR1 protein. Exons 11 to 18 containing M1 to M3 sequences were 

flanked by loxP sites in Grin1loxP/loxP mice (F.N. Single, dissertation 1999; Shimshek 

et al. 2006) to allow for Cre-mediated recombination of the Grin1 loci. As in the other 

two mouse models of this study, TgCN12-itTA / TgLC1 mice were bred in the homozygous 

background of Grin1loxP/loxP to achieve the restricted NR1 depletion upon Cre 

suppression in the mouse embryo with 50mg/l dox. 

Several antibodies against the NR1 protein were tested in various protocols8 

(Fukaya et al. 2003, McHugh et al. 2007, Niewoehner et al. 2007) to visualize NR1 

depletion in Grin1ΔHipOlf mice. Perfused and 1h post-fixed vibratome sections stained 

with the rabbit anti-NR1 antibody (1:50, Chemicon, USA) and enhanced DAB 

development was the only protocol that showed the expected staining in control mice 

and the depletion of the NR1 protein in the dorsal hippocampal formation (dCA1, 

dCA2, DG) of Grin1ΔHipOlf mice (fig. 2.3.1). Nevertheless, the low signal-to-noise 

ratio of this approach hindered cellular resolution of the NR1 signals and hence, 

verification of the NR1 depletion by immunostainings. 

Whereas most commercial antibodies against the NR1 protein had low signal-

to-noise ratios in immunohistochemical approaches, the specificity in detection of 

denatured NR1 protein in immunoblotting was excellent (fig. 2.3.2). Hence, protein 

lysates from the dorsal hippocampus (upper third) were immunoblotted and residual 

NR1 protein (relative to p38 MAP kinase) in Grin1ΔHipOlf analyzed compared to litter 

control mice at different ages (P100-P365). As expected from the previous 

iGluRΔHipOlf mouse models, the NR1 protein level decreased slowly over time and 

depletion was not final before P120. The main loss occurred between P100 (56.5 

±12.1%) and P120 (28.6 ± 21.7%), indicating the strong depletion in the processes of 

principal CA1/2 and DG neurons (in so, srad, ml). NR1 depletion was finished 

between P120 and P150, since the residual protein level did not change significantly 

up to P365 (P150, P240, P365 tested, n=1-2 at each age, data not shown). The protein 
                                                             
8We tested paraffin sections with pepsin pretreatment and DAB development (Fukaya et al. 2003) or 

fluorescent visualization (McHugh et al. 2007), vibratome sections with PFA post fixation overnight or 

for only 1h at 4°C with four different antibodies. 
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level, summarized for P150 until P365 (n=5), decreased to 27 ± 8.9% in Grin1ΔHipOlf 

compared to litter control. The NR1 depletion in the ventral hippocampus (lower third 

of freely prepared structure) in adult mice (P > 150) was also quantified. The residual 

NR1 protein in Grin1ΔHipOlf mice decreased significantly (69.6 ± 14%) but not as 

strongly as in the dorsal part. 

 

Fig. 2.3.1. NR1 depletion in adult Grin1ΔHipOlf mice 

(A) The NR1 protein (first row) depicted schematically with its four membrane domains (M1-M4) is 

encoded by the Grin1 gene. In Grin12lox/2lox mice, exons 11 to 18 containing M1 to M3 sequences were 

flanked with Cre recognition sites (loxP) to enable conditional gene manipulation. N, amino-terminus; 

C, carboxyl-terminus. (B) DAB immunostaining against the NR1 protein in coronal vibratome sections 

of litter control (left panel) and Grin1ΔHipOlf mice (> 1 year, right panel). Overview of dorsal 

hippocampus indicated NR1 depletion in CA1, CA2 and DG. The higher magnification of hippocampal 

demonstrated extensive loss of NR1 in CA1, 2 and DG in dorsal hippocampus. Signals in the CA3 

region seemed unaffected. Scale bar, 1 mm. 
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Fig. 2.3.2. Quantification of NR1 depletion in Grin1ΔHipOlf and litter control mice by 

immunoblotting against the NR1 protein and the p38 MAP kinase as reference protein 

(A) NR1 depletion in the dorsal hippocampus. Protein lysates of the dorsal hippocampus (upper third) 

were prepared at different ages (P100-P365). Relative NR1 protein levels (to MAP kinase p38) were 

examined and compared between conditional KOs and litter control mice. Protein levels of P150, P240, 

P365 are summarized as P>150. Residual NR1 protein levels of Grin1ΔHipOlf mice were plotted against 

the animals´ age in the diagram. (B) Residual NR1 expression in dorsal and ventral hippocampus. 

Relative NR1 protein levels (to MAP kinase p38) were examined also in the ventral hippocampus 

(lower third) and compared between conditional KOs and litter control mice (P150, P240, P365 are 

summarized as P>150). Data reflect mean ± SD. 

Previous studies on conditional Grin1 KO mouse models (Tsien et al. 1996, 

McHugh et al. 2007, Niewoehner et al., 2007) investigated extensively the entire 

anatomy of the hippocampal formation upon NR1 depletion and did not find any loss 

of neurons, degeneration or axonal rearrangements. Parallel to the previous two 

iGluRΔHipOlf mouse models, immunostainings against marker proteins of the glial 

system (GFAP) and the inhibitory networks (GAD67, calbindin, parvalbumin) were 

performed as well as Nissl stainings of vibratome sections of adult Grin1ΔHipOlf and 

control mice (data not shown). No obvious changes were observed in the glial system, 

inhibitory networks or principal cell layers of the dorsal, hippocampal formation 
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between both genotypes. The pronounced ablation of NMDA receptors in DG did not 

trigger any obvious rearrangement of axonal processes. In calbindin stainings, the DG 

mossy fibers were labeled similar in Grin1ΔHipOlf and control mice. 

Field recordings of synaptic plasticity by Vidar Jensen and ∅ivind Hvalby 

(University of Oslo, Norway) obtained evidence for functional depletion of NMDA 

receptors in restricted sublayers of the dorsal hippocampus. First, NMDAR-dependent 

fLTP measurements at Schaffer collateral – CA1 synapses (Collingridge et al., 1983) 

were performed to assess functional NR1 depletion in the dorsal CA1 subfield. 

Repeated tetanic stimulation (100 Hz, 1 s, repeated four times at 5 min intervals) of 

Schaffer collateral-commissural fibers in stratum radiatum elicited a robust, 

homosynaptic fLTP in control mice (n=4, >P150), whereas synaptic responses upon 

stimulation of the untetanized, control pathway remained at baseline activity (nEPSP 

= 0.97 ± 0.04). 40-45 min after tetanization the normalized fEPSP slope showed an 

increase of 60% compared to the pretetanic activity upon stimulation of Schaffer 

collaterals in stratum radiatum (1.60 ± 0.07, n=18). In contrast, normalized field 

potentials in the tetanized pathway (0.99 ± 0.03, n=14) were indistinguishable 

compared to the untetanized, control pathway (1.03 ± 0.04) in the dorsal hippocampus 

of adult Grin1ΔHipOlf mice (n=4, >P150, p=0.35, paired t-test). The absence of fLTP at 

Schaffer collateral – CA1 synapses clearly demonstrates the functional loss of NMDA 

receptors upon NR1 depletion. 

In the next experiment, NMDAR-dependent synaptic plasticity at CA1 and CA3 

synapses at the same time was assessed to test the restricted ablation of functional 

networks in the dorsal hippocampus of Grin1ΔHipOlf mice. Therefore, the CA1/CA3 

border in stratum radiatum was stimulated and recorded simultaneously at CA1 and at 

CA3 in stratum radiatum. Repeated tetanic stimulation (100 Hz, 1 s, repeated four 

times at 5 min intervals) in stratum radiatum produced robust fLTP of CA1 (nEPSP = 

1.37 ± 0.11) and CA3 synapses (1.33 ± 0.12, n=11) in control mice (n=3, > P150). In 

Grin1ΔHipOlf mice (n=3, >P150), as seen earlier, fLTP is absent in CA1 (0.94 ± 0.09) 

but was still well evoked in CA3 (1.20 ± 0.07, n=8). Our initial experiments to assess 

electrophysiological functions in Grin1ΔHipOlf mice revealed a functional dissection of 

the CA1 and CA3 sublayers in the dorsal hippocampal formation. Whereas the 

elaborate NR1 depletion in the dorsal hippocampus ablated NMDAR-dependent 

synaptic plasticity in the CA1 subfield, the field property in CA3 was not affected. 
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Fig. 2.3.1. Sublayer-restricted ablation of NMDAR-dependent fLTP in adult Grin1ΔHipOlf mice 

(V. Jensen and ∅ . Hvalby, University of Oslo, Norway) 

(A) Left panel, schematic depiction of the trisynaptic hippocampal pathway and the electrode 

placement in field LTP recordings at Schaffer collaterals (red axon) – CA1 synapses. Right panel, 

example of an evoked excitatory postsynaptic potential (fEPSP) of extracellular field recordings after 

stimulation of the control (black) and the tetanized input (red). (B) Repeated tetanization (100 Hz, 1 s, 

4x 5 min intervals) elicited robust fLTP in control slices (n=18) but failed to potentiate CA1 synapses 

upon NR1 depletion in dorsal slices (n=14) of Grin1ΔHipOlf mice. C. Electrode placement in 

simultaneous fLTP recordings at CA1 and CA3 synapses. D. Repeated tetanization (100Hz, 1s, 4x, 

5min interval) elicited robust fLTP in CA1 and CA3 of control slices (n=11). In dorsal slices (n=8) of 
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Grin1ΔHipOlf mice tetanization failed again to induce fLTP at CA1 synapses but elicited potentiation of 

synapses in the CA3 subfield. 

2.3. Behavioral analysis 

The depletion of NMDA receptors or one of the two AMPA receptor subtypes GluR-

A and GluR-B was achieved in restricted hippocampal sublayers (dCA1, dCA2, DG) 

of adult mice by transgenes of mouse models TgCN12-itTA and TgLC1 and Cre 

suppression in the mouse embryo. Depletion of GluR-A in Gria1ΔHipOlf, GluR-B in 

Gria2ΔHipOlf and NMDA receptor in Grin1ΔHipOlf mice with a similar spatial and 

temporal specificity allowed the functional dissection of excitatory glutamate 

receptors in three main properties within hippocampal sublayers (CA1/2, DG vs. 

CA3/4, Sub, Ent) and towards cortical and subcortical brain regions of adult mice. 

As presented in the introduction, excitatory, AMPA and NMDA receptor-

mediated neurotransmission in the hippocampal formation plays a crucial role in 

distinct forms of cognitive spatial learning and memory mechanisms (O´Keefe and 

Nadel, 1978; Tsien et al. 1996; Zamanillo et al. 1999; Shimshek et al. 2006). In 

particular, the dorsal subregion of the hippocampal formation is thought to be crucial 

for normal spatial memory performance (Moser et al. 1995; Bannerman et al. 1999). 

With improvement of transgenic manipulation of AMPA and NMDA receptors (e.g. 

Tsien et al. 1996; Zamanillo et al. 1999; Mack et al. 2001; Niewoehner et al. 2005), 

molecular mechanisms were dissected and supported the idea of distinct spatial 

working and reference memory systems in the hippocampal formation (first 

mentioned by Honig 1978; Olton et al. 1979). 

Spatial working memory was tested in the delayed non-matching-to-place task 

on the elevated T-maze (discrete trial, rewarded alternation; Rawlins and Olton 1982, 

Deacon et al. 2002, Reisel et al. 2002). Further, acquisition of spatial reference 

memory was assessed in the matching-to-place task on the elevated Y-maze (Deacon 

et al. 2002, Reisel et al. 2002). We concentrated on Grin1ΔHipOlf mice because 

acquisition of the delayed match-to-place task in the Morris watermaze was severely 

impaired in mice (< P90; Tsien et al. 1996, Fukaya et al. 2003) upon ablation of 

NMDA receptors in hippocampal CA1 neurons during pubertal and early adult ages. 

The initial T- and Y-maze tasks were performed in our laboratory and will be shown 

in the following. 
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D. Bannerman and co-workers in the department of N. Rawlins (Department of 

Experimental Psychology, University of Oxford, England) performed more extensive 

analysis of spatial behavior in Gria1ΔHipOlf and Grin1ΔHipOlf mice. In addition to critical 

repetitions of our T-maze data, certain components (spontaneous vs. rewarded; 

acquisition vs. reversal learning) of spatial working and reference memory systems 

were tested in various tasks with different complexity (T-maze vs. radial maze) and 

environment (Y-maze vs. watermaze). Results of selected tasks are summarized in the 

chapter 2.3.3. 

2.3.1. Delay-dependent spatial working memory on the elevated T-maze 

Spatial working memory performance in rodents can be studied using the delayed 

non-matching-to-place (DNMTP) paradigm on a simple three-arm maze with a 

defined start arm and two identical target arms, such as the elevated T-maze or Y-

maze (Rawlins and Olton 1982, Bannerman et al. 1999). The relationship between 

spatial cues and the goal location changes from trial to trial in a pseudo-variant 

manner. Each trial on the elevated T-maze consists of two runs. In the first, the 

sample run, the mouse is directed to a certain target arm by blocking the other one. 

The conditional information of space has to be stored and maintained across a certain 

delay (inter-session interval, ISI, usually 15 sec in a cage). In the subsequent choice 

run, both target arms are accessible, and the animal uses the conditional information 

to choose the previously unvisited arm (goal location). The appropriate response is 

based on exploratory activity and curiosity, namely the alternation behavior in 

rodents. The rewarded alternation task (Rawlins and Olton, 1982) takes further 

advantage of a reward (droplet of sweet milk) to motivate the mouse for searching the 

goal location in multiple trials (usually 40 trials in total, with a daily performance of 8 

trials). 

Rewarded alternation on the elevated T-maze is especially sensitive to 

hippocampal dysfunction. It was shown that dorsal but not ventral lesions impaired T-

maze performance completely (Hock et al. 1998, Bannerman et al. 1999, 2002). 

Extensive literature (e.g. Steele and Morris 1994, McHugh et al. 2007) and our own 

previous work suggested an essential role of certain iGluR-subtypes in the dorsal 

hippocampal formation in performing the DNMTP paradigm in different spatial tasks 

(Morris watermaze, T-maze or radial maze). Global Gria1-/- mice performed rewarded 



61 

alternation at chance level (50% total trials), as observed in dorsally lesioned mice 

(Reisel et al. 2002) and partial restoration of GFP-tagged GluR-A in the postnatal 

forebrain improved performance (Schmitt et al. 2005). Furthermore, forebrain-

restricted depletion of GluR-B in Gria2ΔForebrain mice mediated impairment of the 

spatial working memory (Shimshek et al. 2006). Impaired T-maze performance upon 

NMDA receptor manipulation was observed upon AP-5 infusion in the dorsal 

hippocampus (McHugh et al. 2007), and even dentate gyrus-restricted depletion of 

NMDA receptors in Grin1ΔDG mice resulted in reduced spatial working memory 

performance when tested in the six-arm radial maze (Niewoehner et al. 2007). Based 

on previous experience and a widely accepted hypothesis, strong impairment in the 

rewarded alternation T-maze task was expected in our iGluRΔHipOlf mice with 

restricted depletion of GluR-A, GluR-B or NMDA receptors in the CA1/2 and DG 

sublayers of dorsal hippocampus. 

The rewarded alternation task was performed in an elevated T-maze (Deacon et 

al. 2002) and extra-maze cues9 were minimized to direct the animal’s attention to the 

black-painted maze with identical target arms. Spatial working memory was assessed 

with the standard delay between the sample and choice run (IRI = 15 sec in cage) in 

Gria1ΔHipOlf, Gria2ΔHipOlf and litter control mice. Based on observations of the mouse’s 

behavior at the entrance into the target arms10, further training of the Gria1ΔHipOlf and 

Grin1ΔHipOlf genotype was performed with modified delays to evaluate the persistence 

of spatial working memory. Gria1ΔHipOlf and control mice were tested additionally for 

a long delay (IRI = 1 min in cage for 32 trials totally). Rewarded alternation in 

Grin1ΔHipOlf and control mice was assessed for a very short delay (IRI = 3 sec on the 

experimentator hand), and in presence of an extra-maze cue11, for a long delay (IRI = 

1 min in a cage for 40 trials totally). Previous reports suggested that hippocampal 

NMDA receptors are not essential for spatial short-term memory but play a role in a 
                                                             
9 The elevated T-maze was placed in an aluminum cage (usually used for electrophysiological set-up) 

that was enclosed by a black curtain. Only the start arm-facing side was open and it was luminated by 

two 100 Watt lamps (app. 50 cm above, , 8-12 lux in T-maze). 
10 Upon short IRI, even by resting in a cage, the mouse was so active that it ran directly in the 

appropriate target arm in the choice run. 
11 We added an extra-maze cue (checkerboard pattern) in the left corner of the surrounding curtain to 

improve the spatial representation of the individual target arm and simplify spatial differentiation of 

target arms for the mouse. 
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delay-dependent working memory task (Steele and Morris, 1999; Rawlins and Olton, 

1982). 

Unexpected from our previous work (Reisel et al. 2002, Schmitt et al. 2005), 

Gria1ΔHipOlf mice exhibited an intact spatial working memory. Rewarded alternation 

performance was indistinguishable compared to litter controls at any single day, and 

Gria1ΔHipOlf mice (n = 8) alternated significantly and similarly compared to litter 

controls (n = 7) after 40 trials with the standard delay (IRI = 15 sec) between the 

sample and the choice run (68.1 ± 1.8 % vs. 69.2 ± 1.6 %, p = 0.660). Surprisingly, 

intact alternation behavior was even observed in the additional task with a 1 min 

delay. Gria1ΔHipOlf and control mice performed this difficult task similarly well, and 

both showed significant alternation after 40 trials (62.5 ± 3.2 % vs. 64.7 ± 4.3 %, p = 

0.676). 

In contrast, some impairment was observed upon GluR-B depletion in dorsal 

CA1/2 and DG sublayers. Whereas Gria2ΔHipOlf mice alternated significantly better 

than chance level, success rates (correct trials in %) on the last two days of the 

standard T-maze task (ISI = 15 sec) were significantly lower compared to control 

mice (day 4, 75 ± 5.1 % vs. 93.8 ± 3.6 %, p = 0.035; day 5, 78.1 ± 3.1 % vs. 90.6 ± 

3.1 %, p = 0.043). In fact, rewarded alternation after the total 40 trials showed only a 

weak tendency for impaired working memory (71.9 ± 5.1 % vs. 83.1 ± 4.1 %, p = 

0.141) but presumably, this was due to the small animal cohort tested (n = 4 of each 

genotype). 

Upon depletion of NMDA receptors in CA1/2 and DG neurons, Grin1ΔHipOlf 

mice alternated successfully in the simple short-term alternation task (ISI = 1 sec) but 

failed to alternate in the difficult intermediate-term task. In fact, Grin1ΔHipOlf mice (n = 

6) exhibited a low success rate on the first (54.2 ± 5.3 % vs. 65.6 ± 6 %, p = 0.194) 

and second day (56.3 ± 2.8 % vs. 75 ± 7.2 %, p = 0.074) compared to controls (n = 4) 

in the simple task. But Grin1ΔHipOlf mice improved rewarded alternation on the 

following days (day 5, 70.8 ± 7 % vs. 75 ± 10.2 %, p = 0.748). Performance after 40 

trials did not differ significantly between both genotypes (61.1 ± 3.6 % vs. 74 ± 6.5 

%, p = 0.144). Spatial working memory performance in the difficult task was severely 

impaired in Grin1ΔHipOlf mice. Whereas Grin1ΔHipOlf and control mice showed both 

rewarded alternation with low success rates on the first day (54.2 ± 7 % vs. 65.6 ± 7.9 

%, p = 0.312), only litter controls increased performance significantly during the 
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training (day 5 vs. day 1, p = 0.033). Significant differences in success rates between 

genotypes were observed at day 2 (50 ± 3.2 % vs. 68.8. ± 3.6 %, p = 0.006), day 4 

(54.2 ± 4.2 % vs. 81.3 ± 8.1 %, p = 0.034) and day 5 (60.4 ± 6 % vs. 93.8 ± 6.2 %, p = 

0.006). After 40 trials, Grin1ΔHipOlf mice did not alternate and were significantly 

different to control mice (55.8 ± 4.1 % vs. 76.2 ± 1.6 %, p = 0.003). 

 

Fig. 2.3.1 Rewarded alternation with short (≤ 15 sec) and long (1 min) ISI of iGluRΔHipOlf and 

litter control mice on the elevated T-maze 
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(A) Each trial of the delayed match-to-sample task on the T-maze consisted of two runs. In the first 

(sample) run (left panel), the mouse was forced to choose and find the reward (sweet milk droplet) at 

the end of one target arm by blocking the other. The blocked target arm in the sample run was changed 

in a pseudorandom order (four trials of left arm, four trials of right arm, ≤ 2 times repetition per target 

arm). After resting for a certain delay (≤ 15 sec or 1 min in a new cage; ≤ 5 sec on the hand of the 

experimentator), the mouse was placed again in the T-maze with access to both target arm. Reward in 

the previously blocked arm was only achieved by successful performance when the mouse entered 

directly the rewarded arms. (B + C) Rewarded alternation with different IRI of the Gria1ΔHipOlf (IRI of 

15 sec and 1 min, n = 8 cKOs, n = 7 control, first row), Gria2ΔHipOlf (ISI of 15 sec, n = 4 cKOs, n = 4 

control, second row) and Grin1ΔHipOlf (IRI of 3 sec and 1 min, n = 6 cKOs, n = 4 control, third row).  

(B) Learning curves of daily performance. (C) Diagram of performance on the first and last days for 

certain IRIs. Surprisingly, Gria1ΔHipOlf showed no impairment. Even, alternation in the difficult task 

(IRI = 1 min) was similar to control. Gria2ΔHipOlf mice were impaired at the last two days of the simple 

task (IRI = 15 sec), but neither learning (ratio of last vs. first day performance) nor total alternation 

(performance in all trials) was significantly different. Notably, only a small animal group was tested. 

Grin1ΔHipOlf mice increased performance in a very simple task (IRI = 3 sec) but even with adding an 

extra-maze cue, alternation with 1 min ISI was strongly impaired. Alternation on day 4 and 5 (black 

star) and the total performance (red bar and star) were significantly different to control mice that even 

show significant learning during this task. Values represent mean ± SE. 

2.3.2. Acquisition of spatial reference memory in Grin1ΔHipOlf mice 

Spatial reference memory can be assessed in rodents using the matching-to-place 

(MTP) paradigm, usually performed on a simple Y-maze, a more complex radial 

maze or in the Morris watermaze. In contrast to rewarded alternation in the T-maze, 

the relationship between the spatial cues and the goal location is fixed during all 

training trials. During the acquisition phase, the mouse learns to find a spatially 

defined target (sweet milk reward in a certain target arm or hidden platform to escape 

from water) from different start positions. Subsequently, memory can be tested by 

minimizing spatial cues in the Y-maze or by removing the hidden platform of the 

Morris watermaze. 

Previous studies indicated controversial observations on the role of hippocampal 

NMDA receptors on acquisition of spatial reference memory. Whereas AP-5 infusion 

in the dorsal hippocampus failed to abolish the acquisition of spatial reference 

memory (Bannerman et al. 1999), young animals (< P 75) were severely impaired 

upon deletion of the NR1 gene exclusively in CA1 neurons (Tsien et al. 1996). To 

investigate the role of NMDA receptors in dorsal CA1/2 and DG neurons of adult 
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mice, we performed acquisition of the DMTP paradigm on a standard Y-maze for 

seven days (10 trials daily) in Grin1ΔHipOlf and litter control mice (n = 6 each). 

Grin1ΔHipOlf mice showed a tendency for impaired performance on day 3 (46.7 ± 

7.1 % vs. 68.3 ± 7.5 %, p = 0.063), but performances on all other days were similar to 

litter controls. Both genotypes exhibited significant acquisition of spatial reference 

memory (1.84 ± 0.29, p = 0.0399 vs. 2.27 ± 0.56, p = 0.011) in the elevated Y-maze 

with a similar increase in the success rate (performance ratio of day 7 vs. day 1) 

compared to litter controls (p = 0.524) and achieved high success rates on day 7 (78.3 

± 10.8 % vs. 80 ± 10 %, p = 0.912). 

 

Fig. 2.3.2. Acquisition of spatial reference memory in the elevated Y-maze of Grin1ΔHipOlf (n = 6) 

and litter control mice (n = 6) 

(A) Arrangement of spatial cues during rewarded spatial reference learning. Elevated Y-maze was 

placed in our olfactometer room (white noise, 80 dB, olfactometer turned off) and surrounded by a bast 

curtain (open six-edged box). Positions of Y-maze arms were marked with three different symbols 

(green star, blue circle, black-white checkerboard) on the curtain and turned by 120° upon each trial to 

avoid olfactory intra-maze cues. Direction of turns was also changed daily. (B) Learning curves of 

spatial reference memory in the elevated Y-maze were similar between Grin1ΔHipOlf and litter control 

mice (except tendency of difference on day 3, half of black, open star) and indicated significant 

improvement in finding the rewarded target arm. Success rates increased significantly from the 

beginning (day 1) to the end (day 7) of spatial learning in Grin1ΔHipOlf and litter control (black, open 

star) but were similar between genotypes. Values represent mean ± SE. 
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2.3.3. Additional results in spatial cognitive tasks of Gria1ΔHipOlf and 

Grin1ΔHipOlf mice (D.M. Bannerman, Exp. Psychology, Oxford) 

D. Bannerman and co-workers in the department of N. Rawlins (Department of 

Experimental Psychology, University of Oxford, England) performed more extensive 

analysis of spatial behavior in Gria1ΔHipOlf and Grin1ΔHipOlf mice. Results of selected 

tasks and preliminary figures are summarized here and will be used for discussion of 

the role of glutamatergic neurotransmission in hippocampal CA1/2 and DG neurons 

of adult mice. Behavioral values or detailed statistics are not included. 

Of particular interest in Gria1ΔHipOlf mice, spatial working memory was tested in 

spontaneous alternation and rewarded alternation on the elevated T-maze as well as in 

the working memory task on the six-arm radial maze (Reisel et al. 2002). Gria1ΔHipOlf 

mice showed significant difference in the spontaneous alternation task on the elevated 

T-maze but alternated successfully in the rewarded alternation task and displayed 

similar decrease in working memory errors on the six-arm radial maze (3 arms 

rewarded, 3 arms not rewarded, re-entry possible) compared to litter controls. 

Spatial reference learning and memory was investigated in the Morris 

watermaze. As expected from global Gria1 KO mice, depletion of GluR-A in 

hippocampal CA1/2 and DG neurons of adult mice was not essential for the 

acquisition of spatial reference memory in the Morris watermaze. Gria1ΔHipOlf mice 

learned and remembered the position of the hidden platform, indicated by a similar 

decrease in distance traveled in the acquisition trials and similar time spent in the 

training quadrant during the probe test upon acquisition (after 36 trials), compared to 

litter controls. Even upon re-positioning of the hidden platform in the opposite 

quadrant of the initial training quadrant (reversal learning), Gria1ΔHipOlf mice showed 

similar learning (decrease in path length) and memory (time spent in probe test) of 

spatial reference as do litter controls. In fact, Gria1ΔHipOlf mice showed some 

differences in the Morris watermaze task (less time spent in the first probe test after 

24 trials and more distance traveled during the four trials in the second block of 

reversal learning). But as expected from global Gria1-/- mice, GluR-A depletion in 

dorsal CA1/2 neurons and the entire DG sublayer did not affect spatial reference 

memory in the Morris watermaze in Gria1ΔHipOlf mice. 
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Fig. 2.3.3. Hippocampus-dependent spatial behavior in Gria1ΔHipOlf and litter control mice (n>10, 

each genotype) 

Spatial working memory was assessed in (A) the spontaneous alternation (10 trials without reward), 

(B) rewarded alternation (48 trials in 6 days) on the elevated T-maze and (C) the working memory task 

on the six arm radial maze (20 trials in 5 days). Gria1ΔHipOlf showed significantly less spontaneous 

alternation but rewarded learning tasks on T- and radial maze were performed successfully. (D) Spatial 

reference learning and memory was tested in the Morris watermaze. Gria1ΔHipOlf and litter control mice 

exhibited a similar decrease in distance traveled in the acquisition trials and similar time spent in the 

training quadrant during the probe test upon acquisition (after 36 trials). Re-positioning the hidden 

platform in the opposite quadrant assessed reversal learning and memory. Gria1ΔHipOlf and litter control 

mice exhibited a similar decrease in distance traveled in the 12 reversal trials and similar time spent in 

the training quadrant during the probe test upon reversal learning. Significant differences were 

observed in time spent in the first probe test (after 24 trials) and distance traveled during the second 

block (of 4 trials) of reversal learning. Values represent mean ± SE. 
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Spatial working memory in Grin1ΔHipOlf and control mice was assessed in the 

spontaneous and the rewarded alternation tasks on the elevated T-maze as well as in 

the working memory task on the six arm radial maze. Grin1ΔHipOlf mice showed less 

spontaneous alternation on the T-maze but rewarded alternation with the standard 

delay of 15 sec between sample and choice run was similar to litter controls. 

However, Grin1ΔHipOlf mice made more errors in the spatial working memory task on 

the radial maze and did not reduce the error rate during training as observed in litter 

controls. 

Of particular interest in Grin1ΔHipOlf mice, acquisition of spatial reference was 

assessed on the elevated Y-Maze, the six arm radial maze and in the Morris 

watermaze. In general, Grin1ΔHipOlf mice were able to acquire spatial reference 

memories on Y-maze and in watermaze. Choosing the right of two target arms to find 

a milk reward (correct choice in %) and finding a hidden platform to escape from 

water (path length in m) was learned significantly and similarly as by litter controls. 

Grin1ΔHipOlf mice were also able to recall the acquired spatial reference. When tested 

in probe tests after 24 and 36 trials (removal of hidden platform), Grin1ΔHipOlf mice 

and litter controls spent more than 50% of the total time in the training quadrant for 

searching the platform. In contrast, Grin1ΔHipOlf mice were impaired in the acquisition 

of spatial reference on the radial maze. Choosing three of six arms to find milk 

rewards (in errors, re-entry blocked) was learned in Grin1ΔHipOlf mice as indicated by a 

significant decrease in error rate, but not as efficiently as in litter controls. Grin1ΔHipOlf 

mice showed also impairment in reversal learning of spatial reference in the Morris 

watermaze. After initial acquisition and probe tests, the hidden platform was placed in 

the quadrant opposite of the initial training quadrant. Grin1ΔHipOlf mice traveled more 

distance (path length in m) to find the new-placed platform. In the probe test after 12 

trials of reversal learning, Grin1ΔHipOlf mice did not prefer significantly the new 

training quadrants as litter controls. 
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Fig. 2.3.4. Hippocampus-dependent, spatial behavior in Grin1ΔHipOlf and litter control mice (n>10, 

each genotype). 

Spatial working memory was assessed in (A) the spontaneous alternation and (B) the rewarded 

alternation task on the elevated T-maze as well as (C) the delayed non-matching to sample task on the 

six arm radial maze. Grin1ΔHipOlf mice showed less spontaneous alternation on the T-maze but rewarded 

alternation with the standard delay of 15 sec between sample and choice run was similar to litter 

controls. However, spatial working memory on the six arm radial maze (three arms baited vs. three not 

baited, re-entry possible) was impaired in Grin1ΔHipOlf mice. Acquisition of spatial reference was 

assessed on (D) the elevated Y-Maze, (E) the six arm radial maze and (F) in the Morris watermaze. 

Whereas, Grin1ΔHipOlf mice were impaired to acquire spatial reference on the radial maze, acquisition 
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spatial reference memories on Y-maze and in watermaze were intact. Grin1ΔHipOlf mice were also able 

to recall the acquired spatial reference. Grin1ΔHipOlf mice and litter controls spent more than 50% of the 

total time in the training quadrant for searching the platform in the probe tests. But Grin1ΔHipOlf mice 

showed impaired in reversal learning of spatial reference in the Morris watermaze. Grin1ΔHipOlf mice 

traveled more distance to find the new-placed platform. Grin1ΔHipOlf mice did not prefer significantly 

the training quadrants as litter controls the probe test, subsequent to the reversal training. Values 

represent mean ± SE. 
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3. Discussion 

In the present study, functional segregation of ionotropic glutamate receptor function 

(AMPA receptors that contain the GluR-A or GluR-B subunit or all NMDA receptors) 

in restricted principal cell layers of the well-developed hippocampal formation 

(deficient in DG, CA1, CA2, Sub vs. intact in CA3, PreS, ParS, Ent) in adult mice 

was achieved. Cre suppression in the mouse embryo of double transgenic TgCN12-itTA / 

TgLC1 mice and selective recombination of floxed Gria1, Gria2 or Grin1 loci allowed 

the generation of three mutant mouse models with similar spatial and temporal 

specificity. Behavioral analysis of Gria2ΔHipOlf or Grin1ΔHipOlf mice indicated 

impairment in spatial working memory. However, the expected impairment of GluR-

A-depleted Gria1ΔHipOlf mice was not observed. In contrast to previous reports (Morris 

et al., 1982; Tsien et al., 1996), NR1 depletion in adult Grin1ΔHipOlf mice did not 

impair the acquisition of spatial reference in the Morris watermaze or in the Y-maze. 

Impairment in spatial reference was observed in the six-arm radial maze and in the 

efficiency of reversal learning in the Morris watermaze.  

3.1. Temporal control of TgCN12-itTA / TgLC1-driven recombination in 

the mouse brain 

Embryonic suppression of itTA activity in the mouse embryo permitted a sublayer-

restricted recombination in the hippocampal formation (DG, CA1, CA2) and olfactory 

system (PC) of transgenic TgCN12-itTA / TgLC1 / Rosa26R mice (termed as 

Rosa26RΔHipOlf mice) at a young post-pubertal age (P45). This transgenic activity 

resembled the expression profile of TgCN12-itTA-induced β-gal and GFP-tagged GluR-B 

fusion protein from the TgOCN1 locus in dox-naive, so-called GluR-BRescue mice, 

generated in a previous study (Shimshek et al., 2005). 

 However, the Cre expression and recombination profile in dox-naive TgCN12-

itTA / TgLC1 / Rosa26R mice and Rosa26RΔHipOlf mice at adult ages revealed additional 

transgenic itTA-induced activity. Most obviously, dox-naive animals showed a 

widespread β-gal activity (monitored by sensitive X-gal staining; 24 h at 37°C) in the 

whole forebrain but a restricted Cre protein pattern (visualized by anti-Cre DAB 

immunostaining) at P45. Notably, while the Cre protein expression was dependent on 

permanent itTA-dependent induction of the PtetBi promoter in the TgLC1 locus, the 
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Rosa26 promoter expressed β-galactosidase constitutively upon Cre-mediated 

recombination. Hence, the widespread X-gal pattern in dox-naive TgCN12-itTA / TgLC1 / 

Rosa26R mice was presumably evoked by embryonic itTA expression in TgCN12-itTA 

mice. Administration of 50 mg/l dox-containing drinking water during breeding and 

pregnancy of mothers generating triple positive TgCN12-itTA / TgLC1 / Rosa26R mice 

(dox until birth, now termed Rosa26RΔHipOlf) confirmed this hypothesis. 

Rosa26RΔHipOlf mice exhibited now both, the expected Cre protein and X-gal profile at 

P45. The slow induction of postnatal Cre expression in Rosa26RΔHipOlf mice upon dox 

treatment until birth was already observed previously (Krestel et al., 2004). 

In addition to the unexpected embryonic activity in the TgCN12-itTA / TgLC1 model, 

the recombination profile in Rosa26RΔHipOlf mice showed an age-dependent 

accumulation of transgenic activity, often observed in transgenic mice (e.g. Fukaya et 

al., 2003). From P45 until the age of the first behavioral analysis (P150), TgCN12-itTA / 

TgLC1-mediated recombination were observed in additional sublayers of the 

hippocampal formation (IG, S) and in particular, of the olfactory system (e.g. OB, 

DTT, VTT, Tu). Sparse cellular X-gal signals were also detected in the CA3 subfield 

and in defined layers (II and V/VI) of cortical (e.g. FrA, M1, M2, AuD) and 

subcortical (e.g. BLA) structures. With a few, astonishing exceptions, recombination 

was still restricted to principal cell layers and is highly concentrated in specific 

sublayers in the hippocampal formation and the olfactory system. 

Strong recombination in the hippocampal formation was restricted mainly to 

CA1, CA2, DG and the anterior part of the subiculum, suggesting functional 

segregation from the other hippocampal sublayers (CA3, PrS, PaS and Ent) and 

cortical brain areas when the TgCN12-itTA / TgLC1 genotype will be used to manipulate 

certain ionotropic glutamate receptors. Importantly for the generation and behavioral 

analysis of conditional gene KOs, this pattern remained stable in one-year-old 

Rosa26ΔHipOlf mice. 

However, strong recombination in the olfactory system was not only observed 

in the piriform cortex (PC) or other parts of the primary olfactory cortex (POC) but 

spread also to other functional sublayers of the olfactory system Transgenic activity 

was also observed in certain parts of the medial olfactory cortex (MOC; including 

tenia tecta, TT, dorsal peduncle, DPC) and pars medialis of the anterior olfactory 

nucleus (AON), but only sparsely in the anterior olfactory cortex (AOC; reviewed in 
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Brujnes et al., 2005). These brain areas were not investigated systematically with 

lesion and tracing studies, and their exact role in the olfactory system is still not 

resolved. However, based on the wiring model proposed by Haberly (2001), the AOC 

is innervated directly by mitral and tufted cells, the projection neurons of the MOB, 

and is implicated in the direct processing of olfactory information before transmitting 

the “olfactory code” to the primary olfactory cortex (POC). In contrast, MOC and 

pars medialis do not receive direct input from the MOB, but innervate the AOC after 

receiving information of higher brain areas such as via back propagation of 

information from the POC or via the indusium griseum (IG) from the hippocampal 

formation. Presumably, these structures have an indirect modulatory activity to the 

processing of the olfactory code by the AOC. 

 

Fig. 3.1. Wiring model of the olfactory cortex proposed by L.B. Haberly (2001) 

Pars externa, medialis, dorsalis, lateralis and ventroposterior are commonly summarized as anterior 

olfactory nucleus (AON). Based on its wiring, Haberly and others examined pars medialis separately 

and summarized the residual layers as anterior olfactory cortex (AOC) APC, anterior piriform cortex; 

DPC, dorsal peduncle; lot, lateral olfactory tract; PPC, posterior piriform cortex. Red boxes indicate 

strong recombination in the iGluRΔHipOlf mouse models. 

But surprisingly, TgCN12-itTA / TgLC1-mediated recombination was also observed 

in inhibitory neurons of the main olfactory bulb (MOB), the subventricular zone 

(SVZ), the rostral migratory stream (RNS), the caudate putamen (CPu) and within the 

corpus callosum (CC). These structures are characteristic for neurogenesis (e.g. Reyes 

et al., 1992). Radial glia cells divide asymmetrically within the SVZ in intermediate 

progenitor cells and give rise to all classes of brain cells (Merkle et al., 2004). Most 

prominent are olfactory neuroblasts that replace inhibitory granule and perigranule 

cell in the main olfactory bulb (reviewed e.g. in Lledo et al., 2007). The nature of 
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olfactory neuroblasts was definitely proven by a temporal X-gal accumulation along 

the RMS and subsequently in MOB sublayers. Transgenic Cre expression was 

predominately found in RMS brain areas and not in cellular MOB layers. In addition, 

transgenic Cre expression was highly co-localized with doublecortin (DCX), 

characteristic for olfactory neuroblasts. However, further evidence is needed to verify 

the transgenic activity in additional progenitor cell types throughout the brain, 

generated by dividing radial glia cells (RC2, radial glial process; CD24, ependymal 

cell; Olig2, oligodendrocyte; GFAP, glial fibrillary acidic protein; Merkle et al., 

2004). 

In summary, the analysis of the recombination efficiency in dox-naive and 

embryonic dox-suppressed, triple positive TgCN12-itTA / TgLC1 / Rosa26R mice at 

various ages of the behavioral training period revealed many additional brain areas 

(esp. neural stem cells and MOC) with TgCN12-itTA-induced transgenic activity that had 

never been observed in GluR-BRescue mice (TgCN12-itTA / TgOCN1 in forebrain-specific 

GluR-B deleted background; Shimshek et al., 2005). As observed in different mouse 

models with itTA or tTA expression (e.g. KT1, Mayford et al., 1996; Gnit, Th. Bus, 

diploma thesis, Uni Heidelberg, 2005) to induce transgenic activity from different tet-

responder mouse lines (e.g. G3, Krestel et al., 2003; SA, Mack et al., 1999), the Cre-

expressing tet-responder line TgLC1 was the most accessible transgenic tet-responder 

in the mouse brain, whereas the TgOCN1 responder line was not inducible in all 

neurons (Th. Bus, diploma thesis, Uni Heidelberg, 2005). 

The high recombination efficiency in additional sublayers of the hippocampal 

formation and the olfactory system, observed in adult Rosa26RΔHipOlf mice, will 

exacerbate the interpretation of behavioral phenotypes in TgCN12-itTA / TgLC1-mediated 

gene KOs of excitatory glutamate receptors. Nevertheless, TgCN12-itTA / TgLC1-driven 

recombination affected restricted sublayers, and might prove invaluable for separating 

explicit functions in these brain systems. 

3.2. Depletion of excitatory receptor pools in adult neuronal networks 

The depletion of NMDA receptors or any of the two AMPA receptor subtypes 

GluR-A and GluR-B was achieved in restricted hippocampal sublayers (DG, CA1, 

CA2) of adult Gria1ΔHipOlf, Gria2ΔHipOlf and Grin1ΔHipOlf mice. Depletion of receptor 

subtypes with a similar spatial and temporal specificity allowed the dissection of 
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ionotropic glutamate receptor (iGluR) function in three main properties (GluR-A 

dependent LTP; GluR-B restricted Ca2+ permeability of AMPA receptors; NMDA 

receptor dependent LTP) within individual hippocampal sublayers (DG, CA1, CA2, 

vs. CA3, Ent) and towards cortical and subcortical brain regions of adult mice. 

Surprisingly, the temporal decrease in the protein levels of manipulated iGluR 

subtypes was not finished before P120-P150 in DG and CA1 of Gria1ΔHipOlf, 

Gria2ΔHipOlf or Grin1ΔHipOlf mice. Depletion of iGluR subtypes in the soma of affected 

principal neurons was relatively rapidly, however, a detectable protein level in the 

layers of apical and basal processes remained for three to four months. The slow 

depletion in neuronal processes was not observed in previous mouse models using the 

αCaMKII promoter (e.g. in GluR-BΔFb using TgCaMKII-Cre generated by Mantamadiotis 

et al., 2002). But these mutant mice expressed the Cre recombinase in early postnatal 

days before the increase in iGluR expression between P7 and P14 (Jensen et al., 

2003). In contrast to these models, Cre expression in iGluRΔHipOlf mice was not 

induced before P28 when the expression of iGluR subtypes was already high in the 

hippocampus. 

Additional support for the importance of temporally restricted gene 

manipulation in well-established neuronal networks of the hippocampal formation 

was observed in Gria2ΔHipOlf mice. Previous studies suggested that GluR-B-lacking 

AMPA receptors are expressed predominantly in response to excessive glutamatergic 

neurotransmission, e.g. in kainate-induced or electroconvulsive (“kindled mice”) 

epileptic seizures. It was further hypothesized that the excessive influx of Ca2+ 

through NMDA receptors and AMPA receptors lacking GluR-B upon the endogenous 

glutamate release is sufficient to induce a cascade of reactions leading to cell death 

(Ca2+-induced neuro-toxicity; Lipton and Rosenberg, 1994, Tanaka et al. 2000). 

However, our previous observations in forebrain-specific GluR-BΔFB and RNA 

editing-deficient GluR-BQFb mice (Shimshek et al., 2006) did not confirm but 

qualified this ’GluR-B hypothesis’ (Pollard et al., 1993; Friedman et al., 1994; 1997). 

Gene manipulation of the Gria2 loci in the early postnatal forebrain, resulting either 

in GluR-B-lacking or GluR-B(Q)-containing AMPA receptors, had long-lasting 

functional and structural consequences in the hippocampus. However, loss of 

principal neurons was only observed in CA3 neurons of GluR-BΔFB mice but not in 

any other hippocampal sublayer and not even in CA3 neurons of GluR-BQFb mice that 
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exhibited a much stronger Ca2+ influx through functional AMPA receptors and were 

prone to epileptic seizures (Krestel et al., 2004). Nevertheless, both mouse models 

showed rearrangements of DG mossy fiber terminals (termed as ’sprouting’), 

although the extent of mossy fiber sprouting was much lower than characteristically 

observed in brains of “kindled mice” (e.g. Vaidya et al., 1999). Most impairment in 

GluR-BΔFB or GluR-BQFb mice were not directly mediated by changes in AMPA 

receptor signaling, but were more likely secondary to the AMPA receptor-mediated 

Ca2+ influx. Parvalbumin-positive interneurons in the DG subfield (and somatostatin-

positive interneurons in CA1 and DG of GluR-BQFb mice) were significantly reduced, 

neurogenesis at the DG subgranular zone (SGZ) was nearly absent in GluR-BΔFB mice 

and was increased in GluR-BQFb mice compared to litter control mice. Postnatal GluR-

B depletion in the hippocampus of GluR-BΔFB mice did not impair fLTP at Schaffer 

collateral - CA1 synapses, but these synapses exhibited reduced excitatory 

neurotransmission with increased synaptic excitability, indicating lower expression of 

AMPA receptors at synapses of GluR-B depleted neurons (Shimshek et al., 2006). 

Hence, manipulations of the GluR-B gene in forebrain-specific GluR-BΔFB and GluR-

BQFb mice had long-lasting consequences for hippocampal anatomy and function. 

However, upon GluR-B depletion in DG, CA1 and CA2 of Gria2ΔHipOlf mice, no 

long-lasting anatomical changes were detected in the well-established network of the 

adult hippocampus. We quantified axonal terminals of sprouting DG mossy fibers in 

the inner molecular layer (Timm staining) and parvalbumin-positive interneurons in 

DG and CA1. Initial results indicated also no remarkable difference in the number of 

BrdU-labeled newborn cells at the SGZ, although additional experiments are needed. 

Of particular interest, Vidar Jensen and ∅ivind Hvalby (University of Oslo, Norway) 

investigate the electrophysiological properties in the anatomically well-established 

hippocampus at the moment. Nevertheless, adult GluR-B depletion in DG, CA1 and 

CA2 had no remarkable and long-lasting consequences for hippocampal anatomy. 

Therefore, electrophysiological investigation of the hippocampal circuitry and more 

extensive behavioral analysis of Gria2ΔHipOlf mice might yield further insight into 

synaptic plasticity-underlying memory and behavior. 

Our initial experiments to assess electrophysiological functions in Grin1ΔHipOlf 

mice revealed a functional dissection of the CA1 and CA3 sublayers in the dorsal 

hippocampal formation. Whereas the elaborate NR1 depletion in the dorsal 
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hippocampus ablated NMDAR-dependent synaptic plasticity (field LTP) in the CA1 

subfield, the field property in CA3 was not affected. However, field recordings 

stimulate and measure a large number of neurons. Known from the extensive 

recombination analysis of Rosa26RΔHipOlf mice (please refer to 2.1.3.), sparse CA3 

neurons exhibited TgCN12-itTA / TgLC1-mediated recombination and will deplete the 

NR1 protein. Nevertheless, NR1 depletion in the CA3 subfield was minor and not 

sufficient to impair fLTP in comparison to litter control mice. 

The functional segregation of ionotropic glutamate receptor function in the CA1 

subfield relative to the CA3 region, entorhinal cortex and other cortical brain areas 

(e.g. perirhinal cortex, temporal association cortex) in well-established networks of 

the adult mouse brain might offer further insight into the hippocampal role in 

cognitive behavior, independently from developmental aspects. Computational 

models based on the wiring scheme between principal cell layers of the corresponding 

brain areas and lesion experiments of individual layers indicated a strong convergence 

of projection neurons onto the CA3 pyramidal neurons and a great divergence again 

back to cortical brain areas from the CA1 pyramidal neurons via the subiculum. The 

CA3 subfield with its extensive auto-associative network (recurrent collaterals) was 

thought to support rapid spatial one-trial learning, spatial short-term memory, 

sequence learning and spatial pattern completion, whereas the CA1 subfield was 

thought to be responsible for processing temporal information required for temporal 

pattern separation and associations across time. The DG was implicated in spatial 

pattern separation (Rolls, Kesner, 2006). 
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Fig. 3.2. Simplified wiring model of the hippocampal formation and cortical brain areas thought 

to be involved critically in cognitive, declarative memory 

Forward connections (solid lines) from areas of cerebral association neocortex via the parahippocampal 

gyrus and perirhinal cortex, and entorhinal cortex, to the hippocampus; back-projections (dashed lines) 

via the hippocampal CA1 pyramidal cells, subiculum, and parahippocampal gyrus to the neocortex. 

There is great convergence in the forward connections down to the single network implemented in the 

CA3 pyramidal cells. Great divergence is observed again in the back-projections up, again from the 

CA1 pyramidal cells via the subiculum. Left: block diagram. Right: more detailed representation of 

some of the principal excitatory neurons in the pathway. D, deep pyramidal cells; DG, dentate granule 

cells; F, forward inputs to areas of the association cortex from preceding cortical areas in the hierarchy; 

mf, mossy fibers; PHG, parahippocampal gyrus and perirhinal cortex; pp, perforant path; rc, recurrent 

collateral of the CA3 pyramidal cells; S, superficial pyramidal cells; 2, pyramidal cells in layer II of the 

entorhinal cortex; 3, pyramidal cells in layer III. The thick lines above the cell bodies represent the 

dendrites. Red boxes indicate strong recombination in the iGluRΔHipOlf mouse models (adapted from 

E.T. Rolls, R.P.Kesner, 2006). 
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3.3. Behavioral analysis 

The rodent’s hippocampal formation is the most extensively investigated model 

system for cognitive memory. It is easily accessible by stereo-tactical injections and 

can be manipulated with various techniques. In addition, multiple behavioral tasks 

have been developed that monitor the role of the hippocampus in spontaneous, 

associative and cognitive behavior. Hippocampal function in rodents is mainly tested 

for spatial forms of cognitive memory, in particular for spatial working memory in the 

delayed non-matching-to-place (DNMTP) paradigm and for spatial reference memory 

in the matching-to-place (MTP) paradigm. 

The behavioral analysis of Gria1ΔHipOlf and Grin1ΔHipOlf mice was performed in 

Heidelberg and more extensively in Oxford (N. Rawlins, D. Bannerman, Exp. 

Psychology, England). Although, the behavioral analysis in Heidelberg included only 

the rewarded alternation task on the elevated T-maze for spatial working memory, and 

the acquisition phase on the Y-maze in Grin1ΔHipOlf mice for spatial reference 

learning, the behavioral performances in both laboratories revealed reliable 

phenotypes. Indeed the ratios of performances between genotypes were highly 

reproducible, although the absolute values of genotypes differed. Variability in 

behavioral performances was often observed depending on the handling of the mice 

and other environmental conditions (personal experience & communication with D. 

Bannerman). 

3.3.1 Spatial working memory 

The most striking results, unexpected from our previous work, were that adult 

Gria1ΔHipOlf mice with GluR-A depletion in DG, CA1 and CA2 principal neurons 

were not impaired in the rewarded learning tasks for spatial working memory. 

Gria1ΔHipOlf mice performed similar to litter controls, even when a delay of 1 min 

occurred between the sample run and the choice run on the elevated T-maze and in 

the more difficult six arm radial maze. Only a small impairment was detected in the 

eight trials of the spontaneous alternation on the T-maze. However, global depletion 

of the GluR-A protein in Gria1-/- mice abolished spatial working memory, tested on 

the T-maze with the standard delay of 15 sec. Gria1-/- mice performed at chance level 

(50% alternation; Reisel et al., 2002). In addition, restoration of GFP-tagged GluR-A 
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in principal neurons of the forebrain rescued the T-maze performance partially 

(Schmitt et al., 2005; reviewed in Sanderson et al., 2008). Transgenic GluR-A 

restoration, induced by transgenic αCaMKII promoter-driven tTA (TgKT1; Mayford et 

al. 1996), was especially pronounced in the CA1 subfield of the dorsal hippocampus 

(69 ± 4 %; Schmitt et al., 2005). Combined with findings in lesion studies and of 

GluR-A dependent LTP at Schaffer collateral - CA1 synapses, the GluR-A subunit in 

CA1 principal neurons was thought to play an essential role in the spatial working 

memory, at least to a substantial part. GluR-A containing AMPA receptors in 

inhibitory neurons (e.g. parvalbumin-positive neurons) might underlie the residual 

fraction of the spatial working memory, as indicated by parvalbumin-specific Gria1 

deletion in transgenic GluR-APVCre -/- mice (Fuchs et al., 2007). 

 

Fig. 3.3. GluR-A deletion, either globally or in parvalbumin-positive interneurons, impaired 

spatial working memory performance during the DNMTP task on the elevated T-maze. But 

surprisingly, GluR-A deletion in principal DG, CA1 and CA2 neurons in the adult mouse brain 

did not impair spatial working memory performance in this rewarded alternation task. 

Top: The mouse is forced into either the left or right goal arm, according to a pseudorandom sequence, 

and receives a milk reward. During the choice run (right) the mouse has to go directly to the opposite 

(previously unvisited) goal arm to find a second milk reward. Both runs are delayed by the standard 
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inter run interval (IRI) of 15 seconds. 40 trials in total on 5 successive days were performed. Bottom: 

Mean percentage of trials on which the mouse alternated successfully (± SEM). Left:: performance of 

control (Ctrl) and GluR-A-/- mice (data taken from Reisel et al., 2002). Center: Performance of control 

(Ctrl) and parvalbumin-restricted GluR-APVCre-/- mutant  (data taken from Fuchs et al. 2007). Right: 

Performance of control (Ctrl) and Gria1ΔHipOlf mice. Broken line equates to chance performance of 

50%. 

The most obvious difference in the hippocampus between these T-maze 

impaired mouse models and the T-maze intact Gria1ΔHipOlf mice was the 

developmental stage when gene recombination occurred. While the T-maze impaired 

models affected glutamatergic neurotransmission either globally or at early postnatal 

age, Gria1ΔHipOlf mice grew up normally until at least P28 (initiation of Cre 

recombinase). Along this line of evidence, the GluR-A protein might play a role in the 

maturation of a balanced network between hippocampal principal and inhibitory 

neurons. Additional support for a developmental role of GluR-A in the hippocampus 

came from viral deletion of the Gria1 gene. Stereo-tactical injections of neuron-

restrictive Cre expressing rAAV (driven by a synapsin promoter) in the hippocampus 

of adult mice with floxed Gria1 alleles did not impair spatial working memory 

performance in rewarded alternation tasks. In addition, conditional restoration by 

GluR-A expressing rAAV in adult Gria1-/- mice does not rescue their behavioral 

performance (F. Freudenberg, Dissertation, Uni Heidelberg, 2009; in preparation). 

Gria1ΔHipOlf mice showed high GluR-A depletion in the DG, CA1 and CA2 

subfields, but other parts of the hippocampal formation and cortical brain areas 

remained manly unaffected. All T-maze impaired models affect the GluR-A protein 

either globally or in the whole forebrain. A possible role of the frontal association 

cortex, which is thought to be involved in working memory tasks in primates 

(Goldman-Rakic, 1987), was excluded by lesion experiments that did not change the 

rewarded alternation performance in mice (D. Bannerman, unpublished data). This 

confirmed the pivotal role of the hippocampal formation in the working memory task 

tested in rodents. Hence, structures of the hippocampal formation that were not 

affected in Gria1ΔHipOlf mice might contribute to the spatial working memory. Most 

likely, the medial entorhinal cortex (MEnt) might be critically implicated in the 

hippocampal memory system. The discovery of spatially related firing cells like place 

cells, grid cells and head direction cells drew more attention to this structure of the 
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hippocampal formation, but lesion experiments combined with rewarded alternation 

tasks are still missing. 

Different from Gria1ΔHipOlf mice, GluR-B in Gria2ΔHipOlf mice or all NMDA 

receptors in Grin1ΔHipOlf mice in DG, CA1 and CA2 affected the behavioral 

performance in rewarded alternation tasks. Gria2ΔHipOlf mice alternated significantly 

on the elevated T-maze but did not increase their alternation in contrast to litter 

control mice during the five-day training protocol (eight trials per day).  

Unfortunately, the tested cohort was very small (n=4, each genotype) and thus, further 

confirmation is needed. Grin1ΔHipOlf mice learned the T-maze task with a very short 

delay (~ 3 sec), but performed nearly at chance level when a long delay (1 min) 

separated both runs (sample and choice run) of the rewarded alternation trial. This 

delay-dependent impairment in the spatial working memory was proposed by 

previous studies that observed the delay-dependent impairment on the T-maze 

(Rawlins and Olton, 1982; McHugh et al., 2007) and in the water maze (Morris et al., 

1982) upon infusion of the NMDA receptor antagonist AP-5 in the dorsal 

hippocampus. Consistently, Grin1ΔHipOlf mice were also impaired in the six-arm radial 

maze that is more difficult than the short delayed T-maze task, since the animals need 

to remember three previously visited target arms. 

The comparison of behavioral performances in the spatial working memory 

tasks of Gria1ΔHipOlf, Gria2ΔHipOlf and Grin1ΔHipOlf mice demonstrated clearly that the 

transgenically affected principal neurons, i.e. DG, CA1 and CA2 pyramidal cells of 

the hippocampal formation at adult ages, are critically involved in the spatial working 

memory. While the depletion of GluR-B or NR1 in these neurons confirmed previous 

observations of an impaired or delay-dependent working memory (Rawlins and Olton; 

Shimshek et al., 2006), GluR-A containing AMPA receptors in these projection 

neurons were surprisingly not essential at adult ages for the spatial working memory. 

Notably, Gria1ΔHipOlf mice showed still a hyperactive phenotype, like the global 

Gria1-/- mice, in novel environments, when observed in an open field and by 

Pavlovian fear conditioning (data not included in this thesis). Together with the 

impairment in the spontaneous alternation task, the hyperactivity might be based on 

impairment in a short-term habituation process. Further analysis of Gria1ΔHipOlf mice 

in one-trial spatial working memory (Sanderson et al., 2007) and non-spatial, 
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hippocampus-dependent, differential reinforcement of low rates of responding (DLR)-

paradigm (impaired in Gria1-/-; Reisel et al., 2005) is needed. 

3.3.2 Spatial reference memory 

GluR-A containing AMPA receptors in DG, CA1 and CA2 of adult mice were not 

essential for the learning or memory of spatial references in the Morris watermaze. 

This observation was expected since even global Gria1-/- mice exhibited normal 

spatial reference memory (Reisel et al., 2002). In fact, Gria1ΔHipOlf mice spent less 

time than litter control mice in the training quadrant upon removal of the hidden 

platform in the first probe test. Nevertheless, Gria1ΔHipOlf mice remembered the 

training quadrant. They spent more than 25 % (chance level) of the total time in the 

appropriate quadrant of the watermaze. The observed deficit might be based on the 

hyperactive phenotype in these mice. Hyperactivity in global Gria1-/- mice was often 

observed (Bannerman et al., 2004) and even Gria1ΔHipOlf mice showed hyperactivity in 

response to novelty in spontaneous and associative tasks (spatial open field, cued and 

contextual fear conditioning, not included in the thesis). However, the hyperactive 

phenotype did not account for impairment in spatial reference memory. Performance 

of Gria1ΔHipOlf mice was indistinguishable to controls in all acquisition trials and also 

in the second probe test after 36 acquisition trials. 

Unfortunately, GluR-B depleted Gria2ΔHipOlf mice were not yet tested in any 

spatial reference memory paradigm. Based on previous observations in forebrain-

specific GluR-B mutant mice (GluR-BΔFb, Shimshek et al., 2006), the spatial reference 

memory might require GluR-B containing AMPA receptors. However, the depletion 

of GluR-B in these GluR-BΔFb mice mediated also long-lasting effects in the 

hippocampal architecture that hindered the interpretation of the observed behavioral 

impairment. In contrast, GluR-B depletion in restricted hippocampal sublayers of 

adult Gria2ΔHipOlf mice did not reveal any obvious change in the hippocampal 

network. Neither loss of neurons nor mossy fiber sprouting was observed upon Ca2+ 

influx via GluR-B lacking AMPA receptors in eight- to eleven-month-old animals. 

Hence, Gria2ΔHipOlf mice will serve as an important model for the behavioral analysis 

of the GluR-B subunit in the adult hippocampus. The hypothesized role of GluR-B in 

spatial reference memory will be evaluated soon. 
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Presumably, the most discussed role of ionotropic glutamate receptors in spatial 

forms of cognitive behavior is the acquisition of spatial reference in the Morris 

watermaze in dependence to NMDA receptors in the CA1 subfield of the 

hippocampus (Tsien et al., 1996; Bannerman et al., 1995). Discrepancies between 

CA1-restricted NR1 mutant mice (Tsien et al., 1996), which were shown to fail in the 

acquisition phase of the hidden platform task but exhibited an age-dependent NR1 

gene recombination in cortex (Fukaya et al., 2003) and confusing results of AP5-

infused mice (Morris et al., 1982; Bannerman et al., 1995) hindered a consistent 

hypothesis of the role of NMDA receptors in the spatial reference memory. 

The ablation of all NMDA receptors in hippocampal DG, CA1 and CA2 of 

adult Grin1ΔHipOlf mice did not impair spatial reference memory. In total, three cohorts 

of adult Grin1ΔHipOlf mice (five- to eleven-month-old) were analyzed in different tasks 

(Y-maze, radial maze, Morris watermaze) for learning and memory of spatial 

references. Adult Grin1ΔHipOlf mice were able to acquire and recall spatial reference 

memory in all these tests. Performances on the Y-maze and in the Morris watermaze 

were indistinguishable from litter controls. In fact, Grin1ΔHipOlf mice learned less 

efficient than litter control mice in the six-arm radial maze but still, they decreased the 

error rate for the finding of previously unvisited arms.  

Specific impairment was observed in reversal learning in the Morris watermaze. 

Grin1ΔHipOlf mice traveled more distance to find the new position of the hidden 

platform in the quadrant opposite to the initial training quadrant. Consistently, these 

mice spent less time compared to litter controls in the appropriate quadrant in the 

subsequent probe test. This deficit was already reported for mice given AP5 infusion 

into the hippocampus. Reversal learning in the water maze was more sensitive to AP5 

infusion than learning an entirely new spatial task in a second, different environment 

(Morris et al., 1990; Bannerman et al., 1995). It appeared somewhat surprising that 

learning an entirely new spatial representation of a novel environment appeared easier 

than simply re-encoding the goal location of a familiar environment in reversal 

learning. Based on observation of reversal learning deficit in global GluR-A-/- mice in 

an elevated plus maze task, a deficit in short-term, flexible, spatial working memory 

may underlie this kind of re-encoding memory (Bannerman et al., 2003). Two 

hippocampal mechanisms were found in global GluR-A-/- mice; GluR-A dependent 

spatial working memory and GluR-A independent spatial reference memory. Both 
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mechanisms might be essential in reversal learning. Spatial reference memory may 

underlie the gradual improvement in choice accuracy during reversal, whereas 

working memory may contribute to the efficacy of flexible re-encoding of spatial 

reference memory. Grin1ΔHipOlf mice exhibited a delay-dependent impairment in the 

flexible, spatial working memory, but learned spatial reference memory as efficiently 

as litter control mice. 

 

3.4. Genetic investigations into the role of ionotropic glutamate 

receptors in hippocampal learning 

Genetic manipulation of the main ionotropic glutamate receptors in the three mutant 

mouse models Gria1ΔHipOlf, Gria2ΔHipOlf and Grin1ΔHipOlf offered an invaluable system 

to investigate the role of AMPA and NMDA receptors in principal DG, CA1 and CA2 

neurons of adult mice in hippocampal learning and memory. Using the same 

recombination system, i.e. TgCN12-itTA / TgLC1 suppressed with doxycycline in the 

mouse embryo, to manipulate either the GluR-A, GluR-B or NR1 subunit in these 

restricted neurons allowed to dissect the role of certain ionotropic glutamate receptors 

in hippocampal learning in spatial working and reference memory tasks. 

While AMPA receptors containing the GluR-B subunit and NMDA receptors 

are essentially involved in the spatial working memory, AMPA receptors containing 

the GluR-A subunit are not required in principal DG, CA1 and CA2 neurons of adult 

mice to remember the relationships between spatial cues and a milk reward for a 

certain delay.  

Consistent with previous reports of global Gria1-/- mice (Reisel et al., 2002), 

AMPA receptors containing GluR-A are not required for spatial reference memory 

performance in various tasks. Similar results were observed upon NMDA receptor 

ablation in Grin1ΔHipOlf mice. The acquisition and recall of spatial reference memory 

in the Morris watermaze and on the Y-maze were not affected. However, Grin1ΔHipOlf 

mice exhibited some associative mismatches in the acquisition phase on the six-arm 

radial maze and in the reversal-learning task in the Morris watermaze. Impairment in 

spatial working memory in Grin1ΔHipOlf mice might account for the effects in these 

spatial reference memory tasks. 
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Unfortunately, behavioral analysis of spatial reference memory in Gria2ΔHipOlf 

mice is still missing. Based on previous work with Gria2 mutant mice (Shimshek et 

al., 2006) the GluR-B protein is the most important subunit of functional AMPA 

receptors. Combined with additional observations of Gria1ΔHipOlf, Gria2ΔHipOlf and 

Grin1ΔHipOlf mice in spontaneous and emotional behavior (not included in the Ph.D. 

thesis), depletion of the GluR-B subunit might cause stronger effects in spatial 

behavior than ablation of all NMDA receptors in principal DG, CA1 and CA2 

neurons of adult mice. Hence, spatial reference memory in Gria2ΔHipOlf mice has to be 

addressed soon. 
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4. Methods 

4.1. Mice and housing 

Experiments were approved under protocol 35-9185.81/MPI/T-9/06 at the 

Regierungspräsidium Karlsruhe, Germany. Animal breeding was performed in SPF-

controlled rooms at the Interdisciplinary Breeding Facility (IBF; Unit 5) of the 

University of Heidelberg. Mice were housed in temperature (22°C) and light (on 

08.00-20.00 h)-controlled rooms with ad libitum access to food and water. For 

experiments, mice were transported to the Department of Molecular Neurobiology in 

the MPI for Medical Research at Heidelberg, Germany or by air (World Courier) to 

the Department of Experimental Psychology, University of Oxford in England. In 

Heidelberg, individuals were isolated from litter and housed them in a single cage 

(Makrolon 2). A ventilated rack was used to ensure stable air conditions. Animals 

were kept for at least two weeks in a single cage to compensate for potential 

dominance disadvantages, witnessed by short whiskers and missing patches of fur in 

very rare cases. We also added a small house made of reused cardboard to offer 

additional climbing opportunity and a minimum of “privacy“. 
 

4.1.1. Mouse lines, genotyping and doxycycline treatment 

 

TgCN12-itTA mice (J. Kim, Dissertation Uni Heidelberg, 2001) express the improved 

version of the tetracycline-dependent trans-activator (itTA) under the control of the 

8.5 kb CaMKIIα promoter fragment and the 1.0 kb NR2C silencing element. TgLC1 

mice (K. Schoenig et al., 2003) contain the bidirectional tTA responder element with 

Luciferase and Cre Recombinase expression. Rosa26R.lacZ mice (Soriano et. al., 

1999) with Rosa26 locus targeted β-Galactosidase gene fragment under expression 

control of a floxed transcription stop cassette were employed as functional Cre 

recombinase indicator. Gria1loxP/loxP mice carry gene-targeted AMPA receptor subunit 

GluR-A alleles in which exon 11 are flanked by loxP elements. In Gria2loxP/loxP mice, 

loxP sites flank exons 11. Grin1loxP/loxP mice exhibit gene-targeted NMDA receptor 

subunit 1 genes with floxed exons 11 to 18. 
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For determination of transgenic specificity during lifetime TgCN12 / TgLC1 / 

R26R mice were bred with all loci in heterozygous state. Adult and sublayer specific 

depletion of AMPA or NMDA receptor subunits was achieved by generating 

transgenic mice heterozygous for TgCN12 / TgLC1 and in Gria1ΔHipOlf homozygous for 

Gria1loxP/loxP, in Gria2ΔHipOlf homozygous for Gria2loxP/loxP or in Grin1ΔHipOlf 

homozygous for Grin1loxP/loxP mice. Doxycycline hydrochloride (Sigma) at a 

concentration of 50 mg/l, supplemented with 1 % sucrose, was dissolved in drinking 

water and provide to the parental mice in light-protected bottles. Animal breeding was 

kept under doxycycline to prevent embryonic itTA activity. At birth of offspring 

doxycycline was removed from the drinking water. 

Mice were genotyped by PCR of tail DNA with specific primers. Indicated 

below are the used primer and the approximate lengths of the amplified DNA 

fragments. Primer sequences are listed in materials. 

 
TgCN12-itTA: rsphtTA1 and rsphtTA2 produce a 600 bp band. 

TgLC1:  rspCre1 and rspCre2 with a 200 bp positive PCR band.  

Gria1loxP: MH60 and 3´intro3 with 200 bp for wild type and 250 bp for mutant alleles. 

Gria2loxP: VM10 and VM12 with 250 bp for wild type and 350 bp for mutant alleles. 

Grin1loxP: NR1 Ex18 do1 and NR1 Ex18up1 with 450 bp for wild type and 500 bp for mutant 

  alleles. 

 

4.1.2. General appearance of mice 

Upon acclimatization in our department, all iGluRΔHipOlf mice generated by embryonic 

arrest of Cre activity in the TgCN12 / TgLC1 model (Gria1ΔHipOlf, Gria2ΔHipOlf, 

Grin1ΔHipOlf) showed normal general appearance (fur, whisker, exploratory behavior 

during handling) compared to litter control mice. To exclude interference of gross 

abnormalities with behavioral testing, we checked the eye-blink, ear-twitch and 

whisker-orientating reflex (Paylor 1998) as well as motor learning on the accelerated 

rota-rod. All neurological reflexes were well established in all tested mice. 
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4.2. Molecular analysis 

For the applied standard molecular biological techniques refer to:  

Current Protocols in Molecular Biology; Ausubel, Brent, Kingston, Moore, Seidman, 

Smith, Struhl, Wiley Interscience, 1989 

Molecular Cloning, A Laboratory Manual; Sambrook, Fritsch, Maniatis, 2nd Edition,  

Cold Spring Harbor Laboratory Press, 1989 

4.2.1 Immunochemistry 

Mice were anesthetized with isoflurane (Hoechst, Germany) and intracardially 

perfused with phosphate-buffered saline (PBS, pH 7.4, 37°C) followed by 4 % 

paraformaldehyde (PFA) in PBS. Brains were removed and post-fixed in 4 % PFA (2-

24 h at 4°C). Afterwards the brains were rinsed with PBS and embedded in 2 % 

agarose in PBS. Coronal, horizontal or sagittal sections of 70µm thickness were 

performed on a vibratome (VT 1000S, Leica, Germany).  

In DAB immunostaining, selected sections were pretreated for 10 min in 0.5 % 

H2O2/PBS to erase the activity of endogenous peroxidases. After repeated washing for 

10 min with PBS, sections were permeabilized for 2 h in Day 1 buffer (0.3% Triton 

X-100, 1 % bovine serum albumin (BSA) in PBS), supplemented with 4 % normal 

goat serum (NGS) for blocking of perturbing antigens. For binding of the primary 

antibody against certain proteins, the sections were incubated overnight in Day 1 

buffer containing 1 % NGS and the corresponding antibody dilution (refer to 

materials) The following day, sections were washed three times for 10 min in Day 2 

buffer (0.1 % Triton X-100 and 0.3 % BSA in PBS) and incubated for 1 h in Day 2 

buffer supplemented with peroxidase-conjugated secondary antibody (1:600; Vector 

Laboratories, USA). After repeated washing for 10 min in Day 2 buffer, sections were 

cleared twice for 10 min in PBS. The staining reaction of the antibody coupled 

peroxidase was performed in 0,4 mg/ml diaminobenzidine (DAB, Sigma, Germany) 

in 20 mM Tris/HCl at pH 7.6 (Sigma, Germany) and stopped by repeated washing in 

PBS. After a brief wash in 10 mM Tris/HCl (pH 7.6), sections were mounted on glass 

slides and dehydrated in 70, 90, 99.5 % (v/v) EtOH. After brief wash in xylol, slices 

were embedded in Eukitt (Kindler GmbH, Germany). 
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In immunhistofluorescence staining, sections were permeabilized and blocked 

in 4 % NGS-containing buffer 1, incubation of primary antibody overnight and 

detection by fluorescent secondary antibody (1:200; Jackson Immunolabs or Sigma) 

that was incubated for 1 h in Day 2 buffer. After clearing of sections with day 2 buffer 

and PBS, sections were dried briefly, embedded in Aqua mount and coverslipped. 

4.2.2 X-gal staining for vibratome sections 

Brains were removed and fixed for 1 h in 4 % paraformaldehyde in PBS (137 mM 

NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4/2H2O, 1.4 mM KH2PO4). Afterwards, the 

brains were rinsed wit PBS, embedded in 2 % agarose (Seakem LE) in PBS and cut in 

70-100 µm sagittal or coronal sections on a vibratome (Leica VT 1000S, Leica). The 

sections were incubated for 24 h at 37°C in X-Gal staining solution (5 mM 

K4Fe(CN)6, 5 mM F3Fe(CN)6, 2 mM MgCL2, 2 mg/ml X-gal in dimethyl-

fornamid/PBS). Sections were washed twice in PBS and once 10 mM Tris/HCl, 

pH7.6. Sections were immediately counterstained with eosin (Sigma) for 1 min and 

rapidly and successively dehydrated in ethanol 70, 90, 99.5 % (v/v). The dry sections 

were dehydrated in xylene and embedded in EuKitt (Kindler GmbH, Germany).  

4.2.3. Mossy fiber visualization by Timm stain 

Timm staining was performed as described (Danscher et al., 1982, 1985) with some 

modifications. Briefly, one hour after sodium selenite (Na2SeO3, 15mg/kg) injection 

intraperitoneally mice were anaesthetized with halothane (Hoechst, Frankfurt, 

Germany) and perfused intracardically with 1% phosphate buffered sodium (PBS) at 

room temperature. Brains were isolated and frozen on solid CO2 and stored at -70 °C 

until use. Cryostat sections (15 µm) were cut through the entire extent of the 

hippocampus and mounted on poly-lysine coated slides, fixed in 4% PFA for 5 min, 

dehydrated in 100% alcohol and stored at 4°C. Prior to development, mounted 

sections were dipped in 0.5% gelatin, developed in the dark for 10-30 min in 

developer solution (100 ml 50% Gum Arabic solution, 20 ml Citrate buffer of 25.5% 

citric acid and 23.5% tri-sodium citrate, 30 ml 3.3% hydroquinone, ddH2O 70 ml, 

with additional 30 ml 0.7% Ag lactate added immediately before use). After washing, 

the slices were dehydrated in alcohol, cleared in xylene and cover-slipped. Timm 

staining was analyzed by manual counting of Timm-stained granules in the inner 
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molecular layer of the DG. Both DG on four slices per animals were quantified. Data 

are presented as mean of two mice per genotype ± SD. Statistical significance was 

evaluated by two-tailed, unpaired Student’s t test.  

4.2.4. Immunoblotting  

Mouse brains were removed and the hippocampus was isolated. Whole protein cell 

lysates in 25 mM HEPES (pH7.6; including protein inhibitor cocktail) was prepared 

and immunoblots were performed as described (Mack et al., 2001). Antibodies against 

GluR-B (1:800, Chemicon, monoclonal), GluR-A (1:2000, Chemicon, polyclonal), 

NR1 (1:600, Chemion, polyclonal) and actin (1:80000, Sigma, monoclonal) or p38 

(1:2000, rabbit polyclonal) as an internal standard were used. HRP-coupled secondary 

goat anti-rabbit and goat anti-mouse antibodies (Vector, 1:15000) were used to label 

primary antibodies. Immunoreactivity was detected with ECLplus (Amersham 

Pharmacia Biotech, UK). Immunoblots were scanned and quantitatively analyzed 

with ImageJ. Data are presented as mean ± SEM. Statistical significance was 

evaluated by two-tailed, unpaired Student’s t test.  

4.3. Long-term potentiation in field recordings  

Orthodromic synaptic stimulation in CA1 was delivered alternately through two 

tungsten electrodes (0.2 Hz) to activate synapses in apical (stratum radiatum) and 

basal dendrites (stratum oriens), respectively. Extracellular potentials were monitored 

by glass electrodes filled with ACSF, which were placed in the corresponding 

synaptic layers. After stable synaptic responses in both pathways for at least 15 min, 

one pathway was tetanized (with either a single 100 Hz tetanization for 1 sec or four 

such tetanization given at 5 min intervals), the other pathway served as a control. To 

standardize tetanization strength in different experiments, the tetanic stimulation 

strength was set in response to a single shock at intensity just above the threshold for 

generating a population spike. Synaptic efficacy was assessed measuring the slope of 

the fEPSP in the middle third of its rising phase. Six consecutive responses (1 min) 

were averaged and normalized to the mean value recorded 4-7 min prior to tetanic 

stimulation. In some experiments, DL-2-amino-5-phosphonopentanoicacid (DL-AP5, 

50 µM, Sigma) was present during the recordings. Data are mean ± SEM; the 

statistical significance of LTP levels between tetanized and non-tetanized inputs were 
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calculated by Student’s paired two-tailed t test. LTP levels between genotypes or 

resulting from different tetanization paradigms were evaluated by linear mixed model 

statistical analysis.  

4.4. Behavioral analysis 

4.4.1. Spatial working memory (non-matching-to-place alternating T-

maze) 

The alternating T-maze consists of a start arm (47 X 10 cm) and two identical goal 

arms (35 X 10 cm) with 10 cm high walls out of black-painted wood (Reisel et al., 

2002). The mice were held on a diet as described above and were habituated to the T-

maze several days before the testing. Each trial consisted of a sample run and a choice 

run with a 3 - 60 sec interval. On the sample run the mouse was forced to either left or 

right by the presence of a wooden block. A reward of 30 µl sweetened, condensed 

milk was available at the end of the arm in a food well. The block was then removed 

and the choice run was performed, allowing a free choice of either arm. The animal 

was rewarded for choosing the previously blocked arm and unrewarded for the 

previously visited. The intertrial interval was approx. 10-20 min. Each daily session 

(5 sessions in total) consisted of 4 trials in the morning and 4 trials in the afternoon. 

4.4.2. Spatial reference memory (elevated Y-maze) 

We used the elevated Y-maze, consisting of three arms (angle: 120°, arm length: 50 

cm) made of black painted wood, as described (Reisel et al., 2002). Before the 

experiment, mice were put on a diet and held at 85% of the starting weight. Mice were 

accustomed to the Y-maze, and sweetened, condensed milk served as reward. After 

pre-training, mice were trained in the Y-maze. One session per day consisted of 10 

trials with an inter-trail interval of about 10-15 min. The target arm (baited with 

sweetened milk) was fixed in one direction and the mice were put randomly during 

one session five times on the left and five times on the right starting arm. In the first 

two days (sessions 1 and 2) mice were allowed to find the sweetened milk even when 

entering the wrong arm. At day 3-7 (sessions 3-7) mice were removed to their cages 

after entering the un-baited arm. The maze was rotated by 120° randomly between 
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each trial, to prevent usage of olfactory, visual or tactile cues unique to a particular 

arm. 

4.4.3. Assessment of Spatial Memory on the Radial Maze.   

Spatial memory was assessed using a 6 arm radial maze, which was made of wood 

and painted gray (Schmitt et al., 2003). Each arm (60 x 7 cm) was surrounded by a 

1 cm raised edge and extended from a circular central platform (18 cm diameter). At 

the end of each arm was a stainless steel food well. Mice were rewarded with 0.1 ml 

sweetened, condensed milk (diluted 50/50 with water). The maze was elevated 80 cm 

above the floor in a well-lit laboratory (6.3 x 2.7 m) which contained various extra-

maze cues (e.g. laboratory equipment, stools, bench, posters). The central platform 

was surrounded by a transparent Perspex cylinder (18 cm diameter, 30 cm high). At 

the entrance to each arm of the maze was a Perspex door (6 cm wide, 7 cm high) 

which could be controlled by the experimenter using a series of strings. Mice were 

maintained on a restricted feeding schedule at 85% of their free feeding weights. The 

mice were first habituated to drinking sweetened, condensed milk on two arms of an 

elevated Y-maze (Reisel et al., 2002)in their colony holding room (i.e. not the testing 

room). Once all the mice were running freely on the Y-maze and readily consuming 

the milk rewards, testing on the radial arm maze began.  

4.4.3.1. Spatial reference memory acquisition.   

Mice were first trained to discriminate between baited and non-baited arms on a radial 

maze task in which the same 3 out of 6 arms were always baited. The three baited 

arms were allocated such that two of these arms were adjacent and the third was 

between two non-rewarded arms (e.g. arms 1, 2 and 4). Different combinations of 

arms were used as far as possible, although the arm allocations were counterbalanced 

across groups. At the start of a trial, a mouse was placed individually on the central 

platform. Mice were allowed to explore freely and consume all the milk rewards 

available. During this acquisition phase, Perspex doors prevented mice from re-

entering an arm that they had already visited on that trial (Schmitt et al., 2003). All 

the doors were closed each time the mouse returned to the central platform, and 

confined the mouse there for 5 s until the next choice. Once an arm had been visited, 

its door remained closed for subsequent choices. Thus, all 6 doors were open for the 
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first choice, 5 for the second choice, 4 for the third choice, and so on. Using this 

testing procedure it was not possible for the mice to make working memory errors. 

This provides a pure test of SRM acquisition, and is dependent upon the hippocampus 

(Schmitt et al., 2003). SRM errors were defined as entries into arms that were never 

baited (maximum of 3 errors per trial). The maze was rotated periodically to prevent 

the mice from using intra-maze cues to solve the task. Mice received 32 trials in total. 

Data were arranged in 8 blocks of 4 trials for analysis. By this stage all of the animals 

had acquired the SRM component of the task and were making very few, if any, 

errors.  

4.4.3.2. Simultaneous assessment of spatial working and reference memory  

The SWM component of the task was then introduced. The mice received a further 24 

trials (with an inter-choice interval of 5 s) in which the same 3 out of 6 arms were 

baited, but now they were no longer prevented from re-entering a previously chosen 

arm. The doors were solely used to retain the animals on the central platform between 

choices. SWM errors were scored when a mouse entered an arm that had already been 

visited on that trial. SRM errors were scored as before. The effect of increasing the 

retention interval between successive choices was then assessed (Tonkiss & Rawlins, 

1991; Steele & Morris, 1999; Lee & Kesner, 2002). The minimum amount of time 

that the animal spent on the central platform between choices with all doors closed 

was increased from 5 to 15 s and a further 24 trials were conducted.  

4.4.4. Morris watermaze 

Spatial reference memory was also assessed in an open-field water maze (Morris et 

al., 1981; 1984), consisting of a large circular tank (diameter 2.0 m, depth 0.6 m) 

containing water at 25 ± 1°C to a depth of 0.3 m. To escape from the water, the mice 

had to find a hidden platform (diameter 21 cm) submerged approximately 1 cm below 

the waters surface. The water was made opaque by the addition of 2 l of milk, which 

not only prevented the animals from seeing the platform but also allowed efficient 

tracking of swim paths. The pool was located on an elevated platform 60 cm above 

the floor in another new, well lit laboratory containing prominent extra-maze cues. 

Swim paths were monitored by a video camera mounted in the ceiling. The video 

signal was relayed to a video recorder allowing both on- and off-line analysis, and 
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from there to an image analyzer (HVS VP112, HVAS Image, Hampton, UK). The x 

and y coordinates of the animals´ position were sampled in real-time at 10 Hz by an 

Acorn computer, using specialized software that provided measures of latency, swim 

speed and path length during acquisition, and the percentage of time spent in each 

quadrant of the pool during the probe trial. 

Each type of memory error (SRM and SWM) was analyzed separately. The data were 

analyzed in blocks of 4 trials. Where the assumptions of normality and equal variance 

were met, data were analyzed by ANOVA with subsequent analysis of simple main 

effects where appropriate. If the data failed to satisfy these assumptions, 

transformations (square root transform) were applied and ANOVA performed on the 

transformed data set. To make the figures more legible, however, all the data are 

presented as un-transformed means (± SEM.). 

The platform was located at the center of one of the four quadrants of the pool 

(arbitrarily designated NE, NW, SE, SW). The number of mice trained to each 

platform position was counterbalanced with respect to group. Animals had no swim 

pre-training before the start of spatial testing in the water maze. All mice were trained 

to find a hidden escape platform, which remained in a fixed location throughout 

testing. They received 4 trials per day for 9 days with an ITI of approximately 15 s. 

The mice were placed into the pool facing the side wall at one of 8 start locations 

(nominally N, S, E, W, NE, NW, SE and SW; chosen randomly across trials), and 

allowed to swim until they reached the platform, or for a maximum of 90 s. Any 

mouse that failed to find the platform within the allotted time was lifted out of the 

water by experimenter and placed onto the platform. The animal then remained on the 

platform for 30 s before commencing the next trial. 

On the tenth day of testing (24 h after spatial training trial 36), a probe trial was 

conducted to determine the extent to which the mice had learned about the spatial 

location of the platform. The platform was removed from the pool, and the mice were 

allowed to swim freely fro 90 s. The percentage of time that animals spent in each 

quadrant of the maze was recorded. 
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5. Material 

5.1. Mouse lines 

C57Bl/6: Charles River (Basel) 

NMRI:  Charles River (Basel) 

Rosa26R: Soriano et al., 1999 

TgCN12-itTA: R. Sprengel, P.H. Seeburg 

TgLC1:  Schonig et al., 2002 

Gria1loxP: R. Sprengel, P.H. Seeburg 

Gria2loxP: R. Sprengel, P.H. Seeburg 

Grin1loxP: R. Sprengel, P.H. Seeburg 

5.2. Sequences of PCR primer 

htTA1    AGA GCA AAG TCA TCA ACT CTG CC 

htTA2    GTG AGA GCC AGA CTC ACA TTT CA 

rspCre1   ACC AGG TTC GTT CAC TCA TGG  

rspCre2   AGG CTA AGT GCC TTC TCT ACA C  

Lac3’    TTA CCC GTA GGT AGT CAC GCA  

Lac5’    TTA CGA TGC GCC CAT CTA CAC  

MH60   CAC TCA CAG CAA TGA AGC AGG 

3´intro3  CTG CCT GGG TAA AGT GAC TTG G 

VM12    GCG TAA GCC TGT GAA ATA CCT G  

VM10    GTT GTC TAA CAA GTT GTT GAC C  

NR1 Ex18 do1 CTG GGA CTC AGC TGT GCT GG 

NR1 Ex18 up1 AGG GGA GGC AAC ACT GTG GAC 

5.3. Antibodies  

Rabbit polyclonal anti-glutamate receptor 1, AB1504, Chemicon; IHC, 1:200, IB: 

1:2000  

Rabbit polyclonal anti-glutamate Receptor 2, AB1768, Chemicon; IHC: 1:60, IB: 

1:600  
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Rabbit polyclonal anti-NMDA Receptor 1, AB AB1516 Chemicon; IB: 1:100  

Rabbit polyclonal anti-GFAP, Z0334, DAKO; IHC: 1:400  

Rabbit polyclonal anti-Cre (Cre Recombinase), G. Schuetz, DKFZ Heidelberg; IHC: 

1:3000  

Rabbit polyclonal anti-Cre (Cre Recombinase), PRB-106C, BabCo; IHC: 1:8000  

Rabbit polyclonal anti-p38, Abcam, IB: 1:2000 

Mouse monoclonal anti-NeuN (Neuronal Nuclei), MAB377, Chemicon; IHC: 1:1000  

Mouse monoclonal anti-β-Actin, Clone AC-15, A5441, Sigma; IB: 1:80000  

Mouse monoclonal anti-Parvalbumin, P 3088, Sigma; IHC: 1:1000  

Rat monoclonal anti-BrdU, OBT 0030, Acurate; IHC: 1:400  

Peroxidase-conjugated goat anti-rabbit IgG (H+L), PI-1000, Vector  

Peroxidase-conjugated horse anti-mouse IgG (H+L), PI-2000, Vector  

Biotinylated goat anti-mouse IgG (H+L), BA-9200, Vector  

Biotinylated goat anti-rabbit IgG (H+L), BA-1000, Vector  

Biotinylated rabbit anti-rat (H+L), BA-4001, Vector  

TexasRed dye-conjugated goat anti-mouse IgG (H+L), 115-075-146, Dianova  

TexasRed dye-conjugated goat anti-rabbit IgG (H+L), 111-075-144, Dianova  

Fitc dye-conjugated goat anti-mouse IgG (H+L), 115-095-146, Dianova  

Fitc dye-conjugated goat anti-rabbit IgG (H+L), 111-095-144, Dianova  

TexasRed dye-conjugated avidin, A-1100, Vector  

Fitc dye-conjugated avidin, A-1100, Vector 
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6. Abbreviations 

6.1. General 

α  alpha 

β  beta 

Δ  delta 

µ  micro 

AMPA  L-α-amino-3-hydroxy-5-methyl-4-isoxalepropionic acid 

AP  action potential 

AP5  2-Amino-5-phosphonopentanoic acid 

ATP   adenosin-tri-phophat 

BrdU  Bromodeoxyuridine 

C  Celsius 

Ca2+  calcium ion 

CAMKII Ca2+/calmodulin-depdendent protein kinase II 

cKO  conditional gene knock-out 

Cl-  chlorid ion 

CNS  central nervous system 

DCX  doublecortin 

et al.   et alii 

Fig.  Figure 

gal  galactosidase 

GFAP  glial fibrillary acidic protein 

GFP  green fluorescent protein 

GluR  glutamate receptor 

HEPES N-(2-hydroxyethyl)piperazine-N´-ethansulfonic acid 

Hz  Hertz 

I  current intensity 

i.e.  id est 

k  kilo 

K+  kalium ion 

kb  kilo bases 
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l  liter 

loxP  locus of crossover in P1 phage, Cre recombinase recognition sites 

LTD  long-term depression 

LTP  long-term potentiation 

n  nano, number (of experiments or mice) 

Na+  sodium ion 

m  meter, milli or miniature 

ms  millisecond 

mV  millivolt 

NGS  normal goat serum 

NMDA N-methyl-D-aspartate 

P  postnatal day 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 

Ph.D.  philosophiae doctor, Doctor of Philosophy 

PSD  postsynaptic density 

Ptet-Bi  bidirectional Tet promoter 

rAAV  recombinant Adeno-Associated Virus 

s  second 

SEM  standard error of the mean 

t  time 

Tet  tetracycline 

Tg  transgenic line 

Tris  Tris-(hydroxymethyl)-aminomethan 

tTA  tetracycline dependent transactivator 

V  volt 

vs.  versus 

Xgal  5-bromo-4-chloro-3-indolyl-β-D-galactoside 

6.2. Brain structures 

ACo  anterior cortical amygdaloid nucleus 

Amy  amygdala 
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AOB   accessory olfactory bulb 

AOC  anterior olfactory cortex 

AOD  anterior olfactory nucleus, dorsal part 

AOE  anterior olfactory nucleus, external part 

AON  anterior olfactory nucleus 

AOM  anterior olfactory nucleus, medial part 

APir  amygdalopiriform transition zone 

AuD  secondary auditory cortex 

BLA  basolateral amygdala 

CA  Cornu Ammonis or Ammon´s horn 

CPu  caudate putamen 

CxA  cortex-amygdala transition zone 

DG  dentate gyrus 

DP  dorsal peduncular cortex 

DTT  dorsal tenia tecta 

ff  fimbria-fornix 

FrA  frontal association cortex 

ICj  islands of Calleja 

IG  indusium griseum, also termed as “hippocampal attenuation” 

LEnt  lateral entorhinal cortex 

M1, M2 primary, secondary motor cortex 

MEnt  medial entorhinal cortex 

MOC  medial olfactory cortex 

mf  DG mossy fibers 

ml  DG molecular layer 

OB  olfactory bulb 

PC  piriform cortex 

pcl  pyramidal cell layer 

POC   primary olfactory cortex 

PaS  parasubiculum 

PrS  presubiculum 

S  subiculum 

S1, S2  primary, secondary somatosensory cortex 

SEL  subendymal layer of the main olfactory bulb 
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SNL   substantia nigra 

so  stratum oriens 

sr  stratum radiatum 

SVZ  subventricular zone 

Tu  olfactory tubercle 

VP  ventral pallidum 

VTT  ventral tenia tecta 
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