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Zusammenfassung

Diese Arbeit untersucht mittels mesoskopischer Simulationsmethoden das dy-
namische Verhalten von Makromolekilen in lebenden Zellen. Im Fokus ste-
hen die groBen Molekiilklassen der integralen Membranproteine und der flexiblen
Biopolymere. Im ersten Teil dieser Arbeit wird untersucht welche Auswirkungen
ein ‘hydrophober Mismatch’ (HM) mit der umgebenden Membran auf die Dy-
namik und das kollekive Verhalten integraler Membranproteine besitzt. Dieser
geometrische Defekt fiihrt zur Anziehung zwischen Proteinen mit gleichem HM
und kann zur vollstandigen Separation von Proteinen mit unterschiedlichem HM
fuhren. Basierend auf diesen Ergebnissen schlagen wir ein Model vor wie Mem-
branproteine in lebenden Zellen verteilt werden. Weiterhin wird untersucht, ob
und inwieweit Clustering von Membranproteinen deren Diffusionseigenschaften
beeinflusst. Im zweiten Teil wenden wir uns der Bewegung eines flexiblen Poly-
mers durch eine enge Pore zu. Wir untersuchen, wie sich das Translokationsver-
halten des Polymers andert, wenn die Qualitat des Losungsmittels auf beiden
oder nur auf einer Seite der Pore verschlechtert wird. Uberraschenderweise vari-
iert das Translokationsverhalten im ersten Fall nicht, wohingegen im zweiten Fall
eine Beschleunigung der Bewegung durch die Pore beobachtet wird.

Abstract

This work uses mesoscopic simulation techniques to study the dynamical be-
haviour of macromolecules in living cells. Emphasis is put on the large molecule
classes of integral membrane proteins and flexible biopolymers. In the first part,
the influence of a ‘hydrophobic mismatch’ (HM) with the surrounding membrane
on the dynamics and on the collective behaviour of integral membrane proteins
is analysed. This geometrical defect creates an attraction between proteins with
like HM, and is able to segregate proteins with different HM. Based on these
results, we propose a model of how sorting of membrane proteins occurs in living
cells. Furtermore, we study whether and to which extent the clustering of mem-
brane proteins alters their diffusional character. In the second part, we address
the translocation of a flexible polymer through a narrow pore. We analyse how
the translocation behaviour is altered if the solvent quality is decreased either
on both sides or only on one side of the pore. Surprisingly, the translocation
behaviour does not change in the first case while an accelerated translocation is
observed in the second case.






The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
‘Eureka!” (I found it!) but ‘That's funny ...’

Isaac Asimov






Contents

Introduction

Prerequisites

Membranes, Polymers & Proteins

2.1 Membranes . . . . . ... ... ...
22 Polymers . . . .. ... ... ..
2.3 Proteins . ... ...

Membrane Simulations

3.1 Dissipative particle dynamics . . . . .
3.2 DPD membranes . . . . . .. .. ..

Results

Hydrophobic mismatching

4.1 Introduction to hydrophobic mismatching
4.2 Protein clustering . . . . .. .. ..
4.3 Protein segregation . . . . . .. ..

4.4  Hydrophobic mismatching as a lipid environment sensor . . . . .
4.5 Protein sorting by hydrophobic mismatching . . . . . . . . ...

Diffusion of oligomers

5.1 Diffusion in a nutshell . . . . . . ..
5.2 Dynamics of oligomers . . . . . . ..

Polymer Translocation

6.1 Basicsetup. .. ... ... .. ...
6.2 Static polymer properties . . . . ..
6.3 Translocating polymers . . . . . ..

15
20

27
27
36



CONTENTS

7 Summary & Outlook 111
111 Appendix 115
A Integration schemes 117
A.1 Integrating the NpT ensemble . . . . . . .. ... .. ... ... 117
B List of DPD parameters 119
B.1 Parameters for the NVT and NpT ensemble . . . . .. ... .. 119
B.2 Conversion to Slunits . . . . . ... ... ... ... 120
Bibliography 121

Acknowledgement

List of publications



Chapter 1

Introduction

Complex systems represent a vast research area in the natural sciences especially
in physics. We refer here to a complex system as an ensemble of interconnected
and interacting components whose collective behaviour is not obvious from the
properties of the isolated components. The character of the system as a whole
thus reflects the interplay between the individual components and collective phe-
nomena are appreciated. The interaction between the single parts are governed
by fundamental laws of physics and can thus be described by the universal lan-
guage of mathematics.

A prime example for complex systems are cells of living organisms. An accu-
rate characterization of generic phenomena common to all cells requires the
application of concepts from classical and statistical mechanics, elasticity theory,
hydrodynamics and, in parts, electrodynamics. Going to atomistic details, e.g.
concerning protein folding, even quantum mechanical principles have to be taken
into account.

Classical mechanics and elasticity theory are used to describe mechanical prop-
erties of the cell and its individual parts like the cell membrane or intracellular
biopolymers. For example, such properties can be a bending rigidity or a com-
pression modulus (Boal02). A correct hydrodynamic treatment allows to inves-
tigate the motion of molecules in a cell's interior as well as in the various (two-
dimensional) cellular membranes that can both be interpreted as complex fluids.
A prominent example here is the diffusion of membrane inclusions (Saffman75).
Statistical mechanics is appropriate to investigate membranes, a huge structural
class of intracellular surfaces and interfaces consisting of a vast number of lipid
molecules (Safran03). Electrodynamics is appropriate to calculate the membrane
potential which is a key factor in signal transduction in nerve cells (Hancock05).
Finally, the accurate exploring and understanding of chemical reactions that occur
permanently in living cells ultimately has to be addressed in a thorough quantum
mechanical framework.
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Figure 1.1: Schematic drawing of a typical eukaryotic cell.

Since living cells can be regarded as open thermodynamic systems, approaches of
statistical thermodynamics play a particular role in describing their behaviour and
their evolution. Concepts connected with entropy, free energy and the chemical
potential are useful tools to investigate single cells and sub-systems contained
therein. Moreover, methods from non-equilibrium thermodynamics are also nec-
essary to investigate living cells.

In the past years, the strategy to address biological questions with the help of
physics and mathematics has proven to be very successful. For instance, the
emergence of various shapes of red blood cells could be successfully explained
by a single-parameter model of the underlying membrane mechanics (Lim02).
Another example covers the dynamical growth and shrinkage of microtubules,
intracellular filaments, via a stochastic model (Mitchinson84; Flyvbjerg94). Re-
cently, the motility of intracellular pathogens by actin filaments was also investi-
gated (Cossart04; Shenoy07). Accompanied with recent developments in optical
devices and the ever-growing capability of computational resources, tremendous
progress has been achieved in understanding complex living systems. In addition,
mathematical modeling and simulations contributed in large parts to recent de-
velopments in biophysical research. Following these lines, this work is intended to
elucidate the dynamics of intracellular macromolecules by using computer simu-
lations. Before we are going to discuss these results in detail, we would like to
recapitulate basic knowledge about cells and to provide a biological motivation.
As pointed out before, cells are the structural and functional units of all living



organisms. An organism is classified as living if several conditions are fulfilled.
These include the existence of a regulated metabolism, the ability to grow and to
respond to stimuli. Furthermore, the organism should be able to reproduce and to
adapt to its environment. All these demands are met by cells, it is thus no surprise
that cells are also termed the basic building blocks of life (Alberts02; Lodish04;
Schrodingerd4). The word ‘cell’ originates from the Latin cellula meaning a
small room. The English scientist Robert Hooke * coined this term since the tiny
compartments in cork he saw under his microscope reminded him of the small
rooms monks lived in (Hooke65).

In general, one can distinguish between two kinds of cells: prokaryotes and eu-
karyotes. Prokaryotes possess less intracellular organization than eukaryotes,
for example no specialized compartments. The most striking difference is the
absence of a nucleus. In this compartment, eukaryotes store their genetic infor-
mation in form of deoxyribonucleic acid (DNA).

In contrast to the very tidy and spartan appearance of cloistral rooms, typical
eukaryotic cells are very dense and crammed. Their interior is filled with a visco-
elastic medium (Guigas07), the cytoplasm. This medium represents a crowded
solution of water, the universal biological solvent, and a plethora of different
chemical molecules. Their individual sizes range from single hydrogen atoms
via small lipid molecules to complex polypeptides (proteins) and up to giant
macromolecules like the ribosome, the manufacturer of proteins.

A cell's structure is largely determined and supported by an internal scaffold, the
cytoskeleton. It is created by various types of filaments which span the whole
cell interior. These highly dynamic entities enable the cell to move or to change
its size and shape. Some of these filaments serve as narrow tracks for directed
transport of intracellular cargo by small motor proteins. These motors act as
towing vehicles pulling spherical transport containers along these tracks.

In eukaryotes, the intracellular anatomy is supplemented by numerous indepen-
dent compartments. Vital processes are distributed among these highly developed
organelles giving each organelle its own particular function. Some important rep-
resentatives of this family are the nucleus where the genetic code is stored, the
mitochondria representing the power plants of the cell or the lysosomes providing
efficient cleaning and waste disposal.

In addition to these sharply defined intracellular compartments, the cell has a
further organelle that is distributed throughout the whole cell. It is called the
endoplasmic reticulum (ER) and forms an interconnected network of tubules,
vesicles and cisternae. It is mainly involved in metabolic and synthesizing pro-
cesses.

The cell and its internal organelles are separated from their environment by mem-

Tmainly known from Hooke's law of elasticity
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branes, thin and flexible envelopes, typically a few nanometers thick. They are
organized as two opposing leaflets each consisting of individual lipid molecules.
Lipids are extraordinary molecules, one remarkable property of which being their
amphiphilic nature. That means lipids possess both a hydrophilic and a hy-
drophobic part. Owing to this intrinsic characteristic, lipids have the ability to
self-assemble into sheet-like structures (Boal02).

During the last decade, a growing interest in lipids has emerged culminating in
the creation of the term lipidomics (Mouritsen05). In the advent of membrane
science, membranes were thought to be passive envelopes only representing a
boundary layer (Gorter25) with a mere protective function. Although the in-
dividual lipids in the two membrane leaflets were seen as very dynamic, the
membrane as a whole did not achieve the status of an active entity.

The formulation of the fluid-mosaic membrane model by Singer & Nicholson in
1972 (Singer72), turned this inert picture of membranes into a biologically and
chemically active one. The crucial ingredient in this model are proteins being
either associated with or integrated into the membrane. The latter class of pro-
teins are consequently termed (trans-)membrane or integral proteins. Because of
the great abundance of membrane-associated proteins (nearly half of all proteins
interact with membranes and two thirds of these are transmembrane proteins),
they represent an important functional class.

Transmembrane proteins possess a hydrophobic core, the transmembrane domain
(TMD), capped on either end by a hydrophilic portion. To place such proteins
into a lipid bilayer, the cell has developed sophisticated processes that are car-
ried out either during or after protein synthesis. Due to their spatial location,
they establish a connection between topologically distinct spaces. According to
this property, these proteins often serve as transporters, channels, receptors or
enzymes (Rapoport07; Wikstrom98; Pawson97). Apart from that, membrane
proteins can also be involved in creating structural changes of their host bilayer
(Wallace90; lllya08; Reynwar07).

Despite their role in active processes as described above, membranes also serve as
protective barriers against noxious intruders. Among these pathogens are on the
one hand autonomous organisms like bacteria, fungi and eukaryotic parasites.
All these microbes perform most of their metabolic functions themselves, the
occupied host only serves as a nutrient source.

On the other hand, there are viruses that (ab-)use the host cell and its inter-
nal machinery for their own replication and proliferation. In contrast to other
pathogens, viruses are not considered as living since they lack essential features
connected with living organisms, e.g. a regulated metabolism. Although there
is a wide variety of different kinds of viruses, they share a common construction:
a piece of genetic information, DNA or RNA, is wrapped by a protective shell of
proteins (Crick56). This so-called virion may additionally be enclosed by a lipid
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membrane that facilitates the entry into potential host cells.

Upon entry, the virus starts to ensconce itself in the cell interior and to exploit the
cell's machinery for its own needs. The timetable for successful viral replication
and proliferation includes i) replication of the viral genome, ii) synthesis of viral
proteins, iii) re-assembly into progeny virions and iv) egress and spreading to
neighboring cells. The viral replication rate is remarkable, a single virion can be
the source of more than 1000 new viral genome-protein particles.

Manipulation of the host cell begins shortly after the virus has entered the cell.
Being inside, the virus has to find an appropriate niche where its lethal cargo can
be replicated without being disturbed by the cell's cleaning machinery. To this
end, the intracellular trafficking systems is exploited, delivering the viral genome
to its preferred site of replication (Sodeik00). Viral particles of Hepatitis C, for
example, establish replication cavities at the endoplasmic reticulum (Appel06;
MoradpourQ7).

Newly replicated viral DNA/RNA is then transformed into viral proteins via the
host's transcription and translation machinery. As a consequence, the synthesis of
host-cell macromolecules can be severely disturbed and even completely inhibited
(K&aridinen84). Assembly of progeny virion occurs at various sites inside the cell,
be it near the endoplasmic reticulum or at the plasma membrane (Stephens88).
To get exported from the host cell and to spread the viral genome throughout
the host organism, the internal trafficking system is again abused. Vesicular
trafficking pathways can be redirected (Hackstadt00) to successfully leaving the
host cell. In some cases virion replication is extremely high resulting in cell
lysis, i.e. the cell breaks open and the present virions have direct access to the
extracellular space.

In this work, we address dynamical aspects of intracellular macromolecules at
the level of the endoplasmic reticulum connected to viral replication. The study
of intracellular processes usually involves elaborate light microscopy approaches,
e.g. confocal or TIRF (total internal reflection) microscopy. However, their
resolution is diffraction-limited and even more sophisticated techniques like STED
(stimulated emission depletion (Hell94)) are not capable to resolve structures
smaller than approximately 20nm. To overcome this barrier, we use extensive
computer simulations that are able to elucidate dynamics of single molecules
inside the cell.

The computer simulations used throughout this work operate on a mesoscopic,
i.e. coarse-grained, level. Main advantages of this approach are the access
to longer time and larger length scales as compared to atomistic simulation
techniques. Neglecting details on the Angstrom scale has another positive side
effect: our simulational results can readily be interpreted in a more universal
framework. They are not restricted to virus-host systems but rather describe
generic physical mechanisms that are common to all cells.



Introduction

The present work can roughly be divided into two parts. The first part focuses on
the dynamics of integral membrane proteins that possess a so-called hydrophobic
mismatch (HM) with the surrounding lipid bilayer. That means, they are either
too long or too short to fit perfectly into the lipid bilayer. We analyze how
this geometrical defect can influence the motion and the behaviour of membrane
inclusions. Based on these results, we propose a model of how transmembrane
proteins may organize their spatial distribution in living cells. The latter repre-
sents a crucial task for endogenous as well as for viral proteins.

The second part investigates a prevalent event in biological systems, that is
the translocation of a linear polymer through a narrow pore. Prominent ex-
amples are DNA/RNA translocation through nuclear pores (Kohler07) or the
escape of viral RNA from replication cavities as observed during Hepatitis C
virus replication(Moradpour07). Here, we aim at elucidating the physics of the
translocation process when different solvents are present on each side of the pore.
The next chapter will give an introduction to membranes, polymers and basic
biological concepts. We present how membranes can be treated mathematically
and discuss their mechanical properties. Next, we explore the nature of polymers
and introduce two models that are used to address problems in polymer physics.
To complement this introductory chapter, we give a brief introduction to protein
synthesis and how these macromolecules are distributed throughout the cell.
Chapter 3 contains a detailed introduction to our preferred simulation technique
which is called dissipative particle dynamics (DPD). We summarize basic princi-
ples of this particle-based simulation method, discuss assets and drawbacks and
show its application to biological systems. Numerical integration procedures of
our simulations are provided in the appendix.

After these preliminary sections we discuss in Chapter 4 the influence of hy-
drophobic mismatching on the dynamics of integral membrane proteins. We
derive that hydrophobic mismatching can facilitate aggregation and segregation
of membrane proteins and acts as a guide towards membrane regions where the
HM is minimized. We propose a simple HM-based model for protein sorting
along the secretory pathway.

Chapter 5 can be seen as a direct application of HM-induced protein clustering
presented in the preceding chapter. We here discuss whether and to which extent
oligomerization of transmembrane proteins alters the diffusional properties of the
involved individual proteins as experimentally observed.

Driven polymer translocation through a nanopore is discussed in Chapter 6. As
pointed out before, we here solely focus on effects arising from different solvent
qualities on each side of the nanopore.

In the last chapter, we briefly review our results and conclude with an outlook
on possible future research.
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Chapter 2

Membranes, Polymers & Proteins

This chapter will give an introduction to mathematical descriptions of membranes
and polymers. In the first part, the focus is on fluid membranes and the physical
principles governing their behaviour. In the second part, emphasis is put on
a short but thorough description of polymers. The chapter is completed with a
short section on the synthesis and the intracellular distribution of transmembrane
proteins.

2.1 Membranes

In biological systems, membranes are the most abundant and also the most im-
portant structures. Without membranes, cells would not have a defined boundary
and their agglomeration into more complex organisms would fail. In this section,
we review how biological membranes are constructed, describe their mechanical
properties, and give a description on how to treat membranes mathematically.

2.1.1 Self-assembly of lipid bilayers

Biological membranes are made of lipids, amphiphilic molecules with a hydrophilic
head and a hydrophobic tail region (Figure 2.1). The hydrophilic head group
consists of a polar molecule that is covalently linked to one or two non-polar
hydrocarbon chain(s). Lipids possess the remarkable property that, when being
exposed to an aqueous environment, they start to self-assemble into higher-
order structures. This process is driven by the aversion of the hydrophobic parts
to contact with water (Boal02). Depending on concentration, shape and other
factors like temperature, lipids are able to form a variety of structures from simple
micelles and flat lipid bilayers to winding sponge-like structures.

If the lipid head and tail group have a similar cross-sectional area, i.e. if the lipid



Membranes, Polymers & Proteins

glycerol backbone

/\/\/\/\/\ 0
¢ ey

;2

fatty acids |Cl i
i CH
O—C —H 3
T Lo N
H5C 3
0 "~ )0 \c/ \
0 Hy CH3
phosphate choline

Figure 2.1: A typical glycerophospholipid, here phosphatidylcholine,
consists of a polar head group (here choline) that is linked via a phosphate
group (red) to a glycerol backbone (black). Attached to the latter are
strongly hydrophobic fatty acid chains (blue).

can be approximately represented by a cylinder, the result of the self-assembly
process is a lipid bilayer. A bilayer is made of two opposing leaflets consisting of
lipids with the head groups facing the water and the tail group being buried in the
bilayer interior, cf. Figure 2.2. Lipids in the individual leaflets of the bilayer are
restricted to lateral diffusion in the corresponding leaflet. The case that single
lipids do a flip-flop into the opposing leaflet is extremely rare. At first guess,
one might assume the self-assembly process being of energetic origin. However,
a more detailed analysis shows that this process is in fact entropy driven.
Suppose a single blob of lipids as a reference state with zero free energy and
no interaction between the lipid molecules in the blob. The removal of a single
molecule from the blob into the solvent is accompanied by an energy penalty
Epen. This energy cost is simply the product of the lateral surface area of a
molecule and the surface tension between water and the molecule's hydrophobic
region yielding (Boal02)

E,

p

en = 2Ry (2.1)

Here, R is the radius and ¢ the length of the cylindrical amphiphile, and + denotes
the surface tension; the contributions from the caps of the cylinder have been
omitted.

We furthermore assume the solution of molecules to be dilute so that the dissolved
amphiphiles can be regarded as an ideal gas. The entropy per molecule, Sgs, of
an ideal gas with density p is given by

5 h
Seas = kg |= —1In(p- )3 ith A= —— 2.2
wta 30N VrmkaT 2

where X is the thermal de Broglie wavelength. It is now straightforward to
calculate at which density a cross-over between the condensed and the dissolved

10



N\

hydrophilic

..
g

Figure 2.2: Schematic representation of a lipid bilayer consisting of
cylindrical lipid molecules. The hydrophilic head groups shield the
hydrophobic core from the surrounding solvent.

phase occurs. Equating the expressions for Epe, and Sg,s and solving for p yields
directly the density p* at which aggregation starts to dominate

pt=CA 3. e FrnlkeT (2.3)

This result is reasonable since it predicts that the critical density decreases as
the energy penalty increases.

2.1.2 Mathematical description of membranes

To characterize lipid membranes, one usually describes them as a thin, elastic sur-
faces (two-dimensional manifolds) that are described by using tools of differential
geometry. To be more specific, a membrane is interpreted as a two-dimensional
surface embedded in three-dimensional space. This is of course a simplification
since the surface is assumed to be infinitely thin, which is not true for real mem-
branes. However, results originating from this simple model extremely well agree
with experimental observations.

The general formula for a two-dimensional hyperplane S is given by

f(r)
S(r)= | A(r) (2.4)
fi(r)

The analytical treatment of a surface is coupled to the choice of coordinates
and representation. One possible approach is to use a set of basis vectors that
are embedded in the surface itself. This is similar to describe a one-dimensional
trajectory by its arc length s.

A simple and common way to describe membranes is to use Cartesian coordinates.
That means, the membrane is characterized as a height field h over the underlying

11
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xy plane. Consequently, the surface S is represented by

S = (x,y, h(x,y)) (2.5)

In general, h(x,y) can adopt multiple values at a given point in the xy plane.
That means, the surface can posses an overhang at this point. A common way
to resolve this obstacle is to interpret the surface in the so-called Monge repre-
sentation: h(x, y) is restricted to be single-valued at every point thus preventing
overlap regions.

Based on Equation 2.5, it is now straightforward to determine basic entities like
tangential (t) and normal (n) vectors in a given point p of the surface S

t, = 0.5 = (1,0, 9, h) (2.6)
t, = 9,5 = (0,1,0,h) 2.7)
S XY (Cah—0,h1)/E (2.8)

n=— ——=
te X t,|

Here, the factor g is the metric of the surface. The metric of a surface describes
how to measure distances and angles on the surface. In the present case, g is
given by

g =14 (8.h)* + (9,h)° (2.9)

The local shape of the surface in every point p is characterized by two principal
curvatures, k1 and k,. They can be determined by constructing the osculating
circles with minimal and maximal radius in point p. Two important quanti-
ties derived from x; and x, are the mean and Gaussian curvature, H and K,
respectively.

1

H= (k1 + 1) [ L

length

(2.10)

> } and K =K1 Ko [

1
lengthQ}
They are very important entities when the energy functional governing the dy-
namics of the membrane is considered. We address this point later. The as-
sumption of small curvatures further simplifies the expressions for the mean and
Gaussian curvature (Schwarz09)

1
Dbl <1 = H=_(Gh+8h) K =&h-92h— (82,h)° (2.11)

The Monge gauge allows to establish results applicable at long length scales
that do not exceed the persistence length &, of the surface. The latter quantity
is a measure for the distance over which the surface’s normal vectors become
decorrelated. According to (Peliti85), the persistence length of a surface is given
by

Ep = b - exp(4nkp/3kp T)

12
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Figure 2.3: Three fundamental kinds of elastic deformations: shearing,
compressing and bending.

with b being an intrinsic length scale of the surface and k, the corresponding
bending rigidity of the surface. Setting b ~ 1nm and k;, ~ 10kg T, one obtains
¢, ~ 10%°%m. This astronomical length does not imply that membranes are
planar, they rather undulate smoothly on cellular length scales.

2.1.3 Mechanical properties of membranes

Belonging to the class of soft condensed matter, membranes are subject to dif-
ferent kinds of deformations. According to elasticity theory, there are three fun-
damental deformations that can be applied to thin films like membranes, namely
in-plane shear, in-plane compression and out-of-plane bending. Sketches of these
are depicted in Figure 2.3. How and at which expense do these deformations
change the conformation of a lipid bilayer?

Broadly speaking, a lipid bilayer can exist in a fluid or solid (also ‘gel’) phase
depending on temperature. In the fluid phase, lipids are able to diffuse freely
within their membrane leaflet while in the gel-like phase their motility is extremely
restricted. Thus, a shear stress applied to a lipid bilayer in the fluid phase has
only a marginal effect on its conformation.

Regarding in-plane compression, one has to distinguish between different tension
regimes. At zero tension, thermal membrane fluctuations are conserved while
applying a small tension leads to a flattening of the membrane, i.e. fluctuations
are suppressed. Increasing the tension further results in a stretching of the mem-
brane area that becomes more and more expensive in terms of energy. Thus, a
moderate lateral tension does not change the membrane conformation in terms
of average area per lipid.

The last deformation mode, out-of-plane bending, is the most important one.

13
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Since the bending modulus (k) of a lipid bilayer is of the order of 10kg T, it is
relatively easy to curve a membrane. In the following, we restrict our discussion to
fluid and incompressible bilayers, i.e. only elastic bending deformations contribute
to structural changes of the bilayer.

The Helfrich Hamiltonian

The simplest expression for the energy density of elastic bending deformations

involves the mean and Gaussian curvatures. The corresponding Hamiltonian Hy
coined by Helfrich (Helfrich73) reads

My = /,4 [% 2H — G)* + /fGK] dA (2.12)

The parameters x;, and k¢ within this formula are the bending rigidity and
the Gaussian bending rigidity, respectively. Furthermore, G, is the spontaneous
curvature, i.e. the curvature a membrane would adopt in equilibrium. A non-zero
spontaneous curvature can be due to, for example, a different lipid composition
of the two opposing leaflets. For our purposes, we set Cy equal to zero. One
property of the Gaussian curvature facilitates this bending-energetical treatment.
Due to the Gauss-Bonnet theorem (Weisstein09), the integral over the surface
involving the Gaussian curvature remains unchanged as long as the topology of
the surface is fixed, which is definitely the case for flat biological membranes.
Here, we have to remark that vesiculation processes alter the topology of the
membrane requiring now the incorporation of the Gaussian curvature term.

Membrane undulations

For the following consideration, we investigate a membrane to which a tension
7 is applied. Its energy E is then given by

E:T/dA+2/fb/H2dA (2.13)

where we assume that the topology of the membrane does not change and hence
the contribution of the Gaussian curvature term vanishes. Inserting the expression
for the mean curvature derived in the Monge gauge (cf. Equation 2.11), applying
the Fourier representation (q space) of the height function h(x, y) and subsequent
integration yields

1 .A?

E=537 | (7a +rsq") h(a)h*(a)dq (2.14)
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To find the thermal expectation value (h(q) - h*(q)) one uses the equipartition
theorem. Equation 2.14 can be regarded as a generalization of the harmonic
oscillator. Assigning each mode in q space an average energy of kg T /2 directly
results in

ks T 1
h(q) - h*(q)) = .
(h(q) - h*(a)) A TR e

(2.15)

demonstrating that the thermal average in Fourier space increases with temper-
ature. In the thermodynamic limit, i.e. fluctuations of infinitely large, nearly flat
membranes, surface tension effects can be neglected since the applied tension
has no effect on the lateral size. Thus, one can set 7 = 0 which further simplifies
Equation 2.15.

2.2 Polymers

Aside from membranes, polymers make up the second broad category of structural
components of cells. We concentrate here on linear polymers constructed from
individual monomeric units that may not be identical. The aim of this section
is to introduce basic concepts in polymer physics. We first summarize static
properties for ideal and real polymer chains. A short overview of dynamical
aspects completes the section.

2.2.1 Static properties of polymers

We now derive static properties of ideal polymers. Our calculations in this section
are based on the freely-jointed chain model which is the simplest model to de-
scribe a polymer. Here, a polymer is regarded as a random walk and interactions
among individual monomers are neglected. In addition, the individual monomers
are considered point-like, i.e. steric effects are not taken into account. Despite
its simplicity, it is a useful tool to gain insight into polymer physics.

Ideal polymer chains

Consider a flexible polymer consisting of N + 1 monomers. A conformation can
be identified by the set of N + 1 position vectors R; (i = 0, .., N), or by the
set of bond vectors r; = R; — R;_; (i = 1,.., N). The latter set represents an
ensemble of independent connection vectors.
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The end-to-end vector A first entity related to the size of a polymer is its
end-to-end vector R, that is defined as

N
Re =) ri=Ry—Rg (2.16)
i=1

Since there is no preferred direction, the average value of the end-to-end vector
vanishes: (Rg) = 0. The simplest non-zero average is the mean-square end-to-
end vector

N
2

(RL) =) "> (ri-r) (2.17)
i=1 j=1

Assuming all bond vectors having the same length b, the last formula can be
expressed as

N N
(RZ) = b>> ) (cos(b)) = N - b° (2.18)
i=1 j=1
where we take into account that directions between different bond vectors are
uncorrelated. The last equation reveals that the mean-square end-to-end vector
is directly proportional to the number of monomer bonds: (R2,) oc N. Although
we used a very simple model to derive this relation, the dependence of R, on N
is very general (Doi01).
To conclude this paragraph, we provide an expression for the distribution of end-
to-end vectors. The projection of the configuration of a polymer chain onto
the individual coordinate axes reduces the initial problem to determine separate
one-dimensional distributions. For example the x-component of the end-to-end
vector is just the sum of the individual monomer vectors projected onto the x-axis

Xee =) _X; (2.19)

Since the single components X; are independent of each other, the projections
form a random walk in one dimension. If the number of segments is large, one
can apply the central limit theorem that states that the corresponding length
distribution has to adopt a Gaussian form. Following this approach in every
other direction and combination of the individual results yields the distribution
of end-to-end vectors that is also Gaussian

3
30\: 3R2,
P(Reer N) = (27‘(‘Nb2) exp (sz) (220)

However, this well-known formula exhibits a small taint which is the occurrence
of values of |Re.| being larger than the maximal extended length N - b. A more
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realistic model is available in the literature (Flory69). The above mentioned
similarity between polymer chains and random walks is applied frequently to
illustrate the behaviour of polymers and to solve problems in polymer science.

The radius of gyration The mean-square end-to-end vector is a suitable mea-
sure for the size of a linear polymer. Unfortunately, branched or ring polymers
can not appropriately be described by this quantity. A more convenient quantity
is the radius of gyration Ry that measures the dimension of the polymer relative
to its center of mass. It is given by

N N
1 2 : 1
R2 = 5 > (Ri — Rew) with  Raw = 5 > R (2.21)
i=1 Jj=1

where we assume in the second term all monomers having the same mass. As
before, the square radius of gyration is usually averaged over the ensemble of
allowed conformations resulting in the mean-square radius of gyration

N N
1 2

(RZ) = 2 > D R =R (2.22)

i=1 j=1
Equation 2.22 was obtained by merging the two expressions given in Equation

2.21 and subsequent rearrangement.
For a linear, ideal polymer chain, the square radius of gyration can be easily
calculated. The discrete sums are converted into integrals over the contour of
the polymer. After a few lines of calculation one arrives at the following expression
for (R?) 2 2
b*N R

R2) = — = —= 2.23
(RY) = —= = = (223)
Thus, the mean-square radius of gyration of an ideal, linear polymer obeys the
same scaling behaviour as its mean-square end-to-end vector (R2.). The cal-
culation of <R§> for other polymer shapes, e.g. branched or rod polymers, can

be done accordingly. Rubinstein et al. give results for these polymer types
(Rubinstein06).

Real polymer chains

In the last section, conformations of ideal chains were discussed. We now take
into account interactions between monomers that are separated by many bond
lengths along the polymer chain. In particular, we discuss alterations in the
statistical properties if steric interactions are considered, i.e. the polymer consists
of monomers with a finite lateral dimension. To keep things simple we restrict
our analysis to spherical monomers.
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Table 2.1: The scaling exponent v

solvent  good 0 poor  connected to the polymer size R varies
with solvent quality. A decreasing solvent
v 0.588 1/2 1/3 quality yields the reduction of the scaling

exponent from v ~ 3/5 tov = 1/3.

Excluded volume effect One key result of the last section was that an ideal
polymer can be interpreted as a random walk, i.e. every polymer segment is
independent from all others. However, prohibiting a pair of monomers to occupy
the same spatial location directly leads to correlations between the monomers.
Following this line, a real polymer chain can consequently be characterized as a
self-avoiding random walk, i.e. a random walk that does not visit the same point
more than once.

A detailed analysis of real polymer chains was carried out by Flory (Flory49).
Flory calculated configurations of real polymers based on the idea that their size
is governed by two competing interactions. On the one hand, steric repulsion is
responsible for polymer swelling. On the other hand, chain connectivity creates an
attraction counteracting monomer departure. Flory combined both interactions
and derived a single parameter, v, which summarizes the net interaction between
monomers. According to (Rubinstein06), v also characterizes the quality of
solvent the polymer is floating in: athermal, good, @, poor and non-solvent.

An important result from Flory's theory for a polymer in good solvent is that it
yields an universal power-law dependence of polymer size R on the number of
monomers N, i.e.

3

T 2+4d

In contrast to ideal chains, the scaling behaviour of the polymer size now ex-
hibits a dependence on the dimension of space d in which the polymer resides.
Compared to ideal linear polymers where v = 1/2, Flory concluded the scaling
exponent for real chains to be v = 3/5. Subsequent perturbative approaches
found the more accurate value of v = 0.588 (Doi01).

In a poor solvent environment, polymers change their shape drastically. Attrac-
tions between monomers now dominate resulting in the collapse of the polymer
into the so-called molten globule state. Poor solvent conditions also lead to a
decrease in the scaling factor which has a lower bound at v = 1/3 (Rubinstein06).
Interesting is also the case of a  solvent. Here, attraction and repulsion exactly
balance each other. As a consequence v = 0, meaning that polymer chains have
nearly ideal conformation. The corresponding scaling exponent thus adopts the
value v = 1/2. Table 2.1 summarizes the possible different values of the scaling
exponent v.

R? oc N? with v (2.24)
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2.2.2 Polymer dynamics

During the last section we saw that scaling concepts play an important role
in determining static properties of polymers. Indeed, these concept are also
frequently encountered when the dynamical behaviour of polymers is discussed.
We are now going to present two different models for polymer dynamics namely
the Rouse (Rouse53) and the Zimm model (Zimm56).

The Rouse model

In the Rouse model monomers connected by springs set up the polymer chain.
The average distance between two consecutive monomers is taken to be b, i.e.
the root-mean-square bond length. Interaction between monomers is exerted
only by the connecting springs. Excluded volume and hydrodynamic interactions
with the surrounding solvent are disregarded.

The motion of a Rouse chain can be described by a Langevin equation which
determines the time evolution of the individual monomer positions. Assuming a
harmonic form of the interaction potential yields

dR; .
dt :—k-(2R,-—R,~+1—R,-,1)+f,~ II2,...,N—1 (225)

where ( is the monomer’s friction coefficient, k the amplitude of the harmonic
force and f; a random force with Gaussian statistics. Care must be taken for the
first and last monomer

¢

dR;
™M _
p (Rl Rz) + f;
(2.26)
dR
Cd—tN =—k-(Ry—Ryn_1) +fy

Two key quantities connected to the dynamical behaviour are the diffusion co-
efficient of the polymer’s center of mass, D.,, and the relaxation time of the
polymer chain, 7g. Following (Rubinstein06), these two parameters exhibit a
distinct scaling dependence on the number of monomers N

Dy xx N1 and TR ox N2V (2.27)

It is known that the first scaling relation holds in two and three dimensions
(Doi01) whereas the second relation is only true in three dimensions. The param-
eter v corresponds to Flory's exponent describing the polymer size (see above).
However, these values do not coincide with experimental results. This is mainly
due to the neglect of hydrodynamic interactions. Nevertheless, the Rouse model
is a suitable approach when inspecting dynamics of polymer melts.

19



Membranes, Polymers & Proteins

Table 2.2: 3D-scaling behaviour of center of

model D T o .. .
mass diffusion coefficient Dy, and relaxation

Rouse N1 N2V time T on polymer size for Rouse and Zimm

Zimm N-V N3V model. The factor v denotes the Flory

exponent of the polymer's radius of gyration.

The Zimm model

The Zimm model explicitly takes into account interactions related to hydrody-
namics. A particle moving in a fluid couples to the surrounding solvent and has
to drag solvent molecules in order to move. This viscous resistance leads to a
long-ranged force. The treatment of Zimm polymers can again be done in form
of a Langevin equation that now reads

dR,, O’R,
= ;Hnm. (k s —i—fm(t)) (2.28)

Here, monomer bonds are assumed to be realized via harmonic potentials, the
random force f is Gaussian and H,, is the Oseen or mobility tensor (Doi01).
The qualitative difference compared to Rouse polymers is that here interactions
between monomers are not local.

The basic approach of the Zimm model is to regard a polymer chain as a solid
object of size R oc N¥ that moves through the solvent. The scaling of the center
of mass diffusion coefficient D.,, can be easily determined by employing Stoke's
law and the Einstein-Stokes equation. The scaling behaviour of the corresponding
relaxation time 77 is then immediately derived.

D., cxc N7" and 77 x N¥ (2.29)

It is worthwhile noting that 77 exhibits a weaker dependence on the polymer size
than 7x since for v < 1 the relation 3v < 2v+ 1 applies. This means that Zimm
motion has less frictional resistance than Rouse motion, and therefore Zimm
motion is the faster process.

To conclude this section about polymers, we recapitulate in Table 2.2 the key
results concerning polymer dynamics obtained by the Rouse and Zimm model.

2.3 Proteins

Apart from water, proteins are the main constituents in living cells representing
approximately 50% of a cell's dry mass (Alberts02). They are made of amino
acids that are, besides lipids, nucleotides and monosaccharides, the fundamental
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Figure 2.4: From DNA to protein: transcription copies DNA into RNA,
translation converts RNA into amino acids. Every organism synthesizes its
proteins according to this general pathway.

molecules of cells. Connected to the former section, proteins can be seen as
polymers consisting of peptides that adopt a distinct three-dimensional shape.
Here, we sketch briefly protein synthesis and discuss how transmembrane proteins
are distributed throughout the cell.

2.3.1 Protein synthesis

Information which proteins eukaryotic cells can produce is hidden in their heredi-
tary material in form of DNA. In order to produce new proteins, this information
has first to be converted into RNA that is another kind of genetic information.
The difference to DNA is that RNA consists of different nucleotide base pairs.
The process of DNA-RNA conversion is called transcription and is carried out by
numerous macromolecules and regulation factors (Kornberg07).

The resulting piece of RNA is further manipulated, one can say that it is kind
of purged. Fragments unnecessary for protein synthesis are dumped and the re-
mainder is called messenger RNA (mRNA). These molecules contain the chemical
blueprint for proteins. In order to generate a functional protein, mRNA is brought
to a giant molecular machine called ribosome (Frank00). Here, its nucleotide se-
quence is translated into a linear amino acid sequence representing a protein’s
native state.

To become a fully and properly functional protein, the linear chain has to fold up
into a distinct three-dimensional structure that is determined by its amino acid
sequence. Auxiliary proteins called molecular chaperones (Hartl96) assist the
folding process and also provide an efficient quality control machinery. Figure
2.4 depicts the above described general route of protein synthesis.

Transmembrane proteins

In eukaryotic cells, transmembrane proteins represent a huge family of intracellular
macromolecules. Nearly 30% of all encoded proteins are transmembrane proteins.
Most of these are directly synthesized at the membrane of the rough endoplasmic
reticulum (ER). Their particular spatial location inside lipid bilayers enables them
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to perform a variety of tasks as different as signal and mass transfer across the
membrane barrier, induction of structural changes of the surrounding lipid bilayer
and regulatory functions.

Given the characteristic topology of transmembrane proteins, the question arises
of how insertion, integration and folding of transmembrane segments within the
ER membrane is realized. The main actor during this process is the translocon, an
elaborate protein complex that is responsible for proper transmembrane protein
integration (Rapoport07). Its principle is as follows: a nascent amino acid chain
enters a narrow tunnel provided by the translocon and is successively transported
across the membrane barrier. Inside the tunnel transmembrane segments are
recognized and led through a central gate into the membrane.

2.3.2 Sorting of transmembrane proteins

The distribution of transmembrane proteins throughout the cell occurs along the
secretory pathway. One can imagine that pathway originating at the endoplasmic
reticulum. Further downstream, proteins have to pass through the Golgi appa-
ratus. From there, different routes lead to the plasma membrane and the cell
exterior, or to endosomes and lysosomes (see Figure 2.5).

Shuttling of intracellular cargo, i.e. proteins, enzymes or lipids, is organized by
vesicular transport intermediates, small spherical membrane-bound containers.
As a general rule, one can say that different kind of vesicles use different routes
of the secretory pathway. The various types of vesicles are distinguished by
their protein envelope, a so-called coat. Transport between ER and Golgi and in
between the latter occurs by means of COP-coated vesicles. Post-Golgi traffic
is mediated by clathrin-coated vesicles. Figure 2.5 provides a simplified overview
of the different vesicle types and their preferred transport direction.

The secretory pathway possesses an anterograde (forward) and retrograde (back-
ward) direction. We restrict ourselves here to the description of the passage
between endoplasmic reticulum and the Golgi apparatus, i.e. the early secretory
pathway.

The early secretory pathway

Like the ER, the Golgi apparatus is not a clearly confined organelle. It is rather
a stack of flat membrane-bound compartments, so-called Golgi cisternae. On
either end of this stack are several loose vesicular and tubular structures that are
termed the cis- and trans-Golgi network depending on their position with respect
to the nucleus. Accordingly, the Golgi complex is divided into a cis-, a medial-
and a trans-Golgi part.
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Figure 2.5: Sketch of vesicular transport along the secretory pathway:
COP-coated transport vesicles are responsible for shuttling cargo between
the endoplasmic reticulum and the Golgi apparatus as well as between
different Golgi cisternae. Export from the Golgi and import from the cell
exterior occurs via clathrin-coated vesicles. In addition to vesicular
transport, Golgi cisternae can mature and influence in this way the
distribution of membrane proteins.
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Along the Golgi stacks, proteins and other macromolecules are modified, sorted
and prepared for further transport to intra- or extracellular destinations. Further-
more, it plays a role in transport of lipids and the creation of lysosomes.

ER-to-Golgi transport

Transmembrane proteins residing in the ER membrane are exported towards the
Golgi apparatus by COPII coated vesicles. They are exclusively formed at special
locations of the endoplasmic reticulum membrane which are termed ER exit sites
(ERES). ER exit sites are speckled all over the ER membrane and show a distinct
spatial and temporal self-organization (Heinzer08). Interestingly, ERES vanish
during cell division indicating a transient stop of secretory traffic.

The COPII coat consists of three essential sub-units that are Sarlp, Sec23/24p
and Sec13/31p (Barlowe94). Formation of COPII vesicles takes place as fol-
lows: floating freely in the cytosol, Sarlp is attracted to the ER membrane and
subsequently recruits the two remaining sub-units, Sec23/24p and Sec13/31p.
Recently, it was shown that secretory cargo, e.g. transmembrane proteins, slows
down the disassembly of the COPII coat complex (Forster06). This is very im-
portant since an intact coat complex is required for proper transport vesicle
formation, premature coat disassembly would complicate or even prevent the
generation of transport carriers.

Membrane-bound Sarlp and Sec13/31p most likely bend the ER membrane in
order to stimulate the vesiculation process. In addition, these two sub-units are
also believed to trigger the fission event, i.e. to detach the transport vesicle from
the ER membrane (Lee05; Stagg06). A typical COPII vesicle has a diameter of
roughly 60nm and accommodates right after fission roughly 50 COPIl complexes
(Stagg06). After detachment from an ER exit site, the coat proteins dissociate
from the vesicle due to GTP hydrolysis by Sarl. The ‘naked’ vesicles are now
actively transported towards the Golgi apparatus while the coat subunits stay in
the cytosol and can be used in another round of vesicle formation.

Intra-Golgi transport

It is still not completely understood how molecules move from one Golgi cisterna
to another. At present, there are two models of cargo transport across the Golgi
apparatus that are either based on vesicular transport or assume maturation of
Golgi cisternae (Alberts02; Lodish04). Recent experimental studies support the
opinion that both hypotheses work in conjunction rather than being mutually
exclusive (Glick98; Pelham00; Glick00).

The observation of abundant vesicular transport containers in the vicinity of the
Golgi complex created the idea that these vesicles are responsible for shuttling
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molecules between the distinct Golgi compartments. They bud from one cisterna
and fuse with the next. In contrast to vesicles departing from the ER membrane,
their formation is stimulated by a different type of protein coat called COPI. Like
COPII, it also consists of several subunits that have to act in concert in order to
achieve full functionality.

Another function of COPI vesicles is to retrieve mislocalized proteins and to
transport them back to their correct compartment. Furthermore, COPI proteins
are also involved in retrograde transport from the Golgi complex to the ER.
The combination of backward and forward vesicular flux also guarantees the
conservation of the polarized structure of the Golgi apparatus.

According to the cisternal maturation model, the Golgi complex is a dynamic
structure that undergoes permanent alterations. In this picture, tubular clusters
originating from the ER fuse with each other to form a first cisterna and pro-
gressively mature as they move through the Golgi stack. That means, at the
cis face of the Golgi, new cis cisternae are constantly formed and then migrate
through the stack as they mature. Proteins associated with the different cis-
ternae consequently travel along the Golgi complex as well. To maintain the
differential distribution of Golgi proteins, retrograde transport by COPI vesicles
again re-distributes mislocalized proteins.
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Chapter 3

Membrane Simulations via
Dissipative Particle Dynamics

Biological membranes, or lipid bilayers, are the defining envelope of living cells
and their internal organelles separating them from their external environments.
Far from being inert, membranes accomodate a plethora of transmembrane pro-
teins that are responsible for signal and mass transfer across this boundary
(Alberts02; Lodish04). For this reason, it is no surprise that the study of bi-
ological membranes has attracted much attention during the last decades.

The number of approaches used to gain insight into the nature of membranes
is steadily increasing. These range from biochemical in vivo assays and studies
on model membranes in vitro over sophisticated light and electron microscopy
techniques to powerful computer simulations.

The present chapter deals with the latter approach, i.e. an in silico investiga-
tion of biological membranes. In particular, a coarse-grained molecular dynamics
(MD) simulation technique called dissipative particle dynamics (DPD) is intro-
duced as a suitable method to study soft matter systems like lipid bilayers.

3.1 Dissipative particle dynamics

The study of subcellular, dynamical processes involves the application of elaborate
microscopy techniques. However, structures beyond the diffraction limit of light
can not be resolved and a thorough (dynamical) description is impossible. At this
point, computer simulations lend themselves as a powerful and versatile tool.

Among the numerous different simulation methods, molecular dynamics is the
most accurate one. Here, every single atom of the system of interest is modelled
including all possible interactions, be it non-geometrical (van der Waals, electro-
static) or geometrical (bonds, angles) interactions (Thijssen99). However, this
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beautiful and precise description has a nasty side effect which is manifested in its
enormous need for computational resources. Hence, MD simulations are limited
in length and time to the nanoscale. Despite the computational drawback full-
atomistic simulations of simple model membranes and membrane-protein systems
have been performed (Pasenkiewicz99; Essmann99).

In this work, dissipative particle dynamics, a coarse-grained MD simulation tech-
nique was used to study biological systems. The main advantage of DPD com-
pared to MD is that longer time and length scales are accessible. In principal,
spatial dimensions of O(100 nm) and time scales in the microsecond range can
be accessed.

3.1.1 From hydrodynamics to soft matter systems

In 1992, Hoogerbrugge and Koelman developed a new simulation method they
termed dissipative particle dynamics to investigate hydrodynamic phenomena
(Hoogerbrugge92). Their aim was to be able to model correct hydrodynamic
behaviour with computational efficency. For this purpose, they did not model
individual atoms but rather simulated the motion of small fluid elements rep-
resenting a functional group of atoms. Thus, a DPD bead has a mesoscopic
character, i.e. it is large on the atomic scale but small compared to the overall
dimensions of the system. The basic interactions in a DPD system are chosen in
such a way that the system reproduces correctly hydrodynamic properties. DPD
satisfies, for example, the Navier-Stokes equation (Hoogerbrugge92).

Soon after its introduction, Espafiol and Warren (Espafiol93) developed a thor-
ough theoretical description of DPD with the result that the statistical mechanics
of the DPD bead ensemble was now in agreement with that of the canonical en-
semble. At present, the formulation of Espanol and Warren is the most frequently
used implementation of DPD.

In their description, three pairwise-additive forces act between the soft DPD
beads; these are a conservative, repulsive force FC¢ a dissipative force FP and a
random force FR. They conserve linear and angular momentum, have no hard
core and vanish beyond a certain cut-off radius r. that in turn also defines the
dimension of a single DPD bead.

Complex quantities like polymers, lipids or proteins are realized by joining DPD
particles via simple Hookean springs. A bending potential accounts for the rigid-
ity of these objects. DPD was successfully applied to colloid systems, lipid bi-
layers and micellar systems (Flekkgy99; Yamamoto02; Shilcock02; Laradji04;
Venturoli05).

Compared to full-atomistic MD simulations, DPD simulations are able to span
much larger length and time scales. This results, on the one hand, from the
mesoscopic character of a DPD system that conceals molecular details on the

28



microscopic level. On the other hand, the choice of soft-core potentials allows the
use of a larger time integration step At compared to Lennard-Jones potentials
usually used in MD simulations.

Fundamentals of DPD

Like in classical MD simulations, DPD particles interact with each other, and the
motion of a single particle is described by Newton's equations of motion

).(,' = V; and p; = F,' (31)

As mentioned before, the total force F; acting on a single DPD bead has three
different parts yielding the following expression

Fi=) (Ff +F}+Ff) (3.2)
J#i

All particles j that are inside the cut-off radius r. around particle / contribute
to the above sum. The cut-off radius represents the size of a DPD bead and is
usually set to unity: r. = 1.

Friction and heat: the thermostat One important point during a DPD
simulation is the preservation of the temperature of the system. This is usually
achieved by introducing a fluctuation-dissipation theorem (Nyquist28; Callen51),
a powerful tool that links the fluctuation properties of a thermodynamic system
to its linear response properties.

Following Espaiiol and Warren, this task can be done by coupling the dissipation
and random force that read

D D
Fij = —Yw (I‘,J) . (e,-j . V,'J') e,-j
R R
Fij =ow™(ry)&jey
where r;; denotes the connection vector, e;; the corresponding unit vector and v;;
the relative velocity of the bead pair / and j. The parameters v and o are the
amplitudes of the dissipative and random force, respectively. The definition of

FR includes a symmetric random variable &; with zero mean and unit variance,
uncorrelated for different pairs of particles at different times, that is

(€ ()i (t1)) = (Siindyr + 0r0jir) 6(t — ) (3.5)

Two different weight functions, w? and wR, complete the definiton. Originally,
the random numbers £;; were supposed to be drawn from a Gaussian distribution.
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However, it has proven appropriate and computationally efficient to use a uniform
distribution instead (Nikunen03).

The dissipative force is the result of friction between hidden internal degrees of
freedom of the DPD particles. This energy loss is balanced by the random force
which is interpreted as the coupling of the DPD beads to their local thermal
environment. As pointed out before, these two forces have to act in concert in
order to guarantee a stable, only slightly fluctuating temperature of the system.
To realize the fluctuation-dissipation theorem, the amplitudes as well as the
weight functions are connected via the following relations (Espafiol93)

2

0> =2vkgT  and  wP(r) = (WF(r)) (3.6)

As a consequence, one amplitude and one weight function can be chosen arbi-
trarily. Following (Nikunen03), we choose

WR(F) = w(r) :{ (L=rire) for Osrsr (3.7)

Common numerical values for the amplitudes of the dissipative and the random
force are v = 4.5 and o = 3. For convenience, the thermal energy is also set to
unity: kg T = 1. These restrictions guarantee that the DPD system matches the
definition of the Gibbs canonical ensemble. Advantages of this fact are that all
basic thermodynamic relations hold and can readily be translated into the DPD
formalism.

Since FP and FR both act along the connection vector between two interacting
beads, the linear as well as the angular momentum is conserved. A measure for
the system’s temperature is the average kinetic temperature that is defined via

_m 2
<kBT> - 3N Zvl

where N is the total number of particles and m their mass. This quantity fluc-
tuates around the initially specified value of kg T = 1, the speeds of the DPD
particles follow a Maxwell-Boltzmann distribution (cf. Figure 3.1, right).

The repulsive force The repulsive force accounts for basic steric interactions
and is given by
Fi=Ajw(r) e; (3.8)

The constant Aj; defines how strong the particles / and j repel each other.
The weight function w(r) is the same as in Eq. 3.7, i.e. FC is of linear form
which is computationally very stable and efficient. Again, the repulsive force
acts along the connection between two beads, conserving thus linear and angular
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Figure 3.1: Left: after a short period of equilibration, the average kinetic
temperature fluctuates around the initially fixed value of kg T (Note the
logarithmic scale in time). Right: The distribution of speeds of the DPD
particles (filled circles) corresponds to a Maxwell-Boltzmann distribution

(dashed line).

momentum. Since all forces are pairwise, the relation FZ- = —Fj,- is true for the
repulsive, dissipative and random force.

Apart from determining the repulsion between two DPD particles, the parameter
A can be used to realize different types of DPD beads. We will return to that
property in the section on membranes.

To simulate water, one usually sets A = 25kg T. Together with a DPD bead
density of p = 3/r2, one is able to accurately reproduce the compressibility of
water (Groot97). If the DPD system is gauged in this way, a single in silico DPD
bead represents approximately three water molecules.

Lipids, membranes and proteins

Lipids are one of the four fundamental building blocks in living cells. They are
responsible for the formation of membranes, thin flexible sheets, that define the
cell and its internal organelles. Although there is a plethora of different lipid
species, their structure is universal: a rather small hydrophilic head is covalently
linked to one or two strongly non-polar hydrocarbon chains.

A DPD lipid follows this pattern by linking a hydrophilic head particle to a linear
chain of a certain number of hydrophobic tail particles that are in the following
denoted by H and T, respectively. We classify model DPD lipids via HT,, where
n denotes the number of hydrophobic tail beads. In most of our simulations we
used lipids of kind HT3 as the building block for our model membranes. Figure
3.2 displays a simplified model of a glycerophospholipid and our DPD lipid model.
Two adjacent lipid beads are kept together by a simple harmonic potential Uy,
an additional bending potential U, between three consecutive beads is applied
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a) b)

Figure 3.2: Sketch of a typical glycerophospholipid (a)
and the corresponding DPD representation (b). The polar
head group in (a) can contain a nitrogeneous base, a
glycerol or an inositol unit. In (b) a single hydrophilic head
particle (red) is followed by three hydrophobic tail particles
(blue). All DPD particles are connected via harmonic
springs as indicated. Note that both pictures are not drawn
to scale.

glycerol

to account for the inherent stiffness of the lipid. Both potentials read

Uh(l‘i,i+1) = % kp, - (ri,i+1 - 50)2 (3-9)
Up(riit1, Yigriv2) = ko - (1 — cos(¢ — ¢o)) (3.10)

k, and k, are the amplitudes of the harmonic and of the bending potential,
respectively. Common numerical values for kj, lie within the range of about
100 kg T, the bending stiffness is approximately an order of magnitude smaller,
i.e. kp =~ 10—20 kg T. {y denotes the harmonic equilibrium distance between two
consecutive beads, ¢q is the preferred default angle between three consecutive
beads and is, for a linear chain, set to zero. In this case,

cos(d) =€ 11 €112

The generalization for non-vanishing default angles ¢y is straightforward and easy
to implement (Cheng96).

In real biological systems, membranes are surrounded by an aqueous environment.
To mimic this situation, membrane simulations are usually performed with fully-
hydrated lipid bilayers, i.e. the surrounding solvent is explicitly modelled. There
are approaches that discard the solvent around the membrane and are hence
termed implicit-solvent models (Farago03; Brannigan04; Cooke05). The hydro-
static pressure in these simulations is taken into account by additional attractive
long-range interactions between lipids in the different leaflets.

In our simulations, the solvent is explicitly modelled, that is we have to establish
at least three different types of DPD beads: water (W), head (H) and tail (T)
beads. To distinguish between different bead types, one employs the hydropho-
bicity parameter A that already occured in the definiton of the repulsive force
FC. The character of two interacting DPD beads i and j is determined by the
numerical value of Aj;: the repulsion between like beads is set to a default value
whereas it is increased between water/head beads and tail beads. This allows to
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Table 3.1: Interaction matrix of the
hydrophobicity parameter A (in units of
water (W) 25 25 200 kg T ) between water, head and tail

particles. Water and head beads are
head (H) 25 25 200 essentially equal whereas the repulsion
tail (T) 200 200 25 between these and tail particles is much
strongetr.

A water head tail

create a plethora of different bead species. Standard values for A are summarized
in Table 3.1.

The integration procedure

DPD simulations can be performed under different conditions that require dif-
ferent integration procedures. Usually, DPD simulations are performed in the
NVT ensemble, that is the number of particles, the volume of the simulation box
and the temperature are kept constant. This setup proves to be appropriate for
simple systems. However, to account for intrinsic properties of biological systems
a more sophisticated framework is used. One possibility is that instead of the
volume the pressure of the DPD system is kept constant, i.e. the simulations are
performed in the NpT ensemble.

NVT ensemble The time evolution of the DPD system is calculated by inte-
gration of the equations of motion by using a velocity-Verlet (VV) integration
algorithm (Verlet67a; Verlet67b). This is the most commonly used numerical
integration scheme in MD simulations. The advantages compared to ordinary
Euler schemes are two-fold. On the one hand, a VV integration scheme proves to
be a very stable integrator which is manifested in the freedom to choose the time
increment At approximately a factor of 50 larger than in simple Euler schemes.
On the other hand, the underlying numerics are very efficient and do not demand
much computation power compared to, for example, Runge-Kutta methods. The
integration of the NVT ensemble is performed according to (Nikunen03). The
corresponding pseudo-code reads

L v v+ 33 (FEAt+FPAt + FAVAY)
2. X — X,'—|-V,'At
3. Update FS, FP and FR

4a. vi «— v;+%% (FiCAt—l—Ff\/At)
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4b. v; v,’.‘—i—%%FDAt
5. Update FP

In all our simulations, steps 1 — 5 are performed only once during a single time
step. Steps 4a, b — 5 are to resolve the dependence of the dissipative force on
the bead velocities, and vice versa. Although there exist algorithms that loop
over steps 4b and 5 until the system temperature converges to its prearranged
value, we prefer the simplified version with no self-consistency loop.

One prominent peculiarity is the appearance of v/At in the integration step for
the random force. A detailed explanation can be achieved by interpreting the
random force as a Wiener process (Risken96). Integration of the underlying
stochastic equations leads directly to the observed dependence on v/At.
Besides, a heuristic argument to understand the appearance of v/At is as follows:
the motion of a particle in a fluid is governed by collisions with other particles.
During each time step, the collisions induce a random force f with mean and
variance (f) = 0 and (f?) = o2, respectively. As the time-integral of the force
is proportional to the mean-square displacement of the particle, one concludes
that (f2) oc t - oAt which would go to zero if At decreases. To resolve this
unphysical behaviour, the variance of the random forces is coupled to the time
increment At, that means one has to choose (f?) = o/At.

NpT ensemble Biological membranes are thought to be tensionless (Boal02).
To account for this fact, several computational strategies can be applied. One
commonly used technique is to introduce a Monte Carlo algorithm that changes
the size of the simulation box at random time points (Venturoli99). Between the
individual Monte Carlo steps, the volume of the simulation box does not change.
Instead, we use a so-called barostat, a method that exists in several implemen-
tations (Andersen80; Berendsen84). Here, one does not use a simulation box
of fixed size but rather a simulation box that is able to breathe due to a virtual
piston system. In this work we follow the barostat implementation developed by
Jakobsen (Jakobsen05a).

In order to realize the barostat, the dimensions of the simulation box serve as a
piston and introduce three additional degrees of freedom into the DPD system.
The motion of the piston is described by a Langevin equation and governed
by a force F.. This force incorporates several components, like the pressure
difference between the present and the target pressure, DPD bead momenta
and a dissipative and random force. We note here, that the calculation of the
instanteneous pressure includes different contributions one of them being the
virial of the DPD system. As a consequence of the Langevin description, a
fluctuation-dissipation theorem connected to the motion of the piston has to be
satisfied.
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Figure 3.3: Simulation box volume V (upper graph) and the individual
box lengths Ly, , normalized to their initial values. V' oscillates around its
initial value Vj, the edge lengths L , show a slight decrease that is balanced
by an increased value of L.

The Langevin description has the advantage that unphysical oscillations of the
simulation box as observed in other implementations are suppressed (Jakobsen05b).
Every time step involves a re-scaling of the dimensions of the simulation box as
well as of the positions of the DPD beads. The scaling factor is influenced by
the force F, and the so-called rise-time of the barostat.

The above-described DPD-VV integration algorithm is upgraded to include the
movement of the piston. Now, a difficult interplay between bead and piston ve-
locity emerges which is again solved by an iterative procedure. One consequence
of the applied barostat is that the volume of the simulation box is now fluctuat-
ing around its initial value V4 in order to adapt to the instantaneous conditions.
The time course of the volume of the simulation box and of the individual box
lengths are depicted in Figure 3.3.

Jakobsen's barostat implementation has several advantages. The time required
for equilibration as well as correlation times for various system parameters be-
come shorter. A numerical aspect is that one does not need smaller time steps
At for the integration procedure of the DPD system so that faster and more ef-
ficient simulations can be performed. A complete presentation of the individual
algorithmic steps are provided in Appendix A.
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3.2 DPD membranes

In this final section, we overview basic features of DPD membranes. We show
that our model lipids are capable of self-assembling into membranes, a property
that is also found for real lipids. In addition, we determine the distribution of wa-
ter, head and tail beads along the membrane normal and analyse the membrane’s
height fluctuation.

DPD lipid self-assembly Real lipids in an aqueous environment are able to
form membraneous structures like micelles or lipid bilayers. As pointed out earlier,
lipid concentration determines whether self-assembly occurs, and if so, the lipids’
shape defines the topology of the aggregate.

Figure 3.4 displays the time course of lipid aggregation into a planar membrane,
lipid head and tail groups are represented in red and blue, respectively. In the
beginning, all lipids are distributed randomly in the simulation box. After a
short period, they start to assemble into higher-order structures that are not
yet interconnected. With advancing time, the individual subjects begin to fuse,
resulting eventually in a planar membrane. Hence, our simple DPD model lipids
are able to reproduce in vivo behaviour of lipids.

The distribution of the different DPD beads along the membrane normal, i.e.
the z axis, is depicted in Figure 3.5. As can be clearly seen, water particles
are located above and below the lipid bilayer, the membrane serves hence as an
impermeable barrier. The distribution of lipid head particles has two prominent
peaks (arrows) symmetric to the membrane midplane (z = 0). The distance
between these peaks is a measure for the membrane thickness. Finally, lipid tail
groups are buried in the middle of the bilayer. The small dip in the tail density
profile indicates that the amphiphiles terminate near the bilayer midplane. This
demonstrates that a DPD membrane perfectly maintains its integrity.

Membrane surface fluctuations In the introductory chapter about mem-
branes, the general expression for the Fourier spectrum of a fluctuating surface
was derived. As a reminder we give again the formula

(h@) (@) = 7

(3.11)
with A the membrane area, 7 and « the applied tension and the bending rigidity,
respectively. In our simulations, we usually assume that 7 ~ 0 so that the g°
term in the previous equation can be neglected.

As a benchmark, we can check whether our DPD model membranes also satisfy
the above equation. To this end, we monitor the height fluctuations of a DPD
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Figure 3.4: Self-assembly process of lipids in water: an initially
randomized ensemble of lipids starts forming higher-order structures like
micelles and bilayers when left to their own device. Time course is from top
left to bottom right, applied periodic boundary conditions are clearly visible.
Red: head groups, blue: tail beads.
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Figure 3.5: Bead number density
profiles, prg, for water (solid line),
hydrophilic head (dotted line) and
hydrophobic tail beads (dashed line).
The arrows indicate the average
bilayer thickness.

z/ry

membrane and Fourier transformed the results. The data presented in Figure 3.6
nicely coincides with our expectation. Here, we plotted (h(q)?) against g2 which
should result in a g~2 power law. The accompanying fit (solid line) confirms
this prediction for small g-values. At larger wavenumbers g, a cross-over from
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10° Figure 3.6: Membrane undulations
in Fourier space: (h(q)?) is drawn

10% | against g° resulting in a power-law
behaviour of (h) o< ¢ (solid line).

10! Note that both axis are in log-scale
and arbitrary units are used.
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qg~* to g2 behaviour is observed. Although we assumed the membrane to be
in a tensionless state, a small tension is still present determining the behaviour
at large wavenumbers. Moreover, Equation 3.11 is derived from a continuum
theory, our model membranes consist, however, of individual subunits. There-
fore, a breakdown of the continuum behaviour at length scales below the bilayer
thickness is observable.

Computer simulations are a viable means to investigate complex systems. We
have seen that dissipative particle dynamics is a suitable method to study systems
on a mesoscopic level. Theoretically predicted events and behaviour are well
reproduced rendering DPD a relyable tool to study soft matter and biological
systems.
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Chapter 4

The Hydrophobic Mismatch:
A universal cellular tool

The present chapter is intended to provide a thorough description of our results
induced by hydrophobic mismatching (HM) of transmembrane proteins. This
structural defect occurs if the thickness of a protein’s transmembrane domain
(TMD) does not match that of the hydrophobic core of the surrounding lipid
bilayer. The membrane protein is thus too long or too short to fit perfectly into
the lipid membrane (cf. Figure 4.1).

To study influences of hydrophobic mismatching on the dynamical behaviour of
transmembrane proteins, we have performed large-scale computer simulations via
dissipative particle dynamics. Our results suggest that hydrophobic mismatching
facilitates several intracellular protein-related tasks, for example clustering or
demixing of membrane proteins. In addition, being integrated into a lipid bilayer
with varying thickness, a transmembrane protein is guided into that part of the
lipid bilayer where its HM is minimized. By connecting our findings, we propose
a simple, HM-based model of how protein sorting along the secretory pathway
may be realized. Related to the latter, we also discuss consequences concerning
vesicle formation and the resulting secretory flux.

4.1 Introduction to hydrophobic mismatching

The scenario of hydrophobic mismatching is based on two elementary ingredients:
membranes and transmembrane proteins. As pointed out before, membranes de-
fine cells and their organelles. According to (Mitra04) membrane thicknesses of
organelles along the secretory pathway show slight but distinct differences rang-
ing from 37 to 42 Angstrom. A possible explanation for this observation is that
different intracellular membranes have different lipid compositions (vanMeer08).
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Figure 4.1: Different cases of hydrophobic mismatching: negative, zero
and positive (from left to right). Membrane inclusions affect the membrane
thickness h in their direct vicinity. As will be shown later, lipids around
membrane proteins are neither stretched nor compressed but rather bend or
straighten up in order to shield the hydrophobic part of the protein.

For example, a high cholesterol content like in the plasma membrane is respon-
sible for an increase in bilayer thickness.

The second ingredient, transmembrane proteins, are abundant in living cells. As
already pointed out in former chapters, nearly one third of all endogenous proteins
are transmembrane proteins. Their correct function frequently requires a spatial
correlation between numerous proteins, i.e. the proteins assemble into higher-
order oligomers in order to fulfill their task(s). Traditionally, specific bi-molecular
binding events are blamed for this protein aggregation. However, several lines
of evidence indicate that unspecific, membrane-mediated interactions also play a
major role in these events (Bruinsma96; Simons97; Edidin03) thus relaxing the
need for a multitude of fine-tuned interactions.

4.1.1 Historical remarks

In the context of membrane-mediated interactions, the effects of a hydropho-
bic mismatch has been of particular interest, a detailed review is provided by
(Jensen04). In 1976, Mar&elja first proposed the existence of lipid-mediated
interactions between membrane inclusions (Mar&elja76). His molecular-field the-
oretical results suggest that membrane inclusions may, under ‘favourable circum-
stances [sic!]’, experience a long-range, lipid-mediated attraction. He traced back
the origin of this indirect interaction to local perturbations of the lipid environ-
ment in the vicinity of the integral membrane protein. To reduce the perturbed
area, membrane proteins are attracted and start to form protein clusters.

The diversity of studies supporting Mar&elja’s prediction that hydrophobic mis-
matching can induce aggregation of transmembrane proteins is numerous. Mourit-
sen and Bloom employed their ‘mattress model’ to explain lipid-protein inter-
actions (Mouritsen84). Several other authors used mean-field theoretical ap-
proaches (Schroder77; Dan93; Dan94) as well as a model based on capillary forces
(Kralchevsky95) in support of this hypothesis. Molecular dynamics (Edholm87)
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Figure 4.2: DPD model proteins with different HM are realized by
changing the number of transmembrane layers (yellow). In our simulations,
proteins with 3, 4, 5, 6 and 7 transmembrane layers exhibit strong negative,
negative, negligible, positive and strong positive HM, respectively.
Hydrophilic caps are depicted in green and are enhanced for better visibility,
transmembrane layers are colored yellow.

and Monte Carlo (Sintes97) computer simulations corroborate Mar&elja’s predic-
tion as well.

Although there are many theoretical studies on HM-induced protein clustering,
experimental results have remained rare and equivocal in highlighting the pure
effects of hydrophobic mismatching (Lewis83; Harroun99). Moreover, it is de-
batable whether mean-field approaches are capable of providing an appropriate
picture of lipid bilayers. These are in fact not two-dimensional continuous fluids
but are rather composed of discrete building blocks, lipids and proteins, that have
approximately the same size.

Since quantitative experiments are challenging in several aspects, computer sim-
ulations allow for a detailed analysis of nano-scale processes on membranes. To
elucidate the nature of hydrophobic mismatching and its potential impacts on
the dynamical behaviour of transmembrane proteins, dissipative particle dynamics
simulations were performed. In the remainder of this chapter, numerical results
are presented and implications are thoroughly discussed.

4.2 Clustering of transmembrane proteins due to

hydrophobic mismatching
To elucidate the effect of different degrees of hydrophobic mismatching on the
aggregation behaviour of transmembrane proteins, a series of computer simula-

tions were performed. Our approach was threefold: i) geometrical effects on the
lipid bilayer due to a single embedded protein were analysed. ii) it was tested
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Figure 4.3: Numerically determined membrane thickness profiles h(r) for
proteins with three (squares), five (circles) and six (triangles)
transmembrane layers. All corresponding profiles are well described by an
exponential as theoretically predicted. Insets on the left show the
corresponding membrane inclusions.

whether the structural and configurational changes of the lipid bilayer observed
in i) really lead to protein attraction. iii) the aggregation behaviour of 30 em-
bedded proteins was monitored, analysed and related to results from ii). Proteins
with different length of their transmembrane domain were created as depicted in
Figure 4.2. In the following, we denote the number of transmembrane layers by
n.

Hydrophobic mismatching disturbs the membrane locally

As already indicated in Figure 4.1, the membrane bilayer around a transmembrane
protein is disturbed. The degree of deformation can be characterized by two
geometrical quantities, the membrane thickness, h, and the tilt angle of the
lipids, ¥. From the latter entity, an order parameter S can be derived which
reflects the configurational state of the lipids. We determined these quantities
as a function of the distance from the rim of the protein, i.e. we computed the
radial profiles h(r), ¥(r) and S(r).

The protein was integrated into a membrane patch of lateral size L = 20r,
to minimize periodic-boundary effects. The different profiles were obtained by
drawing concentric rings around the protein center and averaging over all lipids
in each annular region.

Figure 4.3 displays the numerically determined membrane thickness profiles h(r)
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Figure 4.4: a) Absolute value of the hydrophobic mismatch Ah as a
function of the number of transmembrane layers n. |Ah| exhibits a minimum
at n =15 and is nearly constant for larger n. b) The behaviour from a) can
be explained by the protein tilt angle (¢) which increases strongly for n > 6.

for a protein with n = 3,5, 6 transmembrane layers. The shape of the individual
profiles share a common property. Far away from the inclusion, h(r) adopts
the value of an unperturbed lipid bilayer that is determined in pure membrane
simulations as hy ~ 3.84r.. Approaching the transmembrane protein alters the
membrane thickness. At a distance of about 2r. from the rim of the protein, the
membrane thickness either increases (n = 6) or decreases (n = 3) significantly.
This behaviour indicates that the neighboring lipids try to shield the hydrophobic
protein core from the surrounding water.

Embedding a membrane protein with five transmembrane layers only yields a
slight deviation of the membrane thickness from the unperturbed value hy. Ac-
cording to these results, we assign to this protein type a negligible hydrophobic
mismatch. Proteins with more or less transmembrane layers are consequently
connected with a positive or negative hydrophobic mismatch, respectively.

The simulational membrane thickness profiles (Figure 4.3) are well characterized
by an exponential curve

h(r) = ho + Ah- e/ (4.1)

in agreement with former theoretical predictions (Dan93). Here, Ah reflects the
degree of hydrophobic mismatching and A\ a characteristic decay length that is
in all cases of the same order of magnitude.

The absolute value of Ah shows an interesting course, cf. Figure 4.4a. Start-
ing at a rather large value for proteins with only three transmembrane layers,
|Ah| decreases steadily until the number of transmembrane layer reaches n = 5
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where a minimum in hydrophobic mismatch is observed: Ah ~ 0.08. Increas-
ing the thickness of the transmembrane domain further, enhances the degree of
hydrophobic mismatching. However, this increase is not monotonic, i.e. for pro-
teins with even larger transmembrane domains, one does not observe a further
increase in hydrophobic mismatching. Rather, |Ah| settles at an approximately
constant value for n > 6. Based on these finding, our decision to term proteins
with five transmembrane layers as ‘neutral’ is further justified.

An explanation for this behaviour is found by inspecting the tilt angle of the pro-
teins with respect to the bilayer normal, ¢. Proteins with five and less transmem-
brane layers show a nearly constant tilt angle. Enlarging the protein’s hydropho-
bic core results in stronger tilted proteins (Figure 4.4b). Thus, it is obviously
energetically more favourable to tilt the protein than to stretch the bilayer any
further.

We next analysed the orientational character of the membrane lipids. To this
end, we computed the radial profile of the lipid tilt angle, J(r) and derived from
this the orientational order parameter S(r) that is defined as follows

S(r) = ([3cos*(¥) — 1] /2)

S characterizes the local lipid alignment with respect to the bilayer normal. A
perfect alignment is indicated by S = 1 while a perfect random orientation is
reflected by S = 0.

In a pure lipid bilayer, the average lipid tilt angle can be estimated from the
cylindrical envelope of the lipids. Taking the average area per lipid as A ~ 1.43/r?
and a typical lipid length as ¢ &~ 1.8r., the average lipid tilt angle is determined

to
(¥) = arctan \/A/(7(?) ~ 0.36

Far away from the inclusion, we see a good agreement with this estimate indi-
cating the local character of the membrane deformation. However, () deviates
significantly in the vicinity of the inclusion, cf. Figure 4.5a. Lipids around an
inclusion with a negative HM bend inwards in order to shield the surrounding
water. This is in contrast to lipids encircling a positive HM protein. Here, they
straighten up to fulfill their protective duty. Finally, a protein with negligible HM
hardly affects the lipid tilt angle.

The corresponding order parameter S (Figure 4.5b) corroborates the latter ob-
servations. One clearly sees that with decreasing distance r, the order parameter
S is near to unity for proteins experiencing a positive hydrophobic mismatch indi-
cating a very good alignment with the bilayer normal. In contrast, lipids around
a protein with negative HM are less aligned as reflected by the lower value of
S ~ 0.65.
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Figure 4.5: Lipid tilt angle (9) (a) and corresponding order parameter S
(b). Depending on the thickness of the TMD, the average lipid tilt angle
significantly deviates from its bulk value. Positive-HM (n = 6) proteins force
the lipids to straighten up (triangles) while a negative HM (n = 3) induces
an inward-bending of the lipids (squares). A negligible mismatch (n =5)
does only marginally affect (%) (circles). b) The corresponding order
parameter consequently indicates that lipids around a positive-HM protein
show a stronger alignment with the bilayer normal compared to other HMs
(symbols as in a).

These results suggest that lipids adjacent to a perturbative inclusion have a lower
entropy due to their constrained configuration as compared to their mates in an
unperturbed bilayer. In the next paragraph, we investigate whether this reduction
in entropy is sufficient to induce a clustering of membrane inclusions, similar to
the formation of micelles in oil-water mixtures.

Hydrophobic mismatching determines inter-protein sympathy

Theoretical work on the interaction energy between a pair of membrane inclusions
has been done previously. Dan et al. (Dan93; Dan94) approach this problem
via a mean-field theoretical description. In their work, inclusions are modeled as
rigid cylinders integrated into a homogeneous lipid bilayer with zero spontaneous
curvature. The interaction energy F per inclusion is equal to the perturbation
energy due to its integration into the bilayer. The latter energy depends on the
shape of the membrane thickness profile h(r) in-between the inclusions relative
to the unperturbed bilayer thickness hg, i.e.

Sh(r) %0—”0 (4.2)
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The change in energy reflects contributions from stretching (compressibility B)
and bending (bending modulus ) the lipid bilayer and is given by

ro+L
F = 27r/ dr rh—‘f [85h2(r) + Kkh3 (Vzéh(r))z] (4.3)
o

where ry is the radius of the inclusion and v denotes the approximate volume per
lipid molecule. The integration covers a circular region around an inclusion where
L is half the distance between the two inclusions. The equilibrium perturbation
profile minimizes the membrane-induced interaction energy; the Euler-Lagrange
equation minimizing the interaction energy F thus reads

B 4 42\ M
0= —ioh  with p:( °“) (4.4)

46h = —
v khg B

where p defines a characteristic correlation length of the deformation. Applying
the boundary condition that the thickness profile has to match the height of the
inclusion at r = ry further simplifies the latter equation giving

F

2 rh3h
— 2r d ] (4.5)

dh(r) rE (V25h(r))

v

Solving for F and performing a subsequent Taylor expansion, it is possible to
determine how the interaction energy depends on the deviation of the membrane
thickness directly at the inclusion’s rim h(ry) from its unperturbed value hg, i.e.
on the hydrophobic mismatch. It follows that

F o (6h(rp))? (4.6)

We have to note that the investigation by Dan et al. includes also thoughts
how the interaction energy varies if it is is dominated by the magnitude of the
stretching modulus B. They also treat the integration of cone-shaped membrane
inclusions leading to somewhat different results. The interested reader is referred
to (Dan93; Dan94).

Our approach to analyse whether the aforementioned decrease in configurational
entropy may drive the aggregation of membrane inclusions, is not as elaborate as
that of Dan et al. We place two proteins with the same hydrophobic mismatch
into a model bilayer. Monitoring the force components along the connection
vector between the two inclusions and subsequent integration yields the pair
potential that the proteins experience. To scan a reasonable range of hydrophobic
mismatches, the number of transmembrane layers varies between n = 3 and
n = 7. Figure 4.6a displays the so-obtained pair potentials U(r) for proteins
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Figure 4.6: a) The mean pair potential between two inclusions with
n=>5,4,6 (from top) shows a minimum for small distances. Inset: The
depth of the potential AU indicates that dimers with n # 5 have an
increased lifetime. The dashed line highlights the theoretical prediction

AU x A%. The potential curves are shifted so that their minima coincide at
r=0. b) The mean dimer lifetime t, as extracted from the simulations are
consistent with the predicted mean-first passage times T, derived from U(r).
For increasing HM, deviations are observed, presumably because the finite
simulation time only yields a lower bound for t,. Error bars show the
variation of T, when considering the escape to 2r. ... 6r., all time are
expressed relative to 15 and ts, respectively.
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with n = 4,5, 6 transmembrane layers. For all cases, the overall shape of these
potentials is similar.

Being far apart, the proteins are not able to sense the disturbance of the lipid
bilayer. They hence experience a flat potential. With decreasing distance between
the proteins, the shape of the pair potential changes significantly. A series of
rather shallow minima is followed by a potential well when the two protein are in
direct contact.

We further find that the depth of the potential well AU shows a nearly quadratic
dependence (cf. inset) on the number of transmembrane layers, i.e. on n. The
potential well had a minimal depth for proteins with five transmembrane layers,
i.e. proteins with a negligible HM. Increasing the hydrophobic mismatch by de-
or increasing the number of transmembrane layers n yields a quadratic increase
in potential depth.

For the sake of completeness, we mention that the envelope of the pair potentials
between proteins with three or seven hydrophobic layers are similar to the ones
just described here. The only difference is that they now exhibit an even deeper
potential well AU (cf. inset). The apparent fine structure of all potentials are
presumably due to the discrete lipid environment.

The above described pair potentials follow in gross terms previous mean-field pre-
dictions (Dan93; Dan94). Moreover, the predicted quadratic dependence of the
potential well on the degree of hydrophobic mismatch is also confirmed. Although
our simulational model supports the latter two key quantities, we are not able to
observe oscillations in the membrane thickness profile as predicted by the same
authors. Comparing our results to the capillary force model (Kralchevsky95),
we can not confirm the prediction that a negative mismatch induces a stronger
attraction than a positive mismatch of comparable degree.

Interestingly, we already observed for a nearly vanishing mismatch (n = 5) a
transient dimer formation. It is tempting to speculate that in this case not the
hydrophobic mismatch but rather the local geometric constraints of the adjacent
lipids contribute to the effective attraction.

In part b) of Figure 4.6 the observed dimer lifetimes t, as extracted from our
simulations (white bars) are displayed. Dimers of proteins with five hydrophobic
layers have the shortest lifetime while increasing or decreasing the hydrophobic
mismatch by changing the number of transmembrane layers resulted in much
longer dimer lifetimes. Note that all lifetimes have been normalized to t5!

Complementary, we provide the mean-first passage time 7 as calculated from the
pair potentials (Kramers40), i.e. the time it takes the two protein to escape the
potential well and to separate to a certain distance b. 7 is determined via the
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following formula (Risken96)

/

b r
T o / dr’ eU(r/)/ dr e V() (4.7)
0 —0
The so-obtained values of 7, are depicted in Figure 4.6b (gray bars) and normal-
ized to 75. In this case, errorbars reflect the variation in 7 if escape to distances
b = 2r,...6r. is considered.

The mean-first passage times 7, now exhibit an even stronger increase when the
number of transmembrane layers is shifted from the neutral value n = 5. The
approximate exponential increase of the mean-first passage times also agrees well
with theoretical predictions (Kramers40). The discrepancy between 7, and t, can
be explained by the fact that our simulations are finite. It is thus presumable
that our computer simulations are simply to short to cover the whole range of
dimer lifetimes.

To conclude this paragraph, we can state that the more pronounced the hy-
drophobic mismatch, the stronger the resulting lipid-mediated inter-protein at-
traction. As a consequence, dimer lifetimes with up to ~ 100us can be observed.

Comparison with the potential of mean force A more elegant way to
describe the interaction between a pair of molecules can be done in the framework
of the potential of mean force (PMF) (Kirkwood35). In general, i.e. a system
of N molecules/particles, the potential of mean force w, determines the force
acting on a molecule j in an ensemble of n fixed particles as averaged over all
configurations of the remaining N — n molecules. It is given by

—Viw, = fe’BV(—VjV)dqn+1___qu
. [ e?Vdqni1...day

Here, 3 = 1/kgT, and V is the potential between the particles. Adjusting the
above expression to our particular case in which the interaction between two
particles (proteins) is to be determined as a function of their mutual distance r,
leads to the determination of wy(r). A more illustrative interpretation of wy(r) is
that it represents the reversible work needed to bring the two particles/proteins
from infinity to distance r. In the following, we drop the subscript 2.

According to (Roux95) the potential of mean force along a general coordinate £
is given by the average distribution function (p(¢))

(4.8)

w() = w(&*) — kg T In {%} (4.9)

where w(&x) and p(&*) are arbitrary reference values. Regarding our problem, &
is identified by the inter-protein distance r.
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Monitoring the potential of mean force or the average distribution function during
a straight simulation is nearly impossible. Large energy barriers along the coordi-
nate & may prevent an accurate sampling of the configurational space. Therefore,
one has to make use of efficient sampling techniques, one of which is umbrella
sampling (Torrie74). This technique imposes an artificial biasing potential v(¢&)
on the system of interest in order to enhance the sampling in the proximity of
the chosen value £. Since the biasing potential confines the configuration space
around the chosen value of &, one also speaks of v(£) as a ‘window’ potential.
To obtain the potential of mean force over the whole range of interest, one usu-
ally has to perform a series of biased simulations in each sampling window. A
common choice to do this is to use a harmonic potential of the form(Roux95)

€)= () = Jk (€~ &)

centered on a set of successive values &;. That means, the potential of the
unbiased system Vj is now complemented by v; yielding the modified potential

V&) = Vo(R) + w(€) = Vo(R) + 3k (€ — & (4.10)

where R represents the coordinates of all particles in the system. The result of
this method is a biased distribution function p;(£) for each sampling window /.
Eventually these have to be unbiased and combined to obtain the final estimate
of the potential of mean force w. A crucial point here, is the choice of the
amplitude of the harmonic potential k which has to be selected in such a way
that consecutive windows overlap. Otherwise, a correct recombination of the
individual biased distribution functions to the unbiased total distribution function
pub(€) is not feasible.

In order to join the biased distribution functions p;(£), the weighted histogram
analysis method (WHAM) is used (Kumar92). Solving the coupled WHAM equa-
tions then yields the unbiased distribution function over the whole range of in-
terest. The WHAM equations read

ef,-/kBT:/pub(g)eVi(ﬁ)/kBTdé‘ (4.11)

Zi nipi(g) (412)

pub(f) = Zj njef(v;(i)*fj)/kBT

The parameter f; is the (initially) unknown free energy in each window due
to the biasing potential, n; is the number of samples in the i-th window, the
summation occurs over the total number of sampling windows N,y. Starting from
an initial guess of the f;'s, the above equations are solved self-consistently until
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Figure 4.7: a) Comparison of the potential of mean force w(r) (black
dashed lines) with the pair potential U(r) (red solid lines) for n = 3,4,5,6,7
transmembrane layers (from top). All potentials have been shifted for better
visibility. b) The mean-first passage times as calculated from the PMFs
(circles with errorbars) and the pair potentials (grey bars) coincide for all
hydrophobic mismatches.
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convergence is reached. Subsequently, the unbiased total distribution function
serves to determine the potential of mean force by using Equation 4.9. Restricting
the potential of mean force to evolve towards zero at large distances, the PMF
is given by

w(&) = —ks T In (pun(€)) (4.13)

To compare the pair potentials U(r) obtained by the simple integration of force
components, we performed also extensive free energy calculations on our system
by using umbrella sampling. Following the approach of (deMeyer08), we chose
to impose a harmonic biasing potential with amplitude kK = 10kg T on our DPD
system with two proteins; the i-th sampling window was centered around

& =& +iAE with AL =02r

The coordinate ¢ was identified with the distance of the proteins’ center of mass.
Figure 4.7a compares the potential of mean force w(r) with the pair potentials
U(r) for different hydrophobic mismatches. The potentials of mean force w(r)
have in general a smoother shape than the corresponding pair potentials U(r).
This qualitative property is best highlighted for proteins pairs with strong neg-
ative/positive mismatch (top and bottom graphs). In addition, the enhanced
sampling process prevents the PMFs from fluctuating at larger protein separa-
tions. In the region of the potential well, the two potentials coincide.

The only experimentally accessible observable, the mean-first passage times 7,
as calculated from the potential of mean force, are in perfect agreement with
the former derived values of 7, see Figure 4.7b. Although the calculation of the
potential of mean force via umbrella sampling is more elaborate than a simple
integration of force components, the results and the derived physical observables
do not differ.

Hydrophobic mismatching drives protein clustering

To test whether a larger hydrophobic mismatch also leads to a stronger protein
clustering, further large-scale simulations were performed. We now inserted 30
transmembrane proteins with equal HM into a homogeneous lipid bilayer of lateral
size L = 50r.. The protein density in this scenario is in agreement with estimates
of physiological values that are of the order of 10* proteins per um?. Qualitative
and quantitative data is presented enhancing and supporting previous results.

The left column in Figure 4.8 shows characteristic snapshots of the large-scale
simulations of proteins with negative, negligible and positive hydrophobic mis-
match (from top). As can be seen in the top and bottom picture, proteins
with a non-vanishing hydrophobic mismatch display indeed a strong clustering
behaviour. Among few monomers, higher-order oligomers are abundant for both
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negative (n = 4) and positive (n = 6) hydrophobic mismatch. Inspection of
the whole time series does not reveal any coalescence of proteins into one large
aggregate. We rather observe a dynamic attachment and detachment of single
monomers from larger aggregates as well as merging of higher-order oligomers.
In contrast, proteins with negligible mismatch (n = 5) are not able to form
clusters. Here, a dispersed distribution of mainly monomers and single dimers
are seen, trimers are rare and not very stable. The latter result thus confirms
our previous observation that these dimers have a very limited lifetime.

To support these qualitative momentary pictures, we determined the time-averaged
cluster size distribution P(m) for different hydrophobic mismatches. Here, m de-
notes the number of proteins in an individual cluster. In order to obtain this
distribution, we impose a square lattice in the xy-plane on the lipid membrane.
Hence, the position of each protein can be assigned a site (i, ) on the lattice. To
avoid multiple occupied lattice sites, we vary the grid constant until each protein
resides at exclusively one lattice point. The result of this procedure is interpreted
as a matrix C whose entries ¢;; state whether the corresponding lattice site is
occupied by a protein (c; = 1) or not (¢; = 0). Subsequently, the Hoshen-
Kopelman algorithm (Hoshen76) is used to analyse this occupancy matrix and
to determine number and size of existent protein clusters.

The right column in Figure 4.8 displays the cluster size distribution for proteins
with n = 4,5 and 6 transmembrane domains (from top). One striking property
of P(m) for proteins with a negligible hydrophobic mismatch, i.e. n =5, is that
it vanishes for m > 5. Hence, protein clusters consisting of more than five mem-
brane inclusions are not existent during the whole simulation time. In addition,
the vast majority of proteins is available in the monomeric state, accompanied
by few dimers and trimers.

This is in contrast to protein ensembles that experience a hydrophobic mismatch.
Although the corresponding cluster size distributions show great abundance of
monomers as well (top and bottom graph), oligomers with more than five proteins
are also likely to exist. In addition, the probability to observe smaller clusters
(m = 2,3,4,5) is enhanced compared to the case of a negligible hydrophobic
mismatch.

The increased probability to observe single monomers in all cases can be explained
by the properties of the Hoshen-Kopelman algortihm. This algorithm only takes
into account nearest neighbor sites for its cluster analysis. That means, two
diagonally separated proteins are not recognized as a dimer, but rather as two in-
dividual monomers. Additionally, aggregates that cross the periodic boundaries
are also not recognized as a whole, but the individual fragments are analysed
separately. Hence, the number of smaller cluster (especially monomers) is over-
estimated at the expense of higher-order oligomers. Nevertheless, P(m) proves
to be a suitable measure to characterize the protein ensemble in gross terms. It
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Figure 4.8: Left column: membrane configuration after ~ 10° time steps
for proteins (green) with negative, negligible and positive HM (from top).
These snapshots indicate that a non-vanishing HM indeed drives cluster
formation. Lipids are colored red (heads) and blue (tails). Right column:
cluster size distribution P(m) as derived from the simulations. While
clusters with more than five proteins are not observed for proteins with
negligible HM, the probability to observe such higher-order oligomers is
increased for non-vanishing HM.
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also clearly indicates that proteins with a non-vanishing hydrophobic mismatch
are more prone to aggregate compared to proteins that are nearly flush with the
surrounding membrane.

Estimation of the cluster size distribution Determining the cluster size
distribution of the previously described large-scale simulations turns out to be
challenging. Although the Hoshen-Kopelman algorithm gives a rough approx-
imation of the cluster size distribution for rather small systems, one is usually
interested in the behaviour of larger systems. Here, the prohibitively large compu-
tation time impedes the derivation of the cluster size distribution. We therefore
considered the following model to estimate the number of m-clusters, p,,, in a
system of M point-like proteins.

dpm R M—m

m—1
dt 2 D PiPm-i(L+ 6imi) = R Y Pupi(1+ Gim) 4+ (4.14)
i=1 i=1

The first and second term account for the gain and loss of m-clusters, respectively,
due to the diffusively driven aggregation of two clusters. The corresponding
aggregation rate R can be derived as follows: according to Saffman and Delbriick
(Saffman75), the diffusion coefficient D of membrane inclusions depends only
marginally on their size. Consequently, one may refer to R as the inverse diffusive
search time on a membrane of lateral size L which finally gives R = D/L.

The last term in Equation 4.14, J,,, describes the loss of single proteins from the
rim of a cluster and is given by

M
h=V8p+7> Vkp
k=3

(4.15)
szv(\/m+1pm+1—\/ﬁpm> l<m<M

JI\/I - _'Y\/MPM

The evaporation rate vy is identified with the inverse observed dimer lifetime t,
i.e. v = 1/t. For the sake of simplicity, we do not take into account three-
body events, i.e. the aggregation of or the breakup into three individual clusters,
respectively. It is of further note that the total number of proteins

> p(m)m =M
is conserved under the dynamics of Equation 4.14. In contrast, the number of

protein clusters Y p(m) is not conserved.
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Figure 4.9: a) The cluster size distribution p(m) (Equation 4.14) for
tDM /12 = 0.1,0.36,1.8,3.6,7.2 (squares, circles, triangles, inverted
triangles, diamonds) underlines the existence of larger clusters for increasing
hydrophobic mismatch. b) The mean cluster size (m) as derived from a)
also increases with increasing mismatch.

The numerically obtained values for t and D were now used to calculate the
steady-state cluster size distribution for different values of the ratio DMt/L2,
that is for different hydrophobic mismatch. As depicted in Figure 4.9a, the
simple model predicts that higher-order oligomers of up to 10mers are likely to
exist for large hydrophobic mismatch. The monotonic rise of the mean cluster
size (m) also supports this prediction (cf. Figure 4.9b).

Moreover, a relatively large amount of free monomers and dimers is to be ex-
pected for every tested value of DMt/L2. This scenario is unfortunately not
observed in our simulations. A reason for this discrepancy can result from our
assumption that dimers and larger cluster are equally stable which may be an
oversimplification. However, given the simplicity of the dynamical model, Equa-
tion 4.14 can be expected to actually underestimate the mean cluster size by
overestimating the number of free monomers. Nevertheless, this simple model is
a valuable tool to determine a lower boundary for the mean cluster size.

Summarizing so far, we can state that the conditions for membrane protein
clustering, which is a frequent and often vital phenomenon in living cells, can be
relaxed by the protein’'s hydrophobic mismatch with the surrounding membrane.
A reduction in configurational entropy of the lipids surrounding the protein is
responsible for a long-ranged, lipid-mediated inter-protein attraction. Protein
dimers formed by this mechanism can already be stable entities, larger clusters
appear to be even more persistent. The distinctive tendency to form protein
aggregates can be connected with such 'imperfect’ membrane proteins.
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4.3 Segregation of transmembrane proteins via
hydrophobic mismatching

Connected to the results described above, the question whether hydrophobic
mismatching also allows for a differential de-mixing of proteins according to
their hydrophobic mismatch arises. For this purpose, we modified the large-scale
simulations of the previous section in the following way. Instead of including 30
identical proteins, the number of transmembrane domains of half of the proteins
are changed in the same manner resulting in a binary mixture of transmembrane
proteins. In the following, we refer to the different protein species as A and B,
respectively. Here, we focus on the question whether a HM-dependent protein
segregation is observable, and we discuss qualitative and quantitative results.

4.3.1 Analysis of protein co-localization

One crucial aspect regarding protein de-mixing is the spatial correlation between
proteins of different species. To elucidate the temporal and spatial segregation
behaviour of a binary protein mixture, we analysed time series of simulation
snapshots and performed statistical analysis on the co-localization patterns of
proteins. In our simulations, we included every possible combination of two
protein species with different number of transmembrane layers n from the set
{3,4,5,6,7}.

Despite the tremendous numerical effort, we restrict ourselves to discussing three
central cases. The first case represents compositions of proteins with the same
type of mismatch, i.e. positive (negative) and strong positive (negative) mis-
match, respectively. Second, one has mixtures of proteins with opposing hy-
drophobic mismatch. Finally, one can combine proteins with negligible and non-
vanishing HM. In the following, we denote a mixture of proteins with n and m
hydrophobic layers as TMDn/m. We remind the reader that proteins with five
hydrophobic layers possess a nearly vanishing mismatch, increasing or decreasing
the variable n results in a positive or negative mismatch, respectively.

A quantitative analysis was performed by making use of the so-called pair cross
correlation function (PCCF) (Stoyan95). This function can be used to charac-
terize whether an ensemble of particles of different types exhibit co-localization.
Basically, the PCCF provides ratios of local particle densities to their global den-
sity. Consider a binary mixture of particles: around each particle of the first type,
concentric circles are drawn. The local density of particles of the second type
is now determined in each annular region and the ratio with the global second-
type particle density is calculated which gives the pair cross-correlation function
dependent on distance. The PCCF indicates at which inter-protein distances a

59



Hydrophobic mismatching

TMD6/7

10

— PCCF(r)

r/re
TMD4/7

| PCCF(r)

r/re
TMD5/6

. PCCF(r)

H

r/rc

Figure 4.10: Snapshots of binary protein mixtures (left) and
corresponding pair cross correlations functions (right). While snapshots of
TMDA4/7 (middle) and TMD5/6 (bottom) mixtures show a distinct protein
segregation, TMD6/7 (top) mixtures do not. The instantaneous pictures are
supported by the PCCFs that are averaged over the whole simulation time.
The errorbars in the single plots indicate the mean error of data points.
Lipids are colored red (head) and light-blue (tails), shorter proteins are
colored green, larger in blue. Note the different scales in the PCCF plots!
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local change in particle density is observed serving as a means to identify particle
co-localization. One has to note that the PCCF does not change if the roles of
first and second particles are exchanged. Following this construction, the PCCF
approaches unity if r — oo.

Representative snapshots of the spatial protein distribution for different binary
protein mixtures and the corresponding pair cross correlation functions are pro-
vided in the left and right column of Figure 4.10, respectively. The corresponding
protein mixture are TMD6/7, TMD4/7 and TMD5/6 (from top).

One striking property of the uppermost snapshot is a pronounced co-localization
of the two protein species. One observes six distinct hetero-oligomers of roughly
the same size that appear to be evenly distributed in the lipid bilayer. A qual-
itatively similar picture is found when inspecting a protein composition where
both species exhibit a negative mismatch, i.e. TMD3/4. Hetero-oligomers are
exclusively observed, negating the answer of a possible protein segregation, at
least in these scenarios.

The corresponding PCCFs exhibit a very prominent peak for small inter-protein
distances. The local density is in these cases more than 10-fold increased com-
pared to its global value indicating a strong protein co-localization. The PCCF
thus supports the qualitative snapshot.

In contrast to the latter case, a binary mixture of proteins with opposite HM
clearly displays a differential separation. A representative example is given in the
middle row of Figure 4.10 which shows the distribution of proteins with negative
(n = 4, green) and positive mismatch (n = 7, blue). Homo-oligomers of both
protein types are present exhibiting a distinct spatial separation between each
other.

The PCCF in this case is nearly zero for small distances and approaches its
limiting value for increasing values of r. This behaviour clearly proves that
proteins with different types of mismatch repel each other and are prone to
attract alike proteins. As before, similar mixtures, e.g a TMD4/6 or TMD3/6
protein composition, behave in the same way.

The bottom row is reserved for the last possible case. Proteins with negligible
HM are mixed with proteins with a non-vanishing HM. In our notation, the snap-
shot shows a TMD5/6 protein mixture. We can now observe a third scenario:
inclusions with five transmembrane layers are spatially dispersed while their coun-
terparts with six hydrophobic layers aggregate. Interestingly, hetero-oligomers are
not present although some proteins of different types are in close proximity. One
can conclude that the tiny positive HM of proteins with n = 5 does really not
affect their dynamics.

The associated PCCF exhibits a maximal change in local protein density for
r =~ 5r. but then steadily levels off for increasing inter-protein distances. The
mentioned peak confirms that proteins of different type show a certain proximity
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that can not yet be interpreted as a clustering effect. It is noteworthy that all
protein compositions of the last kind follow the described behaviour.

A general observation we have made is that the default behaviour of our DPD
model proteins did not change when they were part of a binary protein mixture.
Proteins with a non-vanishing hydrophobic mismatch were prone to cluster while
proteins with negligible HM were not. In addition, the continuous formation and
disintegration of protein clusters persist as well.

To conclude, we can state that HM-induced protein segregation is observed if
hydrophobic mismatching is sufficiently different. Proteins with similar HMs co-
localize into hetero-oligomers while proteins with opposite HMs separate. The
default protein behaviour, i.e. HM-induced clustering, as described in the pre-
ceding section is conserved.

4.4 Hydrophobic mismatching as a lipid environ-
ment sensor

In this section we explore the commonly anticipated protein partitioning to that
part of a lipid bilayer that yields the least hydrophobic mismatch. To this end
a heterogeneous membrane was set up via two lipid species of different length
that are expected to induce a spontaneous lipid segregation. The formation of
co-existing lipid phases with different thicknesses has been reported for a variety
of ternary lipid mixtures (Veatch05) and it is assumed to also occur on cellular
membranes.

4.4.1 Lipid phase separation in membranes

Typical biomembranes have a very heterogeneous character, they usually accom-
modate a plethora of different lipid molecules. To model the potentially different
lipid composition we made the following approach: consistent with previous sim-
ulations, the lower membrane leaflet accommodated exclusively short lipids while
the upper leaflet was a 1:1 mixture of short and long lipids. Short and long lipids
correspond here to HT3 and HTg lipids, respectively. This binary lipid mixture
already has the ability to spontaneously phase separate. However, to allow for a
more efficient phase separation, we slightly increased the repulsion parameter be-
tween the different lipid head groups to A = 30kg T. We have to note that this
alteration did only accelerate the phase separation process but did neither affect
nor modify the subsequent results. In contrast to previous simulations, we now
provided the lipids with a stronger bending rigidity that has the positive effect
that membrane inclusions with five hydrophobic layers are now nearly perfectly
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Figure 4.11: a) A lipid bilayer composed of different kinds of lipids shows
a lipid phase separation. Here, half of the short lipids (HT3) in the upper
leaflet were replaced by long lipids (HTs), resulting in a membrane with
non-uniform thickness. Short lipids are colored red (head) and light-blue
(tails), long lipids are blue (head) and cyan (tails). b) The cross-section
through such a lipid bilayer clearly displays the variations in membrane
thickness due to the mixed lipid composition. The corresponding thickness
profile is shown below. Color coding as in a), for reasons of illustration, the
snapshots a) and b) were taken at different times.

flush with a pure HT3 bilayer (see below for details).

In Figure 4.11a) a nice lipid phase separation is visible, the head groups of short
and long lipids are colored red and blue, respectively. Two large areas with
predominantly short or long lipids are observed in which single lipids of the other
kind are occasionally dispersed. At the front edge one can also recognize the tail
beads of the different lipids that are colored light-blue (short) and cyan (long). In
part b) of Figure 4.11, a cross section through such a heterogeneous membrane is
shown. Here, membrane domains of different thickness are clearly visible. Below,
the corresponding membrane thickness profile is shown underlining the existence
of membrane sectors with varying thickness. Note that for reasons of better
visibility the snapshot in b) was taken at a different time point as that in a).

4.4.2 Proteins try to minimize their HM

After establishing an equilibrated lipid membrane with varying thickness, we in-
vestigated the partitioning behaviour of transmembrane proteins with different
hydrophobic mismatches. For this purpose, we removed a bunch of lipids from
the membrane, filled the void with a single protein and, after a second equili-
bration period, monitored the distribution of short and long lipids in a circle of
radius 4r. around the center of the integrated protein as a function of time. Our
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n=4 n=>5 n=>6
A A, A A A A,
—0.51r. —1.68r. —0.03r, —1.14r, 0.51r, —0.47r,
— thin region — thin region — thick region

Table 4.1: Hydrophobic mismatches Ag and A, for proteins with
n=4,5,6 transmembrane layers. The proteins are expected to migrate to
that region of the lipid bilayer where their HM is minimized. Consequently,
proteins with four or five hydrophobic layers prefer the thin part of the
heterogeneous membrane while proteins with six transmembrane layers
rather partition into the thicker bilayer region.

aim was to check whether hydrophobic mismatching may guide a transmembrane
protein into the lipid phase where its HM is smallest.

The presence of short and long lipids in the upper leaflet is responsible that
the hydrophobic mismatch of an embedded protein is now dependent on the
protein’s lateral position. Being exclusively surrounded by short lipids or long
lipids yields different degrees of hydrophobic mismatching we term A, and A,
respectively. The degree of HM can be measured via the difference between
the (corresponding) unperturbed bilayer thickness and the bilayer thickness at
the boundary of the embedded protein. Table 4.1 summarizes these values for
proteins with n = 4,5, 6 transmembrane layers as well as the membrane region
the proteins are expected to partition into.

By construction, proteins with four hydrophobic layers experience a negative HM
in both lipid phases. However, the degree of HM in the thin bilayer region
(As = —0.51r.) is considerably smaller than that in the thicker part of the
lipid bilayer (A; = —1.68r.) predicting that such proteins are preferably found
surrounded by short lipids. In fact, pictures from the corresponding steady-state
configuration confirm this prediction (cf. Figure 4.12a) The protein (green) is
floating in a sea of short lipids (red) being well-separated from the long lipids
(blue).

Additional support is provided by the time-averaged lipid distribution in a circle
of radius 4r. around the protein: short lipids constitute nearly 90% of the total
number of lipids in this region, long lipids only represent a small minority.

The situation does not change when comparing the different HM values for a
protein with n = 5 transmembrane layers. Since this kind of proteins shows
a nearly vanishing HM in the domain of short lipids, A; = —0.03r, it is no
surprise that these proteins also diffuse into this domain and avoid — due to the
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rather large value of A; = —1.14r. — being located in the complementary region.
Again, the time-averaged lipid distribution supports the accompanying snapshot
(Figure 4.12 b).

Opposite results are found for proteins with six hydrophobic layers. To minimize
its HM, the protein now migrates into the part of the lipid bilayer where long
lipids determine the membrane thickness. However, the competition between the
two HMs is now not as unfair as compared to the previous cases: the values of
A; = 0.51r. and A; = —0.47r, differ only by about 10% and it is remarkable that
this small difference is obviously sufficient to guide the protein to the right part
of the membrane, i.e. the part where the protein's HM is minimized. This finding
is also reflected in characteristic snapshots and the associated lipid distribution
that are depicted in part c) of Figure 4.12.

These results demonstrate that proteins diffusively partition into the lipid phase
with the smallest hydrophobic mismatch. A similar behaviour can be expected
if lipid bilayers with symmetric leaflets are considered. A remarkable property
is that the navigational skills connected to a protein’'s HM are very sensitive
since differences in HM of about 10% are already distinguishable. It is therefore
conceivable that a complete demixing and partitioning of ternary and even more
complex protein mixtures is possible.

It is worth noting that our simulational results support previous experimental
data. Ronchi et al. (Ronchi08) created mutations of transmembrane proteins
with different lengths of the transmembrane domain. They interpreted the ob-
served altered partitioning behaviour as being due to the change in hydrophobic
mismatch.

4.5 Protein sorting by hydrophobic mismatching

Transport of transmembrane proteins along the secretory pathway is mediated
by different means. While anterograde cargo molecules are exported from the
ER at specialized domains (ER exit sites) via COPII vesicles, unfolded and ER-
resident proteins are retained. At the level of the Golgi apparatus, cargo proteins
and Golgi-resident enzymes are sorted differentially into distinct cisternae by
means of the COPI machinery. As a consequence, Golgi enzymes have been
observed to show gradient-like distributions across the Golgi stack in steady-
state (Rabouille95). Indeed, stationary, non-uniform distributions of a plethora
of transmembrane proteins occur throughout the secretory pathway, that is from
the ER via the Golgi complex to the plasma membrane.

To solve the riddle of how transmembrane proteins determine their correct lo-
calization, two models have been proposed. The kin recognition hypothesis
(Nilsson93) invokes the (temporary) formation of larger hetero-oligomers due
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Figure 4.12: Pictures of proteins with n = 4,5,6 hydrophobic layers (from
top) and representative snapshots of their steady-state configuration in a
phase-separated lipid bilayer (lipid color coding as in Figure 4.11, proteins
are colored green). Proteins with four or five transmembrane layers partition
with high preference into the thin membrane domain while thicker proteins
prefer the complementary domain. This is also reflected by the steady-state
fraction of short and long lipids in the vicinity (radius of 4r.) of the
embedded protein.
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to specific motifs in the stalk and transmembrane region of the proteins. The re-
sulting complexes are thus simply too large to enter transport vesicles and hence
do not leave their compartment. This is in contrast to the membrane thickness
model (Bretscher93).

According to the latter hypothesis, the length of a protein’s transmembrane do-
main is the essential factor in correct protein localization. The TMD acts as a
probe sensing the varying lipid thickness along the secretory pathway (Mitra04).
The journey of the protein stops if the TMD matches best the local lipid envi-
ronment. It is important to note that both models are not mutually exclusive
and that both have been supported experimentally (Nilsson94; Munro95).

The key role of the length of the transmembrane domain was recognized as
early as 1984 by Mouritsen & Bloom in their innovative 'mattress model’ of lipid
bilayers (Mouritsen84). Here, the retention of an integral membrane protein,
whose TMD is either too long or too short compared to the surrounding lipid
bilayer, is energetically unfavourable. We have seen in Section 4.4, that this
difference triggers the diffusional partitioning of integral proteins into membrane
domains yielding a smaller hydrophobic mismatch.

Moreover, TMD-dependent protein partitioning was either directly observed or
indirectly derived in recent experiments corroborating the major role of the
hydrophobic mismatch in the protein sorting process (Abrami08; Patterson08;
Ronchi08).

A simple model for protein sorting

On the one hand, it is easy to imagine that an integral protein scans its local host
membrane for more appropriate domains. On the other hand, a comprehensive
explanation of the protein’s ability to feel that a remote organelle may provide an
environment with a smaller HM is lacking. In other words: how do proteins reg-
ulate their transport towards organelles with a more suitable lipid environment?
How do bunches of chemical compounds orchestrate the sophisticated sorting
machinery in such a way that they reach their proper destination?

Bearing in mind the different HM-related effects on the dynamical behaviour of
transmembrane proteins, in particular protein clustering and segregation, we offer
a model of how these phenomena may contribute to intracellular protein sorting
and trafficking (cf. sketch in Figure 4.13).

Engulfing membranes of organelles along the secretory pathway show slightly
different thicknesses reflecting varying contents of cholesterol and sphingolipids
(vanMeer08). A given transmembrane protein may thus experience alternating
hydrophobic mismatches during its odyssey along the secretory pathway. How
this may help the protein to find its proper destination is now described.

As an example, a newly synthesized Golgi-resident glycosylation enzyme may feel
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Figure 4.13: Model of how hydrophobic mismatching may facilitate
transport of transmembrane proteins. If a HM (top: negative, bottom:
positive) exists, clustering of transmembrane proteins is observed. These
clusters can modulate the turnover rate of coat components (green ellipses)
that shape an emerging vesicle at the locus of the protein cluster. This
vesicle will be transported to a nearby compartment with a different
membrane thickness where the protein may not experience a hydrophobic
mismatch anymore (middle).
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the surrounding ER membrane as too thin. Due to the positive hydrophobic
mismatch, protein clusters emerge that are able to alter the local turnover rate
of COPII proteins (Forster06), facilitating in this way the formation of COPII
transport vesicles. The protein, and many other cargo, is packed into these
transport vesicles that are released from the ER membrane.

After budding-off, the vesicle travels toward the Golgi apparatus and eventually
fuses with the cis-most cisterna. Here, the present lipid environment may match
well the desire of the transported protein, it does experience no or only a small
hydrophobic mismatch. Consequently, the protein is not very prone to aggregate
with like proteins.

However, cisternal maturation and lipid metabolism may soon lead to an in-
crease in bilayer thickness resulting in a negative mismatch. Again, protein
clusters start to emerge that now invoke and modulate the COPI machinery
(Lanoix01; WeiB03b) for retrograde transport. In doing so, the protein escapes
this unpleasant situation and tries to find a cisterna with a more appropriate lipid
composition.

The ability to recognize different coat complexes may be mediated by specific
cytoplasmic sequences attached to the corresponding transmembrane protein
(Nilsson89). The problem of whether the two involved compartments, the ER
and the Golgi apparatus, are able to conserve a distinct chemical identity dur-
ing bi-directional transport, was resolved by a generic mechanism developed by
Heinrich & Rapoport (Heinrich05).

One has to note that cisternal maturation is not a compulsory ingredient in the
above described scenario. It is inevitable that proteins enter a transport vesicle
that accidentally migrates towards an, regarding hydrophobic mismatching, even
worse compartment. The vesicular transport model may then help to retrieve
mislocalized proteins.

4.5.1 Numerical implementation of the sorting hypothesis

Given the above described simple model for protein sorting, one may ask for
a simple implementation. In support of our model, further Monte Carlo (MC)
simulations were performed in which the formation and loading of transport
vesicles were modeled. We first give a short summary of the MC simulations and
continue then with their results.

Monte Carlo simulations of vesicle formation

To simulate the effect of hydrophobic mismatching on vesicle formation and the
steady-state secretory flux, we use lattice Monte Carlo simulations. Cargo and
attached coat proteins are subject to diffusional motion on a 50 x 50 square
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lattice with lattice constant Ax = 10nm. The diffusion coefficients of cargo and
coat particles are set to D, = 0.5um2/5 and D = O.25um2/5, respectively. As
open boundary conditions are used, a diffusive flux between the lattice boundaries
and an external particle bath has to be implemented in order to guarantee a more
or less constant particle density. For this purpose, we follow the approach given
in (Geyer04; Gorba04). The time increment is set to At = 40us. The so-
established Monte Carlo lattice has approximately the size of a single ER exit
site at which secretory COPII vesicles emerge.

The motion of cargo and coat particles is modeled via the blind ant algorithm
(Majid84), i.e. particles are permitted to leave a lattice site with probability

Pd,'ff = 4DAt/AX2

towards one of the four neighboring sites. The parameter D is a wildcard for
either D,z or Ds. An oligomeric size M = 1,2,4,8,16 is assigned to cargo
particles, mimicking protein clusters of size M resulting from HM-induced at-
traction between individual proteins. According to the Saffman-Delbriick rela-
tion (Saffman75), diffusion of membrane inclusions depends only weakly on their
size. Therefore, and for reasons of simplicity, we do not vary cargo diffusion
coefficients with oligomeric size.

Coat proteins adsorb to and detach from individual lattice sites with rates kj
and kp, respectively. As these rates can be regulated by the present amount of
cargo (Lanoix01; Forster06), we choose the following relation

ka=k3-1.00M1  and  kp = Kk} -0.93"1 (4.16)

Consistent with previous reports, the values for the default attach- and detach-
ment rates are chosen to be k3 = 10kQ = 0.4/s yielding a typical residence time
of COPII components in the range of a few seconds. In addition, adsorbed coat
particles are allowed to irreversibly capture a single cargo particle (having multi-
plicity M) residing at the same grid point. Captured cargo follows the associated
coat in its diffusion.

The diffusion of adsorbed coat particles is extended with an intrinsic aggregation
ability. The tendency to aggregate is to stimulate the formation of bud-like
structures representing transport intermediates of COPII type. According to the
blind ant algorithm, for each site a direct neighbor site is randomly chosen. An
exchange of the coat-contents of this pair of lattice sites occurs with probability

PMC = Pdiff . min{]., eX,D(—AE/kB T)}

The first term simply accounts for the diffusional step whereas the second term
involves the difference in compositional energy AE and the standard Metropolis
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Figure 4.14: Typical lattice configuration directly before a budding event:
the encircled aggregate of coat particles (red circles) accommodates 55 coat
particles and exhibits a more or less roundish shape. The underlying lattice
is not drawn as are the diffusing cargo proteins. One can further recognize a
couple of potential seeds for subsequent transport vesicles.
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Figure 4.15: a) The number of produced vesicles increases with increasing
oligomeric size of cargo proteins. b) The relative vesicle budding rates
increases strongly with the oligomeric size. An amplification of up to tenfold
is observed. Circles represent data from an exponential modulation of the
exchange rates, squares from a linear modulation type.

criterion where AE depends on the individual binding energy we set to ¢ = 2kg T .
Coat contents are thus preferably exchanged if their swap creates an energetically
more favorable configuration.

Larger assemblies of coat particles are interpreted as primers of COPII transport
vesicles and are identified by using the Hoshen-Kopelman algorithm (Hoshen76).
To bud off, these assemblies are restricted to incorporate more than 50 coat
particles and to display a more or less roundish shape. An aggregate is assumed
roundish if the average number of direct neighbors occupied with coat exceeds the
value 3.3. The numerical value of 50 coat particles is adopted from experimental
studies on the structure of these vesicular carriers (Stagg06)

To have a fair comparison, we fix the total (average) amount of cargo proteins
on the lattice to (Np) = 2500, meaning that the number of cargo clusters is
on average (Np)/M. Figure 4.14 displays a typical lattice configuration directly
before a budding event.

We monitor for T = 4000s real time several quantities, including number, size
and cargo content of formed vesicles for different oligomeric sizes M. From the
total number of produced vesicles, we derive via simple linearization the rate with
which vesicles are released from our model ER lattice. As a benchmark, we first
inspect the budding rate for monomeric cargo. Here, 9 pinched-off vesicles are
observed yielding a budding rate of 0.13 vesicles per minute. Figure 4.15 displays
the total number of produced vesicles and the derived budding rates normalized
to the monomeric case.

For all oligomeric sizes M, an increase in the number of pinched-off vesicles is
observed resulting in a likewise increase of the budding rates. While the bud-
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Figure 4.16: a) The relative amount of cargo is greatly amplified for
increasing oligomeric size M. For M = 1 the basal amount of cargo is 112.
Data is presented for an exponential (circles) and a linear (squares)
modulation type of the exchange rates. b) The average size of transport
vesicles nearly stays constant and is consistent with previous reports on the
structure of the COPIl complex.

ding rate for monomeric and dimeric cargo nearly coincides, it steeply increases
when M is increased beyond M = 4. For M = 16, the largest oligomeric size
considered here, the budding rate is more than tenfold compared to the case of
monomeric cargo. Thus, a tremendous amplification in vesicle formation and
hence membrane flux is observed if the oligomeric size M is varied.

We next inspected the amount of transported cargo for varying multiplicity M.
The basal amount of cargo if monomers are present on the lattice is 112 cargo
units per vesicle. The transport capacity steadily increases showing a maximal
amplification of a factor of 9 for M = 16 (see Figure 4.16a).

The assembled coat patches from which vesicles are thought to emerge have on
average the same size for all oligomeric multiplicities M. In fact, this is a direct
consequence from our simulation model. We determine the average vesicle size
to be roughly 56 4 6 coat particles (cf. Figure 4.16b).

To investigate the robustness of our numerical data, we chose to alter the coat's
attachment and detachment rate in a linear instead of an exponential manner
according to

ka = kS -(1.02—M-0.05) and  kp = kD -(0.83+ M-0.19)

Although the numerical values in the upper equation do seem quite arbitrary, they
are chosen in such a way to approximate the exponentially modulated exchange
rates for the limiting values of M. This change did not result in significant
deviations from the above results. Solely the budding for M = 16 showed a
slightly larger value, values for transported cargo and vesicle size was not altered.
Data for this modulation type is depicted in Figures 4.15b and 4.16a.
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M NM BM[l/mm] BM/BO CM C[\/I/Co size
1 9 0.13 1.0 112 1.00 57
2 17 0.26 2.0 165 1.47 55
4 26 0.45 3.5 281 2.51 56
8 41 0.69 5.3 542 4.83 60

16 81 1.45 10.6 998 8.91 58

Table 4.2: Summary of numerical values for Doy = 0.25m? /s and an
exponential modulation of attachment and detachment rate. The entries
correspond to (from left to right): oligomeric size, total number of produced
vesicles, absolute budding rate, relative budding rate, absolute amount of
cargo, relative amount of cargo and vesicle size.

During a third simulation series, the diffusion coefficient for coat particles was
lowered to D, = 0.1um?/s. Again, a steady increase in budding rates and
transported amount of cargo with oligomeric size was observed irrespective of
the modulation type (exponential or linear). However, the basal flux with these
settings was unphysiologically low. Table 4.2 summarizes the numerical data for
D.; = 0.2511m?/s and the exponential modulation of the exchange rates.

The above presented results thus support the hypothesis that protein cluster-
ing originating from hydrophobic mismatching can stimulate and enhance the
secretory flux in terms of membrane and transported cargo proteins. This im-
provement originates from the ability of cargo proteins to alter the local turnover
rate of coat components. It is therefore conceivable that proteins can arrange for
a nearby formation of transport intermediates to shuttle to a remote organelle.
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Chapter 5

Diffusion of oligomers

In the preceding chapter we discussed that hydrophobic mismatching of trans-
membrane proteins stimulates oligomerization/clustering. The resulting protein
clusters are very dynamic entities displaying a constant exchange of single proteins
with the host membrane and diffusively driven aggregation with other clusters.
Indeed, the formation of higher-order structures is a frequent process of trans-
membrane proteins facilitating their function and helping to assume proper sub-
cellular localization (Schuck04; Park04). However, oligomerization alters the
diffusion properties of the participating individual proteins. Our aim in this chap-
ter is to analyse the diffusion behaviour of protein complexes that are the result
of an oligomerization process.

Before we concentrate on our simulational setup, we briefly summarize how dif-
fusion processes can be described mathematically and present key quantities that
help to characterize diffusional motion.

5.1 Diffusion in a nutshell

The thermally driven motion of a particle in solution is non-directional and sto-
chastic. The irregularity in its movement is due to thermal random kicks by the
solvent molecules and the path of the suspended particle can be classified as a
random walk. In the simplest case, a one dimensional random walk, a tracer par-
ticle moves a distance dx to the left or to the right during a certain time interval
At. Usually, the probability for a step to the left or to the right is assumed to
be equal and denoted by p = 1/2. The probability to find the tracer particle
after n time steps k steps remote from its starting point is given by a binomial
distribution whose general formula reads

B(p, n, k) = <:)pk(1 —p)"™  with <:) - kl(n”ilk)l (5.1)
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The mean and variance of B(p, n, k) are 1 = np and 0> = np(1—p), respectively.
In the limit of n — oo, p — 0 and p finite, the binomial distribution converges
to a Gaussian, or normal, distribution. Incorporating a random walk's character
into the latter description, one arrives at the following formula to find the tracer
particle at time t > 0 a distance x remote from its starting point
p 1 2

X, t) = ————> € 5.2

(x. 1) (47 Dt)—9/2 (5:2)
Here, we already accounted for the Euclidean dimension d of the space in which

the random walk is embedded in. The parameter D is the diffusion coefficient
length?

s It is a measure of the mobility of

of the tracer particle; its unit is [

the tracer particle that is determined by the temperature T and the viscosity

71 of the solvent. The Einstein-Stokes equation relates the diffusion coefficient

D of a spherical body (radius R) to temperature, viscosity and particle size as
(Einstein05)

kg T

- 6mR

Another way to obtain Equation 5.2 is to interpret diffusing particles from a

macroscopic point of view. Their stochastic motion leads to the balancing of

particle gradients. Fick's first law (Fick55) describes the particle flux j that
originates from a concentration gradient VC as

(5.3)

j=-D-vC

Here, the factor D also denotes the diffusion coefficient. Combining the latter
equation with the continuity equation (mass conservation) 9, C = —Vj gives the
diffusion equation (Fick's second law)

0:C = DV*C (5.4)

The solution to this second-order partial differential equation is given by its
Green's function or propagator. The special initial condition C(0,0) = (0, 0)
possesses the following propagator of the diffusion equation
c 1 52
)= —————=-€e 55
(x. 1) (47 Dt)—9/2 ¢ (55)
Hence, the time evolution of the d-distribution is given by a Gaussian propa-
gator. It is identical to Equation 5.2 thus connecting the spreading of particle
concentration with the diffusion of a single tracer.
Coming back to the probability distribution, Figure 5.1 displays P(x, t) at dif-
ferent times t with the initial condition Py = 0(t). One clearly sees that the
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Figure 5.1: One-dimensional
probability distribution P(x, t) for
different times t. The diffusion
coefficient was set to D = 4, the
initial condition was P(0,0) = 4. The
probability to find the tracer particle
remote from the origin increases with
time.

probability to find the tracer particle remote from the origin increases for later
times t.

Since P(x, t) is a probability distribution, one is usually interested in its first and
second moment of the spatial variable x, i.e. its mean and variance, respectively.
These can be computed easily and read

(x)=0 and  (x?) =2dDt (5.6)

Associated with diffusional motion, the second moment is also termed mean-
square displacement (MSD) and increases, for normal diffusion, linearly with time.
A more general form of the mean-square displacement involves an additional
parameter « that is a measure for the degree of anomaly of the diffusion process.
The expression for the second moment changes accordingly to

(x?) = 2dDt"

A diffusion process is termed anomalous if the parameter « deviates from unity.
If a < 1 the motion is called sub-diffusive while for a > 1 it is termed super-
diffusive. o = 1 reproduces normal diffusion behaviour. We note here that
anomalous diffusion processes can, in general, not be described by a Gaussian
propagator (Metzler00; Bouchaud90).

Random processes responsible for sub-diffusion can be grouped into two cate-
gories: those that are associated with stationary increments and those that arise
from non-stationary increments. Examples from the first category are fractional
Brownian motion (fBM) or percolation, while a continuous time random walk
(CTRW) falls into the second class (Szymanski09). As a consequence, a CTRW
shows a weak ergodicity breaking.

5.1.1 Diffusion of membrane inclusions

Being integrated into a lipid bilayer, membrane inclusions perform two-dimensional
diffusion. In the last chapter we have seen that hydrophobic mismatching can
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Diffusion of oligomers

lead to a pronounced protein aggregation. While the origins of protein oligomer-
ization can be manifold, it is beyond question that the shape of the emerging
oligomer determines distinct biophysical properties like the diffusion coefficient
D.

Experiments have used the diffusion coefficient to characterize the oligomeric
state of proteins (Cole96) as the diffusion coefficient depends on the radius R
of the oligomers. However, diffusion in a membrane does not yield the simple
relation D o 1/R found for bulk solutions. Instead, a logarithmic dependence of
D on R is found (Saffman75) for radii R < 10nm

p — keT (In[hnm/(Rnc)] — )
47N mh

(5.7)

Here, h is the membrane thickness, R the lateral radius of the membrane in-
clusion, v =~ 0.5772 is Euler's constant, and 7,,, 1. are the viscosities of the
membrane and the adjacent fluid, respectively. Recent computer simulations
found that the above expression is valid for small radii and turns into a power-
law behaviour for larger values of R (Guigas06).

In addition, the shape of the oligomer may not be circular but may rather have
the shape of a (branched) polymer (cf. Figure 5.2). This further complicates
the interpretation of measured diffusion coefficients in terms of an oligomeric
radius. Furthermore, recent studies frequently report that diffusion on cellular
membranes exhibits an anomalous characteristic (Schutz97; WeiB03a). To be
precise, membrane inclusions show sub-diffusive behaviour, that is the mean-
square displacement grows qualitatively slower than for normal diffusion.

Figure 5.2: Model of a linear
oligomer consisting of 32 monomers
with five transmembrane layers
(vellow). Hydrophilic groups are
colored green and enhanced for better
visibility, the solid line highlights the
random coil conformation.

A suitable approach to this problem is to interpret the oligomeric entities as
linear polymers with their sub-units being individual proteins. The dynamics of
polymers is described by Rouse or Zimm theory (cf. Chapter 2). We therefore
summarize theoretical predictions for the motion of polymers in two dimensions,
before we continue with the presentation of our results.
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5.1.2 Diffusion properties of polymers

Chapter 2 introduced Rouse and Zimm theory as two models that describe the dy-
namics of polymers. The difference between the models is that the Rouse model
neglects hydrodynamic interactions while the Zimm model takes these explicitly
into account. Consequently, different scaling laws for important quantities are
obtained. Furthermore, the scaling behaviour is not exclusively dependent on the
theoretical description but is also influenced by the dimension of the Euclidean
space the polymer is embedded in.

The parameters we are mainly interested in are the mean-square displacement of
the individual monomers as well as of the polymer’s center of mass and, connected
to the latter, the apparent diffusion coefficient of the center of mass. In the
following, we denote these quantities by (Ax?), (Ax2 ) and D.n, respectively.
In addition, the radius of gyration, R,, also occurs in the subsequent discussion.
In the dilute limit the diffusion coefficient of the center of mass and the radius
of gyration follow a scaling behaviour

Demox N7 and  RZ o N* (5.8)

Here, N denotes the number of monomeric subunits. The Flory exponent v
involves the Euclidean dimension d and is given by

,_ 3
C24d

An important result of the Zimm model is that, in two dimensions, the center
of mass diffusion coefficient is expected to be independent of the polymer size,
i.e. vp = 0. In contrast, Rouse theory predicts a pure reciprocal dependence of
the center of mass diffusion coefficient on the degree of polymerization, that is,
vp = 1. The latter relation is valid in two and in three dimensions. Moreover,
the scaling exponent of the two-dimensional radius of gyration is v = 3/4,
irrespective of the chosen model.

Rouse and Zimm theory also provide a prediction of the scaling for the mean-
square displacement of the individual monomers. In the limit of t — oo, the
monomer MSD is expected to show normal diffusion behaviour in both models.
This is reasonable since after a certain time the movement of the individual
monomers defines the center of mass motion that always grows linearly in time,
i.e. shows normal diffusion.

At shorter times, the scaling of monomer mean-square displacement does depend
on the chosen polymer model. Neglecting hydrodynamics leads to a dependence
of the scaling on the fractal dimension (df) of the polymer while taking into
account hydrodynamic interaction results in a Euclidean dimension-dependent
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Dy o< N7vP Ry o< N¥ (Ax?) o t*
Rouse vp =1 v=23/4 a=3/5
Zimm vp =0 v=23/4 a=1

Table 5.1: Scaling behaviour for the center of mass diffusion coefficient
Dcm, the radius of gyration Rg and the monomer MSD (Ax?) as predicted
by Rouse and Zimm theory in two dimensions.

(d) scaling behaviour (Zilman98). The numerical values of the scaling exponent
« in two dimensions are given by

(5.9)

2/(2+df) = 3/5 Rouse
2/d = 1 Zimm

Hence, Rouse behaviour leads to a distinct sub-diffusive character of the monomer
motion while the Zimm model predicts the monomers to diffuse normally. Table
5.1 summarizes the scaling behaviour of the various quantities in two dimensions.
Although these theoretical predictions are supported by various computer simu-
lations, experiments with single- and double-stranded DNA have led to differing
results concerning the question which polymer theory is most appropriate to de-
scribe the diffusing DNA polymer (Maier98; Shusterman04). Making matters
worse, even computer simulations come to varying results regarding the scaling
of the center of mass diffusion coefficient. While some authors support vp = 0
(Falck03), others predict even a breakdown of the scaling behaviour (Shannon97)
in two dimensions. Thus, the question whether Rouse or Zimm theory is appli-
cable to these cases remains unsolved.

5.2 Dynamics of oligomers

Trying to resolve the above mentioned inconsistency, we apply dissipative particle
dynamics computer simulations to model oligomers integrated into lipid mem-
branes. The motion of the oligomeric complexes is thoroughly analysed and the
results are compared with theoretical predictions.

5.2.1 Simulational setup

Following the spirit of the last chapter, we model oligomers of different size
and with different hydrophobic mismatch, the latter may account for the now
permanent connection between the individual proteins. In other words, a model
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Figure 5.3: a) Membrane thickness profile as a function of the distance
from the center of mass of an oligomer of size N = 16 for different
hydrophobic mismatches n = 4,5,6 (dashed, solid, dotted line). b) The
oligomer tilt angle hardly varies with the number of transmembrane beads n.

protein is represented as a linear chain of n hydrophobic beads completed on
each end with a single hydrophilic bead. Oligomers are obtained by linking these
monomer prototypes by lateral harmonic bonds. Figure 5.2 displays such a model
oligomer with n = 5 transmembrane parts and a total of 32 protein monomers.
These oligomers are embedded into a fully-hydrated homogeneous lipid bilayer
made of HT3 lipids and their diffusional motion is recorded.

Simulations are carried out for different hydrophobic mismatches, i.e. different
numbers n of hydrophobic DPD beads. Similar to the last chapter, we choose
n = 4,506, i.e. oligomers with negative, negligible and positive mismatch, re-
spectively. Oligomers of size N = 4,8, 16, 32 are used to investigate the scaling
behaviour of the center of mass diffusion coefficient. The lateral size of the
simulation box is set to L = 20r,, in case of N = 32 the size is set to L = 25r,.
After an equilibration period, data is collected for 1.5 x 10° DPD time units from
which mean-square displacements and diffusion coefficients are calculated.

Mismatch and tilt of oligomers

At first, we tested whether our model oligomer follow a similar hydrophobic
mismatching behaviour as the hexagonal protein described in the last chapter.
To this end, we analysed the average membrane thickness dependent on the
distance from the oligomer's center of mass. Figure 5.3a displays the radial
thickness profile for oligomers of size N = 16 and varying hydrophobic mismatch.

Far away from the center of mass, the membrane thickness adopts its unper-
turbed value for all hydrophobic mismatches. At a critical distance of r* ~ 4r,,
the presence of the integrated oligomer starts to influence the thickness of the
lipid bilayer. One observes a compression or a stretching of the membrane thick-
ness for oligomers with negative or positive hydrophobic mismatch, respectively.
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As before, an oligomer with n = 5 hydrophobic beads hardly influences the mem-
brane thickness. The integration of oligomers of larger or smaller size N only
affected the critical distance below which the membrane experienced a deforma-
tion. As expected, r* increases with increasing oligomeric size.

Inspecting the oligomer tilt angle (¢) with respect to the bilayer normal surpris-
ingly reveals that all oligomers are nearly upright integrated into the lipid bilayer.
One observes a slightly increased tilt angle for oligomers with n = 7 transmem-
brane beads, but it is by far not as pronounced as compared to the case of
hexagonal proteins. The decreased tendency to tilt may be connected with the
lacking lateral bending rigidity. The absence of the latter provides the oligomers
with a certain flexibility, in contrast to the extremely rigid protein hexagons from
the preceding chapter.

We conclude, that our model oligomers display the expected dependence of their
hydrophobic mismatch on the size of their transmembrane domain. An important
point here is that the oligomers are not as rigid as hexagonal proteins preventing
their tilting with respect to the bilayer normal.

Oligomeric radius of gyration

As stated above, the radius of gyration of a two-dimensional polymer exhibits a
scaling dependence on the polymer size that is given by

Ry oc N3/*

This relation is valid for both, the Zimm and the Rouse model. To check whether
our DPD oligomers also show the latter scaling if one projects the monomer co-
ordinates onto the xy plane, we calculated the corresponding two-dimensional
radius of gyration for different degrees of oligomerization and for different hy-
drophobic mismatches. These results are depicted in Figure 5.4.

As expected, the radius of gyration increases with increasing oligomer size N
irrespective of the number of transmembrane beads n. However, the scaling
of Ry varies with the hydrophobic mismatch. Oligomers with n = 4,6 exhibit a
weaker scaling than their counterparts with n = 5 which is supported by a power-
law fit. For n = 4,6 the numerically obtained value of the scaling exponent is
v =~ 0.55 while for n = 5 one finds v = 0.66 which is close to the theoretical
value of 3/4.

The significant deviations observed for oligomers with n = 4, 6 can be traced back
to their non-vanishing hydrophobic mismatch. Bearing in mind that proteins with
a hydrophobic mismatch aggregate in order to minimize the contact surface with
the lipid environment, the oligomers behave in the same way. Hence, one cannot
regard these oligomers as random coils but they rather approach the molten

82



Ré [ A n=6

® n=5

101 - H n=4

n v
03 4 0.55 =+ 0.04
a3 5 0.65 + 0.07
i 6 0.56 & 0.06
| | | |

IogzN

Figure 5.4: Squared radius of gyration (left) and corresponding scaling
exponent as obtained by a power-law fit (right). While the scaling exponent
for oligomers with a negligible HM is very close to the theoretically predicted
value of v = 3/4, deviations are observed for oligomers with non-vanishing
HM. Data for n =6 and n =5 have been shifted by a factor of 2 and 5 for
better visibility; errobars for n = 5,6 are of symbol size.

globule state. Consequently, the scaling behaviour of the radius of gyration has
to change.

The numerical fit with which the scaling exponent was determined included all
calculated values of R, and the corresponding errors. Taking into account that
statistics get worse with increasing oligomer size, one could have also excluded
the values of N = 32 from the fitting range. Adjusting the power-law in this way
yields an increase of the scaling exponent for all n and a perfect agreement with
the theoretical value for n = 5 (data not shown).

Having discussed static variables, we now address the dynamics of the oligomers
and their individual subunits. We calculate the two-dimensional mean square
displacement of the monomers, (Ax2>, and that of the oligomer's center of
mass, (Ax2 ). From the latter quantity, we derive the diffusion coefficient and
test whether it exhibits Rouse or Zimm scaling behaviour.

5.2.2 Diffusive motion of oligomers

To experimentally probe the dynamical state of intracellular macromolecules,
fluorescence techniques like FRAP (fluorescence recovery after photo-bleaching
(Axelrod76)) or FCS (fluorescence correlation spectroscopy (Magde72)) are usu-
ally the methods of choice. They offer an elegant way to determine quantitative
information such as diffusion coefficients, average concentrations or chemical re-
action rates. A nice introduction to FCS and its applications is given by Schwille
et al. (Schwille09).

Regarding the problem of sub-diffusive behaviour of oligomers, it is worth noting
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that these fluorescence techniques monitor the diffusional properties of the indi-
vidual proteins rather than the properties of the oligomeric entity. Consequently,
a first point is to probe the diffusional motion of the single monomers.

The mean-square displacement of the individual monomers (Ax?(t)) is calculated
as a time and ensemble average according to the following formula

BR(0) = 5 33 (o) — xlto + O (5.10)

The combination of a time and ensemble average has the major advantage that
the resulting MSD curves are very smooth, i.e. they do hardly fluctuate as
compared to an ordinary ensemble average. For the calculation of the mean
square displacement only the hydrophilic parts at the top and bottom of the
oligomer are taken into account. This is justified by the fact that fluorescent
probes that are used to monitor the dynamics of transmembrane proteins are
exclusively attached at these regions, i.e. no fluorescence signal is emitted from
within the lipid bilayer. Indeed, including the hydrophobic transmembrane beads
in the analysis of the mean-square displacement does not alter the numerical
results.

Monomer diffusion

A common way to visualize MSD data is to divide out the leading order in time,
that means

(D) — (APt = (D) /toc e

This reduced data is now better suited to resolve a bunch of MSD curves and
to highlight any value a # 1 of the anomaly index. The scaling exponent is now
assumed to be a— 1. Figure 5.5 displays snapshots of oligomers with n = 4,5,6
and N = 32 (left column), and the reduced MSD data for different oligomeric
size N (right column).

Inspecting the reduced MSD curves of the individual monomers, one can distin-
guish two temporal regimes that are characterized by different shapes of the MSD
curves. The first regime is restricted to t < 103, the reduced MSD data show
here a pronounced sub-diffusive character as is visible by the slope of the curve
in the double-logarithmic plot. Thus, the monomer motion indicates Rouse-like
behaviour that is characterized by sub-diffusion (cf. Table 5.1) in contrast to
Zimm-like behaviour. Interestingly, the length of the time interval in which the
monomers show sub-diffusion hardly varies with the oligomer's size or its hy-
drophobic mismatch (cf. Figure 5.5, dotted line). Presumably, the investigated
values of NV are too small to highlight a dependence on the oligomer size at these
time scales.
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Figure 5.5: Left: snapshots of oligomers of size N = 32 and with
n=4,5,6 hydrophobic transmembrane beads (from top). Right: reduced
monomer MSD curves (DPD units) for N = 4, 8,16 and 32

(red,green, blue,magenta) and n as denoted on the right. The dotted vertical
line approximates the boundary between the two temporal regimes. In the
left column, lipids are colored red (head) and blue (tail), hydrophilic parts of
oligomers are colored green, transmembrane beads in yellow. Note the
various oligomer configurations! All units in the right column are intrinsic
DPD units.
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Figure 5.6: The time t* after which monomeric motion is
indistinguishable from center of mass motion increases with oligomeric size
N. A power-law fit reveals that the scaling of t* varies with hydrophobic
mismatch n. For better visibility, data for n = 6 (triangles) and n =5
(circles) have been shifted by a factor of 1.5 and 4, respectively.

In the second regime, the slope of the reduced MSD curves varies continually
until it eventually settles at @ = 1. This reasonable since, when time increases,
the monomeric mean-square displacement approaches and finally coincides with
that of the center of mass. To approximate the time point t* at which center
of mass motion is dominated by monomeric diffusion, we calculated the relative
difference § between the mean-square displacement of the monomers and of the
center of mass
[(Ax?) — (AXZ,)]

(AXZ,)
The time t* was taken be to be that time point at which the relative difference
is smaller than 10%, i.e. 0(t*) < 0.1. We have to admit that this procedure
yields only a very rough estimates of t* and the uncertainties in t* are very large.
Nevertheless, it provides evidence that the transition from individual monomeric
motion to collective center of mass motion is shifted to later times if the size of
the oligomer is increased. Moreover, a power-law fit underlines that a negligible
HM is responsible for a stronger dependence on the oligomeric size compared
to a positive or negative HM. Figure 5.6 depicts the individual curves for t*
dependent on the hydrophobic mismatch, the adjacent table summarizes the
scaling exponents as obtained by a power-law fit, t* oc NP.
Table 5.2 summarizes the numerically obtained values of the anomaly index «
in the various temporal regimes for all investigated size N and all hydrophobic
mismatches n. The numerical values of a in the time interval in which indi-
vidual monomer motion dominates the shape of the MSD curves are almost
exclusively near to v = 2/3. Oligomers of size N = 32 with negligible and posi-

i(t) =
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HM oligomeric size N

n=4 4 8 16 32

. 0.67(1) 0.68(2) 0.64(3) 0.63(3)
0.99(1) 0.93(1) 0.91(1) 0.95(1)

n=5 4 8 16 32

. 0.65(1) 0.64(2) 0.62(3) 0.54(4)
0.92(1) 0.92(1) 0.92(1) 0.95(1)

n=6 4 8 16 32

. 0.66(1) 0.64(2) 0.62(3) 0.57(4)
0.86(1) 0.96(1) 0.84(1) 0.90(1)

Table 5.2: The scaling exponent of the monomer MSD displays a
transition from sub-diffusive behaviour (o < 1) at short times to normal
diffusion (aw = 1) at later times. The anomaly index « in each time interval
does interestingly depend only marginally on the kind of hydrophobic
mismatch (n) and on the degree of oligomerization (N ).

tive hydrophobic mismatch show slightly smaller values that are around 1/2. A
systematic change of a with oligomer size N or hydrophobic mismatch n is not
observed.

Surprisingly, small oligomers, i.e. N = 4,8, show the same degree of anomaly in
their diffusional motion as their larger counterparts. This is somewhat counter-
intuitive; especially for N = 4 one would have expected a value of « closer to
unity since these oligomers are to be most likely related to single monomers.
To conclude the part on monomeric diffusion, our simulational data show a
distinct sub-diffusive behaviour of the mean-square displacement of the indi-
vidual monomers at short time scales. The degree of anomaly hardly varies
with oligomeric size N and the number of hydrophobic transmembrane beads n:
a = 0.55 — 0.67. The observation of sub-diffusion indicates that the individual
oligomers show Rouse behaviour, Zimm-like motion is not observed. At longer
times, the monomeric MSD curves evolve into collective center of mass motion.
The larger the oligomer, the longer this transient regime.

Center of mass diffusion

The analysis of the center of mass diffusion is also based on the corresponding
mean-square displacement curves. Data for the center of mass mean-square
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Figure 5.7: Left: mean-square displacement of the center of mass,
(AxX2.), of oligomers with n = 4,5,6 transmembrane layers (from top). The
curves in the individual plots represent the MSD for different oligomeric size
N = 4,8,16,32 (red, green, blue, magenta). The solid, black curves
represent a linear reference function. Right: the linear form of the center of
mass MSD curves allows to derive a diffusion coefficient that exhibits a
power-law dependence on the oligomeric size N. Note the
double-logarithmic plot style!
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HM oligomeric size N Vp
4 8 16 32

n=4 107(3)  1.00(1) 1.02(1) 1.06(3)  0.42(3)

4 8 16 32
n=5 0.98(2) 1.00(1)  0.99(1) 1.01(2)  0.47(4)

4 8 16 32
n=6 0.95(2) 1.03(2) 0.97(2) 1.03(2) 0.49(4)

Table 5.3: The mean-square displacement of the oligomers’ center of mass
always exhibits normal diffusion behaviour as indicated by o ~ 1. The
derived diffusion coefficient is well described by a power-law with exponent
vp (most right column) whose value is nearly universal.

displacement for oligomers of different size N and different hydrophobic mismatch
is presented in the left column of Figure 5.7. Comparing the monitored MSD
curves with a linear function (black, solid line) suggests that the center of mass
is diffusing normally. Fitting a power-law

(B2, o 0

to the simulational data corroborates this visual assumption. The various values
for the scaling exponent « are all very close to unity indicating normal diffusion
behaviour. This universal behaviour is in perfect agreement with theoretical
predictions. Table 5.3 summarizes the results of the individual fits. Here, the
range of the power-law fit was not restricted to a certain interval but rather
covered the whole time interval.

Given the fact that the center of mass diffuses normally, one can derive an
apparent diffusion coefficient from the MSD curves. Since for normal diffusion,
equation 5.6 holds, the diffusion coefficient D, is calculated by adjusting a linear
function to the numerically obtained mean-square displacements. By plotting
D, against the oligomeric size N in double-logarithmic style (cf. Figure 5.7 right
column), one recognizes that the diffusion coefficient follows again a power-law
(cf. Equation 5.8)

D., o< N7"P

Apparently, the diffusion coefficient of the center of mass is dependent on the
oligomeric size N. This is in contradiction to the Zimm model that predicts a
size-independent diffusion constant in two dimensions, i.e. vp = 0. However,
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fitting the data to a power-law, the predicted value of the Rouse model, vp =1,
is obtained neither. Rather, a value of vp ~ 1/2 is found. Consequently,
the observed behaviour reflected by the scaling of the center of mass diffusion
coefficient is more Rouse-like. The numerical values for vp are given in the
most-right column of Table 5.3 for various hydrophobic mismatch.

Interestingly, all values of vp are close to the three-dimensional value of vp as
predicted by the Zimm model. Whether this finding is a pure coincidence or
whether numerical artifacts are responsible for this result cannot be fully an-
swered. A possible error source could be the two-dimensional projection of the
dynamical data. Besides, finite-size effects may also play a role.

The latter point was investigated in Reference (Punkkinen05). Here, the au-
thors relate the center of mass diffusion coefficient and the radius of gyration in
consideration of the (finite) system length L.

Dem o< In(L/Ry) (5.11)

They argue that this logarithmic dependence is equivalent to a vanishing value
of vp, i.e. the center of mass diffusion coefficient obey Zimm theory. Plot-
ting our numerical values of D, against the radius of gyration and fitting the
above expression to our data is in good agreement with the theoretical predic-
tion of Equation 5.11. Figure 5.8 displays D.,, as a function of R, for different
hydrophobic mismatches.

Since we used different system sizes to derive the various values of the center of
mass diffusion coefficient, we included the system length L as an additional fit
parameter. The values of L obtained by the different fits hardly varies, justifying
our procedure. We now have a second interpretation of the center of mass
diffusion coefficient. According to the last evaluations, D, now reflects Zimm-
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like behaviour, in contrast to our previous analysis. Combined with the sub-
diffusive character of the monomer motion, the problem whether these oligomeric
entities are to be treated with Rouse or Zimm theory seems gotten worse.
Possible solutions to definitely determine the character of the oligomer motion
in two dimensions are to model the system of interest by either a Langevin
equation or by a two-dimensional DPD setup. However, both approaches have
their drawbacks. On the one hand, the Langevin approach does not include
hydrodynamic interactions which is to exclude Zimm-like behaviour. On the
other hand, although a two-dimensional DPD implementation accounts for proper
hydrodynamics, it is doubtful whether the correct dynamics can be reproduced
since the Navier-Stokes equation is divergent in two-dimensions.

91



92



Chapter 6

Polymer translocation through a
nanopore

In this chapter, we shift our focus from lipid membranes and transmembrane
proteins to another large class of macromolecules in living cells, namely poly-
mers. In particular, we discuss the process of a polymer translocating through a
small pore. Such an event occurs frequently in living cells. Prominent examples
are DNA/RNA translocation through nuclear pores (Kohler07) or polypeptide
translocation through the translocon (Rapoport07). These events are not re-
stricted to endogenous processes. Some viruses, like Hepatitis-C virus, replicate in
protective cavities formed by intracellular membranes (Appel06; Moradpour07).
The escape of the newly synthesized viral genome from these replication com-
plexes is also such a translocation event.

Besides, polymer translocation also plays an important role in laboratory tech-
niques like polymer fractionation by gel permeation chromatography (DeGennes99).
During the past years, an increasing number of elaborate experimental and the-
oretical approaches have been applied to elucidate the physics of the translo-
cation process under various conditions (Meller03; Dekker07; MuthukumarQ7;
Kolomeisky08).

In the following, we discuss the effect of solvent conditions on the translocation
behaviour of a polymer through a nanopore. Changing the solvent condition
on one side of the pore accelerates and drives the translocation process. After
a short description of how our simulations are set up and a brief summary of
theoretical predictions concerning translocation times, results for biased polymer
translocation are presented.
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6.1 Basic setup

This section describes the membrane-polymer system we use to investigate the
translocation process. The DPD formalism is applied to model a simple but
though appropriate membrane model and is also used to construct the translo-
cating polymer.

Membrane model In contrast to the previous chapters in which a membrane
is modeled as two opposing leaflets consisting of individual lipids, a simpler,
more coarse-grained, approach is chosen in the present chapter. A single leaflet
of the separating membrane is described by a lattice of inter-connected single
DPD beads. To connect both leaflets as well as individual beads in each leaflet
harmonic bonds of the following form are used

k
Un(riis1) = L (|riiva| — 50)2 (6.1)

2
The amplitude of the harmonic potential is set to k, = 100kg T and the equi-
librium distance to ¢y = 0.45r. where r, is the default DPD cut-off radius. To
account for a membrane’s inherent stiffness, an additional bending potential is
imposed in lateral direction via

Ub(r,-,l, r;, r,~+1) = kb . [1 — COS((b)] (62)

with kb = ].OkBT and

cos(¢) = Vi1 ¥iit1

Fii1,i-¥iig1]

This implementation is appropriate in several aspects: first, it does not permit
movement of bulk DPD beads along the membrane normal, i.e. it represents an
impermeable barrier; second, it behaves like a real surface since it exhibits the
theoretically predicted g=* scaling of its undulations; third and last, it reduces
the computational complexity to a minimum.
In order to facilitate the translocation of a polymer chain across the membrane
barrier, a nanopore is integrated in terms of ‘ghost beads’. These phantoms
only interact with their neighboring membrane beads and are elsewise given a
vanishing interaction with all other beads. They are thus exclusively subject
to structural forces, i.e. harmonic and bending potential, that establish the
separating membrane. The pore is represented by a 3 x 3 square of ‘ghost beads’
resulting in a pore diameter of roughly 2r,.

Polymer model A polymer in our DPD description is obtained by simply con-
necting single DPD beads to a linear polymer chain. DPD beads are tethered
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Figure 6.1: a) FENE potential Ur used to connect single DPD beads to
create a polymer. Note that Ug is not symmetric to its equilibrium distance.
b) Force derived from Ug. For small and intermediate distances r, the force
is approximately linear in r while it grows drastically for larger distances The
parameters kg and | are chosen as described in the text.

by finite extensible nonlinear elastic (FENE) bonds that are derived from the
potential (Jiang07)

ke (2re— 1Y bl — 1N\°
Ue(riiv1) = — > <In |1 — 2 ] (6.3)

Here, the strength of the FENE bonds is set to kr = 40kg T, the corresponding
equilibrium distance adopts the value | = 0.7r.. A chart of Uf is provided by
Figure 6.1. As can be clearly seen, Ur is not symmetric with respect to its equi-
librium value / like common harmonic potentials. Instead, it grows drastically
if two monomers are too far apart. The force derived from the FENE potential
exhibits an approximate linear force-distance relationship for small and interme-
diate separations. For large values of r, it grows disproportionally strong avoiding
a too large spatial separation between consecutive polymer beads.

Simulation procedure Following the standard DPD formulation, the interac-
tion cut-off radius r., the bead mass m and the thermostat temperature are set
to unity. Parameters for noise and dissipation are set to 0 = 3 and 7 = 4.5,
respectively. According to our setup, all beads can be classified as either solvent
(S) or monomer beads (M). The default value of the repulsion parameter be-
tween these bead types is set to Ass = Ays = Aym = 25. To probe a forced
translocation process, Apys is varied. We address this point later.

A velocity Verlet integration scheme is used to evolve the equations of motion
in time with the time increment At = 0.04. The size of the simulation box is
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adjusted to the polymer size N to minimize influences resulting from the periodic
boundary conditions.

In a first simulation series, we determine static properties and compare them
to polymer theory, cf. Chapter 2. To this end we do not include a separating
membrane and monitor only a polymer in solution. The results from this se-
ries serves to optimize the simulation settings for a second sequence. Now, the
simulation box consists of two reservoirs separated by a polymerized membrane
as described above. Changing the repulsive interaction between monomer and
solvent particles in one reservoir leads to a driven polymer translocation. We
continue by presenting numerical results for static polymer properties and com-
plete the chapter with a section covering the translocation process through a
narrow pore.

6.2 Static polymer properties

Basic static properties of our DPD polymer model are discussed in this section.
We first explore the scaling behaviour of the radius of gyration, R,, under different
solvent conditions. Subsequently, we consider how simulations investigating a
translocation process are in our framework implemented best and how possible
artifacts are minimized.

6.2.1 Polymers under different solvent conditions

As pointed out in the introductory chapter on membranes and polymers, the
best way to describe the size of a general polymer containing N monomers is the
radius of gyration R,. As a reminder, we repeat its definition

N 1 N
Z (Ri—Rcy)®  with  Rey = N ; R; (6.4)

The R;’s are the coordinates of the individual monomers and R¢y, the cor-
responding center of mass. According to Flory theory, the squared radius of
gyration exhibits a distinct scaling behaviour on the polymer size that reads

RZ oc N* (6.5)

The Flory exponent v is a measure for the excluded volume effect due to the
finite size of the single monomers. It also depends on the quality of the solvent
the polymer is floating in and it reduces with decreasing solvent quality. Limiting
values in three dimensions are v ~ 3/5 for good solvents and v = 1/3 for poor
solvents.
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Figure 6.2: Effect of different solvent qualities on the global shape of a
polymer. a) Reference state of a polymer (N = 150) in good solvent. In b)
and c), repulsion between solvent and monomer particles is increased by 10%
and 20%, respectively. A transition to the molten globule state is observed.

To determine the scaling behaviour of R,, a single polymer of different length N
in solution is simulated. The polymer is placed in a spiral configuration around
the center of simulation box. The dimensions of the simulation box are chosen
in such a way that the polymer is not able to feel itself due to applied periodic
boundary conditions. Polymers of up to a size of N = 100 are placed in a box
of edge length L = 25r,, an edge length of L = 35r, is used for larger polymers.
Thus, our simulation settings correspond to a dilute polymer solution to which
Flory theory can be applied.

Equation 6.5 tells us that a polymer can in large parts (=~ 70%) be enclosed by a
sphere of radius R,, a poor solvent reduces this radius. Figure 6.2 visualizes the
effect of different solvent conditions on the global configuration of the polymer
chain. To obtain solvents of different quality, we increased the default repulsion
between monomer and solvent particles by an amount AA.

In part a) of Figure 6.2, the repulsion between monomer particles and solvent
particles is set to the default value Ay = 25. The polymer exhibits a rather
extended shape, monomers that are far apart along the chain are also remote in
space. One has to note that the polymer can nevertheless adopt more crumpled
states. However, the polymer strives to assume entropically preferred conforma-
tions. Increasing the repulsion between monomers and solvent by 10% vyields a
distinct decrease in polymer size (see Figure 6.2b). The shape of the polymer is
similar to a loose crumpled thread. Further amplifying the aversion between the
two particle types, i.e. AA = 20%, results in a breakdown of the polymer into the
so-called molten globule state (see Figure 6.2c). Interactions of monomers with
many bond lengths in between become unavoidable, the polymer now resembles
a ball of wool.

To describe the polymer behaviour in different solvent conditions quantitatively,
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the squared radius of gyration Ré is calculated and drawn against the polymer
size N. This data is depicted in Figure 6.3a. In good solvent conditions, we
observe a scaling of the radius of gyration R, oc NV with v = 0.61 £ 0.02. This
value is consistent with the theoretical predictions of a Flory polymer (Doi01).
A reduction in solvent quality by increasing Ays by AA results in a more and
more shallow scaling of R,. Eventually, the polymer chain reaches the molten
globule state with a limiting scaling exponent of v = 1/3. The dependence of
the scaling exponent v on solvent quality is depicted in Figure 6.3b.

A thorough inspection of how the scaling exponent varies with increasing polymer-
solvent repulsion reveals that for AA = 20%, v drops below the limiting value
1/3. This artifact arises from the soft core nature of the DPD beads: DPD beads
can overlap and can consequently adopt more confined conformations compared
to (real) hard-core polymer systems.

This part shows that a DPD polymer is able to confidently reproduce the theoret-
ically predicted polymer behaviour. We continue with the description of how our
polymer simulations are optimized in order to avoid undesired artifacts arising,
for example, from periodic boundary conditions.

6.2.2 Optimization of the reference system

In this section, we describe how the simulational setup for monitoring translo-
cation events is chosen. Key parameters are the size of the simulation box and
the equilibration period that is chosen to avoid unwanted correlations between
polymer configurations.

Calibrating the size of the simulation box The applied simulation box
length to calculate the scaling behaviour of the radius of gyration was chosen in
a very conservative manner. The large numerical value impedes any interaction
between monomers arising from periodic boundary conditions. As can be derived
from Figure 6.3a, a polymer of size N = 200 has a radius of gyration of Ry ~ 7r.
under good solvent conditions. Therefore, an edge length of L = 35r. is definitely
sufficient to avoid periodic boundary effects.

A disadvantage of these huge sizes is that the time for a single simulation step
increases drastically. Our goal is thus to find a balance between minimizing
finite-size effects and maximal computational speed-up. Therefore, we decide
to enlarge the box size in the direction of the translocation, i.e. normal to the
separating membrane, and to keep it as small as possible in the lateral directions.
Appropriate and reasonable choices for the normal and lateral sizesare L | = 5-R,
and L = 3-R,, respectively. The fact that the polymer migrates mainly in normal
direction justifies the smaller box size in lateral direction. Compared to a cubic
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Figure 6.3: a) The radius of gyration of a flexible polymer of length N in
good solvent conditions scales as Rz oc NV with v = 0.61 (squares).
Increasing the solvent-polymer interaction by AA yields a weaker scaling of
Ry (circles: AA = 10%, triangles: AA =20%). b) The scaling exponent v
decreases with decreasing solvent quality. Its limiting value is v = 1/3 (solid
line). Errobars in a) and b) have symbol size, the line between data points in
b) serves as a guide for the eye.



Polymer Translocation

box with edge length L = 4 - R, the latter cuboid geometry is approximately
1.5-fold faster.

Selection on an appropriate equilibration time In order to avoid corre-
lations between different initial configurations of the translocation process (cf.
next section), we determine first the (inherent) auto-correlation of the squared
radius of gyration and derive from these results the time after which a new,
statistically independent polymer conformation is reached. The auto-correlation
function ACx(t) of a time series of a quantity X is given by

(XoXe) — M§<

2
Ox

ACx(t) = (6.6)

Here, px and ai denote the mean and variance of the stochastic variable X,
respectively. When normalized in this way, the auto-correlation function is 1 at
t = 0 and decays to zero as t — oo. For systems in equilibrium like the one
studied here, ACx(t) is expected to show an exponential decay (Landau05) with
the characteristic, or relaxation, time 7x

TX

ACx(t) = exp <—i> (6.7)

The index X already indicates that different quantities X can have different
characteristic times 7x. In Figure 6.4a, auto-correlation functions of Ré for
polymers with N = 100, 150 and 200 are shown. As can be seen, a larger polymer
size leads to a longer relaxation time 7. The solid lines represent exponential fits
to the data giving various values of 7. The deviations of AC(t) around zero at
large values of t are due to the finite observation time of Ré%.

The fitted values of 7 are drawn against N in Figure 6.4b. Again, the charac-
teristics of the relaxation time can be described by a power-law, 7 o« N® with
B = 1.79 +£ 0.03. The scaling exponent of the relaxation time, 3, is linked to
the Flory exponent of the radius of gyration, . Rouse theory predicts a scal-
ing of the relaxation time as 7 oc N**2” while Zimm theory expects a faster
relaxation time as determined by 7 oc N3”. Utilizing the above derived value of
v =0.6140.01, it becomes evident that Zimm theory seems to be the adequate
description for this system rather than Rouse theory. In conclusion, we can state
that the applied DPD implementation of a polymer in solution reproduces very
well static polymer properties as predicted by Zimm theory.

As a consequence, we choose an equilibration time of T., = 27 between monitor-
ing consecutive translocation events. Combined with the former derived values
of the lateral and vertical size of the simulation box, the chosen value of T,
guarantees that every translocation event is statistically independent from all
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Figure 6.4: a) Auto-correlation functions of R2 for a polymer of size 100
(squares), 150 (circles) and 200 (triangles). The solid lines are exponential
decay curves fitted to the numerical data. b) Relaxation time T as a function
of polymer size N obtained by fitting the auto-correlation curves with an
exponential decay. The dependence of T on N follows a power-law, T o< N”
with 3 = 1.79 £+ 0.03 (solid line) and is in agreement with Zimm theory.
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others. In the next section, we explore how solvent quality affects the transloca-
tion behaviour of a polymer chain through a nanopore.

6.3 Translocating polymers

In the preceding section, static polymer properties and their different scaling
behaviours were discussed. We now turn our attention to the dynamics of a
polymer translocating through a narrow pore.

Data acquisition The initial setup of the membrane-polymer system is as
follows: the separating membrane is placed symmetrically around L, /2 with the
pore in its central position. The two central monomer beads are placed inside
the pore and during equilibration fixed to the pore via harmonic springs. To
prevent unwanted crossing of monomers during the equilibration periods, the
pore is additionally closed by turning ghost beads into real membrane beads.
After equilibration, the polymer is released and the pore opens to monitor the
translocation process. Data acquisition includes spatial coordinates of monomer
and membrane beads and the translocation state of the polymer. To determine
the latter quantity, absolute coordinates of membrane and polymer beads have to
be used in order to circumvent artifacts of the periodic boundary conditions. A
polymer is considered to have passed the pore if all polymer beads are left or right
of the center of mass of the pore. Before monitoring a subsequent translocation
event, the system is equilibrated again as described above. Consequently, several
hundred translocation events in a single simulation run with ever different initial
configurations are recorded.

Figure 6.5 displays the initial (a) and final (b) state of a polymer consisting of
N = 150 monomers. As can be clearly seen, contact of polymer beads with
‘poor’ solvent results in a confined globular state of the polymer chain. On the
‘good’ solvent side, the polymer adopts an extended and swollen configuration.

6.3.1 Unbiased translocation

Before we are going to discuss results for the biased polymer translocation, we
would like to spend a few words on unbiased translocation events. According to
our setup, a polymer of size N is initially placed in a state in which the number
of monomers m on each side of the pore is equal. The free energy F in this state
can be expressed as (Muthukumar99)

F=cIn(m)+cIn(N—m)+ mAu (6.8)
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Figure 6.5: a) Polymer of size N = 150 right before pore opening and
beginning of translocation. On the poor solvent side, repulsion between
monomers and solvent is increased by AA = 20% leading to a collapse of
the polymer chain. b) The polymer migrates towards the good solvent side
on which an entropically more advantageous conformation is adopted.

The factors ¢;, depend on conformational statistics on each side, Ap is the
difference in chemical potential between the two reservoirs. In case of an undriven
system, i.e. no difference in solvent on both sides, ¢; = ¢; and Ay = 0. Thus,
F exhibits a free energy barrier symmetric in m/N. This symmetry means that a
translocation of the polymer to the left or to the right is equally likely. Indeed, we
observe for unbiased translocations that on average 50% of the polymers migrate
to the left and the other half are finally found in the right reservoir.

Next, we inspect the behaviour of the polymer’s translocation time T; through the
nanopore. Interestingly, the Flory exponent v has been predicted to influence the
scaling of the translocation time if hydrodynamic interactions are disregarded.
According to (Kolomeisky08; Chuang01) the translocation time follows T, o
N° 3 = 14 2v, i.e. it shows the same behaviour as the relaxation time 7
in Rouse theory. However, a basic ingredient of DPD simulations is that they
take into account hydrodynamic interactions. We therefore tested whether this
scaling is altered for Zimm polymers and how it is influenced by solvent quality.
Figure 6.6 displays numerical results of the unbiased translocation time for differ-
ent solvent qualities. At good solvent quality, the scaling exponent is determined
to be § =2.22+£0.06. This value perfectly coincides with the theoretical predic-
tion of the Rouse model that gives with v = 0.61 a value of § =142 = 2.22.
Consequently, hydrodynamic interactions do not seem to influence the translo-
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Figure 6.6: Unbiased translocation time T, (left) and corresponding
scaling exponent [3 (right). Under good solvent conditions, T; scales like
N222 (filled circles, solid line; data shifted by factor 1.5 for better visibility).
Increasing the polymer-solvent repulsion (open symbols) does hardly change
the numerical value of 3 (cf. right table).

cation process as long as the pore is small enough.

What happens if one symmetrically changes the solvent quality on both sides of
the pore? Surprisingly, the scaling of T, does not change when the interaction
between monomer and solvent particles is increased by AA/A, = 0.05,0.1,0.2
in each reservoir. This observation is in strong contradiction to the scaling of
the radius of gyration R, under different solvent conditions (cf. Figure 6.3).
Assuming the polymer's relaxation time 7 to be the dominant time scale in the
translocation process, one might have expected a change in the scaling of T;.
A possible explanation for the latter observation can be derived by exploring the
extreme case of a translocating rod polymer. The diffusive translocation of a rod-
like polymer is characterized by 3 = 2. This in turn means that the scaling of T;
cannot be smaller than this limiting value. In addition, the polymer has to adopt
configurations that allow to pass the pore. This constraint reduces the number of
possible polymer chain conformations. Consequently, the chain entropy decreases
and an entropic barrier is set up (Muthukumar01). The incorporation of this
effect results in the following scaling of the translocation time, T, oc N1+2v N1+
with © = 0.68 (Dubbeldam07). Interpreting the diffusive passage through the
pore as the dominant time scale, the latter expression reduces to T, oc N2N1—#
giving § =~ 2.3 independent of the Flory exponent v. The so-obtained value does
not coincide perfectly with our numerical value but is close to it. The present
deviation may result from the fact that the size of the nanopore here is not as
small as to allow only the successive passage of single polymer segments. Hence,
a larger configuration space is available increasing chain entropy that presumably
lowers fi.
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Figure 6.7: The scaling exponent (3 of the translocation time displays a
turnover from Rouse to Zimm dynamics when the pore diameter d is
increased. Lines between data points serve as guides for the eye.

Dependence of T; on pore size To complement this part on unbiased translo-
cation, we provide data of how the scaling of the translocation time changes if
the pore diameter (d) is increased. For a pore diameter of d = 1r, the above
derived scaling of the translocation time coincides perfectly with our numerical
observation, i.e. 3 = 2.32 & 0.05. Increasing the pore size yields a system-
atic decrease of the scaling exponent towards 3 = 1.8 which is consistent with
Zimm theory (cf. Figure 6.7). Increasing the pore size thus leads to a turnover
from Rouse to Zimm behaviour in which the scaling exponent is expected to
be 3 = 3v =~ 1.83. Now, more and more solvent particles are dragged with
the polymer chain whereas a smaller pore size is able to impede this collective
motion.

6.3.2 Biased translocation

The next aim in our study is to investigate a biased translocation process. To
this end, we change the solvent quality on one side of the pore. In particular, we
increase the polymer-solvent repulsion in one reservoir by AA > 0, i.e. Ays =
(25 + AA)kg T, while Aps is not altered in the other partial volume. The
conformation of the polymer right before opening of the pore and begin of the
translocation process is now as depicted in Figure 6.5. The part of the polymer on
the side of poor solvent is coiled up and occupies less space than its counterpart
on the other, the good-solvent, side. Consequently, the expression for the free
energy, Equation 6.8, becomes asymmetric in m/N as shown in Figure 6.8 The
course in F is now downhill from the reservoir with poor solvent towards the
reservoir with good solvent. That means that the polymer chain is preferably
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0 Figure 6.8: Free energy F for

spacious

compact .
Flkgl asymmetric (upper curve) and

symmetric (lower curve) solvent
qualities. While the free energy is
symmetric in m/N in the latter case,
F shows a downhill course when the
pore connects two reservoirs with
different solvents. Note that the
difference in chemical potential is set to zero. The terms ‘compact’ and
‘spacious’ indicate the reservoir with poor and good solvent respectively.

m/N

migrating towards the good-solvent side. For the sake of simplicity, we assume
that the difference in chemical potential between the two solvent reservoirs is
zero, Ay = 0. This is a valid assumption since the chemical potential difference
between the two solvents can be neglected in zeroth order approximation. Hence,
the migration is solely driven by conformational statistics in both regions.

Increasing AA decreases T,

Increasing the solvent-polymer repulsion by AA results in an acceleration of the
translocation and in a reduction of the scaling exponent (3 of the translocation
time. Starting from § = 2.22 observed for the unbiased translocation, 3 de-
creases steadily. Figure 6.9 displays the observed translocation time for varying
AA/Ay (part a) and the numerically fitted scaling exponent [ as a function of
AA/A,.

It is remarkable that a change in Aps as small as AA/Aq = 5% already yields
a drastic drop in the scaling exponent from its default value 2.22 to § ~ 1.34 +
0.12. Increasing the repulsion further, one observes an approaching of the scaling
exponent towards unity, i.e. the translocation time is now directly proportional
to the polymer size N. Indeed, the limiting value 3 = 1 reflects the translocation
behaviour of a polymer that is assumed to be permanently relaxed. Including
the polymer relaxation resulting from the entropic barrier at the entrance of the
pore (see above), one may estimate a minimal value of the scaling exponent of
the translocation time as 3 = 1+ 1 — . Admittedly, giving an exact numerical
value for this approximation is rather crude since the entropic term pu can be
expected to be influenced by a variety of factors like the size of the pore or the
increment AA. In the case where the pore is so small that only a single polymer
segment at a time is able to pass the pore, one can set u = 0.68 (cf. above)
and hence, 5 =1+ 1—0.68 = 1.32 can be interpreted as an upper limit of the
scaling exponent.

Do not mix up the entropic term 1 with the chemical potential.
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Figure 6.9: Monitored translocation times T, (a) and corresponding
scaling exponents 3 as obtained by a fit (b). Data points in a) indicate an
increase by AA/Aog = 5%, 10% and 20% (squares, circles, triangles). The
lines in b) are guides for the eye.
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X Figure 6.10: Polymers move
1.0 preferably towards the good solvent
side as indicated by x = 1. The
i sympathy for good solvent increases
0.9 with decreasing poor solvent quality.
o . Data points are for AA/ Ay = 5%,10%
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Besides an accelerated translocation, almost all polymers move towards the good
solvent side. To evaluate this observation, we assign each translocation event a
binary-valued variable x. Reaching the poor solvent side is equivalent with y =0
while translocation into the good-solvent reservoir results in y = 1. The average
value of  for different poor solvent qualities is shown in Figure 6.10. Decreasing
the poor solvent quality results in an almost exclusive migration towards the
reservoir with good solvent. Short polymers, i.e. N = 20,40, are most likely
to cross the free energy barrier in the uphill direction, though this behaviour
disappears with increasing AA/Ay.

Mimicking poor solvent by decreasing monomer repulsion Another pos-
sibility to alter the solvent quality can be done by decreasing the repulsive force
between individual monomers. This has recently been realized in a Langevin dy-
namics study (Wei07), i.e. an approach that does not explicitly take into account
hydrodynamic interactions. In contrast to the results presented above, this study
finds a preferred movement of the polymer towards the poor solvent reservoir.
Modifying the solvent quality by decreasing monomer repulsion in our DPD setup,
ie. Ay = Ag — AA, AA > 0, we also find a preferred migration towards the
poor solvent reservoir. In addition, the scaling behaviour of the various entities
(Rg, T: etc) develops similar for decreasing monomer-monomer repulsion: v and
(3 exhibit both a reduction when AA is increased. It is of great importance to note
that decreasing inter-monomer repulsion does not reflect a bad solvent though.
Rather, it mimics attractive monomer interaction as induced by the presence of,
for example, ions.

Conclusion

The focus of this chapter was on the unbiased and biased translocation of a poly-
mer through a narrow pore connecting two solvent reservoirs. The key quantity
was the translocation time T, that was assumed to obey a scaling law dependent
on the polymer size N: T, oc NP.

Varying the solvent quality in both reservoirs from good to poor solvent did
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surprisingly not affect the scaling exponent 3. This can be due to an entropic
barrier at the entrance of the pore.

Decreasing the solvent quality by increasing the repulsion between solvent and
polymer particles in only one reservoir yielded a preferential translocation towards
the good-solvent reservoir. Now, a reduction of the scaling exponent (3 with
decreasing solvent quality was observed. Interestingly, a change in solvent quality
by only 5% accelerated the translocation time from 3 = 2.22 to 8 = 1.35.
Mimicking poor solvent by decreasing monomer-monomer repulsion resulted in
a translocation towards the poor solvent side, a result that is contrasted by
free energy calculations and entropical arguments. Consequently, this type of
modification is not appropriate to model poor solvent conditions. It rather creates
a milieu change inducing intra-polymer attractions.

The accelerated translocation may play a role during the reproduction of a virus.
Newly synthesized viral RNA has to leave its replication cavity through a narrow
hole. A different pH inside the replication cavity may create a poor solvent thus
triggering the escape of the nascent viral RNA. Another possible scenario is that
the entropic pressure inside the cavity becomes too large resulting in a quick exit.

109



110



Chapter 7

Summary & Outlook

Summary

Computer simulations are a viable means to investigate soft matter and bio-
logical systems. Their application is especially useful to explore intracellular
macromolecules whose sizes are beyond the diffraction limit of light and whose
dynamics is thus not accurately observable. A broad class of computer simula-
tions are mesoscopic simulation techniques that act above the level of atomistic
detail but still below the threshold to a continuum picture. One major advantage
of their mesoscopic character is that these simulations are able to address effects
resulting from generic mechanisms, i.e. their results can readily be interpreted in
a general framework. One of these mesoscopic techniques is dissipative particle
dynamics (DPD) originally invented to study hydrodynamic phenomena. Shortly
after its introduction, its application was extended to soft matter systems as
well. With DPD, it is possible to explore soft matter systems on length and time
scales that are orders of magnitude larger than full-atomistic simulations. In this
work, we addressed the dynamical behaviour of intracellular macromolecules like
proteins and polymers via dissipative particle dynamics. Our aim was to elucidate
physical mechanisms governing their motion.

In the first part, we concentrated on the motion of transmembrane proteins. In
particular, we were interested in the effect of how a hydrophobic mismatch with
the surrounding lipid bilayer alters the dynamics and the collective behaviour
of transmembrane proteins. Former mean-field theoretical studies have shown
that hydrophobic mismatching may under favourable circumstances induce inter-
protein attraction.

We found that proteins that are either too long or too short to fit perfectly
into the surrounding membrane disturb the lipids’ configuration in their vicin-
ity sustainably leading to a reduction in configurational entropy. This entropy
decrease is in all cases sufficient to induce a long-ranged, lipid-mediated inter-
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protein attraction. We found that, in agreement with former theoretical studies,
the strength of the attraction depends quadratically on the degree of hydropho-
bic mismatch yielding (theoretically) an exponential increase in the lifetime of
a protein dimer. Further, large-scale simulations confirmed the assumption that
hydrophobic mismatching drives protein clustering. The simulationally observed
and the — by a simple model — estimated cluster size distribution show qualita-
tively the same course: the larger the degree of hydrophobic mismatch, the more
likely the occurrence of higher-order clusters.

In the next step, we analysed whether a hydrophobic mismatch also accounts
for a differential protein sorting. We could affirm this question by further large-
scale simulations in a qualitative as well as in a quantitative manner. Connected
to the last point is the problem of protein partitioning. Recent experimental
studies have shown that a protein integrated into a membrane with non-uniform
thickness, diffuses to that membrane region where its hydrophobic mismatch is
smallest. Setting up a two-phase bilayer and embedding proteins with different
mismatches, we could observe a diffusively partitioning of the single proteins into
that part of the membrane where their hydrophobic mismatch was minimized.
Therefore, we can state that hydrophobic mismatching acts as a very sensitive
protein guide.

Combining the previous results, we developed a simple, HM-based model of how
protein sorting may be organized in living cells. Since protein sorting is a self-
organized process, there has to be molecular regulations that tell the proteins
where to go, or where not to stay. According to the last results, proteins tend to
minimize their hydrophobic mismatch. We thus propose that HM-based protein
clustering triggers the formation of transport vesicles that shuttle the proteins
to a remote membrane where the lipid environment matches their desire, i.e.
they do not experience a hydrophobic mismatch. However, changes in the lipid
environment or the accidental escape from the preferred membrane results again
in clustering and protein re-distribution. The numerical implementation of the
outlined hypothesis confirmed the main points in our model, that are an en-
hanced vesicle formation and, connected to the latter, an increase in protein and
membrane flux.

By treating a protein complex diffusing in a membrane and created by an oligomer-
ization process as a two-dimensional polymer, we tried to resolve the dynamics
of the single proteins (monomers) and the complex as a whole. Key quantities
here were the mean-square displacement of the individual monomers and of the
center of mass; since the latter is expected to show normal diffusion, an appar-
ent center of mass diffusion coefficient can also be derived. Our main concern
was whether oligomerization is able to qualitatively impede the motion of the
single monomers and if so, which polymer model, i.e. Rouse or Zimm theory,
is best applicable to this situation. Our result reflect that the monomer motion
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is sub-diffusive which is an argument for Rouse theory. However, the resultant
diffusion coefficient of the center of mass exhibit a scaling between Rouse and
Zimm theory. An additional analysis supported Zimm theory. Our initial question
whether oligomerization induces sub-diffusion could be confirmed. The problem
whether an oligomeric complex is best described by Rouse or Zimm theory is still
to be decided.

The last chapter of this work was dedicated to the translocation of a polymer
through a narrow pore. In a first simulation part, we confirmed that our DPD
model is suitable to described polymers in dilute solution. To this end, we
monitored static polymer properties like the radius of gyration dependent on the
quality of the solvent the polymer is floating in. The second part was to determine
the dynamical behaviour during translocation. For unbiased translocation, we
found that the translocation time did not vary with the solvent conditions. Biased
translocation was realized by decreasing the solvent quality on one side of the
pore. An acceleration of the translocation time accompanied by a reduction of
its scaling with the polymer length is the consequence. In living cells, a poor
solvent may be due to a different pH-value, a temperature shift or the presence
of molecular chaperones.

Outlook

With the ever-growing computational power, simulations become more and more
useful, since the restriction to small systems vanishes. A step towards larger
systems and longer time scales is always appreciated as more realistic scenarios
can be created and artifacts, e.g. finite size effects, are reduced. Hence, a further
improvement is certainly the development of parallel algorithms, in particular for
DPD simulations. Similar approaches have recently been developed for molecular
dynamics simulations of large bio-molecules (Phillips05). However, a parallel
implementation for DPD simulations is still lacking.

Possible programming environments could be the MPI (message parsing inter-
face) specification (Gropp95) that enables the communication between nodes
on a computing cluster. A limiting factor here could be the time that it takes
the different nodes to communicate, and the memory organization of the MPI
environment.

A second possibility is to use the numerous graphics processing units (GPU) avail-
able on ordinary video cards. Several computationally intensive problems like
Fast-Fourier transformation (FFT), matrix decomposition or N-body problems
have been successfully performed on graphic cards. An appropriate realization
is the CUDA (compute unified device architecture) programming environment
provided by the nVIDIA company (www.nvidia.com). In terms of memory ar-
chitecture and organization, CUDA seems to be better suited for parallel DPD
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simulations compared to the MPI environment. The development of a parallel
DPD implementation with CUDA is currently in progress.

A possible application of a parallel DPD version could be to investigate the
formation of lipid droplets, small monolayer-bound entities that serve as intra-
cellular storage depots for neutral lipids. The bio-genesis of these organelles is
highly-debated, light and electron microscopy techniques are not able to provide
detailed, dynamical pictures impeding the finding of a common interpretation of
the formation process. Computer simulation would certainly help to solve this
riddle.

Regarding experimental work, there are also possible future studies. Of great
importance would definitely be experiments that unequivocally confirm the hy-
pothesis that hydrophobic mismatching drives the formation of protein clusters.
Since such a scenario is rather difficult to establish in vivo, several in vitro systems
prove promising to address this question. Among the latter systems are giant
unilamellar vesicles (GUV) or model bilayers. Admittedly, the main obstacle
would be the synthesis of membrane proteins that experience almost no specific
molecular interactions with their counterparts. Whether the latter requirement
is feasible, is better to be investigated by biochemists and not by physicists.
Another point that is worth addressing experimentally is the proposed sorting
model. Interesting issues are whether secretory transport could be enhanced or
completely stalled by introducing proteins with different hydrophobic mismatches.
However, here one is not able to use in vitro systems and thus approaches in living
cells has to be developed.

Finally, we believe that a living cell is by far too complex as that approaches from
a single natural scientific discipline is able to answer all questions in a qualitative
and quantitative manner. Rather, an interdisciplinary approach is most promising
to address and to solve problems emerging in the life sciences.
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Appendix A

Integration schemes

The numerical integration of the equations of motion in our DPD simulations is
based on a velocity-Verlet algorithm. This applies for both, the NVT ensemble
and the NpT ensemble. As we have already given the integration scheme of the
NVT ensemble in the main text, we here provide only the algorithm that is used
to integrate the NpT ensemble.

A.1 Integrating the NpT ensemble

Usually, data acqusition during our simulations is preceded by the equilibration
of the system of interest. Except for the simulations exploring polymer translo-
cation, we use a barostat to obtain a (almost) tensionless membrane. We choose
to implement the barostat method developed by Jakobsen (Jakobsen05a). This
implementation has the advantage that equilibration of the DPD system happens
faster and one does not need larger time steps At.

Jakobsen's implementation involves the edge lengths of the simulation box, €,
as three additional degrees of freedom. These serve as a piston to keep the
pressure constant. The piston’s mass is denoted by W and its velocity v,. lIts
motion is described by a Langevin equation and governed by a force F, that inte-
grates different properties like the difference from the instantaneous to the target
pressure, for example. Additional auxiliary variables are needed to construct the
entire integration algorithm that reads

1. v! — v, v —v, € —¢€
2. vi—v;+1iL [(F,C +FP —2v.v;) At + FF\/At]
3. v v + 3L At e — e+ v AL
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4. x; — (x; + v;At) -exp (e — €’)
5. Update the volume V!

6. Update the forces FC FP and FF!
7. Find the pressure P = 4 [E, p—j +>°.F¢- x,-]
8. V; «— v;, U, +— v,
9. Initial guess of v.: v, «— V! + 2F—V;At
10a. v; «— ﬁ [exp (€—€)¥;+ 3L (FC+FP) At + FIR\/A_t]
10b. Compute F.!
10c. v, «+— D, + %%At
11. Update dissipative forces FP!

Steps 10a, b, ¢ are repeated until convergence occurs which is typically achieved
after five to ten cycles. For the iteration, one does not need to calculate the
default DPD forces. This is quite suitable since their calculation is one of the
most time-consuming parts of the algorithm. To calculate the pressure (step 7),
different contributions have to be taken into account. The sum over the product
of the conservative forces and the position vectors is the virial contribution. One
has to note that in the limit W — oo, the above algorithm is identical to the
velocity-Verlet algorithm.
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Appendix B

List of DPD parameters

B.1 Parameters for the NVT and NpT ensemble

The following table summarizes the default values for simulating a fully-hydrated
DPD membrane in the NVT ensemble. Parameter values that deviate from this
standard setup are mentioned in the main text. The kinetic temperature kg T,
the DPD bead mass m and the critical radius r. act as reference parameters, all

other parameters are expressed in units of these.

general parameters

integration time increment At 0.01
kinetic temperature kg T 1.0
DPD bead mass m 1.0
critical radius r, 1.0
particle density p, 3.0
lipid area density p, 1.43
strength of dissipative force 4.5
strength of random force o 3.0
repulsion between like particles A, 25.0
repulsion between water and head beads Apy 25.0
repulsion between water and tail beads Ayt 200.0
lipid bending rigidity ks 10.0
harmonic force amplitude between lipid beads k;, 100.0
equilibrium distance of harmonic force ¢y 0.45
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Additional parameters to implement the barostat are presented below. A key
quantity is the mass of the piston W, that is given by (Jakobsen05a)

W = dNkg T}

where d is the Euclidean dimension, N the total number of particles, kg T the
kinetic temperature and 7, the rise time of the barostat, respectively. With this
choice, the remaining parameters read

barostat parameters

target pressure P 23.649

barostat rise time 7, 2.0

strength of barostat dissipation 7, 5.0

strength of barostat random force o, ag = 2v,Wkg T

The target pressure Py is usually set to the pressure of a pure water box.

B.2 Conversion to Sl units

In principal, one can extract an intrinsice time scale ty from the DPD parameters

re, kg T and m via
to=+/mr2/kgT

Another possibility that we used here is to calibrate the integration time increment
At via a typical membrane thickness and the lipid's diffusion coefficient. In SI
units that means:

re =1nm and At ~ 80ps

Given these relations, every DPD quantity can be readily converted from intrinsic
DPD values to meaningful Sl units. Thus, 10° integration cycles correspond to

ts = 10°At =10°-80- 10712 = 80us
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