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Zusammenfassung
DasMinimum Linear Arrangement Problem (MinLA) besteht darin, für einen gewich-

teten Graphen eine lineare Anordnung der Knoten zu bestimmen, welche die ge-

wichtete Summe der Kantenlängenminimiert. Die vorliegende Arbeit untersucht den

Nutzen einer neuenModelierung im Rahmen eines Branch-and-Cut-and-Price Algo-

rithmus zur optimalen Lösung des MinLA. Den Kern der Modellierung bilden binäre

Variablen di jk , die genau dann denWert 1 haben, wenn die Knoten i und j in der Per-

mutation dieDistanz k haben. Wir präsentieren angepasste Formulierungen für dicht-

und dünnbesetzte Graphen und erläutern die Realisierung eines Branch-and-Cut-

and-Price Algoritmus’. Desweiteren werden die verschiedenen Varianten des Algo-

rithmus’ diskutiert und evaluiert. ZumStudiumder theoretischenAspekte desMinLA

leistenwir einen Beitragmit der Charakterisierung einer Relaxierung des zugehörigen

Polyeders.

Abstract
The Minimum Linear Arrangement problem (MinLA) consists in finding an ordering

of the nodes of a weighted graph, such that the sum of the weighted edge lengths is

minimized. We report on the usefulness of a new model within a branch-and-cut-

and-price algorithm for solving MinLA problems to optimality. The key idea is to in-

troduce binary variables di jk , that are equal to 1 if nodes i and j have distance k in the

permutation. We present formulations for complete and for sparse graphs and explain

the realization of a branch-and-cut-and-price algorithm. Furthermore, its different

settings are discussed and evaluated. To the study of the theoretical aspects concern-

ing the MinLA, we contribute a characterization of a relaxation of the corresponding

polyeder.
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Introduction

The Minimum Linear Arrangement problem (MinLA) consists in finding an order-

ing of the nodes of a weighted graph on n nodes, such that the sum of the weighted

edge lengths is minimized. This thesis makes a contribution to the computation of

lower bounds for the MinLA problem. To do so, we introduce a new modeling based

on binary variables and investigate its usefulness within a branch-and-cut-and-price

algorithm.

As there are several applications of theMinLA, a lot of work on heuristic solutions

of theMinLA can be found [1–4]. In contrast to these approaches, we are interested in

finding a provably optimal solution of theMinLA. Compared tomany otherNP-hard

optimization problems, theMinLA turns out to bemore difficult and is extremely hard

to solve in practice.

To our knowledge the first known suitable integer programming model for the

MinLA was formulated by Even et al. [5]. Although no practical results were com-

puted, this sparse formulation was important, as its non-trivial linear programming

relaxation can be solved in polynomial time. Another integer programming model

for the MinLA was presented by Liu & Vannelli [6]. It is based on rank constraints for

suitable subgraphs that can be computed in polynomial time. In contrast to the for-

mulation in [5]mentioned above, this problem formulation is dense, i. e., it is based on

all distance variables yi j for i , j ∈ V . Caprara et al. [7] based their recent work on both

modeling approaches. The advantages of the sparse spreading metric formulation and

the dense rank constraint approach were combined by Caprara et al. [7] in a successful

way. Their computational results showed that for most benchmark instances, the best-

known solutions were not far from the optimum. A different approach is outlined by

Caprara et al. [8]. Their key idea was to use betweenness variables for a “refinement” of

the integral distance variables y. Although this approach was based on a large number

of (n3) variables, the computational results were comparable to those of [7].

In this study we address the problem by offering a new solution strategy for the

MinLA, combining the established and well-working approach of a branch-and-cut

1



2 Contents

algorithm with pricing. We use the distance variables y that were part of the models

developed so far, in the following way: We “refine” the variables in such a way that

the resulting model is significantly enriched. We accomplish this by introducing our

binary distance variables di jk , where di jk equals 1 if nodes i and j have distance k.

In the first chapter of this thesis, we start with a literature review of the work done

on theMinLA. An overview of some basic properties is given, and several applications

and approximation algorithms are presented. Furthermore, all modeling approaches

and other lower bounds of the MinLA known to the author are explained.

In Chapter 2 we introduce the binary distance model in its complete and sparse

version. We start with the linear inequalities needed for the integer programming for-

mulation and characterize the newmodel with respect to the similarity and in contrast

to the integral y-variables formulation. Further inequalities are presented, and their

strength is compared to corresponding y-constraints. The model is investigated in a

second step, where we consider only those variables for which an edge in the graph

exists. We show how the system of constraints must bemodified. As we want to obtain

a similar strength of the formulation as in the complete case, we present two different

approaches which help to improve the quality of the formulation. We then consider an

improved mixed linear programming formulation of theMinLA that uses the integral

distance variables y in combination with n2 binary assignment variables.

The theoretical aspects of the MinLA are presented in Chapter 3. First, we give

a short overview of the work on Pn(G), which is the polyhedron corresponding to

the y-variables formulation, and onDOMn, itsMinkowski sumwith the non-negative

orthant of R∣E∣. We present a feasibility test for the integral distance formulation and

specify a graph property for which the presented algorithm has polynomial running

time. We then turn our attention to the convex set Qn, which is an alternative re-

laxation of Pn. We are particularly interested in Qn’s relationship to Pn and to the

cut cone CUTn. Furthermore, we characterize its unbounded edges along with the

unbounded edges of its closure Qn. The polyhedron Dn, corresponding to the com-

plete problem formulation with the d-variables, is investigated in Section 3.4. This is

followed by a study of the polyhedron PA
n of the revisited assignment variables formu-

lation.

Finally, in Chapter 5, computational results are presented and discussed. Before

we start with a detailed test of different settings of the algorithm, we present a com-

parison between the distance and the binary distance modeling approach. We then

test the explicit versus the implicit use of y-variables in our branch-and-cut-and-price

algorithm and compare the results for different linear programming solver settings to

each other. This is followed by a discussion of various start heuristics, which have a

great effect due to the generation of the start variables of our algorithm being depen-

dent on the start solution. We continue with a report on the effects of different sizes of
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the set of start variables. Our investigation of the influence of pricing mechanisms on

the performance of the algorithm also includes the use of different pricing strategies

and additional pricing steps. Provided with the best choice of all these pricing possi-

bilities, we then test and evaluate the strength of all constraint types. Furthermore, we

compare various general separation strategies, such as different modifications of the

current LP solution. We continue with a presentation of cut selection strategies such

as rankings and variable disjoint cut selection. The usefulness of different improve-

ment heuristics is considered and several branching criteria are tested. Furthermore,

computational results for the sparse problem formulation with all additional features

are presented. Ultimately we compare our best results with those obtained from using

other models of the MinLA.
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Chapter 0

Preliminaries

In this chapter, a brief summary of the basic definitions and notations used within this

thesis is given. We assume familiarity of the reader with the underlying concepts of

mathematics and computer science. For further reading we refer to suitable books in

each section.

0.1 Graphs

An undirected (unweighted) graph G = (V ,E) is a pair of finite sets V and E. The

set V contains all vertices of G, and E ⊆ V × V is the set of all edges e = i j ∶= {i , j}

of G. The graph G is directed if all pairs of nodes are ordered, i. e., e = i j /= ji = e′.

We will denote the number of nodes by n = ∣V ∣; m = ∣E∣ will be the number of edges

in G. A node i and an edge e are incident if e = i j or e = ji. Two edges are adjacent
if they share a node. Similarly, two nodes are adjacent if there exists an edge which is

incident to both.

For each edge e a real number ce ∈ R+ ∪ {0} can be assigned which is the weight
of the edge. If all edges have weights, G is called a weighted graph. The weight of a

subset F ⊆ E is defined by c(F) ∶= ∑e∈F ce .

Given a subset S ⊆ V of nodes, the cut δ(S) of S is defined by

δ(S) ∶= {i j ∈ E ∣ i ∈ S , j ∈ V/S}.

The cut matrix DS corresponding to S is an n × n matrix and defined as (DS)kl ∶= 1

if kl ∈ δ(S) and otherwise (DS)kl = 0.

The degree deg(i) of a node i is the number of edges incident to i. For undirected

graphs we have deg(i) = ∣δ({i})∣. For a directed graph we denote by degin(i) the

5



6 Chapter 0. Preliminaries

edges towards i and with degout(i) the edges from i.

For a subset F ⊆ E of edges the incidence or characteristic vector χF ∈ {0,1}∣E∣ is
defined as

χFe =

⎧⎪⎪
⎨
⎪⎪⎩

1, e ∈ F ,

0, otherwise.

Analogously, the characteristic vector of a node subset S ⊆ V is defined. The super-

script “c” denotes the complement of the set.

For amore detailed presentation of these definitions and graph theory we refer the

reader to [9, 10] and [11].

0.2 Complexity

This section is a summary of the presentation in [12], the literal excerpt is characterized

in quotations.

“Apolynomial-time algorithm is an algorithm that terminates after a num-

ber of steps bounded by a polynomial in the input size. Here a step con-

sists of performing one instruction. (...) We say a problem is polynomial-
time solvable, or is solvable in polynomial time, if it can be solved by a

polynomial-time algorithm. (...) The collection of all polynomial-time

solvable problems (...) is denoted byP.” The classNP (nondeterministic
polynomial-time) is the collection of decision problems that can be re-

duced in polynomial time to the satisfiability problem. “Roughly spoken,

NP is defined as the collection of all decision problems for which each

input with positive answer has a polynomial-time checkable (...) correct-

ness of the answer. (...) The classNP is apparently much larger than the

classP, and theremight be notmuch reason to believe that the two classes

are the same. But, as yet, nobody has been able to prove that they really

are different. This is an intriguingmathematical question, but besides, an-

swering the question might also have practical significance. If P = NP

can be shown, the proof might contain a revolutionary new algorithm, or

alternatively it might imply that the concept of ‘polynomial-time’ is com-

pletely meaningless. If P ≠ NP can be shown, the proof might give us

more insight in the reasons why certain problems are more difficult than

others and might guide us to detect and attack the kernel of the difficul-

ties.”

The hardest problems inNP are calledNP-complete: every problem inNP can

polynomially be reduced to them. An optimization problem is calledNP-hard if and
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only if aNP-complete problem can be reduced to it in polynomial time.

“Several prominent combinatorial optimization problems, like the Trav-

eling Salesman problem, (...) and the Maximum Cut problem, are NP-

hard. P andNP are collections of decision problems: problems that can

be answered by ‘yes’ or ‘no’ (...). An optimization problem is no decision

problem, but often can be reduced to it in a certain sense. (...) Consider

a minimization problem: minimize f (x) over x ∈ X, where X is a collec-

tion of elements derived from the input of the problem, and where f (x)

is a rational-valued function on X. (...) This can be transformed to the

following decision problem: ‘given a number r, is there an x ∈ X with

f (x) ≤ r?’ (...) About all combinatorial optimization problems, when

framed as a decision problem (...), belong toNP, since a positive answer

to the question can often be certified by just specifying an x ∈ X satisfying

f (x) ≤ r.”

0.3 Linear Algebra

For a real vector space Ln of dimension n, we denote by (Ln)∗ its dual space. Note

that Ln is not the n-fold Cartesian product L × L × . . . × L. We consider the elements

of Rn as column vectors, and for x ∈ Rn, the transpose xT is in (Rn)∗. We denote by 1
the appropriately sized vector consisting of ones. Analogously 0 is the vector whose

entries are all zero. If appropriate, we will use a subscript 1k , 0k to identify the lengths
of the vectors. The kth unit vector is denoted by ek . Wewill abbreviate the set {1, . . . ,n}

by [n].

The vectors x1, . . . , xk ∈ L
n are affinely independent if the unique solution of the

linear system ∑
k
i=1 λixi = 0 and ∑

k
i=1 λi = 0, is λi = 0 for all i = 1, . . . ,k. Linear

independence implies affine independence; the converse, however, is not true. Note:

themaximumnumber of affinely independent points in Ln is n+1. In particular, any n

linearly independent points in Ln and the 0 vector are affinely independent.

Given vectors x1, . . . , xk ∈ L
n we call ∑

k
i=1 λixi a conic combination if λi ≥ 0 for

all i = 1, . . . ,k. If instead∑
k
i=1 λi = 1, we call it an affine combination. If a combination

is conic and affine, we call it convex combination.
The affine hull of a set X ⊂ Ln, X = {x1, . . . ,xk} , is the smallest set containing all

affine combinations of x1, . . . ,xk and denoted by aff ({x1, . . . ,xk}). The convex hull
conv ({x1, . . . ,xk}) is defined as the smallest convex set containing x1, . . . ,xk .

A subset C ⊆ Ln is a cone if it is closed under conic combination, i. e., if x , y ∈ C

then λx + µy ∈ C for all λ, µ ∈ R+. A cone is polyhedral if there exists a finite set of
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vectors x1, . . . ,xk such that

C ∶= {y ∈ Ln ∣ y = ∑
k

i=1
λixi , λi ≥ 0 for all i = 1, . . . ,k}.

Within this thesis all cones will be polyhedral, therefore we will omit the explicit spec-

ification from now on. Note: any cone must contain the origin and can be represented

as C ∶= {x ∈ Ln ∣ Ax ≤ 0}, for a suitable matrix A.

0.3.1 Matrices

The symbol 0 denotes an all-zeros matrix which is not necessarily square. We also use

it to say “this part of the matrix consists of zeros only”. By 1n we denote the square

matrix of order n whose (k,l)-entry is 1 if k ≠ l and 0 otherwise. We will omit the

index n when appropriate. Given two matrices A, B ∈ Rn×m we define

A ● B ∶= tr(ATB) = ∑
n

k=1∑
m

l=1
AklBkl .

The set of all n × n matrices with entries in R is M(n,R). Moreover the set of all

symmetric n × n matrices with zero in the main diagonal will be S0M(n). Because of
the 0-entries and the symmetry we have S0M(n) ≅ R(

n
2
).

0.3.2 Permutations

The set of all permutations π of n is defined by S(n). We occasionally view S(n) as

a subset of Rn by identifying the permutation π with the point (π(1), . . . ,π(n))T .

With ın we denote the identical permutation on [n]. As above we omit the index n

when no confusion can arise. The so-called antipodal permutation π− is defined by

π− ∶= (n + 1)1 − π,

e. g. if π = (2 3 1 4) then π− = (3 2 4 1). The permutation matrix will be denoted

by Eπ ∶= (eπ(1), . . . , eπ(n))
T . Note that ek = Eπeπ(k) and ET

π = E
−1
π = Eπ−1 .

0.3.3 Metrics

A semi-metric on [n] is a mapping d ∶ [n] × [n] → R+ which

• satisfies the triangle inequality,

• is symmetric, i. e., d(i , j) = d( j,i) for all i , j ∈ [n] and

• satisfies d(i ,i) = 0 for all i ∈ [n].
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If in addition d(i , j) = 0 only if i = j for all i , j ∈ [n], d is called ametric. We under-

stand a metric both as a function and a matrix, and we will switch between the two

concepts without further mentioning.

We say a metric d is embeddable in the real line, for short d is ℓ1-embeddable

in R, if there exist x1, . . . ,xn ∈ R with dkl = ∣xk − xl ∣ for all k,l ∈ [n]. It is known that

the set of ℓ1-embeddable semi-metrics on [n] is a polyhedral cone inR(
n
2
) [13]. In fact,

it is nothing but the well-known cut cone, denoted by CUTn.

A cut metric is defined as follows: For a set U ⊂ [n], we let dU be the metric

which assigns two points on different sides of the bipartition U ,U c of [n] a value of

1 and two points on the same side a value of 0. We will say that the set U induces
the associated cut metric. With this notation, CUTn is the convex cone with apex 0

in S0Mn generated by the points dU , i. e.,

CUTn ∶= cone{dU ∣ dU is the cut metric for U ⊂ [n]}.

It is known that each cut metric defines an extreme ray of CUTn [14].

We study the metrics d on [n] that arise when n points are embedded in the real

line, in such a way that the distance between each pair of points is at least 1. We call

these metrics R-embeddable 1-separated metrics. We remark that one could easily

replace the value 1 with some arbitrary constant є > 0; the results would remain essen-

tially unchanged.

For a deeper insight in linear algebra we refer the reader to [15] and [16].

0.4 Polyhedra

Let Ln be a linear vector space over R. A polyhedron P ⊆ Ln is the intersection of

finitely many closed half spaces, or equivalently, the solution set of a finite system of

linear inequalities, i. e., P ∶= {x ∈ Ln ∣ Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm. This

representation of P via the system of inequalities (A,b) is called theH-representation
or outer description of P. For another characterization of polyhedra we need the

Minkowski sum of two polyhedra P1 and P2, which is the set

P1 + P2 ∶= {x + y ∣ x ∈ P1, y ∈ P2}.

The so-calledV-representationor innerdescriptionof a polyhedron P is P ∶= conv(X)+
cone(Y), where X ∈ Rn×m and Y ∈ Rn×m′ . These two descriptions are equivalent due

to

Theorem 0.4.1 ([17]). A subset P ⊆ Ln is a Minkowski sum of a convex hull of a finite

set of points plus a conic hull of a finite set of vectors

P ∶= conv(X) + cone(Y), where X ∈ Rn×m
, Y ∈ Rn×m′
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if and only if it is an intersection of closed half spaces

P ∶= {x ∈ Ln ∣ Ax ≤ b}, for some A ∈ Rr×n
, b ∈ Rr

.

If P is bounded we call it a polytope. The notion of affine independence is useful

in defining the dimension of a polyhedron. The dimension of a polyhedron P =

{x ∈ Ln ∣ Ax ≤ b} is k, denoted by dim(P) = k, if the maximum number of affinely

independent points in P is k + 1. We set dim(∅) = −1.

Proposition 0.4.2 ([18]). Let P = {x ∈ Ln∣Ax ≤ b} and let A′, b′ be the subsystem

of A, b such that A′x = b′ for all solutions of Ax ≤ b. Then dim(P) = n − r, where r is

the rank of A′.

Let P ⊆ Ln be a polyhedron. An inequality ax ≤ b, is a valid inequality for P

if it is satisfied by all elements of P. A face of P is the set F = P ∩ {x ∈ Ln∣ax = b}

with ax ≤ b being a valid inequality of P. As 0Tx ≤ 0, we get that P itself is a face of P.

For the inequality 0Tx ≤ 1, we see that∅ is always a face of P. The dimension of a face
is the dimension of its affine hull, i. e., dim(F) ∶= dim(aff(F)). A face of dimension 0

is called a vertex of P, a face of dimension 1 is an edge. A facet F is a face of P of

dimension dim(P) − 1. If F = P ∩ {x ∈ Ln∣ax = b} is a facet, the inequality ax ≤ b is

called facet-defining.
Besides the above descriptions of a polyhedron P, it can also be described in terms

of points and rays. To do so we start with some more definitions. A subset X of a

convex set C is called exposed if there exists a half spaceH containing C, such that the

intersection of the bounding hyperplane of H with C is equal to X. In other words, X

is exposed if there exists a valid inequality for C such that X is the set of all points in C

satisfying the inequality with equation. A subset X of a convex set C is called extreme
if tc+(1− t)c′ ∈ X for c,c′ ∈ C and 0 < t < 1 implies c,c′ ∈ X. Clearly, if X is exposed it

is also extreme, but the converse is not necessarily true. It is true ifC is closed, which is

the case if C is a polyhedron. In this case every exposed set is a face of the polyhedron.

Given x ∈ P = {x ∈ Rn∣Ax ≤ b} we say x is an extreme point of P if there do not exist

x1, x2 ∈ P, x1 /= x2, such that x = 1

2
x1 +

1

2
x2. It is true that x is an extreme point of P if

and only if x is a zero dimensional face of P. As the zero dimensional faces are called

vertices, we denote the set of all extremepoints of P by vert(P). A vector r ∈ Rn , r /= 0
induces a ray R+r of P if x ∈ P implies x + λr ∈ P for all λ ∈ R+. Often we omit to

specify that the vector r induces a ray, but call r a ray itself. A ray R+r is an extreme
ray of P if {λr∣λ ∈ R+} is a one dimensional face of {r ∈ Rn∣Ar ≤ 0}. The set of all
extreme rays of P will be denoted by exray(P).

Theorem 0.4.3 ([19]). Let x1, . . . ,xk be the extreme points of the nonempty polyhe-

dron P = {x ∈ Rn ∣ Ax ≤ b}, where rank(A) = n. Further let r1, . . . ,rl be its extreme
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rays. Then

P = {x ∣ x = ∑
k

i=1
λixi +∑

l

j=1
µ jr j , where 1Tλ = 1, λ ∈ (Rn

+
)
k
, µ ∈ (Rn

+
)
l}.

The recession cone rec(P) of a polyhedron P is the set of all infinite directions in

P, i. e.,

rec(P) ∶= {y ∈ Ln∣x + ty ∈ P for all x ∈ P, t ≥ 0} .

We set rec(∅) ∶= {0}.

Theorem 0.4.4 ([17]). A polyhedron P can be described with the recession cone via the

following equation

P = rec(P) + conv{x∣x ∈ vert(P)}.

Let P be a polytope in Ln and y ∈ P. If y is not contained in a face of P of dimension

smaller than n, it is an interior point of the polytope. Moreover, the set of all interior
points of P is denoted by int(P). It can easily be shown that this definition coincides

with the usual topological definition of the interior of the set P ⊆ Ln. Note: the interior

of a polytope is not invariant under affine equivalence of polytopes and that, in fact,

int(P) = ∅ if P is not full-dimensional in Ln.

A polyhedron P is called simple, if every vertex of P is contained in exactly dim(P)

facets. It is simplicial if and only if all facets contain only dim(P) vertices.

The polar P△ of a polyhedron P ⊆ Ln is the set of all left hand sides of normalized

valid inequalities:

P△ ∶= {c ∈ (Ln)∗ ∣ cTx ≤ 1 for all x ∈ P}.

It can only be defined correctly if 0 ∈ int(P). The vertices in P correspond exactly to

the facets in P△ and vice versa. Given two polyhedra P1 and P2 where P1 ⊆ P2, we have

P△1 ⊇ P
△

2 . If a polyhedron is simple, its polar is simplicial (and vice versa).

Within this thesis we will not only work with polyhedra in the real vector space

Rn, but with polyhedra in different linear vector spaces, e. g. Ln = S0M(n). For more

information about these definitions we refer to [17–19] and [12].

0.5 Linear Programming

The following definitions are based on the presentation in [20]. The linear program-
ming problem consists of finding a vector x ∈ Rn that fulfills all given constraints
Ax ≤ b and maximizes a certain objective function cTx, where A is an m × n matrix
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and b ∈ Rm and c ∈ Rn are vectors. We denote this problem as linear program (LP)
or primal program, PP for short. Its standard form is the following:

(PP) min cTx

s.t. Ax ≤ b

x ∈ Rn
.

A vector x ∈ Rn that satisfies Ax ≤ b is called a feasible solution. A feasible solution

that is maximal is called an optimal solution. Each linear program can be associated

with a so-called dual program

(DP) max yTb

s.t. yTA = cT

y ≤ 0,

where y is the variable vector. The linear program is often called the primal program.

Table 0.1 shows how the two programs PP and DP can be transformed into one

another. Here A. j is the jth column and A j. the jth row of matrix A.

The following important duality theorem establishes an important connection

between PP andDP.

Theorem 0.5.1 ([20]). (a) If PP and DP both have feasible solutions, then both

problems have optimal solutions and the optimum values of the objective func-

tions are equal.

(b) If one of the programs PP or DP has no feasible solution, then the other is either

unbounded or has no feasible solution.

(c) If one of the programs is unbounded, then the other has no feasible solution.

This theorem is equivalent to the famous Farkas’ lemma:

Theorem 0.5.2 ([17]). There exists a vector x ∈ Rn such that Ax ≤ b,x ≥ 0 if and only if
there does not exist a vector y ∈ Rm such that yTA = 0,y ≥ 0 and yTb < 0.
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Table 0.1: Correspondence of the primal and dual linear program.

In the dual (DP) In the primal (PP)

max min

variables x j, j = 1, . . . ,n functions AT
j.u, j = 1, . . . ,n

functions AT
. jx, j = 1, . . . ,n variables x j, j = 1, . . . ,n

objective function cTx right hand side c

right hand side b objective function bTu

constraints Al .x ≤ bl for all l ∈ L variables ul ≥ 0 for all l ∈ L

Ae .x = be for all e ∈ E ue free for all e ∈ E

AT
g .x ≥ bg for all g ∈ G ug ≤ 0 for all g ∈ G

variables xi ≥ 0 for all i ∈ I constraints AT
.iu ≥ ci for all i ∈ I

x j free for all j ∈ J A. ju = c j for all j ∈ J

xk ≤ 0 for all k ∈ K AT
.ku ≤ ck for all k ∈ K
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0.6 Solution Methods for Linear Programs

Let P be the polyhedron corresponding to Ax ≤ b, i. e., P = {x ∈ Rn ∣ Ax ≤ b} is

the geometrical interpretation of the constraint system Ax ≤ b. Considering the set

of optimal solutions of LP we see that it is a face of P. If P is nonempty and the LP

bounded, there exists a vertex of P that is an optimal solution of the LP. The important

question is: how to find this vertex?

The first documented linear programming problem was solved in 1947 when G.

Dantzig formulated U. S. Air Force planning problems and designed the simplex al-
gorithm for solving these problems. Soon it was discovered that this tool is conve-

nient for a huge number of practical problems in various fields. For over 30 years

it remained an open question whether linear programming problems are solvable in

polynomial time or not. In 1979 L. G. Khachian modified an originally non-linear

non-differential optimization method, known as the ellipsoid method, to prove the

feasibility of a linear programming problem in polynomial time [21]. This was a great

step but unfortunately the result was of no help in practice. Only a few years later in

1984N. Karmarkar invented the interior pointmethod [22] which ismuch faster than

the ellipsoid method and in some cases even faster than the simplex method. Until to-

day these three methods are the fundamental solution techniques for linear program-

ming problems. For further literature we refer to [23–25]. The most frequently used is

the simplex algorithm which will be described now.

0.6.1 Simplex Algorithm

The basic idea is to start from a vertex of the corresponding polyhedron and jump to a

neighboring vertex with a better objective function value until we reach an optimum.

This “jump” is realized by replacing one index of the basis B. To define the basis of P

let T be the index set of the columns of A. Further let m be the rank of A. A basis
of a linear program is a subset B ⊆ T with ∣B∣ = m. The variables belonging to B are

called active variables; all others are inactive variables. Now denote the columns of

A corresponding to B by AB. For a set with only one element B = {v}, we write Av

instead of A{v}. Analogously define cB, xB, and bB. Fixing xi = 0 for all i ∈ T ∖ B and

determining the unique solution of ABxB = bB we obtain a solution of Ax = b which

is known as the basis solution of B. A basis is a feasible basis if the basis solution is a

feasible solution of the LP.

The simplex algorithm generates a sequence of feasible bases and tests in each step

whether the corresponding dual solution is feasible forDP or not. If it is, the current

basis solution is optimal, due to Theorem 0.5.1-(b). Suppose we have a basis and a

feasible basis solution, but it is not optimal for our minimization problem. We first
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choose an index i ∈ T ∖B with yTAi > ci and save it to enter the basis B. Now we have

to determine an index j leaving the current basis. This procedure is sometimes called

the pricing step or ratio test. We start by finding the unique solution to ABz = Ai ,

i. e., we want to know how the new column Ai can be described in terms of the current

basis. Then, we choose a real value ε ∈ R and replace the current basis solution xB by

xB − εz and xi = ε. This leads to the following changed objective function value

cTB (xB − εz) + ciε = c
T
B xB + ε(ci − c

T
B z)

= cTB xB + ε(ci − y
TABz)

= cTB xB + ε(ci − y
TAi).

By the choice of i, we have ci − yTAi < 0 and hence every positive ε decreases, i. e.,

improves, the objective function value. As we want to take the best possible ε, we

search for the largest ε such that xB − εz ≥ 0.

If no such ε exists, the LP is unbounded. If we can find such an ε, there exists an

index j ∈ B with z j > 0 and (xB − εz) j = 0. We replace this index j with the chosen

index i and repeat the procedure. Algorithm 1 (taken from [18]) shows a summary of

the simplex algorithm.

If the algorithm terminates, it obviously returns the optimal solution or the un-

boundedness of the LP. If we determine ε = 0 at any iteration step of the algorithm,

we obtain the same basis we already have and the simplex algorithmmight not termi-

nate. To prevent this cycling, certain pivot rules have to be applied. Two things of the

simplexmethod are essential for its success: choose a feasible initial basis and improve

the objective function value in each step.

The above described simplex algorithm is commonly known as phase II of the
primal simplex algorithm. That is because we skipped phase I by assuming that a

feasible basis solution exists. Furthermore the algorithm starts with primal feasibility

and stops immediately if dual feasibility has been ensured. The reverse procedure is

the so-called dual simplex algorithm.

There exist several implementations of the simplex algorithm. A powerful and

widely used software is the commercial CPLEX code from ILOG. It cannot only be

used for solving linear programs but also for solving mixed integer, quadratic and

mixed integer quadratic programs [26]. A non-commercial implementation of the

simplex algorithm is SoPlex (The Sequential object-oriented simplex class library).

“SoPlex is an implementation of the revised simplex algorithm. It features primal and

dual solving routines for linear programs and is implemented as a C++ class library

that can be used with other programs.”[27, 28]
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Algorithm 1 Simplex Algorithm with an Initial Basis

Input: Current LP solution x∗ for the minimization problem,

Feasible basis B,

Output: Optimal solution of the linear program if it exists.

1: loop
2: Find the unique solution to yTAB = cB.

3: if yTAi ≥ ci for all i not in B then
4: return Optimal solution x∗. // Current solution x∗ is optimal.

5: else
6: Choose i /∈ B such that yTAi < ci .

7: Find the unique solution to ABz = Ai .

8: Find the largest ε such that xB − εz ≥ 0.
9: if ε does not exist then
10: return The LP is unbounded.

11: else
12: Choose j ∈ B such that z j > 0 and the jth component of xB − εz is 0.

13: Replace B by (B ∪ {i}) ∖ { j} and xB by xB − εz and xi = ε.

14: end if
15: end if
16: end loop
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0.6.2 Pricing

In many problems the corresponding LP consists of too many variables, i. e., they can-

not all be written down explicitly or even generated. The key idea is now to generate

variables on demand. The reason behind this procedure is that most of the variables

are non-basis variables and equal to 0 in the optimal solution. Therefore one considers

only a subset of variables, to be more precise: one generates only those variables that

have the potential to improve the objective function value. The knowledge whether a

variable can enhance the objective can be obtained from the simplex algorithm.

We define the reduced cost of a variable by µi ∶= ci − yTAi . The change of the

objective functionwithin an iteration step of the simplex algorithm is cTB xB+µi . If µi is

non-negative for all indices i ∈ T∖B, the objective function value cannot be decreased,

i. e., no improvement is possible. Hence the current basis solution is optimal and we

say that all non-basis variables price out correctly.

The so-called pricing problem consists in the test whether all variables price out

correctly, or in determining a non-basis variable that does not price out correctly. Pric-

ing means to start the simplex algorithm with a small set of variables and price-in all

necessary variables to prove optimality.

0.6.3 Pricing Versus Column Generation

The important difference of pricing and column generation is that in the first case the

whole coefficient matrix of the LP is known, whereas this is not the case if column

generation is done. To be more precise, pricing denotes the process of determining

the missing columns. Column generation denotes the procedure of determining the

missing columns and their unknown coefficients. This makes a huge difference. In the

case of pricing one “only” has to consider the reduced costs of all non-basis variables.

In column generation one has to formulate a so-called restricted master (or primary)

problem whose solution yields the dual multipliers needed in a current pricing (or

secondary) problem. As described above the pricing problem determines the miss-

ing columns and the expanded restricted master problem can then be solved again.

Possible procedures are Dantzig–Wolfe decomposition [29] or Benders decomposi-

tion [30]. Unfortunately the implementations are difficult and the convergence of the

algorithms is often slow. Nevertheless solution strategies for huge, partly unknown

LPs exist.
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0.7 Integer Programming

There is only a small but significant difference between a linear programming problem

and an integer programming problem. An integer programming problem, for short

integer program, consists of finding a vector x ∈ Zn that fulfills all given constraints

Ax ≤ b and maximizes a certain objective function cTx, i. e.,

(IP) max cTx

s.t. Ax ≤ b

x ∈ Zn
,

where the last condition is the integrality constraint. Unfortunately this integrality
constraint makes the problem much harder than its linear programming variant. To

be more precise: in general integer programs areNP-hard [31]. This is true although

the number of feasible solutions is, for a bounded polyhedron, finite — in contrast to

the infinite number of feasible solutions for a linear program.

As soon as linear programming was invented, integer programming became an

important topic. This is due to the fact that there exists a huge number of practi-

cal applications for integer programming. The most famous is without question the

Traveling Salesman problem (see [32, 33]) but from production planning to timetable

scheduling one can find countless examples that are relevant today. Therefore a lot of

effort has been and is still made to develop solution strategies for integer programs.

0.8 Solution Methods for Integer Programs

Solution methods for integer programs can be partitioned into exact and heuristic al-

gorithms. Heuristic algorithms compute relatively “good” results within a short run-

ning time. Unfortunately a heuristic itself cannot evaluate its solution, i. e., we do not

know whether a produced solution is near to or far from the optimal solution. Nev-

ertheless heuristics are important to accelerate exact algorithms. Moreover in several

applications a short running time is more important than an exact solution. Therefore

a well implemented heuristic can surely be a powerful tool. The following presentation

of exact algorithms is based on [34, 35].

0.8.1 Branch-and-Bound

The classical exact algorithm for solving integer programming problems is the so-

calledbranch-and-bound algorithm, often knownas explicit enumeration. It is based
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Figure 1: Flowchart of a branch-and-bound algorithm.

on the ancient idea to solve a problem using the divide-and-conquer principle. Al-
though A. H. Land and A. G. Doig redeveloped the idea [36], whereas the first branch-

and-bound algorithm was formulated by R. J. Dakin in 1965 [37].

The idea is to split the original problem into smaller subproblems by successively
fixing the variables to integer values. Each fixing leads to two new subproblems that

have to be considered. In this way one obtains the so-called branch-and-bound tree.
Solving the corresponding LP of the minimization problem at a certain node in this

tree leads to a local lower bound. Now we compare this local lower bound with the

global upper bound, i. e., with a feasible solution obtained by a heuristic for the origi-
nal problem. If the local lower bound is greater than the global upper bound, we know

that the optimal solution cannot be within the node’s branch-and-bound subtree. In

this case we fathom the current node, i. e., we do not consider it and its subtree any-

more. This saves a lot of running time if the upper bound is strong. Figure 1 displays

an overview of the branch-and-bound algorithm for a minimization problem.1

We say a variable is fixed if it has this value for the rest of the optimization. If

this holds in the current branch-and-bound node and in its subtree only, we say the

variable is set.
There exist several different branching schemes. The simplest is to choose any

fractional variable x∗i of the current solution and define the two subproblems in each

branching step in the following way. The first subproblem consists of the constraint

system with the new constraint xi ≥ ⌈x
∗

i ⌉. The second subproblem is constructed

adding the constraint xi ≤ ⌊x
∗

i ⌋ to the LP-relaxation. This general procedure is called

branching on a variable and leads to a binary branch-and-bound tree.

Instead of branching on a variable one can branch on constraints as well. In this

1This figure has been adopted from [35].
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case each subproblem is defined by one additional constraint, where an arbitrary con-

straint set can be chosen as long as it fulfills the general branching principle. This

means that the (not necessarily disjoint) union of the feasible solutions of all subprob-

lems equals the set of all feasible solutions in the branch-and-bound node.

The choice of the branching variable or the branching constraint is of great im-

portance. Unfortunately none is useful for all kinds of problems. Problem specific

selection strategies can be found in Section 4.5.4.

Unfortunately the number of subproblems in a branch-and-bound tree can be very

large. Furthermore, the algorithm is strongly dependent on good bounds. Therefore a

branch-and-bound algorithm is often expensive concerning memory usage and run-

ning time. Nevertheless it is an intuitive approach for solving combinatorial optimiza-

tion problems. An important advantage is that a guarantee for the current best solution

is given at any time.

0.8.2 Cutting Planes

A second and equally powerful exact algorithm for solving integer programs is the

cutting plane method. Its central idea is the so-called relaxation. A relaxation of

an integer or linear program means that some constraints of the system are missing.

The most famous relaxation is the so-called LP-relaxation in which the integrality

constraints are deleted from the integer program. Its importance is due to the fact that

we can use all solution methods of the linear programming theory to solve the LP-

relaxation. Note: for aminimization problem, the optimal solution of an LP-relaxation

cannot be larger than any feasible solution of the original program.

Consider an optimal solution of an LP-relaxation that is fractional. We now search

for a valid constraint of our original problem that cuts off the optimal solution of the

LP-relaxation. This identification of a violated (with respect to the solution of the LP-

relaxation) and valid (for the original problem) constraint is called separation prob-
lem. The identified constraint is called a cut or cutting plane. Having found one or

several cuts, we add them to the LP-relaxation, re-optimize and separate again. Un-

fortunately the complexity of the separation problem is equivalent to the complexity

of solving the original problem to optimality. Furthermore the algorithm is strongly

dependent on the strength of the cutting planes. Another drawback is that one has to

be careful to avoid rounding errors and numerical problems.

We will now consider the combination of the algorithms described above.
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0.8.3 Branch-and-Cut

The so-called branch-and-cut method is the most important and surely most applied

algorithm for solving integer programs to optimality. Being a combination of branch-

and-bound and cutting plane method it inherits the properties of its parts, i. e., its

running time depends on good bounds and strong cuts. The two algorithms support

one another in the following way. The branch-and-bound part determines those sub-

trees that are worth searching for the optimal solution. The cutting planes improve the

local lower bounds remarkably and accelerate therefore the search within the subtrees

significantly.

In practice one separates cutting planes in the current node and branches if the

LP solution is still fractional until no violated cuts can be found anymore. To tackle

the phenomenon that several cutting planes are added but the objective function does

not improve significantly, we can make use of tailing-off . This means if for the last k

iterations the objective function value improved less than l%, the separation of cutting

planes is stopped and branching is performed instead. The choice of the parameters

k and l is problem specific. In combination with a good order in which the different

constraint types are separated and a smart choice of the number of separated cuts per

iteration, one can shorten the running time of the algorithm by about 30%.

The gap closure of a minimization problem is the percentage by which the gap

between the upper bound cbest and an old lower bound c as well as a new lower bound

c′ could be closed:

gap closure = 100% −
∣c′ − cbest∣

∣c − cbest∣
× 100%.

It is obvious that the separation increases the computational effort per node. On

the other hand the cutting planes help to improve the LP bound and therefore reduce

the number of nodes that have to be considered. Therefore a branch-and-cut algorithm

is in general more efficient than a branch-and-bound or a cutting plane algorithm. In

many cases the largest part of the computation is to prove the optimality of an early

found optimal solution.

Within this thesis the branch-and-cut framework ABACUS 2.4 (A Branch-And-
CUt System) [35, 38] is used in combination with the LP solver CPLEX 8.1 [26].

0.8.4 Branch-and-Cut-and-Price

The branch-and-cut-and-price algorithm combines the advantages of a branch-and-

cut algorithmwith the possibility to work with huge LPs. Unfortunately this name has

been widely used for branch-and-cut algorithms combined with column generation.

Therefore recall the differences between column generation and pricing described in
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Section 0.6.3. Within this thesis we will not consider column generation as the whole

coefficient matrix of the LP is known.

The branch-and-cut-and-price algorithm is especially useful for a certain class of

combinatorial optimization problems. These are problemswith a large number of vari-

ables and sparse feasible solutions. A prominent example is the Symmetric Traveling

Salesman Problem. It has (
n
2
) variables but in a tour only n of them are non-zero. Here

a suitable subset of start variables is chosen and the algorithm prices in more variables

if it is required for the correctness of the algorithm. This method is often denoted as

sparse graph technique. See [39] for a corresponding procedure for the Travelings

Salesman problem.

Thework flowof a branch-and-cut-and-price algorithm for the use of sparse graph

techniques is presented in Figure 2. It is based on the corresponding figure in [35],

where a detailed description of the single parts can be found. Note: pricing is necessary

before a node can be fathomed. Additional pricing steps can be performed, which

might improve the performance of the algorithm. This was the case for the Traveling

Salesman problem for example [39]. The impact of additional pricing steps for the

Minimum Linear Arrangement problem is investigated in Section 5.5.6.

Branch-and-Price

When combining branching and pricing, one has to take care of some specialties. The

first is based on the fact that the pricing problem has to be solved not only in the root

but in every node of the branch-and-cut tree. As a consequence a variable xi might

be set to 0 in this subtree although it has negative reduced cost in the current node’s

LP solution. It should therefore be added to the LP, which is not possible within this

subtree. To tackle this case we have to be careful during the pricing step: If a variable

should be added due to its reduced costs, we have to check whether it is fixed or set.

Only if it is not fixed or set, we add it to the LP. Alternative branching schemes that are

compatible with pricing can be found in [40–42]. The second challenge is that the LP

can be infeasible due to fixed or set variables. How we can cope with this infeasibility

is described in the following.

Infeasible Linear Programs

There are two reasons for infeasibility. The first is that the left hand side of a violated

“≥”-constraint might be empty. This can occur when variables are fixed and set during

the branching phase. Another reason for infeasibility is that the LP solver finds a dual

feasible basis that is primaly infeasible. These false infeasibilities can be resolved by

activating additional variables. The important question is how to find the right vari-
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Figure 2: Flowchart of a branch-and-cut-and-price algorithm.
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ables? An overview of the general handling of infeasibility is given in Algorithm 2

InfeasibleLP().

Algorithm 2 InfeasibleLP()

Input: Constraint system (A,b) with infeasible subsystem (A , b ),

Objective function min cTx, where c ≥ 0,

Global upper bound gUB,

Current primal variables x∗,

Current dual variables y∗,

Current dual feasible basis B.

Output: New constraint system (A′,b′) if feasibility can be restored by new variables,

False otherwise.

1: if #subproblems > 1 and InitMakeFeas(A ,b ,c)== True (see Alg. 3) then
2: return New constraint system (A′,b′). // Variables were added.

3: else
4: if pricing()== True then
5: return New constraint system (A′,b′). // Variables were priced in.

6: else
7: if cTx∗ ≥ gUB then
8: return False. // It is impossible to reestablish feasibility.

9: else
10: if MakeFeasible(A,b,c,x∗,y∗,B)== True (see Alg. 4) then
11: return New constraint system (A′,b′). // Variables were added.

12: else
13: return False. // It is impossible to restore feasibility.

14: end if
15: end if
16: end if
17: end if

If the infeasibility is due to the fixing and setting of all involved variables, we apply

the procedure InitMakeFeas() displayed in Algorithm 3. Let x∗ be the current

LP solution. Suppose ax ≤ β is an infeasible constraint with void left hand side. That

means all coefficients of a corresponding to active variables are 0. Now all variables

not part of the constraint system are scanned whether their coefficient in ax ≤ β is

negative. If this is the case this variable might restore the feasibility and is therefore

added to the LP. To make the best use of InitMakeFeas() we formulate as many

constraints as possible in the form ax ≤ β with a having negative coefficients.
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Algorithm 3 InitMakeFeas(A ,b ,c)

Input: Constraint system (A,b) with infeasible subsystem (A ,b ),

Objective function coefficients c.

Output: True if feasibility might be restored by new variables,

False otherwise.

1: for all rows ax ≤ β of (A ,b ) do
2: for all inactive variables v do
3: if av < 0 then
4: Add variable v.

5: Go to step 2. // Variable found which might restore feasibility of ax ≤ β.

6: end if
7: end for
8: return False. // No variable can restore feasibility of ax ≤ β.

9: end for
10: return True.

If the infeasibility has another reason, we solve the pricing problem and add all

variables to the LP that have negative reduced costs. If this does not help, we have

to check whether the current LP solution x∗ satisfies the bounding condition, i. e.,

cTx∗ ≤ gUB. If not, we continue by considering the infeasible variable with the goal

to make it feasible again. A variable is called infeasible, if its value is less than its

lower bound or greater than its upper bound. The goal is to change the LP in such

a way that every infeasible variable is feasible again. How we try to achieve this is

summarized in Algorithm 4. The idea is to add a new variable v for every infeasible

variable v , whereas the new objective function valuemust not be too high, i. e., cTx∗+

rv ≤ gUB. The additional variable v has the property that it can adjust the infeasibility

of the infeasible variable v . If the infeasible variable’s value is too low, the component

(A−1B Av)v of the new variable v has to be greater than zero (recall the notations in

Section 0.6.1). Otherwise the new variable cannot compensate for the infeasibility of

v . If the value of the infeasible variable is too high, the new variable’s contribution

has to be negative to be able to restore feasibility. Unfortunately we cannot assure that

other components of the new variable do not destroy the helpful impact of the v∗th

component. Therefore condition (8) of Algorithm 4 is a necessary but not sufficient

condition for the reduction of the infeasibility. Hence this procedure is only heuristic

and not exact. Note the new variable v is not determined by its reduced cost but by

simulating one iteration of the dual simplex algorithm.

If for an infeasible variable v no new variable could be found, the procedure can
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be stopped as the LP is then indeed infeasible.

Algorithm 4 MakeFeasible(A,b,c,x∗,y∗,B)

Input: Infeasible constraint system (A,b),

Objective function coefficients c,

Current primal variables x∗,

Current dual variables y∗,

Current dual feasible basis B.

Output: True if feasibility might be restored by new variables,

False otherwise.

1: Let AB be the columns of A corresponding to variables in B.

2: Let cv be the objective function coefficient of v.

3: Let µv ∶= cv − (y
∗)TAv be the reduced cost of variable v.

4: Let LBv be the lower bound of variable v.

5: Let v be one of the infeasible variables.

6: for all inactive variables v do
7: if cTx∗ + µv ≤ gUB then
8: if (v < LBv and (A−1B Av)v > 0) or (v > UBv and (A−1B Av)v < 0) then
9: Add variable v.

10: return True. // Variable might restore feasibility.

11: end if
12: else
13: Do not add variable v. // New LP value would be too high.

14: end if
15: end for

16: return False. // It is impossible to reestablish feasibility.
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A Brief Survey

1.1 Definition of MinLA and Basic Properties

Let G = (V ,E) be an undirected, weighted graph on n nodes with m edges and non-

negative edge weights ci j for i j ∈ E. The Minimum Linear Arrangement problem

consists in finding a linear ordering of the nodes of a given graph such that the sum

of the weighted edge lengths is minimized. To be more precise, the goal is to find

a one-to-one mapping π ∶ V → {1, . . . , n} that maps the nodes of the graph to the

set {1, . . . , n} and minimizes the sum over all weighted edge lengths concerning π:

min
π∈S(n)

∑
i j∈E

ci j∣π(i) − π( j)∣. (1.1)

The mapping π is called an arrangement, layout or labeling. The problem of deter-

mining an optimal labeling is called the Minimum Linear Arrangement problem,

short MinLA, and was introduced by Harper [43]. In the field of approximation al-

gorithms, the abbreviations MLA and OLA are widely used. Furthermore, the fol-

lowing synonyms are established: Minimum Length Linear Arrangement problem,

Minimum Length Layout problem, Total Edge Length problem, Edge Sum prob-
lem,Minimum 1-Sum problem,DilationMinimization problem, Graph Ordering
problem and (Optimal) LinearOrdering. Figure 1.1 shows an example of a graph and

its minimum linear arrangement solution.

The optimal value of the objective function (1.1) for the input graph G is denoted

by copt(G). We distinguish between theweighted version of this optimization problem

and its unweighted version, inwhich all coefficients ci j are equal to 1. If the input graph

G is obvious we omit its declaration. If G is not connected the MinLA can be solved

27
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(a) Example graph G.
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(b) MinLA presentation of the example graph G.

Figure 1.1: An example graph and its MinLA presentation.

independently for every component. The optimal objective function value copt(G)

is the sum of the optimal objective function values of its components. We therefore

assume all input graphs to be connected.

The Linear Arrangement problem can be formulated as special case of the General

Placement problem [44], the Quadratic Assignment problem [44] and the Single Row

Facility Layout problem [45]. It can be generalized to the Storage Time Product Min-

imization problem [46]. The MinLA is one of the most important graph layout prob-

lems. Its most famous variant is theMatrix Bandwidth problem, originally posed in

[43], in which the maximal length of an edge is to be minimized

min
π∈S(n)

max
i j∈E
∣π(i) − π( j)∣.

Another interesting variant is its generalization into two dimensions. Hansen intro-

duced this Grid Arrangement problem in 1989. In [47] a survey about this problem

can be found.

Considering the reverse objective function of (1.1) leads to theMaximum Linear
Arrangement problem which was investigated in [48]. The parameterized version of

theMinLA is considered in [49–52]. Here, for a given graph and a non-negative integer

number k the goal is to answer the question, whether there exists a linear arrangement

of G with objective function value less or equal than k, i. e.,

does π ∈ S(n) exist such that ∑
i j∈E

ci j∣π(i) − π( j)∣ ≤ k?

1.2 Applications

Harper defined the problem in 1964 to develop error-correcting codes with minimal

average absolute errors. Ten years later it became important for the VLSI technology,

as it was considered as a simplifiedmathematical model of the placement phase, where
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the nodes represent the modules and edges of the graph correspond to the intercon-

nections [53]. Today’s main application of the MinLA is in the area of graph drawing,

as the sum of all edge lengths can be seen as a criterion for a good presentation of

a graph. It finds other applications in a range of fields, including the layout of UML

sequence diagrams, software diagram layout in general and especially for entity rela-

tionship models [54] and data flow diagrams [55]. Certain tasks of wiring problems

and within communication systems can be solved with the MinLA as well. It has been

shown to be relevant to solve the Single Machine Job Scheduling problem [46, 56].

Furthermore, it has even been used in computational biology [57], for example as an

over-simplified model of some nervous activity in the cortex [58].

1.3 Complexity

TheMinLA is a classicalNP-hard optimization problem. Its decision problem isNP-

complete [59]. Compared to otherNP-hard optimization problems the MinLA turns

out to be more difficult and is extremely hard to solve in practice. The fastest exact

algorithm is based on dynamic programming and has a running time of O(2nm) [3].

1.3.1 NP-hard Cases

The complexity of the problem remains the same even for bipartite graphs [60]. But

there are special cases inwhich theMinLA can be solved efficiently. We present several

of these in the following.

1.3.2 Polynomially Solvable Cases

As every edge has at least length 1 and at most length n− 1 within a linear arrangement

we obtain the lower and upper bound m ≤ copt ≤ m(n − 1).

For the complete graph Kn all n! arrangements are optimal with copt(Kn) = (n +

1)n(n − 1)/6. Given a path Pn with n nodes the optimal linear arrangement is the

identity of the path, hence copt(P
n) = n − 1 as all edges have length 1.

If one considers the kth power of the path graph with n nodes (Pn)k , it was proven

by Juvan &Mohar [61] that copt((P
n)k) = k(k+1)(3n−2k−1)/6. Considering a cycle

Cn there exist n optimal linear arrangements which have exactly one edge of length

n − 1 and n − 1 edges of length 1, see Figure 1.2. Therefore, copt(C
n) = 2(n − 1). A star

Sn has one center node of degree n − 1 and n − 1 nodes that are adjacent to the center,

i. e., Sn = K1,n−1 is a special bipartite graph. The best possible arrangement is therefore

to have two edges of length 1, two of length 2, two of length 3 and so forth. This leads

to the objective function value copt(S
n) = ⌊n2/4⌋.
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Figure 1.2: Several graphs and their MinLA presentation.
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A k-wheelWk is a graph of n + 1 nodes consisting of a star, and a cycle that con-

tains all nodes but the center node. Liu & Vannelli [6] showed copt(W
k) = copt(S

k) +

copt(C
k) + 1. A k-prism Pk

rism is defined as the union of two k-edge cycles C1 =

u1, . . . ,uk+1 and Cs = v1, . . . ,vk+1, where uk+1 = u1 and vk+1 = v1, and all edges {uivi ∣

i = 1, . . . ,k}. In [6], it is proven that

copt(P
k
rism) =

⎧⎪⎪
⎨
⎪⎪⎩

17, k = 3,

6 + 4(k − 1) + 5(k − 2), k ≥ 4.

Although the MinLA is NP-hard for bipartite graphs Km,n with arbitrary n and

m, the case m ≥ n is an exception. In [61], it is proven that

copt(Km,n) =

⎧⎪⎪
⎨
⎪⎪⎩

n(3m2 + 6mn − n2 + 4)/12, m + n even,

n(3m2 + 6mn − n2 + 1)/12, m + n odd.

Table 1.1 on page 32 summarizes several more instances for which the MinLA can

be solved to optimality in polynomial time.
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Table 1.1: Time complexity of algorithms that solve the MinLA of certain graphs to op-

timality. (With δ being the number of biconnected components containing a central ar-

ticulation point.)

Graph Complexity Reference

Hypercubes O(n) [62]

Square meshes O(n) [58]

Rectangular meshes O(n) [63]

Trees O(nlog 3/ log 2) [64]

Rooted trees O(n log n) [65]

Complete k-level 3-ary trees O(n) [66]

d-dimensional c-ary clique O(n) [67]

DeBruijn graphs of degree four O(n) [68]

Certain Halin graphs O(n2) [69]

Outer planar graphs O(δ2n + n2) [70]

Proper interval graph O(n) [71]
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1.4 Computation of Upper Bounds

The practical significance of the MinLA has been a great motivation to address the

problem in reasonable time. Therefore a lot of effort has been made to achieve near-

optimal solutions.

1.4.1 Heuristics

We distinguish between heuristics, applicable to all sorts of problems and those which

were developed particularly for theMinLA.The first are calledmeta heuristics, which
include the well-known local search heuristics. Table 1.2 summarizes the work that

has been done with this sort of heuristics. SeveralMinLA specific heuristics are pre-
sented in Table 1.3. Some of the presented heuristics perform very well in practice, see

[73, 83, 84] for good surveys.

1.4.2 Approximations

It is not known, whether the MinLA can be approximated within a constant factor in

polynomial time. In [85] it is conjectured that it is not true. It was proven in [86] that a

PTAS for dense graphs exists. To bemore precise: An approximation within a 1+ε fac-

tor can be computed in time nO(1/ε) for any ε > 0. Unfortunately, this result cannot be

generalized. It was shown in [87] that no PTAS exists for an arbitrary input graph with

the standard assumption that NP-complete problems cannot be solved in random-

ized sub-exponential time. In [88] an algorithm based on spreading metrics with an

approximation ration ofO(log n) is presented. The same ratiowas obtained by [89] us-

ing flowmetrics. If the graph is restricted to be planar, an O(log log n) approximation

algorithm can be found [88]. A combination of the techniques in [90] with the round-

ing algorithms of [88] leads to the currently best approximation O(
√
log n log log n)

[91]. In [92] the same upper bound was obtained independently. A good overview

over approximation algorithms for the MinLA can be found in [83].

The integrality gap of a linear program is the worst-case ratio between the opti-

mum of the integer program and a relaxation of this formulation. The integrality gap

Ω(log log n) [93] for the MinLA was obtained with a semi definite programming re-

laxation, see [91, 92] for more details.
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Table 1.2: Overview of different meta heuristics for the MinLA.

Type Name Abbrev. Reference

- Successive augmentation SCA [2]

- Spectral sequencing SS [61, 72]

Local search Simulated annealing SA [2, 72, 73]

Local search Genetic algorithms GA [1, 74]

Local search Hill climbing HC [1, 73]

Combination SS+SA [73, 75]

Combination GA+HC [74]

Combination GA+Dynamic programming [76]

Table 1.3: Overview of different MinLA specific heuristics.

Name Abbrev. Reference

Decomposition tree DT [77, 78]

Multi scale/Multi level MS [3, 4]

Algebraic multi grid scheme MG [4]

Memetic algorithms MA [79]

MA with different recombination operators TX [80]

Frontal increase minimization FIM [81, 82]
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1.5 Computation of Lower Bounds

The reason for the big gap for unsolved instances is probably the lack of good, i. e.,

strong and efficiently computable lower bounds. In this section we present the efforts

that have been made to develop methods to obtain such lower bounds.

1.5.1 Combinatorial Bounds

Degree Lower Bound

The degree lower bound was first formulated in [64]. Its key idea is the fact that the

degree of each node leads to a lower bound of the distances at each node. If, for exam-

ple, node i has degree deg(i) = 5, the sum of edge lengths of those edges starting at

node i is at least (2×1)+(2×2)+(1×3) = 9. This is due to the fact that we cannot have

more than two edges of each length starting at the same node. The general formula

for a node i is ⌊(deg(i) + 1)2/4⌋. We can now sum up all lower bounds of nodes and

obtain a lower bound of theMinLA. As every edge has two adjacent nodes, every edge

appears in two such inequalities. We therefore have to divide the whole sum by two:

1

2∑
i∈V

⌊(deg(i) + 1)2/4⌋.

Edge Lower Bound

This straightforward lower bound is considered in [73] and called edge lower bound

here. It is based on the observation that for a graph with n nodes and m edges there

exist atmost n−1 edges of length one, atmost n−2 of length two and so forth. Summing

up these edge lengths one obtains a lower bound for the MinLA. E. g. for n = 8 and

m = 17 we have at most seven edges of length 1, six of length 2 and four of length 3,

i. e., (7 × 1) + (6 × 2) + (4 × 3) = 31 is a lower bound for the objective function value.

This bound can easily be computed.

Gomory-Hu-Tree Lower Bound

This bound is often called cut tree bound and is based on the computation of aGomory-

Hu-tree [94]. It was first described in [65]. The key idea is that the sum of all weights

in the Gomory-Hu-tree is a lower bound for the MinLA. A detailed presentation of

this bound can be found in [6]. In the same paper a variant of this type of lower

bound is constructed. It is based on minimum cuts in the graph and is tighter than

the Gomory-Hu-tree bound.
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Path Lower Bound

We have seen in Section 1.3.2 that the lower bound of the linear arrangement for the

kth power of a path graph is proven to be copt((P
n)k) = k(k + 1)(3n − 2k − 1)/6. Now

let kmax be the largest k such that ∣E((Pn)k)∣ ≤ m, where m = ∣E(G)∣. [61] proved a

theorem that says copt(G) ≥ copt((P
n)k) for k = ⌊kmax⌋.

Mesh Lower Bound Method

We have seen in Table 1.1 that theMinLA can be solved in polynomial time formeshes.

LetMn be a squaremesh of side n, i. e.,V(Mn) = [n]2 and E(Mn) = {i j ∣ ∣∣i− j∣∣2 = 1}.

It has been shown in [63] and [58] that copt(M
n) = (4−

√
2)n3/3+O(n2). The idea is

now to decompose the original graph G into k disjoint square meshes M1, . . . ,Mk as

copt(G) ≥ ∑
k
i=1 copt(Mi) and copt(Mi) is known. A suggestion for a practical realiza-

tion of this idea can be found in [73].

Unfortunately none of the presented bounds is generally the best. If one considers

instances that have quite different structures the best results are obtained by differ-

ent lower bound algorithms. The degree lower bound is, for example, tight for stars,

whereas the edge lower bound is tight for cliques. Furthermore, the Gomory-Hu-Tree

lower bound is tight for cycles and circuits.

1.5.2 Linear Programming Bounds

We start the presentation of linear programming bounds by introducing the most

common variables for modeling the MinLA problem.

Integral Distance Variables y

The integral distance variables are defined as

yi j ∶= ∣π(i) − π( j)∣ for all i < j ∈ V .

They have been used in various formulations of the MinLA problem and will be part

of the model presented in Chapter 2 as well. We will now state some inequalities that

can easily be formulated with y-variables.

∑
r j∈E

yr j ≥ ⌊
∣S∣2

4
⌋ for every star (S ,E), (1.2)
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where r is the center node of the star, see Figure 1.2.

∑
i j∈E

yi j ≥ (
∣C∣ + 1

3
) for every clique (C ,E), (1.3)

∑
i j∈E

yi j ≥ 2∣C
′
∣ − 2 for every cycle (C′,E), (1.4)

∑
i j∈E

yi j ≥ ⌊
∣W ∣2

4
⌋ + 2∣W ∣ − 2 for every wheel (W ,E), (1.5)

∑
i j∈E

yi j ≥

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

17, if k = 3

9k − 8, if k ≥ 4 for every prism (P,E), ∣P∣ = 2k.
(1.6)

The above stated constraints are called star, clique, cycle or circuit, wheel and prism
inequality.

Besides these rank constraints so-called hypermetric and bipartite inequalities
are known. The hypermetric inequalities are cut cone inequalities and have the orig-

inal form ∑i , j∈V bib jyi j ≤ 0 where ∑i∈V bi = 1, see [95] for more information. They

are called pure if bi ∈ {0, ± 1} for all i ∈ V . Amaral & Letchford [45] the hypermet-

ric inequalities are formulated for the Single Row Facility Layout problem, which is a

generalization of the MinLA. For S = {i ∈ V ∣ bi = 1} and T = {i ∈ V ∣ bi = −1} one

obtains

∑
i∈S , j∈T

yi j − ∑
i j∈E(T)

yi j − ∑
i j∈E(S)

yi j ≥ 0 for all S ,T ⊂ V , S ∩ T = ∅, ∣T ∣ = ∣S∣ − 1. (1.7)

When S = 2 and T = 1, the pure hypermetric inequalities reduce to thewell-known

triangle inequalities
yi j + y jl ≥ yi l for i , j,l ∈ V .

Note the difference between the integral distance variables y and the ones used in [45].

The bipartite inequalities are similar to the hypermetric inequalities:

∑
i∈S , j∈T

yi j − ∑
i j∈E(S)

yi j − ∑
i j∈E(T)

yi j ≥ ∣S∣ for all S ,T ⊂ V , S ∩ T = ∅, ∣T ∣ = ∣S∣. (1.8)

Despite their name these inequalities are not constraints for bipartite subgraphs, see

Figure 1.3, where the dotted lines have coefficient −1 and the others have coefficient

+1. To obtain larger hypermetric inequalities we implement a heuristic suggested by

Letchford [96], which originally was developed by Helmberg & Rendl [97]. We apply

this idea to larger bipartite inequalities as well. In addition, we use the heuristic for

sparser star inequalities presented by Caprara et al. [7].
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Figure 1.3: Example for the bipartite inequalities of the MinLA considered in this thesis.

We have presented all established y-constraints that will be used to enrich the

binary distance model in Chapter 2. We will now continue to describe all linear pro-

gramming bounds that are known so far. There are two straightforward integer pro-

gramming formulations. Both use two different types of variables.

Assignment Variables Formulation

The first approach uses assignment variables xip that are equal to 1 if and only if node
i is placed in position p, i. e., if π(i) = p. Additionally, the integral distance variables

y according to this ordering are used. The mixed integer programming formulation

of the MinLA with these variables is stated as follows.

min∑
i j∈E

ci j yi j

s.t.
n

∑
p=1

xip = 1 for all i ∈ V , (1.9)

∑
i∈V

xip = 1 for all p = 1, . . . ,n, (1.10)

(xip + x jq − 1) ∣p − q∣ ≤ yi j for all i j ∈ E for all p ≠ q ∈ V , (1.11)

0 ≤ xi j ≤ 1 for all i < j ∈ V , (1.12)

yi j ∈ R+ for all i < j ∈ V . (1.13)

The y-variables could be declared as integer variables, but the formulation remains

valid if they are declared as continuous. Constraints (1.9) state that each node is as-

signed to exactly one position. The restriction that in every position exactly one node

can be placed is realized in Constraints (1.10). The correct lower bounds of the integral

distance variables y is formulated in Constraints (1.11). If node i is placed in position

p and node j in position q, the distance of nodes i and j is exactly ∣p − q∣.

It was observed by Caprara et al. [7] that the linear programming relaxation ad-

mits the trivial solution xi j = 1/n for all i , j ∈ V and yi j = 0 for all edges i j ∈ E.

Furthermore, two different types of variables and an enormous number of constraints

are used. Therefore this model is of no practical use. Nevertheless, we investigate this
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model by strengthening several inequalities formulated on integral distance variables

only. The results can be found in Section 2.3.

Linear Ordering Approach

The second intuitive way to formulate the MinLA with linear constraints is to use lin-
ear ordering variables

xi j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, π(i) < π( j),

0, otherwise
for all i < j ∈ V

to determine the permutation π. Again we need the integral distance variables y to

formulate the objective function value. A linear programming formulation with these

variables is the following:

min∑
i j∈E

ci j yi j

s.t. xi j + x ji = 1 for all i < j ∈ V , (1.14)

xi j + x jl + xl i ≤ 2 for all i /= j,l ∈ V , (1.15)

∑
n

l=1
(xl i − xl j) ≤ yi j for all i < j ∈ V , (1.16)

∑
n

l=1
(xl j − xl i) ≤ yi j for all i < j ∈ V , (1.17)

0 ≤ xi j ≤ 1 for all i /= j ∈ V ,

1 ≤ yi j ≤ n − 1 for all i < j ∈ V .

Constraints (1.14) and (1.15) are the tournament and 3-dicycle linear ordering con-

straints. As the position of a node jwithin a linear ordering is given by degin( j)+1 the

integral distance variables y can be determined by the x-variables. To be more precise

we have

yi j =
n

∑
l=1

∣xl i − xl j∣ for all i , j ∈ V .

As this is no linear transformation we cannot formulate the objective function in lin-

ear ordering variables only. But for a minimization problem with non-negative edge

weights ci j, which is the case for the MinLA, the connection of the two variables can

be modeled with constraints (1.16) and (1.17). They require yi j to be the distance of

node i and j with respect to the ordering.

It is clear that the lower boundobtained by this optimization is equal to the number

of edges of the graph. This is due to the fact that the solution, in which all linear

ordering variables are set to 1

2
, is feasible and minimizes the y-variables. Hence, all
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yi j take their value at the lower bound, which leads to a very bad lower bound for the

MinLA.We therefore do not consider this model anymore, but mention it here for the

sake of completeness.

Spreading Metric Formulation

The first known suitable integer programming model for the MinLA was formulated

by Even et al. [5]. The linear programming relaxation looks like this:

min∑
i j∈E

ci j yi j

s.t. ∑
j∈S

dist(i , j) ≥ 1

4
(∣S∣2 − 1) for all S ⊆ V and i ∈ S , (1.18)

y ∈ Rm
+
,

where dist(i , j) is the weight of the shortest path between i and j. The edge weights are

given by the node distances yst . Constraint (1.18) is called spreading constraint, all
feasible solutions of the above formulation are spreading metrics. As the violation of

the spreading constraint can efficiently be checked using shortest paths methods, this

linear programming relaxation can be solved in polynomial time. Another advantage

of this formulation is that it is sparse, i. e., it uses only ∣E∣ variables. Furthermore, the

integrality gap corresponding to this model has become important for the MinLA.

Bornstein & Vempala [89] formulated an alternative linear programming relax-

ation to compute spreading metrics. But although the formulation is polynomial, the

number of variables O(n4) and number of constraints O(n3) are high.

Rank Constraint Approach

The rank of a graph rank(G) is defined as the best possible linear arrangement of the

unweighted graph G, i. e.,

rank(G) ∶= min
π∈S(n)

∑
i j∈E

∣π(i) − π( j)∣ .

Naturally the determination of the rank is as hard as the solution ofMinLA. Neverthe-

less, Liu&Vannelli [6] formulated a linear programwhich is based on the computation

of the ranks of subgraphs, whose unweighted linear arrangement can be determined
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in polynomial time.

min∑
i j∈E

ci j yi j

s.t. ∑
i j∈E(G′)

yi j ≥ rank(G
′
) G′ subgraph of G ,

yi j ≥ 1 for all i < j ∈ V ,

where G′ is an ordinary star, a star of node disjoint paths, a k-wheel or a k-prism.

Note: In contrast to the spreading metric formulation, this formulation is dense, i. e.,

it is based on all variables yi j for i , j ∈ V .

Combined Sparse and Dense Integral Distance Variables y Formulation

Bothmodeling approaches described above are the basis of the recent work of Caprara

et al. [7]. The advantages of the sparse spreading metric formulation and the dense

rank constraint approach are combined in a successful way. The computational results

show that for most benchmark instances the best known solutions are not far from the

optimum.

Single Row Facility Layout Approach

TheMinLA can be considered as a special case of the Single Row Facility Layout prob-

lem. In Amaral & Letchford [45] the correspondingmore general class of integer poly-

hedra is investigated. The convex hull is determined and several families of valid in-

equalities are derived. The results are usedwithin a cutting plane algorithm. We review

some of the results in Section 3.2.1.

Betweenness/Consecutive Ones Formulation

We now present the transformation of the MinLA to the Consecutive Ones problem

[98]. Imagine n nodes are linearly arranged with positions in [n]. The distance of

two nodes equals the number of nodes lying between these nodes plus 1. I. e., we have

∣π(i) − π( j)∣ = ∑k x
π
ik j
+ 1, where the betweenness variables xπ

ik j
of a linear arrange-

ment π are defined as

xπik j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, π(i) < π(k) < π( j) or π(i) > π(k) > π( j),

0, otherwise.

We therefore have an “explosion” of y-variables into betweenness variables. To obtain

an IP formulation on the betweenness variables we write them into a binary matrix
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M. The columns of M correspond to the nodes and the rows of M to the edges of the

underlying graph. Let r(i , j) be the row belonging to the edge i j, then the entries of

M are defined as

Mr(i , j),k ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, k = i or k = j,

xπ
ik j
, otherwise.

Now π is a feasible labeling if and only if the matrixM has the consecutive ones prop-

erty for rows. That is, there is a permutation of the columns ofM (which corresponds

to π) such that the 1-entries ofM occur consecutively in each rowofM. There is a char-

acterization of Tucker [99] for the consecutive ones property who gave five types of

forbidden sub matrices. Based on these forbidden matrices one can derive an IP for-

mulation for the problem. See [98] for a more detailed discussion of this formulation.

Although this approach is based on a large number of variables (n3), the computa-

tional results of Caprara et al. [8] are comparable to those of [7].

1.5.3 Other Bounds

Quadratic Linear Ordering

In [100] a different formulation with linear ordering variables is presented. The idea is

to optimize non-linear functions over well-studied polytopes, such as the Linear Or-

dering polytope PLO [101] or the Traveling Salesman polyhedron. The detailed poly-

hedron studies can then be replaced by the application of some general separation

routines for a branch-and-cut algorithm.

Recall that the linear ordering variables x are binary and have the value 1 if and

only if node i is placed before node j. TheMinLA can, up to a constant, be formulated

in the following way, whereas the basic modeling idea is the same as in the consecutive

ones formulation.

min ∑
i≠ j≠k
i≠k

ci j xikxk j

s.t. x ∈ PLO,

xi j ∈ {0,1} for all i < j ∈ V .

Important for the use of thismodeling approach is that only the products of type xikxk j
are necessary, these are O(n3).
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Semidefinite Programming Lower Bound

This lower bound is similar to the spreadingmetric formulation described above. Only

two additional constraints are considered, one of them is non-linear.

yi j = ∥i − j∥22 for all i < j ∈ V (1.19)

yi l ≤ yi j + y jl for all i , j,l ∈ V . (1.20)

Constraints (1.19) are equivalent to the request that the metric y ∈ R(
n
2
)

+ can be embed-

ded in the so-called negative-type cone, see [95]. Conditions (1.20) are the well-known

3-cycle inequalities. This formulation is again important to prove the integrality gap

of the MinLA. A detailed investigation of this model can be found in [91, 92].

Eigenvalue Lower Bound

As the name suggests this bound is based on Eigenvalues. It was introduced by [61]

and belongs to the tighter lower bounds of theMinLA, see [73]. Consider the following

Laplacian matrix LG ∈ Zn×n corresponding to the connected graph G.

(LG)i j ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1, i j ∈ E ,

deg(i), i = j,

0, otherwise.

As LG is positive semi-definite its smallest Eigenvalue is 0. Therefore we consider the

second smallest Eigenvalue λ2 of LG . Juvan & Mohar [61] proved that ⌈λ2(n − 1)
2/6⌉

is a lower bound for the MinLA. The Eigenvector to λ2 is considered in the so-called

spectral sequencing heuristic, see Section 1.4.1 on page 33 and Table 1.2 on page 34.
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Chapter 2

Binary Distance Model

Wewill now focus on the binary distancemodel in its complete and sparse version. We

start with the inequalities needed for the integer programming formulation and char-

acterize the binary distance model with respect to the similarity and in contrast to the

integral y-variables formulation presented in Section 1.5.2 on page 36. Further inequal-

ities are presented and their strength is compared to corresponding y-constraints.

The model is investigated in a second step, in which we consider only those vari-

ables for which an edge in the graph exists. We show how the system of constraints

must be modified. As we want to obtain a similar strength of the formulation as in the

complete case, we present different approaches that help to improve the quality of the

formulation.

We then consider an improved mixed linear programming formulation of the

MinLA that uses the (
n
2
) integral distance variables y together with n2 binary assign-

ment variables. This idea was developed in cooperation with A. Letchford, Lancaster

University, UK.

2.1 Binary Distance Model

2.1.1 Definition and Basic Properties

We present a binary distance modeling approach within a branch-and-cut algorithm

for solving linear arrangement problems to proven optimality. The key idea is to in-

troduce binary distance variables di jk for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n− 1, where di jk = 1

45
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if nodes i and j have distance k, i. e.,

di jk ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, ∣ π(i) − π( j) ∣= k,

0, otherwise
for all i < j ∈ V and k = 1, . . . ,n − 1.

Although thismodeling approach hasO(n3) variables, we have several advantages.

The d-variables are binary and an integer programming formulation can be given,

which is not possible with y-variables. Furthermore we can express every y-constraint

for the MinLA problem with d-variables. The well-known distance variables yi j ∶=

∣π(i) − π( j)∣ for all i < j ∈ V have been widely used for modeling the MinLA, recall

Section 1.5.2. These y-variables are in fact an aggregation of the d-variables. To be

more precise, the following equation holds:

yi j =
n−1

∑
k=1

k di jk for all i , j ∈ V . (2.1)

The objective function of the MinLA, min cT y, can be formulated as

min∑
i j∈E

ci j (
n−1

∑
k=1

k di jk) .

With such a close relationship between these variable types one might wonder

whether it is worth working with such similar variables. But a justification of the bi-

nary distance model is given in Table 5.2 of Chapter 5. It shows that the gap can be

closed between 43% and 53% using the binary d-variables in addition to the integral

y-variables. These results are in correspondence with our intuition. While the con-

straints formulated on y-variables describe the overall structure, the d-variable can

realize very specific restrictions. Therefore the combination of y and d-constraints

seems promising, as the coarse and the fine structure of the problem can be consid-

ered.

Another advantage of the binary distance model is that it can easily be general-

ized to two dimensions. This is investigated in detail in Wiesberg [47]. Most of the

constraints presented in this chapter can be adopted to the two-dimensional case. In

particular this holds for the forbidden subgraphs constraints, which is not possible, if

the y-variables are refined by betweenness variables, compare Section 1.5.2, instead of

our binary distance variables d.

We will now present the most important constraints for the binary distance mod-
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eling approach.

n−1

∑
k=1

di jk = 1 for all i < j ∈ V , (2.2)

∑
i< j∈V

di jk = n − k for all k = 1, . . . ,n − 1, (2.3)

∑
j≠i

(di jk + di j(n−k)) = 2 for all i ∈ V and k < ⌊
n

2
⌋ , (2.4)

∑
j≠i

di jk ≤ 1 for all i ∈ V , k = ⌊
n − 1

2
⌋ + 1, . . . ,n − 1, (2.5)

di jk ≥ 0 for all i < j ∈ V and k = 1, . . . ,n − 1. (2.6)

Equations (2.2) state that there is exactly one distance between two nodes. We call

them each-edge-one-distance equation. Constraints (2.3) specify the connection be-

tween the number of pairs with a certain distance and the distance itself, i. e., the dis-

tance k occurs exactly n − k times. They are called the-longer-the-rarer equation. In
Equation (2.4) can be seen that if there are two nodes of small distance k, then there

is no distance n − k. If, for example, n is odd, j the middle node and k ≤ (n − 1)/2,

then there are exactly two edges of length k starting at j: One to the left and one to

the right side. If k is bigger, both distances are on one side of the node. We call them

special-degree equation. Constraints (2.5) are called degree-big inequalities. They

describe that there is at most one long distance from a node. As the upper bounds for

the d-variables are implicitly contained in Constraints (2.2), only the lower bounds

(2.6) have to be stated explicitly.

Before we show that the presented d-constraints are an integer programming for-

mulation for the MinLA problem, we state the following.

Remark 2.1.1. For the sake of simplicity we mention the following constraints.

n−1

∑
k=1

k(di jk + d jl k − di l k) ≥ 0 for all i < j < l ∈ V , (2.7)

∑
i< j∈V

n−1

∑
k=1

kdi jk = (
n + 1

3
), (2.8)

1 ≤ ∑
j≠i

di jk ≤ 2 for all i ∈ V , k = 1, . . . , ⌊(n − 1)/2⌋ . (2.9)

Constraints (2.7) are the triangle inequalities yi j+ y jl − yi l ≥ 0. Equation (2.8) can be ob-

tained as a sum of Equations (2.3). Constraints (2.9) are combinations of Equations (2.4)

and (2.5).
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2.1.2 Integer Programming Formulation

Proposition 2.1.2. Constraints (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) are an integer

programming formulation for the MinLA problem.

Proof. Assume a solution d for the above stated system of constraints is given. Fur-

thermore assume it is integral. Note: Constraints (2.6) assure that all variable values

are non-negative. We will proof that d’s incidence vector corresponds to a permuta-

tion.

Due to (2.3) there is only one distance of length n − 1. Let l ,m ∈ V be the nodes,

such that dlm(n−1) = 1. Assume w.l.o.g. that l is an inner node, i. e., the longest distance

is not between the two outermost nodes of the ordering. We show that this contradicts

(2.4). As l is an inner node, there are exactly two edges starting from l having length 1.

Otherwise we would not have enough edges of length 1 in Constraints (2.3). Now

consider (2.4) with i = l , i. e.,∑ j≠l dl j1 + dl j(n−1) and note that dlm(n−1) occurs in this

sum. Hence, as l is an inner node,∑ j≠l dl j1+dl j(n−1) = 3, which is impossible because

of (2.4). Therefore l andm have to be the leftmost and rightmost nodewithin the linear

arrangement. We will now construct the permutation from both sides using a certain

property of the triangle inequalities, which will be proven now. With constraints (2.8)

and (2.7) we obtain

(
n + 1

3
) =

n−1

∑
k=1

k dlmk + ∑
i/∈{l ,m}

n−1

∑
k=1

(k dl ik + k dimk) + ∑
i , j/∈{l ,m}

n−1

∑
k=1

k di jk

= n − 1 + ∑
i/∈{l ,m}

n−1

∑
k=1

(k dl ik + k dimk) + ∑
i , j/∈{l ,m}

n−1

∑
k=1

k di jk

≥ n − 1 + ∑
i/∈{l ,m}

n−1

∑
k=1

k dlmk + ∑
i , j/∈{l ,m}

n−1

∑
k=1

k di jk

= n − 1 + (n − 2)(n − 1) + ∑
i , j/∈{l ,m}

n−1

∑
k=1

k di jk

= n − 1 + (n − 2)(n − 1) + (
n − 1

3
)

= (
n + 1

3
).

Hence all triangle inequalities involving l and m are tight, i. e.,

n−1

∑
k=1

k(dl ik + dimk − dmlk) = 0 for all i ∈ V . (2.10)
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Considering constraints (2.9) we know that for all k ∈ {1, . . . , ⌊(n − 1)/2⌋} there exists

a node j ∈ V such that dl jk = 1. Due to Constraints (2.2) the distance between l

and j is unique. For i = l expression (2.10) assures that the distance from j to the

rightmost node m is correct. Because of Constraints (2.9) it is possible that there are

two different nodes j1, j2 having the same distance k to node l . But in this case there

would be more than n − k distances of length k within the whole arrangement, which

contradicts constraints (2.3).

As the same arguments hold for the rightmost node m, the right half can be de-

termined, too. We obtain an ordering of the n nodes in which each distance k occurs

exactly once from each of the outermost nodes l and m.

It remains to be shown that all inner nodes have correct distances. Assume there

exists a pair of nodes i′, j′ having a too large distance. Because of Equation (2.8), there

has to exist a pair i , j whose distance is too small. With expression (2.10) we conclude

n − 1 >
n−1

∑
k=1

k (dl ik + di jk + d jmk) ≥
n−1

∑
k=1

k (dl ik + dimk) =
n−1

∑
k=1

k dlmk = n − 1,

which is a contradiction. Therefore all distances within the linear arrangement are

correct.

2.1.3 Further Inequalities

∑
i , j∈S

di jk ≤ ∣S∣ − 1 for all S ⊂ V for all k

such that ∣S∣ − 1 < n − k, (2.11)

∑
j≠i

(di jk − di l(k+1)) ≥ 0 for all i ∈ V and k = 1, . . . , ⌊
n − 1

2
⌋ , (2.12)

∑
j∈V
j/=i

n−1

∑
k=1

di jk ≥ N(i) for all i ∈ V . (2.13)

Constraints (2.11) are the Equation (2.3) formulated on subsets instead of the whole

vertex set. We call them subtour inequalities. For ∣S∣ = 3 they are triangle inequalities,
for ∣S∣ > n − k they are dominated by (2.3). Constraints (2.12) show that at least as

many edges of length k exist from a node i as of length k+ 1. This is due to the fact that

if an edge of length k reaches from i to the rightmost node, no edge of length k+ 1 can

start from i into the same direction. They are called monotonic inequalities. Con-
straints (2.13) assure that for each node i there have to be as many non-zero variables

as there are adjacent nodes. We refer to them as single-degree inequalities.
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Forbidden Subgraphs

In this section we present some constraints that forbid certain subgraphs. The first

inequality of this type is similar to the triangle constraint.

di jk1 + d jl k2 + di l k3 ≤ 2 for all i < j < l ∈ V , where (2.14)

k1, k2 and k3 = 1, . . . ,n − 1 are triples of impossible distances on a triangle. We call

these constraints (2.14) special-triangle inequalities. In Section 2.1.3 we compare the

strength of these to the well-known triangle inequalities.

The key idea in the following is to forbid a certain subgraph F in the current LP

solution d∗. All inequalities presented now have the same common structure.

∑
i j∈F

di jα(i , j) ≤ ∣F∣ − 1 for every forbidden subgraph F = (V ,E ,α),

where α denotes the distances between nodes of F with respect to d∗. In a first step

we consider forbidden subgraphs F that consist of short edges connecting two 1-paths.

A 3-bridge, see Figure 2.1-(a), consists of five nodes and four edges of length 1. It is

impossible to embed this subgraph within a feasible linear arrangement. In a 4-bridge
we have six nodes, four edges of length 1 and one edge of length ≤ 2 that connects the

1-paths, see Figure 2.1-(b). When the connecting edge has length ≤ 3 and one of the 1-

paths contains five nodes, we call this subgraph a 6-bridge. In the case of a connecting
path of length ≤ 4 and two 1-paths of length 4, we talk of an 8-bridge. The last two

subgraphs are shown in Figure 2.1-(c) and (d). The corresponding bridge inequalities
are formulated in (2.15) to (2.18).

∑
i j∈B3

di jα(i , j) ≤ 3 for every 3-bridge B3 = (V ,E ,α), (2.15)

∑
i j∈B4

di jα(i , j) ≤ 4 for every 4-bridge B4 = (V ,E ,α), (2.16)

∑
i j∈B6

di jα(i , j) ≤ 6 for every 6-bridge B6 = (V ,E ,α), (2.17)

∑
i j∈B8

di jα(i , j) ≤ 8 for every 8-bridge B8 = (V ,E ,α), (2.18)

where α(i , j) is the distance of edge i j in the bridge with respect to d∗.

The same constraint idea can be applied to large star subgraphs displayed in Fig-

ure 2.2, which we call path-stars. The path-star inequalities are formulated as follows.
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1 1

1
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(a) 3-Bridge B3 .
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1 1

1 or 2

(b) 4-Bridge B4 .

1

1 1

1 1 1

1, 2 or 3

(c) 6-Bridge B6 .

1

1, 2, 3 or 4

1

1 1

11

11

(d) 8-Bridge B8 .

Figure 2.1: Several forbidden subgraphs of bridge type.
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(a) Path-star P12 .

1 2

1 1

2 2

(b) Path-star P121 .

1 1

3 3

1

(c) Path-star P13 .

2 1

1 1

3 3

211 1

(d) Path-star P123 .

Figure 2.2: Several forbidden subgraphs of path-star type.
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11

1 1

2

2

9

7

15
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Figure 2.3: Example of a 4-bridge within a current LP solution.

∑
i j∈P12

di jα(i , j) ≤ 3 for every path-star P12 = (V ,E ,α), (2.19)

∑
i j∈P121

di jα(i , j) ≤ 5 for every path-star P121 = (V ,E ,α), (2.20)

∑
i j∈P13

di jα(i , j) ≤ 4 for every path-star P13 = (V ,E ,α), (2.21)

∑
i j∈P123

di jα(i , j) ≤ 9 for every path-star P123 = (V ,E ,α). (2.22)

One might wonder why we do not formulate these constraints as rank inequali-

ties. We therefore present a comparison of rank constraints and forbidden subgraph

constraints.

Forbidden Subgraphs versus Rank Constraints

Consider the rank constraint

∑
i j∈E

yi j ≥ 7 for all 4-bridges B4 = (V ,E) (2.23)

corresponding to (2.16). It is clear that rank constraints are more general than con-

straints forbidding certain subgraphs within an LP solution. Therefore we formulate

as many constraints as possible as rank constraints instead of forbidden subgraph in-

equalities. Nevertheless it turned out that the the rank constraints corresponding to

the forbidden subgraphs are too weak. This is due to the fact that rank constraints are

formulated on the integral distance variables y. With these variables it is not possi-

ble to forbid subgraphs with certain, infeasible distances. An example for such a case

is the LP solution d∗2 7 1 = d∗7 3 1 = d∗5 9 1 = d∗1 9 1 = 1 and d∗7 9 2 = 0.8, see Figure 2.3.

Hence constraint (2.16) is violated but (2.23) is not, as other variables d∗7 9 8 = 0.175

and d∗7 9 9 = 0.025 compensate the mistake.
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Comparison of Different Triangle Inequalities

Due to their similarity we investigate the correlation between the y- and d triangle

inequalities

yi j + y jl − yi l ≥ 0 for all i < j < l ∈ V , (2.24)

di jk1 + d jl k2 + di l k3 ≤ 2 for all i < j < l ∈ V , (2.25)

where k1, k2 and k3 = 1, . . . ,n − 1 are triples of impossible distances on a triangle.

It would be important to know whether one type of inequality is dominated by the

other one. Our tests show that this is not the case. In fact we will give two example LP

solutions d∗ in which one constraint type is violated and the other one is not. Consider

d∗2 9 2 = 0.25, d
∗

2 9 3 = 0.5 ⇒ y∗2 9 = 2,

d∗9 4 1 = 0.25, d
∗

9 4 3 = 0.25 ⇒ y∗9 4 = 1, and

d∗2 4 8 = 0.25, d
∗

2 4 4 = 0.5 ⇒ y∗2 4 = 4.

The triangle inequality y∗2 9 + y
∗

9 4 − y
∗

2 4 = −1 /≥ 0 is violated. In contrast no d triangle

is violated as all d∗ values are so small. No sum of d variables with the distances

k1, k2, k3 = 1, . . . ,n − 1 of impossible distances on a triangle is larger than 2.

On the other hand consider the following LP solution.

d∗3 5 3 = 0.6, d
∗

3 5 2 = 0.1 ⇒ y∗3 5 = 2,

d∗5 8 3 = 0.6, d
∗

5 8 2 = 0.1 ⇒ y∗5 8 = 2, and

d∗3 8 4 = 0.9, d
∗

3 8 2 = 0.2 ⇒ y∗3 8 = 4.

The triangle y∗3 5 + y∗5 8 − y∗3 8 = 0 is not violated, but for k1 = 3, k2 = 3 and k3 = 4 the

special triangle constraint d∗
3 5 k1
+ d∗

5 8 k2
− y∗

3 8 k3
= 2.1 /≤ 2 is violated.

2.1.4 Rank Constraints on y-Variables

In our branch-and-cut-and-price algorithmwe focus on d-constraints but use the fol-

lowing y-inequalities, recall Section 1.5.2 for details.

• (Sparser) Star inequalities

• Clique inequalities

• Cycle inequalities

• Wheel inequalities
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• Prism inequalities

• (Large) Hypermetric inequalities including the special case triangle inequalities

• (Large) Bipartite inequalities

Furthermore we introduce the following new rank constraints.

∑
i j∈E

yi j ≥ copt(G
′
) for every subgraph G′ = (V ,E) of G , (2.26)

∑
i j∈E

yi j ≥ copt(D) for every degree-subset D = (V ,E) of G , (2.27)

∑
i j∈E

yi j ≥ 2∣V ∣ + 2 for every diamond (V ,E), (2.28)

∑
i j∈E

yi j ≥ 9 for every 3-cycle-star (V ,E), (2.29)

∑
i j∈E

yi j ≥ 14 for every 4-cycle-star (V ,E), (2.30)

∑
i j∈E

yi j ≥ 7 for every 3-cycle-with-2-legs (V ,E), (2.31)

∑
i j∈E

yi j ≥ 10 for every 3-cycle-with-4-legs (V ,E), (2.32)

∑
i j∈E

yi j ≥ 18 for every 3-cycle-with-6-legs (V ,E), (2.33)

∑
i j∈E

yi j ≥ 9 for every 4-cycle-with-2-legs (V ,E), (2.34)

∑
i j∈E

yi j ≥ 12 for every 4-cycle-with-4-legs (V ,E) of type A, (2.35)

∑
i j∈E

yi j ≥ 16 for every 4-cycle-with-4-legs (V ,E) of type B. (2.36)

The subgraphsG′ in the so-called subgraph inequalities (2.26) are stars that contain all
existing edges between the neighbors of the center node. As theMinLA problem ofG′

should be solvable in reasonable time we consider at most 8 neighbors of the center

node. As we observed that nodes with high degrees are often close together within

an optimal solution we want to separate on subsets consisting of nodes having large

degrees. We therefore order the nodes of the graphG by their degree and then consider

the subgraphs D defined by all edges of the first eight nodes, the nodes 2 to 9, 3 to 10

and so forth. We call these the degree-subset inequalities, they are presented in (2.27).
The diamond inequalities (2.28) are rank constraints on diamonds, were a diamond is
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(a) Diamond

corresponding

to (2.28).

(b) Diamond in its

MinLA presentation.

Figure 2.4: Diamond and its MinLA representation.

shown in Figure 2.4. For the 3- and 4-cycle-stars, see Figure 2.5, we formulated the rank

constraints (2.29) and (2.30). We call them 3-/4-cycle-star inequalities. Constraints
(2.31) to (2.36) are rank constraints for 3- and 4-cycle with 2 or 4 legs. These cycle-like

structures are displayed in Figures 2.6 and 2.7 and are called 3-/4-cycle-with-legs. The

corresponding inequalities are denoted by 3-/4-cycle-with-legs inequalities.
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(a) 3-cycle-star corre-

sponding to (2.29).

(b) 3-cycle-star in its MinLA pre-

sentation.

(c) 4-cycle-star cor-

responding to (2.30).

(d) 4-cycle-star in its MinLA presentation.

Figure 2.5: Cycle-stars and their MinLA representation.



2.1. Binary Distance Model 57

(a) 3-cycle-with-2-

legs corresponding

to (2.31).

(b) 3-cycle-with-2-legs in

its MinLA presentation.

(c) 3-cycle-with-4-legs

corresponding to (2.32).

(d) 3-cycle-with-4-legs in its MinLA

presentation.

(e) 3-cycle-with-6-legs

corresponding to (2.33).

(f) 3-cycle-with-6-legs in its MinLA presentation.

Figure 2.6: 3-cycle-with-legs and their MinLA representation.
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(a) 4-cycle-with-2-

legs corresponding

to (2.34).

(b) 4-cycle-with-2-legs in its

MinLA presentation.

(c) 4-cycle-with-4-legs

type A corresponding to

(2.35).

(d) 4-cycle-with-4-legs type A in its MinLA

presentation.

(e) 4-cycle-with-4-legs

type B corresponding to

(2.36).

(f) 4-cycle-with-4-legs type B in its MinLA

presentation.

Figure 2.7: 4-cycle-with-legs and their MinLA representation.
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2.2 SparseProblemFormulationwithBinaryDistanceVari-

ables

We will now consider the sparse problem formulation of the binary distance model.

I. e., we do not consider the d-variables for all i , j ∈ V but only for edges i j ∈ E of the

underlying graph. That reduces the number of variables from O(n3) to ∣E∣(n − 1). As

most of the benchmark graphs have a sparse structure this is a strong decrease in the

number of variables.

2.2.1 Basic Properties and Modified Constraint System

As a consequence the system of constraints gets significantly smaller which is impor-

tant for the practical use of the model. The system has several modifications which are

highlighted by bold writing.

n−1

∑
k=1

di jk = 1 for all ij ∈ E, (2.37)

∑
ij∈E

di jk ≤ n − k for all k = 1, . . . ,n − 1, (2.38)

∑
j≠i ,ij∈E

(di jk + di j(n−k)) ≤ 2 for all i < n − 1 and k < ⌊
n

2
⌋ , (2.39)

∑
j≠i ,ij∈E

di jk ≤ 1 for all i ∈ V , k = ⌊
n − 1

2
⌋ + 1, . . . ,n − 1, (2.40)

∑
ij∈S(E)

di jk ≤ ∣S∣ − 1 for all S ⊂ V for all k

such that ∣S∣ − 1 < n − k, (2.41)

∑
j∈V , j/=i
ij∈E

n−1

∑
k=1

di jk ≥ N(i) for all i ∈ V , (2.42)

di jk1 + d jl k2 + di l k3 ≤ 2 for all ij,jl,il ∈ E,
for all non-3-cycles k1,k2,k3 ≤ n − 1, (2.43)

n−1

∑
k=1

k(di jk + d jl k − di l k) ≥ 0 for all ij,jl,il ∈ E, (2.44)

di jk ≥ 0 for all ij ∈ E and k = 1, . . . ,n − 1. (2.45)

The first thing to note is that we have less equations of type (2.37). Furthermore, con-

straint (2.38) is no equation anymore but a lower bound inequality. This is due to the
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(a) Transitive

variables.

(b) Transitive

variables within a

star.

Figure 2.8: Additional variables of transitive type.

fact that we cannot guarantee the existence of all edges of a certain length. The situ-

ation is similar for constraint (2.39), in which we now sum only over existing edges

and cannot assure equality anymore. The summation in (2.40) and (2.42) has to be

restricted as well. In constraint (2.41) only the edges between nodes of the subset S

are considered. They are denoted by S(E). The monotonic inequality (2.12) cannot

be adopted to the sparse problem formulation. The two types of triangles (2.43) and

(2.44) can only be formulated for existing edges. The same holds for the lower bounds

(2.45). Note: The forbidden structure inequalities and rank constraints do not change.

Nevertheless, the consequence of the describedmodifications are not dispensable. On

the one hand we cannot give an integer programming formulation anymore. On the

other hand the lower bounds get worse, as it can be seen in Section 5.10. We therefore

present three different ways to strengthen the sparse problem formulation.

2.2.2 Additional Variables

We enrich the system by adding two different types of variables: Transitive variables

and variables to formulate (2.38) as equation. In Figure 2.8 we give an overview of

the first type of additional variables. For edges of the underlying graph, displayed in a

solid black line, we introduce the artificial transitive edge displayed in a thick grey line,

see Figure 2.8-(a). Note: These transitive variable completions include the addition of

all edges within a star. Figure 2.8-(b) presents this particular type of transitive edges.

The second type of additional variables are motivated by the wish to “rescue” as much

equations from the complete problem formulation as possible. We therefore introduce

all variables necessary to satisfy the equation

∑
i< j∈V

di jk = n − k for all k = ⌊n/2⌋ − 2, . . . ,⌊n/2⌋ + 2.
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2.2.3 Shortest Path Strengthening

This approach was investigated by Caprara et al. [7] at the same time. Consider the

values y∗ corresponding to the current LP solution d∗. We compute all shortest paths

for i j /∈ E with respect to y∗. We then modify the constraints by adding the shortest

(i , j)-path for every non-existent y-variable. Let Pi j denote this shortest (i , j)-path

with respect to y∗ and let its length be y(Pi j). We define

d(i , j) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

yi j if (i , j) ∈ E ,

y(Pi j) otherwise.

If Pi j consists of the nodes w1 = i ,w2, . . . ,wk = j, it implies the upper bound

k−1

∑
l=0

d(wl ,wl+1) ≥ yi j for all i < j ∈ V .

2.2.4 Extended Star Constraint

How the constraints can be extended to V is shown with the example of the star

constraint. Let (S ,E) be a star with center node r

∑
i∈S∖{r}

yir ≥ ⌊(∣S∣ + 1)
2
/4⌋ . (2.46)

Using the shortest path distances the corresponding inequality can be extended to V

in the following way. We first extend to V using the shortest path lengths

∑
i∈V

d(i ,r) ≥ ⌊∣V ∣2/4⌋ . (2.47)

Then we express the shortest paths in existing variables,

∑
i j∈E

ai jyi j ≥ ⌊∣V ∣
2
/4⌋ , (2.48)

and obtain the extended star constraint. This procedure can be applied to several con-

straints. We only have to be careful to keep the modified constraints feasible. There-

fore we can only modify ≥ inequalities with positive coefficients. In Section 2.2.4 we

present the lower bound improvement achieved by the extended star constraint. As

the extended constraints tend to be quite dense we do not want to work with a lot of

these. Nevertheless, Caprara et al. [7] present a very successful combination of a dense

and sparse problem formulation using y-variables.
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2.3 Assignment Variables Formulation Revisited

We examine the possibility of formulating the MinLA as an improved version of the

Assignment Variables Formulation. Recall this model from Section 1.5.2 on page 38.

min∑
i j∈E

ci j yi j ,

s.t.
n

∑
p=1

xip = 1 for all i ∈ V , (2.49)

∑
i∈V

xip = 1 for all p = 1, . . . ,n, (2.50)

yi j ≥ (xip + x jq − 1) ∣p − q∣ for all i j ∈ E , for all p ≠ q ∈ V , (2.51)

0 ≤ xi j ≤ 1 for all i < j ∈ V , (2.52)

yi j ∈ R+ for all i < j ∈ V . (2.53)

Unfortunately, this formulation has O(n4) constraints, which is excessive.

2.3.1 Improvement of the Formulation

A much more compact formulation can be obtained by replacing constraints (2.51)

with the following constraints.

yi j ≥
n

∑
p=1

p(xip − x jp) for all i < j ∈ V and (2.54)

yi j ≥
n

∑
p=1

p(x jp − xip) for all i < j ∈ V . (2.55)

This improved formulation has only O(n2) constraints. Its LP relaxation is likely to be

very weak, but we can strengthen it. One could of course simply use the valid inequal-

ities that were presented by Amaral & Letchford [45]. More interestingly, however, it

is possible to exploit the presence of the additional assignment variables to derive new

and/or stronger valid inequalities. This will be done in Chapter 3.
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Polyhedral Theory

In this chapter we address the polyhedral properties of all models considered in this

thesis. We start with some preparative definitions in Section 3.1. A short overview of

the work on Pn(G), which is the polyhedron corresponding to the y-variables formu-

lation, and on DOMn, its Minkowski sum with the non-negative orthant of R∣E∣, is
given in Section 3.2. In Section 3.3 we turn our attention to the convex set Qn. We

are particularly interested in its relationship to Pn and to the cut cone CUTn, in its

unbounded edges, and in the unbounded edges of its closure Qn. In order to achieve

a complete set of results for Qn, we display some results on facet-defining inequalities

from Letchford [102]. The polyhedron Dn corresponding to the complete problem

formulation with d-variables is investigated in Section 3.4. This is followed by a study

of the polyhedron PA
n of the revisited assignment variables formulation. All results of

this last section were obtained in cooperation with A. Letchford, Lancaster University,

UK, whereas results presented in Section 3.3 were obtained together with A. Letchford

and D. O. Theis, Universität Magdeburg, Germany.

3.1 Preparative Definitions

The following facts about fans, zonotopes, and the permutahedron can be found in

[17] and [103]. Let Ln be a linear vector space of dimension n. A fan in Ln is a fam-

ily F = {C1, . . . ,Ck} of nonempty polyhedral cones C1, . . . ,Ck with the following

properties:

• every nonempty face of a cone of F is a cone of F itself,

• the intersection of two cones of F is an element of F again.

63
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A fan is complete if the union of its cones is the whole space. Furthermore, by defini-

tion the faces of a fan are its cones. The face fan of a polyhedron P is defined by

F(P) ∶= {cone(F) ∣ F face of P, F /= P}.

For a polyhedron P in a vector space Ln, the set

N(P) ∶= {NF ∣ F face of P, F /= ∅}, where

NF ∶= {c ∈ (L
n
)
∗
∣ F ⊆ {x ∈ P ∣ cx = max

y∈P
cy}},

is the so-called normal fan of the polyhedron P. It is a collection of cones NF , where

F ranges over the nonempty faces of P. For any such F, the cone NF is defined as the

set of all vectors c ∈ Ln for which the maximum of the linear function x ↦ cTx over P

is attained in all points of F. The normal fan is a complete fan in the dual space (Ln)∗.

We will be most interested in the normal fan Nπ ∶= N{vπ}, where vπ is the vertex of

the permutahedron corresponding to the permutation π ∈ S(n), see Equation 3.2.

Theorem 3.1.1 ([17]). Let P be a polytope with 0 ∈ int(P). The normal fan of P equals

the face fan of its polar, i. e., N(P) = F(P△) and NF = cone(F
◇).

Proof. Let F be an arbitrary nonempty face of P. Then

NF = {c ∈ (L
n
)
∗
∣ F ⊆ {x ∈ P ∣ cx = maxy∈P cy}} (3.1)

= {λc ∣ c ∈ (Ln)∗, λ ∈ R+, cx = 1 for all x ∈ F}
= cone(F◇).

The finite set A ∶= {H1, . . . ,Hp} of linear hyperplanes Hi ∶= {x ∈ L
n ∣ xvi = 0} is

called a linear hyperplane arrangement. It decomposes Ln into a complete fan FA,

which is the fan of the linear hyperplane arrangementA of Ln.

A zonotope is the affine projection of a cube Cp ∶= [−1,+1]p = ∑
p

k=1
[−ek ,ek]. That

means there exists a linear form V ∶ Ln → Ln, b ∈ Ln and a mapping f ∶ x ↦ Vx + b

with V being a linear matrix such that f (Cp) = ∑
p

k=1
[−vk ,vk] + b, where [x ,y] is the

line segment joining the two points x and y.

Theorem 3.1.2 ([17]). Let P ⊆ Ln be a zonotope and let v1, . . . , vp be the vectors that

determine the line segments whoseMinkowski sum is equal to P. It is true that the normal

fan N(P) of P is the fan FA of the linear hyperplane arrangement A ∶= {H1, . . . ,Hp}

of Ln with Hi ∶= {c ∈ (L
n)∗ ∣ cvi = 0}.
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The permutahedron Πn−1 is defined as

Π
n−1
∶= [− 1

2
(e2 − e1),

1

2
(e2 − e1)] + [−

1

2
(e3 − e1),

1

2
(e3 − e1)]

+ . . . + [− 1

2
(en − en−1),

1

2
(en − en−1)].

More commonly, the permutahedron is known in its translated form,

Π
n−1
+
n + 1

2
1 = conv{π ∣ π is a permutation of the points [n]}.

We will denote the vertex of Πn−1 corresponding to the permutation π ∈ S(n) by

vπ ∶= π −
n + 1

2
1. (3.2)

The permutahedron is a simple zonotope of dimension n − 1 and the affine projection

of the cube of dimension (
n
2
). When written in the form we defined it, Πn−1 is full

dimensional in the linear subspace

Ln ∶= {x ∈ Rn
∣ ∑

n

i=1
xi = 0}

ofRn. Moreover, the permutahedron is symmetric: Πn−1 = −Πn−1 and 0T ∈ int(Πn−1).

This makes Πn−1 easier to work with and we can define the polar (Πn−1)△ of the per-

mutahedron, which is simplicial. Balas characterized in [103] the facet-defining in-

equalities of Πn−1 + 1

n+1
1 to be

∑i∈U
xi ≥ (

∣U ∣ + 1

2
), (3.3)

where ∅ /= U ⊊ [n]. Hence, facets of the permutahedron correspond to nonempty

sets U ⊊ [n]. The permutations π ∈ S(n) with ∑i∈U π(i) = (∣U ∣+1
2
) are exactly those

with U = {π−1(1), . . . ,π−1(k)} and ∣U ∣ = k. Note that for the antipodal permutation

π− of π, we analogously obtain U c = {π−
−1
(1), . . . ,π−

−1
(k′)} and ∣U c ∣ = k′. We call a

permutation π ∈ vert (Πn−1) and a nonempty set U ⊊ [n] incident, if and only if U =

{π−1(1), . . . ,π−1(k)} with ∣U ∣ = k. Thus, incidence of permutations and nonempty

subsets of [n] reflects incidence of vertices and facets of the permutahedron and, of

course, of facets and vertices of the polar of the permutahedron.

A consequence of Theorem 3.1.2 for the permutahedron is the following corollary.

Corollary 3.1.3 ([17]). The normal fan of the permutahedron N(Πn−1) is equal to the

fan of the hyperplane arrangement FA, where A ∶= {Hk,l ∣ 1 ≤ k,l ≤ n} and

Hk,l ∶= {c ∈ L
n
∣ c(ek − el) = 0}.
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This result leads to an appropriate description of the cones of the normal fan we

are most interested in, namely Nπ ∶= N{vπ}, see expression (3.1). Define H0
k,l ∶= Hk,l ,

H+k,l ∶= {c ∈ (L
n)∗ ∣ c(ek − el) > 0} and H−k,l ∶= {c ∈ (L

n)∗ ∣ c(ek − el) < 0}. Further,

set sign(λ) ∶= + for λ ∈ R+, sign(λ) ∶= − for λ ∈ R− and sign(0) ∶= 0.

Corollary 3.1.4. We have

Nπ = {c ∈ (L
n
)
∗
∣ sign(ck − cl) = sign(π(k) − π(l)) for all 1 ≤ k, l ≤ n}.

Proof. For 1 ≤ k,l ≤ n it is true that ck − cl > 0⇔ c(ek − el) > 0⇔ c ∈ H+k,l . That

means given sign(ck − cl), we know in which side of the hyperplaneHk,l the point c is

contained. In this way, the position of cwith respect to all hyperplanesHk,l , 1 ≤ k,l ≤ n

can be determined. Therefore

c ∈ ⋂
n

k,l=1H
sign(c(ek−e l ))

k,l
.

An intersection of open half spaces and hyperplanes is nonempty if and only if the

ordering of the components of c is consistent. Hence, if the intersection is nonempty,

there exists a permutation π which corresponds to the ordering of the components of

c. Let C be a facet of FA. Then, by Corollary 3.1.3, C can be described as

C = {c ∈ (Ln)∗ ∣ c ∈ ⋂
n

k,l=1H
sign(c(ek−e l ))

k,l
, sign(c(ek − el)) ∈ {+,−} for all 1 ≤ k,l ≤ n}

= {c ∈ (Ln)∗ ∣ sign(ck − cl) = sign(π(k) − π(l)) for all 1 ≤ k,l ≤ n}

= {c ∈ (Ln)∗ ∣ cπ = maxy∈Πn−1 cy}

= Nπ .

With this useful description of Nπ we conclude.

Corollary 3.1.5. For all π ∈ S(n) we have vπ ∈ N(π).

Proof. Obviously, from the definitions of vπ and L
n it immediately follows that vπ ∈ L

n.

As we have π(k) < π(l) ⇔ π(k) − n+1
2
< π(l) − n+1

2
for all k,l Corollary 3.1.4 and the

definition of vπ imply vπ ∈ Nπ .

Lemma 3.1.6. For every permutation π we know that Nπ is a (n − 1)-dimensional sim-

plicial cone which has n − 1 extreme rays and whose apex is 0.
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Proof. From the definition of the cones Nπ it is clear that 0 has to be an element of all

cones of the normal fan, it is therefore the apex of all. As the permutahedron is simple,

each cone in the normal fan is simplicial.

Let π be an arbitrary element of S(n). As vπ is a vertex of Π
n−1, fromTheorem 3.1.1

it follows that {vπ}
◇ is a facet of the polar (Πn−1)△. In particular, Nπ = cone({vπ}

◇)

and dim(Nπ) = n − 1 because {vπ}
◇ is a facet.

As the permutahedron Πn−1 is simple, every vertex of Πn−1 is contained in exact

n − 1 facets of Πn−1, and by Theorem 3.1.1 we get that {vπ}
◇ contains exactly n − 1

vertices of (Πn−1)△. These vertices of {vπ}
△ correspond exactly to the extreme rays

in Nπ , hence Nπ has n − 1 extreme rays.

Proposition 3.1.7. We have

vπ + Nπ = {x ∈ Nπ ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k /= l ≤ n}.

Proof. Let π be any element of S(n). In the first part we show “⊆”. Consider x ∈ Nπ .

As vπ ∈ Nπ , by Lemma 3.1.5, we have x + vπ ∈ Nπ because Nπ is a convex cone. For

any k,l with π(k) < π(l), we obtain, as xk ≤ xl , that xl + vπl − (xk + vπk) ≥ vπl −

vπk = π(l) − π(k) ≥ 1. This implies ∣xi + vπi − (x j + vπ j)∣ ≥ 1 for all i ≠ j, and hence

x + vπ ∈ Rn. This proves vπ + x ∈ Rn ∩ Nπ .

Now “⊇” has to be shown. Let x be any element of Nπ with ∣xk − xl ∣ ≥ 1. We define

y ∶= x − π and prove y ∈ Nπ . As x ∈ Nπ holds, π(l) > π(k) implies xl ≥ xk , and from

our assumption we even have xl − xk ≥ 1. Now for π(k) − π(l) =∶ r ≥ 1 there exist

j0, . . . , jr with π(k) = π( j0) < . . . < π( jr) = π(l), and we can telescope

xk − xl = ∑
r−1

i=0
(xk i+1 − xk i) ≥ ∑

r−1

i=0
1 = r = π(k) − π(l).

Therefore

yk − yl = xk − vπ,k − (xl − vπ,l) = xk − π(k) − (xl − π(l)) ≥ 0,

and we have shown that for y, π ∈ Nπ , y − π is an element of Nπ as well.

ConsideringTheorem 3.1.1, we obtain that the conesNπ are generated by the points

aU ∶=
2

n(n − k)
χU

c

−
2

kn
χU ,

where U is a nonempty proper subset of [n] and k = ∣U ∣. This is due to the fact that

aU is the vertex of (Πn−1)△ corresponding to the facet of Πn−1 displayed in expres-

sion (3.3).



68 Chapter 3. Polyhedral Theory

3.1.1 Pairwise absolute value mapping M

We will now introduce a mapping that will be central within these sections. We first

state some basic properties and then consider the vertices of the permutahedron under

this mapping.

M ∶ Rn
Ð→ S0M(n)

x ↦ (∣xk − xl ∣)k=1,...,n
l=1,...,n

It maps an element of Rn to a symmetric n × n matrix with zero-entries in the main

diagonal. We start with some basic properties of M.

Lemma 3.1.8. The mapping M has the following properties.

(a) For all ξ ∈ R and x ∈ Rn, we have M(x + ξ1) = M(x).

(b) For x ,y ∈ Ln, we have

M(x) = M(y) if and only if x = y or x = −y.

(c) The mapping M is linear on each of the cones Nπ , and it is also injective there.

(d) For each π, the image of Nπ under M is a (n − 1)-dimensional simplicial cone

with apex 0 in S0M(n), which is generated by the extreme rays R+M(χU) for all
nonempty subsets U ⊊ [n] incident on π.

Proof. (a). We have

M(x + ξ1) = (∣xk + ξ − (xl + ξ)∣)k=1,...,n
l=1,...,n

= (∣xk − xl ∣)k=1,...,n
l=1,...,n

= M(x).

(b). It is true that x = ±y⇒ ∣x∣ = ∣y∣ ⇒ ∣xk−xl ∣ = ∣yk− yl ∣ for all 1 ≤ k,l ≤ n. Therefore

M(x) = M(y). For the non-trivial direction, let x ,y ∈ Ln and define x′ ∶= x − x11,
y′ ∶= y = y11. Note that M(x′) = M(x) = M(y) = M(y′). We will show that x′ = y′,

which implies x = y because∑ j x j = 1 = ∑ j y j as x ,y ∈ L
n. Since

∣x′k ∣ = ∣x
′

k − x
′

1 ∣ = Mk,1(x
′
) = Mk,1(y

′
) = ∣y′k − y

′

1∣ = ∣y
′

k ∣,

we conclude that the index set [n] is the union of the three disjoint sets I+, I0, and I−
defined by x′k = y′k ≠ 0 for all k ∈ I+, x

′

k = y′k = 0 for all k ∈ I0, and x′k = −y
′

k ≠ 0 for

all k ∈ I−. We show that one of the sets I+ or I− must be empty. Assume the contrary:

k ∈ I+ and l ∈ I−. Then ∣x′k − x
′

l ∣ = ∣y
′

k − y′l ∣ = ∣x
′

k + x
′

l ∣, hence ∣x
′

k − x
′

l ∣
2 = ∣y′k − y′l ∣

2 =



3.1. Preparative Definitions 69

∣x′k+x
′

l ∣
2, which is equivalent to x′2k −2x

′

kx
′

l +x
′2
l = x

′2
k +2x

′

kx
′

l +x
′2
l . It follows x

′

kx
′

l = 0,

thus we have k ∈ I0 or l ∈ I0, a contradiction.

(c). Let π be a permutation. We have to show that, for each k,l with k ≠ l , the

restriction of the mapping x ↦ Mk,l(x) to Nπ is linear. Let such k,l be given. Then

by Corollary 3.1.4, we are in one of the following two situations:

• π(k) > π(l) and for any x ∈ Nπ , we have ∣xk − xl ∣ = xk − xl , or

• π(k) < π(l) and for any x ∈ Nπ , we have ∣xk − xl ∣ = −xk + xl .

In both cases x ↦ Mk,l(x) is linear on Nπ . Since x ∈ kernel(M∣Nπ
) if and only if

xk = xl for all 1 ≤ k,l ≤ n, but by the definition of Ln exists exactly one x ∈ Ln that

fulfills this property: x = 0, the injectivity follows from Lemma 3.1.8-(b).

(d). By the previous items and Lemma 3.1.6, we know that M(Nπ) is the image

of an (n − 1)-dimensional simplicial cone with apex zero under an injective linear

mapping.

As M(x + ξ1) = M(x) for all ξ ∈ R and x ∈ Rn, we restrict M to the space

orthogonal to R1 = {ξ1 ∣ ξ ∈ R} which is the linear vector space Ln which has already

been mentioned above. We call the restriction of the mapping again M. The dual

space (Ln)∗ is identified with Ln via the isomorphism Ln → (Ln)∗ ∶ c ↦ ⟨c∣, where

⟨c∣ ∶ Ln → R is the mapping such that y ↦ ⟨c ∣ y⟩.

Remark 3.1.9. Recall the definition of a permutation matrix Eπ defined in Section 0.3.2

on page 8. The function M ↦ ET
πMEπ is a linear isomorphism of the vector space S0M

that maps Pn to Pn and Qn to Qn. Defining (x ○ σ) j ∶= xσ( j) for x ∈ Rn and σ ∈ S(n),

we obtain ET
σ M(x)Eσ = M(x ○ σ).

Wewill now consider the vertices of the permutahedron under themappingM. By

Lemma 3.1.8-(a) and -(b) we have M(π) = M(vπ) = M(−vπ) = M(π
−). As M(χU) =

M(χU
c

), we have thatM(π) corresponds to the pairU andU c . Note thatM(χU) is a

cut matrix and, after appropriate permutation, looks like

M(χU) = (
1 0

0 1
)
} ∣U ∣

} ∣UC ∣,
M(χU)T = (

0 1

1 0
)
} ∣U ∣

} ∣U c ∣,

therefore we say vertexM(π) and cut (U ,U c) are incident if and only if π and U

as well as π− and U c are incident.

Note: as we have a bijection between sets the setsU and the facets (3.3), it does not

matter if we consider S(n) to be in Ln or in Rn. The bijection is conserved, hence the

direction M(χU) stays the same under translation.
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For a permutation π ∈ S(n), we call a set U ⊊ [n] over the ridge from π if

U = {π−1(1), . . . ,π−1(k − 1),π−1(k + 1)} and

U c
= {π−1(k),π−1(k + 2), . . . ,π−1(n − 1)},

where k = ∣U ∣ 1. We say M(χU) is over the ridge from M(π) if U is over the ridge

from π. Note: U is over the ridge from π if and only if U corresponds to a facet of the

permutahedron which contains a neighbor vertex of π but not π itself.

3.2 Integral Polyhedron Pn

Having introduced these definitions and basic properties, we can start investigating

the polyhedral aspects of the MinLA. We start with a short literature review about

Pn(G) and DOMn(G).

3.2.1 Literature Review

Definition of Pn and Basic Properties

The definition of the polyhedron corresponding to the y-variable formulation is

Pn(G) ∶= conv{y ∈ R∣E∣+ ∣exists π ∈ S(n) such that

yi j = ∣π(i) − π( j)∣ for all i j ∈ E}

and was given in [104]. Here, a class of polyhedra associated with the so-called Single

Row Facility Layout Problem is investigated. As the MinLA is a special case, several

polyhedral results are important for our case. It is shown that Pn ∶= Pn(Kn) is of

dimension (
n
2
)− 1 and that its affine hull is defined by the equation∑i , j∈[n] yi j = (

n+1
3
).

It is also shown that the following four classes of inequalities define facets of Pn under

mild conditions:

• Pure hypermetric inequalities, which are simply the hypermetric inequalities

from Section 1.5.2 for which b ∈ {0,±1}n;

1The terminology is taken from the geometry of the permutahedron: Since the polar polytope of

the permutahedron, is simplicial, if we start somewhere “on π” and “walk over” a particular ridge to a

neighboring facet π′, then a unique vertex “comes into sight.” The sets corresponding to these vertices

are precisely those which are “over the ridge” from π.
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• Strengthened pure negative-type inequalities, which are like the negative-type

inequalities

∑
i , j∈[n]

bib jyi j ≤ 0 for all b ∈ Rn
such that

n

∑
i=1

bi = 0

for which b ∈ {0,±1}n except that the right-hand side is increased from 0 to
1

2 ∑i∈[n] ∣bi ∣;

• Clique inequalities, see Section 1.5.2;

• Strengthened star inequalities, which take the form

(∣S∣ − 1)∑
i∈S

yri − ∑
i , j∈S

yi j ≥ ⌊(∣S∣ + 1)
2
(∣S∣ − 1)/12⌋ ,

where r ∈ V and S ⊆ V ∖ {r} with ∣S∣ ≥ 2.

It is pointed out in the same paper that each star inequality with ∣S∣ ≥ 2 is dominated

by a clique inequality and a strengthened star inequality. Therefore, very few of the star

inequalities define facets of Pn. Nevertheless, it is possible to strengthen the stars in

such a way that these strengthened stars define facets of Pn. Furthermore, it is shown

under which conditions odd wheels and 2-chorded cycle inequalities of different types

are facet-defining for Pn.

In [104] the polytope Pn(G) is investigated for general graphs G as well. In con-

trast to the polytope of the complete graph Pn(G) is full dimensional if G is con-

nected but not complete. Furthermore, a lot of facets can be “borrowed” from Pn.

Cliques inequalities, pure hypermetric inequalities, strengthened pure negative-type

inequalities, strengthened star inequalities, odd wheel inequalities, and 2-chorded cy-

cle inequalities define facets of Pn(G)wheneverG contains a subgraph with a suitable

structure. Besides that, the conditions are given under which the metric and star in-

equalities define facets of Pn(G).

DOMn and DOM(Pn(G))

As Pn has a fairly complex structure, a suitable relaxation was considered. As we con-

sider a minimization problem with non-negative objective function coefficients, it is

equivalent to optimize over Pn or over

DOMn ∶= Pn + {y ∈ R∣E∣+ ∣ exists y′ ∈ Pn such that y′ ≥ y}.

DOMn is called the dominant of Pn. In [7] it is shown that DOMn is full dimensional

and unbounded. Furthermore, Pn is the unique bounded facet of DOMn. Several re-

sults are given that the following inequalities are facet-defining undermild conditions:
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• star inequalities,

• clique inequalities,

• circuit inequalities,

• bipartite inequalities, and

• double star inequalities.

3.2.2 Feasibility Test for Pn(G)

We are faced with the problem of a graph with integral edge lengths and have to de-

termine an embeding in R that fulfills all given edge lengths if it exists. We are going

to characterize a graph property for which this problem can be solved efficiently with

the presented algorithm.

Concept

The key idea is that a nodes’ position in a permutation can exactly be given if it has two

adjacent nodes that are already positionedwithin the permutation. We call u1, . . . ,un a

k-convenient node ordering if u1, . . . ,uk are connected and node u j+1 has two neigh-

bors in u1, . . . ,u j for all j ≥ k. A graph is k-spanning if a k-convenient node ordering
of the nodes of G exists.

Algorithm

We use the property described above in an embedability test displayed in Algorithm 5.

It starts with the test whether a k-convenient ordering exists. The complete procedure

is realized in Algorithm 6 and analyzed in Proposition 3.2.1.

Proposition 3.2.1. For fixed k, Algorithm 6 determines a k-convenient node ordering

u1,...,un of G if such an ordering exists.

Proof. Assume there exists a k-convenient node ordering of G. We will prove that a

set X exists for which the following invariant holds: At the beginning of the loop in

line 4 of Algorithm 6, there exists a k-convenient node ordering starting with nodes

u1, . . . ,u j−1. We construct the set X and show that the invariant is not destroyedwithin

any iteration of the loop.

Let X consist of the first k nodes from the existing k-convenient node ordering

u1, . . . ,un of G, i. e., X ∶= {u1, . . . ,uk}. It is clear that the invariant holds for the begin-

ning j = k + 1. Therefore, at least one node v ∈ {u j , . . . ,un} exists with degin(v) ≥ 2.
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Algorithm 5 Embedability Test

Input: Connected graph G = (V ,E) with edge lengths y,

Constant k,

Output: Mapping V → R which is in correspondence to y.

1: Determine whether G has a k-convenient node ordering, see Algorithm 6.

2: if G is k-spanning then
3: Take a k-convenient node ordering u1, . . . ,un of G.

4: else
5: Choose any ordering of the nodes u1, . . . ,un such that u j has at least one neigh-

bor in u1, . . . ,u j−1 for all 2 ≤ j ≤ n. // As G is connected such an ordering can

iteratively be constructed.

6: end if
7: Determine all possible embedings of u1, . . . ,un, see Algorithm 7.

Algorithm 6 Determine if G is k-spanning

Input: Connected graph G = (V ,E) with edge lengths y,

Output: Node ordering u1, . . . , un, if possible k-convenient.

1: for all X ⊂ V , ∣X∣ = k, induced subgraph is connected do
2: Orientate all edges in δ(X) to point away from X. No other edge is oriented.

3: Y ∶= X = {u1, . . . ,uk}.

4: for all j = k + 1, . . . ,n do
5: if no u ∈ V ∖ Y exists with degin(u) ≥ 2 then
6: Go to step 12.

7: end if
8: Let u j be any node in V ∖ Y with degin(u j) ≥ 2.

9: Orientate those edges in δ(u j) that have not already been oriented to point

away from u j.

10: Set Y ∶= Y ∪ {u j}.

11: end for
12: if Y = V then
13: Return “k-convenient node ordering u1, . . . , un”.

14: end if
15: end for
16: Return “G is not k-spanning”.
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Algorithm 7 Determine all possible embedings of G

Input: Ordering u1, . . . , un of nodes with edge lengths y∣{u1 ,...,un},

Constant k,

Output: Possibly empty list Πn of all injective embedings p of G.

1: Find all injective embedings p ∶ {1, . . . ,k} → R of y∣{u1 ,...,uk}, Algorithm 8.

2: Save these embedings in the list Πk .

3: for all j = k + 1, . . . ,n do
4: for all embedings p in Π j−1 do
5: if p can be continued to p′ of y∣{u1 ,...,u j}

, Algorithm 9 then
6: Continue p to p′.

7: Save p′ in list Π j of embedings of y∣{u1 ,...,u j}
.

8: end if
9: end for
10: end for
11: Return possibly empty list Πn of all injective embedings p of G.

Algorithm 8 Determine all possible embedings of u1, . . . ,uk

Input: Ordering u1, . . . , uk of nodes with edge lengths y∣{u1 ,...,uk},

Output: Possibly empty list Πk of all injective embedings p of y∣{u1 ,...,uk}.

1: Determine the injective embeding p ∶ {1,2} → R of y∣{u1 ,u2}, where w.l.o.g.

p(u1) ∶= 0 and p(u1) < p(u2).

2: Save p in the list Π2.

3: for all j = 3, . . . ,k do
4: for all embedings p in Π j−1 do
5: if p can be continued to p′ of y∣{u1 ,...,u j}

, Algorithm 9 then
6: Continue p to p′.

7: Save p′ in list Π j of embedings of y∣{u1 ,...,u j}
.

8: end if
9: end for
10: end for
11: Return possibly empty list Πk .
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Algorithm 9 Check existence of continuation

Input: Nodes u1, . . . , uk−1 and uk ,

Embeding p ∈ Πk−1,

Output: Possibly empty list (Πk)∣pk−1 of all injective embedings p of y∣{u1 ,...,uk} that

are continuations of pk−1.

1: Choose node ul ∈ {u1, . . . , uk−1} adjacent to uk . // Exists due to the chosen node

ordering.

2: Use distance yu luk to compute the two possible continuations p1, p2 of p that place

node uk . // Note: both embedings are injective

3: Let mistake be a bool variable.

4: for all embedings pi , i = 1, 2 do
5: Set mistake=False.

6: for all j = 1, . . . ,k − 1 with j ≠ l do
7: if yu juk /= ∣pi(u j) − pi(uk)∣ then
8: Set mistake=True.

9: end if
10: end for
11: if mistake=False then
12: Save injective embeding pi in (Πk)∣pk−1 .

13: end if
14: end for
15: Return possibly empty list (Πk)∣pk−1 .
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The algorithm chooses one of these nodes v and moves it to position j, i. e., the al-

gorithm sets u j ∶= v. Note: node v is moved to the left side—if it is moved at all. It

therefore remains to be a left-hand-side neighbor to all its right-hand-side-neighbors.

This means that we do not loose the k′-convenient property for any k′ > k chang-

ing the position of v. Hence, at the beginning of the loop iteration j + 1 there exists a

k-convenient node ordering starting with the nodes u1, . . . ,u j−1,u j.

If the graph is k-spanning, we continue with its k-convenient ordering and obtain

a polynomial running time.

Proposition 3.2.2. For fixed k, if u1, . . . , un is a k-convenient node ordering of G, Al-

gorithm 7 is polynomial in time and space.

Proof. For a k-convenient node ordering, the position of a node within an embed-

ing is unique if its two neighbors have already been placed. Hence, the exponential

growth of the list Πi is stopped when i ≥ k. The total number of possible embedings

is therefore 2k . This leads to a linear worst case running time and worst case memory

for Algorithm 7.

Although this running time cannot be guaranteed for arbitrary graphs, the feasi-

bility test holds for all kinds of graphs, as it is shown in the following proposition.

Proposition 3.2.3. Algorithm 5 is correct, i. e., it constructs all feasible embedings cor-

responding to the given distances.

Proof. We show that every feasible embeding is found by Algorithm 5. Consider an

arbitrary feasible embeding p. We examine two situations.

Case 1: G is k-spanning. Let u1, . . . ,un be a k-convenient node ordering and let

p j ∈ Πk be the embeding of u1, . . . ,uk with p(ui) = p j(ui) for all i = 1, . . . ,k. In

every iteration of step 3 in Algorithm 7 the embedings are continued to embed one

more node. As u1, . . . ,un is k-convenient, every newly placed node has two neigh-

bors. Hence, its position is unique and therefore the continuation of p j is uniquely

determined in each iteration. Hence, in the last iteration pn−1 is continued to the em-

beding p.

Case 2: G is not k-spanning. Consider any node ordering u1, . . . ,un in which ui

has at least one neighbor in {u1, . . . , ui−1} for all i = 2, . . . ,n. Again let p j ∈ Πk be the

embeding of u1, . . . ,uk with p(ui) = p j(ui) for all i = 1, . . . ,k. In every iteration, at

most two continuations of p j are constructedwhich leads to atmost 2n−k embedings of

{u1, . . . ,un}, all being continuations of p j. As the algorithm constructs every possible

continuation in each iteration, p is one of the 2n−k embedings.
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We will now state some open questions for further research.

• The complexity of the embedability problem in R is known to beNP-hard for

semi-metrics. For metrics, i.e., for injective embedings, the complexity is not

known. What is the complexity of the injective embedability problem for arbi-

trary graphs?

• Although trees can trivially be embeded for semi-metrics, it is not even known

how complex their embeding is for metrics. What is the complexity of the in-

jective embedability problem for trees?

• Can the k-spanning graphs be characterized?

– G has to be bi-connected and its circumference has to be ≤ k − 1. Unfor-

tunately, these conditions are not sufficient.

– Which reasonable, “nice” graph property implies k-spanningness?

• Consider non bi-connected graphs. Can a possibly polynomial algorithm for in-

jective embeding of trees be modified to give a polynomial embeding algorithm

for graphs all of whose blocks are k-spanning for a fixed k?

• IfG is not k-spanning, but, say, there is a long path between two vertices ul1 , ul2 ,

none of whose vertices has a neighbor in u1, . . . ,u j. Can we use a modification

of the dynamic programming algorithm for knapsack problems to embed such

a graph?

3.3 Convex Set Qn

We now turn our attention to Qn and Qn, which is an alternative relaxation of the

polytope Pn. In contrast to DOMn, we do not consider the Minkowski sum of Pn and

the non-negative orthant ofR(
n
2
) but theMinkowski sumof Pn and the cut coneCUTn.

We prove several results about the structure of this convex set Qn. In particular, it is

shown that it is not closed in general. We characterize some of the (n−1)-dimensional

faces (i. e., facets) of the closure and some of the 1-dimensional faces (i. e., edges) of

both the convex hull and its closure.

3.3.1 Definition of Qn and Basic Properties

We consider the following convex set:

Qn ∶= conv{y ∈ R(
n
2
)

+ ∣ exists z ∈ Rn
such that yi j = ∣zi − z j∣ ≥ 1 for all i ≠ j ∈ [n]}.
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Figure 3.1: Convex set Q3 in M(L3) dispayed from three perspectives.

To give some intuition, we present in Figure 3.1 drawings of Q3 from three different

angles. Of course, the drawing is truncated, since Q3 is unbounded. The three co-

ordinates represent y12, y13 and y23. The three coloured regions represent the three

disjoint subsets of Qn that we will characterize in Theorem 3.3.1. One can see that

Q3 is a three-dimensional polyhedron with one bounded facet, six unbounded facets,

three bounded edges and six unbounded edges. To get an appropriate description of

Qn we will now give a structural theorem about Qn relating it to the normal fan of

the permutahedron. The use of the pairwise absolute value mappingM will be central

within the proof of the theorem.

Theorem3.3.1. Theset Qn is the convex hull of (n!/2) pairwise disjoint (n−1)-dimensional
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simplicial cones of the form M(π) +M(Nπ), i. e.,

Qn = conv{⋃π∈S(n)M(π) +M(Nπ)}.

Two cones M(π)+M(Nπ) and M(π
′)+M(Nπ′) are identical if π

′ and π are identical

or antipodal; otherwise they are disjoint.

Proof. From the definition of Qn, we immediately get by Lemma 3.1.8-(a) that

Qn = conv{M({x ∈ L
n
∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n})}.

As the normal fan is complete, it follows that

M({x ∈ Ln ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n})

= ⋃π∈S(n)M({x ∈ Nπ ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n}).

In Proposition 3.1.7 we have proven {x ∈ Nπ ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤

n} = vπ + Nπ . And as M is linear and injective on each Nπ and M(π) = M(vπ), by

Lemma 3.1.8-(c) we conclude

M({x ∈ Nπ ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n})

= M(vπ + Nπ) = M(vπ) +M(Nπ) = M(π) +M(Nπ).

Putting all arguments together, we obtain

Qn = conv{M({x ∈ L
n
∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n})}

= conv{⋃π∈S(n)M({x ∈ Nπ ∣ ∣xk − xl ∣ ≥ 1 for all 1 ≤ k ≠ l ≤ n})}

= conv{⋃π∈S(n)M(vπ + Nπ)}

= conv{⋃π∈S(n)M(π) +M(Nπ)}.

The cones M(Nπ) are simplicial by Lemma 3.1.8-(d).

For the last part of the proof, consider

M(vπ + Nπ) = M(−(vπ + Nπ)) = M(vπ− + Nπ−).

Hence the maximal number of distinct cones is n!/2. From the outer description of

the cones Nπ , see Lemma 3.1.4, follows immediately that all sets {x ∈ Nπ ∣ ∣xk − xl ∣ ≥
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1 for all 1 ≤ k ≠ l ≤ n} are pairwise disjoint. The intersection of two such sets with

π and π′ can only be nonempty if π′ = π−,π. Hence, because of Lemma 3.1.8-(b) it

follows that the cones M(π) +M(Nπ) and M(π′) +M(Nπ′) are equal if and only if

π and π′ are identical or antipodal. The cones are disjoint in any other case. Therefore

we have n!/2 pairwise disjoint cones.

We note some consequences of the theorem.

Lemma 3.3.2.

(a) Qn is the convex hull of all the half-lines M(π) + R+M(χU) where π is a per-

mutation of [n] and U is a nonempty proper subset of [n] such that π and U are

incident.

(b) Qn is a full-dimensional unbounded convex set.

(c) Qn contains Pn as an exposed subset: the inequality 1n ●X ≥ 2(
n+1
3
) is valid for

Qn.

(d) The extreme points of Qn are precisely the vertices of Pn which are the of the form

M(π) for π ∈ S(n).

Proof. (a) These are exactly the extreme rays of the cones whose convex hull is equal

to Qn.

(b) As Pn is contained in Qn but the only valid equation for Pn is not valid for Qn,

Qn has to be full-dimensional.

(c) and (d) Follow from (a).

3.3.2 Unbounded Edges of Qn

We now want to investigate how the cones M(π) + M(Nπ) are subsets of Qn. Con-

sidering Figure 3.1, it can be seen that in the case n = 3, the three cones are faces of Q3

(as Q3 is closed, we can safely speak of faces). In the following we show that this is the

case for all n, and we also characterize the extremal half-lines ofQn. This will be useful

in comparing Qn with its closure: We will characterize the unbounded edges issuing

from each vertex for the polyhedron Qn = Pn+CUTn in the following subsection.

We are dealing with an unbounded convex set of which we do not knowwhether it

is closed or not. In fact, we will show that Qn is almost never closed. For this purpose,

we supply the following two lemmas for easy reference.

Lemma 3.3.3. Let S be a set, x ∈ S, and y /= 0 such that x +R+y is an extreme subset of

conv(S). Then

for all λ ∈ R+ exists µ ≥ λ ∶ x + µy ∈ S .
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Proof. Letm = ∣S∣. For any λ ∈ R+, we have x+λy ∈ conv(S), hence x+λy = ∑m
j=1 t js j,

for 1T t = 1, t j ≥ 0 and s j ∈ S for all 1 ≤ j ≤ n. As x + λy is an extreme subset for all j

where t j > 0, we have s j = x + µ jy with µ j ∈ R+. This means

x + λy = ∑
m

j=1
t js j = ∑

m

j=1
t j(x + µ jy)

= (∑
m

j=1
t j)x + (∑

m

j=1
t jµ j)y = x + (∑

m

j=1
t jµ j)y.

This is equivalent to 0 = (∑
m
j=1 t jµ j − λ)y, and as y /= 0 this implies∑

m
j=1 t jµ j = λ. That

means there exists 1 ≤ k ≤ m such that µk ≥ λ and x + µk y = sk ∈ S.

Lemma 3.3.4. For k = 1, . . . ,m let Kk be a (closed) polyhedral cone with apex xk . Sup-

pose that the Kk are pairwise disjoint and define S ∶= ⋃
m
k=1

Kk . Let x ,y be vectors such

that x +R+y is an extreme subset of conv(S). The following holds:

(a) There exists λ0 ∈ R+ and a k such that x + λy ∈ Kk for all λ ≥ λ0.

(b) There exists λ1 ∈ R+ and a k such that xk = x + λ1y and xk +R+y = {x + λy ∣ λ ≥
λ1} is an extreme ray of the polyhedral cone Kk .

Proof. (a). There are only finitely many cones Kk . Therefore, by the previous lemma,

there will be a point x + λ0y from which on we stay within a certain cone Kk . Hence,

x + λy ∈ Kk for all λ ≥ λ0.

(b). By the previous item we know x + λy ∈ Kk for all λ ≥ λ0. On the other hand

x + R+y is extreme and therefore cannot be the conic combination of other extreme

subsets. Hence {x + λy ∣ λ ≥ λ0}, which is the part of x + R+y laying in Kk , has to

be an extreme ray of the polyhedral cone Kk . Note that λ1 is the smallest of all λ0 of

(a).

Proposition 3.3.5.

(a) For every π ∈ S(n), each face of the cone M(π) +M(Nπ) is an exposed subset of

Qn.

(b) The unbounded one-dimensional extremal sets of Qn are exactly the defining half-

lines. In other words, every half-line X + R+Y which is an extremal subset of

Qn is of the form M(π) + R+M(χU) for a π ∈ S(n) and a set U incident to

π. In particular, for every vertex M(π) of Qn, the unbounded one-dimensional

extremal subsets of Qn containingM(π) are in bijectionwith the nonempty proper

subsets of [n] incident to π. Thus, there are precisely n − 1 of them.
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Proof. (a). Due to Remark 3.1.9, it is sufficient to treat the case π = ı ∶= (1, . . . ,n)T ,

the identity permutation. Consider the matrix

C ∶=

⎛
⎜
⎜
⎝

0 1 −1
1 0 1 0

1
⋱

1
0 1 0 1

−1 1 0

⎞
⎟
⎟
⎠

∈ S0M(n).

It is easy to see that the minimum over all C ●M(π), π ∈ S(n), is attained only in the

case π = ı ,ı− with the value 0. Moreover, for any nonempty proper subset U of [n],

we have C ● M(χU) = 0 if U is incident to ı and C ● M(χU) > 0 otherwise. Hence,

we have that D(ı) + M(Nı) is equal to the set of all points in Qn which satisfy the

valid inequality C ● X ≥ 0 with equality. Out of this matrix C we will now construct

a matrix C′ and a right hand side such that only some of the subsets incident to ı

fulfill the inequality with equality. To do so, let U0 be a subsets of [n] incident to ı. If,

for each U ⊂ [n] incident to ı but different from U0, we increase the matrix entries

CmaxU , maxU+1 and CmaxU+1, maxU by one, we obtain an inequality C′ ● X ≥ 0 which is

valid for Qn and such that the set of all points of Qn which are satisfied with equality

is precisely the edge ofM(ı)+M(Nı) generated by the half-linesM(ı)+R+M(χU0).

(b). That the defining half-lines are extremal has just been prooven in (a). The

converse statement follows from Lemma 3.3.4 and the fact that the extreme points of

Qn are precisely the vertices of Pn which are of the form M(π) for π ∈ S(n).

3.3.3 The Minkowski Sum Pn+CUTn equals Qn

Amaral and Letchford showed in [105] the following result.

Lemma 3.3.6. Qn ⊆ Pn + CUTn.

We will therefore now consider the Minkowski sum of the cut cone and Pn. It is

clear that Pn is a subset of Pn +CUTn, in fact we get

Lemma 3.3.7. Pn is the only bounded facet of Pn + CUTn.

Proof. We first prove that the equation 1 ●D = 2(n+1
3
) is valid for Pn + CUTn. As the

affine hull of Pn is defined by this equation, it has only to be shown that 1 ●D ≥ 0 for

all D ∈ CUTn. For case 1, consider only the cut matrices DS where S ⊆ [n]. As

DS = (
1 0

0 1
)
} ∣S∣

} n − ∣S∣,
DT

S = (
0 1

1 0
)
} ∣S∣

} n − ∣S∣,

it follows 1 ●DS = (n−∣S∣)∣S∣+ ∣S∣(n−∣S∣) ≥ 0. For case 2 consider any D ∈ CUTn.

It is true that 1 ●D = 1 ●(∑S∈[n] λSDS) = ∑S∈[n] λS(1 ●DS), where λS ≥ 0 for all



3.3. The Convex Set Qn 83

S ∈ [n]. From the first case we know 1 ●DS ≥ 0 for all S and therefore 1 ●D ≥ 0 is

proven for all D ∈ CUTn.

The dimension of a Minkowski sum is at least the maximal dimension of its poly-

hedra. As the cut cone CUTn is full-dimensional, we immediately obtain that the

dimension of Pn + CUTn is (
n
2
). As the dimension of Pn is (

n
2
) − 1, we get that Pn is

indeed a facet of Pn +CUTn.

Now let F be a bounded facet of Pn +CUTn. As F is bounded, it does not contain

any extreme rays, hence F is contained in Pn and vert(F) ⊆ vert(Pn). As facets are

maximal, this implies F = Pn.

We now prove that the closure of Qn is equal to Pn +CUTn.

Proposition 3.3.8. The closure of Qn is equal to the Minkowski sum Pn + CUTn.

Proof. From Lemma 3.3.6 we know that Pn + CUTn ⊂ Qn is impossible. Therefore

assume Qn ⊂ Pn +CUTn and let x be an element of Pn +CUTn ∖Qn. Define A ∶= Qn

and A′ ∶= {x}, then A, A′ are convex and A′ is bounded. We can apply the separating

hyperplane lemma of [106] which says that there exists a hyperplane that separates A

and A′ strictly. W.l.o.g. A ⊂ H+ and A′ ⊂ H−. As x ∈ Pn + CUTn, we get x = p + λr,

with p ∈ Pn , r ∈ CUTn and λ ∈ R+. It is clear that λ /= 0 and r is not 0. There are two

cases to distinguish. In case 1, π ∈ S(n) exists with p = M(π) and r ∈ M(Nπ), hence

x ∈ M(π) + M(Nπ) ⊆ Qn. As this contradicts the existence of H, this case cannot

occur.

In case 2, different π, π′ ∈ S(n) exist with p = M(π) and r ∈ M(Nπ′). Now

transform the coordinates such that p = (0,1) ∈ R2 and r = (1,0) × R+, hence x =
(0,1) + λ(1,0) for λ ∈ R+. Then x /∈ R+ × [0,1[ = conv{(0,1),R+ × (1,0)}, but x is an

element of the closure of the convex hull, x ∈ R+ × [0,1] = conv{(0,1),R+ × (1,0)}.
On the other hand, conv{(0,1),R+ × (1,0)} = conv{M(π),M(Nπ′)} ⊂ Qn ⊂ H

+ and

as H is closed, we have conv{(0,),R+ × (1,0)} ⊂ H+. Again this is a contradiction,

hence Qn = Pn +CUTn.

We can now add a note about the first part of Proposition 3.3.5.

Remark 3.3.9. In the proof of part (a) of Proposition 3.3.5 we have actually proven that

for every set {U1, . . . ,Ur} of nonempty proper subsets of [n] incident to π, there is a

matrix C such that the minimum C ●M(σ) over all σ ∈ S(n) is attained only in π and

π−, and that C ● M(U ′) ≥ 0 for every nonempty proper subset of [n] where equality

holds precisely for the sets Ui and their complements. Knowing that Qn = Pn+CUTn, by

Proposition 3.3.8, our proof implies that M(π) + cone{M(χU1), . . . ,M(χUr)} is a face

of the polyhedron Qn.
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Amaral and Letchford considered in [45] how a facet of the cut cone CUTn can be

transformed into a facet of theMinkowski sum Pn+CUTn. To do so, let ax ≥ 0 be facet

defining for CUTn and let x∗ be an extreme point of Pn such that ax∗ is minimum.

Then the inequality ax ≥ ax∗ is the so-called cut cone facet of Pn+CUTn. It can easily

be shown that this yields a facet of the Minkowski sum Pn +CUTn [45].

This raises the question whether cut cone facets of Pn + CUTn are facets of Pn.

Therefore, we looked at the polytope Pn and the cut cone CUTn more closely for n =

5,6 and 7. Given a cut cone facet F, we denote by F̃ the face of Pn spanned by the facet

defining inequality of F. We took all cut cone facets from the SMAPO library [107]

and tested the dimension of F̃ and how many vertices of Pn are contained in F̃. The

results presented in Table 3.1 show that F̃ can be a facet of Pn (see for n = 5 the second

SMAPO facet, for n = 6 the second one or for n = 7 the SMAPO facets 5, 10 and 11)

but generally this is not the case.

Lemma 3.3.10. Every cut cone facet F of Qn has at least (
n
2
) − 1 extreme rays.

Proof. From the definition of a cut cone facet F, see Section 3.3.3, there exists another

facet F′ which is facet defining for CUTn. It is clear that dim(F
′) = dim(CUTn) − 1 =

(
n
2
)−1. As there is only one vertex in the cut cone, at least (

n
2
)−1 extreme rays of CUTn

are necessary to achieve this dimension, hence it is clear that ∣exray(F′)∣ ≥ (n
2
) − 1.

As the cut cone facet F is by construction F′moved to a vertex in Pn, every extreme

ray of F′ is carried forward to an extreme ray of F. That means ∣exray(F)∣ ≥ (n
2
) − 1.

Lemma 3.3.11. For every extreme ray R+r of Qn, there exists a vertex v ∈ Qn such that

v +R+r is a one-dimensional face of Qn.

Proof. Let r be an extreme ray of Qn and (a,b) the equality defined by r. As r has to

start somewhere in Qn, we know that minx∈Pn ax is nonempty. In fact, minx∈Pn ax =

{v ∈ Ln ∣ v ∈ vert(Qn)} as we optimize over a convex set and therefore the optima lie

in the vertices of Qn. That there exists a one dimensional face v + R+r follows from
the fact that every unbounded polyhedron has endless edges.

Proposition 3.3.12. Let F be a cut cone facet of Qn. Then F has at least ⌈ n
2
− 1

n−1
⌉ vertices.

Proof. Let F be an arbitrary cut cone facet of Qn. Further define a mapping

ϕ ∶ exray(rec(F)) → vert(F)

that maps an extreme ray r of the recession cone of F to the vertex v ∈ Qn where r

starts. This vertex exists because of Lemma 3.3.11, hence

exray(rec(F)) = ˙
⋃v∈vert(F){r ∣ ϕ(r) = v}. (3.4)
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Table 3.1: Are there cut cone facets that are facets of Pn?

n SMAPO ∣ vert(F̃)∣ dim(F̃) dim(Pn)

5 1 6 4 9

5 2 20 8 9

6 1 48 12 14

6 2 36 12 14

6 3 120 13 14

7 1 28 14 20

7 2 36 12 20

7 3 120 17 20

7 4 2 1 20

7 5 288 19 20

7 6 4 2 20

7 8 40 12 20

7 8 33 14 20

7 9 72 13 20

7 10 252 19 20

7 11 840 19 20
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By Proposition 3.3.5 we know that every vertex of Qn is contained in exact n− 1 edges,

hence

∣{r ∈ exray(rec(F)) ∣ ϕ(r) = v}∣ ≤ n − 1 for all v ∈ vert(F).

Together with equation (3.4) this implies

∣exray(rec(F))∣ = ∣ ˙⋃v∈vert(F){r ∣ ϕ(r) = v}∣

≤ ∑v∈vert(F)
(n − 1)

= ∣vert(F)∣ (n − 1).

From Lemma 3.3.10 we have (
n
2
) − 1 ≤ ∣exray(F)∣ = ∣exray(rec(F))∣. Therefore we

conclude (
n
2
)− 1 ≤ ∣vert(F)∣ (n − 1) which is equivalent to ∣vert(F)∣ ≥ n

2
− 1

n+1
and this

value can be rounded up because of the integrality.

Do these results remain to be true for Qn not closed in general? To answer this

question, we consider Table 3.1. The cut cone facet F of P7 +C7 with SMAPO number

4 has vert(F) = vert(F̃) = 2 /≥ ⌈ 7
2
− 1

7−1
⌉ = 4. For this reason we know that cut cone

facets in Qn with n ≥ 4 possibly contain only few vertices. In particular, we have

another proof that Q7 /= P7 + C7.

Unbounded Edges of Qn

In the last section we already identified some unbounded edges of Qn starting at a

certain vertex M(π) of Qn (see Remark 3.3.9). We now want to characterize all un-

bounded edges of this polytope. From the definition ofQn it is clear that all unbounded

edges have the formM(π)+R+M(χU), but we will see that not all of them are edges.

In the following we will say thatM(π)+R+M(Nπ) is the half-line defined by the
pair π↗U , where π ∈ S(n) is a permutation and U is a nonempty, proper subset of

[n]. We will now characterize the distinct pairs π↗U whose defining half-lines are

edges of Qn.

To do so, we introduce a more “visual” notation of the sets U ⊊ [n]. We represent

U as a word over the alphabet {0,1} of length n having a 1-entry in the j-th position if

j ∈ U , i. e., we consider (χU)T . A maximal sequence of consecutive 0s in this word is a

valley ofU . In other words, a valley is an inclusion-wisemaximal subset [l ,l+ j] ⊂ U c .

Accordingly, a maximal sequence of consecutive 1 is called a hill. A valley and a hill

meet at a slope. Thus the number of slopes is the number of occurrences of the patterns

01 and 10 in the word, or in other words, the number of k ∈ [n − 1] with k ∈ U and

k + 1 /∈ U or vice versa.
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We start by looking at Qn for small values of n. For n = 2, we have

Q2 = Q2 = R+( 0 1
1 0 ).

Unbounded edges of Q3 We treat the case n = 3 by looking at Figure 3.1. There are

two edges starting at each vertex. In fact, with some computation, it can be seen that

the unbounded edges containing M(ı) are

M(
1
2
3
) +R+M(

1
0
0
) = (

0 1 2
1 0 1
2 1 0
) +R+(

0 1 1
1 0 0
1 0 0
) and

M(
1
2
3
) +R+M(

1
1
0
) = (

0 1 2
1 0 1
2 1 0
) +R+(

0 0 1
0 0 1
1 1 0
); while

M(
1
2
3
) +R+M(

1
0
1
) = (

0 1 2
1 0 1
2 1 0
) +R+(

0 1 0
1 0 1
0 1 0
)

is not an edge. This agrees with Proposition 3.3.5, because the sets 100 and 110 are

incident to ı while 101 and 010 are not.

Remark 3.3.13. We need to look at symmetry again. For every σ ,π ∈ S(n) and U ⊂ [n]

we have:

(a) By Remark 3.1.9, the pair π↗U defines an edge of Qn if and only if the pair π ○ σ↗

σ−1(U) defines an edge of Qn.

(b) U is incident to π if and only if σ−1(U) is incident to π ○ σ.

(c) U is over the ridge from a permutation π if and only if σ−1(U) is over the ridge

from π ○ σ.

(d) U c is over the ridge from a permutation π if and only if σ−1(U)c is over the ridge

from π ○ σ.

The last three are most easily realized by noting that x ↦ x ○σ is a linear isomorphism of

Ln taking (Πn−1)△ onto itself in such away that the facet corresponding to a permutation

π is mapped to the facet corresponding to π ○ σ, and the vertex corresponding to a set U

is mapped to the vertex corresponding to the set σ−1(U).

Hence, in the case n = 3, we know that the half-line defined by the pair π↗U is an

edge if and only if π and U are incident. Moreover, the set 101 is over the ridge from ı

and 010 is its complement. Actually, it is quite easy to prove in general that ifU is over

the ridge from π, then the half-line defined by the pair π↗U is not an edge of Qn.

Proposition 3.3.14. Let π ∈ S(n) and let U ⊂ [n] be over the ridge from π. The half-line

M(π) +R+M(χU) defined by the pair π↗U is not an edge of Qn.
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Proof. By the remark on symmetry on page 69, it is sufficient to prove the claim for

the identical permutation ı ∈ S(n). Consider a k ∈ [n − 1] and let π′ ∶= ⟨k,k + 1⟩ be

the transposition exchanging k and k + 1. Further define U ∶= [k − 1] ∪ {k + 1}. Then

M(χU) can be written as a conic combination of vectors defining rays issuing from

M(ı). First consider the ray M(π′) −M(ı). With some calculation we see

M(π′) −M(ı) =

⎛
⎜
⎜
⎜
⎝

0 1 −1 0

1T 0 0 1T

−1T 0 0 1T
0 −1 1 0

⎞
⎟
⎟
⎟
⎠

} k

} k + 1.

For U0 = [k], we have

M(χU0) = (
0 1

1 0
)
} k

} k + 1,

and as

M(χU) =

⎛
⎜
⎜
⎜
⎝

0 1 0 1

1T 1 0 0T

0T 0 1 1T
1 0 1 0

⎞
⎟
⎟
⎟
⎠

} k

} k + 1,

we obtain

M(χU) = M(χU0) + (M(π′) −M(ı)).

Hence, no ray over the ridge fromM(ı) is an edge in Pn+CUTn containingM(ı).

Note: we have also proven that π and U c do not define an edge of Qn if U
c is over

the ridge from π.

Unbounded edges of Q4 Because of the symmetry, we consider the edges of Q4

containing M(ı) = M(ı−) only. We distinguish the sets U by their number of slopes.

Clearly, a set U with a single slope is incident either to ı or to ı−, and we have already

dealt with that case in Remark 3.3.9

The following sets have two slopes: 0100, 0110, 0010 1011, 1001, and 1101. We only

have to consider 1011, 1001, and 1101, because the others are their complements. The

first one, 1011, is over the ridge from ı−, and the last one, 1101, is over the ridge from ı.

Therefore, by Lemma 3.3.14, we know that the pairs ı↗1011 and ı↗1101 do not define
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edges of Q4. For the remaining set with two slopes, 1001, after some experimenting,

one can come up with the matrix

C 1001
∶= (

0 1 −2 1
1 0 3 −2
−2 3 0 1
1 −2 1 0

)

which satisfies the following properties with C replaced by C 1001 and U by 1001:

C ●M(π) ≥ C ●M(ı) for all π /= ı ,ı−, (3.5a)

C ●M(χU
′
) ≥ 0 for all U ′ /= U ,U c

, (3.5b)

C ●M(χU) < 0. (3.5c)

By Farkas’ Lemma, the existence of such a matrix C satisfying (3.5) is equivalent to

M(ı) +R+M(χU) being an edge. Another, even simpler, equivalent condition is the

existence of a matrix D satisfying the following inequalities:

D ●M(π) > D ●M(ı) for all π /= ı ,ı−, (3.6a)

D ●M(χU
′
) > D ●M(χU) = 0 for all U ′ /= U ,U c

. (3.6b)

We find condition (3.5) easier to check for individual matrices, but we will need con-

dition (3.6) in a proof below.

For n = 4, we summarize that a pair ı↗U defines an edge of Q4 if and only if U is

neither over the ridge from ı nor from ı−.

Unbounded edges of Q5 Let us look at the pairs ı↗U which define edges in the

case n = 5. By Remark 3.3.9 and Lemma 3.3.14, we ignore the sets U with one slope

and those which are over the ridge from ı or ı−. When we take only one of each pair of

complements, for two slopes, the following list of words remains: 11001, 10011, 10001,

11011.For the last set, consider the matrix C 11011 in Table A.1 in Appendix A on page 172

satisfying (3.5). It turns out that 11001 can be “reduced to” 1001 by “contracting” the

“path” 1−2. Namely, we set

C 11001
∶= ε
⎛

⎝

0 0 0 0 0
0 0 1 −2 1
0 1 0 3 −2
0 −2 3 0 1
0 1 −2 1 0

⎞

⎠
+
⎛

⎝

0 ω −1 −1 −1
ω 0 1 1 1
−1 1 0 0 0
−1 1 0 0 0
−1 1 0 0 0

⎞

⎠

for a small ε > 0 and a big ω ≥ 1. We give the reasoning for the general case in the fol-

lowing lemma. In the same way, 10001 and 10011 can be reduced to 1001 by contracting

the paths 2−3 and 4−5 respectively.
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Lemma 3.3.15. Let U0 be a nonempty proper subset of [n]whose word has the form a1b

for two (possibly empty) words a,b. For any k ≥ 0 define the subset Uk of [n + k] by its

word

Uk ∶= a 1 . . . 1
´¸¶
k + 1

b.

If the pair ın↗U0 defines an edge of Qn, then the pair ın+k↗Uk defines an edge of Qn+k .

Proof. Let C ∈ S0M(n) be a matrix satisfying conditions (3.5) for U ∶= U0. Fix k ≥ 1

and let n′ ∶= n+k. Wewill construct amatrixC′ ∈ S0M(n′) satisfying (3.5) forU ∶= Uk .

For a “big” real number ω ≥ 1, define a matrix Bω ∈ S0M(k + 1) whose entries are zero
except for those connecting j and j + 1 for j ∈ [k]:

Bω ∶=

⎛
⎜
⎜
⎝

0 ω
ω 0 ω 0

ω
⋱

ω
0 ω 0 ω

ω 0

⎞
⎟
⎟
⎠

.

We use this matrix to put a heavy weight on the “path” which we “contract.” For our

second ingredient, let la denote the length of the word a and lb the length of the word

b (note that la = 0 and lb = 0 are possible). Then we define

B− ∶=
⎛

⎝

−1 ... −1

0k−1 ... 0k−1
+1 ... +1

⎞

⎠
∈ R((k + 1) × la) and

B+ ∶=
⎛

⎝

+1 ... +1

0k−1 ... 0k−1
−1 ... −1

⎞

⎠
∈ R((k + 1) × lb).

Note that 0k−1 stands for a column of k − 1 zeros. Putting these matrices together we

obtain a n′ × n′-matrix B:

B ∶=
⎛
⎜
⎝

0 BT
−

0

B− Bω B+
0 BT

+
0

⎞
⎟
⎠
.

Now it is easy to check that for any π′ ∈ S(n′) we have B ● M(π′) ≥ B ● M(ı).

Moreover, let π′ ∈ S(n′) satisfy B ● M(π′) < B ● M(ı) + 1. By exchanging π′ with

π′−, we can assume that π′(1) < π′(n′). It is easy to see that such a π′ then has the

following “coarse” structure:

π′([la]) ⊂ [la]

π′([n′] ∖ [n′ − lb]) ⊂ [n
′
] ∖ [n′ − lb]

π′( j) = j for all j ∈ {la + 1, . . . , la + k + 1}.

(3.7)
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Thus, the matrix B enforces that the “coarse structure” of a π′ ∈ S(n′) minimizing

B ● M(π′) coincides with ı. We now modify the matrix C to take care of the fine

structure. For this, we split C into matrices C11 ∈ S0M(la), C22 ∈ S0M(lb), C12 ∈ R(la ×
lb), C21 = C

T
12 ∈ R(lb × la), and vectors c ∈ Rla , d ∈ Rlb as follows.

C =
⎛
⎜
⎝

C11 c C12

cT 0 dT

C21 d C22

⎞
⎟
⎠
.

Then we define the “stretched” matrix Č ∈ S0M(n′) by

Č ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 c 0 0 C12

cT 0 0 0T

0 0 0

0T 0 0 dT

C21 0 0 d C22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the middle 0 has dimensions (k− 1)×(k− 1). Finally, we let C′ ∶= B+ εČ where

ε > 0 is small. We show that C′ satisfies (3.5).

We first consider C′ ● M(χU
′
) for nonempty subsets U ′ ⊊ [n′]. Note that, if U ′

contains {la + 1, . . . ,la + k + 1}, then for U ∶= U ∖ {la + 1, . . . ,la + k + 1}, we have

C′ ●M(χU
′
) = C ●M(χU). Thus, we have C′ ●M(χUk) = C ●M(χU0) < 0 proving

(3.5c) for C′ andUk . For every otherU
′ with C′ ●M(χU

′
) < 0, if ω is big enough, then

either U ′ or U ′c contains {la + 1, . . . ,la + k + 1}, and w.l.o.g. we assume that U ′ does.

By (3.5b) applied to C and U , we know that this implies U = U0 or U = U
c
0 and hence

U ′ = Uk or U
′c = Uk . Thus, (3.5b) holds for C′ and Uk .

Second, we address the property concerning permutations. To show (3.5a), let

π′ ∈ S(n) be given which minimizes C′ ● M(π′). Again, by replacing π′ by π′− if

necessary, we assume π′(1) < π′(n′) w.l.o.g. If ε is small enough, we know that π′ has

the coarse structure displayed in (3.7). This implies that we can define a permutation

π ∈ S(n) by letting

π( j) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

π′( j) if j ∈ [la]

π′( j) = j if j = la + 1

π′( j − k) + k if j ∈ [n] ∖ [la + 1]

.

Due to the definition of C′ and as ● is a linear function, we have

C′ ●M(π′) − C′ ●M(ın′) = εČ ●M(π
′
) − εČ ●M(ın′) + B ● (M(π

′
) −M(ın′)) .
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From the definition of B it follows that

B ● (M(π′) −M(ın′)) ≥ 0.

As every distance between an element on the first and the last part of the permutation

increases by exactly the number k of elements added in themiddle of the permutation,

we have

εČ ●M(π′) − εČ ●M(ın′) + B ● (M(π
′
) −M(ın′))

= ε[C ●M(π) + k ⋅ C ● (
0la×la 1

1 0lb×lb
) − (C ●M(ın) + k ⋅ C ● (

0la×la 1

1 0lb×lb
)) ].

Altogether, these arguments lead to the following:

C′ ●M(π′) − C′ ●M(ın′) ≥ ε[C ●M(π) + k ⋅ C ● (
0la×la 1

1 0lb×lb
)

− (C ●M(ın) + k ⋅ C ● (
0la×la 1

1 0lb×lb
)) ]

= ε[C ●M(π) − C ●M(ın)]

≥ 0.

Hence, (3.5a) holds.

Note: the just proven lemma applies to paths of ones too, by exchanging the re-

spective set by its complement.

We come back to Q5. The sets with three slopes which are not over the ridge from

ı or ı− are 10110, 10010, and their complements. Lemma 3.3.15 is useless here, since

after contraction we would end up with sets which are over the ridge from ı4 or ı
−

4 .

However, we can still find matrices satisfying (3.5), they are presented in Table A.1 in

Appendix A on page 172. The condition (3.5) can be verified by some case distinctions.

The same holds for the unique (up to complement) set with four slopes: 10101. In

Table A.1, we offer the matrix C 10101 satisfying (3.5).

If all valleys and hills of a subset U of [n] consist of only one element (as in 10101)

or, equivalently, ifU has the maximal possible number n− 1 of slopes, or, equivalently,

ifU consists of all odd or all even numbers in [n], we speak of an alternating set. Thus

(with the trivial exception of the word 10 for n = 2), n = 5 is the smallest value of n

such that for an alternating subset U of [n] the pair ı↗U defines an edge of Qn.

For n = 5, we summarize that for all sets U which are not over the ridge from ı or

ı− the pair ı↗U defines an edge of Q5.
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Unbounded Edges of Q6 For n = 6, we only consider the sets which are not in-

cident to ı, which are not over the ridge from ı or ı−, which cannot be reduced by

Lemma 3.3.15, and which are not complements of any of the already mentioned sets.

Only one set remains, namely, the alternating subsets of {1, . . . ,6}. We give a matrix

C 101010 satisfying (3.5) in Table A.1 in Appendix A. Again we observe that a pair ı↗U

defines an edge of Q6 if and only if it is not over the ridge from ı or ı−.

General Case After these preparations for n ≤ 6, we can consider the general case.

The remainder of this section is devoted to a proof of the following theorem.

Theorem 3.3.16. The edges of Qn containing M(π) are precisely the half-lines M(π) +

R+M(χU) where π is a permutation in S(n) and U is a nonempty proper subset of [n]

with the property that neither U nor U c is over the ridge from π.

Proof. By Remark 3.1.9, we only need to consider π = ı. Again we distinguish the sets

U by their number of slopes.

One slope. This is equivalent to U or U c being incident to ı. We have already

treated this case in Proposition 3.3.5, see Remark 3.3.9.

Two slopes. We tackle this case with the preparatory examples above. The com-

plete list of all possibilities, up to complements, and how they are dealt with is sum-

marized in Table 3.2. In this table, 0 stands for a valley consisting of a single zero while

0 . . . 0 stands for a valley consisting of at least two zeros (the same with hills).

Three slopes. This case can also be tackled using the methods we have developed

in the examples. Table 3.3 presents the results.

An even number s ≥ 4 of slopes. Using Lemma 3.3.15, we reduce such a set to

an alternating set with s slopes showing that for all these sets U the pair ı↗U defines

an edge of Qn. This is in accordance with the statement of the theorem because sets

which are over the ridge from ı can have at most three slopes. They can therefore not

occur in any other case. The statement for alternating sets is proven by induction on

n in Lemma 3.3.17 below. Note that the start of the induction is n = 5, which we dealt

with in the examples above.

An odd number s ≥ 5 of slopes. Again, using Lemma 3.3.15, we reduce such a set

to an alternating set with s slopes and refer to Lemma 3.3.18 to perform the induction

starting with example n = 6.

Lemma 3.3.17. For an odd integer n ≥ 5, let U be an alternating subset of [n]. The pair

ı↗U defines an edge of Qn.

Proof. The proof is by induction over n. From the example for n = 5 above, the start

of the induction is guaranteed. Moreover, there exists a D5 ∈ S0M(5) satisfying (3.6).
We will need this matrix in the inductive construction.
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Table 3.2: List of all sets with two slopes (up to complement).

Word

Hill 1 Valley Hill 2 Edge? Why?

1 0 1 no over the ridge from ı

1 0 1 . . . 1 no over the ridge from ı−

1 0 . . . 0 1 yes matrix C 1001 (see Appendix A)

1 0 . . . 0 1 . . . 1 yes reduce to 1001

1 . . . 1 0 1 no over the ridge from ı

1 . . . 1 0 1 . . . 1 yes matrix C 11011 (see Appendix A)

1 . . . 1 0 . . . 0 1 yes reduce to 1001

1 . . . 1 0 . . . 0 1 . . . 1 yes reduce to 11011

Now assume that the pair ı ,U− defines an edge of Qn where U
− is an alternating

subset of [n]. W.l.o.g., we assume that U− = 10 . . . 01. There exists a matrix D− ∈

S0M(n) for which (3.6) holds. We will construct a matrix D ∈ S0M(n + 2) satisfying
(3.6) for U ∶= 010 . . . 010.

We extend D− to a (n + 2) × (n + 2)-Matrix

D̂ ∶= (
D− 0 0

0T 0 0

0T 0 0

).

We do the same with D5, only on the other side:

D̂5 ∶= (
0 0 0T
0 0 0T

0 0 D5

)

Now we let D ∶= D̂+ D̂5 and check the conditions (3.6) on D, which can now easily be

verified.

The even case is prooven in the same way.

Lemma 3.3.18. For an even integer n ≥ 6, let U be an alternating subset of [n]. The pair

ı↗U defines an edge of Qn.
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Table 3.3: List of all sets with three slopes (up to complement).

Word

Hill 1 Valley 1 Hill 2 Valley 2 Edge? Why?

1 0 1 0 no over the ridge from ı

1 0 1 0 . . . 0 no over the ridge from ı

1 0 1 . . . 1 0 yes matrix C 10110 (see Appendix A)

1 0 1 . . . 1 0 . . . 0 yes reduce to 10110

1 0 . . . 0 1 0 yes matrix C 10010 (see Appendix A)

1 0 . . . 0 1 0 . . . 0 yes reduce to 10010

1 0 . . . 0 1 . . . 1 0 yes reduce to 10010

1 0 . . . 0 1 . . . 1 0 . . . 0 yes reduce to 10110

1 . . . 1 0 1 0 no over the ridge from ı

1 . . . 1 0 1 0 . . . 0 no over the ridge from ı

1 . . . 1 0 1 . . . 1 0 yes reduce to 10110

1 . . . 1 0 1 . . . 1 0 . . . 0 yes reduce to 10110

1 . . . 1 0 . . . 0 1 0 yes reduce to 10010

1 . . . 1 0 . . . 0 1 0 . . . 0 yes reduce to 10010

1 . . . 1 0 . . . 0 1 . . . 1 0 yes reduce to 10010

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 yes reduce to 10010
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Our theorem states that the unbounded edges ofQn starting atM(π) are precisely

the rays issuing fromM(π) in the directionM(χU) for setsU ,∅ ≠ U ⊊ [n], which are

not over the ridge from π. From Theorem 3.3.16, we immediately have the following

results.

Corollary 3.3.19. For n ≥ 4, the number of unbounded edges issuing from a vertex of

Qn = Pn + CUTn is 2
n−1 − n.

Proof. The number of nonempty proper subsets of [n] is 2n − 2. There are precisely

n − 1 sets which are over the ridge from π and the same number for π−. Since the

mapping M identifies antipodal points, we obtain the number given above.

Corollary 3.3.20. Qn = Qn⇔ n ≤ 3.

Proof. Consider n = 2. As there are only two permutations ı and ı whose correspond-

ing set U0 is trivially incident to ı, Theorem 3.3.16 says that there is exactly one ex-

treme ray R+M(χU0) containing M(ı). This corresponds to Proposition 3.3.5, there-

fore Q2 = P2 + C2 = Q2. For n = 3, consider π1 ∶= (1 2 3), π2 ∶= (1 3 2), and

π3 ∶= (2 1 3). All other permutations are the antipodal permutations of these. The

sets corresponding to π1 are U1 = {1} and U2 = {1,2}. As both are incident to ı, we

know, by Theorem 3.3.16, that M(χU1) and M(χU2) are extreme rays of P3 + C3 con-

taining M(ı). The sets corresponding to π2 are U1 and U3 = {1,3}, for π3 we have U3

and U2. As U3 is not incident to ı, it does not induce an extreme ray for P3 + C3 con-

taining M(ı). Again, this is in accordance with Proposition 3.3.5, therefore we have

Q3 = P3 + C3 = Q3.

For all n ≥ 4, Proposition 3.3.5 and Theorem 3.3.16 are in conflict, hence Qn /=

Pn +CUTn = Qn.

3.3.4 Inequalities Defining Facets of Qn

In the following, we study linear inequalities that define facets of Qn, i. e., faces of

dimension (
n
2
) − 1. We first present some general results about such inequalities and

then list some specific inequalities.

All results presented in this sectionwere obtained byA. Letchford. They have been

published in our paper [102] and are mentioned here for the sake of completeness.

General Results on Facet-Defining Inequalities

In this subsection, we prove a structural result about inequalities that define facets of

Qn, and show how this can be used to construct facets ofQn in amechanical way from

facets of either Pn or CUTn.
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We will need the following definition taken from [45]. Let aTx ≥ b be a linear

inequality where a, x ∈ R(
n
2
). The inequality is said to be canonical if

min
∅≠S⊂[n]

∑
i∈S

∑
[n]∖S

ai j = 0. (3.8)

By definition, an inequality aTx ≥ 0 defines a proper face of CUTn if and only if

it is canonical. In [104], it is shown that every facet of Pn is defined by a canonical

inequality. The following lemma is the analogous result for Qn.

Lemma 3.3.21. Every unbounded facet of Qn is defined by a canonical inequality.

Proof. Suppose that the inequality aTx ≥ b defines an unbounded facet of Qn. Since

Qn is the Minkowski sum of Pn and CUTn, the inequality must be valid for CUTn.

Therefore, the left-hand side of (3.8) must be non-negative. Moreover, since the in-

equality defines an unbounded facet, there must be at least one extreme ray of CUTn

satisfying bTx = 0. Therefore, the left-hand side of (3.8) cannot be positive.

We remind the reader that only one facet of Qn is bounded, which is Pn.

Now, we show how to derive facets of Qn from facets of Pn.

Proposition 3.3.22. Let F be any facet of Pn, and let a
Tx ≥ b be the canonical inequality

that defines it. This inequality defines a facet of Qn as well.

Proof. The fact that the inequality is valid for Qn follows from the fact that Qn is the

Minkowski sum of Pn and CUTn. Now, since F is a facet of Pn, there exist (
n
2
) − 1

affinely-independent vertices of Pn that satisfy the inequality with equality. Moreover,

since the inequality is canonical, there exists at least one extreme ray of CUTn that

satisfies aTx = 0. Since Qn is the Minkowski sum of Pn and CUTn, there exist (
n
2
)

affinely independent points in Qn that satisfy the inequality with equality. Thus, the

inequality defines a facet of Qn.

Now, we show how to derive facets of Qn from facets of CUTn.

Proposition 3.3.23. Let aTx ≥ 0 define a facet of CUTn, and let b be the minimum of

aTx over all x ∈ Pn. Then the inequality aTx ≥ b defines a facet of Qn.

Proof. As before, the fact that the inequality aTx ≥ b is valid for Qn follows from

the fact that Qn is the Minkowski sum of Pn and CUTn. Now, since the inequality

aTd ≥ 0 defines a facet of CUTn, there exist (
n
2
)− 1 linearly independent extreme rays

of CUTn that satisfy a
Tx = 0. Moreover, from the definition of b, there exists at least

one extreme point of Pn that satisfies bTx = b. Since Qn is the Minkowski sum of

Pn and CUTn, there exist (
n
2
) affinely-independent points in Qn that satisfy a

Tx = b.

Thus, the inequality aTx ≥ b defines a facet of Qn.
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Some Specific Facet-Defining Inequalities

The results in the previous section enable one to derive a wide variety of facets of

Qn. In this section, we briefly examine some specific valid inequalities; namely, the

inequalities mentioned in [45]. First, we deal with the clique and pure hypermetric

inequalities.

Proposition 3.3.24. The clique inequalities, see Section 1.5.2, define facets of Qn for all

S ⊆ [n] with ∣S∣ ≥ 2.

Proof. It was shown in [45] that the clique inequalities define facets of Pn when S is a

proper subset of [n]. In this case, the inequalities are canonical and so, by Proposition

3.3.22, they define facets of Qn as well. The case S = [n] is covered by the fact that Pn
is the only bounded facet of Qn.

Proposition 3.3.25. All pure hypermetric inequalities define facets of Qn.

Proof. Itwas shown in [14] that all pure hypermetric inequalities define facets ofCUTn.

It was also shown in [45] that every pure hypermetric inequality is satisfiedwith equal-

ity by at least one extreme point of Pn. The result then follows from Proposition

3.3.23.

As for the strengthened pure negative-type and strengthened star inequalities, it

was shown in [45] that they define facets of Pn under certain conditions. Since they

are canonical, they define facets of Qn under the same conditions. In fact, using the

same proof technique used in [45], one can show the following two results.

Proposition 3.3.26. All strengthened pure negative-type inequalities define facets of Qn.

Proposition 3.3.27. Strengthened star inequalities define facets of Qn if and only if

∣S∣ ≠ 4.

We omit the proofs, for the sake of brevity.

3.4 0/1 Polytope Dn

In this section we look at some polyhedral aspects of the 0/1 problem formulation

introduced in this thesis. We start with the definition and basic properties such as the

dimension of the polytope. We then present a characterization of some facets of small

polytopes.
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3.4.1 Definition of Dn and Basic Properties

A vector d ∈ {0,1}(
n
2
)(n−1) and a permutation π ∈ S(n) correspond to each other if

di jk =

⎧⎪⎪
⎨
⎪⎪⎩

1, ∣ π(i) − π( j) ∣= k,

0, otherwise
for all i < j ∈ V and k = 1, . . . ,n − 1.

We denote the vector corresponding to π with dπ . If no confusion can arise, we omit

the exponent. Wewill now define the polytopeDn corresponding to theMinLAmodel

based on d-variables:

Dn ∶= conv{d ∈ {0,1}
(
n
2
)(n−1)

∣ exists π ∈ S(n) such that d = dπ}. (3.9)

Obviously, Dn is bounded and its vertices are the vectors corresponding to permuta-

tions, i. e., vert(Dn) = {d ∣ exists π ∈ S(n) such that d = dπ}. The polytope Pn is a

projection of Dn:

f ∶ Dn Ð→ Pn

dπ
↦ yπ .

It is therefore clear that all valid inequalities of Pn are valid for Dn. The big question is

which facets of Pn are facets of Dn as well. To investigate this, we first need to state the

dimension of Dn. Unfortunately, Dn is not full-dimensional and has a very complex

structure. Nevertheless we will present a conjectured minimal equation system of this

polytope.

3.4.2 Conjectured Minimal Equation System

Conjecture 3.4.1. The minimal equation system of Dn is

n−1

∑
k=1

di jk = 1 for all i < j ∈ V , (3.10)

∑
i< j

di jk = n − k for all k = 1, . . . ,n − 2, (3.11)

∑
i≠ j

di jk + di j(n−k) = 2 for all j < n, k < ⌊n/2⌋, n > 3. (3.12)

This leads directly to the next conjecture about the dimension of the polytope.

Conjecture 3.4.2. The conjectured dimension of the polytope is

(
n

2
)(n − 1) − ((n − 2) + (n − 1)(n/2 + ⌊n/2⌋ − 1)). (3.13)
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We will show that constraints (3.10), (3.11), and (3.12) are linearly independent.

In the following, we consider a constraint in its general form ∑i< j∈V ∑
n−1
k=1 ai jkdi jk .

Furthermore, we define a block corresponding to a pair of nodes i , j ∈ V to be the

coefficients ai jk for all k = 1, . . . ,n − 1.

Lemma 3.4.3.

(a) All constraints of type (3.10) and (3.11) are linearly independent.

(b) All constraints of type (3.10), (3.11), and (3.12) are linearly independent.

Proof. (a). Assume there exists a constraint

n−1

∑
k=1

di jk = 1 (3.14)

of type (3.10) which is a linear combination of (3.11) and other (3.10) constraints. Its

coefficients ai jk are equal to 1 for all k and 0 otherwise. The coefficient ai j(n−1) equals 0

in all other (3.10) constraints. Furthermore, ai j(n−1) is not part of any (3.11) constraint,

hence no linear combination of (3.14) is possible.

Now assume there exists a constraint

∑
i< j

di jl = n − l (3.15)

of type (3.11) which is a linear combination of (3.10) and other (3.11) constraints. Its

coefficients ai jl are equal to 1 for all pairs i < j ∈ V and 0 otherwise. As non-zero

entries at these positions can only come from type (3.10) constraints, we know that the

linear combination (3.15) must contain the sum of all (3.10) constraints. Considering

this sum, we have far too many 1-entries. Some of them can be deleted by subtracting

constraints of type (3.11) for k ≠ l ,n− 1. But the coefficients ai j(n−1) cannot be deleted,

and as l ≠ n − 1, constraint (3.15) cannot be a linear combination of (3.11), and (3.10).

(b). Assume there exists a constraint of type (3.10) which is a linear combination

of (3.11), (3.12) and other (3.10) constraints. Let

n−1

∑
k=1

di jk = 1 (3.16)

be this constraint. All its coefficients ai jl are 0 except the ones in the block corre-

sponding to i < j ∈ V . Considering the other constraints, we see that the non-zero

coefficients ai j(n/2) (for n even) and ai j(n/2±1) (for n odd) can only come from type
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(3.11) constraints. But as these constraints have non-zero coefficients in all blocks,

constraint (3.16) cannot be a linear combination.

Now assume there exists a constraint

∑
i< j

di jl = n − l (3.17)

of type (3.11) which is a linear combination of (3.10), (3.12), and other (3.11) constraints.

Due to (a), it is clear that type (3.12) constraints have to be part of the linear combi-

nation of (3.17). Considering (3.12) more closely, we note several properties. First, a

block corresponding to i < j < n has non-zero coefficients in exactly two constraints.

Second, all blocks corresponding to i < j = n occur only once with non-zero coef-

ficients. Third, it is impossible to sum up all constraints such that each block occurs

exactly once. For the linear combination, coefficients in all blocks have to be changed.

Therefore, the constraints of type (3.12) cannot be part of the linear combination of

(3.17).

At last assume there exists a constraint of type (3.12) which is a linear combination

of (3.10), (3.11), and other (3.12) constraints. Let

∑
i≠ j

di jl + di j(n−l) = 2 (3.18)

be this linearly dependent constraint. Note that the structure of each block can be

constructed by summing up all (3.10) constraints and subtracting certain (3.11) con-

straints. In this way, the structure is constructed simultaneously for all n(n − 1)/2

blocks. Note that this structure cannot be obtained for less blocks using constraints of

type (3.10) and (3.11). As in (3.18) exactly n − 1 blocks have non-zero coefficients, we

have to delete several of the n(n − 1)/2 non-zero blocks. This can only be done with

constraints of type (3.12). But from the definition of these constraints it follows directly

that it is impossible to delete the non-zero coefficients of only these blocks.

From Lemma 3.4.3, we have the following consequence.

Corollary 3.4.4. Expression (3.13) is an upper bound for the dimension of Dn.

3.4.3 Small Polytopes

With the help of the POlyhedron Representation Transformation Algorithm PORTA

[108], the complete linear description of all polytopes Dn for n ≤ 5 can be computed

explicitly. Due to the high complexity of the structure of the polytope it was not pos-

sible to compute the outer description of Dn for larger instances. This gives us only
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few hints for the search of facet defining inequalities. The situation is even more com-

plicated as we have at least three different types of equations in the minimal equation

system. Therefore one single facet can be presented in very different ways and is there-

fore hard to recognize.

We will now present some facets of the polytopes of very low dimension. For

n = 3, the polytope is described by three lower-bounding inequalities. For n = 4, eight

lower-bounding inequalities are facets. We will explain the remaining four. The first

inequality

d2 4 2 + d3 4 2 ≤ 1

is the upper-bounding inequality d1 4 2, as it can be substracted from the equation

d1 4 2 + d2 4 2 + d3 4 2 = 1.

The second inequality

d3 4 2 ≤ d1 3 3 + d1 4 3 + d2 3 3 + d2 4 3

describes the following situation. If nodes 3 and 4 have a distance two, then at least

one of the node pairs 1,3; 1,4; 2,3 or 2,4 has to have a distance three. To understand

the inequality

d1 4 3 + d2 3 3 ≤ d2 4 2 + d3 4 2

we consider two cases. If nodes 1 and 4 are the left- and rightmost nodes, the nodes 2

and 3 have to be the middle nodes. In the other case, nodes 2 and 3 are the left- and

rightmost nodes, therefore node 4 has to be one of the middle nodes. For the fourth

facet-defining inequality

d1 3 3 + d2 4 2 + d2 4 3 ≤ 1

we use the each-edge-one-distance equality d2 4 1 + d2 4 2 + d2 4 3 = 1 to simplify it. We

obtain

d1 3 3 ≤ d2 4 1.

which requires nodes 2 and 4 to be the middle nodes if nodes 1 and 3 are the left- and

rightmost nodes. A generalization of this inequality would e. g. be the following

di′ j′(n−1) + ∑
i , j∈V∖{i′ , j′}

(di j(n−1) + di j(n−2)) ≤ 1, for all i′, j′ ∈ V . (3.19)

Here, we choose one pair of nodes i′ and j′ and consider them as the left- and right-

most nodes. For all other pairs of nodes the distances n − 1 and n − 2 are not possible

anymore. We tried to find this inequality within the 8045 facet-defining inequali-

ties of D5 but could not identify them. Note: this does not mean that (3.19) is not
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facet-defining, as it might be presented in a “hidden” form due to the three different

equation types. Most of the facet-defining inequalities of D5 have a complex structure.

Nevertheless, we could identify 14 inequalities as lower-bounding inequalities.

3.5 Integral Distance and Assignment Polyhedron PA
n

In this section we focus on the polyhedron associated with the revisited assignment

formulation of theMinLA.We start with some basic properties and trivial facets. Fur-

thermore, we present how some inequalities investigated in [45] can be strengthened

by lifting in the x-variables.

3.5.1 Definition of PA
n and Basic Properties

The improved assignment formulation, see Section 2.3 on page 62, allows yi j to be

larger than ∣π(i) − π( j)∣. Potentially, one could associate an unbounded polyhedron

with it. However, we prefer to work with a polytope and therefore would like yi j to

be equal to ∣π(i) − π( j)∣. Equivalently, we will require the following non-linear con-

straints to hold

yi j =

RRRRRRRRRRR

n

∑
p=1

p(xip − x jp)

RRRRRRRRRRR

for all i , j ∈ V . (3.20)

Accordingly, we define the following polytope

PA
n = conv{(x ,y) ∈ {0,1}

n2
×Z(

n
2
)

+ ∣ (2.49), (2.50), (3.20) hold} . (3.21)

We will see later that it is possible to define PA
n using linear inequalities only (rather

than using the non-linear constraint (3.20)).

Dimension and Trivial Facets

Clearly, PA
n is not full-dimensional due to the presence of the assignmentConstraints (2.49)

and (2.50). (Only 2n−1 of the assignment constraints are linearly independent.) More-

over, we have n further equations as follows:

∑
j∈V , j≠i

yi j = ⌊
n2

4
⌋ +

⌊(n−1)/2⌋

∑
p=1

⌊(
n + 1

2
+ p)

2

⌋ (xip + xi(n−p+1)) i ∈ V . (3.22)

Note that these equations, together with the constraints (2.50), imply the equation

∑i< j∈V yi j = (
n+1
3
). We conjecture that these 3n − 1 equations are independent and

completely describe the affine hull. We conjecture further, that the non-negativity
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inequalities xip ≥ 0 for all i and p induce facets. The trivial bounds 1 ≤ yi j ≤ n − 1, on

the other hand, do not induce facets (see the following sections).

3.5.2 Bounding Inequalities

We have found some inequalities that impose lower and upper bounds on the y-

variables in terms of the x-variables. We present the lower-bounding inequalities first,

since they are likely to be more useful as cutting planes than the upper-bounding in-

equalities (given the nature of the objective function).

Lower-Bounding Inequalities

The lower-bounding inequalities can be viewed as a generalization of the constraints (2.54)

and (2.55). They are presented in the following lemma:

Lemma 3.5.1. The lower-bounding inequalities

yi j ≥
n

∑
q=1

∣p − q∣(xiq − x jq) for all i < j ∈ V , p = 1, . . . ,n (3.23)

are valid for PA
n .

Proof. The inequality is satisfied with equality when either π(i) < π( j) ≤ p or π(i) >

π( j) ≥ p and has a positive slack otherwise.

When p ∈ {1,n}, the lower-bounding inequalities are equivalent (via the assign-

ment constraints) to the constraints (2.54) and (2.55).

Using the software PORTA, we have found that the lower-bounding inequalities

induce faces of high dimension but not quite facets. When p = 1, every vector lying

on the face also satisfies the equations xi1 = x jn = 0. Similarly, when p = n, they

satisfy the equations x j1 = xin = 0. Finally, when 1 < p < n, they satisfy the equations

xip = x j1 = x jn = 0. We believe that one can obtain facets by lifting in the involved

variables.

Upper-Bounding Inequalities

The upper-bounding inequalities are similar.

Lemma 3.5.2. The upper-bounding inequalities

yi j ≤
n

∑
q=1

∣p − q∣(xiq + x jq) for all i < j ∈ V , p = 1, . . . ,n (3.24)

are valid for PA
n .
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Proof. The inequality is satisfied with equality when either π(i) ≤ p ≤ π( j) or π(i) ≥

p ≥ π( j) and has a positive slack otherwise.

The upper-bounding inequalities for p = 1 and p = n do not, however, induce

facets of PA
n . For example, the upper-bounding inequality for p = 1 is dominated

by the upper-bounding inequality for p = 2, the assignment constraint ∑
n
k=1 xk1 =

1, the assignment constraints ∑
n
q=1 xi j = 1 and ∑

n
q=1 xi j = 1, and the non-negativity

inequalities xk1 ≥ 0 for k ∈ V ∖ {i , j}. Thus, it is redundant.

However, we make the following conjecture.

Conjecture 3.5.3. The upper-bounding inequalities induce facets of PA
n when 2 ≤ p ≤

n − 1.

Remark 3.5.4. We think that the upper-bounding constraints (3.24), together with Con-

straints (2.49), (1.12), (2.54), and (2.55), imply the non-linear Constraints (3.20). There-

fore, they give a full mixed integer programming formulation of the MinLA.

Further Ideas

The upper- and lower-bounding inequalities involve only one d-variable. There are

other interesting inequalities of this type. For example, the trivial constraints yi j ≥ 1

are dominated by

yi j + ∑
p odd

xip − ∑
p even

x jp ≥ 1

and

yi j − ∑
p odd

xip + ∑
p even

x jp ≥ 1.

A generalization of these inequalities is presented in Section 3.5.3.

One could perhaps find more inequalities of this type by using PORTA to com-

pute the projection of PA
n onto the subspace defined by the variables that involve two

particular vertices i and j. This projection seems to be related to the classical ‘cyclic

group’ polyhedra of Gomory.

3.5.3 Strengtheningthe Inequalities fromAmaralandLetchford 2008

In [45], four classes of facet-inducing inequalities were presented: the clique, pure

hypermetric, bipartite and strong star inequalities. In this section, we show that all

these inequalities can be strengthened by lifting in the x-variables.



106 Chapter 3. Polyhedral Theory

Strengthened Hypermetric Inequalities

Recall the definition of a cut vector and the cut cone described in Section 0.3.3. The

following result is a simplified version of the result in [45]:

Proposition 3.5.5. Let π ∈ S(n) be a permutation and let yπ ∈ R(
n
2
)

+ be the corresponding

distance vector. Then yπ is the sum of n − 1 cut vectors. Specifically,

yπ =
n−1

∑
k=1

yk ,

where, for k = 1, . . . ,n − 1, the cut vector yk is formed by setting U to the set of vertices

placed in the first k positions (or, more formally, to {π−1(1), . . . , π−1(k)}).

Thus, all valid inequalities for the cut cone are valid for PA
n . As in [45], we consider

the pure hypermetric inequalities, which induce facets of the cut cone. These take the

form

∑
i , j∈V

bib jyi j ≤ 0 where∑
i∈V

bi = 1 and bi ∈ {0, ± 1} for all i ∈ V .

They can also be written in the alternative form

∑
i∈S , j∈T

yi j − ∑
i j∈E(T)

yi j − ∑
i j∈E(S)

yi j ≥ 0 for all S ,T ⊂ V , S ∩ T = ∅, ∣T ∣ = ∣S∣ − 1,

where S = {i ∈ V ∣ bi = 1} and T = {i ∈ V ∣ bi = −1}.

It follows from results in [45] that, when only y-variables are present, the pure

hypermetric inequalities induce facets if and only if n ≥ ∣S∣ + ∣T ∣ + 2. When the x-

variables are present, however, this is no longer true. Indeed, we have the following

proposition.

Proposition 3.5.6. The pure hypermetric inequalities can be strengthened to

∑
i , j∈V

bib jyi j ≤ −2∑
i∈T

(xi1 + xin).

Proof. By symmetry, it suffices to show validity for the identity arrangement. Let y∗

be the associated distance vector. From the above proposition, we have

y∗ =
n−1

∑
k=1

yk ,
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where yk for k = 1, . . . ,n − 1 is the cut vector obtained by setting U = {1, . . . ,k}. Now,

we have

∑
i , j∈V

bib jy
∗

i j =
n−1

∑
k=1

∑
i , j∈V

bib jy
k
i j

=
n−1

∑
k=1

⎛

⎝

k

∑
i=1

bi

n

∑
j=k+1

b j

⎞

⎠

=
n−1

∑
k=1

⎛

⎝

k

∑
i=1

bi
⎞

⎠

⎛

⎝
1 −

k

∑
i=1

bi
⎞

⎠
.

Each of the n − 1 terms in the outer summation is non-positive. Moreover, if a vertex

in T is in position 1, the first of those terms becomes −1× 2 = −2. Similarly, if a vertex

in T is placed in position n, the last of those terms becomes 2 × −1 = −2.

Our experiments with PORTA suggest the following conjecture.

Conjecture 3.5.7. The strengthened pure hypermetric inequalities induce facets if and

only if n ≥ ∣S∣ + ∣T ∣ + 3.

Strengthened Bipartite Inequalities

The following bipartite inequalities are similar to the hypermetric inequalities de-

scribed above.

∑
i∈S , j∈T

yi j − ∑
i j∈E(S)

yi j − ∑
i j∈E(T)

yi j ≥ ∣S∣ for all S ,T ⊂ V ,

S ∩ T = ∅, ∣T ∣ = ∣S∣,

where as before S = {i ∈ V ∣ bi = 1} and T = {i ∈ V ∣ bi = −1}. Note that the bipartite

inequalities reduce to trivial lower bounds yi j ≥ 1 when ∣S∣ = ∣T ∣ = 1.

It can be shown that the bipartite inequalities induce facets when one works in

the space of the y-variables. When the x-variables are present, however, they can be

strengthened.

Conjecture 3.5.8. Let O = {p ∈ {1, . . . ,n} ∣ p odd} and E = {p ∈ {1, . . . ,n} ∣ p even}.

For any disjoint S and T with ∣S∣ = ∣T ∣, the following strengthened bipartite inequalities

are valid for PA
n .

∑
i , j∈V

bib jyi j ≤ −∣S∣ +∑
i∈S

∑
p∈O

xip −∑
i∈T

∑
p∈E

xip

∑
i , j∈V

bib jyi j ≤ −∣S∣ −∑
i∈S

∑
p∈O

xip +∑
i∈T

∑
p∈E

xip
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Observe that, when n is odd, the second strengthened bipartite inequality looks

somehow stronger than the first, in the sense that it has more negative coefficients on

the left hand side and fewer positive coefficients. Indeed, when n = 5 and ∣S∣ = 1, the

first inequality has only 60 roots, whereas the second one has 72 roots.

Our experiments with PORTA also suggest the following conjecture.

Conjecture 3.5.9. To avoid degenerate cases assume that n ≥ 4. The strengthened bi-

partite inequalities (of either kind) induce facets if and only if n ≥ ∣S∣ + ∣T ∣ + 2.

Strengthened Star Inequalities

In other papers, we considered the star inequalities

∑
r j∈E

yr j ≥ ⌊
∣S∣2

4
⌋ for every star (S ,E),

where r is the center node of the star. They induce facets of the dominant in the y space

but not for the polytope in y space. Moreover, when the x-variables are present, they

can be easily strengthened by adding the following quantity to the right-hand side

⌊∣S∣/2⌋

∑
p=1

⌊
∣S∣

2
+ 1 − p⌋

2

(xip + xi(n−p+1)) .

When ⌊n/2⌋ < ∣S∣ < n − 1, the star inequalities can be strengthened in a different way.

For example, if n = 6, i = 1, and S = {2,3,4,5}, we have

∑
j∈S

yi j ≥ 6 + (x62 + x65) + 2(x63 + x64).

It would be nice to find one ormore classes of facets that dominate the star inequalities.
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Branch-and-Cut-and-Price

Algorithm

In this chapter we describe the branch-and-cut-and-price algorithm that we have im-

plemented for theMinLA.Thekey idea is to combine pricingwith a traditional branch-

and-cut algorithm. The formulation of the MinLA described in Section 2.1 on page 45

is particularly useful for such an algorithm: The first reason for this is that it has a

sparse solution structure, i. e., only (
n
2
) of (n − 1)(n

2
) variables are non-zero in a fea-

sible solution. The second reason is that due to the definition of the d-variables, we

canmake use of several logical implications during the branching process. In the con-

straint system all coefficients are known, hence no lifting is necessary.

A flowchart that presents the procedure of a branch-and-cut-and-price algorithm

is shown in Figure 2 on page 23. We now describe the way we realized this algorithm

for the MinLA.

4.1 Choice of Start Variables

We start the branch-and-cut-and-price algorithm with a small set of variables. These

variables correspond to a feasible solution π ∈ S(n) in the following way. We generate

all variables di jk for ∣π(i)−π( j)∣ = k. To havemore tolerance we additionally generate

the variables di jk′ with ∣π(i) − π( j)∣ = k′ for ∣k′ − k∣ ≤ 4. We can let π be a random

or the identity permutation. As it is of great importance that the right variables are in

the system from the beginning, we can choose π corresponding to the best solution

found by one of the following start heuristics.

109
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4.2 Start Heuristics

4.2.1 Simulated Annealing

Weuse a standard simulated annealing (SA) approach to obtain a feasible arrangement

of the nodes, see [34]. It starts with a randomly chosen start solution and generates a

series of other solutions. In the beginning worse solutions are accepted which reduces

the probability to be caught in a local minimum.

4.2.2 Multi-Start Local Search Routine

The following heuristic is a combination of different procedures and was developed

by G. Reinelt [109]. We call it multi-start local search routine (MLS). It starts with
a random permutation. As long as the current objective function value is not better

than the start value we call the following heuristics in the presented ordering.

• Node Insertion

• Subsequence Reversal

• Local Enumeration

• 2-Exchange

• Kernighan-Lin based on node insertion moves

• Kernighan-Lin based on 2-Exchange moves

2-Exchange

The idea is to change the positions of two nodes if many edge lengths can be shortened

by the exchange step. Hence, we consider all nodes adjacent to u and v. If most of the

nodes adjacent to u lie on the other side of v andmost of the nodes adjacent to v lie on

the other side of u, we exchange u and v. For every node u, we determine whether a

node v exists with such properties. If several appropriate nodes exist the v with highest

gain is chosen. Figure 4.1 shows a situation in which nodes u and v are exchanged as

the nodesw ,x ,y adjacent to u are right of v and the nodes s,t adjacent to v are left of u.
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us t v w x y ......

Figure 4.1: Example for 2-exchange.

Node Insertion

For the node insertion heuristic we test for every node u whether a good new position

can be found. To determine such a new position, we apply the idea described above to

the old and new position of u. Furthermore, as all nodes between these two positions

are moved in case of an insertion, we have to investigate the change of the lengths of

their incident edges as well.

Subsequence Reversal

All subsequences of length up to 20 are tested with respect to a possible reversal of all

nodes. Again, we apply the change if most of the incident edges of all nodes within the

subsequence can be shortened.

Local Enumeration

For the local enumeration heuristic we choose subsequences of length up to 6 and

compute the contributions to the objective function value of these segments. Now we

proceed from left to right determining the best ordering of each segment.

Kernighan-Lin

The basic scheme of a Kernighan-Lin heuristic is to combine small, simple changes

with complex rearrangements of the permutation. Althoughwe allow the simplemod-

ifications to worsen the objective function this is not allowed for the complex steps.

During a series of complex modifications the step with the maximal improvement is

remembered. In the end all modifications are undone and only the memorized best

step is performed. We consider a Kernighan-Lin heuristic based on node insertion

moves followed by a Kernighan-Lin heuristic that uses 2-exchange moves. For more

information and for an insight in a very sophisticated realization of the Kernighan-Lin

heuristic see [110].

In Section 5.5.2 we investigate which heuristic is the best choice for our branch-

and-cut-and-price algorithm.
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4.3 Separation

In this section a short overview of the different separation ideas is given. We dis-

tinguish between exact and heuristic separation algorithms, whereas in the first case

complete enumeration is used. This was originally done to get an idea of the con-

straint’s effect on the root bound. We then experienced that over 96% of the running

time of our branch-and-cut-and-price-algorithm is spend on the solution of the LP.

Therefore, we focused on determining the strongest inequalities instead of the devel-

opment of fast separation procedures.

4.3.1 Exact Separation Algorithms

Wegive a list of all constraints that are separatedwith a complete enumeration strategy.

The symmetry is exploited such that the real computation time is often not near to the

presented worst case complexity.

• The degree-big inequalities (2.5) can be enumerated in O(n3).

• The same holds for the each-edge-one-distance equations (2.2).

• For the large bipartite and large hypermetric inequalities all active bipartite and

hypermetric constraints are considered in view of their possible enlargement.

The detailed procedure is described in [97] and takes O(n3).

• The enumeration of themonotonic inequalities (2.12) has a complexity ofO(n3).

• The single-degree inequalities (2.13) can be enumerated in O(n3).

• The sparser-star inequalities are star inequalities (1.2), in which we consider the

smallest violated star S for a fixed distance k. We obtain this smallest S by the

procedure explained in [7]. The advantage compared to ordinary stars is, that

this constraint is sparser. The enumeration complexity is O(n3).

• Special-degree equations (2.4) have an enumeration complexity of O(n3).

• The star inequalities (1.2) can be enumerated in O(n3).

• To enumerate the the-longer-the-rarer equations (2.3) we need O(n3).

• The bipartite and hypermetric inequalities are defined in (1.8) and (1.7). Due to

their similarity we separate both inequalities within one enumeration routine.

The time complexity for the separation of both constraint types is O(n7).
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• For the separation of bridge inequalities (2.15) to (2.18), we start computing all

1-paths in the current LP solution starting at each node. Then we separate the

different types of bridges one after another. Each search for a violated bridge

structure is based on the knowledge about all the 1-paths (that do not contain

cycles). Although the 1-paths can be computed in O(n2) andmake the enumer-

ation of the bridge structures easier, themaximum complexity in this separation

remains to be O(n4).

• We separate 3-, 4-, 5- and 6-clique inequalities successively, i. e., for every l-

clique, violated or not, we test whether it can be increased to a (l + 1)-clique for

1 ≤ l ≤ 5. This gives a complexity of O(n7), as we do not only need to determine

all nodes of the cliques but have to sum over all distances k as well.

• The 3- and 4-cycle-star inequalities displayed (2.29) to (2.30), and the 3- and 4-

cycles-with-legs inequalities, see (2.31) to (2.36), are separated by enumerating

all 3- and 4-cycles with the corresponding attachments. The highest complexity

is O(n5).

• During the exact enumeration of the triangle inequalities (2.24) the 3-cycle in-

equalities (1.4) are separated as well. As an alternative, we use the heuristic tri-

angle separation described below and enumerate the 3-cycle separately. In both

cases we have a complexity of O(n4).

• The special-triangle inequalities (2.14) can be enumerated in O(n6).

• The path-star inequalities, shown in (2.19) to (2.22), are enumerated one after

another. The highest complexity is O(n4) as these constraints are formulated in

d-variables and do not contain the y-variables implicitly.

• While enumerating the 3- and 4-prism inequalities (1.6), we separate diamond

inequalities (2.28) as well. The reason is that diamonds are substructures of

prisms as it can be seen in Figures 1.2-(g) and 2.4. We start with the enumeration

of all 3-cycles, O(n3). Then we determine all possible combinations between

two different 3-cycles, which is O(n4). The same idea is used for the separation

of 4-prisms, where the separation needs O(n5).

• For the subgraph inequalities (2.26) we have to enumerate a star with at most

7 neighbors for each node. Then we add all edges between neighbors of the

center node to obtain a complete subgraph G′. The computation of copt(G
′) is

an upper bound of the complexity of this separation procedure, hence O(∣G′∣).
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• The sameholds for the subset inequalities (2.27). Aswe observed that nodeswith

high degrees are often close within an optimal solution, we want to separate on

subsets containing of nodes having large degrees. We therefore order the nodes

of the graph G by their degrees and then consider the subgraphs D defined by

all edges of the ∣D∣ nodes, the nodes 2 to ∣D∣ + 1, 3 to ∣D∣ + 2 and so forth. We

choose 6 ≤ ∣D∣ ≤ 8.

• For the subtour inequalities (2.11) we increase the size of the subset S succes-

sively: Every time a node is added to S, we test whether the constraint is violated

or not. If so, we do not increase the size of S and obtain sparser inequalities than

considering the largest S for every given distance k. The time complexity of the

algorithm is O(n4).

• We enumerate 3-, 4- and 5-wheel inequalities (1.5) in O(n6): For every node l ,

we test whether a 3-, 4- or/and 5-cycle between l ’s neighbors exists.

4.3.2 Heuristic Separation Algorithms

In contrast to the exact 3-cycle enumeration, we search for violated cycle inequalities

(1.4) of arbitrary length using breadth first search that is started from every node of

the graph. The time complexity of this method is O(n +m) ⋅ O(n2).

The idea of a heuristic separation of triangle inequalities (2.24) is described in [45].

Here, the third node l is chosen to be the one withmaximal violation. Again this leads

to a complexity of O(n3) but stronger triangle inequalities are chosen.

Besides these two ideas, we combined complete enumeration with a time limit for

the separation procedure, which we set to 1 second per call. We applied this heuristic

idea to all separation procedures that were remarkably time consuming. These are

• the bipartite and hypermetric inequalities,

• the bridge inequalities,

• the 3-, 4-, 5- and 6-clique inequalities,

• the 3- and 4-cycle-star inequalities,

• the triangle inequalities,

• the special-triangle inequalities,

• the path-star inequalities,

• the 3- and 4-prism inequalities,
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• the subgraph inequalities,

• the subset inequalities,

• the subtour inequalities, and

• the 3-, 4- and 5-wheel inequalities.

4.3.3 Separation Speed Up

We will now present different ways to speed up the general separation procedure.

Random and Smart Separation

The first idea is that the constraints, whose violation has to be tested, are not chosen

iteratively but in a random order. Another way is that the separation routines do not

start at the same constraint whenever they are called. Instead all constraints tested

during the last iterations are skipped and the test of violation starts with the first con-

straint that has not been considered yet. Only if no violated constraint can be found,

we test the first ones as well.

Deep Separation

Away totally different from the ones described above is based on the idea to work with

a modified LP solution d̃∗. First we consider the following convex combination of the

original LP solution d∗ and the vector dfeas corresponding to the best known feasible

solution.

d̃∗ ∶= (1 − λ)d∗ + λdfeas,

with 0 ≤ λ ≤ 1. The idea is to walk along the way between the current LP solution and

the best found feasible solution. As the latter is hoped to be near to the optimal solution

it might be an advantage to separate a point along the way instead of d∗. A good

position on the line has to be determined for the specific problem. Wepresent different

choices of λ in Section 5.7.4 and refer to this separation as deep feasible separation.
This idea is well known by now and was originally presented by G. Reinelt many years

ago [109].

For another variant of this idea we choose the vector

dcenter =
1

n
∑

dπ ,π∈S(n)

dπ
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corresponding to the center of the polytope instead of a feasible solution dfeas. In con-

trast to many other polytopes, such as for example the max cut problem, with a center

of (0.5, . . . ,0.5)T , the situation is more complicated in our case:

dcenteri jk =
2(n − k)

n(n − 1)
for all i < j ∈ V , k = 1, . . . ,n − 1.

The formula can be understood in the following way: The probability that i takes a

certain position is 1/n. For j only n− 1 free positions are left, hence the probability for

j is 1/(n− 1). There are n− k possibilities in which i and j have the distance k and due

to symmetry of permutations we have a factor of 2. Analog to the first idea we set

d̃∗ ∶= (1 − λ)d∗ + λdcenter,

with 0 ≤ λ ≤ 1, and present different choices of λ in Section 5.7.4. We call this modifi-

cation of the LP solution the deep center separation.

4.3.4 Cut Selection Strategies

Finding an LP solution of our constraint system is relatively time consuming, therefore

it is important to keep the system as small as possible. In the following we present two

different strategies to choose a small set of effectively violated constraints out of all

violated cuts. Both strategies can be applied after every generation of cutting planes.

Rankings

We rank each constraint and order all violated constraints with respect to the ranking.

We than add the first maxConAdd constraints to the LP. In Section 5.7.3 we present

different values of maxConAdd and compare the usefulness of the various rankings.

A good survey about ranking strategies can be found in [111].

Let ATd ≤ b be our constraint system of the MinLA and d∗ be an LP solution.

Furthermore let AT
i d ≤ bi denote one row of the constraint system. The first ranking

idea is to select the cuts at random. Another widely used strategy is to pick the con-

straint with the maximal amount of violation AT
i d
∗ − bi . We call this the violation

ranking. Two ideas, that were tested for the first time in [111], are the following. First,

we select with priority those constraints that have a maximal distance between d∗ and

the hyperplane Aid
∗ = bi . Geometrically speaking this means that the chosen cut

has a large cuts-off effect. We call this strategy distance ranking. The second idea is to

prefer constraints Aid
∗ = bi being as parallel to the objective function as possible. The

reason is that we cut of the biggest part of the polytope by choosing such a constraint.

This selection strategy is called angle ranking.



4.4. Improvement Heuristics 117

Variable Disjoint Cut Selection

The small set of chosen constraints can be expected to bemore effective when the con-

straints cover the whole range of variables. That means the constraints should share

as less variables as possible. We even want the chosen constraint set to be variable

disjoint. Note: This approach is highly dependent on the ordering in which the con-

straints are separated. Therefore it is reasonable to separate the important constraints

before all others. If we use a ranking in addition to the variable disjoint cut selection,

we simply sort all violated constraints and then choose all constraints that are variable

disjoint to the ones already chosen. The procedure is displayed in Algorithm 10.

Algorithm 10 VariableDisjointCutSelection()

Input: Buffer of violated constraints,

Set of active variables,

Output: Variable disjoint constraint buffer.

1: for all violated cuts c do
2: for all active vars v do
3: if coeff of v in cut c is > ε then
4: if v is marked then
5: Delete c from the buffer of all violated constraints.

6: end if
7: end if
8: end for
9: Constraint c is variable disjoint to the already chosen cuts.

10: for all active vars v do
11: Mark v.

12: end for
13: end for
14: Return modified buffer of violated constraints.

4.4 Improvement Heuristics

During the branch-and-cut-and-price algorithm we want to use the fractional LP so-

lution to construct feasible MinLA solutions. This is done after every cutting plane

generation with the hope to improve the heuristic start solution. The idea is that dur-

ing the algorithm the LP solution gets closer and closer to the optimum. Therefore

there must be some information about the optimal solution within the fractional LP
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solution which we want to encode.

Recalling the definition of our variables (di jk = 1 if and only if the distance of

node i and j is k) it seems hard to discover reasonable hints from a fractional LP

solution. Nevertheless the following heuristics are based on two observations.

• A node with an adjacent edge of length k is at least k nodes away from one of

the borders of the permutation.

• The two end nodes of long edges are near the borders of the permutation.

4.4.1 Distance to the Border Heuristic

We consider the nodes in a random order and determine the maximal k such that

d∗i jk > ε, where ε = 0.2. Then the node i is placed in the kth left or kth right position.

If both positions have already been taken by other nodes, we choose the first empty

position from the left. The procedure is displayed in Algorithm 11.

4.4.2 Longest Distances Heuristic

Long distances within a permutation can occur only between nodes placed near the

borders. Therefore, we developed a heuristic that searches for long distanceswithin the

current LP solution and places the two end nodes to the borders of the permutation.

With decreasing distance k all edge lengths between the remaining nodes are consid-

ered. The end nodes of the next longest edge are placed to the leftmost and rightmost

free position in the permutation. Algorithm 12 shows the detailed procedure. Again

the threshold ε is set to 0.2.

4.4.3 Edge Lengths Heuristic

This heuristic is motivated by the well known and good working improvement heuris-

tic of the linear ordering problem. For the current LP solution d∗, we sum up the

lengths d∗i jk of edges i j incident to i. We sort these sums decreasingly. Following the

idea that nodes with a lot of long edges have to be placed near the borders, we start

placing the nodes from outside and alternate to the middle. We choose the threshold

to be ε = 0.2.

In a second variant, we weight the sum of edge lengths starting at each node with

the number of edges. This idea is a specification from the observation above: A huge

sum consisting of few edge lengths implicates that the node has to be at the border of

the permutation. The described heuristic is displayed in Algorithm 13.
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Algorithm 11 DistanceToTheBorderHeuristic()

Input: Current primal variables d∗,

Output: Feasible solution.

1: for all nodes i ∈ V do
2: Set maxDistance[i] ∶= 0.

3: for all nodes j ∈ V adjacent to i do
4: for all distances k = 1, . . . ,n − 1 do
5: if d∗i jk > ε then
6: if k > maxDistance[i] then
7: Set maxDistance[i] := k.

8: end if
9: end if
10: end for
11: end for
12: if position maxDistance[i] is empty then
13: Place node i at position maxDistance[i]. // Place i to the left.

14: else
15: if position ∣V ∣ −maxDistance[i]-1 is empty then
16: Place node i at position ∣V ∣ −maxDistance[i]-1. // Place i to the right.

17: else
18: Place node i to the first free position from the left.

19: end if
20: end if
21: end for
22: Return generated permutation.
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Algorithm 12 LongestDistancesHeuristic()

Input: Current primal variables d∗,

Output: Feasible solution.

1: Determine i , j ∈ V with d∗i jk > ε and k maximal.

2: if no such nodes i , j can be found then
3: Choose i , j randomly.

4: end if
5: Set i to the left most and j to the right most position.

6: for all distances k = n − 1, . . . ,1 do
7: if position k is empty then
8: for all nodes j ∈ V not placed yet do
9: if d∗i jk > ε then
10: Set j to position k.

11: Leave the loop.

12: end if
13: end for
14: end if
15: end for
16: if not all nodes have been placed then
17: Fill empty positions from left to right with all left over nodes.

18: end if
19: Return generated permutation.
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Algorithm 13 EdgeLengthHeuristic()

Input: Current primal variables d∗,

Output: Feasible solution.

1: for all nodes i ∈ V do
2: Set edgeLengthsSum[i]:=0.

3: Set nAd jNodes[i]:=0.

4: for all nodes j ∈ V adjacent to i do
5: Increase nAd jNodes[i] by 1.

6: for all distances k = 1, . . . ,n − 1 do
7: Set edgeLengthsSum[i]+ = k ⋅ d∗i jk .

8: end for
9: end for
10: end for
11: Sort edgeLengthsSum[i] decreasing,

Alternatively sort edgeLengthsSum[i]/nAd jNodes[i].

12: for all i = 0, . . . ,n − 1 do
13: Place node belonging to edgeLengthsSum[i] at position i

14: Place node belonging to edgeLengthsSum[i + 1] at position n − i

15: Increase i by 2.

16: end for
17: Return generated permutation.
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All three improvement heuristics are followed by the same simulated annealing

algorithm. Unlike the start heuristic this simulated annealing algorithm starts notwith

a random permutation but with the solution of the foregone improvement heuristic.
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4.5 Branching

We will now present different branching criteria.

4.5.1 Branch on Variables

Default Branching

The default branching on variables often leads to two subproblems, see Section 0.8.1.

The first subproblem defined by di jk ≤ ⌊d
∗

i jk⌋ and the second by di jk ≥ ⌈d
∗

i jk⌉. Un-

fortunately, we have no logical implications for the branch in which di jk is fixed to 0.

On the other hand, we can fix a lot in the branch in which di jk fixed to 1: All di jk′ ,

where k′ ∈ {1, . . . ,n − 1} ∖ {k} can be fixed to 0. This is realized in the ABACUS rou-

tine setByLogImp(), see Section 5.2.3. The performance of this branching strategy

cannot be expected to be good. This is due to the fact that the tree is highly unbal-

anced. We therefore come away from a binary branch-and-bound tree and consider

other branching strategies.

Set Relative Distances of Two Nodes

A pair of nodes i < j ∈ V is chosen. The n−1 subproblems are defined by the following

additional constraints di jk = 1 for k = 1, . . . ,n−1. In every node, we have n−1 variables

set to 0 and the tree is balanced. The longest path from the root to a leaf of the branch-

and-bound tree is (
n
2
). Algorithm 14 describes the definitions of the subproblems in

detail.

4.5.2 Branch on Constraints

In contrast to use variables for branching, we can use constraints as well. We present

several different strategies.

Degree-Big

The idea of this branch rule was developed in cooperation with A. Letchford. We

thought about branching by assigning nodes to intervals. Because of Equation (2.4)

we know that from a fixed node, there are either two incident edges of length k or one

incident edge of length (n−k) and one of incident edge of length k. (Incident edges of

length not equal to k or (n−k) are not considered here.) We now distinguish between

the interval of all positions, fromwhere both incident edges are short, and the interval

of all positions from where one incident edge is short and the other long. Figure 4.2

shows both intervals for n = 8. All nodes assigned to the interval shown with a dotted
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Algorithm 14 Set Relative Distances of Two Nodes

Input: Nodes i , j ∈ V ,

Output: Subproblems defined by all possible distances disti j of i , j.

1: for all disti j = 1, . . . ,n − 1 do
2: for all active variables v do
3: if v = di j disti j then
4: Set di j disti j to UB 1.

5: end if
6: if v = di jk with k /= disti j then
7: Set di jk to LB 0.

8: end if
9: end for
10: if no active variable exists with v = di j disti j then
11: Generate variable di j disti j and add variable to the LP.

12: Set its UB to 1.

13: end if
14: Generate new sub node defined by the above described set variables.

15: end for

Figure 4.2: Intervals for branching on the deg-big constraint.
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line, have exactly two short edges, e. g. of length 2 and 5 or of length 3 and 4. Nodes in

the other interval, drawn in a solid line, have exactly one short and one long incident

edge, in this example of length 1 and of length 6. The constraint corresponding to this

connection between length of incident edges and their number of occurrence is the

degree-big constraint (2.5). As we want the branch-and-bound tree to be balanced,

we determined that k = ⌊n/4⌋ fulfills this criterion the best. We therefore choose an

node i per level in such a way that ∑ j≠i di j(n−⌊n/4⌋) ≤ 1 has a slack close to 0.5. The

two subproblems are defined by the following constraints

∑
j≠i

di j(n−⌊n/4⌋) = 0 and

∑
j≠i

di j(n−⌊n/4⌋) = 1.

Due to the special-degree constraint (2.4) we know: In the first subproblem the node

i is forced to lie in the interval with two short incident edges, whereas in the second

subproblem the node i has one long and one short incident edge.

Triangles

Again a triple i < j < l ∈ V of nodes is chosen in every level. We define three sub-

problems that correspond to the different orderings in which these nodes can occur. If

node j is placed between node i and l the triangle inequality yi j + y jl ≤ yi l is satisfied

with equality. If node i lies between j and l , we have yi j + yi l = y jl . In the last case,

in which l is between i and j, yi l + yl j = yi j holds. Hence, each subproblem is defined

by one of the three triangle equalities corresponding to i , j,l . This idea was suggested

by A. Letchford [96].

3-Cycles with Odd Right Hand Side

This branch rule is based on the fact, that no cycle can have a linear arrangement with

an odd objective function value. We take advantage of this fact in the following way.

For every level, we identify a 3-cycle (C ,E) with odd right hand side and define two

subproblems by the constraints

∑
i j∈E

yi j ≥ rhs + 1 and

∑
i j∈E

yi j ≤ rhs − 1.
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Subgraphs

LetG′ = (V ,E) be a star with all edges between the neighbors of the center nodes. We

compute the MinLA solution copt(G
′) and a trivial upper bound UB for G′. The last

one is based on the idea of the so-called “edge lower bound”, see Section 1.5.1. Now,

UB − copt(G
′) subproblems are define by the additional constraints

∑
i j∈E

yi j = copt(G
′
),

∑
i j∈E

yi j = copt(G
′
) + 1,

⋮

∑
i j∈E

yi j = UB.

To assure that the integral solution can be found within the branch-and-bound

tree, we have to start variable branching when no branch constraint can be found any-

more.

4.5.3 Branch on Variables and Constraints

We will now combine the two general branching approaches in the following way:

For one single level of the branch-and-bound tree, we define some subproblem by

constraints and others by variables.

3-Cycles with Odd Right Hand Side

From our observations, we know that even for large instances a lot of small cycles

are placed optimally in the optimal solution for the whole instance. Therefore, we

develop the idea described in Section 4.5.2 a bit further. Again, we search for a 3-

cycle G′ = (C ,E) with odd right hand side. Now we define four subproblems in the

following way. The first subproblem is generated by the additional constraint

∑
i j∈E

yi j ≥ copt(G
′
) + 2.

The subproblem corresponding to ∑i j∈E yi j = copt(G
′) is splitted up: Every variable

setting that fulfills this constraint with equality is realized in another subproblem. I. e.,

the second subproblem is defined by the optimal arrangement of the 3-cycle i , j,l in
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this ordering of the nodes.

di j1 = 1, d jl1 = 1, di l2 = 1, and

di jk = 0, d jl k = 0 for all k ∈ {1, . . . ,n − 1} ∖ {1}, and

di l k = 0 for all k ∈ {1, . . . ,n − 1} ∖ {2}.

For the third subproblem all variables are set in such a way, that the nodes i ,l , j are in

consecutive order.

di l1 = 1, dl j1 = 1, di j2 = 1, and

di l k = 0, dl jk = 0 for all k ∈ {1, . . . ,n − 1} ∖ {1}, and

di jk = 0 for all k ∈ {1, . . . ,n − 1} ∖ {2}.

In the fourth subproblem the same is realized for the consecutive arrangement of the

nodes j,i ,l .

4.5.4 Choice of Branch Variable/Constraint

The choice of the branching variables and constraint is essential for the successful ap-

plication of the branch rule. We therefore present several criteria for suitable choices.

Choice of Suitable Branching Variables

For the choice of two branching variables, we have the following criteria. Choose i , j ∈

V such that

• Thekey idea of this choice is to balance the branch-and-bound-tree. If a distance

y∗i j consists of only one non-zero d∗i jk value, the distance of i and j seems to be

quite sure. Therefore, the tree would probably be very unbalanced if we choose

this pair of nodes. Therefore, choose i and j such that the distances y∗i j consist

of more than one non-zero value of the corresponding d-variables.

• We refine the idea and choose that pair i , j that has the maximal number of

non-zero values d∗i jk greater than 0.3.

In case of three suitable branching variables per level, we suggest the following

criteria.

• Compute the slacks of the three corresponding triangle constraints that are go-

ing to define the subproblems. Choose i , j,l ∈ V for which the minimal slack

is maximal. That means in this branching step the minimal effect in all three

subproblems is maximal, which can be seen as a way of balancing the branch-

and-bound tree.
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• Again consider the tree slacks. Now choose that triple, for which the sum of all

three slack ismaximal. Here, we do not focus on an effect in all subproblems but

want to maximize the overall effect. A drawback is that one subproblem might

have a huge slack while the other have a very small slack. Hence the tree might

not be balanced.

Choice of Suitable Branching Structure G′

It is important to assure that a different branch constraint is chosen at every level of

the tree. Since we want to branch in such a way that the tree is balanced, we suggest

the following procedure. We choose the constraint whose current labeling is far away

from the optimal arrangement. Algorithm 15 explains the choice of G′ in detail.

Algorithm 15 Choice of Suitable Branching Structure G′

Input: Input graph G = (V ,E),

Current LP solution d∗,

Output: Branching Structure G′.

1: Set max:=0.

2: Set best:=0.

3: Initialize G′
best

with the empty set ∅.

4: for all nodes l ∈ V do
5: Compute subgraph G′ = (V ′,E′) with center node l .

6: Set best ∶= ∑i j∈E′ y
∗

i j − copt(G
′).

7: if best > max then
8: Set G′

best
∶= G.

9: Set max ∶= best.

10: end if
11: end for
12: Return G′

best
.
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Computational Results

In this chapter we describe the impact of different settings of the branch-and-cut-and-

price algorithm. We start with some implementation details and a presentation of the

relevance of the binary distancemodeling of theMinLA. In Section 5.4 we describe the

tests for the complete model before we focus on pricing aspects in Section 5.5. Here,

we are particularly interested in the choice and number of the start variables. Fur-

thermore, we compare different numbers of priced-in variables and consider the fre-

quency of additional pricing steps. In Section 5.6 we turn our attention to the strength

of each constraint type and on finding the best combination of constraint types. This

is followed by several ideas to improve the separation procedures in Section 5.7. The

usefulness of different improvement heuristics is discussed in Section 5.8. Further-

more, in Section 5.9 we outline the various branching ideas and present their impact

on the computational results. In Section 5.10 the corresponding sparse problem for-

mulation of the MinLA is investigated. We display the effect of additional variables

and the shortest strengthening. The chapter concludes with a general comparison of

lower bounds for the MinLA in Section 5.11.

5.1 Test Problem Instances

We use two different collections of test graphs, which are well-known in the con-

text of the MinLA problem. The first one is the classical benchmark collection for

the MinLA which was introduced by Petit i Silvestre in [2]. As most of the instances

have a large number of nodes, we consider the instances with n ≤ 180. “The Harwell-

Boeing Sparse Matrix Collection is a set of standard test matrices arising from prob-

lems in linear systems, least squares, and Eigenvalue calculations from a wide variety

129
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Table 5.1: Properties of the test instances.

Name n m Density LBtrivial UB

bcspwr01 39 46 0.01 58 109

bcspwr02 49 59 0.05 81 173

bcsstk01 48 176 0.16 431 1152

can_24 24 68 0.25 142 210

can_61 61 248 0.14 746 1137

can_62 62 78 0.04 101 222

curtis54 54 124 0.9 240 512

ibm32 32 90 0.18 189 493

impcol_b 59 281 0.16 970 2358

pores_1 30 103 0.24 239 383

will57 57 127 0.8 248 352

gd95c 62 144 0.08 292 506

gd96b 111 193 0.03 702 1416

gd96c 65 125 0.06 191 519

gd96d 180 228 0.01 595 2289

of scientific and engineering disciplines. The problems range from small matrices,

used as counter-examples to hypotheses in sparse matrix research, to large test cases

arising in applications. The collection was originally developed by Iain Duff, Roger

Grimes, and John Lewis.” [112] We consider all instances where the number of nodes

is ≤ argminn{gd95c,. . .,gd96d}. In Table 5.1 we summarize some information about

the chosen instances. In column two and three, the number of nodes and edges are

given. The density of the graphs is displayed in column four. The trivial lower bound

LBtrivial is obtained by the degree method, see Section 1.5.1. The upper bound UB in

column six is computed with the multi-start local search routine described in Sec-

tion 4.2.2.
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5.2 Computational Setup and Details of the Implementa-

tion

Thealgorithmwas implemented inC/C++and embedded in the branch-and-cut frame-

work ABACUS (“A Branch-And-CUt System”, see [35]). The algorithm was run on a

2×Xeon CPUwith 2.5GHz, 2×6MBCache and 2GB RAMunder Debian GNU/Linux

4.0 using CPLEX 8.1 [26]. All running times are given in seconds.

5.2.1 Memory Management of Variables due to Branch-and-Price

Within a branch-and-cut-and-price algorithm the set of active variables is expected

to be different in every node of the branch-and-bound tree. Therefore, a lot of infor-

mation has to be saved in every sub node instead of a central information collection

in the master of the optimization. Especially the variables themselves and the LP so-

lution have to be saved in every sub node. As the algorithm shall be useful for large

instances, wewant to avoid amemory structure of n3. Tomake a compromise between

running time and memory, we use an n × n array combined with a list of all variables

di jk that exist for every pair i , j. Depending on the size of the start set of variables,

we observed that only up to four variables for each pair i , j are priced-in during the

algorithm. Therefore, the list attached to each array entry is very short and the access

and running times are acceptable.

5.2.2 Central Saved Adjacency List

Besides the above described memory management, there is one important informa-

tion that does not depend on the active variables and can therefore be stored in the

master of optimization: The adjacency list of each node is computed once in the mas-

ter of the problem. It can then be used during the whole algorithm. This reduces the

access of all adjacent nodes for i from O(n) to O(deg(i)).

5.2.3 SetByLogImp()

It was mentioned in the beginning of the last chapter that the variables used in this

modeling of the MinLA are beneficial with respect to branching. This fact is exploited

by the functionsetByLogImp(). The timeof calling of the routinesetByLogImp()
within the procedure of the branch-and-cut-and-price algorithm can be found in Fig-

ure 2. In this function, we test whether one variable di jk is fixed to one. If this is the

case, all n−2 variables di jk′ where k
′ ∈ {1, . . . ,n−1}∖{k} can be fixed to 0. If in addition

k ≥ ⌊(n−1/2)⌋+1, the variables di l k and d jl k can be fixed to 0 for all l ∈ V∖{i , j}. These
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two logical implications directly correspond to the each-edge-one-distance equations

and degree-big constraints.

5.3 Justification of the 0/1 Model

Before we start with the detailed test of different settings of the algorithm, we present a

comparison between the distance model and the binary distance modeling approach.

To be precise, we show how the lower bounds change if we use the d-variables and

the constraints in addition to the y-variables and their constraints. In the first three

columns of Table 5.2, information about the instances is given. In column four and

five, the lower bounds, LBs, of both variants are presented. This is followed by the

gap closure between the LB and the UB. (For the definition of the gap closure see

Section 0.8.3 on page 21.) In the last two columns, the time with and without the d-

variables is presented. Detailed information about the general setting that is used to

obtain the results can be found in Section 5.7.4.

We have to be careful interpreting the results of Table 5.2. This is because the LB

is only reliable if the root bound is reached within the time limit. (The LB obtained

just before the branching starts is called root bound and abbreviated with RB.) In all

other cases, the LB might be decreased due to the pricing-in of variables, please read

Section 5.5.1 on page 137 for an explanation. Therefore, the important rows of Table 5.2

are the ones for can_24, ibm32, and pores_1. It can be seen that the gap closure

lies between 42% and 53%. The “fine structure” of the d-variables is therefore indeed

important to specify the properties of a linear arrangement. Instances where the graph

closure is marked with “-” have a LB above the UB, that is why no gap closure is given

for these instances.
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Table 5.2: Improvement of binary distancemodel compared to the integral distancemod-

eling approach. (Time limit is 86 400 seconds. LBs marked with “∗” are above the UB

because of pricing, see Section 5.5.1 on page 137 for details.)

Instance LB Time in seconds

Name n m No d-vars With d-vars Gap cl. No d-vars With d-vars

bcspwr01 39 46 87.59 103.91 76.23% 179 limit

bcspwr02 49 59 137.02 172.93 99.81% 662 limit

bcsstk01 48 176 896.23 1151.62 99.72% 853 limit

can_24 24 68 196.76 203.86 53.63% 23 1080

can_61 61 248 1003.8 1137 100% 2217 limit

can_62 62 78 173.98 221.99 99.98% 8903 limit

curtis54 54 124 354.37 511.91 99.94% 4870 limit

ibm32 32 90 439.02 462.36 43.24% 67 30677

impcol_b 59 281 1277.98 2357.81 99.98% 8706 limit

pores_1 30 103 327.47 351.02 42.41% 55 15340

will57 57 127 236.27 352 100% 9705 limit

gd95c 62 144 281.42 559∗ - 350 limit

gd96b 111 193 382.2 1619.73∗ - 3362 limit

gd96c 65 125 244.05 525.31∗ - 21927 limit

gd96d 180 228 816.12 2494.67∗ - limit limit
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5.4 Complete 0/1 Model

In the first place, we are interested in the choice of variables, i. e., whether it is better to

use the d- and y-variables explicitly or not. The second basic decision is the solution

method of the linear programming relaxations within our branch-and-cut-and-price-

algorithm. These two settings are tested without pricing, hence, we have all variables

in our system. Only the IP inequalities (2.2) to (2.7) are separated and no sophisticated

general separation strategy or cut selection procedure is applied. In each iteration at

most 250 cuts are generated of each type. As a limit for the running time we chose 24

hours (86 400 seconds).

5.4.1 Explicit Use of y-Variables

The close relationship between the d- and the y-variables raises the question whether

it is better to use the y-variable explicitly or not. In theory, thismakes no difference for

the computation, as Equation (2.1) allows an internal replacement of the y-variables.

We investigated this aspect in practice and present the result in Table 5.3. The first

three columns show the name of the test instances, their number of nodes n, and the

number of edgesm. In the following columns, we compare the explicit setting with the

implicit use of y-variables. In column four and five, the number of linear programs,

for short #LPs, is shown. The running times are displayed in the next two columns.

Columns eight and nine show the LB obtained with both settings. The last column

presents the gap closure of the two settings.

In all cases in which the RB can be computed, it is equal for both settings (which

has to be the case). For all these instances the RB is obtained in much less time with

the implicit than wit the explicit setting.

If the time limit is reached before the RB is reached, a difference in the LB is

possible—and such a difference is indeed observed. Within the same time a better

LB can be obtained using the y-variables implicitly. We therefore conclude that the

advantage of sparse formulated y-constraints is not that important and therefore use

the y-variables implicitly from now on.

5.4.2 LP Solver Settings

We now investigate different LP solving strategies and present the results in Table 5.4.

Again, the first three columns show information about the instances, where the follow-

ing columns present the LB and the time to compute this bound for all three settings.

In all cases, the barriermethod is used to solve the initial LP.The default setting tries to

choose between the dual and primal simplex in such a way that phase 1 of the simplex

method is not required. We compare this setting with the exclusive use of the dual and
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Table 5.3: Explicit versus implicit use of y-variables.

Instance #LPs Time in sec. LB

Name n m Expl. Impl. Expl. Impl. Expl. Impl. Gap cl.

bcspwr01 39 46 27 21 15603 4460 88.9 88.9 0%

bcspwr02 49 59 34 30 79651 53785 141.67 141.67 0%

bcsstk01 48 176 21 38 limit 45603 604.3 964.03 65.68%

can_24 24 68 10 7 87 54 200.63 200.63 0%

can_61 61 248 10 17 limit limit 824.58 885.53 19.51%

can_62 62 78 11 17 limit limit 111.26 127.43 14.6%

curtis54 54 124 27 27 limit limit 352.95 366.97 8.81%

ibm32 32 90 16 13 2211 708 443.01 443.01 0%

impcol_b 59 281 10 22 limit limit 1038.04 1194.45 11.85%

pores_1 30 103 12 9 818 281 328.37 328.37 0%

will57 57 127 13 23 limit limit 268.87 302.68 40.67%

gd95c 62 144 12 20 limit limit 379.81 405.294 20.19%

gd96b 111 193 11 15 limit limit 1203.14 1226.2 10.83%

gd96c 65 125 10 13 limit limit 218.27 266.845 16.15%

gd96d 180 228 18 19 limit limit 675.865 685.144 0.58%
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Table 5.4: Comparison of different LP solver settings.

Instance Default Only Primal Simplex Only Dual Simplex

Name n m LB Time LB Time LB Time

bcspwr01 39 46 88.9 12519 88.9 10065 88.90 36934

bcspwr02 49 59 112.97 limit 141.67 limit 111.98 limit

bcsstk01 48 176 657.69 limit 919.74 limit 657.68 limit

can_24 24 68 200.63 69 200.63 66 200.63 57

can_61 61 248 808.27 limit 861.54 limit 808.27 limit

can_62 62 78 127.54 limit 128.07 limit 97.63 limit

curtis54 54 124 353.1 limit 356.16 limit 354.37 limit

ibm32 32 90 443.01 1248 443.01 1740 443.01 1170

impcol_b 59 281 1154.88 limit 1217 limit 1154.88 limit

pores_1 30 103 328.37 274 328.37 284 328.74 271

will57 57 127 262.3 limit 303.97 limit 253.34 limit

gd95c 62 144 406.61 limit 405.4 limit 350.74 limit

gd96b 111 193 1143.47 limit 1226.2 limit 1143.47 limit

gd96c 65 125 201.68 limit 268.25 limit 214.03 limit

gd96d 180 228 521.94 limit 696.23 limit 521.94 limit

primal simplex method. For the smallest instances can_24, ibm32, and pores_1,
the RBwas computedwithin the time limit. For these instances, the dual simplex is the

fastest setting. This is, however, not the case for the next smallest instancebcspwr01.
The RB was computed as well but nevertheless the primal setting is the fastest. For all

larger instances we can see that the dual simplex is much slower than the primal. It is

sometimes even worse than the default setting, see can_62, will57, and gd95c,
whereas it computes more or less the same LB for all other cases. When we had a

closer look at the running times, we could see that for all instances with more than

40 nodes the dual simplex needed up to 20 hours to solve one single LP. We therefore

conjecture that the LPs are dual degenerated. If we consider bcssstk01, gd96c,
and gd96d, one can see that the primal simplex computes a significantly higher LB

within the same time. We therefore use the primal simplex exclusively from now on.
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5.5 Pricing for the 0/1 Model

We now turn from the setting with all variables di jk for i < j ∈ V , k = 1, . . . ,n− 1 to the

pricing setting. An overview of the chosen parameters is presented in the following.

• Only the IP constraints (2.2) to (2.7) are separated.

• Triangle inequalities are separated heuristically.

• No sophisticated general separation strategy or cut selection procedure is ap-

plied.

• At most 250 cuts per iteration are generated of each constraint type.

• All generated cuts are added to the LP.

• Implicit use of y-variables.

• Primal simplex is used for solving the LP relaxation.

• A feasible start solution π is computed with a heuristic.

• Start variables are all variables di jk′ with ∣π(i) − π( j)∣ = k
′ for ∣k′ − k∣ ≤ 2.

• At most 200 variables were priced-in per call.

• No sophisticated pricing strategy is used.

• No additional pricing steps were performed.

• Limit for the running time is 24 hours (86 400 seconds).

Before we start with the tests, we explain a phenomenon that occurs in a branch-and-

cut-and-price algorithm.

5.5.1 Lower Bound Decrease Due to Pricing

For a minimization problem, the lower bound rises during the iterations of a branch-

and-cut-algorithm. In a branch-and-cut-and-price-algorithm, the situation is more

complicated: With every pricing step, the LB decreases by a small percentage. It is

even possible that a LB is temporarily above the UB. In this case, it is obvious that

the LB is not yet reliable, but even if the LB remains below the UB, we cannot be

sure whether the LB is going to decrease or not. We therefore have to be very careful

interpreting the LB. Only if the RB is reached, we can make any statement about the
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Figure 5.1: Behavior of the LB in a branch-and-cut-and-price algorithm.

LB. Due to this phenomenon, we tested the two very fundamental questions about

our algorithm without pricing to have more instances that can be considered for the

decision. Figure 5.1 shows a typical behavior of the LB in the root node, displayed for

the test instance pores_1. The figure shows that the highest LB is reached before

the first variables are priced-in. All in all, the LB decreases by around 14%. For the

test instance ibm32, it is about 10%, for can_24 around 5%, and for bcspwr01 the

decrease is 16%. No relationship between the decrease of the LB and the density of the

instances, nor their number of nodes or number of edges can be found.

5.5.2 Start Sets of Variables

We now turn our attention to the tests of our pricing settings. The first important

question is the selection of start variables. As we want to have as few variables in our

system as possible, it is essential to start with the right variables. In Table 5.5 we present

four different possibilities to choose the start variables. In the first column, the test

instance is given. In column two and three, the LB and running time for the identity

start solution is shown. The next two columns display the LB and time for a randomly

chosen start solution. This is followed by the information about the solutions obtained

by the simulated annealing and the multi-start local search approach.

The results show that only for the instances bcspwr01, can_24, ibm32, and
pores_1, the RB was computed within the time limit. As we cannot make any state-

ments about the LB for the other instances, a comparison of the different start sets of

variables can only be made for these four instances. We will therefore continue with
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Table 5.5: Comparison of different start sets of variables. (LBs marked with “∗” are above

the UB because of pricing, see Section 5.5.1 on page 137 for details.)

Identity Random SA MLS

Instance LB Time LB Time LB Time LB Time

bcspwr01 102.88 limit 194.07∗ limit 88.9 24920 88.9 29719

bcspwr02 728.4∗ limit 764.56∗ limit 209.15∗ limit 170.97 limit

bcsstk01 2200.98∗ limit 2151.54∗ limit 1218.96∗ limit 1150.92 limit

can_24 200.63 1361 200.63 1042 200.63 408 200.63 578

can_61 4850∗ limit 4787.44∗ limit 2049∗ limit 1137 limit

can_62 522∗ limit 1459.19∗ limit 306.97∗ limit 222 limit

curtis54 1912.23∗ limit 1716.13∗ limit 529∗ limit 512 limit

ibm32 443.01 13492 443.01 8557 443.01 6053 433.01 5049

impcol_b 5318.59∗ limit 5362.66∗ limit 2083.38 limit 2355.45 limit

pores_1 328.37 9322 328.37 5517 328.37 5241 328.37 3224

will57 2026.42∗ limit 2060.8∗ limit 437∗ limit 352 limit

gd95c 951∗ limit 2558.27∗ limit 770∗ limit 559∗ limit

gd96b 9800∗ limit 6870∗ limit 2545∗ limit 1832∗ limit

gd96c 2479.25∗ limit 2616.07∗ limit 565∗ limit 526∗ limit

gd96d 11537∗ limit 13276∗ limit 8337∗ limit 3293∗ limit
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Table 5.6: Comparison of different sizes of the start set of variables.

(
n

2
) (

n

2
) + 2 (

n

2
) + 4 (

n

2
) + 6

Instance LB Time LB Time LB Time LB Time

bcspwr01 88.9 29719 88.9 21519 88.9 45418 88.9 29465

can_24 200.63 578 200.63 268 200.63 176 200.63 161

ibm32 433.01 5049 443.01 4699 443.01 6787 443.01 5812

pores_1 328.37 3224 328.37 2807 328.37 3304 328.37 303.8

the tests only with the four instances mentioned above.

For the instances ibm32 and pores_1, the time decreases from left to right, i. e.,

using the identity as a start solution is the worst choice, whereas the multi-start local

search routine turns out to be the best. In case of can_24 and bcspwr01, the time

can be improved significantly using the simulated annealing (SA) or the multi-start

local search routine (MLS). Simulated annealing is even a bit faster than theMLS. The

median of the percental improvement of the simulated annealing algorithm compared

to themulti-start local search routine (76%) is very close to themedian of the percental

improvement of MLSR compared to SA (72%). We therefore choose the MLSR as we

know from other tests that it computes a far better heuristic solution than the SA.

5.5.3 Size of the Variable’s Start Set

We continue to test different sizes for the start set of variables. The idea is that the start

solutionmight be near to the optimum (this conjecture is encouraged by Caprara et al.

[7]). Hence, variables similar to the ones of the start solution itself might be of great

help. As we explained above, we do not need to consider all test instances but only

those for which the RB was computed within the time limit. In Table 5.6 we present

four different settings. In column two and three, we show the smallest possible set of

start variables. In the following columns, we addmore andmore variables close to this

solution, see Section 4.1 for an explanation.

The results in Table 5.6 show the following: For the test instance can_24, the
setting (

n
2
) + 6 is the best before (

n
2
) + 4. In all three other cases, the setting (

n
2
) + 2 is

the best. We therefore choose (
n
2
) + 2 from now on.
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Table 5.7: Comparison of different maximal numbers of priced-in variables per call.

10 50 100 200

Instance LB Time LB Time LB Time LB Time

bcspwr01 88.9 21519 88.9 31904 88.9 21607 88.9 17370

can_24 200.63 268 200.63 108 200.63 84 200.63 64

ibm32 443.01 4699 443.01 2355 443.01 2282 443.01 1295

pores_1 328.37 2807 328.37 1484 328.61 1034 328.37 936

Table 5.8: Comparison of different pricing strategies.

Default Smart Random Both

Instance LB Time LB Time LB Time LB Time

bcspwr01 88.9 17370 88.9 11541 88.9 17372 88.9 9647

can_24 200.63 64 200.63 66 200.63 61 200.63 62

ibm32 443.01 1295 443.01 786 443.01 1276 443.01 952

pores_1 328.37 936 328.37 531 328.37 540 328.41 494

5.5.4 Maximal Number of Priced-in Variables per Call

Having sorted out the best set of variables to start with, we consider the pricing-in of

variables. In Table 5.7 different numbers of maximal priced-in variables per call are

presented. As we want to price-in as few variables as possible, we start with a small

number in column two and three, and test up to 200 in column eight and nine.

One can see that the fastest setting for all instances is to generate and add at most

200 variables per pricing step.

5.5.5 Random versus Smart Pricing

We will now compare different general pricing strategies. The ideas described in Sec-

tion 4.3.3 are adopted to the pricing-in of variables. In column two and three of Ta-

ble 5.8, no general pricing strategy is applied, whereas in the following columns, the

strategies are applied individually and combined.

The results of Table 5.8 show the following: For bcspwr01 and pores_1, using
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Table 5.9: Comparison of different frequencies of additional pricing steps.

Instance No add. steps After every 5th LP After every 2nd LP

Name n m LB Time LB Time LB Time

bcspwr01 39 46 88.9 9647 88.9 3837 88.9 6685

can_24 24 68 200.63 62 200.63 55 200.63 66

ibm32 32 90 443.01 952 443.01 774 443.01 1937

pores_1 30 103 328.41 494 328.37 409 328.37 485

both strategies is fastest. In case of can_24, the random strategy is the best, and for

ibm32, the smart strategy turns out to be the fastest. We therefore choose to use both

strategies from now on.

5.5.6 Additional Pricing Steps

It can sometimes be of help to perform additional pricing steps. This is because im-

portant variables tend in to be priced-in early during the algorithm. We therefore test

additional pricing steps after every second solved LP compared to additional pricing

steps after every fifth solved LP compared to no additional pricing steps at all. Table 5.9

shows that in all cases, additional pricing steps after every fifth solved LP is the fastest

setting.

5.6 Constraints

We now consider the impact of all the inequalities introduced in Chapter 2. In the

following, we use the substructure of a graph to denote its corresponding inequality.

For example we write cliques instead of clique inequalities. As a reference LB, we use

the best results so far, presented in columns six and seven of Table 5.9.

5.6.1 Strength of Constraint Types

In a first step, we test all inequalities separately and show their influence on the LB in

Tables 5.10 to 5.12. For every constraint, we show the LB obtained by the constraint

individually and the running time.
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We use the results of Tables 5.10 to 5.12 to determine the strongest constraint types.

Two criteria shall help to evaluate the results.

• How many times does a constraint improve the LB?

• How large is the improvement?

Interpreting the LB results, we have to keep in mind that for most instances, the LB

might decrease during the pricing of variables, recall the phanomenon described in

Section 5.5.1. We therefore perform two separate evaluations of the LB results of Ta-

bles 5.10 to 5.12. The first considers only the instances bcspwr01, can_24, ibm32,
and pores_1 for which the RB can be computed within the time limit. For these

instances, we know that the LB is not going to decrease anymore. Hence, we can in-

terpret the effect of the constraint types right away.

In a second step, wewill evaluate the LB of all instances, including the four smallest

ones. We perform this second analysis as we do not make such an important decision

as the selection of cuts to be separated only for very small instances. Many constraint

types can unfold their impact on bigger graphs only. Furthermore, we observed that,

no matter which constraint types we separated, the LB decreased by the same relative

amount. We therefore assume that if a LBA is higher than a LBB, the RBA will be

higher then the RBB as well. We will therefore evaluate the LB of all instances as well,

although the results are not as reliable as the results of the four smallest instances. (As

the LB of the graph drawing instances gd95c to gd96d are far above the UB, we do

not consider them at all. Their LB has to decrease so drastically, that a comparison of

the current LB seems to be useless.)

We start with the evaluation of the small instances.

Evaluation I

We will now consider the results of Tables 5.10 to 5.12 for the four smallest instances

mentioned above. We displayed the results in Figure 5.2 and Figure 5.3.

We count how many times a LB was improved by the constraint and rank the

constraints with at least one improvement in Table 5.13. Note that we do not consider

the amount of the improvements but count all total LB improvements.

Evaluation II

For this evaluation, we consider all instances. Here, we distinguish between the to-

tal LB improvements and improvements above 5%. The second and third column of

Table 5.14 show that in most cases the LB improvement is below 5%. As we want our
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Figure 5.2: Strength of all types of constraints for the test instances bcspwr01 and

can_24.
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Figure 5.3: Strength of all types of constraints for the test instances ibm32 and

pores_1.
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Table 5.13: Constraints chosen by evaluation I.

Name of #total LB

constraint improvements

Bipartites 4

Hypermetrics 3

Monotonics 3

Diamonds 2

Prisms 2

Subtours 2

Wheels 1

Subgraphs 1

Stars 1

Single-Degrees 1

Cycles 1

Cliques 1



150 Chapter 5. Computational Results

Table 5.14: Number of LB improvements and largest difference between LB and UB.

Constraint #LB improv. Largest diff. C betw. LB and UB

Name Total > 5% A B C Instance

Bipartites 11 3 83.61% 93.27% 9.66% bcsstk01

Bridges 7 0 83.61% 87.64% 4.03% bcsstk01

Cliques 8 1 83.61% 88.12% 4.51% bcsstk01

Cycles 8 1 83.61% 95.71% 12.1% bcsstk01

Diamonds 9 0 83.61% 86.29% 2.68% bcsstk01

Hypermetrics 9 2 83.61% 94.01% 10.4% bcsstk01

Monotonics 9 2 83.61% 98.24% 14.63% bcsstk01

Path-Stars 7 2 81.42% 98.82% 17.4% bcspwr02

Prisms 8 1 85.51% 88.32% 2.8% pores_1

Single-Degrees 6 0 09.79% 99.35% 0.44% can_62

Sparser-Stars 7 2 83.61% 89.8 6.19% bcsstk01

Special-Triangles 7 3 83.61% 89.81% 6.19% bcsstk01

Stars 7 0 83.61% 86.61% 3% bcsstk01

Subgraphs 8 2 81.42% 89.51% 8.09% bcspwr02

Subsets 7 0 97.04% 99.45% 2.41% curtis54

Subtours 7 1 83.61% 89.8% 6.2% bcsstk01

Wheels 9 0 97.04% 99.59% 2.55% curtis54

system to contain only strong constraints, we use the “> 5%” column for further con-

clusions.

To measure the impact of the improvement, we consider the largest gap between

the LB with and without the constraint, compared to the UB. That means we define

A ∶=
LBconstr.

UB
× 100% and B ∶=

LBdefault

UB
× 100%

and set C:= A − B. Now we choose the largest difference C for all test instances and

present the results in column four, five, and six of Table 5.14. To make the results more

comprehensible, we give the name of the test instance for which the largest difference

was obtained in column seven. The differencesC lie between 2% and 17%. We rank the

constraints with respect to the difference C. In Table 5.15 we present this ranking (top
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Table 5.15: Ranking of the constraints obtained by evaluation II.

LB improvement > 5%

3× 2× 1× 0× Difference C

Path-Stars 17.4

Monotonics 14.63

Cycles 12.1

Hypermetrics 10.4

Bipartites 9.66

Subgraphs 8.09

Subtours 6.2

Special-Triangles 6.19

Sparser-Stars 6.19

Cliques 4.51

Bridges 4.03

Stars 3

Prisms 2.8

Diamonds 2.68

Wheels 2.55

Subsets 2.41

Single-Degrees 0.44

to bottom). Additionally, we have sorted the constraints from left to right depending

on their number of LB improvements above 5%. The first thing to note is that there

is indeed a correlation between both criteria. Those cuts which rarely or never cause

a LB improvement have a very low impact on the LB. On the other hand, we see that

constraint types with a strong effect on the LB have at least two LB improvements

above 5%. We therefore choose all constraints with a high C value (above 6%) and

with two or more LB improvements. They are shown in Table 5.16. Again, note that

these results are based on the interpretation of all our Harwell-Boeing instances and

are not as reliable as the results presented in Table 5.13. This is because of the possible

LB decrease during pricing. Comparing Table 5.13 and 5.16, we see several similarities

displayed in Table 5.17. We will separate all cuts of column three. As reliable tests
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Table 5.16: Constraints chosen by evaluation II.

Path-Stars

Monotonics

Cycles

Hypermetrics

Bipartites

Subgraphs

Subtours

Special-Triangles

Sparser-Stars

Table 5.17: Comparison of evaluation I and evaluation II.

Only in Table 5.13 (I) Only in Table 5.16 (II) In Tables 5.13 and 5.16 (I & II)

Cliques Path-Stars Bipartites

Diamonds Sparser-Stars Hypermetrics

Prisms Special-Triangles Monotonics

Single-Degrees Subgraphs

Stars Subtours

Wheels Cycles
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Table 5.18: Exact versus heuristic separation of the triangle inequalities.

Instance Exact Heuristic

Name n m LB Time LB Time

bcspwr01 39 46 88.9 4537 88.9 5543

can_24 24 68 200.63 55 200.63 64

ibm32 32 90 443.01 1268 443.01 1211

pores_1 30 103 328.37 901 328.37 604

can only be made for the smallest four instances, we do not make any further tests

about other additional constraint types. Therefore, the chosen types of constraints

are the ones shown in column three of Table 5.17. The ordering in which they are

mentioned corresponds to the number of total improvements for the four smallest

instances, compare list Table 5.13.

Before we turn our attention to different separation possibilities, we consider two

questions concerning single constraint types.

5.6.2 Exact versus Heuristic Separation of the Triangle Inequalities

For the triangle inequalities, an exact and a heuristical separation algorithm is real-

ized. In column four and five of Table 5.18, the results obtained by the exact separation

routine are presented. In column six and seven, the results of the heuristical separation

are displayed. Table 5.18 shows that both separation variants are the fastest for two in-

stances. We therefore consider the median of the relative improvement, which is 15%

for the case that the heuristic separation is faster and 18% in the other case. Hence, the

triangle inequalities are separated heuristically.

5.6.3 Different Subgraph Sizes

For the subgraph constraint, we have to determine a suitable size of the subgraph.

We therefore test different sizes of G′ and present the results of the sizes 6, 7, and 8

in Table 5.19. Table 5.19 shows that, with the only exception of instance ibm32, the
subgraphs of size 8 lead to the highest running times. For bcspwr01 and can_24,
the fastest setting is the subgraph of size 6, whereas it is the subgraph of size 7 for

pores_1. We therefore choose the setting in which the subgraphs have size 6.
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Table 5.19: Comparison of different subgraph sizes.

Instance ∣G′∣ = 6 ∣G′∣ = 7 ∣G′∣ = 8

Name n m LB Time LB Time LB Time

bcspwr01 39 46 88.9 9120 88.9 9684 88.9 12585

can_24 24 68 201.52 65 201.5 70 201.5 91

ibm32 32 90 443.01 2379 443.01 2127 443.01 2061

pores_1 30 103 328.37 818 328.37 691 328.37 842

Table 5.20: Cumulative strength of chosen constraint types.

Instance Reference Best constraints

Name n m LB Time LB Time

bcspwr01 39 46 88.9 3837 106.8 limit

can_24 24 68 200.63 55 203.9 2337

ibm32 32 90 443.01 774 464 limit

pores_1 30 103 328.37 409 351.03 35434

5.6.4 Combination of Best Constraints

This subsection is closed with the results obtained by the separation of all constraints

presented in column three of Table 5.17. The fourth and fifth column of Table 5.20

show the LB and time to compute this LB obtained with the best setting we could find

until now, compare Table 5.9. It can be seen that the chosen constraints have a large

cumulative impact on the LB. Unfortunately, this is paid with a high price with respect

to the running time of the algorithm.

5.7 Separation

We will now test all parameters concerning the separation of the chosen constraints.
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Table 5.21: Random versus smart separation.

Reference Random Smart Both

Instance LB Time LB Time LB Time LB Time

bcspwr01 106.8 limit 106.72 limit 105.68 limit 106.85 limit

can_24 203.9 2337 203.85 1748 203.44 2433 203.71 3088

ibm32 464 limit 463 limit 458.94 limit 463.26 84696

pores_1 351.03 35434 350.7 44373 343.15 49685 351.02 44284

5.7.1 Random versus Smart Separation

In the following we test two general methods to speed-up the separation. In column

two and three of Table 5.21, we give the results of the current reference LB and time

obtained by the separation of all chosen constraints. We compare these results with

the random separation in column four and five, see Section 4.3.3 for explanations. In

columns six and seven, this is followed by the results of the smart separation, and in

columns eight and nine by the combination of both methods. Table 5.21 shows that

we can fasten the running times by applying the general separation procedures. We

therefore choose bothmethods, as only for this setting three of the RBswere computed

within the time limit.

5.7.2 DifferentMaximalNumbers of Separated Constraints per Iter-

ation

We now consider different maximal numbers of separated constraints per iteration.

Up to now, we separated 250 cuts per iteration of each constraint type. In columns

four and five of Table 5.22, we test a small number, whereas columns eight and nine

show the results for 400 cuts per iteration. Again, we can easily identify the fastest

setting of Table 5.22, which is to separate 100 per iteration: This is because it it the

fastest setting for can_24 and pores_1. For ibm32 it is faster to separate 400 per

iteration and for bcspwr01 the RB is not reached within the time limit. We therefore

choose to separate 100 cuts of each constraint type per iteration.

5.7.3 Cut Selection Strategies

We now turn our attention to the cut selection strategies.
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Table 5.22: Comparison of different maximal numbers of separated constraints per iter-

ation.

Instance 100 p. iter. 250 p. iter. 400 p. iter.

Name n m LB Time LB Time LB Time

bcspwr01 39 46 105.56 limit 106.85 limit 105.87 limit

can_24 24 68 203.78 1534 203.71 3088 203.86 2595

ibm32 32 90 463.27 43702 463.26 84696 203.86 2595

pores_1 30 103 350.79 21829 343.15 49685 350.46 33295

Rankings

We start with the comparison of the four different rankings explained in Section 4.3.4.

In column four and five of Table 5.23, the reference results of Table 5.22, columns four

and five, are presented.
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Table 5.24: Comparison of different orderings of constraint separation combined with

variable disjoint cut selection.

Instance No VDCS VDCS, forward VDCS, reverse

Name n m LB Time LB Time LB Time

bcspwr01 39 46 105.56 limit 107.59 limit 107.49 limit

can_24 24 68 203.78 1534 203.88 3158 203.87 2977

ibm32 32 90 463.27 43702 486.87 limit 488.02 limit

pores_1 30 103 350.79 21829 372.49 limit 372.77 limit

Table 5.23 shows the following situation: No ranking setting computes the RB of

all test instances within the time limit. A closer look at the times shows that (with the

only exception of can_24 and the angle setting) the time increases for every rank-

ing. Hence, the advantage of obtaining stronger cuts seems to be overtaken by the

time consuming handling of the ranked constraints. We therefore do not apply any of

the rankings but instead add all separated constraints. As a consequence, we do not

test different numbersmaxConAdd of maximal added constraints per iteration, as all

separated constraints are chosen.

Variable Disjoint Cuts and Different Orderings of the Separation Algo-

rithms

We will now test the impact of the second cut selection strategy, the variable disjoint

cut selection (VDCS) which is described in Section 4.3.4. As the order in which the

constraints are separated is essential for this method, we test two different separation

orders. In both cases, we start with the separation of all constraints of the IP formu-

lation. In contrast to the separation ordering displayed in column three of Table 5.17

which we call “forward”, we consider the “reverse” ordering as well.

In Table 5.24 we compare the VDCS for both separation orderings. The result

show that using the variable disjoint cut selection strategy is very time consuming,

independent from the separation order of the constraints. We therefore decide to run

the branch-and-cut-and-price algorithm without this cut selection strategy.

5.7.4 Deep Separation Variants

Modifications of the current LP solution are explained in Section 4.3.3. In Table 5.25

we compare the deep feasible method with the deep center modification. Different
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Table 5.25: Comparison of deep separation strategies.

Instance Reference Deep Feasible Deep Center

Name n m LB Time LB Time LB Time

bcspwr01 39 46 105.56 limit 103.91 limit 107.87 limit

can_24 24 68 203.78 1534 203.86 1080 210 limit

ibm32 32 90 463.27 43702 462.36 30677 492.93 limit

pores_1 30 103 350.79 21829 351.02 15340 382.95 limit

values of λ have been pre-tested for both methods. Here, we present the best results

for each modification, where λ = 0.5 for the deep feasible separation and λ = 0.1 in

the other case.

The results of Table 5.25 show the following: With the only exception of bcspwr01,
the fastest running times are obtained with the deep feasible separation. We therefore

choose to use it in the best setting.

Best Setting

At the end of all tests, we summarize the best parameter setting of our algorithm.

• The IP constraints (2.2) to (2.7) are separated.

• Triangle inequalities are separated heuristically.

• Implicit use of y-variables.

• Primal simplex is used for solving the LP relaxation.

• A feasible start solution π is computed with the multi-start local search routine.

• Start variables are all variables di jk′ with ∣π(i) − π( j)∣ = k
′ for ∣k′ − k∣ ≤ 1.

• At most 200 variables were priced-in per call.

• We use a combined smart and random pricing strategy.

• Additional pricing steps are performed after every fifth solved LP.

• Separation is done in a smart and random way.
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• At most 100 cuts per iteration are generated of each constraint type.

• All generated cuts are added to the LP.

• No ranking is used.

• We do not apply the variable disjoint cut selection strategy.

• The feasible deep separation strategy is applied.

• Limit for the running time is 24 hours (86 400 seconds).

Provided with the best choice of all parameters of our algorithm, we tested larger in-

stances from the Petit test set as well. But since it takes about 12 hours to solve one

single LP, we did not pursue using our algorithm for the optimal solution of larger

benchmark instances of the MinLA.

5.8 Improvement Heuristics

We continue with the comparison of the improvement heuristics described in Sec-

tion 4.4 on page 117. Table 5.26 presents the name of the instances and their UB ob-

tained by the multi-start local search routine described in Section 4.2.2 on page 110.

Caprara et al. [7] showed that formost benchmark instances, the best-known solutions

are very close to the optimum. Hence, the UBs of theMinLA are very good and in sev-

eral cases even optimal. Applying the improvement heuristics, we can therefore not

expect a lot of UB improvements. Therefore, we additionally show how many times

the improvement heuristic reached the UB. Both numbers are given for all improve-

ment heuristics. We present results only for the weighted edge lengths heuristic. This

is because both variants of this heuristics achieve the same number of UB improve-

ments and numbers of reached UBs. In Table 5.26 we present only those instances that

have a non-zero entry for one of the heuristics. The results show that the idea of the

longest distance heuristic reflects the structure of an optimal solution.
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Table 5.26: Number of UB improvements and number of reached UBs shown for the

different improvement heuristics.

Instance Dist. to Border Longest Dist. Edge Lengths

Name UB Impr. Reached Impr. Reached Impr. Reached

can_62 222 0 0 0 3 0 0

curtis54 512 0 0 0 1 0 0

ibm32 493 0 0 0 8 0 0

gd95c 506 0 0 0 28 0 0

5.9 Branching

We now turn our attention to the test of all branch rules described in Section 4.5 on

page 123 using the best setting of our algorithm. As test instances we select the in-

stances can_24, ibm32 and pores_1, as their RB can be computed within the

time limit of 24 hours. In addition, we generate some smaller test instances to have a

greater variety for the tests of our branch rules.

5.9.1 Small Test Instances

We construct a set of small instances that have a challenging structure and can be

solved with our algorithm within the time limit. The first type of instances is inspired

by the graph drawing instances: Parts of these graphs result in the small test instances

centerOf5c, mesh3x3, mesh4x3, and partOf6c_1. The second type of test

instancesn10_p0.20,n10_p0.30, andn10_p0.40 is generated randomly in the

following way. The number of nodes n and the density p is chosen. Then we randomly

generate edges between the nodes, where each edge exists with the probability p. If the

resulting graph is connected, we choose it.

5.9.2 Branch on Deg-Big Constraints

Running the algorithm for all branch rules (including the different possibilities to

choose the branch variables/structure), we face two problems. Both have their ori-

gin in the interface between the LP solver CPLEX and the branch-and-cut framework

ABACUS. Since the latest software version ABACUS 3.0 cannot handle pricing yet,

we use ABACUS 2.4. As a drawback, we have two types of mistakes: The first type is a

CPLEX return value unknown to ABACUS. The second problem is the same mistake
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Table 5.27: Branch on deg-big constraints.

Name n m RB TimeRB Opt Timeopt #LPsopt #Subsopt

centerOf5c 9 17 33.71 0.41 34 111 2583 793

mesh3x3 9 12 22.83 1.22 24 301 5955 2273

mesh4x3 14 21 43.16 13.84 46 limit 8850 5839

partOf6c_1 12 16 26.27 3.31 27 7370 22989 6362

n10_p0.20 10 12 18 0.42 18 497 6611 1837

n10_p0.30 10 14 25.48 0.88 27 2100 20872 7067

n10_p0.40 10 15 26.91 0.66 29 4700 38900 13149

can_24 24 68 203.86 1080 210 limit 1463 264

ibm32 32 90 462.36 30677 485 limit 465 1

pores_1 30 103 351.02 15340 383 limit 366 9

in the context of pricing. For nearly all instances and branch rules, either one of these

mistakes occurs, or the time limit is reached before the optimum is computed. If this

is the case, more than 10 000 sub problems are generated. For some combinations of

instances and branch rules, we obtain the optimal MinLA value within the time limit.

This occurs most often if we branch on deg-big constraints. In Table 5.27 we present

results obtained by this branch rule. The first three columns show the instances, their

number n of nodes and number m of edges. We then present the RB and the time in

seconds needed to compute it. In column five we show the optimal MinLA value and

continue with the time, the number of LPs and the number of sub problems necessary

to compute the optimum. The results in Table 5.27 show that the RB can be computed

very fast for all new instances. Furthermore, the RB is very close to the optimalMinLA

value. Nevertheless, the results show that branching with this modeling approach is

not as useful as expected. The theoretical advantages did not show a satisfying impact

during practical use within our branch-and-cut-and-price algorithm.

5.10 Sparse 0/1 Model

Having sorted out the best set of setting of our algorithm for the complete model, we

now investigate the algorithm for the sparse problem formulation. We start with the

modified system corresponding to the best setting of the complete problem formula-
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tion, compare Section 2.2.1 on page 59. The LB and time to compute it with the sparse

setting is shown in columns two and three of Table 5.28. In the next two columns, we

present the results for the setting in which transitive variables are added, recall Sec-

tion 2.2.2 on page 60. The LB and time to obtain it with additional variables that “res-

cue” some of the the-longer-the-rarer equations are shown in columns six and seven.

Then both variable types are added, which leads to the results presented in columns

eight and nine. The results obtained with the shortest path strengthening, explained

in Section 2.2.3 on page 61, are shown in column ten and eleven, whereas all ways to

strengthen the sparse problem formulation are switched on for the results in the last

two columns.
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The entries in Table 5.28 marked with “-” indicate that the algorithm stopped with

one of the problems concerning the interface between ABACUS and CPLEX, recall

Section 5.9.2. Comparing the sparse setting to the additional transitive variables set-

ting, we observe an increase of the LB in nearly all cases. (Note: As additional variables

change the structure of the constraint system, the LB can possibly be worse than in the

default setting. An example is the instance bcspwr01.) The running time increases

enormously using the transitive variables. The same situation holds if we compare the

sparse setting with the additional variables of both types. In contrast to these settings,

the additional “the-longer-the-rarer” variables have no impact on the LB. The running

time decreases in most cases, whereas it increases for the test instances can_61, and
impcol_b.

The shortest path strengthening increases the LB significantly except for the in-

stances bcsstk01, can_24, can_61, will57 and gd95c for which the LB re-

mains unchanged. In case of bcsstk01, will57 and gd95c the running time can

be decreased, whereas for all other instances the running time of the shortest path

strengthening is slower than in the default sparse setting. This is because the con-

straints of the shortest path strengthening have muchmore non-zero coefficients than

the original ones. The setting presented in the last two columns is by far the best:

With the only exception of bcspwr01, the LB is increased and in nearly all cases the

improvement is significant. Although the running time is increased, the RB can be

computed within the time limit for all instances but gd96d. We will therefore call

this last setting the enriched sparse problem formulation.

5.10.1 Complete versus Sparse Problem Formulation

We will now compare the complete problem formulation to the sparse and the en-

riched sparse problem formulation. Table 5.29 shows the results obtained by the com-

plete and the default sparse setting. Furthermore, the last two columns present the

results for the enriched sparse setting. Due to pricing, we have to be careful inter-

preting the LB of those instances, for wich the time limit is reached before the RB is

computed: Every pricing-in of variables reduces the LB.

The first thing to be noticed is the huge difference of the running times. If we

consider the LB, the situation is very different. In several cases the LB of the enriched

sparse version is half the LB of the complete version. Hence, enriching the sparse

problem formulation, the great difference in strength to the complete problem formu-

lation cannot be decreased significantly. We therefore accept the higher running time

in order to compute better LBs.
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Table 5.29: Complete versus sparse problem formulation. (LBs marked with “∗” are

above the UB because of pricing, see Section 5.5.1 on page 137 for details.)

Instance Complete Sparse Enriched Sparse

Name n m LB Time LB Time LB Time

bcspwr01 39 46 103.91 limit 62 1 61.75 3

bcspwr02 49 59 172.42 limit 86 1 87.13 13

bcsstk01 48 176 1151.62 limit 437 105 694.61 1244

can_24 24 68 203.86 1080 144 2 175.13 12

can_61 61 248 1137 limit 816 343 1032.22 3756

can_62 62 78 221.99 limit 104 2 114.72 78

curtis54 54 124 511.91 limit 256.56 34 280.05 189

ibm32 32 90 462.36 30677 192.5 8 329.27 70

impcol_b 59 281 2357.81 limit 979 646 1382.19 6205

pores_1 30 103 351.02 15340 245 5 298.61 45

will57 57 127 352 limit 258.81 30 270.21 117

gd95c 62 144 559∗ limit 316.9 57 390.8 698

gd96b 111 193 1619.73∗ limit 1199 2247 1224.99 3760

gd96c 65 125 525.31∗ limit 194 44 246.61 357

gd96d 180 228 2494.67∗ limit 921 15 1351.1 limit
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5.11 Final Comparisons

We conclude this thesis with the comparison of our best results with those obtained

from using other models of the MinLA.

Table 5.30 starts with the instance name and the UB obtained by the multi-start

local search routine described in Section 4.2.2. All times in the following columns are

given in seconds. Columns three and four show the LB and time for the betweenness

approach of Caprara et al. [8], realized by Schwarz [113]. Recall Section 1.5.2 on page 41

for a short description of this modeling. The next two columns present the results

obtained by the combined approach of Caprara et al. [7], see Section 1.5.2 on page 41.

The instances marked with “-” have not been considered in [7]. In columns seven

and eight, we display our best result, whereas in the last column a decreased LB is

shown. Such a decrease of the LB is possible whenever the RB is not yet reached: With

every pricing-in of variables, the LB decreases, recall Section 5.5.1 on page 137 for a

detailed explanation. Only for the instances can_24, ibm32 and pores_1 the RB

is reached within the time limit and does not decrease anymore. The corresponding

“LB−5%” enries are therefore marked with “×”. As the LB decrease of these smallest

instances lies between 5% and 16% (see Section 5.5.1), we expect the LB of all other

instances to decrease by the same amount.

With the only exception of gd96d, the best LBs are obtained by [113]. For the test
instances can_24, ibm32 and pores_1, our LBs are below those of [113]. Never-

theless, it is higher than the LB of [7] for the test instance can_24. For all instances,
the running times of [113] and [7] aremuch faster than ours. Considering the instances

for which the LBs are not reliable, we suggest to compare our LB decreased by 5% with

the LBs of [113] and [7]. With the only exception of can_61, our decreased LBs are

above the ones computed by [7]. For the instances can_62, curtis54, impcol_b
and will57 the decreased LB is even higher than the LB of [113].

We conclude that our modeling approach does not match the high expectations

that weremotivated by several theoretical advantages of the binary distancemodeling.

Formost of theMinLA benchmark instances, the computational strength of ourmod-

eling compared to the integral distance model, recall Section 5.3 on page 146, seems to

be undone by the large number (n3) of variables. We therefore suggest pursuing other

modeling approaches for solving MinLA problems to optimality.
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Table 5.30: Comparison of lower bounds for different modeling approaches. (Time limit

is 86 400 seconds. LBs marked with “∗” are above the UB because of pricing, see Sec-

tion 5.5.1 on page 137 for details.)

Instance Reference [113] Reference [7] Binary distance model

Name UB LB Time LB Time LB Time LB−5%

bcspwr01 109 106 5 91 0.7 103.91 limit 98.71

bcspwr02 173 166 11 144 1.8 172.93 limit 164.28

bcsstk01 1152 1132 14288 972 3848.1 1151.62 limit 1094.04

can_24 210 210 4 203 2.8 203.86 1080 ×

can_61 1137 1137 561 1119 538 1137 limit 1080.15

can_62 222 210 59 187 4.2 221.99 limit 210.88

curtis54 512 454 88 - - 511.91 limit 486.31

ibm32 493 485 606 - - 462.36 30677 ×

impcol_b 2358 2060.5 limit - - 2357.81 limit 2239.92

pores_1 383 383 16 - - 351.02 15340 ×

will57 352 334 92 - - 352 limit 334.3

gd95c 506 506 101 443 68.3 559∗ limit 531.05

gd96b 1416 1403.7 limit 1281 9.5 1619.73∗ limit 1538.74

gd96c 519 519 2178 402 218.1 525.31∗ limit 499.04

gd96d 2289 1612.2 limit 2021 1642.2 2494.67∗ limit 2369.94
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Table A.1: Unbounded edges of Qn .

n Slopes Matrix

4 2 C 1001 ∶=
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⎜
⎜
⎝

0 1 −2 1

1 0 3 −2
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1 −2 1 0
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⎛
⎜
⎜
⎜
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Nomenclature

[n] set {1, . . . ,n}

0 appropriately sized vector consisting of ones

1 appropriately sized vector consisting of ones

aff affine hull

χ incidence vector

conv convex hull

δ(S) cut of node subset S

dim(P) dimension of polyhedron P

DP dual program

ℓ1 embeddable in the real line

exray(P) set of all extreme rays of polyhedron P

F fan

F(P) face fan of polyhedron P

ın identical permutation of size n

int(P) set of all interior points of polyhedron P

IP integer program

(Ln)∗ dual vector space of Ln

1 square matrix of order n whose (k,l)-entry is 1 if k ≠ l and 0 otherwise

M(n,R) set of all n × n matrices with entries in R

N(P) normal fan of polyhedron P
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188 Nomenclature

A linear hyperplane arrangement

FA fan of the linear hyperplane arrangement

deg(i) degree of node i

deg
inDeg(i) in-degree of node i

deg
outDeg(i) out-degree of node i

0 all-zeros matrix not necessarily square

π permutation

π− antipodal permutation

Πn−1 (n − 1)-dimensional permutahedron

PP primal program

rank(G) rank of a graph

rec(P) recession cone of polyhedron P

sign signum

S0M(n) set of all symmetric n × n matrices with zero in the diagonal

tr(A,B) trace of matrices A and B

vert(P) set of vertices of polyhedron P

A ● B trace of matrices A and B

c i j weight of edge i j

DS cut matrix

ek kth unit vector

Eπ permutation matrix

G = (V ,E) graph with vertex and edge set

i j edge from node i to vertex j

M mapping from Rn to S0M(n)

NF element of the normal fan corresponding to face F

Nπ element of the normal fan corresponding to face {π}

P△ polar of polyhedron P



P1 + P2 Minkowski sum of P1 and P2

S(n) set of all permutations of dimension n

#LPs number of solved linear programs

CUTn cut cone

LB lower bound

LP linear program

MLS multi-start local search routine

OLA optimal linear arrangement

RB root bound

SA simulated annealing

UB upper bound





Index

3-/4-cycle-star inequality, 55

3-/4-cycle-with-legs, 55

3-/4-cycle-with-legs inequality, 55

3-bridge, 50

4-bridge, 50

6-bridge, 50

8-bridge, 50

R-embeddable 1-separated metrics, 9

NP-complete, 6

NP-hard, 6

copt(G), 27

k-convenient node ordering, 72

k-spanning, 72

active variables, 14

adjacent, 5

affine combination, 7

affine hull, 7

affine independent, 7

alternating set, 92

arrangement, 27

basis of a linear program, 14

basis solution, 14

bipartite inequality, 37

block, 100

branch-and-bound, 18

branch-and-cut method, 21

branch-and-cut-and-price, 21

branching, 19

branching on a variable, 19

branching on constraints, 19

bridge inequalities, 50

characteristic vector, 6

clique inequality, 37

column generation, 17

complete fan, 64

complete graph, 29

cone, 7

conic combination, 7

constraints, 11

convex combination, 7

convex hull, 7

cut, 5, 20

cut cone, 9

cut cone facet, 84

cut matrix, 5

cut metric, 9

cutting plane method, 20

cycle, 29

cycle inequality, 37

degree, 5

degree-big inequality, 47

degree-subset inequality, 54

diamond inequality, 54

Dilation Minimization problem, 27

dimension of a face, 10

dimension of a polyhedron, 10

dominant, 71

dual program, 12
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dual simplex algorithm, 15

dual vector space of Ln , 7

duality theorem, 12

each-edge-one-distance equation, 47

edge, 10

Edge Sum problem, 27

edge weight, 5

edges of a graph, 5

ellipsoid method, 14

embeddable in the real line, 9

exposed set of polyhedron P, 10

extreme point of polyhedron P, 10

extreme ray of polyhedron P, 10

face, 10

face fan, 64

facet, 10

facet-defining, 10

fan, 63

fan of the linear hyperplane arrangement, 64

Farkas’ lemma, 12

feasible basis, 14

feasible solution, 12

fixed variable, 19

gap closure, 21

global upper bound, 19

graph, 5

Graph Ordering problem, 27

H-representation, 9

hill, 86

hypermetric inequality, 37

inactive variables, 14

incidence vector, 6

incident, 5, 65

infeasible variable, 25

inner description, 9

integer program, 18

integer programming problem, 18

integral distance variables, 36

interior point, 11

interior points method, 14

labeling, 27

layout, 27

Linear Ordering, 27

Linear Arrangement problem, 27

linear hyperplane arrangement, 64

linear program, 12

linear programming problem, 11

local lower bound, 19

LP, 12

LP-relaxation, 20

metric, 9

Minimum 1-Sum problem, 27

Minimum Length Layout problem, 27

Minimum Length Linear Arrangement prob-

lem, 27

Minkowski-sum, 9

MinLA, 27

MLS, 110

monotonic inequality, 49

normal fan, 64

objective function, 11

optimal linear ordering, 27

optimal solution, 12

outer description, 9

over the ridge from π, 70

path, 29

path-star inequalities, 50

path-stars, 50

permutahedron, 65

permutation matrix, 8

phase II, 15

polar, 11

polyhedral cone, 7

polyhedron, 9

polynomial-time, 6

polytope, 10

price out correctly, 17

pricing problem, 17

primal program, 12

primal simplex algorithm, 15

prism, 31
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prism inequality, 37

rank of a graph, 40

ray of polyhedron P, 10

recession cone, 11

reduced cost of a variable, 17

relaxation, 20

root bound, 132

SA, 110

semi-metric, 8

separation problem, 20

set of all interior points of polyhedron P, 11

set of all permutations of dimension n, 8

set variable, 19

simple, 11

simplex algorithm, 14

simplicial, 11

single-degree inequality, 49

slope, 86

special-degree equation, 47

special-triangle inequality, 50

spreading constraint, 40

spreading metrics, 40

standard form, 12

star, 29

star inequality, 37

subgraph inequality, 54

subtour inequality, 49

tailing-off, 21

the-longer-the-rarer equation, 47

Total Edge Length problem, 27

V-representation, 9

valid inequality, 10

valley, 86

vertex, 10

vertices of a graph, 5

weighted graph, 5

wheel, 31

wheel inequality, 37

zonotope, 64
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