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Zusammenfassung

Bildgestiitzte Systeme bilden die Grundlage vieler industrieller Anwendungen, zum Beispiel
in der Fertigungstechnik, im medizinischen Bereich oder fiir Service-Roboter. Eine Auf-
gabe, die all diese Anwendungen gemein haben, ist die Detektion und Lokalisierung von
bekannten Objekten in unstrukturierten Bildern. Dies ist jedoch ein “Henne-Ei”-Problem,
das daraus besteht, Teile des Bildes Modellteilen zuzuweisen, wahrend simultan die Pa-
rameter der Lage des Objektes geschatzt werden miissen.

In dieser Arbeit betrachten wir Computer-Vision Verfahren fiir die spezielle industrielle
Anwendung “Bin-Picking”, deren Ziel es ist, die Lage von mehreren bekannten und zuféllig
angeordneten Objekten zuverlassig zu bestimmen. Auch wenn Vorwissen iiber die Form
der Objekte das Problem vereinfacht, fithren Symmetrien, gegenseitige Verdeckung der
Objekte, strukturelle Messfehler sowie Laufzeitrestriktionen dazu, dass die Losung des
Problems komplex ist.

Ein géngiger Ansatz, sich dieses Problems anzunehmen, ist eine Zwei-Schritt-Strategie
zu verfolgen, die anfangs eine grobe Schatzung der Lage der Objekte bestimmt, gefolgt von
einer zuséatzlichen Feinpositionierung. Etablierte Initialisierungsverfahren sind jedoch nur
in der Lage, die Position einzelner Objekte zu bestimmen. Daher konnen sie kontextbe-
zogene Restriktionen, die durch mehrere Instanzen verursacht werden, nicht auflosen,
was wiederum zu ungenauen Positionierungen fithrt. Dies hat jedoch zur Folge, dass
gingige Feinpositionierungsansitze die genaue Objektlage nicht mehr zuverléssig bestim-
men kénnen und das gesamte Verfahren nur ungenaue Resultate erreicht.

In dieser Arbeit schlagen wir einen neuen Ansatz zur groben Registrierung vor, welcher
die Lage aller Objekte gleichzeitig bestimmt. Zusétzlich wird eine neue lokale Feinaus-
richtung erforscht, die einzelne Objektpositionen verfeinert. Dieser Ansatz beseitigt die
Maéngel giangiger Ansédtze und fiihrt zu hinreichend genauen Resultaten fiir eine Vielzahl
von Initialisierungen. Beide Schritte nutzen erweiterte numerische Techniken wie kon-
vexe, large-scale Programmierung und geometrische Optimierung im gekriimmten Raum
der Starrkorpertransformationen. Zudem ergénzen sich die Einzelschritte, da sich wider-
sprechende Schétzungen in einem globalen konvexen Problem beseitigt werden und hin-
reichend gute Initialisierungen im nachfolgenden lokalen, nicht-konvexen Schritt verfeinert
werden.

Experimente auf kiinstlichen und realen Messungen bestétigen den vorgeschlagenen,
neuen Ansatz und zeigen, dass das Verfahren robust gegen Messfehler und Verdeckungen
ist sowie das Potential hat, die Laufzeitrestriktionen vieler industrieller Anwendungen zu
erfiillen.






Abstract

Vision guided systems are relevant for many industrial application areas, including man-
ufacturing, medicine, service robots etc. A task common to these applications consists
of detecting and localizing known objects in cluttered scenes. This amounts to solve the
“chicken and egg” problem consisting of data assignment and parameter estimation, that
is to localize an object and to determine its pose.

In this work, we consider computer vision techniques for the special scenario of industrial
bin-picking applications where the goal is to accurately estimate the positions of multiple
instances of arbitrary, known objects that are randomly assembled in a bin. Although a-
priori knowledge of the objects simplifies the problem, model symmetries, mutual occlusion
as well as noise, unstructured measurements and run-time constraints render the problem
far from being trivial.

A common strategy to cope with this problem is to apply a two-step approach that con-
sists of rough initialization estimation for each objects’ position followed by subsequent
refinement steps. Established initialization procedures only take into account single ob-
jects, however. Hence, they cannot resolve contextual constraints caused by multiple object
instances and thus yield poor estimates of the objects’ pose in many settings. Inaccurate
initial configurations, on the other hand, cause state-of-the-art refinement algorithms to
be unable to identify the objects’ pose, such that the entire two-step approach is likely to
fail.

In this thesis, we propose a novel approach for obtaining initial estimates of all object
positions jointly. Additionally, we investigate a new local, individual refinement procedure
that copes with the shortcomings of state-of-the-art approaches while yielding fast and ac-
curate registration results as well as a large region of attraction. Both stages are designed
using advanced numerical techniques such as large-scale convex programming and geo-
metric optimization on the curved space of Euclidean transformations, respectively. They
complement each other in that conflicting interpretations are resolved through non-local
convex processing, followed by accurate non-convex local optimization based on sufficiently
good initializations.

Exhaustive numerical evaluation on artificial and real-world measurements experimen-
tally confirms the proposed two-step approach and demonstrates the robustness to noise,
unstructured measurements and occlusions as well as showing the potential to meet run-
time constraints of real-world industrial applications.
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Notations

The notation used within this work basically follows the one used in [37] and [56] and
should be clear from the context. For convenience we summarize them in the following.

R real numbers

SO (3) space of rotations in R3

SE (3) space of Euclidean transformations in R? (rotation and translation)
GL (4) space of regular matrices in R**4

50 (3) Lie algebra of SO (3)

se (3) Lie algebra of SE (3)

6 € SE(3) specific element of SE (3)

X,Y € SE(3) specific element of SE (3) in matrix representation
O U, T € se(3) specific element of se (3) in matrix representation
M smooth, differentiable manifold

Ty tangent space at Y € M with 7T; =7

M set of tangent vector spaces of M

V; i-th element of vector v

A real valued matrix in RM*N

a;j i-th row and j-th column element of matrix A
vl AT transposed vector, transposed matrix

At inverse of a (regular) matrix

det (A) determinant of a matrix

tr (A) trace of a matrix

1 identity matrix

e vector of ones, i.e. e = (1,..., 1)T

0 matrix, vector of zeros

llz]l5 5 || Al ls norm of a vector, spectral norm of a matrix
Iz, ¢1 norm of a vector

l|lzlo pseudo fyp-norm of a vector, i.e. number of non-zero elements
Vf gradient of the function f

af Euclidean derivative of f

v covariant derivative

Ffj Christoffel symbol specifying V

(v,wy =v"w

inner product for vectors

(A,B) =tr (ATB) canonical inner product for matrices
[A,B] = AB — BA Lie bracket

ACR" multi-dimensional unit simplex, i.e. w € A & w; >0, Y " jw; =1
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Chapter 1

Introduction

1.1 Motivation

Vision guided systems are relevant for many industrial application areas, including man-
ufacturing, medicine, service robots, etc. A task common to these applications consists of
detecting and localizing known objects in cluttered scenes. In each case, reliability and
accuracy are important besides a sufficiently short processing time.

In this thesis, we develop computer vision techniques for the special scenario of real-world
industrial bin-picking applications where the goal is to accurately estimate the positions
of multiple instances of arbitrary, but known objects that are randomly assembled in a
bin. Figure 1.1 shows a typical setup. This application is required for different subsequent
procedures such as quality inspection or picking individual objects by a robot. Although
prior knowledge of the object’s shape simplifies the problem, a considerable amount of
noise, symmetries of the object’s shape, and mutual occlusion renders the tasks far from
being trivial. A close-up view depicted in the right panel of Fig. 1.1 illustrates these issues.

Besides these difficulties, the imaging process as depicted in Fig. 1.2 causes further
problems to the bin picking scenario. The recording procedure can be roughly described
as follows. A scanning device moves along a linear axis and subsequently emits laser rays
in different directions that are reflected by object instances in the scene and return to
a collector. Based on each ray’s direction as well as the time required from emitter to
collector, it is possible to infer the corresponding scene measurement in 3D. However, due
to this special setup, almost half of the object is typically not covered by scanning points
and the obtained point cloud is highly unstructured and sparse in general.

In this work we focus on the following requirements:

1. The approach to estimate each object’s position should not rely on properties of
specific objects, like the geometry of flat disks, for instance. Rather, we only require
as input a sparse point sample of the object’s surface, obtained from a CAD model if
available or by direct measurements if not, so as to enable flexible adaption to novel
scenarios by non-experts as user.

2. Numerous ambiguities due to object symmetries and occlusion require a non-local
contextual first processing stage in order to reliably detect multiple object instances
and rough pose estimates. The latter should be sufficiently accurate to avoid prob-
lems with local minima of subsequent pose estimation which is an intrinsically non-
convex problem.

3. Subsequent numerical pose estimation should adequately take into account the ge-
ometry of the underlying space of transformations so as to minimize the number of
iterations while having a large basin of attraction to the correct local minimum.

To this end, we propose a novel approach to model the pose estimation problem for
single object instances and investigate possibilities to obtain the corresponding optimizer
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Figure 1.1: Visualization of typical industrial setup for automatic bin-picking applications
(left). A SICK-LMS400 scanner is mounted on a linear axis recording a scene of
multiple objects randomly assembled in a bin (top left). Due to self occlusion
and nearby objects, large parts of a single model are typically not visible
(right). Additional noise produced by the scanner further complicates the
entire problem.

with respect to the group of rigid body transformations. Additionally, we present a non-
local first processing stage that allows to roughly obtain estimates of the number of objects
as well as the related position.

1.2 Related Work

There is a vast body of literature on the processing of range data and on object registration
in 3D. As overview of established techniques we refer to the survey papers of Besl and Jian
[13], Chin and Dyer [29], and the recent work of Salvi et al. [105]. The problem of three-
dimensional object recognition generally divides into the three stages of

1. acquisition of input measurements,
2. extraction of salient features, and
3. object recognition by matching these features.

In this work, we do not focus on the first part, i.e. the imaging process, although there
are multiple viable techniques to generate 3D measurements such as time-of-flight cameras,
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Linear axis

scanning device scanning direction

plane of laser rays

Figure 1.2: Prototypical setup of the imaging process. A scanning device, consisting of
emitter and collector, moves linearly along a defined axis and subsequently
emits laser rays in different directions. Based on the direction and the time
from emitter to collector, it is possible to infer 3D measurements in the scene
that are typically sparse and highly unstructured.

triangulation sensor, or stereo vision. For more information we refer the reader to [103]
and the references therein.

1.2.1 Feature Extraction

Obtaining salient local landmarks in order to match a given model to a recorded scene is a
field widely studied in computer vision literature. For the special case of 3D measurements
an overview of recent developments in this area is given in [105].

In general, extracting features from 3D measurements amounts to group individual
samples in order to derive characteristic and discriminant information from the point
cloud. One of the most intuitive grouping strategies includes to extract lines and planar
faces [45], higher order geometric primitives such as cylindrical and conic surfaces [44], or
free-form curves and patches [51, 61] from the measured scene.

Closely related to these features are Gaussian images [65] and the local extraction of
Gaussian and mean curvature [95] as both rely on local representations of the point cloud
surfaces. With increasing measurement’s noise, however, such approaches typically yield
inaccurate reconstructions such that the quality of the local approximations of the discrete
point set are poor.

Using global surface representations in contrast, such as eigen-shapes [24], superquadrics
[74], or spherical harmonics [75] enables to cope with increasing noise ratios. However,
due to global parametrization, they typically suffer from sensitivity to large amounts of
occlusion, a problem occurring in industrial real-world applications.

Instead of reconstructing local parts of the scene, using point measurements directly
typically copes with the problem of noisy measurements. Then, local information can be
obtained using local grouping techniques such as shape context [8, 48], spin images [71],
splash images [114], point signatures [30], and volume integral descriptors [53]. Although
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these approaches reveal promising results for objects that have highly distinctive parts,
for most man-made objects with lots of symmetries, theses features are typically not
discriminate in order to obtain precise one-to-one relationships between scene and model
features.

Thus, in the scenario considered in this work, landmark based approaches are likely to
fail due to a high degree of occlusion, object symmetry, and sparse noisy measurements
(Fig. 1.1). Consequently, we focus on the alternative to work directly with the observed
point clouds in order to register objects to the scene and to determine their pose. Still,
this includes the problem to establish the correspondence between object model and ob-
servations, however.

1.2.2 Feature Matching

Aligning a model to a recorded scene amounts to the “chicken and egg” problem of de-
termining simultaneously correspondences between salient features of the model and the
scene and a rigid transformation. This joint optimization problem is non-convex and highly
interdependent since alignment depends on correspondence and vice versa. However, hav-
ing solved either problem renders the problem convex in the missing variables, such that
obtaining a solution becomes trivial [14].

Iterative Refinement Procedures

As a consequence, there is a wide range of approaches applying iterative search techniques
by means of subsequently estimating the rigid transformation followed by an update of
correspondences, and so forth. The prototypical representative of this group of matching
strategies is the Iterative Closest Point algorithm (ICP) [14, 27] that has been extended
several times in order to cope with different feature representations [134] and to address
issues such as robustness [47, 54, 57, 96] and computational complexity [72, 104].

Although this algorithm is still a state-of-the-art algorithm [104, 111, 135], it is widely
known that explicit correspondences increase both the non-convexity and non-smoothness
of the related objective function such that poor initial configuration typically cause this
approach to fail to converge to the globally optimal solution.

Due to this major limitation of iterative refinement algorithms, recent approaches de-
couple the joint optimization by means of estimating the global optimal configuration
of either the transformation or the correspondence separately and to infer the missing
variable correspondingly.

Correspondence Based Approaches

The problem of estimating the optimal correspondence amounts to solve a combinatorial
problem that is closely related to the problem of vertex cover [43] and subgraph matching
[107], where the latter belongs to Karp’s list of NP-complete problems [73].

In case that a partial matching can be inferred from uniqueness of the individual features,
highly efficient inference algorithms [17, 101] can be applied in order to avoid sifting
through all possible combinations. However, as features are non-distinctive in general,
exhaustive search algorithms [5, 58, 129, 130] have to be applied that are, due to the
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problem’s size, only applicable using well-tuned data structures and efficient reduction
techniques such as coarse-to-fine scaling.

As a consequence, solutions of this problem are typically approached using heuristic,
randomized techniques such as the random sample consensus [46, 118] and genetic algo-
rithms [105]. Even though randomized algorithms typically reveal promising results, they
provide at most probabilistic guarantees to obtain the global optimizer. In many settings,
however, they are unable to detect an optimal configuration at all.

Relaxing the NP-complete optimization problem [107] in contrast yields to cope with a
convex optimization problem that tightly approximates the original problem. Solving this
problem, however, is computationally complex such that it is difficult to meet the strict
time restrictions of industrial settings. Closely related to [107], a very recent approach of
Enqvist et al. [43] approximates the underlying problem structure subsequently in order
to derive tight lower bounds of the problem and to apply branch and bound strategies.

With increasing number of points, however, the problem’s size grows exponentially such
that correspondence based matching approaches tend to fail to meet the strict time and
memory restrictions of many industrial applications.

Transformation Based Approaches

The alternative class of approaches is to optimize over the space of transformations and
to infer the optimal point-to-point assignment accordingly. This is primarily based on the
approximation of the objective functional in terms of a function that only depends on the
transformation.

Mitra et al. [84] and Pottmann et al. [94] suggested to use a local piecewise-quadratic
approximation of the objective function that encodes the correspondence of model points
to scene measurements implicitly. This scheme avoids exploration of the correspondence
space at run-time at the costs of exhaustive pre-computation.

Another possibility to cope with explicit correspondences is based on the work of Tsin
and Kanade [121] that has been further extended by Jian and Vemuri [70]. They pro-
posed to infer the optimal alignment by optimizing the distance between mixture distri-
butions, where each distribution represents a continuous formulation of the model and
scene points, respectively. Possible distance measures include the Euclidean distance [70]
or the Jensen-Shannon [128] divergence. However, similar to iterative refinement proce-
dures, the obtained objective functions are typically highly non-convex such that accurate
initializations are of utmost importance.

In this context, we also refer to very recent work [64, 81, 90] on global optimization
approaches for the problem of transformation estimation. These approaches apply Branch
and Bound techniques for exploring the pose parameter space, where Hartley and Kahl
[64] as well as Olsson et al. [90] require very special settings, i.e. explicit correspondence of
scene points to convex model parts. In contrast, Li and Hartley [81] works without such
correspondences at the costs of bad run-time scaling for real-world problems.

1.3 Contribution

In this thesis, we introduce a novel initialization and refinement approach for the problem
of model-based detection as well as the determination of the transformations of multiple
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objects for the real-world industrial bin-picking scenarios where the scene is represented
by noisy, unstructured and sparse point measurements (cf. Fig. 1.1).

To this end, we propose a new initialization stage in terms of a global, large-scale, con-
vex objective function that accurately describes the geometrical constraints of the pose
estimation problem. Additionally, this enables to apply efficient preprocessing techniques
derived from sufficient optimality conditions as well as to use dedicated algorithms for con-
vex optimization. Finally, it yields promising performance making the approach attractive
for solving real-world applications with tight run-time constraints.

As a subsequent refinement step, we investigate a novel non-convex objective distance
measure yielding an objective functional for rigid point set alignment that provides conve-
nient approximations of state-of-the-art approaches and avoids explicit correspondences of
model points to scene measurements. To obtain the local optimizer of this new objective,
we consider advanced optimization techniques based on higher order numerical integration
as well as Newton-like optimization techniques that fully exploit the intrinsic geometry of
the underlying space of Euclidean transformations and enables fast convergence to the
local optimum for a large region of attraction.

A thorough numerical evaluation demonstrates the potential of our new two-step ap-
proach to meet the accuracy and run-time constraints of the industrial bin-picking scenario.
Moreover, we believe that adopting our approach might be attractive in other related sce-
narios of computer vision as well. Contents of this work have been partially published in
21, 22, 23].

1.4 Organization

The remainder of this work is sectioned into four major parts. In Chap. 2, we mathe-
matically introduce the problem of Euclidean point set alignment by means of determin-
ing the rigid transformation that matches a given model to a set of scene measurements
best. To this end, we consider different possibilities to model the problem accurately, and
propose a novel, smooth objective functional that provides convenient approximations of
state-of-the-art approaches while exhibiting the ability to apply higher order optimization
techniques.

To determine the optimizer of such an objective functional, in Chap. 3, we consider two
conceptually different approaches based on higher order numerical integration techniques
as well as on Newton-like algorithms that fully exploit the geometry of the underlying
group of Euclidean transformations.

As these algorithms provide only local convergence properties, however, and as objective
functions used for Euclidean point set registration are highly non-convex in general, in
Chap. 4, we investigate the problem of jointly obtaining proper initializations in terms
of rough estimates of each object’s position. We present a non-local processing stage
that encodes the numerous ambiguities due to object symmetries and occlusion, and that
reliably detects multiple object instances and obtains rough pose estimates.

In Chap. 5, we apply the proposed approaches to artificial and real-world point sets
in order to numerically evaluate the performance of the different individual approaches
presented in Chap. 2, Chap. 3, and Chap. 4. This demonstrates that the single steps
complement each other. Finally, in Chap. 6, we summarize the major results obtained and
indicate promising directions of further research.



Chapter 2

Problem Statement and Optimization Criteria

2.1 Overview

2.1.1 Introduction and Motivation

Obtaining a mathematical model for a given real world problem is required in most appli-
cation driven fields of computer vision. The general approach to cope with this problem
is to use a model that admits to describe the scenario as accurate as necessary while keep-
ing the model simple. As simplicity and accuracy are contradicting issues (sketched in
Fig. 2.1), finding “good” problem descriptions turns out to be the crucial point in most
applications.

In this chapter, we focus on the formulation of a mathematical model for the problem
of Euclidean point set registration that allows to obtain a Euclidean transformation that
aligns a given model to a recorded set of scene measurements best.

2.1.2 Related Work and Contribution

Finding the Euclidean transformation that aligns scene measurements to a set of model
points best, amounts to a “chicken and egg” problem of determining simultaneously the
point-to-point correspondences and the Euclidean transformation. Having solved either
problem, the other one becomes trivial [14].

As a consequence, most approaches model the Euclidean registration as the problem
of finding the transformation that minimizes the distance between corresponding points.
As the Euclidean transformation and the correspondence is interdependent in general
such that joint optimization is not possible, most approaches proceed in an iterative fash-
ion, where given an estimate of the transformation, correspondence is estimated by some
heuristic, followed by updating the transformation estimate, and so forth. The prototypi-
cal representative of this class of approaches is the Iterative Closest Point (ICP) algorithm
developed in parallel by Besl and McKay [14] and Chen and Medioni [27]. Due to its
simplicity and fast convergence, ICP is still a state-of-the-art algorithm [104, 111, 135]
that is widely used within many industrial applications.

As is well known, this basic two-step iteration is susceptible to noise and poor initial-
ization, however. To overcome these issues Rusinkiewicz and Levoy [104], Gold et al. [54],
Rangarajan et al. [96], and Fitzgibbon [47] proposed robust variants that are more toler-
ant against imprecise initializations as well as against noise and outlying structures at the
costs of introducing additional threshold parameters and annealing schedules. Anyway,
a major drawback concerning the representation of the problem remains, in particular
when dealing with unstructured point sets: explicit correspondences increase both the
non-convexity and non-smoothness of the objective function, and gaining insight into the
optimization problem is hampered by complicated structure of the domain of optimization
comprising both Euclidean transformations and correspondence variables.
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Figure 2.1: Sketch of the problem of finding “good” models for a given applications: As-
suming a discrete set of points is to be described by a continuous function, too
simple models like a straight line (left) cannot capture the scene characteristics
accurately, while precise descriptions yield difficult models and overfitting to
noise (middle). Determining a simple model coping with the properties of the
scene (right) is to be studied in this chapter.

In order to model the uncertainties of correspondences more precisely, Granger and
Pennec [57] considered a robust ICP approach in a probabilistic expectation maximiza-
tion framework (EM-ICP). Using this framework facilitates the interpretation of involved
thresholds. Yet, despite increased robustness, there appears to be still room for improve-
ment, especially concerning the requirement of accurate initializations of correspondences.

To alleviate the computation of corresponding point-to-point matches in each iterate,
Mitra et al. [84] as well as Pottmann et al. [94] suggested to approximate the objective
distance function by local quadratic functions that represent the distance of certain model
points to the entire scene.

Another way to avoid the explicit determination of correspondence has been suggested
by Tsin and Kanade [121], Jian and Vemuri [70] and Wang et al. [128]. By represent-
ing point clouds of both the scene and the model by mixture distributions, registration
can be achieved by minimizing the squared ¢ distance [70, 121] or the Jensen-Shannon
divergence [128] between two distributions. Compared to [84, 94], this avoids exhaustive
pre-computation of local distance approximation at the cost of more expensive function
evaluations.

Especially in industrial bin-picking applications where the scene is readjusted several
times, we consider the latter class of approaches as advantageous in connection with un-
structured noisy point sets. Thus, we adopt mixture models of model and scene points in
this work as well.

We furthermore investigate a novel, smooth objective for the problem of Euclidean point
set registration being independent of explicit point-to-point correspondences. We show the
direct relation to state-of-the-art approaches while exhibiting the property for higher order
optimization techniques, instead of embossing the optimization procedure into the model
representation. Finally, we point out benefits and drawbacks of this formulation to cope
with industrial bin-picking applications. The results of this chapter have been partially
published in [22, 23].

2.1.3 Organization

The remainder of this chapter is organized as follows. In Sec. 2.2, we review state-of-the-
art formulations of the problem of Euclidean point set alignment based on determining
explicit correspondences between model and scene.

Next, in Sec. 2.3, we analyze a mathematical model that is independent of explicit
correspondences and propose our novel objective function for registration problems based
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on computing the natural distance between continuous point set representations. The
relation of our new formulation to state-of-the-art approaches is analyzed in Sec. 2.4.
Finally, we conclude in Sec. 2.5 and point out further work.

2.2 Correspondence-Dependent Functions

Let U = {u;, i=1,...,n} C R3 denote the set of scene measurements obtained by a
scanning device, and let V = {v;, j =1,...,m} C R3 be the set of samples specified by a
given model description, i.e. a CAD file or a sample scan.

In practice, explicit geometric mesh models are typically not available. Furthermore,
generating meshes from thousands of 3D point measurements may not be error-free and
causes a time-consuming preprocessing step. We therefore only consider models in terms
of 3D point measurements in order to uniformly handle all practically relevant situations.

The objective of Euclidean point set registration is to determine a rigid body transfor-
mation 6 € SE(3) such that model and scene are aligned best, given a certain distance
measure. Here, SE (3) denotes the special Euclidean group of rigid body transformations
whose elements are uniquely specified by a proper rotation of the 3D space, followed by a
translation.

Typically and also most intuitively, point set alignment is achieved through correspon-
dence based registration, that is to minimize the cumulative distance between related
points in I/ and V. Due to the embedding of ¢,V in R3, a common measure is the sum of
squared Euclidean point-to-point distances given by

> lui = 0(ve) [ - (2.1)
=1

where §(v) rigidly transforms v € V and k € F = {n|n: {1,...,n} — {1,...,m}} denotes
a correspondence function that assigns each scene point u; to its model counterpart v ;).

Besides the intuitive meaning and the simplicity of (2.1), modeling the registration prob-
lem in terms of squared Euclidean point-to-point distances reveals the ability to separately
determine the unknowns in closed form while suffering from few shortcomings.

The mathematical model (2.1) is based on the assumption that each scene measurement
corresponds to an object point. This however does not hold for most industrial setups due
to clutter and noise, whereas the reverse problem, i.e. exchanging model and scene points,
does not capture the bin-picking setup too, due to mutual and self occlusion of the object
instances. Although these limitations can be coped by introducing a further “background
point” [54] that represents clutter and occlusion or by rejecting “poor” matches [76, 104],
for the moment, let us consider the simplified scenario of having no clutter or no occlusion,
however. We will get back to this issue in Sec. 2.2.1.

Fixed Correspondence and Missing Transformation

Assume that the correspondence assignment function k is known in prior, such that,
without loss of generality, v; € V corresponds to scene measurement ;. Then, minimizing
(2.1) with respect to 6 € SE (3) yields

i =00 2.2
%igsé?é?;”“ (v3) 15 (2:2)
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Algorithm 1 Tterative Closest Point Algorithm (ICP)
Require: 0 € SE (3)
repeat
update correspondence:

k(i) = arg min Huz - H(Uj) Hz
j=1,...m

update transformation:

0 = i i_ﬁ k(7 2
%rgg;?;\\u (0xi)) II5

until convergence

Depending on the representation of SE (3), this problem can be solved in closed form,
where we refer to [42] for details.

Fixed Transformation and Missing Correspondence

In contrast, assuming the Euclidean transformation 6 to be known, the optimal corre-
spondence assignment function k € F = {nn: {1,...,n}— {1,...,m}} is the solution
of

arg ?inz [|ui — 0 (vigi)) H; . (2.3)

i=1

As k(i) only depends on scene measurement u;, the optimal solution can be obtained
by minimizing Hul — H(Uﬂ(i)) H; separately for all i = 1,...,n, such that the optimal x(7)
reads as

k(i) = argmin ||u; — G(Uj)Hz :
7j=1,....m

As a consequence, given # € SE (3), the optimal correspondence is given by assigning
each u; to its closest transformed model point. To sum up, knowing either the Euclidean
transformation 6 or the assignment function x renders the minimization of problem (2.1)
being trivial.

However, as the determination of the Euclidean transformation and the correspondence
depends on each other and no prior knowledge exists in general, joint optimization of (2.1)
has to be applied that turns out to be involved.

2.2.1 Hard Correspondence Assignment

To cope with the problem of joint estimation of correspondence and Euclidean transfor-
mation, the objective (2.1) is typically updated in an alternating, iterative fashion. This
means, given an initial estimate on the Euclidean transformation 6, using (2.3) allows
to determine the optimal correspondence followed by an update of 6 according to (2.2)
subject to a fixed assignment function, and so forth.

This intuitive approach of minimizing (2.1) is commonly known in literature as the
Iterative Closest Point (ICP) algorithm [14, 27, 134], summarized by Alg. 1. Due to

10
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_1i0 —05 0.0 05 1.0

Figure 2.2: Simple scenario showing the major drawbacks of ICP algorithm. While having
a simple model (blue) and scene (black) supplemented by a single outlier (left),
the objective function of ICP with respect to horizontal translation amounts to
be highly non-smooth and non-convex (right) such that determining the global
optimizer is difficult.

the simplicity of the single steps of ICP, it still belongs to the class of state-of-the-art
algorithms for Euclidean point-set alignment and is widely applied in industrial vision
applications [111, 135]. Due to the subsequent minimization of the objective function,
Alg. 1 is guaranteed to converge to a minimizer of (2.1) [94].

However, because of the non-convexity of (2.1) resulting from hard correspondence
assignment, as well as presence of outliers and noise sketched in Fig. 2.2, Alg. 1 is known
to be susceptible to poor initialization such that it converges to local optimizer only.

To overcome this issue, a reasonable strategy is to remove outliers in prior or within early
iterates at the costs of introducing an additional threshold parameter [76, 104]. Let dpqx
be the maximal allowed distance of a scene sample to its transformed model counterpart
0(vy(iy). Then, the set of outliers can be defined as

U= {UZ “|uz - a(vﬁ(l)) ”% > dmaz} )
where the set of inliers is given by U=u \ U, respectively. _Hence, rejection of outliers
yields an update of the Euclidean transformation 6 aligning U to V best.

Instead of hard outlier rejection that typically further increases the non-smoothness of
the objective, smooth rejection strategies are widely applied within literature [15, 76, 104].
Let w; > 0,7 = 1,...,n denote weights that encode the relative certainty of u; being an
inlier. Then, aligning U/ to V amounts to restate the objective function in terms of a
weighted least squares problem as

> wiJui = 0(vey) |5
=1

where w; are typically determined relative to the inverse of HuZ — H(U,{(i))“z in prior.

However, similar to the hard rejection strategies, by definition, outliers highly depend
on the initial configuration of the Euclidean transformation. Hence, having lots of noise
and nearby outliers, a typical scenario in industrial applications, simple outlier removing
strategies are likely to fail as only “far away” outliers can be removed reliably [104, 105].

2.2.2 Soft Correspondence Assignment

To alleviate the non-convexity and the non-smoothness as well as the related sensitivity
to poor initializations, in the following we study smooth approximations of the objective

11
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alignment function (2.1). The smoothing of the objective function is generally based on
the following theorem.

Theorem 2.1. [100] Let x € R™ and let A C R™ denote the unit simplex, i.e. A =
{wlwe R, w; >0,Y ", w; =1}. Then, the value of a minimal entry of x is given by

n
min x; = min g W;Tj .

i=1,...,n well

The relation of Thm. 2.1 to (2.1) can be seen by rewriting the cumulative quadratic
Euclidean distance of point-to-point matches as the joint minimization problem of # and
the closest point assignment according to (2.2) and (2.3) as

n

min min HuZ A H;

0eSE(3 ) 1j:L-

such that we obtain the equivalent optimization problem

ool s,znéngw i = 0(v;) |5 - (2.4)

where w;; refers to the j-th entry of w; € R™. Thus, instead of considering the discrete
assignment problem that is part of (2.1), the optimal configuration can be obtained by
considering a continuous optimization problem on a continuous domain.

Soft Correspondences by Relaxation

Despite the redefinition of (2.1) as an optimization problem on a continuous domain,
minimizing (2.4) suffers from non-smoothness and non-convexity like the original objective
of ICP, as the optimal weights w; are indicator vectors in R™ that correspond to hard
assignment functions.

One possibility to cope with the non-smoothness of the objective introduced by hard
assignment and to remove the sensitivity to too local optima, is to modify (2.4) by adding
an additional regularization prior. Using the convex negative entropy barrier function [96]
with parameter A > 0, a suitable relaxed version of (2.4) reads

i min | 303wy flu = 0() [, A DD wlogwy | - (29)

i=1,..,n \=1J=1 i=1 j=1

Obviously, if A — 0 the solution of (2.5) equals the optimal configuration of (2.4) while
for A — o0, (2.5) is a convex function on a convex domain. Hence, for any A > 0 the
corresponding objective is smoother and less sensitive to poor initializations then (2.1) as
sketched in Fig. 2.3. Moreover, similar to (2.1), the relaxed variant (2.5) admits closed
form solutions in case of a-priori knowledge of either w; or # as we will see in the following.

Assuming w;; to be known, optimizing (2.5) yields to solve a weighted least squares
problem with respect to 6 € SE (3) that can be done in closed form [42] similar to (2.2).

12
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Figure 2.3: Visualization of the objective functions of the Iterative Closest Point algo-
rithm (left) and the smoothed variant of ICP using different control parameters
(right). While the objective of ICP is highly non-smooth and non-convex (solid
line), the smoothed variant of ICP is less sensitive to local extrema and yields
a smooth objective (dashed lines) at the cost of additional control parameters.

On the other hand, determining the weights w; € A for fixed 6, yields the sufficient
Karush-Kuhn-Tucker (KKT) conditions [18] given by

Huz —G(Uj)”§+)\logwij+)\+£i =0,
m
Zwijzl, V’i:1,...,n,
j=1

where &, = 1,...n denote the Lagrangian parameters caused by the simplex constraints.
The optimal weights w;; satisfying the KKT conditions read

exp (4 [Jui — 0(0y)|2)
Wi =

Sy exp (4 [lu = 0(wi)[3)

Consequently, similar to Alg. 1, it is reasonable to optimize (2.5) by iteratively updating
the Euclidean transformation 6 and the weights w;;, where the choice of A highly affects
the final result.

However, finding the optimal parameter A is difficult in general as choosing A too small
increases the non-smoothness of the objective as well as the sensitivity to inaccurate initial-
izations while large A typically result in poor approximations of the underlying objective
defined by (2.1).

This trade-off of robustness to poor initializations while assuring the final result being
an optimizer of (2.1) suggests to apply an annealing procedure [102, 96], i.e. starting with
A > 0 and subsequently reducing A to almost 0. Using a simple linear annealing schedule,
the relaxed variant of the ICP procedure can be summarized by Alg. 2.

Soft Correspondences by Probabilistic Modelling

However, deriving a precise meaning of the values of w;; is difficult in general, due to the
dependency on A. In order to model uncertainties more directly, we consider a probabilistic
description of the Euclidean alignment problem next.

Let us assume that each scene measurement u; is a concrete realization of a random
variable. Then, given a set of model samples V and a Euclidean transformation 6, the

13
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Algorithm 2 Relaxed Variant of ICP using Linear Annealing
Require: 6 € SE(3), 0 < Agop < Astart, p € (0,1)
A= Astart
while A > A\, do
repeat
update weights:

e (= 0w)15)
Sty exp (< fu = 0(w)3)

wij

update transformation:

0= argminz Zwij Huz - 19(”]') H;

VESE®) =7 i1

until convergence
A=pA
end while

likelihood of measuring the realizations specified by U reads as

n

P, unlf, 01, o) = [ p(wil,vr, o om) (2.6)
=1

where we assume the scene measurements to be pairwise independent given the model
samples and the transformation such that the joint distribution factorizes.

Albeit the lack of an analytic form of (2.6) that allows direct determination of the
Euclidean transformation maximizing the likelihood, we can tackle the optimization of
(2.6) using the expectation-maximization framework [36].

Let w; € {1,...,m},i=1,...,n denote the hidden random variables that indicate the
correspondence of the scene measurement u; to model sample v;. Marginalizing over the
domain of correspondences, i.e. summing over all possible configurations of w;, enables to
rewrite (2.6) as

n

Hp(uiw,vl, ey Um) = HZP(W,%"H,M’ cesUm)

i=1 =1 w;

Moreover, instead of maximizing (2.6), due to the concavity of the log-function, it is
common to consider the maximization of the log-likelihood

logHZ(p(uz‘,wiIG,m,...,vm)p(w |ui, 0, v1 v )> |

i=1 w; p(wi|uiaevvlv"'7vm)

where we augmented each term by the prior probability of the correspondence variable
p(wilug, 0,v1, . .., vm) given the model as well as a fixed 6 € SE (3). Then, applying Jensen’s
inequality, i.e. log (Y, f(z) p(z)) > >, log (f(x)) p(x) where p(z) is a probability density
function, as well as using the features of the log function, yields the log-likelihood to be

14



2.2 Correspondence-Dependent Functions

lower bounded by

Z ZIOg (p(ui7wi|9a V1yeees Um)) p(wi|uia 07 U1y avm) -

i=1 w;
n
Z Zlog (p(wl’uza éa U1, 7vm)) p(wi‘uiv éavh s 7vm) :

=1 w;

In literature, this function is known to be the so-called @ function [36] that is to be
optimized in the following using the alternating optimization approach of updating the
distribution of correspondences (expectation) followed by deriving the unknown Euclidean
transformation (maximization). For the problem of Euclidean point set registration, this
approach is commonly called the Expectation-Maximization (EM-) ICP algorithm [57].

Expectation: Updating the ) function with respect to the unknown prior distribution
of correspondences amounts to determine p(w;|u;, 0, v1, .. ., vy,) that solves the KKT con-
ditions of (2.7) given by

Zlog (p(uiawileavl’ oo 7vm)) - 10g (p(wi|uiaéyvl’ s 7vm)) + gl =0 )

Zp(wi’uiaéavla s >vm) =1 )
w;

foralli =1,...,n where & denote Lagrangian parameters. Then, the solution of the KKT
conditions can be computed in closed form and is given by

P(W':j’u-év V) = p(ui,wi = jlb,v1,...,vm)
7 iy 7, Uly .oy Unm Zznzlp(ui,wi:k"e,vl,,,,7vm) .

(2.8)

Maximization: To maximize the ) function with respect to the unknown Euclidean
transformation 6, we consider a parametric form of p(u;,w; = j|6,v1,...,vy) next. Ac-
cording to Bayes’ formula the joint distribution of scene measurement and correspondence
reads

p(uivwi :j‘e)vlr . 'avm) :p(u7,|w7, - juevvh cee 7vm)p(wi :j‘g,’Ul, cee 7vm) ) (29)

where p(w; = j|0,v1,...,vy) denotes the prior distribution encoding the probability that
any scene measurement corresponds to model sample v;. As the prior distribution can
be assumed to be independent of 6, we can rewrite the latter term of (2.9) as p(w; =

Jlvr, ..o om).

Moreover, assuming the ¢-th scene sample being caused by the j-th model point, i.e. w; =
7, it is reasonable to model the probability of measuring the realization of scene sample u; as
the relative deviation from the expected position #(v;) defined by the normal distribution

1 1
p(uilw; = 7,0,v1,...,0m) = ~ eXp <—%‘2 H“l — O(U])Hg) , (2.10)

where o > 0 is the user defined standard deviation of p depending on the expected noise
ratio of the measurements and z denotes the denominator of the normal distribution.

15
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As the second part of (2.7) does not depend on the Euclidean transformation, applying
(2.9) to (2.7) and inserting the normal distribution (2.10) yields the optimal 6 being the
argument maximizing

n m 1 | )
S5 (- gk o 0 s = )
i=1 j=1

n m A
Zzlog (p(wl :j|’Ul,... 7vm))p(wi :j‘ui70>v1>"'71}m) )

i=1 j=1

(2.11)

where we used the fact that w; is defined over a discrete domain to avoid numerical
integration.

A~

The prior distribution p(w; = j|ui, 0,v1, ..., vy) is assumed to be known from the expec-
tation step. Thus, optimizing (2.11) with respect to 6 € SE (3) turns out to be a weighted
least squares problem that can be solved in closed form similar to (2.2).

Finally, it remains to update p(w; = j|v1, ..., Vs ) introduced in (2.9). Solving the KKT
conditions subject to p being a probability distribution, lets the optimal prior read as

. 1< 4 A
plwi = Jlvi, ..., vm) = nz;p(wi = jlug, 0,v1,...,0m)
1=

forall j =1,...m.

This two step procedure of updating the distribution of the hidden correspondence
variables according to the expectation step (2.8) followed by maximizing the @ function
with respect to 6 and the prior distribution, gradually increases (2.7) and is guaranteed to
converge to a local optimizer [36] while providing precise interpretations of the variables
involved.

Moreover, letting o — 0, the update of the hidden variables using (2.8) results in Dirac-
distributions, such that the complete EM-ICP approach turns out to be the probabilistic
generalization of Alg. 1. However, similar to the relaxation of (2.1) defined by (2.5), the
performance of EM-ICP highly depends on the choice of the uncertainty parameter o of
(2.10) that controls the sensitivity to noise and poor initializations as well as the accuracy
of approximation of the original objective (2.1).

2.3 Correspondence-Independent Functions

In spite of the precise modeling of uncertainties and noise as well as the relaxation of (2.1),
there still appears to be room for improvements, especially concerning the requirement of
accurate initializations of point-to-point correspondences, where single wrong assignments
yield poor registration results in general. Moreover, as the optimization procedure is ham-
pered into the model representation it does not allow to apply sophisticated frameworks
to increase the performance in terms of speed and robustness.

To alleviate the explicit estimation of correspondences and related drawbacks, recent
approaches adopted continuous representations of point sets using probabilistic mixture
distributions [70, 121]. These representations for the model and the scene, respectively,
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Figure 2.4: Visualization of a discrete point set (left) and its related continuous represen-
tation (right) based on the probabilistic representation in terms of mixture
models of eqn. (2.12).

read

m(x;0,0m) Zﬂ'] (x,0(v));0m) , (2.12a)

(z;0%) Zn x,Uui;05) (2.12b)

with 73,75 >0, 330, 7 =377 7 = 1, and K (-, +;0) denoting a kernel function whose
scale is controlled by the parameter o. In [70], Gaussian mixture distributions with co-
variance ol where chosen, such that the kernel reads

1 1 )
K (z,y;0) = mexp (‘w |z — ?JH2> ) (2.13)
where z,y € R™. Despite of the dependency of K on its scale o, to improve readability of
the formulas we simply denote s(x;05), m(x;0,0,) by s(x), m(x;0), respectively.

The representation of discrete point sets in terms of (2.12) illustrated in Fig. 2.4, casts
the problem of aligning point sets to the task of minimizing the distance between mixture
distributions on the space of Euclidean transformations.

A generic distance measure for probability distributions, introduced by Basu et al. [6],
is given by the density power divergence

das.m) = [ (st = (14 1) soymiai 0)° + m(ai0)'+2)

(07

with a > 0. The most prominent realizations of this parametrized family of distance
measures include the fs distance (o = 1)

diy(som) = [ ls(@) = ma:0)1

as well as the Kullback-Leibler divergence (o — 0)

dir(s,m) :/s(as)log m(w:0)

While both the ¢5 and the Kullback-Leibler distance are widely applied within literature,
there are significant differences in terms of performance and robustness sketched in Fig. 2.5.
In the following, we analyze both measures in detail.
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[ V| |V

Figure 2.5: {5 distance measure (left) and Kullback-Leibler divergence (right) for two one-
dimensional mixture distributions with respect to translation for varying o. We
can clearly see that with increasing o, the KL distance effectively convexifies
the objective function, leading to increased robustness of registration.

2.3.1 /, Distance Based Registration

Minimizing the ¢ distance between two probability density functions with respect to
6 € SE (3) amounts to solve

. 2 ) .02
961151}5%)/1 (s(z)? — 2s(z)m(z; 0) + m(z;0)7) | (2.14)
where the first part is independent of the Euclidean transformation and can be omitted
from further considerations. Additionally, using the concrete representation of m(x,#) in
terms of Gaussian mixtures, it turns out that the last part of (2.14) is independent of
0 € SE(3), too. This can be seen by inserting the kernel’s definition (2.13) into (2.14).
Due to the well known properties of the Gaussian kernels, i.e. the product of two Gaussian
kernels is except of normalization a Gaussian kernel, the latter part of (2.14) reads as

SOS mm (0(0;), 0(0r); 20m) K (3: %(0(2}1) - 0(0))); ;am> . (215)

j=1 I=1

Owing to the fact that Euclidean transformations preserve the metric, i.e. Vz,y € R3,
|z —yll, = [|0(x) —0(y)|,, varying 8 € SE(3) does not affect the first part of (2.15).
Moreover, computing the integral of (2.15) according to (2.14) causes integration of the
latter Gaussian kernel of (2.15) exclusively, that is 1 by definition for any value of 6 €
SE (3). Hence, optimizing the f2 distance simplifies to minimize the central part of (2.14).

According to the properties of the representation in terms of Gaussian mixtures, the
simplified objective function that corresponds to the f5 distance (2.14) is given in closed
form as

n m
Z Z Tﬂij (ui, H(Uj); Om + US)
i=1 j=1
that in general admits fast evaluation compared to the continuous formulation (2.14)

requiring numerical integration.

In contrast, the Kullback-Leibler divergence does not admit closed form evaluation in
general. Thus, despite of the high non-convexity of (2.14), depicted on the left hand side
of Fig. 2.5, for the problem of Euclidean point set registration, minimizing the ¢ distance
is typically preferred [70].
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2.3.2 Kullback-Leibler Divergence Based Registration

To benefit from the convexity and its related robustness of the Kullback-Leibler (KL)
divergence, evaluating the natural distance between two probability distributions [33] is
typically done using Monte-Carlo simulations [98] or approximating the divergence mea-
sure [55]. These approximate evaluations, however, typically permit the application of
sophisticated higher order optimization techniques and increase of computational com-
plexity.

In the following, we will see that for the special case of Euclidean point set registration
and under reasonable assumptions a closed form expression of the KL divergence exists.
This allows to efficiently evaluate the distance measure and enables the application of
higher order optimization techniques.

Minimizing the KL divergence for Euclidean point set registration amounts to determine
6 € SE (3), by optimizing

dca(s,m) = [ s(a) o m“”((gj?e)

:/s(a:) logs(a:)—/s(x) logm(z;8) , (2.16)

where the first part does not depend on the Euclidean transformation and can be omitted
from further considerations.

Using the Gaussian mixture distribution of (2.12), the continuous point set represen-
tations contain scale parameters o, 0y, respectively. These parameters model noise and
uncertainty of the point correspondences. Hence, it is a reasonable assumption to confine
this degree of freedom to either the scene or the model. Taking into account, without
loss of generality, uncertainty and noise only in the representation of the model points,
i.e. 05 — 0, the continuous representation of the scene distribution reduces to a mixture
of Dirac deltas

os—0

s(z) = lim s(z) = ZTi5(ﬂf — ),
=1

where 6(x) = oo if x = 0 and d(x) = 0 otherwise. Insertion into the second part of
(2.16) and using the model representation (2.12) with Gaussian kernels (2.13) leads to the
problem

max T,logZW]exp< 57 Hul—e(vj)Hg) : (2.17)

0eSE(3

where we omitted all normahzmg constants.

Thus, minimizing the KL divergence between two Gaussian mixture distributions on
the space of Euclidean transformations yields an objective function that, under reasonable
assumptions, can be evaluated in closed form. Additionally, compared to (2.14) optimizing
(2.17) convexifies the objective with increasing o, and leads to increased robustness of
registration, as sketched in Fig. 2.5.

2.4 Relations to Correspondence-Dependent Functions

Determining the optimal alignment of two given point sets in terms of (2.17), yields the
optimization of a smooth objective defined on the space of Euclidean transformations. In
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2 Problem Statement and Optimization Criteria

Figure 2.6: Visualization of the lower (left) and upper (right) bounds of the objective of
the ICP approach (2.1) (cf. Fig. 2.3) specified by the log-exponential function
for varying values of o,. Despite the convergence of the bounds with ¢, — 0,
both lower and upper bounds provide accurate and smooth approximations of
the Euclidean matching problem.

the following, we will show that for specific choices of the parameters involved, minimizing
the Kullback-Leibler divergence turns out to be a generalized objective functional of the
aforementioned correspondence dependent registration approaches such as ICP, EM-ICP
and the ICP relaxation presented in Sec. 2.2.

2.4.1 Relation to ICP

To illustrate the relation of the objective functional (2.17) to the cumulative squared point-
to-point distance of corresponding samples given by (2.1), we highlight the role of the scale
parameter oy,.

Under the assumption of having uniform weights 7; = %,Ti = %, Vi=1,...,n,j =
1,...m dropping all constants yields (2.17) to be the sum of well known log-exponential

functions [99]
n 1
logZexp (—M [|u; — 9(”])”3) )
=1 "

that provide (up to scaling) for all o,,, > 0 upper and lower bounds on the “max” function
given by

m
1
oitog Y exp (o s = 00, I3) o logm
=1 "
S I
i 1
<02 logZexp (—22 i — 9(”])“3) :
j=1 7m

As visualized in Fig. 2.6, these bounds illustrate that (2.17) is a smoothed version of
(2.1) and (including scaling) uniformly approximates for o, — 0 the cumulative squared
distance of transformed model points #(v;) to measurement samples u;.
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2.4 Relations to Correspondence-Dependent Functions

This result also shows that the log-exponential functional (2.17) includes as special case
the objective function suggested in [55], i.e. the approximation of the KL-distance using
the sum of “min” functions.

Although, the optimal configuration of (2.17) is a solution of (2.1), in general it is
beneficial to let o, > 0, as for increasing values of oy, the objective function (2.17) not
only is convexified but also exhibits a less biased global optimum (see Fig. 2.7). Thus, using
a finite value of o0, allows to properly capture the uncertainties of implicit correspondence
and increases the robustness to noise and outlying structures occurring in most vision
applications.

Similar to these considerations, we can also establish a connection to outlier rejection
strategies previously introduced in Sec. 2.2.1. Using an additional background kernel
Ky o< exp(— 2 ¢) in (2.17) for a user parameter ¢ > 0, the sum of log-exponential functions
provides upper and lower bounds to

1 2
{5 s = 00l ~c}
that is closely related to the hard outlier rejection of Sec. 2.2.1.

2.4.2 Relation to ICP-Relaxation

The fact that (2.17) also provides a generalization to the smoothed variant of ICP defined
by (2.5) is primarily based on the following theorem.

Theorem 2.2. [117] For any given d; € R, j = 1,...m and 7 € A, with A = {w €
R™[>2H wj = 1,w; > 0}

m
log ; mje = max Z wj d Z wj 10g —

Thus, the log-exponential function turns out to be directly related to the entropy barrier
function used in [96]. To apply Thm. 2.2 to (2.17), let us assume to have uniform weights
T = %,7?]- = %,Vi =1,...n,5 = 1,...,m, respectively. Moreover, abstraction of the
cumulative log-exponential function (2.17) by replacing the weighted negative squared
Euclidean distance —ﬁ |ui —60(v;)|13 by d(ui, 0(v;)) lets the objective functional being a

composition of the log—exponential and d given by
ZlogZexp ug, 0 ))) .

This directly applies to Thm. 2.2 such that we obtain an equivalent formulation of (2.17)
given by

max max Zw u (v Zw log w; 2.18
0ESE(3 wZGA ij za j ij 108 Wij P ( )

where again we dropped all constants. Then, back insertion of the definition of d(ui, 9(1)]-)),
transfers (2.18) into a minimization problem, and by substituting 202, for \, we directly
obtain (2.5).

This shows that each optimizer of (2.5) is also an optimal configuration of (2.17) and
vice versa. Additionally, to obtain an optimizer of (2.17), we can apply the two step
approach of Alg. 2

21



2 Problem Statement and Optimization Criteria

f f
1 t
10  -05 0.0 05 1.0 10  -05 05 1.0
f
t
0.10!
0.05!
02 04 \06 08 107Mm
10  -05 05 1ot _0.05

Figure 2.7: Comparison of the smooth objective functional (2.17) with the criterion (2.1)
where the correspondence function (i) assigns the observation u; to the closest
model point v,(;). The “model” consists of two scalar values vy =0, v2 =1,
and we assume to have observed the same two values as uj,u92, and a single
additional value uz € (0, 1) at some arbitrary position in between as sketched in
Fig. 2.2. We inspect the optimal registration in terms of the scalar translational
value ¢t — which obviously is ¢ = 0 — in terms of both objective functions. Top
left: Objective function (2.1) not only is non-convex but also has a biased
global minimum. Top right, bottom left: For increasing values of o,, the
objective function (2.17) not only is convexified but also exhibits a less biased
global optimum. Bottom right: Position of the global optimum as a function
of o,. For a significant range of this parameter value minimizing (2.17) give a
more accurate result. The constant value on the top corresponds to the global
minimum of (2.1) depicted on the upper left panel.

2.4.3 Relation to EM-ICP

The expectation maximization algorithm is a workhorse for many statistical estimation
problems. Below we provide the background, allowing to interpret the EM-ICP approach
presented in Sec. 2.2.2 as special instance of the problem of maximizing the log-exponential
defined by (2.17).

Let us assume 7; = %,i = 1,...n to be constant and the objective functional be-
ing represented in terms of the composition of the log-exponential and d(ui,e(vj)) =

— 527 [lus — 0(v;)|13, as analyzed previously. Then, direct application of Thm. 2.2 yields
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2.5 Summary and Further Work

the equivalent optimization problem

n

0?51%? g}gﬁ Zwm u;, 0 vj wa log w;; + wa log mj o . (2.19)

Using the well known property of the log-function, i.e. zlog y + zlog z = xlog (yz), we
obtain

9(1}
max max E w;; lo iU ;g E w;; log w;
0ESE() wiEd 4 g( ) i 108 Wi (-

=1

where optimization with respect to w; € A corresponds to the computation of the expecta-
tion step defined in (2.8). This can be seen by letting w;; = p(w; = j|u;, 0,v1,... , U ) and
(up to scaling) exp (d (ui, Q(Uj)))ﬁj be the joint probability of measuring scene sample u;
and the correspondence, i.e. p(u;,w; = j|0,v1,...,vn), that can be decomposed according
o (2.9).

Moreover, assuming to have fixed w; € A, maximizing (2.19) with respect to 6 € SE (3)
and m; such that 2?21 mj = 1, amounts to solve (2.11) being the maximization steps of
EM-ICP. Thus, the formulation of the expectation maximization approach in terms of an
Euclidean point set registration problem can be interpreted as a specific version of (2.17).

2.5 Summary and Further Work

Summary

In this chapter we presented and analyzed different approaches to model the problem
of Euclidean point set registration. This includes the established Iterative Closest Point
procedure that is based on the cumulative squared point-to-point distance of corresponding
samples where the optimal configuration is obtained by iteratively updating the Euclidean
transformation followed by readjusting the correspondences.

To address the drawbacks of this approach, i.e. sensitivity to poor initializations and
the lack of robustness to noise, in Sec. 2.2 we presented two extensions derived from
relaxation of the correspondence assignment function as well as probabilistic modelling of
the uncertainties. For exhaustive numerical evaluations of sensitivity to noise and to poor
initial configurations of these approaches, we refer to Chap. 5.

However, the major drawback concerning the representation of the problem persists,
i.e. explicit correspondences increase the non-convexity and non-smoothness of the ob-
jective function, and gaining insight into the optimization problem is hampered by the
complicated structure of the domain of optimization comprising both Euclidean transfor-
mations and correspondence variables. Thus, in Sec. 2.3 we tackled the problem of deter-
mining explicit correspondences by representing model samples and scene measurements
in terms of mixture distributions, where the optimal Euclidean transformation is derived
from a parametric family of distance measures that include the /5 and the Kullback-Leibler
distance as special instances.

We proposed to use the natural distance measure between probability distribution,
i.e. the KL divergence. Additionally, we showed that under reasonable assumptions, in
the case of Euclidean registration this measure can be evaluated in closed form without
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2 Problem Statement and Optimization Criteria

requiring numerical integration and finally turns out to consist of the sum of well-known
log-exponential functions. Addressing the Euclidean alignment problem in terms of mea-
suring the KL divergence between mixture models, we showed in Sec. 2.4 that minimizing
the sum of log-exponential functions provides lower and upper bounds for objective defined
by ICP and can (for specific choices of the parameters) be optimized using EM-ICP and
the ICP-relaxation.

Further Work

Despite of the generalization of this novel formulation for the problem of Euclidean reg-
istration, there are three major issues that have to be addressed. Due to the removal of
explicit correspondences, determining the Euclidean transformation cannot be obtained
in closed form. However, because of the smoothness, it enables to apply higher order
optimization techniques. Thus, we have to investigate techniques to numerically optimize
an objective defined on the space of rigid body transformations. This problem will be
addressed in Chap. 3.

Moreover, formulating the problem of Euclidean alignment in terms of minimizing mix-
ture distribution only removes the non-smoothness of the objective function. Hence, con-
vergence to a stationary point only guarantees local optimality. Especially in the setting
of having multiple objects in the scene (see Fig. 1.1) many local optima can appear such
that accurate initializations are important to guarantee proper registration results. The
problem of determining likely positions of objects in the scene will be investigated in
Chap. 4.

Finally, while there are dozens of extensions to speed up the run-time of ICP, such as
using efficient data structures [11] or applying multi-resolution schemes [72], evaluating
the sum of log-exponential functions requires O(nm) operations, despite of its closed
form expression. Due to the steadily increasing resolution of modern scanning devices, in
further work we will focus on fast evaluation of the objective without destroying significant
structural and geometric properties of the corresponding point sets.
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Chapter 3

Geometric Optimization on SE (3)

3.1 Overview

3.1.1 Introduction and Motivation

Determining the optimum of an objective function forms the basis of most computer vision
algorithms, where the concrete representation of the objective as well as the domain of
definition influence the complexity of the problem [18].

In this chapter, we investigate different optimization techniques for determining the
solution of problems with geometric constraints, i.e. the domain of definition is a smooth
manifold as sketched in Fig. 3.1. Problems of this kind arise in different fields of application
such as object localization [111, 135], camera calibration [62], or reverse engineering [77].
In concrete terms, we consider problems of type

L fY),
where f : SE(3) — R is assumed to be a smooth function and SE (3) denotes the space
of Euclidean transformations. To determine the optimal configuration Y € SE (3) mini-
mizing f, we propose different optimization approaches based on higher order geometric
integration techniques and investigate a novel Newton-like algorithm that fully exploits
the underlying properties of the smooth manifold.

3.1.2 Related Work and Contribution

The minimizer of an objective function defined on a continuous domain, is typically com-
puted using optimization methods such as gradient descent or Newton-like approaches.
However, if the underlying domain is a smooth manifold as depicted in Fig. 3.1, applying
such schemes significantly differs from standard techniques.

A common approach to cope with optimization problems whose solution lies on a smooth
manifold, is to represent the manifold by a local parametrization. In the special case of
Euclidean transformations such representations include Euler angles [47, 122], quaternions
or dual-number quaternions [66], or transformation matrices. While Euler angles allow to
reformulate the constrained optimization problem in terms of an unconstrained counter-
part, this representation suffers from singularities. In contrast, quaternion representation
copes with singularities at the costs of additional quadratic equality constraints and the
more involved Hamiltonian algebra.

For optimization and numerical algorithm design, working with the matrix representa-
tion of the group of Euclidean transformation is more appropriate [2].

While direct search algorithms such as Nelder-Mead optimization [79] can be extended
to these representations, more sophisticated approaches using first or second order infor-
mation of the objective are typically superior in terms of speed of convergence and are
easier to characterize mathematically.
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3 Geometric Optimization on SE (3)

Figure 3.1: Visualization of exemplary smooth manifolds embedded in R3: a sphere, a
torus and the so-called Klein bagel, that is a figure-8 torus with a 180 degree
Mobius twist inserted.

Based on the abstract work of Gabay [50], Smith [112] outlines a rather general math-
ematical framework for optimization algorithms such as gradient descent, conjugate gra-
dients, and Newton’s method on Riemannian manifolds. Edelman et al. [41], Hiiper and
Trumpf [68], and Owren and Welfert [91] presented specific continuous optimization meth-
ods by considering matrix manifolds related to the orthogonal group (Grassmann and
Stiefel manifolds). Related to this work, Adler et al. [3], for instance, proposed a corre-
sponding Newton-like algorithm for human spine alignment.

In the case of optimization with respect to Euclidean transformations, the problem is
typically addressed by either representing the objective in terms of an orthogonal matrix
[80] exclusively, that is only possible for few objectives, or by optimizing with respect to
translation and rotation separately [62]. However, as translation and rotation are inter-
dependent in general, such approaches are likely to suffer from more restrictive numerical
convergence properties.

Pottmann et al. [94] suggested an optimization method for iterative registration based
on successive local first- and second-order approximation of the manifold of Euclidean
transformations at the current iterate. Related problems of computer vision, including
multiple point set alignment and tracking, were studied e.g. by Krishnan et al. [77], Taylor
and Kriegman [116], Benhimane and Malis [9], and Drummond and Chipolla [40]. We
consider the geometric optimization approach [94] in more detail and work out differences
to the approach suggested in this chapter.

Finally, we refer to very recent work [64, 81, 90] on global optimization approaches to
solve the problem of model-based pose estimation. While all of them apply branch and
bound techniques for exploring the pose parameter space, Hartley and Kahl [64] as well as
Olsson et al. [90] require very special settings, i.e. explicit correspondence of scene points to
convex model parts. In contrast, Li and Hartley [81] works without such correspondences.
However concerning applications such as point set alignment, the major problem with
these works is that run-time badly scales with the problem size, e.g. about 20 min for
200 points. Therefore, these sophisticated approaches are unfortunately not applicable to
realistic industrial settings with hundreds of points.

In this chapter, we investigate two conceptually different ways to determine the optimum
of a smooth objective defined on the group of Euclidean transformations. By extending
Runge-Kutta-type integration directly to the group of Euclidean transformations, we infer
the optimal configuration by computing the gradient flow directly on the related manifold.
Additionally, we point out the relation to standard methods such as gradient descent.
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3.2 The Geometry of the Euclidean Group

Moreover, we devise and study a second-order optimization method that fully exploits
the geometry of the manifold of Euclidean transformations in order to optimize a smooth
objective functional. Finally, we analyze the differences to state-of-the-art second-order
approaches. Contents of this chapter have been published previously in [22, 23].

3.1.3 Organization

To determine the optimum of an objective function that is defined on a smooth manifold
requires detailed analysis of the underlying geometry. In Sec. 3.2 we summarize properties
of the space of rigid body transformations such as group operations, tangent spaces and
derivatives.

Using these properties, in Sec. 3.3 we devise geometric integration techniques to recon-
struct the flow induced by the gradient of the objective while staying on the manifold of
Euclidean transformations. This guarantees to determine the optimizer of an objective,
given a proper initialization.

However, as these algorithms typically converge slowly, in Sec. 3.4 we propose a novel
Newton-like optimization scheme that fully exploits the properties of the underlying man-
ifold while using up to second-order information of the objective functional. We analyze
relations to state-of-the-art approaches and comment on benefits and drawbacks of this
approach. Finally, we conclude in Sec. 3.5 and point out further work.

3.2 The Geometry of the Euclidean Group

Determining the optimizer of an objective functional that evolves from a curved space,
i.e. a manifold, requires to analyze the detailed structure of the domain of definition.

In the sequel, we briefly review some general properties of a differentiable manifold such
as curves and tangents, and analyze the concrete realizations of these concepts concerning
Euclidean transformations represented as a matrix group. Throughout this section, we
assume all functions and mappings to be differentiable of arbitrary order. For further
details on differentiable manifolds, we refer to [37, 78, 113].

3.2.1 Differentiable Manifolds

Informally, a smooth, differentiable d-dimensional manifold can be defined as a smooth
surface M C R", covered by a “suitable” collection of patches S; that locally look like
the Euclidean space R?. Mathematically, this yields the following definition illustrated by
Fig. 3.2.

Definition 3.1. A d-dimensional, differentiable manifold is a set M and a family of
injective mappings ¢; : S; C R% — S; C M such that

1. U, 9i(Si) =M
2. for any pair i,j with ¢;(S;) N ¢;(S;) =W # 0, the sets it W), qu_l(W) are open
in R and the mapping ¢; ' o ¢; is differentiable.
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3 Geometric Optimization on SE (3)

A R4

Figure 3.2: Sketch of a d-dimensional, differentiable manifold that is partially covered by
two sets ¢;(S;), ¢j(S;), such that S;,S; € R, ¢;(S;) N ¢;(S;) # 0 and the
composed mappings ¢j_1q§,-, (bi_lqu are differentiable.

Each pair (S;, ¢;) is called a local parametrization of M at Y € ¢;(S;) and ¢;(S;) is
the coordinate neighborhood of Y € M. A family {(S;, ¢;)} satisfying the properties of
Def. 3.1 is called a differentiable structure [37].

The simplest example of a smooth, differentiable manifold is the Euclidean space R",
where the family of injective mappings is given by the identity map. In this case, the
inverse mappings of two overlapping open sets are open and overlap smoothly.

Next, we consider the definition of tangent vectors to differentiable manifolds, i.e. di-
rections on the curved space.

Tangent Spaces
The subsequent steps will motivate the definition of a tangent vector. Let v : (—¢,€) — R4

be a curve in R? with (t) = (z1(¢),...,z4(t)). The derivative of (t) with respect to t,
evaluated at ¢ = 0 is given by

4(0) = (i1(0), ..., dq(0)) € RY .

Now, let h be a function defined in the local neighborhood of Y € M. Restricting h to
the curve v allows us to express the directional derivative of the composite function as

d
%—>0 h ° f)/ (Z xz 8332)
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3.2 The Geometry of the Euclidean Group

Figure 3.3: Illustration of tangent space 7 parametrized such that the basis of 7 equals
the tangents of the corresponding coordinate curves.

where %h refers to the derivative of h with respect to x;. Hence, the directional derivative
is an operator on functions that depends on %4(0). This characteristic property allows to
define tangent vectors on a manifold.

Definition 3.2. Let M be a differentiable manifold, and v : (—€,€) — M a curve in M
such that v(0) =Y € M. Let D be the set of functions on M that are differentiable at'Y .
Then, the map ¥(0) : D — R given by

d
$(0)f =lim = (for),  feD

1s called a tangent vector of M atY.

The set of all tangent vectors to M at Y is denoted by 7y and is called the tangent
space at Y. Moreover, the tangent space is closed under addition and scalar multiplication
and forms a vector space of dimension d [82]. The collection of all tangent spaces 7y for
all Y € M is called the tangent bundle and is denoted by 7 M.

Choosing a parametrization ¢ : S — S C M, where S C R? and Y € S, such that
¢t oy(t) = (z1(t),...,zq(t)) allows %(0) to be expressed in the parametrization = by

50 = S0 () - 1)

i

Thus, the choice of the parametrization determines the associated basis of the tangent
vector space 7y. This is illustrated in Fig. 3.3. Again, in the simple case of interpreting
R™ as a Kuclidean manifold, where the parametrization can be set as the identity, the
tangent space at a certain point turns out to be R” itself.

Tangent Vector Fields

Due to the geometry of the underlying manifold M, tangent spaces at distinct points differ
in general. Thus, to travel along a manifold properly, we need to analyze the relations
between tangent vectors in terms of vector fields defined on 7 M.

Definition 3.3. A tangent vector field ¥ on a differentiable manifold M is a correspon-
dence that associates to each point Y € M a tangent vector W(Y') € Ty. The vector field
U is differentiable, if the mapping ¥ : M — T M is differentiable.
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3 Geometric Optimization on SE (3)

Using the local parametrization of a tangent vector, given by (3.1), allows to write the
tangent vector field locally as

V)= S u) (5)

where ¢; : M — R is a function defined in the local neighborhood of Y. Hence, ¥ is
differentiable if and only if all functions ); are differentiable.

The set of all differentiable vector fields on M is denoted by X(M). Closely related
to tangent vectors, vector fields can be interpreted as mapping defined on the set of
differentiable functions.

Affine and Riemannian Connections

Let ¥ € X be a vector field on M and Y1,Ys € M with Y] # Ys. Due to the geometry of
M, U(Y7) and ¥(Y3) are typically not element of the same tangent space. Thus, to fully
analyze ¥, we have to consider the connection between nearby tangent spaces. However,
this requires to introduce one of the most fundamental concepts in differential geometry
namely the affine connection, i.e. the changing of tangent vector fields when traveling along
a curve on the manifold that is induced by a vector field.

Definition 3.4. An affine connection ¥V on a differentiable manifold M is defined as a

mapping o
Vi X(M)xX(M) — X(M)
(P, V) — VoW

which satisfies for ®, U, T € X(M) and g,h € D the following properties:

1. iqu_h\pT = gqufr +7h§\pT ,
2. Vo(V+T) = VoVl +VeT,
3. Va(g9¥) = gVoV + @(g)V¥ .

Let us choose a system of local coordinates according to (3.1), with a local basis given
by L; = % such that each ¥, ® € X reads as

=3 &i(Y)Li, W=3 (V)L

respectively, where ¢;,1; : M — R specify the coefficients of the vector field in terms of
local functions on the manifold. In the sequel, it will be convenient to write ¢;,; instead
of ¢;(Y'),1;(Y) to improve readability of formulas.

Then, according to Def. 3.4, the affine connection can be rewritten as

Vol = ﬁzi il Z il = Z @ﬁﬁl (Z wj/:j)
j A J
= "0tV Li+ Y hili()L;
7] .3

where setting ﬁgiﬁj => Ff’jﬁk, with I'} k belng the so called Christoffel symbols, simpli-
fies the affine connection to

Vol = Z <Z¢Z¢jr oW ))Ek , (3.2)
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3.2 The Geometry of the Euclidean Group

Figure 3.4: Parallel transport of the tangent vector ®y along the curve ~y(¢). While simple
parallel moving in the Euclidean space typically cause non-tangential vectors
(dashed), transporting the tangent ® according to V along ~(t) yields ®; to
be a tangent to y(t) at y(1).

which shows that VWU depends on ¢;, 1; as well as on ®(¢,). For given vector fields ®, U,
these expressions can be computed in an analytical manner such that the affine connection
consequently can be uniquely specified in terms of the Christoffel symbols Ff]

Additionally, using the definition of the affine connection, the concept of parallelism
follows in a natural manner.

Definition 3.5. Let M be a differentiable manifold with an affine connection V. A vector
field ® along a curve y(t) € M is called parallel when Vg ® = 0, where W is the tangent
vector field induced by v, i.e. \Il('y(t)) =4(t).

For every curve -, where Uy is the tangent vector at y(tp), ® is called the parallel
transport of Wy along v. A curve «, transporting its own tangent vector parallel to the
curve is called a geodesic, i.e. VgW¥ = 0, where V¥ is the tangent vector field induced by
7. The principle of parallel transport is depicted in Fig. 3.4. The affine connection Vg ®
along an induced vector field ¥, is commonly called the covariant derivative of ®.

While there are multiple affine connections for a smooth, differentiable manifold M,
some are of special interest with respect to geometric analysis. To derive these connections
however, requires M to be endowed with a Riemannian metric [37].

Definition 3.6. A Riemannian metric on a differentiable manifold M is a correspondence
which associates to each point Y € M an inner product (-,-) on the tangent space T M.

Definition 3.7. Let M be a smooth differentiable manifold with an affine connection V.
A connection is said to be compatible with the metric, if for any smooth curve v and any
pair of parallel vector fields ®, ¥ along 7, (P, V) = const.

Hence, whenever transporting tangent vectors along a smooth curve in M, the inner
product should not change. Additionally, a connection that is compatible with the metric
lets us differentiate the inner product according to the usual product rule.

Definition 3.8. A connection V on a Riemannian manifold is compatible with the metric
if and only if

(U, T) =(Vol,T)+(V,VsT), &0,TeX(M).
Despite preserving the metric, it may happen that the tangent space twists around

the curve ~y(t) when being parallel transported. This is commonly known as torsion. To
guarantee that no torsion occurs, the affine connection has to be symmetric [78].
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3 Geometric Optimization on SE (3)

Definition 3.9. An affine connection ¥V on a smooth manifold is said to be symmetric if

VoU —Vy® = [®,¥] , forall®, ¥ e X(M).

An affine connection being symmetric and compatible with the metric endowed to M
is called the Levi-Civita- (or Riemannian-) connection and is unique [37].

For an illustration of these concepts, observe that in the special case of the Euclidean
space R™ all Christoffel symbols vanish [37], i.e. Fi-“j = 0. Hence, the affine connection in
terms of its classical expression (3.2), coincides with the usual derivative in the Euclidean
space. Compatibility of the metric according to Def. 3.8 yields the well known product
rule in R™.

3.2.2 The Manifold of Euclidean Transformations

After reviewing the general concept of a smooth, differentiable manifold, let us now focus
on concrete realizations for the space of Euclidean transformations.

The Lie Group SE (3) and the Algebra se (3)

To show that Euclidean transformations naturally form a differentiable manifold, we pri-
marily make use of the fact that SE (3) forms a group that is defined as follows.

Definition 3.10. A group G is a set of elements together with a group operation & that
satisfy the fundamental properties:

1. Closure: A BeG=ApBecg

2. Associativity: VA,B,CeG,(A@B)eC=A¢(BaC)

3. Identity: JIeG suchthat  PA=AdI=A

4. Inverse: VAcG,3IB=A"'1ecGsuchthat Al A=Ap A~ '1=1

Using matrix representation, Euclidean transformations Y = {R,t} € SE(3) map a
point z € R3 to Yo = Rx +t € R3 and form a group via concatenation Y;Yy =
{Rl,t1}{R2,t2} = {R1R2,t1 —l—thg}. As R € SO(3), i.e. RRT = T and det (R) =1,
the inverse element of Y is Y1 = {RT, —RTt}.

For the purpose of optimization and numerical analysis, it is convenient to identify
SE(3) C GL(4) with a subgroup of all 4 x 4 regular matrices with respect to matrix
multiplications. Keeping the symbols for simplicity, this representation reads

R t _ RT —-RTt
Y:(OT 1), le<0T ) > (3.3)

In this way SE (3) becomes a differentiable manifold embedded into GL (4), hence a Lie
group and enables us directly to apply the theory of Sec. 3.2.1. Associated to each Lie
group is the Lie algebra [124], whose underlying vector space completely captures the local
structure of the group. In the case of SE (3) represented as matrix group, the corresponding
Lie algebra is given by

se(3) = { (gﬁ TJ) ‘ Tr' =—-Tr,Y: € ]R3} . (3.4)
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3.2 The Geometry of the Euclidean Group

The family of injective mappings required by Def. 3.1, which allows to recover the local
group structure from the local parametrization se (3) to the curved space SE (3), is given by
the exponential map exp : se (3) — SE (3), that reads in the case of matrix representation
as

1 1 1
exp(T) :ZHT =T+T 4500+ 2 TYT 4
k=0
i.e. the usual matrix exponential [56]. Due to the special structure of T € se(3), the
matrix exponential can be evaluated in closed form.

Theorem 3.1. [86] Let T € se (3) be an element of the Lie algebra associated with SE (3).
Then, the exponential mapping exp : se (3) — SE (3) is given by

exp(T) = (exp(TR) AL) |

0" 1
where
Sin(”TRHQ) 1-— COS(HTRH2)
exp(Yr) =1+ ——=Tpg ,
(R P TR
1-— T T —sin(||Y
A=T+ cos(|| 2R||2)TR+ TR, Sln(3H RHQ)TRTR
1T Rl 1T Rl

The closed form expression of the matrix exponential in terms of its rotational part,
i.e. exp(Tg), is commonly known as Rodrigues’ formula. The idea to prove Thm. 3.1
is primarily based on the characteristic property of skew symmetric matrices such as
TrRYrYr=—|Y RH% Tr, as well as on the representation of the trigonometric functions
sin, cos as infinite series.

Moreover, the exponential mapping, given by Thm. 3.1, defines a surjective mapping
from se (3) to SE (3) [86]. Thus, se (3) provides a proper parametrization of the manifold
of Euclidean transformations.

Tangent Spaces of SE (3)

The geometric link between the Lie group and its related Lie algebra is the fact that the
algebra can be viewed as the tangent space to the Lie group at the identity [124]. To
illustrate this, we will have a detailed look to the property of the existence of the inverse
for each Y € SE (3) (cf. Def. 3.10), i.e.

Yy '=1.

Let Y () be a smooth curve on the manifold SE (3) parametrized by ¢. Computing the
derivative of the inverse equation with respect to t, yields

Yy levyy1t=0.

Together with the definition of Y, Y ~! given by (3.3), this simplifies to

T= (5{5 Et> =YYy !,
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3 Geometric Optimization on SE (3)

where Tg is a skew- or anti-symmetric matrix, i.e. Yo = —Yp'. Right hand side multi-
plication of both sides by Y yields the ordinary differential equation

Y =TV, (3.5)
that specifies the general structure of a tangent element of SE (3) at Y as

Ty = {Y‘Y:TY,TR:—TRT} . (3.6)

Hence, in the special case Y = I, the tangent space 77 coincides with the Lie algebra
specified in (3.4). Additionally, we can obtain a parametrization of 77 according to (3.1),
using the canonical basis of se (3) given by

00 0 0 0 010 0 -1 0 0
00 —1 0 0 000 1 0 00
L= o1 0 ol 2= |1 000]l" %= 1o 0 0ol
00 0 0 0 000 0 0 00
000 1 000 0 000 0
000 0 000 1 000 0
La= 0000| = 000 0| %67 000 1|
00 0 0 000 0 000 0

such that each T € 77 is given by

’—%
|
-
c
Bl
)
Bl
w
-

k=1

with v, e R,k =1,...,6.

Tangent Vector Fields

Due to the dependency of the tangent space 7y on Y € SE(3), tangent spaces differ
between distinct points. Hence, we have to consider tangent vector fields on SE (3) as
introduced in Def. 3.3, next. From the viewpoint of optimization [2] and flow field com-
putation [69], there are tangent vector fields that are of special interest, such as fields
induced by a curve Y (¢) on the manifold SE (3).

The most intuitive way to define a curve in SE (3) is to use its corresponding Lie algebra.
Let O(¢t) : R +— se (3) be a smooth curve with ©(0) = 0 € se(3). Due to the properties of
the exponential map, we can define a curve in the local neighborhood of Yy € SE (3) as

Y () = exp (1)) Yo,
that is differentiable. To compute the tangent vector field induced by Y (¢) we have to
consider the first order derivative with respect to t.

In the scalar case, where 6(t) : R — R and the curve is given by y(t) = exp (6(¢))yo € R,
simple differentiation shows that the corresponding tangent reads as §(t) = 6(¢)y(t). In
the case of the matrix valued representation of SE (3) however, the corresponding results
are more involved.
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3.2 The Geometry of the Euclidean Group

Definition 3.11. Let O(t) : R — se (3) be smooth and differentiable. The differential of
the exponential mapping dexp is defined as the tangent of the exponential given by

% exp (O(t)) = dexpg ) (@(t)) exp (O(t)) .

According to the rules of differentiation, the first order derivative of the curve Y (t) with
respect to t is given by

Y () = dexpogy (1)) exp (O(1)) Yo .

where the first part denotes the derivative of the exponential map. Due to the possibility
of representing exp as an infinite sum, the derivative of the exponential can be expressed
analytically [69] as
1 1
dexpy (®) =P + B [V, @] + 30 W, [V, ®]]+...,
where [0, ®] = ¥® — ®W € se(3) denotes to the Lie bracket [124]. Thus, the tangent
vector to the curve Y (¢) at t = 0, is given by the linearization of O(t) at ¢t = 0, i.e. ©(0).

Levi-Civita Connection on SE (3)

Additional to the computation of tangent vector fields, for higher order optimization al-
gorithms, it is essential to analyze the variation of an arbitrary vector field when moving
along a curve, i.e. the covariant derivative along tangent vector fields.

Theorem 3.2. [37] Let M be a smooth manifold with an affine connection V. There
exists a unique correspondence which associates to a vector field ®(t) = \II(Y(t)) with
T € X(M), another vector field L& such that

d _

Thus, the derivative of vector fields along curves is directly related to the affine connec-
tion on the manifold. Let us now consider the concrete realization [113, 125] of the affine
connection on SE (3).

As we have seen previously in (3.2), the affine connection can be uniquely specified
using the Christoffel symbols Ffj Hence, to compute the covariant derivative in terms

of Thm. 3.2, we have to specify Ffj for connections assigned to the space of Euclidean
transformations.

While there are infinitely many affine connections satisfying the requirements of Def. 3.4,
we are looking for the connection that additionally preserves the metric and is symmetric,
i.e. fulfills the properties of Def. 3.8 and Def. 3.9

Hence, we have to specify a Riemannian metric for the manifold of Euclidean transfor-
mation. Due to the fact that SE(3) C GL (4), we use the standard inner product of the
ambient Euclidean space [41]

(®, ) = tr (qﬂxy) , (3.8)

which is the canonical inner product for matrices.
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3 Geometric Optimization on SE (3)

Symmetry and preservation of the metric has to be fulfilled for all vector fields ®, ¥ €
X(M), and consequently for all basis vectors £; such that

ﬁﬁiﬁj _vﬁjﬁi = {&7 L;] o
L (Li, L) = (Ve Lis L) +(Li, Vi, L)
forall 2,5,k =1,...6.

Let Li,...,Ls be the canonical basis of the Lie algebra se (3). For the Lie bracket
[Li, L;], we obtain [£;,L;] =0 for all i,5 =1,...,6 except of

[£1a£2] = £3 ) [£17£5] = ‘66 ) [£2a£3] = El )
[L3,L1] = Lo, [L3,L4] = L5, [L4,L2] = Lg,
(L5, L3] = L4, [LeL1] = Ls,
with corresponding antisymmetric counterparts, i.e. [£;, £;] = — [£;, £;]. Additionally, as

the standard metric induces a constant metric tensor g, with g;; = (£;, £;), derivation of
gij along L, vanishes and consequently

0= <vgk£i,ﬁj> + <£i,vaﬁj> .

Finally, as the covariant derivative of basis vector fields simplifies to

Ve li=Y Thly,
k

insertion into the characteristic equations of symmetry and metric preservation yields a
system of linear equations determining uniquely the Christoffel symbols that specify the
Levi-Civita connection. The non-zero Christoffel symbols yielding a connection that is
symmetric and compatible with the metric [22, 125] are given by

1
My =Tl =13, = L

1
F%3 = F%1 = lem = —57
F?5:F%6:Fg4:17
F?ﬁ = FS4 = F§5 =—1

This lets us uniquely specify the covariant derivative of vector fields while moving along
a curve in the space of Euclidean transformations.

3.2.3 Derivation of Functions on SE (3)

As the primary concern of this chapter is to investigate optimization algorithms for smooth
objective functions defined on the space of Euclidean transformations, in the following we
analyze first and second order information of functions f : SE (3) — R.
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3.2 The Geometry of the Euclidean Group

Gradient of f

Despite of the general definition of the tangent space according to (3.6), for further sim-
plicity, we henceforth assume that only tangent vectors at Y = I are considered. This
assumption imposes no loss of generality for the scenario of Euclidean point set registra-
tion, the general application of this work, as the current pose Y can be regarded as an
offset redefining the model’s original pose.

Taking the usual matrix derivative 0f of an objective function f, yields no element of
7 = 77 in general. In contrast, the gradient V f of f is defined by the relation [82]

O, 0) = (VF,0), YoeT, (3.9)

where (-, ) is the Riemannian metric of the underlying manifold and df denotes the usual
matrix derivative of f given by

0
= v,

(0f) ).

This means that the gradient V f is an element of 7, i.e. can be represented in form
of (3.5), and locally behaves like the matrix derivative in the ambient space. Hence, to
obtain V f in (3.9), we consider the projection to the tangent space

1
Vf =argmin = [|® — df|? , (3.10)
veT 2

where || - || is induced by the matrix inner product (-, -).

As 0f can be factorized analogously to the decomposition in (3.3) as

_ (O0fu1 Ofi2
of = <8f21 (9f22)

with 0f11 € R3%3,0f15 € R3*1 0fy € R™3 and dfas € R, using the general form of the
tangent space (3.5), the minimization problem (3.10) can be solved in closed form as

Tt - 8fl? )
1
Tr= 3 (afn — 3f1T1> ;

respectively. As a result, the projection of f to Vf € T reads as

o = (200 08) op). .

By inserting (3.11) into (3.9), direct computation shows that (3.9) holds for all ¥ € 7.
Additionally, for each ® € 7, m;(®) = ®. This enables to uniquely define the gradient of
a function as an element of the tangent space 7.
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3 Geometric Optimization on SE (3)

Hessian Map of f

To conclude this section, we discuss the notion of a Hessian map for functions defined on
SE (3). In the Euclidean space, the Hessian matrix of a function f : R™ — R is classically
defined as an operator H computing the change of V f in direction of y € R™ as

82
H(y) = e
ij
where e;,7 = 1,...,n denotes an orthonormal basis of R"™. Hence, the Hessian operator

defines a mapping of directions. Analogously, the Hessian operator can be generalized to
arbitrary Riemannian manifolds as follows.

Definition 3.12. Let f : M — R be a real valued function defined on a Riemannian
manifold. The Hessian operator H at'Y € M is a linear mapping of Ty onto itself defined

by B

H(@) = V(DVf )
for all ® € Ty where V denotes the Riemannian connection on M and Vf € Ty is the
gradient of f.

Thus, it follows directly from Def. 3.12 that the Hessian operator defines a linear map-
ping that satisfies for all ¥ € 7y

(H(®),¥) = (VaV /[, T) .

In the sequel, we want to analyze the Riemannian Hessian on SE(3) in terms of a
function f(Y(t)), where Y (t) is a curve in SE (3) with tangent T [41]. Then, the Hessian

satisfies the relation 52

that simplifies due to the definition of Y (£) = T to

éﬁﬂmry+¢mT>,

where Jf refers to the matrix derivative of f introduced in the previous section and

JOf(Y,T) Y)Y T,

zzkl 0Y;; 6Ykl

where #;YM f(Y) denotes the second order derivative of f in the ambient space GL (4).
Using the representation of T in terms of the canonical basis, the time derivative of the
tangent Y in the ambient space is given by >, 4 (vy) L.

On the other hand, considering the covariant derivative, given by Thm. 3.2, together
with the fact that each geodesic parallel transports its own tangent [37, 41], we obtain

— d
VrT = Z %(Uk)ﬁk + ZF%’Uinﬁk =0.
k ijk

This yields for the time derivative T the expression

T=-T(T,7),
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3.3 Geometric Integration on SE (3)

where I'(T,T) = >, Uivjffjﬁk.
Consequently, insertion into (H(Y),T) yields second order information of f given by

(H(Y),T) =00f(Y,YT)—(0f, T(Y,T)) . (3.12)

Thus, using (3.11) and (3.12) we can determine up to second order information of the
objective functional f, so as to fully exploit the geometry of the underlying space of
Euclidean transformations.

3.3 Geometric Integration on SE (3)

In this section, we want to construct generalized Runge-Kutta methods for integration of
ordinary differential equations defined on the space of Euclidean transformations in order
to determine local optima of an objective functional f. This is motivated by the following.

As we have seen previously, curves on the group of rigid body transformation SE (3) are
naturally defined in terms of an ordinary differential equation

Y(t)=At,Y (1) (3.13)

where A(t,Y (1)) = Y(1)Y(t), T(t) € se(3), and Y (¢) € SE(3). Hence, computing Y (t) €
SE (3) such that its tangent Y (¢) coincides with —V f(Y(¢)), i.e. the negative gradient of
f at Y(t), yields a curve that follows the negative gradient to a local minimizer of f.

However, analytically solving (3.13) cannot be done in general, unless A(t, Y (t)) is par-
ticularly simple. Thus, we have to adopt numerical integration schemes. Traditional
numerical integrators of ordinary differential equations such as Runge-Kutta and multi-
step methods work in the Euclidean space. Hence, it is a reasonable strategy to apply
standard integration schemes in the ambient Euclidean space GL (4) followed by retracting
temporary solutions to the manifold each few iterations. However, such approaches in
general cannot guarantee a certain order of approximation accuracy and typically fail to
determine the correct flow. This motivates to study different types of numerical integra-
tion schemes of ordinary differential equations that are guaranteed to stay on the manifold
of Euclidean transformations.

In what follows, we consider Runge-Kutta integration methods on the manifold of Eu-
clidean transformations. For the sake of completeness, we start with a brief review of
numerical integration in R™. For further details we refer the reader to [63, 108].

3.3.1 Runge-Kutta Integration of Differential Equations in R"

Let us consider the ordinary differential equation defined by (3.13), where y(t) € R", and
y(t =0) = yo € R™ is fixed. Given a concrete form of A(t, y(t)), the tangent to the curve
y(t) at t = 0 is given by 7(0) = A(0,yo).

Euler’'s Method

The most elementary approach to solve (3.13) subject to y(t = 0) = yo is to let y(t) be a
linearization with respect to the tangent at 4y such that we obtain a local approximation
of the curve y(t) around ¢t = 0 by

y(t) =~ yo +t A0, 50) -
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t t+h t+2h  x t t+U2h  t+h t+2h x

Figure 3.5: Sketch of schemes for obtaining the gradient flow using Euler’s (left) and the
improved Euler (right) algorithm for a 1D curve. We see that the computed
values (circle) of the flow are closer to the true function (solid curve) for the
improved Euler Method than for the ordinary algorithm.

Using the finite step-size h > 0, we compute a successive approximation of the curve
y(t) by
Yrr1 =y + h A(ht, ye) ,

for t = 0,1,... and y; denoting the discrete value in iteration ¢. This simple approach
is known as Euler’s method [108] and gives accurate results, as long as h is sufficiently
small since the error of approximation decreases linearly with A [63]. On the other hand,
however, the smaller h, the more steps are required to reconstruct the flow. This causes
extremely long run-times in general.

In contrast, for large h, simple forward computations typically fail to approximate the
underlying curve y(t) accurately, see Fig. 3.5 for an illustration in the scalar case.

Improving Euler’'s Method

Let us now consider a simple improvement of Euler’s method yielding more accurate results
regarding the approximation of the curve y(t). Assuming we want to obtain the value y;41
starting at y; while using two different step sizes h and h/2. The discrete value of y at
t 4+ 1 can be approximated by

yt(i)l =y + h A(ht, ;)

h h h
yt(i)l =Yl Tt 5 A(ht + 50 Yt + 5 A(htvyt)> ;

respectively, where the second approximation ygi)l results from a double step using step

size h/2. Using Richardson-Extrapolation [108], i.e. y+1 ~ 2y§i)1 — yt(}r)l, we obtain that

h h
Yt+1 = Yt + hA(ht + §7yt + §A(ht7yt)> .

Geometrically, improving Euler’s method means that instead of moving along the tan-
gent at y; to compute y;4+1, we only move half the distance to an intermediate point y, 1
and use the corresponding tangent vector to obtain the value of y;;1 at the next iterate.
From a computational point of view, we require an additional evaluation of the tangent
vector, while typically obtaining far better approximations of the underlying curve (see

40



3.3 Geometric Integration on SE (3)

Algorithm 3 Improved Euler Algorithm on R"
Require: f(:):R" - R
Require: h >0

1: set yp € R”

2:t«—0

3: repeat

4 v Vf(y)

vy — Vf(ye + 5hvr)

Yt+h < Yt + hog
9 t+—t+h
10: until convergence

Fig. 3.5). Moreover, this simple improvement of Euler’s method causes the approximation
error to decrease quadratically with h [63].

For the problem of optimizing an objective functional f : R™ — R, the improved Euler
approach can be summarized by Alg. 3.

Runge-Kutta Methods

Although the improvement of Euler’s method yields better approximations of y(¢) than
Euler’s method, we study further improvements of the accuracy of numerical integration
approaches by considering more sophisticated extensions such as Runge-Kutta methods.

The general idea of Runge-Kutta integration is to decompose the update direction in
terms of a set of basic motions vy, ...,vs € R™ such that the update of point y; in iterate
t writes as

S
yern =y +h Y b,
i=1
where b1,...,bs € R are fixed constants with ) .b; = 1. Hence, the update of y;;1
depends on the decomposition in terms of v1,...,vs. Motivated by the improvement of
Euler’s method, we let v; = A(ht,y;) be the slope of y; and further basic motions be a
linear combination of the previous ones, such that

i—1
U = A(t + cih7y’i + hZG’Z]U]) 9
=1

where ¢; refers to the step length and a;; > 0 specify the coefficients of the combination
that are (similar to b;) characteristic for the corresponding approach and the degree of
the approximation error [63]. Typically, the parameters a;j, b;, ¢; are organized in terms
of table, i.e. the so-called Butcher tableau:

C1

C2 | G211

Cs | 5,1 As2 Gg3 ... GOsg;
b1 by by ... bs
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= NN O

= O
O o=
—
)
—_

ol O O Nl
W= O Nl
Wl | =

o=

Table 3.1: Butcher tableaux for Runge-Kutta-MK integration methods of fourth and third
(left and second to left) order as well as for the improved Euler method (second
to right) and the standard Euler approach (right) .

Choosing the parameters a;j,b;,c¢; for i,j = 1,...,s properly, we obtain a numerical
integration approach whose approximation error decreases with h® [63], where s refers
to the order of the integration scheme. Runge-Kutta integration methods, where the
corresponding Butcher tableau evolves in triangular form is typically called explicit Runge-
Kutta [108], in contrast to implicit approaches where the Butcher tableau might be filled
completely. As Euler’s method as well as its improved counterpart are special instances
of explicit Runge-Kutta schemes, we can characterize these approaches in terms of the
corresponding Butcher tableaux as illustrated in Tab. 3.1.

Even though implicit approaches are typically more stable for varying step sizes h,
determining the update directions v1,...,vs is complicated in general and approximate
algorithms have to be applied when extending the concepts to the group of Fuclidean
transformations [91]. Thus, we do not consider implicit approaches to ordinary differential
equations in this work.

3.3.2 Runge-Kutta Crouch-Grossman Methods

In order to extend the principle of Runge-Kutta type integration to the curved space of
Euclidean transformations, we make use of the special properties of SE (3) analyzed in
Sec. 3.2.

According to (3.5), the ordinary differential equation (3.13) at Y (¢t) € SE(3), can be
represented by
Y(t) =AY () = Y)Y (t),

where Y (t) € se (3). Due to the retraction properties of the exponential map [69] and sim-
ilar to the Euclidean case, the smooth curve Y (¢) can be stated as a linear approximation
around Y (¢t =0) =Y, by

Y (t) ~ exp (tY(0)) Yo (3.14)

that is known as the exponentiation of the vector field. Thus, integrating vector fields
according to (3.14) extends Euler’s algorithm in R™ to the curved space of Euclidean
transformations.

Similar to the Euclidean case, integration techniques based on successive linearization
according to (3.14) typically yield poor approximations of the underlying curve, however.
Hence, higher order methods have to be studied. Consequently, we have to cope with the
decomposition of the update in terms of basis directions that evolve on the curved space
of Euclidean transformations.
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0
1458 | 1458 0
1783 | 1783
743 | 1039 97 3| 3
1925 | 3247 1470 1| 24
368 | 997 1167 475 17 | 119 17
1135 | 1082 2335 133 24 | 216 108
406 | 173 751 547 _ 680 13 2 24
163 | 487 3141 393 613 51 3 17
407 _ 135 543 _ 267 696
2969 7349 734 1400 2095

Table 3.2: Butcher tableaux for numerical Runge-Kutta Crouch-Grossman integration
methods of fourth and third order (left, right) respecting the geometry of the
space of Euclidean transformations.

A reasonable strategy is to represent the update in terms of direct motions on the
manifold SE (3) that are formed by exponentiating basis motions Yi,..., Y, in the cor-
responding algebra. This is roughly the idea of Crouch and Grossman [34]. Using the
notations of the Euclidean case, the update of Y; using a set of update directions evolving
on SE (3) reads as

Y11 = exp (hbsTs) exp (hbs,lTs,l) ... exp (hblTl)Y} , (3.15)

where h denotes the step size and by, ..., b, refer to the characteristic coefficients derived
from Butcher’s tableau. Hence, for a given set of coeflicients, we can adapt the explicit
Runge-Kutta approach in the Euclidean space to the set of Euclidean transformations as

Y = exp (hayYy) ... exp (han Y1) Y
Yi = At + cih, Y@ |

for all i = 1,...s, followed by the update of Y; by (3.15). This method is commonly
referred to Runge-Kutta Crouch-Grossman integration. The properties of the exponential
map guarantee that each Y; 1 lies on the curved spaced defined by the group of Fuclidean
transformations.

Similar to the Euclidean case, the accuracy of this numerical integration approach de-
pends on the coefficients b;, ¢; and a;;. However, due to the fact that the curves of two
different flows do not commute in general, i.e.

exp(hai; Y;) exp(haixTi) # exp (h(ai;Y; + ai i)

the coefficients specifying Runge-Kutta approaches in the Euclidean space cannot be
adapted to the space of FKuclidean transformations directly. In contrast, a fourth-order
integration method cannot be implemented in four stages, but requires five stages [92].
For seek of completeness, the corresponding Butcher tableaux for third and fourth order
Runge-Kutta Crouch-Grossman integration are presented in Tab. 3.2.

3.3.3 Runge-Kutta Munte-Kaas Methods
In this section, we finally describe a class of numerical integration methods that allow to

compute the curve on SE (3) following the vector field defined by (3.13), while being a direct
counterpart to the Euclidean case in terms of using similar characteristic coefficients in
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Butcher’s tableau for obtaining higher order integration results [92]. The major difference
to Runge-Kutta Crouch-Grossman methods is that decomposition of the basic motions
will be considered on the Lie algebra rather than on the Lie group such that the basic
update equation is given by

Yii1 = exp (Z bm) Y; . (3.16)

i=1

However, as the ordinary differential equation (3.13) naturally evolves on the Lie group,
the crucial step will be pulling the equation back to the Lie algebra.

Theorem 3.3. [69] For small t > 0, the solution of Y = Y(t)Y is given by
Y (t) = exp (6(t))Yo
where O € se (3) satisfies the differential equation
O(t) = dexpg, (T(1)) , ©(0) =0 (3.17)

1

and the dexp™ " refers to the inverse derivative of the matrix exponential.

This definition yields a differential equation in the Lie algebra. As the Lie algebra is
a vector space, one can apply traditional Runge-Kutta integration techniques with its
corresponding coefficients (Tab. 3.1), yielding the class of Runge-Kutta Munthe-Kaas ap-
proaches [85]. Given the characteristic parameters a;;, ¢;, b;, the differential equation (3.17)
can be solved by computing for all i =1,...s:

i—1
@i = Z aijTj

=1
A= hA(t ~+ ¢;h, exp(@i)Yn)
T, = dexpéi1 (Az)

followed by an update of Y (¢) according to (3.16). The inverse of the derivative of the
exponential mapping that is required to compute (3.17) is given by the inverse function of
dexp specified by Def. 3.11. In concrete terms, it reads as

dexpg!(¥) = Y =L adf (V)

where adé(‘ll) = [q),adfgl(‘ll)] and ad}(¥) = ¥ and B; denote the Bernoulli numbers
[1]. Although there are closed form representations of dexp~! that allow fast computation
[92], for obtaining a numerical integration scheme of approximation order s, it is sufficient
to evaluate dexp ! only up to the (s — 1)-th term [69]. This allows to directly extend the
improvement of Euler’s method to a numerical integration approach evolving on the group
of Euclidean transformations as specified in Alg. 4.

A step-by-step comparison of Alg. 3 and Alg. 4 reveals the modifications necessary to
transfer the numerical integration scheme of improving Euler’s algorithm to the manifold

SE (3).

44



3.4 Newton’s Algorithm

Algorithm 4 Improved Euler Algorithm on SE (3)
Require: f(-):SE(3) = R
Require: h >0

1: set Yy € SE(3)

2:t+0

3: repeat
©1 «— 3hmy,(G)
G — % f(exp(61)Y})
O «— hﬂ—exp(@ﬂYt (G)
Yitn < exp(©2)Y;

9: t—t+h
10: until convergence

Usual gradient computations of the objective functional have to be interleaved with
projections onto tangent spaces, because for objective functions defined on manifolds, the
gradient actually is a vector field in terms of (3.13), cf. [82]. Moreover, addition is replaced
by the group operation in terms of matrix multiplication. This modification reflects that
shortest paths along a prescribed direction are straight lines in the Euclidean space, but
smooth curves when defined on manifolds.

Compared to first order numerical integration such as Euler’s method, higher order
integration schemes similar to the Euclidean case yield far more accurate results when
reconstructing curves induced by smooth vector fields on manifolds (see e.g. Fig. 3.6).
However, better results with respect to more accurate approximations come at the cost of
multiple evaluations of the vector field (3.13) per iteration. In terms of function optimiza-
tion, this means to have multiple gradient evaluations that can be expensive to compute in
many applications. Finding the compromise between accurate approximations of higher
order Runge-Kutta approaches and costs of multiple gradient evaluations is difficult in
general and will not be further addressed in this work.

Additionally, as traditional numerical integration approaches are only concerned with
solving ordinary differential equations by means of (3.13), applying such methods to func-
tion optimization yield algorithms that only use first order information of the objective.
This causes the optimization algorithm to be inefficient in terms of speed of convergence,
in general.

Apart from these limitations, algorithms for function optimization based on numerical
integration techniques typically have large regions of attraction as long as the step-size
is sufficiently small. Hence, they are a good choice in order to numerically evaluate the
accuracy of a given objective functional, see Sec. 5.2.1.

3.4 Newton’s Algorithm

To obtain a minimizer of a smooth function f: R®™ — R in a fast and accurate way,
Newton’s method is typically the method of choice because it converges quadratically
provided the initial point xg € R™ is sufficiently close to the local minimum.

In this section, we briefly recapitulate Newton’s algorithm in the Euclidean space and
work out two algorithms for geometric optimization that utilize second-order information
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eeee o ®

Figure 3.6: Simulation of integration of a toy vector field evolving on a sphere. The solid
lines depict prototypical flow curves. While standard forward Euler methods
fail to reconstruct the flow accurately, simple variations such as improving
Euler’s method according to Alg. 4 yield a proper approximation of the flow
curve.

of an objective functional defined on the group of rigid body transformations, based on
[94] and another variant suggested by ourselves. For the mathematical background, we
refer to e.g. [37, 41, 82].

3.4.1 Newton’s Method in R”

Based on a second-order approximation around xzy € R", i.e. a Taylor series truncated
after its second term, an objective functional f: R™ — R can be approximated locally by

£(&) = Fw0) + (Vfo) (& = 20) + 5o = 20) Hg(z = 0)

where V f;,, Hy, denote the gradient and the Hessian of f evaluated at ¢, respectively.

A critical point of f is a point z* € R™ such that V f(z*) = 0. Thus, to determine x*
approximately, it is sufficient to consider the gradient of the second order approximation
of f with respect to z, leading to the characteristic linear system

Hyy = —Vfa, (3.18)
that is to be solved numerically and indicates the next iterate that reads as

rT=x0+Y. (3.19)

Subsequently, applying this second order approximation in x, refines the estimate of
the optimal configuration, provided that the initializer xg is sufficiently close to the local
optimum [35]. In its simplest case, i.e. f : R +— R, Newton’s method can be illustrated by
Fig. 3.7.

However, in order to apply this scheme to the minimization of a functional f : SE (3) —
R, we have to take into account that the domain of definition is a curved space.
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3.4 Newton’s Algorithm

Figure 3.7: Sketch of Newton’s method for an objective functional f : R — R. Based
on an initial value xp, Newton’s algorithm subsequently minimizes a second-
order approximation (blue) of f(x) at z, by solving the characteristic linear
equation (3.18) numerically, yielding an update step to xgy1.

3.4.2 Newton Optimization by Motion Approximation

To motivate the subsequent steps, let us reconsider the exponential mapping exp : se (3) —
SE (3) in matrix representation that is given by
o
(I)k
Y =exp(®) =

LR
k=0

where Y € SE(3) and & € se(3). Accordingly, it makes sense to consider the local
approximations
Yim ~ I+ ® (3.20a)
1
Yyuad = I+ @ + 5@2, (3.20b)

respectively, as suggested by Pottmann et al. [94], and to determine the optimal tangent
vector ®. By inserting the approximations (3.20a) and (3.20b) into f(Y"), and by expanding
& with respect to the basis {Lf}r=1,. ¢ introduced in (3.7), the objective function f(Y)
is restricted to the 6-dimensional vector space 7 in terms of the coefficients (¢1, ..., qu)T
as variables.

-----

As a result, the linear system (3.18) defining the Newton iteration is replaced by (we
keep the symbols H and V f for simplicity)

H(¢)=-Vf, (3.21)
where (Vf); = a%if and H;; = %{;ﬂ,f evaluated at ¢ = 0.

As (3.20a) and (3.20b) are local approximations of the Euclidean group, the solution
O =), ¢pLy, of the linear system (3.21) will not be an element of SE (3) in general such
that we cannot apply (3.19) with respect to the group operation. Rather, the Newton
update Y € SE (3) is determined by inserting ® into the exponential map, specified by
Thm. 3.1. Hence, the entire Newton algorithm is specified by Alg. 5.

3.4.3 Intrinsic Newton Updates

Instead of restricting first the objective function f to the tangent space 7 through the local
manifold approximations (3.20) and then computing Newton updates by solving (3.21),
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3 Geometric Optimization on SE (3)

Algorithm 5 Newton’s Method Based on Motion Approximation
Require: f:SE(3) — R, Yy € SE(3)

k=20
repeat

Compute

(vf)l = if Yappro:]cYk X
0
82
Hi' = W.}C(Yapprozyk) ;
where Yapprox = Yiin, Yquad) respectively
Obtain ¢ by solving
Hp=-Vf.

Set,
Yit1 = exp(®)Yy

with & = Z?:l 1Ly
k=k+1
until convergence

we may base the Newton iteration directly on the intrinsic gradient and Hessian of the
manifold SE (3).

This means that the linear system (3.18) in the Euclidean case is replaced by the linear
system defined by the variational equation

(Vo(Vf),¥) = —(Vf,¥), VUeT, (3.22)

with the gradient Vf given by (3.11) and the Hessian defined in (3.12). While system
(3.22) is slightly more expensive to solve than (3.21), it better reflects the geometry of
the underlying manifold. We will consider this aspect in more detail in the following
subsection and demonstrate favorable properties of (3.22) also in the evaluation part of
this work (Sec. 5.2.3).

As in the case of (3.21), the tangent vector ® solving (3.22) does not directly result in a
Euclidean transformation Y as Newton update. Rather to compute the update according
to (3.19) with respect to group operations in SE (3), we have to apply the exponential
mapping

Y = exp(P)
of Thm. 3.1, too. The complete Newton algorithm using intrinsic gradient and Hessian
information is summarized by Alg. 6.

3.4.4 Local vs. Intrinsic Approximation

While both schemes (3.21) and (3.22) require to solve linear systems in each iteration as
well as retracting the obtained solution back to the manifold, there are major differences in
terms of convergence properties. We address this issue in this section and take it up again
in connection with discussing experimental results in Chap. 5, see in particular Sec. 5.2.3.
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3.4 Newton’s Algorithm

Algorithm 6 Newton Algorithm Exploiting the Manifold Structure
Require: f:SE(3) = R, Yy € SE(3)
k=0
repeat
Obtain ® € se (3) such that

<§<I>(Vf)7\p>:_<vfa\lj> , YWeT,

where

(Vf)=mn(0f),

0

8f)ii = —— F(YY) ,

( f) J 3Y;j f( k)
and (Ve(Vf), ¥) is given by (3.12)
Set

Yiqp1 = exp(®)Ys

k=k+1

until convergence

Recall from Chap. 2 that the objective function to be studied in this work reads
n 1 m
f(Y):—ZIOg EZGXP(—hz‘j(Y)) ;
i=1 j=1

where h;j(Y) = 2 |lu; — Rv; — t||; and Y € SE (3).

Approximating the rigid body transformation by truncating the exponential mapping
after the linear term (3.20a) yields a redefinition of h;; such that optimization of f is
restricted to the tangent space 7. As this approach provides an accurate approximation
only within a small neighborhood around the current iterate, however, convergence to the
correct local optimum is unlikely if it lies outside this neighborhood [94].

In contrast, second order truncation (3.20b) provides a more accurate approximation
of the manifold SE (3) locally. On the other hand, inserting the quadratic approximation
into h;; maps Rv; +t to

1
v; + d; + (I)R’Uj + §(I)R(‘I)t + ‘I)R’Uj).
Using the fact that ®p is skew symmetric, the latter part rewrites as
1
5 (@r®e+ (800 = (7 6)vy),

where ¢ are the coefficients of the basis expansion ®p = >, oLy

As a consequence, when the rotation components of Newton updates happen to become
large in magnitude, the non-convexity of the objective function due to the quadratic terms
involved may cause Newton updates to step into wrong directions. This will be confirmed
by numerical experiments in Chap. 5.
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3 Geometric Optimization on SE (3)

This argument can be underlined by considering the Rodrigues’ formula, the closed form
expression of the exponential map

sin([|®r|])

— cos([|®r|)
Rl

1
R=1+®p + o2
EE

Approximating the trigonometric function by its first and second order Taylor expansion
in @], given by

sin([[@r[) ~ [|[®rll ., cos([®rl) ~ 1,

: 1
sin([|@g) ~ @&l ,  cos(|Pr]) ~ 1 - S| @rl”,

and insertion into Rodrigues’ formula directly results in (3.20a) and (3.20b), respectively.
Thus, with increasing ||®g| the approximation fails to be accurate. Moreover, as this
approximation also affects the translation part, large magnitudes in rotation affects the
accuracy in t.

Another issue concerns the choice of the metric. While we suggest the canonical metric
in the ambient space [41], embeddings of the Euclidean transformations into R® and using
the corresponding metric, i.e. the standard inner product in R®, results in a different
scaling of the rotational part.

Moreover, representing ® in terms of its basis expansion, first and second-order ap-
proximations yield the restriction of f : SE(3) — R to f : R® - R, where second-order

derivatives are symmetric in the latter Euclidean space, i.e. 3 ¢‘?; % =3 qug % f. Asin
general the Lie bracket of two elements £;,£; € se(3) does not vanish, however, us-
ing standard first and second-order derivatives only yields approximations to the correct
Hessian. Thus, if the components of the transformation become large in magnitude, the
resulting approximation of the Hessian in (3.21) becomes worse, whereas (3.22) is based
on (3.12) that includes corrective terms and thus better reflects the geometry of the un-
derlying space. Our numerical evaluation discussed in Sec. 5.2.3 demonstrates that this
difference is relevant to applications.

3.5 Summary and Further Work

Summary

To conclude, in this chapter we investigated two conceptually different approaches to
determine the optimizer of a smooth objective functional that evolves on the curved space
of Euclidean transformations. In contrast to algorithms that cope with the optimization
problem in the ambient space and subsequently project temporal solutions to the curved
domain of definition, the approaches presented in this chapter fully exploit the geometric
properties of the underlying group of transformations specified by Sec. 3.2 and typically
yield more stable results.

As the group of Euclidean transformations naturally evolves in terms of an ordinary
differential equation, at first, we investigated in Sec. 3.3 optimization techniques based on
geometric numerical integration that extend Runge-Kutta type approaches to the manifold
of rigid body transformations. By computing a path in SE(3) induced by the negative
gradient vector field of an objective functional, we are able to determine a locally optimal
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3.5 Summary and Further Work

configuration on the group of Euclidean transformations, provided that the step size is
sufficiently small.

Increasing the step sizes typically yield less iterates until convergence at the cost of
requiring gradient information at more points on the manifold in order to ensure stable
convergence. As evaluation of the gradient is expensive in many applications, finding the
optimal trade-off between large step sizes and few gradient evaluations is difficult and is
to be addressed in further work.

To cope with the critical determination of step sizes, we secondly investigated in Sec. 3.4
a novel Newton-like algorithm that fully exploits the properties of the underlying manifold
while using up to second order information of the objective functional. We analyzed
relations to state-of-the-art approaches and commented on benefits and drawbacks of this
approach.

Further Work

The proposed Newton-like algorithm typically determines the optimal configuration within
few iterations provided the initial configuration is sufficiently close to the optimizer as will
be confirmed by numerical experiments in Sec. 5.2.3. However, as the ability of converging
to the optimal configuration depends on the objective functional, we want to estimate the
size of the region of attraction [35] in further work, in order to obtain a criterion that
guarantees convergences to an optimal configuration beforehand.

Additionally, to increase the region of attraction of Newton’s algorithm it is common
to introduce additional step size regularization techniques [133] to cope with poor ap-
proximations of the objective. Another approach is to consider trust region algorithms
[2] that slightly complicate the update step while guaranteeing stable convergence. Such
approaches have to be addressed in further work as well.

Finally, as for the specific task of point set alignment the objective functions commonly
used (see Chap. 2) are highly non-convex, state-of-the-art approaches [70, 94, 110, 111, 135]
as well as the optimization algorithms presented in this chapter converge to the optimal
solution locally only. Large amounts of noise and clutter as well as natural occlusion
further complicate the problem, such that accurate initializations are mandatory. This
problem will be addressed in Chap. 4.
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Chapter 4

Discrete and Convex Programming for
Initialization Estimation

4.1 Overview

4.1.1 Introduction and Motivation

Detecting arbitrary but known objects in a recorded scene by means of obtaining rough
estimates of their poses and intrinsic parameters such as deformation is a challenging
problem and an important field of research in computer vision that includes a wide range
of applications [59, 74, 101, 132].

The most intuitive way to address such problems is to apply so-called template matching
strategies, i.e. inspecting the scene for specific structures with respect to fixed configura-
tions such as scale or transformation. This is closely related to the basis pursuit principle
[38], where the goal is to reconstruct the scene by few characteristic basis functions, drawn
from a large pool of candidates. In the very simple scenario of 1D signal reconstruction
this idea can be sketched by Fig. 4.1.

In this chapter, we extend the basic ideas of template matching and sparse reconstruc-
tion in order to obtain rough estimates of the number of rigid model instances as well as
of the corresponding Euclidean transformations that align the set of objects to 3D mea-
surements, as illustrated in Fig. 4.2 for the prototypical 2D setting. This is primarily
based on the reformulation of reconstructing the scene by a collection of object instances
in different positions in terms of a binary least-squares objective function including a reg-
ularizer enforcing sparsity. This objective quantitatively encodes coverings of the scene
with multiple but few model instances at different poses. Due to the large size of the re-
sulting optimization problem, we consider different optimization algorithms [7, 16, 88] to
accurately determine the optimal configuration and to meet the time constraints of most
industrial applications.

4.1.2 Related Work and Contribution

To find known rigid objects in a recorded scene, i.e. to obtain initial estimates of the
objects’ pose, a natural approach is to identify parts of the model like cones, tubes, lines,
etc., and to infer the objects’ pose accordingly [13, 29]. In view of self occlusions, noise,
and the ability to uniformly deal with a large variety of objects, basing the approach on
the accurate detection of a limited number of specific parts is less attractive, however.
Instead, more recent work [8, 31, 48, 53, 71, 109] focused on the extraction of local salient
features from scene and model. Feature extraction and correspondence is quite difficult to
establish, however, especially if objects exhibit symmetries as commonly occur in industrial
settings, and if the samples are noisy and sparsely distributed.
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4 Discrete and Convex Programming for Initialization Estimation

Figure 4.1: Sketch of the sparse signal recovery problem. A given input signal (thick line)
is approximated by a linear combination of only few basis functions (dashed
lines). The selection of these basis functions is accomplished by solving for a
sparse coefficient vector by convex programming. In this chapter, we model
the problem of multiple object detection as a sparse signal recovery problem —
see Fig. 4.2.

Another established line of research in this context concerns hypothesis generation and
verification techniques [5, 46, 130] to obtain rough estimates of the pose [105]. Recent
works [58, 129] include accurate data structures to speed up the recognition process at the
cost of exhaustive pre-computation.

To this end, we also refer to randomized algorithms such as particle filtering [52, 106,
118] to estimate the pose of arbitrary objects in a recorded scene. However, as these
approaches are highly non-deterministic, there are no guarantees to determine the optimal
configuration at all.

Moreover, all these approaches are designed to generate hypotheses about single object
instances matching the scene in general. Consequently, concerning applications with mul-
tiple object instances, iterative “search and pick” approaches have to be applied, where
every incorrect detection affects the entire subsequent process. A prototypical illustration
of this issue is given by Fig. 4.3.

In this chapter, we consider a novel approach that jointly estimates the pose of multiple
object instances and resolves conflicting hypotheses through non-local contextual process-
ing. Furthermore, we adaptively prune the corresponding parameter space based on the
given data in order to drastically reduce the otherwise huge problem size in an online
manner. Both objectives are accomplished by convex optimization.

Convex models and programming pervade most disciplines and current work on empir-
ical data processing, including reasoning with dictionaries [26], compressed sensing [38],
graphical models and inference [126], and machine learning [10]. Discrete and continuous
graph cuts [19, 25] and numerous applications provide prominent examples in the field
of computer vision. The relevance of globally optimal inference for model evaluation and
the guidance of convex modeling for the relaxation of more intricate models can hardly
be overestimated. Accordingly, algorithms for efficiently coping with large problem sizes
attract more interest in applied research.

In this chapter, we aim at taming the optimization of a highly non-convex objective
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Figure 4.2: Extending the principle of sparse signal recovery (see Fig. 4.1) to the problem
of 3D template matching — here in 2D for illustration — amounts to approximate
the scene (left) by a small subset selected from a large collection of candidates
(right panel). Again this can be achieved by convex programming.
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function for the registration of noisy unstructured point sets by detecting in parallel mul-
tiple objects together with rough estimates of the underlying Euclidean transformation in
a preprocessing step through large-scale convex programming. By inspecting and evaluat-
ing the optimality conditions, simple and efficiently computable criteria are obtained that
can be applied to any problem instance in order to drastically reduce the problem size
in an online fashion. For numerically solving the remaining and still large optimization
problem, we competitively evaluate different state-of-the-art approaches to sparse convex
programming [7, 16, 88]. Results of this chapter have been partially published in [21].

4.1.3 Organization

The remainder of this chapter is organized as follows. In Sec. 4.2, we mathematically model
the problem of estimating the rough positions of multiple object instances for e.g. bin-
picking applications as a large-scale binary optimization problem. Specifically, by using
a binary least-squares objective function including a regularizer enforcing sparsity that
quantitatively encodes coverings of the scene with multiple but few model instances at
different poses, we can directly incorporate constraints related to the imaging processes.

In Sec. 4.3, we consider different possibilities to cope with the large size of the resulting
problem. By investigating necessary optimality conditions of the optimization problem, we
obtain high quality criteria to reduce the underlying search space by fixing variables to their
optimal value beforehand. Moreover, we consider different relaxations of the binary large-
scale objective in order to apply different convex and continuous programming techniques
in Sec. 4.4. To this end, we analyze three different optimization schemes and investigate
their applicability to such large-scale problems.

As the optimal configurations obtained by relaxing the objective are not binary in gen-
eral, we consider in Sec. 4.5 different post-processing techniques to approximately infer
Euclidean transformations that are related to the optimal binary solution of the large-
scale optimization problem. Finally, we conclude in Sec. 4.6, summarize the results, and
point out further work.
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(a) (b) (c) (d)

Figure 4.3: A simplified sketch of the scenario addressed in this chapter where our goal is
to detect objects (black boxes) based on the given edge images (b). While the
result of the Hough-Transform [5] (c) is due to imaging constraints typically
inaccurate, i.e. we obtain a vote for a box in the center where no box is placed,
the novel method proposed in this chapter (d) accurately detects the four
instances of the object. Additionally, due to the joint estimation it does not
hallucinate non-existing structures such as the middle object.

4.2 Sparse Reconstruction Problem

Given a set of point measurements {u;, i = 1,...,m} C R? of the scene, and let O be a
model description, i.e. a CAD-file or a sample scan. We wish to estimate the positions of
k objects that are assumed to be randomly assembled in the scene in terms of Euclidean
transformations {Y;, j =1,...,k} C SE(3). Since k is unknown in general and the space
of rigid body transformations is uncountable, this task is involved. To this end, we adopt
the basis pursuit approach [26], as illustrated in Fig. 4.1 for the original setting and for
our setting in Fig. 4.2.

We act on a few plausible assumptions:

1. All objects in the scene are instances of the same model,

2. imprecise prior knowledge about object poses exists, e.g. objects appear face up, and
3. each object in the scene fits at least a single scene measurement [58].

Based on these assumptions, we can discretize the space of Euclidean transformations to
obtain a set of possible object poses S = {Y}, j =1,...,n}, where n is very large.

In spite of these assumptions, the resulting dependencies between scene measurements
and possible object poses is quite involved, as sketched in Fig. 4.4. Multiple model con-
figurations are likely to cause the same scene sample, while a scene sample is only allowed
to correspond to a single object, due to the imaging process. On the other hand, mul-
tiple scene samples typically belong to the same object instance, and the corresponding
numbers of samples are unknown.

Next, we derive an objective criterion for fitting multiple object instances with vari-
ous individual poses to given scene measurements taking into account the dependencies
discussed above.

4.2.1 Objective Function

The Euclidean distance of a scene sample u; to a candidate Oy;, i.e. an instance of the
object of interest in pose Y}, is denoted by d(u;, Oy;). As an object in general is given
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4.2 Sparse Reconstruction Problem

Figure 4.4: Sketch of dependencies between scene samples u;, ¢ = 1,...m and possible

object instances with poses Yj, j = 1,...,n, where in general m < n. The
graph is highly connected as multiple samples can depend on multiple object
configurations.

as a reference scan, i.e. a point cloud, or in case of a CAD file as a set of geometric parts
like circles, lines, triangles, and tubes, partitioning the object representation into parts
Pl 1=1,2,..., turns the Euclidean distance into

d(ui, Oy;) = min d(u;, Py.) (4.1)

where Pé/j refers to the [-th object part in configuration Y;.

Assuming geometric simplicity of the object parts, d(u;, 73%_ ) can often be evaluated in
closed form. In the case of an object specified by a reference scan, i.e. a set of samples
v, I = 1,..., the distance of scene measurement u; to an object point v; simplifies to the
Fuclidean distance

d(us, Pl ) = s = Vi (),

where Yj(v;) denotes the Euclidean transformation of v; by Y;. Moreover, in this scenario,
evaluating the distance function (4.1) can be done efficiently using careful implementations
such as pre-computed look-up tables [84] or search trees [104].

Based on the distance measure (4.1), we impose the condition that a scene sample u;
votes for an object instance Oy; only if its distance is small within a local neighborhood.
Using the indicator variables

o 1, ifd(uk., Oyj)gd,VukEJ\/(uz),
g = 0, else,

where § > 0 is a user parameter and N (u;) denotes a local neighborhood of u; computed
in a preprocessing step, we define the similarity measure a;; € [0, 1] between u; and Oy,
as

1
a;j = exp (_Gd(uiv OYj)> Mij >

where o > 0 controls the sensitivity to noise and d(u;, Oy;) is the distance function (4.1).
Possible choices for NV (u;) include the neighborhood with respect to the Euclidean distance,
Le. up € N(u;) if |Jug —u;l2 < o, as well as measures based on underlying graph structures
[61]. In this work we consider neighborhoods based on the Euclidean distance defined by
user parameter g.

Let € {0,1}" collect the indicator variables x; representing the presence of object
instance OYj in the scene. The term a;;x; then indicates how likely observation u; belongs
to Oy;. Due to the fact that each object instance fits at least a single scene sample, unique
“explanations” for each observation lead to the constraint

Zaij:njzl, Vi:1,...,m.
J
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Because measurements are typically contaminated by noise and a fraction of the scene
samples correspond to background structures, however, we sum up the squared residuals
of this constraint for each scene sample and obtain the objective function

2
HA.’L' - €H2 ) (42)
where A € R™*"™  m < n, defines a large underdetermined system and e = (1,1,..., 1)—r

denotes a vector of ones.

4.2.2 Sparseness Prior

Ruling out conflicting object instances that may have caused the same observation amounts
to obtain a minimizer z of (4.2) with minimal support in terms of the (pseudo) ¢p-norm

lzllo = [ {;, =; # 0}
where | - | denotes the cardinality of a finite set, cf. [39].

)

Hence, selecting the minimal number of objects, such that the objects fit the scene
measurements accurately in terms of (4.2), i.e. |Az — el|3 < e with ¢ > 0, amounts to
solve the optimization problem [39, 120]

min ||z s.t. ||[Ax —e 2<5,
vefo 1} zllo I I3 <
which can be restated as
min h(x) , h(z) = pllz||, + ||[Az — e|)? | 4.3
TG (z) () = plzllo+| 12 (4.3)

where 4 > 0 denotes an appropriate Lagrangian regularization parameter defined by the
user.

In the literature, optimization problems such as (4.3) are known as subset selection
problems [83, 87, 120], where in the presence of a fixed set of non-zero elements, obtaining
the optimal configuration amounts to solve a least squares problem. However, selecting the
index set corresponding to the non-zero elements of  is a complex combinatorial problem
that is NP-hard [87].

4.2.3 The Compressed Sensing Point of View

Obtaining accurate relaxations to (4.3) such that the solution of the relaxed problem equals
the optimal configuration of (4.3) is the primary concern in the field of compressed sensing
[38]. In this section, we collect different properties of the underlying system in order to
obtain results that justify to consider relaxations for finding an optimal configuration of
(4.3).

There is a tremendous amount of theoretical work focusing on the uniqueness and spar-
sity of relaxed solutions of the ideal noise-free problem, where convex relaxations to

min ||z|o st. Az =b

are considered, we refer to [93, 119] and the references therein. Although the results yield
strict statements on the ability to reconstruct solutions of the original non-convex problem,
they are difficult to check and do not apply to real-world settings such as (4.3), in general.
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A more realistic setup is to consider a measured signal b of the form b = Az + w,
where w is an unknown noise vector and zx is supposed to be sparse. While the problem
of obtaining x is very ill-posed in general, it turns out that, due to the sparsity, we can
accurately approximate x using convex relaxation [39, 120].

Let us assume that |w||3 < e. Obtaining a sparse x that reconstructs b up to the
presence of noise amounts to solve

min ||z ||o st. ||[Az — b3 <e. (4.4)

This problem is intractable due to the exponentially large size of the search space and
the non-convexity of ||-||p. To cope with these issues, one might replace the pseudo ¢y-norm
with its “closest” convex relaxation, i.e. the 1-norm and obtain the convex problem

minlylls st Ay - b3 <4,

where 6 > 0 is related to e [120]. Using an appropriate Lagrangian multiplier v > 0, the
optimization problem can be restated as

, 1
min7||y|1 +§HAy—bH§ (4.5)

and forms the convex relaxation of the non-convex optimization problem (4.4). The ad-
vantage of this formulation is that it can be solved in polynomial time in general [18].
However, it is not clear whether the optimal solution of (4.5) coincides with the optimal
configuration of (4.4).

To show the relation between z* and y*, the optimal solutions of (4.4) and (4.5), re-
spectively, we introduce a few concepts from the field of sparse approximation. For this
purpose we assume in the following that the columns of A = (ay,...,a,) are normalized,
ie. a;'a; =1 foralli=1,....,n. Although this assumption does not hold for most
real world applications, it enables us to gain insight into the properties of the underlying
problem.

Definition 4.1. Let x € R™. The support of x is given by the set of non-zero indices:
supp(x) = {il i € {1,...,n},z; # 0}

Let A index a subset of the columns of A that are linearly independent and denoted
by Ap. The projection [120] of a given signal b to the span of Ap is given by cy =
Ap(ATAN) AT,

Definition 4.2. Let A index a set of linearly independent columns in A. The exact
recovery coefficient erc(A) is given by

erc(A) = 1 — max

igA (AIAA) _IAATOL"

1

The exact recovery coefficient erc(A) > 0 encodes the difference between columns in Ap
and the remaining ones. It yields a sufficient condition to recover the optimal representa-
tion of an exactly sparse signal [119].
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Theorem 4.1 ([120]). Let A index a linearly independent collection of columns of A for
which erc(A) > 0. Suppose that for given b, the ly best approximation over A satisfies

IAT (6 = ea)lloo < vere(A)
then the optimal y* solving (4.5) with parameter v satisfies

1. supp(y*) €A,
* * -1
2. |ly* = #illo < II(ALAA) H°°1’
3. Vi€ A, [(@3)il > I(ARAn) oo = @ € supp(y*)
4. y* is unique ,

where xy denotes the optimal configuration of (4.4) on A.

In other words, the solution of the convex relaxed problem is unique and is not far from
the optimal configuration of the non-convex optimization problem (4.4). While Thm. 4.1
yields a criterion that allows to justify the relaxation to a convex problem, checking this
hypothesis requires a careful choice of the index set A. To cope with this issue, i.e. to
derive a criterion that is less influenced by the choice of A, we consider the following.

Theorem 4.2 ([120]). Let A index a linearly independent collection of columns of A €
R™*™ ith |A| < k. Let p = max;-; ]a;—aj|, fori,j=1,...,n, be the coherence of A and
pk < % Suppose that for given b, the o best approzimation over A satisfies

1—(2k—1)p

T
—_ <N

then the optimal y* solving (4.5) with parameter v satisfies

1. supp(y*) C A,
2. Ny = 2illo < =g
3. VieA, ’(I'R)J > m =i € supp(y*) ,

4. y* is unique ,

where xy denotes the optimal configuration of (4.4) on A.

While this condition is less influenced by the choice of A, it remains difficult to obtain
the optimal A that guarantees to recover a solution of (4.4) when the size of the support
of the optimal configuration increases. In case one obtains a A that guarantees optimal
reconstruction for a large support of x, the columns in the dictionary matrix A are typically
highly distinctive such that even greedy methods can solve the problem accurately [39, 119].

In real world settings, however, the columns of A are typically highly overlapping such
that the coherence is large and the size of the collection of linear independent columns
of A has to be small in general. Hence, the criteria obtained by Thm. 4.1 and Thm. 4.2
only hold for very sparse coefficient vectors [39]. Moreover, as the columns of A are not
normalized in settings such as (4.3), adapting these results to our configuration is not
straightforward in general, because normalization of the columns of A yields loosing the
meaning of the entire setup.

Nonetheless, despite that the results obtained cannot be adapted to real world settings
in general as they are very conservative and difficult to check, they highly motivate to
consider convex relaxations of the binary optimization problem (4.3) that is to be studied
in the following.
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4.3 Continuous and Convex Relaxation

To solve optimization problem (4.3), the most naive approach would be to sift through
all possible 2" binary combinations in a brute-force manner. However, with increasing
problem size, i.e. increasing n, this approach becomes intractable quickly.

Motivated by the results obtained in Sec. 4.2.3, in the following we consider more so-
phisticated approaches to determine the solution of (4.3). In detail, we analyze the binary,
sparse reconstruction problem and derive efficient preprocessing techniques to fix variables
prior to optimization. Moreover, we consider a relaxation to (4.3) that yields a convex
objective function defined on a convex domain and consequently can be optimized by
standard convex optimization approaches [18].

4.3.1 Problem Analysis

Besides the non-convexity and the discrete underlying domain of (4.3), determination of
the optimal configuration is complicated due to the large problem size. In order to ensure
feasibility using standard optimization techniques [18], we have to reduce the size of n
drastically. Based on necessary optimality criteria, we can fix variables early based on the
following.

Theorem 4.3. Let z* € {0,1}" be the global minimizer of the objective function f(x)

pllxll, + || Az — e||§. Moreover, let xj denote the k-th element of z*, A = (a1,...,an),
and a;; >0,Vi=1,...,m, j=1,...,n. Then, for allk € {1,...,n}, z; =0 if
—pu+2(e’ay) —apar <0. (4.6)

Proof. Assume z7 # 0. Due to global optimality

flx) = fz7),

holds true for all € {0,1}", in particular for & given by z; = xi, Vj # k, and 7 = 0. By
inserting z into the global optimality condition and substituting f with its definition, we
obtain
- ~ 2 2
pllzlly + 1Az —elly = pllz*[lp + [|Az™ —el3 -

By construction, * and Z are equal except for a single entry. As x} € {0,1} and z}, # 0
by assumption, |||, = ||=*||, — «}. Thus, the optimality condition simplifies to

—pxs 4+ 2(e"ay)xl — 223 (akTAa:*) + (akTak) xpay > 0.
By division of z7, this is equivalent to
—p+ Z(eTak) — a5, Ax* + (akTak) x,>0.
Since a;; > 0, the left-hand side can be bounded from above by
—p+ 2(6Tak) - (akTak) x, .
Then, due to the assumption z} # 0 and z} € {0, 1}, we finally obtain

—p+2(e’ag) —axTar >0,

contradicting (4.6). O
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Condition (4.6) allows us to set free variables to zero by simply inspecting single columns
of the dictionary matrix A. As we will see in Chap. 5, applying Thm. 4.3 reduces the
size of the search space and consequently speeds up the entire optimization procedure
dramatically.

Similarly, we can derive a criterion that allows to determine variables that are guaranteed
to equal one in the globally optimal solution of (4.3).

Theorem 4.4. Let z* € {0,1}" be the global minimizer of the objective function f(x) =
pllxll, + | Az — e||§. Moreover, let x} denote the k-th element of z*, A = (a1,...,an),
and a;; >0,Vi=1,...,m, j=1,...,n. Then, for allk € {1,...,n}, z; =1 if

p—2(e'ap)+2(e" AT ay) — (akTak> <0 (4.7)

Proof. Assume z7 = 0. Due to global optimality

flx) = f(2"),

holds true for all z € {0,1}", in particular for Z given by &; = x}, Vj # k, and 7, = 1. By
inserting Z into the global optimality condition and substituting f with its definition, we
obtain

pl@lly + 1A% = ell3 > plla*lo + [|Az* — el -

By construction, z* and Z are equal except for a single entry. As x; € {0,1} and 2 =0
by assumption, ||z*||, = [|Z||, — Zx. Thus, the optimality condition simplifies to

W) — 2(6Tak)fk + 27 (a;fA%) — (akTak> TrpTy > 0.
By division of Z, this is equivalent to

w— 2(6Tak) + 2ay, " AT — (akTak) Tp>0.

Since a;; > 0 and z = 1 by definition, the left-hand side can be bounded from above
by
w— 2(6Tak) + 2(eTATak) — <akTak> >0,

contradicting (4.7). O

As Thm. 4.4 allows to identify elements of the optimal configuration that are guaranteed
to equal one, a reasonable strategy to determine the global optimizer of (4.3) would be to
apply Thm. 4.3 and Thm. 4.4 iteratively.

However, as e ATqj, = Z?:l a; " ay, refers to the sum of inner products of a; with all
other columns in the dictionary matrix A, (4.7) only holds if the columns of A are very
distinctive. As this does not apply to the real world setting considered in this work,
Thm. 4.4 does not reduce the amount of free variables at all.

Although fixing free variables in a preprocessing step simplifies the problem, there is
no guarantee that the remaining binary and non-convex optimization problem can be
solved efficiently by using brute-force or greedy methods. Hence, we need to consider
more sophisticated and efficient techniques for determining a solution of (4.3).
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4.3.2 Continuous Relaxation

As the discrete optimization problem (4.3) is computationally intractable in general, we
consider the relaxed, continuous optimization problem

min pl|zo + [|Az —ef3 . (4.8)
z€[0,1]

Clearly, the optimal binary configuration of the relaxed continuous problem coincides
with the solution of (4.3). However, there is no guarantee that the globally optimal
solution of (4.8) is binary. To cope with this issue, i.e. to force the results to be binary,
one can apply subsequent branch and cut techniques [131], use binarization constraints
[4], or consider other post-processing steps. As branch and bound typically requires to
solve (4.8) iteratively for different constraint sets, and additional binarization constraints
further complicate the optimization, we prefer to apply post-processing steps considered
in Sec. 4.5 in order to infer the optimal binary configuration of (4.8).

4.3.3 Convex Relaxation
While relaxing the binary domain to a continuous convex set simplifies the problem, the
non-convexity and non-smoothness of the pseudo £yp-norm remains.

A reasonable strategy to cope with this issue is to use an approximation of the pseudo
lp-norm [20] by means of the concave functional

el (e — e_"m) ~ |lz|lo ,

where |z| refers to the element wise absolute value of x and o denotes the parameter
controlling the smoothness of the approximation, see Fig. 4.5.

Inserting this functional into optimization problem (4.8), the objective function can be
approximated by

el <e - e_"|x‘) + || Az —el|3.

While this objective function forms a differentiable composition of a convex and a con-
cave function on [0,1]", we can obtain a local optimizer efficiently using the algorithm
proposed by An and Tao [4]. To obtain the globally optimal configuration, however, ac-
curate initializers or iterative optimization with varying starting points are mandatory.

To obtain a relaxation that copes with the issues analyzed above, we consider the p-norm
1
n I3
]l = (Z vaz‘p>
i=1

that is convex if and only if p > 1 [18]. Hence, the convex p-norm closest to the ¢y-norm
is the ¢;-norm (see Fig. 4.5), for which the relaxation of (4.8) is convex and reads as

min_ gl + Az ] (19)
z€(0,1]

Due to the results of Sec. 4.2.3, the distance of the optimizers of (4.8) and (4.9) can
be expected to be small and the optimal configurations have nearly the same support for
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Figure 4.5: Visualization of the different regularizers for optimization. While the pseudo
lp-norm (left) is neither smooth nor convex, using an approximation of the
£p-norm (middle) for different control parameters typically preserves the shape
of £y while letting the corresponding optimization problem being non-convex.
Using the “closest” convex approximation (right) in contrast, i.e. the ¢;-norm,
dramatically simplifies the underlying optimization problem (4.8) by means of
convexifying the objective.

simplified scenarios. Although the requirements to guarantee these results do not hold for
our application in general, experiments will show that the optimal configuration of (4.9)
yields sufficiently good results.

In the sequel, we study three different optimization procedures for finding the global
optimizer of (4.9).

4.4 Convex Optimization

Determining the optimizer of (4.9) amounts to solve a convex quadratic optimization
problem subject to box constraints, i.e. z € [0,1]".

Problems of such kind are well studied in literature, see for instance [18, 100], and are
typically solved using interior-point solvers [18]. However, due to the problem’s size of
(4.9) such approaches cannot be applied in our case. In the following, we investigate
three different approaches to sparse convex programming based on Birgin et al.’s spectral
project gradients algorithm [16], Nesterov’s approach [88], and Beck and Teboulle’s fast
iterative shrinkage-thresholding algorithm [7].

Even though these algorithms only use first order information of the objective, they op-
timally fit into the framework of large-scale optimization. Moreover, they yield accurate
results with respect to convergence to the optimizer that ensures sufficiently short pro-
cessing times and thus enables applicability to industrial applications with tight timing
constraints.

4.4.1 Spectral Projected Gradients

Instead of optimizing an objective functional itself, it is common to consider local, quadratic
Taylor approximations of f in order to obtain an optimal descent direction. In a very sim-
ilar way, the spectral projected gradients algorithm approximates f around xj by

flzk) + (Vf(:ck))T(x —xk) + %(a: - xk)TH(xk)(m — Zp-1),
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4.4 Convex Optimization

where H denotes the Hessian of f evaluated at xj that is approximated by the simplified
structure H = A\~'1 with A > 0.

In general, the Hessian can be computed using finite differences, such that for all x
sufficiently close to xy, it satisfies the secant equation

H(xy)(x —ap) = V() = V()
yielding the optimal X in a least squares sense as

-
Al = Sk Yk
Sk Sk

where s, = x — x and yp = Vf(z) — Vf(zg).

Thus, for any given value of A, we can compute an approximation of the local optimizer
Zxk11 by minimizing the simplified second order Taylor series, that yields the update

Tpy1 = T — AV f(zr)

known as the Barzilai-Borwein method [97].

However, the approximation of the local optimizer is rather poor, as the Hessian does
not fit the simplified form H = A~'I in general. Moreover, there is no guarantee that the
approximation of the optimal configuration is element of the domain of definition at all.
To cope with these issues, we need to introduce few further modifications.

In order not to be too sensitive to poor approximations of A, we simply introduce
safeguard parameters Apmin, Amax > 0 that ensure that Ay < A < Apax by setting

-
Sk 'S

A= min{)\max,max{)\min,k}k}} .
Sk Yk

Additionally, by using a non-monotone line-search strategy [60] that consists of deter-
mining the optimal « € [0,1] such that

< .
f(zp + ady) < Orgr;%f(xk_]) +avd

we can determine the optimal step-size even if the update direction yields a poor approxi-
mation of the best decent direction, where dj, denotes an update direction, f(zy_;) refers
to the value of the objective function at iterate x;_;, and the parameters v, € R control
the degree of non-monotonicity.

The basic idea behind using non-monotone line-search strategies is the following. If the
objective function is at most quadratic in certain variables, a single Newton step is typically
sufficient to determine the optimal configuration of these unknowns. Nevertheless, it might
happen that the value of the objective increases in total. Additionally, since function
evaluations, especially in the large-scale setting, are usually computationally expensive, the
ability to temporarily increase the objective value typically yields less function evaluations
when considering line-search algorithms such as Alg. 8, below.

Finally, to guarantee that each iterate is element of the feasible convex set, i.e. 21 €
[0,1]™ in our case, instead of searching in the direction of AV f(zy) as is the case for classical
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Algorithm 7 Spectral Projected Gradients Algorithm [16]
Require: 29 € R, m > 1, 0 < Apin < Amax; 7 € (0,1),
0<o01<02<1, Ao € [Amin, Amax]

xo = ma(xo)
k=20
repeat

dp = ma(zk — MV f (@) — 2
Compute ay, using Alg. 8
Tpy1 = Tk + apdy
Sk = Tht1 — Tk
Yk = V[ (k1) — Vf(2r)
if <Sk, yk) < 0 then
)‘k+1 = >\max
else
)\k—l-l = min {Amam max {)\minu <5k7 Sk> / <5k7 yk>}}
end if
k=k+1
until convergence
return z* =z

Newton-like schemes, we consider the update direction dj that results from a projection
of the local optimizer onto the feasible set €2, given by

di, = ma(xk — AV fz,) — 2k,
where 7q : R™ — € refers to the orthogonal projector.

Combining these extensions with the simplified Newton-like optimization scheme yields
the spectral projected gradient algorithm [16] that is summarized in Alg. 7.

Due to the included line-search, the algorithm typically decreases the value of the ob-
jective at least each m-th iteration. Additionally, under reasonable assumptions such as
f is finite in R™, Alg. 7 converges to a local minimizer of f on closed convex set 2 C R"
after a finite number of iterations, cf. [16, 127].

In our case, the objective f is also convex such that the optimizer determined by Alg. 7
is the globally optimal configuration of f. Moreover, as Alg. 7 forms a quasi-Newton
optimization scheme, it provides fast convergence and due to the exclusive requirements of
first order information of f and simple vector calculus, it directly fits into the framework
of large-scale optimization.

4.4.2 Nesterov’s Algorithm

Although Alg. 7 converges to global optimizer of (4.9) in a finite number of iterations, it
is a~priori not clear how many iterations are required to provide a certain accuracy of the
optimal configuration. Many industrial applications, however, require such information in
order to guarantee fixed run-time constraints. To cope with this issue in the subsequent
we consider a different approach to solve (4.9) based on Nesterov’s algorithm [88].

This optimization procedure is based on the Lipschitz continuity of the gradient of the
objective that is given by

IVf(x) = VIllz < Lllx = yll2 ,
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Algorithm 8 Line Search required by Alg. 7
fmax = max {f(xxp—;),0 < j <min{k,m—1}}
Ty =T+ dk
6 = (Vf(zk),dk)
a=1
while f(a:+) > fmax —l— aydé do

Xtmp = — ZWHTEﬁJ
if 01 < agmp < o200 then

O = Otmp
else
a= %a
end if
Ty = T + ady
end while
return o = «

for a fixed L > 0 and holds for any x,y € €. In the following, we will see that the objective
(4.9) satisfies this property where Q = [0, 1]"

To show that f(x) = ul|z|j1 + ||Az — b||% is Lipschitz continuous in the gradient, we
consider

HVN@—VﬂwM=2WUA@_wm

<2||AT4| llz —yl2.

where setting L = 2||AT Al|2 directly yields the Lipschitz constant of V f.

Given an objective function that is Lipschitz continuous in the gradient, we can, for any
x € §, derive an upper bound of f at y € €2 given by

F) < £&) ~ (2~ 9) V() + 5 Lla — i

Hence, instead of minimizing f directly, it is reasonable to consider minimizing the
upper bound that yields the optimization problem

argmin (z) — (z — 9) V() + 5 Lllz ~ ol (110)
yeN

and bounds the deviation from the current iterate z. Solving optimization problem (4.10)
can be translated to an equivalent optimization problem

arg min L||y — (z— *Vf( ))H% ;
yeN

which can be solved by computing the orthogonal projection of x — %V f(z) to the feasible
set Q. As in our case Q = [0, 1]", the projection can be implemented efficiently. Optimiza-
tion procedures that iteratively project the scaled gradient to the feasible set €2 are known
as projected gradient algorithms [18].
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Algorithm 9 Nesterov’s Optimization Procedure for Smooth Functions [88]
Require: zp € 2, d(z) : Q@ — R

for £ > 0 do
Y = arglgin (Vf(zr),y — zx) + 5Llly — zlI3
ye

2 = argmin2 Ld(2) + 0o B2 (V (1), 2 — a;)
z€N

_ 2 k+1
Th41 = 5432k T 13Vk
end for
return z* =y

Additionally, to take into account previous iterates in order to better approximate the
objective function, we consider the relation

k
F) < Zd(a) + = Y ai(Flm) + (Vi) — ) (4.11)

aro
k i=0

where d(z) denotes an appropriate convex prox-function [88] for which d(z) > Loz —
zo|? for any x € Q, a; > 0 refer to user defined parameters and a; = Zle a;. This
relation roughly reflects the fact that for each sequence of iterates, one wishes to obtain a
configuration y; whose objective value is lower than a convex combination of lower bounds
shifted by the prox-function.

Let z; be the optimal configuration that minimizes the upper bound on f(yx) in (4.11).
Similar to the solution of (4.10), zj can be computed by projecting the weighted cumulative
gradients to §2. Then, by choosing oy = k—;l and 7, = 1%37 the relation (4.11) is satisfied
if

Tp1 = Te2k + (1 — )k

where yj41 denotes the minimizer of (4.10). Moreover, a sequence of points {yx}72,
{xr}72, generated in such a manner yields the suboptimality bound

. 4Ld(x*)
fy) = f(@) < ST DT

where z* is a global minimizer of f and o > 0 refers to the convexity parameter of d(z)
88].

Hence, to guarantee an approximation error of at most € > 0, O(ﬁ) iterations are re-
quired. In contrast, for standard projected gradient algorithms the number of iterations is
proportional to % The entire approach for minimizing a smooth objective using Nesterov’s
procedure can be summarized by Alg. 9.

4.4.3 Fast Iterative Shrinkage-Thresholding Algorithm

Although projections to the feasible set ) are simple in our setting, we consider a recent
approach based on Beck and Teboulle’s fast iterative shrinkage-thresholding algorithm
[7] that further reduces the computational costs of Nesterov’s algorithm while providing
similar bounds with respect to the number of iterations to obtain a given accuracy.
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Algorithm 10 Fast Iterative Shrinkage-Thresholding Algorithm [7]
Require: zg € Q
Y1 = Zo
t1=1
fork=1,... do
zy, = argmin (|ly — V. (yx))
yeN

144/ 14412
thy1 = —V5—=
_ =7 1—1;
Yk+1 = (1 = > Ty + (tk+1 ) Th1
end for

return z* = z;

The major difference of this approach to Nesterov’s algorithm is that instead of using
an accumulated history of past iterates, it smartly chooses intermediate points that only
depend on the last two iterates and uses dynamic step-size modifications.

Very similar to Sec. 4.4.2, we assume V f to be Lipschitz continuous with constant L.
Moreover, instead of minimizing the objective f directly, we also subsequently consider
the minimization of the upper bound, given by (4.10). However, in contrast to considering
the additional invariant (4.11), we compute the starting point yx1 of each iterate by

1—1t 1—t
Ykt1 = (1— )xszr( )%—1,
tkt1 Tkt

14++/1+4t2
2

where t; = 1 and tg1 = such that the complete approach can be given by

Alg. 10.

Applying this procedure yields the approximation error to the globally optimal objective
value to be given by
2L xo — 2*||3

o) = Sla) < = O

which is closely related to Nesterov’s bound when choosing the prox-function as d(z) =
o||z — zol|3. However, for this specific choice of d, we can see that Nesterov’s approach
requires in theory slightly less iterations at the cost of an additional projection.

4.4.4 Bounds of Lipschitz Constants

The benefit of knowing a-priori the number of iterations required to compute a configura-
tion whose value differs less than a fixed threshold from the global optimum, requires to
determine the Lipschitz constant L of the gradient, that for our function (4.9) is given by
L = 2||AT Al|2, or an upper bound thereof.

Although there are modifications of Alg. 9 and Alg. 10 that do not require explicit
knowledge of L, see [7, 89], they require additional line-search-like steps in each iteration
that are typically expensive in the large-scale setting. Thus, in the sequel we consider
different possibilities to estimate the Lipschitz constant L for our objective functional
(4.9) that are based on approximating the maximal absolute eigenvalue Apax of AT A.
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Algorithm 11 Power Iteration

Require: A € R™*" by € R"

Ensure: \;bp = Abg, where \; is the dominant eigenvalue of A
k=0
repeat

. Abg
Ok+1 = T,

Akt = [[Abgia |2
k=k+1
until convergence

Power lteration
One basic method to numerically determine the absolute of the maximal eigenvalue of the
matrix AT A is to apply the power method [56] given by Alg. 11.

However, it is also well known that the performance of this approach highly depends on
the absolute of the ratio of the largest to the second largest eigenvalue. Moreover, as power
iterations cannot guarantee that intermediate results are always larger than ||AT A2, we
have to apply Alg. 11 until convergence in order to correctly estimate the Lipschitz constant
of the gradient of f.

Gerschgorin’s Disk Theorem

For eigenvalues of a square matrix C' = (¢;;) there is also the widely used theorem of
Gerschgorin that bounds the values in intervals as follows.

Theorem 4.5 (Gerschgorin [56]). Let C' = (¢;;) € R™*". Then each eigenvalue X of C
lies in one of the disks

n
Dz‘:{)\‘HA—Cz‘iHQSTiﬂ’Z‘: E ]cij‘}, i=1,...,n.

i=1

J#1

As in our case AT A is symmetric and quadratic, all eigenvalues of AT A are non-negative

by definition. Moreover, as in our special case A;; > 0, we can obtain an upper bound on
the maximal eigenvalue according to Thm. 4.5 by

n
max E ajTai ,
i=1,....,n <
Jj=1
where A = (ay,...,an).

Trace Operator

Finally, it is possible to derive an upper bound on the maximal absolute eigenvalue of
AT A using the trace operator [56] that reads as

tr (ATA) - Zn: A
=1
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and directly yields an upper bound on Ap.x given by
n

Zai—rai > Amax -
i=1

While obtaining this bound requires only cheap computations, the accuracy highly de-
pends on the dominance of the largest eigenvalue. Thus, the approximation will yield poor
results if there are multiple A; close to Amax.

In Chap. 5, we experimentally analyze the accuracy of these bounds, their corresponding
computational complexity as well as the influence to optimization algorithms such as
Nesterov’s approach [88] and the fast iterative shrinkage-thresholding procedure [7].

4.5 Postprocessing

Convex relaxation of the original problem (4.3) allows to efficiently determine the optimal
configuration at the cost that the global optimum z* of (4.9) is not an element of {0,1}"
in general, but instead has real-valued components 0 < z; < 1.

A common strategy to cope with the binarization of z* is to iteratively solve the re-
laxed problem (4.9) subject to additional linear constraints [131] such as x; < 0,z; > 1,
respectively until a binary solution with minimal objective value is found. While this ap-
proach guarantees to obtain the optimal binary configuration, in the worst-case scenario
all possible binary configurations have to be visited yielding a runtime proportional to 2.

As problem (4.9) is of large problem size, application of such branch-and-cut procedures
quickly becomes intractable. In the sequel, we consider different approaches to infer the
binary solution of the relaxed problem (4.9) in order to obtain a corresponding high-
quality discrete configuration yielding the related objects’ positions. However, neither of
them guarantee to return the optimal discrete solution to (4.3), of course.

4.5.1 k-Means Clustering

Although the variables x1,...,z, are partially interdependent, let us assume pairwise
independence for all variables. Then, the results of the convex optimization procedure
can be viewed as probabilities, where x; indicates the probability of the presence of an
object with pose Y;. Moreover, the components of x typically form compact clusters in
the model-pose space and are well-localized in the image domain as depicted in Fig. 4.6.

Consequently, a clustering post-processing step such as weighted k-means can provide
a high-quality solution indicating the objects’ pose. The basic idea of weighted k-means
clustering [67] is to determine cluster centers C1, ..., Ck that minimize

k
N wd(vi,Cy)

j=1 }/iESj

where S; C SE (3) denotes the discrete set of Euclidean transformations that are assigned
to cluster center C; and d(Y;, C;) refers to the distance of Y¥; to C;. Similar to the hard-
assignment problems introduced in Sec. 2.2.1, obtaining C', ..., C requires proper initial
estimates on S;.
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Figure 4.6: Despite a substantial amount of noise and background clutter, poses indicated
by x after convex optimization are compactly located (left). A close-up view
is shown top left. Dots indicate the center of the model and colors their
orientation. The correct object instances in the scene (red shapes) can be
determined quickly by a clustering postprocessing step.

Due to the clusters’ compactness, however, simple clustering, i.e. assigning Y;, Y; to the
same cluster Sy if d(Y;,Y;) < € for an user parameter € > 0, turned out to work very well
for computing a reasonable initialization of Si,...Sk as well as on the number of cluster
centers k, where we used the canonical distance measure [115] on the Lie algebra se (3)
given by

4. Y;) = flog (v 1) | (112

where log : SE (3) — se(3) denotes the ordinary matrix logarithm and || - || refers to the
matrix Frobenius norm [56] given by ||A|| = \/tr(AT A) and previously used in Chap. 3.

Then, obtaining the cluster center C; amounts to minimize the smooth objective func-

tional
> willlog (¥iT'Cy) |
Y;eS;
for all j =1,...,k, separately. This can be done using geometric optimization techniques

such as gradient descent algorithms or Newton-like methods, as specified in Chap. 3.

Even though C} is not an element of the original discretized space of candidate trans-
formations in general, it provides accurate initializations to the pose estimation problem.
Additionally setting x; = 1, if the pose Y; is closest to C; for all j = 1,...,k, typically
yields proper binary solutions to the original discrete optimization problem (4.3). How-
ever, the accuracy of the corresponding result highly depends on the initialization of the
cluster centers C1,...,Cy as well as on the number of clusters k and consequently on the
compactness of the clusters.

4.5.2 The Mean Shift Procedure

An attractive feature of mean shift clustering [28, 32, 49] is that it does not require a-priori
knowledge of the number of clusters. In contrast, it estimates an underlying probability
density function using discrete data points and iteratively seeks for a nearby stationary
point and thus detects the modes of the density [28].

72



4.5 Postprocessing

In what follows, we briefly review the mean shift approach in the Euclidean vector space
R™ and outline its extensions to the space of Euclidean transformations SE (3).

Mean Shift in R”

The original mean shift algorithm was first introduced in Fukunaga and Hostetler [49] and
later rediscovered by Cheng [28] and Comaniciu and Meer [32]. Given a set of n data

points x1, ..., T,, the kernel density estimator in point z is then given by
1 n
2
F@) == 3 Koz — i)
i=1

with K, denoting a multivariate symmetric kernel, such as the Gaussian kernel introduced
in Chap. 2, and o controls its size. To detect the modes of f(x), it is sufficient to find the
zeros of the gradient, i.e. Vf(z) = 0.

Using the Gaussian kernel given by K,(z) = i exp (—#x) with normalization con-

stant z,, the gradient of the kernel density estimator writes as

1 — -
Vix) = 2 ZwiKo(Hw —xll3) — W%ZKU(HDC — zill3)
=1 =1

1 n oo Ko (||l — xi|?
o (St ei)) (el )

i=1

where the first term is proportional to the kernel density estimate and the second term
denotes the so-called mean shift vector. As f(z) > 0 by definition, the gradient vanishes
for all data points z1,...,z, if and only if the corresponding mean shift vector equals 0.
This directly yields the simultaneous update

n k k
T wiK ([ — =M 3)

(k+1
T = (4.13)
J k k
S Ko (12 - 2|3)
for all j = 1,...,n where :zzg-k) denotes data sample x; in the k-th iterate. Moreover,

reordering the terms of the gradient yields that the mean shift vector is given by

m(x :szf(l’)
) =)

Hence, the mean shift vector always points towards the direction of the maximum in-
crease of the density estimate such that stepping into direction m for all z;,i = 1,...,n
according to (4.13) yields each sample to converge to stationary points as depicted in
Fig. 4.7 for a two dimensional prototypical example. Moreover, normalization of the gra-
dient direction by f(x) causes the algorithm to make large steps through low-density
regions while lowering the step-size near local optima. Thus, the mean shift procedure can
be interpreted as an adaptive gradient ascent method [32] that is guaranteed to converge
to a local mode [28].
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4 Discrete and Convex Programming for Initialization Estimation

Figure 4.7: Sketch of the mean shift approach in the Euclidean space R%. Based on sam-
ples (red dots) of an underlying probability density function where the modes
are indicated by black crosses (left) the mean shift approach let the samples
converge along the trajectories to the local stationary point (right), given a
proper window parameter h.

Mean Shift in SE (3)

To generalize this principle to elements Xi,..., X, € SE(3) we have to take the structure
of the space of Euclidean transformations into account [115], as the weighted sum of
Euclidean transformations is not an element of SE (3) in general.

However, by resorting to tangent vector spaces, the mean-shift operations above can be
properly defined on the manifold SE (3), see Sec. 3.2. For further simplicity, we consider the
tangent space at I € SE (3) exclusively and retract the computations around X € SE (3)
to I. Then, the distance between X,Y € SE (3) can be measured by (4.12). Additionally,
the derivative of the squared distance function [115] at X = I with respect to X is given
by

Vd*(I,X;) = —2log(X;) .

This lets us compute the derivative of the kernel density estimate given by f(X) =
LS Ko (d*(X, X;)) with K, being a Gaussian kernel as

VHX) = % Y Ko (d*(X, X;)) log (X1X5) .
i=1

Analogous to the Euclidean case, this allows to let us define the simultaneous nonlinear
mean shift update [115] as

k+1 k k
Xi( ) _ exp (m(Xi( )))Xi( ).
where Xl-(k) denotes the i-th transformation in the k-th iterate and the mean shift vector
is given by
Y Ko (d(X,Y))) log (X 71Y)
i Ko ((X,Y5))

m(X)
being an element of se (3).
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4.5 Postprocessing

Algorithm 12 Generic Randomized Rounding
Require: Optimization problem minge g 1y~ f()
Ensure: z* € {0,1}" is feasible optimizer of f with high probability

Solve z* = arg min f(z)
z€[0,1]"
Round the fractional parts of z* as

=1 with probability p(x)
=0 with probability 1 — p(z])

where the rounding function p depends on the f.

Similar to the Euclidean case, applying the mean shift approach in SE (3) follows the
gradient to stationary points of the underlying density function while respecting the geo-
metric property of the space of Euclidean transformations. However, as is the case with
k-means clustering, when using mean shift for postprocessing the results obtained are
typically not an element of the original discretized space.

4.5.3 Randomized Rounding

Finally, we study a procedure to infer the optimal binary configuration of (4.9) based
on heuristic rounding techniques [12]. Instead of clustering poses to obtain intermediate
results C1,...,Cy ¢ {Y1,...,Y,}, randomly rounding the fractional parts of the globally
optimal configuration of (4.9) yields a subset of the originally discretized Euclidean pose
space.

Let * be the unknown optimal binary configuration and z* be the optimal configura-
tion of (4.9). The generic method to obtain non-fractional solutions z* based on z*, is
to randomly round the entries to {0, 1} according to a given rounding function p(z) as
specified by Alg. 12 for the simple case of pairwise independent samples.

Finding an appropriate rounding function p(x) however is involved in general, especially
if there are interdependencies between variables. To cope with this issue we can deran-
domize Alg. 12, i.e. resolve dependencies by fixing variables and lower the dimensionality
of the problem in order to apply deterministic algorithms or to simplify the choice of the
rounding function.

Derandomization consists of selecting values for x1,...,z, € {0,1} sequentially as fol-
lows:

1. set z1 =0 if
Elf(z)|z1 =0] < E[f(x)|x1 = 1]

and 1 otherwise
2. for j > 2,set x; =0 if
E [f(l‘)‘l’l, sy Lj—1,T5 = 0] < E [f(a:)|x1, sy Lj—1,T5 = 1]
and 1 otherwise,

where we compute the expected value by subsequently generating samples ¢ from Alg. 12
using p(z;) = x; where x; corresponds to the fractional solution of the relaxed optimization
problem and all z1,...,z;_1 are fixed according to the conditions of prior iterates.
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4 Discrete and Convex Programming for Initialization Estimation

As we are subsequently sampling according to a distribution induced by the optimal
continuous result and the expected value of the potential function decreases with each
iteration, the objective value of the binary configuration obtained by derandomization
does not differ much from the global binary optimum of (4.9), cf. [12].

Applying randomized rounding and the corresponding derandomization procedures how-
ever, requires to solve the convex relaxation (4.9) subsequently, i.e. one time for each
variable that has to be fixed. Due to the large problem size, however, solving (4.9) is
typically numerically inefficient, such that clustering procedures are consequently the bet-
ter compromise between accuracy of initialization and computational speed of the overall
procedure.

4.6 Summary and Further Work

Summary

In this chapter, we investigated a novel approach for obtaining rough estimates of the
number of rigid model instances as well as of the corresponding Euclidean transformations
that align the set of objects to 3D measurements, by extending the basic ideas of tem-
plate matching and sparse reconstruction. The results obtained by this approach typically
provide accurate initializations for local refinement algorithms such as gradient descent or
Newton-like procedures presented in Chap. 3.

The presented procedure jointly estimates the pose of multiple object instances and
resolves conflicting hypotheses through non-local contextual processing. The entire ap-
proach is primarily based on the reformulation of reconstructing the scene by a collection
of object instances in different positions in terms of a binary least-squares objective func-
tion including a regularizer enforcing sparsity that is presented in Sec. 4.2. This objective
quantitatively encodes coverings of the scene with multiple but few model instances at
different poses.

Due to the large size of the resulting optimization problem, we considered different
ways to determine the optimizer of the binary problem by relaxing the objective in order
to apply convex programming techniques, see Sec. 4.3. Moreover, a detailed analysis of
the binary objective revealed that it is possible to fix variables prior to optimization by
means of inspecting sufficient optimality conditions and thus to reduce the space of free
variables.

For numerically solving the remaining and still large optimization problem, in Sec. 4.4
we competitively evaluated different state-of-the-art approaches to sparse convex program-
ming. As the optimal configuration of the convex problem is fractional in general, we
additionally considered in Sec. 4.5 different postprocessing strategies to infer the opti-
mal binary configuration ranging from simple k-means clustering to advanced mean shift
approaches exploiting the geometry of the underlying space.

An experimental evaluation of the entire initialization approach for the specific task of
bin-picking is given in Chap. 5.

Further Work

Although the presented postprocessing algorithms perform well in our experiments, they
provide no guarantees that the obtained solution coincides with the globally optimal config-
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uration of the original binary least squares problem. In further work, we want to investigate
new strategies that yield tighter bounds.

Moreover, we hope to derive tighter optimality conditions in order to further reduce the
space of free variables in a preprocessing step as well as to allow online pruning techniques
that fix variables to their final configuration within convex optimization.

Finally, improving the theoretical basis of the relaxations of the non-convex, binary and
sparse reconstruction problem to convex formulations for realistic setups such as the bin-
picking scenario considered in this work, where there are non-normalized columns, noisy
measurements, as well as constraints on the search space, has to be addressed in further
work.
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Chapter 5
Validation and Applications

Accuracy, robustness, and speed are of primary importance for industrial applications. In
this chapter, we therefore experimentally evaluate the proposed approaches for rough
initialization estimation presented in Chap. 4 as well as for the geometric refinement
processes investigated in Chap. 3 in combination with the objective function of Chap. 2.
We apply these algorithms to the special scenario of industrial bin-picking applications.

To this end, we use both computer-generated data allowing for full control of the evalu-
ation and real industrial data as shown in Fig. 1.1. Artificial measurements are generated
by reference scans of a simulated scanning device (see Fig. 1.2) or by simply using sam-
ples obtained from a given CAD file as depicted in Fig. 5.1. We also consider noise-free
computer generated 3D models [123].

Moreover, we compare the algorithms presented in the previous chapters to a range
of reimplemented state-of-the-art algorithms including the Iterative Closest Point (ICP)
approach [14, 104] based on efficient k-D-tree implementations [11], the fix-point iteration
as a special case of Soft Assign [96], an expectation-maximization variant of ICP [57],
and the correspondence independent Kernel Correlation [70, 121] algorithm as detailed
in Chap. 2. Additionally, we numerically evaluate Newton-like procedures based on local
approximations of the smooth manifold of Euclidean transformations [84, 94], cf. Chap. 3.

5.1 Coarse Registration

Finding proper initializations amounts to solve a convex optimization problem as discussed
in Sec. 4.3. In the following subsections, we separately discuss the two major issues involved
in this connection: the large problem size of the convex relaxation and the conversion of
the global optimum to a binary solution in a postprocessing step.

5.1.1 Efficient Initialization

As short processing times are important for many industrial applications, we briefly point
out properties of our approach enabling fast on-the-fly computations of some steps of the
overall approach.

Concerning the preprocessing based on Thm. 4.3, only the object in position Oy, is
required to compute the corresponding column vector a; and to determine if the related
indicator variable zj can be set to zero (i.e. ignored) immediately. Furthermore, each
entry of a; can be computed in parallel and, due to the exclusive requirement of shortest
distance evaluations, precomputed distance maps [84] reduce the computation to simple
look-up table access.

As a consequence, the remaining costly part is the computation of the local neighborhood
for which a range of established algorithms and data structures such as k-D-trees [11] are
available.
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Figure 5.1: Prototypical examples of computer generated 3D point measurements obtained
by simulating the scanning device (left) depicted in Fig. 1.2 and by discretizing
a given CAD model (right), respectively.

So, realizing the initialization procedure presented in Chap. 4 can be done efficiently
while using parallel architectures enables to meet the run-time constraints of many indus-
trial applications.

5.1.2 Convex Optimization

In this section, we numerically evaluate different state-of-the-art approaches previously
presented in Sec. 4.4 to solve the convex initialization problem, i.e. we analyze the per-
formance of the spectral projected gradient (SPG) method [16], Nesterov’s algorithm [88]
and the fast iterative shrinkage-thresholding (FISTA) approach [7]. All algorithms only
require evaluations of the objective function and its gradient. Hence, they are suited for
large-scale sparse convex programming.

In order to competitively evaluate the performance of SPG, FISTA, and Nesterov’s
approach, we consider the 2D setup depicted in Fig. 4.2 as well as the real world 3D data
set presented in the upper panel of Fig. 1.1. For the prototypical 2D example we used a
total of 1335840 candidate object transformations. Then, application of Thm. 4.3 fixes
~ 99.7%(!) of the variables beforehand. The remaining 3497 variables were determined
using SPG, Nesterov’s algorithm, and FISTA, respectively.

Concerning FISTA and Nesterov’s approach, we used the three methods to numerically
determine or estimate the Lipschitz constant L = || AT A|2 of the gradient of f as presented
in Sec. 4.4: the power iteration [56] to infer the exact L, application of Gerschgorin’s disk
theorem to obtain an upper bound, and the trace operator of AT A returning the sum of
all eigenvalues as an upper bound.

While in this example the power iteration converged within a few iterations, it required
multiple matrix-vector multiplications and therefore took about 0.75 seconds. In contrast
Gerschgorin’s disk theorem only requires inspection of the data matrix and computed
an upper bound in 0.11 seconds. Finally, the trace operator returned an upper bound
within 0.02 seconds whose quality highly depends on the number of dominant eigenvalues
that increases with the number of objects in the scene. For the prototypical 2D setup
of Fig. 4.2 the real Lipschitz constant, determined by power iterations is approximately
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Figure 5.2: Comparison of optimization algorithms using the experimental setup of
Fig. 4.2. The SPG algorithm typically requires far less iterations to converge to
the global optimum compared to FISTA and Nesterov’s approach at the costs
of additional function evaluations involved in the line search. The performance
of FISTA and Nesterov’s method highly depend on the accuracy of the upper
bound on L.

2.4 -10* whereas the upper bounds obtained by Gerschgorin’s disk theorem and the trace
operator are 4.8 - 10* and 1.2 - 10°, respectively.

Our numerical experiments confirmed that the value chosen for L highly influences the
performance of FISTA and Nesterov’s algorithm, see Fig. 5.2. Compared to SPG, that does
not depend on L, FISTA and Nesterov’s approach also need more iterations to converge
to an optimizer. The fast convergence of SPG is primarily due to the line search involved
that causes the costs of additional function evaluations, however, such that the time per
iteration is significantly smaller for FISTA and Nesterov’s approach. This results in a
typically faster overall convergence of FISTA and Nesterov’s approach (Fig. 5.3).

For the real world scenario shown in the upper panel of Fig. 1.1, the dependency of the
performance of FISTA and Nesterov’s algorithm on L becomes even clearer as depicted in
Fig. 5.4. As more object instances are available in this scene than in the 2D setup, the
trace operator returns a poor upper bound on L yielding slow convergence of FISTA and
Nesterov’s approach, respectively.

Although FISTA reveals slightly faster convergence in our experiments, due to the theo-
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Figure 5.3: Comparison of optimization algorithms using the experimental setup of
Fig. 4.2: While the SPG algorithm typically requires less iterations to con-
verge to the global optimum, due to the line search involved, it requires more
time per iteration (in seconds) in comparison to other approaches.

retical tighter bounds of Nesterov’s algorithm (cf. Sec. 4.4), for our real world experiments
summarized in Sec. 5.3, we throughout used Nesterov’s algorithm to determine the solution
of the convex initialization problem.

5.1.3 Binarization of the Solution

To infer a corresponding high-quality discrete configuration based on the real-valued so-
lutions of the convex initialization problem, in our real world experiments we used the
simple k-means clustering approach presented in Sec. 4.5 taking into account the under-
lying geometry of the manifold of Euclidean transformations.

Due to the compactness of the clusters in the model-pose space that can be well-localized
in the image domain (see Fig. 4.6 as a prototypical example), simple clustering turns out
to reveal reasonable initializations for subsequent refinement procedures as we will see
in Sec. 5.3. Moreover, this approach does not require solving the large-scale optimiza-
tion problem multiple times as is the case for randomized rounding techniques, and thus
provides a compromise between accuracy of initialization and computational speed.
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Figure 5.4: Comparison of optimization algorithms using the experimental setup shown
on the upper panel of Fig. 1.1: While the SPG algorithm outperforms FISTA
and Nesterov’s approach, the performance of these algorithms highly depend
on the accuracy of the estimate of L. As there are more object instances in
the scene, compared to Fig. 4.2, the trace operator yields poor approximations
on L causing slow convergence of the algorithms.

5.2 Fine Registration

To evaluate the refinement of rough estimates, we considered geometric optimization pro-
cedures as described in Chap. 3 with respect to the formulation of the Euclidean alignment
problem of Chap. 2. To this end, we used computer-generated point sets obtained from
[123] in a fully controlled environment, and analyzed the performance with respect to
run-time and robustness to inaccurate initializations as well as comparing the results to
state-of-the-art algorithms.

5.2.1 Accuracy of Registration with Ground Truth

In this subsection, we compare our formulation of the Euclidean point set alignment prob-
lem (see Chap. 2) to established state-of-the-art algorithms, including ICP [14], the fix-
point iteration as a special case of Soft Assign [96], an expectation-maximization variant
of ICP [57], and Kernel Correlation [70].
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Figure 5.5: Visualization of the artificial models [123] used to evaluate the performance
of the proposed alignment procedures with respect to accuracy. To speed up
the alignment process of the corresponding algorithms, all models were down-
sampled to a set of 200 point measurements.

For the model measurements we used the synthetic, computer generated models of
Fig. 5.5. Each model consists of up to 50.000 samples. To speed up the whole process,
we randomly sampled the models down to the size of 200 points. Scenes are generated by
randomly placing a single model arbitrarily in space. As the primary concern in industrial
bin-picking applications are outliers, we randomly added up to 50 % outliers to each object
in order to simulate this issue.

As we focus on the accuracy of the problem formulation in this subsection and do not
want to cope with false alignments due to algorithmic issues (cf. Sec. 5.2.4), to obtain
the optimizer of our novel, smooth formulation presented in Chap. 2, we used a simple
extension to gradient descent like algorithms such as Alg. 4 (Sec. 3.3.3).

In order to analyze all algorithms with respect to sensitivity to initialization, we repeated
the alignment process 150 times, where for each iteration the scene was transformed to
a different location. Random rotations were obtained by sampling the complete space
of rotations, while the translation varied randomly between 2 times the diameter of the
model.

Two sets were considered to be properly aligned if the length of the curve connecting
both transformations was less than 0.2. In Euler angles, this distance corresponds to an
error of about 5 degrees in each angle and a total deviation of 5 % of the model’s size
in translation. This was chosen empirically based on our experience with the industrial
application.

Furthermore, the parameters necessary for most algorithms were all tuned by hand to
optimize performance and to guarantee a fair comparison. Accordingly, with respect to
the annealing schedules required for the Soft Assign [96] and the expectation-maximization
variant of ICP [57], we adopted conservative schedules at the cost of slower convergence
in order to better escape from local minima.

The best choice of the parameter o, required for our approach, cannot be specified in
general but depends on the given data and its scale. As a rule, too small values will impair
robustness of the approach, making it sensitive to local minima like the ICP algorithm
(cf. Sec. 2.4). Exceedingly large values, on the other hand, limit the accuracy of the
registration. Our experiments show the existence of a reasonably large interval of values
resulting in good performance (see Fig. 2.7).
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Figure 5.6: Percentage of experiments that converged for the bunny model of Fig. 5.5 to
the true solution by applying from left to right ICP (dark blue), EM-ICP
(light blue), Soft Assign (green), Kernel Correlation (red), and our approach
(brown). All corresponding scenes were supplemented with noisy points in the
range up to 50 % of the model size. Our approach outperforms state-of-the-art
approaches such as ICP and Kernel Correlation without using an annealing
schedule.

The results of our experiments for the different data sets of Fig. 5.5 are presented in
Fig. 5.6, Fig. 5.7, and Fig. 5.8, respectively. They show that our novel objective function
reveals a significantly increased robustness against inaccurate initializations and uniformly
outperforms related state-of-the-art approaches like ICP and Kernel Correlation. More-
over, the proposed reformulation of the Euclidean alignment problem reveals comparable
performance to Soft Assign and the expectation-maximization variant of ICP without
using an annealing schedule.

To demonstrate the robustness of our novel objective function to structured outliers,
we also applied the registration procedure to the horse model with only a small overlap
as visualized in Fig. 5.9. An additional background kernel supplemented to the model
mixture (cf. Sec. 2.4.1) allows to accurately align both point sets and reconstruct the
original model.
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Figure 5.7: Percentage of experiments that converged for the dragon model of Fig. 5.5
to the true solution by applying from left to right ICP (dark blue), EM-ICP
(light blue), Soft Assign (green), Kernel Correlation (red), and our approach
(brown). All corresponding scenes were supplemented with noisy points in the
range up to 50 % of the model size. Our approach outperforms state-of-the-art
approaches such as ICP and Kernel Correlation without using an annealing
schedule.

Finally, the time required to evaluate our objective function is similar to the computa-
tional complexity for computing the value of the objective of the expectation-maximization
variant of ICP, Soft Assign, and Kernel Correlation without using speed-up techniques,
namely O(nm), where n,m are the number of scene and model samples, respectively.

5.2.2 Accuracy for Real World Applications

In real industrial applications, the rigid alignment of a model point set to scene samples
becomes more difficult due to the type of noise. As Fig. 1.1 shows, the scene recorded
by a SICK-LMS400 scanning device contains noise as well as multiple structures similar
to model parts. Most structures have to be considered as outliers except for those cor-
responding to the model. Quantitatively, nearly 80% of the samples are structures not
belonging to the object of interest.
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Figure 5.8: Percentage of experiments that converged for the horse model of Fig. 5.5 to
the true solution by applying from left to right ICP (dark blue), EM-ICP
(light blue), Soft Assign (green), Kernel Correlation (red), and our approach
(brown). All corresponding scenes were supplemented with noisy points in the
range up to 50 % of the model size. Our approach outperforms state-of-the-art
approaches such as ICP and Kernel Correlation without using an annealing
schedule.

In order to alleviate these issues, a common procedure is to fit the scene to the model
instead of fitting the model to the scene, and to introduce a further background kernel
as already mentioned previously. This improves the capability to properly assign even
occluded samples to parts.

In the particular scenario depicted on the upper panel of Fig. 1.1, experts from indus-
try expect a maximum variability of rotation of £6 degree. Consequently, to be on the
safe side, we randomly sampled the rotation space within £+25 degrees around the model
reference position and placed the model at various locations in the scene. As with the
synthetic experiments of Sec. 5.2.1, we tuned the parameters by hand.

The results of applying our approach as well as a robust implementation of ICP [104]
are visualized in Fig. 5.10. The statistics resulting from these experiments, presented in
Tab. 5.1, reveal that according to our objective function 36 of 50 experiments converged to
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Figure 5.9: To demonstrate the ability of our novel objective function presented in Chap. 2
to handle highly structured outliers we used a discrete set of points sampled
from slightly overlapping back and head of horse as scene and model, respec-
tively (left). Instead of fitting the mean values of the point sets, our method
accurately merges both point sets and reconstructs the original model (right).

Our Approach | Robust ICP [104]
# located objects 7 4
# positive detections 36 12
# negative detections 14 38

Table 5.1: Statistical results of aligning a brake disc model to real world data for our
approach and a robust implementation of ICP using outlier rejection [104].

a visually correct solution. In contrast, the robust implementation of ICP only converged
in 12 of 50 experiments.

This also leads to the fact that our approach locates 7 of 8 model instances in the
scene with at least one experiment. The robust implementation of the ICP approach,
in contrast, is only able to extract 4 different model instances accurately. Even more
complicated models comprising non-symmetries can be handled using our novel objective
function, where we demonstrated in Fig. 5.11 the applicability to automatic processes.
The model, depicted on the left hand side of Fig. 5.11 that is obtained by a reference scan
(cf. Fig. 5.1) is used to specify the transformation to subsequent sample scans. For the
initialization we used the recorded position of the model.

5.2.3 Newton-Like Geometric Fine Alignment

Even though these experiments reveal promising results with respect to accuracy of the
obtained optimizer, using stabilized versions of gradient descent like algorithms typically
yield poor results with respect to speed of convergence and leave room for improvement
by considering higher order methods.
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Figure 5.10: Typical results of aligning a brake disc model to sample scans obtained by
a SICK-LMS400 scanning device using our novel cost function (left) and the
robust ICP algorithm [104] (right). While our approach locates the disk
in the upper right corner accurately, robust ICP failed to detect it for the
same initialization. This prototypical behavior is primarily due the high non-
convexity of the ICP objective and can also be seen for different data sets.

Figure 5.11: Typical results of aligning a model, recorded by a SICK-LMS400 scanning
device (left), to subsequent scans of the same object (middle and right) using
our novel objective function. The model (light blue) is accurately fitted to
the recorded scene (black), even if parts of the scene are missing.

To this end, we evaluate the Newton-like geometric optimization algorithms described
in Sec. 3.4 by applying them to computer-generated point sets such as the bunny and
the dragon model of Fig. 5.5, and analyze the performance with respect to run-time and
robustness to inaccurate initializations.

Speed of Convergence

Algorithms like ICP [14] or Soft Assign [96] return less accurate registrations in cases
where the underlying point set has no or only few salient regions. This often occurs in
industrial applications where smooth surfaces have to be aligned accurately. To compare
the ability of the Newton-like approaches to cope with such scenarios, we generated 2500
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Figure 5.12: Evaluation of the performance of Newton algorithms for aligning two point
sets sampled from the smooth function 3(z—1)2+3 sin(2y) on the unit interval
[0,1]2. The algorithms are based on linear and quadratic motion approxima-
tion [94], the approach proposed in this paper (manifold Newton) as well as
ICP [14] and Soft Assign [96], for o,, = 0.3, where the plot visualizes the ob-
jective function values for the ICP functional for subsequent iterates. While
ICP and Soft Assign converge linearly, the remaining approaches converge
quadratically to the local optimizer.

data points by randomly sampling from the smooth function 3(z — 1) + 3sin(2y) on the
unit interval [0, 1]2.

We transformed a copy of the model only slightly (about 4 degree in each rotation and
by a total of 0.12 in translation), such that all approaches including ICP [14], the fix-
point iteration as a special case of Soft Assign [96], the Newton schemes based on local
approximation [94] (cf. Sec. 3.4.2), and the approach proposed in Sec. 3.4.3 converged
to the true solution. Figure 5.12 and Fig. 5.13 reveal that the convergence rates differ
significantly in that with increasing o, the local optimizer is reached in few iterates for
all algorithms depending on the control parameter.

While for varying o,, the Newton procedures based on local approximations of the Eu-
clidean group (Sec. 3.4.2) converge slightly faster than the approach presented in Sec. 3.4.3,
all of them exhibit quadratic convergence. In contrast, ICP and Soft Assign only converge
linearly to the optimal configuration. As a result, they return less accurate registrations
under tight run-time constraints such as performing the algorithms for a fixed number of
iterations.

The superior performance of the Newton schemes is at the cost of more expensive com-
putations for determining the Hessian in each iteration. A single round of ICP requires
about 1 second. In contrast, the computation of the derivatives using only MatLab re-
search code needs between 8 (linear and quadratic approximation [94]) and 12 seconds
(our approach). This difference is primarily due to the higher dimension of the ambient
space in which the gradient and the Hessian are computed. We expect however that when
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Figure 5.13: Evaluation of the performance of Newton algorithms for aligning two point
sets sampled from the smooth function 3(z—1)2+3sin(2y) on the unit interval
[0,1]2. The algorithms are based on linear and quadratic motion approxima-
tion [94], the approach proposed in this paper (manifold Newton) as well as
ICP [14] and Soft Assign [96], for o, = 0.15, where the plot visualizes the
objective function values for subsequent iterates. While ICP and Soft Assign
converge linearly, the remaining approaches converge quadratically to the lo-
cal optimizer. Compared to Fig. 5.12 with increasing o,, more iterates are
required to ensure convergence.

using a C-tuned implementation the Newton approaches will almost catch up with ICP.

Region of Attraction

Fast convergence is immaterial if the algorithm diverges or gets stuck in a wrong local
minimum. Robustness to poor initializations is therefore important. The region of attrac-
tion for ICP [14] has already been analyzed in [84]. We therefore only consider Newton
procedures here.

For comparison, we used the same initial setup as [84], i.e. a model of the Stanford
Bunny visualized in Fig. 5.5 is rotated around the z-axis and shifted in the x-y plane by
the size of the model, see Fig. 5.14. For the scene we used a copy of the model placed in
the origin. Because we are primarily interested in quadratic and fast convergence and the
resulting accuracy after a fixed run-time, we terminated all second-order algorithms after
25 iterations.

We observed that especially for transformations with rotational initialization error, the
Newton approach proposed in this work has a significantly larger domain of attraction to
the correct solution than the procedures based on local approximations of the Euclidean
group, as visualized in Fig. 5.15. This finding confirms the discussion in Sec. 3.4.4.

In a related experiment we examined the update direction of a single iterate of each
scheme, cf. Fig. 5.16. By only translating the bunny point set in R? we found that quadratic
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Figure 5.14: Visualization of the experimental setup [84] for evaluating the region of
quadratic convergence for Newton algorithms. Each circle center relative to
the centering circle, refers to an initial translation offset of the model vs. the
scene in the x-y plane.

Figure 5.15: Bunny point set: Evaluation of the region of quadratic convergence for New-
ton algorithms based on linear (left), quadratic (middle) local approximation
[94], and on the intrinsic local approximation (Sec. 3.4.3, right), for fixed
om = 0.1. Each circle center together with the circle center in the middle
shows the initial translation offset of the model vs. the scene in the x-y plane.
Slices in each circle refer to the initial rotation around the z-axis. They are
colored black if the model converged to the scene within the first few itera-
tions and otherwise remained white. The results illustrate that the approach
proposed in Sec. 3.4.3 is significantly and uniformly more robust against in-
accuracies of initialization.

local motion approximation as well as our approach exhibit a lower angular error than the
scheme based on linear local approximation. We point out that the angular error of all
approaches near the origin is primarily due to the nature of the objective function of
Chap. 2, that is a slight detrimental effect of the smoothed objective function discussed in
Sec. 2.4. Decreasing the value of o, after few iterations would fix this minor issue.

Applying this setup to a different model, such as the dragon point set of Fig. 5.5, reveals
similar results (see Fig. 5.17). Even though the region of attraction is less dense than the
one of Fig. 5.15, compared to approximating the Euclidean motion group our approach
(cf. Sec. 3.4.3) reveals promising performance for rigid point set registration problems.
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Figure 5.16: Visualization of the angular error of the translational update computed with
the linear (left) and quadratic (middle) local approximation approach [94],
and with the intrinsic local approximation (right) (Sec. 3.4.3), as a function
of the translational offset (ground truth) model < scene in 3D-space. No ro-
tation was applied. Each graphic depicts slices through the three-dimensional
“error fields”. While the linear local approximation fails again in this simple
scenario, both quadratic approximations are more robust against this type
of initialization error. Figure 5.15 shows, however, that only the intrinsic
approximation (Sec. 3.4.3) remains stable if rotational initialization errors
additionally occur.
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Figure 5.17: Dragon point set: Evaluation of the region of quadratic convergence for New-
ton algorithms based on linear (left), quadratic (middle) local approximation
[94], and on the intrinsic local approximation (Sec. 3.4.3, right), for fixed
om = 0.1 using the initial setup of Fig. 5.15.

5.2.4 Limitations of our Approach

Despite of the increased robustness in comparison to ICP, the expectation-maximization
variant of ICP, Soft Assign, and the Kernel Correlation approach, our approach still may
also fail for very inaccurate initializations, cf. Fig. 5.6, Fig. 5.7, and Fig. 5.8. Real world
results where our approach failed to converge to true solutions are shown in Fig. 5.18.

In these cases, objects are placed such that parts of the model accurately fit various
salient structures in the scene that do not belong to a single object instance. Due to the
local influence of the kernels involved in our objective function, we cannot currently escape
from such pronounced local optima.

Another point is that due to the high non-convexity of the objective function applying
Newton-like algorithms might cause poor approximations of the objective function such
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Figure 5.18: Typical negative detections occurring during experiments with too inaccurate
initializations. Salient structures of different objects are placed, such that
they fit to few parts of the model. Similar to state-of-the-art approaches, this
causes our algorithm to get stuck in local optima.

that the corresponding update directions fail to decrease the value of the objective function.

A straightforward extension concerns the interplay between first- and second-order nu-
merical optimization methods on the manifold of Euclidean transforms in order to optimize
the speed of convergence while guaranteeing convergence to a local optimum. This goal
can be accomplished by adopting numerical trust-region strategies to the manifold setting
as previously pointed out in Sec. 3.5.

5.3 Combining Global and Local Optimization

Finally, we demonstrate that the single steps evaluated in Sec. 5.1 and Sec. 5.2 comple-
ment each other in that conflicting interpretations are resolved through non-local convex
processing, followed by accurate non-convex local optimization based on sufficiently good
initializations. Hence, in this section, we apply and evaluate the combination of the ini-
tialization and geometric refinement approach to the real-world bin-picking scenario. To
this end, we use both computer-generated data allowing for full control of the evaluation
by simulating the scanning device and noise, and real industrial data.

5.3.1 Computer-Generated Data

To evaluate the accuracy of our approach in a fully controlled environment, we generated
different “realistic” data sets by simulating the real world scanning device of Fig. 1.1 for
real objects depicted in Fig. 1.2.

FEach object instance was randomly placed in the scene including partially overlapping
objects. Additionally, to cover a wide range of applications with different input data, we
used both object models exclusively based on edge data as well as models just obtained by
reference scans, as depicted in Fig. 5.19, Fig. 5.20, and Fig. 5.21, respectively. We point
out again that different input formats are uniformly handled by our approach.

Collections of candidate poses for multiple object detection were compiled by discretizing
the space of possible rotations in intervals of 15°. The corresponding translation vectors
are chosen such that at least a single point in the scene can be fitted accurately. This
resulted in a total of up to 2413675 possible candidate instances. Table 5.2 displays all
relevant numbers.
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Figure 5.19: Object detection and localization with real world objects (top left) in 3D
scanning data obtained by simulating a SICK-LMS400 scanning device (top
right). While the convex initialization step simultaneously gives proper esti-
mates of the number of objects as well as the corresponding transformations
(bottom left), running subsequently few iterations of the geometric optimiza-
tion approach yields accurate registration results (bottom right).

aSTEOR

%

I8

Object Link ‘ Hook ‘ Mech-part
# candidate instances 1524600 | 2413675 394975
# non-zero instances after pruning 228 336 681 4597
# non-zero instances after optimization 9 47 11

# non-zero instances after clustering ) ) 5

Table 5.2: Quantitative evaluation of the initialization phase and of the first processing
stage (non-local multiple object detection through convex optimization) for the
data sets shown in Fig. 5.19, Fig. 5.20, and Fig. 5.21.

Our current research code does not yet exploit the features for accelerating the initial-
ization phase, as listed in Sec. 5.1.1. Rather, we computed the full matrix A off-line which
took several minutes.

The parameters d, o, and p of our approach (cf. Sec. 4.2) are set by hand for each
scenario. These values reflect the characteristics of the scenario, i.e. the noise level and
the spacing of the model points. Their choice is therefore straightforward and does not
require elaborate tuning. We point out that they only depend on the scenario (noise, object
models) and not on the specific given scene (data) of a fixed scenario to be analyzed.

The elimination of variables in the preprocessing step (see Sec. 4.3) fixes between 86%
and 99.9% of the variables beforehand such that the final convex optimization procedure
detects multiple objects within few seconds only.

An additional pose clustering step provides rough initializations that can be used for
the subsequent fine alignment process through geometric optimization. In case of the
mechanical part (Fig. 5.20) the deviation of the estimated position from ground truth is at
most 5° rotation and = 5.3% translation of the model size. Similar results are obtained for
the link (rotation error < 4.5°, translation error < 1.8%) and the hook data set (rotation
error < 5° translation error < 2.4%). The trade-off between the computational costs
of the first non-local convex processing stage and the subsequent geometric optimization
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Figure 5.20: Object detection and localization with real world objects in 3D scanning data
obtained by simulating a SICK-LMS400 scanning device. While the convex
initialization step simultaneously gives proper estimates of the number of

objects as well as the corresponding transformations (bottom left), running

subsequently few iterations of the geometric optimization approach yields
accurate registration results (bottom right).

depends on how finely the pose space is discretized (problems size vs. inaccurate detection)
and can certainly be optimized for fixed industrial scenarios.

Running the geometric optimization algorithm evaluated in Sec. 5.2 for each detected
object returns a final pose estimate within few iterations. At this second stage of the
overall approach, we used an additional background kernel in our objective functional
(cf. Sec. 2.4.1) to cope with structured outliers, i.e. nearby objects.

Because geometric optimization converges to a local optimum, occlusion configurations
may occasionally lead to erroneous updates of the corresponding Newton algorithm. Figure
5.21 depicts such a scenario where due to locally “looking through holes” no consistent
matching of the sparse model points to scene points is possible.

5.3.2 Real-World Industrial Data

We also applied our approach to the real-world industrial scenarios depicted in Fig. 1.1,
comprising 3D noisy and unstructured scanning data of brake discs and flanges, respec-
tively.

Assuming that brake disc objects are never located upside down, we sampled the model
at 10 different points for each circle and discretized the space of rotations within the
interval of [—15, 15] degrees for each free axis (the model is rotation-invariant with respect
to the third axis). This resulted in a total of 1420 candidate objects poses that can cause
a single scene point and took about 0.2 seconds computation time.

The preprocessing step reduced the problem size by eliminating ~ 99.5% of the variables
immediately. The subsequent global convex optimization determined the remaining 4320
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Figure 5.21: Object detection and localization with real world objects in 3D scanning data
obtained by simulating a SICK-LMS400 scanning device. Due to the use of
edge images, wrong edge detections due to noise (“looking through holes”)
yields Newton’s algorithm to fail to converge. While the convex initialization
step simultaneously gives proper estimates of the number of objects as well
as the corresponding transformations (bottom left), running subsequently the
geometric optimization approach fails to converge for the two objects marked
red. The reason is that the ability of “looking through holes” complicates the
objective function and narrows down the region of attraction to the correct
local minimum.

variables in 14 seconds. Even highly occluded model instances are detected accurately
as indicated by the blobs on the right hand side of Fig. 5.22 marking the hypotheses
corresponding to the objects’ pose.

Subsequent application of the geometric optimization for at most 5 iterations, where
each iteration required about 1 second, turned out to be sufficient to accurately locate all
object instances placed in the bin.

For the complex objects shown in the lower panel of Fig. 1.1, the approach was able
to detect the objects and to determine proper initial pose estimates in the corresponding
highly unstructured point set (see Fig. 5.23, left panel). Again, subsequent geometric
optimization determined the final object positions within few iterations.

However, geometric optimization might fail if the initial pose estimate does not fall
into the region of convergence of the Newton updates on the manifold, as indicated in
Fig. 5.15 and Fig. 5.17. This fact is well known from standard Newton-based optimization
in Euclidean spaces, too (cf. Sec. 3.5). We cope with this issue by resorting to first-
order optimization techniques on the group of Euclidean transformations (cf. Chap. 3)
if the initial Newton updates do not sufficiently decrease the objective function value.
The object marked with red in Fig. 5.23 constitutes such an example, where the Newton
method failed and switching to first-order optimization safely converged, at the cost of a
higher number of iterations.
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Figure 5.22: Object detection and localization with real world 3D scanning data. The pose
clusters of all object instances recovered by convex global optimization are
displayed as blobs in the left panel. Selecting a representative of each compact
cluster as initialization enables to infer the unique number and localization
of objects by subsequent geometric optimization (right panel).

Figure 5.23: Detection and localization of complex objects in unstructured range data.
Poses returned by the first convex global optimization stage cluster tightly
and are displayed in the left panel, where more likely candidate poses are
shown less transparent. Selecting a representative of each cluster as initial-
ization enables to accurately locate the objects through subsequent geometric
optimization, cf. right panel and the lower panel of Fig. 1.1.

Finally, we demonstrate the robustness of the non-local detection stage with respect to
similar looking but different objects. Figure 5.24 shows a single disc embedded into other
discs, whose radius of the inner ring is slightly larger than that of all others. Although
this disc is very similar to the other discs, the multiple object detection through convex
programming only returns this single object instance.
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Figure 5.24: Robustness of object detection. A single disc that only slightly differs from

all other discs (slightly larger inner ring radius) is reliable returned as single

object instance by the first convex programming stage.
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Chapter 6
Summary and Further Work

Summary

In this thesis, we presented a novel “initialization and refinement” approach for the prob-
lem of model-based detection and determination of the transformations of multiple objects
for the real-world industrial bin-picking scenarios where the scene measurements are rep-
resented by noisy, unstructured, and sparse points.

The initialization stage of Chap. 4 is designed in terms of a global, large-scale, convex
objective functional that accurately reflects the geometric constraints of the pose esti-
mation problem. Additionally, this formulation enables to apply efficient preprocessing
techniques derived from sufficient optimality conditions as well as the use of dedicated
convex optimization algorithms. In general, it yields that the corresponding optimiza-
tion problem can be solved efficiently while obtaining promising performance making the
approach attractive for real-world applications with tight run-time constraints.

For a subsequent refinement stage (Chap. 2 and Chap. 3), we investigated a novel
formulation of the Euclidean alignment problem based on continuous, kernel-based point
set representations where obtaining the optimal registration amounts to minimize the
Kullback-Leibler divergence between the model and the scene function. This provides
convenient approximations of state-of-the-art approaches while resolving the problem of
explicit determination of point-to-point correspondences. Moreover, it yields a smooth
objective functional that allows to use higher order optimization techniques at the costs
of lacking from closed form solutions.

To obtain the local optimizer of our new objective, we considered advanced optimization
techniques that fully exploit the intrinsic properties of the underlying group of Fuclidean
transformations. To this end, we extended a Newton-like optimization approach to the
smooth manifold of transformation and experimentally showed that it provides fast con-
vergence to the local optimum while exhibiting sufficiently large regions of attraction.

Finally, we empirically demonstrated in Chap. 5 that the single steps of initialization
and refinement complement each other using a collection of computer-generated and real-
world measurements. This means that conflicting interpretations are resolved through
non-local convex processing, followed by accurate non-convex local optimization based on
sufficiently good initializations. Additionally we showed that the entire two-step approach
provides the potential to meet the accuracy and run-time constraints of many real-world
industrial scenarios.

Further Work
Despite of the generalization of the individual steps, there are major issues that have

to be addressed in further work. On the one hand, we want to investigate run-time
improvements by means of faster function evaluations for fine alignment. While there are
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dozens of extensions to speed up state-of-the-art approaches such as using efficient data
structures [11] or applying multi-resolution schemes [72], evaluating the log-exponential
used in Chap. 2 and the corresponding derivative numerically is time-consuming in general.

Additionally, as demonstrated by experiments in Chap. 5, the convergence of Newton’s
algorithm depends on the smoothness of the underlying objective function. Thus, in or-
der to guarantee convergence, in further work we want to estimate the size of the region
of attraction [35], by deriving a criterion that ensures convergences to an optimal con-
figuration beforehand. Moreover, it is a common strategy to introduce further step-size
regularization techniques [133] to enlarge the region of attraction and to cope with poor
approximations of the objective. Another approach is to consider trust region algorithms
[2] that slightly complicate the Newton steps while guaranteeing stable convergence. Such
approaches have to be addressed in further work as well.

Next, we hope to improve the theoretical basis of the preprocessing procedure by means
of studying relaxations of the non-convex, binary sparse reconstruction problem to convex
formulations for realistic setups such as the bin-picking scenario. Additionally, we want
to improve the bounds for preprocessing, presented in Chap. 4, in order to fix variables of
the optimal configuration in early processing steps.

Finally, we want to derive tight bounds for the postprocessing stage that enable us to
infer the globally optimal configuration of a binary optimization problem based on a single
or only few optimal configurations of certain continuous relaxation. Such bounds could
prove to be useful in many other applications, too.
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