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Summary 
The six members of the SLAM-related receptor family are expressed on many cell 

types of the immune system and play a role in fine-tuning of immune responses. In 

this study we investigated the SLAM-related receptors 2B4, NTB-A and CRACC.  

2B4 and NTB-A are activating receptors on human natural killer (NK) cells. 2B4 binds 

to CD48, NTB-A is homophilic. The molecular basis for the homophilic NTB-A 

interaction has been identified by crystal structure analysis, but the results have not 

been tested in functional assays. Using mutational analysis we could show that the 

residues H54 and S90 are very important for functional homophilic interaction 

between two NTB-A molecules, whereas the residues E37 and Q88 are not. 

After binding to their ligands 2B4 and NTB-A recruit the two adapter molecules SAP 

and EAT-2. Although many elements of 2B4 and NTB-A signaling have been 

described, the early events in their signal transduction are not fully understood. In 

this study we could show that in human natural killer cells the phosphorylation of 2B4 

and NTB-A takes place independently of SAP. However, both receptors need the 

presence of SAP to trigger cytotoxic responses. The adapter EAT-2 does not bind to 

the phosphorylated receptors in the absence of SAP. This leads to the conclusion 

that SAP association with the receptors is the crucial prerequisite for further signaling 

events, including the recruitment of EAT-2. 

CRACC is an activating receptor on NK cells triggering cytotoxicity and enhancing 

cytokine production. The receptor is also expressed on a subset of CD8-positive and 

few CD4-positive T cells, but the function of CRACC on these cells is unknown. In 

this study we describe CRACC as co-stimulatory receptor on T cells. Simultaneous 

engagement of the T cell receptor and CRACC induces expression of activation 

markers, proliferation and cytokine production. T cell-mediated cytotoxicity is not 

enhanced by engagement of CRACC. We found that CRACC is expressed mainly on 

CD8-positive memory T cells, and its expression is induced on CD8-positive T cells 

by activation. Therefore we suggest that CRACC co-stimulation supports the 

expansion of activated cells and facilitates the re-activation of memory T cells. 

Furthermore we could detect CRACC expression on CD4-positive, CD28-negative T 

cells in patients with unstable angina pectoris. This population appears in patients 

with chronic inflammatory diseases and amplifies the inflammatory process. We 
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suggest that CRACC co-stimulation could be involved in the continuous activation of 

these cells, and therefore is a possible therapeutical target. 
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Zusammenfassung 
Die SLAM verwandten Rezeptoren sind eine Rezeptorfamilie, deren sechs Mitglieder 

auf vielen verschiedenen Zelltypen des Immunsystems vorkommen, wo sie an der 

Feinabstimmung von Immunantworten beteiligt sind. In dieser Arbeit wurden die 

SLAM verwandten Rezeptoren 2B4, NTB-A und CRACC untersucht. 

2B4 und NTB-A sind aktivierende Rezeptoren auf natürlichen Killerzellen (NK-Zellen) 

des Menschen. 2B4 bindet an CD48, NTB-A ist homophil. Die molekulare Grundlage 

für die homophile Interaktion von NTB-A wurde durch Kristallstrukturanalyse 

aufgeklärt, aber die Ergebnisse wurden noch nicht in Experimenten funktionell 

bestätigt. Durch Mutationsexperimente konnten wir zeigen, dass die 

Aminosäurereste H54 und S90 für die homophile Interaktion eine sehr wichtige Rolle 

spielen, während die Reste E37 und Q88 weniger wichtig sind. 

Im aktivierten Zustand rekrutieren die Rezeptoren 2B4 und NTB-A die beiden 

Adaptermoleküle SAP und EAT-2. Obwohl schon viele Elemente der 

Signaltransduktion durch 2B4 und NTB-A beschrieben wurden, sind viele der 

Ereignisse am Beginn der Signalweiterleitung ungeklärt. Wir konnten zeigen, dass in 

humanen NK-Zellen die Phosphorylierung von 2B4 und NTB-A unabhängig von SAP 

stattfindet. Um eine zytotoxische Reaktion auszulösen, sind beide Rezeptoren 

allerdings auf SAP angewiesen. Das Adaptermolekül EAT-2 zeigt in Abwesenheit 

von SAP keine Bindung an die phosphorylierten Rezeptoren. Das führt zu dem 

Schluss, dass die Assoziation von SAP mit den phosphorylierten Rezeptoren die 

unerlässliche Voraussetzung für weitere Signaltransduktionsschritte ist, so auch für 

die Bindung von EAT-2 an die Rezeptoren. 

CRACC ist ein aktivierender NK-Zellrezeptor, der Zytotoxizität und Zytokinproduktion 

auslöst. Außerdem wird dieser Rezeptor von einem Teil der CD8-positiven und 

wenigen CD4-positiven T-Zellen exprimiert, wobei seine Funktion auf diesen Zellen 

nicht bekannt ist. In dieser Arbeit zeigen wir, dass CRACC ein kostimulatorischer 

Rezeptor auf T-Zellen ist. Eine gleichzeitige Stimulation von T-Zellrezeptor und 

CRACC führt zur Expression von Aktivierungsmarkern, Proliferation und 

Zytokinproduktion. Auf die Zytotoxizität von T-Zellen hat die Aktivierung von CRACC 

keinen verstärkenden Einfluss. Wir konnten zeigen, dass CRACC hauptsächlich auf 

CD8-positiven Gedächtnis-T-Zellen exprimiert wird, und dass seine Expression auf 

CD8-positiven T Zellen durch Aktivierung induziert wird. Deshalb vermuten wir, dass 
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Kostimulation von CRACC die Vermehrung von aktivierten T-Zellen begünstigt und 

die Reaktivierung von Gedächtnis T-Zellen erleichtert. 

Außerdem konnten wir eine Expression von CRACC auf CD4-positiven, CD28-

negativen T Zellen von Patienten mit instabiler Angina pectoris feststellen. Diese 

Zellpopulation tritt bei Patienten mit chronischen entzündlichen Erkrankungen auf 

und verstärkt die Entzündungsprozesse. Wir vermuten, dass Kostimulation durch 

CRACC an der fortdauernden Aktivierung dieser Zellen beteiligt sein könnte und 

deshalb ein mögliches Ziel für neue therapeutische Ansätze darstellt. 
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1 Introduction 

1.1 T lymphocytes and natural killer cells 

1.1.1 Innate and adaptive immunity 
The mammalian immune system has developed a variety of different cell types that 

are involved in the detection and clearance of pathogens. These cells are divided into 

two groups termed cells of the innate and the adaptive immune system. Cells of the 

innate immune system are regulated by germ line encoded receptors recognizing 

common structures expressed by pathogens or signals that are induced by 

pathogens. Therefore cells of the innate immunity can react immediately upon 

encounter of pathogens. Cells of the adaptive part allow the immune system to react 

to a multitude of molecular structures by receptors that are generated through re-

arrangement of germ line encoded segments. These receptors are expressed in a 

clonal fashion, and cells bearing a specific receptor for the encountered pathogen 

have to undergo proliferation before they can mount an effective immune response. 

Thus, the innate immune system serves as a first line of defense keeping pathogens 

under control, until they can be cleared by an adaptive response.  

1.1.2 Natural killer cells and T lymphocytes 
Natural killer (NK) cells and T cells are representatives of the innate and the adaptive 

part of the immune system, respectively. Both develop from a common bipotential 

progenitor in the bone marrow (1) and share some properties despite their 

classification into innate and adaptive immune cells. T cell progenitors migrate to the 

thymus, where the genetic recombination of the T cell receptor gene and selection of 

T cells takes place. NK cells develop in the bone marrow. 

The majority of lymphocytes in peripheral blood are T cells, whereas only 5 to 15 % 

are NK cells. T cells that emerge from the thymus are called naïve T cells, because 

they have not encountered their specific antigen yet. These naïve cells constantly re-

circulate through secondary lymphoid organs like spleen, gut or mucosa-associated 

lymphoid tissues and lymph nodes, where they screen antigen-presenting cells for 

their specific antigen (2). 

NK cells are also present in secondary lymphoid organs; about 5 % of lymphocytes in 

lymph nodes are NK cells. Other non-lymphoid tissues like lung and liver are also 

frequented by NK cells (1, 3). 
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While T cells can be identified by expression of the T cell receptor, human NK cells 

have been defined as T cell receptor-negative cells expressing CD56. Recently the 

receptor NKp46 has been described to be a more specific NK cell marker, as it is 

expressed on human and murine NK cells (4, 5). 

1.1.3 Activation of T cells 
T cells are characterized by the clonal expression of unique T cell receptors (TCR) 

that allow them to recognize specific peptide antigens. Recognition of the antigen 

leads to T cell activation. To be recognized by the TCR the antigenic peptides have 

to be bound by specialized glycoproteins called major histocompatibility complex 

(MHC) molecules. Polymorphy and polygeny of the MHC molecules ensure that a 

large variety of peptides can be presented to T cells. There are two types of MHC 

molecules that present antigen from different sources. Peptides derived from proteins 

in the cytosol are presented on the cell surface by MHC class I molecules, which are 

expressed on all nucleated cells. MHC class I-bound peptides are recognized by 

cytotoxic T cells expressing the co-receptor CD8. This enables them to detect 

intracellular pathogens like viruses and eliminate the infected cells. So-called 

antigen-presenting cells like macrophages or B cells take up antigens from 

extracellular pathogens and present antigenic peptides bound to MHC class II 

molecules. The peptides derived from extracellular antigens are loaded onto the 

MHC class II molecules in vesicular compartments. MHC class II-bound peptides are 

recognized by T cells expressing the co-receptor CD4. Therefore these T cells can 

provide help to antigen-presenting cells that have taken up antigen from extracellular 

pathogens.  

The TCR consists of several proteins. A heterodimer formed by α- and β-chain 

recognizes the specific antigen presented by MHC molecules. This variable part is 

different on each T cell clone. The constant TCR component is the CD3 complex that 

mediates signal transduction of the TCR. It consists of one γ chain, one δ chain, two ε 

chains, and two ζ chains. The antigen specificity of the α- and β-chain is determined 

through random rearrangement of germ line encoded segments, which takes place 

during T cell development in the thymus. This recombination process allows 

generation of a vast number of TCR specificities. As the recombination process is 

random, the receptors can be specific for any possible peptide, including peptides 

derived from self-proteins. To prevent autoimmunity T cells expressing receptors that 

bind to self-antigens are deleted in the thymus. Because not all possible 
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autoantigens are expressed in the thymus, activation of naïve T cells that have not 

been deleted in the thymus has to be controlled in the periphery. 

One mechanism of activation control is the strong dependency on a second signal in 

addition to TCR engagement (6, 7). Only very strong TCR signals are able to fully 

activate naïve T cells and induce proliferation and differentiation (8, 9). The co-

stimulatory signal allows full activation of T cells at lower thresholds. The absence of 

a co-stimulatory signal during engagement of the TCR on naïve T cells normally 

results in anergy (10, 11). The co-stimulatory signals are provided only by specialized 

antigen-presenting cells like mature dendritic cells or B cells (12). The encounter of 

naïve T cells with antigen-presenting cells takes place in secondary lymphoid organs 

like lymph nodes, spleen or Peyer's patches in gut associated lymphoid tissue. The 

activation of antigen-presenting cells and expression of co-stimulatory ligands are 

induced by signals from the innate part of the immune system. 

The interaction of the receptor CD28 on T cells with CD80 (B7.1) or CD86 (B7.2) on 

antigen-presenting cells is generally regarded as the primary co-stimulatory pathway, 

although other co-stimulatory pathways exist. The most important effects of CD28 co-

stimulation are the stabilization of interleukin-2 (IL-2) mRNA and expression of the 

IL-2 receptor α-chain, which associates with the β and γ-chain to form the high-

affinity IL-2 receptor (13, 14). Stimulation through IL-2 is crucial for T cell 

proliferation. Thus, co-stimulation of T cells triggers a positive feedback loop, 

enabling autocrine induction of proliferation. During this clonal expansion naïve T 

cells differentiate into effector T cells. The effector T cells leave the secondary 

lymphoid organs and are guided by chemokines to the site of infection. Effector 

functions of these cells can be triggered by engagement of the T cell receptor without 

co-stimulation. 

The original notion was that a co-stimulatory receptor activates a distinct signaling 

pathway, which is needed as a second signal besides TCR signaling (15). Therefore 

the co-stimulating effect of CD28 was regarded as an independent signal that 

complements the TCR signal. In the meantime it has become evident that CD28 

signaling rather enhances TCR signals than contributing qualitatively different signals 

(16). This is supported by the identification of many other receptors with co-

stimulatory ability that do not use the same signaling pathways as CD28. These co-

stimulatory receptors belong to a variety of different families (17): Another co-

stimulatory receptor from the CD28-family is ICOS; other receptors like 4-1BB, OX40 
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and CD27 belong to the tumor necrosis factor (TNF)-family; there are co-stimulatory 

members of the immunoglobulin superfamily like CD2 or the SLAM-related receptors 

SLAM, 2B4, NTB-A and CD84; furthermore integrins, tetraspanins, members of the T 

cell immunoglobulin and mucin domain (TIM)-family and receptors from the super-

family with scavenger receptor cystein-rich domains have been found to have co-

stimulatory properties. The circumstances, under which any of these co-stimulatory 

receptors gain importance, still need to be investigated. 

Activation of CD8-positive T cells seems to be controlled by a further mechanism, 

possibly because an autoimmune reaction of CD8-positive cells can cause serious 

damage due to their cytotoxic potential. It has been shown that they need stronger 

co-stimulation than CD4-positive cells (18). Activated CD4-positive T cells can 

stimulate dendritic cells to increase the expression level of co-stimulatory molecules 

on their surface, thus providing support for the activation of CD8-positive T cells (18). 

Because the CD4-positive T cells must recognize different peptides presented by the 

same antigen-presenting cell for enhancing the co-stimulation, the risk of activating 

self-reactive CD8-positive T cells is further reduced.  

Because proliferation of activated T cells is enhanced by a positive feedback-loop, 

the proliferative response must be controlled by inhibitory mechanisms. One of these 

mechanisms is the down-regulation of CD28 expression on activated T cells (19). 

This down-regulation interrupts the co-stimulatory signals. In addition, activated cells 

express the inhibitory receptor CTLA-4. CTLA-4 binds to the same ligands on 

antigen-presenting cells as CD28, but with higher affinity. Thus the expression of 

CTLA-4 limits the proliferative response of activated T cells (20). By these means the 

positive feedback loop of autocrine IL-2 secretion, which is triggered by co-

stimulation, is interrupted in a T cell intrinsic manner.  

1.1.4 Functions of T cells 
T cells are among the most versatile cells of the immune system fulfilling a variety of 

functions. The CD8-positive T cells that make up about one third of periphal blood T 

cells are capable of eliminating infected cells. They can induce apoptosis of those 

cells via the release of perforin and granzymes from intracellular granules or via the 

engagement of apoptosis-inducing death receptors on the target cell by Fas ligand or 

TRAIL. 

About two thirds of peripheral blood T cells express CD4 and shape and coordinate 

innate and adaptive immune responses through secretion of cytokines and 
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expression of membrane associated proteins. They can differentiate into a variety of 

effector subsets with different functions depending mainly on the cytokines present in 

the microenvironment during their activation. Five different effector phenotypes of 

CD4-positive T cells have been characterized (21). There are four different types of 

helper T cells named T helper (Th) 1, 2 or 17 and follicular helper T (Tfh) cells. A fifth 

group of CD4-positive effector T cells are regulatory T cells (Treg). In the immature 

effector stage, where activated CD4-positive cells still have the potential to develop 

into any of these effector cell types, they are called Th0 cells. Th1 cells are 

characterized by their production of the cytokine interferon-γ (IFN-γ) and are involved 

in cellular immunity against intracellular pathogens. Development of Th1 cells is 

induced by IL-12, which can be secreted by macrophages or dendritic cells, and 

IFN-γ secreted by NK cells or other T cells. Th2 cells secrete IL-4, IL-5 and IL-13. 

They play a pivotal role in the humoral immune response against helminths and other 

extracellular pathogens. A polarization towards Th2 effector development is mediated 

by IL-4. Besides promotion of Th1 or Th2 responses, the cytokines IFN-γ and IL-4 

suppress the differentiation of the respective counterpart. The name Th17 cells was 

coined after their production of IL-17. They also release IL-22 and are important for 

the clearance of extracellular bacteria and fungi, especially at mucosal surfaces. In 

vitro their development can be induced by transforming growth factor-β (TGF-β) in 

combination with the pro-inflammatory cytokines IL-6, IL-21 and IL-23. Tfh cells 

regulate and promote B cell responses in B cell follicles and need IL-21 for their 

development. Treg cells play a crucial role in the maintenance of immune tolerance 

and the prevention of autoimmunity, as they can suppress T cell mediated immune 

responses. 

A minority of T cells named γδ T cells expresses a TCR generated from different 

germ line encoded fragments. The TCR of these cells are of lower variability and can 

bind to certain phosphorylated non-peptide-antigens. These antigens are often of 

bacterial origin, therefore γδ T cells seem to play a role in antibacterial immune 

responses. There is also a rare T cell subset termed natural killer T cells. They 

display a limited TCR diversity and recognize glycolipids bound to CD1d. Activated 

NKT cells can shape innate and adaptive immune responses by secretion of IFN-γ 

and IL-4. Because of their restricted variability in antigen recognition γδ T cells and 

NKT cells are considered part of the innate immune system. 
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1.1.5 T cell memory 
One hallmark of adaptive immunity is the improved immune response upon re-

encounter of pathogens. This immunological memory is established by the 

development of memory cells during an adaptive immune response. Upon encounter 

with specific antigen the proliferation of activated T cells gives rise to large numbers 

of effector cells that are needed for clearance of the infection. After accomplishment 

of their task these cells are removed by several mechanisms (22). One is the 

deprivation of cytokines that renders the activated effector cells susceptible to 

apoptosis. Another mechanism is the re-stimulation induced cell death that occurs 

when already activated cells are stimulated through their TCR during the contraction 

phase of an immune response. The re-stimulated cells then also undergo apoptosis. 

Some of the activated T cells differentiate into memory cells. These cells are more 

resistant to apoptosis and are not affected by the mechanisms of deletion. According 

to the current model, memory cells circulate in the periphery and maintain their 

numbers through homeostatic proliferation. In a simple approach, memory cells can 

be divided into central memory cells that re-circulate through secondary lymphoid 

organs like naïve T cells, and effector memory cells that stay in the periphery (23, 

24). Recent reports suggest that the bone marrow provides a niche, where memory 

cells are maintained (25-27). 

The improved immune response upon re-infection is based on several factors (28). 

Memory T cells specific for the respective antigens of the pathogen are more 

frequent than antigen-specific naïve T cells during the first infection. This gives the 

secondary response a broader basis. Furthermore, memory T cells can more rapidly 

acquire effector functions, which reduces the time-span needed to mount the 

secondary response. In addition, effector memory T cells circulate in the periphery 

and can act directly upon encounter of pathogen at the site of infection. Therefore 

memory T cell responses are stronger and faster than the T cell response against 

newly encountered pathogens. 

1.1.6 Activation of NK cells 
In contrast to T cells the activation of NK cells is not dependent on the specificity of 

one receptor, but is regulated by the interplay of activating and inhibitory germ line 

encoded receptors (29). 

Inhibitory receptors on human NK cells are members of the family of killer cell 

immunoglobulin-like receptors (KIR) or members of the C-type lectin-like NKG2-
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family that form heterodimers with CD94 (30). KIR bind to MHC class I molecules, 

but their specificity is not dependent on the MHC-bound peptide, although the 

peptide contributes to KIR binding (31). Specificity of KIR is determined by the 

allotype of the MHC molecules. NKG2/CD94 heterodimers recognize the non-

classical MHC molecule HLA-E, which presents peptides derived from the leader 

peptides of other MHC molecules. The concept of NK cell inhibition by MHC 

molecules is called the detection of 'missing self' (32, 33). Down-regulation of MHC 

class I molecules is a common mechanism used by viruses to avoid recognition by T 

cells (34), and tumor cells often lose MHC expression completely (35). In contrast to 

healthy cells, these cells become susceptible to NK cell-mediated lysis, because they 

fail to provide sufficient inhibitory signals.  

The inhibitory receptors seem to be expressed on NK cells in a rather random 

manner. In all human individuals NK cells can be found that express only KIR that 

recognize MHC allotypes not expressed in the respective individual or no inhibitory 

receptor at all. This led to the question how NK cell self-tolerance is ensured, 

because activation of these cells could not be controlled by expression of MHC 

molecules on healthy cells. Based on the finding that human NK cells expressing no 

inhibitory receptor are hypo-responsive to stimulation, a model of NK cell 'education' 

during their development was proposed (36). In this model developing NK cells can 

only become fully functional if they receive signals through inhibitory receptors. 

Recent reports show that the strength of inhibitory receptor signaling during NK cell 

development determines their cytotoxic potential. Experiments with murine NK cells 

showed that their cytotoxic potential increased with the number of different inhibitory 

receptors that were engaged during NK cells development (37, 38).  

The activating receptors expressed on NK cells are more heterogeneous than the 

inhibitory receptors and not all ligands are known (29). Some of the receptors bind to 

molecules that are expressed ubiquitously, also on healthy cells, e.g. the members of 

the SLAM-related receptor family 2B4, NTB-A and CRACC that will be discussed 

below (39). The ligands for the C-type lectin-like receptor NKG2D are MHC class I-

related chain (MIC) proteins A and B and the UL16-binding proteins (ULBP), which 

are expressed after DNA damage or viral infection (40, 41). The recently described 

ligand for NKp30 B7-H6 seems to be expressed only on tumor cells (42). For other 

activating NK cell receptors an interaction with viral ligands on infected cells has 

been reported, e.g. NKp44 and NKp46, which recognize viral hemagglutinins (43, 
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44). Finally, NK cells express the low affinity Fc receptor CD16 (FcγRIII), which links 

NK cell function to adaptive immunity. When antibodies bind to antigens on the 

surface of a cell, they can be recognized by NK cells via CD16 resulting in elimination 

of the cell expressing the antigen. 

NK cells are also regulated by cytokines. IFN-α or β, IL-12, IL-15 and IL-18 activate 

NK cells (45). Cytokine-activated NK cells can produce cytokines in turn, and they 

display increased cytotoxicity due to higher perforin content of their lytic granules, 

increased expression of Fas-ligand and lower thresholds for activation through 

activating receptors (46, 47). IL-2 is also able to stimulate NK cell proliferation, 

cytotoxicity and to some extent cytokine secretion (48). This may happen in the 

lymph nodes, where NK cells could be stimulated by IL-2 produced by activated T 

cells (49). NK cell functions can be inhibited by TGF-β, which is produced by 

regulatory T cells (50-52). 

Besides the control through inhibitory receptors, autoreactivity of NK cells can be 

limited by the need for at least two activating signals, similar to co-stimulation in T 

cells. One of these signals can be cytokine stimulation. IL-2-activated NK cells react 

to stimulation of any activating receptor. In contrast, resting NK cells cannot be 

activated by engagement of only one single type of receptor with the exception of 

CD16. It has been shown that engagement of pair-wise combinations of activating 

receptors is needed to trigger a response in resting cells (47).  

1.1.7 Functions of NK cells 
Natural killer cells play an important role in the control of infected or transformed cells 

(53). Due to the detection of 'missing self', viral or stress-induced ligands they can 

eliminate potentially dangerous cells. This is mainly mediated by direct cellular 

cytotoxicity, as they can induce apoptosis in target cells via the release of perforin 

and granzymes. Similar to cytotoxic T cells, they can also induce apoptosis by 

engagement of Fas or TRAIL receptors. The elimination of infected cells by NK cell 

possibly improves adaptive T cells responses, because dendritic cells can take up 

antigens from apoptotic NK cell targets and present them to T cells (54). The 

cytotoxic activity of NK cells seems to have also regulatory aspects. It has been 

shown that human NK cells can lyse immature dendritic cells, which implies that NK 

cells influence dendritic cell homeostasis (55). NK cells could also control 

inflammatory responses by deletion of over-activated macrophages, as it has been 

shown that activated macrophages are susceptible to NK cell cytotoxicity (56). 
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The second important function of NK cells is the production and secretion of 

cytokines. The main cytokines produced by NK cells are IFN-γ, TNF-α and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (57). With their 

cytokine secretion NK cells not only activate cells of the innate immune system like 

macrophages, they can also shape the adaptive immune response (58, 59). IFN-γ 

and TNF-α secreted by NK cells, as well as yet-to-be-defined contact dependent 

signals, promote the maturation of dendritic cells that in turn can activate T cells and 

NK cells (55, 60). IFN-γ also drives the differentiation of activated CD4-positive T 

cells towards a Th1 response (61).  

Two distinct subsets of human NK cells have been described that are specialized for 

one of the two effector functions. A small population of NK cells has a low cytotoxic 

potential, but can produce high amounts of cytokines. These cells can be identified 

by high expression levels of the NK cell marker CD56 and lack of the receptor CD16. 

The majority of NK cells shows lower expression of CD56, expresses CD16 and is 

more cytotoxic (1). 

A specialized subset of NK cells is found in the human uterus during pregnancy and 

is therefore called uterine NK cells or uNK cells. Although they contain high amounts 

of granules, these NK cells are less cytotoxic and seem to have mainly regulatory 

functions in the decidua (62, 63). Because these cells produce angiogenic factors like 

angiopoietins 1 and 2, these cells are likely to play a role in vascularization of the 

decidua (64). 

A recently identified NK cell subset in mucosa associated lymphoid tissue has been 

shown to be essential for mucosal homeostasis (65). These NK cells are not 

proficient at the classical NK cell functions cytotoxicity and IFN-γ production. Because 

these cells produce IL-22, a cytokine that plays a role in the maintenance of mucosal 

epithelia, they have been named NK-22 cells (66).  

The crucial role of NK cells in the immune system is demonstrated by the severe 

symptoms of patients with a rare NK cell deficiency (67). These patients suffer from 

recurring viral and bacterial infections despite the presence of T and B cells that can 

mount an adaptive immune response. This underscores that immunity is mediated by 

the interplay between the innate and adaptive immune system.  
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1.2 The SLAM family of immunoglobulin like receptors 

1.2.1 SLAM-related receptors 
The family of SLAM-related receptors (SRR) is part of the immunoglobulin (Ig) 

receptor super-family. The family comprises six members, namely SLAM (CD150), 

2B4 (CD244), NTB-A (Ly108 in mice), CRACC (CS1, CD319), CD84, and Ly-9 

(CD229), which are expressed on cells of the hematopoietic lineage (39, 68, 69). The 

SRR genes are located on the long arm of chromosome 1 in humans (1q21-24), and 

on mouse chromosome 1 (1H2) with a similar organization in both species (39). The 

homology in sequence and organization of the gene loci implies that SRR genes 

arose from one common ancestor gene through gene duplication. All SRR are type I 

transmembrane receptors with an extracellular part consisting of one N-terminal 

V-type Ig-domain and one membrane-proximal C2-type Ig-domain (fig. 1). An 

exception is Ly-9, which contains four Ig-domains in the order of IgV-IgC2-IgV-IgC2. 

The size of the intracellular domain of SRR varies between 70 and 180 amino acids. 

With the exception of 2B4 all SRR are homophilic (70-75). 2B4 binds to CD48, a 

glycosylphosphatidylinositol-anchored membrane protein that is widely expressed on 

cells of the immune system and is also part of the Ig receptor super-family (76, 77). 

The cytosolic part of SRR contains two to four tyrosine-based signaling motifs that 

become phosphorylated upon receptor engagement and are the basis for SRR 

signaling (39, 78) (fig. 1). The tyrosine of these motifs is embedded in a consensus 

sequence TxYxxV/I, where x represents any amino acid. These motifs have been 

termed immunoreceptor tyrosine-based switch motifs (ITSM), because they can 

recruit different signaling molecules that promote activating or inhibitory signals (79). 

ITSM can bind a group of adapter molecules that consists of SLAM-associated 

protein (SAP, SH2D1A) and Ewings sarcoma-Fli1-activated transcript 2 (EAT-2, 

SH2D1B) in humans. In mice exists a third member, EAT-2-related transducer (ERT, 

SH2D1C), but the ERT gene in humans is only a pseudogene (80, 81). These 

adapter molecules are small, comprising one Src homolgy 2 (SH2) domain and a 

short C-terminal extension. The importance of SRR and SAP function in immunity is 

underscored by the finding that the severe immune disorder X-linked 

lymphoproliferative disease (XLP) is caused by the absence or dysfunctionality of 

SAP. 

The mediators of inhibitory signaling that can bind to phosphorylated ITSM are the 

tyrosine-phosphatases SHP-1 and 2, and the inositol-phosphatase SHIP (79, 82-84). 
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Figure 1: The family of SLAM-related receptors and their ligands  
Depicted are the six members of the SLAM-related receptor family with their cytoplasmic tails 
containing the immunoreceptor tyrosine-based switch motifs (ITSM). The respective ligands are 
shown on the opposing cell surface. Picture by courtesy of Claus et al. (39). 

1.2.2 Expression and functions of the SRR 2B4, NTB-A and CRACC 
The expression of SRR is heterogeneous on different immune cells and no SRR 

shows expression confined to only one cell type. In addition, SLAM and CD84 are 

expressed on hematopoietic stem cells, and 2B4 is found on multipotent progenitor 

cells (85, 86). Despite the differences in expression pattern on cells of different 

functions the common role of the SRR family can be described as fine-regulation of 

immune responses.  

2B4 (CD244) 

2B4 is expressed on NK cells, γδ T cells, monocytes, basophils, eosinophils and 

some thymocytes (87-90). On human T cells the expression is confined to 

approximately 50 % of the CD8-positive T cells. 2B4-positive T cells display a 

memory cell phenotype, and 2B4 expression can be induced on human and murine 

CD8-positive cells by in vitro activation. 

Its function has first been described on murine and human NK cells as a receptor 

triggering cytotoxicity and IFN-γ production after engagement of its ligand CD48 (88, 

91-94). The ubiquitous expression of the 2B4 ligand CD48 on cells of hematopoietic 

origin suggests that a main function of 2B4 on NK cells is the immunosurveillance of 
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other immune cells. Down-regulation of MHC class I molecules on transformed cells 

renders these cells susceptible to 2B4-triggered NK cell cytotoxicity. 

Other findings indicate that under certain circumstances human 2B4 can also play an 

inhibitory role on NK cells. At early stages of NK cell development the expression of 

activating receptors precedes the expression of inhibitory receptors and the cells gain 

their cytotoxic potential. In these precursor cells 2B4 has been shown to fulfill 

inhibitory functions ensuring self-tolerance of these cells (95). Similarly, in NK cells 

isolated from human lymph nodes engagement of 2B4 reduced IFN-γ production 

(96). A third NK cell population with inhibitory 2B4 signaling in humans are decidual 

NK cells during pregnancy (62, 97). The inhibitory function of 2B4 in these cases 

could be caused by a reduced expression of the adapter SAP (62), which is 

supported by the report that 2B4 mediates inhibitory signals in XLP patients with 

defective SAP (98). 

The role of 2B4 on NK cells in mice has been the issue of controversial discussion. 

The first notion that 2B4 is an activating receptor on murine NK cells was challenged 

by the finding that mouse NK cells showed a decreased cytotoxicity against certain 

CD48-expressing tumor cells compared to their CD48-negative counterparts. 

Blocking of 2B4-CD48 interactions with antibodies abolished this difference (99, 100). 

Experiments using 2B4 KO mice pointed in the same direction. These mice showed 

an increased clearance of injected tumor cells compared to wild type mice, when the 

tumor cells expressed CD48 (99, 100). The inhibitory signal mediated by 2B4 in 

these experiments seemed to be independent of SAP, as the same results were 

obtained with NK cells from SAP KO mice (99). Interestingly, the 2B4 KO phenotype 

shows some gender specificities: In experiments with metastatic melanoma cells only 

male 2B4 KO mice show a better rejection of CD48-positive tumor cells, while female 

mice fail to reject both CD48-positive and CD48-negative cells. Although the rejection 

is NK cell dependent, this defect in female KO mice is not NK cell intrinsic, as NK cell 

cytotoxicity is not impaired in vitro (101). However, a recent report again supported 

the notion from early experiments that murine 2B4 is an activating receptor. In vitro 

and in vivo experiments using different tumor cell lines as target cells demonstrated 

that CD48 expression enhances lysis of these targets. Similar to the situation in the 

human system, this activating 2B4 signal was only turned into an inhibitory signal in 

SAP KO mice (102). 
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The reason for the conflicting results regarding activating or inhibitory properties of 

2B4 in mice is unclear. However, a recent study provided a possible explanation for 

this discrepancy. It has been shown that the engagement of human and murine 2B4 

has activating or inhibitory effects depending on the expression level of the receptor, 

the extent of receptor cross-linking and the expression levels of the adapter SAP 

(103). Antibody-mediated Cross-linking of 2B4 on cells with low surface expression of 

the receptor led to activation. In contrast, cells with high expression levels of 2B4 

were inhibited, when the receptor was cross-linked. This inhibitory signaling was 

changed to an activating signal, when less receptor molecules on these cells were 

engaged. In cells expressing high levels of both 2B4 and SAP the effect of strong 

receptor cross-linking was also activating.  

In human T cells 2B4 has been described as a co-stimulator enhancing proliferation 

and cytotoxicity of antigen-specific CD8-positive T cells (104, 105). Interestingly, in a 

study showing that NK cells can enhance antigen-specific proliferation of T cells 2B4 

on NK cells served as ligand for CD48 on T cells (106). 

On human eosinophils cross-linking of 2B4 elicited cytokine secretion and eosinophil-

mediated cytotoxicity (90).  

NTB-A (Ly108) 

Human NK cells, T cells and B cells express the SRR called NK, T and B cell antigen 

(NTB-A) (84). In addition NTB-A has also been found on eosinophils (90, 107). In 

mice the expression of the NTB-A homolog Ly108 on NK cells is strain dependent 

(108). Therefore the function of NTB-A on NK cells has mainly been investigated in 

human cells. NTB-A engagement on NK cells induces cytotoxicity and production of 

IFN-γ and TNF-α (70, 71, 84). The analysis of NTB-A functions in NK cells from XLP 

patients showed that in the absence of functional SAP the cytotoxic response was 

not only reduced, but rather inhibited, while IFN-γ production was intact (70, 84).  

On human T cells NTB-A has been shown to have a co-stimulatory potential inducing 

proliferation and IFN-γ production when engaged simultaneously with the TCR (109). 

As IFN-γ promotes development of CD4-positive cells into Th1 helper type cells, it 

was assumed that NTB-A plays a role in shaping of Th1 immune responses. This 

was supported by experiments with mice injected with NTB-A-Fc-fusion proteins that 

are thought to block homophilic interaction of Ly108, the murine NTB-A homolog. 

Treated mice displayed a reduced Th1 cytokine-induced isotype switch to IgG2a and 

IgG3. Furthermore the injection of fusion proteins delayed the onset of experimental 
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autoimmune encephalomyelitis, a Th1-mediated model for human multiple 

sclerosis (109). However, mice with a defective Ly108 gene displayed impaired Th2 

responses characterized by a loss of IL-4 production and intact IFN-γ secretion (107). 

Further experiments will be needed to solve this issue.  

The phenotype of mice with defective Ly108 revealed another function of the 

receptor in innate immunity. The mice showed increased susceptibility to bacterial 

infections, which was due to an impaired generation of reactive oxygen species in 

neutrophils (107). 

Another finding that sheds a light onto NTB-A function is the connection of a 

polymorphism in the Ly108 gene to the autoimmune disease systemic lupus 

erythematosus in mice. The lupus-associated Ly108 allele may be linked with 

modified signaling responses of T cells in lupus-susceptible mice (110). Additionally, 

the normal Ly108 gene has been reported to sensitize immature B cells to deletion 

and RAG re-expression, whereas the lupus-associated allele did not (111). Therefore 

NTB-A seems to have a function in the regulation of T and B cell responses and the 

maintenance of self-tolerance. 

CRACC (CS1, CD319) 

The CD2-like receptor activating cytotoxic cells (CRACC) is expressed on NK cells, a 

subset of CD8-positive T cells and on few CD4-positive T cells. Despite its name it is 

also expressed on activated B cells and mature dendritic cells (112, 113). On NK 

cells CRACC has been described as an activating receptor triggering cytotoxicity 

(112, 114, 115) and enhancing IFN-γ production (115). CRACC-mediated NK cell 

cytotoxicity was not impaired in XLP patients or SAP KO mice (112, 115), because 

CRACC signaling seems to be mediated only by EAT-2 (114, 115). Cross-linking of 

CRACC on human B cells has been reported to induce proliferation and expression 

of cytokines, but did not induce antibody production (116). 

1.2.3 XLP, a severe immune disorder caused by defective SRR signaling  
XLP or Duncan's disease was first characterized by an inappropriate immune 

response to Epstein-Barr virus (EBV) infection (117). EBV belongs to the human 

γ-herpesvirus family and infects mature B cells. Infected B cells proliferate and some 

undergo transformation. These lymphoblasts are readily detected and eliminated in 

normal immunocompetent individuals (118). Although latent EBV infected B cells 

persist for life, they are kept under control by cytotoxic lymphocytes (119). EBV 
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infection is widespread in humans. In children under the age of 10 the infection is 

often asymptomatic and about 50 % of infections above that age result in infectious 

mononucleosis (120).  

In contrast, up to 60 % of XLP patients develop a fatal fulminant infectious 

mononucleosis after EBV infection leading to death within 1 or 2 months. Other 

manifestations of the disease are hypogammaglobulinemia and lymphoproliferative 

disorders, mainly of B lymphocytes. The disease manifests usually about the age of 

five and the mortality rate is close to 100 % at the age of 20 (78, 121). The disease is 

caused by mutations in the gene encoding SAP (122, 123). The defects in 

lymphocyte function that lead to the pathogenesis of XLP are not fully understood, 

but in recent years several findings have shed a light on the underlying mechanisms. 

The development of lymphocytes seems to be not impaired by SAP deficiency, as 

the numbers of NK, T and B cells are normal in XLP patients. Only the subset of NKT 

cells does not develop in these patients (124, 125). Whether the absence of these 

cells contributes to the pathophysiology of XLP is not known. 

The humoral immune response is generally impaired in XLP patients. Their number 

of memory B cells is very low and no class-switch immune response is observed 

after booster vaccinations (126, 127), which explains the reported 

hypogammaglobulinemia. Recent studies revealed that these defects in antibody 

production are due to impaired T cell function (128).  

NK cells from XLP patients display impaired cytotoxic responses (129-131). In 

addition EBV-specific cytotoxic CD8-positive T cells are lower in frequency and show 

reduced cytotoxicity against autologous EBV-infected B cells (129, 132). Recent 

studies gave a possible explanation for this impairment of the cytotoxic immune 

response: EBV-infected B cells show an up-regulated expression of CD48, the ligand 

for 2B4 (133). Two studies could show that the cytotoxic response of CD8-positive T 

cells from XLP patients against EBV-infected cells is strongly impaired by defective 

2B4 signaling (134, 135). 2B4 and NTB-A-mediated cytotoxicity is also impaired in 

NK cells from XLP patients (84, 98, 136-138). The failure to control proliferation of 

EBV-infected B cells surely contributes to the massive expansion of the lymphocyte 

population observed in XLP patients after EBV infection. 

An animal model of XLP could be created by generation of SAP KO mice, which 

display similar immune defects like XLP patients (139-141). SAP KO mice also have 

normal numbers of NK, T and B cells, but lack the NKT subset (124, 125).  
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Because mice are not susceptible to EBV infection, the SAP KO mice were infected 

with lymphocytic choriomeningitis virus (LCMV), murine γ-herpesvirus-86 or non-viral 

pathogens like Toxoplasma gondii or Listeria major. This makes the results less 

comparable to the findings in XLP patients. These mice could clear acute infections 

but succumbed to chronic infections because of an overwhelming response mediated 

by CD8-positive T cells (140). In acute infections the observed numbers of activated 

T cells were increased and the response of CD4-positive T cells was altered to 

increased IFN-γ production and reduced IL-4 and IL-10 secretion (140, 141). This 

skewing from a Th2 to a Th1 response is accompanied by low antibody production 

after infection (140-142). 

Similar to the findings in XLP patients, the defective humoral immune response of 

SAP KO mice seems to be caused by impaired T cell function. CD4-positive T cells in 

these mice develop into effector cells that express molecules capable to provide T 

cell help to B cells, but fail to interact with B cells effectively (143). One reason for the 

inefficient T cell help has been shown to be a reduced duration of T-B cell contact in 

germinal centers of SAP-deficient mice (144). The SRR that play a role in these 

processes have not been identified yet. 

In summary the pathophysiology of XLP is caused by a complex dysregulation of 

immune responses and illustrates the dependence of immune function on fine-tuning 

mechanisms provided by SRR.  

1.2.4 Molecular mechanisms of SLAM-related receptor signaling 
2B4-mediated signaling 

Of all SRR the molecular mechanisms of 2B4 signaling have been examined best 

(fig. 2). Upon the engagement of 2B4 by antibodies or CD48 expressing target cells 

the receptor is recruited to lipid rafts and its ITSM are phosphorylated by Src-family 

kinases (145, 146). Lipid raft domains are rich in kinases (147) and the Src-family 

kinase Lck is one possible candidate that can phosphorylate 2B4 (137). Raft 

recruitment has been shown to be essential for the phosphorylation of 2B4 (145). 

Phosphorylated ITSM of 2B4 can recruit the adapter molecules SAP and EAT-2 (83, 

148, 149).  



INTRODUCTION  21 

 
Figure 2: The model of 2B4 signal transduction 
A: Early signaling events in 2B4-mediated lymphocyte activation B: A possible mechanism for 2B4-
mediated inhibitory signals in the absence of functional SAP, e.g. in XLP patients. See text for details. 
Picture by courtesy of Claus et al. (39). 

SAP can associate with all four ITSM of 2B4, but it has been shown that interaction 

with the membrane proximal ITSM is sufficient for 2B4 signaling (82). Only little is 

known about the function of the adapter protein EAT-2 (148). Both adapter molecules 

are about 15 kDa in size and consist of one single SH2-domain and a small C-

terminal tail (148, 150, 151). The C-terminal part of human EAT-2 contains one 

tyrosine residue, but no phosphorylation of EAT-2 has been observed (152). 

ITSM-bound SAP mediates signal transduction by recruiting the Src-family kinase 

FynT (153, 154) (fig. 2A). The basis for interaction between FynT and SAP was not 

clear until SAP was crystallized in complex with a phosphorylated ITSM and FynT. 

The structure revealed that FynT binds to SAP in an unusual SH2-SH3-domain 

interaction involving the residue arginine-87 on SAP (155). This interaction is 

essential for SAP function, as mutations of R87, which have been found in XLP 

patients, completely abolish 2B4 signaling (156, 157). Binding of FynT to SAP has 

been reported to increase the kinase activity of FynT, probably by preventing 

conformational changes into an inactive state (154, 158). FynT can also 

phosphorylate 2B4 (82), but there are contradicting reports whether 2B4 can be 

phosphorylated independently from SAP-mediated FynT recruitment (98, 102, 114, 

156). The importance of SAP for 2B4 signaling becomes evident in XLP patients 

where 2B4-mediated cytotoxicity is abolished (98, 137, 138). Furthermore, 2B4 

signaling is also abolished in SAP and Fyn KO mice (102). 
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Findings in the murine system suggested that EAT-2 and the closely related ERT 

could have inhibitory functions there (81). This hypothesis was challenged by the 

finding that the receptor CRACC that recruits EAT-2, but not SAP mediates activating 

signals in murine NK cells (115). The function as an inhibitory counterpart to SAP 

was also excluded by the finding that the inhibitory effects of SRR observed in SAP 

KO mice were also present in mice lacking all three adapters SAP, EAT-2 and ERT 

(108). This led to the conclusion that EAT-2 mediates activating signals through SRR 

in murine NK cells. 

The activating function of EAT-2 in human NK cells could be comparable to the 

murine protein. However, there may be differences between humans and mice. In 

contrast to human EAT-2, the murine protein carries two tyrosine residues in its C-

terminal part that can be phosphorylated (81). Interestingly, a mutated form of murine 

EAT-2 that could not be phosphorylated failed to mediate the activating signaling of 

CRACC (115), but also the inhibitory effects that have been reported (81). 

As mentioned above, 2B4 can mediate inhibitory rather than activating functions in 

the absence of SAP (62, 95-98). This can be explained by recruitment of molecules 

mediating negative signals. The binding of the phosphatases SHIP, SHP-1 and 

SHP-2 to the phosphorylated third ITSM of 2B4 has been reported (82, 83) (fig. 2B). 

Under normal conditions these molecules can be displaced by SAP due to 

competitive binding. Thus negative signaling is suppressed and activating signaling 

pathways dominate. This model assumes that 2B4 can be phosphorylated in the 

absence of SAP. It is unclear if 2B4 is still recruited to lipid rafts in the absence of 

SAP. Interestingly, the 2B4 ITSM can also be phosphorylated by the kinase Csk that 

can associate with 2B4 as well (82). Csk is known to inhibit the activity of Src-family 

kinases (159), which could be another mechanism of negative signaling mediated by 

2B4. 

Another adapter protein that can bind to phosphorylated 2B4 is 3BP2, which has 

been reported to associate with the fourth ITSM (160) (fig. 2A). Phosphorylated 3BP2 

interacts with the signaling molecules Vav-1, LAT and PLC-γ (160, 161). A recent 

report could show that association of 3BP2 with 2B4 is dependent on SAP, 

explaining why 3BP2-mediated signal transduction cannot compensate for the 

absence of SAP in XLP (162). 

Stimulation of 2B4 leads to phosphorylation of LAT, Vav-1, PLC-γ, c-Cbl, Grb2 and 

SHIP (146, 156, 163). These molecules then propagate the signal further, initiating 
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the effector functions. PLC-γ cleaves phosphatidylinositol 4,5-bisphosphate (PI4,5P2) 

into inositol 1,4,5-trisphosphate (IP3) and 1,2-diacyl-glycerol (DAG). IP3 induces the 

release of Ca2+ from intracellular stores leading to a rise in intracellular Ca2+ 

concentration, whereas DAG activates the protein kinase C (PKC) and the Ras 

pathways. The Ca2+ release by PLC-γ is necessary for the secretion of cytotoxic 

granules and its importance for 2B4 signaling is shown by the finding that inhibition of 

PLC-γ abrogates 2B4-mediated cell lysis (114). LAT, Grb2 and Vav-1 signals are 

involved in activation of the mitogen activated protein kinase (MAPK) pathway, which 

is shown by increased phosphorylation of ERK after 2B4 engagement (160).  

The signaling of 2B4 is also regulated on the level of protein expression. The 

expression of SAP observed in freshly isolated, i.e. resting NK cells is low and 

increases after activation of these cells through IL-2 or IL-12, thus resulting in 

enhanced 2B4 signaling (164). Engagement of the 2B4 receptor leads to down-

modulation of its surface expression by receptor internalization, and the expression 

of 2B4 is reduced by inhibitory action at an ets-element in the promoter of its gene 

(165, 166). These negative feedback mechanisms are likely to limit excessive 2B4-

mediated NK cell activation. 

NTB-A-mediated signaling 

Signaling through the receptor NTB-A is less well examined (fig. 3). Similar to 2B4 

the engagement of NTB-A leads to receptor phosphorylation and association of SAP 

and EAT-2 (84, 109, 152). A study using different inhibitors of signaling pathways 

could show that NTB-A signaling is strongly dependent on actin reorganization, Src-

family kinases and PLC-γ (152). In the same study it has been shown that EAT-2 

associates with the membrane proximal ITSM, whereas SAP binds to the C-terminal 

ITSM (fig. 3A). A mutant receptor that could bind only SAP was unable to trigger NK 

cell cytotoxicity, while its counterpart that could bind only EAT-2 triggered a cytotoxic 

response. Furthermore NK cells with a shRNA-mediated SAP knockdown were 

reported to show a normal cytotoxic, but an impaired IFN-γ response after NTB-A 

stimulation (152). These results suggested that SAP mediates the signal for cytokine 

production, whereas EAT-2 transduces the signal leading to a cytotoxic response. 

However, these findings do not match the observation that NTB-A-mediated 

cytotoxicity is impaired in XLP NK cells and IFN-γ production is not (84). This 

difference could be due to alterations of NK cell development in the absence of SAP. 



INTRODUCTION  24 

 
Figure 3: The model of NTB-A signaling 
A: SAP and EAT-2 initiate different activating signaling pathways. B: A possible mechanism for 
inhibitory NTB-A signaling in the absence of SAP, e.g. in XLP patients. See text for details. Picture by 
courtesy of Claus et al. (39). 

Similar to 2B4, NTB-A has also been reported to interact with the phosphatases 

SHP-1 and 2 (fig. 3B). While SHP-1 was found in complex with NTB-A regardless of 

its phosphorylation state, SHP-2 associated after pervanadate treatment (84). As for 

the 2B4 receptor, this might be the basis of negative signaling by NTB-A in the 

absence of functional SAP expression as reported for NK cells from XLP patients. 

CRACC-mediated signaling 

CRACC is phosphorylated after ligation and recruits the adapter EAT-2, which 

promotes CRACC phosphorylation through a Src-family kinase (114). There are 

contradicting results concerning the ability of human CRACC to recruit SAP (112, 

114, 167). However, SAP is dispensable for CRACC signaling, as NK cells from XLP 

patients show no reduction in CRACC-mediated cytotoxicity (112). Although CRACC 

association with 3BP2 has not been observed (160), the CRACC signal causes 

phosphorylation of PLC-γ1 and 2, Akt and c-Cbl. The phosphorylation of Vav-1 and 

SHIP is increased to a lesser extent (114). Like 2B4 and NTB-A, CRACC has been 

shown to have the ability to recruit mediators of negative signaling. SHP-1 and 2, 

SHIP and Csk have been reported to bind to phosphorylated peptides of one CRACC 

ITSM (115). 
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CRACC signaling in mice seems to be similar to human CRACC. In mice CRACC 

phosphorylation has been shown to be independent of SAP, EAT-2 and ERT 

expression, and no association of SAP has been found (115). Like human XLP NK 

cells, the NK cells from SAP KO mice show no reduction in CRACC-mediated 

cytotoxicity (115). The importance of EAT-2 for CRACC signaling has been 

demonstrated by the finding that EAT-2 KO NK cells display no CRACC-mediated 

cytotoxicity, while SAP and ERT were dispensable. Interestingly, the absence of 

EAT-2 turned CRACC into an inhibitory receptor (115). This suggests that the 

function of CRACC can be switched from activating to inhibitory as a regulatory 

mechanism depending on the expression level of its pivotal adapter molecule. This is 

similar to the inhibitory function of 2B4 during NK cell development (95). 
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2 Aims of the Thesis 
SLAM-related receptors are expressed on a variety of different cells of the innate and 

the adaptive immune system. Their general function can be described as fine-tuning 

of immune responses. 2B4, NTB-A and CRACC are expressed on NK cells and to 

some extent on T cells. The general aim of this thesis was to further elucidate the 

signaling mechanisms of 2B4 and NTB-A in human NK cells and to investigate the 

function of CRACC on T cells. 

First we wanted to define amino acid residues in the extracellular part of NTB-A that 

are important for the homophilic interaction of two NTB-A molecules. To this end we 

generated NTB-A mutants and tested their ability to trigger NK cell cytotoxicity. 

The second aim was to answer the unresolved questions about the early events in 

2B4 and NTB-A signaling. For this purpose we wanted to investigate the early 

signaling events in NK cell lines with RNA interference-mediated SAP knockdown in 

comparison to cells with normal SAP expression. To extend our research to primary 

cells we also planned to establish a method for the knockdown of protein expression 

in primary human NK cells.  

Third, CRACC is an activating receptor on NK cells, but its function on T cells has not 

been investigated yet. As other SRR have been shown to have co-stimulatory 

properties, we investigated whether this was also true for CRACC. CRACC is not 

expressed on the whole T cell population, we therefore also wanted to further 

characterize the CRACC-positive subset.  
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3 Materials and methods 

3.1 Materials 

3.1.1 Mouse monoclonal antibodies 

Name Conjugate Source, Reference 

Control IgG, MOPC21 -, PE Sigma, Taufkirchen, Germany 

anti-2B4, C1.7 - Immunotech, Marseille, France 

anti-CCR7 PE-Cy7 BD Biosciences, San Jose, CA, USA 

anti-CD3, OKT3 - ATCC, Manassas, VA, USA 

anti-CD3, SK7 PE-Cy7 BD Biosciences 

anti-CD4 FITC Becton Dickinson Immunocytometry 
Systems, San Jose, CA, USA 

anti-CD4, SK3 PerCP BD Biosciences 

anti-CD8 PerCP BioLegend, San Diego, CA, USA 

anti-CD25, SA3 FITC BD Biosciences 

anti-CD28 - BD Pharmingen, Heidelberg, Germany 

anti CD28 FITC BD Biosciences 

anti-CD45RA APC BD Biosciences 

anti-CD69 PE BioLegend 

anti-CRACC, CS1-4 - Stark et al., 2005 (168) 

anti-CRACC, 162.1 - ,PE BioLegend 

anti-Interferon-γ FITC BioLegend 

anti-IL-2 PE BD Biosciences 

anti-NKG2D, 149810 PE R&D Systems, Minneapolis, USA 

anti-NKp30, p30-15 - Byrd et al., 2007(169) 

anti-NTB-A, MAB 1908 - R&D Systems 

anti-NTB-A, NT-7 -, PE Flaig et al., 2004 (71), BioLegend 

anti-phospho-tyrosine, 4G10 biotin Upstate cell signaling solutions, 
Charlottesville, VA, USA 

anti-SAP, SAP 23.1.5 - Eissmann et al., 2005 (82) 
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3.1.2 Rabbit polyclonal antibodies 

Name Source, Reference 

anti-2B4 Watzl, et al., 2000, (146) 

anti-Actin Sigma 

anti-EAT-2 Pineda Antibody Service, Berlin, Germany, 
(152) 

anti-Fyn Cell Signaling Technologies, Danvers, USA 

anti-NTB-A Pineda Antibody Service, (152) 

 

3.1.3 Secondary antibodies 

Name Conjugate Source, Reference 

goat anti-mouse IgG HRPO Jackson ImmunoResearch Laboratories, 
West Grove, PA, USA 

goat anti-mouse IgG PE Jackson ImmunoResearch Laboratories 

goat anti-mouse IgG - Dianova, Hamburg, Germany 

goat anti-rabbit IgG HRPO Santa Cruz Biotechnology, Heidelberg, 
Germany 

 

3.1.4 Bacteria 

E. coli strain used for Source 

TOP10 amplification of plasmids Invitrogen, Carlsbad, CA, USA 

Stbl3 amplification of plasmids prone 
to homologous recombination 

Invitrogen 

 

3.1.5 Buffers 
 

DNA-sample buffer (6 x): 0.25 % (w/v) Bromphenol Blue 

 0.25 % (w/v) Xylene Cyanol FF 

 30 % (v/v) glycerol in H2O 

 

TAE (10 x), Invitrogen  
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Triton X-100-lysis buffer:  150 mM NaCl 

 20 mM Tris-HCl, pH 7.4 

 10 % (v/v) glycerol 

 0.5 % (v/v) Triton X-100 

 2 mM EDTA 

 10 mM NaF 

 1 mM PMSF 

 1 mM Na-orthovanadate (for studies 
on protein phosphorylation) 

 

Reducing sample buffer (5 x): 10 % (w/v) SDS 

 50 % (v/v) glycerol 

 25 % (v/v) 2-mercaptoethanol 

 0.1 % (w/v) Bromphenol Blue 

 0.3125 mM Tris-HCl, pH 6.8 
 

MOPS buffer (20 x), Invitrogen  

 

Western blot transfer buffer: 24 mM Tris 

 129 mM glycin 

 20 % (v/v) methanol 

 

PBS (pH 7.4): 137 mM NaCl 

 8.1 mM Na2HPO4 

 2.7 mM KCl 

 1.5 mM KH2PO4 

 

PBST: 1 x  PBS 

 0.05 % (v/v) Tween 20 

 

PBST/NaCl: 1 x  PBS 

 0.05 % (v/v) Tween 20 

 0.5 M NaCl 
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1 x  PBST Blocking Buffer for western blot: 

5 % (w/v) nonfat dry milk powder, Saliter, 
Obergünzburg 

 

HBS 2x (pH 7.0) 54.6 mM HEPES 

 274 mM NaCl 

 3 mM Na2HPO4 

 

FACS-buffer (low protein) 1 x PBS 

 2 % (v/v) fetal calf serum, PromoCell 

 

FACS-buffer (high protein) 1 x PBS 

 5 % (v/v) fetal calf serum 

 0.5 % (w/v) bovine serum albumin (BSA)  

 

3.1.6 Cells (eukaryotic) 
All culture media, fetal calf serum (FCS), non-essential amino acids and sodium 

pyruvate were purchased from Gibco (Invitrogen, Carlsbad, CA); donor horse serum 

was from Biochrom (Berlin, Germany), human serum from PromoCell (Heidelberg, 

Germany), PHA-P from Sigma and purified human IL-2 from Hemagen Diagnostics 

(Columbia, USA). If not indicated otherwise all cells were grown with 10 % (v/v) FCS 

and 1 % (v/v) penicillin/streptomycin (Gibco, Invitrogen). 

Cell type Origin Culture Medium 

721.221 EBV-transformed, human B cell line IMDM 

BA/F3 murine pre-B cell line RPMI, 50 µM 2-
mercaptoethanol 

HEK 293T human embryonic kidney cell line DMEM 

JY EBV-transformed, human B cell 
lymphoblastoid cell line 

RPMI, 50 µM 2-
mercaptoethanol 

NK92 C1 human NK cell line from malignant 
non-Hodgkin lymphoma 

Alpha MEM, 12.5 % (v/v) 
FCS, 12.5 % (v/v) donor 
horse serum, 2-
mercaptoethanol 
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P815 murine mastocytoma cell line IMDM 

Phoenix ampho human embryonic kidney cell line, 
packaging cell line for amphotropic 
retrovirus 

DMEM 

primary human 
NK cells 

isolated from peripheral blood 
mononuclear cells (PBMC) by 
negative selection 

IMDM, 10 % (v/v) human 
serum, 10 % (v/v) non-
essential amino acids, 
10 % (v/v) sodium 
pyruvate, 100 IU/ml IL-2 

primary human 
T cells 

isolated from PBMC by negative 
selection 

RPMI 

YTS Human leukemic NK-like cell line IMDM, 12.5 % (v/v) FCS, 
2-mercaptoethanol 

 

3.1.7 Enzymes 

Name Use Source 

alkaline phosphatase, calf 
intestine (CIP) 

dephosphorylation of 
DNA fragments 

New England Biolabs, 
Frankfurt, Germany 

Deep Vent DNA polymerase mutagenesis PCR New England Biolabs 

restriction endonucleases cutting of DNA New England Biolabs 

Taq DNA polymerase PCR New England Biolabs 

T4 DNA ligase DNA ligation New England Biolabs 

All enzymes were used in buffers provided by the manufacturer. 

3.1.8 Kits 

DNA Fragment Purification Gel Extraction Kit, Qiagen, Hilden, Germany 

Isolation of human NK cells NK cell negative isolation kit, Invitrogen (formerly 
Dynal, Oslo, Norway) 

Isolation of human T cells Pan T cell isolation kit II, CD4+ T cell isolation Kit 
II, CD8+ T cell isolation kit, Miltenyi Biotech, 
Bergisch Gladbach, Germany 

Plasmid DNA purification Plasmid MiniPrep, MidiPrep or MaxiPrep Kit, 
Qiagen 

Transfection of human NK cells Human macrophage nucleofector kit, Lonza, 
Basel, Switzerland 

Transfection of human T cells Human T cell nucleofector kit, Lonza 
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3.1.9 Oligonucleotides 
Primers for sequencing and DNA amplification 

Name Sequence (5’ – 3’) 

H1 TCGCTATGTGTTCTGGGAAA 

M13R GGAAACAGCTATGACCAT 

NTB-A 850R CACTGAAACATACTCTAG 

pSM2 Mlu f ACGCGTGCTGTTGACAGTGAG 

pSM2 Cla r ATCGATTCCGAGGCAGTAGGC 

Sp6 TTTAGGTGACACTATAG 

T7 TAATACGACTCACTATAGGG 

 

Primers for mutagenesis 

Name Sequence (5’ – 3’) 

NTBA E26A upper GAGTTTCCTGCAGGAGCGAAGGTCAACTTCATC 

NTBA E26A lower GATGAAGTTGACCTTCGCTCCTGCAGGAAACTC 

NTBA K27A upper GTTTCCTGCAGGAGAGGCGGTCAACTTCATCACTTG 

NTBA K27A lower CAAGTGATGAAGTTGACCGCCTCTCCTGCAGGAAAC 

NTBA E37A upper CTTGGCTTTTCAARGCAACATCTCTTGCCTTC 

NTBA E37A lower GAAGGCAAGAGATGTTGCATTGAAAAGCCAAG 

NTBA E47A upper CTTCATAGTACCCCATGCAACCAAAAGTCCAGAAAT 

NTBA E47A lower GATTTCTGGACTTTTGGTTGCATGGGGTACTATGAA 

NTBA K49A upper GTACCCCATGAAACCGCAAGTCCAGAAATCCAC 

NTBA K49A lower GTGGATTTCTGGACTTGCGGTTTCATGGGGTAC 

NTBA E52A upper AAACCAAAAGTCCAGCAATCCACGTGACTAATC 

NTBA E52A lower GATTAGTCACGTGGATTGCTGGACTTTTGGTTT 

NTBA K62A upper CTAATCCGAAACAGGGAGCGCGACTGAACTTCACC 

NTBA K62A lower GGTGAAGTTCAGTCGCGCTCCCTGTTTCGGATTAG 

NTBA K92A upper GCCCAGATATCCACAGCGACCTCTGCAAAGCTG 

NTBA K92A lower CAFGCTTTGCAGAGGTCCGTGTGGATATCTGGGC 

NTB-A H54A upper CAAAAGTCCAGAAATCGCCGTGACTAATCC 

NTB-A H54A lower GTTTCGGATTAGTCACGGCGATTTCTGGAC 

NTB-A Q88A upper GGCTCTTACAGAGCCGCGATATCCACAAAGAC 
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Primers for mutagenesis, continued 

Name Sequence (5’ – 3’) 

NTB-A Q88A lower GAGGTCTTTGTGGATATCGCGGCTCTGTAAGAG 

NTB-A S90A upper CTTACAGAGCCCAGATAGCCACAAAGACCTCTG 

NTB-A S90A lower CTTTGCAGAGGTCTTTGTGGCTATCTGGGCTCT 

NTB-A L34E upper CAACTTCATCACTTGGGAGTTCAATGAAACATCTC 

NTB-A L34E lower GATGTTTCATTGAACTCCCAAGTGATGAAGTTGACC 

NTB-A L34K upper CAACTTCATCACTTGGAAGTTCAATGAAACATCTC 

NTB-A L34K lower GATGTTTCATTGAACTTCCAAGTGATGAAGTTGACC 

NTB-A T32E upper GAAGGTCAACTTCATCGAGTGGCTTTTCAATGAAAC 

NTB-A T32E lower GATGTTTCATTGAAAAGCCACTCGATGAAGTTGACC 

NTB-A T32K upper GAAGGTCAACTTCATCAAGTGGCTTTTCAATGAAAC 

NTB-A T32K lower GATGTTTCATTGAAAAGCCACTTGATGAAGTTGACC 

 

3.1.10 Plasmids 

Name Use Source, Generation 

pBABE NTB-A wt and 
mutants 

stable expression of NTB-A 
in cell lines 

Insertion via Xho I-Not I 

pCR2.1 NTB-A wt template for mutagenesis 
PCR 

TOPO-TA cloning 

pCR2.1-TOPO cloning of PCR products Invitrogen 

phCMV-GALVenv envelope plasmid for virus 
production 

a gift from K. Weber, 
University Hospital 
Hamburg-Eppendorf 

pLVTHM shSAP/shCD4 lentiviral vectors for stable 
shRNA delivery in primary 
cells 

Addgene, Cambridge, 
MA, USA, Insertion via 
Mlu I-Cla I 

pMD2.G envelope plasmid for virus 
production 

Addgene, Cambridge, 
MA, USA 

pMOW NTB-A wt and 
mutants 

stable expression of NTB-A 
in cell lines 

Insertion via Xho I-Not I 

pSHAG-
MAGIC2_shSAP/shCD4 

stable knockdown of SAP or 
CD4 in cell lines 

Biocat, Heidelberg, 
Germany 



MATERIALS AND METHODS  34 

psPAX2 packaging plasmid for viral 
particles 

Addgene, Cambridge, 
MA, USA 

pWPXL siNKG2D stable knockdown of 
NKG2D in primary cells 

a gift from C. Kalberer, 
University Hospital Basel, 
Switzerland 

 

3.1.11 Reagents 

Agarose  Gibco, Paisley, Scotland 

Ampicillin  Roth, Karlsruhe, Germany 

Brefeldin A Fluka, Buchs, Switzerland 

BSA  Serva, Heidelberg, Germany 

BigDye Terminator v1.1 cycle Applied Biosystems, Foster City, CA, USA 

Chromium-51, as sodium chromate  Hartmann Analytik, Braunschweig 

Desoxyribonucleotide trisphosphate mix Invitrogen 

DNA ladder (100 bp and 1 kb)  Invitrogen 

Ethidiumbromide Roth, Karlsruhe, Germany 

recombinant human IL-2 NIH cytokine repository 

recombinant human IL-15 R&D Systems, Minneapolis, USA 

Kanamycin Roth 

LB broth Invitrogen 

Lipofectamine Invitrogen 

LSM solution PAA, Pasching, Germany 

Phaseolus vulgaris hemagglutinine Sigma 

Polybrene Sigma 

Polyvinylidene difluoride membrane Millipore, Billerica, USA 

Precision Plus Protein Standard BioRad, Hercules, CA, USA 

Protein G agarose  Invitrogen 

Puromycin Sigma 

RetroNectin TAKARA, Otsu, Japan 

Saponin Sigma 

Streptavidin-HRPO Jackson ImmunoResearch Laboratories 

SuperSignal West Pico and Dura Thermo 
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TrypLE Express Invitrogen 

Vybrant CFDA SE Cell tracer Kit Molecular Probes, Leiden, The 
Netherlands 

X-ray films Perbio/Pierce, Rockford, IL, USA 

 

3.1.12 siRNA 

Name Source 

control siRNA (Non-targeting siRNA #1) Thermo scientific, 
(Dharmacon) 

siCRACC (ON-TARGETplus SMARTpool, SLAMF7) Thermo scientific 

siSAP (Hs_SH2D1A_3) 3’-AlexaFluor647 Qiagen 

siEAT-2 (Hs_SH2D1B_1) 3’-AlexaFluor647 Qiagen 

 

3.2 Patients 
The blood samples used in this study were from patients presenting with unstable 

angina pectoris at University Hospital Heidelberg. Patients gave their written 

informed consent under a protocol approved by the institutional review board in 

accordance with the declaration of Helsinki. 

3.3 Methods 

3.3.1 Molecular biology 
Agarose gel-electrophoresis 

The DNA solution was mixed with DNA sample buffer before loading onto the gel. 

1 % or 2 % gels were used depending on the size of the fragments (TAE, agarose, 

0.00001 % Ethidiumbromide). The correct size of the DNA fragment was controlled 

using a DNA ladder. 

DNA sequencing 

Sequencing reactions were set up with the ABI Big Dye sequencing mix v1.1 

according to manufacturer’s instructions. The following primers were used: T7 and 

M13R for pCR2.1, NTB-A850R for the middle part of NTB-A constructs and H1 and 

Sp6 for pLVTHM. After sequencing the DNA was precipitated with ethanol, 

solubilized in water and analyzed on an ABI Prism 310 Genetic Analyzer. 
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Enzymatic cutting of DNA 

Between 1 and 2 µg of DNA were incubated with 2 U of the respective restriction 

endonucleases for at least 1h at 37°C. Conditions of the reaction were set according 

to the manufacturer’s instructions. The DNA fragments were separated by agarose 

gel electrophoresis.  

Extraction of DNA fragments from agarose gels 

Agarose slices containing DNA fragments were excised from the gel and DNA was 

extracted with the Qiagen gel extraction kit following the manufacturer’s instructions. 

Isolation of plasmid DNA 

Bacteria were grown in 1 x LB medium with the appropriate antibiotic at 37°C over 

night. After harvesting the bacteria by centrifugation at 6000 x g for 5 min or 10 min, 

depending on culture size, DNA was isolated using Mini, Midi or MaxiPrep DNA 

isolation kit from Qiagen according to the manufacturer’s instructions. 

Ligation of DNA fragments 

Insert and vector DNA were mixed at ratios ranging from 10 to 1 to 3 to 1 in ligation 

buffer (New England Biolabs). The mixture was incubated with 2 U T4 DNA ligase for 

1 h at room temperature and used for the transformation of competent bacteria. 

mRNA expression analysis  

About 1 x 106 cells were lysed in MagNA Pure LC lysis buffer (Roche, Mannheim, 

Germany), frozen at -70° C and quantitative RT-PCR was performed by our 

cooperation partners, the group of Thomas Giese, Institute for Immunology, 

Heidelberg, using SEARCH LC primers. 

Polymerase chain reaction (PCR) 

PCR was used to amplify the shRNA-coding DNA fragments from pSHAG-MAGIC2-

vectors or to insert point mutations into DNA. The conditions were fit to the respective 

needs. Amplified DNA fragments were cloned into pCR2.1-TOPO following the 

manufacturer’s instructions. After mutagenesis PCR template DNA was removed 

using the endonuclease Dpn I and PCR products were directly used for 

transformation of bacteria. All mutations were confirmed by DNA sequencing. 
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Transformation of bacteria 

Chemically competent bacterial strains were used. The transformation was carried 

out according to the manufacturer’s instructions. Transformed bacteria were grown 

on LB-Agar plates at 37 °C for overnight under selection with the appropriate 

antibiotic. 

3.3.2 Cell biology 
Cell culture 

All cells were grown at 37°C and 5 % CO2 in a humidified incubator under sterile 

conditions. Cell lines were split on a regular basis every two to three days. Cell 

culture flasks were exchanged every two weeks. Cells were frozen in FCS containing 

10 % DMSO at -75°C and stored in liquid nitrogen. Cell lines were thawed on a 

regular basis. FCS, donor horse serum and human serum were heat inactivated by 

incubation at 56°C for 30 min prior to use.  

Cell stimulation 

Cell mixing 

7 to 10 x 107 cells of each type were resuspended at 1 x 105 cells/µl in IMDM, 

supplemented with 10 % FCS and pre-chilled on ice. Equal numbers of effector and 

target cells were mixed, centrifuged for 1 min at 400 x g, 4°C and incubated on ice for 

10 min. Samples were then stimulated at 37°C for the appropriate time. Samples 

were pelleted by centrifugation at 400 x g for 5 min and 4°C, supernatant was 

aspirated and cells were lysed. For the time point 0 min effector and target cells were 

kept on ice separately and mixed immediately before lysis. 

Plate bound antibodies 

96-well flat bottom plates were coated overnight by incubation with goat anti-mouse 

IgG at a concentration of 7 µg/ml in PBS, using 50 µl per well. Plates were washed 

twice with PBS containing 0.5 % BSA (w/v) and then incubated for 1 h at 37°C with 

the appropriate antibodies for stimulation diluted in PBS containing 0.5 % BSA, again 

using 50 µl per well. Plates were washed again and 2 x 105 T cells in 50 µl medium 

were added to each well. T cell contact to the antibody-coated surface was 

intensified by centrifugation for 2 min at 400 x g, and cells were kept under normal 

culture conditions for 6 h, 48 h or 72 h, depending on the experimental readout. 
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PHA-P-stimulation 

Peripheral blood T cells were stimulated by adding PHA-P to the culture medium at a 

concentration of 2 µg/ml. After 18 h the cells were washed twice with culture medium 

and then cultured in medium containing 100 IU/ml IL-2. The IL-2-containing medium 

was renewed every two days. 

Cell lysis 

Pelleted cells were resuspended in ice-cold Triton X-100 lysis buffer supplemented 

with 1 mM PMSF and if necessary 1 mM sodium orthovanadate and incubated on ice 

for 20 min. Lysates were clarified by centrifugation for 15 min at 20000 x g and 4°C. 

Chromium release assays 

Cell lines were grown to mid log phase, IL-2 activated primary NK cells were used at 

3-4 weeks age, PHA-P-activated T cells were used 7 to 10 days after stimulation and 

were deprived of IL-2 for 24 h before the assays. The assay medium was IMDM, 

supplemented with 10 % FCS (v/v) and 1 % (v/v) Penicillin/Streptomycin in all 

assays. For assays with primary NK cells IL-2 was added to a final concentration of 

100 IU/ml. 

5 x 105
 target cells were labeled in 100 µl medium with 100 µCi 51Cr (3.7 MBq) for 1 h 

at 37°C. Cells were washed twice in medium and resuspended at a concentration of 

5 x 104 cells/ml in medium. Effector and labeled target cells were mixed in 96-well V-

bottom plates with a final volume of 200 µl per well. 5000 target cells/well were used 

in all assays. When different effector/target ratios (E/T) were used, the effector cells 

were plated in serial dilutions before the labeled target cells were added. 

Maximum release was determined by incubation of target cells in 1 % Triton X-100. 

For spontaneous release, targets were incubated without effector cells in medium 

alone. All samples were done in triplicates. Plates were incubated for 4 h or 16 h at 

37°C, 5 % CO2. Supernatant was harvested and 51Cr release was measured in a 

gamma counter. Percent specific release was calculated as ((experimental release – 

spontaneous release) / (maximum release – spontaneous release)) x 100. 

In redirected lysis assays of NK cells against the target cell line P815 the antibodies 

were added to the effector cells to a final concentration of 0.5 µg/ml before the target 

cells were added. In redirected lysis assays with T cells as effector cells the anti-CD3 

antibody was used in a serial threefold dilution starting at a final assay concentration 

of 1 ng/ml, while the final concentration of co-stimulatory antibodies was 0.5 µg/ml. 
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Flow-cytometry 

Surface staining 

Surface staining of cells was performed in 96-well V-bottom plates. About 2 x 105 

cells were resuspended in 50 µl FACS-buffer containing 10 µg/ml of the respective 

primary antibody and incubated on ice for 20 min. Antibodies directly conjugated to a 

fluorophore were used at appropriate dilutions and cells were incubated in the dark to 

protect the fluorophore. After washing with FACS-buffer cells stained with unlabeled 

antibodies were resuspended in 50 µl PE-conjugated goat-anti-mouse IgG secondary 

antibody diluted 1:200 in FACS-buffer. Cells were incubated on ice for 20 min in the 

dark, washed again and resuspended in FACS-buffer. If necessary, cells were fixed 

in FACS-buffer containing 2 % formaldehyde. 

For fluorescence-activated cell sorting 1 to 3 x 106 cells were stained and all steps 

were carried out under sterile conditions. 

Intracellular staining 

All steps for intracellular staining of cells were carried out at room temperature. Cells 

were fixed for 5 min in 4 % paraformaldehyde solution and permeabilized by 

incubation in high protein FACS-buffer containing 0.5 % (w/v) saponin for 5 min. 

Fixed and permeabilized cells were resuspended in 50 µl FACS-buffer with saponin 

containing the fluorophore-conjugated antibodies in appropriate dilutions and 

incubated in the dark for 20 min. To wash the cells, 150 µl of FACS-buffer with 

saponin were added and the cells were incubated for 5 min, before they were 

pelleted and resuspended in FACS-buffer. 

CFDA-staining 

Cells were harvested by centrifugation for 7 min at 400 x g and residual medium was 

carefully removed. PBS containing CFDA at a concentration of 0.5 µmol/ml was used 

to resuspend the cells to a density of 4 x 106 cells/ml. After incubation for 30 min at 

37°C, 5 % CO2 the labeling reaction was stopped by adding an excess of culture 

medium. 

Staining of blood samples 

50 µl blood were incubated with antibodies in appropriate dilutions for 20 min at 4°C 

in the dark. Samples were fixed and erythrocytes were lysed by addition of 2 ml BD 

FACS lysing solution (BD Biosciences). After incubation for 10 min at 
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room temperature in the dark cells were pelleted by centrifugation and resuspended 

in PBS. 

Flow-cytometric analysis 

Samples were analyzed on a BD FACScan, BD FACSCalibur or BD LSR 2 and 

results were evaluated using the FlowJo Software from Tree Star or FACS DiVa from 

BD. 

Isolation of lymphocytes 

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats or whole 

blood using density centrifugation over LSM solution. 

Polyclonal NK cells were purified from PBMC by negative selection using a NK cell 

negative isolation kit, according to the manufacturer’s instructions. NK cells were 

between 90 % and 99 % NKp46+, CD3- and CD56+, as confirmed by flow cytometry. 

After isolation the cells were resuspended in culture medium containing 1 µg/ml 

PHA-P and 5 ng/ml recombinant human IL-15, mixed with irradiated JY cells (5 x 105 

cells/ml) and plated in 96-well round bottom plates at densities ranging from 1x106 to 

2 x 106 cells/ml. Growing cell cultures were expanded 1:1 with culture medium. 

Peripheral blood T cells were purified from PBMC with negative selection kits either 

for total, CD8-positive or CD4-positive T cells. T cells were then resuspended in 

culture medium at a density of 3 x 106 cells/ml and cultured in appropriate culture 

flasks. 

Transfection of primary lymphocytes 

Primary lymphocytes were transfected using the nucleofection technology (Lonza). 

5 x 106 T cells per sample were transfected with 1 or 2 pmol of siRNA, according to 

the manufacturer’s instructions. After nucleofection cells were taken up in AIM V 

medium (Gibco) supplemented with 10 % FCS. 

Primary NK cells were transfected after one week of culture. 2 to 3 x 106 cells per 

sample were transfected with 1 or 2 pmol of siRNA using the Nucleofector solution 

for human macrophages and the nucleofection program X-01, following the 

manufacturer’s instructions at all other steps. 
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Viral transduction 

Retroviral transduction of cell lines 

Retroviral gene transfer was done using the packaging cell line Phoenix ampho. At 

day one Phoenix cells were plated in a small tissue culture flask at a density of 

1 x 106
 cells in 4 ml medium and grown for 24 h. Cells were transfected with the 

respective plasmid using Lipofectamin according to the manufacturer’s instructions. 

After transfection cells were grown for 12 h to 18 h. The medium was exchanged for 

the appropriate medium for the cells that were to be transduced and Pheonix cells 

were kept in culture for 24 h. Supernatant containing the viral particles was harvested 

and cleared by centrifugation. 0.5 x 106 cells to be transduced were resuspended in 

the supernatant supplemented with 5 µg/ml polybrene. Transduction was carried out 

as spinfection by centrifugation for 1.5 h at 1350 x g and 30°C. Spinfection was done 

in 12 well plates and cells were afterwards grown over night. The medium was 

exchanged the next day by pelleting cells and resuspending them in fresh medium. 

After culturing infected cells for one day puromycin was added at concentrations 

between 0.5 and 2 µg/ml to select for transduced cells. Transduced cells were 

expanded and if necessary further enriched by FACS. 

Lentiviral transduction of NK cells 

Viral vectors were produced in HEK 293T cells transfected with transfer vector, 

packaging plasmid and envelope plasmid at a ratio of 7.5 / 3.75 / 1 by calcium 

phosphate precipitation. To do so DNA was diluted in sterile water and 2 M calcium 

chloride solution was added to a concentration of 244 mmol/l. An equal volume of 2x 

HBS was added to the DNA solution and mixed by bubbling vigorously. The mixture 

was added dropwise to the HEK 293T cells. 12 h later the medium was exchanged 

and cells were grown for 24 h. Then the medium was collected, cleared from cells by 

centrifugation and filtered through 0.45 µm pore size filters. 

Various transduction protocols have been tested. The virus was concentrated by 

ultra-centrifugation and used at MOI ranging from 10 – 20 for spinfection or the 

collected medium was used to concentrate the virus on RetroNectin-coated plates 

following the manufacturer’s instructions. The transduction efficiency was measured 

by flow-cytometry. 
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3.3.3 Protein biochemistry 
Homology modeling 

The three dimensional structure of NTB-A was modeled using the web-based 

PHYRE software (http://www.sbg.bio.ic.ac.uk/~phyre/) (170). 

Immunoprecipitation 

Cell lysates from cell mix experiments were precleared by incubation with 20 µl of a 

50 % slurry of recombinant protein G agarose in PBS for 30 min at 4°C. During this 

and all following incubations the samples were gently agitated. Protein G agarose 

was removed by centrifugation (1 min at 3500 x g and 4°C) and lysates were 

consecutively incubated with 2 µg of control antibody and 2 µg of specific antibody, 

each coupled to 20 µl of a 50 % slurry of recombinant protein G agarose in PBS. 

Incubations were for 1 h at 4°C. These steps were repeated, when more than one 

precipitation was done from the same lysate. Samples were washed three times with 

ice-cold lysis buffer and residual buffer was removed using a Hamilton syringe. 

Samples were frozen at -20°C until they were analyzed by SDS-PAGE and western 

blot. 

SDS-polyacrylamid gel-electrophoresis (SDS-PAGE) 

After adding reducing sample buffer, samples were boiled for 5 min at 95°C, cooled 

on ice and centrifuged for 1 min at 20000 x g. Samples to a maximal volume of 25 µl 

and 5 µl of Precision Plus Protein Standard (BioRad) were loaded on 10 % or 12 % 

NuPage gels (Invitrogen) and separated for 1 h 15 min at 150 V in 1 x MOPS buffer. 

Western blot 

After SDS-PAGE proteins were transferred to a polyvinylidene difluoride (PVDF) 

membrane (Millipore) for 1.5 h at 200 mA in western blot transfer buffer. PVDF 

membranes were activated with methanol and rinsed with transfer buffer prior to use. 

After western blotting, membranes were incubated for 1 h at room temperature in 

blocking buffer and washed for at least 3 times in PBST. Membranes were incubated 

with the primary antibody in PBST containing 5 % (w/v) BSA for 1 h at room 

temperature or overnight at 4°C. The membrane was washed at least three times 

with PBST/NaCl and incubated with the appropriate horseradish-peroxidase (HRPO)-

conjugated secondary antibody or HRPO-conjugated streptavidin for 1 h at room 

temperature. Secondary antibodies were diluted 1:5 000-1:40 000 in blocking buffer. 

After incubation with the secondary antibody, the membrane was extensively washed 
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with PBST and developed using either SuperSignal West Pico or Dura and X-Ray 

films.  

3.3.4 Statistical analysis 
Statistical analysis was performed using Prism 4.0 (GraphPad Software, Inc., San 

Diego, CA, USA). 
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4 Results 

4.1 The molecular basis for the homophilic NTB-A interaction 

4.1.1 Mutational analysis of the homophilic NTB-A interaction 
At the beginning of this work the molecular basis for the homophilic interaction of two 

NTB-A molecules was unknown. To find amino acid residues that contribute to the 

binding of two NTB-A molecules to each other, a possible structure of the 

extracellular part of NTB-A was predicted using homology modeling. Based on the 

model structure eight charged amino acid residues were chosen for mutational 

analysis: glutamate-26 (E26), lysine-27 (K27), glutamate-37 (E37), glutamate-47 

(E47), lysine-49 (K49), glutamate-52 (E52), lysine-62 (K62) and lysine-92 (K92). The 

residues E26, K27, E47, K49, E52 and K92 are located on the side of the IgV-domain 

that is most distant to the plasma membrane. They form an alternating pattern of 

positive and negative charges that seemed to be a likely candidate for an interface 

based on electrostatic forces. We hypothesized that the four positive charges of the 

lysine residues could be located opposite to the negative charges of the glutamate 

residues of the second NTB-A in the homodimer and vice versa. The residues E37 

and K62 are located at the other side of the IgV-domain and were chosen to cover a 

greater part of the IgV-domain. The crystal structure of the homodimer of human 

NTB-A published during the course of this work confirmed the predicted position of 

these residues (fig. 4A). 

Site directed mutagenesis was performed to replace the selected amino acids with 

alanine. The mutated receptors were then stably expressed in the cell line BA/F3, a 

murine B cell line that lacks ligands for activating human NK cell receptors and is 

therefore a poorly lysed target cell line. Expression of the wild type form of human 

NTB-A makes the cells susceptible to recognition and lysis by human NK cells. 

Mutations that diminish capacity of binding to the wild type receptor are supposed to 

result in a reduced lysis of cells. To compare the lysis of BA/F3 cells induced by 

NTB-A-mutants to lysis induced by the wild type receptor, 51Cr-release assays with 

IL-2-activated primary human NK cells were performed (fig. 4B). 



RESULTS  45 

 
Figure 4: The charged residues at the edge of the homophilic interaction site do not contribute 
to the binding of two NTB-A receptors. 
A: The structure of the NTB-A-homodimer with a selection of amino acid side chains. The highlighted 
amino acid residues were mutated to alanine to test their relevance for the interaction. B: BA/F3 cells 
stably transfected with wild type NTB-A or one of the mutated receptors were used as target cells in a 
4 h 51Cr-release assay with IL-2-activated primary NK cells at different effector to target (E/T) ratios. 
GFP-transfected BA/F3 cells were used as negative control. The specific lysis is plotted as mean of 
triplicates ± SD. C: Similar expression levels of the transfected receptors were confirmed by flow-
cytometry. The mutation of lysine 49 to alanine (K49A) disrupts the binding of the antibody NT-7. 
Therefore the clone MAB 1908 was used (lower row). The gray histograms represent staining with an 
unspecific control antibody. One representative experiment of three is shown. 

None of the eight mutations resulted in a reduced lysis of the respective BA/F3 cells. 

Similar expression levels of the wild type and the NTB-A mutants were confirmed by 

flow-cytometry (fig. 4C). The mutant NTB-A K49A could not be stained with the anti-

NTB-A antibody NT-7. But expression of the mutant receptor could be detected using 

a different antibody clone (3C, lower row). This led to the conclusion that the epitope 

recognized by antibody clone NT-7 is located around lysine-49. 

Because no difference between the lysis of wild type and the NTB-A mutants was 

detectable, we concluded that none of the eight amino acids contributes strongly to a 

functional NTB-A-dimerization. At that time-point the crystal structure of the human 

NTB-A-homodimer was published by Cao et al. (171). The structure showed that all 
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selected residues except E37 were indeed located outside the homophilic interface 

(fig. 4A). 

Based on the structure of the crystallized NTB-A-homodimer Cao et al. defined ten 

amino acid residues (F30, L34, E37, S39, F42, H54, T56, R86, Q88 and S90) on 

each IgV-domain, which form the interface between interacting NTB-A molecules. 

They tested their hypothesis with a series of mutagenesis studies, substituting 

alanine for each of the ten amino acids. Ectodomains of NTB-A containing the single 

amino acid mutations were then recombinantly expressed in bacteria, refolded, 

purified and assessed for their dimerization in gel filtration analysis, apart from the 

F42A mutant that could not be refolded. With the exception of the mutation of serine-

39 all mutants showed a decreased ability to form dimers in solution (171). 

As the mutation of E37 showed no decrease in our functional experiments, we 

wanted to confirm the contribution of other residues of these ten to functional 

interaction of NTB-A molecules. We chose the three residues, histidine-54 (H54), 

glutamine-88 (Q88) and serine-90 (S90) (fig. 5A) whose mutation to alanine had a 

strong effect on dimerization in the gel filtration experiments reported by Cao et al. 

(171). Single mutants of the three residues to alanine were generated and H54 and 

S90 were both exchanged in a double mutant. The mutant NTB-A receptors were 

stably expressed in BA/F3 cells. Susceptibility of these cells to NTB-A-triggered 

cytotoxicity was tested in 51Cr-release assays with primary IL-2-activated NK cells 

(fig. 5B). While the lysis of NTB-A Q88A-expressing cells was similar to lysis of cells 

expressing the wild type receptor, the H54A and S90A mutants displayed a 

diminished lysis. The mutation S90A showed a stronger effect on the interaction with 

wild type NTB-A than H54A. The double mutation H54A S90A did not reduce the 

lysis to a level lower than the S90A single mutation, which is only slightly above the 

lysis of BA/F3 cells expressing GFP instead of any activating ligand. Similar 

expression levels of NTB-A on the BA/F3 cells were confirmed by flow-cytometry 

(fig. 5C). Molecular modeling based on the crystal structure and energy calculations 

performed by David Nutt, our cooperation partner in bioinformatics, confirmed that 

our mutations did not disrupt the overall domain structure. 
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Figure 5: Mutations of the residues histidine-54, glutamine-88 and serine-90 have different 
impact on NTB-A function 
A: The amino acid residues histidine-54 (H54), glutamine-88 (Q88) and serine-90 (S90) are 
highlighted in the structure of the NTB-A-homodimer. To test their functional relevance for the 
homophilic interaction of NTB-A each of the three was mutated to alanine in a single mutation and 
H54 and S90 in one double mutant. B: BA/F3 cells stably transfected with wild type NTB-A or one of 
the mutated receptors were used as target cells in 4 h 51Cr-release assays with IL-2-activated primary 
NK cells at different E/T ratios. GFP-transfected BA/F3 cells were used as negative control. In the left 
diagram the effects of the three single mutants are compared, in the right diagram the double mutant 
is compared to the respective single mutants. The specific lysis is plotted as mean of triplicates ± SD. 
Two representatives of five experiments with NK cells from nine donors are shown. C: Similar 
expression levels of the transfected receptors were confirmed by flow-cytometry. The gray histograms 
represent staining with an unspecific control antibody. 

From these results we conclude a grading in the contributions of the amino acid 

residues at the interface to the stability of the NTB-A-homodimer. Q88 and E37 have 

only a small influence on the receptor interaction, as their mutation did not lead to 

functional consequences. The hydrophobic interactions of H54 have a stronger 

relevance for dimerization, but the most important of all residues analyzed was S90, 

whose mutation almost totally abrogated NTB-A function. 

4.1.2 Introducing complementary mutations to create a heterophilic pair of 
NTB-A mutants 

The homophilic interaction of NTB-A makes it difficult to investigate the early events 

in the signaling processes after NTB-A engagement. Because there is continual 

engagement of NTB-A between neighboring cells in cultures of NTB-A-expressing 

cells, it is impossible to obtain cells expressing NTB-A in a completely unstimulated 
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state. To overcome this impediment we attempted to generate NTB-A mutants with 

complementary mutations that would render the receptors self-incompatible, but 

enable them to bind to each other, turning the homophilic NTB-A into a pair of 

heterophilic mutants. 

Based on energy calculations and molecular modeling on the crystal structure of the 

NTB-A-homodimer our cooperation partner in bioinformatics predicted that the two 

amino acid residues threonine-32 and leucine-34 could be used for that purpose. 

These residues are located opposite each other in the homophilic interface (fig. 6A). 

Replacing one of the residues with lysine or glutamate would introduce a charge, but 

leave the overall structure of the IgV-domain intact. 

Figure 6B illustrates the concept taking the mutation T32K as example. The positively 

charged lysine was supposed to reduce the binding to wild type receptor (fig. 6B, left 

panel) and to prevent dimerization with another NTB-A T32K molecule due to 

repulsive electrostatic forces (fig. 6B, middle panel). In the complementary mutant 

L34E a negatively charged glutamate residue is placed opposite the lysine and could 

promote receptor binding through attractive electrostatic forces (fig. 6B, right panel). 

We would expect NK cells expressing NTB-A T32K to lyse target cells expressing 

NTB-A L34E and spare target cells expressing NTB-A T32K. Lysis of target cells 

expressing wild type NTB-A would be reduced. 

To test this concept we generated four NTB-A mutants T32E, T32K, L34E and L34K 

and expressed them stably in the cell line BA/F3. To obtain NK cell lines expressing 

only the mutant receptors, we expressed the wild type receptor or the mutants stably 

in the NTB-A-deficient NK cell line NKL4- that has been derived from the cell line NKL 

by repeated fluorescence-activated cell sorting (152). The expression levels of 

NTB-A on all cell lines were analyzed by flow-cytometry (fig. 6C). As expected, only 

expression of the wild type receptor enabled the NKL cells to lyse wild type NTB-A-

expressing BA/F3 cells. NKL4- cells expressing the mutant receptors showed equally 

low cytotoxicity against BA/F3 cells expressing GFP or wild type NTB-A (fig. 6D). 

However, the complementary mutants did not rescue the interaction in the expected 

way. Target cells expressing one NTB-A mutant were poorly lysed regardless 

whether the NKL4- expressed the complementary mutant or the same mutant 

(fig. 6E). 
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Figure 6: Introducing complementary mutations into NTB-A to create a heterophilic receptor 
pair 
A: The positions of the two amino acid residues threonine-32 and leucine-34 in the NTB-A-NTB-A 
interface. By mutating the opposing amino acids to charged residues lysine and glutamate it was 
attempted to create a heterophilic pair of NTB-A mutants. B: An example to illustrate the expected 
effects of one mutation on the interaction with wild type NTB-A, a receptor with the identical mutation 
and the complementary mutant. C: All four possible mutations were generated and stably transfected 
into the NTB-A-deficient cell line NKL4- and BA/F3 cells. Similar expression levels were determined by 
flow-cytometry. The gray histograms represent staining with an unspecific control antibody. 
D: Cytotoxicity of the transfected NKL4- against BA/F3 cells expressing wild type NTB-A. 
E: Cytotoxicity of transfected NKL4- against BA/F3 cells expressing the identical and complementary 
mutants. Cytotoxicity was tested in a 16 h 51Cr-release assay at different E/T ratios F: To confirm the 
cytotoxic potential of the transfected NKL4- cells, a 16 h redirected lysis assay against P815 cells was 
performed in the presence of control IgG or anti-NKG2D (αNKG2D) antibodies. Depicted are 
means ±SD of triplicates. The experiments shown are representatives of two, in case of E including all 
mutants and their complementary counterpart. 
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To exclude the possibility that the NKL4- cells lost their cytotoxic potential during the 

retroviral transduction and the following selection process, we measured NKG2D-

mediated lysis in a redirected lysis assay (fig. 6F). The NKL4- cells expressing the 

wild type or the different mutants of NTB-A were still able to lyse target cells, but only 

at a low level. All 51Cr-release assays had to be conducted for 16 h, because no 

considerable lysis could be observed after the usual 4 h incubation. 

The attempt to create a heterophilic pair of NTB-A mutants by replacing the residues 

T32 and L34 with charged residues was unsuccessful, because these mutations only 

prevent the homophilic interaction, but obviously do not fit into a heterophilic 

interface. 

 

4.2 Early events in SLAM-related receptor signaling 

4.2.1 Association of SAP with 2B4 is dispensable for receptor 
phosphorylation 

Receptor phosphorylation is one of the first events in SLAM-related receptor 

signaling. For SLAM it has been shown that SAP can bind to the unphosphorylated 

receptor and mediate receptor phosphorylation by recruitment of the Src-kinase FynT 

(150). Unphosphorylated 2B4 and NTB-A do not bind SAP (82, 152). Therefore 

phosphorylation of both receptors is thought to be a signaling event preceding the 

association of SAP. On the contrary SAP KO mice show no phosphorylation of 2B4 

after engagement, although the expression of Src-kinases is not disturbed (102). 

To investigate the function of SAP in these early signaling events, we made use of 

NK92 cells with a stably down-regulated SAP expression mediated by retroviral 

shRNA delivery (NK92 shSAP). These cells show a defect in 2B4-mediated 

cytotoxicity compared to control cells expressing an shRNA against CD4 (NK92 

shCD4) while lysis mediated by the natural cytotoxicity receptor NKp30 was 

unaltered (fig. 7A). To test whether the signal is already impaired at the level of 

receptor phosphorylation, the two knockdown cell lines were stimulated by incubation 

with the cell line 721.221, an EBV-transformed B cell line which expresses CD48, the 

ligand for 2B4. Unstimulated and stimulated cells were lysed and 2B4 was 

immunoprecipitated from the lysates. Immunoprecipitates were then analyzed by 

western blotting (fig. 7B). 
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Figure 7: The effect of SAP-knockdown in NK92 cells on signaling of 2B4 and NTB-A 
To study the impact of a SAP-knockdown on NK cell signaling, NK92-C1 cells stably expressing a 
small hairpin RNA against SAP (shSAP) or CD4 (shCD4) mRNA (as negative control) were analyzed. 
A: The two knockdown cell lines were used as effector cells in a redirected 51Cr-release assay against 
P815 cells in the presence of IgG control antibody or antibodies against the receptors NKp30 and 2B4 
at different E/T ratios. Data is shown as mean ± SD of triplicates. The results are from one 
representative experiment out of four. B: For analysis of receptor signaling equal numbers of the two 
cell lines were mixed with 721.221 cells and lysed at the indicated time-points. After a control 
immunoprecipitation with an unspecific antibody (IP: IgG) 2B4 was immunoprecipitated from the 
lysates. The immunoprecipitates were analyzed by western blotting. Membranes were probed with 
anti-phospho-tyrosine antibodies to detect receptor phosphorylation and re-probed with antibodies 
against 2B4 (upper panels). Antibodies against SAP and EAT-2 were used to detect co-precipitated 
molecules on the same membrane (lower panels). C: Whole cell lysates were blotted and probed with 
antibodies to confirm the reduced SAP levels in the NK92 shSAP cells. D: The two knockdown cell 
lines were used as effector cells in a redirected 51Cr-release assay against P815 cells in the presence 
of IgG control antibody or antibody against NTB-A at different E/T ratios. Data is shown as mean ± SD 
of triplicates. The results are from one representative experiment out of four. E: After a control 
immunoprecipitation with an unspecific antibody (IP: IgG) NTB-A was immunoprecipitated from the 
same lysates as in B. Immunoprecipitates were analyzed by western blotting. Membranes were 
probed with anti-phospho-tyrosine antibodies to detect receptor phosphorylation and re-probed with 
antibodies against NTB-A (upper panels). Co-precipitation of SAP and EAT-2 was detected as in B 
(lower panels). The blots shown are representatives of at least three cell mix experiments. 

The membranes were probed with anti-phospho-tyrosine antibody to detect ITSM-

phosphorylation and re-probed with anti-2B4 antibody. Phosphorylation of 2B4 was 

increased after stimulation in control and SAP-knockdown cells (6B, upper panel). 

Because the extent of 2B4-phosphorylation was not diminished in shSAP cells, we 

conclude that phosphorylation of 2B4 is independent of SAP association. The core 
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function of SAP-mediated FynT recruitment is not the enhancement of ITSM 

phosphorylation.  

4.2.2 EAT-2 recruitment to 2B4 is dependent on the presence of SAP  
In the same experiments the association of the adapter molecules SAP and EAT-2 

with the immunoprecipitated receptor was analyzed (6B, lower panels). In the control 

cells SAP was absent from the low-level phosphorylated receptor in unstimulated 

cells and was recruited to the activated, highly phosphorylated receptor. In the cells 

with reduced SAP expression level no association of SAP with 2B4 could be 

detected, although the SAP-knockdown was not complete, as shown by western blot 

analysis of whole cell lysates (fig. 7C). In contrast to SAP, receptor-bound EAT-2 was 

already detectable in unstimulated control cells and accumulated after stimulation. 

Surprisingly, EAT-2 did not bind to the receptor in the knockdown cells, neither in the 

unstimulated nor the stimulated state, even though its expression level remained 

unchanged by the SAP knockdown (fig. 7C). The 721.221 cells used to stimulate the 

NK92 cells in the cell mix assay do not express SAP or EAT-2 (152). Therefore the 

total amount of detected protein must come from the NK92 cells. 

4.2.3 NTB-A-phosphorylation is also independent of SAP association 
We also investigated the role of SAP in early NTB-A signaling in the NK92 shSAP 

cells with stably reduced SAP expression. 

When testing the NTB-A-mediated cytotoxicity of the shSAP cells in comparison to 

the control cells, a decreased lysis was observed (fig. 7D). To analyze NTB-A 

phosphorylation in the absence of SAP both cell lines were stimulated by co-

incubation with 721.221 cells and NTB-A was immunoprecipitated. Western blot 

analysis of the immunoprecipitates revealed a similar picture as for 2B4. Co-

incubation with the target cells induced an increase in NTB-A phosphorylation in 

control cells and SAP-knockdown cells (fig. 7E, upper panel). As it has been shown 

that there is no background-phosphorylation of NTB-A in the 721.221 cell line (152), 

we can exclude that some of the phosphorylated NTB-A comes from the target cells 

used in the cell mix. 

4.2.4 EAT-2 does not bind to NTB-A in the absence SAP 
Analysis of the co-precipitated adapter molecules showed that in contrast to 2B4 the 

background-phosphorylation of NTB-A in unstimulated control cells was sufficient to 

recruit EAT-2 and SAP. The association increased with receptor phosphorylation 
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(fig. 7E, lower panel). In cells with reduced SAP expression we could also detect 

SAP and EAT-2 bound to the low-level phosphorylated receptor in unstimulated cells, 

but instead of accumulating at highly phosphorylated NTB-A after stimulation neither 

SAP, nor EAT-2 were detectable in the immunoprecipitate (fig. 7E, lower panel). 

Similar to the observations made with 2B4 these results show a dependency of 

EAT-2-receptor association on the simultaneous binding of SAP to the receptor.  

4.2.5 2B4 phosphorylation is also SAP-independent in the cell line YTS 
To exclude that the observed effect is specific for the NK92 cell line, we generated a 

stable reduction of SAP expression in the NK-like cell line YTS by retroviral delivery 

of shRNA against SAP (YTS shSAP), while an shRNA against CD4 served as control 

(YTS shCD4). The reduction of 2B4-mediated cytotoxicity observed in the NK92 

shSAP cells could be confirmed with the YTS shSAP cells (fig. 8A, left panel). 

NTB-A-mediated lysis by YTS shSAP was also reduced to a small extent compared 

to control cells (fig. 8A, right panel). 

To investigate, if the early events in 2B4 signaling were affected in the same way as 

in the NK92 shSAP cells, YTS shSAP and YTS shCD4 cells were stimulated by co-

incubation with BA/F3 cells expressing CD48. Unstimulated and stimulated cells 

were lysed and 2B4 was immunoprecipitated from the lysates. Receptor 

phosphorylation, co-precipitation and expression levels of adapter molecules were 

analyzed by western blotting (fig. 8B). As observed in the NK92 cells the reduction of 

SAP expression did not lead to a reduction of 2B4 phosphorylation. Association of 

SAP with the highly phosphorylated receptor after stimulation could be detected in 

the control cells, but was not found in shSAP cells. In contrast to the results obtained 

with the NK92 cells, EAT-2 could not be detected in the immunoprecipitates, possibly 

because of a lower expression level in the YTS cells. 
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Figure 8: The effect of SAP-knockdown in YTS cells on signaling of 2B4 and NTB-A 
YTS cells stably expressing a small hairpin RNA against SAP (shSAP) or CD4 (shCD4) mRNA (as 
negative control) were analyzed. A: The two knockdown cell lines were used as effector cells in a 4 h 
51Cr-release assay against BA/F3 cells expressing GFP, CD48 or NTB-A at different E/T ratios. Data 
is shown as mean ± SD of triplicates. One representative experiment out of three is shown. B: For 
analysis of receptor signaling equal numbers of the two cell lines were mixed with BA/F3 cells 
expressing CD48 and lysed at the indicated time-points. After a control immunoprecipitation with an 
unspecific antibody (IP: IgG) 2B4 was immunoprecipitated from the lysates. The immunoprecipitates 
of anti-2B4 antibody (left panel) and whole cell lysates (right panel) were analyzed by western blotting. 
Membranes were probed with anti-phospho-tyrosine antibodies to detect receptor phosphorylation and 
re-probed with an antibody against 2B4. Antibodies against SAP and EAT-2 were used to detect co-
precipitated molecules and confirm the reduced SAP expression in shSAP cells. Re-probing with anti-
actin antibody served as loading control for the lysates. EAT-2 could not be detected in the 
immunoprecipitates. The blots shown are representatives of at least three cell mix experiments. 

4.2.6 Establishing a method for knockdown of protein expression in primary 
NK cells 

The results obtained with the two cell lines show a dependency of 2B4 and NTB-A 

signaling on the presence of SAP. A similar defect in 2B4 and NTB-A-mediated 

cytotoxicity has been observed in NK cell from XLP patients lacking functional SAP 

(84, 98, 136-138). On the contrary, it has been reported that NTB-A-mediated 

cytotoxicity was still intact in NK cell lines, when SAP but not EAT-2 recruitment was 

abrogated by ITSM mutation (152). This led to the conclusion that the NTB-A signal 

that triggers a cytotoxic response is dependent on EAT-2, and the defect observed in 

XLP patients may be due to disturbances in NK cell development in the absence of 

functional SAP. As we observed that EAT-2 recruitment to SRR was dependent on 

SAP, our results supported the notion that SAP is the crucial adapter molecule for 
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both 2B4 and NTB-A. Therefore we wanted to confirm these findings in primary NK 

cells. 

To knockdown SAP in primary NK cells we wanted to use a lentiviral vector 

expressing the same shRNA used for the RNA-interference in the cell lines. We 

cloned the shRNA sequences into the vector pLVTHM, a vector that contains a GFP 

gene as marker for transduced cells. As a positive control for transduction the vector 

pWPXL siNKG2D was used, a vector for RNA interference against NKG2D that also 

contains GFP as reporter gene (172). Primary IL-2-activated NK cells were 

transduced and GFP expression was detected by flow-cytometry. GFP-positive cells 

could be detected after transduction with each vector and the effect of RNA 

interference with NKG2D expression could be detected by staining the pWPXL 

siNKG2D-transduced cells for NKG2D (fig. 9A). But the transduction efficiency 

reached with either vector was low, ranging from 4 to 5 %, reaching a maximum of 

10 % in one experiment with pLVTHM shSAP (fig. 9A). This efficiency is far too small 

to obtain sufficient cell numbers for functional assays. 

 

 
Figure 9: Lentiviral transduction of primary NK cells compared to nucleofection 
A: IL-2-activated primary NK cells were transduced with the lentiviral vectors pWPXL siNKG2D or 
pLVTHM shSAP. Both vectors contain GFP as marker gene for transduced cells and code for small 
hairpin RNA against the receptor NKG2D or SAP, respectively. 12 or 15 days after transduction, 
respectively, the percentage of transduced cells was determined by flow-cytometry. The down-
regulation of NKG2D expression on cells transduced with pWPXL siNKG2D was confirmed by staining 
with an anti-NKG2D antibody. The numbers give the percentage of cells in the depicted gates. The 
plots show the results of the most successful experiments. B: IL-2-activated primary NK cells were 
transfected with Alexa647-labeled siRNA against SAP or unlabeled control siRNA (gray histogram) 
using nucleofection. 20 h later the cells were washed twice and analyzed by flow-cytometry. 

Thus, we decided to test, whether a transient transfection with siRNA was a more 

suitable tool. Using nucleofection technology we transfected primary IL-2 activated 

NK cells with fluorescence-labeled siRNA against SAP and analyzed the transfection 

efficiency 20 h later by flow-cytometry (fig. 9B). The greatest part of the NK cells was 

positive for fluorescence of the labeled siRNA. Therefore we chose to reduce SAP or 

EAT-2 expression in primary NK cells by transient transfection with siRNAs. 
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4.2.7 SAP is the relevant adapter molecule for 2B4 and NTB-A-triggered 
cytotoxicity 

To confirm the results obtained with the cell lines and to elucidate the role of EAT-2, 

primary IL-2-activated NK cells were transfected with siRNA against SAP, EAT-2 or 

both. 48 h after transfection expression levels of the two adapter molecules were 

analyzed by western blotting of cell lysates (fig. 10A). The expression of SAP and 

EAT-2 was strongly reduced in cells transfected with the respective siRNA. To 

exclude unspecific side effects of the siRNA on the investigated signaling events 

equal expression of FynT was confirmed in the lysates (fig. 10A) and expression 

levels of 2B4 and NTB-A were confirmed by flow-cytometry (fig. 10B). 

 

 
Figure 10: 2B4 and NTB-A-mediated cytotoxicity are impaired after SAP-knockdown, but not 
after EAT-2-knockdown in primary NK cells 
IL-2-activated primary NK cells were transfected with control siRNA, siRNA against SAP, against 
EAT-2 or both. A: The knockdown was confirmed 48 h later by western blotting of whole cell lysates. 
B: Equal expression levels of 2B4, NTB-A and NKG2D 48 h after transfection were confirmed by flow-
cytometry. C: The functional consequence of the decreased expression of the adapter molecules was 
tested in a 4 h 51Cr-release assay against P815 cells in the presence of control antibody, or antibodies 
against 2B4, NTB-A or NKG2D. Results shown are from four independent experiments. Plotted is the 
specific lysis at an E/T ratio of 5/1 corrected by subtracting the lysis observed in the presence of 
control antibody for each experiment. The bars represent the mean value. Statistical significance of 
the reduced lysis compared to control siRNA-transfected cells was calculated using one-way ANOVA 
and Dunnett’s post test (* indicates p < 0.05). 
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To assess the influence of SAP and EAT-2 on the signaling of 2B4 and NTB-A in 

primary NK cells, cytotoxicity of transfected cells against the target cell line P815 was 

measured in the presence of antibodies against each of the two receptors, or NKG2D 

as a positive control (fig. 10C). 

The specific lysis was lower for 2B4 and NTB-A, when SAP expression was reduced. 

In contrast, a decreased expression level of EAT-2 did not result in a reduction of 

lysis. The lysis obtained with the double knockdown cells was diminished to a similar 

level as observed with the SAP knockdown cells. NKG2D-mediated lysis was not 

affected by the down-regulation of either adapter molecule. These effects of the 

knockdown were observed in all experiments performed with NK cells from different 

donors. However, the reduction of 2B4-mediated lysis was only statistically significant 

for the double knockdown and NTB-A-mediated lysis was only significantly reduced 

in the SAP single knockdown. 

The analysis of receptor phosphorylation in primary cells was not possible, because 

the numbers of transfected NK cells were not sufficient. 

The results obtained with primary NK cells confirm that SAP and not EAT-2 is the 

main mediator of signal transduction leading to cytotoxic responses after 2B4 or 

NTB-A engagement. 

4.3 Functions of NTB-A and CRACC in T cells 
Co-stimulation of T cells through NTB-A and CRACC induces activation and 

proliferation 

For the receptors SLAM, CD84, 2B4 and NTB-A it has been shown that their 

engagement can enhance proliferation of T cells stimulated via their T cell receptor 

(73, 104, 109, 173-175). To test whether the receptor CRACC, which is expressed on 

a subset of T cells (fig. 11), has also co-stimulatory potential on these cells, 

peripheral blood T cells were stimulated with different combinations of plate-bound 

antibodies. 

 
Figure 11: CRACC is expressed on a subset of T cells 
Freshly isolated peripheral blood T cells were stained for CD4, CD8 and CRACC and analyzed by 
flow-cytometry. Results for two donors are shown to represent variability of the CRACC-positive 
subsets. The gray histograms represent staining with an unspecific control antibody. 
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Figure 12: Co-stimulation of T cells through CRACC and NTB-A induces expression of 
activation markers 
Peripheral blood T cells were stimulated with plate-bound antibodies. The plates were pre-coated with 
goat-anti-mouse-IgG antibody. Anti-CD3 antibody (αCD3) was used at a sub-stimulatory concentration 
of 0.01 µg/ml, alone or in combination with control antibody (IgG) at 10 µg/ml or co-stimulatory 
antibodies against CRACC (αCRACC), NTB-A (αNTB-A) and CD28 (αCD28) in concentrations of 
0.1 µg/ml, 1 µg/ml and 10 µg/ml. αCRACC, αNTB-A and αCD28 were also tested without αCD3 at a 
concentration of 10 µg/ml. After 48 h the cells were harvested and stained for CD69 (upper panels), 
CD25 (lower panels) and CD8 (left panels) or CD4 expression (right panels). The symbols represent 
different donors; the bars show the mean of all four donors. The mean values obtained for the co-
stimulation with CRACC were compared to value for αCD3 + IgG stimulation using one-way ANOVA 
and Dunnett’s post test. Asterisks indicate statistical significance: * p < 0.05, ** p < 0.01. 

T cells used for the investigation of proliferation were labeled with CFDA prior to 

stimulation. The antibody against the T cell receptor component CD3 was used at a 

concentration too low to induce proliferation by itself and was mixed with an 

unspecific control antibody or antibodies against CRACC, NTB-A or CD28 at three 

different concentrations. These antibodies were also tested without anti-CD3 

antibody. 

After 48 h of stimulation the unlabeled T cells were harvested, stained for the early 

activation marker CD69 or CD25 (the IL-2-receptor α-chain) and CD8 or CD4 and 

analyzed by flow-cytometry (fig. 12). Without simultaneous stimulation of the T cell 
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receptor neither of the antibodies showed stimulatory capacity. Co-stimulation with 

anti-CRACC antibody led to a small increase of CD69 expression on CD8-positive 

cells and a more prominent increase on CD4-positive cells compared to the 

expression on cells stimulated with anti-CD3 and control antibody. CD25 was also 

induced through CRACC co-stimulation on both T cell subsets. The increase was 

more distinct than the effect on CD69 expression, although no statistical significance 

could be determined for the CD4-positive subset. NTB-A was as effective as the 

classical co-stimulatory receptor CD28 on both subsets. Nearly all CD8-positive T 

cells became positive for CD69 and CD25 after co-stimulation with anti-NTB-A 

already at the lowest concentration of 0.1 µg/ml. 

 

 
Figure 13: Co-stimulation of T cells through CRACC and NTB-A induces proliferation 
Peripheral blood T cells were labeled with CFDA and stimulated with plate-bound antibodies as 
described for fig. 12. After 72 h the cells were harvested, stained for CD8 (left panel) or CD4 
expression (right panel) and analyzed by flow-cytometry. The percentage of proliferating cells was 
determined based on CFDA-dilution. The symbols representing different donors correspond to the 
symbols used in fig. 12; the bars show the mean of all four donors. The mean values obtained for the 
co-stimulation with CRACC were compared to value for αCD3 + IgG stimulation using one-way 
ANOVA and Dunnett’s post test. Asterisks indicate statistical significance: * p < 0.05, ** p < 0.01. 

After 72 h of stimulation the proliferation of T cells from the CD8- or the CD4-positive 

subset was analyzed by flow-cytometry (fig. 13). None of the antibodies induced 

proliferation in the absence of T cell receptor stimulation. Co-stimulation with anti-

CRACC antibody induced proliferation in a dose-dependent manner, matching the 

observations on activation marker expression. The effect of the lowest concentration 

(0.1 µg/ml) was not statistically significant compared to the proliferation induced by 

anti-CD3 in combination with unspecific control antibody. At higher concentrations 

(1 or 10 µg/ml) the percentage of proliferating cells was significantly increased, both 

in the CD8 and CD4-positive subset, even though the response to co-stimulation of 
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CRACC showed a high variability between donors in the CD4-positive subset. Similar 

to the induction of activation markers, the proliferation induced by co-stimulation 

through NTB-A or CD28 was equally high. The percentage of proliferating cells 

reached its maximum already at the lowest concentrations. 

These results show that CRACC and NTB-A have a co-stimulatory potential to 

activate T cells and elicit a proliferative response. The effect of co-stimulation through 

CRACC is possibly less prominent, because CRACC expression is restricted to a 

smaller subset of T cells. 

4.3.1 Co-stimulation through NTB-A and CRACC induces cytokine production 
To study the effect of co-stimulation through NTB-A and CRACC on the production of 

cytokines, peripheral blood T cells were stimulated with plate-bound antibody against 

CD3 at sub-optimal concentration in combination with an unspecific control antibody 

or antibodies against CRACC, NTB-A or CD28 for 6 h. Afterwards cells were lysed 

and mRNA levels of the cytokines IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-13, IL-17, 

IL-18, TNF-α, TGF-β, and IFN-γ were determined in relation to GAPDH-mRNA by 

quantitative RT-PCR. Where detectable, the expression pattern of cytokine mRNA 

showed no qualitative, but only quantitative differences between the three co-

stimulators. IL-2, TNF-α and IFN-γ-mRNAs were strongly expressed after co-

stimulation through CD28 (fig. 14A). NTB-A-mediated co-stimulation also increased 

IL-2 and IFN-γ-mRNA levels, but to a far lesser extent; and co-stimulation with 

CRACC led only to a very slight, but significant elevation of IFN-γ-mRNA. 

To investigate cytokine production at the level of protein expression, peripheral blood 

T cells were stimulated for 48 h with plate-bound antibodies as described for the 

analysis of activation markers or proliferation. Brefeldin A was added to the cultures 

4 h before analysis to inhibit exocytosis of cytokines. Expression of IL-2, IFN-γ, 

TNF-α and CD4 or CD8 were analyzed by intracellular staining and flow-cytometry.  

IL-2 production was detected in CD4-positive cells co-stimulated with anti-CRACC 

and anti-NTB-A antibodies, although the variability between cells from different 

donors was high (fig. 14B). Similar to the results obtained for proliferation, the 

percentage of positive cells after CRACC-mediated co-stimulation was lower 

compared to that after co-stimulation of NTB-A. The observed levels of IL-2-positive 

cells were similar after NTB-A- and CD28-mediated co-stimulation. The induction of 

IFN-γ production in CD8-positive cells was only marginal after CRACC co-stimulation.  
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Figure 14: Co-stimulation of T cells through CRACC and NTB-A induces cytokine production 
A: Peripheral blood T cells were stimulated with plate-bound antibodies. The plates were coated as 
described for fig. 12. Control antibody (IgG) or co-stimulatory antibodies against CRACC (αCRACC), 
NTB-A (αNTB-A) and CD28 (αCD28) were used at concentrations of 10 µg/ml. After 6 h the cells were 
harvested and mRNA expression of IL-2, TNF-α and IFN-γ relative to GAPDH-mRNA was determined 
by quantitative RT-PCR. The graph shows the mean of three experiments ± SD. The values obtained 
from the cells co-stimulated with αCRACC or αNTB-A were compared to the control cells with paired t-
test. * The increased levels of IL-2-mRNA and IFN-γ-mRNA after NTB-A-co-stimulation (p = 0.041, 
each) and the increased level of IFN-γ-mRNA after CRACC-co-stimulation (p = 0.032) were 
considered statistically significant. B – D: The cytokine production was also analyzed at the level of 
protein expression. Peripheral blood T cells were stimulated as described for fig. 12. Brefeldin A was 
added to the cultures for the last 4 h. Cells were harvested, fixed and permeabilized. After staining 
with the respective antibodies cells were analyzed by flow-cytometry. B: IL-2 expression in CD4-
positive cells. C: IFN-γ expression in CD8-positive (left panel) and CD4-positive cells. D: TNF-α 
expression in CD8-positive cells. The symbols representing different donors correspond to the 
symbols used in fig. 12 and 12; the bars show the mean of all four donors. The mean values obtained 
for the co-stimulation with CRACC were compared to value for αCD3 + IgG stimulation using one-way 
ANOVA and Dunnett’s post test. Asterisks indicate statistical significance: * p < 0.05, ** p < 0.01. 
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The effect of CRACC co-stimulation was more visible in CD4-positive cells, although 

without statistical significance (fig. 14C). NTB-A-mediated co-stimulation resulted in 

IFN-γ expression in both T cell subsets. TNF-α production of CD8-positive cells could 

also be detected after NTB-A co-stimulation and to a small extent after CRACC co-

stimulation, but only the value obtained with the highest anti-CRACC antibody 

concentration was statistically significant (fig. 14D). 

These results show that co-stimulation through NTB-A or CRACC is also able to 

induce production of the cytokines IL-2, TNF-α and IFN-γ in CD4 and CD8-positive T 

cells. Again, the effect of co-stimulation through CRACC is limited by the size of the 

subset expressing the receptor. 

4.3.2 Co-stimulation with the anti-CRACC antibody is specific 
To exclude the possibility that the small effects observed after co-stimulation of 

CRACC were due to an unspecific interaction of the anti-CRACC antibody, we 

investigated, whether co-stimulation with another anti-CRACC clone led to similar 

results. The clone CS1-4 used in previous experiments and the clone 162.1 (112) 

were tested at different concentrations in combination with anti-CD3 antibody in sub-

optimal concentration. After 48 h the stimulated peripheral blood T cells were 

analyzed by flow-cytometry for CD69 and IFN-γ expression (fig. 15). 

 

 
Figure 15: Comparison of the stimulation by two different anti-CRACC antibodies 
Peripheral blood T cells were stimulated with plate-bound antibodies. The plates were pre-coated with 
goat-anti-mouse-IgG antibody. Anti-CD3 antibody (αCD3) was used at a sub-stimulatory concentration 
of 0.01 µg/ml, alone or in combination with increasing concentrations (0.01 µg/ml, 0.05 µg/ml, 
0.1 µg/ml, 1 µg/ml, 5 µg/ml and 10 µg/ml) of the two antibody clones against CRACC: CS1-4, the one 
used in previous experiments, and 162.1. After 44 h Brefeldin A was added to the cultures. 4 h later 
the cells were harvested, fixed and permeabilized. Flow-cytometry was performed after staining for 
CD69, IFN-γ and CD8.  
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Both antibodies could induce CD69 expression, but clone 162.1 had a stronger effect 

with a different dose response. At 0.1 µg/ml the percentage of positive cells had its 

maximum and decreased with increasing 162.1 concentrations. While co-stimulation 

with CS1-4 failed to induce IFN-γ production in the experiment shown in figure 15, 

clone 162.1 was able to induce production of IFN-γ with the same dose response 

observed for CD69 expression. Therefore we conclude that the co-stimulation 

through CRACC is a specific effect. 

4.3.3 CRACC is expressed on memory T cells and activated T cells 
The limited effects observed after co-stimulation of CRACC are possibly due to the 

small size of the T cell subset expressing the receptor. To further characterize this 

subset, naïve and memory T cells were screened for expression of CRACC. These 

subsets can be defined by the expression of CCR7 and the CD45 isoform CD45RA 

(23). Naïve T cells express both molecules, central memory T cells express CCR7 

and CD45RO instead of RA, effector memory T cells are negative for CCR7 and 

CD45RA with the exception of a minor subset of effector memory T cells that re-

expresses the CD45RA isoform. Freshly isolated peripheral blood T cells were 

analyzed by flow-cytometry for expression of these markers, CD4, CD8 and CRACC 

(fig. 16A). Naïve T cells neither of the CD4 nor the CD8-positive subset did express 

CRACC. CD8-positive cells of all memory cell types showed CRACC expression, 

while CD4-positive effector memory cells showed only a slight increase in CRACC 

staining. This is corresponding to the expression pattern on CD4 and CD8-positive T 

cells (fig. 11 and (112)). 

Because the expression of CRACC is restricted to memory cells, we wanted to test 

whether activation of T cells induces CRACC expression. To this end freshly isolated 

peripheral blood T cells were unspecifically stimulated with PHA-P and then kept in 

culture with IL-2 for one week. During this time CRACC expression on CD4 and CD8-

positive cells was monitored by flow-cytometry (fig. 16B). Three days after stimulation 

there was a strong increase in CRACC-positive cells in the CD8-positive subset and 

after one week all CD8-positive cells expressed CRACC. The CRACC expression on 

CD4-positive cells changed only marginally. 
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Figure 16: CRACC is expressed on memory T cells and activated T cells 
A: Freshly isolated peripheral blood T cells were analyzed by flow-cytometry after staining with a 
control antibody or anti-CRACC antibody in combination with antibodies against CD4, CD8, CD45RA, 
and CCR7. According to their expression of CD45RA and CCR7 the cells were classified as naïve T 
cells (CD45RA+, CCR7+), central memory T cells (CD45RA-, CCR7+), and CD45-positive and negative 
effector T cells (CCR7-). The expression of CRACC was determined on each subset among CD4-
positive T cells (left panel) and CD8-positive T cells (right panel). The light gray histograms represent 
the staining of the control antibody of the respective subset. The results shown are representative for 
8 experiments. B: To study the expression of CRACC on activated T cells, freshly isolated peripheral 
blood T cells were stimulated with 2 µg/ml PHA-P overnight, then washed and cultured in medium 
containing 100 IU/ml of recombinant IL-2. At the indicated time-points cells were stained for CD4, CD8 
and CRACC. Gray histograms represent staining with a control antibody. C: 106 PHA-P-activated T 
cells were lysed at the indicated time-points to examine expression of the adapter molecule EAT-2 by 
western blotting of whole cell lysates. Anti-actin blot served as loading control. The blot shown is 
representative for five experiments. D: CFDA-labeled peripheral blood T cells were stimulated with 
plate-bound anti-CD3 and anti-CD28 antibodies as described for fig. 12 at a concentration of 
0.01 µg/ml for both antibodies. After 72 h cells were harvested, stained for CD8 and CRACC and 
analyzed by flow-cytometry. 

CRACC signaling is dependent on the adapter molecule EAT-2 (114) and in murine 

CD4-positive T cells, which do not express EAT-2, CRACC has been shown to act as 

inhibitory receptor (115). Therefore we studied the expression of EAT-2 in PHA-P-

activated T cells by western blotting of lysates at different time-points after 
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stimulation (fig. 16C). Stimulation of T cells increased the expression of EAT-2 over 

the whole time-span investigated. 

To study whether CRACC up-regulation is correlated to proliferation of T cells, 

CFDA-labeled cells stimulated with plate-bound antibodies against CD3 and CD28 as 

described for previous experiments, were analyzed for expression of CRACC on 

CD8-positive cells by flow-cytometry (fig. 16D). All cells that had undergone cell 

division expressed CRACC. In the population of cells that had not divided CRACC 

expression was only detected on a subset. 

From these findings we conclude that CRACC is mainly expressed on activated, 

proliferating and memory T cells of the CD8-positive subset. 

4.3.4 CRACC co-stimulation is no positive feedback mechanism to enhance 
proliferation 

The expression of a further co-stimulatory receptor on activated and proliferating 

cells could function as a positive feedback mechanism. Through homophilic 

interaction between CRACC molecules on neighboring cells proliferation of activated 

T cells could be enhanced. A similar effect has been shown for the interaction of 2B4 

and CD48 or SLAM on neighboring T cells (104, 174). To investigate if T cell 

proliferation was altered in the absence of CRACC and to further confirm the 

specificity of CRACC-mediated co-stimulation, freshly isolated peripheral blood T 

cells were transfected with control siRNA or siRNA against CRACC. 

Because CRACC expression is up-regulated after stimulation and siRNA is diluted in 

proliferating cells, the attempt to silence CRACC could be difficult. We tested, how 

efficiently CRACC expression could be reduced by transient transfection with siRNA 

in activated cells. The efficiency of the siRNA-mediated suppression of CRACC 

expression was monitored by flow-cytometry after stimulating the transfected T cells 

with PHA-P (fig. 17A). To quantify the expression level of CRACC, the relative 

fluorescence index (RFI) was calculated from the mean fluorescence intensity of 

CRACC-staining in relation to the mean fluorescence intensity of staining with control 

antibody. 
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Figure 17: Knockdown of CRACC in T cells 
Freshly isolated peripheral blood T cells were transfected with control siRNA or a mixture of four 
siRNAs against CRACC. A: Transfected T cells were activated with 2 µg/ml PHA-P overnight, then 
washed and cultured in medium containing 100 IU/ml recombinant IL-2. At the indicated time-points 
cells were stained for CD4, CD8 and CRACC and analyzed by flow-cytometry. The graph shows the 
relative fluorescence index (RFI) of CRACC-staining on CD8-positive T cells. The RFI was calculated 
from the mean fluorescence intensities (MFI) using the following formula: 
RFI(CRACC) = (MFI(CRACC) – MFI(control antibody)) / MFI(control antibody) 
B: T cells transfected with the indicated siRNA were stained with CFDA and stimulated with plate-
bound antibodies as described for fig. 12. The concentrations of the co-stimulatory antibodies were 
0.1 µg/ml, 1 µg/ml and 10 µg/ml for anti-CRACC antibody CS1-4 and 0.01 µg/ml, 0.1 µg/ml and 
1 µg/ml for anti-CRACC antibody 162.1 and anti-CD28 antibody. After 72 h cells were harvested, 
stained for CD8 and analyzed by flow-cytometry. The percentage of proliferating cells was determined 
by CFDA-dilution. The bars represent the mean values ±SD of three experiments. 

The expression of CRACC was reduced in the cells transfected with anti-CRACC 

siRNA compared to control siRNA-treated cells for three days after stimulation. This 

difference was moderate during the first two days after stimulation, but became very 

prominent on the third day, when the expression level reached its maximum on 

control cells. The expression of CRACC on stimulated cells treated with siRNA 

against CRACC was reduced, but not completely abrogated. 

As CRACC knockdown observed in PHA-P-activated cells lasted about three days, 

we investigated, whether the reduction of CRACC expression resulted in a distinct 

effect in proliferation assays. Peripheral blood T cells transfected with siRNA and 

labeled with CFDA were stimulated with plate-bound antibodies for 72 h similar to 

previous experiments. Proliferation of CD8-positive T cells was analyzed by flow-

cytometry (fig. 17B). Co-stimulation with anti-CRACC antibody CS1-4 induced only 

very weak proliferation in T cells of the donors tested and no difference between 

control cells and CRACC knockdown cells was detectable. Co-stimulation with the 

antibody clone 162.1 was more effective. Here, the percentage of proliferating cells 

was slightly reduced in the CRACC knockdown cells, but the reduction was not 
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statistically significant. When co-stimulated via CD28, cells treated with either siRNA 

proliferated equally well. 

This leads to the conclusion that CRACC co-stimulation between activated T cells is 

no positive feedback mechanism, although we cannot exclude completely that 

remaining CRACC is still sufficient to enhance proliferation. 

4.3.5 Co-stimulation through CRACC induces proliferation in CD4 and CD8-
positive cells  

In the initial experiments CD4 and CD8-positive T cells were used in the mixture that 

is found in peripheral blood. Although the CD4-positive subset expresses CRACC to 

a very small extent compared to the CD8-positive T cells (fig. 16), the activation and 

proliferation induced through CRACC co-stimulation was similar in both subsets 

(figs. 11 and 12). To answer the question, whether this was due to activation of the 

small proportion of CRACC-positive CD4 memory cells or to a stimulatory effect of 

activated CD8-positive memory cells, the co-stimulation experiments were repeated 

with separately purified CD4 and CD8-positive cells, and a mixture of these cells.  

 

 
Figure 18: Separation of CD4 and CD8-positive cells reduces the effect of CRACC-mediated co-
stimulation 
CD4 and CD8-positive T cells were isolated separately from peripheral blood. The purity of the cells 
was greater than 97 % as determined by flow-cytometry. The cells were labeled with CFDA and 
stimulated with plate-bound antibodies as described for fig. 12. CD4 and CD8-positive cells were 
either stimulated alone or in a mixture consisting to 75 % of CD4-positive cells. The anti-CRACC 
antibody was used at concentrations of 0.1 µg/ml, 1 µg/ml and 10 µg/ml, the anti-CD28 antibody at 
concentrations of 0.01 µg/ml, 0.1 µg/ml and 1 µg/ml. After 72 h cells were harvested, stained for CD8 
and analyzed by flow-cytometry. The percentage of proliferating cells was determined by CFDA-
dilution. The graph shows representative data from one of three experiments. 

After 72 h proliferation of CFDA-labeled cells was analyzed by flow-cytometry 

(fig. 18). CRACC co-stimulation induced proliferation of CD4-positive cells stimulated 
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alone, but the percentage of proliferating cells almost doubled, when CD8-positive 

cells were present in the culture. CD8-positive T cells showed also an increased 

proliferation after CRACC co-stimulation in the presence of CD4-positive cells. This 

led to the conclusion that CRACC co-stimulation acts on CRACC-positive cells in 

both T cell subsets, but is accompanied by a mutual enhancement of proliferation, 

possibly by secretion of cytokines or interaction of co-stimulatory receptors on 

neighboring cells. 

4.3.6 CRACC and NTB-A do not enhance cytotoxicity 
The main function of activated CD8-positive effector T cells is cytotoxicity. Because 

NTB-A and CRACC trigger cytotoxicity in NK cells, it could be possible that they have 

a similar function in cytotoxic T cells. To test this hypothesis PHA-P-activated T cells 

were used as effector cells in redirected lysis 51Cr-release assays against the cell line 

P815 in the presence of antibody against CD3 in different concentrations, alone or in 

combination with control antibody or antibodies against NTB-A or CRACC at constant 

concentrations (fig. 19). CD3-mediated lysis of target cells was maximal at 

concentrations of anti-CD3 antibody greater than 333 pg/ml and decreased in a 

concentration-dependent manner. There was no change in cytotoxicity against the 

target cells, when the T cell receptor was stimulated together with NTB-A or CRACC.  

 

 
Figure 19: CRACC and NTB-A do not enhance T cell-mediated cytotoxicity 
Peripheral blood T cells were stimulated with 2 µg/ml PHA-P overnight, then washed and cultured in 
medium containing 100 IU/ml of recombinant IL-2 for nine days. After 24 additional hours in culture 
without IL-2 the activated cells were used as effector cells in a 4 h redirected lysis 51Cr-release assay 
against P815 cells in the presence of anti-CD3 antibody (αCD3) in a serial dilution, alone or in 
combination with a control antibody or antibodies against NTB-A (αNTB-A) or CRACC (αCRACC) at 
constant concentrations. The E/T ratio was 10/1. Specific lysis of target cells is plotted as mean of 
triplicates ± SD. One representative experiment out of five is shown. 
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4.3.7 CRACC is expressed on CD28-negative T cells 
CRACC is expressed on antigen-presenting cells like mature dendritic cells and 

activated B cells (112, 113). In the presence of CD80 or CD86, the ligands for the 

most important co-stimulatory receptor CD28, CRACC may be dispensable or have a 

modulating function. But it is likely that co-stimulation through CRACC gains more 

importance, where CD28-mediated co-stimulation is not possible, namely in CD28-

negative T cells. In humans CD28-negative cells accumulate in the T cell pool with 

ageing (176). This T cell population is mainly CD8-positive in healthy individuals and 

displays a limited T cell receptor repertoire (177). These cells are cytotoxic, but their 

proliferative response to antigenic stimulation or CD3-stimulation is decreased (178, 

179). In the peripheral blood of patients with chronic inflammatory diseases the 

frequency of CD4-positive T cells lacking CD28 expression is often increased 

compared to healthy donors (180-182). It is assumed that these cells are involved in 

perpetuation and amplification of the inflammatory process (183). Due to expression 

of perforin and granzyme B these cells may even be able to cause direct tissue 

damage (184). Several receptors normally expressed on NK cells have been found 

on cells of the CD28-negative subset, e.g. KIR or NKG2D in rheumatoid arthritis 

(185, 186). 

As the stimulation of these cells occurs independently of CD28, we hypothesize that 

co-stimulation via CRACC could play a role in chronic inflammatory diseases like it 

has been postulated for NKG2D co-stimulation in rheumatoid arthritis (186). To give 

this hypothesis a basis, we investigated if CRACC is expressed on CD4-positive 

CD28-negative T cells. 

Blood samples of five patients suffering from unstable angina pectoris (aged between 

52 and 87 years) were analyzed for expression of CD3, CD4, CD28 and CRACC by 

flow-cytometry. T cells were gated based upon size and granularity and CD3 

expression. CRACC and CD28 expression were then studied on the CD4-positive 

and the CD4-negative T cells, which were considered to belong to the CD8-positive 

subset (fig. 20). T cells from patients 1 and 2 showed a normal expression pattern of 

CD28. The majority of cells in the CD4-positive subset was CD28-positive, while the 

CD4-negative subset of patient 2 contained a distinct population of CD28-negative 

cells. CRACC expression was only marginal on CD4-positive cells of these patients.  



RESULTS  70 

 
Figure 20: CRACC is expressed on CD4-positive CD28-negative T cells 
Blood samples were obtained from five patients suffering from unstable angina pectoris. Samples 
were stained with antibodies against CD3, CD4, CD28 and CRACC and analyzed by flow-cytometry. T 
cells were gated based upon size and granularity and CD3 expression. CD28 and CRACC-staining 
are shown for CD4-positive T cells (upper row) and CD4-negative T cells, which are considered to be 
mainly CD8-positive cells (lower row). The numbers in the plots show the percentage of cells in the 
respective quadrant. 

In the T cell population of patients 3 to 5 CD4-positive CD28-negative subsets were 

detectable. The T cells in these subsets showed distinct expression of CRACC, in 

contrast to the CD28-positive cells. 

CD28-negative T cells were also found in the CD4-negative T cell compartments of 

all patients, consistent with the finding of age dependent accumulation of CD8-

positive CD28-negative cells (176). These cells expressed CRACC, but CRACC-

expression was not confined to CD28-negative cells in the CD4-negative population. 

The expression of CRACC on the population of CD28-negative CD4-positive T cells 

in all patients tested supports the hypothesis that co-stimulation through CRACC 

could be one mechanism by which these cells are constantly activated in chronic 

inflammatory diseases of the vascular system. 
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5 Discussion 

5.1 Mutational analysis of the homophilic interaction of NTB-A 
The X-ray analysis of crystallized NTB-A ectodomain homodimers implied that the 

molecular basis for the interaction are hydrophobic contacts in the center of the 

molecular interface and eleven possible hydrogen bonds. Ten amino acid residues 

located in the IgV-domain on each molecule are involved. These residues form an 

interface with roughly two-fold symmetry (171). To confirm these findings Cao et al. 

performed dimerization studies with recombinantly expressed mutants of the NTB-A 

ectodomain. In gel filtration experiments all single mutants of these ten residues 

impaired the formation of dimers. 

In this study the effect of several mutations on the function of NTB-A was 

investigated. The functional readout was cytotoxicity of wild type NTB-A-expressing 

NK cells induced by NTB-A mutants on the target cells. These functional assays are 

more suitable to estimate the contributions of single residues to the homophilic 

interactions in the physiological situation for some reasons. In contrast to NTB-A 

ectodomains expressed in bacteria as used by Cao et al., the NTB-A molecules 

expressed on eukaryotic cells are membrane-bound and glycosylated. This could 

have an influence on the binding properties of the receptors. Furthermore the 

functional assays can help to value the contributions of single residues. The strength 

of receptor interaction has to overcome a threshold to activate the NK cell. If a 

mutation has only a small effect on binding affinity, the receptor interaction may still 

be strong enough to trigger a response. If the mutated residue contributed strongly to 

receptor affinity, the mutant receptor cannot bind and does not elicit a cellular 

reaction. 

Four of the ten residues that are involved in the interaction in the crystal structure 

were tested. The residue E37 was among the residues we chose for analysis, before 

the crystal structure was published. The other three residues, H54, Q88 and S90, 

were selected because their mutation had a strong effect in the gel filtration 

experiments reported by Cao et al.. In our functional assays the mutations E37A and 

Q88A did not impair receptor function. The mutation H54A reduced the cytotoxic NK 

cell response, whereas S90A almost completely abrogated NTB-A-mediated 

cytotoxicity (figs. 3 and 4). Single mutations to alanine of seven residues that do not 
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contribute to the interaction in the crystal structure did not disturb the functional 

interaction (fig. 4).  

Comparing these results with the mutational analysis performed by Cao et al. one 

has to keep the differences in experimental setups in mind: First, Cao et al. 

investigated the affinity between two mutant receptors, whereas we studied the 

binding between mutant and wild type receptor. The interaction between two mutant 

NTB-A molecules is weaker than the one between one mutant and a wild type 

molecule due to the two-fold symmetry of the interface. In the first case contact is lost 

at two positions compared to only one point in the second case. Second, as 

mentioned before, the strength of the interaction has to overcome a certain threshold 

to trigger a cytotoxic response in the NK cell. Therefore small changes in receptor 

affinity are not detectable in our system. Residues that can be mutated without 

reducing the strength of interaction below this threshold are considered to contribute 

only little to the homophilic interaction. Third, because we investigated the 

interactions in a cellular system, our experimental setup resembles much more the 

circumstances, under which NTB-A interaction occurs in vivo. Therefore our results 

allow better conclusions about the importance of the four residues for the homophilic 

interaction under physiological conditions. 

Taking these points into account we conclude that the contributions of the residues 

E37 and Q88 to the homophilic interaction of NTB-A are smaller than those of H54 

and S90. The finding that in case of the mutation S90A removal of only one hydrogen 

bond results in such a strong loss of affinity shows that the specificity of the 

homophilic interaction is very subtle. 

This may be one reason why our attempts to create a heterophilic NTB-A mutant pair 

failed. Because the simulation of receptor association is not feasible, the modeling for 

the complementary mutants was done by a more simple approach. In a model of the 

interacting receptors based on the crystal structure the two opposing residues were 

replaced with a pair of residues with opposite charge. Then the conformational 

changes that are likely to result from this substitution were calculated based on free 

energies. The results predicted that the mutations would not disrupt the overall 

structure of the interacting receptors. The conformational changes resulting from the 

different properties of the substituted residues seemed to be only small. Based on 

the calculations, an interaction between the complementary mutants could be 

possible. However, this approach cannot predict the behavior of this mutant pair in 
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solution, let alone whether the mutant pair would associate in a heterophilic 

interaction between cells. 

As expected, the mutations effectively prevented the binding to wild type NTB-A or 

mutants of the same type. No cytotoxic response could be observed, when NK cells 

and target cells expressed the respective combination of receptors. However, the 

expression of the complementary mutants on NK cells and target cells did also not 

result in a cytotoxic response (fig. 6). This finding suggests that the heterophilic 

interaction that seemed possible in the model is not functional under the 

experimental circumstances. 

Another critical point was that the NTB-A-deficient cells used for expression of the 

mutant receptors displayed a very weak cytotoxic potential (fig. 6). Under these 

circumstances the interaction between the complementary mutants may have been 

only too weak to overcome the activation threshold of these NK cells. 

5.2 Early events in SLAM-related receptor signaling 

5.2.1 Phosphorylation of 2B4 and NTB-A is independent of SAP 
The early events after binding of 2B4 to its ligand CD48 that have been shown to be 

important for activating 2B4 signals are recruitment to lipid rafts (145), 

phosphorylation of the ITSM by Src-family kinases (145, 146), association of adapter 

molecule SAP (138, 149) and recruitment of the Src-kinase FynT (153, 154, 156). 

FynT then propagates the signal by phosphorylation of several signaling molecules, 

like PLC-γ or Vav-1 (146, 156). In the absence of SAP, e.g. during NK cell 

development or in XLP patients, 2B4 has been shown to mediate inhibitory signals. A 

possible explanation for this finding is that phosphatases like SHP-1 and 2 can 

associate with the phosphorylated receptor (82, 83). Because of their lower affinity 

they are displaced by SAP under normal conditions. When the amount of SAP is not 

sufficient to prevent the binding of phosphatases, they can counteract activating 

signals by dephosphorylation of signaling molecules. 

For the receptor SLAM it has been proposed that FynT phosphorylates the ITSM 

after binding to SAP, because SAP can already associate with the unphosphorylated 

receptor (150). 2B4 can also be phosphorylated by FynT (82), but contradicting 

results have been reported regarding the role for SAP in 2B4 phosphorylation. One 

theory is that 2B4 is phosphorylated independently of SAP. This notion is supported 

by two findings. First, inhibition of tyrosine phosphatases by pervanadate treatment 
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could induce 2B4 phosphorylation in NK cells from XLP patients lacking functional 

SAP (98). Second, SAP showed no association with unphosphorylated 2B4, which 

excludes the possibility that SAP-mediated recruitment of FynT leads to 2B4 

phosphorylation (82). On the contrary, there are reports supporting the notion that the 

presence of SAP is crucial for 2B4 phosphorylation. Human 2B4 expressed in HEK 

293 cells was not phosphorylated unless SAP or EAT-2 were co-transfected (114). 

This resembles results obtained with murine 2B4. Engagement of murine 2B4 did not 

induce receptor phosphorylation in the absence of SAP (102, 156). 

In our experiments we used human SAP knockdown NK cell lines and stimulated 

them by co-incubation with target cells expressing CD48, the ligand of 2B4. The 

knockdown of SAP was not complete, but sufficient to impair receptor function. In 

addition we could not detect any 2B4-bound SAP in the knockdown cells. Therefore 

we conclude that the reduction of SAP expression was strong enough to reveal 

differences between signaling in control and knockdown cells. Our results showed 

that the phosphorylation of 2B4 took place independently of SAP association (fig. 7). 

This confirms the results reported for pervanadate treatment of human NK cells, but 

in an experimental setup more similar to the physiological situation. As we 

investigated signaling in an NK cell line, we can assume that kinases involved in 2B4 

phosphorylation in the physiological context were present in the system, which is not 

the case in non-lymphoid HEK 293 cells that have been used in the co-transfection 

experiments (114). This makes it likely that the reported differences for human 2B4 

were caused by different experimental setups. As we used an NK cell line and 

stimulated 2B4 with its ligand expressed on target cells, our setup reflects the 

physiological situation better than the reported experiments. Therefore we conclude 

that in human NK cells the phosphorylation of 2B4 is mediated independent of the 

presence of SAP. The dependency of 2B4 phosphorylation on SAP in the murine 

system may reflect differences between species. 

Previous reports have suggested that EAT-2 could mediate receptor phosphorylation 

in the absence of SAP, based on findings in transfected HEK 293 or COS-7 cells 

(114, 148). This possibility is excluded by our finding that EAT-2 recruitment is SAP 

dependent (figs. 7 and 8), which will be discussed below. 

Based on the results obtained in this study we propose that the early events in 2B4 

signaling happen in the following order: Engagement of 2B4 by CD48 leads to 

clustering of the receptor in lipid rafts. Src-family kinases that reside in the lipid rafts 
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phosphorylate the ITSM of 2B4 allowing SAP to bind to the receptor. In the following 

step the kinase FynT associates with ITSM-bound SAP and can perform its crucial 

function by phosphorylating molecules that activate the down-stream signaling 

pathways. In the absence of SAP the phosphorylated ITSM can recruit phosphatases 

like SHP-1 and 2, which could then inhibit signaling by dephosphorylation of signaling 

molecules. 

In this model SAP plays no role in signaling before receptor phosphorylation. It has 

been reported that 2B4 must associate with lipid rafts in order to become 

phosphorylated (145). According to our model there should be no difference in raft 

recruitment of 2B4 between control and SAP knockdown cells in our experiments. It 

would be interesting to investigate whether this is the case. The analysis could be 

done by isolation of lipid rafts from stimulated cells using sucrose gradient 

centrifugation and comparing the amount of 2B4 in the raft fractions from the two cell 

lines. 

The early events in NTB-A signaling have been less well described. Similar to 2B4, 

NTB-A is phosphorylated after engagement and SAP and EAT-2 associate with the 

phosphorylated receptor, but do not bind unphosphorylated NTB-A (84, 109, 152). 

In this study we could show that phosphorylation of NTB-A after receptor 

engagement was comparable in control and SAP knockdown cells (fig. 7). This 

implies that phosphorylation of NTB-A is also independent of SAP. The course of 

signaling events seems to be the same for NTB-A and 2B4. First, the receptor is 

phosphorylated independently of SAP. Then the adapter molcule binds to 

phosphorylated ITSM and starts the signaling cascade.  

5.2.2 The cytotoxic response to 2B4 and NTB-A engagement is mediated by 
SAP and not EAT-2 

Although much is known about the role of SAP in SRR signaling, the function of 

EAT-2 remains unclear. Up till now, no binding partner has been identified that is 

recruited to phosphorylated receptors by EAT-2. In transfection experiments the 

over-expression of EAT-2, like SAP, has been shown to induce the phosphorylation 

of co-transfected receptors CD84, SLAM, Ly-9 and 2B4 (148, 187, 188). This finding 

led to notion that EAT-2 may also be involved in recruitment of kinases to the 

receptors. This put up the question whether SAP and EAT-2 mediate the same or 

different signaling pathways. Experiments with NK cells from XLP patients that lack 

functional SAP pointed to different roles for each adapter. 2B4 and NTB-A-mediated 
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cytotoxicity are both impaired in these NK cells despite the presence of EAT-2 (84, 

98, 136-138). The fact that EAT-2 cannot compensate for the defective SAP makes it 

very likely that the two adapter molecules do not have interchangeable functions. 

Our results are in line with the previous reports about the role of SAP for 2B4-

mediated cytotoxicity in NK cells. The SAP knockdown in the cell lines NK92 and 

YTS and in primary IL-2-activated NK cells led to decreased cytotoxic responses 

upon 2B4 engagement (figs. 6, 7 and 9). This confirms the dependency of 2B4-

mediated cytotoxicity on SAP association. Our finding that EAT-2 knockdown in 

primary cells did not impair cytotoxicity triggered by 2B4 (fig. 9) supports the notion 

that EAT-2 mediates signaling pathways different from those mediated by SAP. 

A recent report proposed a model for the different roles of SAP and EAT-2 in 

signaling through NTB-A in human NK cells. Eissmann et al. found that SAP and 

EAT-2 bind to different ITSM of NTB-A (152). Mutational analysis revealed that 

EAT-2 binds the membrane proximal ITSM, while SAP associates with the C-terminal 

ITSM. When the EAT-2-binding ITSM was mutated, NTB-A-mediated cytotoxicity was 

abrogated, while mutation of the SAP-binding ITSM left the cytotoxic response intact. 

Furthermore, they reported that NTB-A-mediated cytotoxicity was unaffected by SAP 

knockdown in the human NK cell lines NKL and NK92. However, the production of 

IFN-γ after NTB-A stimulation was reduced in the SAP knockdown NK92 cells (152). 

This led to the model that the two adapters mediate different cellular responses to 

NTB-A engagement independently of each other. However, this model does not fit 

the observations made with NK cells from XLP patients. These cells showed 

impaired cytotoxicity, but normal IFN-γ production (84). Eissmann et al. speculated 

that the findings in XLP NK cells could be due to alterations of NK cell development 

in the absence of SAP. 

The results obtained in this study contradict the model proposed by Eissmann et al.. 

We found a reduction of NTB-A-mediated cytotoxicity after SAP knockdown in the 

cell lines NK92 and YTS and in primary IL-2-activated NK cells (figs. 6, 7 and 9). This 

excludes the possibility that this finding is based on cell line specific peculiarities. At 

the moment we have no conclusive explanation why NTB-A-mediated cytotoxicity of 

the NK92 cell line was not affected by SAP knockdown in the reported experiments. 

We used the same knockdown vectors and tested the cells in the same experimental 

settings. The only obvious difference was that NTB-A-mediated cytotoxicity of our 

control cells was lower compared to the results reported by Eissmann et al. (152). 
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Maybe these differences are due to instability of immortalized cell lines during 

passaging and the selection process of transduced cells. As we could also confirm 

our findings in primary cells from different donors, we conclude that our results reflect 

the physiological situation better. Our findings also match the results reported for 

XLP NK cells. This strongly suggests that NTB-A-mediated cytotoxicity in human NK 

cells is dependent on SAP. The reduced cytotoxicity after NTB-A-engagement 

observed in XLP NK cells is therefore unlikely to be the result of impaired NK cell 

development in the absence of SAP. 

Furthermore, EAT-2 knockdown in primary cells had no significant impact on 

cytotoxicity mediated by NTB-A (fig. 10). This finding excludes the possibility that 

EAT-2 functions as mediator of signaling pathways leading to cytotoxicity after 

NTB-A engagement. Thus we conclude that SAP mediates the main signal triggering 

cytotoxic responses by recruitment of FynT. The function of EAT-2 could be the 

initiation of yet unknown signaling pathways leading to effects not connected with the 

immediate cytotoxic response. 

5.2.3 Association of EAT-2 with 2B4 and NTB-A is SAP dependent 
The existence of two different adapter molecules, SAP and EAT-2, that can bind to 

phosphorylated SRR suggested that each could trigger a different signaling pathway. 

Our findings contradict this theory of independent signaling of SAP and EAT-2. We 

observed that recruitment of EAT-2 to phosphorylated 2B4 or NTB-A is impaired in 

cells with reduced SAP expression (fig. 7). The dependency of EAT-2 association on 

SAP could explain why EAT-2 does not compensate for SAP in XLP patients, 

although its activating function has been clearly demonstrated in SAP-independent 

CRACC signaling (114). Phosphorylated ITSM in CRACC only recruit EAT-2 and not 

SAP, which implies that EAT-2 can also recruit activating signaling molecules.  

However, in over-expression experiments EAT-2 association with 2B4 has been 

found in both the human and the murine system when SAP was not co-transfected 

(114, 148). This association could be an artifact due to high expression levels of 

EAT-2 in the transfected cells. It is possible that EAT-2 has a lower affinity to 

phosphorylated 2B4 or NTB-A than to CRACC. Therefore binding of EAT-2 to 2B4 or 

NTB-A could only be detected, if the expression level of EAT-2 is high enough or if 

SAP facilitates its recruitment.  

An unresolved question is, how SAP can support the association of EAT-2 with 

phosphorylated ITSM, as a direct interaction between the two molecules has not 
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been found (152). Additionally, no interaction partner that binds both molecules has 

been identified, besides phosphorylated SRR. Maybe the binding of SAP to one 

phosphorylated ITSM induces conformational changes in the cytoplasmatic tail of the 

receptor that make EAT-2 association easier. A further possibility is that SAP does 

not even have to be associated with the receptor, because the mutation of the SAP-

binding ITSM of NTB-A has been shown to have no effect on EAT-2 association with 

the other ITSM (152).  

5.2.4 An altered model of activating 2B4 and NTB-A signaling 
Taking together the findings of this study we propose the following model for the 

early events in 2B4 and NTB-A signaling: Engagement of the receptors leads to 

recruitment to kinase-rich lipid rafts (which remains to be shown for NTB-A) where 

they become phosphorylated by Src-family kinases. The phosphorylated ITSM can 

be bound by SAP. ITSM-bound SAP then enables binding of the adapter molecule 

EAT-2 to phosphorylated 2B4 or NTB-A by means yet to be defined. The essential 

step is that SAP also recruits FynT through direct interaction, which activates 

signaling pathways by phosphorylation of downstream effector molecules.  

To test this model further experiments will be necessary. It would be interesting to 

investigate, which signaling pathways are affected by EAT-2 knockdown in NK cells. 

Changes in tyrosine phosphorylation patterns after receptor stimulation could give 

clues about the involved molecules. This would help to identify binding partners of 

EAT-2, because at the moment there is no antibody available that is able to co-

immunoprecipitate EAT-2-associated proteins. This could be due to the small size of 

EAT-2, as it might be not accessible for antibodies when it is embedded in a complex 

with other signaling molecules. It might be worth trying to use a tagged EAT-2-

construct to get access to this signaling complex. When the signaling pathways 

mediated by EAT-2 are identified, it would be interesting to investigate whether these 

pathways are impaired in the absence of SAP. If this is the case, the dependency of 

EAT-2 on SAP could be confirmed. 

5.3 The functions of CRACC and NTB-A in T cells 

5.3.1 Co-stimulatory features of NTB-A 
T cells are activated through signaling of their antigen-specific TCR. Normally, full T 

cell activation after engagement of the TCR is dependent on co-stimulatory signals. 

CD28 is regarded as the primary receptor for T cell co-stimulation. Its ligands CD80 
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and CD86 are expressed on antigen-presenting cells like mature dendritic cells or B 

cells (12). However, in the last years an increasing number of other molecules has 

been reported to have co-stimulatory properties. Among these are the SRR SLAM, 

2B4, CD84 and NTB-A (73, 109, 173, 174, 187). In contrast, CD229 another member 

of this receptor family has been shown to have an inhibitory effect on T cell activation 

(189). 

In this study our aim was to investigate whether CRACC is also a co-stimulatory 

receptor on T cells. Because NTB-A has already been described as a co-stimulatory 

SRR on human T cells, we used co-stimulation of NTB-A mainly as a second positive 

control besides CD28. In contrast to CRACC, NTB-A is expressed on all T cells, 

which allows co-stimulation of the whole T cell population via NTB-A. Thus, the 

observed effects were more distinct than the effects of CRACC co-stimulation. 

Simultaneous stimulation of TCR and NTB-A with plate-bound antibodies has been 

reported to induce T cell proliferation and IFN-γ production (109). Our experiments 

using the same experimental approach could complete the picture of the co-

stimulatory properties of NTB-A. We could show that NTB-A co-stimulation induces 

expression of the activation markers CD69 and the IL-2-receptor α-chain (CD25), as 

well as IL-2 production (figs. 12 and 14). The induction of TNF-α production in T cells 

(fig. 14) has not been shown before and is another feature this study adds to the 

known properties of NTB-A. The finding that NTB-A does not contribute to T cell-

mediated cytotoxicity (fig. 19) is also new. It suggests that NTB-A co-stimulation is 

less important for effector functions, but plays mainly a role in the mediation of 

proliferative T cell responses. 

The effect of NTB-A co-stimulation was similar to the effect of CD28 co-stimulation in 

the experiments with readout after 48 or 72 h. The enormous difference in the 

strength of co-stimulation was only obvious in the levels of cytokine mRNA 

expression after 6 h, where CD28 co-stimulation exceeded the effects of NTB-A by 

far (fig. 14). This implies that the kinetic of NTB-A co-stimulation is slower. Because 

we observed only quantitative and no qualitative differences between cytokine mRNA 

levels after CD28 or NTB-A expression, we conclude that NTB-A does not induce the 

production of a distinct cytokine pattern. 

A very recent study proposed a role for NTB-A co-stimulation not in the activation 

and expansion of naïve cells that was investigated in our study, but in controlling the 

removal of activated T cells (190). Snow et al. could show that re-stimulation-induced 
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cell death, a mechanism that is involved in the contraction of the T cell pool after 

infection, is dependent on NTB-A and SAP. To mimic the events during the 

contraction phase they stimulated T cells, cultivated them for at least one week in the 

presence of IL-2 and then re-stimulated the cells with antibodies. They found that 

knockdown of SAP or NTB-A reduced the rate of apoptosis after re-stimulation. The 

model they propose is that NTB-A-mediated co-stimulation of activated T cells 

enhances the TCR-mediated signal leading to an activation level that induces 

apoptosis. This 'over-activation' is an interesting model how a co-stimulatory receptor 

could be involved in shutting down of immune responses. It would be interesting to 

see whether other co-stimulatory SRR have also pro-apoptotic functions on activated 

T cells, or if this phenomenon is specific for NTB-A. 

5.3.2 CRACC like NTB-A is a co-stimulatory receptor  
In this study we investigated if CRACC has also co-stimulatory properties. 

Simultaneous stimulation of the TCR and CRACC by plate-bound antibodies induced 

expression of CD69 and CD25, furthermore, production of IL-2 and proliferation 

(figs. 11-13). By the use of two different anti-CRACC antibody clones we excluded 

that the observed co-stimulation was the result of unspecific antibody interaction 

(fig. 15). Because the size of the CRACC-expressing T cell population was small and 

varied between donors (fig. 11), the observed effects were not as prominent as the 

effects obtained with NTB-A or CD28 co-stimulation.  

Besides IL-2, the cytokine that is crucial for T cell proliferation, CRACC co-stimulation 

induced production of the two pro-inflammatory cytokines IFN-γ and TNF-α (fig. 13). 

As our analysis of cytokine mRNA showed only small changes after CRACC 

stimulation, it is hard to say whether CRACC induces the production of a distinct 

cytokine pattern. We cannot exclude that CRACC co-stimulation participates in 

shaping the cytokine response in vivo. 

While SLAM and 2B4 also enhance TCR-mediated cytotoxicity (91, 191), we 

observed no influence of CRACC on the cytotoxic response of T cells (fig. 19). Thus, 

we conclude that the co-stimulatory function of CRACC mainly induces proliferation 

and cytokine expression. 

Stimulation of cells by cross-linking surface receptors with plate-bound antibodies is 

a suitable method to investigate receptor function in a defined setting, but is different 

to the receptor-ligand interaction between cells in vivo. Therefore we point out that 

our results have not been confirmed in a more physiological setting yet. However, 
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antigen-presenting cells, like mature dendritic cells or activated B cells, express 

CRACC (112, 113). That makes it likely that co-stimulatory CRACC-CRACC 

interactions take place during contact of T cells to antigen-presenting cells in vivo. 

Therefore we propose that CRACC should be regarded as co-stimulator of T cell 

activation. 

5.3.3 CRACC, a co-stimulatory receptor expressed on proliferating T cells 
Our results show, that CRACC expression is induced on activated and proliferating 

CD8-positive T cells (fig. 16). This resembles the expression pattern that has been 

reported for SLAM, which is expressed on activated T cells of both CD4 and CD8-

positive subsets (174, 191-193). Expression of a further co-stimulatory receptor could 

be a positive feedback mechanism to amplify the expansion of activated T cells 

during the early phase of an immune response. The co-stimulatory engagement of 

the homophilic receptor can take place between CRACC on the antigen-presenting 

cell and CRACC on the T cell or between CRACC on neighboring proliferating T 

cells. This feature bears also resemblance to the homophilic SLAM, which can also 

be induced on antigen-presenting cells (194, 195). This expression of co-stimulatory 

molecules on the progeny of activated T cells could also compensate for stimulation-

induced down-modulation of CD28 expression. The transient loss of CD28 is thought 

to be a regulatory mechanism limiting the further activation of T cells (19). Delivery of 

secondary co-stimulatory signals through SLAM or CRACC could then fine-tune the 

activation of T cells by modulating strength and duration of stimulation. In our 

experiments T cells with a knockdown of CRACC expression showed no reduction in 

proliferation after CD28 co-stimulation (fig. 17). On the one hand, this could be due to 

the incomplete knockdown of CRACC. Maybe the remaining CRACC could still 

contribute sufficient co-stimulation. On the other hand, it could be possible that 

CRACC-mediated enhancement of proliferation gains importance at later stages of 

the expansion phase. This could explain, why we have observed no difference during 

the first three days of activation.  

Recently, it has been reported that CRACC expression is also induced upon 

activation in murine T cells from both the CD4 and the CD8-positive subset. But in 

contrast to our findings in human T cells, CRACC has been shown to have an 

inhibitory impact on TCR-mediated T cell activation the murine system (115). This is 

possibly due to the lack of the adapter protein EAT-2 in murine T cells, because 

CRACC is an activating receptor on murine NK cells that normally express EAT-2, 
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but is turned into an inhibitory on NK cells of EAT-2 KO mice (114, 115). Therefore it 

is likely that CRACC has a function in controlling the expansion of activated T cells in 

mice. Whether CRACC or EAT-2 KO mice have a defect in T cell proliferation control 

during an infection has not been reported. 

In this study we have shown that human T cells express EAT-2 (fig. 16). Based on 

the findings in human NK cells (114), we suggest that the co-stimulatory CRACC 

signaling is mediated by the recruitment of this adapter. However, it is possible that 

CRACC fulfills a dual function in T cell activation in humans: After stimulation 

CRACC and EAT-2 expression are up-regulated and enhance T cell activation. At a 

later stage of T cell activation a down-regulation of EAT-2 could turn the CRACC 

signals from activating into inhibitory signals to limit proliferation. This mechanism 

would function like the expression of the inhibitory receptor CTLA-4 on activated T 

cells (20). In both cases the ligands expressed on the antigen-presenting cell are not 

changed, but their effect on the T cells changes.  

To prove this hypothesis the inhibitory signaling of CRACC in the absence of EAT-2 

has to be shown for human T cells. A possible way to do that is to test the outcome 

of CRACC stimulation after knockdown of EAT-2 expression by RNA interference. 

Furthermore, the time course of EAT-2 expression in activated cells T cells has to be 

analyzed further.  

One possibility we have not tested in this study is whether the induction of CRACC 

on proliferating T cells plays a role in the interaction between NK and T cells. CRACC 

engagement triggers NK cell-mediated cytotoxicity. In mice NK cells have been 

shown to eliminate activated CD4-positive T cells, when inhibitory receptors were 

blocked (196). Because activated T cells with their strong proliferative potential bear 

a special risk of developing lymphomas, they must be controlled tightly. Down-

regulation of MHC molecules is a phenomenon observed in transformed cells (35). If 

loss of MHC molecules occurs on activated T cells, no inhibitory signal can 

counteract the CRACC-mediated NK cell cytotoxicity, and the cells can be 

eliminated. Therefore CRACC expression on activated T cells could also be a 

mechanism that facilitates the control of proliferative disorders. 

5.3.4 CRACC, a co-stimulatory receptor on memory T cells 
It has been a generally accepted paradigm in immunology that memory T cell 

responses are independent of CD28 co-stimulation. Re-activation of T cells was 

thought to be mediated solely through TCR signaling (197). This paradigm was 
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challenged by recent studies investigating the memory response to viral infection in 

mice. Proliferation of adoptively transferred memory CD8 T cells in response to viral 

infection was found to be impaired in hosts that lacked both CD80 and CD86 (198, 

199). These results suggest that co-stimulatory signals are necessary for an optimal 

response of CD8-positive memory cells to viral re-challenge in mice.  

We have found in this study that human memory T cells express the co-stimulatory 

receptor CRACC (fig. 16). The strongest expression was seen on CD8-positive 

memory cells. The expression of additional co-stimulatory receptors could lower the 

threshold needed for activation through TCR stimulation. This would facilitate the 

mounting of a strong proliferative response to antigenic re-challenge, assuming that 

human memory T cells are likewise dependent on co-stimulation. In this case 

activated T cells that differentiate into memory cells would maintain CRACC 

expression to facilitate re-activation. 

5.3.5 A possible role for CRACC in chronic inflammatory diseases 
In contrast to mice, humans and non-human primates accumulate a pool of CD8-

positive CD28-negative cells with ageing (176, 200, 201). The loss of CD28 

expression seems to result from repeated TCR-mediated activation and homeostatic 

proliferation (200, 202). The T cell receptor repertoire of these cells is limited (177). 

These cells are cytotoxic, and they show an impaired proliferative response to 

antigenic stimulation or CD3-stimulation (178, 179). Their appearance is linked to 

immune senescence and has also been observed in chronic viral infections, e.g. with 

cytomegalovirus or HIV (203, 204). CD4-positive T cells lacking CD28 expression are 

scarce in healthy individuals, but are often found in the peripheral blood of patients 

with chronic inflammatory diseases, like rheumatoid arthritis, inflammatory vascular 

complications or multiple sclerosis (180-182). It is assumed that these cells are 

involved in perpetuation and amplification of the inflammatory process (183). This 

notion is supported by the observation that the size of this T cell subset correlates 

with severity of the disease (180). As these diseases are often linked to 

autoimmunity, it has been speculated that this subset represents constantly 

stimulated autoreactive cells. In most studies, however, these cells could not be 

stimulated with typical autoantigens, but responded to some viral antigens or heat 

shock proteins (183).  

CD4-positive CD28-negative T cells display a phenotype similar to cytotoxic 

lymphocytes: In rheumatoid arthritis several receptors normally expressed on NK 
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cells, like KIR or NKG2D, have been found on cells of the CD28-negative subset 

(185, 186). Due to expression of perforin and granzyme B these cells may even be 

able to cause direct tissue damage (184). Very recently, a report showed that co-

stimulation of CD4-positive CD28-negative T cells from patients with rheumatoid 

arthritis through the 'NK receptors' NKG2D, 2B4 and DNAM-1 led to IFN-γ production 

and degranulation of lytic granules (205). Interestingly, none of the three receptors 

had co-stimulatory properties when triggered alone, but two receptors triggered 

simultaneously could enhance TCR-mediated responses. 

In this study we have shown that CD28-negative cells of both subsets show a distinct 

expression of CRACC (fig. 20). In the CD4-positive subset CRACC expression was 

mostly confined to the CD28-negative cells. This fits to the notion that these CD4 T 

cells have acquired a phenotype more similar to CD8-positive effector cells with lytic 

granules and receptors normally found on CD8-positive cells like 2B4 and NKG2D. 

The expression of co-stimulatory receptors like CRACC could reduce their threshold 

of activation. Facilitated activation of these cells could be one of the driving forces of 

chronic inflammation. Therefore we conclude that CRACC-mediated co-activation of 

CD4-positive CD28-negative T cells is likely to play a role in chronic inflammatory 

diseases. Further studies will have to investigate how CRACC expression is induced 

in these cells, which cellular responses are triggered by CRACC co-stimulation in 

these cells and how these are connected to disease development and progression. It 

would be interesting to test, whether blocking of CRACC interactions or inhibition of 

CRACC signaling could dampen the exaggerated pro-inflammatory activity of the 

CD4-positive CD28-negative T cells. Based on these studies, new therapeutic 

approaches targeting CRACC may be possible. 
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7 Abbreviations 
APC allophycocyanin 

BSA bovine serum albumin 

CCR chemokine receptor 

CD cluster of differentiation 

CFDA carboxyfluorescin diacetate 

CRACC CD2-like receptor activating cytotoxic cells 

DMSO dimethylsulfoxide 

DNA desoxyribonucleic acid 

E. coli Escherichia coli 

E/T effector to target ratio 

EAT-2 Ewings sarcoma virus activated transcript 2 

EBV Epstein-Barr virus 

EDTA ethylenediaminetetraacetic acid 

ERT EAT-2 related transducer 

FACS fluorescence-activated cell sorting 

FCS fetal calf serum 

FITC fluorescin isothiocyanate 

GAPDH glycerolaldehydephosphate dehydrogenase 

GFP green fluorescent protein 

HRPO horseradish peroxidase 

IFN interferon 

Ig immunoglobulin 

IL interleukin 

ITAM immunoreceptor tyrosine-based activation motif 

ITIM immunoreceptor tyrosine-based inhibition motif 

ITSM immunoreceptor tyrosine-based switch motif 

IU international units 

KIR killer cell immunoglobulin-like receptor 

KO knockout 

LSM lymphocyte separation medium 
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MHC major histocompatibility complex 

MOI multiplicity of infection 

mRNA messenger RNA 

NK natural killer 

NTB-A natural killer, T cell, B cell antigen 

PBMC peripheral blood mononuclear cells 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PE phycoerythrin 

PerCP peridinin chlorophyll protein complex 

PHA-P Phaseolus vulgaris hemagglutinin protein 

PLC phospholipase C 

PMSF phenylmethylsulfonyl fluoride 

PVDF polyvinylidene difluoride 

RNA ribonucleic acid 

SAP SLAM associated protein 

SDS sodium dodecyl sulfate 

SDS-PAGE SDS-polyacrylamide gel-electrophoresis 

shRNA small hairpin RNA 

siRNA small interfering RNA 

SLAM signaling lymphocyte activation molecule 

SRR SLAM-related receptor(s) 

TAE Tris-acetate-EDTA buffer 

TCR T cell receptor 

TGF transforming growth factor 

TNF tumor necrosis factor 

wt wild type 

XLP X-linked lymphoproliferative disease 

 

The single letter code was used to describe amino acid residues. 
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