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Supernovae Observations and Dark Energy Models

In this thesis we review data sets available from various SNe groups like SNLS

and HSST and utilize them to put constraints the cosmological parameters. We

use the software CMBEASY to apply the MCMC method to models like ΛCDM ,

Constant Equation of State (EoS) w and Quintessence, with our emphasis being

on the IPL and Corasaniti model. We do the analysis using the Riess Gold Set, the

SNLS sample and the Union Data Set (with and without systematics). We have

extended CMBEASY to include the Union Data Set and hence be up-to-date with

latest observations. Our results show that Ωm might be smaller than commonly

assumed. Further, we �nd that irrespective of model or data set chosen we get

approximately the same value for Ωm, whereas this is not the case with w. The

work in this thesis indicates that the emphasis in constructing new cosmological

models should change from empirical to theoretical motivations.

Supernovae-Beobachtungen und Modelle der Dunklen
Energie

In dieser Arbeit untersuchen wir mehrere Datensätze von Supernova-Gruppen

wie dem HSST und der SNLS und nutzen diese, um die Werte der kosmologischen

Parameter einzuschränken. Wir verwenden die Software CMBEASY, um Modelle

wie das der konstanten Bewegunsgleichung w, der Quintessenz sowie das ΛCDM -

Modell einer MCMC-Untersuchung zu unterziehen. Schwerpunkte legen wir dabei

auf das IPL- und das Corasaniti-Modell. Unsere Analyse basiert auf dem Riess

Gold Set, dem SNLS-Datensatz und dem Union Data Set (mit und ohne system-

atische Fehler). Wir haben CMBEASY um das Union Data Set erweitert und

die Software damit auf den neusten Stand der Beobachtungen gebracht. Unsere

Ergebnisse zeigen, dass Ωm kleiner sein könnte als für gewöhnlich angenommen.

Desweiteren stellen wir fest, dass wir unabhängig von Modell und Datensatz unge-

fähr den gleichen Wert für Ωm erhalten, was für w nicht der Fall ist. Die vorliegende

Arbeit legt die Empfehlung nahe, beim Errichten neuer kosmologischer Modelle

das Augenmerk weg von emprischen hin zu theoretischen Motivationen zu richten.
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Introduction and Outline

Cosmology can probably be considered one of the oldest sciences existing. Even

from the era of Hipparchus we have wondered about our universe and its fate. We

have come a long way since those days. The advancements in our understanding

and technology has allowed us to reach out to the frontiers of science and to

challenge old beliefs and accept new ones about our universe. One of these new

challenges is Dark Energy and its properties.

Dark Energy is that part of the energy density of the universe which has been

introduced to describe the accelerated expansion of the universe. It has found

its way into the Standard Model after various observations made us rethink the

steady state and other static universe models. It has negative pressure and has

been a requirement ever since the dimmer-than-expected observations of the light

curves for the Supernovae Ia.

The basis of this thesis is to show how observations specially SNe relate to

di�erent theoretical models of our universe. The emphasis is put on trying to

�gure out what the Dark Enegy component of the universe might be. This thesis is

divided into sections which one by one build up the whole case. In the �rst chapter

we recall the basics of cosmology and how some of the important theoretical aspects

are derived, which will be crucial in the later stages. In the following chapter we

concentrate on trying to explain what is Dark Energy and �gure out some of the

important eras associated with it as well as the dynamics involved. Before we

go into further details about that an overview about observational cosmology is

given in the next chapter. In the �fth section we look into a few among the many

di�erent models of dark energy existing.

The following chapters are started with a brief summary of the DETF report

[85] and then a closer look at the SNe Ia observations [15, 37, 32] and methods like

SALT [95] used for calculations is taken. The next chapters deal with methods

like MCMC [28] used for calculating the parameters and their constraints, mod-

els chosen and the justifcaiton for choosing those models, the results and their

intepretation.
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Part I. Basics of Cosmology

1 Concepts

Cosmology has come a long way since the early stages and now is a full-�edged

science stream on its own. Below are given some of the major concepts of cosmology

that are required to further proceed along the way of this thesis.

1.1 Cosmological Principle

The cosmological principle basically says that we are in no way special in the

cosmos. This as we understand it, naively leads to isotropy and homogeneity.

Let us now see what we mean by a homogeneity and isotropy. A homogeneous

isotropic spacetime is one for which the geometry is spherically symmetrical about

any one point (isotropy) and the same at any point in space other than that

(homogeneity). Homogeneity and isotropy are symmetries of space and not space-

time. The simplest example of a homogeneous, isotropic cosmological geometry is

described by the line element

ds2 = dt2 + a(t)(dx2 + dy2 + dz2) (1)

ds2 is known as the Flat Robertson-Walker metric [115]. Models in which the scale

factor a obeys Einstein's laws are known as Friedmann-Robertson-Walker models

and the metric for such cases is called the FRW metric.

1.2 Comoving and Physical Coordinates

The distribution of galaxies and radiation in FRW models are smoothened out into

a cosmic �uid. In such a case an individual galaxy is thought to be like a particle

located by the three coordinates xi at time t. Since our universe is isotropic, the

velocity of each galaxy must vanish, else it would establish a preferred direction, i.e.
dxi

dt
= 0. The coordinate is, therefore, said to be comoving. Comoving coordinates

are carried along with the expansion. This means an individual galaxy has the same

coordinate xi at all times. Now if a(t) increases with time and (∆x+∆y+∆z)1/2

describes the coordinate distance between any two points then the actual physical

distance is given by d(t) = a(t)dcoord. We see if the scale factor increases with time
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Fig. 1: Hubble's Law

so does the physical distance [116]. Hence, the scale factor describes an expanding

universe.

1.3 Hubble's Law/Expansion of the Universe

The most dramatic piece of observational evidence in cosmology is that almost

everything in the universe appears to be moving away from us, the further away

it is, more rapid is its recession. The velocities of recession are measured using

redshifts. Redshift is nothing but the Doppler e�ect applied to light waves and is

given by 1 + z = λ0

λem
= a0

a(t)
. The distance between any pair of galaxies separated

by more than 100Mpc is proportional to a universal scale factor a(t), the same for

every pair. The Hubble parameter is then de�ned by H = ȧ
a
, where dot denotes

the time derivative. For an object receding at velocity v, the redshift is z = v/c.

Hubble used this relation and expressed velocity and distance in a linear way now

well known as Hubble's Law [78]. −→v = H0
−→r , where H0 is the present value of

Hubble's parameter known as Hubble's Constant. We generally take the present

value of a0 = 1 and �nd that H0 is at a value of approximately 70±4 km/sec/Mpc.

1.4 Dynamics of the Universe

We know that cosmology is about the structure and evolution of the universe on the

largest scales of time and space. On these large scales it is gravity that dominates.

So in order to understand the dynamics of the universe we must understand what

e�ects gravity has on it. Gravity is nothing but an attractive force between any
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two bodies. If gravity were negligible, a(t) would increase linearly with time and ȧ

would be constant. In fact, gravity tends to slow down the expansion making ȧ a

decreasing function of time. But in reality, this is not the case. Below we discuss

some important parameters used in the dynamics of the universe.

1.4.1 Friedmann Equation

The Friedmann equation describes the expansion of the universe and is, therefore,

probably one of the most important equations in cosmology. To calculate the e�ect

of gravity consider a test particle of unit mass, on the surface of a comoving sphere

(one expanding with the universe). If ρ is the mass density of the universe and

r is the radius of the sphere, the volume of the sphere is 4π
3
r3 and the potential

energy of the particle is −GM
r
. The kinetic energy of the particle is ṙ2

2
and therefore

E = ṙ2

2
− GM

r
, where E is the total energy of the particle. From this equation for

total energy one can derive the Friedman Equation [43, 116].

H2 ≡ (
ȧ

a
)2 =

8πG

3
ρ− kc2

a2
(2)

The term k is known as the curvature. It tells us about the geometry of the

universe. k = 0,±1 corresponds to a �at, open or closed universe respectively.

1.4.2 Fluid Equation

Along with the Friedmann equation, we now need some equations to tell us about

the density ρ of material and its evolution with time in the universe. We get

the �uid equation by using the 1st law of thermodynamics dE + pdv = ds and

E = 4π
3
a3ρc2 to get

ρ̇+ 3
ȧ

a
(ρ+

p

c2
) = 0 (3)

1.4.3 Acceleration Equation

The Friedmann and Fluid equation can be used to derive a third equation, which

describes the acceleration of the scale factor. We di�erentiate eq. (2) with respect

to time and then substitute for ρ̇ and cancel out the 2 ȧ
a
in each term to get

ä

a
= −4πG

3
(ρ+ 3

p

c2
) (4)
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1.4.4 Equation of State

We see that by the use of the three basic equations derived above, we can start to

understand the dynamics of the universe. But in order to know how the universe

might evolve we need to specify a parameter which allows us to get speci�c rela-

tions. We do this by de�ning a relation known as Equation of State (EoS) which

relates the pressure and the density by w ≡ p/ρ. Let us �nd out how density of

di�erent materials in the universe vary with a and hence time.

Dust/Matter: Dust exerts negligible pressure so we can take p = 0 as Equation

of State. We then �nd, by solving the Fluid equation ρ ∝ 1/a3. We see that the

density falls of proportional to the volume.

Radiation: Particles of radiation move with the speed of light. Their kinetic

energy leads to a pressure force. The Equation of State for radiation is therefore

given by p = ρc2

3
. Using this and solving the Fluid equation we �nd ρ ∝ 1/a4.

1.5 Density Parameter

The density parameter gives the geometry of the universe. We have from eq. (2)

if k < 0, i.e. E > 0 [116, 115], the expansion will continue inde�nitely, whereas,

if k > 0, it will eventually give way to contraction leading to a Big Crunch. The

critical value separating these possibilities is k = 0, which leads toH2 = 8πG
3
ρ. The

corresponding mass density is called the critical density given by ρc = 3H2/8πG.

Its present value is ρc(to) = 1.88h2 × 10−26kg/m3. It is common practice to de�ne

the density parameter by [44, 45]

Ω(t) ≡ ρi/ρc (5)

The Friedmann Equation becomes

Ω− 1 =
k

a2H2
(6)

1.6 Concordance Model of the Universe

1.6.1 Historical Development

Questions about the cosmos and our belonging and role in it can probably be

considered one of the oldest scienti�c questions to have existed. As a �rst modern

physical approach to questions of origin, evolution and fate of the Universe, one
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Fig. 2: History of our Universe from Particle Data Group 2000

usually considers Einstein's paper �Cosmological Considerations in the General

Theory of Relativity� from 1917 [114]. One might say that high-precision observa-

tional cosmology started with the Hubble space mission in 1990. Ever since then

the advancements in our understanding and technology have allowed us to reach

out to the frontiers of science and to challenge old beliefs and accept new ones

about our universe. Various observations have led to one coherent picture of our

universe which we call the Concordance Model.

1.6.2 Current Development

The Concordance Model also often referred to as the ΛCDM model is based on

six parameters: physical baryon density, physical dark matter density, dark energy

density, scalar spectral index, curvature �uctuation amplitude and reionization

optical depth. From these the other model values, including the Hubble constant

and age of the universe, can be derived. The model assumes a hot big bang, an

in�ationary period and an accelerated expansion of the universe. It consists not

only of baryons but also of an unknown Dark Matter component which has the

property of non-relativistic, only gravitationally interacting heavy particles, and

a Dark Energy component, in the simplest version described by a cosmological

constant Λ.

Looking at �gure (2) one can see how the history of the universe tracks. It can
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be outlined in the following way from the very early stages to todays present time

where t refers to the age of the universe and T to the temperature de�ned by the

photon temperature. The universe history is given below in terms of t.

• Planck epoch: t ≈ 10−43 seconds, T ≈ 1019 GeV , this epoch is not fully

understood and is described by quantum gravity.

• In�ation [24, 72] and Baryogenesis: t ≈ 10−35 seconds, T ≈ 1015 GeV ,

an era of rapid exponential expansion and production of matter antimatter

symmetry.

• Quark-hadron transition: 10−6 seconds ≤ t ≤ 10−2 seconds, T ≈ 0.1 GeV ,

an era during which neutrons and protons were formed.

• Nucleosynthesis : 1 second ≤ t ≤ 3 minutes, T ≈ 1 MeV, z ≈ 1010, during

this time light elements like D, He, Li etc started to form.

• Matter Domination: t ≈ 70, 000 years, T ≈ 1 eV, z ≈ 5000, the matter

dominated era began.

• Recombination: t ≈ 300, 000 years, T ≈ 0.25 eV, z ≈ 1100, recombination

occured and Cosmic Microwave Background formed making the universe

transparent.

• Galaxy/star formation: z ≥ 1100, structures started to form and stars and

early galaxies are seen.

1.7 Anthropic Principle

It is important to note that Dark Energy models with an unevolving equation of

state need to have their initial conditions properly tuned in order to dominate the

universe at precisely the present epoch. This problem, which is most acute for

the cosmological constant, is known as the �ne tuning problem. The �ne tuning

problem a�ects almost all models of Dark Energy. A combined analysis of CMB,

galaxy clustering and supernovae data indicates that a constant equation of state

for dark energy must satisfy w < 0.82 at the 95% con�dence level [46, 47] and

it is easy to show that for these models the �ne tuning (and cosmic coincidence)

problems are almost as acute as they are for the cosmological constant. Though

there are models which assume the cosmological constant to be zero and avoid

the �ne tuning to a large extent it still runs into problems of trying to explain
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why the cosmological constant should be zero. Hence we see that the nature of

dark energy is very elusive to us yet observations suggest it has to be there. A

large set of observational values of the fundamental constants of nature and the

�ne tunings involved that suggest exactly those values which support life on earth

the way we know and hence allows life to emerge, has led some cosmologists to

propose anthropic arguments for the existence of a small cosmological constant

[52, 113]. The anthropic principle states that the universe which we observe has

to be capable to develop intelligent life like us. Otherwise we would not be here

and could not ask the question why the universe has exactly the laws of nature

which it has.

1.8 General Relativity

No discussion on cosmology is complete without a few words on general relativity.

General relativity is an extension of the theory of special relativity, which states

that gravity is a purely geometric e�ect, generated by the curvature of spacetime.

The relation between the curvature of space-time and the stress-energy tensor is

given by the Einstein �eld equation

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (7)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor and

Tµν the stress-energy tensor. Equation (7) is a complicated di�erential equation

which can in general only be solved if one makes simplifying assumptions and/or

uses numeric techniques [48].

1.9 Conclusion

We have seen in brief what is the basic physics involved in cosmology. We have

moved from the simple FRW metric and worked our way through to the Dark

Matter and Dark Energy situation. Though observations do indeed suggest their

presence, they are yet to shed light on their nature. In the case of Dark Energy,

one of the most debatable issues is the form of this energy. Is a cosmological

constant enough to explain all observations, i.e. is w = −1? If so, we are faced

with the challenge of explaining the cosmological coincidence and why Λ has such

a small value. On the other hand, if we neglect it then we must come up with

an explanation in light of high energy physics or gravitational theory. Overall,
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we see the key in determining the properties of Dark Energy and Dark Matter to

great precision clearly lies with ongoing and future astrophysical experiments and

observations.

2 Observational Cosmology

2.1 Introduction

Recent years have witnessed a great amount of interest in the possibility that a

positive Λ-term (a cosmological constant) may dominate the total energy density in

the universe. Interest in the cosmological constant stems from several observatonal

directions:

• Observations of high redshift Type Ia supernovae appear to suggest that our

universe may be accelerating [49] with a large fraction of the cosmological

density in the form of a cosmological constant term.

• Most dynamical estimates of the amount of clustered matter yield a conser-

vative upper limit Ωm < 0.3. In addition, theoretical modeling of structure

formation based on the Cold Dark Matter model (CDM) with Ωm = 1 has

failed to match observations at a quantitative level.

In contrast, a �at low density CDM + Λ universe with Ωm = 0.3 and Ωx = 0.7

agrees remarkably well with a wide range of observational data ranging from large

and intermediate angle CMB anisotropies to observations of galaxy clustering on

large scales. Although none of the above arguments can be regarded as conclusive

evidence for a cosmological constant on their own, the growing amount of work on

the subject, combined with a possible relationship between a small cosmological

constant today and a large cosmological term driving in�ation at an early epoch,

suggests that the case for Λ1 should be taken seriously.

1 From the physical point of view, Λ represents a new type of dark non-baryonic matter,
completely unknown from laboratory experiments. Its di�erence from other type of dark non-
baryonic matter observed by gravitational lensing is essentially that matter described by Λ is, (a)
not gravitationally clustered at all scales where ae we see clustering of baryons and dustlike dark
matter, and (b) has a strongly negative e�ective pressure. Thus, remarkably, by investigating
the behavior of the present universe, we are studying novel fundamental physics [116].
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2.2 FRW Cosmological Models with Λ ̸= 0

A homogeneous and isotropic universe is characterized by the Friedmann-Robertson-

Walker line element

ds2 = c2dt2 − a2t[
dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2] (8)

In this metric the Einstein equation with matter in the form of a perfect �uid

acquires the following simple form

3H2 =
8πG

3
ρ+ Λc2 − kc2

a2
(9)

Eq (13) can be rewritten to look like the equation of motion of a point particle

on the surface of a sphere of radius R = a and mass M . Setting c = 1, we obtain
¨R2 = −GM
R2 + Λ

3
R and the total gravitating mass isM = 4π

3
R3(ρ+3p). This re�ects

that pressure carries weight in Einstein's Theory of Gravity. Hence we see that

a particle on the sphere feels both attractive and repulsive forces. The force of

repulsion Frep = Λ
3
R is caused by the cosmological constant and increases with

distance if Λ > 0.

2.3 Observational Consequences of a Cosmological Term

Arguments favoring Λ > 0 at the present epoch essentially arise from four sets of

observations.

2.3.1 The Age Issue

A running debate over the previous decade or so has centered around whether

or not the universe even has an age problem, i.e. on whether matter dominated

cosmological models predict a substantially younger age for the universe than their

oldest constituents [71] (which happen to be metal poor old globular cluster stars).

A key role in this controversy is played by the Hubble parameter , whose present

value though known is still debatable in many circles . Higher values of H0 clearly

give rise to a younger universe whereas lower values lead to an older one as age is

related to the inverse of H0. The age of the universe is given by
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Fig. 3: Age of the Universe vs Equation of State w

t(z) = H−1
0

ˆ
dz

(1 + z)h(z)
(10)

A high value of the Hubble constant H0 > 80 km/sec/Mpc predicts a short age

of the universe which is incompatible with the ages of the oldest stars (12−16 Gyr),

unless the universe is open, where Ωm < 0.1. The appeal of this argument has

somewhat decreased following recent Hipparcos parallax measurements indicating

a lower value H0 = 67 km/sec/Mpc and also a lower age for globular clusters

at 11.5 ± 1.5 Gyr. Still, recent observations of old galaxies at high redshifts are

extremely di�cult to accommodate within the framework of a matter-dominated

universe. New estimates about the age of the universe has been predicted can be

obtained by using the deceleration parameter [70].

2.3.2 High Redshift SuperNovae and the Cosmic Microwave Background

Preliminary results from this rapidly advancing �eld of cosmology suggest that

the universe may be an accelerating universe with a dominant contribution to

its energy density coming in the form of a cosmological constant. These results,

when combined with CMB anisotropy observations on intermediate angular scales,
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strongly support a �at universe Ωx ≃ 0.7.

2.3.3 Structure Formation

The standard COBE normalized Cold Dark Matter model of structure formation

with Ωm = 1 appears to be in serious con�ict with observations. The situation may

be �xed if the universe is �at, with most of the matter being smoothly distributed

in the form of a cosmological constant and only a small fraction Ωmh ≃ 0.2 in

clustered matter. (Here h is the Hubble constant in units of 100 km/s/Mpc).

Studies of the abundance and evolution of clusters of galaxies and of lensing by

clusters also favor a low density universe. With today's observational precision in

structure formation by studying large scale structures [79] we have a much better

understanding of the cosmological paramters involved.

2.3.4 Baryon Excess in Clusters

In a spatially �at universe with Ωm = 1, the mass fraction in baryons, Ωbaryons, in

the Coma cluster is expected to greatly exceed nucleosynthesis bounds [81] leading

to what has been called the baryon catastrophe. The mass fraction in baryons can

be kept in agreement with nucleosynthesis constraints only if Ωmh ≃ 0.16 (Ωm

includes contribution from baryons and clustered dark matter). In agreement

with the in�ationary scenario which strongly favors a spatially �at universe this

then suggests that the remaining mass might be in the form of Dark Energy.

2.4 SNe Ia Observations

In this section we will take a closer look at the SNe observations and their devel-

opment in brief and later on it will be discussed in detail. The SNe observations

and its future is the main object and topic of discussion for the thesis.

2.4.1 Luminosity Distance

Consider an object of absolute luminosity L, located at a coordinate distance r

from an observer at r = 0. Light emitted by the object at a time t is received

by the observer at t = t0, t and t0 being related by the cosmological redshift

(1 + z) = a0/a(t). The luminosity �ux reaching the observer is F = L(4πd2L)
−1,

where dL is the luminosity distance [82, 89] given by dL = a(t0)r(1 + z).
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Fig. 4: Luminosity Distance vs Redshift. The luminosity distance dL (in units of
1/H0) is shown as a function of cosmological redshift z for �at cosmological
models with a cosmological constant.

The luminosity distance dL depends sensitively upon both the spatial curvature

and the expansion dynamics of the universe. Furthermore, since dz/dt = (1+z)H(z),

we get

dL = (1 + z)

ˆ
dz

H(z)
(11)

Now that we have a relation between the luminosity distance and redshift let us �nd

out why and how it is useful to us and what role it plays in cosmology. Since recent

observations allow us to take a spatially �at universe we see that the situation

becomes simpler. Let us consider the two extreme cases : A matter dominated

universe, i.e. Ωm = 1 and a deSitter universe, i.e. Ωx = 1 we respectively get the

luminosity distances as

dMD
L =

[2(1 + z)− (1 + z)1/2]

H0

; ddSL =
z(1 + z)

H0

We can appreciate that the supernoave will appear brighter in an Einstein-deSitter

universe than it will in a deSitter universe. This is also true for a two component

universe consisting of matter and a cosmological constant as demonstrated in �g

(4). We can see by a simple example that if an object has a redshift of say z = 3,

then it will appear 9 times fainter in a deSitter universe than in a Einstein-deSitter

or matter dominated universe.
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2.4.2 The Magnitude-Redshift Relation

The relation which relates the apparent magnitude m of an object to its absolute

magnitude M is given by

µ ≡ m−M = 5log
dL
Mpc

+ 25 (12)

where µ is known as the distance modulus. Since dL depends upon the geometry

of space and its material content, the magnitude-redshift relation can in principle

be used to determine Ωtot and Ωm if both m and M are known within reasonable

limits. The results obtained by both the Supernova Cosmology Project [37] and

the High-Z Supernova Search Team present the strongest direct evidence for a non-

zero cosmological constant. Though one major concern in using this is the fact

that we have assumed the faintness in the observation to be due to the presence

of Λ. If there are evolutionary and extinction processes that go on before the

light from the SNe reaches us, then all models based on this assumption are in

serious trouble. But by using the CMB observations, we also put tight constraints

on the cosmological parameters which do agree with those obtained from SNe

observations.

2.5 The Angular Size - Redshift Relation

The suggestion that angular sizes of galaxies could be used to discriminate between

cosmological models was made some time back [43]. Hence it is yet another po-

tentially sensitive probe for dark energy. It helps test di�erent models due to the

fact that the angular size of an extended object D located at a redshift z depends

rather sensitively on the properties of the cosmological model in which it is being

measured. Knowing the absolute size of an object (e.g. galaxy or radio source)

and the angle subtended by a distribution of such objects in the universe, it may

be possible (after correcting for projection and evolution e�ects) to say something

about the geometry of space and the matter content of the universe. Let us now

derive a relation between ∆θ and D [82]. Consider an object of proper length D at

a coordinate distance r, and assume for simplicity that the object is aligned along

the axis. The proper length of the object can be obtained by setting t = constant

in the FRW line element eq. (1) as follows ds2 = −D2 = −a2(t)r2∆θ2. The angle
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Fig. 5: ∆θ vs z for di�erent values of Ωm

subtended by the object then becomes ∆θ = D/dA, where dA is given by

dA=a(t)r = dL(1 + z)−2

Hence we see there is a straight forward relation between the observable dL and

∆θ.

The appearance of a minimum angular size at a given redshift zmin is a generic

feature of cosmological models with Ωm>0. We see that for a matter dominated

universe zmin is at 1.25 and it moves to higher values as the cosmological constant

term becomes larger. For the extreme case of a deSitter universe there is no

minimum point.

Curiously, the angular size of a typical galaxy at a redshift z < 1 is roughly 1”

which is close to the limiting value of the angular resolution (seeing) allowed by the

Earth's atmosphere [104]. Beyond z > 1 the angular size of an object increases,

and if one is con�dent that galaxies of a given class at higher redshifts are similar

in form to their lower redshift counterparts, then this test can in principle provide

a powerful means of discriminating between world models especially with the use

of satellite data which can get around the seeing limit. Other objects which can

be used to probe the angular- size-redshift relation include clusters of galaxies and

both extended and compact radio galaxies [87, 52]. However in order to use this

method of testing cosmological models we must �rst have comprehensive knowledge

about the evolutionary processes that the radio galaxies go through.



2 Observational Cosmology 22

2.6 Conclusion

Since the original discovery of an accelerating universe [17, 21, 55] the SNe data

base has grown considerably and are available in the literature [41, 15, 42]. Al-

though a�ects due to gravitational lensing, evolution etc. might be able to nul-

lify Dark Energy hypothesis it is reassuring that recent observations of CMB

anisotropies and estimates of galaxy clustering in the 2dF [83] and SDSS [84]

surveys make a strong and independent case for dark energy. Therefore, in order

to prove the existence and nature of dark energy on a stronger footing we need

observations from all sectors to come up along with SNe data.
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Part II. Dark Energy

Fig. 6: Pie Chart of the Universe Constituents

3 Introduction

Now that we have discussed some of the basics of cosmology let us discuss in a

little more detail about its constituents. Observational evidence suggests that the

universe is made up of more than just the luminous matter that we see. We �nd

that the total energy density of the universe is estimated at about Ωtot ≡ 8πG
H2 ρtot ≃

1.02±0.02. This value is much larger than the value we know for luminous matter

or even baryons, which is only approximately 0.04. The remaining is unknown.

Both Dark Matter and Dark Energy [80, 22] are considered essential missing pieces

in the cosmic jigsaw puzzle.

Ωtot − Ωbaryons =?

While there are now multiple lines of evidence indicating that 70% of the criti-

cal density of the universe is in the form of a negative-pressure component termed

Dark Energy we have no real clues about its origin and nature. Theoretical studies

operate in the shadow of the cosmological constant problem [56], considered one

of the most embarrassing hierarchy problems in particle physics. Experiments to

be carried out over the next decade should shed considerable light on the matter

by constraining the Dark Energy Equation of State and determining whether it
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is consistent with vacuum energy or something else. Recent observations of type

Ia supernovae (SNe Ia) at high redshift indicate that the expansion of the uni-

verse is accelerating [63, 64]. Though concerns about systematic errors remain,

these calibrated standard candles seem to appear fainter than would be expected

if the expansion were slowing down due to gravity. According to general relativ-

ity, accelerated expansion requires a dominant component with e�ective negative

pressure. Such a negative-pressure component with w = p/ρ < 0 is now generically

termed Dark Energy; a cosmological constant with p = −ρ, is the simplest but not

the only possibility. Recent results for the CMB anisotropy, favoring a nearly �at

universe, Ωtot = 1, coupled with a variety of observations pointing unambiguously

to low values for the matter density parameter, Ωm = 0.3, provide independent

evidence for a dark energy component with ΩDE = 0.7.

3.1 Dynamics of Dark Energy

In a homogeneous and isotropic Friedmann-Robertson-Walker (FRW) universe

consisting of pressureless dust (Dark Matter) and Λ, the Raychaudhury equation

takes the form ä
a
= −4πG

3
(ρm + Λ

3
). This can be rewritten in the form of a force

law F = −GM/R2 + Λ
3
, which demonstrates that the cosmological constant gives

rise to a repulsive force whose value increases with distance. The repulsive nature

of Λ could be responsible for the acceleration of the universe. Let us now look at

the the dynamics of dark energy.

3.1.1 The Acceleration Equation

The acceleration equation is easily generalized to

ä

a
= −4πG

3

∑
i

ρi(1 + 3wi) (13)

where wi = pi/ρi gives the Equation of State and the summation is over all forms

of matter present in the universe. Eq. (13) along with the eq. (2) can completely

describe the dynamics of the FRW universe. For conveniences sake let us write

the Hubble's equation here once more assuming a �at universe

H2 ≡ (
ȧ

a
)2 =

∑
i

8πG

3
ρi (14)
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We see from eq. (13) and eq. (14) that if the universe has only one component,

it will accelerate if w < −1/3. At w = −1/3 the universe will be in a perfect balance

of neither acceleration nor deceleration. In both the cases above the strong energy

condition which states that w ≥ 0 is violated. We can have a case where the

weak energy condition w = −1 [105, 87, 102, 106] can also be violated but it leads

to exotic situations which I will not touch upon here. Now let us �nd out some

conditions and constraints using eq. (13) and eq. (14).

3.1.2 Deceleration Parameter

It is convenient to express accelaration in terms of the so-called deceleration pa-

rameter [117]. It is given by

q ≡ ä

aH2
= −4πG

3H2

∑
i

ρi(1 + 3wi) = 1 + 3Ωxwx (15)

where

Ωx = −8πG

3H2

∑
i

ρi (16)

and Ωm + Ωx = 1. For acceleration we need q < 0. Applying this to eq. (15) we

can easily see that wx ≤ 1
3
(1− Ωm)

−1. It is clearly dependent on Ωm.

3.2 Hubble's Parameter and z

Let us try and get a relation between Hubble's parameter and the cosmological

redshift in order to have a formula based on a quantity that we can observe using

(1 + z) = a0/a(t) and eq. (16) we get

H(z) = H0[Ωm(1 + z)3 + Ωx(1 + z)3(1+w)]
1/2 (17)

whereas, in a ΛCDM model with w = −1, we get

H(z) = H0[Ωm(1 + z)3 + Ωx]
1/2 (18)

Now that we have certain tools in hand to work with, let us look at a few

important epochs in the history of the universe. If Dark Energy is described by an

unevolving equation of state w = px/wx, then the transition between deceleration

and acceleration ä = 0 occurs at redshift (1 + ztrans)
−3w = (1 + 3w)Ωm

Ωx
.

Another epoch of importance is when the densities of the Dark Matter and

Dark Energy become equal. This happens at redshift (1 + zeq) =
Ωm

Ωx
.
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Solving these for w = −1, and Ωm = 0.3 and Ωx = 0.7 we get ztrans ≃ 0.67 and

zeq ≃ 0.32 which we see are fairly recent eras. The fact that the acceleration of

the universe is a relatively recent phenomenon illustrates the cosmic coincidence

puzzle according to which we appear to live during a special epoch when the

densities inDark Energy and Dark Matter are almost equal. A recent origin for

the acceleration epoch is supported by supernova observations which suggest a

decelerating universe at z > 0.5 [107].

4 Dark Energy Task Force Report

Conclusive evidence from SNe as well as other independent observational evidences

show that the universe is expanding at a much faster rate than expected for only a

matter dominated universe, leading to the beginning of a new world of cosmological

theories and predictions. Within the cosmological framework this expansion is

thought to arise from a substance which has negative pressure. This substance has

been coined the term Dark Energy. It makes up almost two-thirds of our universe

yet almost nothing is known about it. Hence Dark Energy became a pressing

concern and interest in the scienti�c community to get a better understanding

of how things work in the universe. Dark Energy Task Force (DETF) [85] was

formed to help in this endeavor. Below we brie�y review the main points of DETF

primarily focusing on SNe.

4.1 Goals and Methodology for Studying Dark Energy

• The goal is to determine the fundamental nature of dark energy, the laws

that govern it etc. In the process the EoS and Ωϕ will play a vital role.

So methods to observe these with as much precision as possible is needed.

Parametrization of w(a) [102] will serve as a robust, quantitative guide to

distinguish between the di�erent models.

• A DETF �gure of merit is used to quantify the precision and progress that

will be reached by future projects2.

• Development is broken down into four stages. Stage I represents knowledge

that is already known , Stage II represents the knowledge that will come upon

completion of the ongoing experiments and observations, Stage III represents

2 The DETF �gure of merit is the reciprocal of the area of the error ellipse enclosing the 95%
con�dence limit in the ω0 − ωa plane. Larger �gure of merit indicates greater accuracy.
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near-term medium-cost currently proposed projects and Stage IV represents

large ambitious projects for the future like SKA (Square Kilometer Array),

JDEM (Joint Dark Energy Mission) etc.

4.2 Findings of the Dark Energy Task Force

• Four experimental techniques are in primary focus so far. They are BAO,

Galaxy Cluster, Supernovae, and Weak Lensing. Among them SN will be

discussed in greater detail as it is by far the most robust of all methods so

far. Maybe with further work and investigation other methods may provide

better and more precise measurements for explaining and detecting Dark

Energy and also be able to explain its properties. BAO is less a�ected by

astrophysical uncertainties but is in its infancy, GL has statistical potential

to exceed SN and BAO but is plagued by very large systematics, WL is

also just an emerging technique and will be limited by systematics that are

di�cult to predict at this stage.

• SN as mentioned above is by far the most tested method so far. But this

method too has its problems. If redshifts are determined using multiband

photometry than the accuracy achieved for photo-z's is of importance.3 On

the other hand if spectroscopically measured redshifts are used the power

of the experiments is much better but depends on the uncertainties in the

evolution of the SNe and also on the �ux calibration.

• Though increased precision in a particular cosmological parameter might im-

prove Dark Energy constraints from a single technique, it does not a�ect the

overall DETF �gure of merit obtained from a multiple technique. However

using a multiple technique may provide new constraints on the cosmological

parameters themselves. A good example of this is the spatial curvature of

the universe. When set to zero, it largely a�ects the constraints obtained

on dark energy from SNe but has little impact on other techniques. Hence

when combined setting the spatial curvature to zero has very little impact

on the over all result.

• Understanding systematic errors is the biggest step in making future projects

a success. A way in which this can be achieved or better assessed for SNe

would be to study at least 500 nearby ones both spectroscopically as well as

3 Multiband photometry measures the intensity of the object in several colors. A redshift
determined by multiband photometry is called photometric redshift or photo-z.
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photometrically resulting in being able to look for evolutionary tendencies,

metalliicity, reddening etc. and improvements in the system of photometric

calibration.

• For stage III projects it is assumed that a modest increase in Dark Energy

parameters is likely to result from the SN technique using photo-z's. This

would be of immense value if it could give an idea about the success and

capability of photometric determination of supernova redshifts, types and

evolutionary e�ects.

• For stage IV projects JDEM and LST might be of equal risk though the

JDEM would incur more costs and due to it being space based whilst the

success of the LST would largely depend on how well the photo-z uncertain-

ties are mitigated and made small on very large samples of galaxies. As it

will only be e�ective if the systematics are made far smaller than what they

are to date.

4.3 Recommendations of the Dark Energy Task Force

• High priority should be given to projects that improve our understanding of

the dominant systematic e�ects in dark energy measurements and whenever

possible reduce them even if this does not increase the overall DETF �gure

of merit for the time being. Understanding the systematic errors will be the

key to better and more precise results in the future allowing more detailed

study and understanding of the very nature of Dark Energy.

• Priority should be given to establishing a high precision photometric and

spectroscopic calibration in as many wavelengths as possible. Precise photo-

z's, K-correction, luminosity distances etc cannot be obtained without a

fundamentally improved calibration system which is as error free as possible.

• Once a proper system for calibration is obtained, a large ensemble of high

precision spectra and light curves for SNe Ia in di�erent light bands to be able

to better constrain systematic e�ects due to reddening, metallicity, evolution

etc. should be obtained.

• For stage III and IV projects, the systematic uncertainties will ultimately

determine the accuracy of our knowledge. So critical assessment of the po-

tential systematics is very crucial.
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• There should be a method devised such as to be able to quantify and monitor

our progress of the understanding of Dark Energy.

• Further theory work on deviations from our common understanding using

general relativity as a reference point should be encouraged and kept in mind

when developing projects to test and try to crack down on our understanding

of Dark Energy.

4.4 Dark Energy Primer

• In general relativity, the growth of the universe is described by a scale factor

a(t), and the time evolution of the expansion obeys

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3

where P is the pressure and ρ is the density of the contents of the universe

and Λ is the cosmological constant. Present day experiments have all pointed

to ä > 0 signifying an accelerated expansion and hence implying the universe

has more to it than just ordinary matter or that GR stands incorrect.

• Observational consequences of Dark Energy can be realized using the follow-

ing equations and arguments. If general relativity is assumed to hold then

one can write from the expansion history and other factors

ρ̇ = −3H (ρ+ P )

which now holds separately for each density contributor. Using this and

introducing Ω as a density parameter one can now write the following

H2(a) ≡ (
ȧ

a
)2 = H2

0 [ΩRa
−4 + ΩMa−3 + Ωka

−2 + Ωxa
−3(1+w)] (19)

Here the term Ωx represents the cosmological constant if w = −1 else it

represents Dark Energy with a constant w and can easily be generalized for

a non-constant w. The Cosmic Microwave Background can give very good

constraints on H2
0Ωm and H2

0Ωr, so it would seem like one can determine the

time history of the Dark Energy density if one could determine H(a).

• It is straightforward to determine the scale factor a at the time of emission

of light as all photons stretch during the expansion and this is quanti�ed



4 Dark Energy Task Force Report 30

in the redshift z. But one also needs the derivative of a to determine H(a)

which is more di�cult as time is not measured directly. In order to avoid this

problem most cosmological observations involve measuring the distance to a

given source of a known redshift z which is closely related to the expansion

history.

• All photons on the radial path must satisfy the following

ds2 = −dt2 + a2(t)(
dr2

1− kr2
) = 0

This allows us to de�ne D(z), a distance to a redshift of z as the following

D(z) =

rˆ

0

dr
′

1− kr′2
=

t0ˆ

t

dt
′

a(t′)
=

zˆ

0

dz
′

H(z′)
(20)

This allows one to now express the coordinate r in terms of the redshift

z. r(z) has many measurable consequences through itself or closely related

functions. The one of interest here is the luminosity distance which is given

by

dL(z) = r(z)(1 + z)

Other than this it also has close relations with proper distance, angular

diameter distance, volume element etc.

• One of the major astronomical approaches to measure dark energy is SNe

Ia. They are thought to be the explosions caused by disintegration of white

dwarf stars that accreted material from its binary partner to exceed the limit

of 1.4⊙ known as the Chandrasekhar limit. They are considered as standard

candles whose luminosity is well established and known. Hence the relation

f = L/4πd2L

can be used to �nd the luminosity distance. Spectral lines in the SNe and

also of the host galaxy can be used to determine redshift.

• Theoretical modeling of SNe explosions are extremely di�cult and it is not

expected that this theory will ever deduce the absolute magnitude nor the

standardization that is required for precise Dark Energy studies. Hence

the standardization must be empirical and its ultimate accuracy or cosmic
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evolution with time is very di�cult to predict. Knowing this fact one should

look at alternate methods in which the modeling of the physics behind the

event is more likely to be fundamental than empirical.

4.5 Staging stage IV: Ground and Space Options

• Strength and weakness: It is by far the most established method of observa-

tion and contributes most to the present day constraints. But the fact that

the physics of there nature is not well understood leaves us plagued with not

being able to understand the systematics to the fullest.

• Advantages for LST: A very large number of SNe can be detected in a short

span of time increasing the statistical precision. Also a large number of high

signal-to-noise ratio events will allow search for more parameters and help

in maybe understanding the evolutionary e�ects caused by them.

• Advantages of Space Mission: NIR coverage o�ers light curves less a�ected

by extinction. Being carried out in space, these missions allow for a larger

wavelength band to be studied for low and high redshifts. In the long run it

will help contain extinction and understand evolution better.

• Steps to sharpen Forecast: A large low-z SNe Ia survey is needed for the

primary calibration and understanding of the variety of spectra probed in

the rest frame before moving to high-z surveys.

• Advantages of Ground Based Dark Energy Experiments: The huge number

of SNe Ia that will be detected, hopefully tens of thousands per year will allow

us to get a better demography of the SNe in a way that are complimentary

to a JDEM SNe survey.

• The primary advantage of space based observations is the drastically reduced

systematics. Hence a less down-side risk in a space based mission as com-

pared to a ground based one. So JDEM might be a lower risk stage IV

experiment as it will provide richer data with less systematics which will be

the key to better understanding.

4.6 Technique Performance Projections

• The DETF has modeled Dark Energy constraints that will be useful in the

future to determine which experiments will bene�t from it the most. They
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have based the modeling on the four most known and established techniques

so far. Below is a discussion of the SNe model with the basic points.

• Since to �rst approximation all SNe Ia have the same intrinsic luminosity,

by measuring their redshift and apparent peak �ux one gets a direct mea-

surement of their luminosity distance.

• In practice though the peak luminosities are not all identical it is possible to

�nd a strong correlation between peak luminosities and the rate at which the

SNe decline in brightness. This correlation can be used to make corrective

measures before using the SNe Ia as standard candles.

• When spectroscopic followup will be used in the SNe technique the statistical

uncertainties in D(z) and hence dark energy will be determined by the num-

ber of observed SN Ia, their redshift distribution and the standard deviation

σD in the absolute magnitude after all required corrections are made.

• One needs to be able to put lower end constraints on the Hubble diagram for

low redshift z's as they will be the primary basis for a good and fundamental

calibration for future high-z SNe's. So a sample of 500 low-z's should be

observed and studied.

• An alternative to spectroscopic observations is to rely upon photometry.

Though the statistical sample would be much larger, the price to pay would

be loss of resolution and hence important information is lost which might

have allowed us a better understanding of dispersion, contamination etc.

This would result in systematics creeping in. Once the statistical error bars

reach those of systematics, one will have to rely on full spectroscopic analysis

for each SNe, though this might prove di�cult as the number of SNe steadily

rises.

• Systematic errors in D(z) arise predominantly from two sources. The wave-

length dependent errors in the astronomical �ux propagate into the lumi-

nosity distance as observed wavelength of the SNe redshifts through the

visible and NIR spectrum. Any shift with redshift in the properties of the

supernovae or its host galaxy propagates into D(z) without being detected.

This can lead to a biased interpretation of the observational data received

or studied unless and until this shift can be attributed to its real physical

reasons.
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Dark Energy Model State Parameter Energy Density

Cosmological Constant w = −1 Λ/8πG
Constant EoS w ̸= −1 but w = constant ρ0(1 + z)3(1+w)

Kinessence w ̸= constant ρ0exp[
´ z

0
dz 1+w(z)

1+z
]

Tab. 1: Candidates for Dark Energy

5 Candidates of Dark Energy

Supernovae observations when combined with those of the cosmic microwave back-

ground, gravitational clustering and LSS suggest that our universe is (approxi-

mately) spatially �at and that an exotic form of negative-pressure matter called

Dark Energy (DE) causes it to accelerate by contributing as much as three-quarters

to the closure density of the universe. The remaining quarter consists of non-

relativistic Dark Matter and baryons. The simplest example of dark energy is

the cosmological constant Λ. Though the concordance model ΛCDM provides an

excellent explanation for the acceleration phenomenon and other existing obser-

vational data, it remains entirely plausible that the dark energy density is weakly

time dependent [18, 19, 58] and maybe even coupled [59, 60]. Moreover, it is

natural to suggest that the dark energy which we observe today might really be

dynamical in nature and origin. This means that a completely new form of matter

might be responsible. Table 1 gives a broad catagory of candidates plausible as

a Dark Energy Model. The list is by no means complete and many models, even

yours, may be missing.

5.1 Cosmological Constant

A physical basis for the cosmological constant had to wait until 1968, when Y.

B. Zel'dovich puzzling over cosmological observations which appeared to require

Λ (the quasar excess at z ∼ 2 alluded to earlier) realized that one loop quantum

vacuum �uctuations gave rise to an energy momentum tensor which, after being

suitably regularized for in�nities, had exactly the same form as a cosmological

constant ⟨Tik⟩vac = Λgik/8πG. Theoretical interest in Λ remained on the increase

during the 1970's and early 1980's with the construction of in�ationary models,

in which matter4 behaved precisely like a weakly time-dependent Λ-term. The

current interest in Λ stems mainly from observations of Type Ia high redshift

4 Matter was in the form of a false vacuum, as vacuum polarization or as a minimally coupled
scalar-�eld
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supernovae which indicate that the universe is accelerating fueled perhaps by a

small cosmological Λ-term [86, 43, 45].

In spite of the theoretical glitches perhaps the simplest model for Dark Energy

is the cosmological constant, whose energy density remains constant with time and

is de�ned as ρΛ ≡ Λ/8πG = 6.44× 10−30(ΩΛ/0.7)(h/0.7)2 gcm−3 where h is the Hubble

constant H0 in in terms of 100 kms−1Mpc−1. Its equation of state is w = −1 and

has the following form for the value of H from eq. (18) for a �at two component

universe.

H(z) = H0[Ωm(1 + z)3 + Ωm − 1]
1/2

5.2 Quiessence

The next simplest form of dark energy after the cosmological constant is provided

by models for which the equation of state is given by w = constant ̸= −1. For

this form of dark energy, which we call quiessence [22]

H(z) = H0[Ωm(1 + z)3 + Ωx(1 + z)3(1+w)]
1/2

The cosmological constant then becomes a limiting case of quiessence. Important

examples of quiessence include a network of non-interacting cosmic strings with

w = −1/3 or domain walls with w = −2/3. Quiessence in a FRW universe can also

be produced by a scalar �eld which has the potential

V (ϕ) ∝ sinh(−2(1+w)/w)(Cϕ+D) (21)

with appropriately chosen values of C and D.

5.3 Quintessence

The simplest example of kinessence is provided by quintessence [19, 23, 18], a self-

interacting scalar �eld which couples minimally to gravity. Its density, pressure

and Equation of State are given by

ρϕ = ϕ̇2 + V (ϕ) , pϕ = ϕ̇2 − V (ϕ)

wϕ ≡ pϕ
ρϕ

=
ϕ̇2 − V (ϕ)

ϕ̇2 + V (ϕ)
(22)
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The action for the quintessence is given by:

S =

ˆ
d4x

√
=g(−1

2
(∇ϕ)2=V (ϕ)) (23)

with (∇ϕ)2 = gµν∂µϕ∂νϕ and V (ϕ) being the potential of the �eld, depending

on the particular choice of the model. The variation with respect to the metric

tensor gµν gives us the energy-momentum tensor

Tµν = ∂µϕ∂νϕ− gµν(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)) (24)

Scalar �eld evolution is governed by the equation of motion given by the mod-

i�ed Klein-Gordon equation which is obtained by the variation of eq. (23)

ϕ̈+ 3Hϕ̇+
dv

dϕ
= 0 (25)

where H becomes the following

H(z) =
8πG

3
[ρ0m(1 + z)3+ϕ̇2 + V (ϕ)] (26)

Models with this property can lead to an accelerating universe at late times.

DETF has carried out an extensive approach to see how certain quintessence mod-

els will behave to future generation of experiments [111].

Trackers

An important subclass of quintessence models displays the so-called tracker be-

havior during which the ratio of the scalar �eld energy density to that of the mat-

ter/radiation background changes very slowly over a substantial period of time.

Models belonging to this class satisfy V ”V/(V ′
)2 ≥ 1 [36] and approach a common

evolutionary tracker path from a wide range of initial conditions. The tracker so-

lution is an attractor in the sense that a very wide range of initial conditions for ϕ

and ϕ̇ rapidly approaches a common evolutionary track, so that the cosmology is

insensitive to the initial conditions. Tracking has an advantage similar to in�ation

insofar a wide range of initial conditions is funneled into the same �nal condition

[50]. As a result, the present value of dark energy in tracker models is to a large

extent, though not entirely, independent of initial conditions and is determined by

parameters residing only in its potential [80].

For all quintessence models, w ≥ −1 and the inequality is saturated only if

ϕ̇ = dV/dϕ.
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Quintessence Potentials

The literature describing phenomenological forms of matter violating the SEC is

vast. Nevertheless two kinds of matter have been singled out in recent times as

being of special interest:

• Cosmological constant PX = ρX ⇒ (wX = 1),Λ ≡ ρX/8πG

• A scalar �eld rolling down a potential V (ϕ)

Though both of the above seem appealing they both run into some problems.

If one assumes a very simplistic potential like V ∝ m2ϕ2 [80], we see that the

over-damping of the potential requires a very precise level of accuracy of the two

density ratios, in order for it to be just about one at the present epoch. This is the

classic �ne tuning problem that plagues almost all models of Dark Energy. On the

other hand, if we assume that the energy density in the �eld were comparable to

that of radiation at very early times, it cannot arise from a polynomial potential

V ∝ ϕm as ϕ will not remain sub-dominate long enough to get a epoch of matter

dominance. It will rapidly dominate the density of the universe resulting in a very

large Λ for the present. Hence for the ϕ-�eld energy density to dominate only at

recent times it must have fallen of rapidly earlier. But its fall must ultimately

be less then that of matter or radiation for it to be seen in the present epoch.

Fortunately, there do exist families of potentials for which the behavior of ϕ is

as desired. This family is termed Quintessence. By Quintessence [87, 88, 117]

we mean a slow rolling scalar �eld which, for a large values of initial conditions,

converges towards a tracker �eld obeying an e�ective equation of state wϕ = P/ρϕ,

where P ≡ pϕ(ρϕ, a) which tracks the background �eld equation of state given by

wB(a) = Prad/(ρrad + ρmat) = 1/3 (27)

The condition for a tracker solution to exist is that V
′
/V be a slowly decreasing

function of ϕ, where V ' ≡ dV/dϕ [112].

Inverse Power Law

The famous pioneering work of Ratra and Peebles [18] has been taken into con-

sideration for this section. We have considered an inverse potential of the form

V = Vo/ϕ
α. We see a scalar �eld with such a potential serves as a good candidate

[51] for Dark Energy. Although it stays almost dormant during most of the evolu-

tion of the universe as seen �g. (7), it emerges to dominate at later times almost
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around the present epoch of a = 1. Here depending on the value of α the steepness

of the potential changes. The larger α is, the steeper will be the potential. Hence

it will fall o� much faster at initial stages before freezing until later times to come

back and dominate.

Fig. 7: Density vs Redshift for an Inverse Power Law potential

Exponential Potential

The Exponential potential given by V = V0e
−λϕ/M , is one of the simplest and

most motivated of the various quintessence potentials [51], where λ is an unknown

coe�cient and M is the reduced Planck mass. This potential and its cosmological

behavior has been studied by various authors at various times as it works as a

good starting point due to its tracking behavior.

This potential works as an attractor, i.e. there exists an attractive �xed point

trajectory where ρb and ρϕ are constant over all time and the density parameter

is given by Ωϕ = 3/λ2(1 + wb). This results in the solution not being dependent

on Vo, alleviating the initial condition or �ne tuning problem. But the very fact

that the potential is an attractor, there is no mechanism to trigger its deviation

from a tracking solution. Hence, it can never give rise to the acceleration of the

universe. We see that if we take an exponentially positive potential it will rip the

universe apart as it will no longer mimic a slowly rolling down potential, where

as an exponentially negative potential cannot accelerate the universe under the

normal constraints set at the present epoch, since no matter what initial condition

we start with it ultimately tracks the background equation of state.

Other than the problem of having no mechanism to jump out of this attractor

pool, if it were to be that ϕ dominates today over ρ it would also dominate through

out the history of the universe, which is in contradiction to BBN.
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Fig. 8: Background Density for an Exponential potential

6 Conclusion

In this section we have tried to get an idea of what dark energy is and what the

dynamics behind it maybe. We have also looked at the possible candidates for dark

energy starting from the very simplest cosmological constant to qunitessence.Yet

due to the huge challenges involved with the �ne tuning and why now problem,

many alternatives remain. Also challenges of how to scale cosmologies also arise

[73]. Other than the ones mentioned above, many alternative theories are also

being explored as a viable alternative to dark energy [74, 75, 76, 77, 59].
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Part III. SuperNovae Observations

7 SNe Ia Projects

SNe Ia are considered standard candles in cosmology and have been the corner

stone for the present day concordance model. The relations stated in eq. (11)

and eq. (12) are crucial to understand. They are a way of directly relating obser-

vations to the theoretical models. As we see the L.H.S. of the equations can be

determined by observations while the R.H.S. is determined by theory. It is exactly

this correlation that historically lead Reiss and Perlmutter to the discovery of an

accelerated expansion of the universe. Since then observations in this line have

come along way. It started with observations of only a few dozen SNe light curves

and spectra which is now a few hundred and will become a few thousand with

future generation experiments. Some of the surveys are listed in table 2.

Name of Survey Number of estimated SNe Redshift Range

SuperNovae Legacy Survey ∼ 450 0.1 < z < 0.9
ESSENCE ∼ 200 0.1 < z < 0.8

HST+GOODS 43 z ≃ 1.4
SN Factory 300 0.03 < z < 0.08

SDSS ∼ 500 0.05 < z < 0.3
JWST+ELTS > 103 up to z ∼ 4
Pan-Starrs > 104 up to z ∼ 3
KAIT ∼ 50/yr z < 0.03

�

Tab. 2: Some current and upcoming SNe surveys [39, 32, 40, 41, 42]

7.1 Reiss Gold Sample

As recently as 2003, the entire supernova data set from the two di�erent surveys

� Supernova Cosmology Project (SCP) [15] and High-Z Supernova Search Team

(HZT) [90], along with low redshift supernovae from the Calan-Tololo Supernova

Search (CTSS) comprised of a meager 92 supernovae with very few at high red-

shifts, z > 0.7. The method of data reduction for the di�erent teams was also

somewhat di�erent, so that it was not possible to use the supernovae from the two

data sets concurrently. The picture changed somewhat dramatically during 2003-

2004, when the two teams jointly presented a data set of 194 supernovae using

the same data reduction method [90, 91, 92]. This new data resulted in doubling

the data at z > 0.7. Not all these supernovae could be identi�ed beyond doubt as
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Type Ia supernovae however, since in many cases complete spectral data was not

available. In early 2004, Riess et al. [37] reanalyzed the data with more rigorous

standards, excluding several supernovae for uncertain classi�cation or inaccurate

color measurements. They also added 14 new high redshift supernovae observed

by the Hubble Space Telescope (HST) to this sample. This resulted in a sample

known as the Gold data set. The latest publication from the same team adds ten

more SNe from HST to the data set, and excludes data below cz = 7000 km/sec

or z = 0.0233 to avoid the in�uence of a possible local Hubble Bubble. It also

rejects those SNe which were not identi�ed as a con�rmed SNeIa beyond the 95%

con�dence level. The separation led to two groups of data. The clean and crisp

ones were called the Gold sample while the others were called the Silver sample.

We use the Gold sample as one of our data sets to carry out the analysis for the

di�erent models.

7.2 Astier Sample or SNLS

The cosmological analysis requires assembling a sample of nearby and distant

SNe Ia. Though for the SNLS data [32] objects with redshift z < 0.015 were

rejected. This was because at such low redshifts, one enters the local Hubble

Bubble and the non linear regime comes into play. Hence, rejection of the SNe

having redshifts below the cut-o� value made sure that peculiar velocity was not

a reason for the dimming and reddening e�ects. Also only those objects were

kept whose photometric point was no more than �ve days after maximum though

it was seen that distance measurements are not a�ected even if the photometric

point was seven days after maximum. A sample of 44 nearby SNe Ia matched these

requirements. This data set considers only distant SNe Ia that were discovered

and followed during the �rst year of SNLS, since this data set was at one stage

the largest well controlled homogeneous sample of distant SN Ia. Other than the

44 nearby SNe, 91 more were also spectroscopically analyzed and those that were

identi�ed as SNe Ia were included in the data set.

7.3 SNAP

Probing Dark Energy With SNAP [52, 53, 54]: The apparent magnitude or

intensity of the supernova is a measure of its distance and redshift, which in term

is a measure of the expansion history of the universe. Supernovae observation was

one of the �rst probes which resulted in the prediction of a component other than
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matter being present, which this acceleration is riding on. A sample of several

thousand type Ia supernovae with redshifts z > 1.7, as might be gathered by

the proposed SNAP satellite, would serve as a powerful probe of dark energy.

SNAP will constrain the equation of state to about 5%, independently of other

cosmological probes and assuming only a �at universe.

Several other observations will help to further tighten these constraints [2].

Among them are the CMB and the location of the acoustic peaks. These also

give hints about the age of the universe being 14.0 billion years which is more

than predicted in a only matter dominated universe. This value only holds if the

conventional Hubble value is taken, the universe is �at and the matter density

perturbations are assumed to be adiabatic.

From the large scale galaxy redshift surveys such as 2dF, the power spectrums

for matter density �uctuations also suggest a component with a very large negative

pressure through the shape it obtains.

These two separate observational signatures which are completely independent

of each other or SNe observations work as a very good cross-reference to indicate

the existence of the expansion of our universe.

This mapping of the expansion history allows one to investigate new physics.

For example luminosity distances allow us to explore the dynamics involved in

cosmology which in turn leads us to high energy �eld theory:

D(z) → a(t) → V (ϕ(a(t)))

where V (ϕ) is the potential of the dark energy �eld.

The major thing that future experiments will be plagued by is systematic uncer-

tainties rather than mere imprecision in the observations. The CMB is insensitive

to time variation and can only provide a rough estimate of an averaged value of

the EoS, except for a small impact on the late-time Sachs-Wolfe e�ect buried in

cosmic invariance. While Gravitational Lensing (GL) and growth rate of Large

Scale Structure (LSS) are promising but will have a problem with the complex

non-linear astrophysical e�ects that need to be taken into consideration. SNAP's

primary aim will be to deal with these systematic uncertainties head-on. It will

bene�t from the the fact that, it is a space based mission.

To be able to investigate and distinguish between the di�erent classes of phys-

ical models, we need to be able to probe the universe at the transition point from

matter dominated deceleration to an accelerated era of the universe.
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7.4 Union Data Set

Time �nally comes to combine all these data sets to get a better understanding

and fuller picture of SNe data and what can be done with it. The Union Data

set is an attempt at this. It includes the recent large samples of SNe Ia from

the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well

as the recently extended data set of distant supernovae observed with HST. This

allows it to try and plug in the gaps that exist in each of these di�erent data

sets for some of these work only with high redshift while others work for nearby

supernovae. The Union Data set [15, 16] uses the SALT [32] method for both old

and new SNe data points, though some points have been ignored as they do not

converge. Salt is based on a spectral index [33] and light curves. The SNe used

for the calibration is obtained from nearby samples so that it does not interfere

with the cosmological sampling and data and results. The union data set consists

of 307 SNe Ia samples which can be trusted. It excludes the ones that are below

a certain con�dence level hence making its results reliable.

Fig. 9: Con�dence level contours of 68.3%, 95.4% and 99.7% in the ΩΛ−Ωm plane
from the Cosmic Microwave Background, Baryonic Acoustic Oscillations
and the Union SNe Ia set, as well as their combination (assuming w = −1).
Courtesy of Kowalski et al. [15].

The union data set also uses a covariance matrix format to calculate its system-

atic errors. So two di�erent covariance matrices are created. One which includes

the list of systematics involved while the other involves only the statistical errors.

It also uses cuts and priors so as to be able to �lter out even more unwanted data
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points. It uses three cuts for this purpose.

8 Di�erent Methods Used for Calculations using SN Ia

As SNe physics grew in understanding, many groups started observing in this �eld

and with time better and more precise experiments and observations were con-

ducted. This also resulted in di�erent methods of analysis. Hence some ambiguity

exists and also some room for questioning as to which is the most e�ective method

used for calculating.

8.1 SALT

Spectral Adaptive Light curve Template is new method to parametrize Type Ia

Supernovae (SNe Ia) multi-color light curves [33, 93]. The method was developed

in order to analyze the large number of SNe Ia multi-color light curves measured in

current high-redshift projects. The technique is based on empirically modeling SNe

Ia luminosity variations as a function of phase, wavelength, a shape parameter,

and a color parameter. The model is trained with a sample of well-measured

nearby SNe Ia and then tested with an independent set of supernovae by building

an optimal luminosity distance estimator that combines the supernova rest-frame

luminosity, shape parameter, and color reconstructed with the model. It allows

us to determine simultaneously the SN Ia rest-frame B magnitude at maximum,

stretch and color excess (or de�cit) using any measured multi-color light curve

within the wavelength range of rest-frame UBV bands.

8.2 MLCS2k2 Multicolor Light Curve Shape

This is the method used by the High-Z Supernovae Team [94, 95] and keeps in

mind that dust and evolution can play a part in the evaluation of the brightness

of the supernovae. The MLCS method is used to determine the distance moduli

from light curve shapes in at least two wavelengths. A training set of well observed

SNe is used to establish a light curve shape template of a typical type Ia SN, along

with a set of corrections to this light curve shape depending on the parameter △,

de�ned as the di�erence in magnitudes at B band maximum between an individual

supernova and the template SN [95, 17]. These corrections measure the linear and

quadratic modi�cations to the light curve shape as a function of △. The MLCS

templates are then used to �t curves of V and B-V, for example to measure the

distance modulus µ, extinction Av, and the MLCS o�set parameter △.
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The way this has been done in the past is to shift two of the light curves to B

and V applying the proper cross-�lter K-corrections [96] whose uncertainties can

be quite large. To avoid large K-corrections, special �lters designed to correspond

to B and V at high redshifts have been utilized for some searches [97].

From the light curves at multiple wavelengths, one can determine the luminos-

ity distance to these objects, e.g. via the MLCS method, and with the redshift

from the spectra, place Type Ia SNe on the cosmological diagram which can be

used to see constraints for various models of Dark Energy.

8.3 CMAGIC - Color-MAGnitude Intercept Calibration

CMAGIC [98] is based on the behavior of SNe Ia in color-magnitude diagrams.

Starting approximately one week afterBmax and lasting approximately three weeks,

the relation between the B magnitude and B−V color is strikingly linear [1]. This

holds true for other colors as well. The temporal extent of this linear region is a

function of stretch, with slower and higher stretch light-curves starting and ending

their linear behavior later. The slope of the linear region has a narrow distribution.

Currently very few rest frame R and I observations are available for high redshift

SNe Ia, so here we consider only B vs B − V . The simplicity of this behavior is

so far not completely explained by theory, which gives it a status similar to the

empirical width-luminosity relation. Prior to the linear region, the majority of SNe

Ia are less luminous than the linear extrapolation. However, a minority, typically

those with high stretch display excess luminosity, which is referred to as a bump.

Standard light-curve template �tting techniques do not adequately reproduce the

results obtained via CMAGIC.

8.4 Evolution of SNe

The possibility that the average properties of SNe Ia have evolved between the

current epoch and a redshift of one is of considerable concern for supernova cos-

mologists. So far it has been impossible to demonstrate conclusively that evolution

is not the cause of the claimed cosmological results. The best that can be done

is to continue to quantitatively add to the list of ways in which they are similar

while failing to discern any way in which they are di�erent [17]. One method to

approach this problem is to compare high and low redshift SNe in similar environ-

ments, as done in [3], where no evidence for evolutionary biases was found. Since

all measured dependencies of SNe Ia properties on local environment disappear
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after stretch correction, and because the diversity of environments in which local

SNe Ia occur, concerns about evolution can be usefully restricted to mechanisms

which a�ect the luminosity-width relationship.

8.5 Systematics Involved in SNe

Systematic errors have plagued the study and analysis of SNe observations from its

infancy. While some errors are common to all groups like contamination, evolution,

Malmquist bias, gravitational lensing etc., there are some that are observer speci�c,

like light curve �tting, k-correction etc [52, 32, 30, 25, 20, 40, 94, 15]. Those that

are common to all observations are handled pretty much in the same manner by

most groups whereas the handling of the individual observations can di�er greatly

and hence often give very diversi�ed results. Table. 3 gives a list of systematic

errors5 for various groups.

Systematic SNLS ESSENCE SDSS

Flux reference 0.053 0.02 0.037
Experiment zero points 0.01 0.04 0.014
Low-z photometry 0.02 0.005 ...
Landolt bandpasses 0.01 ... 0.019

Local �ows 0.014 ... 0.04
Experiment bandpasses 0.01 ... 0.014
Malmquist bias model 0.01 0.02 0.017

Dust/Color-luminosity (β) 0.02 0.08 0.017
SN Ia Evolution ... 0.02 ...
Restframe U band ... ... 0.08

Tab. 3: Current estimates on the systematic errors of ⟨w⟩ as measured by the major
groups doing work in SNe Physics (courtesy [41])

5 Systematic error estimates on ⟨w⟩ from Conley et al. (2009), Wood-Vasey et al. (2007), and
Kessler et al. (2009). Hicken et al. (2009) CfA3 systematics are similar to those for Wood-Vasey
et al., though they are not separately tabulated. The SDSS errors are for their MLCS2k2 �t.
Errors for each survey use their largest sample. For the SNLS 3rd year results the total systematic
error is ∼ 0.06, comparable to the statistical error, and the total (statistical + systematic) error
is ∼ 0.09. The other studies �nd that systematic errors are dominant.
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Part IV. Methodology

9 Introduction

Now that we have a good handle on the basics of cosmology and also on the various

dynamics involved I start to look at di�erent models for the above mentioned data

sets for the SNe Ia, i.e. the Gold, the SNLS and the Union set [37, 32, 15]. We

describe the method used to compute the best �t model as well as to compute the

likelihoods.

10 Parametrization

Parametrization is the process of de�ning the parameters necessary for a complete

or relevant speci�cation of a model or geometric object. It is a powerful tool used in

cosmology when a more fundamental theory is not at hand. This way one can try

and study the physical properties in more details and hope that the observations

along with the parametrization will help lead to more fundamental theories. One

of the most common parametrizations done is of the equation of state given by w

[99, 100, 101, 102] for a more complex system if we assume the ΛCDM is wrong.

The most common assumption made is that w is a variable and varies with time.

Then, w becomes w0 + wa(1− a) in its simplest form.

Table 10 shows the values of the parameters for the Standard Model. There

are many more parameters and as the models get more complex the number of

parameters also rise. It is important to remember to try and keep the number of

parameters as minimal as possible.

Parameter Symbol Value

Hubble Parameter h 0.72± 0.03
Baryon Density Ωb ≡ ρb/ρc 0.0462± 0.0015

Dark Matter Density Ωdm ≡ ρdm/ρc 0.233± 0.013
Matter Density Ωm = Ωb + Ωdm 0.279± 0.013

Dark Energy Density ΩΛ ≡ ρΛ/ρc 0.721± 0.015
Radiation Density Ωr ≡ ρr/ρc (5.0± 0.2)10−5

Neutrino Density Ων ≡ ρν/ρc < 0.013(95%CL)
Baryon to Photon Ratio η ≡ ηb/ηγ (6.21± 0.16)10−10

CMB Temperature T 2.275K
�

Tab. 4: Parameters describing our Universe. WMAP recommended parameter val-
ues [65] from WMAP5, BAO and SNe for a ΛCDM cosmology
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Parameter Symbol Value

Equation of State w −0.992± 0.061
Tensor-to-scalar ratio r < 0.22, k0=0.002Mpc−1 2σ

Spectral Index α 0.028± 0.020, k0=0.002Mpc−1

Neutrino Mass mν < 0.67 eV (2σ)
�

Tab. 5: Other Parameters for Non-concordance models

11 Numerical Tools and MCMC Calculation:

11.1 CMBEASY

With the amount of observation available to cosmology we have entered a regime

that we like to call precision cosmology. As the vast data keeps pouring in we

need better and better numerical tools to keep up with it. Tools such as CAMB,

CMBEASY, CMBFAST etc. allow us to calculate the predictions of a given model

on the basis of the observational data.

CMBEASY is a C++ based code using CMBFAST as its base code. As CMB-

FAST is written using FORTRAN90 it is not very modular and user friendly.

C++ allowed for modularity in the code and hence implementation of new data

sets became easier without having to make changes to the whole code. It utilizes

the presence of objects, classes and inheritance to the fullest. It allows for keeping

each section and data set as separate segments which may then be individually

compiled and worked on, a characteristic property of C++ that comes in very

handy when dealing with lengthy codes like CMBEASY. This makes sure that

time is saved during compilation and also debugging is easier.

While the CMBEASY or any of the other numerical tools mentioned are rela-

tively fast, the amount of computing and time required to evaluate models on an

n-dimensional grid in parameter space increases exponentially with the increase

in the number of parameters. The Markov chain Monte Carlo (MCMC) method

scales linearly with the increase in the number of parameters, as a result of which

it is much more useful and less stressful in terms of computing power and time

needed. The MCMCmethod has been used to constrain several parameters already

[27, 29, 30, 31].

The CMBEASY uses the package AnalyzeThis [28] which includes a parallel

MCMC driver and a routine to calculate the likelihood with respect to various

data sets available.
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11.2 MCMC Simulation

In the following section we will assume that the reader is familiar with the basic

ideas of Markov chain Monte Carlo simulation and the Metropolis algorithm.

The global Metropolis algorithm [9] chooses new steps for a Markov Chain via

a symmetric proposal distribution. In our implementation, [26] we assume �at

priors P on the parameters, and we assign likelihood zero to any parameter set

that has at least one point outside the prior.

A very important aspect of MCMC is to test when the chains are sampling

from the underlying distribution. Since at the beginning the chain migrates from

its random starting point to regions of higher likelihood, there is a burn-in as-

sociated with each chain that must be eliminated prior to parameter estimation.

In principle, it may be di�cult to tell from a single chain if it has converged. In

MCMC one therefore uses several chains with random starting points and monitors

mixing and convergence. Our implementation employs the convergence test of [7].

The key ingredient for this test is a parameter R which can be computed from

previous chain points. This parameter is a comparison of the variance within the

chains compared to the variance between di�erent chains. A value of R < 1.2 for

each parameter indicates the chains have converged and all previous points should

be removed. If one uses the GUI for chain analysis, the burn-in is automatically

removed.

Since there is no generally accepted procedure to determine when one has gener-

ated enough chain points for reliable estimates, the algorithm just runs inde�nitely

in our implementation. However, any breaking-criterion [8] may be implemented

easily. The chains may be monitored with external programs during the run.

The number of steps needed for good convergence and mixing depends strongly

on the step proposal distribution. If the proposed steps are too large, the algo-

rithm will frequently reject steps, giving slow convergence of the chain. If on the

other hand, the proposed steps are too small, it will take a long time for the chain

to explore the likelihood surface, resulting in slow mixing. In the ideal case, the

proposal distribution should be as close to the posterior distribution as possible

which unfortunately is not known a priori. While a simple Gaussian proposal dis-

tribution with step sizes σk is su�cient, it is not optimal in terms of computing

costs if cosmological parameters are degenerate. Instead of using a naive Gaussian

proposal distribution, we sample from a multivariate Gaussian distribution [10]

with the covariance matrix estimated from the previous points in the chains. By

taking into account the covariances among the parameters, we e�ectively approx-
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imate the likelihood contour in extent and orientation. The Gaussian samples are

taken along the principal axis of the likelihood contour.

The convergence can be further improved by scaling the covariance matrix with

a variable factor α. Using α, we can cope better in situations where the projected

likelihood takes on banana shapes. It also improves the convergence during the

early stages when the low number of points available limits the estimate of the

covariance matrix. We dynamically increase if a chain takes steps too often, while

we decrease if the acceptance rate is too low. By this procedure the convergence

is sped up by a factor of about four compared to naive Gaussian sampling.

One can show that modifying the proposal distribution based on previous chain

data during the run may lead to a wrong stationary distribution. Therefore, we

only apply the dynamical strategy of �nding an optimal step proposal during the

early stages of the simulation i.e. we allow the step size to vary until it starts

to converge. When the convergence is better than R = 1.2 and the chain has

calculated a certain number of points, at least 500 points, we freeze-in the step

proposal distribution.

12 Observational Data

Observations are the cornerstone of good science. After a theory or hypothesis

has been made some form of experiment or observation must follow to test the

predictions made by it. Cosmology is no di�erent, though in this �eld more obser-

vations then experimetation is still going on. Specially, lab tests are far from being

realistic, though the LHC might change the outlook on that. Data and its analysis

are vital to the understanding the cosmological parameters and their values. Be-

low is a brief discussion about the observations that have been used to carry out

the work conducted in this thesis. For the combined analysis observations from

WMAP, SDSS, BAO and SNe are used.

SNe Ia In the previous sections it was discussed in detail how the supernovae

data are used. In the case of the SNe union data set the covariant metric is also

calculated and used to calculate the systematic errors involved. We start our

analysis by using only the SNe Union data set. Then we test for the other sets

mentioned, i.e. the Gold and SNLS data sets.

All three sets are used to be able to make a meaningful analysis and comparison

of how the number of SNe observed has helped reduce the statistical errors for

these observations and also how systematics have been dealt with. Here we see
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Fig. 10: The likelihood of Ωm for di�erent combined data sets of various models.
The specks indicate the SNe Union data likelihood.

the orange represents the Corasiniti model, blue is the constant EoS, yellow at the

back is the ΛCDM and in front we have the IPL model. We see that most of the

points for the SNe Union data set do fall within a close range to the likelihood for

a combined case.

WMAP 5-Year Data No combined data set is complete without the WMAP

data. We compute using the WMAP 5-year [65] data which enables us to deter-

mine the background power spectrum and so forth. It gives us parameters which

we work around to formulate the concordance model. The new data now allows us

to put stringent constraints on the amount of Dark Energy present independent

of previous SNe data. It also allows us to be more con�dent in using a numerical

solution which only allows for a �at universe, since data from WMAP suggests a

�at universe at the 95% con�dence level. It allows us to take a peak at the universe

back in time as early as possible, right back to the surface of last scattering. These

measurements aim at giving a detailed map of the tiny temperature anisotropies,

as small as 10=4 in the Cosmic Microwave Background (CMB) radiation, whose

frequency distribution is that of a perfect black body at T = 2.75K. The observed

intensity and location of the di�erent anisotropy peaks provide fundamental infor-

mation on the physical properties of the universe, in particular, on those related

to the time it becomes optically thin.
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Fig. 11: Temperature angular power spectrum corresponding to the best-�t
ΛCDM model

Observations of the cosmic microwave background provide us with very accu-

rate measurements, which may be used to gain insight about dark energy . We

see in �g. 11 a comparative analysis of the WMAP 3-year [34] marked in green,

WMAP 5-year, in purple and the Boomerang [103] data marked in red along with

their error bars. It is clear how the errors involved are steadily decreasing and

hence the constraints are also getting tighter. But inspite the increase in precision

the data still �ts the cosmological constant model best. We may use the WMAP

5-year results to get [65, 66]

R =
√
Ω0m

zlsˆ

0

dz

h(z)
(28)

where h(z) = H(z)/H0, and zls is given by the �tting function

zls = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ω0mh

2)g2 ] (29)

Baryon Acoustic Oscillations Another way of measuring distances are by mea-

suring the Baryon Acoustic Oscillations [14], which we mention here as one example

of the many other cosmological probes that have con�rmed the picture of the accel-

erating universe. When measuring the large-scale correlation function of galaxies,

one �nds a peak at a separation of about 100h−1 Mpc. This peak is a remnant

of the sound waves in the photon-baryon �uid in the early universe, the acoustic
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oscillations. In the coupled photon-baryon �uid, these waves can propagate, until

at recombination, the wave propagation e�ectively stops. The comoving distance

that a sound wave can travel from the initial seed of a perturbation to the time of

recombination has a characteristic length scale, known as the sound horizon and

is denoted by s.6 It is this scale that is responsible for the observed peak. Its size

depends both on the expansion history, and the properties of the photon-baryon

plasma, encoded in its speed of sound cs, and is given by

s =

∞̂

zdec

dz
cs

H(z)
(30)

where zdec ∼ 1100 is the redshift of decoupling between the photons and the

baryons. Measuring this scale in the clustering of galaxies in the transverse and

line-of-sight directions yields a determination of χ(z)/s and of sH(z), respectively.

The power of measurements of the baryon acoustic oscillations [61] now lies in

the fact that we can observe the imprint of the acoustic oscillations in the CMB,

thereby calibrating the sound horizon at a very high redshift, and then measure

this length scale at di�erent redshifts in the large-scale baryon power spectrum.

The ratios of these distances determine the angular-diameter-distance to redshift

relation, yielding a powerful geometric measurement of the expansion history of

the universe. This angular diameter distance which is nothing but the the distance

to the surface of last scattering, corresponding to its angular size also has a simple

relation to the luminosity distance dL given by

dls =
dL(zdec,Ωm,ΩΛ)

(1 + zdec)2
(31)

The main observational obstacle for BAO is the weakness of the acoustic feature

in the correlation function [67], so the �rst detection at z ≈ 0.35 was only reported

a few years ago, by [68, 69]. A crucial ingredient for the correct interpretation of

these distance ratios is obviously the precise determination of the size of the sound

horizon from the CMB.

SDSS The Sloan Digital Sky Survey plays an important part mapping out the

large scale structures of the universe. The distribution of matter is probed by

comparing the linear matter power spectra with data from the Sloan Digital Sky

6 The distance sound waves could have traveled in the time before recombination is called the
sound horizon s. It is a �xed physical scale at the surface of last scattering. The size of the
sound horizon depends on the values of cosmological parameters.
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Survey [11] and the 2dF Galaxy Redshift Survey [12]. Data from the SDSS [62]

allows us to measure a variety of observables and use them to determine the pa-

rameters and put constraints on them. It uses gravitational lensing to measure

distant objects to get a better picture and idea of the halos surrounding galaxies

and hence allowing a more precise matter power spectrum [13] to be obtained since

now the amount of Dark Matter can be better inferred.

12.1 Error Estimations

Error estimation is a major part of being able to decide and say with con�dence

which model is a best �t. Errors creep into observational values in mainly two

distinct ways, statistical and systematic. Errors are calculated using the standard

Fisher information7. A short description is given below. A Fisher matrix can be

used to calculate the covariance matrix that is essential in error measurements as a

covariance matrix is nothing but the variance measured in higher dimensions. Since

we know that the variance of a parameter is obtained from the matrix, let us now

assume we have a data set de�ned as O = {O1, O2, O3, ..., On}. Then the proba-

bility distribution function f depends on the parameters P = {p1, p2, p3, p4, ..., pn}
which we want to estimate. Then the Fisher matrix Fij becomes

Fij = −
⟨
∂2lnf(O;P )

∂pi∂j

⟩
(32)

The inverse of this matrix F−1
ij gives the best possible covariance matrix which

measures the errors of the parameters P . This information matrix comes in speci�-

cally handy when comparing two methods of observing. As by doing a comparative

analysis of the two di�erent matrices obtained for the di�erent parameter sets, one

can determine which has a better likelihood of the two methods. As mentioned

above even for the new SNe Ia data set the Fisher information and hence the

covariant matrix has been calculated for both statistical as well as systematic pur-

poses. It can be particularly handy for systematics as we can then calculate how

a systematic error in Oi propagates into the expected value of the parameter pj

through the following

δpj = (F−1)ij
∑
k

∆Oi
∂Oi

∂pk

1

σ2(Oi)
(33)

7 The Fisher information is a way of measuring the amount of information that an observable
random variable X carries about an unknown parameter θ upon which the likelihood function
of θ, L(θ) = f(X, θ) depends.
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13 Models Chosen

For testing the code and also the data sets ability to put better and tighter con-

straints, we have decided to pick up some cosmological models and see how it

a�ects the constraints on them as compared to previous data sets. For this pur-

pose we have decided to use some classes of Quintessence models.

13.1 ΛCDM Model

Vacuum �uctuations contributing to Λ, generate a very large value of the cosmo-

logical constant given by

⟨Too⟩vac ∝
∞̂

0

√
k2 +m2k2dk (34)

The integral diverges as k4 resulting in an in�nite value for ⟨Too⟩vac and hence also

for the cosmological constant Λ = ⟨T00⟩vac 8πG [86]. Since each form of energy

gravitates and therefore reacts back on the space-time geometry, an in�nite value

of Λ is expected to generate an in�nitely large space-time curvature through the

semi-classical Einstein equations G00 = ⟨T00⟩vac 8πG/c4 . One way to avoid this

is to assume that the Planck scale provides a natural ultraviolet cuto� to all

�eld theoretic processes, this results in ⟨T00⟩vac ∼ 1076GeV 4 which is 123 orders of

magnitude larger than the currently observed value ρΛ. A cuto� at the much lower

QCD scale does not fare much better since it generates a cosmological constant of

still 40 orders of magnitude larger than observed.

We �rst see how the data behaved for a cosmological constant and saw that

the results were consistent with what others [15, 16] had and were also sensible.

The reason for choosing this model as the starting point is due to the fact that till

date it remains by far the best �t model and has made its mark in cosmology so

far as to be considered the standard model. We use this as our reference model for

further comparisons among the di�erent models and see how far they may deviate

from this picture, since with more precise observations the window for deviation

from this model gets narrower.

13.2 Constant EoS ̸= 0

Models with constant equation of state w [49, 87, 102] within 20%, say, of the

cosmological constant value w = −1, but not equal to =1, do not have much
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physical motivation [37]. To achieve a constant equation of state requires �ne

tuning of both the kinetic and potential energies of a scalar �eld throughout its

evolution. It is not clear that a constant w ̸= −1 is a good approximation to any

reasonable dynamical scalar �eld, where w varies, and certainly does not capture

the key physics. However, since current data cannot rule out EoS variation on

time scales less than or of the order of the Hubble time, traditionally one phrases

constraints in terms of a constant w. For a constant equation of state there are

various ways to parametrize it. The most popular being

H2(a) = H2
0 [ΩRa

−4 + ΩMa−3 + Ωxa
−3(1+w)] (35)

where if w = −1 it reduces back to a cosmoloical constant.

13.3 Inverse Power Law Model

There are various reasons for studying the IPL model. One being it is a classic and

a point of reference till date for most quintessence models. Here we will focus our

attention on the tracker potential V (ϕ) ∝ ϕ−α where α > 1. which was originally

proposed in by Ratra and Peebles and Wetterich [18, 19] way back in the early 80's.

For this potential, the region of initial conditions for ϕ which the tracker regime has

been reached before the end of the matter-dominated stage is ϕin << MP ≡ 1/
√
G

, and the present value of the quintessence potential is ϕ(t0) ∼ MP . Work on this

potential is being carried out till today [111].

For the inverse power-law potential, ϕ has a tracker solution which maintains

the condition

V ” =
9

2
(1− w2

ϕ)(
1 + α

α
)H2 (36)

The condition that ρϕ is beginning to dominate today means that ϕ must be

O(Mp) today, since V ” ≈ ρϕ/ϕ2 and H2 ≈ ρϕ/M2
p . The one free parameter M is

determined by the observational constraint on Ω
ϕ
calculated today. Here is where

the �ne-tuning issue must be considered. To get the current observed value of

Ωϕ w 0.7 today, we need to impose the constraint M ≈ (ρmM
α
p )

1/α+4 [36].

13.4 Corasaniti Model

The next model chosen was the one proposed by Corasaniti and Copeland [108].

It is of particular interest as it allows for a large number of scenarois to be accom-
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modated in this particular case by choosing αand β carefully. The potential for

this quintessence model is given by

V (ϕ) =
M4+α

ϕα
e

1
2
(κϕ)β (37)

where κ
√
8πG andM are �xed such that the ratio of the energy densities ρϕand

ρc give the dimensionless density parameter as de�ned in eq. (5). For β = 0, eq.

(37) becomes the Inverse Power Law case whereas for β = 2 we can obtain the

SUGRA model [110]. For this very property the model is desirable to use during

testing and also to try and �nd a generic class of potentials for Quintessence.

This is due to the fact that if the Quintessence �eld rolls down a very �at region

the equation of state varies in the region of −1 < w0
ϕ < −0.8, whereas it has to

be larger for an Inverse Power Law. Other than these two classes of models by

choosing α = 0 and β = 1 we can also arrive at an Exponential potential [20]. So

it can be summarized by saying that if α, β ̸= 0 then the potential has a minimum

and the dynamics depends on these two parameters. Although for small values of

β and large initial conditions without �ne tuning, minimum is not reached for the

present epoch, it is possible to set both α, β large so as to avoid this. So by setting

a relatively small ϕ we can mimic IPL and hence BBN conditions are not violated

at any stage and no unwanted a�ects on the evolution of density perturbation is

seen. Another major plus point of this model is that for di�erent values of w0
ϕ

the universe starts to accelerate at di�erent redshifts which would have a direct

consequence on the observables [109]. So di�erent values of α and β give rise to

di�erent luminosity distances which can be measured and hence we could constrain

the EoS through this and hence maybe the shape of the potential.

Since for β = 0 the Corasaniti model boils back to the Inverse Power Law model

it also allows us to double check the code CMBEASY. Both IPL and Corasaniti

model when implented in to the code should essentially draw the same results and

constraints for the cosmological parameters if β is chosen accordingly. We did this

cross-check and found that it was indeed the case. This increased our con�dence

in using CMBEASY for the complete analysis for the remaining models and data.
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Part V. Results and Discussion

14 Results

A conventional way to determine how well a dark energy model can �t the obser-

vational data is the model-based approach, in which one optimizes the parameters

of each dark energy model based on the observational data and then statistically

assesses the goodness of the �t by using the likelihood method and also plotting

and analyzing the best �t model to the best likelihood. In such an approach one

has to obtain the best �t for each set of parameters speci�c to the particular dark

energy model, which might be time consuming yet e�ective in analyzing the mod-

els bit by bit. In particular, in order to optimize the parameters of a Quintessence

model the �eld equations are solved numerically for each point in the parameter

space, which is computationally very intensive and tedious [35]. This resulted in

signi�cant time being needed to investigate the chosen models.

The vast array of models proposed for Dark Energy makes comparison of every

model in the literature to the data a Herculean task. Hence here we selected only

four models and have tried to analyze these as intensively as possible. This list

is by no means complete and further work can be carried out on this front. Each

model was chosen based on the value it adds when analyzed. The starting point is

as always the concordance model. Then the constant EoS, though not theoretically

motivating if w is close to minus one, is still used as the next conventional point

to start and analyze Dark Energy models that deviate from the Standard Model.

After that we see what happens if one considers Quintessence models. For this we

have chosen the classic pioneering work of Ratra and Peebles �rst and as a last case

we have chosen the model proposed by Corasaniti and Copeland. The last model

was chosen because it allows a large class of quintessence models to be analyzed

by varying its coe�cients and it also allows a cross check of the numerical method

being used.

The results for each model and the consequences of the di�erent data sets and

the constraints that come out of them are discussed in the subsequent sections.

During the analysis we not only checked for the SNe data sets but also what would

happen if this were to be combined with other data. These data include BAO,

WMAP 5-year data and SDSS.
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14.1 Reiss Gold Sample

Based on theoretical motivation from in�ation as well as observational evidences

from the angular size scale of the CMB �uctuations [34] we start from the as-

sumption that the universe is �at, i.e. k = 0 and Ωm + Ωx = 1, where x will

denote the di�erent models [17, 21]. Here instead of starting with the assumption

that Dark Energy exists they start with the distance independent information to

justify the cosmological interpretation of SNe and subsequently combines it other

data [37]. Quantitatively,the adopted limit on systematics is de�ned to be 5% per

z at z > 0.1 as per the original sample. We see that the results obtained here are

indeed consistent with previous values and as seen before they best �t a ΛCDM

model at the 95% con�dence level. We also see that even for only SNe data we

still need w < −0.5 suggesting an accelerated universe.

Joint constraints on both the recent equation of state of dark energy and its

time evolution are a factor of ∼ 8 more precise than its �rst estimate and twice

as more precise than those derived without the SNe Ia discovered by HST. Both

of these dark energy properties are consistent with a cosmological constant and

are inconsistent with very rapid evolution of Dark Energy. The absence of rapid

evolution places constraints on the time in which a simple scalar �eld could evolve

to recollapse the universe. Speci�cally, the timescale to a potential recollapse is

larger than ∼ 30 Gyr. If Dark Energy is evolving towards larger negative w, we

cannot place any meaningful limit on the minimum time to a Big Rip.

Here we see what happens to the di�erent models we are trying to examine.

We have plotted the likelihood for the di�erent models with the orange contour

showing the Corasaniti model, the green-yellow signifying the IPL and the purple

contour being the Constant EOS. We see the IPL is already very constrained and

with more precise observations expected in the future, it might even be possible

to rule it out though till date it �ts the data almost as well as the concordance

model. We see that all of the models prefer a universe where Ωm lies between 0.24

to 0.28 with the best �t being 0.250 < Ωm < 0.265.
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Fig. 12: Total likelihood for Ωm for di�erent models using the Gold Sample

14.1.1 Λ Model
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Fig. 13: TotalLikelihood of Ωm

We see here that the likelihood in the case of SNe data alone is very close to that for

a combined data set which is given by Ωm = 0.2600+0.0063
−0.0061. Yet there is a substantial

di�erence in their best �ts with Ωmreiss
= 0.2851 and Ωmcombined

= 0.2598 while the

best �t for Ω2
b is 0.1345. We see that the Gaussian curve �tting the total likelihood

for Ωm is very close to the best �t model in this case - another clear indicator that
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it is indeed the concordance model or a model with a cosmological constant that

best �ts data. We see that the fractional analysis of the matter component into

baryons and Dark Matter also �ts well.

14.1.2 Constant Equation of State

Now we check for a more generalized case of Constant Equation of State. For this

case we have the luminosity distance given by

dL = cH−1
0

ˆ
dz[Ωm(1 + z)3 + Ωx(1 + z)3(1+w)]

1/2 (38)
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Fig. 14: Ωm vs w and Ωmvs Optdlss

We look at the likelihood for Ωm �rst and we see that Ωm = 0.2572+0.0068
−0.0072

while the best �t models are very close to each other at Ωmreiss
= 0.2687 and

Ωmcombined
= 0.2603. We also see that w = −0.9964 and is < −0.91 at a 95%

con�dence level. The best �t model has the value of w = 0.9059 for Reiss data8

alone and when combined with �at universe constraints including CMB and LSS

we �nd the Dark Energy Equation of State to be consistent with previous results

for an assumed static EoS of Dark Energy given by p = wc2. But our window

of allowed values narrows down even more as the other data now used is more

up-to-date as compared to when the original data set was published. Whereas the

claim in [37] is w < −0.76 we now claim that w < −0.92 at the 95% con�dence

level. This could be due to the fact that there is a strong degeneracy between Ωm

and w in the Ωm − w plane.

8 We have called the Gold Sample Reiss06 throughout our analysis in the plots.
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We have also tried to see how and what type of constraints we can get on the

optical depth and we see that the bounds start to tighten on the Ωm − optdlss

plane where we get well de�ned contours at the 2σ level.
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Fig. 15: Likelihood for Ωm

14.1.3 Inverse Power Law

Though a popular potential for theorists little attention has been paid to this

potential. Due to this factor we thought it may be bene�cial to invest a little time

on this model.
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Fig. 16: Likelihood shown for Ωm for the Riess data set and Ωmvs w
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Here we have decided to show only the consequences of the Reiss data set alone

though similar simulations were carried out for the combined data sets too. We

have shown only the SNe data set alone because we �nd it to be of more signi�cance

and feel the results derived are interesting. For the Ωm−w plane there are almost

no bounds on w and all values of it seem to be allowed for Ωm ∈ [0.265, 0.250] with

the best �t w = −0.99, still very close to the cosmological constant. This could

be due to the choice of α whereas we see that the contour for the likelihood of Ωm

is indeed very narrow and almost sharp. Maybe more and better SNe data may

be able to make the situation such there is a 1:1 relation between the two factors.

That would be an easy way in that case to be able to rule out this model in the

future. We see the values as Ωm = 0.2590+0.0062
−0.0062 with the best �t model being

Ωm = 0.2800.

We also look at the shape and contour for the optical depth and see that it

agrees very well with the present constraints achieved by the WMAP 5-year data.
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Fig. 17: The Likelihood shown for the Optical depth using only Reiss data
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14.1.4 Corasaniti Potential
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Fig. 18: Likelihood for w0 for combined data sets as well as only for Reiss data

Though there are many interesting features to address about this model we have

kept our concentration in this part mainly on the amount of matter allowed and

the EoS. As can be seen we have plotted for both combined as well as only Reiss

data to get Ωm = 0.2599+0.0083
−0.0083 with the best �t model having the value Ωmbest fit

=

0.2713. We see that though the overall value of w is given by wreiss = −0.96 and

wcombined = −0.94 the value of w0 for the combined data set tends to marginally

prefer w < −1 [57] with the best �t being w0combined
= −1.02. It will be interesting

to carry out a full MCMC including perturbations to see how the presence of a

potential of this type will a�ect the amount of Dark Energy present and hence the

structure formation overall.
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Fig. 19: Ωm vs w0
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14.2 SNLS/Astier Sample

Firstly, each of the various samples strongly supports the SCP/HZT conclusions for

the presence of a cosmological constant. Almost all samples exclude an Einstein-

deSitter (EdS) universe at greater than the 99% con�dence level and favor cosmo-

logical models with Λ > 0 at > 97% con�dence level. If we restrict ourselves to

�at k = 0 models, this con�dence increases to > 99% for all SN samples.

�

�
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Fig. 20: Ωm vs TotalLikelihood for di�erent models using the Astier Data set for
the SNe

Here once again we have plotted the total likelihood for Ωm and see how the

di�erent models fair. We see that in comparison to the Reiss data it is more

di�cult to tell the di�erences between the models. This can be due the di�erences

in rhe methods used to calculate likelihoods. Here the yellow colored part is the

Λ model, the purple is the IPL, while the front one is the constant EoS and the

red at the back is the Corasaniti model. We �nd that the Corasaniti model has

the largest contour.
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14.2.1 ΛModel
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Fig. 21: Likelihood of Ωm using the Astier data

We �rst start with the analysis of the standard model. We �nd the results are

in excellent agreement with previously presented values and we get the following

constraints as Ωm = 0.2575+0.0064
−0.0064 with the best �t being Ωmastier

= 0.2490 and

Ωmcombined
= 0.2565. We notice here that the di�erence between the best �t model

and the maximum likelihood once again almost coincides as would be expected.

The values for the coe�cients αast and βast are 1.60 and 1.81 respectively.

14.2.2 Constant Equation of State

The constraints on Ωm for the combined data set fairs much better than that of

only the SNe data set. But though the likelihood contour is better we also see that

the fudicial model falls out of the 68% con�dence region.
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Fig. 22: Likelihoods for Ωm for the combined data sets of CMB+SDSS+BAO+SNe
and also for the SNe data set of Astier et al. or SNLS

The value for we obtain is Ωm = 0.2547+0.0067
−0.0064 while the best �t value is given

by 0.2504. Since the fudicial model falls well within the con�dence region for the

SNe data but not the combined data sets we can make the assumption that the

other data sets cause a shift of the likelihood of Ωm away from the chosen fudicial

model.

The values for w for both the combined data as well as the SNe alone are given

as wAstier = 0.9846+0.0179
−0.0160 and wcombined = 0.9845+0.0176

−0.0176.
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Fig. 23: Ωmvs w for the combined data sets.
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14.2.3 Inverse Power Law

We once again see the same phenomena here as we did for the previous model.

That is the contour for the total likelihood is better de�ned than that of the SNe

data alone, yet the fudicial model seems to support the SNe data better. Since

this is being seen in two very di�erent models, it is possible there was a certain

bias introduced in the measurements for the SNe calculations.
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Fig. 24: Likelihoods of Ωm for Astier data and the combined data sets

The best �t models are respectively given by ΩmAstier
= 0.2502 and ΩmCombined

=

0.2585, while α = 0.013 although it seems to have alot of spread.
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Fig. 25: Likelihood region of αfor an Inverse Power Law potential at the 2σ level
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14.2.4 Corasaniti Potential

Once again the same situation persists for the combined data set. But we also see

additionally that the same happens in the case of w0 where the fudicial model is

barely within the con�dence region.
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Fig. 26: TotalLogLikelihood for Ωm and w

We get ΩmAstier
= 0.2483, Ωmcombined

= 0.2462, woAstier
= −1.02 and w0combined

=

−1.08. We observe a shift towards the phantom region being present. This is

clearly seen from the fact that there are no bounds in that direction.
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Fig. 27: Ωmvs w
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14.3 Union Nosystematics

Since we are trying to do a thorough systematic analysis and check-up of di�erent

models it is critical to employ robust data that is clearly interpretable. It is

equally important to get a handle on the con�dence in the error estimates for both

systematic and statistical uncertainties. This has been done in the uni�ed analysis

of the world's heterogeneous SNe data set- the Union Compilation08 [15].

This SNe compilation includes both the large data samples from the SNLS

and ESSENCE survey, the compiled high redshift SNe observed with the Hubble

Space Telescope, a new sample of nearby SNe, as well as several other, small data

sets. All the SNe chosen for this sample had to go through a series of test before

being quali�ed as up to the mark in quality. They had to be available in two

bands to measure color, have su�cient light curves to make a meaningful �t, have

observations starting well before the maxima is reached. The a�ects of the local

Hubble Bubble, peculiar velocities etc were also taken into account. The samples

were then tested blind for any inconsistencies in their calculations before being

combined into one complete single �le. The �nal data set consists of 307 SNe

which is the basis for the analysis of the next sections.
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Fig. 28: TotalLIkelihood for Ωm for di�erent models taking the Union Data set
into account but calculated without systematics
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Here, like in the previous cases, we have plotted the likelihood of Ωm for all

four models chosen and their color correlations are in the following order of yellow

for the corasiniti model, green-brown for IPL, pink for the constant EoS and blue

for the ΛCDM . We see that though the constant EoS and concordance model in

this case have almost the same value the other two models are at a tilt to these

and also have a larger area. The fact that both the constant EoS and the Λ model

are almost identical could be attributed to the fact that w for the constant EoS

is close to that of Λ. Hence it is di�cult to di�erentiate, but also means there is

no signi�cant gain by studying the constant w model so close to the concordance

model.

14.3.1 ΛModel
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Fig. 29: ΛCDM

Achieving informative constraints on the nature of dark energy requires re-

stricting the degrees of freedom of the theory and the resulting degeneracies in the

cosmological model being tested. One degree of freedom entering the model is the

present matter density Ωm. For the case of the spatially �at cosmological constant

Λmodel, this is the sole cosmological parameter determining the distances entering

the SNe magnitude-redshift. Using the Union data we get Ωmunion
= 0.2575+0.0064

−0.0064,

the best �t value is Ωmunion
= 0.249 , and the best �t value for combined data is

Ωmcombined
= 0.2565. We have also tried to see how the optical depth looks for a

combined data set and see very good agreements with the fudicial model sitting

almost at the center of the con�dence region. We also did a comparative analysis
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of the χ2 published by [15] and found our results to be in good agreement with

theirs.
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Fig. 30: Age of the Universe given in years.

Last but not least we try and take a look at how the age of the universe is

a�ected by all this as there is a direct relation between the age of the universe

and the redshift-luminosity relation which can be obtained using (11) and (10). It

can easily be appreciated that at least a cosmological constant term is required to

have the age of the universe the way we know it from recent observations of old

globular clusters and other things. Using the value of H0 got from HST we �nd

that the age is given by ∼ 13 billion years.

14.3.2 Constant Equation of State

Generally, further degrees of freedom to describe the nature of Dark Energy, i.e.

its Equation of State (EoS), or pressure to density ratio is needed. In a few cases

the EoS is a free parameter or is determined by the matter density Our next way

to parametrize the EoS is to allow it to deviate from −1 but still be constant.
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Fig. 31: Likelihoods for w0

In this section we investigate various parameters for a constant EoS model, and

the observational constraints that can be placed upon them using the Union data

set. It is to be noted that throughout this section that only statistical errors are

being taken into account. We get ΩmUnion
= 0.2561+0.0067

−0.0068 at the 68% con�dence

level where as it is 0.2561+0.0130
−0.0133 at the 95% level. The best �t models for the SNe

data alone and the combined data are Ωmunion
= 0.2769 and Ωmcombined

= 0.2592.

We see that the amount of matter present changes on a few percent level as soon as

there is a combination of data sets, the value of w is 0.9827+0.0266
−0.0198 and is < −0.92

on a 95% con�dence level. The best �t models are very close to the −1 mark at

wcombined = −0.989 and wunion = −0.99.
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Fig. 32: Likelihood for Ωm
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14.3.3 Inverse Power Law

We again see that the Ωm − w plane cannot break the degeneracy to be able to

determine w for a well de�ned value of Ωm. Ωm is better constrained for the SNe

data alone as compared to combined data sets of SDSS+WAP+BAO with its value

being 0.2800. and 0.2591 for SNe alone and combined respectively.
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Fig. 33: Likelihoods for Ωm for combined data sets as well as for Union data set
alone without systematics
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Fig. 34: Ωm vs w for an IPL model using the Union SNe data set

w < −0.86 for the union data alone and < −0.80 for the combined case. with
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the best �t value being at −0.88 , whereas the best �t value of α di�ers quite a bit

for the two di�erent scenarios. We �nd αunion = 0.035 whereas αcombined = 0.014.

14.3.4 Corasaniti Potential

We again do the same analysis for the Corasaniti model and get Ωmunion
= 0.2604+0.0079

−0.0079

with best �t being 0.2792. For the combined data set the best �t is 0.2626. We

also �nd that w lies at < −0.70 at the 95% con�dence level.
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Fig. 35: Likelihoods for Ωm

We once again see that the w0 parameter crosses over the phantom line of −1

with w0 = 1.07 at the 68% level and the best �t is −1.025 and −1.015 for union

and combined data respectively.
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Fig. 36: Likelihoods for wo
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14.4 Union Systematics

Since it is of utmost importance to make sure the systematics are taken into

account we discuss here abit about how the χ2 is calculated for this data set

before going into the actual values obtained. The corrections of Tripp [38, 32]

were adopted given by

µB = mmax
B −M + α(s− 1)− βc (39)

It is clear that β is purely empirical as it accounts for dust and intrinsic color-

magnitude relation. The χ2 for eq. (39) is given by

χ2 =
∑
SNe

(µB − µ(Ωm,Ωx, z, w))
2

σ2
tot + σ2

sys +
∑

i,j cicjCij

(40)

Here Cij represents the covariance matrix of the �t parameters and the sum in the

denominator represents the total statistical error. Of importance here is the term

σ2
sys which is linked to the systematic errors. This σ2

sys has two basic parts to it,

the common irreducible one and one that is observer dependent. The systematic

dispersion is calculated by starting from a value of σsys = 0.15 magnitude and then

calculating the best �t model for that value. All models which have σ > σcuts are

�rst removed. Then iterations for σsys are continued until a unity in χ2 is reached.

Once unity in χ2 is reached regular χ2 statistics is used. A covariance matrix of the

best �t parameters taking systematics into account is also produced and used for

calculations of the total error estimation later. The systematic e�ect propagates

into eq. (40) by adding a nuisance parameter ∆Mi to µB.
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Fig. 37: Ωm likelihoods for di�erent models now including systematic errors

We see the result for a superimposed set of models for a SNe union data set. We
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see that purple signi�es the Corasaniti model, yellow corresponds to the constant

EoS, dark purple is the IPL while in the front we have the concordance model.

14.4.1 Λ Model

After having analyzed the union data without systematics for the Λ model it is

only natural we do the same for it here. We once again see that our results are in

agreement with the SCP group and also that we get the exact χ2 as they do for

our value of Ωm.

0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280
-1500

-1498

-1496

-1494

-1492

-1490

-1488

Omegam 

T
ot

al
L

og
li

ke
 

Fig. 38: Likelihood for Ωm

We get the value of Ωm to be 0.259+0.0120
−0.0120 at the 95% con�dence level. We have

also tried to see how adding systematics has any e�ect on the age of the universe

and we see there is not a very large change there. But this could be due to the fact

that the error bars associated with it are larger. We also plot the optical depth

and once again see a perfect agreement with previous results and also that the

fudicial ΛCDM model seems to �t �ne and is in fact supported.
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Fig. 39: Age of the universe vs Ωm and optical depth vs Ωm

As expected the age is very well bound assuming the HST value of H0 to be

the correct. We also assume, it is indeed Dark Energy that drives the acceleration

of the universe.

14.4.2 Constant Equation of State

We see here a clear indicator for maybe a crossover EoS being preferred over one

where w > −1.
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Fig. 40: Likelihood for w

We see the plots for the Likelihoods for w for both the SNe data as well as the

Total data sets which as recalled included the BAO+CMB+SDSS. We see that

Ωm = 0.2561+0.0070
−0.0070 at the χ2 level and Ωm = 0.2561+0.0140

−0.0130 at the 95% con�dence.

Once again there is a very marked shift in the fudicial model values with them

being 0.2804 and 0.2577 respectively. We see that w = 0.9822+0.1217
−0.0802 at the 95%

con�dence level.
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Fig. 41: Ωm − w plane

14.4.3 Inverse Power Law

Inverse Power Law has not been studied for the Union data set before so we thought

it makes sense to see if this improved more uni�ed data set has any e�ect on this

particular model. From table 6 we �nd that Ωm ∼ 0.26 which is by no means a

way of saying this model can be ruled out and it favors a w = −0.700.
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Fig. 42: Ωm vs α

In this section, however, we have tried to see how the value of α behaves in a

Ωm − α plane and we �nd that it is very di�cult to break any form of degeneracy

here. Hence there is a smear right across the α axis. The values obtained for α

from χ2 statistics were αcombined = 0.030 and αunion = 0.019. We also took a look

at the baryonic fraction present to see how it �ts with the current standings and

it agrees very well.
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Fig. 43: Ωmh
2 vs Ωbh
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14.4.4 Corasaniti Potential

Last but not least we take a look at how the union data set including systematics

e�ects the parameter constraints on the Corasaniti model because as mentioned

above though a very nice and handy model little attention has been paid to it.

The value of Ωm for the combined data sets is 0.2595+0.008395
−0.008395 with the best �t value

being 0.02628.
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Fig. 44: Likelihoods for w0

We see here the total likelihoods for the combined as well as for the SNe data
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alone in �g 44. The values we get are Ωm = 0.2595+0.01640
−0.01640 at the 95% con�dence

level while w < −0.974 at that same level. ac has the value of 0.18. Once again

we see that all these values are well within the range allowed by observations, so

more attention needs to be paid to this model before ruling it out.
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Fig. 45: Ωm vs ac and Ωm vs Totallikelihood
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15 Discussion

We �nd that no matter which model is chosen, there is clearly not enough predictive

power on their part to distinguish them from one another. Although some of the

models do make predictions, the variation in the values of the parameters they

suggest are well below the cut-o� sensitivity of current generation experiments.

The results of the two high redshift SNe teams [17, 21] that the universe appears

to be undergoing acceleration created waves and headlines in both the scienti�c

and mainstream media. One of the things that need to be considered now is go-

ing beyond redshift greater than one or more. By going out to higher and higher

redshifts we continuously minimize our chances of getting systematic errors. As

we know that Dark Energy has only started to dominate in recent times. Matter

scales as (1 + z)3, which means as we go further back it should be the dominant

consitituent of the universe. So one should be able to see a clear turn over point.

If we are to go even further we would see a decelerating universe instead of the

present acceleration. Most realistic systematic e�ects such as evolution [25] and

anomalous extinction would not show such behavior and would rather keep in-

creasing with redshift. So probing further out into this regime will allow us to

answer many questions. It might let us say something about the reliability of the

cosmological parameter measurements and the e�ect of systematics on them. It

will allow us to put better constraints on di�erent types of models. It might solve

the problem of whether it is a cosmological constant or a dynamical Dark Energy

that is responsible for the current acceleration as the scaling of the two models in

the past would be signi�cantly di�erent.

On the other hand it is also very important to take a look at the low end redshift

supernovae since they work as the calibration tools. Without them we do not have

much use for the high z SNe's as we would not have a way of calibrating. The

study of low redshift SNe play a vital role in understanding the physics involved

for a SNe. This is needed if we want to be use the observartions obtained for

SNe from a fundamental theory point instead of emperically only. Studying low

redshift SNe allows us to do a better spectroscopic and photometric analysis of

the object, hence providing a cleaner sample to work with. Also we need to �ll in

the missing gap that seems to exist between the low and high redshift SNe so as

to be able to make a complete analysis.

The high relative redshifts of the HST-discovered SNe Ia provide little addi-

tional power to constrain w which is �xed a priori to be redshift-independent. The

only way to increase the precision of the constarints put on cosmological parame-
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ters from SNe is by increasing their sheer numbers as the precision is dependent

on the statistics with only a weak dependence on the redshift. But this is only

applicable until the systematic error limit is reached.

We have seen that the errors in systematics and statistics are almost of the same

order of magnitude. Hence, by increasing the sheer number of objects observed

without fully understanding the systematics involved we no longer gain much.

Furthermore, the larger is the number of SNe observed, the more di�cult it will

be to get full spectroscopic analysis for all of them resulting in lower precision

and con�dence in the sample's purity. It will be di�cult to say that a sample

was not contaminated by other sources of SNe like SNe II or SNe Ib. Under these

conditions we need to ask whether increasing the number of objects observed lead

to a better �t of the cosmological parameters.

We have tried to see what happens for a constant EoS but for high-precision

predictions of CMB anisotropies it is better to use a scalar-�eld description in

order to have a self-consistent evolution of the sound speed associated with the

Dark Energy perturbations.

Also an indepth analysis including perturbations need to be done, as here we

only run the numerical simulations for the background without taking into account

the full code incorporating the perturbations.

Although it stands till today as the major observational evidence for Dark

Energy and a direct probe of it, by carrying out more and more experiments for

SNe observations without �rst �nding better fundamental theories and consistent

ways of measuring the light curves that all groups agree on, we see that the gain

is not signi�cant. Maybe time has come to rethink investing in SNe observations

and look beyond them, as was the case with space based missions once the moon

was reached. So a question that needs to be asked is how should the DETF deal

with SNe and what type of budget should be allocated for it?

Since SNe alone are not enough to constrain cosmological models and we need

to �nd better methods and techniques all the time, it might make sense to focus on

the BAO. Among all the observables BAO is least likely a�ected by systematics.

It does not go through extinction processes nor brightening and dimming, it is

a �xed de�ned number. Yet since BAO studies are still in its infancy stages

the errors associated with it are also large due to lack of understanding. More

emphasis can be given on understanding what theories underlie BAO. It might be

possible to make it one the most reliable observables for the future, though using

it at the moment to try and constrain models other than ΛCDM and constant

w [5, 6] makes little sense. Since there are many e�ects like correlation function
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from redshift space, structure formation, matter power spectrum etc associated

with BAO, systematic uncertainties need to be assigned to it carefully. But this

requires a complex understanding and analysis of the original data and at the

current stage results are not e�ected too much without it. But for the future as

we get closer and closer to higher precision being able to evaluate the systematic

uncertainty will become crucial.

What would be an interesting question for future is: Does a perfect SNe Ia set

help distinguish between di�erent models? Assuming we had a set of SNe data

free of all systematics and also through the whole range of low redshift to high

redshift with no gaps in between, do they have enough information stored in them

to be able to make the subtle di�erences required to distinguish between di�erent

models?
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Part VI. Conclusion

In this thesis we have looked extensively at what happens to di�erent models under

di�erent data sets. We have given special emphasis on the supernovae data. We

have analyzed the models using previous and present data sets of supernovae to

see if indeed there is any signi�cant change in precision or constraints by merely

increasing the number of SNe and hence reducing the statistical errors. We found

that it does not make a huge di�erence on the constraints achieved.

We took a look at the DETF report, with special emphasis being put on SNe

observations and projects to be launched for that particular reason. Here it is

worth noting that one needs to rethink the importance of the role of SNe data in

cosmology as is already been being done by the EUCLID where in their preliinary

suggestions to launch experiments dedicated to Dark Energy they suggest using

BAO and Weak Lensing (WL) as alternative probes to SNe [4].

We modi�ed the CMBEASY code and implemented the union data set into it

to be able to take a look at the SNe Ia data extensively. We veri�ed the implemen-

tation by taking the case of a simple ΛCDM model and counter checked it with

results obtained by the SCP group. We also cross-referenced it with the results

for the combined data set analysis including CMB, BAO and SDSS and found the

results to be consistent with previous �ndings. After the code was double-checked

we used it to implement the Union Data set to other models by making slight

modi�cations to the code each time. The implementation was basically done by

using the code provided by the SCP group to calculate χ2 and the covariance

matrices required for both systematic and nonsystematic errors [15]. The original

algorithm written in FORTRAN90, was converted to a C++ format to be com-

patible with CMBEASY. We then used the modifed CMBEASY code and tested

various Quintessence models with it. We could take this one step further and anal-

yse for Modi�ed Gravity and Coupled Quintessence. I am particularly interested

to see how the Growing Neutrino model will behave for di�erent values of the β

coe�cients. Do we have enough data and precision to get strong bounds on the

mass of the neutrino will be fascinating to explore.

We found that the SNLS results contradict the results obtained from the Gold

data set. This fact had been noted previously for an earlier Gold data set in [91].

However, the di�erence is not very large. At the 2σ level the results from both data

sets are consistent with each other. The fact that the light-curve standardization

of the two data sets is done using di�erent methods, MLCS2k2 for Gold+HST

and SALT for SNSL may lead to di�erences of up to 0.16 magnitude in the data.
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The discrepancy in the cosmological results may therefore be attributed partly to

the di�erent standardization techniques. There are also possible e�ects from other

sources in the data, such as systematic noise and K-correction.

We took a close look at what happens when we introduce systematic e�ects

to the SNe data set and �nd the statistical and systematic errors are of the same

order of magnitude. The Fisher information was used to create a covariant matrix

to determine the systematic errors. We note that as soon as the systematics is

taken into account the constraints are no longer as stringent. This once again is a

strong indicator that we need to look at the systematics more carefully before we

take on the daunting task of calculating spectroscopic and photometric analysis of

even more SNe.

We focused mainly on Quintessence models to see how they fair now and

whether it is not possible to rule them out based on current observations. We

carefully analysed the Corasaniti and IPL model and its parameters. We found

that the allowed parameter space for the Corasaniti model is larger than the rest

in the combined plots of Ωm, whereas it is more constrained in the IPL model. We

chose these two models in particular because they can be cross-checked against

each other provided the coe�cients are correctly chosen. We did this and found

the results to be in perfect agreement. As future work, the SUGRA model could

be added to this analysis, to put further pressure on the Corasaniti model as well

as the modi�cations to the program.

What was striking was the fact when the SNe data sets were combined with

BAO, CMB and SDSS some models did not �t within the 2σ con�dence region

though at the 3σ level it got better. This problem was most severely noticed in

the Astier data set for the IPL and Corasaniti model. Do these results provide

enough for models to be disfavored or is it possible that a variation in their respec-

tive coe�cients which essentially changes the slope or steepness of the potential

can help overcome these narrow margins. More detailed analysis with more time

invested in optimizing the values of the coe�cients for the Corasaniti and the IPL

model need to be done.

It seems that using just the current SNe data sets alone, a �rm conclusion

cannot yet be reached about the nature of Dark Eenergy. We may conclude that

while the cosmological constant is more or less consistent with all data sets, evolv-

ing Dark Energy cannot be ruled out. So it was very important to have robust

methods and data in place to try and constrain the cosmological parameters as

much as possible. Geometric probes from the Type Ia supernovae (SN) distance-

redshift relation, cosmic microwave background (CMB) acoustic peak scale shift
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parameter, and baryon acoustic oscillations (BAO) angular scale serve this essen-

tial role. It was very important to combine the SNe observations to these di�erent

independent data sets. We used information on the shift parameter R from the

5-year WMAP data and the quantity A for the baryon acoustic oscillation peak

from SDSS for our analysis. The results are consistent with ΛCDM but do not

rule out weakly time dependent Dark Energy models. Furthermore, when a full

analysis with all the combined data sets of WMAP+BAO and LSS was carried

out, the results for all the of SNe data sets were strikingly similar. These data are

combined by multiplying their likelihoods. When combining data sets one needs

to be very careful to account for any shift in of the CMB sound horizon. It can

be noted that combing these data sets make a di�erence to the values of the cos-

mological parameters. While SNe data alone is not very good at constraining w,

we get fairly rigid constraints on a few percent level when used in combination

with other data. As we combine data sets it gets more and more di�cult to rule

out the ΛCDM model though it may not seem very appealing from a theoretical

perspective. We see that most observations �t the concordance model the best

with Ωm at about one-quarter of the energy density of the universe. Yet it is by

no means clear that even the most classical of Quintessence models can be ruled

out by present day observational values.

So in our investigation of the Reiss Gold, Astier and the Union data set in

the ΛCDM , EoS, Corasaniti, and IPL model using the MCMC method adopted

in the CMBEASY numerical code, we have found a various number of stiking

similiraities. We have found that the value of Ωm for the Reiss data set alone for

all models, among which the Corasaniti and IPL model are investigated for the

�rst time is almost identical. We �nd Ωm for a ΛCDM has the value 0.2600+0.0063
−0.0061

and for the IPL it is 0.2590+0.0062
−0.0062 while for the Corasaniti model it is 0.2599+0.0083

−0.0083.

We �nd these values to be lower than estimated by other groups which claim

Ωm = 0.290+0.050
−0.030 [15, 91, 37]. The interesting part to notice is that, this is not

only true for a data set giving same results for di�erent models. The reverse also

holds. By just using di�erent and better data sets we did not gain much in terms

di�erentiating between models. This is clear if we look at table 6. We have found

that even for newly tested models like the IPL and Corasaniti the value of Ωm is

very close to 0.26. We found Ωunion
mIPL

= 0.2579+0.0063
−0.0063 and Ωreiss

mIPL
= 0.2590+0.0062

−0.0062 for

the IPL model and Ωreiss
mcorasaniti

= 0.2599+0.0083
−0.0083 and Ωunion

mcorasaniti
= 0.2595+0.0083

−0.0083 for

the Corasaniti model. Including systematics as we know them today does not help

to break this similarity. We also found that when the Reiss data is implemented

with the WMAP 5-year data, it tends to give a much higher value of w as compared
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to [37] where w < −0.76 at the 95% con�denc level. We claim w < −91 at the

95% confedence level. We saw that although the value of Ωm is almost identical in

all the cases investigated there is more variation in w over the range of data sets

studied. A much lower value of w is preferred by the Astier data as compared to

the others. We also found a slightly lower value than −1 can be preferred for w in

the case of the Corasaniti model.

The IPL is one of the oldest models of Quintessence to date while the Corasaniti

model is one of the more exciting ones. We have tested both of these extensivley.

We have found that by no means can these two models be ruled out, infact they

are in good agreement with observations. By choosing some old models we have

proven that a much more closer look at the theory and hence systematics of the

SNe needs to be taken. What are the astrophyiscal proccesses behind the SNe Ia

explosions or what is the theoretical motivation behind the models etc.

We conclude by saying that more emphasis needs to be given on ways to elim-

inate models instead of coming up with new ones. Since even one of the very

earliest and well understood models cannot be ruled out; unless there is theortical

motivation on a more fundemental level the questions to be answered are: Why

should Λ = 0 or how can the potentials be more fundamental motivated?
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