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ABSTRACT 
 
Development of a new, or candidate, therapeutic drug is a challenging process that must 

ensure that favorable target selectivity, potency, pharmacokinetics, and pharmacodynamics, as 

well as lack of toxicity, all fall within the therapeutic window. During the hit-optimization 

stage, the focus shifts toward optimizing potency and target selectivity. Fragment-based 

methods have recently been developed to the point where they represent a promising strategy 

in drug discovery, where a variety of biophysical techniques may be employed for fragment 

library screening and characterizing hit-fragments. Hit-fragments deduced from fragment-

based screenings typically have ligand efficiencies (LE) exceeding those of average HTS-hits. 

Structure data on the complexes formed by fragment-target-protein structures yield a much-

better starting point for hit optimization and lead discovery. 
 
This dissertation presents two fragment-screening studies. Under the first, surface-plasmon-

resonance (SPR) analyses and biochemical assays at high compound concentrations (HCA) 

were employed in primary screenings of protein-kinase A (PKA) that were followed by X-ray 

crystallographic determinations of the structures of the PKA-fragments involved. The aim of 

that study was testing the characteristics, outcomes, and limits of both SPR and HCA as 

fragment-screening methods, as well as estimating hit rates that could be confirmed by X-ray 

crystallographic analyses. Under the second, in-house, biochemical-assay data were used for 

selecting the fragment-like inhibitors of PKA to be subjected to X-ray crystallographic 

structure determinations. The biochemical-assay data involved were taken from screening 

campaigns, such as high-throughput screenings (HTS), or other, available, in-house, 

biochemical-assay runs. The goal there was estimating the extent to which existing HTS-data 

might be utilized for obtaining three-dimensional, fragment-target, protein structure data, 

without need for conducting any additional fragment-screening runs. 
 
Following screening a library of 257 fragment-like compounds using SPR and HCA, a total of 

26 hit-fragments were chosen for X-ray structure determinations, which yielded the structures 

of nine fragment-PKA-structures. Under the second approach, 67 fragments exhibiting > 50 % 

inhibitions taken from the available, in-house, biochemical-assay data were selected for 

structure determinations, which yielded the structures of 21 fragment-PKA-complexes. Both 

approaches yielded respectable hit rates and descriptions of the characteristics of numerous 

fragment-protein interactions. The structural information and data on fragment-target-protein 

complexes gained from those two setups might well accelerate the drug-discovery process 

throughout the pharmaceutical industry. 
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 ZUSAMMENFASSUNG 
 
Die Entwicklung eines neuen therapeutischen Arzneimittels ist ein umfassender Prozess. Sie 
schließt umfangreiche Studien von Wirksamkeit, Selektivität, Pharmakokinetik, 
Pharmakodynamik und Toxizitätsbestimmungen ein. Während der Hit-Optimierungsstufe 
liegt der Fokus auf der Optimierung von Bindungsaffinität und Selektivität. Als 
vielversprechende Strategie werden seit kurzem Fragment-basierte Studien als neue Methode 
im Bereich der Wirkstoffidentifizierung angewendet (Fragment Based Drug Discovery - 
FBDD). Dabei kommen eine Vielzahl biophysikalischer Technologien für das sogenannte 
Fragment-Screening und die Charakterisierung von Hit-Fragmenten zum Einsatz. Die im 
Fragment-Screening gefundenen Hit-Moleküle haben in der Regel eine höhere Ligand-
Effizienz (LE) als HTS-hits. Die nachfolgende Aufklärung des Bindungsmodus der Fragment-
Hits im Proteintarget durch Röntgenstrukturanalyse ist essentieller Bestandteil des Fragment-
Screenings. Die Strukturdaten dieser Fragment-Target-Proteinstrukturen gebildet geben einen 
viel besseren Ausgangspunkt für die folgende Hit-Optimierung durch rationales Design. 
 
Die vorliegende Dissertation präsentiert zwei Fragment-basierte Studien zum Screening von 
Protein-Kinase A (PKA) Inhibitoren. Zuerst wurden Oberflächen-Plasmon-Resonanz (Surface 
Plasmon Resonance - SPR) Analysen und biochemische Inhibitionsmessungen bei hohen 
Fragment Konzentrationen (High Concentration Assay - HCA) durchgeführt. Danach erfolgte 
die Strukturbestimmung der PKA-Fragment Komplexe mit Hilfe der Röntgenstrukturanalyse.  
 
Das Ziel dieser Studie war die Prüfung der Kenndaten, Ergebnisse und Grenzen von SPR und 
HCA als Fragment-Screening-Methoden, sowie die Bestätigung der Fragment-hits durch 
Röntgenstrukturanalyse. In der zweiten Studie wurden Daten eines bei Merck etablierten 
biochemischen Assays für die Fragmentwahl herangezogen und ebenfalls die Struktur dieser 
Fragment-PKA Komplexe kristallographisch bestimmt. Die biochemischen Inhibitionsdaten 
werden parallel zu den Screening-Kampagnen, wie z. B. High-Throughput-Screening (HTS) 
und anderen Merck internen Tests erfasst. Ziel war es, zu klären, in welchem Umfang 
bestehende HTS-Daten ohne zusätzliches Fragment Screening für den Erhalt von drei-
dimensionalen Fragment-Target-Protein-Struktur-Daten genutzt werden können. 
 
Es wurde eine Bibliothek von 257 Fragment Molekülen mittels SPR und HCA gescreent. Aus 
den Ergebnissen wurden insgesamt 26 Hit-Fragmente für X-ray Bestimmungen gewählt, 
woraus neun Fragment-PKA-Strukturen gelöst werden konnten. Im zweiten Ansatz wurden 
67 Fragmente für die Röntgenstrukturanalyse ausgewählt, die in den biochemischen 
Inhibitionsmessungen eine mehr als 50%ige Hemmungen der PKA Substrat-Phosphorylierung 
zeigten. Aus diesem Ansatz  ergaben sich 21 Fragment-PKA-Komplex Strukturen. Beide 
Ansätze ergaben beachtliche Trefferquoten und interessante Bindungsmodi der Fragment-
Protein-Interaktionen. Die in dieser Arbeit identifizierten Fragmente und Proteinstukturen 
zeigen den Erfolg Fragment-basierter Methoden in der Wirkstoffforschung. 
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Chapter 1 

INTRODUCTION 

 

 

1.1. FRAGMENT-BASED LEAD DISCOVERY (FBLD) 

The development of new therapeutic drugs requires the maturation of chemical compounds 

possessing attributes that makes them effective medications. Specificity, potency, 

bioavailability, duration of action, and lack of toxicity are some of the parameters that have to 

be considered and optimized in the course of designing drug molecules and that define the 

final characteristics of drug-like compounds. The challenge in preclinical drug discovery 

research is identifying the optimized molecular properties involved. 

 

Screening large collections of compounds is a leading paradigm for identifying new starting 

points for developing drug molecules. Under screening campaigns, large collections of 

molecules are rapidly tested for activity against targets using high-throughput screening 

(HTS) techniques. Compounds identified as hits are characterized and upgraded by 

pharmaceutical chemists in order to arrive at drug-like properties (Jhoti, 2005).  

 

Upgrading compounds listed in screening libraries leads to the development of molecules that 

are characterized as “lead-like.” Lead-like molecules possess a majority of the parameters of 

drug-like compounds, but lack final proof that they are optimal choices. The concepts “lead-

like” and “drug-like” have been developed in order to describe what constitutes good leads for 

drug development, and imply cutoff points in the physicochemical profiles of the compounds 

involved that will limit their complexity, for example, confine their molecular weights to 

values < 400 (Hann and Tudor, 2004) 

 

Recently, there has been increasing interest in a new approach to generation of lead-like 

molecules based on identification of small molecules termed “fragments” (Davies, et al., 

2004). Such fragments have low molecular weights, typically less than 300 Da, and usually 
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contain fewer functional groups (Hartshorn, et al., 2005). Employment of fragments in drug 

development is alternatively referred to as “fragment-based lead discovery (FBLD), 

“fragment-based drug discovery,” (FBDD) or “fragment screening.” 

 

Employment of FBLD has revealed several key factors that are critical in the case of 

fragment-based approaches and distinguish them from other hit-identification techniques. The 

first is a more-efficient probing of the chemical space (Jahnke and Erlanson, 2006). Screening 

collections of smaller molecules allows more efficiently covering the chemical space 

involved, which may be exemplified by comparing a library of fragment molecules with a 

library of molecules that might have come from an HTS-collection program. The theoretical 

total number of prospective fragment molecules composed of twelve or fewer heavy atoms, 

excluding three-member and four-member ring structures, has been estimated to be 107, while 

the total number of prospective drug-like molecules, i.e., molecules composed of thirty or 

fewer heavy atoms, has been estimated to exceed 1060 (Jahnke and Erlanson, 2006). A 

fragment-compound library listing fewer molecules than a library listing molecules obtained 

from an HTS-collection can therefore represents a basis for screening more of the chemical 

space falling within the applicable molecular-weight range. Fig.1 depicts the definitions of 

chemical space employed in HTS and FBLD. 

HTS FBLD

 
Fig. 1. Illustration of the expansion of the chemical space covered under FBLD (Jahnke and Erlanson 
(2006)). The estimated, theoretical drug space covers 1060 molecules (Jahnke and Erlanson, 2006), while the 
theoretical fragment space covers 107 molecules, which leads to a greatly condensed compound collection, or 
library, capable of covering larger portions of the chemical space when working with FBLD-approaches. 
 

The second results from the fact that smaller molecules are better able to adapt their 

interactions to suit conditions in targets’ binding pockets, which leads to fragment binding 

Theoretical “drug space” 
(MWT < 500):  

1060 molecules 

HTS-collections: 

108 molecules 

 

Theoretical “fragment space”
Fragment libraries: 

(MWT < 160):  
103 molecules 107 molecules 

~ 1:104 ~ 1:1052 

Source: Fragment-Based Approaches in Drug Discovery, (2006), Wiley VCH 
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efficiencies per atom, which might also be termed “ligand efficiencies” (LE), that are at least 

equal to those for larger hit-molecules. Fragment LE are defined as their Gibbs free energy, 

∆G, divided by the total number of heavy atoms, i.e., atoms heavier than hydrogen, #HA, that 

they incorporate (Hopkins, 2004), i.e.:  

  

(Eq. 1) 

Application of alternative approaches to screening for drug-target interactions provides 

supplementary data of use in searches for chemical scaffolds. Since fragment molecules have 

properties that differ from those of typical HTS-hits, employing fragments could benefit both 

novelty and downstream intellectual-property rights in conjunction with optimizations of hits 

targeted at arriving at marketable drugs (Albert, et al., 2007). The aim is finding small 

scaffolds that might serve as starting points for synthetic efforts to arrive at compounds other 

than those listed in HTS compound pools. 
 

The emergence of low-affinity fragments as prospective starting points for pharmacological 

optimizations necessitates a re-evaluation of the generally accepted criteria governing 

compounds regarded as screening hits. Even low-affinity compounds might represent viable 

candidates for admission to the relevant chemical space. If a rational hypothesis for 

elaboration of the compounds involved can be formulated, low-affinity fragments might also 

support the discovery of new active drug ingredients. FBLD’s ability to supply that 

information is dictated by the detection limits of the techniques employed, which has been a 

key factor in the development of FBLD-methods. Technical advances and the availability of 

more-sensitive detection systems have allowed development of various methods for 

characterizing a large number of low-affinity interactions. In many cases, the techniques 

involved have been developed in conjunction with fragment-based studies. 
 

In general, the objective of screening campaigns is sifting out numbers of compounds 

covering chemical spaces that will be sufficient for supplying data that may be utilized in 

creating drugs that will be effective against specific targets. The numbers of compounds 

involved must fall within testable ranges for the particular targets and methods employed. 

Numerous examples of fragment libraries have been mentioned in the literature. Although 

they typically cover fewer than 1,000 fragment molecules (Reynolds, et al., 2008), some cover 

several thousand molecules (Jahnke and Erlanson, 2006; Hartshorn, et al., 2005). The 

essential properties of the fragments covered must be accurately known and reliable. High 
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fragment solubility and presence of no more than a few reactive groups represent fragment 

properties of importance when endeavoring to avoid interferences with screening assays, 

thereby minimizing the numbers of false positives and false negatives that arise during 

screening (Jahnke and Erlanson, 2006). Suitable fragment solubilities are thus one of the 

most-important fragment properties (Di and Kerns, 2006). Concentrated stock solutions 

should have solubilities therein falling within the range 10-1 M – 1 M (Ciulli and Abell, 2007). 

The purities and chemical stabilities of fragment molecules are also important. A ”rule of 

three” (RO3) has been derived from analyses of a diverse set of hit-fragments identified as 

such against a range of targets (Congreve, et al., 2003). That study indicated that hit-

fragments appeared to track just a few molecular properties. The RO3 defines the molecular 

weights (MWT) of fragments as less than 300Da, the computed octanol/water partition 

coefficient (clogP) as equal to, or less than, 3, the total number of hydrogen-bond acceptor 

and donors (HBA and HBD, respectively) as equal to, or less than, 3, and the total number of 

rotatable bonds (NROT) as equal to, or less than, 3. It also suggests that the total polar surface 

areas (TPSA) of the individual molecules involved are equal to, or less than, 60 Å2 (cf. Table 

1). Further suggestions for fragment properties of interest have been based on designs for a 

fragment “molecular framework” (Bemis and Murcko, 1996; Bemis and Murcko, 1999; 

Bohacek, et al., 1996). Combinations of ring systems, subring systems, linker atoms, and side 

chains may be utilized for generating complex chemical conformations. Once their patternings 

have been deduced, drug designers may apply them in various ways, for example, to 

designing a fragment-molecule library. Fig.2 depicts a sample design for a molecular 

framework.  

 
Fig.2. Diagramatic representation of a model molecular framework (Bemis and Murcko, 1996). The 
structure framework of a six-member ring has been utilized for forming several, different, six-member, ring 
scaffolds. Employment of various molecular frameworks allows assembling a wide variety of chemical scaffolds 
for use in FBLD-approaches.  
 

Examples of recently developed criteria that have been incorporated into the designs of 

fragment libraries are synthetic tractability, increased scaffold coverage, or the availability of 

close molecular analogs (Schnur, 2008; Gillet, 2008; Jahnke and Erlanson, 2006; Leach, et al., 
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2006). An example of a tractable synthetic chemical group is a fragment having a carboxylic 

acid appendage that might provide a handle for further chemical upgradings in conjunction 

with fragment optimizations (Jahnke and Erlanson, 2006). However, such approaches need to 

be handled with care, since it is likely that tractable chemical groups provide key interactions 

with target proteins that would be removed by chemistry that makes use of their tractability. 

Furthermore, fragments should not contain any reactive chemical groups. Groups or chemical 

scaffolds that randomly react with numerous targets are usually termed “frequent hitters” 

(Roche, et al., 2002) or “bad functional groups” (BFGs). Table 1 lists several selection criteria 

applying to fragment molecules. 

 
Table 1. Fragment-molecule selection criteria. There are several approaches to designing fragment libraries, 
where the “rule of three” (RO3) is commonly employed. Empirical parameters, such as fragment solubilities, 
purities, and chemical stabilities, are collected and evaluated. Certain molecular frameworks may be used. 
Further approaches are usage of chemical handles or targeted libraries for certain protein classes. The parameters 
involved are frequently derived from in-silico/computational approaches, combined with manual inspections. 
 

Rule of Three Experimental Factors Other Factors 

Molecular weight < 300 Da Solubility in stock solutions (10-1M - 1 M) Molecular frameworks  
clogP < 3 Solubility in buffering solutions 

(10-3 M - 10-2 M) 
Exclusion of reactive groups 

HBA < 3 Chemical purity Chemical handles 
HDB < 3 Chemical stability Fragment analogs available 

NROT < 3 Commercial availability A library targeted against a 
specific class of proteins 

TPSA < 60 Å2   
 

Since fragment affinities frequently fall within the µM - mM concentration range, fragment-

screening methodologies must be able to detect fragment binding constants over that 

concentration range. Most detection techniques also require binding-site occupancies of 

> 20 % for reliable identifications of ligand binding (Jahnke and Erlanson, 2006). 

Employment of high fragment concentrations will thus be necessary. Detection of relatively 

weak interactions and high fragment concentrations imposes stringent demands upon 

screening and characterization methods. Experimental methods, such as nuclear magnetic 

resonance (NMR), surface plasmon resonance (SPR), mass spectrometry (MS), biochemical 

assays and protein crystallography, represent screening methods that have been mentioned in 

conjunction with FBLD-applications (Zartler and Shapiro, 2005). Technical progress in those 

areas has led to their successful employment in FBLD-applications, which, in turn, has led to 

FBLD acquiring greater acceptance as a further tool of use in early-stage, preclinical, drug 

discovery. 
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In most cases, the characteristics of the fragment-target interactions involved will fail to meet 

the criteria demanded of lead-like or drug-like compounds. Chemical synthesis is then applied 

in order to manipulate and upgrade fragment properties in order to yield sustainable series of 

chemical leads (Leach, et al., 2006). Fragments may be viewed as building blocks that may be 

combined or elaborated on in order to form more-potent, more-attractive, lead compounds. 

Numerous approaches have been applied to the identification and elaboration of fragment 

molecules. Fig.3 presents an example of a workflow chart for a typical fragment-based lead-

discovery project. 

 
Fig.3. Example of a workflow for a fragment-based lead-discovery project. Example diagram of a workflow 
and screening cascade for the case where target structure information is available (Jahnke and Erlanson, 2006). A 
library is designed and an initial screening subsequently detects fragment hits, which is followed by a 
characterization of the hit-fragments involved in order to determine their affinities. X-ray crystallography is then 
applied in order to determine their 3D-binding modes on the target. A decision-making point, where the data 
must be analyzed in order to decide on the next approaches, such as pharmacological studies, to be employed 
then arises. For example, ligand efficiencies (LE) might be computed and analogs of the hits subjected to testing. 
The fragments involved then enter the optimization cycle, where x-ray crystallographic analyses, binding-
constant determinations, and pharmacological syntheses are employed in order to optimize molecules and arrive 
at compounds that are more lead-like.  
 

One approach depicted in Fig.3 is searching for molecular analogs to hit-fragments. Mole-

cules that are structurally similar to hit-fragments are identified and tested for activity against 

the target in order to discover molecules having binding affinities better than those of initial 

hits (Carr, et al., 2005). Such minor structure modifications allow arriving at structure-activity 

relationships (SAR) centered on initial fragment hits. The aim there is assessing the latent 

efficiencies of molecular chemical cores, e.g., assembling a pharmacophore. The 

pharmacophore/fragment may then be employed in several ways, e.g., employed in 

computational approaches or synthetic-chemistry approaches.  
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Several common means for utilizing hit-fragments for developing lead molecules are those 

termed “fragment growing,” “fragment merging,” and “fragment linking,” along with the 

employment of fragments in “scaffold hopping.” Fragment growing utilizes the fragments 

involved as starting points, where fragment molecules are modified, or grown, such that they 

pick up more interactions in binding pockets and acquire greater affinities for targets, while 

simultaneously retaining the properties of lead-like or drug-like substances. Available 

structure-activity relaltionships (SAR) may be utilized for designing the stages in fragment-

growing procedures. Fragment linking represents yet another approach, under which 

fragments that bond to distinct zones on binding pockets are detected using protein 

crystallography. The fragments involved are then linked such that their initial binding modes 

are preserved and the affinities of the resultant complexes will be optimized. An extraordinary 

approach to fragment linking, termed “fragment self-assembly,” has been exemplified by the 

use of in-situ chemistry, where two fragments were linked together in a protein-binding 

pocket. A retrosynthetic-fragment approach has been described as utilizing pre-existing lead 

series from the pharmacochemical literature for deriving fragments focused on specific targets 

(Hajduk, 2006). Lead molecules are broken down into their key fragments and regrown in 

order to arrive at new chemical scaffolds that fit into protein-binding sites. Fig.4 illustrates the 

fragment-growing and fragment-linking approaches to fragment optimization. 

 

 
Fig.4. Examples of two approaches to upgrading fragments into lead molecules. (a) Fragment growing, 
where molecule A is detected under a fragment screening and then grown into sub-pocket B on the target. (b) 
Fragment linking, where molecules A and B are detected under a fragment screening and then linked together 
using a chemical-linker’s moiety.  
 

Pharmaceutical companies, biotechnology companies, and university research groups have all 

reported several successful examples of FBLD over the past few years. 
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Table 2 summarizes the progress made by the initial compounds discovered, on their way to 

clinical trials. 
Table 2. Clinical and preclinical candidates derived from fragments (Congreve, et al., 2008). 

Compound Company Target Progress 

LY-517717 Lilly/Protherics FXa Phase 2 

PLX-204 Plexxikon PPAR-agonist Phase 2 

ABT-263 Abbott Bcl-XL Phase 1/2a 

AT9283 Astex Aurora Phase 1/2a 

ABT-518 Abbott MMP-2 and 9 Phase 1 

AT7519 Astex CDKs Phase 1 

PLX-4032 Plexxikon B-RafV600E Phase 1 

SGX523 SGX Pharmaceuticals MET Phase 1 

SNS-314 Sunesis Aurora Phase 1 

NVP-AUY922 Vernalis/Novartis HSP90 Phase 1 

AT9311/LCQ195 Astex/Novartis CDKs preclinical 

AT13148 Astex PKB/Akt preclinical 

AT13387 Astex HSP90 preclinical 

PLX-4720 Plexxikon B-RafV600E preclinical 

RO6266 Roche P38 preclinical 

SGX393 SGX Pharmaceuticals BCR-AblT315I preclinical 

1.2. APPLICATIONS OF FBLD 

FBLD challenges the techniques and methods utilized in current drug-discovery projects. 

Methods, such as NMR, SPR, ITC, and protein crystallography, have been optimized to the 

point where they are robust and meet the requirements for detecting weak fragment-protein 

interactions (Jahnke and Erlanson, 2006). The term “biophysical methods” may be applied to 

grouping those methods that have also gained greater importance in the field of modern drug 

discovery. In this dissertation, surface-plasmon-resonance  (SPR) analyses, enzymatic high 

compound concentration assays (HCA), and protein crystallography have been applied to 

investigations of fragment-protein interactions. 

 

Detection of ligand-protein binding events using SPR-instrumentation has made major strides 

during recent years. Lower signal/noise ratios have allowed detecting molecules whose 

molecular weights fall within the 100-Da – 300-Da range. Technological advances have also 

simplified the handling of large numbers of compounds dissolved in DMSO. SPR-methods 
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have meanwhile been developed to the point where they represent feasible options for 

studying interactions between fragment molecules and target proteins (Lundqvist, 2005).  

 

The SPR-approach utilized in this dissertation immobilizes proteins on the sensor chip’s 

surface and injects fragments in a stream flowing across its surface and employs a method 

termed “direct-binding assay,” under which responses are proportional to the quantities of 

fragments bound to the proteins resident on its surface (Karlsson, et al., 2000; McDonnell, 

2001; Deinum, et al., 2002). Use of SPR in FBLD has been previously reported in various 

studies (Edwards, et al, 2007; Cannon and Myszka, 2002; Geschwinder, et al., 2007; 

Hämälainen, et al., 2008; Boehm, et al., 2000; Metz, et al., 2003; Neumann, et al., 2005; 

Papalia, et al., 2006; Nordin, et al., 2005). SPR can simultaneously provide data on bond 

formation, binding stoichiometry, binding selectivity, and estimated affinities, which has 

made it a method frequently utilized in FBLD (Huber, 2005; Geschwinder, et al., 2007; 

McDonnell, 2001; Deinum, et al., 2002).  

 

Recently, the approach to finding new starting points via screening large compound libraries 

has come to be most widely employed in drug-discovery programs. Most current drug-

discovery programs include assays based on inhibition or stimulation of a biochemi-

cal/enzymatic mechanism of molecular targets. High-throughput methods, such as HTS, are 

utilized for screening libraries covering several hundred thousand compounds for activity 

against the intended targets. HTS-hits usually have binding constants falling in the nM-range 

or low µM-range, while the aim of fragment screening is detecting bonds having binding 

constants extending up to the high-µM-range and mM-range. In order to detect bonding at 

such high affinities, ligand concentrations also must reach such high concentrations. The 

biochemical assays employed in the case of fragments are therefore often termed “high-

concentration biochemical assays” (HCA) or high-concentration screening” (HCS) assays. 

One advantage of HCA fragment assays is that they may be readily employed in a similar 

manner for screenings conducted in conjunction with HTS-campaigns, since the frag-

ment-HCA involved do not require substantial lengths of time for assay development. 

FBLD-efforts that employ HCA-methods are thus subject less throughput limitations (Barker, 

et al., 2006), which may allow relatively rapid pursuit of wider explorations of fragment 

chemical-space diversities and follow-up methods, such as fragment-analog approaches 

(Hesterkamp and Whittaker, 2008; Gribbon and Sewing, 2008).  
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Protein crystallography is utilized for determining the three-dimensional bonding modes of 

fragments on target proteins at the atomic-site level. Knowledge of 3D-binding modes 

facilitates upgrading fragment molecules into lead-like molecules. Recent developments and 

improvements in protein crystallography have led to an optimized protein-crystallography 

workflow and faster determinations of 3D-structures, which has also benefited the 

implementation of protein crystallography as a tool in FBLD (Blundell, 2001; Gill, et al., 

2005; Nienaber, et al., 2000; Sharff and Jhoti, 2003; Hartshorn, et al., 2005). Furthermore, 

protein crystallography has also been used as a lone technique in FBLD-approaches (Blundell, 

2001; Gill, et al., 2005; Nienaber, et al., 2000; Sanders, et al., 2004; Bosch, et al., 2006). 

Protein crystallography has been used to reveal several interesting fragment-compound 

bonding modes and been applied as a research tool for developing drugs for a range of various 

targeted diseases (Erlanson, 2006; Carr, 2007; Norman, 2007; Erlanson, 2004; Howard, et al., 

2006; Frederickson, et al., 2008; Warner, et al., 2006; Hohwy, et al., 2008). The growing 

numbers of therapeutic targets whose crystalline structures have been determined also 

increase the number of prospective applications of protein crystallography to FBLD. 

1.3. PROTEIN KINASES AND PKA 

Approximately 2 % of the genes in the human genome encode for protein kinases (Manning, 

et al., 2002). Those enzymes constitute one of the largest gene families and are crucial to the 

regulation of various cellular processes. Furthermore, those enzymes play an important role in 

cell growth and cell-signaling transduction (Taylor, et al., 2004). The primary function of 

protein kinases is catalyzing the phosphoryl transfer of the γ-phosphate group on adenosine 

triphosphate (ATP) to the hydroxyl group of a recipient substrate, which occurs as a response, 

following receipt of a signal from an upstream, signaling protein. 

 

Protein phosphatases are the antagonists of protein kinases and counteract protein kinases by 

detaching their appended phosphate groups and terminating transmission of signals induced 

by the phosphorylation (cf. Fig.5). Protein substrates, including the protein kinases situated 

thereon, will be toggled between active and inactive conformational states, depending upon 

their degree of phosphorylation  (Akamine, et al., 2005; Hunter, 1995).  
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Fig.5. Protein kinases and phosphatases. Protein kinases and phosphatases regulate biological signals by 
acting as enzymes that catalyze phosphorylation and dephosphorylation in biological organisms. Phosphorylation 
catalyzed by protein kinases retransmits incoming signals by activating the protein kinases’ substrates. Signal 
transmission will be terminated by dephosphorylation (inactivation) of their substrates, a reaction catalyzed by 
protein phosphatases. 
 

The 518 protein kinases known to be present in the human genome have been classified by 

comparing their sequences, which has allowed identifying protein-kinase families (Hanks, et 

al., 1988; Hanks and Hunter, 1995). Characterizations of human protein kinases have been 

designated “the human kinome” (Liu and Gray, 2006). A classification based on the amino-

acid sequence of the catalytic domain (or kinase domain) has segregated protein kinases into 

ten, distinct subgroups (Hanks and Hunter, 1995). The cAMP-dependent protein kinase 

(PKA) utilized in the studies reported in this dissertation belongs to the AGC-kinase family. 
 
Table 3. Classifications of protein kinases into subfamilies (Hanks and Hunter, 1995). 
 

o AGC-family (63 members) 

o CAMK-family (74 members) 

o CK1-family (12 members) 

o CMGC-family (61 members) 

o RGC-family (5 members) 

o STE-family (47 members) 

o TK-family (90 members) 

o TKL-family (43 members) 

o aPK (40 members) 

o Other protein kinases (83 members) 
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More than 400 human diseases have been directly or indirectly connected to protein kinases. It 

is also estimated that more than one-quarter of all pharmaceutical drug targets are protein 

kinases (Liu and Gray, 2006). Protein-kinase activity is controlled and regulated. However, 

perturbations of protein-kinase signaling by mutations and other genetic alterations can result 

in deregulation of kinase activity and the onset of tumorogenesis, which can cause malignant 

transformations (Pawson, 1994; Hunter, 2000; Reed, 1999). The design of small molecules in 

conjunction with cancer-drug discovery is aimed at inhibiting such tumorogenic activity. It is 

generally believed that targeting protein kinases in conjunction with drug discovery can retard 

tumor growth. Compounds are designed to inhibit those protein kinases that have been 

identified as therapeutic targets. (Blume-Jensen and Hunter, 2001; Katayama, et al., 2008; 

Hünenberger, et al, 1999; Melnikova and Golden, 2004). 

 

All protein kinases bind ATP and the ATP-pockets of the various protein kinases therefore 

contain many similar structures, which has raised concerns regarding whether protein kinases 

might be targeted using ATP-competitive inhibitors, without resulting in severe side effects. 

Nonspecific bonding by designed drug molecules to protein kinases other than those targeted 

could alter pathways of importance to normal cell signaling, and thus cause undesired side 

effects. As of the late 1980s, no protein-kinase inhibitors had entered human clinical trials. 

The matter of specificity, along with the relatively high ATP-concentrations (2 mM – 10 mM) 

present in cells raised questions regarding how competitive bonding to ATP-pockets should 

be addressed. A milestone in that process was the discovery of the rapamycin molecule. 

Rapamycin was initially found to have immunosuppressant properties due to its bonding to 

the cytosolic protein kinase, mTOR (or FKBP-12), and was approved for clinical use for 

preventing rejections following kidney transplantations in 1999. However, rapamycin was 

shown to inhibit tumor growth and approved for clinical use in the treatment of cancer 

(Davies, et al., 2000). A review of small-molecule inhibitors targeting protein kinase was 

published by Cherry and Williams (2004).  

1.3.1. PKA - the cAMP-dependent protein kinase 

The cAMP-dependent protein kinase (PKA) is one of the most commonly characterized of the 

protein kinases. PKA has served as a prototype for the extensive protein-kinase family 

(Taylor, et al., 2004). The catalytic subunit of PKA represents a prominent example of how a 

protein kinase both recognizes its substrates as well as inhibitors. It also shows how the 

enzyme moves through the stages of catalysis (Hünenberger, et al, 1999).  
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Early research revealed how the different zones and residues of PKA affect the kinetics and 

affinity of the phosphotransfer reaction occurring between protein kinase and its various 

substrates (Kemp, et al., 1977). Furthermore, PKA was the first protein kinase whose 

3-dimensional structure became known, a finding that has had an enormous impact on modern 

protein-kinase drug discovery (Cohen, 2002). PKA is unique among protein kinases due to the 

fact that the full-length, single-chain protein kinase is constitutively active in monomeric form 

and possesses only a single folding domain that consists of the core kinase catalytic domain 

and N-terminal and C-terminal extensions (Breitenlechner, et al., 2005). In its inactive state, 

PKA exists as a heterotetramer having two dimeric regulatory (R) subunits and two catalytic 

(C) subunits. Activation is achieved when cAMP bonds to those regulatory subunits (Choel, et 

al., 2006), which leads to the C-subunits being liberated from the R-subunits. After that, the 

C-subunits can bind ATP and interact with substrates. The catalytic subunit of PKA is 

potently inhibited (confined to the low-nM range) by a number of synthetic derivatives 

(Congreve, et al., 2005). In comparison, ATP forms bonds with an affinity (KD) falling within 

the 10-µM –20-µM range. Fig.6 presents an overview of the structure elements/segments 

involved and a description of the binding pocket of PKA’s catalytic subunit.  

 

The overall structure patterns occurring in PKA are similar to those of other protein kinases. 

Fig.6 is confined to depicting an overall description of protein kinase’s catalytic subunits, 

which are formed by two lobes designated the “small lobe” and the “large lobe.” A cleft, in 

which the ATP-nucleotide bonds, is formed between the two lobes. The two lobes are 

connected by a hinge segment that anchors and stabilizes the bonding of the nucleotide. 

Bonding of the nucleotide illustrates how several parts of the ATP binding cleft interacts with 

ATP-molecules. For example, a loop formed in PKA by residue 49-57 generates several 

phosphate interactions via its backbone. That loop has a structure, the glycine-rich loop, 

containing several glycine residues. An ion pair is formed between the nucleotide and the 

amine group on the catalytically important lysine residue in PKA, Lys-72, which is strongly 

preserved in protein kinases. The adenine ring of the nucleotide is situated deep within the 

pocket and forms two hydrogen bonds with the hinge segment. A further interaction with the 

residue Thr-183 present in PKA transpires. The magnesium ions are cofactors in kinase 

activity and bind via the aspartic acid present in DFG-motifs, Asp-184, the asparagine residue, 

Asn171, present in PKA’s catalytic loops, and the γ-phosphate, present in PKA’s 

ATP-molecules (Congreve, et al., 2005).  
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(A) 

 

Fig.6. The catalytic sub-unit of PKA. 
(A) An overview orientation image 
where the small lobe (blue) and the large 
lobe (red) are shown. The ATP binding 
cleft/pocket and the hinge zone are 
pointed out (orange). (B) A detailed 
image of the ATP binding mode in the 
catalytic subunit of PKA. Structure 
elements are marked and a selection of 
the interactions picked up by the ATP 
molecule is shown. The adenine moiety 
forms two hydrogen bonds with the 
hinge (orange) and interacts with the 
residue Thr-183 (purple). The phosphate 
groups interact with Lys-72 (blue) and 
the DFG-motif (purple). Both the 
glycine-rich loop (purple) and the PKI-
peptide (light-blue) cover the ATP-
pocket. 

(B) 

 
    

Another overview of the ATP binding pockets present in protein kinases has been published 

by Liao (2007) and defines several subpockets commonly addressed by small molecules 

binding to protein kinases (cf. Fig.7). ATP binding pockets on PKA are subdivided into 

various zones designated A, K, R, P, E0, E1, BP-I, and BP-II. 
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ATP-pocket zones defined by 
Liao 
A Adenosine binding site 
R Ribose binding site 
P Phosphate binding site 
K Catalytic lysine and DFG-motif 
E0 Pocket beneath the A/hinge zones 
E1 Hydrophilic, solvent-exposed pocket 
BP-1 Hydrophobic selectivity pocket 

BP-II Hydrophobic, back-cleft pocket 

Fig.7. The ATP binding pocket in cAMP-dependent protein-kinase A. An illustration of the zones defined by 
Liao for describing its ATP-pocket. Their designations are listed in the table at right. When ATP binds, the 
adenosine moiety is situated in the A-zone. The ribose is situated in the R-zone. Phosphate groups bind in the 
P-zone. BP-I- and BP-II-zones are situated above the A-zone in this view. The K-zone is situated between the 
A-, R-, BP-I-, and BP-II-zones. The E0- and E1-pockets are situated beneath the A- and R-zones, which are 
described as being hydrophilic, solvent-exposed zones. 

1.3.2. PROTEIN KINASES AND FBLD 

Extensive research has been devoted to the development of small-molecule drugs that target 

the ATP binding pocket in protein kinases. Fragment-based approaches have thus also been 

employed for detecting new chemical scaffolds in the protein-kinase drug-discovery field. The 

literature is replete with reports on fragment screenings targeting protein kinases that have led 

to development of potent inhibitors in conjunction with various projects (PKB: (Donald, et al., 

2007; Saxty, et al., 2007); p38 MAP: (Gill, et al., 2005); c-Src: (Taylor, et al., 2007); c-Met, 

aurora kinases: (Jhoti, et al., 2007); CK2, PDK1, and CHK1: (Hajduk and Greer, 2007); 

CDK2: (Congreve, et al., 2003); JNK3: (Fejzo, et al., 2003); and adenosine kinase (Hajduk, et 

al., 2000)).  

 

It has been pointed out that protein kinases contain the 21st-century’s most-interesting drug 

targets (Cohen, 2002). Programs aimed at finding new chemical scaffolds that interact with 

the ATP-pockets or other parts of proteins are thus of great interest, and FBLD offers one way 

of approaching that field of research (Lindsay, 2005). 

1.3. THE AIM OF THIS STUDY 

The pharmaceutical industry aims to increase the rate at which drug-discovery processes 

develop new, active, drug ingredient. Fragment-based lead discovery (FBLD) has been chosen 

as a tool for use in that effort and is emerging as an approach to small-molecule drug 
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discovery. Employment of FBLD has led to experimental techniques that allow characterizing 

interactions between low-molecular-weight fragments and disease target protein attracting 

greater interest on the part of those working in the drug-discovery field. Characterizations of 

the interactions between molecular fragments and target proteins can aid efforts to understand 

how results obtained from FBLD can aid the drug-discovery process. In the early days of such 

studies, the respective techniques involved were employed in investigations of various 

approaches to FBLD. However, no detailed characterizations of fragment-screening data 

obtained from combinations of them have been published to date. These studies therefore 

combined characterizations of the respective results obtained from surface-plasmon-resonance 

(SPR) analyses, high-compound-concentration biochemical assays (HCA), and protein 

crystallography. This study combines those techniques with the results of a second approach 

and discussions regarding how results extracted from available interaction data can make 

FBLD more useful in the development of new drugs. The outcomes, limits, and hit rates 

resulting from employment of those techniques in FBLD will also be discussed. 

 

The goals of this study were: 

• examining the characteristics, outcomes, and limits that result when SPR and HCA are 

employed as fragment-screening methods, 

• estimating screening hit rates that could be confirmed by protein-crystallography 

studies, 

• identifying fragment-like compounds that might serve as starting points for drug-

discovery programs, and 

• assessing how available assay data might be of use in efforts to create fragment-

protein complexes. 
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Chapter 2  

MATERIALS AND METHODS 

 

 

2.1. MATERIALS 

2.1.1. CHEMICALS 

All standard chemicals were either purchased from Calbiochem, Darmstadt, Germany, or 

requisitioned from in-house inventories maintained at Merck, Darmstadt, Germany, unless 

otherwise stated. 

2.1.2. INHIBITORS 

2.1.2. SMALL-MOLECULE INHIBITORS 

Solid-state H-89 (CAS 127243-85-0), packed in vials containing 1 mg per vial, was purchased 

from Calbiochem. All other inhibitors and compounds were requisitioned from MerckSer-

ono’s in-house inventories and either dissolved in “remp solution,” yielding 10-mM concen-

trations in 100 % DMSO, or employed in solid form in quantities of < 10 mg per compound. 

2.1.2.1. PEPTIDE INHIBITOR 

Solid-state PKI (Calbiochem), packed in vials containing 1 mg per vial. 

 

Sequence: Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile (6-22) 

http://www.merckbiosciences.co.uk/product/539684 

MWT: 1,868.1 Da 

CAS 121932-06-7 
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2.1.3. PROTEIN, HUMAN-PKA 

2.1.3.1. SEQUENCE 

MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWESPAQNTAHLDQFERIKTLGTGSFG

RVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKD

NSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPE

NLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGV

LIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLK

NGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVSINEKC

GKEFSEF 

 

MWT: 40.56 kDa 

2.1.4. EXPERIMENTAL BUFFERS, SOLUTIONS, AND MATERIALS 

All buffers were prepared in the form of aqueous solutions. NaOH (2-M) and HCl (2-M) were 

employed for adjusting buffer pH. 

2.1.4.1. PROTEIN CRYSTALLOGRAPHY 

Protein-purification buffer 30.4 mg/ml PKA 

5 mM Mes 

5-mM bis-tris-propane/HCl 

75 mM LiCl 

0.1 mM EDTA 

1 mM DTT 

pH: 6.9 

Protein-crystallization buffer 5 mM MES 

5 mM bis-tris-propane 

75 mM LiCl 

1 mM DTT 

0.1 mM EDTA 

Protein-crystallization additives 1.4 mM MEGA-8 (Hampton Research, detergent screen I) 

1.5 mM PKI peptide inhibitor 

15 % – 25 % ethanol or methanol 
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Protein-crystallization and data- 

collection materials 

24-well VDX-plate, with sealant (Hampton Research) 

Siliconized-glass cover slides (Hampton Research) 

Seed-bead kit (Hampton Research) 

Vortexer (VWR International) 

Centrifuge (Eppendorf 5415) 

Seeding tool (Hampton Research) 

Cryoloop, installed (Hampton Research) 

Crystal cross-linking 100 % gluteraldehyde 

Protein crystallization buffer 

Microbridges (Hampton Research) 

Cryoloop, installed (Hampton Research) 

Crystal-stabilizing buffer/com-

pound-soaking buffer 

70 % protein-crystallization buffer 

30 % ethanol or methanol 

Cryoloop, installed (Hampton Research) 

Cryoprotectant conditioner 20 % L-(+)-2,3 butanediol (FLUKA #18967) 

20 % ethanol 

60 % protein-crystallization buffer 

Cryoloop, installed (Hampton Research) 

Data collection Cryoloop, installed (Hampton Research) 

Rigaku MicroMax microfocus X-ray generator (Rigaku 

Americas Corporation) 

R-axis IV++ detector (Rigaku Americas Cooperation) 

PX-I and PX-II sources (SLS) 

Pilatus detector (Brönnimann, et al., 2006) 

2.1.4.2. SURFACE-PLASMON-RESONANCE ANALYSES 

2.1.4.2.1. GENERAL MATERIALS 

BIACORE A-100 BIACORE 

Series-S CM5 sensor chip BIACORE 

BIAnormalizing solution BIACORE 

BIAmaintenance kit BIACORE 

HBS-N buffer BIACORE 
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Buffer stock solution 1 M HEPES 

1.5 M NaCl 

pH: 6.8 

PKA-protein, in buffer 30.5 mg/ml PKA 

5 mM Mes 

5 mM bis-tris-propane/HCl 

75 mM LiCl  

0.1 mM EDTA 

1 mM DTT  

pH: 6.9 

CA-protein, in buffer 30 µg/ml CA (BIACORE, S-51 training kit) 

Acetate buffer, pH: 5.5 (BIACORE) 

 

2.1.4.2.2. PROTEIN IMMOBILIZATION 

Normalizing solution BIACORE 

EDC BIACORE 

NHS BIACORE 

Ethanolamine BIACORE 

Running buffer used during protein 

immobilization 

100 mM HEPES (buffer “A”) 

150 mM NaCl (buffer “A”) 

0.005 % Tween 20 

2 mM MgCl2 

pH: 6.8 

Protein (PKA) immobilization buffer 10 mM bis-tris-propane 

200 µM ATP 

2 mM MgCl2 

Protein (CA) immobilization buffer Acetate buffer, pH: 5.5 (BIACORE) 
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2.1.4.2.3. COMPOUND SCREENING AND CHARACTERIZATION 

Running buffer 100 mM HEPES (buffer “A”) 

150 mM NaCl (buffer “A”) 

0.005 % Tween 20 

2-mM MgCl2 

pH: 6.8 

2 % DMSO 

Sample-preparation buffer 100 mM HEPES (buffer “A”) 

150 mM NaCl (buffer “A”) 

0.005 % Tween 20 

2 mM MgCl2 

pH: 6.8 

Positive-control sample (PKA) 1 mg H-89 dissolved in DMSO to yield a: 

1-mM solution in 100% DMSO (stock solu-

tion) 

Diluted in sample-preparation buffer: 

2 µM H-89 

2 % DMSO 

Positive-control sample (CA) 10 mM furosemide (BIACORE, S-51 train-

ing kit) 

100 % DMSO 

Diluted in sample-preparation buffer: 

20 µM furosemide (BIACORE) 

2 % DMSO (Merck) 

Negative-control sample Running buffer 

Solvent-correction setup Sample preparation buffer containing 

1.2 % DMSO 

1.4 % DMSO 

1.6 % DMSO 

1.8 % DMSO 

2.0 % DMSO 

2.2 % DMSO 

2.4 % DMSO 
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2.6 % DMSO 

2.8 % DMSO 

Compound-screening preparation 10 mM compound in “remp-tube” 

100 % DMSO 

Diluted in sample preparation buffer: 

200 µM compound 

2 % DMSO 

Compound-characterization preparation Solid-state compound dissolved in stock 

solutions 

100 mM compound in 

100 % DMSO 

Diluted in sample preparation buffer: 

1 mM compound 

2 % DMSO 

1:1-dilution in sample preparation buffer in 

ten increments: 

1.0 mM compound, 2 % DMSO 

500 µM compound, 2 % DMSO 

250 µM compound, 2 % DMSO 

125 µM compound, 2 % DMSO 

62.5 µM compound, 2 % DMSO 

37.25 µM compound, 2 % DMSO 

15.63 µM compound, 2 % DMSO 

3.91 µM compound, 2 % DMSO 

1.95 µM compound, 2 % DMSO 
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2.1.5. COMPUTER SOFTWARE 

Library-generation and virtual-

screening software 

ZINC (UCSF, http://zinc.docking.org/) (Irwin and 

Shoichet, 2005) 

ISIS Base (MDL Information Systems, Inc.) 

ISIS Draw (MDL Information Systems, Inc.) 

Accord for Excel (Accelrys, Inc.) 

MOE (Chemical Computing Group, Inc.) 

SpotFire (Tibco Software, Inc.) 

SPR-software BIACORE A-100 Control 

BIACORE A-100 Evaluation 

BIACORE T-100 Control 

BIACORE T-100 Evaluation 

BIACORE S-51 Control 

BIACORE S-51 Evaluation 

BIACORE 3000 Control 

BIACORE 3000 Evaluation 

Accord for Excel 

ISIS Base (MDL Information Systems, Inc.) 

ISIS Draw (MDL Information Systems, Inc.) 

Protein-crystallography software ADXV (The Scripps Research Institute) 

XDS (Kabsch, 1993) 

Mosflm, Version 7.0.4 (Leslie, 1992) 

HKL2000, Version 0.97.647 (Otwinowski, et al., 1997) 

d*Trek, Version 9.9.2L (Pflugrath, 1999) 

CNS/CNX (Brunger, et al., 1998) 

Molrep (Vagin, 1997) 

CCP4 Suite (STFC Daresbury Laboratory) 

WhatIF (Vriend, 1990) 

COOT (Emsley and Cowtan, 2004) 

PyMol (DeLano, 2002) 

 

General software Microsoft Office (Microsoft Corporation) 

Adobe Acrobat 8.0 (Adobe Systems, Inc.) 

http://zinc.docking.org/
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2.2. METHODS 

Every molecular-biology protocol employed during cloning and purification has been 

described in detail by Yonemoto and by Engh (Yonemoto, 1997; Engh, 1996). MerckSerono’s 

in-house Protein-Expression Department and Purification Department were commissioned to 

perform that work. In brief, the catalytic subunit of human PKA was expressed in cytosolic 

expressions in E-coli BL21 (DE3) cells. Expressed biomass was purified by affinity 

chromatography and ion-exchange chromatography. Protein purification yielded 

approximately 20 mg of protein per 200 g of biomass. The purified protein was divided into 

two batches and concentrated to 20.5 mg/ml and 30.4 mg/ml, respectively, and stored in the 

protein-purification buffer following plunge-freezing in liquid nitrogen at – 80°C. 

2.2.1. PROTEIN CRYSTALLOGRAPHY  

Crystals and Symmetry 

In FBLD, protein crystallography is utilized for describing fragments’ three-dimensional 

binding modes in proteins. Protein crystals are formed when protein molecules precipitate out 

of solutions in the form of well-ordered solids. The orderings involved are three-dimensional 

arrays of atoms and molecules forming infinitely repeatable building blocks (asymmetric 

units) arranged in accordance with well-defined symmetries (65 distinct space groups in the 

case of proteins, 230 such altogether). A single asymmetric unit contains all of the 

information available on the crystal, where one or more protein molecules will be packed into 

each cell, depending upon the particular packing symmetry involved. 

 

Protein crystallography is reliant upon the availability of protein crystals that may be analyzed 

by means of X-ray diffraction. Experiments are necessary in order to determine suitable 

conditions for the formation of well-ordered protein crystals. Solutions of proteins are brought 

to the saturation point in order to cause nucleation and arrive at well-regulated crystal growth 

(McPherson, et al., 1995). The experimental parameters involved, such as solution pH, 

temperature, and ionic strength, are then optimized. Choices of protein buffer solutions, 

precipitate reagents, salts, and detergents also affect crystal growth (McPherson, 1982). 

Protein purities and concentrations also play important roles in efforts to obtain high-quality 

protein crystals. Fig.8 presents a solubility plot illustrating the protein-crystallization process. 
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Fig.8. Solubility plot for proteins. A plot of dissolved-protein concentration, Cprotein, against salt concentration 
or other parameter. Protein crystals begin to form at supersaturation levels below those at which nucleation 
occurs. Once nucleation occurs, dissolved-protein concentration declines. The solution then enters the metastable 
zone and stable protein-crystal growth sets in. The protein that subsequently precipitates out attaches itself to the 
surfaces of nuclei, allowing larger crystals to form. 
 

Automating crystallization experiments has become a common approach to determining 

suitable crystallization conditions. Robots capable of servicing several hundred to more than 

one-hundred thousand experimental setups daily have made large-scale, automated, 

crystallization experiments possible (Kuhn, et al., 2002). Techniques for automating the 

design of the chemical structures of proteins that will be soluble up to high concentrations and 

suitable for use in crystallization experiments are also available (Gilbert and Albala, 2002; 

Lesley, 2002). Investigations involving large numbers of experimental setups may also be 

conducted in more highly automated manners by taking advantage of advances in the areas of 

crystal storage and automated monitoring of experimental runs. A comprehensive review of 

crystallization techniques appears in the volume edited by Bergfors (Bergfors, 1999). 

 

PKA-crystallization 

cAMP-dependent protein kinase (PKA) must be regarded as one of the most-accurately 

characterized protein kinases, in view of the large number of published studies regarding it. 

The structure conformations, protein expressions, purification stages, and crystallization 

conditions have all been optimized for numerous, distinct sets of assay parameters. 

Employment of the resultant experimental conditions and PKA as target in order to 

characterize fragment-protein interactions were regarded as the best choice for the work 

undertaken in conjunction with the present dissertation. 
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PKA-crystallization protocols have been described by Bonn, et al. (2006), where purified 

protein at a concentration of 30.4 mg/ml was thawed following storage at – 80°C. The protein 

vials employed contained 25 µl protein per vial. MEGA-8 and PKI peptide inhibitor were 

added to the protein and the mixture diluted in protein-crystallization buffer to a theoretical 

protein concentration of 17 mg/ml. The solution was then centrifuged at 20°C and 6,000 g for 

1 minute in an Eppendorf 5415D centrifuge. Adhering droplets were set to have volumes of 

1 µl. They therefore contained 17 mg/ml PKA, 5 mM MES, 5 mM bis-tris-propane (pH: 6.5), 

75 mM LiCl, 0.1 mM EDTA, 1 mM DTT, and 1.5 mM PKI (5-24) peptide. The adhering 

droplets were then equilibrated at 4°C over a grid consisting of 15 % – 25 % (v/v) methanol 

and ethanol. Streak-seeding was conducted approximately 1 hour after commencement of the 

experiment using crystals that had been grown a few days earlier on a setup employing the 

same conditions, but without employment of streak-seeding. Seed crystals were collected by 

mixing adhering droplets containing crystals in a 1:1-ratio with crystal-stabilizing solution. 

The adhering droplets involved, which had volumes of approximately 2 µl, were then 

transferred to an Eppendorf seed-bead kit (Hampton Research) and vortexed for two minutes 

on a VWR International vortexer. Dipping a seeding tool into the Eppendorf seed-bead kit and 

streak-seeding droplets adhering to the crystallization plate resulted in overnight growth of 

PKA-crystals. 

2.2.1.1. FRAGMENT SOAKING AND COCRYSTALLIZATION 

Various methods may be employed for forming fragment-protein complexes. The protein may 

be co-expressed with the ligand, the ligand may be added at the protein-purification stage, 

cocrystallization may be utilized, or protein crystals may be soaked in a solution of the ligand 

(Hassel, et al. 2007). In the case of the type of setup involved here, both soaking and 

cocrystallization methods have been employed, but the soaking method has been that most 

extensively employed. Under the soaking method, protein crystals are soaked in a solution 

containing ligand molecules. Ligand molecules then diffuse into protein-binding sites, where 

they bind protein molecules to the latter, due to a particular mode of interaction. One of the 

major aspects to be considered when working with fragments is the need for obtaining 

sufficiently high occupancies of protein-binding sites. Protein crystallography involves 

coherently accumulating diffraction signals from the protein molecules present in crystals. 

Fragment molecules present in protein-binding pockets should therefore contribute to 

coherently accumulated diffraction signals. If the occupancies of protein-binding pockets are 

too low, fragment electron densities will not be observed. A rule-of thumb in protein 
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crystallography is employing fragment concentrations that are at least five times those needed 

for affinity. However, it has been found that when protein crystallography is utilized in 

FBLD, the solubilities of the fragments involved frequently limits the fragment concentrations 

that may be employed.  

 

The soaking procedures employed 

Fragment concentrations in the 100-mM, 100 % DMSO, stock solutions were diluted to the 

soaking concentrations in crystal-stabilizing buffers. Soaking investigations were conducted 

on an adhering-droplet setup, where 2-µl droplets containing the compound-soaking solution 

and 300 µl – 500 µl crystal-stabilizing buffer were inserted into the well in order to preclude 

the adhering droplets drying out. The fragment concentration in the soaking solution was 5 

mM in 5 % DMSO. Soaking was conducted for approximately 24 h at 4°C. Crystals were 

initially transferred from crystallizing droplets to the soaking solution. Those transferrals were 

cautiously conducted in order to avoid damaging the crystals. Soaked crystals were briefly 

immersed in the cryoprotectant solution (20 % ethanol, 20 % L-(+)-2,3-butanediol, and 60 % 

well solution taken from the wells where crystals had grown) prior to plunge-freezing them in 

liquid nitrogen at – 80°C. All transferrals of the crystals were conducted via the Hampton 

Research cryoloop that had been installed on the setup. 

  

Soaking conditions were individually optimized for each fragment, where a second or third 

round of soaking proved necessary. An initial stage involved a switch to employing higher 

compound/DMSO-concentrations (20 mM compound in 20 % DMSO). In addition, soaking 

periods were extended to as long as four days, depending on crystal stabilities in the 

compound-soaking solution. Crystal stability was manually checked under a microscope at 

intervals of approximately 24 h, 48 h, and 72 h. 

 

Crosslinking PKA-crystals 

The protein crystals obtained were not always stable under the soaking conditions employed. 

Many of them either broke or failed to yield diffraction patterns during soaking investigations. 

One way to eliminate such crystal instability is cross-linking the protein crystals (Lusty, 1999; 

Cohen-Hadar, et al., 2006; Roy and Abraham 2003), which stabilizes them and allows making 

more changes in protein structures without destroying the crystals involved, which, in turn, 

can increase success rates in efforts aimed at obtaining the structures of complexes.  
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The cross-linking conducted utilized gluteraldehyde and was applied to those cases where 

initial soakings had led to PKA-crystals losing their diffraction patterns. The PKA-crystals 

involved were emplaced in droplets adhering to cover slides containing 2 µl crystal-stabilizing 

solution suspended above a Hampton Research microbridge. 300 µl – 400 µl crystal-stabiliz-

ing solution was transferred to the well in order to prevent droplets from drying out. 8 µl 

gluteraldehyde was transferred to the microbridge and the PKA-crystals were immersed in 

evaporating gluteraldehyde for 2 h at 4°C. The PKA-crystals involved were then transferred to 

the compound-soaking solution. Investigations of the diffraction patterns of each such 

PKA-crystal following soaking revealed that the various soakings employed had damaged 

them. 

2.2.1.2. X-RAY DATA COLLECTION AND STRUCTURE DETERMINATION 

In 1896, Röntgen published a paper reporting the properties of X-rays, including their failure 

to demonstrate interference, reflection, or refraction effects on ordinary optical apparatus. In 

1912, von Laue was able to show that X-rays yielded diffraction patterns due to interferences 

with the lattice spacings of a CuSO4·5H2O-crystal. In that same year, Bragg was able to 

provide a valid explanation for the incidence of spots on X-ray-diffraction patterns and the 

new science of X-ray crystallography was born. Röntgen’s observations also led to him 

concluding that no substance can be utilized for focusing X-rays. However, diffracted X-rays 

may be combined analytically with the aid of computers, provided that X-ray-diffraction 

patterns are measurable. X-ray-diffraction experiments allow measuring the intensities of 

diffracted X-rays. However, recording diffraction patterns destroys all information on the 

relative phases of the diffracted X-rays that produced them. Since knowledge of both the 

phases and intensities of the diffracted X-rays is essential to reconstructing the images of 

diffracting objects, determining their phases represents the fundamental problem in all 

crystallographic analyses.  

 

Bragg’s law describes X-ray scattering by crystals in terms of reflections from crystal planes. 

Crystal planes illuminated at a grazing angle of incidence, θ, scatter X-rays at an angle of 

reflection that is also equal to θ. The incident and diffracted rays and the normals to the 

diffracting planes all lie in the same plane. Constructive interference between rays scattered 

from adjacent crystal planes will only occur if the path difference between the rays equals an 

integral number of wavelengths. If the spacing of adjacent crystal planes is d, the path differ-
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ence between two rays, ray 1 and ray 2, will be AB + BC = 2d sin θ = nλ. For constructive 

interference, we then have that 

 
2d sin θ = nλ,        (Eq. 2) 

 

where λ is the X-ray wavelength and n is an integer.  

 

Since the interaction between X-rays and matter is weak, interactions between single mole-

cules and X-rays are unobservable. Molecules must therefore be crystallized, i.e., arranged in 

regular arrays, which will cause the scattering from any, given molecule to be reinforced by 

that from of all other molecules. The diffraction patterns of molecular crystals may be referred 

to as their “molecular transforms,” i.e., the Fourier transforms of the molecules contained in 

the crystals. The three-dimensional lattices of molecules in crystals give rise to diffraction 

patterns, where the location of each spot thereon is governed by the underlying molecular 

transform at that location. In general, every part of molecules contributes to every part of 

diffraction patterns. Conversely, in order to reconstruct molecules’ structures from their 

diffraction patterns, it will be necessary to measure the intensity of every spot on their 

diffraction patterns. When an X-ray beam interacts with matter, scattering occurs from two 

types of processes, coherent scattering and incoherent scattering. The electromagnetic field of 

the incident X-ray beam forces the electrons in the matter involved into oscillations at the 

same frequency as that of the incident beam. All rays scattered by a given electron will thus 

have the same phase relative to the incident beam, and the resultant scattering will be 

coherent. The intensity of the scattered beam is inversely proportional to the mass of the 

scattering entity. The fact that the proton mass is approximately 2,000 times the electron mass 

thus explains why only the electrons in crystals contribute to coherent scattering. In X-ray 

crystallography, the incoherent scattering is much weaker than the correlated, coherent scat-

tering and is thus usually ignored. 

 

The total intensity scattered by a crystal is the sum of the intensities of all rays scattered by all 

unit cells involved. The von Laue equations are mathematical relations that describe that 

summation in three-dimensional space. Knowledge of proteins’ diffraction patterns and 

applications of Fourier transforms will allow computing their crystalline structures. However, 

the phase problem remains to be solved. In order to compute their electron densities, the 

phases of all diffracted waves will be needed. The phase problem may be solved by different 
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methods, Patterson summation, direct methods, heavy-atom isomorphous replacement, or by 

analyzing anomalous scattering patterns. Molecular replacement can employ homologue 

crystalline structures in order to obtain phases via Patterson summation. The phases obtained 

for the homologue structure are utilized as initial estimates of phases for the unknown 

structure. That model is termed the “phasing model” and is mapped onto the unit cell of the 

unknown structure. Computing the Patterson functions for a random cell and superimposing 

them allows determining the orientations of the two models. Once a set of initial phases has 

been obtained, a trial structure may be configured and improvements and thermal parameters 

that will bring it into the closest-possible conformity with reality sought. “Reality,” as used 

here, means the set of observable amplitudes/intensities contained in the X-ray diffraction 

pattern in question. Observed and computed structure factors should agree, to within the 

tightest tolerances possible. The progress of refinements at each stage is usually assessed in 

terms of a reliability index, R, or R-factor, which is given by  

 

 
 ,   (Eq. 3)

 
 

where Fobs are the observed structure factors and Fcalc are those obtained from the 

computational model. A cross-validation scheme based on the so-called R-free factor 

(Brünger, 1992) employs a test-data set that is ignored under the refinements, but for which an 

R-factor is computed, provides indications regarding how well the model predicts empirical 

observations that were not used in fitting the model to the empirical data. Since the 

differences between the conventional R-factor and the R-free factor, R-free – R, are partly a 

measure of the extent to which the model overfits the empirical data, they should be small. 

 

There are several means for refining the protein structure model. The phases involved may be 

refined, they may be extended to higher resolutions, and the fit of the model to computed 

electron densities may be improved. Knowledge of protein chemistry is required there, and the 

improvements obtained will depend upon the correctness of the interpretations of electron-

density data. Such incremental refinements are typically pursued with the aid of computer 

programs that have been specially developed for use in protein crystallography. 
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PKA-data collection and structure refinements 

X-ray diffraction data was collected following transferrals of PKA-crystals to the cryoprotec-

tant solution and plunge-freezing in liquid nitrogen. The PKA-crystals were cooled by a 

100-K stream of liquid nitrogen while X-ray-diffraction data was being collected. The Swiss 

Light Source (SLS) PXI and PXII beamlines and in-house MerckSerono rotating-anode 

source were employed as X-ray sources. The in-house source employs graphite, 

monochromatized CuKa radiation from an RU 200 rotating-anode generator (Rigaku, Tokyo, 

Japan). The in-house detector is a Rigaku R-AXIS IV X-ray detector, and, at SLS, the Pilatus 

detector at PXI was employed in collecting diffraction data. Data reduction was conducted 

using XDS, HKL2000 (Otwinowski, et al., 1997), or d*Trek. Data were integrated and scaled 

using HKL2000, XDS, d*Trek, SCALA, and MOSFLM. All structures were derived from 

molecular replacements employing Molrep. The initial molecular-replacement model 

employed was the PKA-structure 1ATP (Zheng, et al., 1993), downloaded from PDB 

(Bernstein, et al., 1997), with ligand and water molecules removed. Structure-model 

refinement and ligand fitting employed CNX (Brunger, et al., 1998) and COOT (Emsley and 

Cowtan, 2004). Following ligand fitting, subsequent cycles of model adjustment and 

refinement were carried out using COOT and CNX. Refined protein structures where checked 

and validated using WhatIF (Vriend, 1990). 

2.2.2. SURFACE-PLASMON-RESONANCE ANALYSES  

Surface-plasmon-resonance (SPR) analysis is an optical technique that measures changes in 

refractive index close to a sensor’s surface employing the evanescent-wave phenomenon. In 

the case of the setup employed for this dissertation, the target protein (PKA) is immobilized 

on the sensor’s surface and molecules (fragments) are injected into a stream flowing over the 

sensor’s surface. The fragments thus interact with the target protein and generate a response 

that was recorded in real time. Fig. 9 schematically depicts the basic interactions involved.  
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Fig. 9. Schematic of the SPR technique. Protein molecules (B) are attached to the dextrane matrix on the 
sensor’s surface. Fragment molecules (A) are injected into a stream passing over the sensor’s surface. ka and kd 
are intrinsic rate constants that describe the formation of complexes involving the fragments (A) and the protein 
(B). (adapted from a figure appearing in Myszka, (1997)) 
 
Detection relies upon surface plasmon resonance (SPR), an electron-charge-density wave 

phenomenon that arises at the surface of a metallic film when light is reflected at the film 

under conditions of total internal reflection (TIR). The resonance is due to transformations of 

the energies and momentum of incident photons into surface plasmons, which depends upon 

the refractive index of the medium on that side of the film opposite that from which the 

incident light is reflected. SPR monitors interactions between the protein and the fragments by 

measuring the changes in solute concentration occurring at the latter surface due the 

interactions taking place between the protein and fragments. The result is a change in the 

surface-plasmon-resonance signal, expressed in response units (RU) (cf. Fig.10).  

 

 
Fig.10. SPR-detection. Interactions between fragments injected into the flow channel and proteins attached to 
the sensor’s surface cause a change in the refractive index of the underlying material, close to its upper surface, 
which alters the angle of incidence (SPR-angle) required for generating SPR. The SPR-angle is monitored in the 
form of a resonance signal, expressed in RU, by tracking changes (from I to II) in the angle of reflection.  
 

SPR-sensorgrams 

A plot of resonance units versus time is termed a “sensorgram” (GE Healthcare, Application 

Note 83). A sample sensorgram is shown in Fig.11, which schematically depicts the various 
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phases of SPR-analyses. In the case of the investigations reported here, the stream of buffer 

solution is brought into contact with the surfaces of immobilized proteins prior to fragment 

injection, yielding a response baseline. Fragments are then injected into the stream (the associ-

ation phase) and binding of fragments entrained in the stream to the protein causes a rise in 

response (binding response, expressed in RU). Once fragments have been injected into the 

stream, the flow rate is readjusted only in order to contain the flow of buffer solution. Halting 

the injection of fragments triggers the dissociation phase. As fragments and the protein dis-

sociate and fragments are swept off the latter’s surface, signal amplitude will decline to the 

baseline level. 

 
 

 
Fig.11. A sample SPR-sensorgram. Sensorgrams plot binding response, expressed in RU, versus time and 
therefore provide real-time data on overall fragment-protein interactions. The plot shown above is typical of 
fragments exhibiting transient binding responses. When injection starts, a signal indicating that fragment 
binding is occurring will be observed. When injection stops, fragment dissociation from the protein’s surface 
will commence and signal amplitude will abruptly drop to the baseline level.  
 

Fragments have low molecular weights and frequently have binding constants falling in the 

µM to mM range. Binding of a fragment to a surface thus results in relatively small mass 

increases close to the binding surface and low-level SPR-responses. The resultant low 

signal/noise ratios thus impose limitations when working with fragments. SPR fragment 

assays employ high protein and fragment concentrations in order to boost signal amplitudes to 

levels well above noise levels.  

The fragments involved are dissolved in an organic solvent in order to ensure that they will 

continue to be soluble at high concentrations. A commonly used solvent for small molecules 
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is DMSO, which has a high refractive index. A slight mismatch in DMSO concentration 

between the running buffer and sample buffer can thus cause large signal mismatches that can 

greatly exceed responses generated by fragment-protein interactions. A 0.1 % difference in 

DMSO concentration corresponds to a response shift of approximately 200 RU. Corrections 

for response shifts due to changes in the DMSO’s refractive index should thus be determined 

by measuring the signals transmitted on the protein-free reference channel (Cannon, et al., 

2004; Huber, 2005). Solvent-correction runs employing buffer injections involving controlled 

DMSO concentrations will allow correcting for such signal variations. 

SPR-signals are sensitive to even the slightest variations in solution refractive index. A 

reference-spot check may be run in order to determine whether responses are partially 

attributable to interactions other than fragment-protein interactions. Reference-spot binding 

responses are then subtracted from protein-spot binding responses in order to obtain just those 

responses originating from fragment-protein interactions. 

Under the experimental procedures employed in the work reported in this dissertation, 

proteins are immobilized on the sensor’s surface prior to fragment injection. Immobilization 

of proteins on the sensor chip’s surface set the protein quantity, or concentration, that should 

be used in fragment assays. Immobilization of proteins should also ensure that they will be 

maintained states that will allow them to bind fragments (Huber, 2005). Protein activity levels 

may be computed by employing a control compound having a known binding stoichiometry, 

where N represents the total number of bound compound molecules per immobilized protein 

molecule, i.e., the protein activity level, and is given by 

  

(Eq. 4)

 
 

 The protein-binding levels, Rprotein, the saturation response, Rmax, of the positive control 

compound, Rreference, protein molecular weight, MWTprotein, and the molecular weight of the 

positive control compound, MWTreference, all represent parameters that can be measured. The 

ratios (δn/δC)reference and (δn/δC)protein, represent the change in refractive index caused by 

variations in the concentrations of bound protein or bound compound, and are constants for 

given molecules and usually unknown. They are therefore neglected in most SPR-applications 
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(Huber and Mueller, 2006). Measuring protein activity levels following immobilization is 

recommended. Experience has shown that large variations in protein activity levels between 

differing protein surfaces can occur (Huber and Mueller, 2006). Protein activity levels are 

routinely checked several times during fragment-screening campaigns. Control compounds 

yield the activity levels of individual immobilized surfaces and also provide some degree of 

control over the stabilities of protein surfaces, since they are employed during several cycles 

interposed between fragment injections during screening. The variations in activity levels and 

expected fragment-binding signals occurring throughout screening may then be computed. 

Unexpected reductions in activity levels can lead to erroneous estimates of the numbers of 

bound fragment molecules.  

2.2.2.1. PKA ASSAY PREPARATION 

Sensor-chip quality checks 

All SPR-investigation were carried out at 25°C using a BIACORE A-100 instrument (GE 

Healthcare, Uppsala, Sweden). A fresh CM5 sensor chip was employed on each new experi-

mental setup. The immobilization program employed was that provided by the BIACORE A-

100 control software. BIAnormalize solution (BIACORE) and HBS-N buffer (BIACORE) 

were employed in accordance with the instructions displayed by the software. The control-

software settings employed were precisely those specified by the instrument’s manufacturer. 

BIACORE A-100 BIACORE 

Series S sensor chip CM5 BIACORE 

BIAnormalize solution BIACORE 

BIAmaintenance kit BIACORE 

HBS-N Buffer BIACORE 

 

Immobilization 

PKA was coupled to the CM5 sensor chip’s surface via amine-coupling chemistry. Free 

carboxylic-acid groups in the dextrane matrix were transformed into N-hydroxysuccinimide 

esters, which was achieved by injecting carbodiimide (EDC) and N-hydroxysuccinimide 

(NHS), which reacts with the free carboxylic-acid groups. Coupling occurs largely with the 

free amino groups of lysine residues. Following immobilization of the protein, ethanolamine 

was applied to the sensor’s surface in order to deactivate any active groups remaining on its 

surface. The amine coupling reagents EDC, NHS, and ethanolamine (BIACORE), which were 

kept in storage at – 20°C, were withdrawn from storage and thawed. Prior to application, it 
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was verified that the immobilization reagent to be employed contained no air bubbles. The 

following protocols list the settings employed in immobilizing PKA on the sensor chip’s 

surface. Fig.12 presents an overview of the instrumental layout for this particular setup of the 

BIACORE A-100. 

 

 
Fig.12. The five detection areas employed in immobilizing protein on the sensor chip. PKA was immobi-
lized on three spots at three, differing, protein-density levels. The immobilized protein levels involved corres-
ponded to response levels of 10 k, 6 k, and 3 k. CA was immobilized on a single spot employed as a reference 
spot in order to allow investigating nonspecific protein interactions. One spot was employed as a vacant surface 
and revealed that interactions with the sensor chip’s surface were occurring. 
 

BIACORE A-100 control software was employed, where the settings for the immobilizations 

involved were as follows: 

Immobilization conditions 

Sensor chip CM5 

Channels/spots Fc1, Fc2, Fc3, and Fc4; spots 1 – 5 

Flow rate 10 µl/min 

Temperature 25°C 

Channel 1/2/3/4 

Spot(s) 1, 2, and 4 

Immobilization mode Amine coupling 

Ligand/protein Human PKA(10 – 350)  

Protein concentration 20 µg/ml (spots 1 and 2) and 10 µg/ml (spot 4) 

Sample buffer 10 mM bis-tris-propane, pH: 6.5 

Sample preparation 1:200 dilution of the ligand in Milli-Q-H2O 
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Injection time 240 s + 240 s (spot 1) 

240 s (spot 2) 

120 sec (spot 4) 

Running buffer Immobilization running buffer 

BIACORE A-100 BIACORE 

Series-S CM5 sensor chip BIACORE 

Normalizing solution BIACORE 

HBS-N buffer BIACORE 

Normalization 1 BIACORE 

Normalization 2 BIACORE 

EDC BIACORE 

NHS BIACORE 

Ethanolamine BIACORE 

Human PKA protein/protein-

immobilization buffer 

20.5 mg/ml PKA 

5 mM Mes 

5 mM bis-tris-propane/HCl 

75 mM LiCl  

0.1 mM EDTA  

1 mM DTT  

pH: 6.9 

CA-protein/protein-immobiliza-

tion buffer 

30 µg/ml CA (BIACORE, S-51 training kit) 

Acetate buffer, pH: 5.5 (BIACORE) 

Protein immobilization running 

buffer 

100 mM HEPES 

150 mM NaCl 

0.005 % Tween 20 

2 mM MgCl2 

pH: 6.8 

PKA-protein immobilization 

buffer 

10 mM bis-tris-propane 

200 µM ATP 

2 mM MgCl2 

CA-protein immobilization 

buffer 

Acetate buffer, pH: 5.5 (BIACORE) 
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2.2.2.2. FRAGMENT SCREENING 

Fragment screening involves injecting fragments into a stream of solution at a single 

concentration in order to determine whether they interact with the protein immobilized on the 

sensor’s surface. The resulting sensorgrams are then analyzed in order to pick out the hits. 

An expected maximum response due to fragments binding at equilibrium may be computed 

for each fragment molecule. During fragment screenings, such computations are utilized for 

identifying those fragments that interacted with the protein on a 1:1-basis at the molecular 

level. The theoretical maximum binding responses for such 1:1-interactions, Rmax, may be 

computed from the molecular weights of the fragment and protein involved, the quantity of 

protein immobilized on the sensor chip’s surface, and the immobilized protein’s activity level, 

employing the following relation: 

 
(Eq. 5) 

Upon binding, chemical scaffolds can cause the occurrence of unexpected refractive-index 

increments (RII) on the sensor chip’s surface (Davis and Wilson, 2000), which can result in 

the binding responses obtained differing from those expected in the case of certain affinities 

and molecular weights. Employing an upper cutoff level of 2Rmax as a criterion in hit-

classification surveys is therefore recommended in order to preclude inclusion of fragments 

whose refractive-index increments are due to their molecular properties. 

Signal/noise ratios determine the lowest cutoff levels for which fragment binding responses 

may be regarded as reliable and both represent the minimum response levels that will be 

reliably detected and define those fragments that will be counted as hits at the fragment 

concentration employed in screening. Assignments of lower cutoff levels are based on the 

average responses received from negative controls, plus three standard deviations.  

Responses that occur upon fragment binding will be observed in the form of signal transients 

exhibiting very short rise and fall times (cf. Fig.11). The rates at which steady-state binding, 

i.e., binding equilibrium, is reached equal the product of the association constant, kon or ka, 

and the free-fragment concentration. Under such circumstances, transient binding behavior is 
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to be expected in the case of virtually all fragments. In this study, such sensorgrams were 

therefore classified as typical transient-binding sensorgrams. 

 

A compound concentration of 200 µM was employed in fragment screenings. Fragments were 

flowed onto sensor surfaces bearing immobilized PKA. The fragments involved were 

prepared by MerckSerono’s in-house Compound-Storage Department. The stock solutions 

employed contained 10-mM fragment concentrations in 100 % DMSO. Those stock solutions 

were diluted in Eppendorf tubes to sample-preparation-buffer levels in a single operation. The 

Eppendorf tubes containing the diluted compound solutions were then vortexed for 5 seconds 

in a VWR International vortexer. Compound solutions were subsequently transferred from the 

Eppendorf tubes to a BIACORE 386 well plate, which was subsequently sealed using 

BIACORE sealing film pending usage. Running buffer, sample-preparation buffer, solvent 

(DMSO) corrections, positive and negative control samples, fragment samples, and surface-

regeneration conditioner were all prepared in accordance with the following table: 

 

Running buffer 100 mM HEPES 

150 mM NaCl 

0.005 % Tween 20 

2 mM MgCl2 

pH: 6.8 

2 % DMSO 

Sample-preparation buffer 100 mM HEPES 

150 mM NaCl 

0.005 % Tween 20 

2 mM MgCl2 

pH: 6.8 

PKA positive-control sample 1 mg H-89 dissolved in DMSO to yield: 

1 mM 100 % DMSO (stock solution) 

Diluted in sample-preparation buffer: 

2 µM H-89 

2 % DMSO 
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CA positive-control sample 10 mM furosemide (BIACORE, S-51 train-

ing kit) 

100 % DMSO 

Diluted in sample preparation buffer: 

20 µM furosemide (BIACORE) 

2 % DMSO (Merck) 

Negative-control sample Running buffer 

Solvent-correction setup Sample-preparation buffer containing 

1.2 % DMSO 

1.4 % DMSO 

1.6 % DMSO 

1.8 % DMSO 

2.0 % DMSO 

2.2 % DMSO 

2.4 % DMSO 

2.6 % DMSO 

2.8 % DMSO 

Screening compounds 10 mM compound in “remp tubes” 

100 % DMSO 

Diluted in sample preparation buffer: 

200 µM compound 

2 % DMSO 

Characterization compounds 100 mM compound in stock solutions 

100 % DMSO 

Diluted in sample preparation buffer: 

1 mM compound 

2 % DMSO 

1:1-dilution in sample-preparation buffer in 

ten increments: 

1.0 mM compound, 2 % DMSO 

500 µM compound, 2 % DMSO 

250 µM compound, 2 % DMSO 

125 µM compound, 2 % DMSO 
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62.5 µM compound, 2 % DMSO 

37.25 µM compound, 2 % DMSO 

15.63 µM compound, 2 % DMSO 

3.91 µM compound, 2 % DMSO 

1.95 µM compound, 2 % DMSO 

 

The BIACORE A-100 control software was configured with the following experimental 

settings: 

 

Chip conditioning  

Solution, flow cell 1 Running buffer A 

Solution, flow cell 2 Running buffer A 

Solution, flow cell 3 Running buffer A 

Solution, flow cell 4 Running buffer A 

Contact period, cycles 1 – 5 180 s 

Total no. of cycles 5 

Extra wash, flow cell 1 50 % DMSO 

Extra wash, flow cell 2 50 % DMSO 

Extra wash, flow cell 3 50 % DMSO 

Extra wash, flow cell 4 50 % DMSO 

Stabilization period prior to injection N/A 

Stabilization period following injection 180 s 

Flow rate 30 µl/min 

Samples  

Sample buffer, flow cell 1 Sample in running buffer  

Sample buffer, flow cell 2 Sample in running buffer 

Sample buffer, flow cell 3 Sample in running buffer 
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Sample buffer, flow cell 4 Sample in running buffer 

Running buffer, flow cell 1 Running buffer 

Running buffer, flow cell 2 Running buffer 

Running buffer, flow cell 3 Running buffer 

Running buffer, flow cell 4 Running buffer 

Sample type High-performance kinetics 

Flow rate 30 µl/min 

Sample contact period 180 s 

Dissociation period 180 s 

Extra wash, flow cell 1 50 % DMSO 

Extra wash, flow cell 2 50 % DMSO 

Extra wash, flow cell 3 50 % DMSO 

Extra wash, flow cell 4 50 % DMSO 

Stabilization period prior to injection N/A 

Stabilization period following injection 120 s 

Analysis temperature 25°C 

Tray temperature 25°C 

  

PKA positive-control sample (H-89)  

PKA positive-control sample 2 µM H-89 in running buffer 

Flow rate  30 µl/min 

Contact period 180 s 

Dissociation period 180 s 

Extra wash, flow cell 1 50 % DMSO 

Extra wash, flow cell 2 50 % DMSO 
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Extra wash, flow cell 3 50 % DMSO 

Extra wash, flow cell 4 50 % DMSO 

Stabilization period prior to injection N/A 

Stabilization period following injection 120 s 

Analysis temperature 25°C 

Tray temperature 25°C 

Positive-control samples for CA (furose-

mide) 

 

Positive-control carbonic anhydrase 20 µM furosemide in running buffer 

Flow rate 30 µl/min 

Contact period 180 s 

Dissociation period 180 s 

Extra wash, flow cell 1 50 % DMSO 

Extra wash, flow cell 2 50 % DMSO 

Extra wash, flow cell 3 50 % DMSO 

Extra wash, flow cell 4 50 % DMSO 

Stabilization period before injection N/A 

Stabilization period after injection 120 s 

Analysis temperature 25°C 

Tray temperature 25°C 

Negative-control samples for PKA and CA  

Negative-control sample Running buffer 

Flow rate 30 µl/min 

Contact period 180 s 

Dissociation period 180 s 

Extra wash, flow cell 1 50 % DMSO 
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Extra wash, flow cell 2 50 % DMSO 

Extra wash, flow cell 3 50 % DMSO 

Extra wash, flow cell 4 50 % DMSO 

Stabilization period prior to injection N/A 

Stabilization period following injection 120 s 

Analysis temperature 25°C 

Tray temperature 25°C 

Solvent correction  

Solvent correction employing DMSO Running buffer having DMSO-concentra-

tions ranging from 1.2 % to 2.6 % in eight 

increments of 0.2 % 

Flow rate 30 µl/min 

Contact period 180 s 

Dissociation period 180 s 

Stabilization period prior to injection N/A 

Stabilization period following injection 120 s 

Analysis temperature 25°C 

Tray temperature 25°C 

Regeneration  

Regeneration solution 1, flow cell 1 100 mM NaHCO3, pH: 8.7 

Regeneration solution 1, flow cell 2 100 mM NaHCO3, pH: 8.7 

Regeneration solution 1, flow cell 3 100 mM NaHCO3, pH: 8.7 

Regeneration solution 1, flow cell 4 100 mM NaHCO3, pH: 8.7 

Contact period 30 s 

Stabilization period following injection 120 s 
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DMSO solvent-correction samples and positive/negative-control samples were injected at 

intervals of ten compound-injection cycles, for both PKA and for CA. 

 

2.2.2.3. FRAGMENT-HIT CHARACTERIZATION 

Fragment-binding steady-state equilibrium may be assessed using the Langmuir adsorption 

isotherm. The data from the titration curves obtained during hit characterization are fit to the 

Langmuir isotherm binding model via a nonlinear regression analysis, yielding the values of 

KD, Rmax, and the offsets, which are related by 

 

     

(Eq. 6) 

 

The titration series employed in hit characterization was prepared such that it would cover the 

expected range of fragment binding affinities. The titration series thus included fragment 

concentrations ranging from 1 mM, down to approximately 1 µM. 

 

Titration series involving ten fragment concentrations were prepared. Stock solutions having a 

compound concentration of 100 mM were prepared by dissolving solid fragment in 100 % 

DMSO, followed by dilution to 50 mM fragment, 100 % DMSO, in Eppendorf tubes. The 

compounds were then diluted in sample-preparation buffer to a 1-mM fragment concentration 

in 2 % DMSO. The compound-buffer solution was vortexed for 5 seconds in a VWR 

International vortexer and followed by centrifugation for one minute at 6,000 g in an 

Eppendorf 5415D centrifuge. 

 

Fragment concentrations were prepared via 1:1-dilutions in ten increments (1 mM, 500 µM, 

250 µM, 125 µM, 62.5 µM, 31.25 µM, 15.625 µM, 7.8125 µM, 3.90625 µM, and 

1.953125 µM). The compound solutions were transferred from the Eppendorf tubes to 

BIACORE 386 well plates. The plates were then sealed using BIACORE sealing film pending 

usage.  

 

Running buffer, DMSO-correction samples, positive/negative-control samples and surface-

regeneration conditioner were prepared, following the same method employed in the case of 

SPR-screening. 
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SPR- data analysis 
 
Fragment binding curves were investigated using BIACORE A-100 evaluation software. 

Fragment screening data was assessed by following the BIACORE A-100 evaluation 

software’s presettings. Assessments of fragment-hit characterizations were conducted by 

following the BIACORE A-100 evaluation software’s presettings. Data analysis employed 

affinity-computation and sensorgram-visualization tools. The data was fit to the Langmuir 

binding isotherm, assuming a 1:1-binding model, which yielded the values of KD, Rmax, and 

the offsets for the fragments employed in hit characterization. 

2.2.3. BIOCHEMICAL ASSAYS AT HIGH FRAGMENT CONCENTRATIONS 

Employment of high compound concentrations in biochemical assays in order to allow 

identifying weakly binding fragments represents a further screening option for finding binders 

and involves extending the concentration range of a typical primary biochemical assay up to 

the mid-µM or high-µM ranges. Lessened assay volumes and the concomitant decreases in the 

quantities of biological reagents required are perceived as key factors that have improved the 

utility of biochemical assays in both HTS and FBLD. 

 

HCA-approaches typically employ the same biochemical assays employed for screening 

larger-molecule compounds having greater affinities, but are conducted at higher substance 

concentrations. Fluorescence readout or radioisotope readout are assay techniques that are 

typically employed in HCA. The major advantages of HCA in FBLD are that the assays 

involved yield high throughput rates, are, in principle, quantitative, and utilize widely 

available technologies for detection. 

 

However, pitfalls also arise when utilizing HCA in FBLD. Both false positives and false nega-

tives can occur. For instance, added-fragment concentrations might interfere with the assays 

via unwanted mechanisms. Prospective causes of problems include compound interference, 

e.g., fluorescence quenching and/or fluorescence, with assay readout and “nonspecific” 

binding to, or disruption of, the target protein, or to enzymes causing jumps in signal 

amplitude. False negatives due to the effective lack of compound solubilities can also occur. 

 

Noteworthy is that there are a number of reports in the literature where fragment molecules 

have been identified by biochemical assays conducted at high compound concentrations, and, 
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since high-throughput screening devices are employed, FBLD-studies employing HCA-meth-

ods are subject to virtually no limitations on throughput rates, which will allow conducting 

more extensive explorations of the diversities of fragment chemical spaces.  

 

PKA biochemical assays 

MerckSerono’s in-house Assay Department was commissioned to setup and run the high-

compound-concentration biochemical assays (HCA) involved. In brief, the HCA-fragment 

screening conducted employed a fragment concentration of 100 µM and runs were set up as 

competition experiments involving an ATP-concentration of 20 µM. 

 

PKA was diluted to 5 mU – 20 mU in 20-mM MOPS at a pH of 7.5, 1 mM EDTA, 0.01 % 

Brij35, 0.1 % b-mercaptoethanol, and 1 mg/ml BSA. PKA was assayed against the Kemptide 

oligopeptide (LRRASLG) in a final volume of 25.5 μl containing 8 mM MOPS at a pH of 7.5, 

0.2 mM EDTA, 30 μM substrate peptide, 10 mM magnesium acetate, and 0.005 mM 

[33Pg-ATP] (50 cpm/mole – 1,000 cpm/pmole). 0.5 µl compound in DMSO-solution was 

added and the mixture incubated for 30 minutes at room temperature. Assays were stopped by 

adding 5 μl 0.5-M (3 %) orthophosphoric acid and their results harvested onto P81 Unifilter 

plates employing a wash buffer of 50 mM orthophosphoric acid. Compound concentrations 

ranged from 200 µM down to 7 nM at the hit-characterization stage. IC50-values were 

determined following fitting of the inhibition data to a 1:1-binding model. 

 

Protein (PKA) 20 mM MOPS 

pH: 7.5 

0.01 % Brij35 

1 mM EDTA 

0.1 % b-mercaptoethanol 

1 mg/ml BSA 

Substrate 30 µM Kemptide (LRRASLG) peptide 

8 mM MOPS  

pH: 7.5  

0.2 mM EDTA  

10 mM magnesium acetate 

0.005 mM [33Pg-ATP] (50-1000 cpm/pmole)  



59 

  

30 min 

25°C 

Compounds Titration series covering the range 200 µM to 

7 nM 

Assay-stop solution 5 μl of 0.5 M (3 %) orthophosphoric acid  

Harvesting onto P81 Unifilter plates  

Wash buffer: 50 mM orthophosphoric acid. 

 

2.2.4. FRAGMENT-LIBRARY DESIGN 

The molecules listed in fragment libraries are employed in various screening and characteriza-

tion methods in order to detect and characterize fragments’ interactions with target proteins. 

Fragment libraries have been designed to assemble sets of molecules that should be included 

therein. A molecular weight of less than 300 Da is regarded as the cutoff point for fragments 

(Congreve, et al., 2003). Examples of the other molecular parameters involved are the number 

of hydrogen bond donors and acceptors, as well as the solubilities of the fragments at the 

concentration ranges employed. Several studies and approaches have been employed in 

designing fragment libraries. Two different fragment libraries have been utilized in the pair of 

studies reported in this dissertation. A protein-kinase-targeted library was designed for the 

screening setup involving SPR, HCA, and protein crystallography. In the case of the other 

study involved, the associated fragment library was configured following a screening of the 

in-house database for fragments that had exhibited activities with respect to PKA in previous 

assays. Ready fragment availability was another parameter employed in assembling that 

fragment library.  

 

The protein-kinase-targeted-fragment library was designed using the ZINC database and 

MerckSerono’s in-house library-design and computational tools. The ZINC database (UCSF, 

http://zinc.docking.org/) was utilized and the following fragment-defining variables applied. 

The settings employed were in compliance with the rule of three (Congreve, et al., 2003). 

• 100 Da ≤ molecular weight ≤ 300  

• clogP ≤ 3 

• HBA ≤ 3  

• HBD ≤ 3  
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• NROT ≤ 3  

• PSA ≤ 60  

• Deliverable within one to three weeks 

 

A computed solubility (clogs, pH 7.4) of 200 µM that was assigned using MerckSerono’s in-

house solubility-computation tool was employed as a further criterion. The fragment library 

was exported in the form of sd-files. The fragments involved were manually surveyed using 

ISIS Base and Accord for Excel for visualizing the structures contained in the sd-files. 

Fragments for a protein-kinase targeted-chemical library were selected using the “chemical 

eye” gained from first-hand experience. Fragments containing one or more atoms that 

theoretically are capable of interacting with the donor-acceptor-donor moiety available in the 

hinge zone were selected. MerckSerono’s in-house database tools were utilized for checking 

the availability of the compounds involved in MerckSerono’s compound-storage facility. The 

final library contained all fragment compounds that were available in 10-mM concentrations 

in 100 % DMSO and packaged in vials containing 30 µl per vial. At least five vials were 

available per compound. 

 

The fragment library based on selections of reported interaction data was assembled following 

a filtering of MerckSerono’s in-house database. That compound database was screened using 

ISIS Base and the following parameter set: 

• Molecular weight ≤ 300 Da  

• Computed solubility at pH 7.4 (clogs, pH 7.4) ≥ 2 x 10-4 M 

• PKA-inhibition ≥ 50 % at 10-µM fragment concentration 

• Availability of the compound in solid from MerckSerono’s in-house compound-

storage facility 

 

Crystallization scaffolds were selected by the manual “chemical eye” method such that one 

example of each chemical scaffold was represented. Compounds listed in the library were 

stored in an ISIS Base database. An sdf-file containing the compounds selected and their 

properties was prepared using Accord for Excel and exported as a csv-file that was imported 

into the SpotFire program employed for keeping track of the fragments and the empirical data. 

Fragments listed in the library were ordered from in-house databases for delivery within 24 

hours prior to commencement of the experimentation. 
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Library-generation and virtual-screening 

software 

ZINC (UCSF, http://zinc.docking.org/)  

ISIS Base (MDL Information Systems, Inc.) 

ISIS Draw (MDL Information Systems, Inc.) 

Accord for Excel (Accelrys, Inc.) 

MOE (Chemical Computing Group, Inc.) 

SpotFire (Tibco Software, Inc.) 
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Chapter 3  

RESULTS 

 

 

3.1. FBLD INVOLVING SPR, HCA, AND PROTEIN CRYSTALLOGRAPHY 

Under the approach to FBLD involved here, three different techniques were utilized for 

investigating fragment-protein interactions, surface-plasmon-resonance (SPR) analyses, high-

compound-concentration biochemical assays (HCA) and protein crystallography. The 

outcomes of those investigations are presented below. 

3.1.1. RESULTS OF SURFACE-PLASMON-RESONANCE (SPR) ANALYSES 

Immobilization of PKA on the sensor chip’s surface was the initial stage of SPR. Carbonic 

anhydrase II (CA) was also immobilized thereon and employed as a reference protein. 

Immobilization was carried out using an amine-coupling procedure. Immobilization of PKA 

resulted in three protein-density levels. The response units for each level were approximately 

3,000 RU, 6,000 RU and 10,000 RU. The response-unit level for CA-immobilization was 

approximately 2,000 RU.  

 

Injections of positive-control compound revealed protein activity levels. H-89 was employed 

as a positive control in the case of PKA, and furosemide was employed as a positive control in 

the case of CA. Protein activity levels were assigned under the assumption that the positive 

control compounds underwent 1:1-stoichiometry interactions with the protein 

    

(Eq. 4) 

Both PKA and CA exhibited an activity level of approximately 100 %. Fig.13 depicts the 

sensorgrams obtained from injecting the positive-control compounds onto the surfaces of 

PKA and CA. 
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Fig.13. Sensorgrams for the positive-control samples employed in screening and hit characterization. 
These sensorgrams illustrate the binding of H-89 to PKA and furosemide to CA. Both positive-control 
compounds were applied in concentrations that saturated the protein’s surface. Saturation was exhibited in the 
form of an abrupt increase in response following the start of injections in the case of both H-89 and furosemide. 
 

Control compounds were injected at intervals of ten fragment-injection cycles during 

screening runs. Surface activity was maintained during screenings in all but one case, where a 

single fragment remained attached to the protein’s surface following an injection cycle (cf. 

Fig.17 C), which resulted in a lower PKA activity level, and thus reduced responses from 

those fragments binding to the surface involved during subsequent injection cycles. New PKA 

activity levels were assigned to that surface employing the results of subsequent PKA 

positive-control-compound runs, which allowed conducting an analysis of all screening data. 

 

Maximum response levels, Rmax, were employed in assigning cutoff levels to the maximum 

responses correlated to 1:1, fragment-protein interactions during screening. Those cutoff 

levels were computed from the associated immobilized-protein level, protein activity level, 

the molecular weight of the fragment involved, and the protein’s molecular weight (cf. Eq. 4). 

The SPR-evaluation software was utilized for normalizing fragment responses, expressed in 

RU, referred to the molecular weight of each fragment involved, which resulted in maximum 

responses of 30 RU for 1:1, fragment-protein binding during the screening of the 

257 fragments involved. However, injections of the negative-control samples indicated that 

variations from the baseline were occurring on the screening setup employed and assigned a 

lesser cutoff level to detection of fragment binding to low-density PKA-surfaces (those having 

3,000-RU immobilized PKA; spot 1 on the sensor chip) during screening, which yielded a 
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lower cutoff level of 5 RU. Calibration runs employing solvent/DMSO-concentrations 

ranging from 1.2 % to 2.8 % were employed for correcting for larger mismatches in binding 

signals caused by variations in DMSO-concentration from sample to sample. Those solvent 

corrections were applied to all fragments investigated under the screening runs. 

 

The 257 fragments were injected across all flow cells and detection areas at a fragment 

concentration of 200 µM. Fig.14 presents an overview of the results obtained from screening 

the 257 fragments, where the high and low cutoff levels for fragment binding are shown. The 

green spots represent fragments whose binding responses, expressed in RU, fell within the 

range stipulated for 1:1-interactions. The blue spots represent fragments that failed to exhibit 

responses exceeding the lower cutoff level. The red spots represent fragments whose 

responses exceeded that for 1:1 fragment binding, which might indicate either their bonding to 

multiple sites or a nonspecific binding of fragment aggregates to the protein. The full set of 

screening results is presented in Appendix 1. 

 

 
Fig.14. A plot of the responses obtained from fragment screenings. The plot provides an overview of the 
responses of all 257 fragments screened and has been prepared using BIACORE A-100 evaluation software. 
Response amplitudes for all 257 fragments are plotted versus cycle numbers and have been adjusted to allow for 
molecular weight. The upper and lower cutoff levels are indicated by the horizontal lines. The green spots 
represent fragments whose binding responses fell within the range for 1:1-interactions. The blue spots represent 
fragments whose responses failed to exceed the lower cutoff level of 5 RU. The red spots represent fragments 
whose responses indicate superstoichiometric fragment-protein interactions. The 60 hits were selected from 
among the green spots following manual inspections of their sensorgrams. 
 

Fragments that exhibited binding responses falling between the high and low cutoff levels 

were manually investigated. The fragment concentration employed in the screenings 

(200 µM) resulted in transient binding responses from most fragments. Fragment responses 



65 

  

classified as hits were thus confined to those fragments whose sensorgrams exhibited such 

typical fragment-binding responses (cf. Fig.16).  

 

SPR-responses are proportional to the changes in molecular weight occurring when fragments 

bond to the protein’s surface. A further requirement for classification as a hit was that 

responses should be proportional to the quantities of immobilized PKA. There thus should be 

a rise in response correlated to binding on surfaces having higher immobilized-protein 

densities, and that was the case for all fragments classified as hits under the screenings 

conducted (cf. Fig.16).  

 

The SPR sensor chip employed utilizes a reference surface, on which the protein carbonic 

anhydrase II (CA) was immobilized. Screenings detected eleven fragments that interacted 

with both PKA and CA. Those fragment interactions were excluded from further characteriza-

tion. Fig.15 depicts the sensorgrams of a fragment that interacted with both PKA and CA. 

 

 
Fig.15. Sensorgrams of a fragment that interacted with both PKA and CA. A comparison of the response 
curves for PKA and CA indicates that the fragment involved bonded to the surfaces of both PKA and CA. Such 
fragments were not classified as hits under the screenings conducted. 
 

The criteria for classification as a hit are listed in Table 4. Application of those criteria 

resulted in 60 fragments being classified as hits under the screenings conducted. The 

sensorgram of a fragment that met those criteria is illustrated in Fig.16.  
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Table 4. Criteria for SPR fragment screening hit selection. The table below lists the criteria for classifying 
fragments as hits in conjunction with the screenings conducted. The upper cutoff level was set to 30 RU and the 
lower to 5 RU. Increases in binding response varying with protein density/immobilization levels were also 
required. The binding sensorgrams should resemble those typical of transient fragment binding. A fifth criterion 
was specificity in binding to PKA.  
Fragment hit-classification criteria Remarks 
Binding responses exceeding a lower cutoff 

level, where a response of > 5 RU was 

interpreted as indicating binding to the 

surface of low-density PKA 

Assignments of signal/noise ratios based on the results 

obtained from injecting negative-control samples yielded a 

lower cutoff level of 5 RU. 

Binding responses remaining below an 

upper cutoff level, Req, of < 2 Rmax 

Rmax, which corresponded to 30 RU in the case of low-density 

PKA-surfaces, should not be exceeded by more than a factor of 

two 

Transient binding responses All fragments classified as hits should exhibit typical transient 

binding.  

Binding responses proportional to immob-

ilized PKA-densities 

Responses due to binding to higher-density protein surfaces 

should exceed those for binding to lower-density protein 

surfaces. 

Specificity for binding to PKA All hit-fragments should exhibit specific binding to PKA. Frag-

ments binding to the reference protein, CA, were rejected.  

 

 
Fig.16. Sensorgrams of a typical hit-fragment. Illustrated above are the sensorgrams obtained from a single 
flow cell following injections of solutions having a 200-µM fragment concentration across all five spots. All 
responses have been corrected to allow for the solvents, molecular weights, and reference levels involved. The 
fragment in question exhibited transient binding. No binding to the surface of CA was observed. Its responses 
increased with increasing density of the immobilized protein. Its response on the 3k PKA-surface never fell 
below 5 RU and never exceeded 30 RU, and thus remained between the upper and lower cutoff levels. 
 

The sensorgrams obtained from the screenings revealed several fragments whose binding 

failed to correspond to a 1:1-stoichiometry binding model. Such fragments bind in a manner 
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that has been termed “promiscuous binding” in the SPR-literature (Gianetti, et al., 2008). 

Forty-five of the 257 fragments exhibited binding responses indicative of promiscuous 

binding and were identified by manual examinations of the sensorgrams. Three examples of 

such sensorgrams are shown in Fig.17 

 

A 

 

B 

 

C 

 

Fig.17. Sensorgrams of fragments exhibiting promiscuous binding. Sensorgrams from the screenings, 
illustrating the responses of fragments exhibiting promiscuous binding. (A) Although the fragment involved 
yielded responses that remained between the upper and lower cutoff levels, it failed to exhibit any responses 
similar to typical transient binding. Such binding responses have been reported in the case of micelles that 
interact with the protein. (B) The sensorgrams resulting from fragment injection cannot be characterized as 
indicative of any particular mode of interaction. The interactions involved were therefore nonspecific and 
similar to those with the surfaces of CA and PKA. (C) Fragment injection resulted in superstoichiometric 
interactions with the protein. The fragment adhered to the protein’s surface in a pseudo-irreversible manner, 
resulting in an escalating baseline. 
 

Examinations of the sensorgrams for all 45 fragments involved facilitated classifying 

promiscuous binding responses, based on the nomenclature proposed by Gianetti and Huber 

(Gianetti, et al., 2008; Huber, 2005). The various types of promiscuous binding occurring in 

the sensorgrams shown in Fig.17 were suggestive of either binding of micelles (A), binding of 

fragments suffering from solubility problems (B), or binding of fragment aggregates that 

failed to detach from the protein’s surface during the dissociation phase (C). 

 

Those fragment aggregates that failed to detach from the protein’s surface once injection had 

ceased were detached using regeneration conditioner. NaHCO3 regeneration conditioner 

having a pH of 8.5 detached all such aggregates, except those whose sensorgrams are shown 

in Fig.17C, from its surface.  

 

The 68 screening hits were subsequently characterized employing series of graduated frag-

ment concentrations. All of the hits involved were characterized, based on both SPR and 



68 

  

HCA. In the case of SPR, the fragment concentrations employed ranged from 1 mM to 

approximately 1 µM, while for HCA, they ranged from 200 µM to approximately 1 nM. The 

responses obtained from SPR-hit characterizations facilitated classifying the 68 fragments into 

five subgroups. The subgroups and various types of fragment characteristics involved shall be 

described below and are summarized in Fig.18.  

 

 
Fig.18. The results of SPR-hit characterizations. SPR-hit characterizations involved fragment concentrations 
ranging from 1 mM to 1 µM. The fragments involved were classified into various groups, based on their binding 
responses. Twenty-four fragments exhibited typical transient binding responses and their affinity constants, KD, 
were computed. Another 24 fragments exhibited transient binding responses, but no affinity constants were 
computed for them. Nine fragments exhibited binding similar to that termed “promiscuous binding” (Gianetti, et 
al., 2008) and eight fragments exhibited binding behaviors indicating that concentration-dependent aggregations 
were occurring. Nine fragments exhibited binding responses that remained below the lower cutoff level. 
 

Fragments that had exhibited transient binding responses and whose affinities had been 

computed were classified as “typical transient-binding, estimated-affinity” fragments (Group I 

fragments). Fragments exhibiting transient binding, to which no 1:1-binding models or 

affinities, KD, were assigned, were classified as “typical transient-binding, no-estimated-
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affinity” fragments (Group II fragments). The third group consisted of those fragments whose 

responses could not be correlated to any 1:1, fragment-protein-interaction models. Such 

fragments were classified as “fragments exhibiting promiscuous binding” (Group III 

fragments). Further, those fragments that had exhibited transient, 1:1, binding responses at the 

lower concentrations, but exhibited nonstoichiometric, or promiscuous, binding responses at 

the higher concentrations, were classified as “fragments subject to concentration-dependent 

effects” (Group IV fragments). Sensorgrams similar to those of Group III and Group IV 

fragments had earlier been described by Huber (2006) and Gianetti, et al. (2008). Finally, 

fragments that exhibited binding responses that failed to exceed the lower cutoff level were 

classified as “nonbinders” (Group V fragments).  

 

Fig.19 depicts the sensorgrams of a fragment that was allocated to Group I, since they are 

typical of transient fragment binding. The occupancies of protein binding sites increased with 

fragment concentration. A plot of its binding responses versus fragment concentration yielded 

a curve that asymptotically approaches unity (cf. Fig.19). In the case of such fragments, fitting 

their response data to the Langmuir-isotherm model yielded the values of their equilibrium 

binding constant (KD), Rmax, and offset. Equilibrium binding constants (affinities) were 

computed for 24 of the 68 fragments included in the hit characterizations. All 24 selectively 

interacted with the PKA’s surface and exhibited either no, or only very low, responses due to 

interactions with the CA’s surface. 

 

(A) Group I fragment 

 

(B) Response-concentration curve for fragment 6 

Fig.19. An example of a fragment that exhibited transient binding and was assigned an estimated affinity 
(Group I fragment). (A) Sensorgrams from the series involving graduated fragment concentrations exhibit the 
flat response curves indicating that typical transient binding was occurring. (B) A plot of its binding responses 
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versus fragment concentration yielded a curve that asymptotically approaches unity. The data have been fit to the 
Langmuir-isotherm binding model employing a nonlinear-regression analysis that yielded the values of KD, Rmax, 
and the offset. 
 

Group II contained 24 fragments. Although they exhibited typical transient binding, their 

responses exceeded those expected for 1:1, fragment-protein interactions, and no saturation of 

protein binding sites was observed for them. Since it proved impossible to fit the data to a 

1:1-binding model in the case of those fragments involved, no affinities were computed for 

them. Sample sensorgrams for a fragment from that group are shown in Fig.20.  

 

(A) Group II fragment 

 

(B) Response-concentration curve for fragment 22 

 

Fig.20. Sensorgrams for a fragment exhi ting transient binding, but for which no KD was computed. 

roup III consisted of fragments exhibiting nonspecific protein interactions. McGovern, et al. 

bi
Although the fragment involved yielded sensorgrams typical of transient binding, the Rmax expected for 1:1, 
fragment-protein interactions was exceeded. Since saturation of protein binding sites failed to occur, binding 
isotherms could not be employed for computing such fragments’ affinities (KD). 
 

G

(2008) and Gianetti, et al. (2008) had also proposed that the occurrence of such nonspecific 

interactions should result in the fragments involved being classified as promiscuous binders. 

Another nine fragments were added to Group III following hit-characterization runs. Two 

examples of sensorgrams obtained from those runs are shown in Fig.21, where (A) depicts 

those for a fragment classified in this dissertation as exhibiting “general promiscuous 

binding,” i.e., to which no particular mode of fragment-protein interaction could be assigned, 

which meant that their sensorgrams could not be utilized for deriving affinity constants. The 

sensorgrams obtained for another fragment classified as belonging to Group III are shown in 

Fig.21 (B). Although its binding responses were typical of transient binding, Rmax was 

exceeded by more than a factor of two, indicating occurrence of a class of interactions that has 

been termed “nonstoichiometric binding.” One possible explanation of that sort of behavior is 
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) Group III (general promiscuous 

that such fragments form oligomers or aggregates that undergo transient interactions with the 

protein involved.  

 

(A (B) Group III (nonstoichiometric binding) 

 

binders) 

 

Fig.21. Sensorgrams of fragments exhibiting promiscuous binding. (A) Sensorgrams of a fragment classified 
related any particular m de of 

 type of response curve that has been described by Gianetti, et al. (2008) as being associated 

as exhibiting general promiscuous binding. Such sensorgrams cannot be cor
fragment-protein interaction. (B) Although the fragment’s sensorgrams are typical of transient binding, some of 
its response curves exceeded Rmax by more than a factor of two. Its interaction stoichiometry therefore fails to 
correspond to that of a 1:1-interaction model. This particular fragment is an example of fragments that exhibited 
nonstoichiometric binding in conjunction with hit characterizations. 
 

o

A

with large aggregates that bind to the protein was observed in the case of three fragments 

included in the hit characterizations conducted. Such “superstoichiometric binders” yield 

responses that exceed the maximum for 1:1-interactions by more than a factor of five and 

have been assigned to a subgroup of promiscuous binders that have been classified as 

members of Group III. Fig.22 depicts the sensorgrams obtained for one such 

superstoichiometric binder. 
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Group III  (superstoichiometric binders); 

the case of fragment 100 

Fig.22. Sensorgrams of a 
superstoichiometric 
binder. Fragment binding 
response exceeded that 
expected for a 1:1, frag-
ment-protein, interaction 
model (Rmax) by more 
than a factor of five. Such 
strong binding to the 
PKA’s surface is termed 
“superstoichiometric pro-
miscuous binding.” Such 
response curves have 
been correlated to large 
fragment aggregates that 
interact with the protein 
involved. 

 

The SPR-runs conducted covered the association and dissociation phases of the molecular 

interactions involved, which allowed assessing their reversibilities. The data obtained allowed 

identifying another subgroup of Group III. That subgroup consisted of those fragments that 

failed to dissociate from the protein following the conclusions of injection phases. Such 

interactions are termed “irreversible-binding interactions” or “pseudo-irreversible binding 

interactions.” The hit-characterization runs conducted turned up four fragments exhibiting 

irreversible or pseudo-irreversible binding. The sensorgrams of one such fragment are shown 

in Fig.23. 
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Group III (pseudo-irreversible binders); 

the case of fragment 74 

Fig.23. Sensorgrams of a 
fragment undergoing pseu-
do-irreversible binding to 
the protein involved. Its 
sensorgrams indicate that 
fragment aggregates form 
and bond to the PKA’s 
surface. Those fragment 
aggregates that have formed 
also accumulated on the pro-
tein’s surface, which is 
reflected in an escalating 
baseline that continues to 
escalate following the 
surface-regeneration stage. 

 

Further investigation of the results of hit-characterization runs turned up a distinct, fourth 

group consisting of eight fragments that exhibited behaviors indicative of the occurrence of 

concentration-dependent effects. Although the fragments involved exhibited no signs of 

promiscuous or superstoichiometric binding at the lower compound concentrations, the higher 

compound concentration yielded either responses that exceeded those expected for the case of 

1:1-interactions with the proteins involved or sensorgrams that could not be correlated to 

1:1-interactions with them. A closer examination of those fragments showed that they 

exhibited 1:1-binding behavior with the PKA’s surface at the lower compound concentrations. 

The fragments involved exhibited behaviors similar to those of fragments that were classified 

by Gianetti, et al. (2008) as belonging to the group subject to “concentration-dependent 

effects.” Nevertheless, in this dissertation, Group IV is defined as consisting of all those 

fragments exhibiting irregular, concentration-dependent, sensorgrams. The sensorgrams of a 

fragment subject to concentration-dependent effects are presented in Fig.24. 
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Group IV (fragments exhibiting concentration-dependent aggregation); 

the case of fragment 19 

Fig.24. Sensorgrams of a fragment exhibiting concentration-dependent aggregation. Its hit-characterization 
sensorgrams indicate that it interacts with the protein in accordance with a 1:1-binding model at the lower 
compound concentrations. However, once compound concentration exceeds 32 µM (the purple curve), the 
fragment involved starts forming aggregates that exhibit promiscuous binding to the protein. The titration series 
therefore classifies the fragment as exhibiting concentration-dependent aggregation. 
 

The fifth group consisted of nine fragments whose sensorgrams failed to indicate binding 

responses exceeding the lower cutoff level of 5 RU. 

 

3.1.2. HIGH-COMPOUND-CONCENTRATION BIOCHEMICAL ASSAYS 

Inhibition of PKA-substrate phosphorylation was investigated by means of biochemical-assay 

screenings at a fragment concentration of 100 µM. The lower cutoff for classification as hits 

was set to 30 % inhibition. The biochemical-assay screenings conducted resulted in 26 of the 

total of 257 fragments being classified as capable of inhibiting PKA. The percentage 

inhibitions of all 257 fragments are listed in Appendix 1. The hit characterizations performed 

subsequent to the SPR/HCA-screenings yielded the variations in their PKA-inhibitions with 

concentration, which were deduced from the results of series of runs employing graduated 
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concentrations (MerckSerono’s in-house Assay Department was commissioned to conduct 

that work). The data obtained were fit to a 1:1-binding model and the inhibition constants, 

IC50, of the various fragments computed. The HCA hit characterizations resulted in the 

determination of twelve IC50-values (cf. Appendix 1). Fig.25 depicts the activity curves for 

two of the fragments involved, based on a 1:1-binding model.  

 

(A) (B) 

Fig.25. HCA hit-characterization data for two fragments. Activity curves for two sample fragments obtained 
from the series of graduated-concentration runs conducted in conjunction with hit characterizations, where the 
y-axis represents the percentage inhibition of PKA-substrate phosphorylation on the x-axis represents the 
logarithm of fragment concentration, expressed in µM. Fragment concentration ranged from 200 µM to 7 nM. 
HCA hit characterization was applied to all 68 screening hits and resulted in twelve IC50-values covering the 
affinity range 23 µM to 110 µM. 
 

3.1.3. PROTEIN CRYSTALLOGRAPHY 

The complexes that fragments formed with PKA involved the recombinant, catalytic subunit 

of cyclic, AMP-dependent, protein kinase (PKA) and the pseudosubstrate, kinase-inhibiting 

peptide [PKI(5-24)]. All crystals were crystallized in the orthorhombic space group P212121. 

Similar cell constants of around 72 Å, 78 Å, and 80 Å were observed for all crystals. Except 

for those variations in protein conformation reported in the results section of this dissertation, 

no major structure variations in PKA-conformations were noted. The conformations of PKA’s 

small lobe and large lobe were relatively rigid. Structure patterns, such as the DFG-motif, 

C-helix, and activation loops, were also evident in earlier reports on the conformations of its 

crystalline structures. 
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Structure determinations employing protein crystallography were attempted for the 68 hits 

resulting from both the HCA-screenings and SPR-screenings. In the case of nine hits, the 

structures of the fragment-PKA complexes involved were determined. Table 5 presents an 

overview of the protein-crystallography studies conducted under the present approach to 

FBLD. 

 
Table 5. An overview of the protein-crystallography studies conducted under the present approach to 
FBLD. The 68 hits from SPR/HCA-screenings were analyzed employing protein crystallography in an initial 
round in order to determine the modes, by which fragments bond to PKA, which resulted in determinations of 
the 3D-binding modes of six fragments. The second round of protein-crystallographic analyses involved only 
those fragments whose affinities or inhibition constants had been determined, but failed to yield the structures of 
any new, crystalline, fragment-protein complexes. The third round included further optimizations of the protein-
crystallographic conditions and resulted in identification of another three structures involving 3D-fragment-
protein interactions. 
 

 
 

Following the initial soaking, around six fragment-PKA structures were derived from the 

results of protein crystallography. The fragments involved were unambiguously detected in 

the electron densities of the ATP binding sites on PKA. Twenty-one soaking attempts resulted 
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in crystal instabilities. The protein crystals involved either lost their diffractive properties or 

immediately dissolved upon soaking.  

 

Under the second round, crosslinking with gluteraldehyde was employed for stabilizing the 

protein crystals, which allowed employing those fragment soakings that had resulted in crystal 

instabilities and loss of diffractive properties under the initial round for collecting X-ray data. 

However, all soakings resulted in incidence of vacant binding sites during the second round.  

 

Extended soaking periods, higher fragment and DMSO concentrations, and cocrystallization 

were employed in the third round and the structures of another three fragment-protein 

complexes were derived. The detailed results for all nine fragments are presented in Table 10, 

which has been relegated to Appendix 2. 

 

The structures revealed that all nine fragments bound in the ATP binding pocket of PKA 

(Fig.26). Table 10, which appears in Appendix 2, includes graphic representations of the 

fragment binding modes involved and discusses the associated interactions. 

 
Fig.26. The binding modes of the nine hit-fragments to PKA. The diagram shows the ATP-pocket in PKA, 
overlain with the binding modes of the nine hit-fragments. 
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3.1.4. PRESENTATION OF SELECTED RESULTS 

Under the present approach, a library of 257 fragments was screened for binders employing 

SPR and HCA. Sixty-eight of those fragments were classified as hits following screening, 60 

of which were turned up by the SPR-runs, and 26 of which were turned up by the HCA-runs. 

Eighteen hits thus resulted from both screening assays. Selection of the 26 hits resulting from 

the HCA-runs followed a 100-µM-concentration screening, where only those fragments that 

inhibited PKA-substrate phosphorylation by at least 30 % were classified as hits.  

 

A characterization of those hits was subsequently conducted in order to allow further analyses 

of their interactions with the protein. Affinity constants, KD, and inhibition constants were 

computed for 28 fragments and 24 affinity constants, KD, were derived from the SPR-data, 

while the IC50-values for twelve fragments were derived from the HCA-data. Values of both 

IC50 and KD were obtained for eight fragments. The KD-values obtained ranged from 15 µM 

to approximately 1 mM, and the IC50-values obtained ranged from 23 µM to 110 µM. Protein 

crystallography yielded the structures of the complexes formed by six of the twelve fragments 

that had yielded a value for IC50. X-ray diffraction yielded the structures of the complexes 

formed by seven of the 24 fragments that had yielded a value for KD. All nine fragments 

forming complexes whose structures had been determined from the results of the X-ray-

diffraction runs had yielded values of either IC50 or KD, or both. 

 

The results of the first approach, which illustrate the similarities and differences between the 

various fragments involved and the experimental methods employed under the present 

approach to FBLD, will be presented below and are summarized in Table 6. 

 
Table 6. Selective interactions observed in conjunction with screenings. Fragment 6 was classified as a hit 
under the SPR-screenings, but not under the HCA-screenings. The electron density derived from protein 
crystallography revealed its 3D-binding mode. Fragment 19 was classified as a hit under the HCA-screenings, 
but failed to exhibit a binding response under the SPR-screenings, so no structure could be derived for it. 
Although fragment 20 was classified as a hit under the HCA-screenings and yielded a structure for the complex 
formed, the results of the SPR-screenings conducted did not allow classifying it as a hit. In the case of fragment 
57, the results of both the SPR-screenings and the HCA-screenings allowed its classification as a binder over the 
concentration range employed, but the structures of the complexes it formed, if any, could not be determined  
 

Fragment SPR-SCREENINGS HCA-SCREENINGS X-RAY 
Fragment 6 + – + 

Fragment 19 – + – 
Fragment 20 – + + 
Fragment 57 + + – 
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Fragment 6 
 (A) SPR-screening (B) HCA-hit characterization 

(C) SPR-hit characterization KD, 100-µM – 200-µM concentration 

 
(D) X-ray binding mode (E) Binding data in total 

) 

(–) 

 – 200 µM (+) 

ned (+) 

SPR-screenings: binder (+

HCA-screenings: nonbinder 

SPR-hit characterization, 100 µM

HCA-hit characterization: nonbinder (–) 

X-ray diffraction: complex-structure obtai

N

N

N

N

N

 
 

Fig.27. Binding data for fragment 6. (A) Fragment 6 met the criteria for classification as a t under the hi
SPR-screenings. (B) Under the HCA-hit characterization runs, it exhibited no significant inhibition of PKA for 
any of the concentrations employed. (C) Its SPR-hit characterization data was fit to the Langmuir binding-
isotherm model and its KD computed. (D) Its binding mode to PKA was determined from protein 
crystallography. (E) The screening and hit-characterization data obtained from the HCA/SPR-screenings. It 
was classified as a hit under both SPR-screening and SPR-hit characterization runs. However, neither the 
HCA-screenings nor the HCA-hit-characterization runs allowed classifying it as a binder/hit. Nevertheless, 
protein crystallography yielded the structure of the complex it formed with PKA. 
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ning 

Fragment 19 
(A) SPR-scree

 

(B) HCA-hit characterization 

 
(C) SPR-hit characterization (D) Binding data  

nbinder (–) 

centration-dependent 

aracterization: nonbinder (–) 

SPR-screenings: no

HCA-screenings: binder (+) 

SPR-hit characterization: con

aggregation; a binder at low concentrations 

(< 32 µM) 

HCA-hit ch

X-ray diffraction: complex-structure indeterminate (–) 

OO

O

 

Fig.28. Binding data for fragment 19. (A) Fragment 19 failed to meet the criteria for classification as a hit 
under the SPR-screenings. Its sensorgrams showed that it exhibited both a typical transient binding response 
and a response that may be classified as promiscuous binding. (B) No significant inhibition of PKA was 
observed under HCA-hit characterization runs, for any of the concentrations employed. (C) Its 
SPR-hit-characterization sensorgrams revealed that it exhibited typical transient fragment binding up to a 
concentration of 32 µM. At concentrations in excess of 32 µM, it exhibited fragment-protein interactions 
similar to those for promiscuous binding and was therefore classified as a fragment forming concentration-
dependent aggregates. (D) A summary of the results obtained from the screenings, hit-characterizations, and X-
ray-diffraction analysis in the case of fragment 19. 
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Fragment 20 
(A) SPR-screenings (B) HCA-hit characterization 

IC50: 51 µM 

(C) SPR-hit characterization 

 

(D) Binding mode from X-ray-diffraction data

 
(E) Binding data 
SPR-screenings: nonbinder (–) 

HCA-screenings: binder (+) 

SPR-hit characterization: binder, but its 

SPR-sensorgrams are difficult to interpret (–) 

HCA-hit characterization: binder (51 µM) (+) 

X-ray diffraction: complex-structure obtained (+) 

N

N
N

N

S

 

 

Fig.29. Binding data for fragment 20. (A) Fragment 20 
failed to meet the criteria for classification as a hit under 
the SPR-screenings. Although its sensorgrams exhibited 
typical transient fragment binding, its responses on the 
PKA-surfaces involved remained below the background-
noise level (5 RU). (B) Inhibition of PKA was observed 
under the HCA-hit-characterization runs conducted at 
concentrations of 70 µM and 200 µM. Its IC50 was 
computed and equaled 51 µM. (C) SPR-hit-
characterization runs yielded responses exceeding the 
lower cutoff and allowed determining its binding mode. 
However, the sensorgrams involved are difficult to 
interpret and KD was not computed for it. (D) Protein 
crystallography allowed determining its 3D-binding mode 
to PKA. 

Fragment 57 
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(A) SPR-screenings 

 

(B) HCA-hit characterization 

IC50: 110 µM 

(C) SPR-hit characterization 

KD: 35 µM 

 

 

 

(D) Binding data 
SPR-screenings: binder (+) 

HCA-screenings: binder (+) 

SPR-hit characterization: binder (35 µM) (+) 

HCA-hit characterization: binder (110 µM) (+) 

X-ray diffraction: complex-structure indeterminate 

(–) 

N

N

N

NN

O

 

Fig.30. Binding data for fragment 57. (A) Frag-
ment 57 met the criteria for classification as a hit under 
the SPR-screenings. (B) Inhibition of PKA was 
observed under the HCA-hit-characterization runs con-
ducted at concentrations of 70 µM and 200 µM. Its IC50 
was computed and equaled 110 µM. (C) Its SPR-hit-
characterization data was fit to the Langmuir binding-
isotherm model and its KD computed and equaled 
25 µM. (D) Protein crystallography failed to yield the 
structures of any complexes that might have formed. 
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3.2. RESULTS OBTAINED BY EMPLOYING AVAILABLE BIOCHEMI-

CAL-ASSAY DATA IN THE PROTEIN-CRYSTALLOGRAPHIC ANALYSES 

MerckSerono’s in-house database was screened for compounds having molecular weights of 

less than 300 Da, computed solubilities exceeding 200 µM, and at least 50 % inhibitions of 

PKA-substrate phosphorylation under biochemical assays involving a fragment concentration 

of 10 µM. All of the compounds involved were available in solid form from MerckSerono’s 

compound-storage facility. That screening yielded a library containing 67 fragments. A subset 

of those 67 fragments was chosen in order to confine further consideration to compounds 

representative of just those chemical scaffolds available among the 67 fragments. That 

selection procedure, which employed the researcher’s “chemical eye,” resulted in 25 frag-

ments being chosen for structure determinations employing protein crystallographic analyses. 

Fig. 31 depicts the chemical structures of seven of those 25 fragments. 

 

 

 
 
Fig.31. Sample fragments selected for protein crystallography. The chemical-structure diagrams of seven of 
the 25 fragments chosen for protein-crystallographic analyses illustrate the wide variety of chemical scaffolds 
found among the 25 fragments involved. 
 

Protein-crystallographic analyses yielded the structures of 21 fragments whose electron densi-

ties indicated binding to PKA. The other four fragments failed to exhibit any evidence that 

they formed complexes with PKA. Table 9 (cf. Appendix 1) presents the results obtained for 

nine of those 21 fragments, along with illustrations of their binding modes to the protein’s 

binding pocket and descriptions of the fragment-protein interactions involved. All 21 frag-

ments interacted with PKA’s ATP binding pocket, which is why the interactions involved 

have been described using the definitions of the ATP-pocket zones proposed by Liao (Liao, 
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2007). Those definitions are listed in Fig.7, which depicts the ATP binding pocket of protein 

kinases and categorizes it into zones designated A, K, R, P, E0, E1, BP-I, and BP-II. 

 

 

ATP-pocket zones defined by Liao 
A Adenosine binding site 

R Ribose binding site 

P Phosphate binding site 

K Catalytic lysine and DFG-motif 

E0 Pocket beneath the A/hinge zones 

E1 Hydrophilic, solvent-exposed pocket 

BP-1 Hydrophobic selectivity pocket 

BP-II Hydrophobic, back-cleft pocket 

 
 
Fig.32. The ATP binding pocket in cAMP-dependent protein-kinase A. An illustration of the zones defined 
by Liao for describing their ATP-pocket. Their designations are listed in the table at right. When ATP binds, the 
adenosine moiety is situated in the A-zone. The ribose is situated in the R-zone. Phosphate groups bind in the 
P-zone. BP-I and BP-II are situated above the A-zone in this view. The K-zone is situated between the A-, R-, 
BP-I-, and BP-II-zones. The E0- and E1-pockets are situated beneath the A- and R-zones, which are described as 
being hydrophilic, solvent-exposed zones. 
 
Table 7. An overview of fragment-protein interactions. Examples of chemical scaffolds detected in each zone 
defined by Liao. The scaffolds stated were observed in the structures of the nine fragment-protein complexes 
described in this dissertation (cf. Appendix 1). The leftmost column lists the symbols assigned to the various 
zones, and the top row lists the nine fragments involved. 
 

 

 Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Fragment 6 Fragment 7 Fragment 8 Fragment 9 

A 
(hinge) 

phenol 
amine-

pyrazole 
pyrazole 

amino-
pyrazole 

pyrazolo-
pyrimidine 

amide pyridine 
chloro-
indole 

amino-
pyrimidine 

R - - methoxy - - - - - - 

P phenol - - - - - - - - 

K linker - - - - - - - sulfur 

E0 - toluene chloride 
trifluoro 
methyl 

- phenyl - - - 

E1 - - - - - - - - - 

BP-I - - - - 
hydroxy-
aniline 

mercapto-
methyl 

sulfur phenyl 
amino-

pyrimidine 

BP-II - - - - - - - - - 

The A-/hinge zone 

When ATP binds, the adenine moiety is situated in the A-zone. Adenine forms two hydrogen 

bonds to the A-/hinge zone. Among the nine fragments, phenol, pyrazole, pyridine, 

pyrimidine, indole, and amide represent examples of scaffolds that are observed to form 
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hydrogen bonds to that zone. The majority of small-molecule, kinase inhibitors that have been 

developed to date target that zone of the ATP binding site (Liu and Gray, 2006). It has also 

been shown that the hinge-interacting motif may be transferred between differing chemical 

series (Caldwell, et al., 2008). The nine fragment-protein complexes involved incorporated 

eight, differing scaffolds that form hydrogen bonds to the A-/hinge zone (cf. Fig.33). An 

overview thereof is presented in Table 7. 

 

 
Fig.33. A depiction of the overlappings of fragments bound in the A-zone of PKA. The A-zone, or protein-
kinase-hinge zone, binds the adenine moiety when ATP binds. All nine fragments exhibited A-zone interactions. 
 

The BP-I- and K- zones 

The BP-I-pocket (selectivity pocket) is relatively small in the case of PKA due to its being 

“guarded” by the bulky “gatekeeper” residue indicated by the red arrow in Fig.34, which is 

Met-120 in the case of PKA. In the case of fragments 6 and 7, a sulfur-sulfur interaction 

between those fragments and the gatekeeper residue occurs (cf. Appendix 1). The K-zone 

derives its designation from the lysine residue, Lys-72, occurring in PKA. That residue, which 

is indicated by the green arrow in Fig.34, is vital to the catalytic function occurring on the 

kinase, persists throughout much of the protein-kinase family. Fragment 1 interacts with the 

amine in Lys-72 via its carbonyl group. 
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Fig.34. Binding to the BP-I-pocket and K-zone of PKA. The protein is depicted in green and the fragment in 
yellow. The K-zone contains the catalytic lysine, which is indicated by the green arrow, and is Lys-72 in the case 
of PKA. The BP-I-pocket in PKA is largely blocked by the bulky “gatekeeper” residue indicated by the red 
arrow, and is Met-120 in the case of PKA. Fragment 1 picked up an interaction with the amine in Lys-72 via its 
carbonyl group. 
 

Thr-183 represents another amino acid situated in the K-zone, ahead of the DFG-motif 

(184 - 186 in the case of PKA). In the case of the nine fragments involved, Thr-183 exhibited 

three, distinct conformations. Fragments 2, 3, 5, 7, and 9 had conformations where Thr-183 

was arranged in a vertical orientation, similar to the case of the complex formed with ATP 

(pdb-code 1ATP) (Zheng, et al., 1993) (cf. Fig.35 (B)), while in the case of fragments 1, 4, 6, 

and 8, the side chain has a horizontal orientation (cf. Fig.35 (C)).  

 

 
Fig.35. The three conformations of Thr-183 in PKA. (A) depicts the main-chain flip of Thr-183. (B) and (C) 
depict the two conformations of the Asp-184 side chain (DFG-motif).  
 

An interesting conformation of Thr-183 was observed in conjunction with the binding of 

fragment 6. The bulky, methyl-mercapto moiety occurring in that fragment caused a main-
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chain flip that led to a rearrangement of the Thr-183’s carbonyl group such that it pointed 

outward, toward the ATP binding pocket ((A) in Fig.35). That particular main-chain flip is 

rarely observed. The sole published structure of a complex involving native-PKA and an 

inhibitor exhibiting that sort of conformational alteration is that involving staurosporine 

(pdb-code 1STC) (Prade, et al. 1997). The conformation of the carbonyl and trailing 

DFG-motif also led to the kinase acquiring an inactive conformation. The conformation of the 

DFG-motif involved cannot enter into the specific interaction with Mg2+ and ATP that is of 

importance to ATP’s transition to ADP. The main-chain flip involved can also be observed in 

mutant-PKA structures, where Thr-183 is mutated to Ala-183 and observed to form 

complexes with balanol-series inhibitors (Bonn, et al., 2006).  

 

The E0- and R-zones 

An investigation of the fragments involved turned up chemical scaffolds that interacted with 

the E0- and R-zones of the ATP-pocket in PKA. Fig.36 illustrates the interactions occurring in 

those two zones in the cases of fragments 2, 3, 4, and 6. 

 

Fragment 2 Fragment 3 Fragment 4 Fragment 6 

Fig.36. Interactions occurring in the E0- and R-zones, xemplified by the cases o  fragments 2, 3, 4 and 6. 

he E0-zone contains the phenylalanine residue, Phe-327, which is shown in blue in Fig.36, 

 e f
Fragments 2, 3, 4, and 6 exhibited signs that chemical-scaffold interactions had occurred in those zones. 
Scaffolds, such as the toluene in fragment 2, the chloride in fragment 3, the 3-fluoromethyl-group in fragment 4, 
and the phenyl in fragment 6, were observed to pick up interactions in those two zones. Moreover, the phenyl ring 
in fragment 6 nudges the side chain of Glu-127, causing it to point away from the R-zone and ATP binding cleft. 
 

T

specific to the AGC-kinase family. Many protein-kinase inhibitors interact with the E0-zone. 

Among those fragments surveyed under the present study, only four had chemical scaffolds 

situated in that zone. It thus seems that the Phe-327 blocks that zone of the ATP binding site 

in PKA. The R-zone contains the glutamatic-acid residue Glu-127, that shown in red in Fig.36 

in the case of Fragment 6. The importance of that amino acid in PKA-substrate recognition 
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has been discussed by Gibbs and Craig (1991). The phenyl ring in fragment 6 is observed to 

cause the side chain of Glu-127 to point away from the R-zone and ATP binding cleft. 

 

The P-zone 

The glycine-rich loop in the P-zone spans the nucleotide’s phosphate-binding sites. The loop 

is known to be very flexible, and takes on several conformations in the various protein-kinase 

structures. The overlappings of the nine fragment structures shown in Fig.37 illustrates the 

incidence of various conformations of that loop. Its flexibility is correlated to the high 

B-factors of those residues present in the loop, compared to the average B-factors for the 

protein. Fragment 1 had the most sharply defined glycine-rich loop, where its 4-phenol-group 

undergoes a π-π-interaction with the Phe-54-residue at its tip, resulting in a stiffening of the 

loop conformation and reductions of the B-factors of those residues present in the loop. 

 
Fig.37. Glycine-rich loop conformations. The various conformations of the glycine-rich loop are shown. At the 
tip of the loop, the aromatic residue (Phe-54 in the case of PKA) takes on various conformations in the structures 
of the nine fragments. Binding of fragment 1 (shown in yellow) stabilizes the loop conformation via interactions 
occurring between its 4-phenol moiety and the Phe-54 residue. 
 

The structures presented in the results section of this dissertation are illustrative of the variety 

of molecular scaffolds that interact with the ATP binding pocket. The structures obtained 

from X-ray-diffraction analyses reveal the manners in which all fragments involved bind to 

PKA’s hinge zone, in addition to demonstrating that they pick up interactions in several other 

zones of the ATP binding pocket. Those structures disclose the relatively high flexibilities of 

certain zones, such as the glycine-rich loop or the residues surrounding the DFG-motif. 
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Chapter 4 

DISCUSSION 

 

 

The results obtained exemplify the two FBLD-approaches involved. Both employed PKA as 

the target protein in studies aimed at characterizing and analyzing protein-fragment interac-

tions. The first approach investigated the fragment-PKA interactions occurring, which were 

studied utilizing three different techniques, (I) surface-plasmon-resonance (SPR) analyses, (II) 

high-compound-concentration biochemical assays (HCA), and (III) protein crystallography. 

Under the second approach, biochemical-assay data was utilized for selecting fragments for 

structure determinations by means of protein crystallography. The methods employed and the 

results obtained are summarized in Table 8. 

 
Table 8. The methods employed in, and the results obtained from, the two FBLD-approaches involved. 
The table below summarizes the results obtained from both FBLD-approaches employed in conjunction with this 
dissertation. Under Approach 1, a combination of SPR, HCA, and protein crystallography was applied to a 
library of fragments that were screened, characterized, and had the 3-D-structures of the complexes that they 
formed analyzed. Approach 2 focused on biochemical assays and protein crystallography in order to determine 
the 3D-structures of the complexes that formed when fragments bonded to PKA. 
 

 
1. Screening 

(via SPR and HCA) 
2. Characterization
(via SPR and HCA)

3. 3D-structure 
determinations 

(via X-ray diffraction)

4. No. of 3D-structures 
obtained/(not obtained)

Approach 1 257 68 26 9 (17) 

Approach 2 
67 

(from biochemical 
assays only) 

- 25 21 (4) 

 

SCREENINGS UTILIZING SPR AND HCA 

Under the first approach, a library of 257 fragments was screened for binding to PKA utilizing 

SPR and HCA, and 68 of the fragments involved were classified as hits. SPR was utilized for 

investigating binding of fragments to PKA under direct-binding assays, where fragments were 

injected across a sensor surface coated with immobilized PKA, while HCA was utilized for 

determining the extents to which fragments inhibited PKA-substrate phosphorylation. The 

results of screenings based on those two methods were only weakly correlated. Only eighteen 
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of the 60 SPR-hits and 26 HCA-hits showed up as hits under both screenings. Since the exper-

imental techniques involved differ in several ways, including the mechanisms employed for 

detecting fragment binding, direct comparisons of the results obtained from them are difficult.  

 

Under SPR, the target protein is immobilized on the substrate matrix and binding of fragments 

to the target protein is measured in a stream of fragments, while under HCA, target-protein 

activities are quantified in terms of the concentrations of solvated, phosphorylated substrate 

that result. Since the direct-binding assays employed under the SPR-approach are incapable of 

measuring the changes in target-protein biological activity that occur upon fragment binding, 

screening for agonists would be impossible if only SPR were employed. The extents to which 

fragments that were classified as hits under SPR alone bind to PKA without exhibiting any 

inhibition under HCA were not studied in conjunction with this dissertation, but would be an 

interesting subject for further investigations. 

 

Another difference between the two techniques is the fragment concentrations employed 

during screenings, which are 200 µM in the case of SPR and 100 µM in the case of HCA. 

High fragment concentrations had to be chosen in order to facilitate detection of low-affinity 

interactions. Furthermore, the fragment concentrations chosen represented a compromise 

between affinity range and assay stability in relation to nonspecific fragment interactions, 

such as binding of fragment precipitates, micelles, or aggregates to various components 

involved in the assays. At high fragment concentrations, fragment-composition equilibrium 

points are shifted toward multimeric states and formation of fragment aggregates, which could 

increase the numbers of both site-specific and nonspecific interactions involved. In fact, 

increased numbers of nonspecific interactions correlated to high fragment concentrations have 

already been reported in the case of SPR-investigations (Hämäläinen, et al., 2008). The 

interaction mechanisms acting between the fragments and target proteins involved are 

schematically depicted in Fig.38.  
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Fig.38. A schematized depiction of fragment-fragment and fragment-protein interactions. (A) Interactions 
between fragments and the target protein. Solvated fragments should ideally be present in the form of monomers, 
since they are capable of interacting with the target binding site, although they are also capable of either 
interacting with multiple binding sites or undergoing nonspecific interactions with the target. (B) Interactions of 
fragment multimers with the target protein. An equilibrium among solvated fragment monomers, oligomers, and 
formation of fragment micelles will set in (McGovern, et al., 2003). (C) At higher fragment concentrations, large 
fragment aggregates may be present. (1) Site-specific binding. Fragment monomers bind to a single binding site. 
(2) Bisite, or multiple-site, binding, under which fragment monomers bind to several protein binding sites. (3) 
Nonspecific binding. Fragment oligomers, micelles, or aggregates bind to the protein in a nonspecific manner 
(McGovern, et al., 2002; Gianetti, et al., 2008).  
 

The monomeric forms of fragments are capable of interacting with the protein-binding site 

(cf. Fig.38 (1) and (A)). However, they are also capable of undergoing interactions with 

alternative binding sites (Fig.38 (2) and (A)). Since no competitive experiments were 

conducted in conjunction with the SPR-approach employed here, no further characterizations 

of fragments classified as belonging to Group II (cf. p. 71) were possible. Although fragments 

from that group exhibited typical transient binding, their binding responses exceeded those 

expected for 1:1, fragment-protein interactions. A certain proportion of weakly soluble 

fragments will aggregate in solution. Small-molecule aggregates tend to exhibit nonspecific 

binding to target proteins (cf. Fig.38 (C) and (3)). The two types of assays involved here, SPR 

and HCA, yielded differing responses to nonspecific binding phenomena, which might be one 

reason for the differences in the results obtained under them, in accordance with those results 

reported by Gianetti, et al. (2008), where it was shown that given fragments may exhibit 
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differing behaviors, depending upon the parameters, such as the presence and type of 

detergents, buffer composition, pH, presence/absence of cofactors, etc., employed in 

screening assays. For example, pH-variations might cause changes in the protonation states of 

the compounds or amino acids present in protein-binding pockets, while detergents might 

affect compound solubilities. Under HCA, fragment aggregates might interfere with assay 

readouts due to, e.g., fluorescence quenching or fluorescence, exhibit “nonspecific” binding to 

the enzymes involved during stages aimed at boosting signal levels, or even cause disruption 

of the proteins employed in assays (McGovern, et al., 2003). Readouts from screenings that 

employed the SPR-setup are less sensitive to interference emanating from assays, since they 

are a measure of direct binding of fragments to the target protein, which means that 

employing the SPR-setup should allow avoiding the enzymatic, signal-enhancement stages 

occurring under HCA and reduce the number of prospective sources of interference.  

 

Overall, the outcomes of the screenings conducted yielded a relatively large number of 

fragments that were classified as hits. The high fragment concentrations employed in the 

screenings surely increased hit rates, since even very low binding affinities are detectable at 

high fragment concentrations (Hämäläinen, et al., 2008). Furthermore, employment of a 

protein-kinase-targeted library probably further increased hit rates. Several chemical scaffolds 

were identified among the hits resulting from the SPR/HCA-screenings conducted.  

 

HIT CHARACTERIZATION 

Hit characterization was undertaken in order to allow more-stringent examinations of the 

natures of the interactions of the fragments involved with PKA and determinations of their 

affinity constants, KD, under SPR, and IC50, under HCA. 

 

Seven binding constants fell within the same range under both assays. One exception is 

fragment 178, for which a KD of 750 µM and an IC50 of 38 µM was determined. Eight 

fragments involved in SPR-hit characterization exhibited responses having characteristics that 

were indicative of concentration-dependent effects occurring within the concentration range 

involved, particularly at the higher concentrations. Such fragments have been classified as 

Group IV (cf. p. 71). Fig. 24 (cf. p. 77) depicts the concentration-dependent behavior of 

fragment 19 during SPR-titration. Similar compounds have been investigated via SPR by 

Gianetti, et al. (2008) and their results suggest that the fragments involved are poor candidates 
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for protein-crystallographic studies (Gianetti, et al., 2008), in view of the concentration-

dependent aggregates that might occur. However, as stated in the caption to Fig.38, 

equilibrium between fragments present in the form of oligomers, micelles, or aggregates, and 

fragments present in the form of solvated monomers will set in. Fragment 20 represents an 

example of a fragment forming a complex whose crystalline structure could be determined, 

even though it was classified as being subject to concentration-dependent effects. Further-

more, the number of affinity constants determined under subsequent titrations was reduced 

from 60 screening hits under SPR and 26 screening hits under HCA to 24 screening hits under 

SPR and 12 screening hits under HCA, where eight of the latter were classified as hits under 

both SPR-screenings and HCA-screenings. Under the fragment-library set up, many 

fragments reached their solubility limits at the higher concentrations. Careful design of the 

fragment library involved and devoting special attention to fragment solubilities is therefore 

critical. The fragments involved should ideally have empirically determined solubilities 

covering ranges extending beyond the highest fragment concentrations employed in titrations. 

 

Subsequent structure determinations employing protein crystallography revealed their binding 

modes to PKA’s hinge zone. The KD or IC50 of every fragment, for which the structure of the 

complex it formed with PKA could be determined, was computed. On the other hand, no frag-

ment-PKA-complex structures could be determined for those fragments, for which neither 

SPR- nor HCA-titrations yielded usable results. It should be obvious that conducting 

measurements at a single concentration, utilizing either SPR or HCA, yields weak selection 

criteria for use in subsequent crystallographic studies under FBLD. Further titrations will be 

essential, since they significantly increase the probabilities of obtaining the structures of 

fragment-target-protein complexes via protein crystallography*. 

 

The outcomes of the experiments conducted in conjunction with this dissertation demon-

strated that the SPR-approach is sensitive enough to allow detecting fragment-screening res-

ponses, which is in agreement with conclusions reached under earlier SPR-based fragment 

studies (Nordström, et al., 2008; Hämäläinen, et al., 2008). 

 

___________________________________________________________________________ 

* The success rate for determinations of the structures of fragment-PKA complexes increased from 13 % 

following primary screenings to 30 % following subsequent titrations. 
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PROTEIN-FRAGMENT COMPLEX FORMATION AND STRUCTURE 

DETERMINATIONS EMPLOYING PROTEIN CRYSTALLOGRAPHY 

Protein crystallography is the method of choice for obtaining detailed data on 3D-fragment-

protein interactions. The crystalline structures of fragment-target-protein complexes reveal 

fragments’ chemical environments.  

 

Under the first approach, which involved protein-crystallography analyses, nine of 

26 fragments yielded the structures of the complexes involved, while under the second 

approach, 21 of 25 fragments yielded the structures of the complexes involved. A comparison 

of the crystallographic results obtained under the two approaches suggests that differences in 

the designs of the experiments involved are the primary reason for variations in their success 

rates (cf. Table 8). The much higher success rate under the second approach may be partly 

explained by the differing concentration ranges employed in the screening and titration runs 

conducted under the first approach and the conditions under which HTS/biochemical assays 

were conducted in the case of the second approach. Under the first approach, all fragments 

had estimated affinities falling in the mid-µM to low-mM range, while, under the second 

approach, all had estimated affinities falling in the low-µM range or higher, which eliminated 

many concentration-related issues under the second approach and reduced the number of 

“false positives.” 

 

High occupancies of binding sites are necessary if electron densities are to be reliably 

detected, which means that certain ligand concentrations in the protein solutions involved 

must be reached. A rule of thumb is that protein concentrations exceeding KD by at least a 

factor of 5 to 10 will be necessary if reasonably well-defined ligand electron densities at 

binding sites are to be obtained. The ratios of fragments’ affinities to their maximum-

utilizable concentrations are thus the factors influencing empirical results. The affinity/solu-

bility ratios of weakly soluble fragments affect both the probability that the structures of 

fragment-protein complexes will be determinable and the probability that fragment binding 

constants will be derivable from assays. In the case of the investigations conducted here, 

computed solubilities, clogS(7.4), were employed as selection parameters in order to increase 

the likelihood that the structures of fragment-protein complexes would be determined. Never-

theless, computed solubilities are frequently inaccurate and can lead to over/underestimations 

of solubilities relative to empirically determined solubilities. Empirical assays, such as those 
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employing optical-dispersion techniques, filtering-assay techniques, or NMR-detection of 

compound aggregates, may be employed in order to arrive at better estimates of ligands’ 

solubilities in given solutions. Appendix 1 lists examples of empirically determined and 

computed solubilities (clogs(7.4)), where the data involved was extracted from MerckSer-

ono’s in-house database. However, under the second approach, all hit-fragments had 

IC50-values falling in the low-µM range and solubility overestimations due to the computa-

tional methods employed were much less critical than under the first approach.  

 

In the case of the experimentation conducted in conjunction with this dissertation, higher 

DMSO-concentrations and detergents were employed in order to increase to affinity/solubility 

ratios, which, however, increased the stresses exerted on protein crystals and adversely 

affected the qualities of the diffraction patterns of many of the protein crystals involved. The 

protein crystals involved were therefore stabilized by crosslinking employing glutaraldahyde, 

which allowed employing higher fragment concentrations, higher DMSO-concentrations, and 

longer soaking periods, and facilitated detection of another three fragment-protein complexes. 

However, crosslinking protein crystals might impose limitations on protein flexibility, thereby 

preventing the changes in protein conformation essential to formation of some types of 

fragment-protein complexes. Nevertheless, in the case of several structures, large conforma-

tional changes in flexible loops and shifts from alpha helices to other structure conformations 

were observed, even following crosslinking. In our experience, controlled crosslinking can 

stabilize protein crystals, while simultaneously permitting conformational changes in the 

protein contained therein, i.e., can facilitate the formation of fragment-protein complexes.  

 

One major difference in the experimental setups employed in the crystallographic analyses 

and the SPR/HCA-screenings involving PKA was the presence of 19 amino-acid polypep-

tide PKI, which was employed as a cocrystallizing agent. Both attempts to conduct 

SPR/HCA-screenings involving PKA in the presence of PKI, as well as crystallization 

conditions yielding strongly diffracting crystals, without need for employing PKI, failed. 

Estimates of the effect of PKI on fragment binding to PKA were thus unobtainable. PKI might 

have caused reductions of the binding affinities of some fragments, thereby hindering 

determinations of their crystalline structures.  
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EMPLOYMENT OF FRAGMENT COMPLEXES 

The aim of FBLD is designing lead molecules, based on initial hit-fragments. Data on 

fragment 3D-binding modes may be employed in various ways in conjunction with that effort. 

It might be argued that, in the case of the second approach, under which available biochemi-

cal-assay data were utilized in selecting hit-fragments, discoveries of new chemical scaffolds 

will be few and far between. However, fragments are smaller than typical HTS-hits or lead 

molecules, and therefore subject to fewer structure constraints on their interactions with target 

proteins. “Old” chemical scaffolds thus can interact with protein binding sites in novel and 

unexpected ways, thereby promoting arrival at new approaches to designing lead molecules. 

The investigations conducted in conjunction with this study revealed new interactions 

occurring in the ATP binding pocket in PKA and identified several novel chemical scaffolds. 

 

Fragment growing, fragment linking, and fragment merging represent techniques commonly 

employed in FBLD for optimizing fragments in order to obtain more-lead-like molecules 

having greater affinities. Any fragment-PKA complex identified under this study may be 

employed as the starting point for those fragment-optimization techniques. Overlappings of 

fragment structures and known PKA-inhibitors obtained from PDB (cf. Fig.39) suggests that 

chemical scaffolds might be interchanged between molecules, namely, between two 

fragments, between two, large inhibitors, and between the fragments involved and the larger 

inhibitors, and combined in all conceivable manners. Knowledge of fragments’ 3D-binding 

modes generates new ideas, ideas that may be applied to the design of new, candidate, drug 

compounds. 
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(A) (B) (C)

(E) (F) (D) 

Fig.39. Fragment binding modes overlapped by known PKA-inhibitor molecules. (A) Fragment 5 (shown in 
brown) and 2UVY-inhibitor, (B) Fragment 5 (shown in brown) and 2UVX-inhibitor, (C) Fragment 3 (shown in 
dark blue) and 1BX6-inhibitor, (D) Fragment 7 (shown in yellow) and 2GNF-inhibitor, (E) Fragment 1 (shown 
in brown) and 1RE8-inhibitor, (F) Fragment 3 (shown in dark blue) and 2UW3-inhibitor. These overlappings of 
fragment structures by the structures of known PKA-inhibitors obtained from PDB suggest that chemical 
scaffolds might be interchanged between molecules, between two fragments, between two large inhibitors, and 
between the fragments involved and the larger inhibitors, and combined in all conceivable manners.  

OTHER METHODS EMPLOYED IN FBLD 

Protein crystallography is the method most frequently employed for determining the struc-

tures of fragment-target-protein complexes. Nevertheless, it is a relatively low-throughput 

method and unsuitable for screening large numbers of ligands, even if strongly diffracting 

crystals of the target protein are available. An alternative approach is employing in-silico-

docking methods for categorizing fragment binding modes (Oblak, et al., 2005; Pickett, et al., 

2003). The computational methods involved allow considering multiple sets of compound 

parameters and assay interaction data in assessments of fragment characteristics. However, 

since fragments contain fewer functional groups that computational software can employ in 

categorizing fragments’ interactions with target proteins, theoretically predicting fragment 

binding modes and fragment-protein interactions is difficult. A combination of empirical and 

computational methods might therefore be the better choice of tool for fragment elaboration in 

conjunction with FBLD. 
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4.1 CONCLUSIONS 

This work presents the results obtained from two fragment-screening approaches involving 

cAMP-dependent protein-kinase A (PKA). Under the first approach, fragment-protein 

interactions were studied employing surface plasmon resonance (SPR), high-concentration 

biochemical assays (HCA), and protein crystallography, while the second approach employed 

available biochemical-assay data in the form of HTS-screening data or other activity-assay 

data for selecting fragment-like molecules to be subjected to crystallographic analyses. The 

results obtained were in the form of empirically determined binding constants and the 

3-dimensional structures of fragment-PKA complexes. The chemical environment of the ATP 

binding site in PKA was mapped, employing fragment interactions suitable for use as new 

starting points for lead generation. 

 

Under the first approach, i.e., that employing protein crystallographic analyses, nine of the 

26 fragments that had been selected yielded fragment-protein complexes, which demonstrated 

that ample numbers of fragment-PKA interactions were occurring and that binding 

characteristics that could be useful in upgrading fragments into lead-like molecules were 

involved. Although those nine PKA-fragment structures were inadequate to serve as a solid 

base for statistical analyses, in general, the results obtained indicate that the two screening 

methods involved, SPR and HCA, yield outcomes that are in a good agreement with one 

another. The residual differences involved may be largely attributed to two factors, the 

presumed formation of fragment aggregates and their nonspecific binding to PKA and/or the 

narrow width (< 200 µM) of the screening window employed in the case of HCA. 

 

Direct comparisons of the results obtained from the two screening methods are difficult, 

particularly if the differences in the experimental setups involved are taken into account. SPR 

may be set up in the form of a label-free assay well suited to the primary screening of 

fragment libraries and capable of detecting hit-fragments having millimolar affinities. The 

advantage of employing SPR as a screening method is that it consumes relatively small 

quantities of proteins and provides responsivities and throughput rates sufficient to allow 

screening libraries consisting of hundreds to thousands of fragments for binding to target 

proteins within days. Furthermore, analyses of SPR titration data allow rapidly identifying 

nonstoichiometric binders and prospective aggregates. On the other hand, although the 

concentration ranges involved in most HCA-screenings remained below millimolar levels, 
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HCA might well be employed a high-throughput mode, and therefore might be a means for 

readily screening tens of thousands to hundreds of thousands of fragments per day. 

 

Under the second approach, 21 of the 25 fragments involved yielded the structures of their 

protein complexes. That high success rate may be attributed to the conservative selection 

criteria (> 50 % inhibition at 10 µM fragment concentration) employed in identifying hit-

fragments. If similar selection criteria had been applied to the results of typical HTS-runs, 

much higher hit ratios would be expected, which would have led to many novel chemical 

scaffolds being identified as new, prospective, starting points for lead-discovery investiga-

tions.  

 

The two approaches involved thus provided interaction data and crystalline structures that can 

serve as bases for developing PKA-inhibitors. The methods employed here are generally 

applicable to the study of other enzymes and therefore useful in FBLD. 
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APPENDIX 1 
Table 9. Binding modes for the nine fragments involved. The table below covers all nine fragments, and 
presents supplementary data on their molecular weights, biochemical-inhibition factors, and computed and 
measured solubilities. Also included are diagrams depicting their binding modes and brief descriptions of the 
fragment-protein interactions involved. 
 

Fragment 1 

N

O

O

N

O

 

MWT: 270.29 
Inhibition: 41 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 12.9 mM 
Solubility (kinetic): > 200 µM 
 

 

Fragment 1 binds to the kinase’s A-/hinge zone, with its 4-phenol group acting 
as a donor/acceptor. Its pair of nitrogen atoms interacts with the DFG-motif in 
the K-zone and the glycine-rich loop in the kinase’s P-zone. The carboxylic acid 
interacts directly with the (K-zone) Lys-72. Closer to the solvent, the fragment’s 
4-phenol group interacts with the tip of the (P-zone) glycine-rich loop, where 
the Phe-54-residue undergoes a π-π-interaction with the 4-phenol group. 

  

Fragment 2 

O

N
N

N

 

MWT: 239.28 
Inhibition: 9 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 0.362 mM 
Solubility (kinetic): > 200 µM 
 

 

Fragment 2 forms three hydrogen bonds with the kinase’s A-/hinge zone, one 
via its amine group, which interacts with the main-chain carboxyl-group of 
Val-123, and two to the Glu-121 hinge residue, via the indazole. Its toluene 
group is directed toward the (E0-zone) aromatic residue, Phe-327, specific to 
AGC-kinases. 

  

Fragment 3 

N

N Cl

O

 

MWT: 208.65 
Inhibition: 44 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 1.26 mM 
Solubility (kinetic): 100 µM 
 

 

Fragment 3 forms two hydrogen bonds with the kinase’s A-/hinge zone, where 
the two nitrogen atoms on its pyrazole group act as donor and acceptor, 
respectively, and interact with the Glu-121 and Val-123. The 3-chloro radical on 
its methoxy-phenyl group is situated near the kinase’s (E0-zone) Phe-327, at 
precisely the same location as the trifluoro group on fragment 4 and the toluene 
ring on fragment 2. 
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Fragment 4  

N

O

N

N

F
FF
 

MWT: 231.18 
Inhibition: 13 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 10 mM 
Solubility (kinetic): > 200 µM 
 

 

Fragment 4’s indazole-amine group forms three hydrogen bonds with the 
kinase’s A-/hinge zone. Its trifluoro group is situated within interaction range of 
the kinase’s (E0-zone) Phe-327, whose π-electrons interact with its electronega-
tive fluorine atoms. Superimposing the diagram for fragment 4 on that for 
fragment 3 reveals that the triflouro group on fragment 4 coincides with the 
chlorine atom on fragment 3, and therefore interacts with the protein in a similar 
manner.  

  

Fragment 5 

N

N
NN

N

N

O

 

MWT: 242.24 
Inhibition: 20 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 4.13 M 
Solubility (kinetic): > 200 µM 

 

Fragment 5’s pyrazole-pyrimidine group forms two hydrogen bonds with the 
kinase’s A-/hinge zone. Its hydroxyl-aniline group is directed toward the 
kinase’s gatekeeper and BP-I/specificity pockets. An interaction between its 
aniline group’s π-electron cloud and the electrons of the sulfur atom in the 
gatekeeper residue, Met-120, was observed. 

  

Fragment 6   

N
N

N

S
N

O

 

MWT: 248.31 
Inhibition: 33 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 24.3 mM 
Solubility (kinetic): > 200 µM 
 

 

Fragment 6 has an amide group that acts as a hinge-binder in the kinase’s A-
zone. Its phenyl group is situated in the pocket close to the (E0-zone) Phe-327, 
and its mercapto-methyl group is directed toward the (BP-I-pocket) gatekeeper 
residue, Met-120. Interestingly, the main chain flips 180° at the location of the 
(K-zone) Thr-183, which is probably due to the bulkiness of the sulfur atom on 
the ligand present in that zone. Also noteworthy is that the gatekeeper residue 
(Met-120) is thrust “upward” into the BP-I pocket, compared to the case for the 
other PKA-structures presented here and published in the pdb-database. 
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Fragment 7 

N
N

O

N

S

 

MWT: 231.28 
Inhibition: 43 % at 10 µM 
Solubility (computed pH: 7.4): 83.4 mM 
Solubility (kinetic): 50 µM 
 

 

Fragment 7 binds via a hydrogen bond that binds its pyridine group to the 
kinase’s A-/hinge zone. Its thiocarbamyl group interacts with the aspartic-acid 
residue situated in the (Asp-184/K-zone) DFG-motif. Its sulfur group is directed 
toward the specificity/BP-I-pocket gatekeeper residue, Met-120. The nitrogen 
atom on its pyridine ring interacts with the Glu-327 present in the kinase’s 
P-zone. The glycine-rich loop is not clearly differentiated from the protein’s 
structure, which might be due to its relatively large, compared to the average for 
the protein, B-factors and diffuse electron density. 

  

Fragment 8 

Cl

N
O

N

 

MWT: 270.72 
Inhibition: 33 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 708 µM 
Solubility (kinetic): 25 µM 
 

 

Fragment 8 binds to PKA, where its chlorine atom interacts with the kinase’s 
A-/hinge zone. Its phenyl group is situated in the same pocket as that on 
fragment 1, i.e., that close to the (E0-zone) Phe-327 residue. Its indole-carbonyl 
group points outward, toward the solvent/P-zone. 

  

Fragment 9   

N

S N

N

N

N

N  

MWT: 218.24 
Inhibition: 22 % at 10 µM fragment concentration 
Solubility (computed pH: 7.4): 379 µM 
Solubility (kinetic): > 200 µM 
 

 

The amino-pyrimidine groups on fragment 9 bind to the kinase’s A-/hinge zone. 
One has its sulfur atom pointing toward the gatekeeper residue (the Met-120 
situated between the kinase’s A-zone and BP-I pocket), and the other points 
toward the solvent (P-zone) and picks up interactions with surrounding residues 
via interactions with water molecules. 
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APPENDIX 2 
Table 10. The results of the X-ray-crystallographic investigations conducted. The table below covers all nine 
fragments detected in the electron density of the ATP binding pocket in PKA, and includes their molecular 
structures, binding affinities, and inhibition constants, brief descriptions of the interactions occurring between the 
respective fragments and protein, and diagrams illustrating the 3D-binding modes involved. 
 

Fragment 178 

S
N

N

N2H

 

MWT: 205.28 
HCA IC50: 38 µM 
SPR KD: 500 µM – 1 mM 

 

Fragment-protein interactions: Fragment 178 binds to PKA via two hinge 
interactions. Its 6-nitrogen acts as an acceptor, and its amide nitrogen acts as a 
donor with respect to the main-chain amide and carboxyl group on the hinge 
residue, Val-123. Its electron-rich sulfur atom is readily apparent in the electron 
density and points upward, toward the Met-120 residue, yielding a sulfur-sulfur 
interaction. Its saturated pyrimidine ring is not readily evident in the electron-
density distribution. 

  

Fragment 6 

N

NH
N

NH

N

 

MWT: 225.6 
HCA IC50: - 
SPR KD: 100 µM – 200 µM 
 

Fragment-protein interactions: Fragment 6 binds to the protein, where its purine 
moiety forms two hydrogen bonds to the hinge zone at the ATP binding site. The 
benzene group is rotated 90° relative to the purine scaffold and is situated in the 
ribose-binding pocket. 

  

Fragment 20 

N

N
HN

N

S

 

MWT: 166.21 
HCA IC50: 51 µM 
SPR KD: Binding occurred at low concentrations and concentration-dependent 
aggregation was observed at the higher fragment concentrations (> 70 µM); its 
affinity (KD) was not computed. 

 

Fragment-protein interactions: Fragment 20 bonds to the protein, where its 
purine moiety forms two hydrogen bonds to the hinge zone at the kinase-ATP-
binding site. The 5-sulfur atom is clearly visible in the electron-density distribution 
and directed toward the ribose pocket. 
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Fragment 23 

N
N
H

OH

NH2

S

 

MWT: 223.30 
HCA IC50: - 
SPR KD: 500 µM – 1 mM 
 

Fragment-protein interactions: Fragment 23 binds to the protein, where its 
phenol moiety acts as both a donor and an acceptor with respect to the hinge zone 
in the ATP-pocket. Its ethyl radical points downward, toward the ribose pocket, 
and its sulfonamide group points upward, toward the DFG-residue, Asp-184, and 
the gatekeeper residue, Met-120.  

  

Fragment 103 

N

N

N

N N
H

N

 

MWT: 218.26 
HCA IC50: 100 µM 
SPR KD: 70 µM 

 

Fragment-protein interactions: Fragment 103 binds to the protein, where its 
purine moiety forms two hydrogen bonds to the hinge zone at the kinase-ATP-
binding site. Its methyl-piperidine group takes on a chair conformation and is 
situated in the ribose pocket. 

  

Fragment 154 

N

N N
H

N

NH F

 

MWT: 229.22 
HCA IC50: 27 µM 
SPR KD: a weak binder (KD > 1 mM) 

 

Fragment-protein interactions: Fragment 154 binds to the protein, where its 
pyrazole-pyrimidine moiety forms two hydrogen bonds to the latter’s hinge zone. 
Its flourophenyl group points downward, toward the ribose pocket, and interacts 
with the Phe-327-residue’s π-electrons. That residue is specific to just a few 
members of the AGC-protein-kinase family and blocks part of the ATP binding 
pocket, where many small-molecule, protein-kinase inhibitors are frequently 
observed to interact. 

  

Fragment 162 

N

N
HN

N

NH

 

MWT: 243.31 
HCA IC50: 86 µM 
SPR KD: 100 µM 

Fragment-protein interactions: The purine in fragment 162 forms two hydrogen 
bonds to the ATP-pocket’s hinge zone. An interaction with the Thr-183-residue is 
picked up from the nitrogen in its purine ring, via a water molecule. Its cyclo-
hexane ring points away from the hinge, toward the solvent zone.  
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Fragment 192 

NH2

NN

NH

F

N

 

MWT: 205.20 
HCA IC50: - 
SPR KD: 400 µM 

 

Fragment-protein interactions: Interestingly, fragment 192 exhibited two, 
distinct binding modes, both of which were readily apparent in the electron-density 
distribution obtained following collection of protein-crystallographic data. Both 
conformations have the aminoamide as their hinge-binding structure. However, in 
one of those conformations, the flourophenyl group points toward the DFG-motif, 
and, in the other, it points toward the ribose pocket. 

  

Fragment 236 

N
S

O

O
N2H  

MWT: 248.30 
HCA IC50: 59 µM 
SPR KD: 70 µM 

 

Fragment-protein interactions: Fragment 236 binds to the protein, where its 
benzofuran group interacts with the kinase’s hinge zone. Its thiophene ring is 
directed toward the solvent and its amine group picks up an interaction with the 
Glu-127-residue situated in the ribose-binding pocket. 
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APPENDIX 3 
Table 11. Characterization data for all those fragments contained in the library. The first column lists the 
fragment number, the second column contains a +/– indicating whether the fragment involved was classified as a 
hit/no hit, respectively, under the SPR-screenings conducted, the third column lists the values of KD determined 
from those SPR-screenings, the fourth column lists the fragment binding affinities determined in conjunction 
with SPR-hit characterization, the fifth column contains a +/– indicating whether the fragment involved was 
classified as a hit/no hit, respectively, under the HCA-screenings conducted, and the sixth column 6 the values of 
IC50 determined in conjunction with HCA-hit characterization. The seventh column contains a +/– indicating 
whether an X-ray-diffraction structure determination was conducted for the fragment involved. The column 
listing binding affinities states the respective ranges involved, where “cd” indicates that concentration-dependent 
aggregation occurred, “ns” indicates that nonstoichiometric binding occurred, “ss” indicates that 
superstoichiometric binding occurred, and “i” indicates that irreversible/pseudo-irreversible interactions were 
involved. Characterization as a “weak binder” indicates that although the fragment involved exhibited typical 
transient binding, its binding affinity was not computed. Fragments characterized as “general promiscuous” or 
“nonbinder” have also been included.  
 

FRAGMENT 
NO. 

SPR-SCREENING SPR-KD 
[µM] 

BINDING AFFINITY HCA-SCREENING HCA-IC50
[µM] 

X-RAY

1 —     —   — 

2 —     —   — 

3 —     —   — 

4 —     —   — 

5 —     —   — 

6 + 150 100 µM – 200 µM —   + 

7 —     —   — 

8 —     —   — 

9 —     —   — 

10 —     —   — 

11 —     —   — 

12 —     —   — 

13 —     —   — 

14 —     —   — 

15 —     —   — 

16 —     —   — 

17 —     —   — 

18 —     —   — 

19 —   cd, weak binder +   — 

20 —   cd/i, binder + 51 + 

21 +   Weak binder —   — 

22 +   Weak binder —   — 

23 + 750 500 µM – 1 mM —   + 

24 —   cd, binder +   — 
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25 +   weak binder —   — 

26 —     —   — 

27 —     —   — 

28 —     —   — 

29 —     —   — 

30 —     —   — 

31 +   weak binder —   — 

32 —     —   — 

33 —     —   — 

34 —     —   — 

35 —     —   — 

36 —     —   — 

37 —     —   — 

38 —     —   — 

39 —     —   — 

40 —     —   — 

41 —     —   — 

42 —     —   — 

43 —     —   — 

44 —     —   — 

45 —     —   — 

46 —     —   — 

47 —     —   — 

48 —     —   — 

49 +   general promiscuous —   — 

50 —     —   — 

51 —     —   — 

52 —     —   — 

53 —     —   — 

54 —     —   — 

55 —     —   — 

56 —     —   — 

57 + 35 20 µM – 50 µM + 110 — 

58 +   nonbinder —   — 

59 + 300 200 µM – 400 µM —   — 

60 +   weak binder —   — 

61 —     —   — 

62 —     —   — 

63 —     —   — 
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64 —     —   — 

65 + 65 60 µM – 70 µM + 73 — 

66 +   weak binder —   — 

67 —     —   — 

68 —     —   — 

69 —     —   — 

70 —     —   — 

71 —     —   — 

72 —     —   — 

73 +   nonbinder —   — 

74 +   ns/i —   — 

75 —     —   — 

76 —     —   — 

77 —     —   — 

78 —     —   — 

79 +   ns/i + 38 — 

80 +   cd, weak binder +   — 

81 —     —   — 

82 —     —   — 

83 +   weak binder —   — 

84 —     —   — 

85 —     —   — 

86 —     —   — 

87 +   ns +   — 

88 +   weak binder —   — 

89 + 100 100 µM +   — 

90 —     —   — 

91 —     —   — 

92 —     —   — 

93 —     —   — 

94 —     —   — 

95 —     —   — 

96 + 15 15 µM +   — 

97 —     —   — 

98 +   nonbinder —   — 

99 +     —   — 

100 —   ss/i +   — 

101 —     —   — 

102 —     —   — 
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103 — 70 70 µM + 100 + 

104 —     —   — 

105 —     —   — 

106 —     —   — 

107 —     —   — 

108 —     —   — 

109 —     —   — 

110 +   weak binder —   — 

111 —     —   — 

112 —     —   — 

113 —     —   — 

114 +   weak binder —   — 

115 —     —   — 

116 —     —   — 

117 —     —   — 

118 —     —   — 

119 +   cd, weak binder —   — 

120 —     —   — 

121 —     —   — 

122 + 750 0.5 mM – 1 mM +   — 

123 + 700 700 µM +   — 

124 —     —   — 

125 —   ns +   — 

126 —     —   — 

127 —     —   — 

128 —     —   — 

129 —     —   — 

130 +   nonbinder —   — 

131 —     —   — 

132 —     —   — 

133 —     —   — 

134 —     —   — 

135 —     —   — 

136 —     —   — 

137 —     —   — 

138 —     —   — 

139 + 150 100 µM – 200 µM + 64 — 

140 + 100 100 µM + 23 — 

141 —     —   — 
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142 —     —   — 

143 —     —   — 

144 —     —   — 

145 —     —   — 

146 —     —   — 

147 —     —   — 

148 —     —   — 

149 +   ss/I, cd/I, weak binder —   — 

150 +   nonbinder —   — 

151 —     —   — 

152 —     —   — 

153 —     —   — 

154 +   weak binder + 27 + 

155 —     —   — 

156 —     —   — 

157 —     —   — 

158 —     —   — 

159 —     —   — 

160 —     —   — 

161 —     —   — 

162 + 100 100 µM + 86 + 

163 —     —   — 

164 —     —   — 

165 —     —   — 

166 —     —   — 

167 —     —   — 

168 +   weak binder —   — 

169 —     —   — 

170 —     —   — 

171 —     —   — 

172 —     —   — 

173 —   nonbinder +   — 

174 —     —   — 

175 —     —   — 

176 —   ns/i +   — 

177 +   weak binder —   — 

178 + 750 500 µM + 38 + 

179 —     —   — 

180 —     —   — 
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181 —     —   — 

182 +   weak binder —   — 

183 —     —   — 

184 —     —   — 

185 —     —   — 

186 —     —   — 

187 —     —   — 

188 —     —   — 

189 —     —   — 

190 —     —   — 

191 —     —   — 

192 + 400 400 µM +   + 

193 + 80 80 µM —   — 

194 —     —   — 

195 +   weak binder —   — 

196 —     —   — 

197 + 1000 1 mM —   — 

198 —     —   — 

199 + 650 600 µM – 700 µM —   — 

200 —     —   — 

201 —     —   — 

202 —     —   — 

203 + 300 300 µM —   — 

204 —     —   — 

205 + 600 600 µM —   — 

206 —     —   — 

207 —     —   — 

208 —     —   — 

209 + 800 700µM – 900 µM —   — 

210 —     —   — 

211 +   nonbinder —   — 

212 —     —   — 

213 —     —   — 

214 +   weak binder —   — 

215 —     —   — 

216 —     —   — 

217 —     —   — 

218 —     —   — 

219 + 300 300 µM —   — 
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220 —     —   — 

221 —     —   — 

222 —     —   — 

223 —     —   — 

224 —     —   — 

225 —     —   — 

226 + 300 300 µM +   — 

227 —     —   — 

228 —     —   — 

229 —     —   — 

230 —     —   — 

231 —     —   — 

232 +   weak binder —   — 

233 —     —   — 

234 —     —   — 

235 —     —   — 

236 + 70 70 µM + 59 + 

237 —     —   — 

238 —     —   — 

239 —     —   — 

240 +   cd, binder + 65 — 

241 —     —   — 

242 —     —   — 

243 +   nonbinder —   — 

244 +   weak binder —   — 

245 —     —   — 

246 —     —   — 

247 —     —   — 

248 —     —   — 

249 —     —   — 

250 —     —   — 

251 +   nonbinder —   — 

252 —     —   — 

253 +   cd, weak binder —   — 

254 —     —   — 

255 —     —   — 

256 +   weak binder —   — 

257 —     —   — 
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