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SUMMARY 

 

 

 Polycomb group (PcG) proteins are transcriptional regulators that maintain the 

repression of a large set of developmental control genes. PcG proteins form distinct 

multiprotein complexes: PhoRC (Pho Repressive Complex), PRC1 (Polycomb Repressive 

Complex 1), PRC2 (Polycomb Repressive Complex 2) and its variant Pcl-PRC2. These 

complexes repress target genes by modifying their chromatin. PcG chromatin 

modifications are thought to provide a memory that permits the transcriptional OFF 

state to be maintained in a heritable manner. PcG protein complexes assemble at 

specific cis-regulatory sequences called Polycomb Response Elements (PREs). Although 

all PcG complexes are targeted to PREs, only the PhoRC subunit Pho has sequence-

specific DNA binding activity. The mechanism by which PRC1 or PRC2 are targeted and 

tethered at PREs is only poorly understood. During my Ph. D. studies, I performed a 

biochemical characterization of dSfmbt, the protein that together with Pho forms PhoRC. 

Using a Tandem Affinity Purification strategy, I purified proteins associated with dSfmbt. 

These purified complexes contained not only dSfmbt and Pho but also the histone 

deacetylase Rpd3, the histone chaperone NAP1, the chromatin binding protein HP1b, 

and an uncharacterized protein, CG3363. This is further supported by the observation 

that in addition to the Pho and dSfmbt also Rpd3 is bound to PREs of PcG target genes. 

dSfmbt forms a stable complex with the PRC1 subunit Scm in vitro and these two 

proteins are bound at PREs of PcG target genes. Using genetic interaction assays, I found 

that Scm and dSfmbt act in a highly synergistic manner to repress PcG target genes in 

vivo during Drosophila development. Taken together, these studies thus suggest that 

the PhoRC complex comprises not only Pho and dSfmbt but also additional chromatin-

modifying and chromatin-binding subunits. The molecular and functional interactions 

between dSfmbt and Scm underscore the central role of dSfmbt as a molecular adaptor 

between the DNA-binding Pho subunit and PRC1. 
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ZUSAMMENFASSUNG 
 
 

Die Proteine der Polycomb-Gruppe (Polycomb group, PcG) sind 

Transkriptionsregulatoren, die die Repression einer Vielzahl von Zielgenen aufrecht 

erhalten. Sie bilden separate Multiproteinkomplexe: PhoRC (Pho Repressive Complex), 

PRC1 (Polycomb Repressive Complex 1), PRC2 (Polycomb Repressive Complex 2) und 

dessen Variante Pcl-PRC2. Diese Komplexe reprimieren ihre Zielgene, indem sie deren 

Chromatin modifizieren. Von solchen PcG-Modifikationen wird angenommen, dass sie 

ein “Gedächtnis” für den inaktiven Transkriptionsstatus (OFF state) erbringen, der so auf 

vererbbare Weise aufrechterhalten wird. Die PcG-Komplexe assemblieren auf 

spezifischen cis-regulatorischen Sequenzen, den sogenannten PREs (Polycomb Response 

Elements). Obwohl alle PcG-Komplexe auf den PREs vorhanden sind, bindet nur die Pho-

Untereinheit des PhoRC sequenz-spezifisch an DNA. Es ist bisher nicht ausreichend 

verstanden, durch welchen Mechanismus PRC1 und PRC2 die PREs erkennen und binden. 

Im Rahmen meiner Doktorarbeit habe ich das PcG-Protein dSfmbt, das zusammen mit 

der Pho-Untereinheit den PhoRC bildet, biochemisch charakterisiert. Mit Hilfe der 

Tandem-Affinitätsreinigungstechnik (Tandem Affinity Purification) habe ich Proteine 

identifiziert, die mit dSfmbt assoziieren. Die gereinigten Komplexe enthielten nicht nur 

dSfmbt und Pho, sondern auch die Histon-Deacetylase Rpd3, das Histon-Chaperon NAP1, 

das Chromatin-bindende Protein HP1b und ein uncharakterisiertes Protein, CG3363. 

Dieses Ergebnis wird weiter dadurch unterstützt, dass zusätzlich zu Pho und dSfmbt 

auch Rpd3 auf den PREs von PcG-Zielgenen gebunden ist. dSfmbt bildet in vitro einen 

stabilen Komplex mit der PRC1-Komponente Scm und diese beiden Proteine sind 

ebenfalls auf den PREs von PcG-Zielgenen gebunden. Ich habe mit Hilfe von genetischen 

Interaktionsexperimenten festgestellt, dass Scm und dSfmbt in vivo im Rahmen der 

Drosophila-Entwicklung ihre Zielgene mit stark ausgeprägter Synergie reprimieren. 

Zusammenfassend legen diese Untersuchungen also nahe, dass PhoRC nicht nur die 

Untereinheiten Pho und dSfmbt besitzt, sondern zusätzliche chromatin-bindende und –

modifizierende Komponenten umfasst. Die molekularen und funktionellen Interaktionen 

zwischen dSfmbt und Scm unterstreichen die zentrale Rolle von dSfmbt als molekularem 

Adapter zwischen der DNA-bindenden Pho-Untereinheit und PRC1. 
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INTRODUCTION 

 

Metazoans develop from a single cell, the zygote, into a complex organism that 

is formed by different cell types. The zygote undergoes a complex developmental 

process called embryogenesis, whose major steps are mitosis, growth, migration of cells 

and differentiation into tissues. The differentiation process occurs in response to 

different stimuli that changes the expression state of genes within the cells. These 

differences of gene expression among cells will give rise to different tissues.  

The pattern of expression of these genes leads to the formation of segments, 

where each has a particular developmental fate. The maintenance of this pattern of gene 

expression throughout many cell generations is crucial for the normal development of 

the organism.  

“Cellular memory” is a process that allows the transmission of a specific 

transcriptional state from the mother cell to the daughter cells (Hadorn, 1978). Genetic 

and molecular studies have identified two distinct groups of proteins, which are the key 

factors involved in the “cellular memory” process. These two regulatory groups of 

proteins are the Polycomb group (PcG) and the trithorax group (trxG) proteins (Figures 1 

and 2). These proteins are in charge of maintaining the transcriptional state of genes 

during the development of metazoans (reviewed in Francis & Kingston, 2001; Ringrose & 

Paro, 2004; Müller & Verrijzer, 2009). 

 

 

1. BODY PATTERNING DURING DROSOPHILA DEVELOPMENT 

 

In Drosophila, the formation of body segments is determined at the blastoderm 

stage of development (Chan & Gehring, 1971). Each of these body segments has a 

particular pattern of gene expression that will give rise to specific appendages in the 

adult animal. The identity of these segments differes among themselves and is stable 

throughout development. 

In fertilized Drosophila’s eggs, there are maternally deposited factors that give 

rise to anterior-posterior and dorso-ventral polarity in the embryo. These maternal 

factors will activate zygotic segmentation genes accordingly to the established polarity 

of the embryo. The pattern of expression of these segmentation genes through the 

embryo axis allows the formation of segments. Each segment has a particular pattern of 

gene expression and gives rise to specific appendages and structures located at specific 
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anatomical positions of the adult (reviewed in St Johnston & Nüsslein-Volhard, 1992; 

Pankratz & Jäckle, 1993). The segmentation genes are composed of two different sets 

of genes: the gap genes and the pair-rule genes. Both are transcriptional regulators; the 

gap proteins establish the repressive transcriptional state of genes, and the pair-rule 

proteins establish the active transcriptional state of genes. These segmentation genes 

regulate the expression patterns of many genes, such as those from the Antennapedia 

complex (ANT-C; Kaufman et al, 1990) and the Bithorax complex (BX-C; Duncan, 1989; 

Lewis, 1978). These two gene clusters determine and maintain the identity of the 

Drosophila segments. ANT-C and BX-C are homeotic (HOX) genes that encode proteins 

that characteristically have a conserved DNA-binding domain (homeodomain). This 

domain binds to cis-regulatory elements in target genes, regulates their expression by 

activating or repressing them and gives rise to the different pattern of expression of the 

segments. HOX genes start being expressed in the blastoderm state of embryogenesis 

and their expression is maintained throughout the entire course of development. As 

HOX proteins determine segment identity, segments where these proteins have been 

removed, will acquire the identity of another segment and the anatomy as well as the 

survival of the animal will be severely compromised. 

Gap and pair-rule regulators are present transiently during the first few hours of 

embryogenesis, but their initially established expression pattern of HOX genes, has to 

be maintained throughout the course of the development of the organism. Following the 

blastoderm stage, the maintenance of the transcriptional state of the HOX genes is 

under the control of two different transcriptional regulators, the PcG and the trxG 

proteins. Specifically, PcG proteins maintain the repressed state of HOX genes and trxG 

proteins maintain the active state of these genes (reviewed in Francis & Kingston, 2001; 

Ringrose & Paro, 2004; Müller & Verrijzer, 2009). In contrast to gap and pair-rule 

proteins, the PcG and trxG proteins are present ubiquitously throughout the organism 

and are needed to maintain the appropriate state of transcription of HOX genes and 

other cell specification genes (reviewed in Ringrose and Paro, 2004; Oktaba et al 2008).  

PcG and trxG proteins are the regulators that confer “cellular memory” by 

maintaining the OFF and ON transcription state of genes respectively, which will lead to 

the formation of the anatomy of the organism. Three distinct and structurally 

independent PcG protein complexes have been biochemically purified (Figure 1): the 

Polycomb Repressive Complex 1 (PRC1), the Polycomb Repressive Complex 2 (PRC2), 

and the Pho Repressive Complex (PhoRC). Other Polycomb proteins have not yet been 

associated with these complexes or they might belong to still unidentified complexes 

(Figure 1 and table 1). 
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In Drosophila, the trxG proteins have also been described to be organized into 

different multimeric complexes with a high molecular weight. Although little is known 

about these complexes, four have been identified: the Trithorax Acetylation Complex 1 

(TAC1), the Brahma (BRM) complex, the Absent, small or homeotic discs 1 (Ash1) 

complex, and the Ash2 complex (Figure 2). As there are trxG proteins that do not 

belong to any of these three complexes, it is probable that unknown trxG complexes are 

awaiting discovery (table 2).  

 

 

Figure 1 – PcG proteins and complexes in Drosophila. 
PRC2 is composed of the proteins Extra sex combs (Esc), Enhancer of zeste (E(z)), Polycomb-like 
(Pcl), Supressor of zeste 12 (Su(z)12), and Nurf55. PRC1 is composed of the proteins Posterior sex 
combs (Psc), Sex combs extra (Sce/Ring), Polyhomeotic (Ph), Polycomb (Pc), and Sex comb on 
midleg (Scm). PhoRC is composed of the proteins Pleiohomeotic (Pho) and Drosophila Scm-related 
gene containing four malignant brain tumor domains (dSfmbt). Other PcG proteins are: 
Pleiohomeotic-like (Phol), Additional sex combs (Asx), Super Sex combs (Sxc) and Calypso (see 
text for details). Only Pho and Phol have sequence-specific DNA binding activity, thus binding to 
PREs. 
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2. PCG PROTEINS AND COMPLEXES IN DROSOPHILA 

 

 The PcG genes were first identified in Drosophila by the observation of mutant 

phenotypes that suggested that they were responsible for the repression of several HOX 

genes in the ANT-C and in the BX-C. The first PcG genes identified were: extra sex combs 

(esc) and Polycomb (Pc), whose absence in the mutant fly lead to the formation of 

ectopical sex combs on the second and third legs of Drosophila males. The sex combs 

structure is restricted to the first pair of male legs in wild-type Drosophila. Therefore, 

the mutant phenotype is caused by the misexpression of the HOX gene Sex combs 

reduced (Scr) in tissues where its expression should be repressed. In these PcG mutants, 

there is a misexpression of Scr in the second and third leg imaginal discs, allowing 

ectopic expression of this HOX gene and giving rise to sex combs structures in these 

appendages (Kennison, 1995; 2004). Since the discovery of these two PcG genes in 

Drosophila, many more genes that cause homeotic transformations due to HOX genes 

misexpression have been cloned (Table 1). 

 

Table 1 – Polycomb group gene families and conserved domains. 

 

Protein name 
(Drosophila) 

Gene 
H. sapiens 

Homologues 
Conserved 
domains 

Cloning 
references 

Polycomb Pc HPC1, HPC2, HPC3 Chromodomain Paro & Hogness, 1991 

Polyhomeotic Ph HPH1, HPH2 SAM domain DeCamilis et al, 1992 

Posterior sex 
combs 

Psc BMI1/ MEL18 RING-finger 
Brunk et al, 1991 

Supressor of 
zeste 2 

Su(z)2  RING-finger 
Brunk et al, 1991 

dRING/ Sex 
combs extra 

Sce RING1 RING-finger 
Fritsch et al, 2003 

Enhancer of 
zeste 

E(z) EZH1, EZH2 
SET domain 
SANT domain 

Jones et al, 1990 

Extra sex 
combs 

Esc EED WD40 repeats 
Frei et al, 1985 

Extra sex 
combs like 

Escl  WD40 repeats 
Wang et al, 1985 

Supressor of 
zeste 12 

Su(z)12 SU(Z)12 
VEFS-box 
Zn-finger 

Birve et al, 2001 
 

Polycomb-like Pcl PHF1/ hPcl1 
Tudor domain 
PHD-finger 

Lonie et al, 1994 

Pleiohomeotic pho YY1 Zn-finger Brown et al, 1998 

Pho-like phol  Zn-finger 
Brown et al, 2003 

Sex combs on 
midleg 

Scm SCML1, SCML2 
SAM domain 
Zn-finger 
MBT repeats 

Bornemann et al, 1996 

Additional sex 
combs 

Asx ASX1, ASX2, ASX3 
PHD-finger 
ASXH domain 

Sinclair et al, 1998 

dSfmbt dSfmbt Sfmbt SAM domain Klymenko et al, 2006 
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Zn-finger 
MBT repeats 

Calypso calypso   
Gaytan de Ayala 
Alonso et al, 2007 

Super sex 
combs 

sxc Ogt 

TPR repeats 
Glycosyl 
transferase 
domain 

Gambetta et al, 2009 

 
 

• POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) 
 

 PRC2 is a 600 KDa PcG complex that contains the PcG proteins Enhancer of zeste 

(E(z)), Extra sex combs (Esc), and Supressor of zeste 12 (Su(z)12), as well as the histone-

binding protein Nurf55 (Czermin et al, 2002; Müller et al, 2002). From the core four 

members of the PRC2 complex, E(z) is a PcG protein that has a SET domain in its 

structural architecture. This domain has been found to be responsible for transferring 

methyl residues into lysines present in histone tails (Rea et al, 2000). The Histone 

Methyl transferase (HMTase) activity of E(z) is highly specific for the trimethylation of the 

lysine residue 27 in the histone H3 (H3K27me3) and it has been shown to be critical for 

HOX gene silencing in vivo (Müller et al, 2002). Although E(z) is the HMTase, when 

isolated its activity is 1000-fold lower than when present in the tetrameric PRC2 

complex (Ketel et al, 2002). Studies performed to dissect the importance of each 

component of the PRC2 showed that although E(z) is the enzymatic unit of the complex, 

its activity is increased when forming a complex with Esc protein (Müller et al, 2002; 

Nekrasov et al, 2005). 

Su(z)12 and Nurf55 proteins are also crucial units for the activity of the PRC2 

complex as they constitute the minimal PRC2 subcomplex that binds to 

mononucleosomes (Nekrasov et al, 2005; Ketel et al, 2005). Esc protein also contributes 

to the high affinity binding of the complex to the mononucleosomes (Nekrasov et al, 

2005).  

A variant of PRC2 has been recently purified, the PRC2-Pcl complex (Nekrasov et 

al, 2007). PRC2-Pcl has the same characteristics as PRC2, but also contains the PcG 

protein Polycomb-like (Pcl) as a member of the complex. PRC2-Pcl is thought to 

represent only a subset of the total PRC2 present in cells (Nekrasov et al, 2007). The 

presence of Pcl is thought to be crucial for the high levels of H3K27me3 that are found 

in PcG target genes (Nekrasov et al, 2007). Pcl is also thought to be involved in the 

correct targeting of PRC2 to PcG target genes, but little is known about the mechanism 

of how this protein generates high levels of H3K27me3 (Nekrasov et al, 2007). The 

mammalian homologue of PRC2 also displays the same HMTase activity towards 

H3K27me3 (Cao et al, 2002; Kuzmichev et al, 2002).  



   Introduction 

 

 

6 

• POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) 
 

 PRC1 is a PcG multiprotein complex that is composed of five proteins: 

Polyhomeotic (Ph), Posterior sex combs (Psc), Polycomb (Pc), Sex comb on midleg (Scm), 

and Sex combs extra (Sce/Ring) (Franke et al, 1992; Shao et al, 1999; Saurin et al, 

2001). In addition to these PcG proteins, several TBP (TATA-binding-protein)-associated 

factors, part of the general transcription factor TFIID (dTAFII proteins), and the 

sequence-specific DNA-binding factor Zeste were also found as components of PRC1 

(Saurin et al, 2001). The homologous PRC1 complex in mammals (hPRC-H) is composed 

of the mammalian homologs of the five PcG proteins found in the Drosophila PRC1 

(Levine et al, 2002). 

PRC1 interacts with chromatin in vitro by blocking remodelling by the SWI2/SNF2 

complex, and this complex also induces compaction of chromatin in nucleosomal arrays 

(Francis et al, 2001; 2004). Another characteristic of PRC1 is its binding to methylated 

lysines in histone tails. In particular the chromodomain of the Pc protein binds 

specifically to H3K27me3 (Cao et al, 2002; Czermin et al, 2002; Fischle et al, 2003; Min 

et al, 2003). 

The component of PRC1 Sce/Ring and its human homologue Ring 1B are catalytic 

subunits that specifically ubiquitinate lysine 119 of histone H2A (H2AK119ubi) (Wang et 

al, 2004). Although PRC1-mediated ubiquitylation is a post-translational modification of 

histone tails related to transcriptional repression, the function and mechanism of this 

modification remains unclear and further studies are needed to unravel its role.  

 The co-purification of the TATA-box-binding protein (TBP)–associated factors 

(TAFIIs) as stoichiometric components of PRC1 (Saurin et al, 2001) suggests that this 

complex might use a combination of mechanisms to repress gene expression and not 

only by chromatin remodelling. For instance, PRC1 may have a role in blocking 

transcription as it interacts with components of the RNA polymerase II machinery 

(Dellino et al, 2004). 

 

 

• PHO REPRESSIVE COMPLEX (PHORC) 
 

 PhoRC is a PcG protein complex composed of two proteins: Pleiohomeotic (Pho) 

and “Drosophila Scm-related gene containing four Malignant Brain Tumor (MBT) 

domains” (dSfmbt) (Klymenko et al, 2006). Pho, and the functionally redundant Pho-like 

are the only DNA-binding PcG proteins (Brown et al, 1998; 2003). dSfmbt is the other 

PcG component of PhoRC and has a particular domain structure with a Zinc (Zn)-finger in 

the N-terminal part of the protein, four MBT repeats in the central portion of the protein, 
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and an -sterile motif (SAM) in the C-terminal (Klymenko et al, 2006; figure 11). Its Zn-

finger is a Zn-finger type FCS, which has been characterized to bind to RNA in a non-

specific manner (Zhang et al, 2004). This type of Zn-finger is also present in the PcG 

proteins Ph and Scm, and also in the transcription factor Lethal (3) malignant brain 

tumor (L(3)mbt; Zhang et al, 2004). 

The SAM domain, present in the C-terminal portion of the dSfmbt protein, has 

been reported to be involved in protein-protein interaction by forming homo-oligomers 

and hetero-oligomers (Thanos et al, 1999; Kim et al 2002). This domain is also present 

in two other PcG proteins, Ph and Scm (Figure 11), and is responsible for the interaction 

between these two proteins (Peterson et al, 1997; 2004). L(3)mbt also has a SAM 

domain in the C-terminal portion of the protein. 

The MBT repeats of dSfmbt show specific binding to the mono and dimethylated 

lysine residues, 9 and 27 in histone H3, and 20 in histone H4 (Klymenko et al, 2006; 

Grimm et al, 2009). Scm (Figure 11) and L(3)mbt also have MBT repeats. The MBT 

repeats of Scm bind unspecifically to mono and dimethylated lysine residues in histones 

H3 and H4 (Grimm et al, 2007). Unspecific lysine binding activity has also been reported 

for the human homologue of L(3)mbt, L3MBTL1 (Li et al, 2007; Min et al, 2007).  

PhoRC is specifically targeted to PREs in a Pho-dependent manner, suggesting 

that the methyl binding function of dSfmbt is not required for the targeting of the 

complex to these regions (Klymenko et al, 2006). Recent studies have shown that this 

complex is not only targeted to HOX genes (Oktaba et al, 2008). It is in fact also 

targeted to other genes required for the patterning along the anterioposterior, 

dorsoventral, and proximodistal axis in imaginal discs, as well as genes involved in cell 

cycle regulation (Oktaba et al, 2008). The involvement of PhoRC in repressing genes 

whose expression is cell cycle dependent suggests that the mechanism of repression by 

PcG proteins is more dynamic than previously thought and is not only involved in body 

patterning, but also in cell growth and proliferation (Oktaba et al, 2008). 

 

 

• OTHER PCG PROTEINS 
 

 Apart from the different PcG proteins interacting to form three PcG complexes, 

there are other PcG proteins that have not yet been associated with any complexes, and 

whose function is crucial for HOX genes repression. These proteins are Pleiohomeotic-

like (Phol; Brown et al, 2003), Super sex combs (Sxc; Ingham, 1984), Additional sex 

combs (Asx; Jürgens, 1985; Sinclair et al, 1998) and Calypso (Gaytan de Ayala Alonso et 

al, 2007). The weak phenotype observed in pho mutants, led to the supposition that 
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there was another protein that acted redundantly to Pho, leading to the identification of 

Phol (Brown et al, 2003). Pho and Phol both repress HOX genes and bind to the same 

DNA motif (Brown et al, 2003). Recent studies showed that sxc gene encodes for the Ogt 

protein, a glycosyltransferase involved in the addition of N-acetylglucosamine (GlcNAc) 

to proteins (Gambetta et al, 2009). Calypso was identified in a genetic screen designed 

to identify new PcG genes (Gaytan de Ayala Alonso et al, 2007). Further biochemical 

studies are required to structurally and functionally characterize these proteins.  

 

 

3. TRXG PROTEINS AND COMPLEXES OVERVIEW IN DROSOPHILA 

 

 The trxG genes were discovered in genetic screens that searched for mutations 

that suppress the PcG phenotype of PcG mutants (Ingham, 1981; Kennison & Russel, 

1987; Kennison & Tamkun, 1988; Shearn, 1989). The first genes of the trxG to be 

identified were trx, ash1 and ash2 (reviewed in Kennison, 1993). Other trxG genes are 

shown in table 2. The maintenance of the transcriptional ON state of HOX genes is 

expected to involve many regulatory steps such as transcriptional activation, post-

translational modification of HOX proteins or expression of required HOX protein 

cofactors. This suggests that the trxG genes are far more heterogeneous and complex 

both in function and structure than the PcG genes. 

 

Table 2 – Selected Trithorax Group (trxG) gene families and conserved domains. 

 

Protein name 
(Drosophila) 

Gene 
H. sapiens 

Homologues 
Conserved 
domains 

Cloning references 

Trithorax trx 
MLL (ALL-1/ HTRX), 
MLL2, MLL3, MLL5 

PHD finger (s) 
Bromodomain 
SET domain 

Mazo et al, 1990 

Absent, small or 
homeotic discs 1 

ash1 hASH1 
PHD finger 
SET domain 

Tripoulas et al, 1994 

Absent, small or 
homeotic discs 2 

ash2 hASH2 
PHD finger 
SPRY domain 

Adamson & Shearn, 
1996 

Brahma brm hBRM 
Bromodomain 
BRK domain 
ATPase domain 

Tamkun et al, 1992 

Osa osa OSA1/ hELD1 

ARID DNA binding 
domain 
EHD1, EHD2 
domains 

Vazquez et al, 1999 

Moira mor BAF155 

Chromodomain 
BRCT and SWIRM 
protein binding 
domain 
SANT domain 

Crosby et al, 2000 

Little imaginal lid RBP2 ARID DNA binding Gildea et al, 2000 
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discs 1 domain 
PHD fingers 
Leucine zipper 
motif 

Zeste z  
Leucine zipper 
motif 

Biggin et al, 1988 

GAF (GAGA 
factor) 

trl  
BTB/ POZ domain 
Zn-finger 

Farkas et al, 1994 

Kismet kis CHD7 

BRK domain 
SNF2-related 
ATPase domain 
Chromodomain 
RmlC-like cupin 
DEAD-DEAH box 
helicase, N-
terminal 

Daubresse et al, 
1999 

Tonalli tna hZimp10 SP-RING Zn-finger Gutierrez et al, 2003 

Kohtalo kto MED12L  Treisman, 2001 

Skuld skd THRAP2 TRAP domain Treisman, 2001 

 

 

 The trxG regulators can be divided in two different complexes (Figure 2) that 

have been purified from Drosophila: the TAC1 (Petruk et al, 2001) and the BRM complex 

(Papoulas et al, 1998; Crosby et al, 1999; reviewed in Simon & Tamkun, 2002). Both the 

Ash1 and Ash2 proteins are not associated with either of these two complexes but there 

is evidence for their association with yet unknown two distinct protein complexes 

(Papoulas et al, 1998). 

 

 

Figure 2 – TrxG proteins and complexes in Drosophila. 
TAC1 is composed of the Trithorax (Trx) protein, CREB-binding protein (CBP), and SET domain 
binding protein (Sbf1). BRM is composed of the proteins Brahma (Brm), Moira (Mor), OSA and four 
additional proteins. The trxG proteins Ash1 and Ash2 belong to two additional protein complexes 
yet uncharacterized (see text for details). 
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• TAC1 AND TRX PROTEIN 
 

TAC1 is estimated to weight 1MDa and is composed of the subunits Trithorax 

(Trx), dCBP (CREB-binding protein), which has histone acetyltransferase activity and the 

anti-phosphatase Sbf1 (SET domain binding factor; Petruk et al, 2001; figure 2). This 

complex has acetyltransferase activity confered by the dCBP protein and also has 

HMTase activity conferred by the SET domain of the Trx protein (Rea et al, 2000; Smith 

et al, 2004). 

Trx is a highly conserved protein with homologues in yeast (Set1) and in humans 

(MLL). In yeast, Set1 is a member of the protein complex COMPASS (COMplex Proteins 

ASsociated with Set1; Miller et al, 2001) and MLL is part of the MLL complex in humans 

(human COMPASS; Yokoyama et al, 2004). The MLL complex also contains the trxG 

protein ASH2L, which is the human homologue of the Drosophila Ash2 (Yokoyama et al, 

2004; table 2). 

Trx, Set1, and MLL have a SET domain that it is responsible for the methylation 

of lysine 4 in histone H3 (H3K4me) (Santos-Rosa et al, 2002; Milne et al, 2002; 

Nakamura et al, 2002; Smith et al, 2004). It has also been shown that MLL directly 

binds to the promoter sequences of a target HOX gene and by this mean, regulates its 

expression (Milne et al, 2002; Nakamura et al, 2002). A correlation between the MLL-

SET H3K4 methylation and the activation of a target HOX gene has also been reported 

(Milne et al, 2002; Nakamura et al, 2002). 

 

 

• BRM 
 

The BRM complex has a molecular weight of 2MDa and is highly related to the 

SWI/SNF chromatin-remodelling complex found in Saccharomyces cerevisiae. The 

subunits of this complex are the trxG proteins brahma (Brm), Moira (Mor), and Osa and 

four additional accessory proteins (Papoulas et al, 1998; Crosby et al, 1999; reviewed in 

Simon & Tamkun, 2002; figure 2). Brm has a DNA-dependent ATPase domain that is 

typical for the SWI2/SNF2 protein family that is involved in chromatin remodelling 

(Papoulas et al, 1998; Collins et al, 1999; Kal et al, 2000). Brm was found to be 

associated with transcriptionally active chromatin on polytene chromosomes, suggesting 

that this protein plays a general role in transcription at many loci in addition to at the 

HOX genes (Armstrong et al, 2002). 
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• ASH1 AND ASH2 
 

 Ash1 and Ash2 are two other trxG proteins that belong to as of yet 

uncharacterized complexes (Papoulas et al, 1998). Ash2 is a protein that is involved in 

the wing development of Drosophila (Adamson & Shearn, 1996; Amorós et al, 2002; 

Angulo et al, 2004). Ash2 has been described to be in a 500 KDa complex that is 

structurally independent of the Ash1 and the BRM complex (Papoulas et al, 1998).  

Gel filtration chromatography of embryonic extracts suggested that Ash1 is 

present in a 2 MDa complex, but its composition is yet to be discovered (Papoulas et al, 

1998). Ash1 is a SET domain protein and hence has HMTase activity, but the specificity 

of this enzymatic activity has been controversial. Isolated Ash1 SET domain with its 

preSET and postSET domains has been reported to methylate lysines 4 and 9 in histone 

H3 (H3K4me & H3K9me), and lysine 20 in histone H4 (H4K20me; Beisel et al, 2000). A 

different study showed that Ash1 was required only for H3K4 methylation in vivo and 

not for H3K9 or H4K20 methylation (Byrd & Shearn, 2003). On the other hand, a recent 

study showed that recombinant Drosophila Ash1 protein and its human homologue 

ASH1L specifically methylate lysine 36 in histone H3 (H3K36me; Tanaka et al, 2007).  

The substrate for the SET proteins Ash1 and Trx are lysine residues in histones 

that correlate with transcriptionally active chromatin (i.e. H3K4 and H3K36). Thus, trxG 

maintain the active transcriptional state of its target genes (Yokoyama et al, 2004; 

Steward et al, 2006; Tanaka et al, 2007). 

 

 

4. POLYCOMB RESPONSE ELEMENT (PRE) 

 

 PcG and trxG proteins bind at cis-regulatory elements of its target genes, 

maintaining their transcriptional status throughout many cell generations. The PREs 

were initially identified as regulatory sequences that prevented inappropriate activation 

of HOX reporter genes in a PcG-dependent manner in Drosophila embryos and larvae 

(Müller & Bienz, 1991; Simon et al, 1993; Chan et al, 1994; Christen & Bienz, 1994). 

Further functional assays such as transgenic analysis and chromatin 

immunoprecipitation identified PREs and their regulated genes at five loci, namely at 

some HOX genes of the BX-C and the ANT-C clusters and at the engrailed, polyhomeotic, 

and hedgehog genes (Mihaly et al, 1998; Bloyer et al, 2003; Brown et al, 1998; 

Maurange & Paro, 2002; Orlando & Paro, 1993; Strutt & Paro, 1997; Fritsch et al, 

1999). The silencing function of PREs is continuously required as its excision from a 
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silenced HOX reporter gene results in loss of repression independently of the 

developmental time at which it occurs (Busturia et al, 1997; Sengupta et al, 2004). 

The function of the PREs is not only restricted to the HOX genes. They also work 

as general transcription silencers with the capacity to silence reporter genes containing 

enhancer and promoter sequences from genes that are normally not under the control 

of PcG proteins (Sengupta et al, 2004). The PREs are located in close proximity to the 

promoter of their target genes (Schwartz et al, 2006; Oktaba et al, 2008). 

Pho and Phol DNA binding sites are the main signature of PREs (Oktaba et al, 

2008). Mutational studies on these binding sites showed that their binding to these sites 

is essential for silencing of the target genes (Brown et al, 1998; Mihaly et al, 1998; 

Fritsch et al, 1999; Shimell et al, 2000; Busturia et al, 2001; Mishra et al, 2001; Brown 

et al, 2003; Ringrose et al, 2003).  

Moreover, a number of proteins have been reported to bind to the PREs and this 

binding has been proposed to be involved in the recruitment of the PcG proteins to 

these sites. These proteins include Trithorax-like (Trl; also known as GAGA factor [GAF]; 

Horard et al, 2000; Busturia et al, 2001; Hodgson et al, 2001; Mahmoudi et al, 2003; 

Schwendemann & Lehmann, 2002), Pipsqueak (Psq; Hodgson et al, 2001; Huang et al, 

2002; Schwendemann & Lehmann, 2002), Zeste (Mulholland et al, 2003; Mahmoudi et 

al, 2003; Ringrose & Paro, 2004), Grainyhead (Grh; also known as neuronal transcription 

factor 1 [NTF1]; Blastyak et al, 2006), Dispersed (Dsp1; Dejardin et al, 2005) and 

Sp1/KLF family members (Brown et al, 2005). 

 

 

• PRES AS TARGETING PLATFORMS FOR PCG PROTEIN COMPLEXES 
 

 Chromatin immunoprecipitation studies have shown that the three PcG 

complexes PRC1, PRC2, and PhoRC are bound at the PREs of HOX genes and other target 

genes (Strutt et al, 1997; Orlando et al, 1997; Klymenko et al, 2006; Papp & Müller, 

2006; Oktaba et al, 2008). However, the mechanism through which the PcG complexes 

assemble at the PREs is unknown. 

Pho, one of the proteins of the PhoRC, is the only PcG protein that binds directly 

to the PREs (Klymenko et al, 2006; Oktaba et al, 2008), but the targeting of PRC1 and 

PRC2 to the PREs remains elusive. E(z), as a PRC2 subunit, methylates H3K27 and this 

modification is recognized by the chromo domain of the PRC1 subunit Pc (Cao et al, 

2002; Czermin et al, 2002; Kuzmichev et al, 2002). Also, the function of E(z) is required 

for the recruitment of PRC1 components to target genes (Rastelli et al, 1993; Czermin et 

al, 2002; Wang et al, 2004).  
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Altogether, this evidence has led to a model where PRC2 is upstream of PRC1 in 

PcG-mediated silencing, but how PRC2 is targeted to the PREs is still unknown. It has 

been proposed that the recruitment of PRC2 to the PREs is by direct interactions 

between the PRC2 components E(z) and Esc and the PhoRC subunit Pho (Wang et al, 

2004). According to this model, PRE-tethered PRC2 would deposit H3K27me3 histone 

marks in nucleosomes at the PREs and thereby creating binding sites for the chromo 

domain of Pc that would result in the targeting of PRC1 to H3K27me3 PREs. However, 

recent studies do not support this model (reviewed by Müller & Kassis, 2006). First the 

Pho protein can interact directly with the PRC1 components Ph and Pc (Mohd-Sarip et al, 

2002). Also, Pho and PRC1 can co-assemble on naked PRE DNA templates in the absence 

of nucleosomes (Mohd-Sarip et al, 2005). These reconstituted Pho-PRC1 protein-DNA 

assemblies showed protein-DNA contacts across an extended stretch of PRE DNA and 

they appear to adopt a conformation that is difficult to conciliate with the formation of 

nucleosome core particles (Mohd-Sarip et al, 2005; 2006). Secondly, tandem affinity 

purification (TAP) studies using Pho as a bait protein did not reveal any component of 

the PRC1 or PRC2 complexes (Klymenko et al, 2006). Neither the TAP purification using 

the PRC2 components E(z) or Pcl as bait proteins showed any members of PhoRC  or 

PRC2 (Nekrasov et al, 2007). Moreover, the purifications of PRC1 complexes have not 

showed any members of either the PRC2 or PhoRC complexes. Lastly, studies using 

quantitative ChIP analysis suggested that the PREs present at the Ubx gene are depleted 

of nucleosomes (Papp & Müller, 2006; Mohd-Sarip et al, 2006). In these studies, it has 

also been suggested that PREs are a platform of assembly for PhoRC, PRC1, and PRC2, 

as subunits of these complexes were present at the PREs. Thus, current evidence 

suggests that not only PhoRC but also PRC1 and PRC2 are targeted to the PREs through 

interactions with Pho, dSfmbt, or other as of yet unknown protein and that this targeting 

is not mediated by histone modifications nor by nucleosomal interactions (Figure 3).  
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Figure 3 – PcG complexes PRC1, PRC2 and PhoRC at the PREs. Pho, a member of PhoRC, binds 
to a specific DNA motif called PREs, while how PRC1 and PRC2 are recruited to PREs remains 
unknown. 
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AIM 

 

 

The main goal of my thesis work is to determine whether dSfmbt is the physical 

link between PhoRC and PRC1 or PRC2 by interacting directly with one of its subunits, or 

by forming a different complex that could mediate the binding between PhoRC and 

PRC1 or PRC2. In order to understand how PRC1 and PRC2 are targeted to the PREs, two 

different approaches will be taken: 1) an in vivo biochemical approach using dSfmbt as a 

bait protein in a Tandem Affinity Purification (TAP) and 2) in vitro and in vivo interaction 

studies between the PhoRC component dSfmbt and the PRC1 subunits Scm and Ph. An 

additional goal of my work is to elucidate the in vitro specific function of the trxG 

protein Ash1. 
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MATERIALS AND METHODS 

 

1. EMBRYONIC NUCLEAR EXTRACT 

 Embryonic nuclear extracts were performed as reported in Klymenko et al, 2006. 

Preparation of embryonic nuclear extract from Drosophila was done on ice or at 4°C. 

Dechorionated embryos were taken up in buffer NU1 (15 mM HEPES pH 7.6; 10 mM KCl; 

5 mM MgCl
2
; 0.1 mM EDTA pH 7.9; 0.5 mM EGTA pH 7.9; 350 mM Sucrose; 2 mM DTT; 

0.2 mM PMSF), at a ratio of 1 ml buffer NU1 per 1 gram of embryos and were 

homogenized with a glass dounce homogenizer. Lysate containing nuclei from 30 to 40 

grams of embryos was filtered by gravity through a double layer of miracloth mounted 

on a funnel. After the lysate was mostly drained through the miracloth, the cloth was 

rinsed with 2-3 volumes of buffer NU1. Nuclei were pelleted by centrifugation in a pre-

cooled Superlite GSA rotor at 9000 rpm for 15 minutes. After wiping off the lipid layer 

(upper layer) and discarding the supernatant (intermediate liquid portion), the nuclei 

pellet was resuspended in 0.5 ml of low-salt buffer per gram of embryos (Low-salt 

buffer: 15 mM HEPES; 20% glycerol; 1.5 mM MgCl
2
, 20 mM KCl, 0.2 mM EDTA pH 7.9; 1 

mM DTT; “Complete EDTA-free” protease inhibitor cocktail – Roche). Care was taken so 

that yolk was not resuspended with the nuclei. Resuspended nuclei were transferred into 

a 50 ml falcon tube and lysed by addition of 0.5 ml high-salt buffer per gram of 

embryos (high-salt buffer: 15 mM HEPES; 20% glycerol; 1.5 mM MgCl
2
; 800 mM KCl; 0.2 

mM EDTA pH 7.9; 1 mM DTT). The Falcon containing the solution was put on a rotating 

wheel and mixed for 20 minutes. After lysis was completed, soluble nuclear material 

was separated from insoluble chromatin and lipids by centrifugation in a pre-cooled 

SW40 rotor at 38000 rpm for 1 hour in ultraclear tubes. After centrifugation, a thin lipid 

layer was removed by suction (upper layer), the soluble nuclear extract was carefully 

taken using a glass pipet (intermediate liquid portion). Care was taken not to 

contaminate the sample with the lower debris portion. Soluble nuclear extract was then, 

dialysed against Dialysis Buffer (15 mM HEPES; 20% glycerol; 1.5 mM MgCl
2
; 200 mM 

KCl; 0.2 mM EDTA pH7.9; 1 mM DTT) in Spectra/Por Membrane 1 (cut-off: 6-8000). After 

dialysis, soluble nuclear extract was quick-frozen in liquid nitrogen and stored at -80°C. 
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2. TANDEM AFFINITY PURIFICATION (TAP) PROCEDURE 

 TAP procedure was performed as reported in Klymenko et al, 2006. For the TAP 

purification (Figure 4), 200 μl cross-linked IgG beads were sequencially washed with 1 

ml of 0.5 M Acetic acid, 5 ml of PA buffer, 1 ml of 0.5 M Acetic acid, 5 ml of PA buffer 

(PA buffer: 10 mM Tris-HCl pH 8.0; 150 mM NaCl; 0.1% NP40; 2 mM MgCl
2
; 0.1 mM 

EDTA; 0.5 mM DTT). All steps next were carried out at 4°C. IgG resin was equilibrated 

with 10 ml of PA buffer for 30 minutes, in a falcon tube. After equilibration, remove the 

PA buffer and add 10 ml of nuclear extract. Nuclear extract was thawed on ice. Binding 

was performed for 2-4 hours at 4°C in a rotating wheel. After the incubation period, 

discard the unbound material by centrifugation at 1500 rpm for 2 minutes The IgG resin 

was washed 4 times with 10 ml of PA buffer (each wash for 5-10 minutes in the rotating 

wheel at 4°C; discard the washing solution by centrifugation at 1500 rpm for 2 minutes). 

IgG beads were transferred to a 1.5 ml tube for cleavage with TEV protease in 2 ml of PA 

buffer for 12-16 hours in a rotating wheel at 4°C. After cleavage, eluate was removed 

and beads were washed with 1.5 ml of CB buffer (CB buffer: 10 mM Tris-HCl pH 8.0; 150 

mM NaCl, 0.1% NP40; 1 mM MgCl
2
; 2 mM CaCl

2
; 1 mM Imidazole pH 8.0; 10 mM -

mercaptoethanol). Pool the elution from TEV cleavage and the wash. Adjust the volume 

to 10 ml with CB buffer and the calcium concentration to a final concentration of 3 mM. 

To this solution, add 200 μl of calmodulin beads (pre-washed with 5 ml of CB buffer) in 

a fresh 15 ml falcon tube. Binding was performed during 3 hours. After this incubation 

period, unbound material was discarded by centrifugation at 1500 rpm for 2 minutes. 

Beads were washed 3 times with 10 ml of CB buffer and, were transferred to a 1.5 ml 

tube. The bound material was eluted with 300 μl (2-3 elutions were made for a 1 hour 

each in a rotating wheel at 4°C) of CE buffer (CE buffer: 10 mM Tris-HCl pH 8.0; 150 mM 

NaCl; 0.1% NP40; 1 mM MgCl
2
; 2 mM EGTA; 1 mM Imidazole pH 8.0; 10 mM -

mercaptoethanol). 
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Figure 4 - TAP purification layout (Rigaut et al, 1999). 

 

 

3. SILVER STAINING OF THE PROTEIN GELS 

 The Silver staining protocol for MS-MS analysis was adapted from Shevchenko et 

al, 1996. All the steps were performed on a shaking table at room temperature except 

the incubation in silver solution that was performed at 4°C. All solutions must be done 

fresh each time. Gels were fixed with Fixing solution (40% Methanol; 10% Acetic acid) for 

20-30 minutes; then rinsed with water several times, to remove the acid, over a period 

of 3-4 hours. Sensitize the gels with 0.02% (w/v) sodium thiosulfate solution for 1-2 

minutes and rinse them twice with water for 1 minute each. Incubate in (chilled) 0.1% 

(w/v) silver nitrate solution for 20-40 minutes at 4°C. After the Silver nitrate solution 

incubation, gels were rinsed with two changes of water (1 minute each) and immediately 

developed with developing solution (0.04% (v/v) formaldehyde; 2% (w/v) sodium 

carbonate) on a shaking table. Developing solution is changed for fresh one when it 

turned yellow; when sufficient staining was obtained, the development was quenched by 

adding 1% Acetic acid solution. The silver stained gels were stored in 1% (v/v) Acetic acid 

solution at 4°C. 
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4. PROTEIN IDENTIFICATION BY MS-MS AND LC-MS/MS 

 Sven Fraterman, a PhD student in Matthias Wilm group at EMBL, performed the 

protein identification by MS-MS and by LC-MS/MS of the eluted material from TAP 

purification (adapted from Fraterman et al, 2007). 

 

Table 3 - List of all the peptides obtained in the dSfmbt-TAP, TAP purification. 
 

Protein name 
(CG number) 

Peptides Peptides 

CG 3363 

ILLFDPR 
IQGAVVYYR 
LNATIIDAAAR 
VINDSDDRLDAAPSK 
DAEEQASQTPAGR 
FLDMLISK 
GISNEDAFNLR 
HAAAAAAAAAAAAAAAAASAK 
IEEHEETEVYR 
KIETPAEGPTPGKR 
LAVVMQGR 
LPGAQGNNLK 
LQEFTFR 
NAIGTPPGLNVLK 
QEPPPANSLFKDESPLK 
QFPDITEEAR 
SFTFVIPYLNDR 
SSNDVADQKPQTQAVETLPLK 
SSNDVADQKPQTQAVETLPLKTESK 
VAEPLAAEELSK 
VINDSDDRLDAAPSK 

AHYSFERPPEETSTK 
APVVKPQSTSVSK 
DFLHSNWWNVER 
DQWNAPVTHFNPDLAVR 
FIVYALSPR 
GLVNYYK 
IFNYFR 
IPSQLSVEIEK 
KAHMLDIQVPR 
LLPSGPSMTK 
LNATIIDAAAR 
LQFFPNAPYDAFVTPSSK 
MGIINNEANVYR 
QLVIDEQDDEQAETDVKQEVER 
QQLELLK 
RLNATIIDAAAR 
SFKEEPNKLQEFTFR 
TLPNETVQVVK 
TYELPPIILK 

dSfmbt 
(CG 16975) 

DDIMPLLGMK 
DIYPQDDLPQIPK 
DNNFDDNGSELEPK 
EAMIEVHEDDATIELFK 
FGYMMIR 
GELYSLVLNTK 
GNIDPSVIPIQK 
INDSLQSR 
ISDLIAQLK 
LFKDIYPQDDLPQIPK 
LLQLTKDDIMPLLGMK 
MNFTFDEYYSDGK 
MYDPTHSYDWLPR 
TFTWEGYLR 
TLPSNFYNK 
TLPSNFYNKINDSLQSR 
TNSFVEGMK 

DIYPQDDLPQIPKYER 
DTGAVAAGQHLFHR 
DWKDFLVGR 
LADIDSSEPHLELVPDTWNVYDVSQFLR 
LFKDIYPQDDLPQIPKYER 
MMWMSSQYNSER 
RMYDPTHSYDWLPR 
YKDWKDFLVGR 

Pho (CG 17743) 

AADNIFSSK 
FAQSTNLK 
GKEEFGIDGFTSQQNK 
GNLSQENNISER 
NIGYGENQETSK 
TLSNHTGNTGDLHALPSSVPFR 

ERGNLSQENNISER 
FSLDFNLR 
FTNAQTLEMPHPISSVQIMDHLIK 
GKEEFGIDGFTSQQNKEYQK 
KGDNVINYNIHENDKIK 
MNEGNHYDLHR 

HDAC1/ Rpd3 
(CG 7471) 

FHSDEYVR 
LHISPSNMTNQNTSEYLEK 
SDNDAGATANAGSGSGSGSGAGAK 
SIRPDNMSEYNK 
YGEYFPGTGDLR 

 

HP1b 
(CG 7041) 

ILGATDSSGHLMFLMK 
KSFLEDDTEEQKK 
LSTSSTPESIR 
SFLEDDTEEQK 
SFLEDDTEEQKK 
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TEYYLK 
WKGSDHADLVPAK 

NAP-1 
(CG 5330) 

GIPGFWLTVFR 
MLPAPVQNR 
NTAIMSEMVQPHDEPAIR 
QYLQQMVK 
YQVQYQPLFDK 
YQVQYQPLFDKR 

 

   

BRM-associated 
protein 55 
(CG6546) 

KFYVDTNYVTVPR 
SPLGGDFLSR 
VAAQIPTVHYEFPNGYHQDFGSER 
VGYAQEDSPK 

 

ISWI ATPase 
(CG8625) 

AALDSLGESSLR 
FGANQVFSSK 
KIDEAEPLTEEEIQEKENLLSQGFTAWTK 

 

Reptin 
(CG 9750) 

ATEVNTEDVK 
GLGLDDVLEAR 
IATDTSLR 

 

Pontin 
GLGLDEVGAAVHSAAGLVGQK 
NQISKDDIEDVHSLFLDAK 

 

-tubulin at 56D 

(CG9277) 

ALTVPELTQQMFDAK 
AVLVDLEPGTMDSVR 
EVDEQMLNIQNK 
FPGQLNADLR 
IMNTYSVVPSPK 
INVYYNEASGGK 
IREEYPDR 
ISEQFTAMFR 
LAVNMVPFPR 
YLTVAAIFR 

GHYTEGAELVDSVLDVVR 
GHYTEGAELVDSVLDVVRK 
IREEYPDRIMNTYSVVPSPK 
LHFFMPGFAPLTSR 
MSATFIGNSTAIQELFK 
MSATFIGNSTAIQELFKR 
NSSYFVEWIPNNVK 
SGPFGQIFRPDNFVFGQSGAGNNWAK 

-tubulin at 84B 

(CG1913) 

AVFVDLEPTVVDEVR 
DVNAAIATIK 
EDLAALEK 
EIVDLVLDR 
FDLMYAK 
LSVDYGK 
NLDIERPTYTNLNR 
TVGGGDDSFNTFFSETGAGK 
VGINYQPPTVVPGGDLAK 

IHFPLVTYAPVISAEK 
QLFHPEQLITGK 
QLFHPEQLITGKEDAANNYAR 
TVGGGDDSFNTFFSETGAGK 
 

-tubulin at 67C 

(CG8308) 

DVNAAVSAIK 
EELTASGSSASVGHDTSANDAR 
ELYHPEQLISGKEDAANNYAR 
ENIAVLER 
IGINYEKPAFVPDGDLAK 
IHFPLVAYAPLMSAER 
LDFAVYPSPK 
SIFVDLEPTVIDDVR 
TFFTETGNGK 
TKEELTASGSSASVGHDTSANDAR 

 

Hsp-4a 
(CG 4264) 

ATLDEDNLK 
ARFEELNADLFR 
DAGTIAGLNVLR 
IINEPTAAAIAYGLDKK 
LLQDLFNGK 
LVTHFVQEFK 
STAGDTHLGGEDFDNR 

FEELNADLFR 
HWPFEVVSADGKPK 
KTFFPEEISSMVLTK 
LLQDLFNGKELNK 
LSKEDIER 
NQVAMNPTQTIFDAK 
SVIHDIVLVGGSTR 
WLDANQLADKEEYEHR 

EF-1  

(CG8280) 

EVSSYIK 
IGGIGTVPVGR 
LPLQDVYK 
QTVAVGVIK 
VETGVLKPGTVVVFAPANITTEVK 

 

PepB (CG 6143) 
AAAALEENER 
EGIEESYR 
NQNPPSLLDLPR 

 

Actin AGFAGDDAPR  
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GYSFTTTAER 
IIAPPER 

40S ribosomal 
protein S3a 
(CG2168) 

IASDYLK 
LIAEDVQDR 
VFEVSLADLQK 

 

Reptin 
(CG 9750) 

ATEVNTEDVK 
GLGLDDVLEAR 
IATDTSLR 

 

Pontin 
(CG4003) 

GLGLDEVGAAVHSAAGLVGQK 
NQISKDDIEDVHSLFLDAK 

 

CG 12262 
ENVLIGEGAGFK 
GITFEDVR 

 

Quaking related 
58E-1 

(CG3613) 
 

ISYALGEIR 
LLDDEVEK 

 

Stonewall 
(CG3836) 

ASISFAGIR 
QISPTGGASLLQK 
SGIAPEVQR 
TSFQDLLQQASQTVQR 
VYKPGTGQEIAPTSPAGGLDKR 

 

Host cell factor 
(CG1710) 

ELIERPESETNTR 
ISASDLNSEHIIQAENHSFANR 
TNLEPGTAYR 
WLQDPAAAK 
YLNDLYILDTR 

 

Longitudinals 
lacking protein G 

(CG12052) 

KENTAPDVASTAEIQR 
LSGAYTLEQTK 
NLNADEVMR 

 

 

 

5. CHROMATIN IMMUNOPRECIPITATION  

  Chromatin immunoprecipitation (ChIP) assays were performed as previously 

described in Oktaba et al, 2008. It was used three independent chromatin preparations 

per specific antibody. For each ChIP reaction, 50-200 μl of chromatin solution was taken 

up in 1 ml RIPA buffer (140 mM NaCl; 10 mM Tris-HCl pH 8.0; 1 mM EDTA; 1% Triton X-

100; 0.1% SDS; 0.1% sodium deoxycholate; 1 mM PMSF). Chromatin was pre-cleared by 

adding 50% (v/v) beads suspension (0.1 g Protein A Sepharose CL-4B beads - GE 

healthcare - equilibrated in 1 ml RIPA [with “Complete EDTA-free” protease inhibitor 

cocktail – Roche], incubated at 4°C for 1 hour, centrifuged at 4°C for 10 minutes at 

16000g and beads resuspended in 500 μl RIPA [with “Complete EDTA-free” protease 

inhibitor cocktail – Roche]) and incubated at 4°C for 1 hour. The chromatin was removed 

after centrifugation at 4°C for 30 seconds at 16000g and incubated with specific 

antibodies overnight at 4°C. In parallel, beads were blocked in RIPA containing 1 mg/ml 

of BSA overnight at 4°C. Antibody-chromatin complexes were recovered by incubation 

with 40 μl of 50% (v/v) blocked beads suspension at 4°C for 3 hours. At 4°C, 10 minutes 

1 ml washes were performed as follows: 5x RIPA, 1x LiCl (250 mM LiCl; 10 mM Tris-HCl 

pH 8.0; 1 mM EDTA; 0.5% NP40; 0.5% sodium deoxycholate), 2x TE (10 mM Tris-HCl pH 

8.0; 1 mM EDTA), removing each time the solution by centrifugation at 4°C for 30 
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seconds at 16000g. Antibody-chromatin complexes were suspended in 100 μl TE and 

incubated with 50 μg/ml RNase (Roche) at 37°C for 30 minutes, then adjust to 0.5% SDS 

and 0.5 mg/ml of proteinase K and incubated at 37°C overnight. For reversal of cross-

links, samples were incubated at 65°C for 6 hours, followed by phenol/chlorophorm 

extraction using Phase-Lock heavy gel tubes (Eppendorf) following the manufacturer’s 

instructions and DNA precipitation. The pellet was resuspended in 30 μl H
2
O prior to 

storage at -20°C. 1-2 μl of eluate was used to check enrichment using specific primers 

by qPCR. 

 

 

6. REAL-TIME QUANTITATIVE PCR – RT-QPCR 

 Rt-qPCR was performed as previously reported in Oktaba et al, 2008. ChIP eluate 

was analysed using a real-time PCR instrument (Applied Biosystems 7500) using SYBR 

Green (Applied Biosystems) and standart settings (Applied Biosystems). PCR was 

performed in duplicates and serial dilutions of purified input DNA were measured 

together with the immunoprecipitated DNA samples. This allowed to calculate the 

amount of target sequence in immunoprecipitated chromatin relative to the amount of 

target sequence in input chromatin. With each antibody, immunoprecipitation reactions 

from independently generated batches of chromatin were performed and for each PCR 

fragment, the amount of DNA in the immunoprecipitated material was expressed as 

percentage of DNA present in the input material. 

 

Table 4- List of primers used for qPCR analysis in ChIP experiments. 
 

 
Name 

 
Forward primer (5’ to 3’) 

 
Reverse primer (5’ to 3’) 

Position 
to TSS 
(kb) 

Ubx 
Ubx 
Abd-B 
Abd-B 
en 
en 
ap 
ap 
Dll 
Dll 
eve 
eve 
pnr 
pnr 
C1 
C2 

GCAGCATAAAACCGAAAGGA 
ATGATATCTCGTCTGGCACTAC 
CACTTTCGAGCAAGAGCG 
GGAATACCGCACTGTCGTAGG 
GTTCACTCCCTCTGCGAGTAG 
GGCGGTGTCAATATTTTGGT 
AGTGTGAGTGAGTGCGATGTC 
GGTAAGCCAAACCGTGAATG 
CCTAGCCACAAAGCGACATT 
ATCCGGAGCACCTATCAGC 
TTGTGACTTTGGGTCTGAGG 
CTCAATCCGCTCCATCAGTT 
GAGCAGGGGTGTTGAGACA 
AGTAGCACCTTGATGGGACAT 
ACACTGCGAGCGCCTCACACGC 
TCAAGCCGAACCCTCTAAAAT 

CGCCAAACATTCAGAGGATAG 
AGACATCCAGCAAACTGCGATA 
AACAGCGATTCACAGACAGC 
GCAGCCATCATGGATGTGAA 
GAAAACGCAGATTGAAACGTC 
CGCCTTAAGGTGAGATTCAGTT 
CATTTGCCACTACGTGAGAGC 
CCCTCGATTTTCTCCCTTAAC 
CCCTGCTGAGAGCAGAAACT 
GGTAGCCGGAGTAGGAGTTCT 
GAAGAGGAGTGGGGAGTCG 
CCGCAATCACAGTTGTCGT 
TCTTTCCTTCAGGGACTGTCA 
GTCTGTCCGTAAAGGGGAAAG 
CCTAGGTGAATGTGCGGCACAC 
AACGCCAACAAACAGAAAATG 

-30 
+8 
0 

+72 
0 

+3 
-2 
+9 
-1 
+3 
+2 
+9 
+4 
+5 
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C3 
C4 

CCGAACATGAGAGATGGAAAA 
CAGTTGATGGGATGAATTTGG 

AAAGTGCCGACAATGCAGTTA 
TGCCTGTGGTTCTATCCAAAC 

 

 

7. IMMUNOSTAINING OF DROSOPHILA LARVAL DISCS 

 Immunostainings of Drosophila larval discs were made as previously described in 

Beuchle et al, 2001. Third instar larvae were dissected in PBS (137mM NaCl; 2.7 mM KCl; 

10 mM Sodium Phosphate; 2 mM Potassium Phosphate; final pH 7.4) by splitting them in 

half and turning the anterior part inside out. Fat body, salivary glands and gut are 

discarded and the carcass with the discs attached was fixed for 20 minutes in 4% 

formaldehyde in PBT (0.1% tween in PBS). Carcasses were then blocked by several 

washes with BBT (1% Bovine Serum Albumin – BSA – and 0.1% Triton X-100 in PBS). 

Staining was performed at 4°C overnight with the corresponding primary antibodies 

diluted in BBT. Primary antibody was washed off with BBT (6 times changed for a period 

of 1 hour). Carcasses were then stained at 4°C overnight with fluorescently labeled 

secondary antibody diluted in BBT in tubes protected from light. The secondary antibody 

was then washed off by washing twice with BBT and four times with PBT for a 1 hour 

period. Discs were then carefully taken out of the carcasses and mounted in 

Fluoromount-G on glass slides. 

 

Table 5 – List of antibodies used for Drosophila discs immunostaining. 
 

Antibody Antibody reference or source 

Anti-Ubx Mouse monoclonal FP.3.38. Described in White & Wilcox, 1984 

Anti-Abd-B Mouse monoclonal 1A2E9. Described in Celniker et al, 1990 

Anti-En Mouse monoclonal 4D9 
 

 

LIST OF FLY STOCKS USED IN THIS STUDY: 

 

dSfmbt-CTAP construct rescue: 

yw hs-flp; hs-nGFP FRT40 

w; dSfmbt1 FRT40/SM6B 

yw hs-flp; dSfmbt1 FRT40; -tubulin-dSfmbt-TAP (w+) 

 

dSfmbt-CTAP fly population genotype: 

yw hs-flp; +; -tubulin-dSfmbt-TAP (w+) 
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For functional analysis of dSfmbt and Scm: 

yw hs-flp; hs-nGFP FRT 40 

yw hs-flp; [hs-nGFP FRT40; ScmSu(z)302]/ SM5-TM6B 

w; dSfmbt1 FRT40/ SM6B 

w; FRT82 ScmD1/ TM6C 

w; [dSfmbt1 FRT40; FRT82 ScmD1]/ SM5-TM6B 

yw; FRT40 FRT42D P[y+] calypso2/ SM6B 

yw hs-flp; FRT40 FRT42D P[y+] calypso2; ScmSu(z)302]/ SM5-TM6B 

yw hs-flp; [FRT42D hs-nGFP; ScmD1]/ SM5-TM6B 

 

FLP expression was induced by 1 hour heat-shock at 37°C, 24-48 hours after egg laying 

at 25°C; dissection was performed 96 hours after heat-shock. GFP expression was 

induced by 1 hour heat-shock at 37°C, followed by 1 hour at 25°C prior to dissection. 

 

 

8. PROTEIN EXPRESSION AND FLAG-PURIFICATION USING BACULOVIRUS 

EXPRESSION SYSTEM IN SF9 CELLS 

 Baculovirus production was performed with the Bac-to-Bac system (GibcoBRL), 

using full-length cDNAs inserted into pFastBacDUAL. For this study the following virus 

were created: FLAG-Scm (cDNA in pFastBacDUAL was a gift from J. Simon), FLAG-

Scm SAM. Viruses expressing untagged-dSfmbt, untagged-Pho and untagged-Ph were 

described previously (Klymenko et al, 2006; Francis et al, 2001). FLAG purification was 

performed as previously described (Müller et al, 2002) with the following modifications. 

FLAG affinity purification was carried out as following: 50 ml of Sf9 cell culture (cell 

density 106 cells/ml) was infected with a single virus or viruses for different 

combinations of complexes components. 48h after infection, cells were pelleted in a 50 

ml falcon tube in a Sorvall Megafuse centrifuge at 3000 rpm for 15 minutes. Cells were 

suspended in 10 ml of Lysis Buffer F (Lysis Buffer F: 20 mM Tris-HCl pH 8.0; 300 mM 

NaCl; 20% glycerol; 4 mM MgCl
2
; 0.4 mM EDTA; 2 mM DTT; 0.05% NP40; 10 μM ZnCl

2
; 

“Complete EDTA-free” protease inhibitor cocktail – Roche) and then disrupted with 

ultrasonic cell disruptor (50 strokes 3 times with a 5 minutes interval on ice) at 4°C. 

Insoluble material was pelleted by ultracentrifugation in a Beckman SW40 rotor at 12000 

rpm for 25 minutos at 4°C. After centrifugation, the supernatant was poured into a 15 

ml falcon tube. M2 anti-FLAG beads from Sigma were equilibrated accordingly with the 
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advised from the producer. 300 μl of M2 anti-FLAG beads were added for the 10 ml of 

whole-cell extracts. Binding was carried out for 2-4 hours at 4°C on a rotating wheel. 

After incubation, the beads were washed with BC buffer (20 mM HEPES pH 7.9; 0.4 mM 

EDTA; 20% glycerol; “Complete EDTA-free” protease inhibitor cocktail – Roche) using 

stepwise KCl salt washes (3 times with 600 [with 0.05% NP40] and 1200 [with 0.05% 

NP40] mM KCl, twice with 1200, 600 and 300 mM KCl). Beads were transferred to a 1.5 

ml tube and the complex was eluted using BC buffer with 300 mM KCl and 0.4 mg/ml of 

FLAG peptide (DYKDDDDK – Sigma) for 1-2 hours. Purified complexes were stored at -

80°C. 

 

 

9. SITE-DIRECTED MUTAGENESIS PCR 

For this assay I used Pfu Turbo (Stratagene), which is a DNA polymerase. The PCR 

reaction goes as follow: 5 μl of 10x Pfu Turbo buffer (provided by manufactor); 100 ng 

of plasmic DNA; 1 μl of primer 1 (at a concentration of 1 pmol/μl); 1 μl of primer 2 (at a 

concentration of 1 pmol/μl); 1 μl of 10 mM dNTPs; 1 μl Pfu Turbo (2.5 enzymatic units) 

and H2O till a final volume of 50 μl. 

The PCR programme is: 95°C for 2 minutes; [95°C for 1 minute; 55°C-68°C for 1 

minute; 68°C for 2 minutes/ kb of plasmid] x 18 cycles; 68°C for 2 minutes/kb of 

plasmid + 5 minutes. 

After PCR, I added 1 μl (20 enzymatic units) of restriction enzyme DpnI directly 

on the mixture. Incubate at 37°C for 1h. The DpnI restriction enzyme cuts G6m ATC 

sequence, hence eliminating the template plasmid and leaving only the PCR product. 

After, 2 μl of the solution was transformed in competent E. coli cells using a standard 

protocol. 

 

Table 6 – Primers used for Site-directed mutagenesis PCR 
 

Use Primer sequence Primer name 

dSfmbt 
mutation 
of STOP 
codon to a 
NotI site 

AAATCACCGTTTTTAGGCGGCCGCGATTTTAGTTTTTTC 
 
 
 
TTTAGTGGCAAAAATCCGCCGGCGCTAAAATCAAAAAAG 

Forward primer (5’ to 3’) 
 
 
 
Reverse primer (5’ to 3’) 

Scm 
mutation 
of two aas 
to 2 STOP 
codons. 

CATCTGCGGTCGCAGTAGTAGGACTGGACCATCG 
 
 
 
CGATGGTCCAGTCCTACTACTGCGACCGCAGATG 

Forward primer (5’ to 3’) 
 
 
 
Reverse primer (5’ to 3’) 
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10. MONONUCLEOSOME ASSEMBLY 

The mononucleosome assembly protocol was adapted from Nekrasov et al, 

2005. Recombinat Xenopus octamers were prepared as described (Luger et al, 1999) and 

mononucleosomes were assembled onto a (radiolabelled) 201 bp ‘601’ DNA template 

(Thåström et al, 1999). For assembly, 7 μg octamer was mixed with 5 μg DNA template 

in a volume of 15 μl, which corresponds to a concentration of nucleosomes of 3.3 

pmol/μl (2M NaCl, 10 mM Tris pH 8.0, 0.1 mM EDTA, 10 mM -mercaptoethanol) at 

room temperature followed by stepwise reduction of the salt concentration by addition 

of Tris-EDTA to obtain a solution containing 0.17 pmol nucleosomes/μl (100 mM 

NaCl/Tris-EDTA). 

 

 

11. HISTONE METHYLTRANSFERASE ASSAYS 

The HMTase assays were adapted from Nekrasov et al, 2005. Reactions were 

carried out in a volume of 50 μl and contained 7 pmol of nuclesome, 2 pmol of Ash1 

protein, 10 mM HEPES Ph 7.9, 0.25 mM EDTA, 200 mM NaCl, 10% glycerol, 2 mM 

dithiothreitol (DTT), 2.5 mM MgCl
2
 and 4 μM S-adenosyl-L-[methyl-14C]methionine. 

Reactions were incubated for 40 minutes at 30°C and resolved in a 18% SDS- 

polyacrylamide gel run at 12-15V/cm; after Coomassie staining, the gel was dried and 

exposed for autoradiography. 
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RESULTS 

1. BIOCHEMICAL CHARACTERIZATION OF A NEW PCG COMPLEX 

 

• BIOCHEMICAL PURIFICATION OF A NEW PCG COMPLEX 
 

In order to understand if the PhoRC subunit dSfmbt is the physical link between 

the PhoRC and PRC1 and/or PRC2, I performed a TAP-tag purification using dSfmbt as a 

bait protein (Rigaut et al, 1999; figure 4).  

I firstly constructed a vector that carried the cDNA of dSfmbt under the -tubulin 

promoter, with a TAP-tag at the N-terminus of the protein (TAP-dSfmbt). I then generated 

Drosophila transgenic lines carrying this vector and after a series of crosses, I isolated 

three transgenic TAP-dSfmbt fly lines with insertions in the third chromosome. In order 

to check for functionality of the TAP-dSfmbt protein, the transgene was placed into a 

dSfmbt null background (dSfmbt 
_
). These homozygous mutant flies die as 3rd instar 

larvae and misexpress the HOX gene Ubx in the wing imaginal disc (Klymenko et al, 

2006). Therefore, the functionality of the TAP-dSfmbt protein would rescue the viability 

of the flies and lead to the proper expression of Ubx. However, the TAP-dSfmbt protein 

did not rescue viability of dSfmbt 
_
 allele nor it rescued the misexpression of Ubx in 

wing imaginal discs.  

As the N-terminus TAP-tag could potentially perturb the structure of the protein, 

I constructed a different vector where the dSfmbt protein had a C-terminus TAP-tag 

(dSfmbt-TAP; figure 5A). I isolated two dSfmbt-TAP transgenic lines ([dSfmbt 
_
; tub-

dSfmbt-TAP1] and [dSfmbt 
_
; tub-dSfmbt-TAP2]) with insertions in the third 

chromosome, and repeted the procedure described above to verify the functionality of 

the protein. Although the dSfmbt-TAP protein did not rescue the viability of dSfmbt 
_
 

flies, dSfmbt-TAP rescued Ubx misexpression in wing imaginal discs (Figure 5B). 
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Figure 5 - dSfmbt-TAP transgene rescues Ubx misexpression in dSfmbt mutant clones.  
(A) Schematic representation of the dSfmbt-TAP protein. (B) Analysis of wing imaginal discs after 
96h of induction of clones of cells that are homozygous for dSfmbt   (marked by the absence of 

GFP) with ([dSfmbt ; tub-dSfmbt-TAP 1] or [dSfmbt ;tub-dSfmbt-TAP 2]) or without (dSfmbt  ) 

transgene. The dSfmtb-TAP rescue transgene was stained with an antibody against the HOX 
protein Ubx (which is not expressed in this tissue in wild-type animals) seen here in red. The 
misexpression of Ubx seen in dSfmbt   (full arrowhead; Klymenko et al, 2006) is completely 

rescued in both transgenic lines ([dSfmbt ; tub-dSfmbt-TAP 1] and [dSfmbt ; tub-dSfmbt-TAP 2]), 

where no misexpression of Ubx is observed (empty arrowhead). 

 

 

I expanded the fly line dSfmbt-TAP 1 in a wild type background and prepared nuclear 

extracts from embryos collected from 0h to 12h post fertilization. Nuclear extracts from 

a wild-type fly population were used as a negative control for the dSfmbt purification. 

I performed three purifications using independent transgenic and wild-type 

embryonic nuclear extract preparations. The purified material was separated in a 4-12% 

Bis-Tris SDS polyacrylamide gel and silver stained. Purified material from wild-type and 

dSfmbt-TAP purification were separated and analysed by MS-MS for identification of 

peptides (white rectangles; figure 6A). The material from wild-type and dSfmbt-TAP 

purification was also analysed by LC-MS/MS for a more thorough analysis. Both MS-MS 

and LC-MS/MS were performed and analysed by Sven Fraterman, from the laboratory of 

Matthias Wilm at EMBL. 
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Figure 6 – dSfmbt complex purified from Drosophila embryos. 
(A) Proteins eluted from the calmodulin affinity column (see materials and methods) were 
separated on a 4-12% polyacrylamide gel and bands were revealed by silver staining. The 
molecular weight protein marker can be seen on the left of the gel. Wild-type (wt) – contains 
purified material from 0-12h wt embryonic nuclear extracts; dSfmbt-TAP – contains purified 
material from nuclear extracts of transgenic line tub-dSfmbt-TAP 1, prepared from 0-12 hours old 
embryos. The identification of these proteins was done using MS-MS peptide microsequencing 
(right side of the gel). White rectangles represent the portions analysed by MS-MS. Single bands 
were also analysed by MS-MS. 
(B) Western Blot analysis of two additional members of dSfmbt complex, NAP1 and HP1b, that 
were identified by LC-MS/MS. NAP1 is present in the same amounts both in the input material (I) 
of wild-type embryonic nuclear extracts (wt) and of tub-dSfmbt-TAP 1 embryonic nuclear extracts 
(dSfmbt-TAP). NAP1 protein co-purifies with dSfmbt (dSfmbt-TAP (E)) and is absent from the 
eluted material of wild-type embryonic nuclear extracts (wt (E)). The same applies for the HP1b 
protein. 

 

 

The MS-MS analyses identified peptides from the PcG proteins Pho and dSfmbt, 

which form the known complex PhoRC (Klymenko et al, 2006), and also identified 

peptides from Rpd3/HDAC1 protein, as well as from an uncharacterized protein, 

CG3363 (Figure 6A). The LC-MS/MS analyses corroborated the identification of these 

peptides, and also identified peptides from two chromatin-associated proteins, NAP1 

and HP1b (Figure 6B). 

Pho is the only PcG protein that binds to specific DNA sequences called PREs 

(Brown et al, 1998). This protein forms a stable complex with dSfmbt forming the PhoRC 
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complex, which is a PcG protein complex (Klymenko et al, 2006). Pho and PhoRC are 

found at the PREs of many target genes and are required for the tethering of the other 

PcG complexes to these gene loci (reviewed in Müller & Verrijzer, 2009; Kwong et al, 

2008; Oktaba et al, 2008). 

Rpd3 is a histone deacetylase enzyme that has been found in several complexes 

related to transcriptional repression: Rpd3-Sin3 complex in yeast (Kadosh & Struhl, 

1998; 1998), Rpd3-Groucho (Chen et al, 1999), Rpd3-Even-skipped (Mannervik & Levine, 

1999), PRC2 complex (Tie et al, 2001; 2003), and PRC1 complex in Drosophila (Chang et 

al 2001). In humans it has been reported to interact with the retinoblastoma protein (Rb) 

in the repression of the E2F target genes (Zhang et al, 2000). Rpd3 is Drosophila’s 

homologue of the human Histone deacetylase 1 (HDAC1) and has been involved in the 

deacetylation of H3K9 and H3K36 (reviewed by Thiagalingam et al, 2003; Lee & 

Shilatifard, 2007). 

Heterochromatic protein b (HP1b) belongs to a family of chromosomal proteins 

that are implicated in heterochromatin packaging and gene silencing (reviewed in Kwon 

& Workman, 2008). HP1b is the Drosophila homolog of human HP1 . This family of 

proteins characteristically possesses two major domains: a chromo domain in N-terminal 

part, and a chromo shadow domain in C-terminal (reviewed in Kwon & Workman, 2008). 

The chromo domain is responsible for the binding of this protein to the trimethylated 

state of histone H3 in lysine 9 (H3K9me3), and the chromo shadow domain is known to 

be responsible for protein – protein interaction as it recognizes the specific sequence 

PxVx[M/L/V], PxVxL being the strongest recognition motif (Smothers & Henikoff, 2000; 

Bannister et al, 2001; Jacobs et al, 2001; 2002; Thiru et al, 2004). This PxVxL motif is 

present in the N-terminal part of dSfmbt (Figure 7). The HP1 family is composed three 

proteins that are present in different states of chromatin, HP1a, b, and c, with HP1b 

being present in both euchromatin and heterochromatin (Smothers & Henikoff, 2001). 

 

 

Figure 7 – Binding motif of HP1b chromo shadow domain in dSfmbt. 
The PxVxL binding motif of the chromo shadow domain (purple) is present in the first 54 
aminoacids of the dSfmbt protein. A hydrophobic (leucine) and a slightly polar (threonine) 
aminoacid at positions -6 and -7 (green) strengthen the interaction between the proteins (Thiru et 
al, 2004). 
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NAP1 is a Nucleosome Assembly Protein that is conserved from yeast to humans. 

Drosophila NAP1 (dNAP1; Ito et al, 1996), human NAP1 (hNAP1; Ishimi et al, 1984), and 

yeast NAP1 (yNAP1; Ishimi & Kikuchi, 1991) are functionally conserved proteins 

(reviewed in Park & Luger, 2006). dNAP1 acts as a chaperone that transports newly 

synthesized histones from the cytoplasm to the nucleus and deposits these histones 

onto the chromatin by an ATP-facilitated process (Ito et al, 1996). NAP-1 interacts mostly 

with the H2A/H2B dimer and its location inside the cell is dependent on the cell cycle; it 

is found in the nucleus during S phase and in the cytoplasm when G2 starts (Ito et al, 

1996; reviewed in Park & Luger, 2006). CG3363 is an uncharacterized Drosophila 

protein with no prominent domains on its structure. Being only conserved in Diptera, 

this protein is not likely to be a PcG protein, as PcG proteins are highly conserved from 

yeast to humans. 

The new complex purified and described in this work containing Pho, dSfmbt, 

Rpd3, HP1b, NAP1, and CG3363 as subunits will be called from now on the “dSfmbt 

complex”. 

 

 

• DSFMBT COMPLEX LOCALIZES AT THE PRES 
 

As Pho and dSfmbt both colocalize at the PREs of the HOX genes and other PcG 

targets (Klymenko et al, 2006; Papp & Müller, 2006; Oktaba et al, 2008), I performed 

ChIP experiments in order to determine whether Rpd3, NAP1, and HP1b proteins were 

also tethered at the PREs. Three independent preparations of chromatin were used as 

input material for the precipitation with antibodies against Pho, dSfmbt, Rpd3, NAP1, 

and HP1b proteins. The chromatin used for these experiments was prepared by a 

previous PhD student, Maxim Nekrasov, and originated from imaginal discs and central 

nervous system (CNS) wild-type larval tissues. 

Quantitative real time PCR was performed to quantify the absolute amount of 

DNA recovered from specific regions of the Drosophila genome. The regions checked 

were PREs from PcG target genes (Chan et al, 1994; Mihaly et al, 1997; Oktaba et al, 

2008), a genomic region of each of these genes, and also euchromatic and 

heterochromatic regions that were chosen randomly in the Drosophila genome. The PcG 

target genes chosen for this experiment were: Ultrabithorax (Ubx), Abdominal-B (Abd-B), 

engrailed (en), apterus (ap), distalless (Dll), even skipped (eve), and pannier (pnr).  

As previously reported, Pho and dSfmbt colocalized at the tested PREs of PcG 

target genes and were absent from the corresponding genomic regions, as well as from 

the euchromatic and heterochromatic regions (Oktaba et al, 2008; figure 8, purple and 



   Results 

 

 

32 

blue graphs). Rpd3 was specifically localized to all the PREs tested, supporting that 

dSfmbt and Rpd3 proteins colocalized with each other in vivo (Figure 8, yellow graph). 

NAP1 did not show any preference in binding to the PREs or other genomic regions in 

this experiment (Figure 8, red graph). As there are no clear negative controls for this 

experiment, I could not conclude whether this protein was present or absent at the 

tested genomic regions (Figure 8, red graph). The HP1b antibody was not functional in 

these experiments, so I could not determine the localization of this protein. 
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Figure 8 – dSfmbt, Pho and Rpd3 colocalize at the PREs in PcG target genes. 
ChIP analysis monitoring dSfmbt (blue graph), Pho (purple graph), Rpd3 (yellow graph), and NAP1 
(red graph) binding in imaginal disc/CNS tissues dissected from wild-type larvae. Graphs show the 
results from three independent immunoprecipitation reactions using different batches of 
chromatin preparations. ChIP signals were quantified by qPCR and are presented as percentages 
of the input chromatin precipitated at each region. Error bars correspond to the standard 
deviations. The location of PREs (purple boxes) and other regions with respect to transcription 
start sites of Ubx, Abd-B, en, ap, Dll, eve, and pnr genes are indicated in kilobases. C1-C4 indicate 
euchromatic and heterochromatic control regions outside these genes (see table 4 for qPCR 
primer sequences). dSfmbt (blue graph), Pho (purple graph), and Rpd3 (yellow graph) proteins are 
specifically enriched at the PRE of each gene, but not at the analysed intervals in the control 
regions of the same genes or in the control regions C1-C4. NAP1 (red graph) protein is enriched at 
the Ubx PRE relatively to the analysed coding region of this gene, but there is no difference 
between the PREs and corresponding coding regions of the other analysed target genes and the 
control regions C1-C4. 

 

 

Although Rpd3 is not a PcG protein, it forms a stable complex with PcG proteins 

with whom it colocalizes at the PREs of PcG target genes. Therefore Rpd3 contributes to 

the silencing of PcG target genes together with PcG proteins (Figure 8). I concluded that 

dSfmbt forms a stable complex with Pho (PhoRC; Klymenko et al, 2006), Rpd3, NAP1, 

and HP1b (Figure 6). The function of this complex on gene repression is as of yet 

unknown and further experiments need to be performed. However, a possible 

repressional mechanism and the contributions of each protein will be discussed further. 
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2. CHARACTERIZATION OF THE METHYL-LYSINE BINDING ACTIVITY OF 

DSFMBT IN VIVO 

 

The MBT repeats of dSfmbt bind specifically to mono and dimethylated lysines of 

histone H3 (H3K9 and H3K27) and histone H4 (H4K20) (Klymenko et al, 2006; Grimm et 

al, 2009). The in vivo function of these dSfmbt repeats is not known, but it has been 

proposed that their binding to methylated lysines assists the PRE-tethered PcG 

complexes with scanning the flanking chromatin for particular lysine modifications 

(reviewed in Müller & Kassis, 2006). In order to determine the in vivo importance of the 

methyl-lysine binding activity of dSfmbt in repression, I generated three different 

transgenic flies: 1) a transgene that expresses wild-type dSfmbt protein as a control; 2) a 

transgene that expresses a dSfmbt protein that carries the mutations D917A, E947A, 

and Y948F (dSfmbtD917A E947A Y948F - dSfmbtAAF); 3) a transgene that expresses a dSfmbt 

protein that lacks all four MBT repeats (dSfmbt MBT). The expression of the transgenes 

was under the control of the -tubulin promoter (tub-dSfmbt; tub-dSfmbtAAF; tub-

dSfmbt MBT). The aminoacids D917, E947, and Y948 are located in the fourth MBT repeat 

of dSfmbt and are responsible for the binding of this protein to monomethylated H4K20 

peptide (Grimm et al, 2009). Therefore, the transgenic flies tub-dSfmbtAAF express a 

dSfmbt protein that is unable to bind to monomethylated H4K20 (Grimm et al, 2009). 

I inserted the transgene tub-dSfmbtAAF and tub-dSfmbt MBT in a dSfmbt null 

background (dSfmbt  ) to see if these non-functional dSfmbt proteins could rescue the 

misexpression of the HOX gene Ubx in wing imaginal discs (Figure 9). The same 

procedure was done for the transgene tub-dSfmbt as a control (Figure 9). 

 

 

Figure 9 – The Methyl-lysine binding activity of dSfmbt is not involved in the Ubx 
repression in wing imaginal discs. 

Analysis of 96h wing imaginal discs after induction of cell clones that are homozygous for 
dSfmbt   (marked by the absence of GFP) by immunostaining against Ubx protein (in red). Left: 

wing imaginal disc with clones of dSfmbt   misexpresses Ubx gene in most of the cell clones 

(Klymenko et al, 2006; full arrowheads and empty arrowhead); Middle: wing imaginal disc with 
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clones of dSfmbt   in animals carrying a dSfmbt wild-type transgene under the tubulin promoter 

rescues the Ubx misexpression ([dSfmbt  ;tub-dSfmbt]; empty arrowheads); Right: wing imaginal 

disc with clones of dSfmbt    in animals carrying a dSfmbt transgene with no methyl-lysine binding 

activity ([dSfmbt  ; tub- dSfmbtAAF]; Grimm et al, 2009) rescues the misexpression of the Ubx gene. 

 

 

Both tub-dSfmbt and tub-dSfmbtAAF transgenes rescue the Ubx misexpression of dSfmbt   

cell clones in wing imaginal discs. Therefore, the methyl-lysine binding activity of the 

MBT repeats of dSfmbt alone is not required for the PcG repression of target genes. 

Unfortunately, a tub-dSfmbt MBT stable transgenic line could not be established. 

 

 

3. DSFMBT AND THE PRC1 COMPONENT, SCM 

 

• DSFMBT AND SCM COLOCALIZE AT THE PRES 
 

The PRC1 subunit Scm also contains MBT repeats (Figure 11), and these MBT 

repeats possess a methyl-lysine binding activity. However, the specificity of these MBT 

repeats is not as high as for the dSfmbt MBT repeats (Grimm et al, 2007; 2009). In vivo 

experiments of the functionality of the MBT repeats of Scm showed, as for the MBT 

repeats of dSfmbt, that a transgene lacking the MBT repeats of Scm (Scm MBT) and a 

transgene that abolishes the methyl-lysine binding activity of Scm (ScmN324A) could rescue 

almost fully the Ubx misexpression in wing imaginal discs seen in Scm mutant clones 

(Grimm et al, 2007). As these two PcG proteins have the same methyl-lysine binding 

activity and since abolishing this activity leads to a similar phenotype, it is possible that 

they act redundantly in Drosophila. 

In order to know if dSfmbt and Scm colocalized at the PREs of PcG target genes, 

firstly I performed ChIP experiments. Three independent preparations of chromatin were 

used as input material for the precipitation with antibodies against Scm and dSfmbt 

proteins. The chromatin used was prepared by Maxim Nekrasov and originated from 

imaginal discs and CNS wild-type Drosophila larval tissues. The same regions as those 

used for the colocalization of the dSfmbt complex subunits were tested. 
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Figure 10 – dSfmbt and Scm colocalize to PREs in PcG target genes. 
ChIP analysis monitoring dSfmbt (blue graph) and Scm (green graph) binding in imaginal 
discs/CNS tissues dissected from wild type Drosophila larvae. Graphs show the results from three 
independent immunoprecipitation reactions from different batches of chromatin preparations. 
ChIP signals were quantified by Rt-qPCR and are presented as percentages of input chromatin 
precipitated at each region. Error bars correspond to standard deviations. The location of PREs 
(purple boxes) and other regions with respect to transcription start sites in the Ubx, Abd-B, en, ap, 
Dll, eve, and pnr genes are indicated in kilobases. C1-C4 indicate euchromatic and 
heterochromatic control regions outside these genes (see table 4 for qPCR primer sequences). 
dSfmbt (blue graph) and Scm (green graph) proteins are specifically enriched at the PRE of each 
analyzed gene, but not at the analyzed intervals in the coding regions of these same genes or in 
control regions C1-C4. 
 

 

ChIP experiments showed that Scm and dSfmbt are specifically bound to all the 

tested PREs of PcG target genes (Figure 10, blue and green graphs), in accordance with 

the hypothesis that these two proteins function redundantly in Drosophila. 
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• BIOCHEMICAL CHARACTERIZATION OF DSFMBT AND PRC1 COMPONENTS SCM 

AND PH 
 

Scm and dSfmbt proteins have a very similar domain structures (Figure 11). They 

both contain MBT repeats, a zinc finger in the N-terminal part of the protein, and a SAM 

domain in the C-terminus (Figure 11). The PRC1 subunit Ph also contains a zing finger 

and a SAM domain in the C-terminal portion of the protein (Figure 11).  

SAM domains are responsible for the formation of homomeric and heteromeric 

protein structures (Thanos et al, 1999; Kim et al, 2002). It has been described that the 

PRC1 subunits Scm and Ph interact with each other through these domains (Peterson et 

al, 1997; 2004).  

 

 

Figure 11 – dSfmbt, Scm, and Ph protein domain structure. 

MBT – Malignant Brain Tumor; Zn – Zinc finger; SAM - -sterile motif; aa- aminoacids. 

 

 

As dSfmbt, Scm and Ph colocalize at PREs of PcG target genes (Figure 10; Oktaba et al, 

2008) and as these three proteins contain SAM domains in their C-terminus (Figure 11), I 

performed interaction assays between these proteins using the baculovirus system in 

Sf9 cells in order to test whether Scm and/or Ph would form a stable complex with 

dSfmbt. These interaction assays were performed by infecting Sf9 cells with baculovirus 

containing a tagged protein (FLAG-Scm) and with baculovirus containing an untagged 

protein (dSfmbt, Ph or Pho), followed by FLAG affinity purification. The interaction Scm-

Ph was used as a positive control (Peterson et al, 1997; 2004) and the co-expression of 

Scm-Pho proteins as a negative control (Klymenko et al, 2006). Purified material was 

separated by SDS-polyacrilamyde gel and stained with Coomassie. In order to 

corroborate the results found on the Coomassie stained gel, input and purified material 

were immunoblotted against the FLAG epitope (which recognizes FLAG-Scm protein), 

dSfmbt, Ph, and Pho. 
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Figure 12 – dSfmbt and Scm proteins interact in vitro. 
FLAG-tagged Scm and untagged dSfmbt, Ph or Pho proteins were affinity-purified via FLAG-tag, 
separated by SDS-PAGE, and visualized by Coomassie staining (top). Western blot of 
corresponding Sf9 total cell extract input prior to purification (I) and eluted purified proteins (E) 
reveal relative enrichment of proteins after purification (below). Note that dSfmbt (blue arrowhead) 
forms a stable complex with FLAG-Scm, while Ph (green dot) co-purifies less efficiently with FLAG-
Scm than dSfmbt (Grimm et al, 2009). Also note that co-expression of Pho with FLAG-Scm results 
in the purification of FLAG-Scm only, and Pho is not detected by Coomassie staining or western 
blot analysis of the eluted material. (Asterisk shows FLAG-Scm degradation products). 

 

 

FLAG-Scm interacts stably with the Ph protein (Figure 12, lane 2, green dot; 

Peterson et al, 1997; 2004) and also forms a stable complex with the dSfmbt protein 

(Figure 12, lane 1 blue arrowhead; Grimm et al, 2009). Although in the Coomassie 

stained gel dSfmbt and Scm appear to form a more stable complex than Scm and Ph, the 

recovery of dSfmbt and Ph proteins observed by western blot analysis is comparable 

(Figure 12, lane 1E -dSfmbt and lane 2E -Ph). FLAG-Scm does not interact with the Pho 

protein (Figure 12, lane 3; Klymenko et al, 2006). A baculovirus expressing FLAG-Ph was 

not stable and the baculovirus expressing FLAG-dSfmbt had a low recovery in FLAG 

affinity purification, so I could not test the interactions between dSfmbt and Ph. 

As the Scm – Ph interaction is mediated by their SAM domains (Peterson et al, 

1997; 2004), I performed interaction assays to find out whether Scm and dSfmbt might 

also interact through their SAM domains. The interaction assays were performed as 

described above with the addition of a set of assays where Sf9 cells were infected with 

baculovirus for FLAG-Scm SAM and baculovirus for untagged dSfmbt or Ph protein. 

Purified material was separated by SDS-polyacrilamyde gel and stained with Coomassie. 
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Western blots were performed on input material to show the similar protein expression 

profile of each baculovirus. The interactions Scm – Ph and Scm – dSfmbt were used as 

positive controls (Figure 12; Peterson et al, 1997; 2004; Grimm et al, 2009) and 

expression of Scm-Pho proteins were used as negative controls (Klymenko et al 2006). 

 

 

Figure 13 –SAM is not required for dSfmbt-Scm interaction. 
FLAG-tagged Scm SAM and untagged dSfmbt or Ph full-length proteins were affinity purified via 

FLAG-tag, separated by SDS-PAGE and visualized by Coomassie staining (top). Immunopurification 
of FLAG-Scm with dSfmbt (lane 1) or Ph (lane 4) full length are positive controls for the specific 
interaction of Scm-dSfmbt and Scm-Ph. Immunopurification of FLAG-Scm with Pho full length is a 
negative control of this interaction (lane 3 and fig. 12). Note that dSfmbt (lane 2, blue arrowhead) 
still forms a stable complex with FLAG-Scm SAM, showing that this domain does not mediate the 

interaction between these two proteins. On the other hand, Ph (lane 5) no longer interacts with 
FLAG-Scm SAM, corroborating previous findings that this domain is responsible for the interaction 

of these two proteins (Peterson et al, 1997; 2004). Western blot analysis shows the expression of 
dSfmbt, Ph, and the FLAG-tagged Scm constructs in Sf9 cell extracts (below). 

 

 

The Scm protein forms a complex with Ph (Figure 13, lane 4 green dot; Peterson 

et al, 1997; 2004), which results from interactions of their respective SAM domains 

(Figure 13, lane 4 (green dot) and 5; Peterson et al, 1997; 2004). dSfmbt and Scm form 
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a stable complex (Figure 13, lane 1, blue arrowhead), but the interaction between these 

two proteins is not mediated by the SAM domain of Scm (Figure 13, lane 2, blue 

arrowhead). A recent study reported that it is the N-terminal portion (up until the MBT 

repeats) of dSfmbt and Scm that mediates this interaction (Grimm et al, 2009).  

 

 

• IN VIVO CHARACTERIZATION OF THE DSFMBT-SCM COMPLEX IN DROSOPHILA 
 

In order to test the function of the dSfmbt – Scm complex and its methyl-lysine 

binding activity in vivo, I removed the dSfmbt function in animals that lack wild-type Scm 

protein and expressed the MBT mutant protein ScmD215N (ScmD215N allele encodes for 

ScmSu(z)302; Bornemann et al, 1998). Specifically, clones of dSfmbt null mutant cells were 

induced in ScmD215N mutant Drosophila larvae and clones of dSfmbt 
_
ScmD215N double 

mutant cells were analyzed for the misexpression of PcG target genes. In the wing 

imaginal discs, cell clones lacking dSfmbt 
_
 showed widespread misexpression of the 

PcG target gene Ubx (Figure 5; Klymenko et al, 2006), but they do not showed 

misexpression of Abd-B (Figure 14).  
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Figure 14 – dSfmbt and Scm interact functionally to maintain the Polycomb repression. 
dSfmbt and Scm act redundantly to maintain repression of Polycomb target genes Abd-B and en in 
Drosophila (Grimm et al, 2009). Wing imaginal discs stained with antibodies against Abd-B (red, 
top) or En protein (red, bottom) as indicated. Left: discs with clones of dSfmbt or calypso single 
mutant cells that are marked by the absence of nuclear GFP. Right: discs from ScmD215N mutant 
larvae; these animals were trans-heterozygous for ScmD215N and the protein null mutation ScmD1 
(Bornemann et al, 1998) and all cells thus express ScmD215N instead of wild-type Scm protein. 
Nuclear GFP was used here to reveal all nuclei. Middle: ScmD215N/ScmD1 mutant discs with clones of 
dSfmbt or calypso mutant cells. The dSfmbt ScmD215N double mutant and calypso ScmD215N double 
mutant cells are GFP-negative. Abd-B is not expressed in wild-type wing discs and remains 
repressed in dSfmbt or calypso single mutant cells (left, empty arrowheads) or in ScmD215N mutant 
discs (right), but is strongly misexpressed in dSfmbt ScmD215N double mutant cells (middle, 
arrowheads). In clones of calypso ScmD215N double mutant cells (middle), Abd-B is misexpressed in 
a small fraction of clone cells (arrowhead), but remains repressed in the majority of clone cells 
(empty arrowheads). En expression is confined to posterior compartment cells of wild-type 
imaginal discs and this pattern is unchanged in ScmD215N mutant discs (right). En remains repressed 
in dSfmbt or in calypso single mutant clones in the anterior compartment (left, empty arrowheads) 
with the exception of some dSfmbt mutant clones in the hinge that shows misexpression of En 
(filled arrowhead). Note that En in strongly misexpressed in almost all dSfmbt ScmD215N double 
mutant clones in the anterior compartment (middle, arrowhead), but remains repressed in calypso 
ScmD215N double mutant clones. Also note that only dSfmbt ScmD215N but not calypso ScmD215N double 
mutant clones show the tumour-like phenotype (asterisks). 
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Similarly, Abd-B is not misexpressed in wing imaginal discs of ScmD215N mutant 

animals (Figure 14). In contrast, Abd-B is strongly misexpressed in clones of dSfmbt 
_ 

ScmD215N double mutant cells (Figure 14). A similar high synergy between these two PcG 

repressor proteins is observed with the en gene. In imaginal discs with dSfmbt 
_
 single 

mutant clones, en is only misexpressed in a subset of clones in specific regions of the 

disc, but remains repressed in other parts of the disc and it is not misexpressed in 

ScmD215N single mutants. In contrast, en is strongly misexpressed in clones of dSfmbt 
_
 

ScmD215N double mutant cells (Figure 14). In addition, dSfmbt 
_
 ScmD215N double mutant 

cells clones show a tumour-like phenotype that is characterized by unrestricted cell 

proliferation (Figure 14; asterisks). This phenotype is not observed in either of the 

single mutants (Figure 14) and is characteristic of cell clones lacking the PRC1 

components Psc-Su(z)2 or Ph (Oktaba et al, 2008). 

To test whether this strong genetic interaction between dSfmbt and Scm was 

specific, the same clonal analysis strategy was used to remove the function of the PcG 

gene calypso (Gaytan de Ayala Alonso et al, 2007) in ScmD215N mutant Drosophila larvae. 

As observed for dSfmbt 
_
, clones of calypso 

_
 single mutant cells in the wing imaginal 

disc showed misexpression of Ubx (Gaytan de Ayala Alonso et al, 2007), but maintained 

repression of Abd-B and en (Figure 14). In clones of calypso 
_
 ScmD215N double mutant 

cells, en remained fully repressed and the clones did not show the tumour-like 

phenotype observed in dSfmbt 
_
 ScmD215N mutant clones (Figure 14). Abd-B became 

misexpressed in a fraction of calypso 
_
 ScmD215N clone cells, but misexpression was much 

less extensive that in dSfmbt 
_
 ScmD215N mutant clones (Figure 14). Removal of dSfmbt 

function in ScmD215N mutant animals therefore resulted in much more severe Polycomb 

phenotypes compared to removing calypso in this genetic background. Taken together 

these results suggest a particularly strong synergy between dSfmbt and the PRC1 

component Scm in the repression of target genes and in the control of cell proliferation. 
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4. CHARACTERIZATION OF THE TRXG PROTEIN, ASH1 

 

 The HMTase protein Ash1 has been reported to methylate H3K4, H3K9, H3K36 

and H4K20 (Beisel et al, 2002; Byrd & Shearn, 2003; Tanaka et al, 2007). The Ash1 

protein is found specifically 8 Kb downstream of the transcription start site of the Ubx 

gene in Drosophila larval tissues where this gene is active (Papp & Müller, 2006). In 

tissues where Ubx is active, the H3K4me3 modification correlates specifically with the 

presence of Ash1 and the H3K9me3 modification is absent from the body of the active 

Ubx gene (Papp & Müller, 2006). When ash1 mutants were analysed, the histone 

modification H3K4me3 was absent and there was an extention of the H3K9me3 

modification into the body of the Ubx gene in tissues where this gene should be active 

(Papp & Müller, 2006). 

 In order to understand the specificity of the HMTase protein Ash1, I performed 

HMTase assays in Xenopus wild type mononucleosomes or octamers in vitro. I used a 

portion of the Ash1 protein where only the Pre-SET, SET and Post-SET domains were 

present (Ash11032-1619; Figure 15A). This protein was expressed with a C-terminal FLAG 

tag in the Sf9 cells using the baculovirus system, followed by FLAG affinity purification 

(Figure 15B). The E(z)/Esc/Su(z)12 trimeric PRC2 complex was used as a positive control 

(Nekrasov et al, 2005). Ash1
1032-1619 or the trimeric complex was incubated with octamers 

or mononucleosomes and the incubated material was separated using a SDS 

polyacrylamide gel, and subsequently stained with Coomassie. 
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Figure 15 – Ash1 does not methylate nucleosomes or octamers in vitro. 
A – Scheme of the Ash1 protein and its domains, SET (Su(var)3-9, Enhancer of zeste, 

Trithorax) domain, pre and post SET domains, Zinc finger and BAH (Bromo Adjacent Homology) 
domain. Numbers in red are aminoacids of Ash1 protein and represent the portion of the protein 

that was expressed for the HMTase assay; Ash1
1032-2210

 could not be recovered from FLAG 

purification in sufficient amounts to perform HMTase assays. B – Ash1
1032-1619 purified protein. C – 

HMTase assay of Ash1
1032-1619

 using Xenopus mononucleosomes or octamers; HMTase assay was 

performed with 3H and 14C; E(z) trimeric complex was used as a positive control for methylation 
(Nekrasov et al, 2005). Above: SDS-PAGE where the incubated material (above the gel) was 
separated. Below: Autoradiograph of the SDS-PAGE showing the HMTase activity of the PRC2 
trimeric complex, but not of the Ash1 protein. 

 

 

 



   Results 

 

 

45 

The Ash11032-1619 protein shows no HMTase activity either in mononucleosomes or 

in octamers, while the PRC2 trimeric complex shows methylation of histone H3 (Figure 

15C; Nekrasov et al, 2005). This result does not corroborate with previously published 

Ash1 protein HMTase activity (Beisel et al, 2002; Byrd & Shearn, 2003; Tanaka et al, 

2007). In these studies, several portions of the Ash1 protein were analysed in HMTase 

assays and a similar construct as the one used for this assay (Figure 15A and B) showed 

HMTase activity (Beisel et al, 2002). However, the type of tag and the system used here 

for expressing Ash1 protein was different from the previous reports (Sf9 cells in this 

study; E. coli in Beisel et al, 2002; HeLa cells in Tanaka et al, 2007). This could explain 

the different results, as the Ash1 protein might need some post-translational 

modifications and/or co-factors that are not available in cultured Sf9 cells.  
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DISCUSSION AND CONCLUSION 

 
 In this section I will discuss the potential in vivo function of the two complexes 

identified in this thesis work: the dSfmbt-Scm complex and the dSfmbt complex in 

Drosophila embryos. The functional relevance of Rpd3, HP1b, and NAP1 proteins in the 

dSfmbt complex will also be discussed. A model for the recruitment of the different PcG 

complexes will be proposed. 

 

 

1. DSFMBT COMPLEX VERSUS DSFMBT-SCM COMPLEX 

 

dSfmbt and Scm proteins colocalize at the PREs of PcG target genes (Figure 10) 

and form a stable complex in Sf9 cells (Figure 12). Although the Scm and Ph proteins 

interact through their SAM domains (Figure 13; Peterson et al, 1997; 2004), these 

domains are not responsible for the dSfmbt-Scm complex (Figure 13; Grimm et al, 

2009). dSfmbt and Scm show similar function as methyl-lysine binding proteins in vitro 

(Klymenko et al, 2006; Grimm et al, 2007; 2009). In vivo, these proteins do not only 

interact, but also show redundancy in their methyl-lysine binding activity (Figure 14; 

Grimm et al, 2009). 

As Scm protein was not found as a subunit of the dSfmbt complex (Table 3), the 

interaction between these two proteins possibly occurs later in development or occurs 

transiently. This would explain why Scm did not copurify with dSfmbt in the TAP 

purification. Previous studies have shown that the Pcl protein is not a member of the PcG 

complex PRC2 in Drosophila larvae (Savla et al, 2008), being present in PRC2 only 

during embryogenesis for the stablishment of high levels of H3K27me3 (Nekrasov et al, 

2007). In larvae, Pcl is thought to be a member of a different complex from PRC1 and 

PRC2 (Savla et al, 2008). Therefore, the Scm-dSfmbt interaction occurs possibly only 

later during larval development. The Scm-dSfmbt complex may also occur only 

transiently in vivo for a specific function related to their activity as methyl-lysine binding 

proteins. 

According to the previous model of the PcG complexes in chromatin function 

(reviewed in Müller & Verrijzer, 2009), the PhoRC is tethered to the PREs through the 

DNA binding function of Pho protein and its binding is crucial for the tethering of PRC1 

and PRC2 at the PREs (Wang et al, 2004; Mohd-Sarip et al, 2005; Klymenko et al, 2006). 

PRC2 methylates H3K27 in the surrounding nucleosomes (Nekrasov et al, 2007) and the 

chromo domain of Pc binds to H3K27me3 (Cao et al, 2002; Czermin et al, 2002; Fischle 
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et al, 2003; Min et al, 2003). The targeting and tethering of PRC1 or PRC2 to the PREs 

was not explained in that model. 

 

 

Figure 16 – Tethering of PRC1 to the PREs. 
PhoRC and dSfmbt complex are tethered to the PREs through the protein Pho. PRC2 subunit E(z) 
trimethylates H3K27 (K27me3; up, broken arrows). Through dSfmbt-Scm and/or Pho-Ph 
interactions (below, double arrows) PRC1is targeted to the PREs where the chromodomain of the 
Pc protein would bind to H3K27me3 of the PRE surrounding nucleosomes. This binding would 
assist on the chromatin compaction function of PRC1. 

 
 

With the identification of the dSfmbt-Scm complex, the tethering of PRC1 to the 

PREs can be explained by the interaction between these two proteins (Grimm et al, 

2009) and the interaction between Pho and Ph (Mohd-Sarip et al, 2005). The tethering of 

PRC1 to the PhoRC-PREs would then allow the binding of Pc to H3K27me3 modification 
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of the surrounding nucleosomes, hence contributing to chromatin compaction (Figure 

16; Francis et al, 2001; 2004).  

The dSfmbt complex in embryos is constituted by the proteins, Rpd3, NAP1, 

HP1b, Pho, and CG3363. In larvae, the Scm protein interacts with dSfmbt and this 

complex is crucial for PcG repression. As well the dSfmbt-Scm complex provides a 

mechanistic model of recruitment of PRC1 to the PREs (Figure 16). 

 

 

2. THE NEW PCG COMPLEX – DSFMBT COMPLEX 
 

The dSfmbt complex is composed of the proteins Pho, dSfmbt, Rpd3, HP1b, 

NAP1, and CG3363 (Figure 6). In this part of the discussion, the occurrence and possible 

function of Pho, Rpd3, HP1b, and NAP1 in the dSfmbt complex will be discussed. 

 

 

• PHO 
 

Pho together with dSfmbt form the PhoRC complex, which was purified using Pho 

as a bait protein in TAP purification (Klymenko et al, 2006). This complex was again 

purified by TAP purification using dSfmbt as a bait protein (Figure 6A), which shows that 

PhoRC, apart from being very stable, is a complex that in fact occurs in vivo, being 

important for the PcG repression. 

 

 

• RPD3 
 

The Rpd3 protein has been found to be a member of many protein complexes 

including as a subunit of PRC2 (Tie et al, 2001; 2003) and PRC1 (Chang et al, 2001) in 

Drosophila. Rpd3 has been reported to interact with the Pcl protein in several 

biochemical assays (Tie et al, 2001; 2003), but it was not found when the PRC2 complex 

was purified using E (z) or Pcl as bait protein in TAP purification (Nekrasov et al, 2007). 

Moreover, in the TAP purification using dSfmbt as a bait protein where Rpd3 was found 

(Figure 6A and table 3), no subunits of PRC2 were found (Table 3). The use of different 

experimental procedures may explain the differences between my results and the ones 

previously reported. The Rpd3-Pcl interaction was found by co-immunoprecipitation with 

specific antibodies and GST-pulldowns (Tie et al, 2001; 2003) whose validation depend 

on negative controls. Hence, in absence of controls, conclusions must be drawn 

carefully and additional experiments must be carried to corroborate the interaction. 
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The TAP purification was designed to purify complexes in their most natural 

occurrence (Rigaut et al, 1999). The purification was made from embryos of transgenic 

animals using a bait protein that should be assembled in the in vivo complex. Two steps 

of this purification allow the recovery of the most stable complex and the cleaning of 

the sample from contaminants as well as weak interacting partners (Figure 4). Thus, 

Rpd3 is not a stable subunit of the PRC2 complex in vivo, but is a stable subunit of the 

newly identified dSfmbt complex. Rpd3 has also been reported to interact with members 

of the PRC1 complex in S2 cell lines (Chang et al, 2001). Although Rpd3 was purified as 

a member of PRC1, the S2 cell line is a Drosophila derivative cell line and it cannot be 

extrapolated to the whole organism. The PRC1 complex was purified from Drosophila 

embryos using FLAG purification (Shao et al, 1999; Francis et al, 2001). In this 

purification, Rpd3 protein was not found as a member of PRC1 (Shao et al, 1999; 

Francis et al, 2001).  

In summary, Rpd3 is not a stable subunit of either PRC2 or the PRC1 complex in 

Drosophila, but is indeed a stable member of the novel dSfmbt complex as it was 

purified from Drosophila embryos using TAP purification (Figure 6 and table 3). As well, 

it colocalizes together with dSfmbt at the PREs of several PcG target genes (Figure 8).  

rpd3 mutants do not show a PcG phenotype (Mottus et al, 2000), but Rpd3 has a 

role in transcriptional repression. In yeast, the role of Rpd3 in transcriptional repression 

directly depends on its histone deacetylase catalytic activity (Kadosh & Struhl, 1998). In 

Drosophila, it has been shown that Pc, Psc, and Pcl mutants show a stronger 

misexpression of HOX genes when combined with Rpd3 mutation (Chang et al, 2001; 

Tie et al, 2001). Rpd3 has also been shown to interact with the transcriptional repressor 

Groucho and that its histone deacetylase activity is necessary for the repression by the 

Groucho protein (Chen et al, 1999). The association of Rpd3 with repression is also seen 

in humans; it has been reported that Rpd3 forms a complex with the Retinoblastoma 

protein (Rb) to repress E2F target genes (Zhang et al, 2000). Hence, Rpd3 is an 

important component of transcriptional repression in several organisms and, although 

not a PcG protein, it is a subunit of the dSfmbt complex. Genetic assays will be 

performed to address the importance of Rpd3 function in the dSfmbt complex and in 

PcG repression.  
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• HP1B 
 

HP1b is a Drosophila protein found both in euchromatin and in heterochromatin 

(Smothers & Henikoff, 2001). HP1b has a chromo domain and a chromo shadow domain 

separated by an unstructured portion, the hinge (Smothers & Henikoff, 2001). The 

chromo domain is monomeric and it binds to methylated H3K9 (Bannister et al, 2001; 

Jacobs et al, 2001). The hinge has a nuclear localization signal (NLS), which targets the 

protein to the nucleus (Smothers & Henikoff, 2001). The chromo shadow domain forms 

a symmetric dimer and is involved in protein-protein interaction (Brasher et al, 2000; 

Thiru et al, 2004). Specifically, the chromo shadow domain recognizes a specific motif 

in proteins, PxVx[M/L/V], being the strongest interaction with the chromo shadow 

domain using the motif PxVxL (Thiru et al, 2004). The third aminoacid of this motif is 

the most promiscuous of the three as it is the most variable within proteins that interact 

with the HP1 family (Thiru et al, 2004). The PxVxL motif is present in the N terminal 

portion of the dSfmbt protein (Figure 7). The valine residue (position 0) is required for 

the specific binding to the HP1b chromo shadow domain, and the residues at positions -

2 and +2 confer specificity to the binding (Thiru et al, 2004). The interaction between 

the motif and the chromo shadow domain is strengthened when hydrophobic 

aminoacids are present at position -6 and -7 (Thiru et al, 2004). At these two positions, 

the dSfmbt protein has a hydrophobic (leucine) and a slightly polar (threonine) residue, 

which would support the hypothesis of a direct physical interaction between this protein 

and HP1b (Figures 6B and 7). 

A member of the HP1 family in humans, HP1  interacts with the MBT protein 

L3MBTL1 (human homologue of the Drosophila L(3)mbt protein) (Trojer et al, 2007). 

L3MBTL1 protein has three variations of the binding motif of the HP1 chromo shadow 

domain: PxVxH, PxVxG, and VxVxN (Thiru et al, 2004). The L3MBTL1-HP1  interaction is 

possibly mediated by the VxVxN motif as interaction experiments showed that the 

minimal portion of the L3MBTL1 protein for the interaction to occur is a portion that 

contains the VxVxN motif (Trojer et al, 2007). So not only HP1b is a stable member of 

the dSfmbt complex, but also dSfmbt and HP1b possibly interact directly and stably 

through the PxVxL motif of dSfmbt and the chromo shadow domain of HP1b. 
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• NAP1 
 

NAP1 is a histone chaperone and it associates preferably to the histone dimer 

H2A/H2B in Drosophila melanogaster, although it has been shown to also interact with 

the H3/H4 dimer (Ito et al, 1996). On the contrary, yNAP1 preferentially binds to the 

dimer H3/H4 instead of H2A/H2B (Fujii-Nakata et al, 1992). Although dNAP1 and yNAP1 

have a conserved function of shuttling histones from the cytoplasm to the nucleus, the 

preferential dimer association is different, which can be explained by the low identity 

(31%) between these two proteins (Ito et al, 1996).  

It has been shown that NAP1 is mainly localized at the nucleus during S phase 

and in the cytoplasm in G2 during cell cycle in the Drosophila embryo, in accordance 

with its function as a histone shuttle (Ito et al, 1996). NAP1 has been shown to associate 

with CAF1, showing also a chromatin assembly function (Ito et al, 1996). In the nucleus, 

NAP1 is also a stable subunit of the dSfmbt complex (Figure 6B and table 3). Therefore, 

its function may be related to chromatin compaction of silenced genes or may have a 

yet unknown function in transcriptional repression. 

The different associations of NAP1 may explain the result seen on figure 6B, 

where the relative amount of NAP1 in the input material of dSfmbt-TAP nuclear extract is 

higher that in the purified material. This would mean that not all the NAP1 present in 

the input is associated with the dSfmbt complex, which would explain its different 

functions in the nucleus. As no histones were found in the purification (Table 3) and as 

there are no nucleosomes at the PREs (Papp & Müller, 2006; Mohd-Sarip et al, 2006) 

where the dSfmbt complex assembles (Figure 8), NAP1’s function in the dSfmbt complex 

is possibly not related to its function as a histone chaperone and has a different 

function in the context of this complex.  

The NAP1 ChIP experiments did not show a preferent binding towards the PREs 

or towards the genomic region (Figure 8, red graph). Assuming that the NAP1 antibody 

immunoprecipitates NAP1-binding chromatin, then NAP1 protein would be present at all 

the tested genomic regions (Figure 8, red graph). This would support the hypothesis 

that NAP1 protein has a different function as a subunit of the dSfmbt complex (presence 

at the PREs) and as a histone chaperone or a partner of CAF1 (presence at other 

genomic regions). 

NAP1 is an important and crucial protein in Drosophila development. Its knock 

out results in an embryonic lethal phenotype when there is no maternal deposition of 

NAP1 but, even when there is maternal deposition, very few homozygous flies are fertile 

and from these most have a low viability and die few days after hatching (Lankenau et 

al, 2003).  
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In conclusion, NAP1 protein is a stable subunit of dSfmbt complex, but its 

function in transcriptional repression mediated by PcG has to be further analysed in 

vivo. To this end, experiments for analyzing genetic interaction between dSfmbt and 

NAP1 by removing the function of dNAP1 in dSfmbt mutant clones would be a good way 

to assess the function of NAP1 in this complex. 

 

 

3. POSSIBLE FUNCTION OF THE DSFMBT COMPLEX ON CHROMATIN 

 

During Drosophila development, the same gene can become active and 

repressed. Genes like vestigial (Williams et al, 1993; Wu & Cohen, 2002), teashirt (Corè 

et al, 1997; Wu & Cohen, 2002), and Homothorax (Casares & Mann, 2000; Wu & Cohen, 

2002) change their transcriptional state from active to repressed in certain tissues 

during Drosophila development.  

The Ubx gene shows both trxG and PcG proteins at the PREs and the body of the 

gene, independently of its active or repressed state (Papp & Müller, 2006). The 

difference between the ON and OFF transcriptional state of the Ubx gene is the 

distribution along the gene of the different histone modifications and the presence of 

Ash1 and Kismet proteins only in the ON state (Papp & Müller, 2006). Therefore, for the 

transition of a transcriptionally active to a repressed gene to happen, a change in the 

profile of histone modifications that are present in that gene is necessary. Although for 

lysine methylation, the positioning of the lysine is important for the transcriptional state 

that will translate (i.e. H3K9me3, H3K27me3 and H4K20me3 are repressive histone 

modifications, and H3K4me3 and H3K36me3 are marks that correlate with activation), 

with acetylation/ deacetylation it is much simpler. Histone acetylation correlates with 

gene activation and histone deacetylation correlates with transcriptional repression of 

genes (Hebbes et al, 1988; Braunstein et al, 1993). Hence, the dSfmbt complex may be 

important for the switch of a transcriptionally active gene to its repressed state through 

the histone deacetylase activity of Rpd3 subunit (Figure 17).  
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Figure 17 – Model of possible function of the dSfmbt-Rpd3 complex. 
The dSfmbt complex binds to the PREs through the protein Pho. The Rpd3 protein deacetylates 
(acetyl residue (Ac in green)) the histone tails (up, broken arrows). PRC2 subunit E(z) trimethylates 
H3K27 (K27me3; below, broken arrows) thus, leading to gene repression. Su(var)3-9 or other 
H3K9 specific HMTases methylate H3K9 and HP1b binds to this modification which may help on 
chromatin compaction. Finally, through dSfmbt-Scm interactions and/or Pho-Ph interactions, PRC1 
is targeted and tethered to the PREs (Figure 16). 
 

 

PhoRC together with the dSfmbt complex is targeted and tethered to the PREs 

through the DNA binding motif of the Pho protein, both in active and repressed genes 

(Klymenko et al, 2006; Papp & Müller, 2006). In active genes, PRE-tethered dSfmbt 

complex would deacetylate the surrounding nucleosomes by its Rpd3 subunit (Figure 

17). The deacetylation would possibly trigger a recruitment of several HMTase enzymes 

that would deposit histone repressive marks (H3K27me3 by PRC2 complex; H3K9me3 

by Su(var)3-9 protein or another H3K9 specific HMTase; reviewed in Ebert et al, 2006). 

Previous studies had shown specific presence of H3K27me3 and H3K9me3 

modifications at the repressed HOX gene Ubx (Papp & Müller, 2006). The chromo 

domain of HP1b subunit could then bind to the H3K9me modification of surrounding 

nucleosomes (Figure 17), which would also contribute to chromatin compaction. The 
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function of NAP1 is yet to be determined, but it could be involved in chromatin 

compaction together with PRC1 (through the dSfmbt-Scm complex; figure 16) by 

shuttling histones to the surrounding PRE-chromatin. Further studies need to be 

performed in order to determine the actual function of this complex in vivo. 

  In conclusion, the dSfmbt complex may be involved in the switch from active 

genes to their repressional state during Drosophila development (Figure 17). The 

interaction between Scm and the dSfmbt complex would help the tethering of PRC1 to 

the PREs and the repression of PcG target genes (Figure 16). 
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