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Wechselwirkungs-induzierte Stabilisierung von ultrakalten Rydberg-
Atomen in einer Ioffe-Pritchard Falle — Gegenstand dieser Arbeit ist eine
theoretische Untersuchung der Quanteneigenschaften hoch angeregter Atome in inho-
mogenen magnetischen Feldkonfigurationen. Wir untersuchen wie die extreme Größe
von Rydberg-Atomen deren Kopplung an steile magnetische Gradienten beeinflusst
und zeigen dass Rydberg-Atome in elektronischen Zuständen mit langer Lebensdauer
in einen sehr kleinen Raumbereich hinein gefangen werden können. Diese starke
Einsperrung erlaubt die Erzeugung eines eindimensionalen Rydberg-Gases das gegen
Selbstionisation durch eine dipolare Abstoßung zwischen den Atomen stabilisiert
wird, die von einem äußeren elektrischen Feld generiert werden kann. Diese stark
anisotrope dipolare Wechselwirkung ermöglicht außerdem eine gut kontrollierbare
Gleichgewichtskonfiguration zweier Rydberg-Atome in der Falle, wobei der Abstand
der Atome durch die Stärke des elektrischen Feldes verändert werden kann.

Interaction-induced stabilization of ultracold Rydberg atoms in a Ioffe-
Pritchard trap — Subject of this thesis is a theoretical investigation of the quantum
properties of highly excited atoms in an inhomogeneous magnetic field configuration. It
is demonstrated how the large size of the Rydberg atoms alters the coupling to strong
magnetic gradients. We find that Rydberg atoms can be tightly trapped in long-lived
electronic states. This confinement permits the creation of a one-dimensional Rydberg
gas stabilized against auto-ionization by a dipolar repulsion between the atoms, which
is generated imposing a homogeneous electric field. This strongly anisotropic interac-
tion is also responsible for a well controllable equilibrium configuration of two Rydberg
atoms in the trap whose distance can be changed by tuning the electric field.
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Introduction

The success story of ultracold atomic gases began with the development of powerful ex-
perimental cooling techniques [1] that allow to probe the nanokelvin regime and that have
made the preparation of ultracold ground state atom samples laboratory routine. The ad-
vantages of ultracold dilute gases are manifold. Cooling, trapping and manipulation rely
on lasers and electro-magnetic fields and such gases are hence comfortable to work with.
Their diluteness entails lengths scales that are optically imageable, sometimes even in situ.
Most importantly, however, the reduction of thermal energy in the gas is exciting because
it makes the dynamics completely determined by the external potential and the interaction
between the atoms. The potential for the atomic motion is provided by external electric,
magnetic, or optical fields, which allow for a vast variety of potential landscapes, and the
interaction between the atoms can also be tailored almost arbitrarily. The scattering length
can, for instance, be changed in the vicinity of a Feshbach resonance by simply tuning
the strength of a magnetic or an electric field [2], to obtain attractive, repulsive or even
vanishing interaction, i.e. an ideal gas.

Initial research concentrated on weakly interacting gases. The long predicted [3,4] Bose-
Einstein condensation (BEC), a phase transition for non-interacting atoms, was experimen-
tally implemented in the mid nineties [5,6]. It is associated with the condensation of atoms
into the state of lowest energy as a consequence of quantum statistical effects. Many ex-
periments elucidated the coherent matter wave features and superfluid properties of such
condensates [7–9]. This regime is also appealing from a theoretical point of view due to
the fact that inter-atomic distances are typically much larger than the scattering length a,
which characterizes the strength of the interaction, and it is therefore possible to calculate
properties of the gas reliably from the knowledge of two-body scattering at low energies.
To interpret the mentioned features it therefore suffices to employ mean field descriptions,
like the Gross-Pitaevskii equation in case of bosons [10–13].

Research has turned toward strongly interacting systems which make a theoretical de-
scription more difficult but also allow for novel ground states with collective properties of
the many-body system [14]. In spite of the diluteness of ultracold atomic gases (they are five
to six orders of magnitude less dense than the air that surrounds us), they have the poten-
tial to model condensed matter systems along the lines of the quantum simulator originally
suggested by Feynman [15]. Famous examples for their versatility are the demonstration of
the Mott-Insulator to superfluid phase-transition [16], the BEC-Bardeen-Cooper-Schrieffer
crossover in a gas of 6Li [17], or the Kosterlitz-Thouless phase transition studied within a
two-dimensional Bose-Einstein condensate [18].

Most experiments to date have been carried out with ground state atoms, so that inter-
actions are point-like and life times are long. Recently, a growing interest in ultracold gases
with atoms that are highly excited can be observed [19–22]. Their attractiveness arises from
the extraordinary properties of such Rydberg atoms which have an electron in a state with
a very high principal quantum number. The large displacement of the valence electron and
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Introduction

the atomic core is responsible for the massively enhanced response to external fields and,
therewith, for their enormous polarizability. Rydberg atoms possess large dipole moments
and, despite being electronically highly excited, they can possess lifetimes of the order of
milliseconds or even more (a more detailed description of Rydberg atom properties can be
found in Chapter 1). Due to the susceptibility with respect to external fields and due to the
long range interaction, Rydberg atom ensembles are intriguing many-body systems with
rich excitations and decay channels. In the extreme case the Rydberg atoms in the gas may
ionize each other leading to an ultracold Rydberg plasma [23].

In Rydberg gas experiments a laser beam typically excites a sub-ensemble of ultracold
ground state atoms to the desired excited states. Since the ultra-slow motion of the atoms
can be ignored on short timescales, Rydberg-Rydberg interactions dominate the system
and we encounter a so-called frozen Rydberg gas [24] which behaves in many ways more
like a solid than a gas. The strength of the interaction can be varied by tuning exter-
nal fields and by selecting specific atomic states. Instead of binary collisions, many-body
interactions among the static atoms become important. It has been found, for instance,
that the strong interaction gives rise to a non-linear excitation behavior: Rydberg atoms
strongly inhibit excitation of their neighbors entailing a state dependent local excitation
blockade [25–29], which on its part results in a collective excitation of many atoms [30–32].
This can turn Rydberg atom ensembles into possible candidates for quantum information
processing schemes [33–37]. The large size of Rydberg atoms can also give rise to bonding
interactions between Rydberg and ground state atoms. The scattering-induced attractive
interaction binds the ground-state atom to the Rydberg atom at a well-localized position
within the Rydberg electron wavefunction and thereby yields giant molecules that can have
internuclear separations of several thousand Bohr radii [38–41]. The spectroscopic charac-
terization of such exotic molecular states, named trilobite and butterfly states on account
of their particular electronic density, has succeeded recently [19].

Most of the experiments with Rydberg atoms still involve a whole gas of Rydberg atoms.
They can therefore unavoidably only investigate effective and averaged properties since
individual atoms are typically not resolved. It is hence of great interest to study only
a small number of Rydberg atoms [37], that are preferably individually controllable, and
arrangeable with respect to one another. It is furthermore necessary to stabilize these
Rydberg atom configurations against autoionization. In this thesis we provide candidate
solutions to these problems.

A precondition for enabling such processing of Rydberg atoms is the availability of tools
to control their quantum behavior and properties. An essential step in this respect is
the trapping of electronically highly excited atoms. Several works have focused on trapping
Rydberg atoms, based on electric [42], optical [43], or strong magnetic fields [44]. Due to the
high level density and the strong spectral fluctuations with spatially varying fields, trapping
or manipulation in general is a delicate task. This is particularly the case when both, the
center of mass and the internal motion are of quantum nature, and the inhomogeneous
external fields lead to an inherent coupling of these motions.

First experimental evidence for trapped Rydberg gases has been found by Choi and co-
workers [44,45]. The authors use strong bias fields to trap “guiding center” drift atoms for
up to 200 ms. Quantum mechanical studies of highly excited atoms in magnetic quadrupole
fields demonstrated the existence of e.g. intriguing spin polarization patterns and magnetic
field-induced electric dipole moments [46, 47]. These investigations were based on the as-
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sumption of an infinitely heavy nucleus. A description of the coupled center of mass and
electronic dynamics has been presented in Refs. [48, 49]: Trapping has been achieved for
quantum states with sufficiently large total, i.e. electronic and center of mass, angular mo-
mentum. Pictorially speaking this addresses atoms that circle around the point of zero
field at a sufficiently large distance. When excited from ultracold atomic samples, how-
ever, Rydberg atoms are usually prepared in states with small or vanishing center of mass
angular momentum and a three-dimensional quadrupole trap can hence not provide stable
confinement.

Overcoming the drawback of the three-dimensional quadrupole configuration and enabling
the trapping of a Rydberg atom that is ultracold, i.e. with very small center of mass kinetic
energy, is possible considering a magnetic field configuration that, unlike the quadrupole
trap, does not have a point of zero magnetic field. A Ioffe-Pritchard trap features a ho-
mogenous offset field, that removes the degeneracy of the trapped and anti-trapped states
at the origin, and thereby inhibits unwanted spin flips. Addressing the regime of inherently
coupled center of mass and electronic dynamics, we first provide a thorough investigation
of how the large size of Rydberg atoms affects their coupling to strongly inhomogeneous
magnetic fields. The main objective of this work is to arrange and stabilize Rydberg atom
ensembles. A first approach to achieve this is to exploit the results from the above analysis
to constrain the atoms motion into one dimension. A stabilization can then be achieved
by means of an external electric field that entails a dipolar repulsion between the Rydberg
atoms. A more elaborate approach to the formulated goal for only two atoms involves an
additional longitudinal confinement and provides a clean and well controllable system of
interacting Rydberg atoms.

As already mentioned above we start with a short introduction to Rydberg atoms and
their fascinating properties in Chapter 1. We particularly draw our attention to the al-
lure of circular Rydberg atoms and review methods to excite such semi-classical states. In
Chapter 2 we lay the foundation for the following chapters by deriving a Hamiltonian that
models a highly excited alkali atom as a two-body system and includes the coupling of the
electronic and center of mass dynamics. Some of the coupling terms in the Hamiltonian can
be eliminated using a unitary transformation. The remaining couplings are dealt with by
adiabatically separating the center of mass and electronic dynamics assuming the latter to
adapt instantaneously to the local magnetic field while the atom is moving slowly through
the external field. An analysis of the energy scales shows that every n-manifold can be
considered separately. As it is not in general possible to solve the Schrödinger equation
analytically we have to find a numerical approach to the problem, too. This is done in
Chapter 3 where we introduce the variational method that maps the Schrödinger equation
to an ordinary algebraic eigenvalue problem. The corresponding matrix representation of
the Hamiltonian has to be diagonalized to solve the problem and we consequentially de-
scribe an adequate basis. In Chapter 4 we solve the electronic Schrödinger equation for
fixed center of mass positions to obtain adiabatic electronic energy surfaces that serve as
potentials for the center of mass motion. The solutions can be obtained analytically in the
limit of large ratios of homogeneous field and field gradient by rotating the Hamiltonian
into the direction of the local magnetic field. For the opposite limit numerical solutions are
obtained. We classify the shapes of the adiabatic surfaces for different parameter regimes
and find that the uppermost surface, that belongs to the electronic state with the longest
lifetime, perfectly qualifies for the confinement of the atom. The analysis of the fully quan-
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tized compound center of mass and electronic states shows that very tight confinement of
the center of mass motion in two dimensions is achievable while the electronic structure
is barely changed compared to the field free case. This paves the way for generating a
one-dimensional ultracold Rydberg gas described in Chapter 5. Specifically, we propose a
modified Ioffe-Pritchard trap, a magneto-electric trap, in which the atoms possess an ori-
ented electric dipole moment. The resulting dipole-dipole interaction in conjunction with
the transversal confinement is demonstrated to give rise to an effectively one-dimensional
ultracold quantum Rydberg gas with a macroscopic interparticle distance. We derive an-
alytical expressions for the required linear density of Rydberg atoms below which a one-
dimensional Rydberg gas is expected to form. The lifetime of the Rydberg atoms is long
enough to probe the dynamics of the interacting gas, which means that this system is com-
plementary to the well-studied frozen Rydberg gases. This is only one of the reasons to
also confine the atoms in the translationally symmetric longitudinal direction of the trap
in Chapter 6. For a macroscopic Ioffe-Pritchard trap it can be generated by slightly chang-
ing its geometry. For the miniaturized form of a Ioffe-Pritchard configuration on an atom
chip [50,51] the longitudinal confinement is inherent to the geometry of the wire generating
the magnetic field [52]. Chapter 7 deals with the electric dipole moment expectation value
of a Rydberg atom in these environments. We find that the inhomogeneous magnetic field
breaks the parity symmetry of the electric eigenfunctions. It is therefore responsible for
a permanent electric dipole moment that is perpendicular to the local magnetic field axis.
The application of an electric field has similar consequences. For moderate field strengths
the resulting induced electric dipole moments are perpendicular to the direction of the local
magnetic field as well. In Chapter 8 we derive an expression for the interaction energy of
two Rydberg atoms by expanding the Coulomb interaction between the charges of different
atoms. Assuming the distance of the atoms to be much larger than the extension of their
electronic wave functions, we can expand the expression in reciprocal powers of the atomic
distance. We find the leading order term to be the dipolar interaction operator, as expected,
which is subsequently represented in single-atom electronic eigenstates. We also investigate
the transition matrix elements of the dipole-dipole interaction operator to other surfaces
and the closely related second order contributions to the interaction of the atoms which
give a quality measure for the used basis. In the final Chapter 9 all the insights gained in
the previous chapters are knitted together to describe two interacting Rydberg atoms in a
three-dimensionally confining Ioffe-Pritchard trap. The balance of longitudinal confinement
and dipolar repulsion, paired with the steep transversal confinement, stabilizes the atoms
into an equilibrium position on the longitudinal axis. The atomic distance in this stable
configuration is tuneable over a large range by the electric field, while the center of mass
states are barely changed. Finally we describe different experimental schemes for exciting
two atoms into this well controllable configuration.

The last chapter concludes with a summary and prospects of further research.
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1 Rydberg atoms

Atoms with an electron in a state with high principal quantum number n are called Rydberg
atoms. Such highly excited atoms have been studied since over a century. They since gave
inspiration to the semiclassical quantum mechanics of Niels Bohr [53] and they assisted with
the understanding of the quantum mechanical description of the structured vacuum [54,55].
They have been an important radiation source for astronomers [56] and they have provided
information about the thermodynamic properties in astrophysical and laboratory plasmas
[57, 58], to name just some areas of application. In the future they will most probably
constitute quantum simulators that can reproduce any other many-particle quantum system
with short-range interactions [22].

Rydberg atoms possess remarkable properties. Although being electronically highly ex-
cited, they can possess lifetimes of the order of milliseconds. Moreover, due to the large
displacement of the valence electron and the atomic core, they are highly susceptible to
electric fields and, therefore, easily polarizable. The interest in Rydberg atoms has grown
immensely in recent years since the development of tunable lasers and of powerful exper-
imental cooling techniques have made Rydberg systems readily available. Their extreme
properties would be impossible to generate in other systems and they have thus become the
testing (play-)ground for a plethora of quantum mechanical problems.

1.1 Rydberg atom properties

When people tried to understand the atomic spectral data measured in the late nineteenth
century it was evident from the hydrogen spectrum that there must be a mathematical
expression connecting the spectral lines. Johann Balmer developed a formula that described
the wavelengths of the visible series of atomic hydrogen which was generalized shortly after
by Janne Rydberg to include all levels and also alkali atoms [59]. He formulated the
expression for the wave numbers of the observed series,

νnl = ν∞l −
Ry

(n− δl)2
, (1.1)

henceforth known as Rydberg formula. The constants ν∞l and δl are the limits and the
quantum defects of the spectral series. The Rydberg constant Ry is universal because it
can describe (via the expression (1.1)) not only the wave numbers of different series of the
same atom, but also those of different species.

It was Niels Bohr that could phenomenologically interpret this Rydberg formula by con-
necting the principal quantum number n and the angular momentum quantum number l to
the electronic structure of the atom. Bohr’s model is based on an electron moving classically
in discrete circular orbits around an ionic core, with the size of these orbits increasing with
the square of the principal quantum number, which is responsible for the enormous exten-
sion, and the binding energy decreasing as 1/n2. In other words, the valence electron in a
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1 Rydberg atoms

Table 1.1: Selected properties of Rydberg atoms and their principal dependence on n. For alkali
atoms the principal quantum number n has to be substituted by the effective principal quantum
number n⋆ = n− δl. Adapted from [60].

property dependence

binding energy n−2

energy between adjacent states n−3

orbital radius n2

geometric cross section n4

dipole moment 〈nd|er|nf〉 n2

polarizability n7

radiative lifetime n3

radiative lifetime of circular states n5

fine structure interval n−3

Rydberg atom is in a large loosely bound orbit. He also connected Ry to atomic quantities,

Ry =
1

2

Z2e4m

(4πǫ0)2
, (1.2)

where Z is the nuclear charge in units of e, ǫ0 is the vacuum permittivity, ~ is Planck’s
constant and m is the electron mass. While being superseded by the quantum mechanical
description, Bohr’s model can explain most of the properties of Rydberg atoms predicting
at least the right scaling with the principal quantum number n. The n dependences of some
Rydberg atom properties are tabulated in Tab. 1.1. The scaling laws apply to hydrogen.
For alkali atoms, the principal quantum number n has to be replaced by the effective
quantum number n⋆ = n − δl involving the quantum defects δl that account for the finite
size of the rest-ion consisting of the atoms nucleus and the remaining electrons. In case of
alkali atoms these electrons form a closed spherically symmetric shell and shield the core
so that the Rydberg electron sees a core charge Z = 1, as in hydrogen. This shielding is
not perfect for small l since the electronic wave function penetrates the ionic core. The
resulting discrimination of the energy levels is illustrated in Fig. 1.1 where we compare the
level schemes of rubidium and hydrogen.

The physics of high angular momentum states is evidently very different from low l
states. To exemplify this we consider the spontaneous decay rates. They are given by the
Einstein A coefficients for the decay from the nl state to the lower lying n′l′ state which are
proportional to the cubed energy differences and to the squared dipole matrix elements,

Afi ∝ E3
if |rfi|2 . (1.3)

The energy difference is Eif = Ei − Ef and the dipole matrix element reads rfi = 〈f |r|i〉.
The decay rate of the excited state is the sum of the A coefficients to all final states, and
the lifetime τ is its inverse,

1/τ =
∑

f

Afi . (1.4)
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Figure 1.1: Energy levels of rubidium and hy-
drogen. The degeneracy of the energies levels
for different angular momenta in hydrogen is
lifted for alkali atoms like rubidium due to the
different quantum defects δl which come from
the finite size of the ionic core. The principal
quantum number n is indicated under the lev-
els. For angular momentum quantum numbers
l & 3 (i.e. starting from F) the binding energies
hardly differ from the hydrogenic ones since the
corresponding quantum defects are practically
zero. The energies are calculated with Eq. (1.1)
for large n, they are extracted from the NIST-
database for small n [61].
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1 Rydberg atoms

Since Afi is proportional to the cubed energy separations, spontaneous decays with the
highest frequencies dominate the decay rate and therefore dominate its dependence on n.
Due to the dipole selection rules only transitions that satisfy l′ = l − 1 are allowed to
first order. Low l states therefore decay into the lowest l − 1 state with a small principal
quantum number n > l and large binding energy (compare the Fig. 1.1). The frequency
of these transitions become independent of n for n → ∞ since the energy of the initial
state hardly changes for large n. The A coefficients then only depend on the squared dipole
matrix element which in case of largely differing radial wave functions is proportional to
n−3 and we find

τlow l ∝ n3 . (1.5)

This reasoning does not apply for large l states since the final state, that must satisfy
l′ = l− 1, cannot have a small principal quantum number because it is always n > l− 1. In
the extreme case, l = n − 1, there is only one decay channel left, namely to the final state
with the quantum numbers n′ = n− 1, l′ = n− 2. The energy difference between adjacent
n-states is very small, Eif ∼ n3. The dipole matrix element, in contrast, is very large since
the radial wave functions greatly overlap, 〈n− 1, n − 2|r|n, n− 1〉 ∼ n2. We find

τhigh l ∝ (n−3)3 · (n2)2 = n5 . (1.6)

High angular momentum states, and in particular circular Rydberg states with maximal
orbital and magnetic quantum numbers, l = ml = n−1, not only feature such long radiative
lifetimes, they also prove to be the states with the highest anisotropy, and their behavior
is closest to a classical localized electronic motion in a circular orbit like in Bohr’s picture.
Circular Rydberg atoms have therefore found numerous applications and they also play a
major role in this thesis. We describe different ways of creating circular Rydberg atoms in
the next section.

1.2 Creation of circular Rydberg states

Rydberg states with maximum angular momentum (l) and magnetic (ml) quantum numbers
are called circular, or more precisely oriented-circular-orbit Rydberg states (in comparison
to aligned-circular-orbit states if |ml| is maximal and ml can hence be also maximally neg-
ative). They have the most remarkable properties among Rydberg states. Their electron
density is peaked along a circle that corresponds to a Bohr orbit and circular states are
hence semiclassical objects situated at the frontier of classical and quantum mechanics.
From this particular shape of the orbital, highly anisotropic collision cross sections and a
highly anisotropic behavior with respect to external perturbations are expected [62]. Cir-
cular Rydberg states possess the largest magnetic moments, the are subject to the smallest
(quadratic) Stark effect in contrary to a huge (linear) Stark effect for ordinary Rydberg
atoms. They can only decay into the nearest less-excited circular state which makes them
useful approximations to two-level systems in cavities. This single decay channel is also
responsible for the longest radiative lifetimes in a given n-manifold (τ ∼ n5 · 10−10 s), as
has been explained in the previous section.

The preparation of circular Rydberg states has been delayed for a long time due to the
difficulty of transferring a large number of angular momentum units into an atom. Since
optical sequential excitation with photons of different color is out of reach experimentally,
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1.2 Creation of circular Rydberg states

the methods of preparation either tune the transitions such that only a monochromatic
source is sufficient or they try to circumvent the dipole selection rule ∆l = 1.

We will review the different schemes for creating circular Rydberg atoms that have been
proposed and applied starting with the adiabatic microwave transfer method of Hulet and
Kleppner. We then describe the adiabatic crossed-fields method proposed by Delande and
Gay and the adiabatic RF field method proposed by Molander et al.. We close by elucidating
that the latter are formally equivalent and present a way to get the best of both methods.

Adiabatic rapid passages in a changing electric field

Using the adiabatic microwave transfer method (also called adiabatic rapid passage tech-
nique), Hulet and Kleppner produced Li oriented circular states [63]. More precisely, the
excited states are Stark states with the parabolic quantum numbers n1 = 0, n2 = 0 and
|m| = n−1. After a laser excitation to the lowest level of the n Stark manifold in an electric
field the method employs this field (Stark effect ∼ |m|) to control a sequence of adiabatic
rapid passages through single photon resonances. This method is limited to atoms with a
regular Stark structure, namely the light alkali and alkaline-earth atoms, and to moderate
principal quantum numbers (n ≈ 25).

These shortcomings are overcome by a modified adiabatic rapid passage preparation tech-
nique for rubidium described by Nussenzveig et al. [64] which only prepares oriented circular
states, meaning ml = +l. A Stark switching method is used to reach the initial state of
the adiabatic rapid passage process, |n = 50,m = 3, n1 = 0〉. The following circularization
with a RF field while slowly decreasing the electric field strength is completed within 5 µs.
It ends up in the |m = 49, n1 = 0〉 circular state.

Crossed-field method

The adiabatic crossed-fields method was first described by Delande et al. [65], and it was
first realized by Hare et al. [66]. Atoms are excited to the highest energy Stark state in
a strong electric field F . This field is then switched off adiabatically in the presence of
a constant magnetic field B perpendicular to F . By continuity of the energy level in the
combined electro-magnetic manifold down to zero electric field, the atoms are finally left
in the highest level of the Zeeman manifold which is the circular state with m = n − 1.
The scheme does not involve a series of adiabatic rapid passages as the energy levels are
always equally spaced. The advantages of the technique are consequentially less stringent
conditions for adiabaticity than in the rapid passage type schemes described above. A
magnetic field is needed (≈ 10 G) instead of one or several microwave sources.

The method exploits the SO(4) symmetry of hydrogen which is responsible for the de-
generacy of the n2 sublevels of the n-manifold. Both the orbital angular momentum L and
the Runge-Lenz vector AL are constants of motion. In the presence of both an electric
and a magnetic field, the problem is neither separable in the parabolic representation nor
in the spherical representation. However, for electric and magnetic fields small enough,
that second-order effects can be neglected, the z-components of L and AL are conserved
and a common basis can be found, as was pointed out by Pauli [67, 68]. The energetically
uppermost state of this basis is the circular state in the Zeeman limit (i.e. when the cou-
pling to the magnetic field dominates the coupling to the electric field). The key to the

9



1 Rydberg atoms

Figure 1.2: Eigenvalues of the RF-dressed Rydberg states in the frame rotating with the RF as a
function of the field strength. α is the adiabatic continuation of the zero field circular state, whereas
β is the dressed state adiabatically linked to the d state. At the field strength where the avoided
crossing occurs (indicated by the vertical arrows) the optical excitation from the l = 0 takes place.
An adiabatic RF turn off converts the dressed state into the circular state. The plot on the right
schematically illustrates where the laser excitation takes place (indicated by a point) and how the
adiabatic passage through the avoided crossing takes place when the field is slowly reduced (dotted
arrow). Plots are taken from [69,70].

crossed-fields method is that this state is accessible to laser excitation from low-lying states
for dominating electric field since it is a m = 0 state in the Stark limit.

adiabatic RF field technique

Another method to selectively prepare the oriented circular states is the adiabatic RF field
method proposed by Molander et al. [69] and, in a slightly modified form, applied by Cheng
et al. [70]. It is based on a radio-frequency (RF) field that dresses the atom for the optical
excitation. The dressed states are linear combinations of many different angular momentum
states, but every one of them continuously becomes an angular momentum eigenstate as
the RF field is turned off adiabatically. The dressed eigenvalues of the Rydberg states (in a
frame rotating at the frequency of the field) are shown as a function of the RF field strength
in Fig. 1.2.

The RF field only couples aligned states, l = ml, since it is circularly polarized and
m = 0 transitions can be disregarded. Due to the large quantum defect of S and P states,
the RF field does not mix those states with the rest of the manifold. The field has to supply
n − 3 units of angular momentum to go from the d to the circular state and its frequency

10



1.2 Creation of circular Rydberg states

is therefore chosen near this n − 3 multi-photon resonance. It has to be far enough from
resonance that the separation of the dressed states is sufficiently large to allow the optical
excitation of only the desired state and to allow for adiabatic turnoff.

The dressed state marked with an α in Fig. 1.2, which is the adiabatic continuation of
the zero field circular state, undergoes an avoided crossing with the dressed state β which
is linked to the d state. The different energetic distance of the latter is due to the quantum
defect for l = 2 which vanishes for states with higher l. At the field strength for which this
avoided crossing occurs (indicated by the arrows in Fig. 1.2), the Rydberg atom is excited
into the dressed state α by a resonantly enhanced two-photon absorption using a P state
as an intermediate state. This can either happen by a pulsed or a continuous wave optical
excitation.

An experimental implementation of this idea, see Ref. [70], uses a microwave field instead
of the RF source and features minimal optical selectivity requirements and efficient and
rapid transfer to the circular state.

We note that the crossed-field and the adiabatic-RF-field techniques are formally equiva-
lent. This is show by Chen et al. [71] who point out that the RF field becomes static in the
rotating coordinate system whereas the rotational motion is equivalent to a magnetic field
according to the Larmor theorem. The switching of the RF field in the adiabatic RF field
method is hence the counterpart of the electric field switching in the crossed-field method. In
combining the advantages of both techniques the authors suggest a complementary method
using an RF field and a static electric field.
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2 Ultracold Rydberg atoms in a

Ioffe-Pritchard trap

In a highly anisotropic magnetic field configuration like that of a Ioffe-Pritchard trap the
strength of the magnetic field can vary significantly over the extension of a Rydberg atom.
The large size of Rydberg atoms can therefore modify the way they couple to the magnetic
field compared to the coupling of ground state atoms. We incorporate the large extension of
the atoms into our description by modeling a Rydberg atom by two particles, a valence elec-
tron and an ionic core. This is particularly appropriate for alkali atoms that are commonly
used in Rydberg experiments. We include into our model the coupling of the electronic
and the center of mass motion of the atom and hence do not resort to the infinitely heavy
mass approximation. While the inclusion of the fine-structure and quantum defects can be
readily done, it turns out not to be necessary for high angular momentum electronic states
on which we will be focusing on. The derivation of the Hamiltonian for a highly excited
atom in a Ioffe-Pritchard field configuration lays the foundation for the following chapters.

In particular we proceed as follows. In Section 2.1 we introduce the two-body approach
into the minimal coupling Hamiltonian. We adopt relative and center of mass coordinates
and use a unitary transformation to simplify the coupling terms. We narrow our con-
siderations to the Ioffe-Pritchard field configuration in Section 2.2 before we analyze the
symmetries of the Hamiltonian in Section 2.3. We project the Hamiltonian to a hydrogenic
manifold of a single principal quantum number n and scale it to eliminate distracting pa-
rameter dependencies of the couplings. In Section 2.4 we eventually deal with the remaining
couplings by adiabatically separating the relative and the center of mass dynamics that take
place on very different time scales.

Most of the results presented here and in Chapter 4 are published in Refs. [72,73].

2.1 Two-body Hamiltonian for an alkali Rydberg atom in a

magnetic field

The large distance of the highly excited valence electron (particle 1) from the remaining
closed-shell ionic core of an alkali Rydberg atom (particle 2) renders it possible to model the
mutual interaction by an effective potential which is assumed to depend only on the distance
of the two particles. For alkali atoms, in particular, whose cores possess zero total angular
momentum and zero total spin, the only essential difference to the Coulombic case is due
to the finite size of the core. In any case, the effective potential V (r) only noticeably differs
from the pure Coulomb potential at small distances r. States of high electronic angular
momenta l, on which we focus in this thesis, almost exclusively probe the Coulombic tail
of this potential.

The coupling of the charged particles to the external magnetic field is introduced via
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2 Ultracold Rydberg atoms in a Ioffe-Pritchard trap

the minimal coupling, p → p − qA, where q is the charge of the particle and A is a
vector potential belonging to the magnetic field B. Including the coupling of the magnetic
moments to the external field (µ1 and µ2 originate from the electronic and nuclear spin,
respectively), our initial Hamiltonian reads

Hinit =
1

2M1
(p1 − q1A(r1))2 +

1

2M2
(p2 − q2A(r2))2

+V (|r1 − r2|)− µ1 ·B(r1)−µ2 ·B(r2) . (2.1)

We use atomic units, detailed in the appendix, except when stated otherwise. We do
not take into account spin-orbit-coupling and relativistic mass changes. The difference in
energy shift for adjacent, large angular momentum states (l, l± 1) due to these relativistic
corrections is ∆WFS = α2/2n5 [74], where α is the fine structure constant, and therefore
negligible for Rydberg states. At n = 30 we find the correction ∆WFS = 1.1 × 10−12 a.u..
To give an idea of the scope of this approximation we anticipate a result from Chapter 4:
The energy gap between two adjacent high-l electronic states is approximately ∆E = B/2.
Demanding ∆WFS/∆E ≪ 1 results in constraining the Ioffe field strength B to be much
larger than 5 mG (for n = 50 B must be a lot larger than 0.4 mG).

Before we focus on the Ioffe-Pritchard configuration we first examine a general field B

composed of a constant term Bc, a linear term Bl and higher order terms, B =
∑

Bi. The
vector potential shall satisfy the Coulomb gauge. The squared terms can then be simplified
taking advantage of the vanishing commutator [A(r1),p1] to obtain (p1 − qA(r1))2 =
p2

1 − 2qA(r1) · p1 + q2A(r1)2. In the so-called symmetric gauge the vector potential of a
constant magnetic field is given by Ac(r1) = 1/2 Bc× r1. The analogon for a linear field is
Al(r1) = 1/3Bl(r1)×r1. It can be proven that the vector potential of an arbitrary magnetic
field can be expanded in a corresponding form [75] permitting a representation of the vector
potential as a cross product A(r1) =

∑
iAi(r1) = B̃(r1) × r1, where B̃(r1) =

∑
giBi(r1)

and i ∈ {c, l, . . .} denotes the order of the corresponding terms of A and B with respect to
spacial coordinates. gi are the coefficients 1

2 , 1
3 etc. The particular form of this potential

and the vanishing divergence of magnetic fields admit the simplification

A(r1) · p1 = (r1 × p1) · B̃(r1) = L1 · B̃(r1) , (2.2)

where we exemplarily defined the angular momentum of particle 1, L1 = r1 × p1.

Since the interaction potential depends only on the distance of the two particles, it is
natural to introduce relative and center of mass coordinates, r1 = R + (M2/M)r and
r2 = R− (M1/M)r with the total mass M = M1 +M2. If no external field was present, the
new coordinates would decouple the internal degrees of freedom from the external center of
mass ones. Yet even a homogeneous magnetic field couples the relative and the center of
mass motion [76, 77]. For neutral systems in static homogeneous magnetic fields, however,
a so-called pseudoseparation can be performed providing us with an effective Hamiltonian
for the relative motion, that depends on the center of mass motion only parametrically
via the eigenvalues of the pseudomomentum [77–80] which is associated with the center
of mass motion. Such a procedure is not available in the present case of a more general
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2.1 Two-body Hamiltonian for an alkali Rydberg atom in a magnetic field

inhomogeneous field. In the new coordinate system the Hamiltonian (2.1) becomes

H = H0 + L1B̃(R +
M2

M
r)−L2B̃(R− M1

M
r)

− µ1B(R +
M2

M
r)−µ2B(R − M1

M
r) +O(A2) , (2.3)

where the angular momenta of the particles read

L1 = (M1/M)LR + (M2/M)Lr + R× p + (m/M)r × P

L2 = (M2/M)LR + (M1/M)Lr −R× p− (m/M)r × P

(see also Ref. [49]), and the terms that do not depend on the field are summarized to

H0 = p2

2m+ P2

2M +V (r). Here, Lr = r×p, LR = R×P , and the reduced mass m = M1M2/M
have been introduced.

To simplify the Hamiltonian we apply the unitary transformation

U = exp

{
i

2
Bc × r ·R

}
(2.4)

that reduces the complexity of the terms coupling relative and center of mass dynamics
generated by the homogeneous field component. The transformation only alters terms
involving momentum operators, any operator commuting with both coordinate operators
R and r is invariant under the action of U . We use the Baker-Campbell-Hausdorff formula

eVWe−V =
∞∑

m=0

1

m!
Wm (2.5)

with V andW being linear operators, eV :=
∑∞
k=0

1
k!V
k andWm = [V,W ]m := [V, [V,W ]m−1],

W0 := W . The kinetic energy operators transform as follows:

U †p2U =U †pUU †pU = (p− 1

2
(Bc ×R))2 = p2 − (Bc ×R) · p +O(B2

cR
2) ,

U †P 2U =U †PUU †PU = (P +
1

2
(Bc × r))2 = P 2 + (Bc × r) · P +O(B2

c r
2) . (2.6)

The terms quadratic in Bc are suppressed as long as 1
4(Bc ×R)2 ≪ (Bc ×R) · p which is

equivalent to

|X|, |Y | ≪ 4

Bn
. (2.7)

The transformed field-free Hamiltonian H0 therefore reads

U †H0U = H0 +
1

2
Bc

(
− 1

m
R× p +

1

M
r × P

)
+O(B2

cR
2, B2
c r

2) . (2.8)

The term coming from the linear magnetic field, Al(R+r) ·p, is invariant under the action
of U since the only differential operator involved is pz. The exponent of the transformation
U does not include z and the crucial commutator therefore vanishes. The transformation of
the remaining terms generates exclusively additional terms, that are quadratic with respect
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2 Ultracold Rydberg atoms in a Ioffe-Pritchard trap

to the magnetic field. They are specified for the case of a Ioffe-Pritchard field configuration
in Eq. (6.3) and a condition for their neglect similar to (2.7) is formulated in Eq. (6.4).

We now exploit the fact that the mass of the ionic core is much larger than the mass of
the valence electron. Only magnetic field dependent terms of the order of the inverse light
mass 1/M1 ≈ 1/m (M1 = 1 in atomic units) are being kept. Since we are dealing with
ultracold atoms it is even 〈P /M〉 ≪ 〈p/m〉, which allows us to neglect the center of mass
momentum dependent terms emerging from (2.1) after the introduction of the coordinates
r and R. We arrive at the Hamiltonian

U †HU =
P 2

2M
+

p2

2
+ U †V (r)U +

1

2
Lr ·Bc

+ Al(R + r) · p + (Lr + R× p) · B̃n(R + r)

− µ1 ·B(R + r)− µ2 ·B(R) . (2.9)

The diamagnetic terms in the Hamiltonian (2.1) which are proportional to A2 (and herewith
proportional to B2, see Eq. (2.2)) have been neglected: Due to the unitary transformation
U , R-dependent terms that are quadratic in the Ioffe field strength B do not occur and
only an electronic term B2(x2 + y2)/8 remains whose typical energy contribution amounts
to B2n4/8 ≈ 105B2 for n = 30. Besides we obtain a term quadratic in the field gradient
G. The term quadratic in the Ioffe field is negligible in comparison with the dominant
shift due to the linear Zeeman term as long as B is significantly smaller than 104 Gauss
which is guaranteed in our case. Moreover, the center of mass coordinate dependence of
this diamagnetic term is much weaker than the center of mass coordinate dependence of
the terms linear in the field gradient. The term quadratic in the field gradient can be
neglected in comparison with the corresponding linear term. Up to now we did not use the
explicit form of the Ioffe-Pritchard field configuration (in anticipation of the special field
configuration we leave the term containing Al in (2.9) in its original form.)

2.2 Ioffe-Pritchard field configuration

Two widely spread magnetic field configurations that exhibit a local field minimum and serve
as key ingredients for the trapping of weak-field seeking atoms are the three-dimensional
quadrupole and the Ioffe-Pritchard configuration. The Ioffe-Pritchard configuration resolves
the problem of particle loss due to spin flip at the point of zero field by means of an
additional constant magnetic field. A macroscopic realization uses four parallel current
carrying Ioffe bars which generate the quadrupole field. Encompassing Helmholtz coils
create the additional constant field and potentially the longitudinal confinement depending
on the geometry. There are many alternative layouts, the field of a clover-leaf trap, for
example, features the same expansion around the origin [81]. On a microscopic scale the
Ioffe-Pritchard trap has been implemented on atom chips by a Z-shaped wire [50,52].
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2.3 Symmetries, scaling, and the approximation of a single n-manifold

The vector potential and the magnetic field of the macroscopic Ioffe-Pritchard trap read

A =
B

2




−y
x
0





︸ ︷︷ ︸
=Ac

+G




0
0
xy





︸ ︷︷ ︸
=Al

+Aq , (2.10)

B = B




0
0
1





︸ ︷︷ ︸
=Bc

+G




x
−y
0





︸ ︷︷ ︸
=Bl

+Bq . (2.11)

where Aq = Q
4 (x2 +y2−4z2)(yex−xey) and Bq = Q(−2xzex−2yzey+(−x2−y2 +2z2)ez).

Bc is the constant field created by the Helmholtz coils with B being the Ioffe field strength.
Bl originates from the Ioffe bars and depends on the field gradient G. Bq designates
the quadratic term generated by the Helmholtz coils whose magnitude, compared to the
first Helmholtz term, can be varied by changing the geometry of the trap, Q = BQ̃ =
B · 3

2(4D2 −R2)/(R2 +D2)2, where R is the radius of the Helmholtz coils, and 2D is their
distance from each other. For a more detailed discussion of the geometry parameter see
Section 6.1.

If we now insert the special Ioffe-Pritchard field configuration using Eqs. (2.10) and (2.11)
into the transformed Hamiltonian (2.9) we obtain

HIP =HA + P 2/2M +BLz/2 +G(x+X)(y + Y )pz

+Q/4
[(

(x+X)py − (y + Y )px
)

·
(
(x+X)2 + (y + Y − 2(z + Z))(y + Y + 2(z + Z))

)]

− µ1 ·B(R + r)− µ2 ·B(R) , (2.12)

where HA = p2/2− 1/r is the operator for a field-free atom. The well known Zeeman term
BLz/2 comes from the uniform Ioffe field generated by the Helmholtz coils. The following
term, involving the field gradient G, arises from the linear field generated by the Ioffe bars
and couples the relative and center of mass dynamics. The part in the squared brackets
originates from the quadratic term, again created by the coils. It is the only one that
depends on the Z coordinate and we will see below that it vanishes for a certain ratio of
radius and distance of the current-carrying coils (Helmholtz configuration). The last term
couples the spin of particle 2 to the magnetic field. Since the electronic spins of closed shells
combine to zero, the spin of particle two is the nuclear spin only. Even though µ2 is smaller
than µ1 by a factor of me/mp, we will still keep the term −µ2 ·B since it is the only one
containing the nuclear spin and it is therefore essential for a proper symmetry analysis.

2.3 Symmetries, scaling, and the approximation of a single

n-manifold

Our Hamiltonian is invariant under a number of symmetry transformations US that are
composed of the elementary operations listed in Tab. 2.1. The parity operations Pj, j ∈
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2 Ultracold Rydberg atoms in a Ioffe-Pritchard trap

Table 2.1: Symmetry operation nomenclature. Pj , Ŝj , and Σ̂j are exemplified by j = x, but hold
of course also for j = y, z.

operator operation

Px x parity x→ −x, X → −X
Ŝx electronic spin x operator Sy → −Sy, Sz → −Sz
Σ̂x nuclear spin x operator Σy → −Σy, Σz → −Σz
Ixy coordinate exchange x↔ y, X ↔ Y
Sxy electronic spin component exchange Sx → −Sy, Sy → Sx
Σxy nuclear spin component exchange Σx → −Σy, Σy → Σx
T conventional time reversal A→ A∗

{x, y, z}, are defined by their action on the spatial laboratory coordinates of the particles
which translates one-to-one to center of mass and relative coordinates. In order to exchange
the x and y components of the electronic spin we introduce the operator

Sxy =

(
−i 0
0 1

)

,

where SxyS
∗
xy = 1. T represents the conventional time reversal operator for spinless particles

which, in the spatial representation, corresponds to complex conjugation. Our unitary
symmetries are

PxPyŜzΣ̂z (2.13a)

PyPzIxySxyΣxy (2.13b)

PxPzIxyS
∗
xyΣ
∗
xy . (2.13c)

The Hamiltonian is also left invariant under the anti-unitary symmetry transformation

TPy. (2.14)

By consecutively applying the latter operator and the unitary operators (2.13a), (2.13b)
and (2.13c) it is possible to create further anti-unitary symmetries:

TPxŜzΣ̂z (2.15a)

TPzIxySxyΣxy (2.15b)

TPxPyPzIxyS
∗
xyΣ
∗
xy. (2.15c)

Paying regard to the fact that S2
xy = −Ŝz and Σ2

xy = −Σ̂z and that T neither commutes

with Ŝy nor with Sxy and Σxy, one finds that the operators (2.13a-2.15c) form a symmetry
group.

If no Ioffe field is present (B = 0), eight additional symmetries can be found leaving the
Hamiltonian invariant. For an effective one particle approach (and the corresponding one
particle symmetries) this situation has been discussed in Ref. [82].
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2.3 Symmetries, scaling, and the approximation of a single n-manifold

As indicated before, the quadratic magnetic field term Bq can be tuned by changing the
trap geometry and can provide confinement in longitudinal (Z-)direction. In the following,
however, we consider a trap in Helmholtz configuration where 2D = R and Bq is zero.
In this case the term in the squared brackets of the Hamiltonian (2.12) drops out and
the Z coordinate is cyclic. The corresponding conjugated momentum Pz is consequently
conserved and the longitudinal motion is integrated by simply employing plane waves |kZ〉 =
exp{iZkZ}. Even for non-Helmholtz configurations of the trap the term can be negligible.
The constraints for this approximation to be valid can be obtained by comparing the above-
mentioned term in squared brackets with the Zeeman term, BLz/2. Estimating 〈x〉 ≈ n2,
〈xpy〉 ≈ 〈ypx〉 ≈ n, and using |Q| / B/(D2 +R2) we find

D2 +R2 ≫ n4 and (2.16)

3

√
n(D2 +R2)≫ |X|, |Y | , (2.17)

where D and R characterize the trap geometry. For one Rydberg atom around the trap
center Eqs. (2.16) and (2.17) are easily fulfilled. We are then left with the Hamiltonian

H = HA + (P 2
x + P 2

y )/2 +He , (2.18)

where the electronic Hamiltonian reads

He = BLz/2 +G(x+X)(y + Y )pz − µ1 ·B(R + r) . (2.19)

For all laboratory fields one finds the magnetic field strength B and the magnetic field
gradient G to be a lot smaller than 1. Our Hamiltonian (2.12) is thus dominated by HA.
The energies of the field-free spectrum EnA = −1/2n2 are n2-fold degenerate. We can assume
the Ioffe-Pritchard field not to couple adjacent n-manifolds as long as the energetic distance
of adjacent field-free energies is a lot larger than the coupling energy of the atom to the field,
|EnA − En±1

A |/EZee ≫ 1. The resulting constraints B ≪ n−4, G≪ n−6 and GR≪ n−4 yield
B ≪ 2900 G, G≪ 6 · 106 T/m for n = 30 and R≪ 2.9 mm if we additionally assume the
field gradient G to be as large as 100 T/m. In our parameter regime each n-manifold can
therefore be considered separately. We thus project the full Hamiltonian on the hydrogenic
eigenfunctions |α〉 = |n, l,ml,ms〉, HA|α〉 = EnA|α〉, with fixed principal quantum number n,
that cover an entire n-manifold. l denotes the orbital angular momentum quantum number,
ml the one of its z component Lz and ms stands for the quantum number of the electronic
spin.

Working in a single n-manifold we can reformulate the term in the Hamiltonian (2.18)
involving the field gradient G into a more compact form. We first consider the commutator
[yz,HA] = [yz,p2]/2 = i(ypz + zpy). This yields

〈α|ypz|α′〉+ 〈α|zpy|α′〉 = −i〈α|[yz,HA]|α′〉 = 0 , (2.20)

since |α〉 and |α′〉 are eigenkets to the same eigenvalue En. Establishing the relation to the
orbital angular momentum operator via ypz = Lx + zpy results in

(〈α|ypz |α′〉) =
1

2
(〈α|Lx|α′〉) . (2.21)
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2 Ultracold Rydberg atoms in a Ioffe-Pritchard trap

The same procedure can be applied to xpz leading to

(〈α|xpz |α′〉) = −1

2
(〈α|Ly |α′〉) . (2.22)

Furthermore 〈α|XY pz|α′〉 = 0 since pz ∼ [HA, z], and eventually we can write

G(x+X)(y + Y )pz = G(xypz +XLx/2− Y Ly/2) , (2.23)

where we omitted the bracketing alphas, but keep in mind that the above identity holds
in a single n-manifold only. The electronic term xypz can also be expressed with angular
momentum operators within one n-manifold. The required commutator and the alternative
formulation can be found in Eqs. (7.5) and (7.6), respectively.

In order to remove the separate dependencies on the field parameters B, G, and on
the mass M from the coupling terms, we introduce scaled center of mass coordinates,
R → γ−

1
3 R, with γ = GM , and simultaneously we introduce the energy unit ǫ = γ

2
3 /M .

Introducing the effective magnetic field

G(X,Y ) =




X
−Y
ζ



 , ζ = B/ǫ , (2.24)

and omitting the constant energy offset EnA, the Hamiltonian within a single n-manifold
can be given the advantageous form

H =
P 2
x + P 2

y

2
+ µ ·G(X,Y ) + γ

1
3 (xypz + xSx − ySy). (2.25)

The first term is the center of mass kinetic energy. µ is the 2n2-dimensional matrix repre-
sentation of the total magnetic moment of the electron, 1

2(Lr +2S), and the second term in
(2.25) describes its coupling to the effective magnetic field G. The latter results from the
original field Bc + Bl in Eq. (2.11) taking into account the corresponding coordinate and
energy scaling factors. Si are the components of the electronic spin, S = −µ1. The nuclear
spin term −µ2 ·B(R) has been omitted since it is several orders of magnitude smaller than
the electronic one.

2.4 Adiabatic separation of relative and center of mass

dynamics

The large difference of the particles masses and velocities in our two body system makes
it plausible to adiabatically separate the electronic and the center of mass motion. The
corresponding time scales differ substantially even for large principal quantum numbers
n. However, it is a priori not guaranteed that the adiabatic approach is meaningful. The
high level density around Rydberg states can entail non-adiabatic couplings around avoided
crossings of energy levels and therewith invalidate the approach. The procedure is reminis-
cent of the Born-Oppenheimer ansatz in molecular systems and is based on the idea that
the slow change of the heavy particle’s position allows the electron to adapt instantaneously
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2.4 Adiabatic separation of relative and center of mass dynamics

to the inhomogeneous field. The electronic energy of the system can thus be considered as
a function of the position of the heavy particle.

The adiabatic approximation is introduced by subtracting the center of mass kinetic
energy, T = (P 2

x + P 2
y )/2, from the total Hamiltonian (2.25). The remaining electronic

Hamiltonian for fixed center of mass reads

He = µ ·G(X,Y ) + γ
1
3 (xypz + xSx − ySy) . (2.26)

The electronic wave function ϕκ depends parametrically on R and the total atomic wave-
function can be written as

|Ψ(r,R)〉 = |ϕκ(r; R)〉 ⊗ |ψν(R)〉 , (2.27)

where ψν(R) is the center of mass wave function. The internal problem posed by the
stationary, electronic Schrödinger equation,

He |ϕκ(r; R)〉 = Eκ(X,Y ) |ϕκ(r; R)〉 , (2.28)

is solved for the adiabatic electronic potential energy surfaces Eκ(X,Y ), that serve as a
potential for the center of mass dynamics. Within this approximation, the equation of
motion for the center of mass wave function reads

(T + Eκ(X,Y )) |ψν(R)〉 = ǫν |ψν(R)〉 . (2.29)

The spatially dependent transformation U(X,Y ), that diagonalizes the matrix represen-
tation He of the electronic Hamiltonian, is composed of the vector representations of the
electronic eigenfunctions, Uκ = (Uκα) = (〈α|ϕκ(r; R)〉). Since U depends on the center of
mass coordinates, the transformed kinetic energy involves non-adiabatic couplings ∆T ,

U†HU = U†HeU + U†T U = Eκ(X,Y ) + T + ∆T , (2.30)

that have been neglected in the adiabatic approximation of Eq. (2.29),

∆T = −1/2 ·
(
U†(∂2

XU) + U†(∂2
Y U) + 2U†(∂XU)∂X + 2U†(∂Y U)∂Y

)
. (2.31)

They can be calculated explicitly as soon as the electronic adiabatic eigenfunctions have
been computed. Non-adiabatic contributions can be neglected if the conditions

| 〈ϕκ′|(∂XH)|ϕκ〉
Eκ′ − Eκ

| ≪ 1 , | 〈ϕκ′|(∂YH)|ϕκ〉
Eκ′ − Eκ

| ≪ 1 , (2.32)

| 〈ϕκ′|(∂
2
XH)|ϕκ〉

Eκ′ − Eκ
| ≪ 1 , | 〈ϕκ′|(∂

2
YH)|ϕκ〉

Eκ′ − Eκ
| ≪ 1 (2.33)

are fulfilled. The energy denominator in (2.32) and (2.33) indicates that one can expect
non-adiabatic couplings to become relevant between the adiabatic energy surfaces when
they come very close in energy, i.e. in the vicinity of avoided crossings.

Recalling the results of the symmetry analysis, it can be demonstrated that the energy
surfaces Eκ exhibit three mirror symmetries. Within the adiabatic approximation, X and Y
are mere parameters in the electronic Schrödinger equation. Symmetry operations applied
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2 Ultracold Rydberg atoms in a Ioffe-Pritchard trap

to the electronic Hamiltonian thereby only act onto the electronic subspace. If we apply
the corresponding restricted symmetry operation UP = PxPyŜzΣ̂z (2.13a), that was al-
ready shown to leave the full Ioffe-Pritchard Hamiltonian (2.12) invariant, to the electronic
Hamiltonian He (2.19), we find

U †PHe(r;X,Y )UP = He(r;−X,−Y ) . (2.34)

Since unitarily equivalent observables, A and U †AU , possess the same eigenvalue spectrum,
we find the energy surfaces to be inversion symmetric with respect to the origin in the X-Y
plane. The symmetry operator UY = TPy, and the operator that is composed of UY and
UP , namely UX = TPxŜzΣ̂z (see (2.14) and (2.15a)), mirror the energy surfaces at the axes,

U †YHe(r;X,Y )UY = He(r;X,−Y ) , (2.35)

U †XHe(r;X,Y )UX = He(r;−X,Y ) . (2.36)

The electronic problem (2.28), with the core fixed at an arbitrary position, is three-
dimensional. No symmetry arguments can be exploited to reduce the dimensionality of the
problem. In order to solve it, we employ the variational method, which maps the station-
ary Schrödinger equation onto an ordinary algebraic eigenvalue problem. Since the matrix
representation of the electronic Hamiltonian is sparsely occupied, an Arnoldi decomposi-
tion is used as is described in the following chapter. Both, this decomposition and the
surfaces mirror symmetries, help to reduce the computational cost of solving the electronic
Schrödinger equation.
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3 Numerical approach

In the preceding chapter we developed the Hamiltonian for a Rydberg atom in a Ioffe-
Pritchard trap. The stationary states of this quantum mechanical problem are found solving
the stationary Schrödinger equation

H|Ψi〉 = Ei|Ψi〉 . (3.1)

For special cases the solutions of this equation can be found analytically, as will be demon-
strated in Sec. 4.1. The resulting analytical expressions for the wave functions are enor-
mously helpful to understand the underlying physics of the problem [83]. In order to expand
this understanding to cases that only slightly differ from the analytically solvable ones, ap-
proximate analytical solutions can be provided by a perturbative approach. For arbitrary
situations, however, i.e. for arbitrary structure of the Hamiltonian, one has to resort on
numerical methods for solving the Schrödinger equation (3.1).

In this chapter we describe the necessary methods and concepts that form the basis of
the numerical treatment of the quantum mechanical system. We start with introducing the
variational principle in Section 3.1. It maps the stationary Schrödinger equation onto an
ordinary algebraic eigenvalue problem and therefore allows to find ground and excited state
energies with, in principle, arbitrary accuracy. In Section 3.2 we describe the representation
of the Hamiltonian in a basis set that is well suited to our physical system. The resulting
Hamiltonian matrix is of large dimension and sparsely occupied. We therefore present the
Arnoldi decomposition in Section 3.3 that is particularly appropriate to solve such large
scale and structured eigenvalue problems.

3.1 Variational method

A powerful tool to find numerical solutions of the eigenvalue equation Oφ = ωφ is the vari-
ational method that is presented in this section. Since the stationary Schrödinger equation
is such an eigenvalue equation the method has become a standard technique in quantum
mechanics. It is based on the variational principle which states that the expectation value
of a Hamiltonian calculated using any trial wave function is never lower than the ground
state energy. A similar statement for excited states can be deduced with the aid of the
Hylleraas-Undheim theorem. Our presentation is based on the description by Szabó and
Osterlund [84].

Given an arbitrary normalized state |Φ〉, the expectation value of the Hamiltonian in this
state is an upper bound of the exact ground state energy E0,

〈Φ|H|Φ〉 ≥ E0 . (3.2)

The trial function |Φ〉 is constructed employing a set of basis functions {|β〉} that shall be
orthonormalized, 〈β|β′〉 = δββ′ . Due to the completeness of the basis set,

∑
β |β〉〈β| = 1,
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3 Numerical approach

one can expand the trial wave function into

|Φ〉 =
∑

β

|β〉〈β|Φ〉 =
∑

β

cβ |β〉 . (3.3)

It depends linearly on the expansion coefficients cβ that will serve as variational parameters.
It is shown in the following that finding the optimal parameters cβ can be reduced to an
algebraic eigenvalue equation and thus to diagonalizing a matrix.

The Hamiltonian H in this basis reads H = (Hββ′) = (〈β|H|β′〉) and the expectation
value of H in the trial wave function is

〈H〉 = 〈Φ|H|Φ〉 =
∑

ββ′

c∗βcβ′ 〈β|H|β′〉 =
∑

ββ′

c∗βHββ′cβ′ = c†Hc , (3.4)

where c is the column vector of the expansion coefficients cβ . They have to fulfill the
condition

c†c =
∑

ββ′

c∗βcβ′ δβ,β′ =
∑

ββ′

c∗βcβ′ 〈β|β′〉 = 〈Φ|Φ〉 = 1 , (3.5)

as the trial function |Φ〉 was chosen to be normalized.
According to the variational principle, the expectation value 〈Φ|H|Φ〉 has to be minimized

in order to find the energy that is closest to the exact value. An elegant way to minimize
a function subject to a constraint is using Lagrangian multipliers. The optimal set of
expansion coefficients (cβ) can thus be found minimizing the expression

G =
∑

ββ′

c∗βHββ′cβ′ − ε
(∑

ββ′

c∗βcβ′ − 1
)
, (3.6)

where the Lagrangian multiplier ε prefixes the term that accounts for the constraint that
|Φ〉 shall be normalized, Eq. (3.5). Setting the derivatives of G with respect to c∗β to zero
yields the following set of equations for the optimal components,

∂G

∂c∗β
=
∑

β′

(Hββ′ − ε)cβ′ = 0 ⇔ Hc = εc , (3.7)

which is the algebraic eigenvalue problem we set out to find. It can be solved to yield as
many orthonormal eigenvectors c and eigenvalues ε as there are basis functions, of course.
The Lagrangian multipliers ε are the expectation values of the Hamiltonian with respect to
the trial wave function |Φ〉,

〈Φ′|H|Φ〉 = c′†Hc = εc′†c = εδΦ,Φ′ . (3.8)

The smallest eigenvalue ε0 is the best approximation to the ground state energy E0 that
is obtainable in the set of the employed basis functions {|βi〉}. The equation ε0 = E0 holds
(cf. (3.2)) if the trial wave function is identical to the eigenfunction of H, |Ψ0〉. In general
this can only happen employing all basis functions |β〉, i.e. allowing for all coefficients cβ
in (3.3) to be nonzero.

One can furthermore find that εi is an upper bound to the energy of the ith excited state
of H, that is

Ei ≤ εi for all i , (3.9)
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3.2 Representation in hydrogenic eigenfunctions

if the energies Ei and the approximated eigenvalues εi are arranged in ascending order.
This is the Hylleraas-Undheim theorem [85]. It includes the statement that all approxi-
mate eigenvalues obtained by diagonalizing H in a subspace can only become smaller (and
therefore become better estimates for Ei) when the subspace is enlarged, i.e. when more
basis functions |βi〉 are used. In practice, the variational method is equivalent to solving the
stationary Schrödinger equation in a subspace. Numerically exact results can be obtained
by enlarging the basis set until the energies converge.

3.2 Representation in hydrogenic eigenfunctions

The variational approach maps the stationary Schrödinger equation onto an ordinary alge-
braic eigenvalue problem. To solve the Schrödinger equation we hence have to diagonalize
the matrix Hamiltonian H in (3.7). In general, any set of functions that forms a basis of
the considered Hilbert space is valid. It is impossible, however, to diagonalize infinitely
dimensional matrices numerically. Since we hence have to limit the number of basis func-
tions, it is advantageous for obtaining good results within tolerable time, to choose basis
functions that closely resemble the true expected wave functions. This is possible in case of
Rydberg atoms since their wave functions are very similar to the hydrogenic eigenfunctions.
This is even true in external magnetic and electric fields as long as the Coulomb interaction
between the core and the electron is a lot stronger than the coupling of the electron to the
external fields. We thus represent the electronic Hamiltonian in Eq. (2.28) in hydrogenic
eigenfunctions and restrict the basis to one n-manifold which is justified in Section 2.3.

The radial part of the hydrogenic basis functions Rn,l(r) reads [86]

Rn,l(r) =
1

n

(
(n− l − 1)!

(n+ l)!

) 1
2
(

2r

n

)l+1

L2l+1
n−l−1

(
2r

n

)
e−
r
n , (3.10)

where Lαν symbolize the generalized Laguerre polynomials,

Lαν (x) =
exx−α

ν!

dν

dxν
(e−xxν+α) . (3.11)

The angular part of the hydrogenic eigenfunctions is given by the spherical harmonics Y ml
[87],

Y ml (θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ) eimφ (m ≥ 0) , (3.12)

where Pml symbolize the associated Legendre functions,

Pml (x) = (1− x2)
m
2
dm

dxm
Pl(x) , with Pl(x) =

1

2ll!

dl

dxl
(x2 − 1)l . (3.13)

The spherical harmonics Y ml are the eigenstates of the angular momentum operators L2
r

and Lz,
L2

rY
m
l = l(l + 1)Y ml , LzY

m
l = mY ml , (3.14)

and they fulfill the orthonormality relation

∫
Y ml
∗(Ω)Y m

′

l′ (Ω)dΩ =

∫ π

0
sin θdθ

∫ 2π

0
dφY ml

∗(θ, φ)Y m
′

l′ (θ, φ) = δl,l′δm,m′ . (3.15)
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3 Numerical approach

The spherical harmonics for negative azimuthal quantum numbers are obtained via

Y −ml (θ, φ) = (−1)m(Y ml (θ, φ))∗ . (3.16)

The eigenfunctions of the electronic Hamiltonian He are two component spinors. The
basis of the corresponding spin space is composed of the orthonormal spinors |↑〉 and |↓〉
that are defined via

Sz|↑〉 =
1

2
|↑〉 and Sz|↓〉 = −1

2
|↓〉 , (3.17)

where the Z-axis is chosen as the quantization axis. In the corresponding matrix represen-
tation, where Sz is diagonal, the spinors |↑〉 and |↓〉 are given by

|↑〉 =

(
1
0

)

and |↓〉 =

(
0
1

)

, (3.18)

and we can write the matrix representation of the spin operators as S = σ/2. The compo-
nents of σ are the Pauli matrices,

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (3.19)

The total Hilbert space is the tensor product of the Hilbert spaces assigned to the wave
functions Rn,l and Y ml and of the spin space hS , and the basis vectors are given by

|α〉 = |n, l,ml,ms〉 = |Rn,l〉 ⊗ |Y ml 〉 ⊗ |↑↓〉 . (3.20)

The total basis {|n, l,ml,ms〉} is orthonormal and the trial wave function can be expanded
to

|Φ〉 =
∑

l,ml,ms

cnlmlms |n, l,ml,ms〉 , (3.21)

where we do not sum over n since we can neglect the inter-n-manifold mixing.

The elements of the matrix H that represent the electronic Hamiltonian in the chosen
basis read

Hαα′ = 〈α|H|α′〉 = 〈n, l,ml,ms|H|n, l′,m′l,m′s〉 . (3.22)

If we can restrict our considerations to a single n-manifold, then H has the dimension
2n2 × 2n2. Since our basis system is given in the spherical coordinates r, θ and φ, it is
favorable to transform the electronic Hamiltonian into these coordinates, too. Its terms are
then products of operators of the form u(r), v(θ, φ), and w(S), and the matrix elements
can be written as the product of the individual matrix elements of these operators,

〈n, l,ml,ms|u(r) v(θ, φ) w(S)|n, l′,m′l,m′s〉
= 〈Rn,l|u(r)|Rn′,l′〉 〈Y ml |v(θ)|Y m′l′ 〉 〈↑↓ |w(S)|↑↓′〉 . (3.23)
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3.3 Arnoldi decomposition

3.3 Arnoldi decomposition

The matrix representation H of the electronic Hamiltonian, that enters the eigenvalue prob-
lem (3.7), is of large dimension but sparsely occupied. Direct methods to solve the problem
are therefore inappropriate. A method that is particularly suited to find numerical solutions
of such large structured eigenvalue problems is the Arnoldi decomposition. It significantly
reduces the dimension of the problem which can then be solved with comparatively little
computational cost. The numerical implementation is based on routines provided by the
Arpack and the SuperLU software packages.

We briefly outline the idea of the Arnoldi method [88]. The Arnoldi decomposition of a
matrix A yields a matrix of lower dimension, Hk, whose eigenvalues approximate those of
A. The eigenvalue problem of Hk can efficiently be solved by direct methods, in contrast
to the original problem. If A ∈ C

n×n then a relation of the form

AVk = VkHk + fke
T
k (3.24)

exists where Vk ∈ C
n×k has orthonormal columns and V Tk fk = 0. Hk ∈ C

k×k is an
upper Hessenberg matrix. This is called the k-step Arnoldi factorization of A [88]. If A is
Hermitian, then Hk is real, symmetric, and tridiagonal. It is the orthogonal projection of
A onto the so-called Krylov subspace that consists of the sequence of vectors produced by
the power method,

Kk := span{v, Av, A2v, . . . , Ak−1v} , (3.25)

for any nonzero vector v ∈ C
n. If a vector y fulfills Hky = θy, then x = Vky satisfies

||Ax− θx|| = ||(AVk − VkHk)y|| = |βkeTk y| . (3.26)

The pair (x, θ) is an approximate solution of the eigenvalue problem of A, called Ritz pair.
The quality of the approximation is measured with the so-called Ritz estimate |βkeTk y| on
the right hand side of (3.26). It decreases when the dimension k of the Krylov subspace is
increased. The Ritz pair (x, θ) is considered converged as soon as the Ritz estimate drops
under an adjustable value (machine precision in our case). The remaining problem is to
diagonalize the k-dimensional Hessenberg matrix Hk. This can be done using standard
algorithms.

An unfortunate aspect of the Arnoldi process is that one cannot know how many steps will
be required to converge the Ritz values. This is particularly true if wide ranged eigenvalues
are clustered. The often intractable storage problems, that come along with the original
Arnoldi method, are bypassed using the implicitly restarted Arnoldi method for which the
storage of a large amount of basis vectors is no longer necessary. The method is implemented
in the Arpack collection [88] whose routines only ask for a means to solve linear systems of
equations AX = B. The user is free to utilize any solver and any convenient data structure
for the matrix representation. The SuperLU package [89] accomplishes this task by a
triangular factorization of the matrix A into a unit lower triangular matrix L (Lii = 1) and
a upper triangular matrix U . The matrices are thereby stored in an efficient data structure
called Harwell-Boeing format. It only stores nonzero matrix elements and is thus well suited
for sparse matrices. We additionally use a shift-and-invert spectral transformation to be
able to converge eigenvalues in whatever region of the spectrum.
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4 Electronic potential energy surfaces

In this section we analytically and numerically solve the electronic Schrödinger equation
formulated in (2.28) to find the electronic adiabatic energy surfaces Eκ. Their properties
are analyzed for different regimes of Ioffe field strengths and field gradients. These two
parameters shape the surfaces Eκ that act as potentials for the center of mass dynamics.
We inspect the electronic Hamiltonian to unravel the influence of the individual terms for
different parameter regimes.

The characteristic length scale of the center of mass dynamics is of the order of one in
scaled atomic units. It is therefore adequate to compare the magnitudes of the different
parts of the electronic Hamiltonian (2.26) in order to estimate their impact on the center
of mass motion, putting X and Y equal to one. The first part, µ · G(X,Y ), consists of
the coupling terms X(1

2Lx + Sx) − Y (1
2Ly + Sy), that are then of the order of 〈Li〉 ≈ n

for high angular momentum states, and of the Zeeman term ζ(1
2Lz + Sz), which can be

as large as ζn. The finite size part, γ1/3(xypz + xSx − ySy), is quadratic in the relative
coordinates which makes it particularly important for high principal quantum numbers n.
If we consider the expectation values of the relative coordinates to be of the order of n2,
and 〈ypz〉 ≈ 〈Lx〉 ≈ n, the overall magnitude can be estimated to γ1/3n3. In a nutshell, we
have the relative orders of magnitude

1 , ζ and γ
1
3n2 , (4.1)

for the respective terms in the electronic Hamiltonian He. Due to the special form of He,
changing the magnetic field parameters B and G while keeping their ratio B/G = ζ/γ1/3

(and n) constant results in a mere scaling of the center of mass coordinates. We provide
typical examples for values of the quantities (4.1) in Tab. 4.1.

In Section 4.1 we consider the case in which the Ioffe field is large compared with the
gradient field. In a region around the trap center we can then neglect the finite size term
and solve the electronic problem analytically. In a second step in Section 4.2 we investigate
the effect of the finite size term on the electronic surfaces for large field gradients. We
furthermore characterize the electronic wave function that corresponds to the energetically
uppermost solution. The final part of the chapter, Sec. 4.3, deals with the center of mass
dynamics in the potential surfaces obtained in the first sections.

4.1 Analytical solution of the electronic problem

To understand the impact of the Ioffe field strength B on the adiabatic energy surfaces, we
isolate its effect by suppressing other influences. This can be done by choosing a relatively
low field gradient G and/or a small principal quantum number n (see Tab. 4.1). The factor

γ
1
3n2 becomes small, and the finite size term (the last term in Eq. (2.26)) will hardly provide
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4 Electronic potential energy surfaces

Table 4.1: Explicit values for γ1/3n2 = (GM)1/3n2 and ζ = BM1/3G−2/3 for 87Rb in atomic units.

The first block lists γ1/3n2 for different values of the field gradient G and for different principal
quantum numbers n. The second block lists ζ for different field gradients and for different field
strengths B.

G [T/m] 0.01 0.1 1 10 100 1000 10000

n

γ
1

3n2 3 0.001 0.001 0.003 0.006 0.014 0.030 0.064

10 0.007 0.015 0.033 0.071 0.153 0.329 0.709
30 0.064 0.138 0.296 0.638 1.375 2.963 6.383
50 0.177 0.382 0.823 1.773 3.820 8.229 17.729
80 0.454 0.978 2.107 4.539 9.778 21.067 45.387

B [Gauss]

ζ 0.01 134.0 28.87 6.220 1.340 0.289 0.062 0.013

0.1 1340 288.7 62.20 13.40 2.887 0.622 0.134
1 13402 2887 622.0 134.0 28.87 6.220 1.340

10 134015 28873 6220 1340 288.7 62.20 13.40

any contribution. Within this regime, that we focus on in this section, approximate analy-
tical expressions for the electronic adiabatic energy surfaces can be derived. We diagonalize
the approximate electronic Hamiltonian

H̃e =
1

2
(L + 2S) ·G (4.2)

by applying the spatially dependent unitary transformation

UD(X,Y ) = eiφ(Lz+Sz)eiβ(Ly+Sy) , (4.3)

with

tan φ =
Y

X
, cos β =

γ−2/3M2B

|G(X,Y )| , and sinβ = −
√
X2 + Y 2

|G(X,Y )| . (4.4)

For the transformed approximate electronic Hamiltonian we find

U †DH̃eUD =
1

2
(Lz + 2Sz)|G(X,Y )| . (4.5)

The spatially dependent transformation UD locally rotates the magnetic moment of the
electron, which includes its spin and its angular momentum, such that it is parallel to the
local direction of the magnetic field. The operators Lz and Sz are not identical to the
ones before having applied the transformation (4.3), they are rather related to the local
quantization axis defined by the local magnetic field direction.

The adiabatic potential surfaces evaluate to

Eκ(X,Y ) =
1

2
(ml + 2ms)|G(X,Y )|

=
1

2
(ml + 2ms)

√
X2 + Y 2 + ζ2 . (4.6)
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4.1 Analytical solution of the electronic problem

Figure 4.1: Sections along the X-axis
through the electronic adiabatic energy
surfaces of an entire n = 3 manifold.
The field gradient is fixed at G = 1
Tesla/m in order to suppress the influ-
ence of the last term inHe (2.26). From
left to right, ζ = BMγ−2/3 increases
due to an increasing Ioffe field.

The possible combinations of ml and ms yield 2n+ 1 energy surfaces. The surfaces highest
and lowest in energy correspond to circular states, (|ml| = lmax = n− 1, ml + 2ms = ±n),
and they are the only non-degenerate ones. For the other surfaces (|ml + 2ms| < n), the
multiplicity of (ml + 2ms), and with that the degree of degeneracy of the corresponding
surfaces, is given by 2n− |ml+ 2ms+ 1| − |ml+ 2ms− 1|. Starting from the highest energy
surface, the levels of degeneracy thus are 1, 2, 4, 6, . . . .

The approximate surfaces Eκ (4.6) are rotationally symmetric around the Z-axis. An
expansion around this axis (ρ =

√
X2 + Y 2 ≪ ζ) yields a harmonic potential,

Eκ(ρ) ≈ (ζ +
1

2ζ
ρ2) · 1

2
(ml + 2ms) , (4.7)

while we find a linear behavior,

Eκ(ρ) ≈ ρ

2
· (ml + 2ms) , (4.8)

when the center of mass is far from the Z-axis (ρ≫ ζ).
For reasons of illustration we demonstrate the behavior of the adiabatic surfaces with

increasing Ioffe field by means of an artificial example where other, previously neglected
interactions might actually be more important. Fig. 4.1 shows sections through all the
surfaces for n = 3. This principal quantum number has been chosen in order to keep the
sections simple while displaying the entire n-manifold. We employ 87Rb parameters in
this expository example although the electronic ground state of its outermost electron is
5s. The sections have been calculated for the field gradient G = 1 T/m and for different
field strengths B using the total electronic Hamiltonian (2.26). These parameters yield
γ1/3n2 = 0.003, and values for ζ ranging from 0.01 to 1. The surfaces in the different graphs
of Fig. 4.1 indeed validate the approximate expression (4.6): We find 2n + 1 degenerate
surfaces and the harmonic behavior around the Z-axis, i.e. for |X| ≪ ζ, gives way to a
linear increase for |X| ≫ ζ. The energetic distances and lengths in the different graphs
are comparable, since the scaling factor for the center of mass coordinates γ = GM has
not been changed. We can conclude that increasing the Ioffe field strength B separates the
surfaces from each other.
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Figure 4.2: Sections along the X-axis through the uppermost 21 surfaces of the n = 30 manifold of
87Rb for increasing ratios B/(Gn2). The field gradient is fixed at G = 10 T/m while the Ioffe field
is increased from top left to bottom right. (B = 24 mG, B = 48 mG, B = 0.24 G, B = 0.48 G). For
small ratios B/(Gn2) the influence of the second term in (2.26) is not completely suppressed as can
be seen from the lifted degeneracies in the upper subfigures.

The data presented in Fig. 4.2 have been computed for the n = 30 manifold. In order
to keep the last term in (2.26) small, the field gradient has been set to G = 0.1 T/m
(→ γ1/3n2 = 0.14). The uppermost 21 energy surfaces are shown for different values of the
magnetic field strength B. Similar to the n = 3 case, one can see the harmonic behavior
around the origin. The surfaces’ minimal distance becomes larger for increasing ζ. Since ζ
and γ1/3n2 are of the same order of magnitude in upper left sub-figure, the contribution of
the finite size term lifting the degeneracy of the curves is visible.

The energetic distance of the approximate surfaces described by Eq. (4.6) increases with
larger distances from the Z-axis, ρ, and with larger ζ. The minimum energetic gap between
two adjacent surfaces is at the origin and reads

|Eκ(O)− Eκ±1(O)| = B

2
Mγ−

2
3 =

ζ

2
. (4.9)

The parameter ζ (an hence the field strength B) is the tool to control the energetic distance
between the adiabatic surfaces. Increasing ζ, one can thus also minimize the non-adiabatic
couplings ∆T (2.31) discussed in Sect. 2.4, since they scale with the reciprocal energetic
distance of the surfaces.

To check the range of validity of our approximation, the minimal energetic distance
between the two uppermost adiabatic surfaces in the n = 30 manifold is calculated for
different parameters, subtracting the full 2D surfaces from each other, that are obtained
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4.2 High gradients

Table 4.2: Minimal distance ∆E of the two uppermost surfaces of the n = 30 manifold. ∆ denotes

the discrepancy between ∆E and the approximate predicted value for the distance, ζ
2
, according to

Eq. (4.9).

B [G] ζ G [T/m] γ1/3n2 ∆E ∆ [%]

0.01 0.288 100 1.375 0
0.1 2.89 100 1.375 1.291 15.193
1 28.87 100 1.375 14.421 1.476

0.01 1.340 10 0.638 0.600 11.101
0.1 13.40 10 0.638 6.694 0.103
1 134.0 10 0.638 67.006 0.002
10 1340 10 0.638 670.07 0.001

0.01 6.220 1 0.296 3.107 0.104
0.1 62.20 1 0.296 31.101 0.001
1 622.0 1 0.296 311.022 0.000

using the full electronic Hamiltonian (2.26). One finds the minimal distance to be located at
the origin, as expected. ∆ in Tab. 4.2 denotes the relative deviation between the predicted
(Eq. (4.9)) and the computed value in percent. It is small for large Ioffe field strengths B
and low field gradients G. Then we have ζ ≫ γ1/3n2, the finite size term in the electronic
Hamiltonian is negligible and our approximation that leads to (4.9) is justifiable.

4.2 High gradients

A more complicated picture of the surfaces’ properties arises when the field gradients become
larger. The last term in the electronic Hamiltonian, that accounts for effects due to the
finite size of the atom,

γ
1
3 (xypz + xSx − ySy) , (4.10)

is no longer small compared to the other terms in equation (2.26). This results in modu-
lations of the adiabatic surfaces we already spotted in the previous section. They lift the
degeneracy that was found in the limit of small gradients.

The finite size term Eq. (4.10) in the electronic Hamiltonian depends on relative coor-
dinates only. Due to this lack of center of mass dependence one is tempted to argue that
this term could be treated as a mere energy offset to the adiabatic electronic potentials and
that it does not contribute to the shape of these potentials. Yet this would only be the case
if the Hamiltonian in question would only feature pure relative and pure center of mass
terms. It is a major characteristic of the Rydberg Hamiltonian (2.25), however, to couple
electronic and center of mass dynamics. For this reason purely relative terms implicitly
create an R-dependent effect on the wave function, and with that on the energy as well.

In order to isolate the effect of the term (4.10) on the adiabatic surfaces, we vary the
scaling factor γ = GM by changing the field gradient G, while keeping ζ = BM1/3G−2/3

constant. It is, for example, reasonable to demand ζ = 5 and to adjust the Ioffe field
strength B to meet this condition. Fig. 4.3 demonstrates the increasing influence of the
interaction (4.10) when G is increased. The spectra are computed for the n = 30 manifold
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Figure 4.3: Sections (Y = 0) through the adiabatic potential energy surfaces belonging to the

n = 30 manifold of 87Rb for decreasing ratios B/(Gn2) = ζ/(γ1/3n2). The influence of the Zeeman
term in He (2.26) is fixed (ζ = 5) while γ1/3n2 increases. (a) B/(Gn2) = 10 ↔ B = 22.9 mG,
G = 4.81 T/m; (b) B/(Gn2) = 5↔ B = 91.6 mG, G = 38.5 T/m; (c) B/(Gn2) = 1↔ B = 2.29 G,
G = 4807 T/m; (d) draws the indicated region in (c) to a larger scale.

of 87Rb, ζ = 5, while G is varied from 4.8 to 4800 T/m. For small field gradients ((a),
B/(Gn2) = 10), the surfaces approach the shapes predicted in the limit addressed in the
previous Section (4.1): The adiabatic surfaces with the same value of the magnetic moment
(ml + 2ms)/2 are approximately degenerate around ρ = 0. The uppermost energy surface
is the only non-degenerate one and to the corresponding eigenstate the quantum numbers
ml = n − 1 and ms = 1/2 can still be assigned. An increasing field gradient lifts the
degeneracy and groups of curves can be observed ((b), B/(Gn2) = 5). The energetic
distance between these groups stays tunable by the bias field strength, as we elucidated
above (see Eq. (4.9)). For even higher field gradients, the different parts of the electronic
Hamiltonian are of comparable size and finite size effects substantially alter the shape of
the energy surfaces ((c), (d), B/(Gn2) = 1). Avoided level crossings appear and non-
adiabatic transitions are likely to occur. The uppermost energy surface, however, proves
to be very robust when the field gradient is varied. It is energetically well-isolated from
the other adiabatic surfaces. Its distance to the surface, that is formed by the second
highest eigenvalue, only decreases significantly when the ratio B/(Gn2) approaches one
((c), (d)). This holds true for the entire X-Y-plane. Inspecting the full uppermost surface
one furthermore finds the azimuthal symmetry, that is found for large ratios B/(Gn2) (see
Sect. 4.1), to be approximately conserved.

Another example for the complicated structure of the adiabatic electronic energy surfaces
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4.2 High gradients
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Figure 4.4: Section through the n = 30 manifold for a field strength of 0.01 Gauss and a field

gradient of 20 T/m (87Rb). A large number of avoided crossings can be observed. The uppermost
curve, however, stays isolated from the other curves. The insets show the linear behavior of the
surfaces far away from the Z-axis.

is shown in Fig. 4.4. The data are calculated for an extremely small Ioffe field strength of
0.01 G and a field gradient of 20 T/m. For these parameters, the contributions of all
terms in the electronic Hamiltonian are of the same order of magnitude around X = 1.
One immediately notices the large number of avoided crossings between the surfaces. The
uppermost curve however remains isolated from the rest of the curves. Far away from the
trap center, i.e. for large ρ =

√
X2 + Y 2, the coupling term in (2.26), X(1

2Lx + Sx) −
Y (1

2Ly + Sy), becomes dominant. A Zeeman like splitting of the surfaces emerges, visible
in the smaller graphs on the right.

Electronic Wave Functions

To characterize the electronic wave function ϕκ(r; R), that corresponds to the energy eigen-
values constituting the uppermost adiabatic surface, we analyze its radial extension, angular
momentum and spin. The electronic wave function depends parametrically on the center
of mass position and is, in general, distorted compared to the field-free case by the external
magnetic field. This is reflected in the expectation value 〈r〉e(R) = 〈ϕκ(r; R)|r|ϕκ(r; R)〉
which is shown in Fig. 4.5 for different ratios B/(Gn2). The limits of the graphs with respect
to X and Y correspond to thirty characteristic lengths of the center of mass motion. While
keeping G = 100 T/m, B is increased for the different plots from left to right. For the small-
est ratio under consideration (B/Gn2 < 1, left plot in Fig. 4.5), a pronounced maximum
of the expectation value 〈r〉e can be observed at the trap center. This maximum breaks up
into four maxima arranged along the diagonals when the ratio is increased (B/Gn2 > 1,
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4 Electronic potential energy surfaces

Figure 4.5: Expectation value 〈r〉ϕ of the wave functions that correspond to the uppermost elec-

tronic energy surface for G = 100 T/m (n = 30, 87Rb). B is varied yielding different values for the
ratio ζ/γ1/3n2 = B/Gn2: 0.01 G → B/Gn2 = 0.21 a.u. (left plot), 0.1 G → B/Gn2 = 2.1 (middle),
1 G→ B/Gn2 = 21 (right). The depicted ranges of X and Y correspond to 30 characteristic lengths
of the center of mass motion in scaled units.

middle plot), while the amplitude of the spatial variation of 〈r〉e decreases. For an even
higher value of B (B/Gn2 ≫ 1, right plot), only a marginal deviation from the hydrogenic
field-free value for the highest possible angular momentum quantum number remains (for
n = 30 one finds 〈r〉hydrogen(n = 30, l = 29) = 915). In the region of local homogeneity,
where the magnetic field does not vary significantly over the extension of the electronic
cloud (i.e. far from the Z-axis), the expectation value approaches the field-free value in
all subfigures that are shown in Fig. 4.5. In accordance with the abovementioned scaling
property of the electronic Hamiltonian He, changing the field parameters while keeping the
ratio B/Gn2 unaltered only modifies the scale of the center of mass coordinates, whereas
the shape of the bright regions and the energy range of the eigenvalues are not changed.

We now study the angular momentum and its orientation. It is to be expected that for
dominating Ioffe field, i.e. for large ratios B/(Gn2), the expectation value of the angular
momentum, 〈Lr〉 = (〈Lx〉, 〈Ly〉, 〈Lz〉), is oriented in the Ioffe-field direction (Z-axis). Since
the Ioffe field in any case dominates around the origin, 〈Lx〉 and 〈Ly〉 are expected to vanish
at (X,Y ) = (0, 0) while 〈Lz〉 becomes maximal. This behavior can be observed in Fig. 4.6
where 〈Li〉 are displayed (a,b,c) for B = 0.1 G and G = 100 T/m. These parameters
yield B/(Gn2) = 2.1. The alignment of 〈Lr〉 and the local field direction G(X,Y ) is
found to be very good in the entire X-Y -plane (the maximum angle between the two is
smaller than 3.6◦). In subplot (d) we provide the spatial behavior of the projection of 〈Lr〉
onto this local field axis, Π = 〈Lr〉 · G(R)/|G(R)|. In the local homogeneity limit, Π
approaches the maximal value for 〈Lz〉, namely ml,max = n − 1. In the same manner the
expectation value 〈L2〉, which is displayed in subplot (e), converges to the maximal value,
lmax(lmax + 1) = n(n− 1). Far from the Z-axis, the uppermost surface hence corresponds
to the circular state |ml,max, lmax〉. The deviation of Π and 〈L2〉 from the maximal values
close to the Z-axis reflect the admixture of states with lower quantum numbers m and l to
the state of the uppermost surface.

Increasing the applied Ioffe field by a factor of 10 (→ B/(Gn2) = 21), decreases the
angle between 〈Lr〉 and G(X,Y ) by a factor of 102, i.e. a quasi perfect alignment is found.
As can be seen in Fig. 4.7, the projection Π now only deviates marginally from ml,max.
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4.2 High gradients

Figure 4.6: (Color online) Expectation values 〈Lx〉, 〈Ly〉 and 〈Lz〉 (a,b,c, respectively) for a ratio

B/(Gn2) = 2.1 (Ioffe field B = 0.1 G, gradient G = 100 T/m, 87Rb, n=30). In (d) the projection Π
of 〈Lr〉 onto the local magnetic field direction G is displayed. It is close to the field-free maximum
value for the angular momentum projection, ml,max = n−1. Subplot (e) shows the spatial behavior
of 〈L2〉. The range of X and Y corresponds to 30 times the characteristic length of the center of
mass motion.

Figure 4.7: Spatial dependence of the projection Π of 〈Lr〉 onto the local field axis for B = 1 G
(all other parameters are the same as in Fig. 4.6). For this ratio, B/(Gn2) = 21, the deviations from
the maximal value ml,max = n− 1 are marginal. (Equally, 〈L2〉 ≈ lmax(lmax + 1), not shown.)
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4 Electronic potential energy surfaces

Figure 4.8: Probability densities of the ground state and the first and tenth excited states of the

center of mass motion in the uppermost adiabatic potential surface of the n = 30 manifold of 87Rb
(from left to right). The Ioffe field strength is set to B = 0.1 G and the field gradient is G = 10
T/m.

Consequently, also 〈L2〉 exhibits only minor deviations from its maximum value in the
whole X-Y -plane. For high ratios B/(Gn2), the admixture of other states is therefore
very small and one can in a very good approximation assume the electronic state in the
uppermost surface to be the circular state |ml,max, lmax〉 for any center of mass position.
Similar observations can be made considering the respective expectation values for the spin.
For the parameters in Fig. 4.7 the projection of 〈S〉 onto G differs less than 10−4 from the
expected value 1/2. The expectation values of the examined electronic observables hence
converge to the field-free values for increasing ratios B/(Gn2).

Our findings indicate that the electronic structure of the atom is barely changed in the
limit of large ratios B/(Gn2). The radiative lifetimes can hence be expected to differ only
slightly from the field-free ones [49].

4.3 Quantized center of mass motion

The energetically uppermost adiabatic electronic energy surface is the most appropriate to
achieve confinement. It does not suffer a significant deformation when the field gradient is
increased and it stays well isolated from lower surfaces for a wide range of parameters. Large
energetic distances to adjacent surfaces suppress the non-adiabatic couplings formulated in
Eqs. (2.32) and (2.33).

In order to obtain the quantized center of mass states we therefore solve the Schrödinger
equation (2.29) for the center of mass motion in the uppermost surface E2n2 by discretizing
the Hamiltonian on a grid. The wave function for the fully quantized state is hence composed
of the eigenfunction |ϕκ(r; R)〉 of the electronic Hamiltonian in equation (2.28), the wave
function for the center of mass motion in the X-Y plane, |ψν(R)〉, and the plain wave in Z
direction,

|Ψ(r,R)〉 = |ϕκ(r; R)〉 ⊗ |ψν(R)〉 ⊗ |kZ〉 . (4.11)

In Fig. 4.8 the probability densities of the ground state and two excited states of the center
of mass motion in the uppermost surface of the n = 30 manifold of 87Rb are displayed.
These densities reflect the spatial symmetries of the electronic Hamiltonian He (2.26) and
consequently those of the electronic energy surface. They are computed for a Ioffe field
strength B = 0.1 G and a field gradient of G = 10 T/m, which yields ζ = 13.4 and

ζ/γ
1
3n2 = B/Gn2 = 21. According to the discussion in Sec. 4.1, the electronic surface
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then exhibits a harmonic behavior around the origin, and the system resembles the two
dimensional isotropic harmonic oscillator in the potential Eh(X,Y ) = (ζ + ρ2/2ζ) · n/4
(cf. Eq. (4.7), ml = n−1). The first two probability densities (from left to right) in Fig. 4.8
explicitely demonstrate the analogy to the harmonic oscillator. Although not immediately
identifiable as an eigenstate of the two-dimensional harmonic oscillator, the state on the
right is the tenth excited eigenstate. Its nodal structure does not come from a Cartesian
product of one-dimensional harmonic oscillator eigenfunctions but from a combination of
two-dimensional eigenfunctions in the corresponding degenerate subspace.

The energies of the center of mass wave functions in the approximate potential Eh(X,Y )
read

ǫh,ν = (N1 +N2 + 1) ω , N1, N2 = 0, 1, 2 . . . , (4.12)

where ω2 = n/2ζ. They are in very good agreement with the exact results in the regime
where the finite size term of the electronic Hamiltonian, Eq. (4.10), is negligible. Within
this approximation, the energy level spacing scales with the inverse square root of ζ,

∆ǫh,ν = ω ∼ 1/
√
ζ , (4.13)

whereas the energetic distance of adjacent surfaces scales linearly with ζ, see Eq. (4.9).
To describe the properties of the compound quantized state, we analyze the extension of

the center of mass motion, which can be measured by the expectation value

〈ρ〉 = 〈ψν(R)|
√
X2 + Y 2 |ψν(R)〉 , (4.14)

and the mean distance of the core and the electron 〈r〉. Fig. 4.9 presents the numerically
computed radial expectation value 〈ρ〉 in Bohr radii for the center of mass ground state in the
uppermost energy surface for different parameter sets of the magnetic field. For comparison,
the expectation value of the center of mass state in a perfectly harmonic potential, 〈ρ〉h =√
π

2 x0 ∼ ζ1/4, is also depicted. The characteristic length of the center of mass motion is

x0 = 1/
√
ω = 4

√
2ζ/n . (4.15)
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4 Electronic potential energy surfaces

Figure 4.10: Comparison of the mean extension of the center of mass wave function, 〈ρ〉, and the

mean distance of the core and the electron, 〈r〉, for the n = 30 manifold of 87Rb.

Due to the rescaling of the center of mass coordinates with γ−1/3 in Sec. 2.2 this is of the
order of 1 for a wide range of parameter sets {B, G, n} in scaled atomic units (for explicit
values of ζ see Tab. 4.1). The expectation values for the real system, 〈ρ〉, deviate from the
straight line formed by 〈ρ〉h, as the ratio B/G becomes very small. Hence, the trapping
potential is harmonic even for large ratios G/B and very tightly confining harmonic traps
for highly excited atoms can be obtained (B = 0.1 G and G = 100 T, for instance, give rise
to a transversal trap frequency of approximately 1.4 MHz).

The mean distance of the Rydberg electron from the core is calculated weighting 〈r〉e(X,Y )
with the probability density of the center of mass wave function,

〈r〉 = 〈ψν(R)| 〈ϕκ(r; R)| r |ϕκ(r; R)〉 |ψν(R)〉 . (4.16)

It is depicted in Fig. 4.10, along with 〈ρ〉, versus the degree of excitation of the center of
mass motion ν. Due to the very tight confinement, 〈ρ〉 and 〈r〉 are of comparable size! For a
Ioffe field strength of B = 0.1 G and a field gradient of G = 100 T/m, for instance, the ratio
of 〈ρ〉 and 〈r〉 for the ground state (ν = 1) is as small as 〈ρ〉/〈r〉 = 0.4. The extension of
the center of mass wave function is thus smaller than the extension of the electronic cloud.
The expectation value 〈r〉 for the electron, on the other hand, remains nearly constant as
the degree of excitation increases, and it barely differs from the corresponding field-free
value (dashed line in Fig. (4.10)). As indicated previously, we find the electron to be in the
circular state with ml = n − 1, which features the smallest mean square deviation of the
nucleus-electron separation 〈r2〉 − 〈r〉2 = n2(2n + 1)/4. It is therefore possible, that the
center of mass and the electronic wave function do not even overlap which is indicated in
the inset of the upper right plot in Fig. 4.10 for ν = 1. This novel regime opens up the
possibility to control Rydberg atoms in the quantum regime and paves the way to study
many-body effects in low-dimensional ultracold Rydberg gases [16]. We lay the foundations
for creating such a gas in the following section.
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5 One-dimensional Rydberg gas in a

magneto-electric trap

The properties of many-atom systems are defined to a great extend by their order and
reducing the dimension of the system can profoundly affect that order. This gives rise to
often completely different physics and provides the attraction of studying low-dimensional
systems.

The long-range order in a three-dimensional system at low temperatures can for instance
get lost in two dimensions due to thermal fluctuations [18] which prevents a two-dimensional
system from condensing into a BEC at finite temperature. More specifically, the mean field
Gross-Pitaevskii description fails and has to be replaced by a Berezinskii-Kosterlitz-Thouless
theory in two-dimensional systems which associates the occurring phase transition with a
topological order. In one-dimensional bosonic systems the mean field theory has to be
substituted by the approach of Lieb and Liniger who were the first to solve the system
of arbitrary many interacting bosons in one dimension using Bethe’s ansatz [90]. It can
describe the limit of an infinitely strong inter-particle interaction strength in which a so-
called Tonks-Girardeau gas emerges [91]. In such a gas the bosons behave like spin-less
non-interacting fermions piled up in the single-particle eigenstates of the one-dimensional
potential. Experimentally, this has been realized in a 87Rb Bose-Einstein condensate of very
low density in a tight optical potential using an optical lattice to manipulate the atoms’
effective mass [92].

Since the dimensionality of a system is reduced by strongly confining the atomic motion
in one or several directions it yields discrete energy levels for the center of mass motion
in these directions as described previously in our example in Chapter 4.3. This structure
can be exploited to modify the scattering along the unconfined direction [93] and a further
low-dimensional effect, so-called confinement-induced resonances, can be observed [94].

Besides gases of ground state atoms, particularly Rydberg gases represent excellent sys-
tems to study the influence of a strong inter-particle interaction on the dynamics of many-
particle ensembles. Due to the large displacement of the ionic core and the valence electron,
Rydberg atoms can develop a large electric dipole moment leading to a strong and long-
ranged dipole-dipole interaction among them. However, unlike ground state atoms, Rydberg
atoms suffer from radiative decay and the mutual interaction time is hence limited by the
lifetime of the electronically excited state.

Circular Rydberg atoms in a Ioffe-Pritchard configuration are the perfect answer in re-
spect of the above requirements demanded from the system. As described in the preceding
chapters of this thesis they provide both, very strongly confined center of mass states due
to the strongly enhanced coupling to the magnetic field, and the possibility of very strong
interaction among the atoms. And in addition to that, circular Rydberg states can exhibit
lifetimes of several milliseconds. Here we use the Ioffe-Pritchard configuration as an ideal
starting point in order to ’prepare’ and study a one-dimensional Rydberg gas. Specifically,
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5 One-dimensional Rydberg gas in a magneto-electric trap

we propose a modified Ioffe-Pritchard trap, a magneto-electric trap, which offers confining
potential energy surfaces for the atomic center of mass motion in which the atoms possess an
oriented permanent electric dipole moment. In Section 5.1 we first incorporate the coupling
to the electric field into the description of the system. In Section 5.2 we then describe the
modified electronic surfaces and the emerging electric dipole moments. In Section 5.3 we
estimate below which Rydberg atom density a one-dimensional Rydberg gas is expected to
form. In Section 5.4 we show that the coupling of radial and longitudinal dynamics is neg-
ligible for a vast range of parameters before we shortly dwell on the possible experimental
realization of the gas in the closing Section 5.5.

Most of the results presented in this chapter are published in Ref. [95].

5.1 Hamiltonian with additional external electric field

In this section we derive the Hamiltonian for an ultracold Rydberg atom in a Ioffe-Pritchard
trap that is superimposed by a homogeneous electric field transversal to the translationally
symmetric axis. Proceeding along the lines of Chapter 2, we again employ a two-body
approach in order to model an alkali metal atom in a Rydberg state. We assume the single
valence electron and the ionic core to interact via a pure Coulomb potential. While the
inclusion of the fine-structure and quantum defects can be readily done, it turns out not to
be necessary for high angular momentum electronic states in the regime we are focusing on.
The Ioffe-Pritchard field configuration is given by Eq. (2.10) and (2.11) where we assume
the quadratic term, that is responsible for the longitudinal confinement, to be zero, Q = 0.
To make it vanish, the coils of the trap can be placed at a distance of twice their radius
from each other.

In case of a neutral two-body system the electric field interaction couples only to the
relative coordinate,

HF = qiφ(ri) = eF · r1 − eF · r2 = F · r . (5.1)

Here r1 and r2 are the positions of the valence electron and the core, respectively, and r is
the relative coordinate in accordance with the naming introduced in Sec. 2.1. The unitary

transformation U = exp
{
i
2 Bc × r ·R

}
, applied in Sec. 2.1 to simplify the coupling of

relative and center of mass motion, does not affect HF . We choose the electric field to point
in the X-direction, F = FeX , and the Hamiltonian describing the Rydberg atom becomes

H = HA + Ac(r) · p +
P 2

2M
−µ2 ·B(R) + Fx− µ1 ·B(R + r) + Al(R + r) · p. (5.2)

Here, HA = p2

2 − 1
r is the hydrogen Hamiltonian. The second term denotes the energy of

the electron in the homogeneous Ioffe field due to its orbital motion. The following two
terms describe the motion of a point-like particle possessing the magnetic moment µ2 in
the presence of the field B. The magnetic moments are connected to the electronic spin
S and the nuclear spin Σ according to µ1 = −S and µ2 = − g22Mc

Σ, with g2 being the
nuclear g-factor. We neglect the term involving µ2 in the following due to the large nuclear
mass. The electric field interaction gives rise to the fifth term. The last two terms of H are
spin-field and motion-induced terms coupling the electronic and center of mass dynamics.
We focus on a parameter regime which allows us to neglect the diamagnetic interactions as
is thoroughly discussed in Section 2.1.
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5.2 Energy surfaces and electronic properties

In order to find the stationary states of the Hamiltonian (5.2), we assume that neither
the magnetic nor the electric field causes couplings between electronic states with different
principal quantum number n. The parameter range in which this approximation is valid is
determined in Section 2.3 for the magnetic contributions, see the discussion after Eq. (2.19).
The condition to be satisfied in order for the electric field not to couple adjacent n-manifolds
is found comparing HF with the Zeeman term µ ·B(R) and reads

Fx ≪ B/n , (5.3)

see also the discussion of the electric field Hamiltonian in Section 7.2. If the above conditions
are met we can consider each n-manifold separately and may represent the Hamiltonian (5.2)
in the space of the 2n2 states which span the n-manifold under investigation.

Both the Ioffe-Pritchard field for vanishing Q and the homogeneous electric field are
translationally symmetric in the longitudinal axis. The center of mass motion along Z can
therefore be separated from the transversal motion in X and Y . More specifically, since Pz
commutes with the Hamiltonian the longitudinal motion can be integrated by employing
plane waves |kZ〉 = exp{iZkZ}. As indicated above, we only consider the action of all
operators in a single n-manifold and can thus simplify the Hamiltonian incorporating the
relations (2.20), (2.21) and (2.22), which exploit the degeneracy of the hydrogen-manifold
for zero fields. Additionally, if we omit the constant energy offset En we eventually arrive
at the Hamiltonian1

H =
P 2
x + P 2

y

2M
+ µ ·B(R) +G(xypz + xSx − ySy) +HF , (5.4)

cf. the working Hamiltonian (2.25) in Section 2.3. This Hamiltonian governs the transversal
center of mass as well as the electronic dynamics. The symbols µ and HF are the 2n2-
dimensional matrix representations of the operator 1

2 (L + 2S) and of the electric field
interaction HF = Fx, respectively.

5.2 Energy surfaces and electronic properties

The difference in the time scales of relative and center of mass dynamics allows us to employ
an adiabatic approach in order to solve the Schrödinger equation that corresponds to the
Hamiltonian (5.4). The adiabatic separation is introduced and justified in Section 2.4. In
the limit of vanishing center of mass kinetic energy we apply a unitary transformation
U(X,Y ) which diagonalizes the remaining Hamiltonian, i.e.,

U †(X,Y )(µ ·B(R) +G(xypz + xSx − ySy) +HF )U(X,Y ) = Eκ(X,Y ) . (5.5)

Since U(X,Y ) depends on the center of mass coordinates, the transformed kinetic energy
term involves non-adiabatic (off-diagonal) coupling terms ∆T , Eq. (2.31), which are sup-
pressed by the splitting of adjacent energy surfaces (∼ 1/B), see Eqs. (2.32) and (2.33).
They can be neglected in our parameter regime and we are led to a set of 2n2 decoupled
differential equations governing the adiabatic center of mass motion within the individual

1In contrast to the working Hamiltonian (2.25) in Section 2, we did not scale the Hamiltonian here.
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5 One-dimensional Rydberg gas in a magneto-electric trap

two-dimensional energy surfaces Eκ(X,Y ), i.e., the surfaces Eκ(X,Y ) serve as potentials
for the center of mass motion of the atom.

We first find approximate analytical solutions of the eigenvalue equation (5.5) in the limit
of small magnetic field gradient and small electric field strength by following the approach
chosen in Section 4.1: In this case the Zeeman term µ·B(R) is dominant and we diagonalize
it by applying the unitary transformation

U = exp(−iα(Lx + Sx)) · exp(−iβ(Ly + Sy)) (5.6)

with

tanα =
−GY√

B2 +G2X2
, tan β =

−GX
B

. (5.7)

The transformation U rotates the Z-axis into the local magnetic field direction where α
and β denote the rotation angles. It does not affect the field-free Hamiltonian HA. The
resulting adiabatic electronic energy surfaces,

Eκ(X,Y ) ≈
(
ml
2

+ms

)
|B| , (5.8)

exhibit a quadratic behavior in ρ =
√
X2 + Y 2 around the Z-axis and a linear increase for

large ρ, see Eqs. (4.6), (4.7) and (4.8), respectively. At the origin the surfaces with different
factors

(ml
2 +ms

)
are separated by the energy B/2.

We are going to focus our considerations on the uppermost electronic surface in the
following. The latter is most appropriate for confining the atoms since it is the only non-
degenerate surface and it is energetically well isolated from other surfaces, see Chapter 4.
In the abovementioned limit of small G and F it is constituted almost exclusively by the
state with the largest angular momentum projection quantum number ml = n− 1, |circ〉 =
|n, n− 1, n − 1, 1/2〉, which is called circular state. Since |circ〉 is a parity eigenstate, the
atoms exhibit almost no electric dipole moment in this case.

In the analytical approach to find approximate solutions of the eigenvalue equation (5.5)
we have neglected the finite size term and the electric field term. As long as the contribution
of the Zeeman term is significantly larger, their influence on Eκ(X,Y ) can be calculated
using perturbation theory. A thorough analysis of the effects of these perturbations is the
subject of Chapter 7. In the parameter regime we consider here, the contribution of the
finite size term G(xypz + xSx − ySy) is negligible in comparison with the contribution of
HF and we therefore only consider the influence of the electric field here.

Due to the coupling to the electric field, the electronic state constituting the uppermost
energy surface is no longer the pure circular state. Anticipating the results from Section 7.2,
that are obtained with second order perturbation theory inHF , we find that the electric field
yields an admixture of the state |3〉 = |n, n− 2, n − 2, 1/2〉 to the energetically uppermost
surface within a single n-manifold of the hydrogenic basis, see Eq. (7.40). This entails the
modified energy

E|circ〉 + EF =
n

2
|B|+ 9

4
F 2
xn

2(n− 1)
B2 +G2Y 2

B2 +G2Y 2 +G2X2
, (5.9)

see Eq. (7.44). From the angular dependency of the extra energy originating from the
admixture, EF , we can see that it is constant for X = 0, whereas for for Y = 0 it decreases
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5.2 Energy surfaces and electronic properties

Figure 5.1: Potential energy surfaces of the center of mass motion of a 87Rb atom (n = 30) in

an IP trap with B = 10 G, G = 10 Tm−1. Dashed lines: F = 0, solid lines: F = 5.14 Vm−1. An
overview of the seven energetically highest potential curves is shown in panel (a). Magnified views
of the uppermost (b,c) and next lower ones (d,e) are also provided. The range of the X-coordinate,
corresponding to 2.1µm, is the same for each subfigure (a)-(e). The characteristic length of the
center of mass dynamics is ω−1/2 ≈ 1200 a.u. ≈ 65 nm. The total field configuration is sketched in
panel (f) where the disks depict the locations of the minima of the uppermost (big disk) and the two
adjacent lower-lying (small disks) center of mass surfaces. The magnetic field lines are indicated in
gray while the electric field is sketched by black arrows.

with X2 around the Z-axis, EF ∼ 1− (G/B)2X2 +O(GX/B)4. For parameters that yield
small ratios G/B, the coupling to the electric field therefore yields an energetic contribution
to the uppermost adiabatic surface that is essentially constant close to the longitudinal axis.

Since the states |circ〉 and |3〉 have opposite parity, the admixture is also responsible for
a finite dipole moment of the atom. Up to first order in F/B we find the expression

dF (R) =
9

2

F

|B|n
2(n− 1) ·



cos β




cosβ

0
sin β



+ sinα sin β




sinα sin β

cosα
− sinα cos β









=
9

2

F

|B|n
2(n− 1) · 1

B2




B2 +G2Y 2

G2XY
BGX



 , (5.10)

see Eq. (7.46), which on the longitudinal axis points in the direction of the electric field,

dF (0, 0, Z) =
9

2

F

B
n2(n− 1)ez . (5.11)

In order to substantiate these analytical results (and to examine their predictions for
parameters that lie at the border of the range of validity of the perturbative treatment) we
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5 One-dimensional Rydberg gas in a magneto-electric trap

Figure 5.2: (a) Uppermost electronic potential surface for the center of mass motion of 87Rb in the
n = 30 multiplet and the parameters used in Fig. 5.1. (b-d) Components of the electronic dipole
moment dF (R) in atomic units. One recognizes the clear alignment of the electric dipole moment
along the electric field vector. The numerically calculated values of dF (R), that are shown in the
plots, are to good accuracy reproduced by Eq. (5.10).

solve the internal eigenvalue equation (5.5) numerically with methods described in Chap-
ter 3. In Fig. 5.1 we present numerically computed intersections along the X-direction of
the potential surfaces Eκ for B = 10 G, G = 10 Tm−1 and n = 30 in case of 87Rb. For zero
electric field strength (dashed lines), the potential curves are organized in groups which
are energetically well-separated by a gap of B/2 = 87.9 MHz. The uppermost surface is
non-degenerate and provides an approximately harmonic confinement with a trap frequency
of ω = G

√
n/(2BM) = 13.9 kHz corresponding to 0.1µK. The two adjacent lower surfaces

are degenerate and also approximately harmonic. The adiabatic surfaces for vanishing elec-
tric field are discussed in detail in the preceding Chapter 4. As soon as an electric field is
applied, all surfaces are shifted considerably in energy. This is visible from the solid curves
in Fig. 5.1 for which an electric field of strength F = 10−11a.u. = 5.14 Vm−1 is applied.
The shapes of the potentials are barely affected by the electric field such that Rydberg
states which were trapped in a pure Ioffe-Pritchard configuration remain also confined in
the magneto-electric trap. This can be expected from the perturbative result (5.9) for the
uppermost energy surface. As already indicated, the additional energy due to the coupling
to the electric field only weakly depends on the center of mass coordinates for small ratios
G/B. Moreover, adding the electric field leads to non-trivial effects: The second and third
surface, which were almost degenerate in the absence of the electric field, are now shifted
in opposite ways along the X-direction, i.e., they are centered at different spatial positions.
All surfaces that are shown provide a harmonic confinement with a trap frequency ω also
in the Y -direction. We remark that the chosen parameter set lies well within the regime
where our approximations hold (even if the influence of the electric field cannot be treated
perturbatively anymore) and does not generate an extreme constellation: An even stronger
confinement can be achieved without invalidating the applied approximations as can be
seen in Section 4.3.

The plots in Fig. 5.2 present numerical data for the uppermost potential surface and the
three components of the electric dipole expectation value dF (R) for the same parameters
as in Fig. 5.1. It can be clearly seen that a permanent dipole moment is established whose
dominant contribution points along the electric field vector. As can be seen from the corre-
sponding analytical expression for the dipole moment, Eq. (5.10), dF (R) scales proportional
to the third power of the principal quantum number and can therefore gain a significant
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5.3 One dimensional atom chain

magnitude even if the ratio F/B is small. Good agreement of Eq. (5.10) with the calculated
data presented in Fig. 5.2 is found, e.g., in the vicinity of the minimum of the potential
surface (X = Y = 0) we find an exact value of dx = 270, whereas the expression (5.10)
yields 276. For the remaining components Eq. (5.10) yields zero at the origin whereas we
numerically find the values 10−10 and −0.02 for the y- and the z-component, respectively.
For smaller ratios of F/B, even better agreement can be achieved.

5.3 One dimensional atom chain

Due to the dependence on the angles α and β, the dipole moment depends weakly on
the quantum state of the center of mass motion. However, since the field configuration
is translationally symmetric, the electric dipole moment is independent of the Z-position
of the Rydberg atoms in the trap. We now consider two transversally confined atoms in
the same trap at the longitudinal positions ZA and ZB . Considering the orientation of the
dipole moments of the atoms close to the longitudinal axis, and assuming that |ZA − ZB |
is large compared to the transversal oscillator length of the trap, we can approximate their
dipole-dipole interaction by

Vdd(RA,RB) ≈ d(RA) · d(RB)

|ZA − ZB |3
. (5.12)

We get the approximate expression (5.12) from more general expressions derived in Chap-
ter 8 where we thoroughly investigate the interaction of two Rydberg atoms. Using this
approximation one can estimate the interaction energy of one atom being part of an infinite
atomic chain with an inter-particle spacing a. One finds

Eint =
2

a3
d2(0)

∞∑

k=1

k−3 =
81 ζ(3)

2

1

a3

F 2

B2
n4(n− 1)2 (5.13)

with the Riemann zeta function, ζ(x). Here we have approximated d2(R) ≈ d2(0) since the
dipole moment barely varies in the vicinity of X = Y = 0. If the interaction energy Eint

is smaller than the transversal trap frequency ω, we can assume that the interacting atoms
remain in the transversal ground state: This is considered the one-dimensional regime.
The linear density below which a one-dimensional Rydberg gas, illustrated in Fig. 5.3, is
expected to form is then given by

N1D =

√
B

3



3

√
M

2

F 2

G
ζ(3)n7/2(n− 1)2




−1/3

. (5.14)

Above this density, excited transversal center of mass states might be populated resulting
in a quasi one-dimensional Rydberg gas with similar properties. For our parameter set, we
obtain a minimal interparticle spacing a = 43µm; hence a chain of 1 mm in length contains
23 particles. This density can be further increased by either increasing the magnetic field
gradient and/or decreasing the electric field strength: At B = 10 G, G = 100 Tm−1, and
F = 0.514 Vm−1 a chain of the same length would contain 230 Rydberg atoms.
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5 One-dimensional Rydberg gas in a magneto-electric trap

Figure 5.3: Ultracold Rydberg
atoms in a magnetic guide subject
to dipolar repulsion form a one-
dimensional structured gas. The
red arrows symbolize the atoms’
electric dipole moments induced
by the electric field in X-direction
and the yellow tube indicates
the strong transversal magnetic
confinement.

5.4 Coupling of radial and longitudinal dynamics

The transversal dependence of the electric dipole moments of the atoms can in principle
couple the longitudinal with the transversal center of mass dynamics. To quantify this
coupling we consider the two-atom basis

{|IJ〉} := {|ψAI (RA)〉 ⊗ |ϕ(rA; RA)〉 ⊗ |ψBJ (RB)〉 ⊗ |ϕ(rB ; RB)〉} (5.15)

where I and J number the single-atom center of mass wave functions ψ of atom A and
atom B, respectively. The electronic states ϕ do not have an index here since we assume
that they are the same for both atoms. The representation of the dipole-dipole interaction
Hamiltonian,

Vdd = R−3
AB(dA.dB − 3(dA.R̂AB)(dB .R̂AB)) , (5.16)

becomes diagonal in this two-atom representation if we assume that the electric dipole
moments of the atoms, and with it the dipole-dipole interaction operator Vdd, does not
depend on the center of mass position. It is then

〈IJ |Vdd|I ′J ′〉 = 〈I|I ′〉〈J |J ′〉〈ϕ|Vdd|ϕ〉 ∼ δI,I′δJ,J ′ (5.17)

since the center of mass eigenfunctions to different eigenvalues are orthogonal.
If we include the transversal dependence of the electric dipole moments into our consid-

erations the matrix elements read

〈IJ |Vdd|I ′J ′〉 =〈IJ |R−3
AB(dA.dB − 3(dA.R̂AB)(dB .R̂AB))|I ′J ′〉

≈R−3
AB

(
DII′DJJ ′ − 3DII′,zDJJ ′,z

)
. (5.18)

The symbols D abbreviate DKK ′ = 〈ψK |d|ψ′K〉 with d(X,Y ) = 〈ϕ|r|ϕ〉(X,Y ). In the
last step of equation (5.18) we assumed |XI |, |YI | ≪ RAB which entails R̂AB ≈ (0, 0, 1).
This approximation holds for large distances of the Rydberg atoms and strong transversal
confinements.

In order to quantify the coupling we must thus compute DKK ′. Due to the harmonic na-
ture of the trapping potential around the Z-axis we can assume |ψK〉 to be two-dimensional
harmonic oscillator eigenstates

〈X,Y |ψ2DHO,n1,n2
〉 = (2n1+n2n1!n2!X0Y0π)−1/2Hn1

(
X

X0

)
Hn2

(
Y

Y0

)
e
− 1

2

(
X2

X2
0

+Y
2

Y 2
0

)

,

(5.19)
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5.4 Coupling of radial and longitudinal dynamics

Table 5.1: As long as the parameter C, Eq. (5.22), is small the radial variations of the electric
dipole moments do not couple longitudinal and radial center of mass dynamics.

C G = 0.1 Tm−1 G = 1 Tm−1 G = 10 Tm−1 G = 100 Tm−1

B = 0.1 G 5× 10-5 5× 10−4 5× 10−3 0.05
B = 1 G 2× 10-6 2× 10-5 2× 10-4 2× 10-3

B = 10 G 5× 10-8 5× 10-7 5× 10-6 5× 10-5

B = 100 G 2× 10-9 2× 10-8 2× 10-7 2× 10-6

where Hn are the Hermite polynomials. For the Ioffe-Pritchard field configuration the trap
frequencies in X and Y are the same, ωx = ωy =: ω⊥, and we can equate

X0 = Y0 =: X0⊥ =

√
~

ω⊥M
. (5.20)

The trap frequency for dominating Ioffe field can be approximated by the expression

ω2
⊥ =

nG2

2BM
. (5.21)

Energetically degenerate two-dimensional harmonic oscillator eigenstates have the same
parity due to the parity of the Hermite polynomials, PHn = (−)n. Linear combinations
of such degenerate states again have definite parity. Expectation values of odd operators
in harmonic oscillator eigenstates therefore vanish. Eigenstates belonging to energetically
neighboring eigenvalues on the other hand have different parity. If we concentrate on the
dipole-dipole interaction induced excitations from the transversal center of mass ground
state to the next higher state one can furthermore conclude that contributions to the off-
diagonal elements of the interaction matrix coming from even operators vanish.

We analytically compute the couplings for the three states |ψ2DHO,n1,n2
〉 lowest in en-

ergy, {|ψ2DHO,0,0〉, |ψ2DHO,1,0〉, |ψ2DHO,1,1〉}, using the electric dipole moment induced by
the external electric field, dF , Eq. (5.10). If we exploit the smallness of the parameter

C =

(
X0⊥G
B

)2

=

√
2G2

nMB3
, (5.22)

which is tabulated for a range of field parameters in Tab. 5.1, the analytic expressions for
DKK ′ simplify significantly as will be demonstrated in the following.

We write down the representation of the dipole-dipole interaction operator Vdd in the
representation of the basis

{|IJ〉} = {|11〉, |12〉, |11〉, |22〉} (5.23)

where 1 symbolizes the transversal center of mass ground state |ψ2DHO,0,0〉 and 2 the one
with the first excitation in X, |ψ2DHO,1,0〉. Due to the form of the dependencies of the
electric dipole moment (5.10) on X and Y , the corrections coming from the energetically
degenerate center of mass state with the first excitation in Y , |ψ2DHO,0,1〉, are even smaller
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5 One-dimensional Rydberg gas in a magneto-electric trap

(∼ C2). We find the representation of the interaction to be

〈IJ |Vdd|I ′J ′〉 ≈
9

2
n2(n− 1)FxB





1 0 0 −C
0 1 −C 0
0 −C 1 0
−C 0 0 1



 . (5.24)

The parameter C =
√

2G/
√
nMB3 quantifies the magnitude of the off-diagonal elements

compared with the diagonal elements in (5.24). Since C is small for a vast range of field
parameters (Tab. 5.1) we can neglect the dipole-dipole interaction induced coupling from
the center of mass ground state to excited states that originate from the transversal center
of mass dependence of the electric dipole moments.

5.5 Experimental realization

In order to observe the external dynamics of the gas of Rydberg atoms we need to consider
their finite lifetime due to radiative decay which is discussed in detail in Ref. [96]. For
moderate electric field strengths the circular character of the electronic wave function of the
uppermost surface remains dominant resulting in one prevalent decay channel, |circn〉 →
|circn−1〉, i.e. to the circular state of the adjacent manifold with the principal quantum
number n−1. For an atom being confined to the energy surface which is shown in Fig. 5.2, we
have calculated a lifetime of τ ≈ 2.1 ms which is in good agreement with the corresponding
field-free result τ(n, n−1) ≈ 3n5/(2c2α5) [97]. Corrections to this bare decay rate are found
to be of the order of (F/B)2n3. Due to the scaling proportional to n5, the lifetime can be
significantly enhanced by exciting to a higher principal quantum number n. In addition, it
can be further prolonged by establishing an adapted experimental setup which inhibits the
electromagnetic field mode at the dominant transition frequency [98]. At the same time, a
cryogenic environment will diminish the undesirable effect of stimulated (de-)excitation by
blackbody radiation. We remark that the decay of one or several atoms into the circular
state |circn−1〉 does not immediately destroy the Rydberg gas since the properties of this
state – and therewith those of the adiabatic surface and the electric dipole moment – are
very similar.

The timescale of the dynamics of the Rydberg chain on the other hand depends on
the inter-particle spacing and on the field strengths via the dipole moment: A harmonic
approximation of the dipole-dipole interaction of one Rydberg atom with its next neighbors
yields the longitudinal one-particle oscillator frequency

ωdd =
√

24 d2(0)/(Mca5) , (5.25)

where d(0) is the electric dipole moment at the origin and a is the inter-particle spacing that
corresponds to the density N1D in (5.14). As an example, the field configuration B = 10 G,
G = 100 Tm−1, and F = 0.514 Vm−1 yields a timescale of less than one millisecond.

Let us now briefly comment on the experimental realization of such a Rydberg gas which
is certainly a challenging experimental task. One could start from an extremely dilute
ultracold atomic gas prepared in an elongated Ioffe-Pritchard trap. For transferring ground
state atoms to high angular momentum Rydberg states, several techniques can be employed,
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5.5 Experimental realization

as we have described in Section 1.2. The excitation lasers have to be focused such that
Rydberg atoms emerge only at positions separated by the inter-particle spacing a which
is required to meet the criterion (5.14). Since a is in the order of several µm, which can
be easily resolved optically, this should be feasible. Moreover, the large value of a ensures
that the mutual ionization due to the overlap of the electronic clouds of two atoms does
not occur. For our circular states with n = 30, the atomic extension can be estimated by
〈r〉 ≈ n2 = 48 nm and is thus orders of magnitude smaller than the corresponding value of a
for our field configuration. In order to probe the dynamics of the resultant Rydberg chain,
one can field-ionize the atoms and subsequently detect the electrons: From the spatially
resolved electron signal a direct mapping to the positions of the Rydberg atoms should be
possible.
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6 Longitudinal confinement

We show in Chapter 4 that a Ioffe-Pritchard magnetic field configuration can provide an
extremely strong confinement for Rydberg atoms in transversal (ρ -)direction. In Chapter 4,
as well as in the preceding Chapter 5, we consider the magnetic field configuration, and
therewith the properties of the Rydberg atoms in it, as translationally symmetric in the
longitudinal Z-direction. This can be achieved by choosing the right relation between the
radius of the coils that generate the homogenous Ioffe field and their distance. The quadratic
term in the magnetic field, Bq in Eq. (2.11), then vanishes and with it also the complicated
contribution to the Rydberg Hamiltonian in Eq. (2.12) prefixed by the factor Q.

On atom chips, magnetic field configurations that resemble that of a macroscopic Ioffe-
Pritchard trap are created by a current-carrying Z-shaped wire [52]. Due to the geometry a
translational symmetry cannot be achieved. But also in macroscopic traps a translational
symmetry is of limited use for our purpose since we want to excite Rydberg atoms from
cold ground state atoms that have to be confined somehow.

These arguments alone are motivation enough to include the quadratic magnetic field
term in our considerations. More interestingly, however, the longitudinal confinement can
provide the missing ingredient to obtain a stable equilibrium state for atoms that repel each
other like the Rydberg atoms described in the preceding chapter. By means of the adiabatic
electronic potential energy surfaces derived in this chapter in cooperation with the dipolar
repulsion discussed in Chapter 8 we can then describe such a stable configuration for two
Rydberg atoms in the concluding Chapter 9.

In Section 6.1 we shortly present the magnetic field configuration on a chip and for
a macroscopic setup. We then incorporate the additional terms in the Hamiltonian in
Sec. 6.2. In Section 6.3 these terms are projected onto a single n-manifold which considerably
simplifies their structure. We can then analytically find approximate expressions for the
electronic energy surfaces in an adiabatic approach in the closing Section 6.4.

6.1 Magnetic trap geometries

Simple and versatile traps for neutral atoms can be built using the magnetic potentials
created by a current-carrying wire and a homogeneous bias field [52]. In Fig. 6.1 we show
different sections through the absolute value of the magnetic field of such a trap formed
by a Z-shaped wire for an exemplary parameter set. The magnetic field generated by the
individual segments of the wire is computed integrating Biot-Savarts law.

Like in case of the macroscopic Ioffe-Pritchard trap the absolute value of the magnetic
field of the Z-trap is harmonic in all directions around its minimum (the trap center). The
ratio of transversal and longitudinal confinement depends on (B0,xL/I)4 where B0,x is the
homogeneous bias field, L is the length of the middle wire (which is located on the Z-axis)
and I is the current through the wire [52]. The distance of the magnetic field minimum from
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6 Longitudinal confinement

Figure 6.1: Absolute value of the magnetic field generated by a Z-shaped wire. The set of four
plots on the left-hand side shows sections parallel to the chip surface (z-x-plane) with increasing
distances from the surface in units of ymin, the distance of the minimum from the chip, see text
(0, 0.5, 1, 1.5, from top to bottom). The two plots in the middle show a x-y section through the
center of the trap (top) and a one-dimensional profile in x through the center (bottom). In the x-z
section through the minimum on the right-hand side the principal axis are indicated (top) and again
a one-dimensional profile in z is plotted. Parameters: Length of middle wire L = 250 µm, bias field
B0,x = 25 G, current I = 1 A.

the wire plane (the chip surface) is reciprocal to the bias field, ymin,approx = 2Iα2/B0,x which
for the parameters in Fig. 6.1 yields 80 µm. The trap frequencies along the principal axes are
computed by diagonalizing the Hesse matrix at the potential minimum. With parameters
from Fig. 6.1 we find 10.2 kHz, 10.0 kHz and 1.8 kHz for the trapping frequencies for the
5S1/2 F = 2 state (mF = 1/2) of 87Rb. We have to keep in mind that for high angular

momentum Rydberg states the confinement is stronger by a factor 1
2(ml2 +ms), cf. Eq. (4.6).

The advantage of wire traps are the high field gradients that can be created by bringing
the atoms close to the sources of the field. The field gradients are limited for very small
distances by surface effects due to chip imperfections or due to interactions of the atoms
with the surface.

In the following we consider a non-Helmholtz configuration of a macroscopic Ioffe-Pritchard
trap. The vector potential and the magnetic field around the center of a such a trap, cf.
Eqs. (2.11) and (2.10), read

A =
B

2




−y
x
0



+G




0
0
xy



+
Q

4




y(x2 + y2 − 4z2)
−x(x2 + y2 − 4z2)

0



 =: Ac + Al + Aq ,

B = B




0
0
1



+G




x
−y
0



+Q




−2xz
−2yz

2z2 − x2 − y2



 =: Bc + Bl + Bq , (6.1)
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6.2 Ioffe-Pritchard Hamiltonian

where Q scales linearly with the Ioffe field strength B and depends on the radius R of the
coils and their distance 2D,

Q = B · 3
2

4D2 −R2

(D2 +R2)2
=: B · Q̃(D,R) . (6.2)

The geometry factor Q̃(D,R) vanishes for 2D = R (Helmholtz configuration). It is negative
when 2D < R and in this case the absolute value of the magnetic field on the Z-axis,
|B(0, 0, Z)| = B|1 + 2Q̃Z2|, decreases with |Z| touching eventually zero outside the coils
(Z > D). Q̃ is positive when 2D > R and we then have a harmonic confinement in Z. We
therefore assume Q̃ to be positive in the remaining chapters of this thesis. The geometry
factor reaches its maximal value, Q̃max = 9

10D
−2, when 2D =

√
6R, that means the smaller

the trap, the larger Q̃.

6.2 Ioffe-Pritchard Hamiltonian

In this section we analyze the coupling of the Rydberg atom to the quadratic magnetic
field component Bq in (6.1) and include it into our considerations. We shortly recapitulate
the procedure that leads to the two-body Hamiltonian (2.9) developed in Sec. 2.1 and give
particular attention to the terms that involve the quadratic field: After introducing relative
and center of mass coordinates, neglecting relativistic corrections and exploiting the large
difference in the particles masses, we simplify the terms coupling relative and center of mass

motion by applying the unitary transformation U = exp
{
i
2 Bc × r ·R

}
, Eq. (2.4). The

transformation of the terms in the Hamiltonian (2.3) that include the quadratic magnetic
field component Bq yields

U † (Aq(R + r).p)U = U †
(

1

4
(Lr + R× p) ·Bq(R + r)

)
U

=
1

4
(Lr + R× (p− 1

2
(Bc ×R))) ·Bq(R + r) . (6.3)

The emerging extra term 1
2 (R × (Bc ×R)) ·Bq(R + r) = Aq(R + r).Ac(R) is negligible

compared with (R× p) ·Bq(R + r) as long as

|X|, |Y | ≪ 2

Bn
. (6.4)

This condition is the same as (2.7) except for a factor of 2. For a Ioffe field of 10 Gauss
and n = 50, for example, it reads |X|, |Y | ≪ 107. The transversal confinement in the Ioffe-
Pritchard trap is strong, especially for Rydberg atoms, and this condition is hence easily
fulfilled. We are thus going to assume that the conditions (2.7) and (6.4) can be met (which
is always the case in the parameter regime of interest) and discard the transformation-
induced terms emerging from magnetic field terms in the Hamiltonian (2.9) in the following.
When we additionally omit the constant field-free Hamiltonian HA (which is invariant
under the transformation U) and the coupling of the nuclear spin to the field (since the core
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magneton is around 2000 times smaller than the Bohr magneton), we find the Hamiltonian1

U †HU =
P 2

2M
+

1

2
Lr · Bc + Al(R + r) · p + Aq(R + r) · p + S · B(R + r) , (6.5)

The magnetic field B in (6.5) now of course includes the quadratic term Bq. We have also
neglected2 the terms that involve A2

q or B2
q in analogy to the discussion after Eq.(2.9).

6.3 Projection on a single hydrogenic manifold

In order to simplify the structure of the additional terms in the Hamiltonian that emerge
due to a non-vanishing geometry factor Q̃ we exploit the fact that the field-free atomic
Hamiltonian HA dominates all other terms in the Hamiltonian of the system. We can
therefore study the effect of the magnetic field within a single sub-manifold with a given
principal quantum number n. To substantiate this claim the energetic separation of dif-
ferent n-manifolds |EnA − En±1

A | has to be compared with the Zeeman energy, i.e. with the
energy that comes from the coupling to the magnetic field. The dominant contribution
to this energy is the effective coupling µ|B| which is responsible for the confinement. We
show in Section 2.3 that the inter-n-manifold couplings coming from the constant and the
linear term in the magnetic field are negligible, cf. the discussion after Eq. (2.19). The
quadratic term |Bq(R)| becomes comparable only for large displacements form the origin.
Since the transversal confinement in a Ioffe-Pritchard trap is stronger than the longitudinal
confinement for all reasonable parameter sets we consider |Bq(R)| for large |Z| to estimate
its influence,

|Bq(R)| = |Q|
√
ρ4 + 4Z4 ≈ 2|Q|Z2 for Z ≫ ρ =

√
X2 + Y 2 . (6.6)

We compare the strength of the effective coupling µ|Bq| with the distance of different n-
manifolds, i.e. 2n|Q|Z2 ≪ n−3. For maximal Q, this results in 4

5B(ZD )2 ≪ n−4 which can
be simplified to

B ≪ n−4 (6.7)

since 2|Z| must be smaller than the distance of the coils, 2D, in order for the experiment to
happen inside the trap. We hence find the same condition that we already required to hold
(see page 19) to guarantee that the original Zeeman term 1

2BLz does not couple different
n-manifolds.

Given the argument above we can now represent the additional Hamiltonian due to the
nonzero quadratic field Bq, which can also formulated using the vector potential Aq,

U †HqU = Aq(R + r) · p + S ·Bq(R + r) , (6.8)

1In order to be able to physically classify the different terms in the Hamiltonian the formulation in magnetic
field and angular momentum operators is instrumental. We, however, prefer to formulate the coupling to
the quadratic field in terms of the vector potential here, since it proves advantageous for the simplification
of the Hamiltonian in the following section.

2The neglect of the terms that are quadratic in the vector potential Aq or in the field Bq is legitimate when
the conditions Q≪ n−7 and Qn≪ R−3 are fulfilled. With a macroscopic trap it is impossible to break
the first condition with reasonable Ioffe field strengths. And in order to break the second condition, the
distances to the trap center would have to be extremely large in comparison with the size of the trap.
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6.3 Projection on a single hydrogenic manifold

in the hydrogen eigenfunctions |α〉 for a given principal quantum number n. Within a single
n-manifold we can then simplify it considerably using commutator relations involving the
field-free Hamiltonian. We first examine the term

Aq(R + r)p = (Q/4)[(x2y − 4yz2 + y3

+ 2xyX + x2Y − 4z2Y + 3y2Y − 8yzZ

+ yX2 + 2xXY + 3yY 2 − 8zY Z − 4yZ2)px

+(− x3 − xy2 + 4xz2

− 3x2X − y2X + 4z2X − 2xyY + 8xzZ

− 2yXY − 3xX2 − xY 2 + 8zXZ + 4xZ2)py

+(X2 + Y 2 − 4Z2) (Y px −Xpy)] , (6.9)

and use the fact that the eigenvalues of the field-free atomic Hamiltonian HA are degenerate
in a single n-manifold, i.e. ∀α : HA|α〉 = En|α〉. Considering the commutator i

~
[HA, r] = p

we can then discard all terms involving only pi as a relative operator since 〈α′|p|α〉 =
i
~
〈α′|[HA, r]|α〉 = 0. This cancels the last line in Eq. (6.9). The magnitude of the second-

order contributions of these terms coupling different n-manifolds are estimated in footnote 2
on page 64. Furthermore, considering xpx = − ı2~

([x2,HA]−1) and ypy = − ı2~
([y2,HA]−1),

we can make the term (xpx − ypy)XY disappear. Similarly, the following relations can be
deduced,

〈α′|xpy|α〉 =〈α′|Lz|α〉/2 〈α′|xpz|α〉 = −〈α′|Ly|α〉/2
〈α′|ypz|α〉 =〈α′|Lx|α〉/2 〈α′|ypx|α〉 = −〈α′|Lz|α〉/2
〈α′|zpx|α〉 =〈α′|Ly|α〉/2 〈α′|zpy|α〉 = −〈α′|Lx|α〉/2 , (6.10)

and we arrive at3

Aq(R + r)p = (Q/4)[(x2ypx + y3px − 4yz2)px + (−xy2 − x3 + 4xz2)py

+ (−y2py − 3x2py + 4z2py + 2xypx)X + (x2px + 3y2px − 4z2px − 2xypy)Y

− 8(yzpx + xzpy)Z − 4XZLx − 4Y ZLy +
(
−2X2 − 2Y 2 + 4Z2

)
Lz] . (6.11)

The terms linear in X and Y (second line in Eq. 6.11) are negligible compared to the
corresponding field gradient terms that are linear in the center of mass coordinates (see the
electronic Hamiltonian for vanishing Q, Eq. (2.19)) as soon as

4
|Q|
G
n2 ≪ 1 . (6.12)

For B = 10 G, G = 1 Tm−1 and n = 30 the condition reads Q̃ ≪ 1.5 · 10−11. To reach
geometric parameters Q̃ as high as 10−11 with a Ioffe-Pritchard configuration described in
Sec. 6.1 the coils would have to be as close as 12µm to each other! For a macroscopic trap
the condition (6.12) hence cannot be broken with reasonable parameter sets.

3Instead of writing Aq(R + r)p we should in fact write 〈α′|Aq(R + r)p|α〉 and we should also do so for
all the operators on the right hand side of the equation. For the sake of readability we omit the brackets
here and in the following.
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6 Longitudinal confinement

Comparing the purely electronic terms in (6.11) with the purely electronic term coming
from the gradient field, Gxypz, see Eq. (2.19), one finds essentially the same condition,
Q
Gn

2 ≪ 1. Hence, if the terms in Aq(R + r)p that are linear in X and Y are negligible, so
are the pure electronic terms. As long as the condition (6.12) holds we are therefore left
with

Aq(R + r)p ≈ 2QZzLz +
Q

2
(−2XZLx − 2Y ZLy + (−X2 − Y 2 + 2Z2)Lz) , (6.13)

where the notation of the term 2QZzLz = 2QZ(xzpy − yzpx) should not mask that it is
an off-diagonal operator in the hydrogen basis. Recalling the form of the quadratic term in
the magnetic field configuration, Eq. (2.11), we can write

Aq(R + r)p ≈ 2QZzLz +
Q

2
Lr ·




−2XZ
−2Y Z

−X2 − Y 2 + 2Z2



 = 2QZzLz +
1

2
Lr ·Bq(R) . (6.14)

Similar approximations can be made for the spin term in U †HqU ,

S ·Bq(R + r) = S ·Bq(R) + S ·Bq(r) + 2QS ·




−xZ −Xz
−yZ − Y z

2zZ − xX − yY



 . (6.15)

The relative term S ·Bq(r) is a lot smaller than S ·Bl(r) as soon as, again, condition (6.12)
holds . The same condition permits to discard the terms in the third summand of (6.15)
that are linear in X and Y . We are then left with

S ·Bq(R + r) ≈ S ·Bq(R)− 2QZ(xSx + ySy − 2zSz) . (6.16)

The additional Hamiltonian U †HqU , Eq. (6.8), can then be approximated by

Aq(R + r)p + S ·Bq(R + r) ≈ µ ·Bq(R) + 2QZ(zLz − xSx − ySy + 2zSz) , (6.17)

where we have abbreviated 1
2Lr ·Bq(R) + S ·Bq(R) = µ ·Bq(R). As long as the condition

(6.12) holds the Ioffe-Pritchard Hamiltonian (6.5) in a single manifold can hence be brought
into an advantageous form with a dominant Zeeman-like coupling to the field, cf. Eq. (2.25),

U †HU ≈ P 2

2M
+ µ ·B(R) +G(xypz + xSx − ySy) +HQ , (6.18)

where we use the projected expressions (2.19) and (2.23) developed in Sec. 2.3. Note that the
Zeeman-like coupling term µ·B(R) here includes the quadratic magnetic field Bq in contrast
to the respective term in the working Hamiltonian (2.25) of the Chapters 2 and 4 that only
includes the effective (and scaled) field G, Eq. (2.24). In the above Hamiltonian (6.18) we
omitted the field-free Hamiltonian HA that only gives the constant energy offset EnA within
an n-manifold. We also named the representation of the electronic terms originating from
the longitudinal confinement

HQ ≡ (〈α′|HQ|α〉) := 2QZ(zLz − xSx − ySy + 2zSz) . (6.19)
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6.4 Analytical diagonalization

In contrast to the finite-size term Hγ = G(xypz +xSx− ySy) that comes from the coupling
to the linear magnetic field Bl, the term HQ that comes from the coupling to the quadratic
magnetic field Bq does not only involve electronic coordinates but also depends on the
center of mass position.

For an atom that is displaced on the Z-axis far enough from the origin, |Z| ≫ 2n2, the
additional electronic Hamiltonian HQ can be neglected. This is because the term |2QZzLz|
is then negligible compared with |QLzZ2|, cf. Eq. (6.14), and the terms in HQ involving
spin operators are very small compared to term |QSzZ2| from S ·Bq(R) if |Z| ≫ 2n. For
this argument we simply estimated 〈α|xi|α〉 ≈ n2. A closer inspection shows, however,
that the contribution of HQ is even smaller: Since Lz is diagonal in the hydrogen basis,
〈α′|Lz|α〉 = mlδα′α, the term in question is proportional to a dipole matrix element, HQ ∼
〈α′|zLz |α〉 = 〈α′|z|α〉ml, and hence has only off-diagonal matrix elements. Comparing
its second order energetic contribution with |QLzZ2| (and assuming the energetic gap of
adjacent surfaces to be B/2 ), we find the condition

4n5Q̃≪ 1, (6.20)

which in macroscopic traps can only be broken with principal quantum numbers n of the
order of several hundreds. We do not even have to consider HQ when the constraint coming
from the spin terms, |Z| ≫ 2n, is broken since HQ is then negligible compared to the
gradient term Gxypz. We will therefore omit HQ and use

HIP =
P 2

2M
+He (6.21)

as working Hamiltonian in the following where the electronic part reads

He :=µ ·B(R) +Hγ
:=µ ·B(R) +G(xypz + xSx − ySy) . (6.22)

6.4 Analytical diagonalization

Due to the large difference in the masses of electron and ionic core the timescales of the
relative and the center of mass dynamics in the system are very different even for high
principal quantum numbers n. This is especially true since we consider ultracold systems.
We can assume that the slow change of the position of the ionic core allows the excited
electron to instantaneously adapt to the local magnetic field. In analogy to Section 2.4 we
can therefore adiabatically separate the relative and the center of mass motion. For this
purpose we set the center of mass kinetic energy to zero and solve the remaining electronic
Schrödinger equation

He |ϕκ(r; R)〉 = Eκ(R) |ϕκ(r; R)〉 (6.23)

for the electronic potential energy surfaces Eκ(R). The solutions of the internal problem
Eκ(R) depend only parametrically on the center of mass coordinates. Subject to the internal
state of the atom, κ, the corresponding energy surface provides the potential for the center
of mass dynamics, cf. Eq. (2.29). We provide expressions for the error that we make using
the adiabatic approach, the so-called non-adiabatic couplings, in Section 2.4.
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6 Longitudinal confinement

For large ratios of Ioffe field and magnetic field gradient, B/G, we can analytically find
approximate expressions for the potential energy surfaces. The leading term in the elec-
tronic Hamiltonian in this case is µ · B(R). We diagonalize it by applying the unitary
transformation

U = exp(−ıα(Lx + Sx)) · exp(−ıβ(Ly + Sy)) (6.24)

with

tanα =
−Y (G+ 2QZ)

√
(B −Q (X2 + Y 2 − 2Z2))2 + (GX − 2QXZ)2

, (6.25)

tan β =
X(G− 2QZ)

Q (X2 + Y 2 − 2Z2)−B . (6.26)

We note that the field-free Hamiltonian HA is invariant under the transformation U . Defin-
ing Rxαyβ := Rx(α)Ry(β) we can write

ULrU
† =R−1

xαyβLr = Ry(−β)Rx(−α)Lr ,

USU † =R−1
xαyβS = Ry(−β)Rx(−α)S , (6.27)

since Lr and S are axial vectors [87]. It is then

UµU †B =
1

2
(Lz + 2Sz)|B| , (6.28)

where Lz and Sz represent different operators than before; They are now defined with
respect to the local quantization axis. The solutions of Eq. (6.23), the adiabatic energy
surfaces Eκ, hence read

Eκ(R) ≈(
ml
2

+ms)|B| (6.29)

=(
ml
2

+ms)
√

(B −Q (X2 + Y 2 − 2Z2))2 +X2(G− 2QZ)2 + Y 2(G+ 2QZ)2.

For vanishing Q̃ = Q/B the expression (6.29) is identical with the potential surfaces found
in Section 4.1, Eq. (4.6), as expected4. The procedure outlined above is equivalent to
rotating the system into the local magnetic field direction.

It can be deduced from the analytic expression for the adiabatic surfaces, Eq. (6.29), that
the energetically uppermost surface is constituted by the circular state since it is the state
with the largest angular momentum projection quantum number ml within the n-manifold.
The crucial factor (ml2 +ms) is the same as for the adiabatic surfaces computed for vanishing
Q, Eq. (4.6), as could be expected.

On the Z-axis the absolute value of the magnetic field reads

|B(0, 0, Z)| = B + 2QZ2 = B(1 + 2Q̃Z2) . (6.30)

The potential surfaces Eκ(R), Eq. (6.29), hence approximately provide a harmonic confine-
ment in z. For Z = 0 on the other hand it is

|B(X,Y, 0)| =
√
B2 + (G2 − 2BQ)ρ2 +Q2ρ4 = B +

(
G2

2B
−Q

)

ρ2 +O(ρ4) (6.31)

4The two expressions are formulated in different units; To compare them a scaling factor ǫ = γ
2

3 /M has
to be applied, see Section 2.3.
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6.4 Analytical diagonalization

for small ρ =
√
X2 + Y 2. The expression (6.31) unveils that Q̃ is not only responsible for

the longitudinal confinement but can also leads to the loss of the transversal confinement
for small gradients, more precisely as soon as

(
G

B

)2

< 2Q̃ . (6.32)

(This is not only true for Z = 0. The confining property of Eκ(R) in transversal direction is
lost also for finite Z as soon as the condition (6.32) is met, see the corresponding expansion
of |B| in Eq. (9.31).)

The part of the electronic Hamiltonian in Eq. (6.21) that we have neglected in this section,
the finite-size term G(xypz + xSx − ySy), not only constitutes a mere energy offset to the
adiabatic electronic potentials. As has already been mentioned in Sec. 4.2, it is not intuitive
at first view that the finite size term can provide any center of mass coordinate dependent
contribution to the electronic wave function, since it lacks a dependence on R. Due to
the coupling of the relative and the center of mass dynamics, however, which is a major
characteristic of the Rydberg Hamiltonian (6.21), even purely relative terms implicitly create
an R-dependent effect on the wave function. A convincing way to see this is to consider
the approximate analytic solution in the Ioffe dominated regime. The transformation U ,
Eq. (6.24), that diagonalizes the approximate Hamiltonian µ·B(R), depends parametrically
on R. It does not diagonalize the full electronic Hamiltonian including the finite size term.
In a perturbative approach to include its effect on wave functions and energies, it has to be
rotated into the diagonalized system. This rotation involving the unitary transformation U
introduces the center of mass coordinate dependence to the finite size term. The finite size
term is treated perturbatively in the following chapter.
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7 Electric dipole moments

Neutral, isolated atoms exhibit no electric dipole moments due to the definite parity of their
electronic wave functions. For Rydberg atoms in inhomogeneous fields this is no longer true.
The electronic Hamiltonian for this situation reads, cf. Eq. (6.21),

He = µ ·B(R) +Hγ +HF , (7.1)

where the term Hγ accounts for effects due to the finite size of Rydberg atoms and the
additional term HF accounts for an external electric field F . The Zeeman term, µ ·B(R),
is invariant under parity transformation and the solutions of its analytical diagonalization
(Sec. 6.4) have definite parity and hence exhibit no electric dipole moment. The finite size
term Hγ and the electric field term HF , however, gain a minus sign when the parity operator
is applied. Due to the breaking of parity symmetry the eigenfunctions of the total electronic
Hamiltonian are in general no parity eigenfunctions for finite magnetic field gradient g or
finite electric field strength F . Non-zero electric dipole moments are then to be expected.

In this chapter we study the electric dipole moment in the uppermost adiabatic energy
surface. This surface is constituted by the hydrogenic circular state |circ〉 with respect to
the local magnetic field direction. We first address the finite size term Hγ in Section 7.1 that
is neglected for analytically solving the internal Schrödinger equation in section Sec. 6.4.
The contribution of the term is small for the parameter sets we are interested in and we
can thus treat it perturbatively. In Section 7.2 we add an external electric field before we
further investigate the properties of the resulting dipole moments in Sec. 7.3.

7.1 Permanent electric dipole moments as finite size effect

As soon as the finite size term Hγ = G(xypz +xSx− ySy) from (6.22) is considered we find
a nonzero electric dipole moment expectation value in the uppermost surface even for zero
electric field. As already mentioned this comes from the non-invariance of Hγ under parity
transformation, mores specifically it is Hγ → −Hγ (r → −r).

Doing perturbation theory with the term Hγ is meaningful only if it is small compared
to µ ·B(R). This entails1 the requirement

B/G≫ n2 , (7.2)

1We take the value of µ·B at the origin for the comparison and do not consider the small contribution of the
spin terms. We can therefore approximate µ ·B(O) ≫ |Gxypz| ⇒ 3B ≫ 2Gn2. With this requirement
we guarantee that the matrix elements of the perturbing operator W are much smaller than those of the
unperturbed Hamiltonian. More specifically, it must be required that the off-diagonal matrix elements
of the perturbing operator W (∼ G) are much smaller than the corresponding non-perturbed energy
differences (∼ |B|). For a maximal estimation of the magnitude of |Gxypz| this yields 3B ≫ 2Gn3. The
comparison with numerical results later in the chapter shows, however, that the less strict inequality
(7.2) suffices.
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7 Electric dipole moments

which is easily satisfied for typical Ioffe field strengths (the very small Ioffe field strength
B = 0.1 G and the rather strong gradient G = 10 Tm−1 still yield 21≫ 1 for n = 30).

We also have to make sure that all other terms that have been neglected in Section 6.3 are
much smaller than Hγ and hence do not have to be taken into account for the perturbation
theory. This is true as long as the coordinates of the atoms’ position satisfy2

ρ3 ≪ n

4

√
G

Q
, Z2 ≪ n

√
G

ρQ
, and |Z| ≪ G

4Q
, (7.3)

where ρ2 = X2 + Y 2. All restrictions in (7.3) loosen for decreasing Q and do not emerge
at all for Q = 0. The maximally reachable geometry parameter Q̃ = Q/B in a macroscopic
Ioffe-Pritchard trap depends on the size of the trap (Q̃max ∼ D−2, see Sec. 6.1). If we insert
Q̃max for a millimeter sized trap [99] and the field parameters B = 10 G and G = 0.1 Tm−1

the factor n
√
G/Q is still as large as 6 ·1016 and the restrictions in (7.3) become ρ≪ 13µm,

|Z| ≪ 3600µm for ρ = 13µm, and |Z| ≪ 117 µm, respectively. For the region that we are
interested in in Chapter 9, we can thus safely limit the perturbation theory to including the
term Hγ only.

Perturbation theory with electronic finite size term Hγ
In the analytically diagonalizable case of high Ioffe field the electronic state corresponding
to the uppermost electronic adiabatic energy surface is the circular state with respect to
the local field direction as quantization axis. For a finite gradient G the purely electronic
finite-size term Hγ admixes states to the circular state that have opposite parity. The total
wave function thus looses its definite parity and the matrix elements of the odd dipole
operator er no longer vanish identically due to symmetry. This can result in a permanent
electric dipole moment.

Since the finite size term is suppressed by G (= γ in scaled a.u.) we can treat it pertur-
batively as long as (7.2) holds. Because the unperturbed state vector is analytically given
in the rotated system, i.e. with the local magnetic field axis as the quantization axis, the
perturbing operator has to be rotated into this local frame, too. In a single n-manifold and
in unscaled atomic units it reads:

W = UG(xypz + xSx − ySy)U † , (7.4)

where U is the transformation (6.24) diagonalizing the electronic problem in the Ioffe-
dominated regime. It is convenient to replace the momentum operator in W by angular mo-
mentum operators. This can be done exploiting the energetic degeneracy of an n-manifold

2Comparing Hγ with maximal estimates of the terms that can be neglected due to (6.12) yields the
condition ρ ≪ 1

4
G/Q. The comparison with the purely electronic terms in (6.11) yields n2 ≪ 1

4
G/Q

which is already required in (6.12) and which cannot be broken for practical parameter sets. Comparing
Hγ with HQ entails the condition |Z| ≪ 1

4
G/Q. The terms involving only pi as a relative operator

have been discarded in Sec. 6.3 since they identically vanish within a single n-manifold due to the
commutator i

~
[HA, r] = p, see page 57. They can, however, still couple different n-manifolds. This

second-order contribution to the energy is proportional to Q2. Comparing it with the contribution of
Hγ yields the condition Z2 ≪ n

ρ

√
G/Q if |Z| ≫ ρ, and it yields ρ3 ≪ n

4

√
G/Q if |Z| ≪ ρ. In summary,

the restrictions formulated in Eq. (7.3) have to hold if we want to do perturbation theory with Hγ only.
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7.1 Permanent electric dipole moments as finite size effect

in a field-free environment. The term xypz can be written as

xypz =
1

3i
[xyz,HA] +

1

3
(xLx − yLy) . (7.5)

The commutator vanishes within an n-manifold, 〈α|xypz|α〉 = 1
3〈α|(xLx − yLy)|α〉, and W

becomes

W = U
G

3
(xLx − yLy + 3xSx − 3ySy)U

† . (7.6)

In the transformed frame Hγ then reads

W = UHγU † =λ{(R−1
αβr)x · (R−1

αβL)x − (R−1
αβr)y · (R−1

αβL)y

+ 3(R−1
αβr)x · (R−1

αβS)x − 3(R−1
αβr)y · (R−1

αβS)y}
=:λ cij(R, B,G,Q) ri(Lj + 3Sj) , (7.7)

where λ = G/3 a.u. (= γ1/3/3 scaled a.u.) and Rαβ is the rotation associated with the
transformation U . We write R−1

αβ in Eq. (7.7) instead of Rαβ to recall the fact that the
components of a vector operator transform in the rotation R like those of a vector in the
rotation R−1 [100]. Both the coordinate vector r and the angular momentum operators L

and S are vector operators.

We note that the perturbing operator Hγ that is of purely electronic nature in the lab-
oratory frame now depends on the center of mass coordinates R through the coefficients
cij(R, B,G,Q) in the rotated frame. This dependency is introduced by the transformation
U that rotates the operator into the local direction of the magnetic field and is therefore
R-dependent itself.

The first order energy correction to the uppermost circular state |circ〉 vanishes,

λǫ1 = 〈circ|λcijri(Lj + 3Sj)|circ〉 = 0 , (7.8)

since the operators Li and Si do not change the quantum number l when being applied on
a hydrogen eigenstate (i.e. Li|l,m〉 ∼ |l,m′〉) but they only change the quantum numbers m
and ms, respectively. The matrix element (7.8) is hence proportional to 〈circ|ri|circ〉 which
is zero since the dipole selection rule ∆l = ±1 is violated.

The first order correction in the wave function reads

|λϕ(1)
1 〉 =

∑

p 6=1

〈ϕp|λcij ri(Lj + 3Sj)|ϕ1〉
E0

1 − E0
p

|ϕp〉 =:
∑

p 6=1

Wp1
E1p
|ϕp〉 =:

∑

p 6=1

fp|ϕp〉 . (7.9)

Here we introduced the abbreviations Wpq = 〈ϕp|λcijri(Lj + 3Sj)|ϕq〉 and Epq = E0
p − E0

q ,
and we use the symbols |ϕ〉 = |n, l,m,ms〉 for the unperturbed hydrogenic electronic states
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7 Electric dipole moments

in energetic order, starting with the circular state constituting the uppermost surface,

|circ〉 = |ϕ1〉 =|n, n− 1, n − 1, 1/2〉 ,
|ϕ2〉 =|n, n− 1, n − 2, 1/2〉 ,
|ϕ3〉 =|n, n− 2, n − 2, 1/2〉 ,
|ϕ4〉 =|n, n− 1, n − 3, 1/2〉 ,
|ϕ5〉 =|n, n− 2, n − 3, 1/2〉 ,
|ϕ6〉 =|n, n− 3, n − 3, 1/2〉 ,
|ϕ7〉 =|n, n− 1, n − 1,−1/2〉 ,
...

|ϕ13〉 =|n, n− 2, n − 2,−1/2〉 . (7.10)

The states {|ϕ2〉, |ϕ3〉}, the states {|ϕ4〉, . . . , |ϕ7〉} and the states {|ϕ8〉, . . . , |ϕ13〉} are ener-
getically degenerate in the limit B/G→∞. The quantum numbers are given with respect
to the local quantization axis which is the direction of the magnetic field.

In order to compute the matrix elements Wp1 = Wp,circ defined in Eq. (7.9) we rewrite
the angular momentum operators with ladder operators [101],

Lx|circ〉 =
1

2
(L+ + L−)|circ〉 =

1

2
L−|circ〉, (7.11)

Ly|circ〉 =
1

2i
(L+ − L−)|circ〉 = iLx|circ〉, (7.12)

where L−|l,m〉 =
√
l(l + 1)−m(m− 1) |l,m− 1〉, (~ = 1 atomic unit). The only non-

vanishing matrix elements in (7.9) are

〈ϕ3
ϕ5
|cixriLx|circ〉 =

1

2

√
2n − 3〈ϕ3

ϕ5
|cixri|ϕ2〉 , (7.13)

〈ϕ3
ϕ5
|ciyriLy|circ〉 = i

1

2

√
2n− 3〈ϕ3

ϕ5
|ciyri|ϕ2〉 , (7.14)

〈ϕ3|cizriLz|circ〉 = (n− 1)〈ϕ3|cizri|circ〉 (7.15)

due to the dipole selection rules ∆l = ±1, ∆ml = 0,±1, and ∆ms = 0. We proceed
similarly with the spin operators,

Sx|ms = ±1

2
〉 =

1

2
|ms = ∓1

2
〉 and Sy|ms = ±1

2
〉 = ± i

2
|ms = ∓1

2
〉 . (7.16)

The only non-vanishing matrix elements involving the spin operators are

〈ϕ13|cixriSx|circ〉 =
1

2
〈ϕ13|cixri|ϕ7〉 , (7.17)

〈ϕ13|ciyriSy|circ〉 =
i

2
〈ϕ13|ciyri|ϕ7〉 , (7.18)

〈ϕ3|cizriSz|circ〉 =
1

2
〈ϕ3|cizri|circ〉 . (7.19)
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7.1 Permanent electric dipole moments as finite size effect

Considering the following relations between the dipole matrix elements,

〈l′,m′|y|l,m〉 = ±i 〈l′,m′|x|l,m〉 for m′ =m∓ 1

〈l′,m′|y|l,m〉 = 0 = 〈l′,m′|x|l,m〉 for m′ =m

〈l′,m′|z|l,m〉 ∼ δm,m′ , (7.20)

we find the first order correction to the wave function,

|λϕ(1)
1 〉 = λ

{ |ϕ3〉
E13

(cxz + icyz)

(
(n− 1

2
)x31 +

1

2

√
2n− 3z32

)

+
|ϕ5〉
E15

(cxx − cyy + 2icxy)
1

2

√
2n− 3x52

+
|ϕ13〉
E13,5

(cxx − cyy + 2icxy)
3

2
x13,7

}

= λ

{
(cxz + icyz)

|ϕ3〉
E13

(
(n− 1

2
)x31 +

1

2

√
2n− 3z32

)

+ (
1

2
cxx −

1

2
cyy + icxy)

(
|ϕ5〉
E15

√
2n − 3x52 +

|ϕ13〉
E13,5

3x13,7

)}
. (7.21)

Here we introduced the notation xij = 〈ϕi|x|ϕj〉, yij = 〈ϕi|y|ϕj〉 and zij = 〈ϕi|z|ϕj〉. The
following explicit expressions for the matrix elements can be deduced from the formulas for
the radial and angular integrals involving hydrogenic wave functions in [102],

z32 = −3

2
n , (7.22)

x13 =
3

2
√

2
n
√
n− 1 , (7.23)

x52 =
3

2
√

2
n
√
n− 2 , (7.24)

x13,7 =
3

2
√

2
n

√
(n− 1/2)(n − 3/2)

n− 2
. (7.25)

Plugging these matrix elements into Eq. (7.21) yields

|λϕ(1)
1 〉 = λ

3

4
n
√

2n− 3

{
(cxz + icyz)

|ϕ3〉
E31

((
n− 1

2

)√
n− 1

n− 3/2
− 1

)

+

(
cxx
2
− cyy

2
+ icxy

)

 |ϕ5〉
E51

√
2
√
n− 2 +

|ϕ13〉
E13,5

3

√
n− 1/2

n− 2




}

≈ λ 3

2
√

2
n
√
n

{
(cxz + icyz)n

|ϕ3〉
E31

+

(
cxx
2
− cyy

2
+ icxy

)(√
2n
|ϕ5〉
E51

+ 3
|ϕ13〉
E13,5

)}
, (7.26)

where the last line holds for large principal quantum numbers n. Note that the correction

|λϕ(1)
1 〉 to the circular wave function |ϕ1〉 = |circ〉 has definite parity since |ϕ3〉, |ϕ5〉 and

|ϕ13〉 have the same l quantum number. It is opposite to the parity of |circ〉, however. The
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7 Electric dipole moments

involved coefficients cij(R, B,G,Q), defined in Eq. (7.7), come from the inverse rotation
of r, L and S with Rαβ . Rαβ is the rotation associated with the unitary transformation
U introduced in Sec. 2.4 that diagonalizes the internal problem, Eq. (2.28). Examples for
such transformations are those in Eqs. (4.2) and (6.24). Expressed with the rotation angles
α and β from the exponent of U , the coefficients read explicitely

cixri =x cos2 β + y sinα sin β cos β − z cosα sin β cos β ,

ciyri =x sinα sin β cosβ + y(sin2 α sin2 β − cos2 α)− z sinα cosα(1 + sin2 β) ,

cizri =− x cosα sin β cos β − y sinα cosα(1 + sin2 β) + z(cos2 α sin2 β − sin2 α) , (7.27)

where cij = cji. This is a general expression for the perturbing operator (7.7). The par-
ticular magnetic field configuration only enters via the explicit expressions for the angles α
and β, Eqs. (4.4) or Eqs. (6.25). On the Z-axis (α = β = 0 → U = 1) all the coefficients
but cxx = 1 and cyy = −1 vanish. The correction to the circular state in first order reduces
to

|λϕ(1)
1 〉(O) =λ

3

4
n
√

2n − 3




√

2
√
n− 2

|ϕ5〉
E51

+ 3

√
n− 1/2

n− 2

|ϕ13〉
E13,5



 (7.28)

≈λ3

2
n
√
n

(
√
n
|ϕ5〉
E51

+
3√
2

|ϕ13〉
E13,5

)

. (7.29)

The electric dipole moment expectation value therefore vanishes at the origin due to the
dipole selection rules as will be described in the following.

The electric dipole moment of the electronic state to second order in perturbation theory is
found computing the expectation value of the dipole operator rotated into the local direction

of the magnetic field, U †rU , in the perturbed state in the rotated frame, |ϕ1 + λϕ
(1)
1 〉,

dγ =〈ϕ1 + λϕ
(1)
1 |U †rU |ϕ1 + λϕ

(1)
1 〉

=〈ϕ1|U †rU |ϕ1〉+ 〈λϕ(1)
1 |U †rU |λϕ

(1)
1 〉+ 2 Re(〈ϕ1|U †rU |λϕ(1)

1 〉) . (7.30)

The first two terms in (7.30) vanish due to definite parity of |ϕ1〉 and |λϕ(1)
1 〉 and the

matrix element in the third term simplifies due to the dipole selection rules (since ∆m = 2
for 〈ϕ1|UrU †|ϕ5〉 and ∆ms = 1 for 〈ϕ1|UrU †|ϕ13〉),

〈ϕ1|U †rU |λϕ(1)
1 〉 = f3U

†〈ϕ1|r|ϕ3〉U = f3R−1
αβ




x13

−ix13

0



 , (7.31)
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and it is

dγ = 2 Re



f3R−1
αβ




x13

−ix13

0









= R−1
αβ(Re




λ

E31
(cxz + icyz)

(
2(n − 1/2)x2

31 +
√

2n− 3x13z32

)



1
−i
0







)

= λ

{
1

E31

(
(2n− 1)x2

31 +
√

2n− 3x13z32

)

︸ ︷︷ ︸
=:χ

}
R−1
αβ




cxz
cyz
0



 . (7.32)

We can find the explicit spatial dependence of the electric dipole moment by expressing the
angles α and β with the magnetic field components Bi,

dγ = λχ
{
− cosα sin β cos β




cos β

0
sin β



− sinα cosα(1 + sin2 β)




sinα sin β

cosα
− sinα cosβ




}

=λ
9

8

n2

E31

(
2n2 − 3n−

√
4n2 − 10n + 6 + 1

) 1

|B|3




Bx(2B

2
y +B2

z )

−By(2B2
x +B2

z )
(−B2

x +B2
y)Bz



 . (7.33)

The electric dipole moments hence depends on the ratio of the gradient and the absolute
value of the magnetic field and strongly on the principal quantum number n. In leading
order in n the dependency reads dγ ∼ n4G/|B|. For a Ioffe-Pritchard magnetic field
configuration, Eq. (2.11), dγ vanishes on the Z-axis because the magnetic field components
Bx and By are zero there. This can be seen from the explicit expression for dγ ,

dγ =
λχ

|B|3




X(G− 2QZ)(

(
B −Q

(
X2 + Y 2 − 2Z2

))2
+ 2Y 2(G+ 2QZ)2)

Y (G+ 2QZ)(
(
B −Q

(
X2 + Y 2 − 2Z2

))2
+ 2X2(G− 2QZ)2)(

B −Q
(
X2 + Y 2 − 2Z2

)) (
Y 2(G+ 2QZ)2 −X2(G− 2QZ)2

)



 , (7.34)

where again λ = G/3 a.u. and χ = 9
8E31

n2
(
2n2 +

√
4n2 − 10n+ 6− 4n+ 2

)
. It is conve-

nient for the symmetry analysis to also write down the explicit form of dγ for Q = 0,

dγ(Q = 0) = λχ
G3

|B|3




X
(
2Y 2 +B2/G2

)

Y
(
2X2 +B2/G2

)
(
Y 2 −X2

)
(B/G)



 (7.35)

As can be deduced from Eq. (7.32), the electric dipole moment expectation value is
perpendicular to the local direction of the magnetic field,

dγ ·B ∼ R−1
αβ




cxz
cyz
0



 ·B = 0 . (7.36)
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Figure 7.1: Comparison of perturbatively computed (continuous line) and numerically computed

(dots) expectation values for the electric dipole moments dγ for vanishing geometric parameter Q̃
and vanishing electric field strength F . The dashed lines show the relative error magnified by the
factors 104 (left plot) and 102 (right plot) for visibility. The larger the ratio B/G, the better is the
perturbative approximation, see Eq. 7.2. Even for the parameters in the shown plots, B = 0.1 G
and G = 10 Tm−1, however, the relative error is still smaller than 0.04.

The electric dipole moment induced by the external electric field described in the following
Section 7.2 has the same property. It has its reason in the symmetry of the electronic
density of the perturbed state with respect to a plain perpendicular to the local magnetic
field axis. This is elaborated in Section 7.3 and illustrated in Fig. 7.5.

A comparison with numerically calculated expectation values for the electric dipole mo-
ment can be found in Fig. 7.1.

7.2 Non-parallel moments in an electric field

As has been done for the finite size term Hγ already, we also have to determine the regime
in which the effect of an external electric field can be treated perturbatively. The additional
term in the Hamiltonian, HF , has to be compared with µ · B(R). This can be done at
the origin since for confining parameter sets the magnitude of the magnetic field is smallest
at the origin and other quantities are approximated independently of R. The resulting
restriction is3

Fx ≪ B/n . (7.37)

Perturbation theory with electric field operator

The Hamiltonian for the additional external electric field is HF = qφ = (xFx + yFy + zFz)
since F = −grad φ and q = −e (= −1 in atomic units). According to the considerations in
the preceeding chapter the perturbing operator therefore reads

WF = U(r · F )U † = UrU † · F =: cF,ijFirj , (7.38)

3It suffices to fulfill nFx/(B + 2QZ2) ≪ 1 which should be considered for extremely small B and large
displacements

70



7.2 Non-parallel moments in an electric field

where the small parameter in the operator WF is the modulus of the electric field, λF = |F |.
Considering the the Zeeman term dependence, µB ∼ |B|, the perturbation parameter is
the ratio of the field strengths, λF = |F |/|B|.

The first order energy correction due to WF vanishes due to the dipole selection rules
since ∆l = 0,

λF ǫ
(1,F ) = 〈circ|cF,ijFirj|circ〉 = 0 . (7.39)

The first order correction to the circular state is

|λFϕ(1,F )
1 〉 =

∑

p 6=1

〈ϕp|cF,ijFirj |ϕ1〉
E0

1 − E0
p

|ϕp〉 =:
∑

p 6=1

WF,p1
E1p
|ϕp〉 =

WF,31

E13
|ϕ3〉 , (7.40)

where we use the symbols WF,pq = 〈ϕp|cF,ijFirj |ϕq〉 and Epq = E0
p − E0

q . For an electric
field in arbitrary direction the numerator in (7.40) reads

WF,31 = ex31 [Fx(cF,xx + icF,xy) + FyicF,yy + Fz(cF,zx + icF,zy)] (7.41)

and if we restrict our consideration to an electric field pointing in the X-axis we find

|λFϕ(1,Fx)
1 〉 = ex13Fx(cF,xx + icF,xy)

|ϕ3〉
E13

, (7.42)

where cF,xx = cos β and cF,xy = sinα sin β.

The second order energy correction due to external electric field is

λ2
F ǫ

(2,Fx) =Fx〈ϕ1 + λFϕ
(1,Fx)
1 |cF,xjrj |ϕ1 + λFϕ

(1,Fx)
1 〉

=2Re
(
Fx〈ϕ1|cF,xjrj |λFϕ(1,Fx)

1 〉
)

=2
eF 2
x

E13
x2

13(c2
F,xx + c2

F,xy)

=
9

4

F 2
x

E13
n2(n− 1)(cos β2 + sinα2 sin β2) . (7.43)

For vanishing Q and with the approximate expression for the energetic separation between
the coupling surfaces, E13 ≈ |B|/2, this reads

λ2
F ǫ

(2,Fx) ≈ 9

4
F 2
xn

2(n − 1)
B2 +G2Y 2

B2 +G2Y 2 +G2X2
. (7.44)

The perturbative contribution to the uppermost surface due to an external electric field
(Fx, 0, 0) is thus positive and it is maximal on the z axis.

Both the unperturbed wave function |ϕ1〉 as well as the perturbation |λFϕ(1,Fx)
1 〉 have

definite parity. The electric dipole moment expectation value in the uppermost electronic
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energy surface is therefore, analogously to (7.30),

dF =2Re
(
〈ϕ1|U †rU |λFϕ(1,Fx)

1 〉
)

=R−1
αβ(2x31

Fx
E13

Re(cF,x




x13

−ıx13

0



+ cF,y




ıx13

x13

0



))

=
2Fx
E13

x2
13R−1

αβ




cF,x
cF,y

0





=
2eF

E13
x2

13



cos β




cos β

0
sin β



+ sinα sin β




sinα sin β

cosα
− sinα cos β









=
9

4

Fx
E13

n2(n− 1)
1

B2




B2
y +B2

z

−BxBy
−BxBz



 , (7.45)

where we use cF,x = cosβ, cF,y = sinα sin β, x13 = 3
2
√

2
n
√
n, and the relation (7.20).

Recalling E13 ≈ |B|/2 one can see that the electric dipole moment induced by the electric
field depends on the ratio of the field strengths, as expected, and on the cubed principal
quantum number, dF ∼ n3Fx/|B|.

Inserting the magnetic Ioffe-Pritchard field configuration (6.1) into (7.45) yields

dF =
4Fx
|B|3x

2
13





(
B −Q

(
X2 + Y 2 − 2Z2

))2
+ Y 2(G+ 2QZ)2

XY
(
G2 − 4Q2Z2

)

X(G − 2QZ)(Q(X2 + Y 2 − 2Z2)−B)



 , (7.46)

which, in contrary to dγ , does not vanish on the Z-axis but points in the direction of the
electric field with dF,x = 4x2

13Fx/|B|. This is not true away from the Z-axis. The dipole
moment does not point in the electric field direction there but stays rather perpendicular
to the local direction of the magnetic field (alike dγ , Eq. (7.36)). This can be deduced from
the directional dependence in (7.45) for arbitrary magnetic field configurations,

dF ·B ∼ R−1
αβ




cF,x
cF,y

0



 ·B ∼




B2
y +B2

z

−BxBy
−BxBz



 ·B = 0 . (7.47)

An electric dipole moment that is induced by an external electric field but does not point
in this very direction is not physically intuitive at first glance. A closer look on its origin
reveals a simple explanation that is described in the next Section, 7.3. Before that, we
shortly justify the additivity of dγ and dF .

Addition of perturbatively calculated dipole moments

In this Section and in the previous Section 7.1 we considered the electric field term HF and
the finite size term Hγ as being separate perturbations to the non-perturbed Hamiltonian,
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7.3 Asymmetry for weak electric fields

respectively. For a non-zero external field the right perturbation operator, however, is the
sum of both,

Wtot = UHγU † + UHFU † . (7.48)

The total first order correction to the wave function hence reads

|λ1〉 =
∑

p 6=1

〈ϕp|Wtot|circ〉
E0

1 − E0
p

|ϕp〉 =: |λγ1〉γ + |λF 1〉F . (7.49)

The question is now if the expectation values of the dipole operator computed in the respec-
tive perturbed wave function, dγ and dF , can just be added to find the expectation value
in the total perturbed wave function, d = 〈circ + λ1|r|circ + λ1〉. This is not in general
correct since the calculation of the expectation value of the observable Ô in the perturbed
state |circ + λ1〉 yields mixed matrix elements,

〈circ + λ1|Ô|circ + λ1〉
= 〈circ|Ô|circ〉+ 2λRe(〈circ|Ô|1〉) + λ2〈1|Ô|1〉
= 〈circ + λγ1γ |Ô|circ + λγ1γ〉+ 〈circ + λF1F |Ô|circ + λF1F 〉+ 2Re(〈λγ1γ |Ô|λF 1F 〉)
= Ôγ + ÔF + 2Re(〈λγ1γ |Ô|λF 1F 〉) . (7.50)

The perturbations |λγ1〉γ and |λF 1〉F , Eqs. (7.21) and (7.40), involve the states |ϕ3〉, |ϕ5〉,
|ϕ13〉 which do not differ in their angular momentum quantum number l. They hence have
the same definite parity since the parity of the spherical harmonics does not depend on
the quantum number m. The mixed matrix element 〈λγ1γ |d|λF 1F 〉 therefore vanishes (the
dipole operator is an odd operator) and

d = 〈circ + λ1|r|circ + λ1〉 = dγ + dF . (7.51)

In other words, if taking into account the first order state vector perturbation only, then
adding the different dipole moment expectation values dγ and dF is equivalent to calculating
the expectation value with the combined perturbed state vector, Eq. (7.49).

A comparison with numerically calculated electric dipole moments for finite electric field
strength can be found in Fig. 7.2.

7.3 Asymmetry for weak electric fields

In this section we investigate the properties of the electric dipole moments dγ and dF found
in the preceeding sections. In particular we investigate their symmetry properties, their
orientation to each other and we explain why they are perpendicular to the local magnetic
field axis contrary to intuition.

We first study the symmetry properties of the electric dipole moments. For Q̃ = 0 the
Ioffe-Pritchard setup is translationally symmetric along the Z-axis. The electric dipole
moment does therefore not depend on the Z-position of the atom in this case. For finite
longitudinal confinement, Q̃ > 0, we find that only an approximate symmetry in Z remains
when G/Q≫ 2|Z|. This condition is already incorporated by the restriction (7.2) which is

73



7 Electric dipole moments

-10 000-5000 0 5000 10 000
0

50

100

150

200

250

300

x @a.u.D

d x
@a

.u
.D,

re
la

tiv
e

er
ro

r
*

10
4

-10 000-5000 0 500010 000

-2.´10-8

-1.´10-8

0

1.´10-8

2.´10-8

x @a.u.D
d y
@a

.u
.D

-10 000-5000 0 5000 10 000
-20

-10

0

10

20

x @a.u.D

d z
@a

.u
.D,

re
la

tiv
e

er
ro

r
*

10
0

Figure 7.2: Comparison of perturbatively computed (continuous line) and numerically computed
(dots) expectation values for the electric dipole moments for finite electric field strength F . The
dashed lines show the relative error magnified by the factors 104 (left plot) and 102 (right) for
visibility. Parameters: B = 1 G, G = 10 Tm−1, F = 10−12 a.u., Q = 0.

formulated in Section 7.1 to justify the perturbative treatment of Hγ . If it holds the electric
dipole moment is approximately symmetric to the x-y-plane,

d(X,Y,Z) ≈ −d(X,Y,−Z) . (7.52)

Much stronger than the dependence of the electric dipole moment on Z is its dependence
on the transversal coordinates. As we will see, it is also more relevant for the following
chapters. In a second step we therefore analyze the symmetry of the dipole moment with
respect to the Z-axis without putting any restriction on the geometry parameter Q̃. If no
electric field is present the only non-vanishing electric dipole moment is dγ , generated by
the finite size term Hγ . The symmetry properties of its components read



dγx
dγy
dγz



 (X,Y ) =




dγx
−dγy
dγz



 (X,−Y ) =




−dγx
dγy
dγz



 (−X,Y ) =




−dγx
−dγy
dγz



 (−X,−Y ). (7.53)

It is furthermore dγ,z(X,Y ) = −dγ,z(±Y,±X) and dγ,x(X,Y ) = dγ,y(Y,X). The dipole
moment induced by the external electric field, dF , exhibits different symmetries. It is



dFx
dFy
dFz



 (X,Y ) =




dFx
−dFy
dFz



 (X,−Y ) =




dFx
−dFy
−dFz



 (−X,Y ) =




dFx
dFy
−dFz



 (−X,−Y ). (7.54)

The sum of the contributions, the electric dipole moment for finite electric field d = dγ + dF ,
is hence only symmetric with respect to a reflection about the x-axis (Y → −Y ):

d =




dx
dy
dz



 (X,Y ) =




dx
−dy
dz



 (X,−Y ) . (7.55)

Already for moderate electric fields, however, dγ is a mere perturbation to d and the
symmetry properties of d are approximately those of dF , Eq. (7.54).
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7.3 Asymmetry for weak electric fields

The components and the absolute value of d are depicted in Fig. 7.3. Both numerically
and analytically computed data are plotted for different electric field strengths. It can be
seen that when dγ and dF have the same order of magnitude (plot (d) in Fig. 7.3), all the
symmetries but the one with respect to the x-axis are lost, see Eq. (7.55).

A more accessible depiction of the center of mass coordinate dependent direction of
the induced dipole moments is shown in Fig. 7.4. The contributions to the electric dipole
moment originating from the different perturbations, dF and dγ (blue and red arrows in the
plots, respectively), are always perpendicular to the local magnetic field direction (yellow
arrows). This is formulated in Eqs. (7.36) and (7.47). They are additionally perpendicular
to each other on the y-axis and they are parallel on the positive x-axis and anti-parallel on
the negative x-axis. This can be seen from the explicit expression for the angle that dF and
dγ include,

∠(dF ,dγ) = arccos




Bx
(
2B2
y +B2

z

)

√(
B2
y +B2

z

) (
B2
z

(
B2
x +B2

y

)
+ 4B2

xB
2
y

)





= arccos

(
X
(
B2 + 2G2Y 2

)
√

(B2 +G2Y 2) (B2 (X2 + Y 2) + 4G2X2Y 2)

)

, (7.56)

where we inserted the magnetic field of a Ioffe-Pritchard trap in Helmholtz configuration
(Q = 0) to find the second line. On the X-axis it is ∠(dF ,dγ) = arccos(sign(X)) which
yields the angle π for negative values of X and zero for positive X.

The fact that the electric dipole moment induced by the external electric field does not
point in the direction of this field but is rather perpendicular to the local quantization
axis, which is set by the magnetic field direction B(R), is not intuitive. It can be easily
explained, however, considering the symmetry of the perturbed electronic wave function.
Since the radial part of the wave function is isotropic we are only interested in the angular
part which is a superposition of spherical harmonics. More specifically we are interested in
the absolute value of the wave function which is the square root of the probability density.
The absolute value of some of the involved functions and their superpositions is visualized
in spherical plots in Fig. 7.5 where the coordinate frame of the shown plots is not the
laboratory frame but the z-axis rather points in the local magnetic field direction B̂. The
admixture of |ϕ5〉 and |ϕ13〉 to the circular state does not yield a contribution to the dipole
moment expectation values dF and dγ due to parity arguments, see the reasoning after
Eq. (7.30). In order to explain why dF and dγ are perpendicular to B it therefore suffices
to study the hybridized state |ϕh〉 = |circ〉+f3|ϕ3〉. We can set f3 = 1 for simplicity without
changing the symmetry. The corresponding superposition of spherical harmonics |Y 29

29 +Y 28
28 |

is shown in the bottom left plot of Fig. 7.5 where the z-axis points into the direction of the
quantization axis, i.e. the local magnetic field direction. The superposition is symmetric
under the reflection z → −z but it is not symmetric under the reflection x → −x. We
find that the center of the electronic charge density of the state |ϕh〉, ρe = ϕ∗hϕh/

∫
ϕ∗hϕh, is

situated in the x-y-plane which is perpendicular to the local magnetic field direction and the
electric dipole moment expectation value is hence also perpendicular to the latter. A small
arrow indicates the position of the center of the electronic charge density in the respective
plot.
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7 Electric dipole moments
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Figure 7.3: Components di and absolute value |d| of the dipole moment expectation value for
different electric field strengths F . Plots a) and b) show numerical data whereas plots c) to e) depict
the perturbatively computed dipole moment, Eq. (7.51). The data plotted in a) and c) is computed
for vanishing electric field F and therefore exhibits the symmetries (7.53). The only symmetry that
survives when a small electric field is present (plots b) and d)) is the symmetry with respect to the
x-axis, see Eq. 7.55. For larger electric field the symmetries of dF are approximately valid (plot
e)). Parameters: B = 0.1 G, G = 10 Tm−1, F = 0 (a) and c)), F = 10−14 a.u. (b) and d)) and
F = 10−11 a.u. (e)). All panels depict the x-y-plane within −30 and 30 scaled atomic units. Electric
dipole moments are given in the atomic units ea0 = 2.54 Debye.
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7.3 Asymmetry for weak electric fields

Figure 7.4: Illustration of directions in the x-y-plane. The electric dipole moments dγ and dF
whose directions are indicated by the blue and red arrows, respectively, are always perpendicular
to the local magnetic field axis (yellow). On the y-axis they are additionally perpendicular to each
other, whereas being (anti-)parallel on the positive (negative) x-axis.

We can conclude that an electric field in arbitrary direction, that satisfies the condition
(7.37) allowing a perturbative treatment, can only perturb a circular state in a way that the
electric dipole moment in the direction of the quantization axis z vanishes. In terms of the
polarizability tensor α, defined via di = αijEj, this means that αzi = 0 for circular states.
This is no longer true when the coupling of the Rydberg atoms to the electric field becomes
comparable to the Zeeman coupling and can therefore no longer be treated perturbatively.

The rectangularity of the electric dipole moment expectation value d and the magnetic
field direction B has been verified numerically. The normalized projection of d onto B is
small as long as the electric field strength is small enough for the constraint (7.37) to be
satisfied. The parameters B = 1 G, F = 10−12 a.u., n = 30, for example, yield a maximal
normalized projection of 0.01. As soon as the constraint is violated the electric dipole
moment expectedly aligns with the external electric field.
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7 Electric dipole moments

Figure 7.5: Illustration of the angular dependency of the perturbed electronic wave function ex-
emplified for n = 30. The upper row of spherical plots shows the absolute value of the spherical
harmonics Y 29

29 , Y 28
28 and Y 27

28 that correspond to the hydrogenic eigenfunctions |ϕ1〉, |ϕ3〉 and |ϕ5〉,
respectively, as named in Eq. (7.10). The bottom row shows the absolute value of the superpositions
Y 29

29 +Y 28
28 , Y 28

28 +Y 27
28 , and Y 29

29 +Y 28
28 +Y 27

28 , only the second of which is invariant under parity trans-
formation r → −r since the involved functions have the same l quantum number. This symmetry
is used to justify the addition of the perturbatively computed dipole moments in Eq. (7.51). The
asymmetry of the superposition Y 29

29 + Y 28
28 in the bottom left plot, on the other hand, explains the

existence of the electric dipole moments dF and dγ and their rectangularity to the local magnetic
field direction which here coincides with the Z-axis. The arrow indicates the location of the first
moment

∫
dτrρe (where ρe = ϕ∗hϕh/

∫
ϕ∗hϕh, see text).
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8 Rydberg-Rydberg interaction

In Chapter 5 we include the interaction of the Rydberg atoms among each other into our
considerations via a simplified expression for the dipole-dipole interaction, see Sec. (5.3).
This is a good approximation for atoms in the translationally symmetric setup with an
external electric field in X-direction when their distance in Z, |ZA−ZB |, is large compared
to the transversal oscillator length of the center of mass motion. However, this description
does neither include the orientation of the electric dipole moments nor higher order multipole
moment interactions.

In this chapter we derive expressions for the interaction energy of two Rydberg atoms –
each modeled by a core and an electron – for inter-atomic distances that are large compared
to the distance of the electrons to the respective core. To this end we first expand the
Coulomb interaction of the charges of the different atoms in reciprocal powers of the distance
of the atoms (Sec. 8.1). In a second step (Sec. 8.2) we determine for which conditions the
derived interaction operators can be represented in the adiabatic electronic wave functions
of the individual atoms found in Chapter 4 and Chapter 6. In Section 8.3 we examine the
transition matrix elements of the dipole-dipole operator to other surfaces and the closely
related second order contributions to the interaction of the atoms.

8.1 Multipole expansion of Coulomb interaction operators

Consider the interaction of two Rydberg atoms described by the coordinates of their cores
RA and RB and of their valence electrons RA+rA and RB+rB. The Coulomb interaction
between charges of different atoms reads

V (rA, rB ,RAB)

e2/4πǫ0
=

1

|RAB |
− 1

|RAB − rB |
− 1

|RAB + rA|
+

1

|RAB − (rB − rA)| (8.1)

where we abbreviate the vector connecting the cores by RAB := RA − RB . For large
separations of the atoms – which is assumed in the following – the separation of the cores is
much larger than the extension of the electronic wave functions, 〈rA,B〉 ≪ |RAB | =: RAB .
In this case it is reasonable to write the interaction potential V as a multipole expansion
in the small parameter 〈rA,B〉/RAB . This can be done taking into account that 1

|r−r′| is a
generating function of the Legendre polynomials,

1

|r − r′| =
1

√
r2 − r′2 − 2rr′ cos Θ

=
∞∑

l=0

r′l

rl+1
Pl(cos Θ) for r > r′ . (8.2)

Here Θ is the angle between the coordinates, cos Θ = r.r′/(rr′).
Due to the neutrality of the interacting constituents, the only non-vanishing term up to

third order in the expansion of V is the dipole-dipole term. It reads

rA.rB − 3(rA.R̂AB)(rB .R̂AB)

R3
AB

, (8.3)
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8 Rydberg-Rydberg interaction

where R̂AB = RAB/RAB is the unit vector between the cores of the atoms. The fourth
order term in the expansion (8.2) can be written as

3

2R4
AB

[
r2
B(rB .R̂AB)− r2

A(rA.R̂AB)

−
(
5(rB .R̂AB)(rA.R̂AB) + |rB − rA|2

)(
(rB − rA).R̂AB

) ]

=
3

2R4
AB

[
r2
B(rA.R̂AB)− r2

A(rB .R̂AB)

−
(
5(rB .R̂AB)(rA.R̂AB)− 2(rA.rB)

) (
(rB − rA).R̂AB

) ]
. (8.4)

We abbreviate the projections of the electronic coordinates onto the vector connecting the
cores as rPi := ri.R̂AB and rPAB := (rA − rB).R̂AB = rPA − rPB . The multipole terms up to
the fourth order in the expansion of the potential

V (rA, rB ,RAB) = Vdd + Vdq +O(

( 〈rA,B〉
RAB

)5

) (8.5)

can then be rewritten as follows:

Vdd

e2/4πǫ0
=

1

R3
AB

(
rA.rB − 3rPAr

P
B

)

Vdq

e2/4πǫ0
=

1

R4
AB

3

2

(
r2
Br
P
B − r2

Ar
P
A + (5rPBr

P
A + r2

AB)rPAB

)

=
1

R4
AB

3

2

(
r2
Br
P
A − r2

Ar
P
B + (5rPBr

P
A − 2rA.rB)rPAB

)

≈ 1

R4
AB

3

2

(
(r2 + 5rPBr

P
A − 2rA.rB)rPAB

)
. (8.6)

The last line in (8.6) holds if r2
A ≈ r2

B =: r2, hence, e. g., for two circular Rydberg atoms
in the same n-manifold. In this case the dipole-quadrupole interaction Vdq vanishes if rPAB
vanishes, that is when the electric dipole moment expectation values for both atoms are the
same.

If the Rydberg atoms line up on the Z-axis, i. e. |Xi|, |Yi| ≪ |ZAB |, then the connecting
vector R̂AB is approximately parallel to the Z-axis, R̂AB ≈ (0, 0, 1)1 , and we can write for
the potential

V (rA, rB ,RAB)

e2/4πǫ0
≈ 1

R3
AB

(rA.rB − 3zAzB) +
3

2R4
AB

(
(r2 + 5zAzB − 2rA.rB)(zA − zB)

)
.

(8.7)
As soon as the dependence on RAB is eliminated (consider the atoms distance RAB as
fixed here) the interaction could in principle be described by center of mass-wave-function-
weighted multipole moments of the individual atoms that interact. It is crucial, however,
to take into account the dependence on RAB in order to study the stability of a two-atom
configuration in a trap or to describe its collapse. This is evident form Figure 8.1 in which
the dipole-dipole interaction is plotted assuming RAB to be parallel to the Z-axis (left) and
with the full angle dependence as it is written down in (8.3).

1depending on the naming of the atoms it could also be R̂AB ≈ (0, 0,−1), but let us without loss of
generality assume ZA > ZB
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8.2 Representation in single-atom electronic eigenstates

Figure 8.1: Sections through the two-atom potential including the dipole-dipole interaction and
a trapping potential developed in the next chapter. For the left plot it is assumed that the vector
connecting the atoms RAB is parallel to the Z-axis. The plot on the right shows the full angle de-
pendence of the dipole-dipole interaction, Eq. 8.1. The fundamental difference of the plots indicates
that it is crucial to take into account the full angular dependence of the interaction when stepping
out of the Z-axis, ρ > 0. The same color code is used in both plots. (The choice of coordinates will
become clear in Sec. 9.)

8.2 Representation in single-atom electronic eigenstates

If the multipole-multipole interaction operator V is treated as a perturbation to the elec-
tronic Hamiltonians of the individual Rydberg atoms, HA and HB (to be quantified below),
it is favorable to represent it in the two-electron basis

{|ϕAi ;ϕBj 〉} ≡ {|ij〉} (8.8)

where i and j number the single-atom adiabatic electronic wave functions from above in
energy. The total Hamiltonian reads H = HA +HB + V and it is

(HA +HB)|ϕAi ;ϕBj 〉 = (Ei + Ej)|ϕAi ;ϕBj 〉 . (8.9)

The leading order of the interaction is accounted for in the dipole-dipole interaction
operator (cf. Eq. (8.6))

Vdd(rA, rB ,RAB) =
4πǫ0
e2

1

R3
AB

(rA.rB − 3rPAr
P
B) (8.10)

which can be represented in the above basis as

e2R3
AB

4πǫ0
〈i′j′|Vdd|ij〉 = 〈i′j′|rA.rB − 3rPAr

P
B |ij〉

= 〈i′|r|i〉.〈j′|r|j〉 − 3〈i′|rPA |i〉〈j′|rPB |j〉
= di′i(RA).dj′j(RB)− 3dPi′i(RA,RAB)dPj′j(RB ,RAB) . (8.11)

Here we introduced the symbol dPij := 〈i|r|j〉.R̂AB . For configurations close to the Z-

axis, i. e. when R̂AB ≈ (0, 0, 1), the last term can be approximately written involving
the z-components of the electric dipole moments only, dPi′i(RA,RAB)dPj′j(RB ,RAB) ≈
di′i,z(RA)dj′j,z(RB).
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8 Rydberg-Rydberg interaction

Considering two interacting Rydberg atoms with their valence electron in the uppermost
electronic state, and assuming that the interaction does not induce transitions to other
states, we only need to know d11(R). In this case we treat the operator Vdd as a perturbation
to the electronic Hamiltonians of the individual atoms as stated in the beginning of this
section. In other words the dipole-dipole interaction energy between two atoms should be
a lot smaller than the distance of adjacent single atom electronic surfaces,

Edd/∆E ≪ 1 . (8.12)

In order to show the dependencies of this ratio we consider the atoms to be on the Z-axis
with a symmetric displacement, ZA = −ZB =: Z. It turns out in chapter 9 that the stable
equilibrium for two atoms is reached for such a symmetrically displaced configuration (and
intuition is proved correct). For a finite external electric field the relevant ratio (8.12) on
the Z-axis is approximately

Edd(ZA = −ZB)

∆E(0, 0, Z)
≈ 81

16
(n− 1)2n4 F 2

x

Z3(B + 2QZ2)3
, (8.13)

where we discard finite size effects. We furthermore approximate ∆E(R) ≈ |B(R)|/2 and
more specifically ∆E(0, 0, Z) ≈ (B + 2QZ2)/2 for Q > 0. The ratio (8.13) increases with
increasing electric field strengths and with decreasing Ioffe field strengths. It does not
depend on the magnetic field gradient G on the Z-axis, of course, and it always becomes
small for large enough separations of the atoms. The single-atom-surfaces approximation
thus only breaks down for the atoms coming very close to each other. The ratio (8.13) is
shown in Fig. 9.6 in the next chapter for an exemplary parameter set accompanied by the
overall two-atom potential.

In order to include the energetically neighboring electronic configurations |ij〉, dij(R)
have to be computed. We discuss interaction-induced transitions to lower lying electronic
surfaces in the following section.

8.3 Dipole-dipole interaction induced coupling to lower

surfaces

In the preceding section we consider the interactions of two Rydberg atoms with their elec-
trons in the energetically uppermost state which is constituted predominantly by the circular
state |circ〉 in the frame rotated into the local magnetic field direction. For RAB = ∞ the
two-atom electronic state can be written as a product of single atom electronic eigenstates
|ϕA1 ;ϕB1 〉 ≡ |11〉, cf. Eq. (8.8). We have formulated an approximate requirement for the
interaction strength (Eq. (8.13)) in order for this approach to be a good approximation
also for finite atomic distances. This requirement is formulated for finite electric field and
only considering the dipole-dipole interaction for atoms in the uppermost surface. Even
for vanishing dipole-dipole interaction on the uppermost surface, however, the transition
matrix elements of the dipole-dipole interaction matrix can be large. We now tackle this
problem to find regimes where coupling to lower surfaces is negligible and to quantify the
second order contributions to the interaction of the atoms.

For finite interaction between the atoms the two-atom basis states |ϕAi ;ϕBj 〉 ≡ |ij〉 are
no longer eigenstates of the system. The dipole-dipole interaction induces transitions from
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8.3 Dipole-dipole interaction induced coupling to lower surfaces

|circ; circ〉 = |11〉 to energetically lower lying two-atom states. On the one hand, admixtures
of other states open new decay channels for the atoms and change the overall dipole-dipole
potential that is experienced by the atoms. To prevent that, it has to be guaranteed that
the off-diagonal dipole-dipole interaction matrix elements 〈11|Vdd|ij〉 are a lot smaller than
the energetic distance δ between the involved states. On the other hand these transition
matrix elements are also responsible for the second order energy contributions to the long-
range Rydberg-Rydberg interaction: The dipole-dipole interaction couples the state |11〉
to those two-atom states |ij〉 whose one-atom parts are dipole-connected to |ϕ1〉 = |circ〉,
i.e. the quantum numbers of each electron have to meet the dipole selection rules ∆l = ±1,
∆m = ±1, 0 and ∆ms = 0. The dipole-dipole interaction is dominated by the energetically
closest two-atom states of this type. If no external fields are present the states are degenerate
in the orientational angular momentum quantum number ml and for two-atom states with
low angular momenta lAB = s, p, . . . the closest connected two-atom states thus usually
involve different principal quantum numbers n [103]. In case of an external magnetic field
like in the Ioffe-Pritchard trap, the degeneracy in m is lifted. Keeping in mind that we
deal with circular states, the energetically closest two-atom states that are connected to
|11〉 are in the same n-manifold. The energy difference δ to these states is a lot smaller
than the energy separation to dipole-connected states involving electronic states of different
n-manifolds2. The involved matrix elements are of the same order of magnitude. We will
therefore restrict our considerations to the energetically closest state in the same n-manifold.

In this two-state approximation the Hamiltonian describing the interaction is, cf. [103],
(

0 〈ij|Vdd|11〉
〈11|Vdd|ij〉 δ

)

(8.14)

where δ is the energy difference δ = E(|ϕi〉)+E(|ϕj〉)−2E(|ϕ1〉) < 0 and Vdd is the dipole-
dipole operator (8.3) which is proportional to R−3

AB . Solving for the so-called Förster energy
eigenvalues ∆ one finds

∆|11〉 =
δ

2
+

√
δ2

4
+ 〈ij|Vdd|11〉〈11|Vdd |ij〉 . (8.15)

The energetic correction ∆|11〉 to the two-atom electronic state |11〉 is zero for zero inter-
action, as expected (δ is negative). For large distances RAB the energy shift is of classical
van-der-Waals form

∆|11〉 ≈
|〈11|Vdd|ij〉|2
−δ ∼ − 1

δR6
AB

> 0 , (8.16)

2Due to the dipole selection rules ∆l = ±1, ∆ml = 0,±1, the circular state |n, l,ml〉 = |n, n− 1, n− 1〉 =
|circ〉n can only decay into the states |n, n− 2, n− 2〉 = |3〉 and |n− 1, n− 2, n− 2〉 = |circ〉n−1, the
latter being the circular state in the adjacent n-manifold. The energetically closest dipole-connected
state to |circ〉n⊗|circ〉n involving states from other n-manifolds is therefore |circ〉n−1⊗|circ〉n+1 (bringing
the second atom into a non-circular state in the (n+1)-manifold yields larger energetic distances). The
energetic distance reads ∆Einter = |2E(|circ〉n)− (E(|circ〉n−1) + E(|circ〉n+1)) | = 2/(n2(n2 + 1)). It has
to be compared with the energetic distance to the nearest dipole coupled state within the n-manifold
which is |33〉 (see text), ∆Eintra = E(|11〉)− E(|33〉) ≈ |B|. For ∆Einter to be a lot larger than ∆Eintra

the condition
∆Einter ≫ ∆Eintra ⇔ n−4 ≫ |B|/2

must be satisfied. We already assumed this to be true in order to neglect inter-n-manifold couplings in
Sec. 2.3. For n = 30 is explicitely reads B ≪ 2900 Gauss, which is the case for any considered parameter
set in this thesis.
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8 Rydberg-Rydberg interaction

Figure 8.2: Double-logarithmic diagram of
the Förster energy ∆|11〉 from Eq. (8.15) for
vanishing electric field on the Z-axis. The ar-
rows indicate the cross-over distances Rc where
the Förster energy transition happens from the
resonant form (∼ R−3

AB) to the van-der-Waals
form (∼ R−6

AB), see text. Parameters: B = 10 G
(solid lines), B = 1 G (dashed lines), Q = 0,
F = 0, n = 30.
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while for small RAB the eigenvalue takes the resonant form

∆|11〉 ≈ |〈11|Vdd|ij〉| ∼ R−3
AB . (8.17)

To quantify what is meant by “large” and “small” a cross-over distance Rc can be defined
via δ = |〈11|Vdd|ij〉|, cf. Ref. [103]. In the cross-over region around Rc the interaction
changes from the resonant to the van-der-Waals form.

For both concerns, quantifying the coupling to other surfaces and describing the Förster
energy, we are thus interested in the absolute value of the matrix element 〈11|Vdd|ij〉. Its
explicit form reads

〈11|Vdd|ij〉 = R−3
AB

(
d1i(RA).d1j(RB)− 3dP1i(RA,RAB)dP1j(RB ,RAB)

)
, (8.18)

cf. Eq. (8.11). It involves the transition dipole matrix elements d1i = 〈ϕ1|r|ϕi〉, the only
non-vanishing of which is

d13(R) = x13R−1
αβ




1
−i
0



 . (8.19)

If we assume the atoms to be on the Z-axis, the rotation Rαβ is one, d13 does not depend
on the position of the atom R and the projection of d13 onto RAB vanish. On the Z-axis
the only possibly finite transition matrix element in the dipole-dipole interaction therefore
reads

〈11|Vdd|33〉 =
9

4

n2(n − 1)

R3
AB

. (8.20)

The resulting Förster energy eigenvalue ∆|11〉 (8.15) is plotted in Fig. 8.2 for the Ioffe field
strengths B = 10 G and B = 1 G. To quantify the coupling, this matrix element has to be
compared with the energetic separation δ ≈ |B| of the surfaces. The coupling is small as
long as

〈11|Vdd|33〉 ≪ δ ⇔ RAB ≫ n

(
9

4|B|

)1/3

= Rc . (8.21)

For the parameters B = 10 G and n = 30 this yields RAB ≫ 1.3 µm, which is indicated by
the arrow in Fig. 8.2.
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9 Interaction-induced stabilization of two

Rydberg atoms

We now understand how the large size of Rydberg atoms change their coupling to the
inhomogeneous magnetic field (Ch. 4). We already know that the dipole moments induced
by an external electric field can prevent them from ionizing each other (Ch. 5) and we also
have analytical expressions for these dipole moments at hand (Ch. 7). We know the influence
of the longitudinal confinement on the electronic adiabatic energy surfaces (Ch. 6) and we
additionally understand the interaction between the Rydberg atoms (Ch. 8). Combining
all these insights enables us to study two interacting Rydberg atoms confined in a Ioffe-
Pritchard trap. If we model this interaction with the dipole-dipole interaction (8.10), which
is the leading order in the expansion of the Coulomb interaction (8.1), the Schrödinger
equation for the two-atom center of mass wave function, cf. Eq. (2.29), for this situation
reads

(TA + TB + VA(RA) + VB(RB) + Vdd(RA,RB))|ΨAB〉 = E|ΨAB〉 . (9.1)

The one atom potential for the atoms A and B, VA = VB, can be approximated for high-
Ioffe-configurations by the analytically diagonalized term (6.28). The interaction potential
Vdd, Eq. (8.11), is formulated using the electric dipole moments of the individual atoms
computed in the single-atom electronic adiabatic states. They depend on the positions of
the atoms in the field and Vdd therefore does not only depend on the distance of the atoms
and the relative orientation of their moments but on the absolute position of both atoms
in the field. As long as Vdd is only a perturbation in (9.1) the electronic wave function
of the two-atom system can be written to a good approximation as the product of the
single-atom electronic states. The energetically uppermost electronic state of the system
is then a product of the circular states of the atoms, each rotated into the local magnetic
field direction. For the description of the dipole-dipole interaction between the atoms in
this state it then suffices to know the electric dipole moment d calculated by perturbing
the circular state in Chapter 7.

We begin this chapter with exploiting the potential of the Ioffe-Pritchard trap to reduce
the dimensionality of the system. Due to the strong confinement in transversal direction we
can restrict our considerations in a first step to the Z-axis in Section 9.1. In this simplified
geometry we analytically find a stable configuration of the atoms in which their distance
is easily tuneable without affecting neither stability nor trap frequencies. In Section 9.2
we extend our considerations into three dimensions and dwell on the question of stability.
The last section is dedicated to experimental implementations suggesting different ways of
realizing the system.
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9 Interaction-induced stabilization of two Rydberg atoms

9.1 One-dimensional stable configuration

We have shown in chapter 4.3 that a Ioffe-Pritchard trap can provide an extremely strong
confinement for Rydberg atoms in the transversal direction. We now want to take advan-
tage of this peculiarity in order to restrict the study of the total potential Vtot(RA,RB) =
VA(RA)+VB(RB)+Vdd(RA,RB) to the Z-axis. In Section 9.2.2 we investigate the require-
ments on the magnetic field parameters to guarantee that this simplification is permitted.
There we find that for large enough gradients G this is always the case since they entail
strong transversal confinement. To simplify the situation even further we impose an exter-
nal electric field pointing in the X-direction that keeps the atoms away from each other and
prevents autoionization. This has led to the one-dimensional Rydberg gas in Chapter 5.

In particular we proceed as follows. In Section 9.1.1 we first consider a simplified ex-
pression for the total potential in which the one-atom potential is approximated by the
analytically diagonalized term (6.28) and the electric dipole moment d is approximated by
the contribution induced by the electric field, dF . We find an equilibrium position for the
two atoms with an inter-atomic distance that is tuneable by the electric field strength. The
analysis of small oscillations of the atoms around this equilibrium position yields analytical
expressions for the trap frequencies that exhibit no dependency on the electric field strength
and are hence independent from the distance of the atoms. In Section 9.1.2 we find the
range of parameters where the applied approach is a good approximation. Finally in Section
9.1.3 we investigate the importance of higher order multipole interactions of the Rydberg
atoms.

9.1.1 Small oscillations of generalized coordinates

In order to study the one-dimensional configuration we set the coordinates X and Y to zero
and assume Q to be non-zero and positive1 which generates the confining potential in the
Z-direction. Please note that in this case rPi ≡ ri.R̂AB = zi in Eq. (8.6), since the atomic
separation vector coincides with the Z-axis and Eq. (8.7) is an exact equation. We insert the
electric dipole moment of the single-atom eigenstate belonging to the uppermost potential
energy surface, that has been computed in Chapter 7, into the dipole-dipole interaction,
Eq. (8.11). Additionally inserting the trapping potential Eq. (6.30), naming the atoms so
that ZA > ZB, and omitting the constant potential offset 2nB, the two-atom potential
represented in the single-atom electronic eigenfunctions reads2

Vtot,circ(ZA, ZB) := 〈circ,circ|Vtot(ZA, ZB)|circ,circ〉

= 2nQ(Z2
A + Z2

B) +
81F 2
xn

4(n− 1)2

4(B + 2QZ2
A)(|ZA − ZB|)3(B + 2QZ2

B)
(9.2)

With the approximation B + 2QZ2
A,B ≈ B that holds as long as

|ZA,B | ≪
√
B/(2Q) , (9.3)

1We assume Q to be non-negative throughout this work except when stated otherwise.
2The electric constant 1/(4πǫ0) and the electron charge e are both fundamental atomic units. We kept the

expression 4πǫ0/e
2 in the last sections in order to avoid dimensional ambiguity. To simplify matters we

now discard it.
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9.1 One-dimensional stable configuration

the two-atom potential can be simplified to

Vtot,circ(ZA, ZB) ≈ 2nQ(Z2
A + Z2

B) +
81

4
n4(n− 1)2F

2
x

B2

1

(ZA − ZB)3
. (9.4)

The third term in (9.4) is the approximate version of the dipole-dipole interaction operator.
It only depends on the distance of the atoms. Higher order terms originate in the quadratic
Z-dependence of the interacting electric dipole moments. They become significant only for
very large Z or exceptionally strong parameters Q reachable on atoms chips. It is reasonable
to introduce generalized coordinates for the distance of the atoms and for their center of
mass, ZD > 0 and ZS, respectively:

ZD = ZA − ZB , ZA = ZS + ZD/2 , (9.5)

ZS = (ZA + ZB)/2 , ZB = ZS − ZD/2 . (9.6)

With this new set of coordinates the condition (9.3) translates to

|ZS |+ ZD/2≪
√
B/(2Q) . (9.7)

If this condition holds, the total potential (9.2) reads

Vtot,circ(ZD, ZS) ≈ 81

4
n4(n − 1)2F

2
x

B2
Z−3
D + nQ

(
Z2
D + 4Z2

S

)
(9.8)

The coordinate for the center of mass of both atoms, ZS , appears as a quadratic shift
4nQZ2

S . An equilibrium configuration of the atoms is therefore bound to be symmetric
around the origin, i.e. ZS = 0. Minimizing the energy of the two-atom potential within this
approximation we find the equilibrium position at

ZS,min = 0 , ZD,min = 3 5

√
F 2
x (n− 1)2n3

8B2Q
≈ 3

23/5
n 5

√
F 2
x

B2Q
. (9.9)

As can be seen from (9.9), the expression for the equilibrium distance ZD,min can be readily
controlled by the electric field Fx when the Ioffe field is not varied at the same time. The
condition of validity of our approximation (9.7) at the equilibrium position (9.9) reads

cD :=
3

2
5

√
F 2
x (n− 1)2n3 10

√
Q3

2B9
≈ 3n

2

10

√
F 4
xQ

3

2B9
≪ 1 . (9.10)

See Tab. 9.1 for explicit values.
Since we are interested in the motion of the system around a configuration of stable

equilibrium, all functions can be expanded in Taylor series about that equilibrium. The
expansion of the potential V around the equilibrium position lacks a linear term. This
is because the generalized forces acting on the system, ∂V/∂Zi, vanish at equilibrium per
definition. The constant offset term, i.e. the potential energy at equilibrium, can be made
to disappear by adding an offset to the potential. The expressions’ leading order reads [104]

V =
1

2

∑

i,j

∂2V

∂Zi∂Zj

∣∣∣∣
Zi=0

ZiZj =:
1

2

∑

i,j

VijZiZj . (9.11)
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9 Interaction-induced stabilization of two Rydberg atoms

Table 9.1: Explicit values for the condition |ZA,B| ≪
√
B/(2Q) at the approximate equilibrium

position on the Z-axis, i.e. ZD,min/2 ≪
√
B/(2Q) ⇔ cD ≪ 1. The values are computed for the

geometry parameter Q̃ = 6 · 10−16 which is around the highest values reachable with macroscopic
Ioffe-Pritchard traps [99]. The restriction cD ≪ 1 is broken only for very low Ioffe fields (given in
Gauss) paired with relatively high electric fields (given in atomic units; 10−10 a.u. of el. charge≈
0.5 V/cm).

cD F = 10−12 a.u. F = 10−11 a.u. F = 10−10 a.u. F = 10−9 a.u.

B = 0.1 G 0.0297 0.0747 0.1877 0.4714
B = 1 G 0.0075 0.0188 0.0471 0.1184
B = 10 G 0.0019 0.0047 0.0118 0.0297
B = 100 G 0.0005 0.0012 0.0030 0.0075

Similarly, the kinetic energy can be written approximately as a quadratic function of the
velocities in the system,

T =
m

2
(Ż2
A + Ż2

B) =
m

2
(
1

2
Ż2
D + 2Ż2

S) =:
1

2

∑

i,j

TijŻiŻj , (9.12)

where m here is the sum of the masses of both atoms. The Lagrangian is then given by
L = 1

2(ŻT T Z − ŻTVZ). Taking into account the symmetry of T = (Tij) and V = (Vij)
the Euler-Lagrange equations yield the wave equation

T Z̈ + VZ = 0 , (9.13)

where Z = (Zi). Provided that the above approximations hold, Eq. (9.3), we find

V = 2nQ

(
5 0
0 4

)

and T =

(
m/2 0

0 2m

)

(9.14)

for the matrices of coefficients.
In order to solve the set of simultaneous linear differential equations (9.13) we use the

oscillatory ansatz Zi = Caie
−iωt. Substituted into Eq. (9.13) it yields the generalized

eigenvalue equation for the amplitudes a = (ai),

Va = ω2T a . (9.15)

The equations are already decoupled due to the approximation (9.3) and due to the appro-
priate choice of generalized coordinates. The frequencies read

ω2
D =

20nQ

m
, ω2

S =
4nQ

m
, (9.16)

and they belong to the eigenvalues a(D) = {
√

2, 0} and a(S) = {0,
√

2}, respectively. It is
most remarkable that within the approximation (9.3) the eigenfrequencies are independent
of the electric field strength Fx. They indirectly depend on the Ioffe field strength since
Q = BQ̃, where Q̃ is the parameter quantifying the geometry of the trap.

The procedure does not yield such a nice analytic form if the condition (9.3) does not
hold.
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Figure 9.1: Two-atom potential en-
ergy, Eq. (9.2) (continuous line),
the harmonic approximation (dotted
line) and the 1D ground state (not to
scale) along ZD for ZS = 0 for dif-
ferent electric field strengths F . The
trap frequency does not change when
F is altered. Parameters: B = 10 G,
Q = B · 6 · 10−16. F = 1 · 10−11

(red), F = 5 · 10−11 (blue), F = 1 ·
10−10 (green), from smaller to larger
equilibrium separations ZD,min of the
atoms.
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Figure 9.2: For different magnetic
Ioffe field strengths B the trap fre-
quencies are different. Shown are
again the two-atom potential energy
(continuous line), the harmonic ap-
proximation (dotted line) and the 1D
ground state (not to scale) along ZD
for ZS = 0. Parameters: F =
5 · 10−11, Q = B · 6 · 10−16. B =
50 G (red), B = 10 G (blue), B =
5 G (green) from smaller to larger
equilibrium separations ZD,min of the
atoms.
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Figure 9.3: The minimum posi-

tion ZD,min ∼ 5

√
F 2
x/(B

2Q) from
Eq. (9.9) does not change as long as
the electric field F and the bias field
B are varied by a factor f3 and by a
factor f2, respectively. f = 0.5 (red
curve, lowest energy), f = 1 (blue
curve, the same parameters as the
blue curves in Figs. 9.1 and 9.2: B =
10 G, F = 5 ·10−11, Q = B ·6 ·10−16),
f = 1.5 (green curve).
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9 Interaction-induced stabilization of two Rydberg atoms

9.1.2 Tuning the distance of the atoms

In the last section we have found that the equilibrium distance ZD,min of the atoms,
Eq. (9.9), can be increased without changing the trap frequency by just increasing the
electric field strength F . This is depicted in Fig. 9.1 where the potential and its harmonic
expansion around the equilibrium position are drawn for different electric field strengths.
In order visualize the dependence of the distance on the electric field strength the scale of
the plot is very large, both in V and in ZD. The harmonic approximation of the potential
around the minimum therefore seems to be very poor. This is not the case, however, as can
be seen from a zoomed view around one of the minima in Fig. 9.5.

Lowering the bias field B also increases the distance of the atoms. This, however, affects
the trap frequencies in all directions. Fig. 9.2 shows increasing trap frequencies in z for
increasing atomic equilibrium distances. The trap frequency can, of course, also be changed
leaving the equilibrium distance the same. The electric field strength and Ioffe field strength
just have to be changed without altering the ratio F 2

x/B
3 which occurs in the expression

for ZD,min in Eq. (9.9). This is exemplified with realistic parameters in Fig. 9.3.

In order for the just described mechanisms to be meaningful, two requirements have to be
met. First, the quality of the approximation (9.3) has to be guaranteed that has led to the
electric field independent expressions for the trap frequencies, Eq. (9.16). The requirement
in question can be reduced to 1≫ cD ∼ 5

√
F 2/B3, Eq. (9.10), by inserting the approximate

equilibrium position (9.9). Explicit numbers for different parameter pairs {B,F} can be
extracted from Table 9.1: For a Ioffe field of 10 Gauss the approximation becomes poor for
electric field strengths larger than ∼ 10−9. For a Ioffe field of 10 Gauss this does not happen
until F ∼ 10−8. The direct impact on the trap frequency ωD can be seen in Figure 9.4 where
we show the relative error of ωD,approx from Eq. (9.16) with respect to the trap frequency at
equilibrium that has been computed without assuming the approximation (9.10) to be valid.
In the latter case no analytically closed form for the equilibrium position can be found. We
therefore evaluate the trap frequency numerically assuming ZS = 0. The figure shows that
for a Ioffe field of 1 Gauss the relative error exceeds 10−3 for electric field strengths lager
than F = 4.5 · 1010 a.u. ≈ 2.3 V/cm.

Second, it has to be assured that describing the potential as being harmonic is a good ap-
proximation at least in a region around the local minimum that is larger than the extension
of the center of mass ground state. If this is the case the statement that the trap frequency
stays the same while the distance of the atoms is changed implies that also the center of
mass ground state for the different distances is the same. In Fig. 9.5 the two-atom potential
is plotted accompanied by its harmonic approximation around the equilibrium position and
by the center of mass ground state. The figure shows that we can safely assume the center
of mass ground state to be a Gaussian with the corresponding trap frequency ωD. With
the parameter set in the left plot in Fig. 9.5 (B = 1 G) for instance the difference of the
potential and its approximation is hardly visible in the depicted region. The plot on the
right in the same figure furthermore shows expansion coefficients of the potential around
the equilibrium position (also computed without using the approximation). It is evident
from the plot that the description of the potential as a parabola around the equilibrium
position is a good approximation for small Ioffe field strengths.

We have to keep in mind that we assume the dipole-dipole interaction not to induce
couplings to lower electronic adiabatic energy surfaces. This is a good approximation as
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0.1 0.5 1.0 5.0 10.0 50.0

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

FHV�cmL

re
la

tiv
e

er
ro

r
of
Ω

D

0.1 0.5 1.0 5.0 10.0 50.0

0.000

0.002

0.004

0.006

0.008

0.010

FHV�cmL

re
la

tiv
e

er
ro

r
of
Ω

D

Figure 9.4: Relative error of the analytically computed approximate trap frequency ωD,approx which
does not depend on the electric field strength (solid line, Eq. (9.16)) with respect to the trap frequency
computed without using the approximation (9.10). In spite of a nearly linear behavior of the relative
error, a logarithmic scale is chosen in order to stretch the regime of relatively low electric field
strengths we are primarily interested in (F = 1010 a.u. ≈ 0.5 V/cm). Parameters: Q = B · 6 · 10−16,
n = 30, and B = 10 G → ωD,approx = 16.8 kHz (left plot), B = 1 G → ωD,approx = 5.32 kHz (right
plot).
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Figure 9.5: Quality of the harmonic approximation. The left and the middle plot depict the har-
monic approximation (dotted line) of the two-atom potential Vtot,circ (solid line) in a region around
the local minimum comparable to the extension of the approximate center of mass ground state
(thick Gaussian) for different Ioffe field strengths. The double-logarithmic plot on the right shows
the quadratic (dotted), cubic (dashed) and the quartic (dot-dashed) coefficient of the expansion of
the potential around the equilibrium position against the Ioffe field strength. It implies that ap-
proximating the potential by a parabola is a good approach for Ioffe field strengths up to 10 Gauss.
Parameters: B = 1 G (left plot), B = 10 G (middle plot), F = 10−11 a.u., Q = B · 6 · 10−16, n = 30.
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9 Interaction-induced stabilization of two Rydberg atoms

Figure 9.6: Ratio of dipole-dipole
interaction energy and approximate
energetic distance of the two upper-
most electronic adiabatic surfaces,
Edd/∆E, (blue line) accompanied by
the two-atom potential (with sub-
tracted offset, red line) with its min-
imum indicated with a vertical line.
Parameters: B = 10 G, Q = B · 6 ·
10−16, F = 1 · 10−11, n = 30.
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Table 9.2: As long as cOSA ≪ 1 the dipole-dipole interaction energy of the two atoms in their
equilibrium position is much smaller than the energetic distance of the electronic adiabatic surfaces
of a single atom. There the single-atom-eigenstates approximation dealt with in Section 8.2 can be
applied. Parameters: n = 30, Q = B · 6 · 10−16 (maximum Q̃ for a macroscopic Ioffe-Pritchard
trap [99]).

cOSA F = 10−12 a.u. F = 10−11 a.u. F = 10−10 a.u. F = 10−9 a.u.

B = 0.1 G 1 7 46 289
B = 1 G 0.02 0.1 0.7 5
B = 10 G 0.0003 0.002 0.01 0.07
B = 100 G 0.000005 0.00003 0.0002 0.001

long as the dipole-dipole interaction operator Vdd can be treated as a perturbation to the
electronic Hamiltonians of the individual atoms. This has been discussed in Section 8.2
already and it has been quantified into the restriction Edd/∆E ≪ 1, cf. Eq. (8.13) and
(8.12). This ratio is shown in Fig. 9.6 accompanied by the overall two-atom potential (9.2)
for an exemplary parameter set.

The restriction (8.12) must hold in particular for the equilibrium configuration of the
atoms in order for the latter to be stable. Approximating B ≫ 2QZ2 and inserting the
approximate equilibrium position {ZS,min, ZD,min} (analytically computed also using B ≫
2QZ2, Eq. (9.9)), we find

cOSA = 3 · 24/5n3F
4/5
x Q3/5

B9/5
= 3 · 24/5n3F

4/5
x Q̃3/5

B6/5
≪ 1 . (9.17)

The number cOSA is tabulated for a range of parameters in Tab. 9.2. It shows that for
B = 10 G the condition (9.17) is still satisfied for F = 10−9 a.u..

9.1.3 Quadrupole-quadrupole repulsion

Ever since the beginning of the chapter we did not account for terms of higher order than
the dipole-dipole term in the expansion of the Coulomb interaction between the two atoms,
Eq. (8.1). We now study the influence of higher order multipole interactions and answer
the question in which situations can they change the behavior of the system as predicted
by the simplified model Hamiltonian in Eq. (9.1).
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9.1 One-dimensional stable configuration

We do this on the Z-axis for vanishing and for finite electric field. We also add estimates
for the strengths of interaction terms when the atoms do not arrange on the Z-axis.

Vanishing electric field on the Z-axis

Isolated atoms in pure quantum states cannot have a permanent dipole moment [105].
This is due to the definite parity of their electronic states. As presented in Chapter 7.1
Rydberg atoms in a Ioffe-Pritchard trap feature a permanent electric dipole moment even
for vanishing electric field. It originates from the finite size term Hγ in (6.22) that admixes
quantum states to the circular state that have different parity and it is therefore suppressed
by the perturbation parameter λ. On the Z-axis, however, the finite size term only admixes
the states |ϕ5〉 = |n− 2, n− 3, 1/2〉 and |ϕ13〉 = |n, n− 2, n− 2,−1/2〉, see Eq. (7.28), which
results in no electric dipole moment due to the dipole selection rules (∆m = ±1, 0, ∆ms =
0).

We can conclude that Rydberg atoms on the Z-axis of a Ioffe-Pritchard trap do not exhibit
a permanent electric dipole moment when no electric field is present and are therefore neither
subject to dipole-dipole interaction nor to dipole-quadrupole interaction.

However, Rydberg atoms in circular states feature a quadrupole moment since the circular
electronic wave function is not spherically symmetric. As already the non-perturbed state
has a quadrupole moment, it is not suppressed by a perturbation parameter as opposed to
the dipole moments (only the corrections to the quadrupole moment due to the admixture
of states with different parity is suppressed by λ). The leading order of the expansion in
case of vanishing electric field on the Z-axis is hence the repulsive quadrupole-quadrupole
interaction. For the special configuration it can be calculated using the simplified expression
[106]

Vqq =
3

4Z5
D

{r2
Ar

2
B − 5(z2

Ar
2
B + r2

Az
2
B)− 15z2

Az
2
B + 2(xAxB + yAyB − 4zAzB)2} . (9.18)

With the matrix elements

〈circ|r2|circ〉 =
1

4
n2(n+ 1)(n +

1

2
)

〈circ|x2|circ〉 = 〈circ|y2|circ〉 =
1

2
n3(n+ 1)

〈circ|z2|circ〉 =
1

2
n2(n+ 1) (9.19)

we find

Vqq =
1

Z5
D

3

2
n4(n+ 1)2(n+

1

2
)2 ≈ 1

Z5
D

3

2
n8 . (9.20)

For low enough center of mass kinetic energy the repulsion of the atoms due to the quadrupole-
quadrupole interaction could in principle stabilize Rydberg atoms on the Z-axis against
auto-ionization. In combination with the confinement in the Z-direction it could even per-
mit a structured one-dimensional configuration similar to the atom chain in the magneto-
electric trap discussed in Chapter 5.3. We must not forget, however, that the van-der-Waals
interaction as a second order contribution to the multipole interaction can be large and at-
tractive even though it is suppressed by an additional factor Z−1

D compared to Vqq.
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Figure 9.7: Quadrupole-quadrupole interaction energy of two Rydberg atoms on the Z-axis of a
Ioffe-Pritchard trap for vanishing electric field strength against their distance ZD (Eq. (9.18), thick
line) accompanied by the longitudinal confinement due to the Ioffe-Pritchard configuration (see text,
thin line). The sum of both is depicted as a dashed line and the corresponding trap frequencies are
19.9 kHz, 6.3 kHz, 2.0 kHz and 0.6 kHz (from top left to bottom right). Parameters: Different Ioffe
field strengths B = 10 G (left column of plots), B = 1 G (right column), and different longitudinal
confinement parameters Q = B ·6 ·10−16 (upper row of plots), Q = B ·6 ·10−18 (lower row), n = 30.

In Fig. 9.7 Vqq is plotted accompanied by the confining potential for different parameter
sets. The confining potential for both atoms reads for symmetric displacement on the Z-axis

n (|B(0, 0, Z)| + |B(0, 0,−Z)|) = nQZ2
D , (9.21)

cf. Eq.(6.28). The sum of confinement and quadrupole-quadrupole interaction (dashed grey
lines in Fig. 9.7) has its minimum at ZD,qq with a trap frequency ωqq there. For large n
they read

ZD,qq = n

(
15

4Q

)1/7

, ω2
qq = 28nQ/MAB , (9.22)

where MAB is the mass of both atoms. The trap frequencies that correspond to the pa-
rameters in Fig. 9.7 (from top left to bottom right) are 19.9 kHz, 6.3 kHz, 2.0 kHz and
0.6 kHz.

Finite electric field on the Z-axis

The situation changes completely when an electric field is applied. The induced dipole mo-
ments scale linearly with the field strength and the dipole-dipole interaction hence depends
quadratically on F . Its magnitude can be estimated from the first term in Eq. (9.8) to be

Vdd,Z-axis ≈
1

Z3
D

(
9

2
n3F

B

)2

(9.23)
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9.1 One-dimensional stable configuration

The dipole-quadrupole interaction happens to be zero on the Z-axis even for finite electric
field strength. This can be seen from Eq. (8.6) if one additionally bears in mind that the
electric dipole moment of atoms on the Z-axis is perpendicular to it and all projections
P
r i:= ri.R̂AB therefore vanish in the uppermost surface.

The atoms have an electric quadrupole moment even for zero electric field. The quadrupole-
quadrupole interaction is thus a first order effect. The contributions to the quadrupole
moment that come from an additional electric field (or from the finite size term Hγ in
Eq. (6.22)) are of second order and do not significantly alter the quadrupole-quadrupole
interaction for moderate field strengths. For an estimate of its magnitude it thus suf-
fices to take the field-free expression (9.18). In order for the dipole-dipole interaction,
|Vdd| ∼ |d|2/Z3

D, to dominate the quadrupole-quadrupole interaction, |Vqq| ∼ 3
2n

8/Z5
D, the

following condition must be fulfilled,

∣∣∣
Vdd
Vqq

∣∣∣ =
27

2

(
ZDF

nB

)2

≫ 1⇔ ZD ≫
1

3

√
2

3
n
B

F
. (9.24)

For a Ioffe field strength B = 10 G and an electric field strength as low as F = 10−12 a.u.
(and n = 30) this reads ZD ≫ 35000 a.u.= 1.7 µm. Increasing the electric field strength
to F = 2 · 10−11 already yields ZD ≫ 1700 a.u.= 90 nm. We never consider such small
atomic distances since the electronic wave functions would overlap when the atoms come
this close to each other. For the examples above it is therefore legitimate to neglect the
quadrupole-quadrupole interaction, as is done in the Hamiltonian (9.1) from the beginning
of this chapter. Around the equilibrium configuration ZD,min of the atoms, Eq. (9.9), the
condition (9.24) is even easier to fulfill.

Finite electric field, three-dimensional case

To complete our considerations we estimate the magnitudes of the different multipole inter-
actions for finite electric field when the atoms do not arrange on the Z-axis. The most simple
approach is to compare the maximal possible value for a given distance of the atoms. This
distance must then just be large enough in order for |Vdq|max ∼ r2|d|/R4

AB to be dominated
by |Vdd|max ∼ |d|2/R3

AB . Inserting the expression for the dipole moment from Chapter 7,
|dF | ≈ 9

2
F
Bn

3, and also r2 ≈ n4/4, the condition reduces to

|Vdd|max

|Vdq|max
≫ 1⇔ R≫ n4

4|d| ≈
n

18

B

F
. (9.25)

For the parameters B = 10 G, F = 10−12 a.u. and n = 30 this reads R ≫ 7090 a.u.=
0.35µm (the extension of the electronic cloud of a circular Rydberg atom for n = 30 is
around a thousand Bohr radii and the distance of two such atoms must in any case be a
lot larger so that they do not ionize each other). If the electric dipole moment of at least
one of the atoms vanishes, not only Vdd but also Vdq vanishes, too. The only situation in
which Vdq can be the leading order of the interaction is thus when Vdd vanishes due to the
relative arrangement of the finite electric dipole moments to each other. This happens when
the Vdd changes character from a repulsive to an attractive interaction which can lead to
instable configurations of two atoms in the trap even for a finite electric field in transversal
direction. The stability of atomic configurations and their collapse is discussed in the next
section.
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9 Interaction-induced stabilization of two Rydberg atoms

9.2 Three-dimensional stable configuration and collapse

For a finite longitudinal confinement and a finite electric field there is a local minimum in the
two-atom potential for a configuration where both atoms are located symmetrically on the
longitudinal axis as long as the transversal confinement is sufficiently strong. Very strong
translational confinement leads to the one-dimensional situation discussed in the preceding
Chapter 9.1. Since the magnetic field gradient G only influences the transversal but not
the longitudinal confinement the trap frequencies in the transversal and the longitudinal
direction can be altered independently. If the transversal confinement is decreased and/or
if the longitudinal confinement is increased the local minimum of the potential mentioned
above turns into a saddle point: The tendency of the dipole-dipole interaction to force the
atoms to step out of the Z-axis wins against the confining nature of the transversal magnetic
field gradient. The atoms then attract each other and most probably eventually ionize.

In order to substantiate and refine the statements formulated above we proceed as follows.
In Section 9.2.1 we first demonstrate that potential minima occur only at displacements of
the atoms that are approximately symmetric in Z, i.e. ZS ≈ 0. We then generalize the
findings from the one-dimensional treatment in Sec. 9.1 to three dimensions while keeping
a strong transversal confinement and we analyze a characteristic example. In Section 9.2.2
we then investigate for which parameters the stability of the equilibrium configuration is
lost, the responsible mechanisms for that loss and the way the collapse takes place.

9.2.1 Longitudinal symmetry and stable configuration

We first examine the longitudinal symmetry of the two-atom potential. We find that when
easily satisfiable conditions are met (to be specified below) the potential exhibits an approx-
imate longitudinal symmetry. We can exploit this symmetry to restrict our considerations
to atomic configurations with symmetric displacements in Z, i.e. ZS = 0.

This can be justified on account of the smallness of Q̃ = Q/B. For the analytical solution
of the one-dimensional problem we already require the condition

2Q̃Z2 ≪ 1 (9.26)

to be true, see Eq. (9.3). For the perturbative derivation of the electric dipole moment in
Section 7.1 we assume the requirement

4Q̃|Z| ≪ G/B (9.27)

to hold, see Eq. (7.3). If these two conditions (9.26) and (9.27) hold, one can show that the
dipole-dipole interaction Vdd between two atoms in the circular state |circ〉 only exhibits
dependencies on ZS that are negligible. The remaining part in the total potential Vtot that
still depends on ZS is the confinement due to the Ioffe-Pritchard magnetic field configura-
tion. For typical parameters this magnetic confinement is harmonic around the origin in
all directions. It therefore gives a positive contribution to the two-atom energy when the
overall center of mass is displaced from the origin. In the one-dimensional case both argu-
ments are apparent from the approximate expression for the total potential on the Z-axis,
Eq. (9.8): The dipole-dipole interaction term does not depend on the two-atom-center-of-
mass coordinate ZS and the dependence in the magnetic confinement term is quadratic
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9.2 Three-dimensional stable configuration and collapse

and positive for positive Q, 4nQZ2
S . Within the range of validity of the approximations

(9.26) and (9.27) we can thus conclude that minimizing the energy of the two atoms always
leads to a symmetric configuration, ZS = 0. We therefore set ZS = 0 for the following
considerations.

Stable configuration

The counteracting forces on the atoms, that come from the longitudinal confinement (∼
BQ̃Z2) and from the dipole-dipole repulsion on the Z-axis (∼ Z−3

D (F/B)2), try to push the
atoms out of the longitudinal axis of the trap. A stable configuration close to the equilibrium
position (9.9) on the z-axis can be achieved as long as the transversal confinement (∼ G/B)
is strong enough.

The one-dimensional approach to the description of two Rydberg atoms subject to dipole-
dipole-interaction and magnetic confinement in Chapter 9.1 requires such a strong transver-
sal confinement. Before we deal with the mechanisms in three dimensions that can destabi-
lize the equilibrium configuration described in Chapter 9.1, we first generalize the findings
for the stable configuration for three dimensions by keeping a relatively strong transversal
confinement. Strong transversal confinement can for instance be obtained with small enough
Ioffe field strengths B. In order to guarantee that the uppermost electronic adiabatic sur-
face is well separated from others, however, and in order to achieve useful trap frequencies
in the longitudinal direction, the Ioffe field strength should not be chosen too small. The
transversal confinement is quantified by the trap frequencies in X- and Y -direction. For
one atom in a Ioffe-Pritchard trap and for finite Q they read

ω2
X =

2n

M

G2 − 2Q(B + 2GZ)

B + 2QZ2
, ω2

Y =
2n

M

G2 − 2Q(B − 2GZ)

B + 2QZ2
, (9.28)

which for the parameters used in Fig. 9.8 yields ωX = 15.71 kHz and ωY = 15.73 kHz for
Z = 5 µm. The corrections due to the dipole-dipole interaction energy when two atoms are

considered are proportional to n
3

M
F
BZ
−5/2
D for dominating Ioffe field and yield a reduction of

the trap frequencies of 6% in the example from Fig. 9.8 (ZD = 10 µm).

We are interested in the properties of the six-dimensional adiabatic two-atom potential
around its local minimum. In Chapter 9.1 we studied the harmonicity of the potential
around that minimum in the direction of the generalized coordinate for the distance of the
atoms, ZD, see Fig. 9.5. The generalized coordinate for the center of mass of both atoms,
ZS , only appears as the quadratic term 4nQZ2

S in the approximate version of the potential
(9.8). The harmonicity in this coordinate is thus granted. We also know from the discussion
Section 6.4 that the transversal confinement is harmonic around the Z-axis, see Eq. (6.31).
In view of the harmonic nature of the total potential around the equilibrium position, it is
reasonable to diagonalize the Hesse matrix there in order to compute the trap frequencies
and the principal axes of the potential. The six-dimensional center of mass ground state of
the two atoms in this harmonic potential is a product of harmonic oscillator wave functions
in every of the six generalized coordinates and the ground state energy is half the sum of all
frequencies. We note that the center of mass dynamics of the individual atoms is strongly
coupled via the generalized coordinates Ri,S and Ri,D, each containing the respective atomic
X-,Y - and Z-components of both atoms.
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Figure 9.8: Sections through the six-dimensional two-atom potential around the local minimum.
The ZD-coordinate of the minimum is indicated by the vertical lines. The thick black contours are
plotted at the energy of the two-atom harmonic center of mass ground state which corresponds to
half the sum of all six trap frequencies, E0 = 4.1 kHz. The contour plots are clipped at energies
larger than 20 kHz (we offset the energy at the minimum to zero). The dashed lines in the plots
on the left hand side guarantee the quality of the single-atom-surfaces-approximation introduced in
Sec. 8.2. They are drawn where the ratio of dipole-dipole interaction energy and energetic distance
of adjacent single-atom electronic surfaces, Edd/∆E, Eq. (8.13), equals 0.1 (red) and 0.01 (green).
Parameters: B = 30 G, G = 10 Tm−1, Q = B · 6 · 10−16, F = 2 · 10−11 a.u.= 10.28 V/m, n = 30.

We exemplify this by using the parameter set B = 30 G, G = 10 Tm−1, Q = B · 6 · 10−16,
F = 2 · 10−11, and n = 30. For these parameters all the inequalities, that have been formu-
lated up to now in order to measure the quality of the applied approximations, hold with
a confidence factor of at least 102. The only exception is Eq. (7.37) describing the quality
of the perturbative approach to determine the electric dipole moment. It explicitely reads
nFx/B = 0.047 ≪ 1 for the chosen parameters which is still satisfactory. The numeri-
cally computed local minimum is the same (within numerical precision) as the analytically
predicted minimum on the Z-axis, Eq. (9.9). Sections of the total potential around this
minimum are plotted in Fig. 9.8.

We diagonalize the Hesse matrix (∂2Vtot/(∂Ri∂Rj)) at the local minimum position of the
total potential and extract the trap frequencies along the principal axes from the eigenvalues
and its eigenvectors, respectively. They are

11.1kHz, (YA = YB),

11.1kHz, (XA = XB),

10.7kHz, (YA = −YB),

9.7kHz, (XA = −XB),

5.0kHz, (ZD),

4.5kHz, (ZS), (9.29)

where the equations in brackets define the directions of the principal axis. We will introduce
appropriate generalized coordinates for Xi and Yi analogous to ZD and ZS in Eq. (9.34).
The trap frequencies in (9.29) have to be compared to the lifetime of the interacting atoms.
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9.2 Three-dimensional stable configuration and collapse

The field-free lifetime of the electronic state corresponding to the uppermost surface is
τ(n, n− 1) ≈ 3

2c2

(
n
α

)5
= 2.3 ms [97]. The lifetime is reduced due to admixtures to the pure

circular state originating from the finite size term and the coupling to the electric field. For
the Rydberg atom chain discussed in Chapter 5, where we have both a strong transversal
confinement and an external electric field, the lifetime is still 2.1 ms, which is close to field-
free value. This means that with the trap frequencies in Z-direction in Eq. (9.29) we expect
that more than 10 oscillations of the atomic motion in Z-direction may be observed within
the lifetime of the Rydberg state. Since ω2 ∼ nQ = nBQ̃ the trap frequencies ω can
obviously be increased with higher principal quantum numbers n, with higher Ioffe field
strengths B and by allowing for a stronger longitudinal confinement. The latter can be
done by shrinking the trap onto an atom chip [50].

We again emphasize that the stable two-atom configuration is not immediately lost when
one of the atoms decays to the circular state of the adjacent n-manifold since the electronic
properties of that state are very similar and, therefore, so are the electric dipole moment
and the adiabatic surface.

9.2.2 Loss of confinement and collapse

The discussion in the preceding sections is based on a strong transversal confinement. We
now study mechanisms that endanger the stability of the equilibrium position on the Z-
axis when the transversal confinement is relaxed. We identify two situations in which
this happens. One of them is the loss of the confining property of the Ioffe-Pritchard
field configuration for a single atom for large ratios B/G. Furthermore, the stability of
the equilibrium configuration is also lost as soon as the transversal confinement becomes
smaller than the transversal anti-confinement due to the dipole-dipole interaction. This
anti-confinement comes from the reduction of the dipole-dipole interaction energy when the
atoms step out of the Z-axis.

Breakdown of magnetic confinement

The confinement in the Z-direction is created by changing the Ioffe-Pritchard magnetic
field configuration from being translationally symmetric in the longitudinal direction to
being quadratically dependent on Z. This is done by changing the distance of the coils
that generate the (Ioffe-) bias field. For a magnetic trap on a chip formed by a Z-shaped
wire this quadratic dependence in Z around the position of minimal |B| is immanent. This
dependence cannot be canceled completely like in case of a macroscopic trap and its strength
depends on the length of the middle wire, see Sec. 6.1.

With the breaking of the translational symmetry of the Ioffe-Pritchard trap the parameter
Q̃ is introduced which characterizes the geometry of the trap. It directly couples the Ioffe
field strength B to the quadratic confinement in Z. On the Z-axis the absolute value of the
magnetic field reads (cf. Eq. (6.1))

|B(0, 0, Z)| = B + 2QZ2 = B(1 + 2Q̃Z2) . (9.30)

The geometric parameter Q̃, however, also changes the transversal confinement. For small
displacements from the longitudinal axis the absolute value of the magnetic field on the X-
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and Y -axis reads

|B(X, 0, Z)| =
(
B + 2QZ2

)
+
G2/2−BQ− 4GQZ

(B + 2QZ2)
X2 +O

(
X3
)
,

|B(0, Y, Z)| =
(
B + 2QZ2

)
+
G2/2−BQ+ 4GQZ

(B + 2QZ2)
Y 2 +O

(
Y 3
)
. (9.31)

The absolute value |B| is directly coupled to the approximate adiabatic energy surfaces
via the expression (6.29). The curvature of |B| in transversal direction, i.e. the factors
that prefix X2 and Y 2 in (9.31), can become negative and, hence, the transversal magnetic
confinement for a single atom is only guaranteed as long as G2/2 − BQ − 4GQ|Z| > 0,
which is equivalent to

G2

B2
> 2Q̃ (1 + 4

G

B
|Z|) . (9.32)

In order for this condition to be broken at the origin of the trap, |Z| = 0, the ratio G/B
must be extremely small since the highest reachable values for the geometry parameter Q̃
in macroscopic Ioffe-Pritchard traps are around 10−15 (we use Q̃ = 6 ·10−16 for all examples
in this chapter [99]). For large enough displacements in Z-direction, however, the condition
can always be broken. To give a sense of the numbers we insert the exemplary parameter
set B = 10 G, G = 2 Tm−1 and Q̃ = 6 · 10−16 to find that the displacement |Z| must be as
large 2 · 107 = 1 mm to break the condition (9.32). We do not consider such large atomic
distances from the trap center in any example we make.

Dipole-dipole interaction induced collapse

The second reason for the loss of the stable equilibrium configuration on the Z-axis is the
dipole-dipole interaction between the two atoms. Besides being the interaction of longest
range between neutral atoms, the major property of the dipole-dipole interaction is its
anisotropic character. This comes into play when the atoms can step out of the Z-axis and
the angles between the electric dipole moments and the connecting vector change.

If these angles are the same for both atoms, i.e. when the dipole moments are parallel,
and assuming the strengths d of the electric dipole moments to be the same, the expression
(8.3) for the dipole-dipole interaction operator simplifies to

Vdd =
d2

R3
AB

(1− 3 cos2 θ) , (9.33)

where θ is the angle between the direction of the moments and the direction of the connecting
vector RAB , 0 < θ < π/2. The dipole-dipole interaction has then the angular symmetry of
the Legendre polynomial of second order P2(cos θ), i.e. d-wave [107], which can be deduced
from the expansion (8.2). The expression in brackets in (9.33) yields one for parallel dipole
moments next to each other (θ = π/2). It becomes smaller when θ is reduced and eventually
becomes negative for angles smaller than the so called magic angle θ∗ = arccos (3−1/2) ≈ 55◦.
For the head-to-tail configuration, θ = 0, it yields −2.

Analogously to the generalization of Z-coordinates in Eqs. (9.5) it is convenient to in-
troduce generalized coordinates also for the displacement of the two atoms in the same
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9.2 Three-dimensional stable configuration and collapse

direction in X or Y , XS and YS , and for the displacement in different directions in X or
Y , XD and YD:

XS =
1

2
(XA +XB) , XD = XA −XB ,

YS =
1

2
(YA + YB) , YD = YA − YB . (9.34)

The advantage of these coordinates will become clear in the course of this section. Their
introduction is also suggested by the results of the principal axes analysis in the example
for a stable configuration in Section 9.2.1, see Eq. (9.29).

Polarized case: In order to simplify our considerations let us first assume that the
external electric field F = (Fx, 0, 0) fully polarizes the atoms. This happens for relatively
large electric field strengths as discussed in Sec. 7.2. Then all dipole moments point in
the X-direction. For the sake of clearness we now additionally assume that the magnitude
of the dipole moments does not depend on the position of the atom in the trap. Then a
displacement of both atoms A and B from the Z-axis in the same direction, XS 6= 0 and/or
YS 6= 0, does not change the interaction energy since the angle θ does not change. The angle
also stays the same for a displacement of the atoms in opposite y-directions, YD 6= 0. Here
the interaction energy decreases only slightly due to the increase of the distance RAB of the
atoms. A displacement of the atoms in opposite X-directions, XD 6= 0, however, changes
θ and thereby decreases the interaction strength considerably. For a decreasing transversal
confinement we therefore expect the stable configuration to collapse by a displacement of
the atoms in opposite X-directions in the polarized case.

Tilted moments: The reasoning above is based on the assumption that the atoms are
polarized, meaning that their dipole moments point in the direction of the electric field
independent of the position of the atom. This is an oversimplification in case of Rydberg
atoms in a strongly confining magnetic field configuration. We have seen in Chapter 7 that
the application of a moderate electric field induces a dipole moment dF that is perpendicular
to the local direction of the magnetic field. In the Y -Z-plane dF points in the X-direction3.
For finite X, by contrast, it has a finite Z-component, see Sec. 7.2. The interesting physics
thus again happens for displacements in X and we therefore set YS = XD = 0 in the
following. The non-polarized case is illustrated (for Q = 0) in Fig. 9.9.

In case of a displacement of the atoms in opposite directions, XD > 0, the dipole moments
of the two atoms include different angles with their connecting axis. They differ from the
angles in the fully polarized case, θP , by the additional tilt due to the local magnetic
field direction, ±∆θ. The interaction energy no longer depends on (1 − cos2(θP )) but on
(1−cos(θP +∆θ) cos(θP −∆θ)) which is smaller than the former for 0 ≤ θP ±∆θ ≤ π/2. For
electric dipole moments perpendicular to the local magnetic field axis, as considered here,
the reduction of the dipole-dipole interaction energy for displacements in XD is therefore
smaller than in the fully polarized case discussed above. The curvature in that direction is
thus expected to be still positive for shallower transversal confinements.

Symmetric displacements of the atoms in the same X direction, XS 6= 0, do not change the
dipole-dipole interaction energy in the fully polarized case as stated above. For tilted dipole

3The local direction of the magnetic field, and with it also the direction of the electric dipole moment,
in fact also depends on Q. We do not consider this dependence at this point since its effect on the
dipole-dipole interaction is small and does not considerably alter the effects we want to explain.
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Figure 9.9: Spacial dependence of the direction of the electric dipole moments dγ and dF . The left
plot shows the electric dipole moment dγ that originates from the finite size of the Rydberg atom.
It is perpendicular to the local magnetic magnetic field direction (yellow arrows) and it vanishes
on the Z-axis. On the positive (negative) X-axis it is parallel (anti-parallel) to the electric dipole
moment dF that is induced by the electric field and depicted in the middle plot. The plot on the
right-hand side illustrates the orientation of dF with respect to the vector RAB connecting the
interacting atoms A and B when they are displaced in the same X-direction, XS 6= 0, or in different
X-directions, XD 6= 0, (dashed lines).

moments, however, the energy is reduced since the moments are no longer perpendicular
to their connecting axis. This can be seen from the illustration in Fig. 9.9. The additional
angle due to the orientation of the moments perpendicular to the local magnetic field axis
(for Q = 0) explicitely reads

∆θ = arctan

(
G

B
X

)
. (9.35)

The effects due to ∆θ described above are therefore weak for typical parameter sets since for
typical parameters the ratio G/B is small. A strong effect on the dipole-dipole interaction
energy is expected for large ratios G/B. In this case, however, the transversal confinement
is strong and the curvature in X-direction is positive on the Z-axis nonetheless.

The situation would again complicate if we would additionally incorporate the electric
dipole moment dγ into the discussion. dγ originates from the finite-size-term of the Rydberg
Hamiltonian, see Section 7.1, and its X-dependence is illustrated in Fig. 9.9. It is small
compared to the electric field induced moments dF for all electric field strengths considered
in this chapter and it is thus only responsible for small corrections to the loss mechanisms
predicted above.

The loss of the stable local minimum for the two Rydberg atoms is depicted in the upper
row of plots in Fig. 9.10 for an exemplary parameter set. Shown are sections through the
total two-atom potential in XS and XD around the local minimum position on the Z-axis
(cf. Eq. (9.9)). For decreasing magnetic field gradient G (from left to right in the figure)
the curvature of the potential along XD changes from positive to negative. This is not due
to the loss of magnetic confinement of the single atoms but it is because of their interaction
which is largest on the Z-axis. This is confirmed by the second row of plots in the same
figure where we plotted the same sections only considering the magnetic confinement for
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Figure 9.10: The series of transversal sections through the total two-atom potential (upper row of
plots, YS = YD = ZS = 0, ZD = ZD,min from Eq. (9.9)) shows the zero crossing of the curvature
with respect to XD for decreasing magnetic field gradient G. The second row of plots shows only
the magnetic confinement for comparison. The colors represent the same energies in every plot.
Parameters: G = 3 Tm−1 (left column), G = 2 Tm−1 (middle), G = 1 Tm−1 (right), B = 10 G,
Q = B · 6 · 10−16, F = 10−10, n = 30.

both atoms and omitting their interaction energy.

Verification of predictions: In order to verify the predictions above on how the sta-
bility of the equilibrium configuration of the atoms gets lost, and the predictions for the
configuration the atoms take when they step out of the Z-axis, we minimize the total
two-atom potential for the coordinates XS , XD, YS and YD for fixed symmetric displace-
ments of the atoms in Z, ZD > 0 and ZS = 0. As discussed above we expect the atoms
to align on the Z-axis as long as the transversal confinement dominates the interaction.
When the longitudinal confinement increases and/or the transversal confinement decreases,
the atoms are expected to step out of the Z-axis in different X-directions, i.e. XD 6= 0,
XS = YD = YS = 0, since the negative transversal gradient at the equilibrium position due
to the dipole-dipole interaction is largest in the XD-direction.

This change of the atoms’ configuration is depicted in Figs. 9.11 and 9.13 where we plot
the computed XD positions that yield minimal energy for fixed distances ZD as black dots
into the two-dimensional section through the two-atom potential for different parameter sets
(left plots). The bar graphs on the right-hand side show the minimal energies computed
for the fixed distances ZD. The Figs. 9.12 and 9.14 complement the Figs. 9.11 and 9.13,
respectively, by showing the results of the minimization for the other coordinates. The
numbers for Yi are many orders of magnitude smaller than those for XD, as expected. The
displacement of the center of mass of both atoms from the origin, XS , is only one or two
orders of magnitude smaller than XD. This correction to the prediction XS = 0 is a finite
size effect as discussed below.

The parameter sets in Fig. 9.11 only differ in the magnetic field gradient G. The series
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Figure 9.11: Loss of local minimum for decreasing magnetic field gradient G of the Ioffe-Pritchard
trap. Left column: Two-dimensional sections of the six-dimensional two-atom potential through
the XD-ZD plane, XS = YS = YD = ZS = 0. Red colors symbolize high energies and blue colors
symbolize low energies. The plot range of all three contour plots is ±150 kHz. Right column:
Minimal energy of the two-atom potential against ZD. Each point is computed minimizing the total
potential for fixed ZD with the other center of mass coordinates as parameters. The XD positions
are shown as black dots in the sections on the left. As expected, XS , YS and YD are small, see
Fig. 9.12. Parameters: B = 10 G, Q = B ·6 ·10−16, F = 10−10 a.u., n = 30, G = 3 Tm−1 (first row),
G = 2 Tm−1 (second row), G = 1.5 Tm−1 (third row).
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Figure 9.12: Complement to Fig. 9.11. Coordinates XS , YS and YD of the minimum position of
the total potential for fixed ZD given in µm. They are small compared to the values of XD (O(10),
see Fig. 9.11) due to the peculiarities of the dipole-dipole interaction described in the text. The
parameters are the same as in Fig. 9.11: B = 10 G, Q = B · 6 · 10−16, F = 10−10 a.u., n = 30,
G = 3 Tm−1 (first row), G = 2 Tm−1 (second row), G = 1.5 Tm−1 (third row).
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Figure 9.13: Loss of local minimum for increasing magnetic Ioffe field strength B of the Ioffe-
Pritchard trap. Left column: Two-dimensional sections of the six-dimensional two-atom potential
through the XD-ZD plane, XS = YS = YD = ZS = 0. Red colors symbolize high energies and blue
colors symbolize low energies. The plot range of all three contour plots is ±150 kHz. Right column:
Minimal energy of the two-atom potential against ZD. Each point is computed minimizing the total
potential for fixed ZD with the other center of mass coordinates as parameters. The XD positions
are shown as black dots in the sections on the left. As expected, XS , YS and YD are small, see
Fig. 9.14. Parameters: G = 2 Tm−1, Q = B · 6 · 10−16, F = 10−10 a.u., n = 30, B = 8 G (first row),
B = 11 G (second row), B = 14 G (third row).
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Figure 9.14: Complement to Fig. 9.13. Coordinates XS , YS and YD of the minimum position of
the total potential for fixed ZD given in µm. They are small compared to the values of XD (O(10),
see Fig. 9.13) due to the peculiarities of the dipole-dipole interaction described in the text. The
parameters are the same as in Fig. 9.13: G = 2 Tm−1, Q = B · 6 · 10−16, F = 10−10 a.u., n = 30,
B = 8 G (first row), B = 11 G (second row), B = 14 G (third row).
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9 Interaction-induced stabilization of two Rydberg atoms

of plots shows the loss of the local minimum position for relaxing transversal confinement
due to decreasing field gradients G (from top to bottom). The vertical lines indicate the
position of the equilibrium configuration on the Z-axis. Sections perpendicular to those
in Fig. 9.11 that cross at these vertical lines have been described above and are depicted
in the upper row of Fig. 9.10. The bar graphs on the right hand side show the minimal
potential energy of the two atoms depending on the atomic distance in Z-direction, ZD (we
still assume symmetric displacements in Z, i.e. ZS = 0). As long as the equilibrium position
on the Z-axis is a local potential minimum, the minimal energy concordantly exhibits an
energetic barrier towards smaller distances of the atoms. The peak of this energetic barrier
is located at one of the two saddle points of the potential that are located symmetrically to
the longitudinal axis. When the local potential minimum is lost, these saddle points collapse
into one saddle point at the equilibrium position on the Z-axis where the local minimum
simultaneously vanishes. This can be seen in the series of plots on the left hand side. The
energy plots on the right hand side show that the energetic barrier also simultaneously
vanishes.

The plots in Fig. 9.13 essentially show the same mechanism. The only difference is that
not the magnetic field gradient G but the magnetic Ioffe field strength B is changed here.
The transversal confinement also decreases for increasing B but in contrast to the situation
in Fig. 9.11 the longitudinal confinement changes too: It increases for increasing B (top
to bottom in Fig. 9.13). The local minimum then equally turns into a saddle point, the
energetic barrier vanishes, and the stable configuration for two atoms is lost.

In contrast to the prediction above, where we argued assuming the magnitude of the
dipole moments not to depend on the position of the atoms, we find the minimal value of
the potential energy at XS 6= 0. As can be seen from Figs. 9.11 to 9.14, XS is around two
orders of magnitude smaller than XD, but nonzero. This is due to the permanent electric
dipole moments dγ for vanishing electric field, which in turn are a signature of the finite
size of Rydberg atoms. The origin of these moments dγ is described in Section 7.1 and
their properties in the X-Z-plane are depicted in the left plot of Fig. 9.9. The illustration
shows that they point in the same direction as the electric dipole moments induced by
the electric field (dF , middle plot) for positive displacements of the atoms in X. They
are anti-parallel for negative X and they vanish on the Z-axis. Since dγ is a lot smaller
than dF for all considered electric fields in this chapter, dγ can be considered a correction
to dF and their sum d is parallel to dF but larger or smaller in magnitude than dF for
positive or negative X, respectively. This introduces an asymmetry in XS and XD into the
dipole-dipole interaction energy and is hence responsible for the nonzero values of XS for
the position of minimal potential energy4.

From Section 9.1.1 we know that it is possible in the one-dimensional case to increase the
equilibrium distance of the two Rydberg atoms by just tuning the electric field strength F
while neither changing the trap frequencies ωZS and ωZD nor changing the conditions for
having a stable configuration. Fig 9.15 shows that this still holds in three dimensions. We
start with a parameter set for which the local minimum on the Z-axis is close to being lost:
A slight increase of B or a slight decrease of G would suffice to turn the local minimum

4This asymmetry is also responsible for the negative values of XD for the positions of minimal potential
energy plotted in Figs. 9.11 and 9.13 in spite of the fact that the slight asymmetry in the dipole-dipole
interaction energy is not visible when the total potential is plotted.
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Figure 9.15: : Changes of the electric field strength hardly alter the stability of the equilibrium
position. In the plotted example changing F by a factor of 10 alters the trap depth by less than
2 kHz (rows 1 and 2, F = 5 · 10−10 a.u., F = 5 · 10−11 a.u., respectively). Rows 3 and 4: Different
principal quantum numbers (n = 80 line 4, n = 30 line 5). Parameters: B = 11 G, G = 2 Tm−1,
Q = B · 6 · 10−16.
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9 Interaction-induced stabilization of two Rydberg atoms

into a saddle point. Hence the height of the energetic barrier that prevents the atoms from
ionizing is small (upper row of plots in Fig. 9.15). Changing the electric field strength by
an order of magnitude hardly changes the height of this barrier (bottom row of plots in
Fig 9.15). We conclude that the stability of the equilibrium configuration is insensitive to
changes in the electric field strength and thereby also the transversal part of the center of
mass wave function of the atoms.

We note that changing the principal quantum number n also has no considerable effect
on the stability of the equilibrium position as long as the requirements involving n can be
met.

Analytical stability condition

The stability of the equilibrium configuration of the two atoms hence depends essentially
on the magnetic field parameters B, G and Q but not significantly on F and n. For a fixed
trap geometry parameter Q̃ the ratio G/B has to be large enough to prevent a collapse
of the system. When the ratio G/B decreases, the two saddle points of the potential in
the XD-ZD-plane come closer to the Z-axis and eventually merge at the position where
the local minimum simultaneously vanishes. This can be observed in the series of plots in
Fig. 9.11.

In order to find an analytical stability condition involving the magnetic field parameters
we examine the curvature of the potential in XD-direction at the equilibrium position. It is
the sum of the curvatures of the magnetic confinement and of the dipole-dipole interaction
energy. The former reads

(
∂2

∂X2
D

n(|B(RA)|+ |B(RB)|)
) ∣∣∣∣
Z-axis

=
n(G2 − 2BQ)

2B +QZ2
D

. (9.36)

For small ratios G/B (which is the case when the system is close to collapse), and assum-
ing F ≫ nG, we find the approximate expression for the curvature of the dipole-dipole
interaction energy in XD-direction

(
∂2

∂X2
D

Vdd

) ∣∣∣∣
Z-axis

≈
(
Fx
B

)2 n6

Z5
D

, (9.37)

which strongly depends on the distance of the atoms. Inserting the equilibrium distance
ZD,min from Eq. (9.9), where the dipole-dipole repulsion and the longitudinal confinement
add to zero, we find (

∂2

∂X2
D

Vdd

) ∣∣∣∣
equilibrium

≈ −6nQ . (9.38)

For a stable configuration the curvature has to be positive at the equilibrium position.
Hence the sum of the expressions (9.36) and (9.38) has to be larger than one there. This
yields the condition

G2

B2
> 14Q̃ . (9.39)

As soon as the right-hand side of this inequality becomes as large as the left-hand side the
two saddle points at the potential barriers join on the Z-axis and the local minimum is lost.
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Inserting the geometry parameter for the millimeter trap in Ref. [99] used throughout the
chapter, Q̃ = 6 · 10−16, the stability condition takes the explicit form G/(Tesla/meter) >
0.17 ·B/Gauss. As soon as this condition is broken the stability of the equilibrium position
is lost as can be verified in Figs. 9.11 and 9.13.

In addition to the stability condition (9.39), the previously derived condition (9.32) has
to hold that guarantees the magnetic confinement for each individual atom. In all the
examples in this chapter, in particular for the examples in Figs. 9.11 to 9.14, the latter
condition is less restrictive. This means that the collapse is interaction-induced and it is
not due to the loss of magnetic confinement: Comparing the right hand sides of (9.39) and
(9.32) we find this to be true as long as |Z| < 3

2
B
G . Inserting the minimum position 1

2ZD,min

for |Z| and the parameters used in the second row of Fig. 9.11 as an example, this inequality
explicitely reads 6.8 · 105 < 1.4 · 107.

Robustness

We have seen above that the equilibrium position on the Z-axis is a local minimum as long
as the condition (9.39) holds. Then, the system has to overcome an energetic barrier in
order to decrease the distance of the atoms.

For the existence of a stable configuration of the two atoms it does, in fact, not suffice
to have a local minimum on the Z-axis, i.e. to meet the requirement (9.39). The potential
well around the local minimum must additionally be deep enough to accommodate at least
the two-atom center of mass ground state. The energy of this ground state is 1

2

∑
i ωi when

the potential is harmonic in all directions around the local minimum position. ωi are the
trap frequencies in the different coordinate directions.

The minimal two-atom energy for a fixed distance of the atoms, ZD, is plotted against ZD
in Fig. 9.16 for different transversal confinements. The depth of the potential well decreases
from 1427 kHz to 26.5 kHz when the transversal confinement is relaxed by decreasing G
from G = 10 Tm−1 to G = 2.2 Tm−1. The energy of the center of mass ground state is
indicated by vertical lines. The potential barrier heights correspond to temperatures of the
atoms ranging from 34.2µK (top left plot) to 640 nK (bottom right plot).

In Fig. 9.17 the minimal energy is compared for two parameter sets that yield the same
ratio B/G. Even though the condition for having a minimum, Eq. (9.38), only depends on
this ratio when the geometry of the trap is not changed, the barrier height in the examples
is not the same. In the left example it corresponds to 51.4µK which is as high as typical
temperatures reached in a magneto-optical trap without further cooling.

9.3 Excitation schemes

Several techniques have been suggested and used to excite atoms into circular Rydberg
states. We describe them in Section 1.2. Our concern in this section, however, is not the
excitation of single atoms into circular states but the excitation of two atoms in a Ioffe-
Pritchard trap with an additional electric field directly into the equilibrium configuration
that is stabilized by the dipolar interaction of the atoms described in the preceding part of
this chapter (see Sec. 9.2.1).

Ideally, the atoms should be excited into the single-atom states whose product approxi-
mately constitutes the two-atom state in stable equilibrium. This is complicated by several
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Figure 9.16: Minimal energy of the two-atom potential against ZD for decreasing transversal
confinement. Each point is computed minimizing the total potential for fixed ZD with the other
center of mass coordinates as parameters. The height of the potential barriers with respect to the
local minima are 1427 kHz =̂ 34.2µK, 448 kHz =̂ 10.8µK, 123 kHz =̂ 3.0µK, and 26.5 kHz =̂ 640 nK,
from top left to bottom right. The energies of the two-atom center of mass ground states, indicated
by the dark horizontal lines, are 44.2 kHz, 23.1 kHz, 14.5 kHz, and 10.8 kHz, respectively. Even
though the trap frequencies in Z-direction do not change with G, the ground state energies are not
the same because the trap frequencies in transversal direction decrease with decreasing G. The light
horizontal lines in the plot on the right-hand side indicate the energies of the harmonic center of
mass states with one excitation in any of the directions. Parameters: B = 10 G, G = 10 Tm−1

(top left plot), G = 5 Tm−1 (top right), G = 3 Tm−1 (bottom left), G = 2.2 Tm−1 (bottom right),
F = 10−10 a.u., Q = B · 6 · 10−16.
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Figure 9.17: Same plots as in Fig. 9.16 for parameter sets that yield the same ratio B/G: B = 1 G,
G = 1 Tm−1, center of mass ground state energy E0 = 13.9 kHz, barrier height 2144 kHz =̂ 51.4µK
(left plot); B = 10 G, G = 10 Tm−1, E0 = 44.2 kHz, barrier height 1427 kHz =̂ 34.2µK (right plot);
F = 10−10 a.u., Q = B · 6 · 10−16.

reasons that are all connected to the fact that the overall potential experienced by the two
Rydberg atoms in the trap is composed of a single-atom part and an interaction part. The
former is due to the coupling of a single Rydberg atom to the magnetic field generated by
the Ioffe-Pritchard trap and it provides the confinement for the atoms. This confinement
is harmonic around the origin and its strength depends linearly on the magnetic quantum
number of the electronic state. It is thus stronger for Rydberg atoms in comparison to
ground states atoms by a factor of ml/2 +ms, see Eq. (6.29). This part of the potential is
the same (per atom) no matter how many Rydberg atoms are in the system. The second
contribution to the two-atom potential, however, is the dipolar interaction energy that only
appears when more than one atom is excited.

The minimum of the potential experienced by a single Rydberg atom is at the origin of
the trap. If we want to excite into a localized state by applying a non-localized laser field
we are bound to tune the laser such that it is resonant at only one point in space. This
can only be the minimum at the origin. For two excited atoms in contrast, the equilibrium
position is located on the Z-axis with a finite distance of the atoms, ZD 6= 0. If the atoms
are excited one after another, which we have to assume, we are facing the problem that an
atom that is excited at the minimum of the one-atom potential is out of the equilibrium
position of the two-atom potential that applies as soon as the second atom is excited.

If we assume one of the Rydberg atoms to sit at the origin of the trap, the two-Rydberg-
atom potential has local minima with the same energy on either side of the origin on the
Z-axis. This is due to the symmetry of the electric dipole moment expectation value to the
origin on the Z-axis, see Eq. (7.46). The two-atom center of mass coordinate ZS is non-zero
for both configurations which entails a non-minimal kinetic energy of the system. Excited
into these displaced configurations, the atoms would perform coupled oscillations in ZS and
ZD around zero and ZD,min, respectively.

Solutions to the addressed complications include (i) externally forcing the excitation
to happen at the desired positions only, or (ii) changing the single-atom potential such
that its minima coincide with the two-atom potential minimum, or even (iii) adiabatically
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9 Interaction-induced stabilization of two Rydberg atoms

transferring the system to the desired state by varying the detuning of the laser during the
excitation process. A possible implementation of each of the options is described in the
following. In principle all schemes are extendable to more than two atoms.

Optical tweezers

In equilibrium position both Rydberg atoms are located on the Z-axis. The only coordinates
that have to be externally imposed are the Z-coordinates of the atoms since zero transver-
sal displacement minimizes the energy for both the single-atom as well as the two-atom
potential.

The cleanest way to do this is to trap individual ground state atoms in two optical dipole
traps perpendicular to the longitudinal axis of the Ioffe-Pritchard trap at the desired Z-
positions. The trapping volume of such optical tweezers [108] can be made so small (less
than a µm in diameter) that only one atom can be captured in each trap [109]. These two
atoms can then be excited using one of the methods described in Section 1.2.

Another way of forcing the Rydberg atoms to be produced at the desired Z-positions is
to excite them from a cold ground state atom cloud by two laser beams perpendicular to
the Z-axis that are focused next to each other to the desired equilibrium positions of the
Rydberg atoms. This is possible if the equilibrium distance is considerably larger than the
waist of the focused laser beams which can be as small as a µm. Due to the strong Rydberg-
Rydberg interaction, which yields an energy shift within the excitation volume that is larger
than the linewidth of the laser, only one atom can be excited within one of the laser beams.
As the excitation can be located at any of the atoms in that region, however, the ensemble
of atoms is excited collectively into a superposition state called superatom [110].

Modify the trap geometry – magnetic double wells

The second solution involves the modification of the single Rydberg atom potential. This can
be done by adding an extra wire on the X-axis to the Z-trap on a chip or, correspondingly,
by adding an extra coil between the coils of a macroscopic Ioffe-Pritchard trap that are
responsible for the Ioffe field. Both setups yield a double well potential with a variable
barrier height and a variable distance of the potential minima. For vanishing electric field
two Rydberg atoms can be excited independently from each other, one in the bottom of
each well, by tuning the laser just under the energy of the minimum. In order to keep
heating as low as possible, the magnetic barrier can now be substituted by the dipolar
repulsion between the atoms by decreasing the current through the extra coil or wire and
simultaneously increasing the electric field strength.

The circularization of the Rydberg atoms with a modified adiabatic rapid passage method
[64], for example, can be completed within 5µs. The timescale of changing the magnetic
field strongly depends on the configuration. If it is small enough the described excitation
scheme is scalable to produce more than two excitations, i.e. a Rydberg atom chain. This
can be done by applying a magnetic field gradient in Z-direction which tilts the trap and
moves the stable Rydberg atom pair in Z-direction. The magnetic barrier can be ramped
up again as to confine the pair in one of the wells. At the minimum of the other well
an additional circular Rydberg atoms can be produced. The two atoms in the first well
mutually tune themselves out of resonance of the exciting laser due to their interaction.
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9.3 Excitation schemes

By ramping the magnetic barrier up and down, and exciting a Rydberg atom in the empty
well every time as described, a stable chain of atoms can be produced in the trap. The
procedure is restricted by the timescales of excitation, magnetic field switching and by the
lifetime of the circular Rydberg atoms which is about 2 ms for n = 30 in the field-free case
and scales with n5.

Direct excitation into the stable configuration using the dipole blockade

With both schemes mentioned above, the atoms are excited into single-atom potential
minima whose positions have to match the minimum of the two-atom potential that includes
the interaction. Instead of artificially creating single-atom potential minima outside the
origin, one can adiabatically transfer a cloud of ground state atoms from the state with no
excitation via the state with one excited atom at the origin to the stable equilibrium state
for two atoms relying on the structuring effect of the dipole-dipole repulsion. The electric
field must thus be switched on at the beginning of the procedure.

The idea is based on the dynamical crystallization approach of Pohl et al. [20]. We
start out from a cold gas of ground state atoms that can be modeled as consisting of two-
level systems. This is legitimate5 considering the rf-optical excitation technique described
in Sec. 1.2. The coupling laser is detuned against the two-photon resonance. For large
negative detunings the many-body ground state in the rotating frame of reference coincides
with the initial state where all atoms are in the ground state. Increasing the detunings to
positive values effectively lowers the energy levels of many-body states with one and two
and more excitations. They cross at critical detunings ∆0

1, ∆1
2, . . . , and states with 1, 2

and more Rydberg atoms are populated. The detuning is hence a control parameter that
decreases the energy difference of adjacent number states |0〉, |1〉, |2〉,. . . with zero, one,
two. . . excitations, respectively.

Since the laser couples the different number states, their energies undergo avoided cross-
ings of separations δ0

1 , δ1
2 ,. . . at the critical detunings. An adiabatic preparation of the

states |1〉, |2〉,. . . is possible as long as the time in which the detuning of the laser changes
is large compared to 1/δ0

1 , 1/δ1
2 ,. . . .

At the first crossing the initial state |0〉, with all atoms in the ground state, is directly
coupled to the first excited state |1〉, with one Rydberg atom at the origin, which yields
δ0

1 ∼ Ω. From |1〉 to |2〉, however, there is no direct laser coupling since the energetically
lowest state with two Rydberg atoms, |2〉, is the stable equilibrium configuration described
in Sec. 9.2.1 with two Rydberg atoms symmetrically displaced from the origin. To go from
|1〉 to |2〉, two off-resonant intermediate steps are required. First the central atom is de-
excited and subsequently the two Rydberg atoms at their equilibrium position are excited.
A three-photon process is hence needed to come from |1〉 to |2〉. Assuming that |1〉 and |2〉

5The target of the two-photon excitation in this circularization approach is the rf-field-dressed state that
adiabatically approaches the circular state when the rf-field is switched off. During the excitation process
it hence exhibits admixtures of other |l = ml〉-states (the radio field is σ+-polarized) whose polarizability
is smaller. In order to have the same dipolar repulsion the electric field must be stronger for compensation
as long as the atoms are dressed by the rf-field.
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9 Interaction-induced stabilization of two Rydberg atoms

are resonant at time t, then the intermediate states are detuned by ∆Ωi as defined below,

|0〉 =

↓ ∆Ωa = −(∆Ωb + ∆Ωc)

|1〉 =

↓ ∆Ωb = VµB(0, 0, ZD,min/2)

1√
2
( + )

↓ ∆Ωc = VµB(0, 0, ZD,min/2) + Vdd(ZD,min)

|2〉 = ,
(9.40)

where the small spheres symbolize ground state atoms and the large spheres symbolize
Rydberg atoms. For the parameters used in Section 9.2.1 (e.g. in Fig. 9.8; B = 30 G,
G = 10 Tm−1, Q = B · 6 · 10−16, F = 2 · 10−11, n = 30) all detunings ∆Ωi are of the
order of ∼ 100 kHz. If the Rabi frequency is much smaller than the intermediate state
detunings ∆Ωi, then the intermediate states that couple |1〉 and |2〉 act as virtual levels
for a resonant multi-photon transition. For larger Rabi frequencies, however, Ω(t) > ∆Ωi,
power broadening exceeds the intermediate state detunings and the states are coupled by
consecutive one photon transitions.

116



Conclusion and outlook

We have investigated the quantum nature of ultracold Rydberg atoms that couple to ex-
ternal fields and interact with each other. We have discovered how the large size alters the
behavior of a Rydberg atom in a magnetic Ioffe-Pritchard trap. We have found extremely
tight confinement for circular Rydberg atoms to be feasible without remarkably changing
the electronic wave function of the atom and have exploited this result to constrain the
system into a single dimension. In conjunction with the strong and long ranged dipolar
interaction we have been able to form an ordered chain of Rydberg atoms with macroscopic
interparticle distance that is stabilized against autoionization. We have seen that with
an additional confinement in the longitudinal direction, two Rydberg atoms can stabilize
each other via their dipolar repulsion. A thorough investigation of the strongly anisotropic
Rydberg-Rydberg interaction, that exhibits an intricate dependence on the orientation of
the electric dipole moments of the atoms, has led to the understanding of the mechanisms
that destabilize this configuration which can thus be inhibited.

To arrive at that point we have first studied the quantum properties of ultracold Rydberg
atoms in a Ioffe-Pritchard field configuration modeling the Rydberg atoms as a two-body
system. Relativistic effects and deviations of the core potential from the Coulomb potential
as well as diamagnetic interactions have not been taken into account, which is well justified
a posteriori. Applying a spatially dependent unitary transformation and additionally ex-
ploiting the major mass difference of the electron and the core, we arrived at a two-particle
Hamiltonian for highly excited atoms in an inhomogeneous field in which the appearance of
the coupling of the relative and center of mass dynamics is simplified substantially. We have
performed a symmetry analysis and we have justified that couplings of different n-manifolds
can be neglected. The very different time scales of the relative and center of mass dynamics
allows for an adiabatic separation which eliminates residual couplings. The solutions of the
remaining internal problem for different center of mass positions constitute the adiabatic
electronic energy surfaces that serve as potentials for the atomic motion. In the limit of
large ratios of Ioffe field strength and field gradient, B/(Gn2), analytical expressions for the
adiabatic surfaces have been provided. Even when this ratio is of the order of one, which
entails tight transversal confinement, the shape of the uppermost surface and its energetic
separation from others prove very robust. Non-adiabatic couplings are therefore small and
we consider this surface the most appropriate to achieve confinement. Examining the com-
pound quantized states we have found a regime where the extension of the center of mass
wave function falls below the extension of the electronic cloud, i.e. the center of mass is
stronger localized than the valence electron. Nevertheless, the electronic structure of the
atom is barely changed compared to the field free case. Therefore, in this regime, Rydberg
atoms in inhomogeneous magnetic fields cannot be considered as point-like particles.

As a natural enrichment of the system we have studied several Rydberg atoms confined
to a magnetic guide by exploiting the extremely tight transversal confinement. We could
show that an additional electric field renders it possible to stabilize the atoms against
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autoionization and to create a one-dimensional Rydberg gas. This is possible by means
of the repulsion between the field induced electric dipole moments which works towards
a crystalline structure of the gas. Analytical expressions for the critical density, which
is required to enter the one dimensional regime, have been calculated and we have found
the lifetime of the Rydberg states to be sufficiently long to probe the dynamics of the
interacting gas on ultracold timescales. This regime is complementary to the well-studied
frozen Rydberg gases where atom-atom interaction induced motional effects can hardly be
probed.

In order to deepen the understanding of the Rydberg-Rydberg interaction we have per-
turbatively calculated the electric dipole moment expectation values of Rydberg atoms in
the strongly inhomogeneous magnetic field. Even for vanishing electric field we have found a
permanent electric dipole moment outside the longitudinal axis that is perpendicular to the
local magnetic field axis. This can be attributed to the finite size of the Rydberg atom. The
corresponding term in the Hamiltonian admixes other basis states to the previously hydro-
genic eigenstate. The electric dipole moment induced by an external electric field is likewise
perpendicular to the local magnetic field axis but it exhibits different symmetries. When
the permanent and the induced dipole moments have about the same magnitude (which
happens already for very small electric fields), the total electric dipole moment becomes
intriguingly asymmetric.

We have subsequently investigated how two Rydberg atoms, modeled as a two-particle
system each, interact with each other when they are exposed to the electric and magnetic
fields. For large enough inter-atomic distances we describe the interaction as a multipole
expansion of the Coulomb interaction operators. Higher order multipole interactions are
only significant if the dominant dipolar term is very small due to vanishing electric field
or due to the geometry of the atomic configuration. We have furthermore identified the
regime for which the interaction does not substantially change the electronic structure of
the atom.

With this knowledge we have studied two interacting Rydberg atoms in the trap. Bal-
ancing the dipolar repulsion with an additional magnetic confinement in the longitudinal
direction we have found a stable equilibrium configuration with an electrically tuneable
inter-atomic distance. The six-dimensional adiabatic energy surface for the atoms’ center
of mass dynamics is harmonic around the stable configuration. The trap frequencies are
independent of the inter-atomic distance and the two-atom ground state is therefore not
expected to suffer from significant heating when the distance of the atoms is changed. We
have shown these characteristics in the strongly confined one-dimensional case before we
examined the robustness of the setup in three dimensions and described possible loss mech-
anisms. We suggest experimental implementations for the one-dimensional gas as well as
for the stable two-atom configuration.

In order to be able to precisely control and manipulate ultracold Rydberg atoms, or even
to exploit the electronic state dependent dipolar interaction to implement scalable quantum
information schemes, a whole construction kit of electro-magnetic and optical tools is to
be established. With creating long-lived tightly confined states exhibiting electric dipole
moments of several hundred Debye and arranging them in versatile stable configurations
with tuneable atoms distances, we have contributed a pivotal tool to this endeavor.

In spite of the presented results, the potential of the proposed magneto-electric trap is
by far not exhausted. Promising ideas that could be pursued include the following: As
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we have seen in Chapter 5, the degeneracy of the electronic surfaces below the uppermost
surface is lifted by the external electric field. Their transversal minimum is shifted in
opposite directions. The Rydberg atoms in the corresponding states are therefore confined
in magnetic guides parallel to each other whose distance can be tuned electrically. One
could envision two one-dimensional Rydberg chains next to each other whose interaction
can be tuned by a multitude of field parameters and by the internal electronic states of the
atoms.

Another question worth answering is whether for vanishing electric field the quadrupole-
quadrupole repulsion can prevent the Rydberg atoms from ionizing each other or if the
interaction between the permanent electric dipole moments impedes this stabilization or
even actively brings the system to collapse. In case the quadrupole-quadrupole repulsion
can stabilize the system: What are the temperatures that must not be exceeded? In any
case the omission of an electric field decreases the atomic distances. For very small distances
it may be advantageous to abandon the single atom electronic state approximation and to
represent the interaction in a two-electron state basis set.

There are, undoubtedly, many exciting extensions of the discussed systems that still are
to be discovered.
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Atomic units

atomic unit (a.u.) SI units

mass electron mass me 9.10953 · 10−31kg

length Bohr radius a0 = 4πǫ0~
2

mee2
0.52918 · 10−10 m

charge electron charge e 1.60219 · 10−19 C

angular momentum Planck constant ~ 1.05457 · 10−34 Js

energy ERyd = 1
4πǫ0

e2

a0
= α2mec

2 = 2 Ry 4.35974 · 10−18 J

electric field 2× field at 1. Bohr orbit
ERyd

e a0
5.14221 · 1011 Vm−1

magn. field strength α2m2
ec

2/(e~) 2.35051 · 105 T

magn. field gradient α2m2
ec

2/(e~a0) 4.44181 · 1015 Tm−1

time ~/ERyd 2.41888 · 10−17 s

momentum ~/a0 1.99285 · 10−24 kg m s−1

el. dipole moment ea0 = 2.54175 Debye 8.47835 · 10−30 C m
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