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Jet-Entwicklung in heißer und kalter QCD Materie
In dieser Arbeit befassen wir uns mit der Evolution energetischer Partonen in
heißer und kalter QCD Materie. In beiden Fällen führen Wechselwirkungen mit
dem Medium zu Energieverlust des Partons und Verbreiterungseines Transver-
salimpulses. Die Propagation von Partonen in kalter Kernmaterie kann in tiefinel-
astischer Streuung (DIS) an Kernen untersucht werden. Wir benutzen das Dipol-
Modell, um die Verbreiterung des Transversalimpulses in DIS an Kernen zu be-
rechnen und vergleichen mit experimentellen Daten von HERMES.
In einem heißen Medium ist die Evolution eines Partonschauers stark modifiziert.
Um diese zu berechnen, konstruieren wir einen zusätzlichenTerm in der QCD
Entwicklungsgleichung, der die Streuung von Partonen im Quark-Gluon Plasma
berücksichtigt. Mit diesem Streuterm berechnen wir die modifizierte Gluonen-
verteilung im Schauer bei kleinen Impulsbruchteilen. Desweiteren berechnen wir
die modifizierte Fragmentierungsfunktion von Gluonen in Pionen. Hierbei verur-
sacht der Streuterm einen Energieverlust des Partonschauers, der zur Unterdrück-
ung von Hadronen mit großem Transversalimpuls führt.
Im dritten Teil der Arbeit untersuchen wir doppelte Dijet-Produktion in Hadronen-
Kollisionen. Dieser Prozess enthält Informationen über die transversale Partonen-
Verteilung in Hadronen. Wir kommen zu dem Ergebnis, dass doppelte Dijet-
Produktion eine Studie des transversalen Wachstums von hadronischen Wellen-
funktionen am LHC erlaubt.

Jet Evolution in Hot and Cold QCD Matter
In this thesis, we study the evolution of energetic partons in hot and cold QCD
matter. In both cases, interactions with the medium lead to energy loss of the
parton and its transverse momentum broadens. The propagation of partons in
cold nuclear matter can be investigated experimentally in deep-inelastic scattering
(DIS) on nuclei. We use the dipole model to calculate transverse momentum
broadening in DIS on nuclei and compare to experimental datafrom HERMES.
In hot matter, the evolution of the parton shower is stronglymodified. To cal-
culate this modification, we construct an additional scattering term in the QCD
evolution equations which accounts for scattering of partons in the quark-gluon
plasma. With this scattering term, we compute the modified gluon distribution in
the shower at small momentum fractions. Furthermore, we calculate the modi-
fied fragmentation function of gluons into pions. The scattering term causes en-
ergy loss of the parton shower which leads to a suppression ofhadrons with large
transverse momentum.
In the third part of this thesis, we study double dijet production in hadron colli-
sions. This process contains information about the transverse parton distribution
of hadrons. As main result, we find that double dijet production will allow for a
study of the transverse growth of hadronic wave functions atthe LHC.
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Chapter 1

Introduction

Non-perturbative lattice calculations in Quantum Chromodynamics (QCD) indi-
cate that a deconfined state of matter, the quark-gluon plasma (QGP), exists at
very high temperatures and energy densities. This state of matter is expected to
be formed in ultrarelativistic heavy-ion collisions. However, in order to draw con-
clusions from the analysis of heavy-ion experiments, Quantum Chromodynamics
has to be understood well in the perturbative and nonperturbative regime.

In the perturbative regime, hadron collisions represent the baseline for heavy-
ion collisions. In a hadron collision, the theoretically best-defined subprocess is
the hard collision between partons. To connect this processto experimental ob-
servables, one has to take into account the radiation of partons in the initial as well
as the final state. The shower initialized by a highly virtualparton can theoreti-
cally be described by QCD evolution equations such as the DGLAP (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) equations [1].

The final transition from colored partons to colorless hadrons is a fundamental
process in QCD, which still lacks a quantitative understanding from first princi-
ples. The reason for this is that the transition of partons into hadrons takes place
at a low virtuality of the order ofQ ∼ 1 GeV. Consequently, hadronization repre-
sents a nonperturbative process in QCD, which cannot be addressed theoretically
within the existing perturbative techniques.

A novel way to study hadronization is to place the productionpoint of the parton
in a different environment. Experimentally, this can be achieved by introducing
a nuclear medium through the study of deep-inelastic scattering (DIS) of leptons
on nuclei. In this case, the nuclear target has often been called “cold QCD mat-
ter” to differentiate it from the hot matter produced in nucleus-nucleus collisions.
The nuclear medium provides a probe of parton evolution which is sensitive to
interactions with the nuclear medium. These final state interactions may result in
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2 1. Introduction

modifications of the final hadron yield distributions compared to the production
in “vacuum”, i.e. without the presence of the nuclear medium.

At high enoughp⊥, where hadrons originate from the fragmentation of partons
produced in hard collisions, one typically observes two different phenomena: A
reduction of hadron multiplicities [2, 3, 4] and a broadening of transverse momen-
tum spectra [5].

In nucleus-nucleus collisions, the produced parton also has to traverse nuclear
matter. However, in this case the created medium is much denser and hotter as in
nuclear DIS and often called “hot QCD matter”. This medium can be a hadron
gas at low temperature or a quark-gluon Plasma at high temperatures.

Since 2000, the Relativistic Heavy-Ion Collider (RHIC) hascollected impres-
sive results which provide strong indication for the formation of the QGP. The
most significant consequence of the presence of the hot medium is jet quenching.
It leads to a suppression of hadrons large transverse momentum. This suppres-
sion is observed in the measurement of the nuclear modification factorRAA when
compared to the scaled expectation frompp-collisions.

Many different experimental setups [6]-[15] have shown that this suppression
originates from interactions in the final state. This amounts to a picture in which
fast partons lose energy in the hot and dense medium [16]. Twomajor sources are
commonly believed to be responsible for this energy loss: Collisions of the fast
parton with the medium constituents [17] and radiative energy loss induced by
scatterings [18, 19]. At asymptotically large parton energies, radiative energy loss
becomes dominant due to its stronger energy dependence. However, no energy
loss hierarchy is observed in measurements ofRAA which are sensitive to the en-
ergy loss of gluons, light flavors and heavy flavors, respectively. This is different
from the expectations for radiative energy loss and indicates that radiative energy
loss alone cannot explain RHIC data. Consequently, collisional energy loss can-
not be neglected for the understanding of RHIC data. This motivates our study of
the medium modification of fragmentation functions due to scattering in Chapter
5.

The observation of jet quenching has led to many questions: How is the inter-
play between radiative and collisional energy loss? How does energy loss depend
on the medium length? What is the energy loss probability distribution of partons?
Such questions motivate the search for more discriminatoryobservables to charac-
terize the QGP. Experimental progress in the full reconstruction of jets [20, 21, 22]
will play an important role in the search for answers to thesequestions.

In this thesis, we focus on parton propagation through QCD matter in Chapters
3–5 while Chapter 6 is concerned with double dijet production in hadronic colli-
sions. After a collection of relevant aspects of QCD and heavy-ion collisions in
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Chapter 2, the following topics are covered:

• In Chapter 3, we use the dipole model to investigate broadening of the trans-
verse momentum of quarks in DIS on nuclei. Scattering of the quark with
the nucleons leads to an increase of its transverse momentum. We compare
our results to experimental data from HERMES.

• Chapter 4 is devoted to the distribution of particles in highly energetic jets
in vacuum. First, we review the behavior of the gluon distribution in jets
at small momentum fraction where most of the jet multiplicity is generated.
From QCD evolution equations with transverse momentum, we calculate
the vacuum evolution of the mean transverse momentum of partons〈p2

⊥〉 in
jets.

• Chapter 5 deals with the evolution of a highly virtual partonin a hot QCD
medium. Compared to cold nuclear matter, medium effects aremuch stron-
ger. We construct an additional term in the evolution equation which ac-
counts for scattering in the quark-gluon plasma. With this scattering term,
we calculate the modified distribution of gluons in jets at small momen-
tum fractions. Gluons become less energetic from scattering. Furthermore,
we calculate the modified fragmentation function of gluons into pions. The
scattering term causes energy loss of the parton shower which leads to a sup-
pression of hadrons with large transverse momentum. Finally, we explore
transverse momentum broadening from scattering in the plasma.

• In Chapter 6, we study double dijet production in a single hadronic collision.
This process contains information about the transverse parton distribution
of the proton. As main result, we find that double dijet production will allow
for a study of the transverse growth of hadronic wavefunctions at the LHC.
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Chapter 2

Relevant concepts of Quantum

Chromodynamics

In this chapter we will review the relevant concepts of QCD and heavy-ion col-
lisions which we need to discuss our work. In Section 2.1, we will present phe-
nomenological aspects of partons and jets in particle collisions. Sec. 2.2 is devoted
to the evolution of fast virtual partons. The DGLAP and coherent branching evo-
lution equations presented in this section build the foundation for the studies of
jet evolution in QCD media in later chapters. In Sec. 2.3, we will collect prop-
erties of heavy-ion collisions and give a short overview about jet quenching in
heavy-ion collisions at RHIC. Finally, we review existing models for collisional
and radiative energy loss which aim at a description of this phenomenon.

2.1 Partons and jets in QCD

Quantum Chromodynamics, the theory of strong interactions, was developed more
than three decades ago and has proven successful in many different experiments
over the years. From an experimental point of view, jet production is one of the
most important predictions of QCD. In the following I will briefly describe how
different types of experiments gave evidence about QCD phenomenology and jets.
More detailed arguments can be found in [50].
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FIGURE 2.1: Diagrams in e+e−-annihilation. In the first two diagrams, a quark-antiquark

pair is produced through an intermediate photon andZ boson, respectively. The last dia-

gram shows the production of three jets by gluon radiation from one of the quarks.

2.1.1 Electron-positron annihilation

In electron-positron annihilation at high center of mass energy, it is possible to
produce a lepton pair as well as a quark-antiquark pair whichmay be observed as
two jets in leading order (LO). Both final states can be produced via an interme-
diate photon or aZ boson. The latter can be neglected at center of mass energies
well below the Z boson mass. In leading order, the cross section for the produc-
tion of a fermion-antifermion pair with electromagnetic chargeq f and−q f from
an intermediate photonγ∗ is given by

σ =
4πα2

3s
q2

f . (2.1)

Here,α ≃ 1/137 is the fine-structure constant and
√

s is the available energy in
the center of mass system. A quark (or an antiquark) carries color charge and is
not directly observed due to color confinement. But quarks finally form hadrons
which can be detected experimentally.

Historically, the study of the leading order ratio

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3∑
f

q2
f (2.2)

was used to establish that quarks come in three colors and that they carry fractional
momenta of the electric charge. Also, the investigation of the energy dependence
of R allowed to see that different quark flavorsf become accessible at different
energies.

An advantage of electron-positron annihilation over collisions involving hadrons
is the clean initial state. On the other hand, the 1/s-dependence reduces the cross



2.1. Partons and jets in QCD 7

section for two-jet production with increasing center of mass energy. The produc-
tion of more than two jets is possible through the radiation of (at least) one gluon
with large transverse momentum.

2.1.2 Event shape and jet algorithms

Experimentally, jets are characterized by the observationof many hadrons in a
small area of the detector. The shape of a jet-like event can be studied with event
variables. Such variables have to be collinear and infrared-safe. This means that
they are not sensitive to branchingsi → j + k, when the corresponding momenta
p j andpk are parallel or one of them is very small. This requirement isfulfilled
for variables constructed from linear sums of momenta. Someexamples are thrust

T = max
n

∑i |pi n|
∑i |pi||n|

(2.3)

and spherocity

S =
16
π2 min

n

(

∑i |pi ×n|
∑i |pi||n|

)2

. (2.4)

For a two-jet event in e+e−-annihilation where the produced quarks are back-to-
back (pencil-like event), these variables take valuesT = 1 andS = 0. In contrast, a
spherical event corresponds toT = 0.5 andS = 1. The calculation of thrust finds
the direction with the largest longitudinal momentum flow and therefore allows
for an identification of the jet axis of one of the jets. For a jet-like event, a thrust
value away from unity can be attributed to the production of at least three jets.
In e+e−-annihilation into a quark-antiquark pair, the third jet can be produced
by the emission of a hard gluon from the (anti-)quark. However, due to the soft
and collinear singularities of the matrix elements for parton emission, the thrust
distribution of multijet events is peaked atT = 1.

A key point in the experimental study of jets is the usage of a jet algorithm
which is supposed to identify all particles belonging to a jet and to reconstruct the
jet momentum. Several jet algorithms are available and can be divided roughly in
two classes:

• Cone algorithms take the hardest particle in an event and assume that the
other particles in the jet are distributed in a cone around the hardest particle.
The cone radius is given byR =

√

∆y2+∆φ2. Here,∆y and∆φ represent
the size in rapidity and azimuth. The particle content of thecone is then de-
fined as jet and is removed from the event. Then the next-hardest particle in
the event is identified and the procedure continues as before. The algorithm
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is collinear unsafe in its simplest realization since quasi-collinear splittings
can change the hardest particle. This has been improved in the SIS (seedless
infrared-safe) cone algorithm [90].

• The other class of algorithms involves the transverse momentum of parti-
cles. It defines a distance measuredi j between entities (which can be parti-
cles or pseudojets)i and j and a distancedib between entities and the beam:

di j = min
(

k2p
⊥i, k2p

⊥ j

) (yi − y j)
2+(φi −φ j)

2

R2 , dib = k2p
⊥i. (2.5)

Here,R is a radius parameter andk⊥, y andφ are transverse momentum,
rapidity and azimuth of an entity. Different algorithms canbe distinguished
by the value of the parameterp. First, the smallest of all distances is identi-
fied. If it is a di j, the entitiesi and j are merged. If it is adib, the entity is
called a jet and removed from the event. Distances are recalculated and the
procedure continues until no entities are left.

The choicep = 1 corresponds to thekt-algorithm, whilep = −1 is called
anti-kt algorithm [89]. The advantage of the anti-kt algorithm is that the
shape of the jet is not modified by soft particles.

2.1.3 Deep-inelastic scattering

In deep-inelastic scattering (DIS) a lepton scatters off a hadron. Here, we only
discuss the case of electron-proton scattering through theexchange of a highly
virtual photon. More precisely, the photon is exchanged between electron and
a parton in the proton. The four-momentum of the virtual photon is space-like,
q2 = −Q2. The standard DIS variables are

xB =
Q2

2Mν
, ν = E ′−E, y = 1− E ′

E
. (2.6)

Here, Bjorken’s scaling variablexB gives the momentum fraction of the proton
which the parton carries in a fast-moving frame. The proton mass is denoted by
M. The variableν and y describe the energy transfer from the electron to the
parton. The differential cross section with respect toxB andQ2 is given by

d2σ
dxB dQ2 =

4πα2

Q4

[

(1+(1− y)2)F1(xB,Q2)+
1− y

xB
(F2(xB,Q2)−2xBF1(xB,Q2))

]

.

(2.7)
Here, the structure functionsF1 andF2 describe the electromagnetic structure of
the proton and thereby contain information about the distribution of partons in
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the proton. In the naive parton model, the longitudinal structure functionFL =

F2−2xF1 vanishes and structure functions exhibit Bjorken scaling,i.e. F2(xB,Q2)
→ F2(xB). In QCD, this scaling is broken by logarithms ofQ2. These logarithms
arise from the emission of gluons with sizeable transverse momentak⊥. Such an
emission has a probability proportional to dk2

⊥/k2
⊥ with the upper limit of integra-

tion beingQ2.
On the other hand, the lower limit of thek⊥-integration is kinematically not

restricted and the integral over transverse momenta formally diverges. For our
considerations, we formally regularize it with a lower limit κ. But perturbative
QCD is not defined at too low transverse momenta. This problemcan be resolved
by defining a renormalized parton distributionfi(x,µ2) which contains the non-
perturbative (long-distance) contributions.

fi(x,µ2) = fi(x)+
αs

2π

∫ 1

x

dz
z

fi(z)

[

Pqq

(

x
z

)

log

(

µ2

κ2

)

+ reg. terms

]

+
αs

2π

∫ 1

x

dz
z

g(z)

[

Pqg

(

x
z

)

log

(

µ2

κ2

)

+ reg. terms

]

(2.8)

In the DIS scheme, the structure functionF2 is given in terms of the parton distri-
bution functionsfi(xB,Q2) by

F2(xB,Q2) = xB ∑
i

q2
i fi(xB,Q2). (2.9)

In a similar fashion as in Eq. (2.8), the structure functionF2(xB,Q2) can be ex-
pressed in terms of the parton distributions at factorization scaleµ. In this way,
the nonperturbative parts can be separated from the perturbative ones (represented
by the splitting functionsP(z)). This important concept is called factorization.

Parton distribution functions have to be extracted from experimental data and
are a key ingredient for the calculation of exclusive cross sections in hadronic
collisions.

2.1.4 Jet production in hadronic collisions

In the collision of hadrons at high center of mass energy, jets are produced abun-
dantly. Factorization allows for a calculation of the crosssection as a product
of short-distance (perturbative) and long-distance parts. The long-distance part is
determined by the parton distribution functions. It is a remarkable property that
each hadron has universal parton distribution functions.

The factorization scaleµ in the PDFs is a parameter which can be considered
a separation scale between short and long distance physics.Partons which are
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channel |M |2/g4

qq′ → qq′ 4
9

ŝ2+û2

t̂2

qq̄′ → qq̄′ 4
9

ŝ2+û2

t̂2

qq → qq 4
9

(

ŝ2+û2

t̂2 + ŝ2+t̂2

û2

)

− 8
27

ŝ2

ût̂

qq̄ → q′q̄′ 4
9

t̂2+û2

ŝ2

qq̄ → qq̄ 4
9

(

ŝ2+û2

t̂2 + û2+t̂2

ŝ2

)

− 8
27

û2

ŝt̂

qq̄ → gg 32
27

t̂2+û2

ût̂ − 8
3

t̂2+û2

ŝ2

gg → qq̄ 1
6

t̂2+û2

ût̂ − 3
8

t̂2+û2

ŝ2

gq → gq −4
9

ŝ2+û2

ŝû + ŝ2+û2

t̂2

gg → gg 9
2

(

3− ŝû
t2 − ŝt̂

û2 − t̂ û
ŝ2

)

TABLE 2.1: Leading order matrix elements for 2→ 2 partonic scattering processes [111].

Color and spin indices are averaged (summed) over initial (final) states.

emitted with a transverse momentum less thanµ can be thought of as part of the
hadron while partons with larger transverse momentum are accounted for in the
hard scattering matrix element. Physically, such a dependence onµ is artificial
and becomes weaker and weaker in higher order calculations.

The short-distance parts describe the hard scattering of partons and can be calcu-
lated in perturbation theory if the momentum transfer is large. The leading order
(LO) matrix elements for 2→ 2 parton scattering are listed in Tab. 2.1 in terms of
the Mandelstam variables

ŝ = (p1+ p2)
2, t̂ = (p′1− p1)

2, û = (p′2− p1)
2. (2.10)

Because of the higher color charge of the gluon, thegg → gg matrix element is
largest at fixed center of mass scattering angle. Altogether, the differential cross
sections for the partonic processi + j → k + l in terms of these matrix elements
read

dσ̂ i j→kl

dt̂
=

1
16π ŝ2 |Mi j→kl|2. (2.11)

The differential cross section for two-jet production fromthe parton subprocess
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i+ j → k + l can be written as

d3σ
dy3dy4dp2

⊥
=

1
16π s2 ∑

i jkl

fi(x1,µ2)

x1

f j(x2,µ2)

x2

1
1+δkl

|Mi j→kl|2. (2.12)

The sum is over all possible scattering channels (see Table 2.1). The rapiditiesyi

appearing in Eq. (2.12) are defined as

yi = log

(

E + piz

E − piz

)

. (2.13)

For massless partons, the rapidity reduces to the pseudorapity η =− ln tanθ
2 . The

pseudorapidity contains the center of mass scattering angle. Eq. (2.12) allows
the use of kinematical cuts on the produced jets. For example, setting a cut on the
transverse momentum allows to probe the PDFs at valuesxB ∼ 2p⊥/

√
s. However,

in such an analysis the reach to the small-x region is limited (at fixed center of
mass energy) by the applicability of perturbation theory.

In Chapter 5, we will perform a study of double dijet production. To ensure the
applicability of perturbation theory, we require a minimaltransverse momentum
of the jets. Here, we want to illustrate the relative importance of the different par-
ton combinationsqq, qg andgg for dijet production. Their relative contribution in
dijet events is shown in Fig. 2.2 as a function of the minimal transverse momenta
for Tevatron and LHC energies (calculated with [132]).
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At large transverse momentum, valence quark scattering is the dominant source
of jet production. In contrast, at small minimal transversemomenta (pmin

⊥ ∼ 10
GeV) the gluon contribution is largest and the gluon distribution function can be
probed at smallxB via jet production. In an experimental analysis, parton showers
emerging from these highly energetic partons have to be taken into account.

2.2 Jet evolution and jet fragmentation

2.2.1 Fragmentation functions

A fast quark or gluon that has been produced in a particle collision cannot be
observed experimentally due to confinement. Instead, it fragments into hadrons.
The transition from parton to hadron level can be described by fragmentation func-
tionsDh

i (x). Fragmentation functionsDh
i (x) are probability densities which give

the probability that a hadronh is produced from a partoni with the relative energy
fractionx. In this way, the differential cross section for the production of a hadron
h in a collision of particlesA andB can be calculated from the partonic cross sec-
tion for the production of a partonk. This cross section has to be folded with the
fragmentation functionDh

k(z) and all contributions from different partonsk have
to be summed.

Eh
d3σ
d3p

(AB → hX) = ∑
k

∫

dzEp
d3σ
d3p

(AB → kX)Dh
k(z). (2.14)

Typical parametrizations of fragmentation functions havethe form

Dh
i (x) = Nxα(1− x)β . (2.15)

The parametersN, α andβ are different for each hadron and each parton species.
The fragmentation functions of heavy-flavored hadrons fromheavy quarks are
peaked at large values ofx. This is so since the production of a light quark pair
with similar velocity as the heavy quark requires only a small fraction of the en-
ergy of the heavy quark. The heavy quark can then combine withthe light anti-
quark into a meson. In contrast, the fragmentation functions of light mesons favor
small values ofx.

Partons are produced in hard processes with large virtual massesQ2 = E2−p2.
Such a virtual particle can only exist over a short time scalewhich is determined
by the uncertainty relation. In order to get on mass-shell, the virtual parton emits
multiple partons. These splitting processes lead to scaling violations of the frag-
mentation functions which means that the fragmentation functions depend onQ2.
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Hard process

FIGURE 2.3: Schematical illustration of a parton shower: A virtualfast parton is produced

in a hard process and radiates partons to reduce its virtuality Q2 successively. At low

virtuality Q2
0 nonperturbative processes become relevant.

The partons are emitted preferably almost collinear. The treatment of the cor-
responding emission diagrams is similar to the case of inital state radiation. A
perturbative calculation of emission diagrams suffers from the collinear singular-
ity which formally appears when the relative transverse momentum of the (mass-
less) emitted parton is zero. But perturbation theory is notvalid at low momen-
tum scales. This nonperturbative contribution can be absorbed into a distribution
Dh

j(x,Q
2
0) at a small (but perturbative) scaleQ2

0. The nonperturbative distribu-

tion Dh
j(x,Q

2
0) is factorized from the perturbative splitting process and has to be

determined from experiment.

Dh
i (x,Q

2) = ∑
k

∫ 1

x
dzKk

i (z,Q
2,Q2

0)D
h
k

(

x
z
,Q2

0

)

(2.16)

Here, the kernelKk
i (z,Q2,Q2

0) can be calculated in perturbation theory. The evo-
lution of fragmentation functions withQ2 is encoded in the DGLAP equations
which we will discuss in the following.
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X

h
X

h
Pgq(z)

(b)(a)

FIGURE 2.4: Schematical illustration of fragmentation: (a) without parton emission, (b)

with parton emission. The emission of partons gives rise to scaling violations of the

fragmentation functions.

2.2.2 DGLAP evolution equations

Fragmentation functions exhibit scaling violations whichoriginate from the emis-
sion of partons. The differential splitting probability for the emission of a parton
i with energy fractionz relative to its parent partonj is given by

dPsplit, ij(z,Q
2) =

αs(Q2)

2π
P̂i j(z)dz

dQ2

Q2 . (2.17)

The unregularized splitting functionŝPi j(z) therefore have a probabilistic inter-
pretation. In QCD, there are three different processes which define the splitting
functionsP̂i j(z). In these processes, a parton splits into two partons. More pre-
cisely, the splitting processes areq → q+g, g → q+ q̄ andg → g+g. They give
rise to four splitting functions which are given to lowest order by

P̂gg(z) = CA

(

z
1− z

+
1− z

z
+ z(1− z)

)

(2.18)

P̂qg(z) = TR(z2+(1− z)2) (2.19)

P̂gq(z) = CF
1+(1− z)2

z
(2.20)

P̂qq(z) = CF
1+ z2

1− z
. (2.21)

Here, bothP̂gq(z) andP̂qq(z) result from theq → q +g process and consequently
P̂gq(z) = P̂qq(1− z). The prefactorsTR = 1

2, CA = 3 andCF = 4
3 emerge from the

gauge groupSU(3). In terms of these splitting functions, the evolution of a quark
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fragmentation function into a hadronh is given by

Q2 ∂
∂Q2Dh

q(x,Q
2) =

αs(Q2)

2π

∫ 1

x

dz
z

[

P̂qq(z)D
h
q

(

x
z
,Q2
)

+ P̂gq(z)D
h
g

(

x
z
,Q2
)]

−αs(Q2)

2π
Dh

q

(

x,Q2)
∫ 1

0
dzP̂qq(z). (2.22)

The evolution equation describes the change of the quark fragmentation function
induced by splitting processes. All three terms result fromthe splitting process
q → q + g. The first line represents the “feeding” of the fragmentation function
Dh

q(x,Q
2) by splittings from higher energy fractionsx/z. The negative contribu-

tion in the second line describes splittings of a parton withenergy fractionx to a
lower energy fraction.

The splitting functionsP̂qq(z) and P̂gq(z) are both singular when the emitted
gluon is very soft and the emitted quark carries a relative energy fraction close to
1. In Eq. (2.22) only thez → 1-singularity ofP̂qq(z) appears in thez-integration.
But this singularity appears in both terms containingP̂qq(z) and their sum is finite.

The change of the fragmentation function of a gluon into the hadronh by split-
ting processes is given by

Q2 ∂
∂Q2Dh

g(x,Q
2) =

αs(Q2)

2π

∫ 1

x

dz
z

P̂qg(z)∑
f

[

Dh
qf

(

x
z
,Q2
)

+Dh
q̄f

(

x
z
,Q2
)]

+
αs(Q2)

2π

∫ 1

x

dz
z

2P̂gg(z)D
h
g

(

x
z
,Q2
)

−αs(Q2)

2π
Dh

g

(

x,Q2)
∫ 1

0
dz
(

n f P̂qg(z)+ P̂gg(z)
)

. (2.23)

In this equation, the two different verticesg → g+g andg → q+ q̄ are accounted
for by the respective splitting functions. As for the quark fragmentation func-
tion, splittings from higher energy fractionx/z to x give positive contributions. In
contrast, splittings away fromx to lower energy fractions correspond to negative
terms in the evolution equation. Similar to the quark evolution equation, the terms
containingP̂gg(z) are singular forz → 1 but their sum is finite. To make this more
explicit, one can define regular splitting functionsPi j(z) from the terms with the
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unregularized ones in the evolution equations.

Pgg(z) = 2CA

(

z
(1− z)+

+
1− z

z
+ z(1− z)

)

+δ (1− z)
11CA −4n f TR

6
(2.24)

Pqg(z) = TR(z2+(1− z)2) (2.25)

Pgq(z) = CF

(

1+(1− z)2

z

)

(2.26)

Pqq(z) = CF

(

1+ z2

(1− z)+
+

3
2

δ (1− z)

)

(2.27)

Here, the “+-prescription” is defined by

∫ 1

0
dz

f (z)
(1− z)+

=
∫ 1

0
dz

f (z)− f (1)

1− z
. (2.28)

Writing the evolution equations in terms of the regularizedsplitting functions
leads to the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations [1]

Q2 ∂
∂Q2Dh

q(x,Q
2) =

αs(Q2)

2π

∫ 1

x

dz
z

[

Pqq(z,αs(Q
2))Dh

q

(

x
z
,Q2
)

+Pgq(z,αs(Q
2))Dh

g

(

x
z
,Q2
)]

(2.29)

Q2 ∂
∂Q2Dh

g(x,Q
2) =

αs(Q2)

2π

∫ 1

x

dz
z

[

Pgg(z,αs(Q
2))Dh

g

(

x
z
,Q2
)

(2.30)

+∑
f

Pqfg(z,αs(Q
2))

{

Dh
qf

(

x
z
,Q2
)

+Dh
q̄f

(

x
z
,Q2
)}

]

.

In the above equations, the dependence of the splitting functions onαs takes into
account that they have perturbative expansions.

The DGLAP equations resum leading logarithms of the formαn
s logn Q2

µ2 to all
orders. Such a resummation is necessary due to the presence of large logarithms
(

αs log Q2

µ2

)

& 1 even for a perturbatively smallαs. This large logarithm is the

result of the emission of almost collinear partons.
The DGLAP equations can be solved by means of Mellin transformation which

converts the convolutions of splitting functions and fragmentation functions into
products. Another possibility is the numerical solution ofthese equations. In both
cases, the fragmentation functions at a low scaleQ2

0 are extracted from experi-
ment. These fitted distributions are then used as initial condition for the DGLAP
equations.
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Evolution equations principally do not allow us to follow anindividual parton
and the partons emitted from it. For this purpose, a key quantity is the Sudakov
form factor

∆i(Q
2
1,Q

2
2) = exp

[

−∑
j

∫ Q2
2

Q2
1

dQ′2

Q′2

∫

dz
αs(Q′2)

2π
P̂ji(z)

]

. (2.31)

The Sudakov form factor gives the probability∆i(Q2
1,Q

2
2) for a partoni that no

resolvable branching occurs between virtualitiesQ2
1 andQ2

2. This connection be-
tween branching probability and evolution in virtuality isthe basis for the descrip-
tion of parton showers in Monte Carlo event generators.

The DGLAP equations describe the evolution of fragmentation functions ifx is
not too small. At smallx, the 1/z-terms in the splitting functionsPgg(z) andPgq(z)
lead to many soft gluons. The corresponding high multiplicities are unphysical.
At small x, coherence phenomena like angular ordering are important.Evolution
equations for the parton distributions in a shower which arevalid at smallx will
be discussed in the next subsection.

2.2.3 Coherent branching

In the coherent branching formalism, interference effectsare included in the col-
linear resummation. These effects modify the evolution equation mostly at small
x. Here, we sketch the angular pattern of parton emission and briefly discuss the
coherent branching evolution equations.

Let us consider a quark-antiquark pair which is produced in ahard process and
has an opening angleθi j. The angular dependence of the amplitude for the emis-
sion of a gluong from the quarki or the antiquarkj is governed by the radiation
function [50, 88]

Wi j =
1−cosθi j

(1−cosθig)(1−cosθ jg)
. (2.32)

In this equation, all partons are assumed to be massless. Theangleθig corresponds
to the angle between the quark and the emitted gluon whileθ jg is the angle be-
tween antiquark and gluon. The gluon does not have to be emitted in the plane of
the quark and the antiquark. Instead, it may be emitted with an azimuthal angle
relative to this plane. To visualize this picture, let us assume for a moment that
the gluon is emitted from the quarki with fixed relative angleθig. Varying the az-
imuthal angleφ between 0 and 2π then describes a cone around the quarki with
half-opening angleθig.

To obtain the distribution of radiated gluons, an integration of the radiation func-
tion over the phase space of the gluon has to be carried out. Remarkably, it turns
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out that the integration overφ vanishes ifθi j < θig andθi j < θ jg. This means
that the emission angle of the gluon relative to its parent has to be smaller than
the angle between quark and antiquark. Iterating this process leads to the conclu-
sion that emission angles in subsequent emissions decreasemonotonically. This
phenomenon is calledangular ordering.

Angular ordering can be included systematically in the evolution equations for
the parton distributions in a jet. These coherent branchingevolution equations can
be derived systematically in the framework of the generating functional formalism
for parton showers [88], which we do not discuss here.

As a consequence of angular ordering, the evolution equations are written in
terms of the angular evolution variableY = ln(Eθ/Q0). They contain logarith-
mic parton distributionsQ(x,Y ) andG(x,Y ). Logarithmic distributions contain
an extra factor ofx which allows to interpret them as differential multiplicities
with respect to ln(1/x). No distinction is made between quarks and antiquarks
and between different flavors. To keep notation short, we define the abbreviation

Ff (z) ≡ F
(

x
f (z) ,Y + ln f (z)

)

for F = Q,G. The evolution equations read:

∂
∂Y

Q(x,Y ) =

∫ 1

0
dz

αs(k2
⊥)

π
[

P̂qq(z){Qz +G1−z −Q1}
]

(2.33)

∂
∂Y

G(x,Y ) =
∫ 1

0
dz

αs(k2
⊥)

π
[

P̂gg(z){Gz +G1−z −G1}

+n f P̂qg(z){Qz +Q1−z −G1}
]

(2.34)

In this equation, the distributions vanish if their first argument is larger or equal
one. The relative transverse momentum of the radiated parton is given byk2

⊥ =

z(1− z)Eθ . This evolution equation for coherent branching contains the same
unregularized splitting functions as the DGLAP equation. Also the structure of the
contributing processes is similar. Each of the three processesq → q+g, g → g+g
andg→ q+ q̄ has three legs which are taken into account through the argumentsz,
1−z and one. The negative contribution orginates from splittings of the incoming
parton which carries relative energy fraction one.

In a splitting, partons take energy fractionsz and 1−z and angular ordering only
allows for emission angles less thanθ . The quantitiesY + lnz andY + ln(1− z)
arise as arguments of the distributions in the splitting term as a consequence of
angular ordering. Thez-dependence ofY + lnz also leads to a constraint on the
z-integration which effectively suppresses the radiation of soft gluons.

The coherent branching evolution equations cannot be solved analytically. For
an analytic approach, the modified leading logarithmic approximation (MLLA)
has been developed. Its basic idea is to expands parts of the coherent branching
evolution equations to obtain an analytical solution.



2.2. Jet evolution and jet fragmentation 19

The coherent branching evolution equations contain singular and non-singular
parts. The singular terms are the terms with 1/z and 1/(1− z) in the splitting
functions. They give the dominant behavior. In addition, MLLA expands the
terms from the non-singular parts of the splitting functionaroundz = 11. This
expansion leads to the MLLA evolution equation

∂
∂Y

G(x,Y) =
∫ 1

0

dz
z

γ2
0(Y + lnz)Gz −a1γ2

0(Y )G1 (2.35)

This is only a single equation for the evolution of the gluon distribution. The
singular behavior of the quark-quark and the gluon splitting function are identical
up to a color factor. Consequently, the quark distribution is given byQ(x,Y ) =
CF
CA

G(x,Y ).

In Eq. (2.35),γ2
0(Y ) = 1/[β (Y + λ )] contains the running coupling, where the

constants are given byλ = ln(Q0/ΛQCD) andβ = 11
12−

n f TR
3Nc

.

The constanta1 = 11
12+

4n f TR
3Nc

(1− 2CF
Nc

) emerges from the expansion aroundz = 1.
The double logarithmic approximation (DLA) is defined by keeping only the sin-
gular terms proportional to 1/z or 1/(1− z) in the splitting function. All other
terms in the splitting functions are neglected. This corresponds toa1 = 0 in
Eq. (2.35).

The underlying idea of both MLLA and DLA is to allow for analytical inves-
tigations, which are not possible for the coherent branching evolution equations.
However, both approximations fail to conserve energy. Thisfeature is the main
reason why next-to-MLLA investigations have been started [97].

2.2.4 TMD evolution equations

Transverse momentum dependent (TMD) evolution equations extend the set of
variables of the single particle distributions by the transverse momentump⊥ rel-
ative to the initial parton. The single particle distributionDk

i (x,Q
2,p⊥) describes

the distribution of partons of typei in a jet initiated by a partonk. Further variables
beside the parton vitualityQ2 are the energy fractionx and transverse momentum
p⊥ of the parton. It is normalized to the distribution without transverse momen-
tum,

∫

d2p⊥Dk
i (x,Q

2,p⊥) = Dk
i (x,Q

2).

1A detailed description of the expansion can be found in [92].
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The TMD evolution equation is given by [84]

∂ Dk
i (x,Q

2,p⊥)

∂ lnQ2 = (2.36)

αs(Q2)

2π

∫ 1

x

dz
z

Pji(z)
d2q⊥

π
δ
(

z(1− z)Q2−Q2
0−q2

⊥
)

Dk
j

(

x
z
,λ (z)Q2,p⊥− x

z
q⊥

)

Here, theδ -function fixes the absolute value of the transverse momentum q⊥ of
the emitted parton relative to the parent parton. This is a mass constraint which
can be derived from the kinematics of a splitting process under two assumptions:
(a) The virtual mass of the parent parton is much larger than the virtual mass of
the partons in the next generation and (b) the parton energy is much larger than all
virtual masses.

In Eq. (2.36), the partonj in the splitting term on the right hand side has a dif-
ferent transverse momentum to account for its change in a splitting. The function
λ (z) was introduced in [84] to interpolate betweenλ (z) = 1 for largex and the
small-x region where coherence effects are relevant. Forλ (z) = 1, Eq. (2.36) can
be integrated overp⊥ and the DGLAP equations are recovered. In contrast, setting
λ (z) = z2 is the leading effect of taking into account soft gluon coherence.

In Chapter 4, we will use this equation withλ (z) = z2 for a calculation of the
mean transverse momentum of partons in a jet.

2.3 Heavy-ion collisions, jet quenching and energy

loss models

In this section, we will consider basic aspects of heavy-ioncollisions. In the first
subsection, we will focus on establishing a qualitative picture of a heavy-ion col-
lision. For this purpose, we will discuss the collision geometry and describe the
space-time evolution of the dense matter in the collision region. The second sub-
section will list experimental results from RHIC with a focus on the nuclear mod-
ification factorRAA. The observedRAA shows a suppression of leading hadrons by
a factor of up to five. This suppression is commonly attributed to the energy loss
of fast partons in a quark-gluon plasma. Corresponding energy loss models are
sketched in the last subsection.
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2.3.1 Picture of a heavy-ion collision

2.3.1.1 Geometry and Glauber model

The geometry of a heavy-ion collision is largely dictated bythe density of nucle-
ons in the nucleus. This density can be parametrized by a Woods-Saxon distribu-
tion

ρA(z,b) =
ρ0

1+exp
(√

z2+b2−RA
a

) (2.37)

Here,RA ∝ A1/3 determines the size of the nucleus. Nuclei are accelerated to a
an ultrarelativistic velocity and propagate on a straight-line trajectory towards the
collision point. The fast nuclei are Lorentz-contracted inthe beam direction and
can therefore be visualized as pancakes. Such a picture motivates the definition
of the projection of the nucleon density in the direction of the beam (which is
identified with thez-direction). This projection is given by the nuclear thickness
function

TA(b) =
∫

dzρA(z,b). (2.38)

The number density of overlapping nucleons in a collision ofnucleiA andB2 is
described by the nuclear overlap function

TAB(b) =
∫

d2sTA(s)TB(b−s). (2.39)

The nuclear overlap function is normalized as
∫

d2bTAB(b) = 1.
A simple geometrical model of nucleus-nucleus collisions is the Glauber model.

It describes a nucleus-nucleus collision as independent superposition of point-like
nucleon-nucleon collisions. In the Glauber model, two (point-like) nucleons from
the two nuclei can only interact if they are located at the same impact parameter.
Consequently, their interaction probabilityp1 is given by:

p1(b−s) = σ in
NNδ (b−s) (2.40)

Here,σ in
NN is the inelastic nucleon-nucleon cross section. It contains the energy

dependence of this model. We assume that the nucleons in nucleusA are placed
at positions{sA

i } in impact parameter space. The probability that the nucleonj in
B interacts at least with one nucleon inA, is given by

p(sB
j ,{sA

i }) = 1−
A

∏
i=1

[

1− p1(sB
j −sA

i )
]

(2.41)

2In the following, A and B will denote the nuclei as well as the numbers of nucleons they

contain.
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FIGURE 2.5: Number of participant nucle-

ons and number of binary collisions in a

Au+Au-collision at 200 GeV. The Wood-

Saxon distribution is used with parameters

a = 0.53 fm andRA = 6.38 fm and the in-

elastic cross section isσ in
NN = 42 mb. Fig-

ure taken from [36].

In this expression, the product represents the probabilitythat no interaction takes
place. Consequently, the probability that exactlym nucleons ofB participate in an
AB collision at impact parameterb is

PB(m,b) =





B

m





(

A

∏
i=1

B

∏
j=1

∫

d2sA
i d2sB

j TA(sA
i )TB(sB

j −b)

)

×
m

∏
k=1

p(sB
k ,{sA

i })
B

∏
l=m+1

[1− p(sB
l ,{sA

i })] (2.42)

This equation is constructed from the probability that the first m nucleons inB
interact with the nucleons inA (represented by the product overk) while the others
do not interact (which corresponds to the product overl). From this equation, the
differential cross section for the collision of nucleiA andB can be estimated by

dσAB

d2b
= 1−PB(0,b) ≃ 1−exp

[

−σ in
NN ABTAB(b)

]

. (2.43)

An interesting quantity is the number of participating nucleons in a heavy-ion
collision. In Glauber theory, it is given by

Npart(b) = A
∫

d2sTA(b−s)
(

1−e−σ in
NNBTB(s)

)

+B
∫

d2sTB(b−s)
(

1−e−σ in
NNATA(s)

)

(2.44)

The number of binary nucleon-nucleon collisions is given by

Ncoll(b) = σ in
NNTAB(b) (2.45)
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The number of participants and the number of binary collisions depend on impact
parameter of the nuclei. Fig. 2.5 shows the number of participants and the number
of binary collisions as a function of the absolute value|b| of the impact parameter
b. The Wood-Saxon distribution is used with parametersa = 0.53 fm andRA =
6.38 fm and the inelastic cross section isσ in

NN = 42 mb.
The mean number of binary collisions in a given range of impact parameters

c, which is needed for the calculation of the nuclear modification factorRAA (see
next section), is

〈Ncoll〉c =
σ in

NN

∫

c
d2bTAB(b)

∫

c
d2b

dσAB

d2b

. (2.46)

The number of participants and the number of binary collision are linked to dif-
ferent processes. Particle production and total multiplicities scale with the number
of participants, while the number of hard processes is governed by the number of
binary collisions.

2.3.1.2 Space-time picture of a heavy-ion collision

When two nuclei collide with high energy and a large overlap in impact parameter
space3, a deconfined state of matter may be created – the quark-gluonplasma.
In the following, we will discuss the time history of a heavy-ion collision and
describe different phases in its evolution in terms of the proper timeτ.

• 0 < τ < τ0: Equilibration and thermalization
After a (central) nucleus-nucleus collision at ultrarelativistic energy which
happens at proper timeτ = 0, the remnants of the Lorentz-contracted nu-
clei (“pancakes”) recede in longitudinal direction. The partonic products of
multiple nucleon-nucleon collisions are located in the collision region be-
tween the nuclei. They are highly excited and it takes a certain proper time
τ0 until they are de-excited. This time is typically a fractionof 1 fm/c or
even much less than 1 fm/c. For the proper time range 0< τ < τ0 matter is
in the pre-equilibrium stage.

The de-excitation timeτd is defined in the rest frame of each quantum
and consequently experiences Lorentz time dilation. In thecenter-of-mass
frame it becomesτcm

d = τdγ. In the laboratory frame soft particles with a
smaller Lorentz-γ factor are therefore produced early. In contrast, fast par-
ticles emerge much later at a significant distance from the collision point.
This has important consequences: After the equilibration of the plasma, fast

3For more quantitative statements, compare the experimental results in Sec. 2.3.2.
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FIGURE 2.6: Space-time picture

of a ultrarelativistic heavy-ion

collision. The different phases are

discussed in the text. Figure taken

from [107].

quarks and gluons propagate through the medium created by the soft parti-
cles. The fast partons can therefore be used as a self-generated probe of the
quark-gluon plasma.

After a proper time ofτ0 ≈ 1 fm (or less), the system is thermalized and
hydrodynamical evolution starts.

• τ0 < τ < τ f : Hydrodynamical evolution
After thermalization and equilibration have been reached,the system is in
a deconfined phase of quarks and gluons – the quark-gluon plasma. The
expansion proceeds mostly in longitudinal direction and can be described
in terms of relativistic hydrodynamics. The correspondinginterpretation is
that the quark-gluon plasma can be described as a fluid. Hydrodynamical
evolution is governed by the conservation of the energy-momentum tensor

∂µT µν = 0 with T µν = (ε + p)uµuν − pgµν . (2.47)

Here,ε andp are energy density and pressure of the fluid whileuµ ≡ uµ(x)
represents the local velocity. Furthermore, no viscous effects are taken into
account in this equation. For an equation of statep = ε/3, this leads to [27]

p ∝ T 4, ε ∝ T 4, s ∝ T 3, T ∝ τ−1/3 (2.48)

wheres denotes the entropy density andT is the temperature. With increas-
ing time, the system cools down. At temperatureTc, the phase transition to
confined matter happens. The degrees of freedom of the systemare con-
tained in color-singlet states instead of quarks and gluons. The expansion
continues for several fm/c until freeze-out.
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• τ > τ f : Freeze-out
At τ f (which is of the order of 10 fm), the system freezes out. First, the
number of each particle species does not change anymore (chemical freeze-
out). Soon afterwards, the system becomes too dilute to maintain kinetic
equilibrium (kinetic freeze-out). The freeze-out temperature, however, can
be different for different hadrons.

2.3.2 Experimental results from RHIC

At present, the Relativistic Heavy Ion Collider (RHIC) at BNL dominates the field
of experimental data. RHIC collides nuclei with center of mass energies of up to√

sNN = 200 GeV per nucleon pair. This energy will be exceeded by the Large
Hadron Collider (LHC) at CERN in the next years. In the heavy-ion program of
the LHC, lead-ions with up to

√
sNN = 5.5 TeV per nucleon pair will be collided

and detected in the ALICE experiment.
RHIC has been the first collider to observe the suppression ofhigh transverse

momentum hadrons in heavy-ion collisions, i.e. the phenomenon of jet quenching.
The amount of experimental data taken at RHIC is huge and gaverise to many new
phenomena in heavy-ion collisions. Here, we focus on the nuclear modification
factor and briefly mention the disappearance of the away-side jet.

2.3.2.1 Nuclear modification factor

The nuclear modification factor is given by

Rh
AA =

1
〈Ncoll〉

d2σ AA→h

dp2
⊥dy

d2σ pp→h

dp2
⊥dy

(2.49)

Here,〈Ncoll〉 is the mean number of binary collisions of nucleons in a certain cen-
trality class. This number can be calculated in Glauber theory (see Eq. (2.45)).
Centrality classes are defined through the multiplicity distribution in heavy-ion
collisions. For example, the 10% of events with the highest multiplicity corre-
spond to the centrality class 0−10%. A larger centrality class reflects a larger im-
pact parameter between colliding nuclei. With increasing centrality, the number
of binary nucleon-nucleon collisions〈Ncoll〉 as well as the number of participating
nucleons〈Npart〉 increases.

The nuclear modification factorRAA describes the ratio of single inclusive spec-
tra for leading hadrons in a nucleus-nucleus collision relative to the spectra in
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FIGURE 2.7: Nuclear modification factor of neutral pions for different centrality classes

as measured by the PHENIX experiment at RHIC. Also shown is the result from minimum

bias collision, i.e. events with minimal trigger restrictions. Values below unity correspond

to suppression relative to the scaled expectation frompp collisions. The suppression

becomes stronger with increasing centrality and reaches a value of 0.2 in the most central

Au+Au-collisions. Remarkably, the suppression factor stays roughly constant forp⊥ > 4

GeV. Figure taken from [6].

pp-collisions scaled with the number of binary collisions. Ifa nucleus-nucleus
collisions can be described as an incoherent superpositionof proton-proton colli-
sions, thenRAA takes a value of unity. Instead,RAA is significantly less than unity
in central nucleus-nucleus collisions at RHIC. Suppression factors up to 5 have
been observed.
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FIGURE 2.8: The nuclear modification factorRAA as a function of pion transverse momen-

tum for different energies. In contrast to the other energies, no suppression is observed

for
√

sNN = 22.4 GeV. For
√

sNN = 62.4 and 200 GeV, the suppression for Cu is weaker

than for Au. Figure taken from [7].

In Fig. 2.7, experimental data from the PHENIX experiment atRHIC is shown
for the nuclear modification factorRAA of neutral pions as a function of their trans-
verse momentum. The maximum ofRAA at mid-p⊥ is called the Cronin effect. It
is attributed to multiple soft scattering of partons in the initial state, which leads
to broadening of parton transverse momentum. The Cronin effect is common to
all nuclear modification factors. At larger transverse momentum (p⊥ > 4 GeV),
the nuclear modification factor becomes approximately constant up to the highest
transverse momenta measured. A significant suppression is observed which in-
creases with the centrality of the collision. In the most central Au+Au collisions,
the suppression factor is about 5.

This suppression is attributed to interactions of partons with the dense medium
in the final state. The underlying physical picture is the following: A highly ener-
getic parton propagates through the dense matter created inheavy-ion collisions.
Interaction with this medium makes the fast parton lose energy. With increasing
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FIGURE 2.9: The nuclear modification factorRAA for non-photonic electrons from the
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centrality, the average path length in the medium increasesand the parton loses
more energy. In this way, the number of fast partons is reduced by the medium.
Hadronization is assumed to take place outside the medium inthis picture.

Different measurements ofRAA have been carried out and support this picture.
Here, we only collect some of the results and their interpretations.

• No suppression is observed in peripheral nucleus-nucleus collisions or in
d+Au collisions [12]. Therefore, the suppression of leading hadrons is a
final state effect which is caused by the dense matter in the overlap region
of colliding nuclei. Furthermore, the suppression is due tothe strong inter-
action since direct photons pass the medium unattenuated [10].

• A suppression can only be observed if the energy of the colliding nuclei
is large enough. In Fig. 2.8, we show the nuclear modificationfactor for
pions in Cu+Cu collisions as a function of the pion transverse momentum.
Three different center of mass energies are compared:

√
sNN = 22.4, 62.4
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FIGURE 2.10: The nuclear modification factor for leading hadrons and for jets as a func-

tions of transverse momentum. The jetRAA agrees to theRAA for pions. Figure taken from

[20].

and 200 GeV. No suppression of pions is observed at
√

sNN = 22.4 GeV.
For

√
sNN = 200 GeV, the suppression is weaker than in Au+Au collisions.

This can be attributed to the smaller size of the Cu-nuclei which restricts
the path length of the fast parton in the medium to smaller values.

• In the picture of energy loss of fast partons, heavy flavors can be studied by
semileptonic decays ofB- andD-mesons into electrons. The nuclear mod-
ification factor for these non-photonic electrons is shown in Fig. 2.9 and
exhibits a similar magnitude of suppression at large transverse momentum
as seen in theRAA for pions.
The energy loss of gluons can be probed by the nuclear modification factor
for protons. This is possible, since protons result to a large part from gluon
fragmentation. Gluons carry a larger color charge and consequently they
should couple stronger to the dense medium and lose more energy. Inter-
estingly, the nuclear modification factor for protons is notsmaller than for
pions [8].
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• Great progress has been achieved in the full reconstructionof jets in heavy-
ion collisions and the first preliminary measurements of nuclear modifica-
tion factors of jets have been published [20]. In Fig. 2.10, we show the
nuclear modification factor for jets in comparison to the onefor pions (Fig-
ure taken from [20]). The nuclear modification factorRAA for jets exhibits
a similar suppression as the one for pions.

2.3.2.2 Two-particle azimuthal correlations

Another hint towards the production of a dense medium in heavy-ion collisions
can be extracted from the study of 2-particle azimuthal correlations. For this pur-
pose, events with a trigger particle with transverse momentum4 of several GeV (4
GeV< ptrig

⊥ < 6 GeV) are selected. For these events, the two-particle azimuthal
distribution

D(∆φ) =
1

Ntrig

dN
d∆φ

(2.50)

describes the distribution of associated high-p⊥ particles (ptrig
⊥ > pass

⊥ >2 GeV)
as a function of the azimuthal angle relative to the trigger particle. Experimental
data [14, 12] for the two particle azimuthal distribution isshown in Fig. 2.11
for p + p, d+Au and Au+Au-collisions. In all three cases, the distribution has a
maximum at∆φ ≃ 0 coming from particles in the trigger particle jet. Inpp and
d+Au collisions, a second maximum is observed at∆φ ≃ π. It results from events
in which the trigger particle and the associated particle emerge from the same hard
collision and are back-to-back. This correlation vanishesin Au+Au-collisions, i.e.
no jet is observed on the away-side∆φ ≃ π . Similar to single-inclusive spectra,
a qualitative difference is observed betweenpp and d+Au-collisions on one side
and Au+Au-collisions on the other side.

This observation can be explained in the following way: The high-p⊥ trigger
particles are preferentially produced near the surface of the overlap region of col-
liding nuclei. Their propagation length through the mediumis short and therefore
they lose little energy. In contrast, the associated particle on the away-side has
a much larger in-medium path length and loses a significant part of its energy.
Consequently it is not seen in the distribution of associated particles anymore.

2.3.3 Energy loss models

Two processes are widely believed to be responsible for the energy loss of a fast
parton in hot and dense matter: Collisional and radiative energy loss. Historically,

4For illustration, we specify the values from Ref. [14].
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collisional energy loss from scattering of the fast parton with the medium was
explored first. Later, it was realized that radiative lossescan also be large when
radiation and scattering are treated in a common framework.Here, we sketch
some features of the numerous models that have been studied in the literature.

2.3.3.1 Collisional energy loss

A highly energetic parton loses energy by scattering off thedense matter created
in heavy-ion collisions. The first calculation of this collisional energy loss was
performed by Bjorken [17] already in 1982. His calculation contains several ap-
proximations but the basic features of his results are confirmed in more sophisti-



32 2. Relevant concepts of Quantum Chromodynamics

cated energy loss calculations. He calculates the energy loss per length of a quark
or gluon with the large energyE by

dE
dx

= −
∫

d3k
(2π)3n(k)(1−cosθ)

∫

d|t|dσ
d|t|ν. (2.51)

In this equation, the energy loss is computed from an effective densityneff(k) of
scattering centers and the differential parton-parton cross sections. The angle be-
tween incident partons in the laboratory frame is denoted byθ . Here, the effective
density is constituted by quarks and gluons.

neff(k) =
2
3

nq(k)+
3
2

ng(k) =
8n f

ek/T +1
+

24

ek/T −1
. (2.52)

The prefactors absorbe the relative color factors from the vertex of the plasma
quark or gluon. All partons are taken to be massless. For the differential cross
section of the fast parton with the plasma partons, Bjorken assumes that the dom-
inant contribution comes from small momentum transfers|t| ≪ s.

dσ
dt

=
2πα2

s

t2 ×







2
3 incident quark

3
2 incident gluon

(2.53)

This neglects possibleu-channel contributions with a large momentum transfer.
However, in this case a parton from the plasma becomes very energetic and takes
the role of the incident fast parton. In most calculations, such losses are not
counted for the energy loss.

ForE,E ′ ≫ k, Bjorken writes the kinematical variables as

s = 2kE(1−cosθ), ν =
E|t|

s
(2.54)

Without a lower cutoff, the|t|-integration is logarithmically divergent. Bjorken
chose the infrared regulator|t|min = M2 ∼ 1 GeV2. The introduction of the pa-
rameterM is completely ad-hoc and vaguely motivated by screening. For the
upper limit, |t|max = s/2 is used. This choice can be motivated by the fact that
u-channel contributions become dominant for larger momentum transfers.

For the integration over the momentumk of the plasma parton, several additional
approximations are made. First, the momentum distributionof plasma partons
is cut from below,k ≥ M. In the logarithmic factor which results from the|t|-
integration,k is replaced by a mean value〈k〉 ≃ 2T and taken out of the integral.
Furthermore, Bjorken assumed that the temperature is extremely high,T ≫ M.
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With all these simplifications, the energy loss is given by

−dE
dx

=

(

2
3

)±1

2πα2
s

(

1+
n f

6

)

T 2 log

(

4ET
M2

)

(2.55)

The corresponding numerical values for the energy loss are rather small. A quark
with energyE = 10 GeV loses only−dE/dx ≃ 0.3 GeV/fm for αs = 0.2 and
T = 0.25 GeV.

In spite of all approximations which Bjorken made, the parametrical dependence
dE/dx ∝ −α2

s T 2 log(E) is confirmed in more careful calculations. The depen-
dence on an arbitrary cutoff on small momentum transfers canbe removed in the
framework of thermal field theory [28, 34]. In this approach,screening is taken
into account through hard thermal loop-resummed propagators and self energies.
The energy loss is computed from the corresponding dielectric functions and is
infrared-safe [28].

However, these calculations can only be applied at small momentum transfers.
A calculation which includes larger momentum transfers wasperformed in Refs.
[31, 32] with the result

−dE
dx

=
8πα2

s T 2

3

(

1+
n f

6

)

ln

(

2n f /2(6+n f )0.920

√
q̃T

mg

)

(2.56)

Here, the gluon mass ismg = mD/
√

3. The scale ˜q is an upper cutoff for the mo-
mentum transfer|t|. At large momentum transfer, contributions fromu-channel
exchanges become important. In this case, the momentum transfer is of the order
of the projectile energy. These contributions are not included.

The effect of the finite-size of the medium has been studied inRef. [29, 30] and
was found to be non-significant.

2.3.3.2 Radiative energy loss

A fast parton that propagates through dense matter can also lose energy through
gluon radiation. This radiation is induced by multiple scatterings in the medium.
A key role for the discussion of this medium-induced gluon radiation is played by
the non-abelian Landau-Pomeranchuk-Migdal (LPM) effect [26]. This effect de-
scribes a destructive interference between radiation and scattering diagrams which
leads to a suppression of gluon radiation.

Several models [19, 42, 41, 43, 44] account for the LPM effectin calculations of
medium-induced gluon radiation. Here, we only present a qualitative discussion
to illustrate some features of these models.
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In the spirit of the BDMPS model [19], we assume that multiplesoft scatterings
take place inside the finite-size medium with lengthL, i.e. L ≫ λ . Furthermore,
scattering centers have a densityn and are well-separated from each other.

Coherence effects between scattering and radiation are important if the forma-
tion time τ f of a gluon is much smaller than the mean free path for scattering,
τ f ≪ λ . The formation timeτ f is the time which a radiated gluon needs to deco-
here from the projectile. For this decoherence, a relative phase between the pro-
jectile and the gluon is built up by multiple scatterings. When the relative phase
is of order one, the gluon decoheres from the projectile. From this condition, the
coherence length can be defined as

lcoh=
2ω
〈k2

⊥〉
=

√

2ω
q̂

with 〈k2
⊥〉 ≃ q̂lcoh = Ncohq̂λ . (2.57)

Here,Ncoh = lcoh/λ is the number of coherent scatterings which take place dur-
ing the formation of the gluon. The medium properties have been encoded in
the definition of a transport parameter ˆq. It describes the growth of accumulated
transverse momentum per unit length,

q̂ ≃ n
∫

dq2
⊥

dσ
dq2

⊥
q2
⊥. (2.58)

Coherence effects are important in the regimeλ < lcoh< L. No coherence effects
are present ifλ > lcoh. In this case, the gluon is formed between successive scat-
terings and radiated incoherently. This is the Bethe-Heitler limit. In the context of
coherent radiation, this limit corresponds to small gluon energies. The boundary
of the coherent regime is given byNcoh > 1:

ω >
1
2

q̂λ 2 ≡ ωLPM. (2.59)

Also, the coherence length has to be smaller than the medium extension,lcoh< L.
This condition leads to

ω <
1
2

q̂L2 ≡ ωc (2.60)

If the energy of the radiated gluon is larger thanωc, then the whole medium co-
herently builds up the phase of the radiated gluon and the gluon does not decohere
from the projectile inside the medium.

Below ωc, the energy spectrum of radiated gluons per unit length can be esti-
mated from a single scattering by

ω
d2I

dωdz
≃ 1

Ncoh
ω

d2I(1)

dωdz
∝ αs

√

q̂
ω

(2.61)
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FIGURE 2.12: Typical gluon radiation diagram: Multiple soft scattering builds up the

relative phase between radiated gluon and the projectile until it finally decoheres. The

energy loss in this process is given by the energyω which the gluon carries away.

The dependence∝ 1/
√

ω of the energy spectrum is a consequence of the for-
mation time arguments applied here. The corresponding radiative energy loss of
the projectile from this regime is given by the sum of the energies of all radiated
gluons,

∆E = −
∫ L

0
dz
∫ ωc

ωLPM

dω ω
d2I

dωdz
∝ −αsq̂L2. (2.62)

This represents theL2-behavior of induced energy loss which is found in several
calculations of coherent gluon radiation. TheL2-behavior originates in the fact
that the boundaryωc of the LPM regime is linked to the medium extensionL.

The above discussion was rather qualitative and contained several approxima-
tions. The following path-integral representation of the gluon spectrum allows for
more general studies [42, 43]

ω
dI
dω

=
αsCR

(2π)2ω22Re
∫ ∞

ξ0

dyl

∫ ∞

yl

dȳl

∫

du
∫ χω

0
d2k⊥e−ik⊥ue−

1
2

∫ ∞
ȳl

dξn(ξ )σ(u)

× ∂
∂y

∂
∂u

∫ u=r(ȳl)

y=0
Dr exp

[

i
∫ ȳl

yl

dξ
ω
2

(

ṙ2− n(ξ )σ(r)
iω

)]

. (2.63)

In this equation,k⊥ denotes the transverse momentum of the emitted gluon. The
integration limitk⊥ < χω on the transverse phase space restricts gluon emission
to a finite angleΘ ≤ arcsin(χ). Consequently,χ = 1 allows for all emission
angles. The difference between radiation from a quark or a gluon is reflected in
the corresponding Casimir factorCR. The transverse coordinatesu, r andy are
distances between the positions of components of the projectile in the amplitude
and the complex conjugate amplitude.

The gluon spectrum can be studied in different limits:
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• The gluon spectrumω
dI
dω

∝ ω−1/2 which was motivated in Eq. (2.61) cor-

responds to the multiple soft scattering limit of Eq. (2.63). It emerges
from Eq. (2.63) through the saddle point approximation withn(ξ )σ(r) ≃
1
2q̂(ξ )r2. In the limit ωcL → ∞, the gluon spectrum is found to be

ω
dI
dω

≃ 2αsCR

π







√

ωc
2ω ω < ωc

1
12

(ωc
ω
)2 ω > ωc

(2.64)

The radiation of gluons withω > ωc is therefore suppressed.

• Another interesting limit is the opacity expansion, which is an expansion
in powers of the dipole cross section in the second line of Eq.(2.63). The
opacity expansion corresponds to the incoherent superposition of few hard
scatterings, i.e.L/λ ∼ 1−5. For large momentum transferµ2 and in the
limit µ2L2 → ∞, the gluon spectrum is given by

ω
dI
dω

≃ 2αsCR

π
L
λ







log
(

µ2L
2ω

)

ω < 1
2µ2L

π
8

µ2L
ω ω > 1

2µ2L
(2.65)

Again, the radiation of hard gluons is suppressed relative to radiation pro-
cesses with lower energies. Also, more parameters need to bespecified in
this limit.

Another opacity expansion, which we do not discuss here, is the GLV reaction
operator approach [41]. This calculation also gives a quadratic dependence of the
energy loss on the size of the static plasma. Remarkably, theenergy loss in this
approach is dominated by the first term in the expansion inL/λ .



Chapter 3

Transverse momentum broadening

in cold nuclear matter

In this chapter, we discuss transverse momentum broadeningin cold nuclear mat-
ter1. This effect is observed in deep-inelastic scattering (DIS) on nuclei. A quark
is knocked off a nucleon by the virtual photon and propagatesthrough the nu-
cleus. Interaction with this cold nuclear medium then broadens the transverse
momentum of this quark. Experimentally, this effect is observed in the fixed-
target experiments HERMES and CLAS.

3.1 Outline of the model

Our work in this chapter is based on the absorption model [59,64]. In this model,
the hadron formation time is computed analytically in the framework of the Lund
string fragmentation model [25] as a three-step process (see Fig. 3.1). In the first
stage the quark (or antiquark) ejected from the nucleon propagates and undergoes
multiple collisions in the nucleus. In the second stage color neutralization takes
place and a prehadron is formed. Inelastic interactions of the prehadron or hadron
result in a considerable shift of the final (detected) hadrontowards smallerzh. We
treat this process as absorption. Only elastic rescatterings preserve the prehadron
and contribute to broadening. In the third stage, the final state hadron is formed
from the surviving prehadrons.

We study the recent experimental data from HERMES [5] onp⊥-broadening of
pions produced in deep-inelastic lepton-nucleus scattering (DIS) on Ne, Kr and

1The presentation in this chapter follows to a large extent Ref. [77].
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FIGURE 3.1: Visualization of the three-

step model [59] for hadronization in DIS

on nuclei. Figure taken from [59]. A vir-

tual photonγ∗ interacts with a quarkq.

This quark turns into a color-neutral pre-

hadronh∗. Finally, the hadronh is formed.

σhσq σ*

A

*γ q h* h

y y’ y’’0

Xe nuclei. In the HERMES experiment, transverse momentum broadening

∆p2
⊥ = 〈p2

⊥〉A −〈p2
⊥〉D (3.1)

in the nuclear medium of a nucleus with mass numberA has been measured as
a function of the hadron fractional momentumzh, of the virtual photon energyν
and its virtualityQ2 as well as for different nuclear sizes and for different hadrons.
Here, the indexD in the definition of the transverse momentum broadening refers
to a deuteron target.

In the model of Ref. [64], the hadron is formed at the formation lengthlh

lh = lp + zh
ν
κ

. (3.2)

Here, lp denotes the prehadron formation or production length andν is energy
of the virtual photon. For relativistic quarks confined in one dimension the only
scale setting parameter is the string tensionκ ≃ 1 GeV/fm.

In Ref. [64], the prehadron cross section has been fitted to the pion-data for
the multiplicity ratios as a function ofzh andν and found an optimal fit with a
prehadron cross section equal to (2/3) of the hadron cross section in the extended
modelling of Ref. [64]

σprehadron≈
2
3

σhadron. (3.3)

This value of the prehadronic cross section is in agreement with Ref. [63]. Also,
the model [59, 64] showed rather good agreement with the available HERMES
data [2, 3, 4] for pions and kaons.

Such a reduction can be motivated in a picture in which the prehadron does not
yet have the full size of the hadron and therefore interacts with a smaller cross
section.

Furthermore, Ref. [64] has considered the production process for particles which
cannot be formed from a valence quark in the proton which is knocked out by the
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photon. For example, negative kaons as well as antiprotons cannot be formed by a
struck valence quark which picks up an antiquark from the string break-up. They
can only be formed from struck sea quarks, which are subdominant at HERMES,
or fromqq̄ pairs formed inside the colour string. This different mechanism implies
a flavour-dependent formation time from the Lund string fragmentation model.

3.2 Dependence on energy fractionzh and photon

energyν

In this section we want to test the three stage model further by concentrating on
quark propagation through the nucleus where most of the transverse momentum
is acquired. The theoretical calculation is very similar toreference [59]. The
length lp after which the prehadron is formed [59, 64] depends on the energy ν
transferred to the quark, the string tensionκ and the energy fractionzh of the
produced hadron. From energy conservation already followsthat if the hadron
has a very largezh, the quark cannot have radiated very much energy.

The prehadron formation length is computed analytically inthe framework of
the Lund string fragmentation model. If one assumes that theprehadrons can be
formed directly from the struck quark by picking up an antiquark from the string
break up, then the prehadron formation length reads

lp =
ν
κ

zh(1− zh)

×
[

1+
1+Dq

2+Dq

1− zh

z
2+Dq

h

2F1

(

2+Dq,2+Dq,3+Dq,
zh −1

zh

)

]

. (3.4)

Here,Dq = 0.3 and2F1 is the Gauß hypergeometric function. It modifies the
simple zh(1− zh)-behavior seen in the first line of Eq. (3.4). To visualize the
expression in Eq. (3.4), we can specify the following approximate expression for
lp:

lp ≃ 1.19
ν
κ

z0.61
h (1− zh)

1.09. (3.5)

We use the length of the quark trajectory Eq. (3.4) to calculate with the dipole
model the acquired∆p2

⊥ of the quark under the constraint that the subsequent
prehadron is not absorbed on its a way through the nucleus, i.e. that it can be
finally detected as a hadron. This is necessary, since the information about the
acquired transverse momentum of the struck quark is encodedin the detected
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hadrons only.

〈∆p2
⊥〉q = 〈σq2

⊥〉
1

〈S∗〉

∫

d2b
∫ ∞

−∞
dzρA (b,z)

∫ z+lp

z
dz′ρA

(

b,z′
)

×exp

(

−σ∗
∫ ∞

z+l p
dz′′ρA

(

b,z′′
)

)

,

〈S∗〉 =

∫ ∞

−∞
d2bdzρA (b,z) exp

(

−σ∗
∫ ∞

z+l p
dz′ρA

(

b,z′
)

)

. (3.6)

In this equation, the quantity〈σq2
⊥〉 is the mean transverse momentum squared

q2
⊥ acquired by the quark in one collision multiplied with the corresponding quark

nucleon cross section. This quantity is related to the dipole nucleon cross sec-
tion [75, 76] as shown below. Furthermore, we assume a sharp distribution of
prehadron formation points, namely the prehadron is produced after travelling a
distancelp through the nucleus. Hence, the final induced momentum broaden-
ing calculated in Eq. (3.6) can be viewed as the mean transverse momentumq2

⊥
acquired by the ejected quark in a single collision multiplied with the average
number of collisions in the nucleus. The resulting transverse momentum is av-
eraged over all virtual photon interaction points and weighted by the prehadron
survival probability.

More precisely, the first integral over the nuclear densityρA averages over all
primary interaction points in which a quark is ejected from anucleon. The sec-
ond integral multiplied with the cross sectionσ yields the number of collisions
suffered by the ejected quark.

The exponential factor at the end represents the prehadron survival probability
S∗ [64]. It is dictated by the longitudinal thickness of the nucleus at a given impact
parameterb and by the mean free path of the prehadron in the nucleusλ−1

∗ =
σ∗ρA, where the prehadron nucleon cross-sectionσ∗ = 2/3σπN (see Eq. (3.3)).
The mean free pathλ∗ is of the same magnitude aslp andRA. Hence, more weight
is given to production points close to the back-surface of the nucleus which have
large prehadron survival probabilities. In order to normalize this expression to
the actual number of detected hadrons, we divide by thez-integrated prehadron
survival factor〈S∗〉.

The mean transverse momentum squared times the cross-section, i.e. 〈σq2
⊥〉,

can be derived from the dipole nucleon cross section as follows. In the eikonal
approximation, the ejected high momentum parton moves on a classical trajectory
with impact parameterb and picks up a non-abelian phase factorV (b) in the
background gauge field generated by the nucleon

V (b) = P exp

[

i g
∫ +∞

−∞
dxµ Aµ(x)

]

. (3.7)
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HereV (b) is the Wilson line of the parton with impact parameterb relative to
the proton. We use the notationAµ ≡ Aa

µ ta, whereta are the generators of the
group SU(Nc) in the fundamental representation. The differential cross section to
produce a parton with transverse momentumq⊥ is given by projecting the eikonal
phase ontoq⊥ and by taking the modulus of the amplitude integrated over all
possible impact parameters

dσ
d2q⊥

=
1

(2π)2

∫

d2bd2b′eiq⊥(b−b′) 1
Nc

〈

Tr
[

V †(b′)V (b)
]〉

. (3.8)

Hence, a fake dipole of sizer⊥ = b− b′ is constructed from the ejected parton
in theV -amplitude and in theV †-amplitude. Their trajectories are displaced from
each other by the distancer⊥. The expectation values of the Wilson lines have
to be evaluated with respect to the target ground state. In the dipole model, the
total cross-section for the interaction of a dipole of sizer⊥ with a target nucleon
is given by

σdN(r⊥) = 2
∫

d2b
(

1− 1
Nc

〈

Tr
[

V †(b+ r⊥)V (b)
]〉

)

. (3.9)

We define the quantity
〈

σq2
⊥
〉

as the integral over transverse momentum d2q⊥ of
the differential cross section given in Eq. (3.8) multiplied by q2

⊥.

〈

σq2
⊥
〉

≡
∫

d2q⊥
dσ

d2q⊥
q2
⊥ (3.10)

Differentiating the phase factor appearing in Eq. (3.8) twice with respect to the
transverse separation and performing the integral overq⊥, one sees that

〈

σq2
⊥
〉

is
related to the dipole nucleon cross section.

〈

σq2
⊥
〉

=
1

(2π)2

∫

d2q⊥

∫

d2bd2r⊥
(

−∇2
⊥eiq⊥r⊥

) 1
Nc

〈

Tr
[

V †(b+ r⊥)V (b)
]〉

=
1
2

∇2
⊥σdN(r⊥)

∣

∣

r⊥=0 . (3.11)

This expression confirms the result derived in [75]. Becauseof theq⊥-integration
only the second derivative of ther2

⊥ = 0-part in the dipole cross section is relevant
for p⊥-broadening. This derivative is a constant due to the behavior σdN(r⊥) ∝ r2

⊥
of the dipole cross section at smallr⊥ [70]. We use a form of thex-dependent phe-
nomenological dipole nucleon cross section of Ref. [78], which has been adjusted
to include soft interactions in Ref. [79]

σdN(r⊥) = σ0(s)

[

1−exp

(

− r2
⊥

r2
0(s)

)]

, (3.12)
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wherer0(s) = 0.88(s/s0)
−0.14fm, s0 = 1000GeV2 and

σ0(s) = 23.6

(

s
s0

)0.08(

1+
3
8

r2
0(s)

0.44fm2

)

mb. (3.13)

Hence, one determines the parameter〈σq2
⊥〉 ≃ 4.6 for

√
s ≃ 5GeV, which is the

typical
√

s for the quark nucleon scattering at HERMES energies.
A review of different approaches to nuclear broadening can be found in Ref. [80].

Instead of〈σq2
⊥〉, the relevant quantity in this reference is the transport parameter

q̂F = 〈σq2
⊥〉ρ0. In Ref. [80], this parameter is found to be ˆqF = 0.035 GeV2/fm

compared with our determination ˆqF = 0.032 GeV2/fm at this dipole energy.
For a realistic nuclear density like the Woods-Saxon distribution, the expres-

sion Eq. (3.6) for the transverse momentum broadening of thequark cannot be
calculated analytically. For the physical understanding of Eq. (3.6), we can ap-
proximate the nuclear density with a hard sphere. This will allow us to obtain
analytical results. With a homogeneous nuclear densityρ0 =

(

4π r3
0/3
)−1

with
r0 = 1.2 fm, the nuclear density for a hard sphere approximation is given by

ρA(b,z) = ρ0Θ(RA −b)Θ(R(b)−|z|), R(b) =
√

R2
A −b2 . (3.14)

Cylindrical coordinates are favorable due to rotational invariance in the impact
parameter plane. In this equation,b is the impact parameter of the initial virtual
photon andRA = r0A1/3 denotes the nuclear radius. The hard sphere approxima-
tion is reasonable for large nuclei in which the thickness ofthe boundary of the
nucleus is small in comparison to its extension.

〈∆p2
⊥〉q = 〈σq2

⊥〉ρ0

{

lp

[

1− 1
〈S∗〉

·
(

3
8

lp

RA
− 1

64

(

lp

RA

)3
)]

Θ(2RA − lp)

+
3
4

RA Θ(lp−2RA)

}

. (3.15)

In this equation, thep⊥-broadening is given by the acquired mean momentum
squared per unit length〈σq2

⊥〉ρ0 times the in-medium propagation length of the
quark multiplied with the normalized survival probabilityof the prehadron. This
product is represented by the expression in square brackets.

The in-medium propagation length of the quark has two contributions which
differ depending on the relation between the prehadron formation lengthlp and
the nuclear diameter 2RA. If the prehadron formation length is larger than the
nuclear diameter, then the prehadron is formed outside of the nucleus and the in-
medium propagation length of the quark is given by the average nuclear thickness
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3/4RA seen by the quark. In this case, the prehadron survival probability is equal
to one.

For prehadron formation lengths which are smaller than the nuclear diameter,
the in-medium propagation length of the quark equals the prehadron formation
length lp plus some higher order corrections inlp/RA which are due to the fi-
nite size of the nucleus. These corrections account for the possibility that the
prehadron is formed outside of the nucleus such that not the entire prehadron for-
mation lengthlp contributes. The finite size corrections are normalized by the pre-
hadron survival probability, whereas the expression whichone would expect for
an infinitely extended cold nuclear medium (the term withlp) remains unchanged.
One should remark, that the corrections due to the finite survival probability of the
prehadron are numerically very small in general. For large nuclei with RA ≫ lp,
the finite size effects and the survival probability become negligible and the ac-
quired∆p2

⊥ is given by
〈∆p2

⊥〉q = 〈σq2
⊥〉 lp ρ0. (3.16)

A hadron with momentum fractionzh has a〈∆p2
⊥〉h reduced byz2

h compared to
the quark〈∆p2

⊥〉q. This is a purely kinematical factor and accounts for the fact
that the average〈∆p⊥〉q is shared among the produced hadrons according to their
energy fractions (c.f. also Ref. [81]).

〈∆p2
⊥〉h = z2

h〈∆p2
⊥〉q. (3.17)

For a more realistic computation of the transverse momentumbroadening of the
quark, we use a Woods-Saxon distribution for the nuclear density in the follow-
ing. In Fig. 3.2, we compare our results forp⊥ broadening with the HERMES
preliminary data [5] forπ+ andπ− for the three nuclei20Ne, 84Kr and 132Xe as
a function ofzh. Since the prehadron formation length entering the calculation
is a function ofzh andν, we take for the value ofν the experimental average in
the givenzh-bin. As one can see in the plots for the dependence onzh, there is
qualitative agreement between the calculation and the preliminary experimental
data. The general shape of thezh-dependence has deficiences: For intermediate
zh, the agreement is good in all three cases, but in the smallzh-bin, the theoretical
∆p2

⊥ for Kr and Xe is too small while it is too large in the largezh-bins. Further-
more, our model does not differentiate betweenπ+ andπ−. In order to do so,
one would need to employ a more sophisticated model which allows for flavor
dependent prehadron formation lengths (see Ref. [64]). Within the error bars, the
preliminary data do not discriminate betweenπ+ andπ− and the expected effect
seems to be small.

In Fig. 3.3 we display the dependence of∆p2
⊥ on the photon energyν. Similar

to the plot with respect tozh, we use in the computation of the prehadron for-
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FIGURE 3.2: p⊥-broadening as a function ofzh for pions in Ne, Kr and Xe.

mation length the experimental mean value ofzh in the givenν-bin. Due to the
increase of formation time withν, one would expect thatp⊥-broadening increases
with photon energy. In the preliminary data and in the calculation, however, the
broadening∆p2

⊥ decreases withν. We think that this is due to the experimental
constraints on the kinematics. With increasingν the experimental〈zh〉 (typically
zh ≃ 0.35− 0.45 here) decreases, which lowers the resulting∆p2

⊥. We remark
that ∆p2

⊥ at constantzh increases withν in the preliminary CLAS data at J-Lab
[82]. The much lower energy of DIS in this experiment, however, may also allow
hadron elastic scattering as an important source of nuclearbroadening.

3.3 Hadronic p⊥-broadening as a function ofQ2

The variation ofp⊥-broadening with the photon virtuality is the third piece of
information we have from the preliminary data. In Chapter 5,we will construct
a modified evolution equation which also takes into account scatterings with hot
nuclear matter. Here, we will use the equivalent equation toestimate the effect
in cold nuclear matter. Soft collisions with the nucleons donot change the virtu-
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FIGURE 3.3: p⊥-broadening of pions in Ne, Kr and Xe as a function of the photon energy

ν .

ality of the parton, only increase its transverse momentum.The “fragmentation
functions”Dh

q(zh,Q2,p⊥) give the probability for an initial quarkq to convert into
hadronh with momentum fractionzh, virtuality Q2 and transverse momentump⊥
in the course of the cascade. We use the transverse momentum dependent (TMD)
evolution Eq. (2.36) in the DGLAP region, wherezh is of order one andλ (z) = 1
[84]:

∂Dh
q(zh,Q2,p⊥)

∂ log(Q2)
=

αs(Q2)

2π

∫ 1

zh

dy
y

Pr
q(y,αs(Q

2))× (3.18)

∫

d2q⊥
π

δ
(

y(1− y)Q2−Q2
0−q2

⊥
)

Dh
r

(

zh

y
,Q2,p⊥− zh

y
q⊥

)

The above equation takes care of the mass constrainty(1−y)Q2 = Q2
0+q2

⊥ arising
in the splitting with momentum fractionsy and 1−y. After integration over trans-
verse momentum one obtains the standard DGLAP equation. Forelectron-nucleus
collisions we consider the shower inside nuclear matter with a homogeneous nu-
clear densityρ0. We assume that the medium nucleons change the transverse
momentum of the quark by givingq⊥ kicks, but they do not change its mass scale
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or virtuality. Strictly speaking, this is only true for small momentum transfers i.e.
small angle scattering. In nuclear matter radiation is interleaved with scattering.
Therefore a scattering termS(zh,Q2,p⊥) has to be added on the right-hand side of
Eq. (3.18). It has two parts, a gain term for scattering into the givenzh-bin under
consideration and a loss term.

S(zh,Q
2,p⊥) =

ν
Q2ρ0

∫ 1

zh

dw
∫

d2q⊥
dσ

d2q⊥
(3.19)

×
(

Dh
q(w,Q2,p⊥−wq⊥)−Dh

q(zh,Q
2,p⊥)

)

δ
(

w− zh −
q2
⊥

2mbν

)

.

The construction of the scattering term is described in moredetail in Sec. 5.1 for
the case of hot nuclear matter. The scattering term used herefollows from that
scattering term by substituting the relevant kinematical quantities and medium
parameters. More precisely, the photon energyν takes the role of the jet energy,
the nucleon massmb replaces the thermal gluon massms in the plasma and the
density is also changed to the nuclear densityρ0.

The evolution allows to calculate two different〈p2
⊥〉 from the respective frag-

mentation functions in the nucleus and in the vacuum Eq. (3.18)

〈p2
⊥〉 =

∫

d2p⊥p2
⊥D(zh,Q

2,p⊥)
∫

d2p⊥D(zh,Q
2,p⊥)

. (3.20)

Note that this expression is differential with respect tozh, i.e. it depends onzh.
However, the〈p2

⊥〉 defined in this equation is solely coming from the evolution.
The medium modification of the DGLAP evolution gives the difference of mean
transverse momentum generated in the evolution in the nucleus and in the vac-
uum. This piece is an additional contribution to the multiple scattering contribu-
tion (∆p2

⊥)h(Q̄2) which we fix atQ̄2 = 2.5 GeV2 to the preliminary data. In the
calculation of the mean transverse momentum broadening of the hadron, the same
averaged〈σq2

⊥〉 of the quark and the factorz2
h converting quark to hadron trans-

verse momentum squared appears naturally together with transverse momentum
integrated fragmentation function of this specific hadron divided by this hadron
multiplicity.

(∆p2
⊥)h(Q

2) = (∆p2
⊥)h(Q̄

2)+ z2
h ν ρ0〈σq2

⊥〉
(

1

Q̄2
− 1

Q2

)

. (3.21)

To lowest order,∆p2
⊥ is generated by the scattering term which gives a higher

twist contribution to the evolution from̄Q2 to Q2. This approximation may be
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justified by the smallness of the difference betweenQ2 andQ̄2 in the experimental
data. ForQ2 > Q̄2, the evolution enhances the meanp2

⊥ and for Q2 < Q̄2 the
devolution decreases the meanp2

⊥. Although HERMES preliminary data are for
relatively small photon virtualities ofQ2 = 1.5−4.5 GeV2, this yields a sizeable
effect for∆p2

⊥.
As one sees in Fig. 3.4, the calculatedQ2-dependence is in good qualitative

agreement with the preliminary data.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1  1.5  2  2.5  3  3.5  4  4.5  5

∆p
t2  [G

eV
2 ]

Q2 [GeV2]

π+ in Ne data
π- in Ne data

π+ calc.
π- calc.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1  1.5  2  2.5  3  3.5  4  4.5  5

∆p
t2  [G

eV
2 ]

Q2 [GeV2]

π+ in Kr data
π- in Kr data

π+ calc.
π- calc.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1  1.5  2  2.5  3  3.5  4  4.5  5

∆p
t2  [G

eV
2 ]

Q2 [GeV2]

π+ in Xe data
π- in Xe data

π+ calc.
π- calc.

FIGURE 3.4: p⊥-broadening of pions in Ne, Kr and Xe as a function of the photon virtu-

ality Q2.

The dependence of∆p2
⊥ onQ2 is also discussed in Ref. [87]. This reference also

suggests two additional mechanisms as possible sources fortheQ2-dependence,
namely NLO processes like photon-gluon fusion and possiblecolored prehadrons
which lose energy by gluon bremsstrahlung.

3.4 Discussion

We have calculatedp⊥-broadening in transverse momentum distributions from
the dipole model and compared it to recent HERMES preliminary data. We find
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qualitative agreement with thezh-, ν- andQ2-dependences ofp⊥-broadening. The
dependence on the photon virtuality has been calculated with a modified DGLAP
evolution equation. Finally we have estimated the effect ofabsorption of the pre-
hadronic state forp⊥-broadening.

In a recent study [87] the nuclear multiplicity ratioRM has been related top⊥-
broadening, using a similar picture of hadronization [59, 64]. In this work, the
prehadron formation time is extracted from the multiplicity ratio to tp ≡ lp ∝
0.8ν

κ z0.5
h (1−zh). This formation time is similar to Eq. (3.4) but up to 30% smaller

at midzh. On the other hand the difference between hadronic and partonic ∆p2
⊥ is

not spelled out.
There is another issue which needs to be adressed: How do the HERMES pre-

liminary data [5] match with the preliminary CLAS data [82]?The main differ-
ence between CLAS and HERMES is the beam energy, which is 2−5 GeV in
CLAS in contrast to 7− 23 GeV at HERMES. Therefore one expects the pre-
hadron formation timelp to be smaller by a factor& 3 at CLAS. Consequently
also the resulting hadronic broadening∆p2

⊥ would be much smaller. In the CLAS
experiment, however, effects for hadronic∆p2

⊥ are of similar magnitude as in the
HERMES experiment. A possible explanation can be that the prehadron stage
contributes to the hadronic broadening. At these low energies, the pion-nucleon
elastic cross section is of the same magnitude as the inelastic cross section. There-
fore elastic scattering competes with absorption for the outgoing prehadron. Since
the angular distribution of pion-nucleon scattering has still sizeable contributions
from u-channel exchange, large transverse momentum exchanges are possible.
A good check is possible when the whole angular distributionof the produced
hadron is measured. Another important feature of the preliminary CLAS data is
the linear rise withν, which possibly saturates atν ≃ 4 GeV. This linear rise is
consistent with∆p2

⊥ ∝ lp ∝ ν as proposed in Eq. (3.16). As discussed, at CLAS
hadronization may set in inside the nucleus in contrast to HERMES. This also
requires a careful analysis of the energy dependence of elastic prehadronic scat-
terings. Therefore, in the three stage model of hadronization (Refs. [59, 64]), the
second and third step play a more important role.



Chapter 4

Jet evolution in hadronic collisions

In this chapter, we discuss the vacuum evolution of jets. To prepare the later
studies in the medium (see Chapter 5), we start with a review of single parti-
cle distributions in jets at smallx. Furthermore, we use the transverse momentum
dependent (TMD) evolution equations from Sec. 2.2.4 to calculate the mean trans-
verse momentum squared〈p2

⊥〉 of partons in a jet. The physical picture underlying
this computation is that the radiation of gluons leads to an increase of〈p2

⊥〉 with
virtuality Q2. Afterwards, the connection to experimental data [96] for hadronic
p⊥-distributions in jets is discussed.

4.1 Gluon distribution in a jet at small x

In Sec. 2.2.3, we have discussed the coherent branching evolution equations [105,
106] which implement angular ordering in the partonic cascade. These equa-
tions cannot be solved analytically. Consequently, approximations to these equa-
tions have been developed, which can be studied analytically. As discussed in
Sec. 2.2.3, this is the motivation of the double logarithmicapproximation (DLA)
[88] and the modified leading logarithmic approximation (MLLA) [88, 98, 97].

These approximations do not change the basic features of thecoherent branching
evolution equations. Also, MLLA predictions for the singleparticle distributions
and experimental data from Tevatron [100] and LEP (see below) are in very good
agreement.

The solution of the DLA and MLLA evolution equations predicts a maximum in
the distribution of particles in jets at smallx. The appearance of this maximum is
a consequence of two competing processes in splitting processes of perturbative
QCD: On the one hand, angular ordering restricts the angle between partons in

49
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successive splittings to smaller and smaller values. Smaller angles correspond to
smaller values of transverse momentum at fixed energy. On theother hand, one
assumes that perturbative QCD is valid. Consequently, the transverse momen-
tum relative to the parent parton cannot be too small (i.e. smaller than a hadronic
scale). On kinematical grounds, this sets a lower limit for possible energy frac-
tions.

The double logarithmic approximation (DLA) is the simplestapproximation to
coherent branching evolution equations which predicts themaximum in single
particle distributions at smallx. It keeps only the most singular parts of the split-
ting functionsP(z). The Gaussian approximation to DLA has the great advantage
that it allows for an analytical solution of the evolution equations, which makes
their basic physical features highly transparent1.

The Gaussian approximation deals only with the gluon distributionDg(x,Q2).
Therefore, we can drop the gluon label and denote the gluon distribution by
D(x,Q2). The quark distributionDq(x,Q2) in a jet is given by the DLA relation
Dq(x,Q2) = (CF/CA)D(x,Q2).

The evolution equation for the gluon distribution in a jet reads

Q2∂D(x,Q2)

∂Q2 =
αs(Q2)

2π

∫ 1

x

dz
z

P(z)D

(

x
z
,z2Q2

)

(4.1)

Here,P(z) = 2CA/z is the gluon-gluon splitting function in DLA. The only differ-
ence of this equation to the (quenched) DGLAP equation is thechange in the scale
from Q2 to z2Q2 on the right hand side, which is the leading modification due to
soft gluon coherence effects relevant at smallx. Instead of solving this equation
directly, we study it in Gaussian approximation [50]. For this purpose we perform
a Mellin transformation of the evolution equation. The Mellin transformation of
D(x,Q2) is defined by

d(J,Q2) =

∫ 1

0
dxxJ−1D(x,Q2). (4.2)

The associated jet multiplicity is therefore given byd(1,Q2), the Mellin moment
with J = 1. The multiplicity could not be calculated from DGLAP evolution since
the corresponding particle distributions diverge due to soft gluon radiation at small
x.

Let us assumeαs to be constant for the following considerations. The evolution
equation reads after Mellin transformation,

Q2∂d(J,Q2)

∂Q2 =
αs

2π

∫ 1

0
dzzJ−1 P(z)d

(

J,z2Q2) (4.3)

1The full analytical solution of the DLA evolution equation is less easy to handle.
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FIGURE 4.1: Gluon distributionxD(x,Q2) in a jet as a function of ln(1/x) for virtualities
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to Eq. (4.1). The distributions show a maximum at smallx, which is not seen in DGLAP

evolution.

Mellin transformation is a standard tool to solve evolutionequations since it trans-
forms convolutions into products. Without the modificationof the scaleQ2 in the
splitting toz2Q2 on the right hand side due to soft gluon coherence, Mellin trans-
formation would lead to a singularity atJ = 1. This singular behavior is due to
the splitting functionP̃(J) = 2CA/(J−1) in Mellin space.

Soft gluon coherence regularizes this singularity in the vicinity of J ≃ 1 through
the anomalous dimensionγ (see below). The limitJ → 1 in the splitting function
corresponds toz → 0, i.e. soft gluon radiation. In contrast, at largex of order 1
(equivalent to largeJ), soft gluon coherence can be neglected.

Our goal is to find a solution to Eq. (4.3) which accounts correctly for the behav-
ior at smallJ −1. For this purpose, we make the following ansatz for the single
particle distribution in Mellin space in terms of the anomalous dimensionγ

d(J,Q2) ∝
(

Q2

Q2
0

)γ(J,αs)

. (4.4)

This yields a consistency equation for the anomalous dimension γ,

γ(J,αs) =
αsCA

π
1

J −1+2γ(J,αs)
. (4.5)
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from MLLA. Results from a calculation of a Gaussian with higher moments [51]. Figure

taken from [52].

From Eq. (4.5) we find for the anomalous dimension:

γ(J,αs) = −1
4
(J −1)+

√

(J−1)2

16
+

αsCA

2π

≃
√

αsCA

2π
− 1

4
(J −1)+

1
2

√

2π
αsCA

(J−1)2

16
(4.6)

The expansion aroundJ = 1 corresponds to an expansion around the small-z sin-
gularity of the splitting function, which is regularized bythe anomalous dimension
γ. Clearly, such an expansion can only be meaningful if under the square root the
term withαs is dominant.

Now we replace constantαs by runningαs. For that purpose we use the follow-
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ing ansatz [50]

d(J,Q2) ∝ exp

(

∫ Q2

Q2
0

dQ′2

Q′2 γ(J,αs(Q
′2))

)

. (4.7)

In our calculation, we use the perturbative 1-loop coupling

αs(Q
2) =

1

b ln

(

Q2

Λ2
QCD

) , b =
11− 2n f

3

4π
, ΛQCD = 250 MeV. (4.8)

The value ofΛQCD is motivated by the value of 230±40 MeV found in MLLA fits
of experimental data [100]. The number of flavors is set to five. A calculation in
one loop cannot be used to give precise results. Here, it allows for a solution of
the evolution equations which illuminates their general features.

For constantαs, Eq. (4.7) reduces to Eq. (4.4). We can compute the single
particle distribution in Gaussian approximation by performing the integration in
Eq. (4.7). The Mellin momentd(J,Q2) in Eq. (4.7) has a Gaussian dependence
on (J −1). This is a consequence of the expansion of the anomalous dimension
γ(J,αs) in Eq. (4.6) which we performed only up to second order.

d(J,Q2) = C exp
(

a0+a1(J −1)+a2(J−1)2) . (4.9)

The normalization constantC of d(J,Q2) cannot be predicted in the framework of
the Gaussian approximation and has to be fixed by comparison with experimental
data. We fix the normalizationC ≃ 0.024 of the multiplicityn(Q2) = C exp(a0)
with LEP data from e+e− [54, 53]. These experimental data consist of dijet events
which allow to test the quark distribution. This can be related to the gluon distri-
bution since in DLA they differ only by a multiplicative factor CA/CF .

The coefficientsai depend on virtuality throughαs(Q2):

a0 =
1
b

√

2CA

παs(Q2)
−
[

Q2 → Q2
0

]

(4.10)

a1 =
1

4bαs(Q2)
−
[

Q2 → Q2
0

]

(4.11)

a2 =
1

24b

√

π
2CA

αs(Q
2)−3/2−

[

Q2 → Q2
0

]

(4.12)

Here, the notation−
[

Q2 → Q2
0

]

means that one has to subtract all previous
terms replacingQ2 by Q2

0. The subtraction terms result from the lower limit of
integration in Eq. (4.7)).
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The gluon distribution inx-space can be calculated by an inverse Mellin trans-
formation:

D(x,Q2) =
C

2πix

∫ 1+i∞

1−i∞
dJ

1
xJ−1 exp(a0+a1(J −1)+a2(J−1)2)

=
C

2πx

∫ +∞

−∞
dJ̃ exp

[

a0+ iJ̃

(

a1 + ln

[

1
x

])

−a2J̃2
]

(4.13)

Performing the Gaussian integral yields

xD(x,Q2) =
n(Q2)

2
√

πa2
exp

(

−
(

ln(1
x )−a1

)2

4a2

)

. (4.14)

The coefficientsai have the following physical meaning:a0 describes theQ2-
behavior of the jet multiplicityn(Q2) = C exp(a0), a1 gives the peak position of
the distribution in ln(1/x) (see below) anda2 is related to the Gaussian width.
The half-integer powers ofαs reflect the behavior of the anomalous dimension
γDLA = O(

√
αs). The Gaussian approximation predicts the same peak position of

the distribution as the full DLA calculation [88].
In modified leading logarithmic approximation (MLLA) the peak positiona1 re-

ceives an additional contribution∆a1 [88, 108] ofO(α−1/2
s ) which is numerically

important for comparisons to experimental data and which weadd by hand to the
DLA result:

∆aMLLA
1 =

1
2b

(

11Nc

3
+

2n f

3N2
c

)

1√
32Ncπ

αs(Q
2)−1/2 (4.15)

The above procedure describes the solution of a differential equation without
specifying an initial condition. This is possible in the limit of an expansion around
J = 1 which we discussed here. The initial condition that emerges from our so-
lution is D(x,Q2

0) = δ (1− x) since the Gaussian width vanishes in this limit. For
the infrared scale, we useQ0 = 1 GeV. This initial condition corresponds to the
picture that the distribution of gluons in the jet reduces toa single gluon which
carries the full jet energy.

This initial condition agrees to the one used in MLLA calculations. However, in
MLLA calculations the infrared scaleQ0 is used as a fit parameter. Extracted val-
ues from fits to experimental data vary aroundQ0 = 230±40 MeV∼ ΛQCD [100],
which is remarkably small. However, the fit values ofQ0 depend on the hadron
species. We chose a large value ofQ0 here to separate the partonic evolution from
hadronization.
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In the following, we compare the results from the Gaussian approximation to ex-
perimental data [53, 54] from e+e−-annihilation. However, there are some differ-
ences in notation and convention. Experimental data alwaysrefers to the full event
with two jets in contrast to the gluon distribution in a single jet, which we dis-
cussed here. Consequently, the multiplicityn(Q2) and the distributionxD(x,Q2)

for two jets in the experiment are twice as large as the single-jet results calculated
here.

Also, the notation is slightly different: The gluon distribution xD(x,Q2) in two
jets corresponds to 1/σ dσ /dln1/xp via local parton-hadron duality (up to a factor
of 2 as discussed above) andxp ≡ x. Similarly, a1 andξ ∗

p are identical. In e+e−-
annihilation, we haves = Q2.

In Fig. 4.1 we have plotted the gluon distributionxD(x,Q2) in a jet as a function
of ln(1/x) for virtualitiesQ = 20, 100 and 200 GeV. As discussed in the beginning
of this section, it has a maximum at smallx. With increasingQ2, the distribution
becomes softer due to the radiation of many soft gluons. For aqualitative com-
parison, experimental data are shown in Fig. 4.2. This figureincludes predictions
from the full MLLA calculation and from a calculation of a Gaussian with higher
moments [51].

The radiation of gluons leads to an increase of the multiplicity n(Q2) with Q2

as shown in Fig. 4.3. In this figure, the multiplicity for one jet from the Gaussian
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approximation (left side) can be compared to the experimental results from events
with two jets (right side). Consequently, the two-jet multiplicity is two times
larger. Taking this into account, the experimental resultscan be fitted well by the
calculation in Gaussian approximation.

In Fig. 4.4, the peak positiona1 ≡ ξ ∗
p in Gaussian approximation (including the

MLLA contribution) is shown in comparison to experimental data. The agree-
ment between the calculation and the experimental data is very good2. The peak
position increases withs ≡ Q2, which corresponds to a softening of the jet.

In Fig. 4.5, we show the coefficienta2 as a function ofQ2 which determines the
Gaussian width. Its growth leads to a broadening of the single particle distribution
with increasingQ2.

4.2 Evolution of transverse momentum in jets

In this section, we study the transverse momentum dependent(TMD) evolution
equation which we discussed in Sec. 2.2.4. Our goal is not to calculate the full sin-
gle particle distributionsD(x,Q2,p⊥) but rather to investigate itsp⊥-dependence.
For this purpose, we compute moments of the distribution (with respect top⊥) and
calculate their evolution withQ2. The first moment〈p2

⊥〉 corresponds to the mean
transverse momentum squared of partons in a jet relative to the jet axis. Higher
moments〈pn

⊥〉 determine the shape of the distribution at largerp⊥.

We restrict ourselves to the gluonic part of the evolution equations here. Further-
more, the calculation which we will perform requires some knowledge about the
p⊥-integrated single particle distributionD(x,Q2). Consequently, we will make
use of the results from the Gaussian approximation as discussed in the previous
section. Clearly, the use of the Gaussian approximation contains the assumption
that the behavior of〈p2

⊥〉 is dominated by soft partons.

Our computations are relevant for the understanding of the experimental data
[96] for p⊥-distributions of hadrons in jets. We perform a calculationon parton
level and assume that the results can be transferred to hadron level due to local
parton-hadron duality (LPHD).

2The difference ina1 between the values ofΛ = 240 MeV used in the figure andΛ = 250 MeV

used in the rest of the computation is numerically small.
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4.2.1 Calculation of mean transverse momentum〈p2
⊥〉

For our calculation, we define the mean transverse momentum of gluons in a jet
from the distributionD(x,Q2,p⊥) by

〈p2
⊥〉(Q2) =

∫

d2p⊥
∫

dxp2
⊥ D(x,Q2,p⊥)

∫

d2p⊥
∫

dxD(x,Q2,p⊥)
(4.16)

Our notation〈p2
⊥〉(Q2) emphasizes the dependence on the virtualityQ2. Thep⊥-

integration is kinematically bounded by the jet energy. Forthe purpose of our
calculation we neglect this boundary and formally integrate over the whole two-
dimensional space in transverse momentum. This can be justified with the rapid
decrease of the single particle distributions observed experimentally [96].

The denominator reflects the number of particles in the jet, i.e. the multiplicity
n(Q2). The evolution of〈p2

⊥〉(Q2) is given by

Q2 ∂
∂Q2〈p

2
⊥〉(Q2) =

1
n(Q2)

∫

d2p⊥

∫

dxp2
⊥ Q2 ∂

∂Q2D(x,Q2,p⊥)

−〈p2
⊥〉(Q2)

1
n(Q2)

∫

d2p⊥

∫

dxQ2 ∂
∂Q2D(x,Q2,p⊥). (4.17)

Here, the second term contains the evolution of the multiplicity n(Q2). The key
point for our calculation is that this equation connects theevolution of〈p2

⊥〉 to
the evolution of the single-particle distributionsD(x,Q2,p⊥). By specifying an
evolution equation forD(x,Q2,p⊥), it will be possible to calculate〈p2

⊥〉(Q2) from
a much simpler differential equation (see Eq. (4.27)).

For the evolution ofD(x,Q2,p⊥), we use the TMD evolution equation from
Sec. 2.2.4

∂ D(x,Q2,p⊥)

∂ lnQ2 = (4.18)

αs(Q2)

2π

∫ 1

x

dz
z

P(z)
d2q⊥

π
δ
(

z(1− z)Q2−Q2
0−q2

⊥
)

D

(

x
z
,λ (z)Q2,p⊥− x

z
q⊥

)

However, we have slightly changed the evolution equation byreplacingQ2 by
z2Q2 in the argument ofαs. To account for soft gluon coherence,λ (z) in the
splitting term is set toz2. This modification is motivated by the coherent branch-
ing evolution equation for solely gluonic evolution, whichcan then be obtained
from Eq. (4.18) by integration overp⊥. When inserting the evolution equation for
D(x,Q2,p⊥) into Eq. (4.17), several terms appear. To simplify notation, we define
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the following abbreviation

In =
∫

d2p⊥

∫

dx pn
⊥

[

∫ 1

x

dz
z

αs(z2Q2)

π
P̂gg(z) × (4.19)

∫

d2q⊥
π

δ (z(1− z)Q2−Q2
0−q2

⊥)D

(

x
z
,z2Q2,p⊥− x

z
q⊥

)

−
∫ 1

0
dz

αs(Q2)

2π
P̂gg(z)

∫

d2q⊥
π

δ (z(1− z)Q2−Q2
0−q2

⊥)D
(

x,Q2,p⊥
)

]

.

The evolution of〈p2
⊥〉 in terms of this abbreviation is then given by

Q2 ∂
∂Q2〈p

2
⊥〉(Q2) =

1
n(Q2)

I2−
1

n(Q2)
〈p2

⊥〉(Q2)I0. (4.20)

The integralI0 describes the evolution of the multiplicity withQ2.
As an input for the calculation of〈p2

⊥〉, we use the multiplicity in Gaussian
approximation as calculated in Sec. 4.1. The explicit form of the multiplicity,
however, is not used for the calculation ofI0 since direct computation will exhibit
the interesting fact that the negative contributions inI2 andI0 cancel each other.

In Eq. (4.19), we can substitutep⊥ by p⊥ − x
z q⊥. The integral overq⊥ can

then be performed with theδ -function and a step function is appearing from the
conditionq2

⊥ > 0.

I0 =

∫

d2p⊥

∫

dx

[

∫ 1

x

dz
z

αs(z2Q2)

π
P̂gg(z)Θ(z(1− z)Q2−Q2

0)D

(

x
z
,z2Q2,p⊥

)

−
∫ 1

0
dz

αs(Q2)

2π
P̂gg(z)Θ(z(1− z)Q2−Q2

0)D
(

x,Q2,p⊥
)

]

. (4.21)

In Eq. (4.21) splitting processes are constrained for physical as well as for mathe-
matical reasons. Since a radiated gluon must have positiveq2

⊥, the allowed values

of z are restricted to an interval[z−, z+] with z± = 1
2 ±
√

1
4 −

Q2
0

Q2 . This eliminates

the poles in the splitting function both atz = 0 andz = 13. In the following we use
the abbreviationk2

⊥(Q2) = z(1− z)Q2−Q2
0 for the transverse momentum gener-

ated in the splitting.
Furthermore, the second argumentz2Q2 of the single particle distribution cannot

be smaller thanQ0. This is needed for the separation of partonic evolution from
typical hadronization scales. Also, the mathematical consistency requires that no
virtualities appear in the equation which are smaller thanQ0. This yields a lower

3At DLA level, there is only a pole in̂Pgg(z) at z = 0.
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limit z′ = Q0/Q on thez-integration. Thex-integration simplifies the convolutions
with the splitting functions and we have withx = wz

I0 =

∫ 1

0
dw

[

∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)D(w,z2Q2)−

∫ z+

z−
dz

αs(Q2)

2π
P̂gg(z)D(w,Q2)

]

,

(4.22)
where thep⊥-integral has been performed trivially to give the integrated distri-
butionsD(w,Q2). Performing thew-integral yields the multiplicitiesn(z2Q2) and
n(Q2) in the first and second term, respectively. From Sec. 4.1, they can be taken
in Gaussian approximation.

The same computation can be carried out forI2. Forn = 2 in Eq. (4.19) we can
again shift thep⊥-argument and transform thex- andz-integrals in the first term.

I2 =

∫

d2p⊥

∫

dw

[

∫ 1

0
dz

αs(z2Q2)

π
P̂gg(z)

∫

d2q⊥
π

δ (z(1− z)Q2−Q2
0−q2

⊥) ×

(p⊥ +wq⊥)2 D
(

w,z2Q2,p⊥
)

(4.23)

− p2
⊥D
(

w,Q2,p⊥
)

∫ 1

0
dz

αs(Q2)

2π
P̂gg(z)

∫

d2q⊥
π

δ (z(1− z)Q2−Q2
0−q2

⊥)

]

.

Now, theq⊥-integral can be performed as in the previous calculation. In the first
term, the mixed term proportional toq⊥ ·p⊥ in the square of transverse momenta
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vanishes from the angular part of theq⊥-integration. Theδ -function again leads
to the sameΘ-function as before which then restricts thez-integral. After further
integration overp⊥ andw, we have

I2 =
∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)

[

〈p2
⊥〉(z2Q2)+ 〈x2〉(z2Q2)k2

⊥(Q2)

]

n(z2Q2)

−
∫ z+

z−
dz

αs(Q2)

2π
P̂gg(z)〈p2

⊥〉(Q2)n(Q2), z′ =
Q0

Q
. (4.24)

In this equation the mean quadratic energy fraction〈x2〉(Q2) can be calculated
from the Gaussian approximation forD(x,Q2) (see Sec. 4.1):

D(x,Q2) =
n(Q2)

x
√

4πa2(Q2)
exp

(

−(ln(1
x )−a1(Q2))2

4a2(Q2)

)

(4.25)

such that

〈x2〉(Q2) =

∫

d2p⊥
∫

dxx2D(x,Q2,p⊥)
∫

dxD(x,Q2)
= e4a2−2a1

1+erf
(

a1−4a2
2
√

a2

)

1+erf
(

a1
2
√

a2

) . (4.26)

Here, erf denotes the error function. The mean quadratic energy fraction〈x2〉(Q2)

is plotted in Fig. 4.6 as a function ofQ2. Also shown in this figure is the quartic en-
ergy fraction〈x4〉(Q2) which will be needed for the calculation of〈p4

⊥〉. Note that
the quartic energy fraction is much larger than the square ofthe quadratic energy
fraction〈x4〉> 〈x2〉2. Both functions decrease withQ2 because partonic splittings
distribute longitudinal momentum among more and more partons at increasing
Q2. In contrast to the leading logarithmic approximation, soft gluon coherence
restricts the radiation of soft gluons and ensures a finite value of 〈x2〉 and〈x4〉.

Now we can put the pieces of the calculation together. The negative parts in
I2 andI0 cancel each other and we arrive at an ordinary differential equation for
〈p2

⊥〉(Q2).

Q2 ∂
∂Q2〈p

2
⊥〉(Q2) =

1
n(Q2)

∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)n(z2Q2)× (4.27)

[

〈x2〉(z2Q2)k2
⊥(Q2)+ 〈p2

⊥〉(z2Q2)−〈p2
⊥〉(Q2)

]

Here,k2
⊥ = z(1− z)Q2−Q2

0 is an abbreviation for the transverse momentum gen-
erated in the splitting. This equation can be solved numerically without any
knowledge about thep⊥-dependence inD(x,Q2,p⊥). Thep⊥-integrated distri-
butionD(x,Q2) is only indirectly relevant. It provides the multiplicityn(Q2) and
the mean quadratic energy fraction〈x2〉(Q2).
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⊥〉(Q2)
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tion P̂gg(z) = CA/z while the dashed curve uses the full splitting functionP̂gg(z) =

CA
[

z
1−z + 1−z

z + z(1− z)
]

.

To DLA accuracy as in Sec. 4.1, we haveP̂gg(z) = CA/z 4. The first term in
brackets is the leading one while the other two represent a negative correction.

The initial condition is〈p2
⊥〉(Q2

0) = 0 with Q0 = 1 GeV. The motivation for this
choice is the following: At the initial scaleQ0 the jet consists of a single particle
which carries the full jet energy and has no transverse momentum. This type
of initial condition is identical to the one in the calculation of thep⊥-integrated
distributions in Gaussian approximation (see Sec. 4.1). After setting an initial
condition atQ0, splittings are kinematically allowed forQ ≥ 2Q0. ForQ0 < Q <
2Q0, the right hand side of Eq. (4.27) vanishes since radiation is kinematically
forbidden.

For the numerical solution of Eq. (4.27), I have used a Runge-Kutta method
of 4th order. Thez-integral is approximated by a Riemann sum and values for
〈p2

⊥〉(z2Q2) are found by fourth order polynomial interpolation. This method is

4In Sec. 4.1, we worked with the regularized splitting function, which at DLA level differs

from the unregularized splitting function by a factor of 2. This difference originates from the

fact that the regularized splitting function is constructed by combination of terms containing the

unregularized splitting function.
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⊥〉 has been calculated from Eq. (4.34). The green curve corresponds to the factorized

expectation value〈x2〉 〈p2
⊥〉.

also used for the numerical calculation of the other momentsdiscussed later. The
numerical solution for〈p2

⊥〉(Q2) converges very fast with the number of steps in
virtuality. This is different from numerical solutions to the evolution equations.

The numerical solution of Eq. (4.27) is plotted in Fig. 4.7 for the DLA split-
ting function P̂gg(z) = CA/z as well as for the full splitting function̂Pgg(z) =
CA [z/(1− z)+(1− z)/z+ z(1− z)]. The similarity of both curves shows that
P̂DLA

gg (z) gives the most important contribution. For reasons of consistency we
will not use not the full splitting function but onlŷPDLA

gg (z) .
The numerical solution has two different regimes: At smallQ & 2Q0, the kine-

matically allowed domain is relatively small and the increase of〈p2
⊥〉(Q2) is ap-

proximately logarithmic while it becomes a power law for larger virtualities. The
numerical result for the initial condition〈p2

⊥〉(Q2
0) = 0 (with Q0 = 1 GeV) can be

fitted in the following way:

〈p2
⊥〉(Q2) ≃







0.469 GeV2
(

log Q
2Q0

)2.09
Q . 8 GeV

0.490 GeV2 +0.0848 GeV0.88Q1.12 Q & 20 GeV
(4.28)

This numerical result indicates that〈p2
⊥〉/Q2 is small, i.e. less than 0.01. For

large Q, the mean transverse momentum〈p2
⊥〉 grows roughly linearly withQ.
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tion D(x,Q2,p⊥) as a function ofQ. For the calculation, Eq. (4.30) is used.

The reason for this behavior cannot be identified clearly in Eq. (4.27). In this
equation, the term proportional tok2

⊥ = z(1−z)Q2−Q2
0 is the dominant one – but

unfortunately the interplay of its different factors cannot be discussed analytically.

4.2.2 Computation of higher moments

We have discussed the calculation of the moment〈p2
⊥〉(Q2) of the distribution

D(x,Q2,p⊥), which made use of the corresponding evolution equation. The evo-
lution of higher moments in transverse momentum of the distributionD(x,Q2,p⊥)
is given by

Q2 ∂
∂Q2〈p

n
⊥〉(Q2) =

1
n(Q2)

In −
1

n(Q2)
〈pn

⊥〉(Q2)I0 (4.29)

in terms of the abbreviationsIn. This method also works for higher moments in
principal but the number of terms to be taken into account increases.

To gain more information about the distributionD(x,Q2,p⊥), we also calculate
the second moment〈p4

⊥〉(Q2).
The computation of〈p4

⊥〉(Q2) uses the same calculational methods as needed
for 〈p2

⊥〉(Q2). I will not give all details here. The resulting differential equation
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reads

Q2 ∂
∂Q2〈p

4
⊥〉(Q2) =

1
n(Q2)

∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)n(z2Q2)

[

〈x4〉(z2Q2)k4
⊥(Q2)

+6〈x2p2
⊥〉(z2Q2)k2

⊥(Q2)+ 〈p4
⊥〉(z2Q2)−〈p4

⊥〉(Q2)

]

(4.30)

The various terms in Eq. (4.30) are a consequence of the evaluation of the angular
part of theq⊥-integration:

∫

dφ
2π

(p⊥ +wq⊥)4 = p4
⊥ +w4q4

⊥ +4w2p2
⊥q2

⊥

∫

dφ
2π

(1+cos2(φ))

= p4
⊥ +w4q4

⊥ +6w2p2
⊥q2

⊥. (4.31)

The different terms in these equation lead to various moments of the distribution,
i.e. the calculation for then = 4 moment contains a term(p⊥ +wq⊥)4 which
will lead to terms proportional to〈x2p2

⊥〉, 〈x4〉 and〈p4
⊥〉. Therefore, higher mo-

ments have to be calculated recursively in this procedure from “mixed moments”
which involve both thex-dependence and thep⊥-dependence of the distribution
D(x,Q2,p⊥).

For our computation we can use the Gaussian approximation for D(x,Q2) (see
Sec. 4.1) to find

〈x4〉(Q2) =

∫

dxx4 D(x,Q2)
∫

dxD(x,Q2)
= e16a2−4a1

1+erf
(

a1−8a2
2
√

a2

)

1+erf
(

a1
2
√

a2

) (4.32)

I have plotted〈x4〉(Q2) together with〈x2〉(Q2) in Fig. 4.6 for purposes of com-
parison. The radiation of gluons leads to a decrease of〈x4〉(Q2) with increasing
Q2.

The “mixed moment” in Eq. (4.31),

〈x2p2
⊥〉(Q2) =

∫

d2p⊥p2
⊥
∫

dxx2 D(x,Q2,p⊥)
∫

dxD(x,Q2)
, (4.33)

can be calculated with the same methods as used for the calculation of〈p2
⊥〉(Q2)

and the resulting differential equation reads

Q2 ∂
∂Q2〈x

2p2
⊥〉(Q2) =

1
n(Q2)

∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)n(z2Q2)× (4.34)

{

z2〈x4〉(z2Q2)k2
⊥(Q2)+ z2〈x2p2

⊥〉(z2Q2)−〈x2p2
⊥〉(Q2)

}

.
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The numerical results for〈x2p2
⊥〉(Q2) and〈p4

⊥〉(Q2) are shown in Fig. 4.8 and
4.9. The initial condition for〈p4

⊥〉 is set to〈p4
⊥〉(Q2

0) = 0 since atQ2
0 the jet

should consist of a single particle with no transverse momentum. Also, we set
〈x2p2

⊥〉(Q2
0) = 〈x2〉(Q2

0)〈p2
⊥〉(Q2

0) = 0. Therefore, the evolution of〈x2p2
⊥〉(Q2)

illustrates that a factorized distribution atQ0 is changed into a non-factorizing
one by the evolution equations. In Fig. 4.8 we also show〈x2〉(Q2)〈p2

⊥〉(Q2) for
purposes of comparison.

The behavior of〈p4
⊥〉(Q2) as a function ofQ2 changes qualitatively in a similar

way as〈p2
⊥〉(Q2) from a logarithmic to a power-like dependence.

〈p4
⊥〉(Q2) ≃







1.30 GeV4
(

log Q
2Q0

)3.57
Q . 8 GeV

87.3 GeV4 +0.00146 GeV0.91Q3.09 Q & 40 GeV
(4.35)

The growth of〈p4
⊥〉 at largeQ is significantly stronger than for〈p2

⊥〉2.

4.2.3 Connection to experimental data

In this subsection, we want to connect the results of our calculation of 〈p2
⊥〉 and

〈p4
⊥〉 to experimental data from CDF [96]. In the experimental analysis, the log-

arithmic distribution dN/dln(p⊥/(1GeV)) for hadrons in jets was reconstructed
for several values of the jet virtualityQ.

When comparing our calculation to these results, one shouldbe aware that this
comparison is based on a different amount of information on the experimental
and on the theoretical side. For the comparison, we systematically extract mo-
ments from thep⊥-distribution. However, for this purpose we have to assume
that the distribution has a certain functional shape. In principle, the results for the
moments can depend on which functional form is used.

Clearly, our comparison can only be qualitative. There are several caveats:

• To compare the experimental (hadronic) to our partonic results, we assume
local parton-hadron duality (LPHD) to be valid. In principle, results for
partons have to be folded with a fragmentation function to account for
hadronization. The corresponding hadrons will have less longitudinal and
transverse momentum and therefore less〈p2

⊥〉.

• We have not discussed nonperturbative contributions from the underlying
event as well as multiple soft final state interactions [101].

• In the calculation we have used only the DLA part of the gluon-gluon
splitting function,PDLA

gg (z) = CA/z, for reasons of consistency with taking
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〈x2〉(Q2) andn(Q2) from the Gaussian approximation in Sec. 4.1. Although
this should be the dominant contribution, a calculation with the full gluon-
gluon splitting function and the other splitting functionsyield a larger〈p2

⊥〉.
The use of the Gaussian approximation therefore may lead to limitations of
our results.

In Sec. 4.1 we found a log normal distribution for thex-distributionD(x,Q2)
of partons in a jet. A log normal distribution is the result ofmultiplying many
independent random variables – in contrast to a Gaussian distribution which is
the result of summing many independent random variables. Here, a log normal
distribution for thex-distribution of partons in a jet is reasonable: The longitudinal
momentum fraction of the initial parton is reduced from 1 toz1z2 · · ·zn by multiple
splittings with relative momentum fractionzi. The relative momentum fraction
zi in each splitting can be regarded as an independent random variable in first
approximation. Different kinematical bounds in sequential splittings can modify
this picture.

For thep⊥-distribution, such an argument cannot be given. However, experi-
mental data [96] suggests ln(p⊥/1 GeV) as a natural variable. Here, we follow
this suggestion from experiment and use a Gaussian distribution in this variable
as a simple approximation to perform qualitative studies. This amounts to a loga-
rithmic normal distribution with respect top⊥. Note that a Gaussian distribution
in p⊥ cannot fit the data since it decreases too fast to describe thetails of the
distribution.

A log normal distribution in transverse momentum is given by

D(Q2,p⊥) =
n(Q2)√

8π3σ2p⊥p0
e−σ2/2exp

(

− ln(p⊥/p0)
2

2σ2

)

. (4.36)

It is normalized to the multiplicity of the jet,
∫

d2p⊥D(Q2,p⊥) = n(Q2).
In the log normal distribution,p0 corresponds to the position of a maximum

in the distribution. In the context in which the log normal distribution is applied
here, this maximum is located at small transverse momentum.

The functionD(Q2,p⊥) describes the distribution of particles with transverse
momentump⊥ in a jet with virtualityQ2. The expectation values〈p2

⊥〉 and〈p4
⊥〉

are defined from this distribution by

〈p2
⊥〉 =

∫

d2p⊥p2
⊥D(Q2,p⊥)

n(Q2)
and 〈p4

⊥〉 =

∫

d2p⊥p4
⊥D(Q2,p⊥)

n(Q2)
(4.37)

For our comparison, we fit experimental data [96] for thep⊥-distribution by a
log normal distribution for the three virtualitiesQ = 27 GeV,Q = 68 GeV and



68 4. Jet evolution in hadronic collisions

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.001

0.005

0.010

0.050

0.100

0.500

1.000

lnHpT�H1 GeVLL

dN
�

dl
nH

p T
�H

1
G

eV
LL

FIGURE 4.10: Comparison of experimental data for thep⊥-distribution atQ = 68 GeV

and a fit by a log normal distribution. Both are normalized to the experimental bin centered

around ln(p⊥/(1 GeV) = −0.1.

Q = 119 GeV. As an example, the data forQ = 68 GeV with a fitted log normal
distribution are shown in Fig. 4.10.

The fit works quite well in the range−0.5 < ln(p⊥/(1 GeV)) < 3 in which
experimental data are available. From the fit, one can extract parametersp0 and
σ for each virtuality. Their values are:

Q = 27 GeV: p0 = 0.55 GeV, σ = 0.77

Q = 68 GeV: p0 = 0.52 GeV, σ = 1.02

Q = 119 GeV: p0 = 0.42 GeV, σ = 1.24

(4.38)

The expectation values are linked to these parameters by

〈p2
⊥〉 = p2

0e4σ2
and 〈p4

⊥〉 = p4
0e12σ2

(4.39)

Consequently, one can determine〈p2
⊥〉 and〈p4

⊥〉 for each of the three virtualities.
In Fig. 4.11, we show a comparison of calculated and extracted values of〈p2

⊥〉
vs. 〈p4

⊥〉 for the three different virtualitiesQ = 27 GeV,Q = 68 GeV andQ = 119
GeV. For both cases, a higher virtuality corresponds to an increase in both〈p2

⊥〉
as well as〈p4

⊥〉.
The results from the calculation are smaller than the results from experiment.

There are several uncertainties on the theoretical side as discussed earlier. In the
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⊥〉 and 〈p4
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p0 = 1 GeV.

extraction from experimental data, important contributions to〈p2
⊥〉 and〈p4

⊥〉 orig-
inate from large transverse momentum, where the experimental errors are largest.

From Eq. (4.39), one can read off that for the log normal distribution〈p4
⊥〉1/2 =

〈p2
⊥〉3/2/p0. This curve is also shown in Fig. 4.11 forp0 = 1 GeV. Clearly, this can

only be a qualitative check ckeck whether it was reasonable to use a log normal
distribution. The “true”p⊥ will be much more complicated.

A theoretical calculation of thep⊥-distribution of particles in jets has been per-
formed in the framework of MLLA and NMLLA by Perez-Ramos et al. [97].
Their computation in next-to-MLLA fits the experimental data very well. How-
ever, they focussed on the behavior of the distribution at different Q but did not
study〈p2

⊥〉.
In Sec. 5.3 we will carry out the calculation for〈p2

⊥〉 with the inclusion of a
scattering term with hot matter to investigate jet broadening.
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Chapter 5

Modified jet evolution in hot matter

In this chapter we study some properties of jet evolution in hot matter. The pres-
ence of this medium is taken into account via a scattering term in the evolution
equations.

In the first section, we present a numerical calculation of the gluon-to-pion frag-
mentation function from (modified) DGLAP evolution. The resulting suppression
of leading particles with large jet energy fractions qualitatively leads to a suppres-
sion of the nuclear modification factorRAA . In Sec. 5.2, we will discuss the gluon
distributionD(x,Q2) in jets at smallx and its modifications from scattering with
the medium constituents. The latter computation is carriedout in the framework
of the Gaussian approximation to coherent branching evolution equations.

In the last section, we perform a calculation of transverse momentum broadening
of jets in hot matter using the TMD evolution equations.

5.1 Gluon fragmentation function in hot matter

In this section we present a study of a parton cascade that includes scattering off
the partons in the QGP as a modification to the well-known QCD evolution in
vacuum. This is achieved by adding a scattering term in the DGLAP equations.

5.1.1 Formalism and modified evolution equations

Let us consider a hard process in a heavy-ion collision wherea parton with high
virtuality and high energy is produced. The parton will radiate successively to
reduce its virtuality and become on mass-shell. This leads to a parton shower and
scaling violations in the jet fragmentation functions as described by the DGLAP

71
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equations [1] and similar evolution equations [84], which also contain transverse
momentum as an explicit variable.

Here, we are primarily interested in the high-p⊥ particles that are produced in
heavy-ion collisions above the background of soft particles from the hadronization
of the plasma. Such higher energy hadrons have a longer formation time in the
lab frame due to their larger Lorentzγ factor and can therefore interact with the
plasma constituents.

We define the fragmentation functionD j
i (x,Q

2) as the probability density for
the hard partoni with virtuality Q2 to fragment into a parton or hadronj which
takes a fractionx of the initial parton energy. Here, we restrict our parton level
treatment to a purely gluonic system, which should give the leading behaviour and
most essential results. The indices on the fragmentation functions and the splitting
functions can then be dropped and the formalism becomes simpler.

The formation of a parton shower does not happen instantaneously, but needs a
certain time. In the laboratory frame, i.e. in the rest frameof the nucleus-nucleus
collision and the plasma, the lifetime of a virtual parton can be estimated from the
uncertainty principle to beE/Q2, whereE is the energy of the parton andQ its
virtual mass. In the case of a parton shower, however, the relevant time is the time
a virtual state needs to evolve in virtuality fromQ2 to Q2+dQ2,

dτ =
E
Q2

dQ2

Q2 (5.1)

The time a parton needs to reduce its virtuality from the starting scaleQi ≃
E ≃ 100 GeV to the hadronization scaleQ0 ≃ 1 GeV can then be estimated as
τ =

∫

dτ ≈ E
Q2

0
− 1

E . Thus, even though a high energy parton with large virtuality

will reduce its virtuality rapidly, the overall lifetime can be considerable and of
the order of several fermi. Even for a short formation timeτi of the quark-gluon
plasma [38] the plasma lifetimeτp ≃ τi(Ti/Tc)

3 may be long due to the cool-
ing from the initial temperature to the critical temperature. Taking into account
these two time scales of the parton and the surrounding medium, we arrive at
the conclusion that the parton shower evolution overlaps intime with the plasma
phase. Therefore, splitting and scattering processes haveto be treated in a com-
mon framework.

While a fast parton reduces its virtuality by building up a parton shower, it may
also experience scatterings with gluons of thermal massms in the plasma. For the
construction of the scattering term we estimate the relative importance of scatter-
ings with the help of the scattering mean free pathλ = (ngσ)−1 by

dτ
dλ

=
Ein

Q2 ng
dσ

d2q⊥
d2q⊥

dQ2

Q2 (5.2)
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Similar to radiation, two contributions from the scattering have to be taken into
account: A gain term for the scattering from a higher energy fraction to a given
energy fractionx and a loss term for scatterings fromx to lower energy fractions.
Consequently, the energyEin of the incoming parton (before the scattering takes
place) is different in the gain and the loss term.

Scattering makes the fast parton lose energy, which is absorbed as recoil energy
q2
⊥/(2ms) by the plasma parton. Here we allow only for soft scatterings, i.e.

small relative transverse momentumq2
⊥ ∼ m2

D, such that∆x = y−x = q2
⊥/(2msE)

is small. In contrast to splitting processes, which lead to amultiplicative change
of the energy fraction of the parton, we model soft scattering processes by shifts
to smaller energy fractions.

Scatterings are included in the evolution equation in a similar way as radiations.
The “scattering probability” Eq. (5.2) is folded with the fragmentation functions
and gain and loss term are subtracted from each other. Consequently, scattering
with the plasma leads to an additional term in the evolution equation. This scat-
tering term is given by

S(x,Q2) =
E
Q2ng

∫ 1

x
dw
∫

d2q⊥
dσ

d2q⊥

(

wD(w,Q2)− xD(x,Q2)
)

×δ
(

w− x− q2
⊥

2msE

)

=
E
Q2ng

∫

d2q⊥
dσ

d2q⊥

[(

x+
q2
⊥

2msE

)

D

(

x+
q2
⊥

2msE
,Q2
)

− xD(x,Q2)

]

≃ ng

2msQ2

∫

dq2
⊥

dσ
dq2

⊥
q2
⊥

(

D(x,Q2)+ x
∂D
∂x

(x,Q2)

)

≃ ngσ〈q2
⊥〉

2msQ2

(

D(x,Q2)+ x
∂D
∂x

(x,Q2)

)

(5.3)

In the second line we expanded in powers ofq2
⊥/(2msE) and dropped terms of

second order and higher. Clearly, such an expansion can onlybe meaningful for
small momentum transfer,q2

⊥/(2msE) ≪ 1 andx + q2
⊥/(2msE) < 1. However,

these caveats are numerically unimportant for small momentum transfersq2
⊥ ∼m2

D
and large jet energies. Remarkable, the scattering term does not depend on the jet
energyE in this approximation.

Here, we do not specify the medium parametersng, σ and〈q2
⊥〉. Instead, we

introduce the well-known transport parameter [19, 109]

q̂ ≃ ngσ〈q2
⊥〉, (5.4)

which describes the mean acquired transverse momentum per unit length. It is re-
markable, that this quantity, which was invented in the context of medium-induced
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gluon radiation, appears in our treatment of collisional energy loss. In the follow-
ing, we will use ˆq as a constant parameter and probe the strength of the modifica-
tion of fragmentation functions for values ˆq = 1 GeV2/fm, q̂ = 5 GeV2/fm and
q̂ = 15 GeV2/fm. These values are in the range of transport parameters which are
needed to describe the nuclear modification factorRAA observed at RHIC [109].

The scattering term reads

S(x,Q2) =
q̂

2msQ2

(

D(x,Q2)+ x
∂D
∂x

(x,Q2)

)

(5.5)

The resulting evolution equation which combines splittingand scattering is then

∂ D(x,Q2)

∂ lnQ2 =
αs(Q2)

2π

∫ 1

x

dz
z

P(z,αs(Q
2))D

(

x
z
,Q2
)

+S(x,Q2). (5.6)

In this equation, the leading order gluon-gluon splitting function is given byP(z) =

2CA

(

z
(1−z)+

+ 1−z
z + z(1− z)

)

+
11CA−2n f

6 δ (1− z). HereCA = 3 and the number

of flavors is set ton f = 0 since we study a gluonic evolution equation.

5.1.2 Alternative formulation of the scattering term

In our paper [83] we also discussed a form for the scattering term which allows for
large momentum transfers. It yields similar results but does not allow for analyti-
cal investigations via Mellin transformation. Similarly to the splitting probability

dPsplit(z,Q
2) =

αs(Q2)

2π
P̂(z)dz

dQ2

Q2 (5.7)

a differential scattering probability is given by

dPscat
(

z,yE,Q2)=
dσ
dz

ng(T )dzdτ = α2
s (Q2)K̂

(

z,yE,Q2)dz
dQ2

Q2 (5.8)

as the product of the scattering cross-section, the densityof target gluons in the
plasma and the time (or equivalently distance) the gluon needs to traverse the
plasma. In Eq. (5.8), we defined a scattering functionK̂ in analogy with the
splitting function to combine gluon splittings and gluon scatterings in a modi-
fied evolution equation. Including also dτ from Eq. (5.1), we obtain the scattering
function as a function of the gluon energyE ,

K̂
(

z,E ,Q2)=
9π ng(T )msE

2

Q2(2msE (1− z)+m2
D)2

. (5.9)
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In the denominator the perturbative pole∼ 1/t2 for small momentum transfer
t = 2msE (z−1) has been regularized with the Debye massmD.

This K̂ contains the essential dynamics of the scattering, in analogy with the
splitting function P̂(z) in Eq. (5.6). For large momentum transfers, i.e.−t =
2msE (1− z) ≫ m2

D, the scattering function is suppressed asK̂ ∼ 1/(Q2(1− z)2)

as a higher twist process. For small momentum transfers, on the other hand, the
scattering function̂K ∼ E 2/Q2. Thus,K̂ may compensate for the additional factor
αs in the scattering term as compared to the splitting term.

The corresponding scattering term is then given by the difference between the
scattering gain and loss terms:

S(x,Q2) =

1
∫

x

dz
z

α2
s (Q2)K̂

(

z,
x
z

E,Q2
)

D

(

x
z
,Q2
)

−
1
∫

0

dzα2
s (Q2)K̂(z,xE,Q2)D(x,Q2) (5.10)

This scattering term can also be used in Eq. (5.6) for a calculation of the medium-
modified fragmentation function.

5.1.3 Numerical results from the evolution equations

The theoretical formalism above has focussed on the parton level processes. In or-
der to compare with observable hadrons, one has to account for hadronization. We
assume here that the hadronization at the infrared cut-off scaleQ0 is unchanged
and use standard vacuum fragmentation functions, since theplasma is essentially
gone by the time the parton has evolved down to this low virtuality. We use the
AKK parametrization [57] for the hadronization of gluons into pions

Dπ
g(x,Q2

0) = 429x2.00(1− x)5.82 (5.11)

at the scaleQ2
0 = 2 GeV2 in our evolution equations. The numerical solution of

the modified DGLAP evolution equation Eq. (5.6) (with and without scattering
term) has been calculated with the Runge-Kutta method of 4thorder.

For vacuum evolution, this initial condition is shown together with the results
for Q = 20 GeV andQ = 100 GeV in Fig. 5.1. Already in the vacuum case, the
evolution caused by a higherQ2 depletes the high-x region and enhances the low-x
part, since the parton cascade distributes energy among more and more partons.

We have checked that a different initial condition, namely the KKP parametriza-
tion [56] Dπ

g(x,Q2
0) = 3.73x−0.742(1−x)2.33, does not qualitatively change the jet
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FIGURE 5.1: Comparison of vacuum gluon to pion fragmentation function Dπ
g (x,Q2) for

Q = Q0 =
√

2 GeV (initial condition [57]),Q = 20 GeV andQ = 100 GeV as a function

of energy fractionx. DGLAP splitting processes lead to an increase at smallx, while the

large-x region becomes depopulated.

quenching effect found below. The qualitative difference of the AKK and KKP
parametrization at smallx can be attributed to the fact that they are designed for
x > 0.1. These fragmentation functions rely on DGLAP evolution, which is not
applicable at smallx.

In order to obtain some numerical results to illustrate the main effects to be ex-
pected, we neglect cooling and expansion of the plasma and simplify to a constant
temperature and transport parameter ˆq, representing the average properties of the
plasma. These complications can be taken care of in a Monte-Carlo framework
[49] which for example also allows to keep track of the scattering partners of the
leading parton. Consequently, this calculation will not give results that can be ap-
plied directly to describe heavy-ion collision data, but should illustrate the main
qualitative effects.

The resulting gluon-to-pion fragmentation functions forQ = 100 GeV are shown
in Fig. 5.2 for both the normal vacuum case and for the case of aplasma with
transport parameters ˆq = 1 GeV2/fm, q̂ = 5 GeV2/fm andq̂ = 15 GeV2/fm. For
the calculation, we use the medium-modified DGLAP Eq. (5.6) with the scat-
tering term Eq. (5.5) and temperatureT = 0.5 GeV. The overall behaviour of the
medium-modified fragmentation function withQ2 is similar to the vacuum results.
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FIGURE 5.2: Fragmentation functionsDπ
g (x,Q2) of gluons into pions in medium and

vacuum atQ2 = (100 GeV)2 as a function of energy fractionx. The red curve is the

vacuum solution. For the medium, we show results for the transport parameters ˆq = 1

GeV2/fm (green curve), ˆq = 5 GeV2/fm (blue curve) and ˆq = 15 GeV2/fm (violet curve).

The temperature is set toT = 0.5 GeV. The scattering term leads to a reduction of the

number of particles with large energy fraction. This effectincreases with ˆq.

The scattering term acts in a similar manner as the splittingterm and “transports”
partons to a lower energy fraction. Our scattering formalisms account for the en-
ergy loss of the gluon traversing the medium, but not for the fact that the struck
scattering centers obtain energy that may contribute to thejet energy. Such struck
partons are expected to interact further in the plasma and contribute to the under-
lying activity in the event but they will not produce leadinghadrons in the high-p⊥
jets, which are the focus of this subsection.

Fragmentation functions vary rapidly with energy fractionx. For a better com-
parison of medium and vacuum fragmentation functions, we show the ratio of
medium to vacuum fragmentation functions in the next figures. In Fig. 5.3, we
plot this ratio forQ = 20 GeV andT = 0.3 GeV using the scattering term Eq. (5.5)
with q̂ = 1 GeV2/fm, q̂ = 5 GeV2/fm and q̂ = 15 GeV2/fm. Also shown in this
figure are the results from the alternative scattering term Eq. (5.10) withE = Qmax.

The suppression of leading particles is strongest at largex. The results from the
scattering term Eq. (5.10) exhibit a weaker suppression than those from Eq. (5.5).
Among the calculations for the scattering term Eq. (5.5), the suppression of the
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FIGURE 5.3: Ratios of fragmentation functions in medium and vacuum,

Dπ
g,med(x,Q2)/Dπ

g,vac(x,Q
2), of gluons into charged pions atQ2 = (20 GeV)2 as a

function of energy fractionx. The plot compares the results for different transport

parameters ˆq = 1 GeV2/fm (green curve), ˆq = 5 GeV2/fm (blue curve) and ˆq = 15

GeV2/fm (violet curve). For the calculation, the medium-modified evolution equation

(5.6) with scattering term (5.5) is used with a temperature of T = 0.3 GeV. In addition,

results from the alternative scattering term Eq. (5.10) arealso shown (red curve).

medium fragmentation function becomes stronger with increasing ˆq.

Fig. 5.4 also shows the ratio of medium-to-vacuum fragmentation functions,
but for Q = 100 GeV andT = 0.5 GeV. For the scattering term Eq. (5.10), the
suppression becomes stronger, especially at largex. For z close to 1,K̂ ∼ E2

Q2 and
thez-integral receives its dominant contributions from an interval ∆z ∼ ms

E next to
z = 1 where|t| < m2

D. The scattering term in Eq. (5.10) therefore grows with jet
energy parametrically likeS(x,Q2) ∼ ET

Q2 .

The suppression from the scattering term in Eq. (5.5) is dominated by the evo-
lution at low virtualities because of the parametric dependenceS(x,Q2) ∼ q̂

2msQ2 .
Also for this scattering term, the suppression increases since larger energy and
temperature correspond to a larger value of ˆq.

In spite of these different parametrical dependencies onQ, the resulting suppres-
sion at least follows the same trend. It should be mentioned that the results from
the scattering term Eq. (5.10) strongly depend on the choiceof the IR regulator of
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GeV2/fm (violet curve). For the calculation, the medium-modified evolution equation

(5.6) with scattering term (5.5) is used with a temperature of T = 0.5 GeV. In addition,

results from the alternative scattering term Eq. (5.10) arealso shown (red curve).

the perturbative cross section.
From both calculations, we conclude that the modification offragmentation

functions from scattering in the plasma is non-negligible and consequently col-
lisional energy loss will contribute to the total energy loss. The total energy loss
will be significantly larger when additional medium-induced radiation [40, 41, 42]
is taken into account.

This ratio of fragmentation functions in medium and vacuum corresponds to
the nuclear modification factorRAA at a fixed jet energy. TheRAA measured in
heavy ion collisions at RHIC is for leading hadrons withp⊥ up to∼ 20 GeV, and
thereby integrates over jet (parton) energy. For a direct comparison with RHIC
data, one therefore needs to fold the fragmentation functions for both gluons and
quarks with the initial momentum distribution of gluons andquarks from the hard
scattering. As already mentioned, a detailed comparison todata also requires a
proper treatment of the finite-size expanding plasma. Taking this into account is
beyond the scope of our work here, which aims at the development of a formalism
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extensionsL = 2 fm, L = 5 fm and L = 8 fm to the case of a medium with infinite

extension. For the calculation, the medium-modified evolution equation (5.6) with

scattering term Eq. (5.5) is used with a temperature ofT = 0.5 GeV.

and the demonstration of its basic physical effects.
Nevertheless, our approximation with a stationary plasma in the numerical so-

lution of the evolution equations is reasonable to illustrate the magnitude of jet
quenching effect. To see this, one has to consider the time a parton shower needs
to evolve down toQ0. This depends, however, on the topology of the shower.
In the evolution equation, all possible radiation patternsare weighted with their
probabilities and summed, making it impossible to keep precise track of the time
during the evolution.

Based on Eq. (5.1), the mean time for evolution can be estimated asE/Q2
0−1/E,

which means that a 100 GeV jet develops over 10 fm to reachQ0 =
√

2GeV. A
finite size medium can then be included by defining two cut-offscales: AtQ1 > Q0

scatterings stop and atQ0 splittings stop. The virtualityQ1 is connected to the
medium length by

L =
E

Q2
1

− 1
E

. (5.12)

To account for a finite medium extension, we solve the modifiedevolution equa-
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FIGURE 5.6: Nuclear modification factorRAA of pions as a function of their transverse

momentump⊥. The results from Eq. (5.13) with ˆq = 3 GeV2/fm (purple curve ) and

q̂ = 5 GeV2/fm (blue curve) are compared to experimental data [6] from RHIC. In the

calculation, we have setQ = 20 GeV andT = 0.3 GeV.

tion (5.6) between virtualitiesQmax andQ1. BetweenQ1 andQ0, the parton has
left the medium and consequently only the splitting term is used in the evolution
equations.

In Fig. 5.5, we show the ratio of medium to vacuum fragmentation functions for
medium lengthsL = 2 fm, L = 5 fm, L = 8 fm and infiniteL as shown in Fig. 5.4.
For this calculation, we have used the scattering term Eq. (5.5) with Q = 100
GeV, T = 0.5 GeV and ˆq = 5 GeV2/fm. A finite medium length reduces the
suppression factor significantly, but it remains sizeable.For instance, a medium
of lengthL = 5fm (corresponding toQ2

1 ≈ 4.0 GeV2) instead of infinite length
L results in a suppression factor of 0.66 instead of 0.34 for leading particles at
x = 0.4 in a 100 GeV jet.

One may wonder how the ratio of fragmentation functions can be related to
experimental data. This is possible by computing the nuclear modification factor
RAA, which can be estimated by folding the calculated fragmentation functions
with the differential cross sectiondσ

dq⊥
for jet production. For our comparison, we

perform a fit of the experimental data [15] for the jet cross section in pp-collisions
at
√

s = 200 GeV. With a parametrizationdσ
dq⊥

= A/(1GeV2+q2
⊥)B, we can fit the

data well withA ≃ 8.33· 1011 GeV2.56 and B ≃ 3.28. Neglecting initial state
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effects, the nuclear modification factor can be written as

RAA(p⊥) ≃
∫

dzdq⊥
dσ
dq⊥

Dmed(z,Q2)δ (zq⊥− p⊥)
∫

dzdq⊥
dσ
dq⊥

Dvac(z,Q2)δ (zq⊥− p⊥)
(5.13)

The results forRAA for q̂ = 3 GeV2/fm (purple curve) and ˆq = 5 GeV2/fm (blue
curve) are shown in Fig. 5.6 together with experimental data[6] from RHIC. In
the calculation, we have setQ = 20 GeV andT = 0.3 GeV. In the region between
3 GeV< p⊥ < 13 GeV, experimental points lie between these curves.

Consequently, our calculation with solely collisional energy loss matches the ob-
servedRAA for pions forq̂ ≈ 4 GeV2/fm. Clearly, this result has to be taken with
some caution. First, the fragmentation of quarks is a sourcefor pion production
which becomes increasingly important for large transversemomentum. In addi-
tion, taking into account quarks in the evolution will increase the modification
of fragmentation functions and reduce the “right” value of ˆq which corresponds
to the observedRAA. On the other hand, a finite medium reduces the effect of
scattering.

One may also worry how the NLO part of the gluon-gluon splitting function
affects our results since – like the scattering term – it is proportional toα2

s . But al-
though the numerical values of the fragmentation function change significantly for
a NLO splitting function, the resulting suppression of the medium fragmentation
function relative to the vacuum remains almost unchanged.

The quark-gluon plasma is here approximated by a stationarymedium of fixed
average temperature. Another concern may be that taking into account the cool-
down of the plasma during its expansion might lead to a smaller collisional energy-
loss effect. This need not be the case, since the multiple scattering that can occur
even in a short, early time interval has an opposite effect since the plasma may be
denser and hotter than average in this stage.

Jet multiplicities could simply be obtained by integratingthe fragmentation
function D(x,Q2) over x. However, corresponding jet multiplicities would be
dominated by the small-x behavior ofD(x,Q2) which is outside the range of re-
liability of the AKK fit. Also, DGLAP evolution does not account for soft gluon
coherence at smallx.

Another issue to be studied is whether the plasma affects thenon-perturbative
hadronization processes and thereby changes the fragmentation function. This
may depend on whether partons first form preconfined states [59, 60] or directly
form hadrons (including resonances). Intermediate prehadrons below the scaleQ0

may suffer more scatterings than final hadrons and thereby modify the hadronic
spectra of heavy ion collisions. The non-perturbative phase after evolution down
to Q0 =

√
2 GeV should be relatively more important at the lower energyscale
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of RHIC. At LHC, the larger energy implies that the formationof prehadrons and
hadrons occurs later in lab frame, in particular for leadinghadrons with a large
Lorentzγ factor. We therefore expect that medium-modified hadronization effects
should be less, bringing our theoretical approach closer toreality.

5.2 Modified intra-jet gluon distribution at small x

In Sec. 4.1 we have discussed the gluon distributionD(x,Q2) in a jet in vacuum.
Here, we use the scattering term Eq. (5.18) constructed in the previous section
and the methods of the Gaussian approximation (Sec. 4.1) to study how the gluon
distribution at smallx is affected by scatterings with the medium.

Although a fragmentation function and a parton distribution in a jet are quite
different physical quantities, we use the same scattering term. The reason for this
is that the physical dynamic – namely splitting as well as scattering processes –
happens on the partonic level.

Compared to Eq. (5.6), a key ingredient for the evolution at small x is soft gluon
coherence, which is reflected in the scaleu2Q2 in the splitting term. In the follow-
ing, we solve the evolution equation

Q2∂D(x,Q2)

∂Q2 =
αs(Q2)

2π

∫ 1

x

du
u

P(u)D
(x

u
,u2Q2

)

+S(x,Q2) (5.14)

with the scattering term

S(x,Q2) =
ngσ〈q2

⊥〉
2msQ2

(

D(x,Q2)+ x
∂D
∂x

(x,Q2)

)

. (5.15)

We assume that the interaction is screened at low momentum transfer by the De-
bye massmD. Motivated by the perturbativegg (LO, t-channel) scattering cross
section we estimate

σ ∼ 9πα2
s (Q2)

2m2
D

and 〈q2
⊥〉 ∼ m2

D (5.16)

The gluon density in the plasma is

ng =
16
π2ζ (3)T3. (5.17)

For the Debye mass, we usemD ≃ γT with γ ≈ 3 being a typical estimate from
lattice simulations [102]. For the thermal gluon massms, we use the perturbative



84 5. Modified jet evolution in hot matter

relationm2
D = 2m2

s [34]. With these approximations, we can write the scattering
term as

S(x,Q2) = εαs(Q
2)2 T 2

Q2

(

D(x,Q2)+ x
∂D(x,Q2)

∂x

)

(5.18)

where

ε =
36ζ (3)

√
2

πγ
f ≃ 6.49f (5.19)

is a dimensionless constant used as an abbreviation for the prefactors of the quan-
tities discussed above.

In the previous subsection, we chose a somewhat different approach. There, we
introduced the transport parameter ˆq≃ ngσ〈q2

⊥〉 and studied the dependence of the
fragmentation function in the medium on the value of ˆq. However, for the calcu-
lation of the gluon distribution in Gaussian approximation, it is important to keep
track of the dependence onαs. Nevertheless, we want to study the medium modi-
fication for different interaction strengths with the medium. For this purpose, the
parameterf has been introduced in Eq. (5.19). This approach allows to vary the
interaction cross section or equivalently the mean free path in the medium. Such
a variation is reasonable since the cross section is unknownand the perturbative
result in Eq. (5.16) can only serve as an estimate for the order of magnitude.

In the analysis which we will perform here, we will usef = 1, f = 5 and f =
15. These numbers can be related to the mean free pathλ ≃ 1/( f ngσ) andq̂ ≃
f ngσ〈q2

⊥〉. By fixing αs andT , we can estimate both quantities. Forαs = 0.2
and T = 0.3 GeV, we haveλ ≃ 5.4 fm/ f and q̂ ≃ f · 0.15 GeV2/fm. These
transport parameters are smaller than in the previous subsection. However, there
we considered particles with significant higher energy thanin this calculation.
Qualitatively, this is motivated by a possible energy dependence of ˆq [110].

Again, we will solve the evolution equation in Gaussian approximation [50]. For
this purpose we perform a Mellin transformation of the evolution equation where
the Mellin transformation ofD(x,Q2) is defined by

d(J,Q2) =
∫ 1

0
dxxJ−1D(x,Q2). (5.20)

In Mellin space we can simplify the scattering term by partial integration:

εα2
s

T 2

Q2

∫ 1

0
dxxJ−1

(

D(x,Q2)+ x
∂D
∂x

(x,Q2)

)

= εα2
s

T 2

Q2

(

d(J,Q2)− Jd(J,Q2)
)

(5.21)
For constantαs, the evolution equation reads after Mellin transformation

Q2∂d(J,Q2)

∂Q2 =
αs

2π

∫ 1

0
duP(u)d

(

J,u2Q2)− εα2
s

T 2

Q2(J−1)d(J,Q2). (5.22)
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The Gaussian approximation uses the following ansatz for the gluon distribution
in Mellin space in terms of the anomalous dimensionγ

d(J,Q2) ∝
(

Q2

Q2
0

)γ(J,αs)

. (5.23)

This yields the consistency equation for the anomalous dimensionγ

γ(J,αs) =
αsCA

π
1

J−1+2γ(J,αs)
− εα2

s
T 2

Q2(J −1) (5.24)

At J = 1, the contribution from the scattering term therefore vanishes and the
multiplicity does not change. We also see that modificationscoming from the
scattering term will be suppressed byT 2/Q2. Consequently the scattering term is
a higher-twist contribution, but nevertheless will turn out to lead to a significant
modification of the gluon distributionD(x,Q2).

From Eq. (5.24) we find for the anomalous dimension:

γ(J,αs) = −(J −1)

(

1
4

+
εα2

s

2
T 2

Q2

)

+

√

(J −1)2

(

1
4
− εα2

s

2
T 2

Q2

)2

+
αsCA

2π

≃
√

αsCA

2π
− (J−1)

(

1
4

+
εα2

s

2
T 2

Q2

)

+
1
2

√

2π
αsCA

(J−1)2
(

1
4
− εα2

s

2
T 2

Q2

)2

(5.25)

The expansion aroundJ = 1 corresponds to the small-x limit, which dominates
the jet multiplicity.

Now we evolve from constant to runningαs. For this purpose we use the same
approximation as in the vacuum case [50].

d(J,Q2) ∝ exp

(

∫ Q2

Q2
0

dQ′2

Q′2 γ(J,αs(Q
′2))

)

(5.26)

For the calculation of the integral, we use the perturbative1-loop coupling

αs(Q
2) =

1

b ln

(

Q2

Λ2
QCD

) , b =
11− 2n f

3

4π
, ΛQCD = 250 MeV. (5.27)

The number of flavors is set to five.
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One may worry, that a calculation withαs running only in one-loop is not accu-
rate. In fact, at two-loop order,αs(Q2) contains a term which is proportional to
(

log(Q2/ΛQCD)
)−2

. With a scattering term proportional toα2
s , one automatically

gets terms which are of the same order in log(Q2/ΛQCD). We can perform a sys-
tematic study of this issue if we introduce the variableL ≡ ln(Q2/Λ2

QCD) and use
the Gell-Mann-Low equation1

L =
4π

b0αs
+

b1

b2
0

ln
αs

4π
+∆+O(αs) (5.28)

to account in our calculation for the running ofαs in more than one loop. For
this purpose, we substitute dL = dαs L′(αs) in Eq. (5.26). However, the two-loop
contribution turns out to be much smaller than the medium contribution. This
contribution spoils the analytic transparency of the Gaussian approximation and
is neglected in the following.

Now we can evaluate the fragmentation function in Gaussian approximation
by performing the integration in Eq. (5.26). The Mellin moment d(J,Q2) in
Eq. (5.26) has a Gaussian dependence on(J −1) because the Taylor expansion
in Eq. (5.25) is only up to the second order:

d(J,Q2) = C exp
(

a0+a1(J −1)+a2(J−1)2) . (5.29)

The normalization ofd(J,Q2) is not predicted. We fix the normalizationC ≃
0.024 of the multiplicityn(Q2) = C exp(a0) with LEP data from e+e− [54, 53]. It
is possible to use these “vacuum” data since the scattering term leaves the multi-
plicity unchanged.

The coefficientsai depend on both virtuality and temperature. Compared to the
vacuum case, the calculation of the integral in Eq. (5.26) ismore involved and

1For the values of thebi and a discussion, see [91].



5.2. Modified intra-jet gluon distribution at small x 87

yields the following results for the coefficientsai:

a0 =
1
b

√

2CA

παs(Q2)
−
[

Q2 → Q2
0

]

(5.30)

a1 =
1

4bαs(Q2)
− ε

2b
T 2

Q2αs(Q
2)

− ε
2b2

T 2

Λ2 Ei
(

−(bαs(Q
2))−1)−

[

Q2 → Q2
0

]

(5.31)

a2 =
1

24b

√

π
2CA

αs(Q
2)−3/2 +

1

2
√

2b2

T 2

Λ2

π√
CA

erf
(

(bαs(Q
2))−1/2

)

ε

− 4
15b3

√

2π
CA

T 2Q2
0

Q4 αs(Q
2)1/2ε +

1
2b

√

π
2CA

T 2

Q2αs(Q
2)1/2ε

+

√

π
2CA

T 4

Q4

(

2
15

αs(Q2)3/2

b2 − 1
10

αs(Q2)5/2

b

)

ε2

− 8

15b7/2

T 4

Λ4

π√
CA

erf

(
√

2
bαs(Q2)

)

ε2−
[

Q2 → Q2
0

]

(5.32)

Here, the notation−
[

Q2 → Q2
0

]

means that one has to subtract all previous terms,
replacingQ2 by Q2

0. This subtraction originates from the lower limit of integration
in Eq. (5.26). Ei(−z) is the exponential integral function, defined by

Ei(−z) = −
∫ ∞

z
dt

e−t

t
. (5.33)

The expressions for the coefficientsai in Eq. (5.30), (5.31) and (5.32) contain
much more terms than in vacuum. Unfortunately none of the coefficients can be
approximated by a single term. The interplay and partial cancellation among the
various terms is important for the final result.

The calculation proceeds precisely as in the vacuum case. The solution found in
Mellin space has to be transformed back tox-space by an inverse Mellin transfor-
mation.

D(x,Q2) =
C

2πix

∫ 1+i∞

1−i∞
dJ

1
xJ−1 exp(a0+a1(J −1)+a2(J−1)2)

=
C

2πx

∫ +∞

−∞
dJ̃ exp

[

a0+ iJ̃

(

a1 + ln

[

1
x

])

−a2J̃2
]

(5.34)

Performing the Gaussian integral yields

xD(x,Q2) =
n(Q2)

2
√

πa2
exp

(

−
(

ln(1
x )−a1

)2

4a2

)

. (5.35)
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This means that the functional form of the gluon distribution D(x,Q2) is not
changed. The medium modification is solely contained in the modification of
the coefficientsai. The coefficientsai have the same physical meaning as in vac-
uum: a0 describes theQ2-behavior of the jet multiplicityn(Q2) = C exp(a0), a1

gives the peak position of the distribution in ln(1/x) (see below) anda2 is related
to the Gaussian width. The first terms for each coefficient arethe vacuum results
while the terms proportional toε andε2 result from the modified evolution.

As discussed in Sec. 4.1, the MLLA contribution to the peak position,∆aMLLA
1

from Eq. (4.15), cannot be deduced from the Gaussian approximation and has to
be added by hand.

In vacuum, the coefficients have inverse powers ofαs(Q2). Therefore the vac-
uum moments are determined by the upper virtualityQ2 with αs(Q2) < αs(Q2

0).
The terms from the medium-modified evolution have larger powers ofαs and lead
to changes on the basis of the vacuum results. The medium corrections are most
important at the infrared scaleQ2

0, whereαs(Q2
0) > αs(Q2).

In Fig. 5.7 we show a comparison for the logarithmic gluon distribution in a jet
in vacuum and with medium-modified evolution. As discussed after Eq. (5.19), we
use the valuesf = 1, f = 5 andf = 15 for the interaction parameterf and compare
to the vacuum results. Two different kinematical domains are studied:E = Qmax=
20 GeV andT = 0.3 GeV, suitable for RHIC (top), andE = Qmax= 100 GeV and
T = 0.5 GeV, relevant for LHC, in the bottom. The scattering term leads to a
shift of the peak positiona1 to larger values of ln(1/x). This can be viewed as
a consequence of the shift∆x = q2

⊥/(2ms E) which a gluon experiences in our
model. Qualitatively, the number of hard particles is reduced and, on average,
gluons become softer. The coefficienta2 determines the width of the Gaussian
particle distribution. With increasing scattering cross section (increasingf ), a2

becomes larger and the gluon distribution broadens.

In Fig. 5.7, the behavior of the gluon distribution with increasingf may look
odd at first sight. In both plots,f = 1 leads to a shift of the maximum to larger
values of ln(1/x). The Gaussian width is almost unchanged. To conserve the
multiplicity (which is the integral of the gluon distribution), the height of the
maximum increases. For larger cross sections, the Gaussianwidth also increases,
which leads to a broadening of the gluon distribution. Consequently, the value at
the maximum becomes smaller.

Recently, great progress on the experimental side has been achieved in the full
reconstruction of jets in heavy-ion collisions. Encouraging first investigations on
the subtraction of the underlying event have been published[21]. However, these
preliminary measurements tend to support a rather small modification of the gluon
distribution.
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FIGURE 5.7: Top: Gluon distributionxD(x,Q2) in a jet in Gaussian approximation shown

for Q2 = (20 GeV)2 for evolution in vacuum (violet curve) and medium-modified evolu-

tion with f = 1 (red curve),f = 5 (green curve) andf = 15 (blue curve) with temperature

T = 0.3 GeV as a function of ln(1/x). Bottom: Same withQ = 100 GeV andT = 0.5

GeV.
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At LHC, the excellent resolution in ALICE will presumably allow for full recon-
struction of jets above the background from the underlying event up to ln(1/x)≈ 5
[22]. For LHC kinematics, our calculation predicts a stronger sensitivity of the
gluon distribution to collisional energy loss.

However, medium-induced gluon radiation is also expected to play an impor-
tant role for the modification of the gluon distribution in the quark-gluon plasma.
For the calculation of the gluon distribution at smallx, medium-induced gluon-
radiation is typically modeled by modifying the splitting functionsP(z) and en-
hancing the singular parts proportional to 1/z and 1/(1− z) by a factor 1+ fmed

[103, 104]. Compared to the vacuum case, these calculationsfind a much larger
multiplicity. In contrast, our calculation outlined abovedoes not change the mul-
tiplicity.

5.3 A calculation of transverse momentum broad-

ening in jets

In the final section of this chapter, we will perform a calculation of transverse
momentum broadening in hot matter. For this purpose, we willuse the TMD
evolution equation with a scattering term.

The basic motivation for our calculation is to understand whether the scattering
term leads to a sizeable increase of the transverse momenta of partons with re-
spect to the jet axis. Particularly, we study the dependenceof the mean transverse
momenta of partons in jets on the interaction strength with the medium. For this
purpose, we will use different values for the transport parameter ˆq.

Different values of ˆq have been extracted from fitting several energy loss models
to the observedRAA at RHIC. At the LHC full jet reconstruction is expected to be
possible. Presumably, this will allow for a study of the meantransverse momen-
tum of particles in jets. At best, the mean transverse momentum in jets represents
an observable which can potentially constrain the value of medium parameters
such as the transport parameter ˆq.

Here, we are not in the position to present quantitative predictions for LHC due
to the theoretical uncertainties mentioned earlier. Instead, our goal is to perform a
qualitative study which explores the dependence of transverse momentum broad-
ening on the interaction strength with the medium.

As before we restrict ourselves to gluon splitting and gluonscattering, since
gluon dynamics dominates these processes. The (modified) TMD evolution equa-
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tion is given by

∂ D(x,Q2,p⊥)

∂ lnQ2 =

αs(Q2)

2π

∫ 1

x

dz
z

P(z)
d2q⊥

π
δ
(

z(1− z)Q2−Q2
0−q2

⊥
)

D

(

x
z
,z2Q2,p⊥− x

z
q⊥

)

+S(x,Q2,p⊥) (5.36)

Here, the modification by the additional termS(x,Q2,p⊥) accounts for the scatter-
ing on gluons in the plasma which has temperatureT and the gluon densityng(T)

(see Eq. (5.17)). For our investigations, we use the following scattering term:

S(x,Q2,p⊥) =
E
Q2ng(T )

∫ 1

x
dy
∫

d2q⊥
dσ

d2q⊥
× (5.37)

×
(

yD(y,Q2,p⊥− yq⊥)− xD(x,Q2,p⊥)
)

δ
(

y− x− q2
⊥

2msE

)

Upon integration overp⊥, this scattering term reduces to the one discussed in
Eq. (5.5). Therefore, it can be viewed as a natural transverse-momentum depen-
dent to the scattering term discussed in Chapter 5. The scattering term contains
a gain term for scattering into the consideredp⊥-bin and a negative contribution
for scattering out of it. Both are weighted with the parton-parton differential cross
section and the density of scattering centers.

As in vacuum, it is possible to calculate the average transverse momentum
squared of gluons in jets for the modified evolution Eq. (5.36). The scattering term
in this equation leads to an additional term in the differential equation Eq. (4.27).
This term will mainly be responsible for the modification of parton transverse
momentum in the gluon jet under consideration.

Our calculation proceeds as in Sec. 4.2. We define the mean transverse momen-
tum by

〈p2
⊥〉(Q2) =

∫

d2p⊥
∫

dxp2
⊥ D(x,Q2,p⊥)

∫

d2p⊥
∫

dxD(x,Q2,p⊥)
(5.38)

as in Eq. (4.16). It can be linked to the evolution of the particle distribution
D(x,Q2,p⊥) by looking at itsQ2-evolution

Q2 ∂
∂Q2〈p

2
⊥〉(Q2) =

1
n(Q2)

∫

d2p⊥

∫

dxp2
⊥ Q2 ∂

∂Q2D(x,Q2,p⊥)

−〈p2
⊥〉(Q2)

1
n(Q2)

∫

d2p⊥

∫

dxQ2 ∂
∂Q2D(x,Q2,p⊥). (5.39)
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Consequently, we see that with an additional scattering term S(x,Q2,p⊥) we
only need to compute the contributions from the scattering term,

Iscatt
2 =

∫

dx
∫

d2p⊥p2
⊥S(x,Q2,p⊥) and Iscatt

0 =
∫

dx
∫

d2p⊥S(x,Q2,p⊥)

(5.40)

We start with the second term. As discussed in the previous section, the terms
abbreviated inI0 describe the evolution of the jet multiplicity withQ2. Conse-
quently, we expect this contribution to vanish. Explicit calculation leads to

Iscatt
0 =

E
Q2ng

∫

dx
∫

d2p⊥

∫ 1

x
dw
∫

d2q⊥
dσ

d2q⊥
δ
(

w− x− q2
⊥

2msE

)

×
[

wD(w,Q2,p⊥−wq⊥)− xD(x,Q2,p⊥)
]

.

=
E
Q2ng

∫

dx
∫

d2p⊥

∫

d2q⊥
dσ

d2q⊥
×

[(

x+
q2
⊥

2msE

)

D

(

x+
q2
⊥

2msE
,Q2,p⊥

)

− xD(x,Q2,p⊥)

]

≃ E
Q2ng

∫

dx
∫

d2p⊥

∫

d2q⊥
dσ

d2q⊥
×

[

q2
⊥

2msE
D
(

x,Q2,p⊥
)

+
q2
⊥

2msE
x

∂
∂x

D(x,Q2,p⊥)

]

= 0 (5.41)

In the last line, the integral vanishes by partial integration. In this equation, we
have performed an expansion for small momentum transfer in the same way as for
thep⊥-integrated scattering term in Chapter 5. As in Sec. 5.2, this scattering term
does not change the multiplicity.
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A similar expansion for small momentum transfers can be performed forIscatt
2 :

Iscatt
2 =

E
Q2ng

∫

dx
∫

d2p⊥p2
⊥

∫ 1

x
dw
∫

d2q⊥
dσ

d2q⊥
δ
(

w− x− q2
⊥

2msE

)

×
[

wD(w,Q2,p⊥−wq⊥)− xD(x,Q2,p⊥)
]

.

=
E
Q2ng

∫

dx
∫

d2p⊥

∫

d2q⊥
dσ

d2q⊥

[(

p2
⊥ +

(

x+
q2
⊥

2msE

)2

q2
⊥

)

×
(

x+
q2
⊥

2msE

)

D

(

x+
q2
⊥

2msE
,Q2,p⊥

)

− xp2
⊥D(x,Q2,p⊥)

]

≃ E
Q2ng

∫

dx
∫

d2p⊥

∫

d2q⊥
dσ

d2q⊥
×

[

x3q2
⊥ +p2

⊥
q2
⊥

2msE
+p2

⊥
q2
⊥

2msE
x

∂
∂x

]

D(x,Q2,p⊥)

=
E
Q2ng

∫

dx
∫

d2p⊥

∫

d2q⊥
dσ

d2q⊥
x3 q2

⊥D(x,Q2,p⊥) (5.42)

In this equation, we have expanded in
q2
⊥

2msE up to first order. Furthermore, we have

assumed that the dominant contribution originates from small q2
⊥. Consequently,

we keep only the terms that contain eitherq2
⊥ or

q2
⊥

2msE .
In the following, we make the same approximations forgg-cross section and

momentum transfer as in the previous section (see discussion after Eq. (5.18)).
This yields

Iscatt
2 =

E
Q2ngσ〈q2

⊥〉〈x3〉(Q2) ≃ 72ζ (3)

π
f α2

s (Q2)T 3 E
Q2〈x

3〉(Q2) (5.43)

where〈x3〉 is again defined from the results of the Gaussian approximation:

〈x3〉(Q2) = e9a2−3a1
1+erf

(

a1−6a2
2
√

a2

)

1+erf
(

a1
2
√

a2

) (5.44)

In this equation,a1 anda2 determine the peak position and the width ofD(x,q2)

in Gaussian approximation (see Sec. 5.2).
As in Sec. 5.2, we have introduced the parameterf to vary the interaction

strength with the medium. Again, we will usef = 1, f = 5 and f = 15. In
principle, we also could have introduced ˆq ≃ ngσ〈q2

⊥〉 in the equation above. The
corresponding values of ˆq for these values off are discussed after Eq. (5.19).
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FIGURE 5.8: Mean transverse momentum squared〈p2
⊥〉 of gluons in a jet as a function

of virtuality Q2 in vacuum and a medium described by the scattering term Eq. (5.37). For

the medium, we usef = 1, f = 5 and f = 15 and the temperature is set toT = 0.5 GeV.

Together with the results of the vacuum calculation (see Eq.(4.27)), we find for
the evolution of〈p2

⊥〉 in the hot medium

Q2 ∂
∂Q2〈p

2
⊥〉(Q2) =

1
n(Q2)

∫ z+

z′
dz

αs(z2Q2)

π
P̂gg(z)n(z2Q2)

[

〈x2〉(z2Q2)k2
⊥(Q2)

+ 〈p2
⊥〉(z2Q2)−〈p2

⊥〉(Q2)

]

+
72ζ (3)

π
T 3 E

Q2α2
s (Q2)〈x3〉 (5.45)

Herek2
⊥(Q2) = z(1−z)Q2−Q2

0 is an abbreviation for the transverse momentum
generated in the splitting. In the differential equation, the contribution from the
scattering term serves as an inhomogenity. Note that we did not modify the split-
ting process itself. Nevertheless, the softening of thep⊥-integrated distribution
xD(x,Q2) from the scattering as calculated in Sec. 5.2 is also relevant. It affects
the mean quadratic momentum fraction〈x2〉 which enters in the term orginating
from splitting.

We solve Eq. (5.45) numerically with the initial condition〈p2
⊥〉(Q2

0) = 0 atQ0 =
1 GeV. The solution forf = 1, f = 5 andf = 15 is plotted in Fig. 5.8 together with
the solution in vacuum. The jet energy is taken toE = Q and the temperature is
T = 0.5 GeV. Again, the growth of〈p2

⊥〉 at largeQ2 can be fitted by a power-law
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with a power close to one.
The numerical solution has some surprising properties: Thesoftening of the

p⊥-integrated distributionD(x,Q2) leads to a decrease of〈x2〉. Since the term
with 〈x2〉 in Eq. (5.45) drives the growth of〈p2

⊥〉, this will lead to a reduction
of the mean transverse momentum. In contrast, the inhomogeneous term in the
differential equation corresponds to an increase of the transverse momentum. This
term is largely peaked at small virtualities since it is proportional to 1/Q2.

The growth of〈p2
⊥〉 with Q in the medium becomes smaller than in vacuum

and at asymptotically large virtualities even reduces〈p2
⊥〉 compared to vacuum.

At smaller virtualities (which can still be large), the inhomogeneous term leads
to a growth of〈p2

⊥〉 in the medium. However, the crossing point depends on the
interaction strength with the medium or equivalently ˆq.
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Chapter 6

A study of double dijet production

in hadronic collisions

In this chapter, we will not be concerned with jets in nuclearmatter. Instead,
we will study an aspect of jet physics in hadronic collisions, namely double dijet
production1. The term “double dijet production” refers to events where two 2→ 2
partonic scatterings take place in a single hadronic collision. In the following,
we will be mainly concerned with the scale factorσeff which relates the inclusive
cross sections for dijet and double dijet production. Furthermore, we will argue
that this quantity is related to the growth of hadronic wave functions in transverse
space and that it can be investigated at the LHC.

6.1 Motivation

In high-energy hadronic collisions, more than one pair of partons can interact
with large momentum transfer. Such multiple hard interactions within the same
hadronic collision become more numerous with increasing center of mass energy.
They are a novel and generic feature of hadronic interactions at Tevatron and at
the LHC. For instance, the inclusive cross section for double dijet production (see
Fig. 6.1) isσD

(

ET ,min = 20GeV
)

≃ 10µb in proton-proton collisions at the LHC,
if each of the four jets carries more than a minimal transverse energy ofET ,min =

20 GeV. Even if this threshold is raised toET ,min = 100 GeV, the double hard

scattering process is still in experimental reach withσ4jets
D

(

ET ,min = 100GeV
)

≃
50pb. In section 6.2, we will present calculations which support these estimates.

1The presentation in this chapter largely follows Ref. [120].

97
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FIGURE 6.1: Schematic view of double dijet production in a proton-proton collision.

It is not known how factorization theorems for large momentum transfer pro-
cesses could be extended to multiple hard processes within the same hadronic
collision, such as double dijet production. Typically, oneassumes that such pro-
cesses can be described as the incoherent superposition of single hard scattering
processes [112, 113, 114, 115, 116]. The double dijet cross section can then be
expressed as the convolution of two independent hard partonic subprocesses with
two-parton distribution functionsFD (see eq. (6.4) below). The ratio of the square
of the dijet cross sectionσS to the double dijet cross sectionσD for two indistin-
guishable hard processes defines the effective cross section σeff [113, 117, 118]

σeff =
σ2

S

2σD
. (6.1)

For two distinguishable hard processesA andB, it takes the formσeff = σA σB
σD

. If
the two-parton distribution functionsFD factorize into an uncorrelated product of
standard single parton distribution functions,σeff gives access to the geometrical
extension of the parton distributions in transverse space.

There are several motivations for studying double hard cross sections at hadron
colliders. First, hadronic collisions with more than one hard partonic scattering
can contribute to multi-parton final states at high transverse momentum. Their
improved understanding may help to control the QCD background to searches for
novel physics in channels involving multiple high-ET parton final states [119],
although simple kinematic cuts can be efficient in cleaning the signal from dou-
ble dijet background [116, 121]. Second, multiple independent hard scatterings
at lower momentum transfers [Q2 ∼ O

(

(1−5)2GeV2
)

] play an important role
in modeling the underlying event in hadronic collisions at collider energies [123,
124, 125]. Studying the physics of such multiple hard scatterings at larger mo-
mentum transferQ2 or as a function ofQ2 may help to constrain the input to this
modeling of the underlying event [126]. Moreover, the double dijet cross sec-
tion σD provides qualitatively novel information about the transverse structure of
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the hadronic projectile becauseσD depends on the relative transverse distribution
of the two partons in the hadronic projectile [127]. If the two partons were dis-
tributed homogeneously over the entire hadronically active transverse area of the
hadronic projectile, then the scale factorσeff would be comparable to the total in-
elastic cross section. The much smaller numerical valueσeff = 14.5±1.7+1.7

−2.3 mb,
measured by the CDF Collaboration [118] disfavors such a homogeneous distri-
bution. It is in support of a picture of the proton and anti-proton, in which partons
with large momentum fraction are localized in a significantly smaller transverse
region within the proton (see discussion of Fig. 6.2 below).

Quantum chromodynamics offers a specific picture for the transverse growth
of hadronic wave functions with increasing ln1/x or center of mass energy. In
analogy to QED, where the transverse extension of the Weizsäcker-Williams field
of quasi-real photons around an electric charge grows with increasing energy, the
hard (i.e. large-x) color charges in a QCD projectile can be viewed as sources
of non-abelian Weizsäcker-Williams fields, whose transverse size grows with in-
creasing ln1/x or center of mass energy. The simplest, perturbative realization of
this phenomenon in QCD is the BFKL evolution equation, whichpredicts with
increasing ln1/x not only a growth of parton density locally in impact parameter,
but also a growth of the hadronic projectile distribution function in impact param-
eter space, see e.g. Refs. [122, 23, 128, 129, 130]. Unlike QED, this perturbative
picture is expected to be modified in QCD by saturation effects, which tame the
growth of parton density locally in impact parameter, and bynon-perturbative ef-
fects, which amputate the gluonic Weizsäcker-Williams fields at a transverse dis-
tance set by confinement. One expects that this eventually reduces the growth of
the average transverse extension of non-abelian Weizsäcker-Williams fields from
the perturbatively predicted power-law dependence∝ x−ω to a non-perturbative
logarithmic increase. The scale and dynamics of the transition between perturba-
tive and non-perturbative regime, as well as the physics in the non-perturbative
regime remain under debate. All arguments indicate, however, that the trans-
verse extension of the hadronic densities continues to growat ultra-relativistic
center of mass energies, albeit possibly much weaker than predicted perturba-
tively [122, 129, 130].

Here, we investigate to what extent this qualitative picture of the growth of trans-
verse hadronic distributions could be tested by measuring double dijet production
at Tevatron and at the LHC in the range of semi-hard momentum fractions, say
0.001. x . 0.1, and hard momentum transfers. The starting point of our work
is the observation that measurements of the inclusive double dijet cross section
at the LHC can be performed over a wide range inET,min. In the following, we
will quantify this range and we will investigate to what extent it provides access
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to a possible dependence of the scale factor on the cm-energyand transverse mo-
mentum cut-off. On the basis of these calculations, we will assess the sensitivity
of measurements ofσD to the transverse growth of the distribution of semi-hard
partons in the hadronic projectile.

6.2 Formalism

We first discuss the formalism, on which the following calculations of double dijet
production cross sections are based. To leading order (LO),the single scattering
cross section to produce two massless partons of transverseenergy larger than
ET,min reads

σS(ET,min) =
∫ 1

xmin

dx1

∫ 1

xmin/x1

dx2

∫ t̂+

t̂−
dt̂ ∑

i j
fi(x1,Q

2) f j(x2,Q
2)

dσ i j

dt̂
, (6.2)

where

t̂± = − ŝ
2



1±

√

1−
4E2

T,min

ŝ



 , x1 x2 ≥ xmin =
4E2

T,min

s
and Q2 = p2

⊥.

(6.3)
The sum is over all possible quark and gluon 2→2 scattering channelsi j. For the
purpose of the present study, expression (6.2) is a sufficiently good approximation
for the cross section of a dijet, produced in a single hard scattering event. We
shall convolute LO parton-parton scattering cross sections dσ i j

dt̂ with the CTEQ6L
set of parton distribution functions [131] forfi, which have been optimized for
the use in LO calculations. The scaleQ2 in the PDFs and inαs is set to the trans-
verse momentump2

⊥ = ut/s for massless partons in the 2→2 process. We have
checked that the results forσS(ET,min) with this choice obtained from Eq. (6.2)
are consistent with Pythia 6.419 [132].

We calculate the inclusive dijet production cross section as an incoherent super-
position of two hard scattering processes within the same hadronic collision

σD
(

ET,min
)

=
1
2 ∑

i jkl

∫

d2s1d2s2d2b
∫

dx1dx2dx3dx4dt̂1dt̂2 (6.4)

×F ik
D (x1,x2;b−s1,b−s2)F jl

D (x3,x4;s1,s2)
dσ i j

dt̂1

dσ kl

dt̂2
.

Here, the sum∑i jkl is over all parton species, which contribute to the two partonic
processesi+ j → 2 jets andk+ l → 2 jets. The symmetry factor12 accounts for the
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fact that both partonic processes are indistinguishable inthe sense that there is no
operational prescription which establishes a one-to-one mapping between one di-
jet and one specific hard partonic cross section in (6.4). TheMandelstam variables
t̂1 andt̂2 are defined for two partonic 2→ 2 processes with incoming parton mo-
mentum fractionsx1, x3 andx2, x4, respectively. We choose the kinematic bound-
aries in the integrals over the incoming parton momentum fractionsx1, ... , x4 such
that all outgoing partons carry more than a minimal transverse energyET,min. (In
principle, more sophisticated kinematic boundaries couldbe implemented e.g. to
require differentET,min-values for both pairs of jets, but we shall not explore such
possibilities in the following.) The integral in equation (6.4) includes the two
transverse positionss1 ands2, at which the two hard processes take place, and the
impact parameterb of the hadronic collision. The spatial information about the
partons is specified in the two-parton distribution functions

F ik
D (x1,x2;s1,s2;Q2

1,Q
2
2) , (6.5)

which depend not only on the transverse momentum fractionsx1, x2 and the vir-
tualitiesQ2

1, Q2
2 of both partons inside the hadron, but also on their transverse

positionsb1 andb2. In the following, we shall often use a simplified notation,
in which the virtualities are not written explicitly as arguments ofFD. For these
virtualities, we will always choose the squared transversemomenta in the corre-
sponding partonic 2→ 2 subprocess, as in (6.2), (6.3).

6.2.1 A factorized ansatz for two-parton distribution functions

The discussion in this section is based on a class of models, which satisfy the
factorized ansatz

F ik
D (x1,x2;b1,b2;Q2

1,Q
2
2) = F i(x1,b1,Q

2
1)Fk(x2,b2,Q

2
2) , (6.6)

where
F i(x,b,Q2) = n(x,b) f i(x,Q2) . (6.7)

A set of correlated two-parton distributions, which do not satisfy (6.6) will be
discussed in section 6.4. In equation (6.7),n(x,b) denotes the density of partons in
the transverse plane. It is normalized to unity,

∫

d2bn(x,b) = 1, so thatf i(x,Q2)=
∫

d2bF i(x,b,Q2) are the standard single parton distribution functions. Forthe
class of models studied here, the transverse part of the density does not depend on
the parton speciesi. The ansatz of Eq. (6.7) contains information about the average
transverse distance of the partons from the center of the proton in transverse space.
If the partons are uncorrelated in impact parameter, the average distance between
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the two partons satisfies〈(b1−b2)
2〉 = 〈b2

1〉+〈b2
2〉. In this sense, the ansatz (6.6)

also contains information about the average transverse distance between the two
partons. In addition, it allows for a non–trivialx-dependence of the transverse size
of the hadronic projectiles.

Let us first consider the simple case of anx-independent densityn(x,b) = n(b).
In this case, the geometrical information entering cross sections can be expressed
in terms of the nucleon overlap function

TNN(b) =
∫

d2sn(s)n(b−s) . (6.8)

The normalization ofn(s) implies that
∫

d2bTNN(b) = 1. For the factorized ansatz
(6.6), the double dijet cross section then takes the form

σD
(

ET,min
)

=
[

σS
(

ET,min
)]2 1

2

∫

d2bT 2
NN(b) , (6.9)

and the scale factor (6.1) reads

σeff =
1

∫

d2bT 2
NN(b)

. (6.10)

In the generalx-dependent case, the nuclear overlap function (6.8) will depend
on the momentum fractionsx1, ... , x4 of the partons in both hadrons. As a conse-
quence, the scale factor becomes a function of the center of mass energy

√
s and

the jet energy thresholdET,min.

6.2.2 Interpretation of the scale factor in the model (6.6) for

two-parton distributions

For the class of models (6.6), the scale factor contains information about the trans-
verse parton densityn(b) in the proton. A model-independent understanding of
the b-dependence of this density distribution is missing so far.Here, we con-
sider three-dimensional density profilesn3D(r), from which transverse densities
n(b) are obtained by projection,n(b) =

∫

dzn3D(r). Rather than motivating a
particularb-dependence ofn(b), however, we prefer to demonstrate that our con-
clusions about the scale factor will depend mainly on the root mean square〈r2〉1/2

of n3D(r) and will be rather insensitive to details of the functional shape. To estab-
lish this point, we compare three different 3-dimensional parton densitiesn3D(r).
In particular, we consider a Gaussian density

n3D(r) =
1

(2πδ 2)3/2
exp

[

− r2

2δ 2

]

, (6.11)
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a homogeneous density distribution which is sharply cut at radiusR,

n3D(r) =
3

4πR3 Θ(R−|r |) , (6.12)

and an exponential profile

n3D(r) =
1

8πλ 3 exp

[

−|r |
λ

]

, (6.13)

which has a more pronounced tail than the Gaussian distribution. To compare
the sensitivity ofσeff on the functional shape of ther -dependence of the density
profiles (6.11), (6.12) and (6.13), we express the results in Figure 6.2 and Table 6.1
in terms of the root mean square radius〈r2〉1/2 of these densities.

Figure 6.2 shows that the numerical value ofσeff characterizes mainly〈r2〉1/2

and that its sensitivity to the detailed geometrical profileof n3D(r) is rather weak.
As a consequence, the use of the Gaussian ansatz in the following studies can be
regarded as a convenient choice which will not bias our conclusions. We mention
as an aside that a Gaussian profile may be motivated for instance by a study based
on a light cone Hamiltonian [133].
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Model for 3D density ms radius〈r2〉 σeff 〈r2〉1/2
Tevatron

Gaussian∝ exp
(

− r2

2δ 2

)

3δ 2 8π
3
〈r2〉 0.42 fm

hard sphere∝ Θ(R−|r |) 3
5

R2 9.0〈r2〉 0.40 fm

exponential∝ exp
(

− |r |
λ

)

12λ 2 7.3〈r2〉 0.45 fm

TABLE 6.1: Results from the spatial density analysis. Calculations of mean squared radius

〈r2〉 and σeff are shown for several density models. The last column is calculated by

equating theσeff in the 3rd column to the Tevatron measurement of 14.5 mb. See also

Fig. 6.2.

Figure 6.2 also demonstrates that the central valueσeff = 14.5mb of the CDF
measurement can be related to a narrow range around〈r2〉1/2 ≃ 0.4− 0.45fm
for all three geometrical profiles. We note that if the partons relevant for double
dijet production were distributed in impact parameter overa transverse region of
the size of the proton’s electric charge〈r2〉1/2 = 0.875fm, then the scale factor
σeff would take values between 50mb and 70mb, which are comparable to the
total inelastic cross sectionσinel ≃ 80mb measured at Tevatron. A significant
difference between the total hadronically active transverse size of the proton and
the transverse extension of the region relevant for processes of high momentum
transfer has been discussed repeatedly in the literature [136, 130, 24]. We note
that the measurement ofσeff can not only provide an independent characterization
of this difference. Moreover, it may also provide novel access to the dynamical
origin of this difference via an analysis of thex-dependence ofσeff, to which we
turn now.

6.2.3 Modeling the small-x evolution of the transverse size of

hadronic wave functions

The transverse size of hard partonic components of the proton is found to be
smaller than total cross sections but will also grow with increasing

√
s. There-

fore a larger part of the hadronically active regions in transverse space can be
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expected to contribute to hard production processes with increasing energy.
We model this picture of the transverse growth of hadronic wave functions by

specifying anx-dependence of the Gaussian density (6.12),

n(x,b) =
1

2πδ (x)2 exp

[

− b2

2δ (x)2

]

. (6.14)

We consider two parametrizations of thex-dependence of the Gaussian width
δ (x). One model, originally proposed by Burkardt [134], takes

δ (x) = w1

√

(1− x) ln(1/x), w1 = 0.149fm. (6.15)

This results in a growth of the scale factorσeff(x) ∝ δ 2(x) ∝ ln1/x ∝ lns, which
is even weaker than the growth∝ (lns)2 which is realized in the Froissart bound.
We fix the prefactor atw1 = 0.149fm to reproduce the Tevatron value forσeff at
ET,min = 20 GeV.

We also consider a second model which results in a power-law growth of σeff ∝
sω with the center of mass energy,

δ (x) = w2 (1− x) x−ω/2, w2 = 0.175fm. (6.16)

A power-law growth of the transverse hadronic wave functionis obtained in the
perturbative small-x evolution, where the leading order BFKL-intercept isω =
αs
π Nc 4 ln2. This is known to overestimate the growth of total crosssections in
the experimentally accessible regime. However, it is conceivable that the growth
of hard components in the transverse wave function is more rapid. Within the
window of physically reasonable parameters, we have chosenω = 0.265 to arrive
at a model with power-like growth at smallx. The prefactor in (6.16) is fixed to
w2 = 0.175fm such thatσeff = 14.5mb at

√
s = 1.8TeV andET,min = 20GeV.

In Fig. 6.3 we show the transverse growth of the width〈b2〉 = 2δ 2(x) as a func-
tion of momentum fractionx for the models (6.15) and (6.16). We note that a
transverse growth similar to the model (6.15) has also been obtained in other cal-
culations which model non-perturbative effects [130].

A comment about our use of CDF measurements is needed here: inthe CDF
publication [117] of 1993, a central valueσeff = 12.1mb was quoted forET,min =

18GeV on the parton level. The later CDF measurement [118] quotes a central
valueσeff = 14.5mb with much improved statistical and systematic uncertainties.
However, both CDF measurements considered a channel with three jets and one
photon in the final state, while we focus on four jet processesin the present dis-
cussion. It cannot be excluded that the scale factor differsfor different channels
due to their dependences on different parton distribution functions. This has been
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explored in a recent model study [135]. In order to arrive at aparticularly simple
model, and since there is little phenomenological guidance, we do not explore the
possibility of such differences here. We also remark that the more recent CDF
analysis uses several lower values ofET,min. For these reasons, we emphasize
that our choiceσeff

(√
s = 1.8TeV,ET,min = 20GeV

)

= 14.5mb does not repro-
duce the cuts and conditions of the CDF analysis. In particular, our choice of
σeff = 14.5mb can only be related to the CDF analysis under the assumption that
the scale factor does not depend on the production channel. Moreover, our choice
of ET,min is dictated by the need of anchoring our discussion at a sufficiently large
transverse energyET,min, where the perturbative cross sections used in our calcu-
lations are sufficiently reliable.
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6.3 Numerical results forσeff from double dijet cross

sections

In this section, we will first characterize the range ofET,min, which is experimen-
tally accessible with sufficiently large event samples for the study of double dijet
production at Tevatron and at the LHC. We will then discuss the scale dependence
of σeff in the model (6.15) of Burkardt and in the BFKL model (6.16). Finally, we
will turn to the question to what extent more complicated geometrical arrange-
ments of two-parton distributions, or correlations not encoded for in the ansatz
(6.6) can affect our conclusions.

6.3.1 Rate of inclusive double 2-jet processes

Figure 6.4 shows the calculated cross sectionσS for inclusive 2-jet production
and an estimate of the double dijet cross sectionσD as a function of the minimal
transverse energy of the jets. To arrive at this estimate, the double dijet cross
sectionsσD in Figure 6.4 is calculated from the single inclusive cross sectionσS

using equation (6.1) with a scale-independent valueσeff = 14.5mb. Ifσeff changes
with

√
s, then the inclusive double 2-jet cross sectionσD will differ from the value

shown in Fig. 6.4 by a factor 14.5mb/σeff(
√

s).
At the Tevatron Run I (

√
s = 1.8 TeV), the inclusive double dijet cross section

reaches≈ 20nb forET,min ≃ 20 GeV. Upon increasing the jet energy threshold,
this cross section drops rapidly to≈ 20pb forET,min ≃ 40 GeV. The kinematical
reach at the LHC (

√
s = 14 TeV) is much wider. With a cross section of≈ 16nb,

one gets toET,min ≃ 50 GeV, and with a cross section of 10pb, one explores the
scale dependence ofσD up toET,min ≃ 120 GeV.

To put these cross sections into perspective, let us assume an integrated lumi-
nosity for Run II at Tevatron of 10fb−1 (more than 6fb−1 have been delivered
to date). This would translate into 2×108 double dijet events withET,min ≃ 20
GeV and 2×105 events withET,min ≃ 40 GeV. (For the purpose of these order of
magnitude estimates, we have neglected the difference in center of mass energy
between Tevatron Run I and Run II.) To relate the double hard cross sectionσD

to a measurable quantity, it is necessary to disentangle the4-jet events originating
from two independent hard scattering processes from those that originate from a
single hard scattering. There are various experimental handles for doing this. For
instance, one can exploit the fact that in contributions toσD, pairs of two jets must
be balanced inET , while contributions from other classes of 4-jet events arenot,
and that they differ in the shape of their distribution. However, our study does not
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FIGURE 6.4: Calculated inclusive single dijet cross sectionσS (upper curves) and esti-

mated double dijet cross sectionσD = σ2
S/(2σeff) (lower curves) as a function of the cut

on jet transverse energy. Left hand side:σS andσD at
√

s = 1.8 TeV. Right hand side:σS

andσD at
√

s = 14 TeV. The scale factor is assumed to beσeff = 14.5 mb, independent of

ET,min and
√

s.
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σS

σD

σS

σD

provide a basis for judging the (experiment-specific) size of event samples, needed
for a measurement ofσD. Here, we assume that∼ 105 raw events are sufficient
to this end, and we thus estimate that experiments at Tevatron Run II can measure
σD for ET,min . 40 GeV.

Under analogous assumptions, experiments at the LHC will access the physics
of double dijet production forET,min . 120 GeV with the first 10fb−1 of data at√

s = 14TeV.

6.3.2 The scale dependence of the scale factorσeff

The estimates given in section 6.3.1 above illustrate that experiments at the LHC
can investigate the scale dependence of the scale factorσeff over a logarithmically
wide range inET,min. We now illustrate the physical information which can be ex-
tracted from this scale dependence. To this end, we have calculated the inclusive
double dijet cross section (6.5) for two-parton distribution functions (6.6) with
Gaussian transverse density profilen(x,b). Figure 6.5 shows results for the corre-
sponding scale factorσeff, calculated as a function of

√
s andET,min for the cases

of a logarithmic and a power lawx-dependence of the widthδ (x) of the parton
densityn(x,b) in the hadronic projectile.

We expect that experimental data onσeff at the LHC will first become available
as a function ofET,min for fixed

√
s. However, the running schedule foreseen for

the LHC may also lead to information about the
√

s-dependence of double dijet
cross sections. This is so, since before moving to

√
s = 14TeV, LHC is scheduled
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FIGURE 6.5: Theoretical calculation of the scale factorσeff =

σ2
S (ET,min,

√
s)/2σD (ET,min,

√
s) in the plane of center of mass energy

√
s and jet

energy thresholdET,min. Constantσeff-values indicated on the right of the two plots

lie on approximately straight lines. Inclusive single and double dijet cross sections are

calculated from (6.2) and (6.5) respectively, for a Gaussian transverse density distribution

of partons in the proton wave function. Thex-dependence of the width of these density

distributions is taken to follow a logarithmic increase (6.15) [plot on left hand side] or a

power-law increase (6.16) [plot on right hand side]. Model parameters are chosen such

thatσeff = 14.5mb for
√

s = 1.8TeV andET,min = 20GeV.

to start operation this year with
√

s = 10 TeV, aiming for an integrated luminosity
of 200pb−1 which may be sufficient to explore double hard collisions over a range
in ET,min. Moreover, at a later stage in the LHC program, one may also expect a
relatively short proton-proton run at

√
s = 5.5 TeV to collect comparison data for

the LHC heavy ion program. In addition, data from Tevatron Run II may provide
information about theET,min dependence ofσD at

√
s = 1.96 TeV. Measurements

of the
√

s-dependence ofσD(ET,min) will test the constancy ofσeff along lines of
constantET,min/

√
s. This constancy does not depend on details of the modeling

of two-parton distribution functions, but results solely from the kinematic bound
(6.3). This makes it an important consistency check for the picture of double dijet
production advocated here. The main dynamical informationof the measurement
of σeff is contained in its dependence onET,min and

√
s. The variation of this

scale factor with kinematical variables reflects the growthof the transverse size
of the projectile wave function with ln1/x. Fig. 6.5 illustrates this point for the



110 6. A study of double dijet production in hadronic collisi ons

50 100 150
0

5

10

15

20

25

30

35

ET
min @GeVD

Σ
ef

f
@m

bD
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s = 1.8TeV. For both center of mass energies, the BFKL model Eq. (6.16)

yields higher values ofσrme f f at smallEmin
T .

two models of the transverse growth represented in Fig. 6.3.One sees that the
scale factor increases significantly with increasing

√
s or decreasingET,min. We

emphasize that at
√

s = 14 TeV, results of both models shown in Fig. 6.5 imply a
variation ofσeff by roughly a factor 2 in the range betweenET,min = 10 GeV and
ET,min = 100 GeV. This variation is much larger than the∼ 20% measurement
uncertainty quoted by the CDF Collaboration for its measurement ofσeff. We take
this as a strong indication that thex-evolution of the transverse size of hadronic
wave functions in the range of semi-hardx is experimentally accessible via the
measurement of double hard cross sections at the LHC.

Once a non-trivialET,min-dependence of the scale factorσeff is established, one
may ask the refined question of whether this allows for the discrimination between
different models of small-x evolution. Since parton distributionsf (x,Q2) rise
rapidly with increasing ln1/x, the inclusive single and double dijet cross sections
σS(ET,min), σD(ET,min) are dominated byx-values which lie close to the lower
bound of (6.3). As a consequence, the value ofσeff remains almost constant along
lines of constantET,min/

√
s in the

(

ET,min,
√

s
)

plane. As an estimate, one may
take

σeff ≃ 15δ 2
(

x1/2
min

)

, (6.17)
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wherexmin is the lower bound on the parton momentum fraction availablefor a
dijet aboveET,min (see Eq. 6.3)). Figure 6.6 shows in more detail that for the two
models ofx-evolution shown in Fig. 6.3, the steeperx-dependence in the trans-
verse density profilen(x,b) is indeed reflected in a steeperET,min-dependence of
σeff. The model-dependent difference is more pronounced for thehigher LHC
center of mass energy and for lower values ofET,min, where double hard scat-
tering processes depend on parton distributions at smallermomentum fractionx.
However, the differences are rather mild and may be difficultto disentangle exper-
imentally. Moreover, the interpretation of relatively small variations inσeff may
require a more detailed understanding of the geometrical distributions enteringFD

(see section 6.4 below). Thus, while a non-trivialET,min-dependence ofσeff will
make it possible to disentangle models of small-x growth from the baseline of an
x-independent transverse localization of partons in the proton, the discrimination
between different models of small-x growth may be more challenging.

6.4 Correlated two-parton distributions

So far, we have discussed factorized two-parton distributions of the form (6.6).
This ansatz is based on a picture in which partons are centered around a sin-
gle positionbv ≡ 0 in transverse space. The purpose of this section is to gain
some understanding of the extent to which the results reached above depend on
the geometrical assumptions underlying the ansatz (6.6), and to what extent they
reflect dynamical information. To this end, we shall study a simple model of two-
parton distributions, which do not factorize into single-parton distributions. The
model is based on picturing the transverse profile of the proton projectiles as be-
ing composed of three regions of size∼ 0.2−0.4fm each, which have increased
hadronic interaction probability. The centersbvi , i = 1,2,3, of these hot spots may
be thought to be related to the positions of valence quarks inthe transverse plane.
To be specific, we consider for these hot spots the distribution [137]

|ψ(bv1,bv2)|2 =
3

π2δ 4
v

exp

[

− 1
3δ 2

v

(

(bv1 −bv2)
2+(bv1 −bv3)

2

+(bv2 −bv3)
2)]
∣

∣

∣

∣

∣

−bv3≡bv1+bv2

(6.18)

Here, due to the center of mass constraint the third coordinate is defined asbv3 ≡
−bv1 −bv2. We fix δv = 0.25fm, which corresponds to a separation of the centers
of the three hot spots by 0.35 fm. Partons are located around the centersbvi of
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these hot spots at transverse positionsb with Gaussian distributions

d(x,b,bv) =
1

2πδs(x)2 exp

(

−(bv −b)2

2δs(x)2

)

. (6.19)

We allow for anx-dependence of the Gaussian widthδs. A two-parton density
distributionnD(x1,x2,b1,b2) for partons located at transverse positionsb1, b2 can
then be calculated in terms of the following integral over the centers of the hot
spotsbvi ,

nD(x1,x2;b1,b2) =
1
4

∫

d2bv1 d2bv2|ψ (bv1,bv2) |2
2

∑
i j

d(x1,b1,bvi)d(x2,b2,bv j).

(6.20)
Here, the sum overi and j averages over the different combinations of hot spots
in one proton which can provide the two partons for the hard scattering process.
In this class of models, the two-parton distribution functions do not factorize, but
take the form

F ik
D

(

x1,x2;b1,b2;Q2
1,Q

2
2

)

= nD(x1,x2;b1,b2) f i (x1,Q
2
1

)

f k (x2,Q
2
2

)

. (6.21)

The corresponding integration over transverse directions, which enters (6.4), reads
∫

d2bd2s1d2s2nD (x1,x2;b−s1,b−s2) nD (x3,x4;s1,s2)

=
1

8π

(

1

δ 2
Σ

+
1

δ 2
Σ +2δ 2

v
+

2

δ 2
Σ +δ 2

v

)

, (6.22)

where
δ 2

Σ = δs(x1)
2+δs(x2)

2+δs(x3)
2+δs(x4)

2 . (6.23)

In the limit δv → 0, one recovers the model of a density distribution with Gaussian
profile, discussed in section 6.3. More precisely, forδv → 0, the centers of the
three hot spots are all located atbv1 = bv2 = bv3 = 0, as can be seen from (6.18).
For the case of anx-independent densityδs(x) = δs, Eq. (6.22) becomes18π

4
4δ 2

s
=

3
8π 〈r2〉 with 〈r2〉 = 3δ 2

s . This is exactly the value of
∫

d2bT 2
NN(b) = 1/σeff for the

Gaussian profile, obtained in Tab. 6.1.
To study the effect of non-factorizing distributions and tocompare to the results

of section 6.3 we make use of the Gaussian widthδ 2
eff = δs(x)2 + δ 2

v /3 of the
corresponding one-particle distributionn(x1,b1) =

∫

d2b2 nD(x1,x2;b1,b2). We
connect the correlated one-particle distribution of soft partons to the uncorrelated
one by demanding that they have the same Gaussian width,δ (x) = δeff. This
yieldsδs used for the numerical computation.
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FIGURE 6.7: Same as Fig. 6.5, but for a model of two-parton distribution functions, for

which partons are localized in three hot spots in the parton wave function.

We have calculated the inclusive double dijet cross section(6.6) for the corre-
lated two-parton distribution function (6.21) and now compare again a power-law
x-dependence of the form (6.16) with a logarithmicx-dependence of the form
(6.15). The results of this calculation are shown in Figure 6.7.

Similar to the calculation with factorized two-parton distribution functions (6.6)
shown in Fig. 6.5, we observe from Fig. 6.7 that the scale factor σeff increases
with increasing

√
s or decreasingET,min. The numerical differences between

the results shown in Fig. 6.7 and Fig. 6.5 are relatively small. This may be
understood by observing that the average distance between the centers of the

hadronically active regions is
√

〈(bv1 −bv2)
2〉 =

√
2δv ≈ 0.35fm for δv = 0.25

fm. The average distance from the centerbvi , at which partons are localized,
is
√

〈b2〉 =
√

2 (δ 2
v /3+δ 2

s (x)) ≥
√

2/3δv. This is≈ 0.20 fm at largex and in-
creases significantly for smallerx. As a consequence, the three hadronically active
regions in the model (6.20) overlap significantly for our choice of model parame-
ters, and measurable properties of this distribution are likely to be similar to those
of the single homogeneous density distribution which we studied in section 6.3.

6.5 Discussion

In this chapter, we have argued that the proton wave functionis expected to grow
in the transverse plane with increasing ln1/x for all values ofx. We have then
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illustrated in model studies that this transverse growth should manifest itself in
two-parton distribution functions and that it becomes experimentally accessible
in the inclusive double dijet cross sectionσD. Of particular interest is the ratio
σeff = σ2

S /2σD of the square of the inclusive single over the double dijet cross
section. As a generic consequence of the picture advocated here, the scale factor
σeff is expected to be constant along the lines of constantET,min/

√
s, and it is

expected to grow with
√

s at fixed jet energy thresholdET,min and to decrease with
increasingET,min at fixed

√
s. We have shown that the wider kinematical reach of

proton-proton collisions at the LHC will allow for the first time to test this scale
dependence of the scale factorσeff over a wide range inET,min.

We have studied models for parton distributions in the transverse plane, which
do not distinguish between gluons and valence and sea quarksof different fla-
vor. In the absence of experimental information about such differences, we have
adopted the baseline assumption that the geometrical distributions of all partons
are the same, thus minimizing the number of model parameters. We note, how-
ever, that one may invoke QCD-inspired pictures for which different parton species
are localized differently in the transverse wave function.In this case, the scale fac-
tor σeff can depend on the production channel of the double hard scattering pro-
cess, since different production channels (such as final states with two-jet events
or with bb̄) depend on different parton densities. A model, which showsthis fea-
ture, was studied for instance by Del Fabbro and Treleani in Ref. [135]. The study
of specific double hard production channels has also been explored as a means
to arrive at an improved (ideally: background free) experimental characterization
of double parton collisions. In particular, the productionof two equal sign W
bosons at relatively low transverse momentum is dominated by double parton col-
lisions [138], though the cross section is very low. A much more abundant channel
at the LHC, even ifb-tagging efficiency is taken into account, is the production
of bb̄ j j, which may allow for an improved characterization of doublehard cross
sections [139].

The models explored in this chapter result in an increase ofσeff with increasing√
s. In contrast, the spatial correlations, implemented in themodel of Ref. [135],

imply that scale factors for all production channels decrease with increasing
√

s.
This illustrates that the models studied in the present workdo not exhaust all
conceivable scale dependencies ofσeff. The models in section 6.3 and 6.4 are
simple implementations of the picture that the transverse proton wave function
grows with ln1/x. Moreover, the difference between our models and the models
of Ref. [135] illustrates clearly, that far beyond producing only an experimental
value forσeff, a measurement of inclusive double hard cross sections at the LHC
can distinguish between qualitatively different picturesof the transverse proton
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wave function. As we have argued here, this may be done most efficiently by
studying theET,min-dependence of the scale factorσeff at fixed

√
s.

After completing this work, we learnt about a preliminary measurement ofσeff

by the D0 Collaboration at Fermilab, which forγ +3 j givesσeff = 15.1±1.9 mb
[140], consistent with the CDF value used in the present study. In this analysis,
three different bins for the transverse energy of one of the jets have been used.
The values forσeff in the different bins slightly tend to decrease with increas-
ing transverse energy which qualitatively agrees with the results presented here.
Unfortunately, experimental errors are too large to draw a firm conclusion.
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