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Abstract

This thesis aims at investigating the possibilities of performing high-precision measurements of

the 1S bound-electron g factor and analyzing the major systematic effects that influence high-

precision spectroscopy in the ultraviolet and visible spectral bands. To measure the 1S bound-

electron g factor of a 4He+ ion confined in a Penning trap, two excitation schemes based on a

double-resonance electronic excitation are proposed. The first excitation scheme relies on exciting

the 1S1/2(mj = +1/2) ⇔ 2P3/2(mj = +3/2) transition in a 4He+ ion using circularly polarized

ultra-violet radiation. The excited state 2P3/2(mj = +3/2) relaxes to the ground state due to

its short lifetime and emits a fluorescence photon. The Helium ion in the trap goes through

this closed cycle and can be optically detected each time, because of the emitted photons. At

the same time, a resonant microwave field produces spin-flip transitions causing quantum jumps

between 1S1/2(mj = +1/2) and 1S1/2(mj = −1/2), which results in a pause of the charged

particle emission in the closed cycle. These excitation processes yield the resonance spectrum of

the Larmor frequency and lead to measuring the 1S bound-electron g factor of a Helium ion. In

the second excitation scheme, coherent UV light excites a Helium ion stored in a Penning trap.

This laser excitation drives the two-photon transition 1S–2S. At a specific value of the trap

magnetic field, the 2S1/2(mj = −1/2) and 2P1/2(mj = 1/2) states become degenerate. Applying

an additional static electric field makes it possible to quench these two states and reduce the

lifetime of the upper state 2S1/2(mj = −1/2) leading to a 2S electron decay to the ground state.

The two-photon transition along with the quenching mechanism provides a closed cycle and

results in the optical detection of a Helium ion in the trap. Similar to the first excitation setup, a

microwave field is simultaneously radiated to the ground state 1S to induce the spin-flip transition

yielding the resonance spectrum of the Larmor frequency. This excitation scheme, which benefits

from the quenching mechanism together with the spin-flip transition, leads to the measurement

of the 1S bound-electron g factor of the Helium ion. The latter excitation arrangement is also

applied to a 1S–2S transition frequency determination via a Doppler-free two-photon transition

in a Helium ion. In the excitation schemes above, due to the application of the dynamic and

static electric fields, major systematic effects, i.e., the AC and DC Stark shifts, are considered.

We use this excitation scheme and extend it to a Rydberg state in the high-n region. In this

regard, we calculate the AC Stark shift of high-n Rydberg states, which is the main systematic

effect in the 1S–n′S transition frequency determination, n′ → ∞. Based on the findings of this

study, the 1S bound-electron g factor in 4He+ ions could be measured with an accuracy level of

10−12 · · · 10−13 in the future.
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Zusammenfassung

In dieser Arbeit werden mögliche Hochpräzisionsmessungen des g-Faktors von gebundenen 1S-

Elektronen untersucht und die bedeutendsten systematischen Effekte, die die Hochpräzisions-

spektroskopie im ultravioletten und sichtbaren Spektralband beeinflussen, analysiert. Um den

g-Faktor des gebundenen 1S-Elektrons eines in einer Penning-Falle gefangenen 4He+-Ions zu

messen, werden zwei Anregungsschemata, die auf einer doppelresonanten elektronischen An-

regung aufbauen, vorgeschlagen. Das erste Anregungsschema beruht auf der Anregung des

1S1/2(mj = +1/2) ⇔ 2P3/2(mj = +3/2)-Übergangs in einem 4He+-Ion durch zirkular polar-

isierte Ultraviolettstrahlung. Der angeregte Zustand 2P3/2(mj = +3/2) geht wegen seiner kurzen

Lebenszeit in den Grundzustand über und strahlt dabei ein Fluoreszenzphoton ab. Das Heliu-

mion durchläuft diesen Kreislauf in der Falle und kann dabei jedesmal aufgrund des abgestrahlten

Photons nachgewiesen werden. Gleichzeitig löst ein resonantes Mikrowellenfeld eine Umdrehung

des Spins aus, was Quantensprünge zwischen 1S1/2(mj = +1/2) und 1S1/2(mj = −1/2) bewirkt

und eine Emissionspause des Kreislaufes zur Folge hat. Die Kombination dieser Prozesse ergibt

das Resonanzspektrum der Larmorfrequenz und führt zur Messung des g-Faktors des gebun-

denen 1S-Elektrons eines Heliumions. In dem zweiten Anregungsschema regt UV-Licht ein in

einer Penning-Falle gespeichertes Heliumion an. Diese Laseranregung treibt den Zweiphoto-

nenübergang 1S–2S. Bei einem bestimmten Wert des Magnetfelds der Falle werden die Zustände

2S1/2(mj = −1/2) und 2P1/2(mj = 1/2) entartet. Die Anwendung eines zusätzlichen statis-

chen elektrischen Feldes ermöglicht es diese beiden Zustände zu mischen und die Lebenszeit des

oberen Zustands 2S1/2(mj = −1/2) zu reduzieren; dies führt zu einem 2S-Elektronenzerfall in

den Grundzustand. Der Zweiphotonenübergang zusammen mit dem Mischungsmechanismus bi-

etet einen Kreislauf an und ergibt einen optischen Nachweis des Heliumions in der Falle. Wie im

ersten Anregungsschema wird gleichzeitig ein Mikrowellenfeld auf den 1S-Grundzustand einges-

trahlt um eine Umdrehung des Spins auszulösen. Dies ergibt das Resonanzspektrum der Larmor-

frequenz. Dieses Anregungsschema, das von dem Mischungsmechanismus zusammen mit dem

spinumdrehenden Übergang profitiert, führt zu der Messung des g-Faktors des gebundenen 1S-

Elektrons eines Heliumions. Das zweite Angregungsschema wird ebenfalls auf eine Frequenzbes-

timmung des 1S–2S-Übergangs durch einen dopplerfreien Zweiphotonenüebergang in einem He-

liumion angewandt. In den obigen Anregungsschemata sind die bedeutendsten systematischen

Effekte in Folge der Anwendung dynamischer und statischer elektrischer Felder, das heißt der

AC- und der DC-Stark-Effekt, sorgfälltig berücksichtigt. Wir verwenden das zweite Anregungss-

chema und erweitern es auf Rydbergzustände in dem Bereich großer n. Diesbezüglich berechen

wir den AC-Stark-Effekt auf Rydbergzustände mit großem n; dies ist der bedeutendste system-

atische Effekt in der Frequenzbestimmung des 1S–n′S-Übergangs, n′ → ∞. Basierend auf den

Ergebnissen dieser Arbeit kann der g-Faktor des gebundenen 1S-Elektrons in 4He+-Ionen mit

einem Genauigkeitsgrad von 10−12 · · · 10−13 bestimmt werden.
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Chapter 1

Introduction

The scientific efforts that led to the birth of modern physics were predominantly accom-
plished in the first three decades of the 20th century. The majorities of the achievements
were related to the special and general relativity theories and the creation of quantum me-
chanics. The latter still plays the most important role in providing new tools for describing
atomic structures and dynamical processes in an exquisite detail.

The driving force for the actual creation of quantum mechanics was the need to un-
derstand the structure and properties of atoms. One of the most important movements
was Bohr’s 1913 paper on the Hydrogen atom, in which he introduced the concept of
stationary energy states and quantum jumps along with the emission of monochromatic
radiation. Bohr could explain the existence of atomic spectral lines and the exact form
of the Hydrogen spectrum by combining the classical description of an electron moving in
the field of a proton (planetary-like model) with principles that were unfounded by con-
temporary standards. Early attempts by Bohr, Sommerfeld and others led to the creation
of “old” quantum theory, which could not describe physical phenomena completely. After
proposing the fact that the energy quantization could be achieved by associating a wave-
length with an electron, the “ new” quantum theory was simultaneously established by
Heisenberg and Schrödinger in 1924 and 1925, respectively.

During the development of quantum theory, the major features of the nucleus were
described and the final constituent (i.e., neutron) was discovered by Chadwik in 1932. The
understanding of the nucleus and the creation of quantum mechanics made the foundations
of atomic physics.

In 1928, Dirac proposed the relativistic quantum theory for an electron [1]. In his theory,
he introduced an equation which was able to describe relativisticly the wave behavior of
1/2-spin particle. In his equation, the magnetic moment of electron and electron spin were
described in the framework of relativistic quantum theory. Moreover, his theory explained
the fine structure splitting with a high precision. The fine structure of Hydrogen atom
is influenced by the relativistic variation of electron mass with velocity and partly by the
electron spin.

Another triumph of the Dirac theory was the prediction of the positron, which was
detected by Carl Anderson few years later after the relativistic quantum theory was born.
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According to the Dirac theory, the principal optical spectral line of Hydrogen atom has
two components split by small fine-structure intervals. There were suggestions by Houston
and Williams [2, 3] that a third component might exist, but the evidence of a possible
substructure with a splitting much smaller than the width of the spectral line was hardly
certain. In 1947, W. E. Lamb and R. C. Retherford paid careful attention to the proposal
of Houston and Williams and showed experimentally that there was a third component
in the fine-structure spectrum of Hydrogen, while according to the Dirac theory, these
components were degenerate [4]. Their experimental method was based on a microwave
technique with a resolution orders of magnitude better than the best achievable by optical
spectroscopy at that time. [see Ref. [4]]. In the Lamb experiment, a beam of Hydrogen
atoms in the metastable 2S1/2 state is induced by bombarding atomic Hydrogen, then an
electron beam, which is parallel to the magnetic field collides with a beam of Hydrogen
atoms in the metastable 2S1/2 state. After passing through an electric field, the metastable
2S1/2 states are quenched and no longer exist. In other words, they carry out transitions
to the non-metastable 2P1/2 and 2P3/2 states and decay to the ground states 1S1/2 [4]. The
observed splitting 2S1/2–2P1/2 in the Hydrogen atom is 1057.77 MHz, which is in agreement
with the theoretical value of the Lamb shift 1057.13 MHz [5]. The Lamb shift is thus a
brilliant confirmation of relativistic theory of the electron that stimulates the development
of Quantum electrodynamics (QED).

All these efforts carried out by W. E. Lamb, R. C. Retherford and I. I. Rabi paved
the way for the creation of the Quantum electrodynamics (QED) by J. Schwinger, R. P.
Feynman and others in 1940’s. In QED, the Dirac theory of an electron is modified when
one quantizes the electromagnetic radiation field. In QED framework, Lamb shift was
accurately evaluated by using Feynman diagrams. In principle, the corresponding diagram
of the Lamb shift representing the emission and re-absorption of the photon is calculated
by using the expansion of the S-matrix theory. Later, the divergence difficulties appeared
in the calculation of the diagram amplitudes were removed by H. Bethe, H. Kramers and
others [5]. This method of calculation has been extended to the calculation of the other
corrections such as vacuum polarization and so on. These processes made it possible to
evaluate the Lamb shift in an excellent agreement with experimental results leading the
recognition of QED as the most precise theory in Physics.

In recent years, more sensitive and rigorous tests of QED have been performed on
systems such as a free electron and Hydrogen atom. The basic requirement for such ex-
periments is to precisely confine the motion of atoms or ions. This is possible by using
traps containing magnetic and quadrupole electric fields (or an oscillating electric field).
This type of trap holds the charged particle almost indefinitely, which allows atomic spec-
troscopy with a very high resolution. This ability leads not only to testing the fundamental
theories of QED but also measuring the fundamental atomic constants.

Due to development of various kinds of traps and advent of tunable continuous wave
(cw) lasers, outstanding advances in the field of high resolution spectroscopy have been
taken place. These developments make it possible to immensely increase the atomic spec-
troscopy resolution, resulting in an extension of spectroscopy from frequency to time do-
main and control of atom motion. Moreover, the generation of laser light has had enormous
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effects on the nature of light matter interactions. The interaction of an intense laser light
with matter (e.g., Hydrogen atom) makes it possible to detect higher order radiation pro-
cesses, such as multiphoton transitions. These multiphoton transitions in Hydrogen atom
have yielded the most precise test of QED. For example, in 1975 Hänsch and coworkers
observed the Doppler-free 1S–2S transition frequency to an accuracy of four parts 1013 [6].
Lamb shift obtained from the measured value of the 1S–2S transition frequency was in an
excellent agreement with QED results.

In low energy tests of QED, comparison is carried out between the experimental and
theoretical values of magnetic moment of the free and bound electron. The first measure-
ment of the free-electron g factor1 was performed by Rabi and Kusch. Their measurement
resulted in a g factor which had a discrepancy of one percent relative to the Dirac value,
g = 2. Several years later, H. Dehmelt carried out the same measurement and was able to
reach a precision of three parts in per billion. This experiment was performed by detecting
a single electron stored in a trap consisting of a static quadrupole electric and magnetic
field (a Penning trap). The difference between the experimental value for the anomaly2 and
the predication of QED, as evaluated by T. Kinoshita, was found to be −270 × 10−12 [7].
Within this uncertainty, this result shows one the most rigorous low-energy test of QED.

1.1 High-precision spectroscopy and reasons for more

accurate measurements

Often in the history of science, new structures and phenomena have been illuminated by
high-precision measurements that revealed tiny deviations from the predictions of a previ-
ously accepted theory. This is particularly true in atomic spectroscopy, where increasing
spectral resolution led to the observation of atomic fine structure and hyperfine struc-
tures, respectively. For example, an external magnetic and electric field exhibit Zeeman
and DC Stark energy level structures, respectively. In the presence of an electromagnetic
field, atomic energy levels give rise to the AC Stark energy level structures. More fine
and delicate, QED effects explain to the Lamb shift. By pushing to even higher precision
and resolution, we presumably reveal new phenomena. By examining such extremely fine
structures, one can ask about the constancy of optical transition frequencies over time, an
aspect related to the constancy of the fundamental constants themselves. In additions, at
this delicate level of precision, possible asymmetries that may be existed between matter
and antimatter can be revealed.

The main advantage of high-resolution spectroscopy of an atom is that it makes possible
to investigate the confrontations between experiment and fundamental physical theories.
Therfore, high-resolution spectroscopy is a suitable way to test the fundamental theories.
There are at least two topics in a high-resolution spectroscopy that make it possible to check
the validity of the fundamental theories. The first one is the precise absolute measurements

1 g factor is the coupling constant of the spin to an external, homogenous magnetic field.
2Anomalous magnetic moment of electron is the deviation of g factor from the Dirac value 2.
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between different transition frequencies in Hydrogen atoms. Due to interest in narrow
atomic transitions, the 1S–2S transition frequency measurement of Hydrogen atoms is
one of the most intriguing candidates. The second one is a free- and bound- electron g-
factor measurement. Over the past two decades, the accuracy level of these two values
(i.e.,the 1S–2S transition frequency and g factor) has been continuosly improved both
theoretically and experimentally. One may ask the following question: what can be learned
from more accurate measurements of the 1S–2S transition frequency and g factor? First,
we answer to this question in the case of the 1S–2S transition frequency. Testing the
fundamental theory like QED, determining the fundamental constants such as Rydberg
constant and Lamb shift are the reasons for improving the 1S–2S transition frequency
determination. The experimental values of the 1S Lamb shift obtained from the 1S–
2S transition frequency are 8172.6(7)MHz for a Hydrogen atom and 8183.7(6)MHz for
a deuterium, which are in an excellent agreement with the theoretical (QED) results of
8173.03(9)MHz and 8184.08(12)MHz, respectively [8]. Moreover, the metrology of optical
frequency in the 1S–2S transition could be a base of the future atomic clocks, which
benefits the 1S–2S transition in a Hydrogen atom as an oscillator and the frequency comb
as the clockwork.

In the case of free and bound-electron g factor, three reasons have been prescribed for
obtaining a more accurate g factor. The first reason beyond g itself is an accurate calcu-
lation of the fine structure constant3 α = e2/4πε0~, which is also an important ingredient
in the collection of fundamental constants. A Dirac point particle has g = 2 [9]. QED
predicts that vertex corrections and vacuum polarization slightly increase this value. The
result is an asymptotic series that relates g and α:

g

2
= 1 + A1(

α

π
) + A2(

α

π
)2 + A3(

α

π
)3 + A4(

α

π
)4 + · · · + aµτ + ahadronic + aweak (1.1)

According to the standard Model, hadronic and weak contributions are very small and
believed to be well understood at the accuracy level needed. QED calculations produced
exact answers for A1, A2 , A3 and a numerical value for A4 and aµτ . Using the newly
measured g in Eq. (1.1), α−1 is calculated to be 137. 035 999 070 (98) [0.71] ppb [10, 11].
The total uncertainty of 0.70 ppb is 10 times smaller than the value obtained from the
most precise methods. In this investigation, α is measuered from the mass ratios, optical
frequencies, together with rubidium (Rb) or cesium (Cs) recoil velocities [10].

The second reason for a more accurate measurement of the g factor is to test QED. The
most rigorous test of QED is comparing the measured and the calculated g factors. Due to
the comparison of the measured anomalous magnetic moment of electron a for Cs and Rb,
with the theoretical results obtained by Eq.(1.1), the discrepancies δaCs = −7.9(9.3)×10−12

and δaRb = 1.9(7.7) × 10−12 were obtained [10, 11]. This insignificant difference indicates
that quantum electrodynamic is tested more rigioursly than it was envisaged by its pioneers.
The third application of an accurate g factor relates to a measurement of the muon g − 2
as a way to search for physics beyond the standard model. The deviation of the muon

3The fine structure constant yields the strength of electromagnetic interaction.
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g factor from the Dirac value is very small (one part in 800). This tiny deviation is
originated from the muon’s interactions with virtual particles. According to the Heisenberg
uncertainty principle, the muon can emit an re-absorb photons, electrons, W and Z bosons
4 and gluons5. This indicates that electromagnetic, strong and weak interactions have
contributions in the muon g factor determination. In the framework of the standard model,
the muon g factor is evaluated to a precision of 0.6 ppm (part per billion). A comparison
of the measured and the calculated muon g factor provides a sensitive test of the standard
model. If there is physics not taken into account in the current theory, such a new physics
will affect the muon g factor, then the experimental results would not confirm the theory.

1.2 The motivations, goals and outlines of this thesis

Physicists have developed the high-precision frequency comb techniques to bridge large fre-
quency differences in order to probe matter with a high precision. In view of this dramatic
progress, the coherent radiation sources can be utilized in the laser spectroscopy of atomic
transitions. In this thesis, a series of dynamical processes in the presence of these sources
are systematically studied. These processes, that require high-precision spectroscopy se-
tups, offer suitable platforms for the measurement of the bound-electron g factor and the
optical frequency of 1S–2S transition. The motivation for this thesis is to apply an ultra-
high precision atomic laser spectroscopy technique to determine the 1S bound-electron g
factor and 1S–2S transition frequency in a Helium ion. In order to do a sound and an
accurate spectroscopy measurement, the theoretical background is necessary to describe
the underlying physics of interest.

There are two main objectives for this thesis. The first one is to develop pathways for
high-precision determination of the 1S bound-electron g factor, 1S–2S transition frequency
and 1S–n′S transition frequency, n′ → ∞ in the Helium ion. In doing so, we use properties
of one-electron bound systems in combination with two atomic transitions, i.e., Lyman-
α and spin-flip transitions. This combination is used to examine certain properties of
systematic effects that are related to the ultra-high-precision spectroscopy in UV and
visible spectral regions. The second objective is to deal with a laser interaction with the
Rydberg state in the high-n region and obtain the major systematic effects that are related
to the 1S–n′S and 2S–n′S, n′ → ∞ transitions.

In Chapter 2, the interaction of a Hydrogen-like atom in the presence of a circularly
polarized laser light yielding AC Stark shift is handled via two different methods. The
first method relies on time-dependent perturbation theory. The second one is relied on
the quantum nature of the radiation field and the time-independent field operator. It is
shown that both the classical treatment and the fully quantized approach give the same
physical result in the limit of large occupation photon numbers. Subsequently, the dynamic
Stark shift for the reference state 2P3/2(mj = 3/2) in 4He+ ion in the presence of the
circularly polarized laser light is calculated. We use the obtained numerical results in

4W and Z bosons are the elementary particles that mediate the weak interaction.
5Gluon is the elementary particle that mediates the strong interaction.
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Chapter 5, where the dynamic Stark shift of reference state 2P3/2(mj = 3/2) serves as a
major systematic effect in the proposed excitation arrangement related to the measurement
of the bound-electron g factor in Helium ion.

In Chapter 3, based on the time-dependent perturbation theory, we study the Hydrogen-
like Rydberg atom (ion) in the presence of a linearly polarized laser light driving transitions
1S–n′S and 2S–n′S, n′ → ∞. Dynamic Stark shifts of initial and final states, as a major
systematic effects in high-precision spectroscopy, are investigated. We also evaluate the
corresponding two-photon transition amplitudes. All these calculations are performed in
a unified formalism, i.e., the Sturmian representation of the radial Green’s function. This
is followed by evaluating light frequency shift (AC Stark shift shift coefficients) in S.I.
units and calculating the photoionization cross sections for high-n Rydberg state using
two different methods. Due to introducing the Z-scaling for the AC Stark shift coefficients
and the transition matrix elements, we are able to generalize these results to Helium ion.
They serve as the major systematic effect in the proposed excitation arrangement for
determination of the 1S–n′S, n′ → ∞ two-photon transition frequency in Helium ion,
which the excitation arrangement shall be introduced in the Chapter 5.

In Chapter 4, due to the significant application of a Penning trap in the measurement
of a free and bound-electron g factor, dynamics of a charged particle (an ion) in the
Penning trap is studied. We pay attention to the classical motion of a charged particle
in the ideal trap. We consider motion of the charged particle in the Penning trap with
and without an additional electric field in the framework of classical electrodynamics. We
study the effect of an additional electric field on the charged particle stored in the trap.
This additional electric field is responsible for the quenching mechanism in the excitation
arrangement related to the 1S bound-electron g factor determination [see Chapter 5]. We
deal with the quantum mechanical motion of a charged particle in the Penning trap. This
investigation is performed based on two methods: (i) using the Schrödinger equation, (ii)
using raising and lowering operators. The imperfections in a real Penning trap, which
could be considered as systematic effects are discussed. The systematic effects influence on
a free- and bound-electron g factor accuracy level, which is related to the thesis goal and
is elaborated precisely in Chapter 5. The effect of imperfections on g factor accuracy level
is dealt with by introducing the invariance theorem and one sideband frequency method,
that have an extensive application in the highly precise measurement of bound-electron g
factor.

In Chapter 5, the experimental setup for measuring bound-electron g factor, which
is performed in a Penning trap is introduced. The theoretical aspects of the free- and
bound-electron g factor are studied. We consider individual contributions to the 1S bound-
electron g factor that are relevant at 10−12 level of accuracy. We propose two excitation
arrangements to improve the accuracy level of 1S bound-electron g factor for spinless
4He+ ion (nuclear spin I = 0) in comparison with the current accuracy level of bound-
electron g factor. They are double-resonance, two-photon excitation arrangement and
double-resonance, three-photon excitation arrangement. The excitation arrangements are
based on the two simultaneous Lyman-α and spin-flip transitions among the Zeeman sub-
levels of 4He+ ion that lead to the detection of a charged particle in a Penning trap and
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measuring the Larmor frequency of an electron. The major systematic effect, i.e., AC
Stark shift, which was handled in Chapters 2 and 3, in the excitation arrangements are
calculated. The idea, double-resonance, three-photon excitation arrangement, can also be
applied to 1S ⇔ 2S and 1S ⇔ n′S, n′ → ∞ transition frequency determination.

Chapter 6 is reserved for the general conclusion.
Five appendixes are attached. In Appendix A, the quenching mechanism for the

metastable 2S1/2 level of the helium ion, as implied by the magnetic-field-induced de-
generacy with respect to the 2P1/2 level, is calculated. In Appendix B, the Breit-Rabi
formula for the 2S1/2 and 2P1/2 levels is evaluated. The Breit-Rabi formula is necessary
for an accurate calculation of the energy shifts in the magnetic fields of the trap. In Ap-
pendix C, we discuss the evaluation of the leading radiative and relativistic corrections to
the bound-electron g factors for the atomic energy levels relevant to our investigation. The
relativistic and QED corrections for absolute transition frequencies of 4He+ are investigated
in Appendix D. The publications due to this thesis are attached in Appendix E.



8 1. Introduction



Chapter 2

AC Stark shift of the Hydrogen atom
in a circularly polarized laser field

2.1 Introduction

It is well known that the physical properties of atoms can be modified by their interaction
with an electromagnetic radiation [12]. For instance, the virtual emission and reabsorption
of photons result in a shift of the atomic energy levels. This effect either occurs sponta-
neously (in the absence of a light source) causing to the Lamb shift, or is induced by an
external light, which result into the so-called AC Stark shift. Classically, the AC Stark shift
of the energy levels of hydrogen-like atom that is irradiated by an intense, nonresonant
and monochromatic laser field can be evaluated in the framework of the time-dependent
perturbation theory. In this classical picture, the Hydrogen-like atom and the laser field
are described by the quantum and classical equations, respectively. The AC Stark shift
can also be expressed in a framework relying on the fully quantized method, which concurs
with the classical field description in the limit of high photon density [13].

The AC Stark shift is more generally named stimulated radiative corrections, as it
is stimulated by the external electromagnetic field and are also dependent on the field
intensity [14, 13]. This fact shows that in the case of monomode oscillating electric field,
the AC Stark shift is nearly similar to the self-energy like formalism. As opposed to the
self-energy like formalism, where all photon modes are unoccupied in the unperturbed
state, in the AC Stark shift, there is one occupied mode of the photon field [12, 13]. In
this chapter, we emphasize this important point that the AC Stark shift can be described
in terms of the stimulated radiative correction.

Before description of the physics underlying the process of the disturbance of the atomic
levels by an electromagnetic field, we would like to discuss shortly of the similarity and
dissimilarities of the Stark effect in the laser field (i.e., AC Stark shift) and the analogous
in its stationary electric field (i.e., DC Stark shift). As a similarity, DC and AC Stark shift
are connected with dipole polarizability of atom in a stationary electric field and oscillating
electric field, respectively. The corresponding shifts depend on the individual properties of
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an atom, i.e., eigenfunctions and eigenvalues. The differences between these two important
issues are as follows: First, it is important to know that the energy is not conserved in a
time-dependent field (AC Stark shift), but its conservation is valid in the stationary electric
field (DC Stark shift). Second, the DC Stark shift is evaluated in the time-independent
perturbation theory, while the AC Stark shift is formulated in time-dependent perturbation
theory. Third, in the DC Stark shift, the perturbation of the nondegenerate bound atomic
states only results into the splitting of energy levels. This splitting only depends on the
strength of the electric field, but we have totally different situation in the AC Stark shift.
The time-dependent Schrödinger equation of a quantum system (e.g., an atom) in the
presence of the periodic external perturbation V = eEz

∑N
i=1 zi cos ωt with the period

T = 2π/ω has obviously the solutions with the same period T . If we substitute the
resulting ansatz

ψ(t) = e−(i/~)εtΦε(t), Φε(t + T ) = Φε(t) (2.1)

in the time-dependent Schrödinger equation ∂ψ(t)/∂t = Hψ(t), where H =
∑N

i=1 Hi + V ,
then we will reach an equation for the evaluation of the periodic function Φε(t),

(

H − i~
∂

∂t

)

Φε(t) = εΦε(t). (2.2)

If we assume that H = H − i~∂/∂t, then Eq. (2.2) is an eigenvalue equation. The corre-
sponding eigenvalues and eigenfunctions are named quasi-energies and quasi-energies states
or Floquet states, respectively. The Floquet states are a complete set. This indicates that
any solution of the time-dependent Schrödinger equation can be expressed in terms of a
superposition of the Floquet states with time-independent coefficients. The eigenstate φε

of the Hamiltonian H is related to a whole group of eigenstates φεe
ikωt with eigenvalues

ε + k~ω, k = 0,±1,±2, · · · . These eigenstates are part of the Floquet state Eq. (2.1). The
quasi-energy method, that is summarized in Eqs. (2.1) and (2.2), has been applied to the
dynamics of a monochromatic laser interaction with atoms. Due to this interaction, an
initial nondegenerate state is transformed into the Floquet states in which the separation
between the adjacent quasi-energy levels is equal to the photon energy of the radiation
field ~ω. Moreover, the entire quasi-energy spectrum is displaced with relation to the ini-
tial unperturbed level. If the population of only one quasi-energy level is taken place, this
leads to the AC Stark shift of that particular atomic level.

In this chapter, we focus on the off-resonant, two-photon transition in which the fre-
quency of the incident radiation is close to half of the atomic transition frequency as
demonstrated in Ref. [13]. Our aim is to calculate the AC Stark shift due to the inter-
action of the Hydrogen-like atom with the circularly polarized laser light as the authors
performed in the case of the linearly polarized laser light in Ref [13]. We assume that the
laser light is monochromatic, implying that the finite band width effect of the laser light
and the result dependence on the laser power are automatically negligible [15, 16, 17].

This chapter is organized as follow: in Sec. 2.2, the dynamic Stark shift for Hydrogen-
like atom in the presence of the circularly polarized laser light is dealt with in the framework
of time-dependent perturbation theory. As mentioned, we apply the semiclassical descrip-
tion, in which Hydrogen-like atom is described in the framework of the quantum mechanics
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and the laser field is characterized in the framework of the classical mechanics. In Sec. 4.3,
a fully quantized-field treatment is employed, which goes to a classical result when the
photon number in the laser mode is large enough. In Sec. 2.4, for an important example,
the dynamic Stark shift of the reference state 2P3/2(mj = 3/2) is evaluated by using the
analytical result obtained in Sec. 2.2. The corresponding numerical results serve as the
major systematic effect in an excitation arrangement of g factor determination, which will
be introduced in Chapter. 5. Finally, the partial summary and and tentative concluding
remarks are presented in Sec. 2.5.

2.2 Classical approach

Consider a Hydrogen-like atom (ion) that is adiabatically embedded in the remote past
and future in circularly polarized laser field [18]

E(t) =
ELe−ǫ|t|
√

2
[ex cos(ωLt) + ey sin(ωLt)]. (2.3)

We have assumed that the field energy density is normalized as E2
L. ǫ is an infinitesimal

damping parameter [see, e.g., Ref. [13]]. Here, we have adopted the dipole approximation
which implies that the wavelength of the radiation is far greater than the atom size. The
evolution of the unperturbed Hamiltonian of the atom H0 with the eigenfunction |φ〉 in
the monochromatic laser field is determined by

i~
∂ψ

∂t
= Hψ, (2.4)

where the Hamiltonian of the atom + laser reads

H = H0 + V (x, y, t). (2.5)

In Eq. (2.5), the unperturbed Hamiltonian of the atom H0 is,

H0 =
p2

2me

− Ze2

4πε0r
, (2.6)

and V (x, y, t) describes the interaction of the Hydrogen-like atom in the presence of the
circularly polarized laser light (in the length gauge),

V (x, y, t) = e−ǫ|t| [V (x) cos(ωLt) + V (y) sin(ωLt)] , (2.7)

with V (x) = − eELx√
2

and V (y) = − eELy√
2

. In this investigation, we shall take into account

only the solutions of Eq. (2.4) corresponding the adiabatic switching of the perturbation
V (x, y, t) at the remote past and future ( t → ±∞). This indicates that the solution of
Eq. (2.4) turns at t → ±∞ into the eigenstate of the unperturbed Hamiltonian H0, which
for simplicity shall be assumed to be nondegenerate.
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To describe the effect of the off-resonance perturbation by a time-dependent electric
field Eq. (2.3) on the reference state |φ〉 of the bare atom, we use the interaction picture,
in which the field-atom interaction is represented as

VI(x, y, t) = e
i
~

H0tV (x, y, t)e−
i
~

H0t. (2.8)

From which we obtain the expansion of the time evolution operator in the interaction
picture [19]

UI(x, y, t) = T exp
[

− i

~

∫ t

∞
UI(τ)dτ

]

= (2.9)

= 1 − i

~

∫ t

−∞
dt

′

VI(x, y, t) +
(−i

~

)2
∫ t

−∞
dt

′

∫ t′

−∞
dt

′′

VI(x, y, t
′

)VI(x, y, t
′′

) + · · · ,

where T is the time-ordering operator. Due to the laser-atom interaction, the reference
state |φ〉 evolves into a time dependent atomic state |ψI(t)〉,

|ψI(x, y, t)〉 = U(x, y, t)|ψ(x, y, t = −∞)〉 = U(x, y, t)|φ〉. (2.10)

Since the interaction is weak compared to the Coulomb field of atom, we may expand |ψI〉
in a complete set {|m〉} of eigenstates of H0,

|ψI〉 =
∑

m

cm(t)|m〉, (2.11)

where cm(t) = 〈m|ψI(t)〉 are expansion coefficients, that satisfy the initial condition cφ(−∞) =
0, cm(−∞) = 0 (m 6= φ). To obtain the energy shift and ionization rate of the reference
state, we calculate the projection

cφ(t) = 〈φ|ψI(t)〉 = 〈φ|UI(r, t)|φ〉 (2.12)

We now substitute Eqs. (2.7), (2.8) and (2.10) into Eq. (2.12). Since 〈φ|x|φ〉 = 〈φ|y|φ〉 = 0,
the expansion may be taken up to the second order,

cφ(t) = 1 − 1

~2
M, (2.13)

where

M =

∫ t

−∞
dt

′

∫ t
′

−∞
〈φ|VI(x, y, t′)VI(x, y, t′′)|φ〉

=
∑

m

∫ t

−∞
dt′

∫ t′

−∞
dt′′〈φ|VI(x, y, t′)|m〉〈m|VI(x, y, t′′)|φ〉. (2.14)
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The sum counts all bound and continuum states. Since the time dependence of the poten-
tials is harmonic, the integrations can be easily worked out, yielding

M = − ~

4i

∑

m,±

e2ǫt

2ǫ

[〈φ|V (x)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

+
〈φ|V (y)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

±i
〈φ|V (x)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

∓ i
〈φ|V (y)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

.

]

(2.15)

Inserting this result into Eq. (2.13), and considering

∂

∂t
ln cφ(t) = − i

4~

∑

m,±

[〈φ|V (x)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

+
〈φ|V (y)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

±i
〈φ|V (x)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

∓ i
〈φ|V (y)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

]

, (2.16)

here e2ǫt has been replaced by 1. The solution of Eq. (2.16) is

cφ(t) = e−
i
~
∆EAC(φ)t, (2.17)

where we have defined the dynamic stark shift ∆EAC(φ) of the reference state |φ〉,

∆EAC(φ) =
1

4

∑

m,±

[〈φ|V (x)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

+
〈φ|V (y)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

±i
〈φ|V (x)|m〉〈m|V (y)|φ〉
Eφ − Em ± ~ωL + i~ǫ

∓ i
〈φ|V (y)|m〉〈m|V (x)|φ〉
Eφ − Em ± ~ωL + i~ǫ

]

. (2.18)

Considering Eq. (2.11), the wavefunction of the system in the Schrödinger picture reads

|ψ(t)〉 = e−
i
~

H0t|ψI(t)〉 = e−
i
~

H0t

[

cφ(t)|φ〉 +
∑

m6=φ

cm(t)|m〉
]

. (2.19)

Thus we obtain the projection

〈φ|ψ(t)〉 = e−
i
~
[Eφ+∆EAC(φ)]t, (2.20)

which shows the perturbative effect on the time-evolution of the reference state. In view of
the fact that ∆EAC(φ) is generally complex, we may define the energy shift and ionization
rate of the reference state |φ〉:

∆Eφ = Re [∆EAC(φ)] ,

γφ = −2

~
Im [∆EAC(φ)] . (2.21)
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They respectively arise from the fact that the atomic system may exchange virtual and
real photons with the laser field in the course of interaction. Introducing the complex
coordinates

x+1 = − 1√
2
(x + iy), x−1 =

1√
2
(x − iy), (2.22)

we may cast the dynamic Stark shift of Eq. (2.18) into a more concise form:

∆EAC(φ) = −e2E2
L

4

∑

±
〈φ|x∓1

1

H0 − Eφ ± ~ωL

x±1|φ〉. (2.23)

Here we have used the closure relation over the spectrum of H0. If we define the dynamic
polarizability

PωL
(φ) =

∑

±
〈φ|x∓1

1

H0 − Eφ ± ~ωL

x±1|φ〉, (2.24)

then the dynamic Stark shift reads

∆EAC(φ) = −1

4
e2E2

LPωL
(φ) = − e2

2ε0c
ILPωL

(φ), (2.25)

where IL = cε0E2
L/2 is the intensity of the laser field. Eq. (2.24) can be interpreted as the

sum of the amplitudes of two-photon processes. In the first process the atom absorbs one
quantum and goes into a virtual state (the term involving − sign in the denominator) and
after emitting the same ~ωL quantum it returns to the initial state. In the second process
(the term involving + sign in the denominator) the atom emits the ~ωL quantum first and
goes into the virtual state and after absorbing the same quantum, it returns to the initial
state. The result is the shift of an energy level.

2.3 Treatment in the second quantization

In the preceding section, we dealt with the interaction between Hydrogen-like atomic energy
levels and the electromagnetic radiation and assumed that the field to be classical. In this
section, in view of light being a photon field, we discuss the interaction of the quantized
radiation field with a Hydrogen-like atom. As we explain later, the atom + laser system
can be described by a perturbed Hamiltonian. Note that we choose the length gauge [see
Ref. [20]] and take the dipole approximation into account throughout the calculations.

2.3.1 Atom and quantized radiation interaction Hamiltonian

The interaction of a monochromatic laser mode of angular frequency ωL with a Hydrogen-
like atom can be formulated in a general way [see e.g., Ref. [18, 21]]. One can characterize
the Hamiltonian corresponding to the atom + laser system in terms of three parts, i.e.,

HI = H0 + ~ωLa†
LaL + HL, (2.26)
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where the first two terms are the Hydrogen-like atom H0 and the quantized field Hamilto-
nians, respectively. In Eq. (2.26), H0 reads

H0 =
p2

2me

− Ze2

4πε0r
=

∑

m

|m〉〈m|, (2.27)

where |m〉 represents a complete set of atomic energy eigenstates including both the dis-
crete and continuum region of the spectrum (me and e are electron mass and charge,
respectively). Since we restrict ourselves to a single-mode field with the frequency ωL, the
corresponding Hamiltonian of the laser field can be written in terms of the creation and
annihilation operators a†

L and aL, respectively. The corresponding eigenstates are called
Fock states [21]. Note that the energy eigenvalues are discrete, in contrast to the classical
electromagnetic theory, where the energy is continuous.

The last part of the Eq. (2.26) denotes the perturbed term of the Hamiltonian which is
responsible for the interaction between a Hydrogen-like atom and the monomode electro-
magnetic radiation. In the framework of the length gauge and dipole approximation, this
term HL reads

HL = −er · E . (2.28)

In the following, without the loss of generality, we concentrate on a circularly polarized
field. Therefore, HL reads

HL = −eεL

[

− x+1aL + x−1a
†
L

]

, (2.29)

Where εL =
√

~ωL/2ε0V , V is the normalization volume and x+1 and x−1 are given in

Sec. 2.2 [see Eq. (2.22)]. Eq. (2.22) indicates that x†
+1 = −x−1 and x†

−1 = −x+1, i.e.,
Hamiltonian HL is hermitian.

The Hamiltonian HL represented by Eq. (2.29) may describe two physical processes. In
the first one, the atom absorbs a photon of the laser field and jumps to the upper energy
level (the first term in Eq. (2.29)), while the second one describes the opposite process [the
second term in Eq. (2.29)].

2.3.2 Quantized field approach

We are now in a position to discuss the interaction between circularly polarized laser light
and the Hydrogen-like atom from the quantum nature point of view of the radiation field
by using Eqs. (2.26) and (2.29). Working in the Schrödinger picture, perturbation theory
leads to the second-order energy shift of the unperturbed eigenstate |φ, nL〉:

∆EAC(φ) =
∑

m

[〈φ, nL|HL|m,nL − 1〉〈m,nL − 1|HL|φ, nL〉
Eφ + nL~ωL − (Em + (nL − 1)~ωL)

+
〈φ, nL|HL|m,nL + 1〉〈m,nL + 1|HL|φ, nL〉

Eφ + nL~ωL − (Em + (nL + 1)~ωL)

]

=
e2

~ωL

2ε0V
∑

m

[〈φ|x−1|m〉〈m|x+1|φ〉
Eφ − Em + ~ωL

nL +
〈φ|x+1|m〉〈m|x−1|φ〉

Eφ − Em − ~ωL

(nL + 1)

]

.(2.30)
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In nonrelativistic quantum mechanics, the classical description is trustworthy whenever
the noncommutativity of dynamical variables is unimportant [see, e.g., textbook [22]].
Likewise, in the quantum theory of radiation, if we could ignore the right-hand-side of
[aL, a†

L] = 1 then we would return to the classical description. Due to the proportionality
the nonvanishing matrix elements of aL and a†

L to the occupation number
√

nL), the clas-
sical description Eq. (2.25) can be obtained again from Eq. (2.30) in the limit of a large
occupation number. In other words, in the classical limit, nL → ∞, V → ∞, whereas
nL/V =const, Eq. (2.30) becomes

∆EAC(φ) = −e2nL~ωL

2ε0V
PωL

(φ), (2.31)

where PωL
(φ) is given by Eq. (2.24). Comparing Eq. (2.31) with the classical result

Eq. (2.25), we find

IL = wc, (2.32)

where

w =
nL~ωL

V (2.33)

is the energy density of the field in the quantum version.

2.4 Evaluation of the dynamic Stark shift for 2P3/2

This section is devoted to the evaluation of the dynamic Stark shift for the reference
state 2P3/2 in Hydrogem-like atom. In Chapter 5, as we shall introduce, in the excitation
arrangement related to the bound-electron g factor measurement, a circularly polarized
laser light drives transition between 1S1/2(mj = +1/2) and 2P3/2(mj = +3/2) states [see
Sec. 5.3 and Fig. 5.4]. Due to the shift of 2P3/2(mj = +3/2) state in the presence of the
circularly polarized laser light, AC Stark shift of the reference state 2P3/2(mj = +3/2)
serving as a major systematic effect in the proposed excitation arrangement for bound-
electron g factor measurement must be calculated.

2.4.1 Analytical calculation

In this section, we try to obtain analytical solution for the dynamic Stark shift of the
reference state 2P3/2(mj = +3/2). To do so, one has to calculate the matrix element
appeared in Eq. (2.24). The calculation method is based on the Sturmian representation
of the radial Green’s function for Hydrogen-like atom described in the Chapter 3.

The starting point of the calculation is to calculate the dipole polarizability in Eq. (2.24).
In other words, the following matrix element has to be evaluated,

M =
〈

φ
∣

∣

∣x−1
1

H0 − Eφ + ~ωL

x+1

∣

∣

∣φ
〉

. (2.34)
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One can divide Eq. (2.34) in two angular and radial components, i.e.,

M = Mang
l′=2M

rad
l′=2, (2.35)

where

M rad
l′=2 =

∫ ∞

0

r3
1r

3
2R

∗
21(r)R21(r)g2(r1, r2, η),

Mang
l′=2 = −18

25
. (2.36)

In this case, the indexes l′ and m′, appeared in Eq. (2.36), refer to the possible angular
momentum and magnetic quantum numbers of the virtual intermediate state. The D and
S states are possible intermediate states. In this calculation, due to Hydrogen-like atom
interaction with a circularly polarized laser light, the only possible intermediate state is
D states. gl(r1, r2, η) will be defined in Chapter 3 [see Eq. (3.8)]. The dimensionless
parameter η, chosen such that for the eigenstate reference state |φ〉 of H0 with principle
quantum number n we have η = nt. The parameter t reads [23]

t =
(

1 ± 2n2ω

(Zα2)me

)−1/2

, (2.37)

where α and me refer to the fine-structure constant and the electron mass, respectively.
Putting Eq. (3.8) in Eq. (2.36), the radial part of the matrix element reads

M rad
l′=2(t) =

me

12~2a10
B t5

∞
∑

k=0

k!

(k + 5)!(k + 3 − 2t)
×

∣

∣

∣Il′=2

∣

∣

∣

2

, (2.38)

where Il′=2 is

Il′=2 =

∫ ∞

0

r6e
− 1+t

2aBt
r
L5

k

( r

aBt

)

. (2.39)

By using Eq. (3.16), one can find the result of Eq. (2.39) as follows:,

I2 =
768a7

Bt7

(1 + t)7

(k + 5)!

k!
2F1

(

− k, 7, 6,
2

1 + t

)

. (2.40)

Therefore, M rad
l′=2 reads

M rad
l=2(t) = ma4

0

[ 16t2χ2(t)

3(t − 1)7(t + 1)5
− 216t11(4t2 − 1)

3(t2 − 1)7 2F1

(

1,−2t, 1 − 2t,
(1 − t

1 + t

)2)]

, (2.41)

where 2F1 is designated for Hypergeometric function and χ2(t) is

χ2(t) = −45 + 90t + 165t2 − 420t3 − 174t4+

+768t5 − 34t6 − 700t7 − 37t8 − 1274t9 + 4733t10. (2.42)



18 2. AC Stark shift of the Hydrogen atom . . .

Table 2.1: Dynamic Stark shift coefficients βAC and ionization coefficientsβioni for 1S1/2(mj =
+1/2) ⇔ 2P3/2(mj = +3/2) (on two-photon resonance) in nonrelativistic dipole approximation,
evaluated for nuclear charge number Z = 1 and infinite nuclear mass based on Eqs. (2.24-2.25).

Process βAC(2P3/2)[Hz(W/m2)−1] βioni(2P3/2)[Hz(W/m2)−1]

1S1/2 ⇔ 2P3/2 1.8674 × 10−6 6.35232 × 10−6

In Eq. (2.41), the following contiguous relations for Hypergeometric function are em-
ployed [24]:

2F1(a, b, c, z) = 2F1(b, a, c, z)

[b − 1 − (c − a − 1)z]F + (c − b)F (b − 1) − (c − 1)(1 − z)F (c − 1) = 0

(c − b − 1)F + bF (b + 1) − (c − 1)F (c − 1) = 0 (2.43)

Where F denotes 2F1(a, b, c, z). F (b ± 1) and F (c ± 1) stand for 2F1(a, b ± 1, c; z) and

2F1(a, b; c ± 1; z), respectively.

2.4.2 The numerical results

The non-relativistic numerical results of the dynamic Stark shift for Hydrogen-like atom
based on Eqs. (2.24)and (2.25) are shown in Table 2.1. The Z-scaling of the dynamic Stark
shift coefficients (βAC and βioni) enables us to generalize the results in Table 2.1 to any
Hydrogen-like atoms (ions) such as 4He+ (see Chapter 3 for more details about Z-scaling
of the dynamic Stark shift).

βioni(Z) =
1

Z4
βioni(Z = 1). (2.44)

The results shown in Table 2.1 are for Hydrogen atom. According to the Eq. (2.44), if
we put Z = 2, the corresponding results related Helium ion in the presence of a circularly
polarized laser light will be obtained. These numerical results play as the major systematic
effect in the excitation arrangement related to the bound-electron g factor determination,
that will be introduced in Sec. 5.3.

Finally, we have taken notice of an ionization cross section for this transition for any
Hydrogen-like atom that is

σioni =
1

Z2
6.52536 × 10−6 cm2. (2.45)

2.5 Partial summary and tentative concluding remarks

In this chapter, the non-relativistic interaction of a Hydrogen atom or Hydrogen-like atom
with a circularly polarized laser light was examined from two different points of view,
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leading to two analytical expressions for the dynamic Stark shift [see Eqs. (2.25)and (2.31)].
The first was obtained via the classical method, which relied crucially on the assumption
of an adiabatic vanishing of the source as |t| → ∞ [see Eq. (2.3)] in the framework of
time-dependent perturbation theory [see sec. 2.2]. The second treatment was described in
the framework of the quantum nature of the radiation field, based on time-independent
field operators [see sec. 2.3]. In the limit of a large occupation number of the laser mode,
these two derivations are equivalent to each other [see Eqs. (2.25) and (2.31)]. We have
found that the AC Stark shift is a complex quantity. The origin of this finding is that each
initially bound state can couple to and decay into continuum states for sufficiently large
n, i.e., by coupling to a sufficient large number of photons.

If the sum over virtual modes of the photons is limited to a single mode of an elec-
tromagnetic field, it is safe to conclude that the AC Stark shift has a similar structure as
the self-energy like formalism. This fact indicates that Eq. (2.30) can be interpreted as a
stimulated radiative correction [12].

In Sec. 2.4, as an application of Eq. (2.25), the dynamic Stark shift of the reference
state 2P3/2(mj = 3/2) for 4He+ ion in the presence of the circularly polarized laser light
was obtained. These results were listed in Table 2.1 and the ionization of the Helium ion
taking place via channel 2P3/2 ⇒ εD5/2 was evaluated. For this channel, the ionization
cross section was also obtained [see Eq. (2.45)]. The corresponding numerical results serve
as a major systematic effect in the proposed excitation arrangement of the bound-electron
g factor, which will be introduced in Sec. 5.3.
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Chapter 3

Dynamic polarizability and transition
matrix elements of high-n Rydberg
atoms

3.1 Introduction

The comparison between the experimental and theoretical values of the g factor plays an
important role for examining the most precise theory in physics, i.e., quantum electrody-
namics (QED). Moreover, there is another tool to test QED: the two-photon transitions
in a Hydrogen-like atom. Like the g factor, the comparison of the theoretical results
with the experimental ones are the basis for the touchstone of quantum electrodynam-
ics. In addition, two-photon transitions in Hydrogen-like atoms can be utilized for more
precise determinations of the fundamental constants in physics such as the Rydberg con-
stant [see Refs. [25, 26, 16, 27]].

In order to deal with high-precision spectroscopy, one has to know about the major
systematic effects, which can improve the accuracy levels of the measured quantities. The
dynamic Stark shift induced by the interaction of laser light with a Hydrogen-like atom can
be considered as the dominant systematic effect along with the saturation effect in high-
precision spectroscopy experiments [16]. Due to the interaction between the laser light
and the atom, one can observe the metastasis of the atomic energy levels. Experimentally,
this shift can not be suppressed and we need a very precise study on understanding the
aforementioned physical effect, which may broaden or shift the spectral lines [16, 15, 17].
Consequently, interest has been directed towards the interaction between time-varying
fields and Hydrogen-like atoms giving a non-vanishing second-order shift in the energy
levels or spectral lines [see e.g.,Ref. [13]].

Recently, many attempts have been done in order to compute the dynamic Stark shift
and two-photon transition matrix elements and deal with the absorption spectrum in
two-photon resonance spectroscopy for 1S–n′S and 2S–n′S, (n′ 6 20) for Hydrogen-like
atoms [16, 14, 27]. It is important to generalize this study for a highly excited Rydberg
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state, i.e., n′ → ∞, and evaluate the dynamic Stark shift and two-photon transition matrix
elements for this important case. Similar studies related the Lamb shift and Bethe loga-
rithms of highly excited Rydberg states in a Hydrogen atom were performed by others [see
e.g., Refs. [28, 29, 30, 31, 32]]. Our motivations for this investigation are originated from
the fact that the atomic structure can be apprehended relatively simple and systematically
if one electron performs a transition to a highly excited state in the presence of an external
field while the rest of electrons are considered to be more tightly bound to the atomic
nucleus. As a result, this case accords asymptotically to a one-electron problem in the
presence an attractive Coulomb potential. In addition, the highly excited Rydberg states
have long lifetime allowing for high spectral resolution.

In the current survey, the dynamic Stark shift and two-photon transition matrix ele-
ments for 1S–n′S and 2S–n′S transitions, n′ → ∞ are investigated in a unified treatment.
The results are compiled in SI units for the convenience of experimentalists. The depen-
dency of the nuclear charge Z is taken into account in our results, so that they can be
readily utilized for the other light Hydrogen-like atoms. The n′S state n′ → ∞ is envisaged
as an excited state of a Hydrogen-like atom driven by a linearly polarized laser field on two-
photon resonance with the 1S–n′S transition n′ → ∞. If the absorption of an additional
photon takes place, the bound two-body Coulomb system will be ionized. The same is
exploited for the 2S–n′S transition n′ → ∞. In order to detect the two-photon transitions,
they have to occur in the transient regime, because outside the transient regime all atoms
are ionized by the driving laser in the limit of an infinite interaction time [14]. Thus, one
of the aims in this chapter is to calculate the ionization cross sections for these two-photon
transitions in the presence of the laser field.

In this Chapter, we obtain the dynamic Stark shift coefficients (i.e., βAC, βioni) and
the two-photon transition matrix elements βif for 1S–n′S and 2S–n′S transitions n′ → ∞
driven by the linearly polarized laser field in a Hydrogen-like atom. In Sec. 3.2, we discuss
the properties of a Rydberg atom in the presence of a strong laser field and the dynamic
Stark shift of the Rydberg state. In Sec. 3.2.2, we describe our calculational method based
on the Sturmian representation of the radial Green’s function in detail. The numerical
results for S–S transitions are presented in Sec. 3.2.3. In the following, we obtain the
photoionization cross section using two different methods which is introduced in Sec. 3.3.
In Sec. 3.4, the two-photon transition matrix elements of highly excited Rydberg states
of Hydrogen-like atom (βif ) are calculated in such a way that the dynamic Stark shifts
are calculated. We have compiled all results in SI units. Due to introducing Z-scaling in
Sec. 3.4.1, these results can be appropriate for light Hydrogen-like systems. For instance,
we can evaluate the dynamic Stark shift coefficients, photoionization cross sections and
the generalized Rabi frequencies for a Helium ion. Thus, one can calculate AC Stark
shift as a dominant systematic effect in the experimental setup, which will be applied for
determination of the 1S–n′S transition frequency n′ → ∞ in Chapter 5. Section 3.5 is
devoted to the partial summary and and tentative concluding remarks.
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3.2 Dynamic Stark shift of Rydberg states

In this section, we evaluate one of the most important systematic effects that shift the
energy levels in a high-precision two-photon spectroscopy experimenti.e., AC Stark shift.
In this investigation, we restrict ourselves to the Rydberg state, which received considerable
attentions in the contexts of high-resolution spectroscopy [33, 34].

3.2.1 General description

Rydberg atoms are those in which the valance electron is in a state of high principle quan-
tum number. According to the Bohr model, the size of the orbits increases with the square
of the principle quantum number. This fact indicates that states with a high n (Rydberg
atoms) have a very large orbit and are of comparable size with a biological cell or even a
manufactured object (wire, slit,· · · ) [35]. Due to these unique properties, Rydberg atoms
have attracted a lot of attention since two decades ago. Especially, because of their large
size, these atoms are very sensitive to any external fields and can be rapidly ionized. In the
case of electromagnetic radiation, one can reveal some interesting properties of Rydberg
atoms, which open up the possibility of gaining further insight into the dynamics of pho-
toionization of Rydberg atoms as well as the dynamic Stark shift of Rydberg atoms (discuss
below).

In the following, we continue with discussion of the dynamic Stark shift of Hydrogen-
like Rydberg atoms. Photoionization of Hydrogen-like Rydberg atoms in the presence of
the strong laser field will be treated later [see Sec. 3.3]. We assume that a monochromatic
laser field which is on two-photon resonance with the 1S–n′S or 2S–n′S transition n′ → ∞
interacts with the Hydrogen-like Rydberg atom, as schematically shown in Fig. 3.1. The
lower state |i〉, which is 1S or 2S state and the excited state |f〉, which is n′S for n′ → ∞
are shifted as a result of the interaction of the Hydrogen-like Rydberg atom with the
strong laser field. As mentioned in Chapter 2, this displacement of the energy levels the
so-called AC Stark shift is generally investigated within the framework of both a classical
field method, and a fully quantized method. The calculation in the former one is based
on time-dependent perturbation theory. We showed in Chapter 2 that these two methods
give the same physical result at the limit of large photon numbers.

In two-photon transitions, the perturbation in a system including an atom and a laser
is off-resonant [13]. Consequently, the influence of the linearly polarized laser light on the
Hydrogen-like atom can be handled in the framework of the time-dependent perturbation
theory i.e.,

H = H0 + V (z, t), (3.1)

where

V (z, t) = eεLz cos(ωLt), (3.2)

where the Hamiltonian of the bare atom H0 is defined in Eq. (2.6). The classical electric
field and the laser frequency have been denoted by εL and ωL, respectively. The time-
dependent perturbation V (z, t) is chosen to be in the length gauge. We just recall that in
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Figure 3.1: Schematic sketch of the shifting of hydrogen-like energy levels expose to
a linearly polarized laser light. The location of the bare and dressed states is at the
L.H.S. and R.H.S. in this figure, respectively. |i〉 represents either 1S or 2S state and
|f〉 refers to n′S, n′ → ∞.

Eq. (2.5), laser + atom Hamiltonian is written in the presence of the circularly polarized
laser light, while in Eq. (3.1), laser + atom Hamiltonian is considered for a linearly polarized
laser light. Using the dipole approximation enables one to express the dynamic Stark shift
of the reference state |φ〉 in the first nonvanishing order of the time-dependent perturbation
theory as follows [14, 13]

∆EAC =
−e2

2ε0c
ILPωL

(φ), (3.3)

where IL is the intensity of the linearly polarized laser light and PωL
(φ) is the dipole

polarizability, which reads

PωL
(φ) =

∑

±

〈

φ
∣

∣

∣z
1

H0 − Eφ ± ~ωL

z
∣

∣

∣φ
〉

. (3.4)

In Eq. (3.4), Eφ is the energy of the reference state |φ〉 and reads

Eφ = −(Zα)2mec
2

2n′2 . (3.5)

The frequency of the laser light in the two–photon resonant spectroscopy of the transition
i ⇔ f is ωL = 1

2~
(ωf − ωi).

As it is clear from Fig. 3.2, the upper state |C〉 is in the continuum region, which
implies that the energy E is positive and thus the energy parameter η = Z~

a0

√

−(2meE)−1
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Figure 3.2: Schematic representation of the excitation including ionization channels.
The dotted line represents the ionization threshold, and |C〉 = |εP 〉 are electronic
continuum states. The state |i〉 denotes either 1S or 2S. |f〉 refers to the excited state,
which is n′S (n′ → ∞).

is complex. Therefore, the dynamic polarizability PωL
(φ) is a complex quantity. Its real

part refers to a shift of the atomic energy levels and its imaginary part is proportional
to the ionization rate of the population in the reference state |φ〉 (for more details see
Chapter 2 and Ref. [14]):

∆νAC =
1

~
Re[∆EAC(φ)] = βAC(φ)IL, (3.6a)

γioni = −2

~
Im[∆EAC(φ)] = 2πβioniIL. (3.6b)

Note that βAC(φ) and βioni(φ) are intensity-independent constants and the ionization rate
is given in units of angular frequency.

3.2.2 Evaluation of the AC Stark shift for Rydberg states

This section is devoted to the evaluation of the AC Stark shift for Rydberg states. Our
starting point is the evaluation of the dipole polarizability Eq. (3.4). The usual approach
to obtain the dipole polarizability is based on the Sturmian representation of the radial
Green’s function for the Hydrogen-like atom [see Ref. [36]]. In the spherical coordinate,
the Green’s function is given,

1

H − E(η)
=

∑

l′m′

gl′(r1, r2; η)Yl′m′(θ1, ϕ1)Y
∗
l′m′(θ2, ϕ2), (3.7)

where the radial component of the Schrödinger-Coulomb propagator reads [36]

gl′(r1, r2; η) =
2me

~2

( 2

a0η

)2l′+1

(r1r2)
l′e−(r1+r2)/a0η

∞
∑

k=0

L2l′+1
k ( 2r1

a0η
)L2l′+1

k ( 2r2

a0η
)

(k + 1)2l′+1(l′ + 1 + k − η)
, (3.8)
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containing associated Laguerre polynomials L2l′+1
k and the Bohr radius a0. In Eq. (3.8),

(a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol. We have used the dimensionless param-
eter η = Z~

a0

√

−(2meE)−1 [14]. The index l′ is summed over possible angular momentum
quantum numbers of the virtual state, i.e., P states in the propagator.

After substituting Eqs. (3.7) and (3.8) in Eq. (3.4), one can divide it to radial and
angular parts that are represented by the following relations, respectively.

Mang
l′=1 =

1

3
,

M rad
l′=1 = lim

n′→∞

∫ n′

0

r3
1r

3
2R

∗
n′S(r1)Rn′S(r2)g1(r1, r2, η)dr1dr2. (3.9)

The radial part of the reference state n′S, n′ → ∞ can be expressed in terms of the
ordinary Bessel function Jν(z), i.e., [37]

lim
n′→∞

Rn′l(r) =
1

a0

√

2

r
J2l+1

(

√

8r

a0

)

, (3.10)

where l is the angular momentum quantum number and the normalization condition for
the wave functions with a large principal quantum number n′ is

∫

ψ∗
lm(r)ψl′m′(r)dr = n′−3δll′δmm′ . (3.11)

Simplifying further, one obtains

M rad
l′=1 =

32me

~2a3
0η

3

∞
∑

k=0

Γ(k + 1)

Γ(k + 4)(2 + k − η)
× |I|2, (3.12)

where I reads:

I =

∫ ∞

0

r7/2J1

(

√

8r

a0

)

L3
k

( 2r

a0η

)

e
− r

a0η dr. (3.13)

The major challenge in this calculation is to solve the radial integral in Eq. (3.13). There
is no analytical solution to this integral. Hence, one has to solve it numerically.

To do so, this integral must be regularized and the following form of the Bessel function
should be applied [38],

J1(x) =
−i

2π

∫ 2π

0

cos θeix cos θdθ. (3.14)

As a result, Eq. (3.13) can be rewritten as follows,

I =
−i

2π

∫ 2π

0

cos θ

∫ ∞

0

r7/2e
i
q

8r
a0

cos θ
L3

k(
2r

a0η
)e

− r
a0η drθ. (3.15)

The following useful relation is used in the numerical calculations [see Ref. [24]].
∫ ∞

0

dre−λrrγLµ
n(r) =

λ−1−γΓ(γ + 1)

n!Γ(µ + 1
Γ(µ + n + 1) 2F1(−n, γ + 1, µ + 1, λ−1), (3.16)

where the symbol 2F1 designates the Hypergeometric function.
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Table 3.1: Dynamic Stark shift coefficients βAC and ionization coefficientsβioni for 1S ⇔ n′S
and 2S ⇔ n′S, (n′ → ∞) transitions (on two-photon resonance) in the nonrelativistic dipole
approximation, evaluated for the nuclear charge number Z = 1 and an infinite nuclear mass. The
results obtained in this work based on the nonrelativistic hydrogen Green’s function (Sturmian
function method) are in good agreement with those obtained in Ref. [16], which relies on an
extrapolation technique.

n′ → ∞ βAC(1S)[Hz(W/m2)−1] n′3 · βioni(n
′S)[Hz(W/m2)

−1
] βAC(1S)[Hz(W/m2)−1]

this work this work Ref. [16]

1S ⇔ n′S −3.43809 × 10−5 3.63479 × 10−4 - -

2S ⇔ n′S −2.43599 × 10−3 3.47952 × 10−2 −2.43342 × 10−3

3.2.3 The results for S–S transitions

The nonrelativistic numerical results of the asymptotic dynamic Stark shift coefficients βAC

and the ionization coefficient βioni using Eqs. (3.6a) and (3.6b) are presented in Table 3.1.
These results are only valid for a laser frequency on two-photon resonance with a S–S
transition. It is important to note that two important approximations for obtaining these
results have been considered: (i), the dipole approximation, (ii), employing only up to
the second-order in perturbation theory. The negative sign for the energy shift of |1S〉
indicates that the ground state of the unperturbed atom + field Hamiltonian is always
downwards, as we expect from any second-order perturbation theory [see Table 3.1].

Before ending this section, it should be mentioned that some of the results have been
obtained via an extrapolation technique in the literature [see Ref. [16]]. Our results ob-
tained by the direct calculation yield those appeared in Table Ic in Ref. [16] by using the
following convertion factor,

βAC(φ)[a.u.] = βAC(φ)[SI]
~

2

mea4
0α

. (3.17)

Note that the same relation can be used for βioni(φ).

3.3 Photoionization cross section of Rydberg states

This section is dedicated to the calculation of the photoionization cross section for the
Hydrogen-like atom in the presence of the laser field driving the transition 1S–n′S and
2S–n′S, n′ → ∞. Due to the presence of V (z, t) in the Hamiltonian H [see Eqs. (3.1) and
(3.2)], the Hamiltonian H has discrete energy states along with the continuous background
at Eφ + ~ωL. V (z, t) results in the transition between the discrete and continuous part of
the energy states. This fact indicates that the Hydrogen-like atom is ionized by the laser
field V (z, t). That is to say, the excited state n′S, n′ → ∞ of a Hydrogen-like atom driven
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Figure 3.3: The ionization coefficients βioni(1S ⇔ n′S) for l = 0 are in excellent agree-
ment with its asymptotic limit n′ → ∞. We plot n′3βioni as a function of the inverse of
the principle quantum number n′. The asymptotic value is shown by red circle. The
black circles refer to the numerical data for principle quantum numbers less than 20
extarcted from Ref. [14].

by the laser field on two-photon resonance with the 1S–n′S transition n′ → ∞ leads to the
ionization of the Hydrogen-like atom if the absorption of one additional photon from the
laser field happens. This ionization, as shown in Fig. 3.2, takes place through the channel
n′S ⇒ εP , n′ → ∞, where εP are the electronic continuum states. The same applies to
the 2S–n′S transition, n′ → ∞.

We therefore evaluate the corresponding ionization cross sections in two different meth-
ods. The first method is based on the proportionality of the imaginary part of the dynamic
Stark shift with the ionization cross section [see Eq. (3.6b)],

σioni = 2πβioni~ωL. (3.18)

Therefore, the ionization cross section reads:

n′3σ1S⇔n′S
ioni [n′ → ∞] = 2.489 × 10−17/Z2 cm2, (3.19a)

n′3σ2S⇔n′S
ioni [n′ → ∞] = 5.957 × 10−16/Z2 cm2. (3.19b)
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Figure 3.4: The ionization coefficients βioni(2S ⇔ n′S) for l = 0 are in excellent agree-
ment with its asymptotic limit n′ → ∞. We plot n′3βioni as a function of the inverse of
the principle quantum number n′. The asymptotic value is shown by red circle. The
black circles refer to the numerical data for principle quantum numbers less than 20
extarcted from Ref. [14].

The factor n′3 is originated from the fact that the radial wave functions for large quantum
number are renormalized in a way that their norms inversely proportional to their splitting
in the energy (i.e., r2R2

n′l ∝ n′−3) [see Eqs. (3.10) and (3.11)]. The results obtained from
Eq. (3.19) indicate that the Z-scaling of the ionization cross section for the scheme with
the nuclear charge number Z is Z−2.

In the following, we introduce the second method of the cross section calculation. This
calculation is based on a dipole transition from the bound state n′S, n′ → ∞ to the
continuum εP state. Such an ionization cross section can be expressed in terms of the
intensity of the laser field, the laser frequency and the ionization rate γioni, i.e.,

σioni =
~ωL

IL

γioni, (3.20)

where the ionization rate can be expressed in terms of the square of the transition matrix
element and reads

γioni = lim
n′→∞

πe2IL

ε0c~

∣

∣

∣〈uw|z|n′l〉
∣

∣

∣

2

. (3.21)

In Eq. (3.21), the radial wavefunction of discrete states is introduced in Eq. (3.10) and uw
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the radial wavefunction of the continuum state reads

uw = Rw(r)Yl′m′(θ, ϕ)

Rw(r) =
2
√

Z√
1 − e−2πn

√
1 + n2(2kr)−l′−1 × 1

2π

∮

e−2ikrξ(ξ +
1

2
)−in−l′−1(ξ − 1

2
)in−l′−1dξ,

(3.22)

where n = i/
√

2Ew is the generalized principal quantum number for the continuum state.
The main task is to calculate the transition matrix element appearing in Eq. (3.21),

i.e.,

M = lim
n′→∞

〈uw|z|n′l〉. (3.23)

To do so, the matrix element should be separated into its angular and radial parts:

Mang
l′=1 =

1√
3
,

M rad
l′=1 = lim

n′→∞

∫ ∞

0

r3R∗
εP (r)Rn′S(r)dr. (3.24)

Now, by substituting Eq. (3.10) and Eq. (3.22) into Eq. (3.24), we obtain

M rad
l′=1 =

√
2
√

1 + n2

π
√

1 − e−2πn
×

∫ ∞

0

r1/2J1

(

√

8r

a0

)

e−2ikrξ 1

4k2

∮

(

ξ+
1

2

)−in−2(

ξ−1

2

)in−2

dξ. (3.25)

The first radial integral in Eq. (3.25) could be obtained using [see Ref. [39] page 187,
Eq. (27)]

∫ ∞

0

e−ptt
1
2 J1(2a

1
2 t

1
2 )dt = a

1
2 p−2e−

a
p . (3.26)

Therefore, the first integral in Eq. (3.25) reads

Irad(ξ) =
i

2
√

2

n2

ξ2
e

in
ξ . (3.27)

After substituting Eq. (3.27) in Eq. (3.25), M rad
l′=1 reads

M rad
l′=1 =

n4
√

1 + n2

4π
√

3(1 − e−2πn)
IC , (3.28)

where IC is

IC =

∮

(ξ + 1
2
)−in−2(ξ − 1

2
)in−2ein/ξ

ξ2
. (3.29)
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Figure 3.5: Definition of the contour of the integral form of Eq. (3.29) (Ref. [5])
.

In Eq. (3.29), IC should be solved by using Cauchy’s residue
∮

C

f(ξ)dξ = 2πi

m
∑

k=1

Res(ak). (3.30)

Eq. (3.29) has an isolated essential singularity at ξ = 0 but no other singularity at a
finite. From the expansion of the exponential term in Eq. (3.29), one can evaluate this
integral [40] using the contour shown in Fig. 3.5. Accordingly, the integral must be taken
around the two branch point ξ = ±1/2. Therefore, IC reads [ for 1S ⇔ n′S n′ → ∞]

IC =
−128

407 698 691 540 765 625
πne−nπχ(n). (3.31)

χ(n) is defined as follow:

χ(n) = −407 698 691 540 765 625 − 271 799 127 693 843 750n2 − 72 479 767 385 025 000n4

− 10 699 394 233 027 500n6 − 1 010 772 266 253 750n8 − 66 538 149 678 000n10−
− 3 230 756 474 400n12 − 120 544 464 600n14 − 22 309 003 620n16 + 24 103 866 264n18

− 7 076 888 000n20 + 735 105 488n22 − 32 293 040n24 + 636 832n26−
− 5 440n28 + 16n30. (3.32)
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For the case of an incident laser with angular frequency of one half of the 1S ⇔ n′S
transition n′ → ∞, the generalized quantum number of the continuum state is n = i

√
2,

and leads to the nonrelativistic result

n′3σ1S⇔n′S
ioni [n′ → ∞] =

1

Z2
2.489 × 10−17 cm2. (3.33)

This result is within the given accuracy identical to the result obtained in Eq. (3.19a).

3.4 Two-photon transition matrix elements

This section is dedicated to the calculation of two-photon transition matrix elements for
1S ⇔ n′S and 2S ⇔ n′S transitions n′ → ∞ in a Hydrogen-like atom. The interact-
ing system of atom + laser has been described by a Hamiltonian which is presented in
Sec. (3.2.1), [see Eqs. (3.1) and (3.2)]. Similar to the dynamic Stark shift, the time-
dependent perturbation V (t) is chosen to be in the length gauge, and the dipole approx-
imation is considered in the calculation. Therefore, the two-photon transition matrix
element βif , as obtained in Ref. [14] reads

βif = − e2

2~cε0

〈

f
∣

∣

∣
z

1

H0 − Ei − ~ωL

z
∣

∣

∣
i
〉

, (3.34)

where |i〉 refers to the initial state |1S〉 or |2S〉 and |f〉 is for |n′S〉, n′ → ∞.
To obtain βif for transition the schematically shown in Fig. 3.2, we apply the same

calculational technique as for the dynamic Stark shift [see Eqs. (3.7) and (3.8)]. The only
difference is that in the case of the calculation of two-photon transition matrix elements,
the intermediate states are in the bound area indicating, that the parameter η introduced
in Sec. 3.2.2 is real and thus the two-photon transition matrix elements are real quantities,
while η is an imaginary parameter for the AC Stark shift.

The two-photon transition matrix element is an important input parameter in the
determination of the generalized Rabi frequency. Due to the two-photon nature of the
excitation process in 1S ⇔ n′S and 2S ⇔ n′S transitions in Hydrogen-like atoms, it is
defined by [14]

ΩRabi = 4πβifIL, (3.35)

where the intensity of the linearly polarized laser field IL is

IL =
1

2
ǫ0cε

2
L. (3.36)

3.4.1 Results for two-photon transitions

Our numerical results for the two-photon transition matrix element βif for the transitions
1S–n′S and 2S–n′S, n′ → ∞ within the nonrelativistic framework are shown in Table 3.2.
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Table 3.2: Two-photon transition matrix elements βif in units [Hz(W/m2)
−1

] for 1S ⇔ n′S and
2S ⇔ n′S transitions n′ → ∞, as described in Eq. (3.34), obtained for the Hydrogen atom, in
the nonrelativistic dipole approximation. The results obtained in this work (βif ) based on the
nonrelativistic Hydrogen Green’s function (Sturmian function method) are in a good agreement
with those obtained in Ref. [16], which relies on an extrapolation technique.

n′ → ∞ n′3/2 · βif [Hz(W/m2)−1] n′3/2 · βif [Hz(W/m2)−1]

this work Ref. [16]

1S ⇔ n′S 3.00998 × 10−5 - -

2S ⇔ n′S −2.68478 × 10−3 −2.68479 × 10−3

Due to the proportionality of the position operator and the laser frequency ωL with Z−1

and Z2 in Eq. (3.34), respectively, βif must be scaled by a factor 1/Z4 [14, 5], i.e.,

βif (Z) =
1

Z4
βif (Z = 1). (3.37)

Regarding this scaling factor, the numerical results can be easily generalized for a bound
two-body Coulomb system with nuclear charge Z where 1 6 Z 6 10 (for more details see
Ref. [14]). This scaling law can be applied for the Stark coefficients βAC and βioni discussed
in Sec. 3.2.

3.5 Partial summary and tentative concluding re-

marks

In this chapter, we dealt with the two-photon transitions 1S–n′S and 2S–n′S n′ → ∞
in the bound two-body Coulomb system. These transitions are driven by the linearly
polarized laser field on two-photon resonance with 1S–n′S and 2S–n′S transitions n′ → ∞.
This process leads to the shift of the energy levels (due to interaction of the Hydrogen-
like atom with the laser field) and an ionization of the Hydrogen-like atom (due to the
absorption of one additional photon from the laser field). In the framework of time-
dependent perturbation theory, a unified treatment, i.e., the Sturmian representation of
the radial Green’s function, was employed for the calculation of both the dynamic Stark
shift and the two-photon transition matrix elements for the Rydberg state [see Secs. 3.2.2
and 3.4]. The radial integral which appeared in the matrix elements was numerically
solved, where we profited from the integral representation of the Bessel function. The
corresponding results were shown in Tables 3.1, 3.2, Fig. 3.3 and Fig. 3.4. We found an
agreemen between our results those obtained by others.

In Sec. 3.3, the photoionization cross sections were obtained by two different methods.
The first method relied on the Sturmian representation of the radial Green’s function. This
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calculation was done in the framework of time-dependent perturbation theory. Considering
the fact that the imaginary part of the dynamic Stark shift is proportional to the ionization
cross section yielded the value of ionization cross section in S.I. units. The second one
was based on the one-photon ionization cross section of the n′S n′ → ∞ state. The
consistency of the results obtained from these two methods was verified in Table. 3.1 and
Sec. 3.3. The Z-scaling of the dynamic Stark shift coefficients (βioni and βAC), the two-
photon transition matrix element βif and the ionization cross section was introduced [see
Eq. (3.37)], which enables to generalize easily our results to any Hydrogen-like atoms with
Z ≤ 10. This is especially useful when we need the major systematic shift, i.e., AC Stark
shift, in the excitation arrangement related to the determination of the 1S–n′S transition
frequency n′ → ∞ via Doppler-free, two-photon laser spectroscopy in the Helium ion [see
Chapter 5].



Chapter 4

Dynamics of a charged particle in a
Penning trap (the Geonium atom)

4.1 Introduction

The main objective of this thesis is to introduce new mechanisms in order to determine
the bound-electron g factor in a Penning trap [see Chapter 5]. Therefore, it is worthwhile
to study the dynamics of a charged particle in a Penning trap in detail. This is the main
goal of the present chapter. However, before dealing with this subject, we would like to
briefly explain various kinds of electromagnetic traps.

Electromagnetic traps are generally divided into two groups. In the first group, neutral
particles or atoms are trapped. The force applied for the trapping mechanism comes from
a magnetic dipole in a non-uniform magnetic field. Two well-established examples of this
kind of trap are Ioffe-Pritchard and TOP traps [41, 42]. In the second group, charged
particles (ions) are trapped and that is why they are called ion traps [43]. The famous
ion traps are rf (Paul), Penning, combined and Kingdon traps as well as the electron
beam ion trap (EBIT). We briefly explain various types of ion traps. In the rf (Paul)
trap, the AC voltage between the ring electrode and two endcap electrodes along with the
magnetic field B traps a charged particle. Due to applying the AC voltage with the angular
frequency Ω, the charged particle starts to oscillate with the same angular frequency about
its mean position. Moreover, since the charged particle is affected by the inhomogeneous
magnetic field, there is no balance between an inward force during one half of the oscillation
period and an outward force during the other half of the oscillation period. This can be
observed as a micromotion for the charged particle in the trap [44]. The combined trap
is a combination of the Penning trap ( explained below) and (rf) Paul trap. In this trap,
two AC and DC voltages between endcaps and electrodes along with the magnetic field
B confine the charged particle in the trap. The major advantage of the combined trap
is that two charged particles can be simultaneously stored in the trap. Therefore, this
kind of trap is normally suitable to capture anti-Hydrogen, because the antiproton and the
positron can be trapped at the same time. The linear and ring traps are a new generation
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of the traps. Similar to the Paul trap, an AC voltage and a magnetic field B are used.
The most outstanding advantage of this trap is that more than one ion can be stored along
the axis of the trap with no micromotion. With the aid of this technology, one can cool
a large number of ions to low temperatures by a laser cooling technique, which is a base
for the development of quantum computers [45]. The Kingdon trap is made of a cylinder
in which a central thin wire attracts ions. This trap was used by Prior and others for
spectroscopic investigations of 3He+ [46]. The EBIT, developed at Lawrence Livermore
National Laboratory, is used to study X-rays induced by highly charged ions that interact
with electrons. In this trap, due to the presence of space-charge field coming from an
intense electron beam as well as an axial magnetic field, charged particles are trapped.
This type of trap has been generally utilized in the dielectronic recombination and the
electron impact excitation of ions [44].

Another ion trap is the Penning trap, which is of interest to us, because of its appli-
cation in studying in the behavior of charged particles. Historically, the Penning trap was
characterized for the first time by F. M. Penning in 1936 [47]. The aim of his study was to
deal with the properties of electrical discharges between coaxial cylinders in the presence
of a magnetic field. The main result of Penning was that an electron path between two
electrodes could be long in the presence of a magnetic filed. After observing such a be-
havior from the charged particles, experimentalists were motivated to take advantage of a
stored particle in the Penning trap to deal with the fundamental problems in Physics, such
as testing the validity of QED and CPT invariance. In Table 4.1, we present the important
developments concerning a charged particle in a Penning trap.

The ideal Penning trap is made up as follows: slow electrons with mass m and electric
charge e are captured in the trap by colliding a high energetic electron beam with a small
number of gaseous atoms. In addition, two combined magnetic and quadrupole electrostatic
fields are simultaneously imposed on the charged particle [see Fig. 4.1]. The quadrupole
electrostatic potential responsible for an axially bounding of a charged particle in the trap
in a cylindrical coordinate system is [48]

φ(ρ, z) = V0
z2 − ρ2/2

2d2
, (4.1)

where ρ and z are the radial and z components. V0 and d are the trap potential and size,
respectively. Simultaneous with the electrostatic potential, a magnetic field B is imposed
along the axis of the trap as shown in Fig. 4.1 to radially bound a charged particle in the
trap. We have schematically shown the configuration of the electric and magnetic fields of
the Penning trap in Fig. 4.1.

As mentioned, these two combined external fields store a single charged particle in the
trap. This bound system can be compared with a Hydrogen atom but with an important
difference. In a Hydrogen atom, a single electron bounds to the nucleus via the Coulomb
potential, while in this new bound system, a single charged particle bounds to the Penning
trap via the external fields. The latter one is the so-called “the Geonium atom” [48].

The Penning trap is designated to store a charged particle in a specific place. The goal
of this process is twofold. The first one is to use this technique in the field of precision
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Figure 4.1: The schematic representation of the configuration of the magnetic and quadrupole
electrostatic field lines.

measurements to determine the fundamental constants, such as the fine-structure constant
and bound-electron g factor. The second goal is to examine concepts such as CPT with
leptons and baryons, quantum electrodynamics and to perform accurate mass spectroscopy
measurements.

The major advantage of a Penning trap is that a charged particle can be kept in the trap
as long as desired [49]. This unique opportunity makes it possible to measure the physical
constants with a high accuracy. However, this unique advantage creates some limitations
in the experimental process. In other words, when the storing time is considerably long,
the density of the stored particles becomes small. In order to detect these small number
of particles in the trap, we need a very sensitive technique. If one increases the detection
sensitivity, this precludes carrying out other types of spectroscopic experiments.

In this chapter, we systematically study the dynamics of a charged particle in a Pen-
ning trap. In Sec. 4.2, the motion of the charged particle in an ideal Penning trap in the
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Table 4.1: The historical summary of important progresses for a charged particle in the Penning
trap.

Year Element Progress Reference

1936 e− Trapping of electrons in the Ref. [47]
presence of a magnetic filed

1967 e− Measurement of the cyclotron frequency Ref. [50]
1968 e− Measurement of the cyclotron frequency Ref. [51]

and the spin resonance
1968 e− Bolometric method Ref. [52]
1972 He+ Measurement of the lifetime of 2S state Ref. [53]
1976 e− g measurement on one single electron Ref. [54]
1978 Mg+ Laser cooling Ref. [55]
1981 Mg+ Spectroscopy of a single Mg+ ion Ref. [56]
1985 Be+ Frequency standard Ref. [57]
1987 Be+ Shell structure in a Penning trap Ref. [58]
1988 Mg+ Quantum jump spectroscopy Ref. [59]
2000 C5+ Observation of the continuous Ref. [60]

Stern-Gerlach effect on a bound electron
2002 C5+ New determination of the electron’s mass Ref. [61]
2004 O7+ Measurement of the g factor Ref. [62]
2008 e− New measurement of the electron magnetic Ref. [63]

moment

framework of classical electrodynamics is investigated using the Euler-Lagrange formula-
tion. More specifically, we consider two important cases. In the first case, the motion of
charged particle in the Penning trap is investigated. In the second case, the motion of the
charged particle in a Penning trap in the presence of an additional electric field is studied.
The latter one is an important issue when we deal with the quenching mechanism that
plays an essential role in three-photon, double resonance excitation arrangement for deter-
mining the bound-electron g factor [ see Chapter 5]. In Sec. 4.3, the quantum mechanical
motion of a charged particle in an ideal Penning trap is studied. We consider a real Penning
trap that is suffered imperfections and derive the invariance theorem. This theorem has
an application in obtaining the cyclotron frequency of an ion and bound-electron g factor
[see Chapter 5]. In Sec. 4.5, we introduce two methods for obtaining the true cyclotron
frequency based upon the invariance theorem and one side band frequency. Sec. 4.6 is
reserved for the partial summary and and tentative concluding remarks.
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4.2 Classical electrodynamics of the Geonium atom

In this section, we wish to describe the classical trajectory of a charged particle in the
Penning trap in two different cases:

• a charged particle trajectory in the presence of the quadrupole electric and magnetic
fields (the Geonium atom),

• a charged particle trajectory in the presence of the quadrupole electric and magnetic
fields in addition to an additional electric field E (the Geonium atom + an additional
electric field).

Let us start with the first case. The starting point is to use the Euler-Lagrange formalism
to derive the equations of the classical motion.

The Lagrangian can be written in terms of the kinetic energy T and the potential
energy V . The potential energy is

V (x, ẋ) = qφ(x, y) − qv · A(x); A(x, y, z) =
1

2
B

(

− yex + xey

)

, (4.2)

where φ(x, y) is defined in Eq. (4.1). v and q are the velocity and charge of a particle in
the trap, respectively.

Hence, the Lagrangian has the following form:

L =
1

2
m

(

ẋ2 + ẏ2 + ż2
)

− qV0

4d2

(

2z2 − x2 − y2
)

− qB

2

(

ẋy − ẏx
)

, (4.3)

or

L =
1

2
m

(

ẋ2 + ẏ2 + ż2
)

− 1

4
mω2

z

(

2z2 − x2 − y2
)

− 1

2
mωc

(

ẋy − ẏx
)

, (4.4)

where ωc = qB/m and ω2
z = qV0/md2. Therefore, the equations of the classical motion in

x and y directions are:

ẍ − ωcẏ − 1

2
ω2

zx = 0

ÿ + ωcẋ − 1

2
ω2

zy = 0, (4.5)

and for the z direction,
z̈ + ω2

zz = 0. (4.6)

Eq. (4.5) describes the radial motion with the cyclotron frequency ωc and the magnetron
frequency ωm in the xy-plane and Eq. (4.6) represents a simple harmonic motion with the
axial frequency ωz. Eqs. (4.5) and (4.6) also indicate that the axial motion of the particle
is decoupled from the radial motion.

There are various methods to obtain the analytic solution for Eq. (4.5). Here, we use
the complex variable method [u(t) = x(t) + iy(t)], which enables us to convert the two
differential equations in Eq. (4.5) into the following differential equation

ü(t) + iωcu̇(t) − 1

2
ω2

zu(t) = 0. (4.7)
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Figure 4.2: The motion of the Geonium atom in the xy-plane is composed of the cyclotron and
the magnetron motions is shown [see Eq. (4.10)]. The small circles represent the cyclotron motion
and the big circle shows the metastable magnetron motion in the Penning trap. Here, we have
assumed that ω+ = 4ωz, ωz = 8ω− and A = 8B = 4z0.

The general answer of this simple equation is e−iωt. By putting e−iωt in Eq. (4.7), one can
find the modified cyclotron ω+ and magnetron frequencies ω−, i.e.,

ω± =
1

2

(

ωc ±
√

ω2
c − 2ω2

z

)

, ωm ≪ ωz ≪ ωc. (4.8)

Hence, the general solution of Eq. (4.7) is

u(t) = A+e−iω+t + A−e−iω−t. (4.9)

The complex function u(t) characterizes a superposition of two circular motions in the xy-
plane. Eq. (4.9) indicates that this circular motion represented in Fig. 4.2 is composed of
the circular magnetron motion with the magnetron frequency (ω− = ωm) and the modified
cyclotron motion (ω+ ≃ ωc) [see Eq. (4.8)]. In Eq. (4.9), the second term refers to the
magnetron motion, which is in an unstable equilibrium in the Penning trap. This indi-
cates that during collisions with gaseous atoms, ions may diffuse out of the Penning trap,
which can be considered as a disadvantage of the Penning trap in comparison with a rf
trap, for which all three motions (axial, cyclotron and magnetron motions) are in a stable
equilibrium [49].

The general solutions of Eqs. (4.5) and (4.6) in a three-dimensional Cartesian space
read,

x(t) = A sin(ω+t) + B sin(ω−t)

y(t) = A cos(ω+t) + B cos(ω−t), (4.10)
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Figure 4.3: Three dimensional motion of the Geonium atom is based on the Eqs. (4.10 and 4.11),
which is combined the magnetron, cyclotron, trapping motions. The initial values for this typical
motion are A = 8B = 4z0 and ω+ = 4ωz, ωz = 8ω−.

and

z(t) = z0 cos(ωzt). (4.11)

In Fig. 4.3, we depict the ion motion for ω+ = 4ωz, ωz = 8ω− and A = 4z0 = 8B, where
z0 is the amplitude of the trapping motion.

Eqs. (4.10) and (4.11) indicate that a charged particle has a periodic motion in the
trap. The length of this duration is called an overall period that is equal to the periods
of the magnetron motion of the charged particle in the trap (1/ω−). In a real Penning
trap, the periodic motion can happen provided that the relevant frequencies are integer or
simple ratios of each other; otherwise the charged particle does not experience the periodic
motion.

To better understand the foregoing physical discussion, we introduce the ratio ωz/ω−,
the so-called trapping tune. In fact, this ratio shows the number of trapping oscillations.
The frequency ratio is proportional to the overall period. This means that for a small fre-
quency ratio, we expect a small overall period. Under this condition, the charged particles
will be considerably affected during the experiments. In Fig. 4.4, we draw some exam-
ples of charged particle orbits for small ratios of its eigenfrequencies that are depicted for
ω+ = ωz = nω−, where n = 5, 4, 3 and 2. These figures reveal that the charged particle
performs n (n = 5, 4, 3 and 2) oscillations in the axial direction during one period of the
magnetron motion. Moreover, an increase in the number of trapping oscillations results in
an increase in the radius of the cyclotron motion. This can be described by the following
relation,

rc =
ωz

ω−

Vcωz

2
, (4.12)

where Vc is the cyclotron speed of a charged particle. Eq. (4.12) indicates that for the
higher numbers of trapping oscillations, the contribution of the cyclotron motion of a
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Figure 4.4: Typical examples of ion orbits for different values of the ratio ωz/ω− are based
on Eqs. (4.10 and 4.11), which represent the number of axial oscillations. Here, the hierarchy
introduced in Eq. (4.8) is changed to ω− < ωz < ω+. For the four graphs, the values of the
trapping oscillations ωz/ω− are 5, 4, 2 and 3 (clockwise starting on the top left).

charged particle is more noticeable. In the following, we continue with the second case,
i.e. considering the effect of an additional electric field on the Geonium atom. The reason
for studying this case is that an additional electric field is responsible for a quenching
mechanism in the three-photon, double resonance excitation arrangement related to the
bound-electron g-factor determination [ see Sec. 5.4]. In this case, the modified potential
reads

ϕ(x, y, z) =
V0

4d2

(

2z2 − x2 − y2
)

− E0z, (4.13)

where the second term in Eq. (4.13) refers to the contribution of the additional electric
field. We again use the Euler-Lagrange method, like in the previous case. According to
Eq. (4.13), the Lagrangian reads

L =
1

2
m

(

ẋ2 + ẏ2 + ż2
)

− 1

4
mω2

z

(

2z2 − x2 − y2
)

− 1

2
mωc

(

ẋy − ẏx
)

+ mω2
az, (4.14)

where ωc = qB/m and ω2
z = qV0/md2. ωa is defined as

ω2
a =

qE0

m
, (4.15)
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where E0 is the intensity of the additional electric field. Eq. (4.14) indicates that the
equations of the motion in xy-plane are the same as Eq. (4.5). This means that the
additional electric field does not have any effects on the circular motion of a charged
particle in the trap (i.e., the magnetron and cyclotron motion). From Eq. (4.14), one can
obtain the following equation for the axial motion of the particle

z̈(t) + ω2
zz(t) = ω2

a. (4.16)

The solution of Eq. (4.16) is

z(t) =
ω2

a

ω2
z

+ z0 cos ωzt. (4.17)

In Fig. 4.5, we draw the trajectory of the charged particle in the Penning trap in the
presence and the absence of the additional electric field. In Eq. (4.17), since the ratio ωa

ω−

is proportional to the additional electric field E0 [see Eq. (4.15)], the trajectory of the
charged particle depends on the value of the E0 field. According to Fig. 4.5, there is a
considerable shift between these two trajectories for a large and moderate electric field,
while there is a tiny shift for a small electric field.

From the experimental point of view, the value of the additional electric field has to
be small in oder to keep a charged particle in the trap. Hence, it is safe to say that
this additional electric field produces a small shift in the charged particle orbit when its
contribution is taken into account.

In the following, to carefully examine the effect of an additional electric field on the
charged particle trajectory, we evaluate the average value of the square of the quadrupole
electrostatic field over the trajectory of the charged particle in the trap. This calcula-
tion is performed in the presence of an additional electric field E0. We remind that the
additional electric field is responsible for the quenching mechanism in the three-photon,
double-resonance excitation setup applied for the g-factor determination in Sec. 5.4. Re-
garding the quadrupole potential created by the two endcap electrodes and the additional
electric field in Fig. 4.1, one can write the total electric field in the Cartesian coordinate
system, i.e.

Ex(t) =
V0

2d2
x(t),

Ey(t) =
V0

2d2
y(t),

Ez(t) = −V0

d2
z(t) − E0, (4.18)

where x(t), y(t) and z(t) are introduced in Eqs. (4.10) and (4.17). V0 = 10.22 V/cm and
d = 0.335 cm are the trap potential and size, which are determined experimentally [see
Table I from Ref. [48]]. Therefore, the average values of the square of the quadrupole
electrostatic field components over one period of the motion of the charged particle in the
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Figure 4.5: Typical examples of ion orbits (the Geonium atom) for different values of the ratio
ωa/ω−, which is proportional to the value of additional electric field are based on Eqs. (4.10 and
4.17)]. The red line refers to the ion orbit in the absence of additional electric field and black
line is the ion orbit in the presence of additional electric field. Here, the hierarchy introduced in
Eq. (4.8) is considered. For the six graphs, the values of the ratio ωa/ω− are 2.46 (top left), 2.14
(top right), 1.82 (middle left), 1.50 (middle right), 1.18 (low left) and 0.86 (low right), respectively.
The initial values for the typical motion are A = 8B = 4z0 and ω+ = 4ωz, ωz = 8ω−.

trap read,

〈

E2
x

〉

=
〈

E2
y

〉

=
V 2

0

8d2

[

A2 + B2
]

=
65V 2

0

32d2
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)2
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〈

E2
z

〉
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0 +

V 2
0

2d2

( V

cm

)2

. (4.19)
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It is clear that these average values depend on the initial conditions of the charged particle
motion in the trap (i.e., the trap parameters V0 and d) and the value of the additional
electric field. They are evaluated for the same physical conditions applied to the trajectories
in Fig. 4.5

〈

E2
x

〉

=
〈

E2
y

〉

= 1890.5
( V

cm

)2

,

〈

E2
z

〉

= E2
0 + 465.353

( V

cm

)2

. (4.20)

To keep a charged particle in the trap, the value of the additional electric field must remain
small. Therefore, the average value of the z component of the total electric field depends
weakly on the value of the additional electric field E0. This shows that the effect of an
additional electric field E0 on the average value of the square of the quadrupole electrostatic
field over the trajectory of the charged particle in the trap is negligible. This effect is also
observed in Fig. 4.5, where the two trajectories for small values of the additional electric
field are compared and nearly coincided with the charged particle trajectory in the absence
of the additional electric field (black and red colors). Therefore, the conclusion we can
draw is that the small additional electric field does not have any considerable effects on
the trajectory of a charged particle in the Penning trap.

4.3 Quantum motion of the Geonium atom

In this section, we deal with the quantum mechanical motion of the charged particles in
a perfect Penning trap (the Geonium atom). In this study, we introduce two methods of
calculation. The first one is based on an analytical solution of the Schrödinger equation as
described in Ref. [64], while the second one is based on raising and lowering operators.

In the first method, we consider the following Hamiltonian for the charged particle in
the trap,

H =
p2

2m
+ φ(ρ, z), (4.21)

where p = i~∇ + (e/c)A(x, y). φ(ρ, z) and A(x, y) are defined in Eq. (4.1) and Eq. (4.2),
respectively. e and m are the charge and the mass of a charged particle. Therefore, the
Schrödinger equation of a charged particle in the presence of the quadratic electrostatic
potential introduced in Eq. (4.1) can be expressed as,

i~
∂ψ

∂t
= Hψ, (4.22)

According to findings of Ref. [64], the solution of Eq. (4.22) is,

ψ(ρ, ϕ, z) =
1√
2π

e−iEt/~+ilϕR(ρ)u(z), (4.23)
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where l is the orbital quantum number [see Eq. (4.29)]. The radial R(ρ) and and axial
u(z) parts of the wavefunction introduced in Eq. (4.23) can be obtained from the following
coupled relations [64],

u′′(z) +
(2m

~2
E2 − γ2

2z
2
)

u(z) = 0,

R′′(ρ) +
1

r
R′(r) +

(2mE1

~2
− 2γl − l2

r2
− γ2

1r
2
)

R(ρ) = 0.

(4.24)

In Eq. (4.24), the primes illustrate that the radial and axial parts of the wave function are
differentiated with respect to ρ and z, respectively. In Eq. (4.24), E1 and E2 satisfy the
following constraint,

E1 + E2 = ~

[

ωH

(

N +
1

2

)

− ωE

(

s +
1

2

)

+ ωs

(

k +
1

2

)]

, (4.25)

where ωH = 1
2
(Ω + Ω1), ωE = 1

2
(Ω − Ω1) and ωs =

√

2e2d
m

. Here, Ω and Ω1 read,

Ω =
eB

mc
, Ω1 = Ω

√

1 − 4amc2

B2
, (4.26)

where 0<a<B2/4mc2 and B is the magnetic field. The general solution of the Eq. (4.22)
is,

ψNsk(ρ, ϕ, z) =
1√
2π

eilϕ
√

2γ1IN,s(γ1ρ
2)

(γ2

π

)1/4
√

1

2kk!
e−γ2z2/2Hk

(√
γ2z

)

, (4.27)

with

IN,s(ρ) =
1

√

(s + l)!s!
e−

1
2
γ1ρ2

(

γ1ρ
)l/2

Ll
s

(

γ1ρ
2
)

, (4.28)

where γ1 = γ
√

1 − 4dmc2

B2 , γ2 = 2dme2/~
2 and γ = eB/2c~. In Eqs. (4.27) and (4.28), Hk

and Ll
s are designated for the Hermite polynomial and the Laguerre polynomial, respec-

tively. Here, m is the mass of the charged particle, c is the velocity of light and d is the
size of the trap. Note that k, l and s are the axial, orbital and radial quantum numbers,
respectively. The principal quantum number n is the sum of the two quantum number l
and s. The range of these quantum numbers is as follows:

k = 0, 1, 2, 3, . . . ,

l = 0,±1,±2,±3, . . . ,

s =

{

0, 1, 2, 3, . . . if l ≥ 0,

−l,−l + 1, . . . if l < 0

n = l + s =

{

l, l + 1, l + 2, l + 3, . . . if l ≥ 0,

0, 1, 2, . . . if l < 0.

(4.29)
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We can also write the general wave function of Eq. (4.27) in the separated form when we
want to separately study the quantum radial and axial motions [64], i.e.,

uk(z) =
(γ2

π

)1/4
√

1

2kk!
e−γ2z2/2Hk

(√
γ2z

)

,

Rl,s(ρ) =

√
2γ1

√

s!(s + l)!
e−γ1ρ2/2

(

γ1ρ
2
)l/2

Ll
s

(

γ1ρ
2
)

.

(4.30)

Note that the first relation in Eq. (4.30) refers to the quantum mechanical axial motion
and the second one denotes the combined cyclotron and magnetron motions.

The second method for the quantum mechanical investigation of the charged particle in
the trap (the Geonium atom) relies upon the raising and lowering operators as described in
Ref. [48]. The main advantage of this method is that it enables us to investigate separately
the axial, cyclotron and magnetron motions of the charged particle in the trap. With the
combination of these three motions, we can easily describe the quantum behavior of the
charged particle in the Penning trap.

Let us first consider the axial motion. The Hamiltonian of the axial motion, which is
similar to that of the one-dimensional harmonic oscillator reads,

Hz =
p2

z

2m
+

1

2
mω2

zz
2. (4.31)

We define the non-Hermitian raising and lowering operators as follows,

az =
(mωz

2~

)1/2

z + i
( 1

2m~ωz

)1/2

Pz,

a†
z =

(mωz

2~

)1/2

z − i
( 1

2m~ωz

)1/2

Pz. (4.32)

Using the basic commutation relation [z, pz] = i~, it is readily verified that az and a†
z satisfy

the commutation relation
[az, a

†
z] = 1. (4.33)

With the aid of the inverse of Eq. (4.32), the axial Hamiltonian becomes,

Hz = ~ωz

[

a†
zaz +

1

2

]

. (4.34)

The corresponding eigenvalues and eigenstates of this motion can be derived using the
raising operator introduced in Eq. (4.32),

Ek = ~ωz

[

k +
1

2

]

, |k〉 =
(a†

z)
k

√
k!

|0〉, (4.35)

and the Hermitian conjugate of the energy states |k〉 reads,

〈k| = 〈0|(az)
k

√
k!

. (4.36)



48 4. Dynamics of a charged particle in a Penning trap (the Geonium atom)

-6 -4 -2 2 4 6
Ξz

0.1

0.2

0.3

0.4

0.5

Ψ0
2

k=0

-6 -4 -2 2 4 6
Ξz

0.1

0.2

0.3

0.4

Ψ1
2

k=1

-6 -4 -2 2 4 6
Ξz

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ψ2
2

k=2

Figure 4.6: The quantum probability densities for the three lowest states of the axial motion of
a charged particle in the Penning trap (the Geonium atom) based on Eqs. (4.32) and (4.38) in
a Penning trap are shown. Note that ξz = z/σz is the dimensionless parameter, where σz =
[~/(mωz)]

1/2.

As a result of Eqs. (4.35) and (4.36), the orthonormality condition reads

〈k′|k〉 = δk′k. (4.37)

Due to the similarity with the quantum mechanical harmonic oscillator in one dimension,
one can use both Eq. (4.32) and

az|k〉 =
√

k|k − 1〉
a†

z|k〉 =
√

k + 1|k + 1〉, (4.38)

to create the other eigenstates from the ground state |0〉. We thus draw the probability
density of the quantum axial motion for the three lowest quantum numbers k = 0, 1 and
2 for a perfect Penning trap in Fig. 4.6. In Fig. 4.6, ξz/σz is a dimensionless variable
and σz = [~/(mωz)]

1/2. Moreover, we compare the classical and quantum mechanical
probability density for the axial quantum number k = 15 in Fig. 4.7.

The question that could be asked is when the quantum description of the axial motion
is necessary? If the axial motion is not coupled to a tuned circuit or is coupled very weakly
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Figure 4.7: The comparison of the quantum probability density for the state k = 15 of the axial
motion with the corresponding classical probability density (dash line). Note that ξz = z/σz and
is the dimensionless parameter, where σz = [~/(mωz)]

1/2.

to the radiation field, the quantum description has to be taken into account. Otherwise,
the classical description remains valid for the axial motion (at least for an electron or a
proton in the Penning trap) [48].

Second, we focus on the quantum cyclotron motion of the charged particle in the
Penning trap (the Geonium atom). The corresponding Hamiltonian for this motion can
be written in terms of the canonically conjugate variables q and pq

Hc =
1

2
mω2

cq
2 +

p2
q

2m
, (4.39)

where q = Px/mωc and pq = −Py. Hence, the raising and lowering operators in this case
can be written as follows:

ac =

√

mωc

2~
q + i

√

1

2m~ωc

pq,

a†
c =

√

mωc

2~
q − i

√

1

2m~ωc

pq, (4.40)

or

ac =

√

1

2m~ωc

(

Px − iPy

)

a†
c =

√

1

2m~ωc

(

Px + iPy

)

. (4.41)

In Eq. (4.41), ac and a†
c fulfill the commutation relation [ac, a

†
c] = 1. Like in the axial

motion, one can also write Eq. (4.39) in terms of the raising and lowering operators using
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Eq. (4.41):

Hc = ~ωc

(

aca
†
c +

1

2

)

. (4.42)

In this case, the non-Hermitian raising and lowering operators a†
c and ac can also create all

eigenstates and eigenvalues,i.e.,

ac|c〉 =
√

c|c − 1〉,
a†

c|c〉 =
√

c + 1|c + 1〉, (4.43)

where the cyclotron energy spectrum reads,

Ec = ~ωc

(

c +
1

2

)

. (4.44)

We have depicted the probability density of the cyclotron wave functions for the three
lowest cyclotron quantum numbers c = 0, 1 and 2 using Eq. (4.41) and Eq. (4.43)[ see
Fig. 4.8]. Note that we have used the dimensionless variables ξx = x/σxy and ξy = y/σxy

in our wave functions, where σxy = [~/(mωxy)]
1/2, in order to draw the probability density

for the quantum cyclotron motion. In addition, we compare the classical and quantum
mechanical probability density for the cyclotron quantum number c = 15 in Fig. 4.9.
Third, we continue with the quantum mechanical magnetron motion of the charged particle
in the Penning trap (the Geonium atom). Similar to the axial and cyclotron motions, one
can define the raising and lowering operators in the case of quantum magnetron motion,
i.e.,

am =

√

1

2m~ωm

(

Px + iPy

)

a†
m =

√

1

2m~ωm

(

Px − iPy

)

. (4.45)

Note that the same commutation relation as used for the axial and cyclotron motions holds
for the quantum magnetron motion. In this case, the effect of the annihilation and creation
operators am and a†

m on the magnetron eigenstates is the same as those operate upon the
axial and cyclotron eigenstates, i.e.,

am|m〉 =
√

m|m − 1〉,
a†

m|m〉 =
√

m + 1|m + 1〉, (4.46)

where m is the magnetron quantum number. Therefore, similar to the two previous cases
(i.e., the axial and cyclotron motions), the Hamiltonian of the magnetron motion of the
charged particle reads:

Hm = −~ωm

(

ama†
m +

1

2

)

, (4.47)

where the corresponding eigenvalues are

Em = −~ωm

(

m +
1

2

)

. (4.48)
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Figure 4.8: The quantum probability densities for the three lowest states of the cyclotron motion
of the charged particle in the Penning trap (the Geonium atom) are shown. These are obtained
based on Eqs. (4.41) and (4.43) and are shown in ξxξy-plane. Note that ξx = x/σxy and ξy = y/σxy

are the dimensionless parameters, where σxy = [~/(mωxy)]
1/2.

For a charged particle that populates the states c = 0 and 1 with a high probability, the
particle spends the majority of its time near these states. For such a particle the cyclotron
motion has to be described quantum mechanically. However, the magnetron motion can
still be treated classically for both an electron and a proton [48]. This originates from the
fact that the magnetron motion has a long radiative decay time, which precludes coupling
between the magnetron motion and the black body radiation in the Penning trap [48].

After considering separately the axial, cyclotron and magnetron motions of the charged
particle in the Penning trap (the Geonium atom), we can describe the whole quantum
mechanical motion of the charged particle in the trap. Due to the similarity between the
Hamiltonian of a charged particle in the Penning trap and that of a three-dimensional
harmonic oscillator, the eigenstates of the charged particle in the Penning trap can be
constructed by using the following normalized states,

|k, c,m〉 = (k! c! m!)−1/2
[

(a†
z)

k(a†
m)s(a†

c)
l
]

|0, 0, 0〉, (4.49)
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Figure 4.9: A comparison of the quantum probability density for the state c = 15 of a cyclotron
motion (the curved plane) with the probability density of the corresponding classical cyclotron
motion (the horizontal plane) in the ξxξy plane. Note that ξx = x/σxy and ξy = y/σxy are the
dimensionless parameters, where σxy = [~/(mωxy)]

1/2.

with corresponding eigenvalues

Ekcm = ~ωz

(

k +
1

2

)

+ ~ωc

(

c +
1

2

)

− ~ωm

(

m +
1

2

)

. (4.50)

In Eq. (4.50), the energy sign in the axial and cyclotron motions is positive, while it
is negative for the magnetron case. This refers to the fact that the axial and cyclotron
energies increase when the their quantum numbers are increased, which means that their
energy levels is limited from below, as shown in Fig. 4.11. In the case of the magnetron
energy levels, its energy decreases by increasing its quantum number m, due to the fact
that it is a metastable motion (as discussed in Sec. 4.2). As a consequence, the magnetron
energy levels are turned upside down, as also illustrated in Fig. 4.11.

We draw the quantum mechanical probability density of a charged particle when the
contributions of the three quantum motions, i.e., axial, cyclotron and magnetron motions,
are taken into account Fig. 4.10.

In order to complete the quantum mechanical investigation of the charged particle in
the trap, the spin motion of a trapped particle has to be considered as well. To do so, we
express the spin motion in terms of the following spin Hamiltonian

Hs = −µ · B =
g

2
~ωc

1

2
σz, (4.51)

where µ is the Bohr magneton and σz refers to spin operator in the z direction. The
corresponding eigenvalue of σz is

Es =
g

2
~ωc

s

2
. (4.52)
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Figure 4.10: The quantum probability densities for the ψ000, ψ010, ψ020 and ψ111 states of the
charged particle in the Penning trap (the Geonium atom) based on Eqs. (4.32), (4.41), (4.45) and
(4.49) are shown. The first quantum number refers to the axial quantum number and the rest is for
the cyclotron and magnetron quantum numbers, respectively. Here, ξx = x/σxy, ξy = y/σxy and
ξz = z/σz are the dimensionless parameters, where σxy = [~/(mωxy)]

1/2 and σz = [~/(mωz)]
1/2.

For each trapped particle with spin 1/2, there exists two energy levels corresponding to
s = ±1 [see Fig. 4.11]. The energy gap between these levels is Es = ~ωs, where ωs =
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Figure 4.11: The separation of the Geonium atom energy levels for an electron. The first ladder
on the left shows the cyclotron energy levels (E′

c = ~ω′
c). In the second one, the energy levels

are separated by spin Es = ~ωs. In the third one, the energy levels are split by axial energy
Ez = ~ωz. Finally, the magnetron energy Em = ~ωm separates the energy levels in opposite
direction because its motion is unbound and metastable [48].

(g/2)ωc [see Fig. 4.11]. This implies that there is a small difference between the spin
precession frequency ωs and the cyclotron frequency ωc, as g is not exactly equal to 2 for
an electron [48]. The separation among the Geonium energy levels, as shown schematically
in Fig. 4.11, is expressed in terms of the anomaly frequency ωa ,

ωa = ωs − ωc. (4.53)

The anomaly transition due to the anomaly frequency ωa is correlated to the two simulta-
neously upward and downward spin-flip and cyclotron transitions in Fig. 4.11.

However, since there is an electrostatic field in addition to the magnetic field in the
Penning trap, the cyclotron frequency is slightly modified to the new value of ω′

c resulting
in a change in the separation among the energy levels of the Geonium atom as follows:

ω′
a = ωs − ω′

c. (4.54)

This separation is shown in Fig. 4.11 by E ′
a = ~ω′

a.
The obtained results in this section are valid when the electrostatic and magnetic fields

are perfectly aligned with the quadrupole axis. When one considers imperfections due to
misalignments of the field directions with the symmetry axis, the results above need to be
modified. This concept will be introduced in the next section.

4.4 A real Penning trap

So far, we have considered an ideal Penning trap and described classically and quantum
mechanically the motion of a charged particle in it. In reality, the Penning trap suffers
a few imperfections. Certainly, they have considerable effects on the accuracy level of
measurements. In principle, these imperfections can be categorized into three groups. The
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first one is the misalignment of the magnetic field direction with the symmetry axis of the
trap electrods. The second one is related to the higher-order electrostatic imperfections. In
fact, adding the harmonic term to the ideal potential Eq. (4.1) gives us this imperfection.
The presence of these harmonic terms are originated both from the deviation of an ideal
geometry in the trap electrods and from improperly aligned electrodes shown in Fig. 4.1.
Therefore, one can express these imperfections in terms of an infinite series of multiplica-
tions of spherical harmonics Y m

l (θ, ϕ) and the ratio (r/z0)
l, where r is the radial coordinate

and z0 is the trapping size [see Ref. [48]]. Due to the rapid falling off of the series, the terms
l ≥ 6 can be ignored. The terms l = 0 and l = 1 vanish because of the symmetrical shape
of the Penning trap. The term l = 5 can be eliminated due to the inversion symmetry.
The terms l = 3 and l = 4 give rise to an anharmonicity [65]. The contributions of these
two terms can not be neglected. Hence, experimentalists usually reduce the effect of these
two terms on the high precision measurements by using compensation electrodes [65]. The
third one is the so-called harmonic imperfection. It can be represented by adding an extra
term to Eq. (4.1), i.e., [48]

φ(x, y) =
1

2
mω2

z

[

z2 − 1

2
(x2 + y2) − 1

2
ǫ(x2 − y2)

]

, (4.55)

where ǫ is the single asymmetry parameter.

4.4.1 The invariance theorem

As explained in the previous section, there are a few unavoidable imperfections in the
real Penning trap that reduce the accuracy level of a measurement. Experimentally, these
imperfections are originated both from the misalignments of the trap electrods with the
magnetic field direction and from the deviation of the ideal geometry of the trap electrodes.
In this section, we want to obtain a relation for an exact determination of the cyclotron
frequency ωc, which is free from the above imperfections.

We consider a charged particle in a real Penning trap, which suffers the two general
above imperfections. The first imperfection related to the configuration of the Penning
trap electrodes and the magnetic field B can be expressed in a principal-axes coordinate
system in terms of the angels θ and ϕ as follows,

Bx = B sin θ cos ϕ,

By = B sin θ sin ϕ,

Bz = B cos θ. (4.56)

The second one is the harmonic imperfection that is shown by the ǫ parameter in
Eq. (4.55). According to the Lorentz force and Newton’s second law, one can obtain the



56 4. Dynamics of a charged particle in a Penning trap (the Geonium atom)

following differential equations of a charged particle in the real Penning trap,

ẍ(t) − ωcẏ(t) sin θ sin ϕ + ωcż(t) sin θ cos ϕ =
1

2
ω2

z

(

1 + ǫ
)

x(t),

ÿ(t) − ωcż cos θ + ωcẋ(t) sin θ sin ϕ =
1

2
ω2

z

(

1 − ǫ
)

y(t),

z̈(t) − ωcẋ(t) sin θ cos ϕ + ωcẏ(t) cos θ = −ω2
zz(t).

(4.57)

Due to the time dependence of the form e−iωt, one can convert the differential equation
introduced in Eq. (4.57) into three homogenous algebraic equations with the determinant,

F (ω2) =

∣

∣

∣

∣

∣

∣

ω2 + 1
2
ω2

z(1 + ǫ) −iωωc cos θ iωωc sin θ sin ϕ
iωωc cos θ ω2 + 1

2
ω2

z(1 − ǫ) −iωωc sin θ cos ϕ
−iωωc sin θ sin ϕ iωωc sin θ cos ϕ ω2 − ω2

z

∣

∣

∣

∣

∣

∣

. (4.58)

Eq. (4.58) indicates that the algebraic equation has a solution, provided that F (ω̄2) = 0,
where ω̄ is a measured eigenfrequency. Since the closed form of Eq. (4.58) has 3 × 3
dimensions, Eq. (4.58) can be matched with the following polynomial form,

F (ω2) =
(

ω2 − ω̄2
c

)(

ω2 − ω̄2
z

)(

ω2 − ω̄2
m

)

= ω6 − ω4
(

ω̄2
c + ω̄2

m + ω̄2
z

)

+ ω2
(

ω̄2
z ω̄

2
m + ω̄2

c ω̄
2
z + ω̄2

c ω̄
2
m

)

− ω̄2
c ω̄

2
z ω̄

2
m. (4.59)

Note that ω̄c, ω̄m and ω̄z are the measured cyclotron, magnetron and axial frequencies,
respectively.

Simplifying further the determinant in Eq. (4.58) gives,

F (ω2) = ω6 − ω4ω2
c + ω2

[

ω2
cω

2
z

(

1 − 3

2
sin2 θ − 1

2
ǫ sin2 θ cos 2ϕ

)

− 3

4
ω4

z

(

1 +
ǫ2

3

)]

−

− 1

4
ω6

z

(

1 − ǫ2
)

.

(4.60)

Matching the coefficients of the powers ω0, ω2 and ω4 in both Eqs. (4.59, 4.60) leads to
the following results,

ω̄2
c ω̄

2
z ω̄

2
m =

1

4
ω6

z(1 − ǫ2), (4.61a)

ω̄2
c ω̄

2
z + ω̄2

c ω̄
2
m + ω̄2

z ω̄
2
m = ω2

cω
2
z

(

1 − 3

2
sin2 θ − 1

2
ǫ sin2 θ cos 2ϕ

)

− 3

4
ω4

z

(

1 +
1

3
ǫ2

)

, (4.61b)

ω̄2
c + ω̄2

z + ω̄2
m = ω2

c . (4.61c)

Eq. (4.61c) is the so-called “invariance theorem”. This relation indicates that the
cyclotron frequency ωc is independent of the misalignment angles θ and ϕ and the distortion
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parameter ǫ that were described in Sec. 4.4. In principle, the invariance theorem provides a
prescription that allows us to calculate the cyclotron frequency ωc in terms of the measured
eigenfrequencies of the real Penning trap (i.e., ω̄c, ω̄m and ω̄z).

Experimentally, the cyclotron frequency ωc is obtained by measuring ω̄c, ω̄m and ω̄z, in
which the measurement of ω̄c is performed to a good level of accuracy, while the measure-
ment ω̄m and ω̄z is carried out with lesser accuracies [48]. This is because the deviation
from an ideal geometry of the trap electrodes imposes a very weak perturbation to the
cyclotron motion of the ion in a strong magnetic field, yielding [48]

ω̄2
c ≫ ω̄2

z ≫ ω̄2
m. (4.62)

According to Eq. (4.62), ω̄z = ωz and Eq. (4.61a) yields

ω̄m = ω̃m =
ω̄2

z

2ω̄c

. (4.63)

By adding ω̃2
m to the both sides of Eq. (4.61c), we can rewrite the invariance theorem

as follows,

ω2
c = ω̄2

m − ω̃2
m +

[

ω̄c +
ω2

z

2ω̄c

]2

. (4.64)

After performing some algebraic treatments, Eq. (4.64) is converted to the following form,

ωc

ω̄c

=
[ ω̃2

m

ω̄2
c

( ω̄2
m

ω̃2
m

− 1
)

+
(

1 +
ω̄2

z

2ω̄2
c

)2]1/2

. (4.65)

Due to the fact that ω̃2
m−ω̄2

m is a small quantity, one can expand Eq. (4.65) around ω̃2
m−ω̄2

m

to obtain

ωc

ω̄c
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1

2

( ω̄z

ω̄c

)2

+
1

8ω̄4
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[( ω̄m

ω̃m
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×
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z/2ω̄
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c )
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[( ω̄m

ω̃m
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− 1
]

+
4ω̃2

mω̄2
c

1 + ω̄2
z/2ω̄

2
c

}

. (4.66)

Recalling the hierarchy ω̄2
c ≫ ω̄2

z ≫ ω̄2
m, in the second line of Eq. (4.66), the denominator

in the first term is approximately equal to unity and the numerator in the second term is
equal to ω̄4

z . Hence Eq. (4.66) simplifies to

ωc

ω̄c

= 1 +
1

2

( ω̄z

ω̄c

)2

+
1

8

( ω̄z

ω̄c

)4

×
[( ω̄m

ω̃m

)2

− 1
]

. (4.67)

In principle, the term (ω̄z/ω̄c)
4 in Eq. (4.67) is in reality, a very small correction [(ω̄z/ω̄c)

4 =
10−14]. Thus by not considering this term, one obtains the relation for the corrected
cyclotron frequency ω̄c = ω̄+ for an ideal Penning trap [see Eq. (4.8)]. This means that one
can consider the leading order correction; in this approximation, ω̄2

c ≃ ω2
c and Eq. (4.61b)

can be converted to the following useful form,

ω̄2
z ≃ ω2

z

[

1 − 3

2
sin2 θ

(

1 +
1

3
ǫ cos 2ϕ

)]

. (4.68)
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Inserting Eq. (4.68) into Eq. (4.61a) reveals that

ω̄2
m =

ω4
z

4ω̄2
c

(

1 − ǫ2
)[

1 − 3

2
sin2 θ

(

1 +
1

3
ǫ cos 2ϕ

)]−1

. (4.69)

After writting Eq. (4.68) in terms of ω̄z and substituting that into Eq. (4.69), one can reach
the following result,

ω̄2
m = ω̃2

m

(

1 − ǫ2
)[

1 − 3

2
sin2 θ

(

1 +
1

3
ǫ cos 2ϕ

)]−3

. (4.70)

Note that the factor ω̃m comes from Eq. (4.63).
Since the misalignment angel θ and the distortion parameter ǫ are much smaller than

unity under experimental conditions, Eq. (4.70) becomes

ω̄2
m ≃ ω̃2

m

(

1 − ǫ2 +
9

2
θ2

)

. (4.71)

Therefore, Eq. (4.67) at the limit of very small θ and ǫ reads

ωc

ω̄c

= 1 +
1

2

( ω̄z

ω̄c

)2

+
9

16

( ω̄z

ω̄c

)4(

θ2 − 2

9
ǫ2

)

. (4.72)

4.5 Determination of the true cyclotron frequency

As explained before, the Penning trap is the most suitable device, in which one can perform
the most precise measurement to determine the fundamental constants, such as the mag-
netic moment of the electron and test the fundamental symmetries, such as CPT. In order
to achieve these tasks, the determination of true cyclotron frequency with high precision
is certainly a requirement. [see Refs. [66, 67]].

In this section, we deal with two different methods for the determination of the true
cyclotron frequency of the charged particle in the real Penning trap. The first method
is based on the invariance theorem and the second one relies upon a single sideband fre-
quency. Note that the first method is much more precise than the second one. In those
experiments, where the high accuracy level of the measurement is required, the former
method is preferred.

4.5.1 Determination of the cyclotron frequency based on the in-
variance theorem

The true cyclotron frequency is not the oscillation frequency of the charged particle in the
real Penning trap. Hence, it can not be obtained via an experiment. As mentioned in
Sec. 4.4.1, it can be expressed in terms of three measured eigenfrequencies of the charged
particle in the real Penning trap, i.e., the trap-modified cyclotron frequency (ω̄c), the axial
frequency (ω̄z) and the magnetron frequency (ω̄m), and then obtained via the invariance



4.5 Determination of the true cyclotron frequency 59

theorem [see Eq. (4.61c)]. These three measured eigenfrequencies depend on the two mis-
alignment angles (θ and ϕ) and the harmonic distortion factor ǫ [see Eq. (4.55)].

The outstanding point of the invariance theorem is that harmonic and improperly
aligned magnetic field imperfections (i.e., θ, ϕ and ǫ) do not influence the true cyclotron
frequency ωc (see Sec. 4.4). However, the anharmonic imperfections mentioned in the
previous section could still affect the accuracy of the cyclotron frequency determination.
Therefore, the cyclotron frequency, which plays an important role in the determination
of the bound-state g factor can be obtained with a high accuracy. This prescription is
especially very efficient for more massive particles, which have smaller cyclotron frequen-
cies [65].

4.5.2 Determination of the cyclotron frequency based on one
sideband frequency

The sideband frequency is defined as follows,

ω̄c = ω̄+ + ω̄−. (4.73)

Eq. (4.73) denotes that the sideband frequency connects the magnetron and cyclotron
motions in the real Penning trap. Since the sideband frequency ω̄c can be measured in the
imperfect Penning trap (real Penning trap), it can be expressed in term of the systematic
shift ∆ω̄c, i.e.,

ω̄c = ωc + ∆ω̄c, (4.74)

where ωc is the true cyclotron frequency.
The measured sideband frequency ω̄c = ω̄++ω̄− can be interpetrated as a true cyclotron

frequency ωc, if the systematic shift ∆ω̄c vanish. In the following, we want to evaluate this
systematic shift and show that this systematic shift is really small. In this calculation, we
will fully profit from the invariance theorem.

In the following, we substitute Eq. (4.73) into Eq. (4.74) and the systematic shift ∆ω̄c

reads,
∆ω̄c = ω̄+ + ω̄− − ωc. (4.75)

After dividing both sides of this equation by ω̄c, Eq. (4.75) reads

∆ω̄c

ω̄c

= 1 +
ω̄−
ω̄+

− ωc

ω̄c

, (4.76)

where in the first and second term of the right hand side of Eq. (4.76), ω̄c = ω̄+ is assumed.
Due to the hierarchy ω̄2

c ≫ ω̄2
z ≫ ω̄2

m, Eq. (4.8) for the measured eigenfrequencies can
be expanded (for small ω̄z)

ω̄− ≃ ω̄2
z

2ω̄+

+
ω̄4

z

4ω̄3
+

+ · · · . (4.77)

At the limit of very small θ ≪ 1 and ǫ ≪ 1, Eq. (4.68) reads,

ω̄2
z ≃ ω2

z

(

1 − 3

2
θ2

)

+ · · · . (4.78)
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Inserting Eq. (4.78) into Eqs. (4.77 and 4.72) leads to the following results, respectively,

ω̄− ≃ ω2
z

2ω̄+
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2
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+ · · · , (4.79a)
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. (4.79b)

Substituting Eqs. (4.79a and 4.79b) into Eq. (4.76) leads to the following result,

∆ω̄c

ω̄c

≃ ω4
z

4ω̄4
c

(1

2
ǫ2 − 9

4
θ2

)

. (4.80)

Note that in the derivation of Eq. (4.80) the leading order of the first relation in Eq. (4.79)
is taken into account.

Inverting Eq. (4.78) in terms of ω̄2
z and putting it in Eq. (4.80) give us

∆ω̄c

ω̄c

≃ ω̄4
z

4ω̄4
c

(1

2
ǫ2 − 9

4
θ2

)

. (4.81)

Considering the relation ω̄2
z ≃ 2ω̄cω̄−, Eq. (4.81) becomes

∆ω̄c ≃
(9

4

)( ω̄2
−

ω̄c

)(2

9
ǫ2 − θ2

)

. (4.82)

If one puts ω̄− ≃ ω̄2
z/2ω̄c into Eq. (4.82), one will obtain the prefactors that also appeared

in the third term of Eq. (4.79b), which means that there is consistency between these two
equations.

Eq. (4.82) indicates that the systematic shift ∆ω̄c is of the order the ratio of the
magnetron frequency and the measured cyclotron frequency, which is much smaller than
the cyclotron frequency due to the hierarchy of the frequencies (ω̄− ≪ ω̄z ≪ ω̄+) for a
charged particle in a real Penning trap. In addition, Eq. (4.82) depends on the square of
the misalignment θ and harmonic distortion ǫ, but it does not depend on the mass and the
charge of the particle in the lowest order.

4.6 Partial summary and tentative concluding remarks

The main idea of this thesis is related to the proposals for the bound-electron g-factor
determination, which is performed in the Penning trap. To this end, in this chapter, we
described the Penning trap and the significance of its applications on the area of high
precision measurements. We obtained the typical trajectory of a charged particle in two
combined quadrupole electrostatic and magnetic fields (the Geonium atom) [see Fig. 4.2
and Fig. 4.3]. Also, the trajectroy of a charged particle in a Penning trap was mapped out
in the presence of an additional electric field [see Fig. 4.5]. For a small electric field, we
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found that it does not have a significant effect on the ion trajectory. This finding also has
an essential role in the three-photon, double-resonance excitation arrangement related to
the bound-electron g-factor determination, which will be illustrated in Chapter 5. Based
on the similarity between the Hamiltonian of the Geonium atom with the Hamiltonian of a
particle in a three dimensional harmonic potential, we described the quantum dynamics of
the Geonium atom via two different methods. The first one was based on the Schrödinger
equation and the second one relied on the lowering and raising operators. Based on these
methods, we were able to explain separately the axial, cyclotron and magnetron motions
of a charged particle, which lead to the general wavefunction of a charged particle in the
Penning trap (the Geonium atom). Due to the unavoidable imperfections in the Penning
trap, we considered the real Penning trap and recalculated the invariance theorem, which
has a significant application in the area of high-precision measurement of a bound-electron
g factor [see Chapter 5]. We utilized two methods, i.e., the invariance theorem (Sec. 4.5.1)
and one side band frequency (Sec. 4.5.2) in order to obtain the true cyclotron frequency.
Since the determination of the true cyclotron frequency based on the first method yields a
more precise result than the second one, it is always used in those experiments that a need
high precision (such as bound-electron g-factor measurements), while the second method
based on one side band frequency is useful for those experiments, which do not need the
high precision.
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Chapter 5

Proposals for measurement of the
bound-electron g factor

5.1 Introduction

Electromagnetic interactions are well understood in terms of quantum electrodynamics
(QED). Many experiments in the field of atomic as well as sub-atomic physics have con-
firmed the theoretical predictions of QED with great precisions. The well-known experi-
ments are the measurements of the Doppler-free, two-photon 1S–2S transition frequency
and free- and bound- electron g factor. An excellent agreement between the experimental
and theoretical values of the g factor for a free- and bound- electron has clearly demon-
strated the success of the theory of quantum electrodynamics [68]. For the free electron,
these values are gexp = 2.002 319 304 360 (56) and gth = 2.002 319 304 3718 (75) [63, 69]
and for a bound-electron, we have gexp(

12C5+) = 2.001 041 5663 (10)(56) and gth(
12C5+) =

2.001 041 5901 (3) [70].

Since both the theoretical and experimental values for the bound-electron g factor have
impinged upon the uncertainty of the electron mass [71], any advances in the theoretical
and experimental investigations of the magnetic moments of a bound system is required to
raise the accuracy level [62, 72]. The magnetic moments of the bound electron in 12C5+,
9Be+ and 6O7+ have been measured with a high precision [73, 62, 74]. The present accuracy
of the experimental results for Hydrogen-like carbon as well as oxygen is already below one
part per billion level and is likely to be improved in the near future.

In this chapter, we introduce two different proposals in which the accuracy level of
a bound-electron g-factor value could be improved. The motivation behind the current
chapter is the applicability of the ultra-high precision atomic laser spectroscopy techniques
in measuring the bound-electron g factor and the 1S–2S transition frequency via two-
photon spectroscopy of Helium ion. In Sec. 5.2 of this chapter, we explain the experimental
and theoretical aspects of g factor. This section comprises of a general description of the g
factor, experimental setup, that is applied for measuring the bound-electron g factor in a
Penning trap, the theoretical aspects of a free- and bound-electron g factor as well as QED
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corrections related to the bound-electron g factor. Based on this study, the g factor of 4He+

ion in its ground state is obtained in which the QED corrections are taken into account.
In Sec. 5.3, the first proposal for measurement of the bound-electron g factor based on the
idea of two-photon, double-resonance excitation arrangement is introduced. In Sec. 5.4,
the second proposal for measurement of the bound-electron g factor relied on three-photon,
double resonance excitation arrangement is studied. The latter setup could also be applied
to measure the 1S–2S and 1S ⇔ n′S, n′ → ∞ transition frequencies in 4He+. These
frequency measurements, as the third proposal, are explained in Sec. 5.5. The partial
summary and and tentative concluding remarks are given in Sec. 5.6. Three appendices
elucidate the calculation of different theoretical data that were used for the two proposals.
In Appendix. A, the calculation of quenching effect on the lifetime of metastable 2S state
is introduced. In Appendix. B, Breit-Rabi diagram, due to the effect of the magnetic field
of a Penning trap on the 2P1/2(mj = ±1/2) and 2S1/2(mj = ±1/2) states, is obtained.
In Appendix. C, the calculation related to the relativistic and the leading order of QED
contributions of g factor for various states is presented. In Appendix. D, we also introduce
the relativistic and QED corrections, which are related to the energy value of 1S and 2S
states in Helium ion.

5.2 Experimental and theoretical aspects of g factor

In this section, we consider the experimental and theoretical significance of free- and bound-
electron g factor. In the experimental discussions of this section, we express the g factor of
an electron in terms of the Larmor frequency of the electron and cyclotron frequency of an
ion. These frequencies are accurately measured via the experimental setup so-called the
double-trap technique (explained blow). In the theoretical considerations of this section,
the deviation of a free- and bound-electron g factor from the Dirac value is explained by
introducing the corresponding expansions in terms fine-structure constant α and binding
effects Zα. In the case of the bound-electron g factor, the relativistic and QED corrections
for Helium ion is calculated. This investigation provides a theoretical background for the
two proposed excitation arrangements related to the bound-electron g-factor measurement
in Helium ion [ for details of the two excitation arrangements see Secs. 5.3 and 5.4].

5.2.1 General description

This section introduces general characteristics of the bound-electron g factor. The direct
relation between the magnetic moment µ and the bound-electron g factor can be expressed
in terms of its total angular momentum J as follows,

µ = −gjµ0J , (5.1)

where µ0 = e~/me is the Bohr magnetron. Note that Eq. (5.1) is given in the units of the
Bohr magnetron. Here, e and me are the charge and the mass of an electron, respectively.
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Figure 5.1: The spin of a spin-1/2 particle (e.g., an electron) and the magnetic moment µ have
two potential orientations in an external magnetic field. The B field is in z direction. gj is the
bound-electron g factor. Here, µB refers to the Bohr magnetron.

In the presence of a magnetic field B (in z direction) in a Penning trap, the energy
difference between two spin directions of the bound electron reads

∆E = −µ · B = gj
e~

2me

Bz. (5.2)

If we define the cyclotron frequency of the electron ωe
c = eBz/me, Eq. (5.2) becomes

∆E =
~

2
gjω

e
c . (5.3)

If a magnetic moment µ is immersed in a steady B field in the z direction [see Fig. 5.1],
the magnetic moment will precess about the z axis with the classical Larmor frequency
ωL. A measurement of the magnetic moment is made through inducing a spin-flip of
the magnetic moment between the two states parallel and antiparallel to the B field [see
Fig. 5.1]. The energy difference between two states is equal to ∆E = ~ωL. Therefore, the
g factor reads

gj = 2
ωL

ωe
c

. (5.4)

Eq. (5.4) indicates that the bound-electron g factor can be obtained if the Larmor and
cyclotron frequency of the bound electron are measured. From the experimental point of
view, the measurement of the cyclotron frequency of the bound electron is a formidable
task. In other words, Eq. (5.4) is not a suitable way to obtain the bound-electron g factor.
The possible way to measure the bound-electron g factor is to use the cyclotron frequency
of an ion, since it can be measured experimentally. In this fashion, one can write Eq. (5.4)
in terms of the cyclotron frequency of an ion, i.e.,

gj = 2
ωL

ωc

ωc

ωe
c

, (5.5)
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where the cyclotron frequency of an ion ωc = (QB)/M . Therefore, Eq. (5.5) reads

gj = 2
ωL

ωc

Q/M

e/me

, (5.6)

where Q and M are the charge and mass of an ion, respectively. Eq. (5.6) indicates that
the determination of the bound electron g factor depends only on the measurement of the
ratio of ωL

ωc
. We will deal with this concept in the next section.

5.2.2 Experimental setup for the measurement of the bound-
electron g factor

The cyclotron and the Larmor frequencies are the two important inputs for measuring the
bound-electron g factor [see Eq. (5.6)]. We discuss how the cyclotron and the Larmor
frequencies are measured in a Penning trap.

In the Penning trap experiment, two nearly identical traps placed 2.7 cm apart from
each other in the magnetic field directions are utilized [75]. According to Fig. 5.2, a stack
of 13 cylindrical electrodes of 7 mm inner diameter is included in these traps. In the first
trap, a nickel ring electrode is used to distort the homogeneity of the magnetic field. In the
second trap, a copper electrode is used and the magnetic field remains homogenous, because
copper is non magnetic and does not distort the magnetic field. As it will be explained
below, the inhomogeneity of the magnetic field plays an important role in analyzing the
direction of the electron spin via the continuous Stern-Gerlach effect and also limits the
accuracy of the g factor measurement [see Sec. 5.2.3]. The two traps are the so-called
“analysis trap” and “ precision trap”, respectively [see Fig. 5.2].

A typical ion is consecutively confined in these two separated traps in order to achieve a
high-precision measurement. In each trap, the charged particle (an ion) is stored in a com-
bination of a homogeneous magnetic field B0 and an electrostatic quadruple potential [see
Chapter 4]. The particle is confined by the magnetic field in the plane perpendicular to the
direction of the magnetic field, and the electrostatic potential is responsible to confine the
charged particle in the direction parallel to the magnetic field lines. Due to this configura-
tion shown in Fig. (4.1), the three produced characteristic motions are the trap-modified
cyclotron motion ω̄+, the magnetron motion ω̄−, which is a circular E × B drift motion
perpendicular to the magnetic field lines, and the axial motion ω̄z [60]. Therefore, the
cyclotron frequency ωc of the charged particle can be obtained from the experimentally
measured eigenfrequencies by using the invariance theorem, [see Sec. 4.5.1]

ωc =
√

ω̄2
+ + ω̄2

z + ω̄2
−. (5.7)

Measuring the g factor needs not only the cyclotron frequency ωc, but also the Larmor
frequency ωL [see Eq. (5.6)]. The resonant excitation of the transition between the two
spin states of the bound electron within the magnetic field of the Penning trap enables one
to measure the Larmor frequency ωL. The experimental method for measuring the Larmor



5.2 Experimental and theoretical aspects of g factor 67

Figure 5.2: Scheme of the double Penning trap setup used for g-factor measurements of the bound
electron.

frequency was first introduced by Dehmelt [67], and is called quantum jump or spin-flip
transition. In this method, a microwave field in resonant with the Larmor frequency ωL

is applied between the two spin states ms = ±1/2. The spin state ms is analyzed in a
subsequent quantum nondestructive measurement by determining the axial frequency of
the ion. The spin-flip transitions are detected as discrete changes of the axial frequency of
the ion. These transitions are observed through the continuous Stern-Gerlach effect. The
number of spin-flip transitions is then counted for a fixed time interval. About every seven
minutes, one quantum jump is observed near the resonance frequency. With changing
the microwave frequency, the measurement procedure is repeated at about 20 different
excitation frequencies. Finally, the resonance spectrum of the Larmor frequency can be
obtained by plotting the quantum jump rate versus the excitation frequency. Note that the
measurement of the spin-flip rate for at the microwave frequency ωMW ≈ ωL is performed
simultaneously with the measurement of the cyclotron frequency, which will be discussed
in the next section.



68 5. Proposals for measurement of the bound-electron g factor

5.2.3 Continuous Stern–Gerlach effect and the double-trap tech-
nique

In this section, we deal with the Continuous Stern-Gerlach effect and explain why we need
the analysis trap and precision trap for bound-electron g-factor measurements.

The effect of the inhomogeneous magnetic field on the spin of a particle results in a
measurable difference of its oscillation frequency for various spin directions . This effect
is called by Dehmelt “the continuous Stern-Gerlach effect”. The exact measurement of
the particle oscillation frequency yields useful information on the spin orientation of the
particle. Due to the presence of the inhomogeneous field in the analysis trap, the direction
of the electron spin can be analyzed via the continuous Stern-Gerlach effect [76].

This inhomogeneity plays a key role in the determination of the spin orientation of an
electron. However, the inhomogeneity precludes the high accuracy level of the measure-
ment. In order to overcome this drawback, a double-trap technique is usually applied in
the Penning trap experiment. According to this technique, a spatial separation between
two traps, one inducing the spin-flips and the other analyzing the spin direction, improves
the accuracy level of the measured magnetic moment by three orders of magnitude [73].
After determining the spin orientation of the particle in the analysis trap, the particle is
transferred into the precision trap and the microwave field is radiated to induce a spin-flip.
After an interaction time of about 80 s the charged particle is returned to the analysis trap.
Once again, the spin orientation is analyzed in the analysis trap by an additional spin-flip
in order to determine correctly the spin direction of the particle when it comes back the
analysis trap. This new determination of the spin-flip reassures whether or not the axial
frequency is altered relative to its value before entering to the precision trap.

When a charged particle is in the precision trap, its cyclotron frequency is measured
simultaneously with the interaction with the microwave frequency. The simultaneous mea-
surement of Larmor and cyclotron frequencies, which is possible in the double trap setup
makes it possible to measure g factor to a high accuracy.

5.2.4 Theoretical aspects of g factor

After dealing with the experimental issues of the g factor, in this section, we focus on
the theoretical considerations of g factor of a free- and bound-electron. We introduce
corrections that result in the modification of the free- and bound-electron g factor values.
Based on this investigation, we calculate the modified value of the bound-electron g factor
of 4He+ in its ground state, which will be used in the description of the proposed excitation
arrangement for the measurement of 1S bound-electron g factor in Secs. 5.3 and 5.4.

As a starting point, we briefly explain a free electron g factor. If we set J = S in
Eq. (5.1) and use the Dirac equation with minimal coupling of the electromagnetic field,
it results the value of the free-electron g factor, which is gDirac = 2 [77]. Experimental
evidences showed that this value has a deviation from the g factor predicted by the Dirac
equation [78, 79]. There are two reasons for this discrepancy, which are explained in the
framework of QED and the standard model. The first one is related to an electron self-
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interaction, i.e., the exchange of virtual photons. The second one, so-called non-QED
contributions, is due to electron interactions with virtual weak bosons W and Z as well as
hadronic loop insertions in the photon propagator, which result in a slight modification of
free-electron g factor [80]. These modifications can be expressed as an expansion in terms
of QED loop expansion parameter α along with non-QED terms, as shown in Eq. (1.1).
We show the non-QED terms by ahadronic and aweak. The deviation of g from the Dirac
value due to taking into account the effect of non-QED corrections is 1.7 × 10−12, which
is very small [81]. According to Eq. (1.1), the fine structure constant α (α ≈ 1/137.036)
serves as an input parameter for the determination of the g factor. The fine-structure
constant is very small and the various orders of Feynman diagrams have been envisaged
as a series expansion. In high orders, the series drops off rapidly and converges. Hence,
the perturbation theory is a safe method to obtain the g factor of the free electron. The
coefficients introduced in Eq. (1.1) are known until the fourth order of α/π, [80]

A1 =
1

2
,

A2 ≈ −0.3 284 789 656,

A3 ≈ 1.1 812 415,

A4 = −1.7283(35). (5.8)

For a bound electron, we have a different situation. In the case of the bound-electron
g factor, this value is modified because of two reasons: (i) electron interaction with an
external Coulomb field, which modifies the properties of the electron (ii) the electron self-
interaction (the exchange of virtual photons). These modifications of the bound-electron
g factor play an essential role in an accurate determination of the electron mass. The
recent and accurate determination of the electron mass based on gbound has nearly reached
the experimental precision of 0.5 ppb (parts per billion) [73]. The experimental setup for
the measurement of the electron mass is based on the simultaneous measurement of the
cyclotron frequency of the ion and the Larmor frequency of the electron in the Penning
trap as described in Sec. 5.2.2.

As already mentioned, the electron self-interaction and electron interaction with an
external Coulomb field modify the bound-electron g factor value. One can express the
deviation from the Dirac value in terms of a series expansion, such as free-electron g factor
[see Eq. (1.1)]. As opposed to the series expansion of the free-electron g factor, where
the coefficients are constant, in the series expansion of the bound-electron g factor, they
depend on the binding effects Zα, i.e.,

g = g(0) + f1(Zα)
α

π
+ f2(Zα)

(α

π

)2

+ f3(Zα)
(α

π

)3

+ · · · . (5.9)

In Eq. (5.9), the first part refers to the Breit term originated from solving the Dirac
equation for a bound system which shows the deviation of g factor from gDirac = 2, due
to binding effects (explained below) and the rest assign to the QED corrections with the
coefficient functions fj(Zα). Eq. (5.9) denotes that the bound-electron g factor depends
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on not only the ratio α/π but also the binding effect Zα. The nuclear charge Z may not
be a small number. Thus, higher orders, in contrast to the free-electron g factor, can not
be ignored. This implies that the non-perturbative methods is applicable for the bound-
electron g factor. It is interesting to note that in the limit Zα → 0, one revisits the series
expansion of the free-electron g factor Eq. (1.1).

For a bound-electron g factor, in order to reach the experimental precision, the values
of the coefficient functions fj(Zα) in Eq. (5.9) must be calculated. In the framework of
NRQED (nonrelativistic QED), these coefficient functions are known up to the second
order of (α/π) in Eq. (5.9), due to taking into account the loop effects (the electron self-
interaction) [82]. With considering the first and second loop corrections in Eq. (5.9), the
modified value for the bound-electron g factor in nS state reads [83]

g = g(0) + g
(1)
loop + g

(2)
loop + O(α3), (5.10)

where each correction is as follow,

g(0) = 2 − 2

3

(Zα)2

n2
+ (

1

2n
− 2

3
)
(Zα)4

n3
+ O(Zα)6,

g
(1)
loop =

(α

π

)[

2 × 1

2

(

1 +
(Zα)2

6n2

)

+
(Zα)4

n3

(

a41 ln[(Zα)−2] + a40

)

+ O(Zα)5
]

,

g
(2)
loop =

(α

π

)2[

− 0.656958
(

1 +
(Zα)2

6n2

)

+
(Zα)2

n3

(

b41 ln[(Zα)−2] + b40

)

+ O(Zα)5
]

,

(5.11)

where a41(nS) = 32/9, b41(nS) = 56/9 and b40(1S) = −18.5(5.5). In Eq. (5.11), a40(nS)
reads

a40(nS) =
73

54
− 5

24n
− 8

9
lnk0(nS) − 8

3
lnk3(nS), (5.12)

where the Bethe logarithms lnk0 and lnk3 have explicit values lnk0(1S) = 2.984 128 555
and lnk3(1S) = 3.272 806 545.

In Eq. (5.10), to reach the experimental accuracy of bound-electron g factor it is nec-
essary to consider more corrections to bound-electron g factor. Here, we only explain the
recoil correction, which is associated with the finite mass of the nucleus. Its contribution
to the bound-electron g factor, as obtained in Ref. [84] reads

grecoil =
4

3
(Zα)4m2

eR
2, (5.13)

where the rms nuclear charge distribution radius R is 1.673(1) fm (“old” value) and 1.680(5)
fm (“new” value) [85].

We have summarized these corrections that are relevant to the 10−12 level of accuracy
of 1S bound-electron factor of 4He+ in Table 5.4. These corrections are obtained for the
two different values of the fine-structure constant α.
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Table 5.1: Individual contributions to the 1S bound-electron g factor for 4He+. In the labeling
of the corrections, we follow the conventions of Ref. [86]. The abbreviations used are as follows:
“h.o.” stands for a higher order contribution, “SE” for a self energy correction, “VP-EL” for
the electric-loop vacuum-polarization correction, and “VP-ML” for the magnetic-loop vacuum-
polarization correction. The value of α−1 = 137.035 999 070(98) is the currently most accurate
value from Refs. [66], whereas the value of α−1 = 137.035 999 11(46) is the 2002 CODATA rec-
ommended value [69].

Corrections α−1 = 137.035 999 070(98) α−1 = 137.035 999 11(46)

Dirac eigenvalue 1.999 857 988 825 2(2) 1.999 857 988 825 3(9)
Finite nuclear size 0.000 000 000 002 3 0.000 000 000 002 3

One-loop QED (Zα)0 0.002 322 819 466 0(17) 0.002 322 819 465 4(76)
(Zα)2 0.000 000 082 462 2 0.000 000 082 462 2
(Zα)4 0.000 000 001 976 7 0.000 000 001 976 7
h.o.,SE 0.000 000 000 035 1(2) 0.000 000 000 035 1(2)
h.o.,VP–EL 0.000 000 000 002 0 0.000 000 000 002 0
h.o.,VP–ML 0.000 000 000 000 2 0.000 000 000 000 2

≥ two-loop QED (Zα)0 -0.000 003 515 096 9(3) -0.000 003 515 096 9(3)
(Zα)2 -0.000 000 000 124 8 -0.000 000 000 124 8
(Zα)4 0.000 000 000 002 4(1) 0.000 000 000 002 4(1)

Recoil m/M 0.000 000 029 198 5 0.000 000 029 198 5
Radiative recoil (m/M)2 -0.000 000 000 025 3 -0.000 000 000 025 3

Hadronic/weak interaction 0.000 000 000 003 4 0.000 000 000 003 4
Total 2.002 177 406 727 1(17) 2.002 177 406 726 5(77)

5.2.5 g factor of an electron in Hydrogen-like atom

As mentioned, the electron interaction with an external Coulomb field modifies the bound-
electron g factor value. In this section, the correction to the bound-electron g factor due
to an electron interaction with a Coulomb field of a nucleus with charge Ze is calculated.
This correction is the so-called relativistic binding corrections.

In the relativistic quantum theory, the first theoretical investigation on the bound-
electron g factor in the Coulomb field of a nucleus with a charge Ze was performed by
Breit in 1928 [87]. The usual procedure to calculate the modified value of a bound-electron
g factor is to compute the energy shift of the state φn in the presence of an external
magnetic field, i.e.,

∆E = −〈φn|µ · B|φn〉 = mjgjµ0B, (5.14)

where µ is defined in Eq. (5.1) and mj is the magnetic spin projection onto the same z
axis. For an electron with the state |φn〉 =|1S1/2〉, Eq. (5.14) can also be written as follow

∆E = 〈φn|α · eA|φn〉, (5.15)

where A = (B × r)/2. Eq. (5.15) explaining the deviation of the bound-electron g factor
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Table 5.2: The bound-electron g-factor results for Hydrogen-like atom. The results in the first
column are based on the evaluation of Eq.( 5.14). The results in the second column are relied on
the evaluation of Eq. (C.23) or Eq. (C.27). Z and α are the nuclear charge and the fine constant
structure.

State relativistic correction leading-order QED correction

1S1/2 2 − 2
3
(Zα)2 +α

π

2S1/2 2 − 1
6
(Zα)2 +α

π

2P1/2
2
3
− 1

6
(Zα)2 − α

3π

2P3/2
4
3
− 2

15
(Zα)2 + α

3π

from the Dirac value leads to the Breit result,

gj = 2
[1 + 2

√

1 − (Zα)2

3

]

, (5.16)

where Z and α are nuclear charge and fine-structure constant . Eq. (5.16) shows the
deviation of the g factor from the Dirac prediction (i.e., in the limit Zα → 0, gDirac = 2).
This deviation is only because of the binding effects (Zα). We apply this method for
the determination of the relativistic binding corrections to the bound-electron g factor for
different states and list the results in Table 5.2. More details of derivation of these results
are introduced in Appendix. C. These results are valuable in the theoretical considrations
of the two proposals for determining the g factor of 4He+ ion in its ground state, which
will be discussed in the next section.

5.3 Proposal I: Double-resonance excitation setup

After studying the experimental and theoretical issues related to the bound-electron g
factor in the previous section, we are prepared to deal with an important part of this
thesis. In this section, we offer a proposal for a bound-electron g factor measurement in
the ground state of the spinless 4He+ ion. The proposal is based on the double-resonance,
two-photon excitation arrangement, which is introduced in this section.

This excitation arrangement is expected to improve the accuracy level of measurement
of g factor of 4He+ ion in its ground state. This proposal uses the properties of the bound–
electron system of spinless 4He+ resided in a Penning trap. Let us first discuss the general
idea of the proposal related the bound-electron g factor of 4He+ ion. An overview is given in
Fig. 5.3. We assume that a circularly polarized (σ+) laser light drives transition between
1S1/2(mj = +1/2) and 2P3/2(mj = +3/2) states of 4He+. Due to the short lifetime of
the excited state 2P3/2(mj = +3/2), an electron decays to the ground state 1S1/2(mj =
+1/2) with emission of fluorescence photons. Therefore, a trapped single 4He+ ion can
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Figure 5.3: Laser-microwave double-resonance excitation scheme using circularly polar-
ized UV light for excitation of the 1S1/2 ⇔ 2P3/2 transition and a microwave field for

driving the spinflip transition 1S1/2

(

mj =+1
2

)

⇔ 1S1/2

(

mj = −1
2

)

.

be optically observed in the Penning trap. The Lyman–α transition 1S1/2(mj = +1/2)–
2P3/2(mj = +3/2) is simultaneously accompanied by a spin-flip transition between the
ground state Zeeman sub levels of 4He+ induced by an additional microwave field. Spin-flip
transition in the ground state yields the halt of fluorescence emission. This indicates that a
quantum jump to 1S1/2(mj = 1/2) has been occurred. Further spin-flip transition restores
the fluorescence intensity. Plotting the spin-flip rates (quantum jump rates) versus the
microwave laser frequency results in a resonance spectrum of Larmor precession frequency,
which can be associated with a bound-electron g factor.

We focus on the 4He+ system, where the total angular momentum is equal to the total
electron angular momentum J (i.e. nuclear spin I = 0). We assume that a spinless 4He+

is in the Penning trap [see Fig. 5.2]. Due to the interaction of the magnetic field with the
ion in the trap, the Zeeman splitting of the electronic ground state 1S1/2 takes place, which
is given by Eq. (5.14). Likewise, due to the magnetic field, the excited state 2P3/2 is split
into four Zeeman sublevels with mj = ±1

2
,±3

2
. The corresponding Landé g factor is [for

details of calculations refer to Table 5.2 and Appendix. C].

gj(2P3/2) =
4

3
+

α

3π
− 2

15
(Zα)2. (5.17)

In Eq. (5.17), the leading-order QED and the relativistic contributions are taken into
account.

Assuming that the 4He+ ion in the Penning trap is in an electronic state of 1S1/2, a
circularly polarized UV light with angular frequency ωUV = 2π × 9.87 × 105 Hz derives
the Lyman-α transition 1S1/2(mj = +1/2) ⇔ 2P3/2(mj = +3/2), see Fig. 5.3. Due to
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the electron relaxation to initial state 1S1/2(mj = +1/2) and emission of a fluorescence
photon, this excitation scheme is a closed cycle (neglecting one-photon ionization into the
continuum). Since 2P3/2 state has a short lifetime [see Appendix. A], the fluorescence
intensity of a relaxed electron from the excited state under a saturation condition makes it
possible to detect a single trapped ion with high sensitivity. The Rabi frequency between
the ground state 1S1/2(mj = +1/2) and the excited state 2P3/2(mj = +3/2) induced by
the narrow-band ultraviolet electromagnetic field,

E(t) =
εUV√

2

(

cos(ωUVt)ex + sin(ωUVt)ey

)

(5.18)

can be found by using [23],

ΩRabi = −qεUV

〈

φ1S

∣

∣

∣
x · ǫUV

∣

∣

∣
φ2P

〉

. (5.19)

In Eq. (5.19), the macroscopic classical amplitude of the electromagnetic field is denoted
by εUV and ǫUV refers to the polarization of the electromagnetic field and q is the electron
charge. Hence the corresponding numerical value for Rabi frequency is given by ΩRabi =
1.3082 × 107Hz

√
IUV, where IUV, intensity of the UV radiation, is measured in units of

W/cm2.
While the Lyman-α transition 1S1/2(mj = +1/2) ⇔ 2P3/2(mj = +3/2) is driven by

ultra-violet electromagnetic radiation, a microwave field with frequency ωMW excites the
ground states of Helium ion in the trap to induce the spin-flip transition. [see Fig. 5.3].
An excitation of spin-flip transition yields the instantaneous stop of the fluorescence pho-
tons. This indicates that a quantum jump has been occurred. Further spin-flip transitions
between the ground states restores the fluorescence intensity.Therefore, the spin-flip rates
between two Zeeman sublevels of the ground state 4He+ can be counted per unit time. The
resonance spectrum of the Larmor precession frequency ωL can be thus deduced by plot-
ting the behavior of the spin-flip rates versus excitation microwave frequency at ωMW ≈ ωL

[for more discussion of the spin-flip transition see Sec. 5.2]. The cyclotron frequency ωc, as
another requirement to measure bound-electron g factor in Eq. (5.6), is obtained exactly
by using the invariance theorem [see Eq. (4.61) in Sec. 4.4.1].

While the narrow-band ultraviolet electromagnetic radiation operates at the 1S1/2(mj =
+1/2) ⇔ 2P3/2(mj = +3/2), the absorption of an additional photon can take place,
resulting in ionization through the channel 2P3/2(mj=3/2) ⇒ εD5/2, where εD5/2(mj = 5/2)
are electronic continuum states [see Fig. 5.4]. We therefore express the dynamic Stark shift
of atomic energy of the reference states 2Pmj=3/2 as [see Sec. 2.2]

∆EAC(φ2P3/2
) = − e2

2Z4ε0c
IUVPωUV

(φ2P3/2
)

PωUV
(φ2P3/2

) =
∑

±

〈

φ2P3/2

∣

∣

∣
x+1 1

H0 − Eφ2P3/2
± ωUV

x−1
∣

∣

∣
φ2P3/2

〉

, (5.20)

where PωUV
(φ2P3/2

) is the dynamic polarizability of the Helium ion for angular frequency

ωUV. For this process, we obtain an ionization cross section of 1.631×10−23cm2. This leads
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Figure 5.4: Schematic representation of the excitation scheme including ionization chan-
nels. The dotted line represents the ionization continuum threshold, and εLj are elec-
tronic continuum states.

to an ionization rate of γioni = 2.495×10−2s−1IUV, where IUV is the laser intensity measured
in units of W/cm2 [for more details of calculations see Sec. 2.4]. Since the ionization rate
and Rabi frequency are proportional to the intensity of the laser and its square root,
respectively, it is better to work at a reduced laser intensity regime where probability of
ionization of electrons is less. This results in an improvement in the population of the
excited electrons in the 2P state of a 4He+ ion. Nevertheless, at a typical laser intensity of
100W/cm2, the lifetime of 4He+ is 0.401s against ionization, and this has to be compared
to the Rabi frequency of 1.3082×108Hz. This means that the 4He+ ion has about 108 Rabi
cycles before its ionization. Therefore, the ionization channel does not limit the feasibility
of the measurement at all.

There is a small effect, i.e., AC Stark shift on the ground state Zeeman sub levels,
because of the UV transition driving between 1S and 2P states. Therefore, it is important
to calculate AC Stark shift of 1S − 2P transition due to non resonance levels. The value
of AC Stark shift is 0.0968 Hz × IUV, where IUV is given in W/cm2 [see Sec. 2.2]. This
value can be compared with the relative shift of the spin-flip transition between ground
states. Since their relative shift of the spin-flip transition is a fourth-order effect, it can
be neglected in comparison with the AC Stark shift of the UV transition by a factor of
ωL/ωUV < 10−4. Therefore, the shift of the spin-flip transition can be ignored on the
accuracy level of 10−12 in units of the microwave frequency.
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Figure 5.5: Laser-microwave double-resonance excitation scheme using π polarized UV
light for excitation of the 1S1/2(mj = −1

2) ⇔ 2S1/2(mj = −1
2) transition. At the

presence of the external magnetic field B, 2S1/2(mj = −1/2) and 2P1/2(mj = +1/2)
states are energetically degenerated. Applying the additional electric field responsi-
ble for quenching between 2S1/2(mj = −1/2) and 2P1/2(mj = +1/2) states makes
them possible to decay ground state. A microwave field drives the spinflip transition
1S1/2(mj = −1

2) ⇔ 1S1/2(mj = +1
2).

5.4 Proposal II: Three-photon, double-resonance ex-

citation setup

In Sec. 5.3, we discussed a two-photon laser spectroscopy technique for a very accurate de-
termination of g factor of the Helium ion. In that proposal, quantum jump spectroscopy via
a double-resonant, two-photon scheme in a closed cycle 1S1/2(mj = +1/2) ⇔ 2P3/2(mj =
+3/2) and microwave radiation leading the spin-flip transition between the ground state
Zeeman sublevels of Helium ion result in an improved accuracy level in the measurement
of the g-factor. However, building a cw laser with a wavelength of 30.37 nm to induce the
quantum jump between the Zeeman sublevels (of two different electronic states) is techno-
logically a challenge task. Our aim in this section is to propose another excitation setup in
order to measure 1S bound-electron g factor of 4He+ ion and overcome the limitations of
the aforementioned approach. As opposed to the previous proposal, where a two-photon,
double-resonance excitation scheme is driven by a circularly polarized laser light, in the cur-
rent proposal, a three-photon, double-resonance excitation setup is operated by a linearly
polarized laser light, which is explained in Ref. [88].

The general idea is schematically shown in Fig. 5.5. It is assumed that a Helium ion
in the ground state 1S1/2(mj = −1/2) is excited to 2S1/2(mj = −1/2) state by absorption
of two photons from a monochromatic laser light. At the same time , the magnetic field
of the Penning trap and the additional electric field influence a Helium ion in the Penning
trap. The magnetic field makes the two states of 2S1/2(mj = −1/2) and 2P1/2(mj = 1/2)
energetically degenerate. The additional electric field is responsible for quenching of these
two states. It causes the lifetime of excited state 2S1/2(mj = −1/2) to be reduced and
decay to the ground state of Helium ion. The two-photon excitation 1S– 2S along with
the quenching mechanism constitutes a closed cycle. Due to the reduced lifetime of the
excited state 2S1/2(mj = −1/2), a single Helium ion can be optically observed with a
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high sensitivity in the trap. During the detection of the fluorescence photons1, the Larmor
frequency ωL can be measured by spin-flip rates due to microwave excitation of the ground
state Zeeman sublevels. After counting the number of spin-flip per unit time, plotting
the spin-flip rate versus excitation microwave frequency yields the resonance spectrum of
the Larmor precession frequency ωL. This excitation arrangement relies on a quenching
mechanism along with a microwave excitation that makes it possible to determine a bound-
electron g factor in the Penning trap. Since three photons are involved in this excitation
arrangement, we denote it as a three-photon, double-resonance excitation setup.

Similar to the previous proposal, we assume that 4He+ spinless ion is stored in the
Penning trap and a combination of a homogenous magnetic field with an electric quadruple
field is applied. Due to the interaction of the homogeneous magnetic field with Helium ion,
the bound-electron g factor of the 2S state is given by (see Table 5.2 and Appendix. C)

gj(2S1/2) = 2 +
α

π
− 1

6
(Zα)2 + · · · . (5.21)

In this expression, the leading-order QED and the relativistic corrections are considered.
Note that the relativistic correction has a large contribution in determination of the g
factor of a bound system [9]. Correspondingly, the excited state 2P1/2 becomes separated
into two Zeeman sublevels with mj = ±1

2
. The corresponding Landé g factor, following

the formulation in Appendix C is [see Table 5.2]

gj(2P1/2) =
2

3
− α

3π
− 1

6
(Zα)2 + · · · . (5.22)

.
In this contribution, we treat 4He+ spinless ion as a particle that is already in the

Penning trap in the ground state 1S1/2 with magnetic spin projection mj = −1/2. A
monochromatic laser light with π polarization (i.e., linearly polarized laser light) and
wavelength of 60 nm, which is already demonstrated in Ref. [88], drives the transition
between the 1S1/2(mj = −1

2
) ⇔ 2S1/2(mj = −1

2
), see Fig. 5.5. As mentioned earlier, the

components with mj = ±1/2 of both 2S1/2 and 2P1/2 energy levels split as depicted in
Fig. 5.7 in the presence of the magnetic field of the Penning trap. At B = 0.752 T, the
Zeeman sublevels 2S1/2(mj = −1/2) and 2P1/2(mj = +1/2) energetically overlap. Since
the quadruple electric field of the Penning trap is not sufficient to induce a 2P1/2(mj =
1/2) admixture to the 2S1/2(mj = −1/2) state, an additional electric field in the parallel
direction to the magnetic field of the Penning trap is applied [see Figs. 5.6]. This E field
is responsible for mixing 2S1/2(mj = −1/2) and 2P1/2(mj = 1/2) [see Figs. 5.5]. Using a
numerical calculation, we have shown that this small amount of the additional electric field
creates a tiny shift in the trapped particle trajectory in the Penning trap [see Fig. 4.5].
Therefore, it is safe to say that the quenching mechanism does not limit the feasibility of
the measurement at all.

1The fluorescence photons come from due to decay of the excited state 2S1/2(mj = −1/2) to the ground
state.
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Figure 5.6: The schematic representation of the configuration of the magnetic and quadrupole
electrostatic field lines along with an additional electric field in the penning trap.

Due to this mixing, the width of the metastable 2S1/2(mj = −1/2), Γ, in frequency
units of electric field E is proportional to the electric field strength (for more details of
calculation see Appendix. A).

h−1Γ
[

2S1/2(mj = −1

2
)
]

= 83.823 Hz + 84.135 E2 Hz . (5.23)

Since we are working in natural units, the factor h for the conversion to S.I. units is
considered. In Eq. (5.23), the first term refers to two-photon decay natural width of the
metastable 2S state [89] and the second one refers to the decay width associated with
the quenching effect. In this term, the electric field E is measured in units of V/cm.
Eq. (5.23) indicates that 2S1/2(mj = −1/2) state is no longer a metastable, i.e., its lifetimes
is reduced and 2S1/2(mj = −1/2) along with 2P1/2(mj = +1/2) states decay to the ground
state 1S1/2(mj = ±1/2) by emission of fluorescence photons [see Fig. 5.5]. Accordingly,
the transition 1S1/2(mj = −1/2) ⇔ 2S1/2(mj = −1/2) is a closed cycle indicating, that
1S1/2(mj = −1/2) → 2S1/2(mj = −1/2) → 2P1/2(mj = +1/2) → 1S1/2(mj = −1/2)
transition occurs. Due to the decay to the initial state 1S1/2(mj = −1/2), the fluorescence
intensity of the excited state under saturation conditions makes it possible to detect a
single trapped ion with high sensitivity. Because of the interaction of π polarized UV light



5.4 Proposal II: Three-photon, double-resonance excitation setup 79

Figure 5.7: Breit-Rabi diagram for 4He+ (black and red lines refer to 2S1/2 and 2P1/2

states). The intersection of the energies of pair levels at small field strengths is shown.
For mj = ±(l + 1/2), energy is linear. This behavior is no longer observed at medium
and strong field strength (Paschen- Back effect). For n = 2, ∆E = 0.564 cm−1 and δ
is unity when B = 1.209 T.

with the helium ion, one should consider the full, time-dependent Hamiltonian

H(t) = H0 + V (t),

V (t) = −ezεUV cos(ωUVt), (5.24)

where H0 is the unperturbed term of the Hamiltonian and ωUV are the angular frequency
of the driving laser field (see Fig. 5.5). As a result of the two-photon nature of excitation
process, the generalized Rabi frequency of the UV transition can be evaluated by [14]

ΩRabi = 4πβIUV, (5.25)

where the time-independent two-photon transition matrix element β is obtained by

β = − 1

Z4

e2

2~cε0

〈

φ1S1/2

∣

∣

∣
z

1

H0 − E + ω
z
∣

∣

∣
φ2S1/2

〉

, (5.26)

where Z is the nuclear charge of the helium ion (Z = 2). The corresponding numerical
value of the generalized Rabi frequency is ΩRabi = 0.2891 IUV Hz indicating, that it is
proportional to the laser intensity. Note that IUV is assumed to be given in units of
W/cm2.
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Figure 5.8: Schematic representation of the excitation scheme including ionization chan-
nel. εP are electronic continuum states.

During excitation of the transition 1S–2S and detection of the corresponding fluo-
rescence emission, a microwave field is irradiated on the ground states of Helium ion in
order to induce spin-flip transition [see Fig. 5.5]. An excitation of the spin-flip transition
yields the stop of the fluorescence photons. This denotes that a quantum jump to state
1S1/2(mj = 1/2) has taken place. The Helium ion stays in this state until a further spin-
flip transition brings it back to 1S1/2(mj = −1/2). After plotting spin-flip rates versus
the excitation microwave frequency, the resonance spectrum of Larmor frequency is ob-
tained. The Larmor frequency ωL along with cyclotron frequency ωc is important inputs
in Eq. (5.6) for measuring the g factor. The latter one is determined by an image-current
method and the invariance theorem, which was explained in Sec. 4.4.1.

While the narrow-band ultraviolet electromagnetic radiation drives the transition 1S1/2(mj =
−1/2) ⇔ 2S1/2(mj = −1/2) the absorptions of an additional photon can cause ionization
through the channel 2S ⇒ εP (εP are electronic continuum states), which results in losing
the ion from the trap [see Fig. 5.8]. This could be one of the most important drawbacks
in this excitation setup. We therefore express the dynamic Stark shift of reference state
2S [see Eq. (5.24)] [14],

∆EAC(φ2S1/2
) = − e2

2Z4ǫ0c
IUVPωUV

(φ2S1/2
)

PωUV
(φ2S1/2

) =
∑

±

〈

φ2S1/2

∣

∣

∣z
1

H0 − Eφ2S1/2
± ~ωUV

z
∣

∣

∣φ2S1/2

〉

, (5.27)

where PωUV
(φ2S1/2

) is the dynamic polarizability of the Helium ion for an angular frequency
ωUV. The imaginary part of Eq. (5.27) leads to the ionization rate and cross section [see
Eq. (3.6a) and (3.6b)]. These values are evaluated, and are γioni = 0.472054 s−1IUV and
σioni = 1.5435 × 10−18 cm2. Here, IUV is the laser intensity measured in units of W/cm2.
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5.5 Proposal III

5.5.1 1S–2S transition frequency determination

The Helium ion 1S–2S experiment can provide more stringent test of QED than the Hy-
drogen 1S–2S experiment [88]. The singly charged Helium 1S–2S experiment renders
access to a measurement of the Rydberg constant and 1S Lamb shift. This makes possible
to precisely check the validity of the quantum electrodynamics in an atom. Therefore, in
order to perform a precise measurement of 1S–2S transition frequency in Helium ion, we
exploit the proposed excitation arrangement introduced in Sec. 5.4, which is applied for
the bound-electron g-factor measurement in the Helium ion.

The 1S–2S resonance can be observed by means of a Doppler-free two-photon spec-
troscopy by counterpropagating waves of equal frequencies. The required 60 nm laser light
for this transition is induced by doubling cw light emitted by a 120 nm dye laser in a
nonlinear crystal and gas jet [88]. The laser with wavelength 60 nm generated by thir-
teenth harmonic of a Ti:sappahire laser is measured with the help of the frequency comb
technique, which is described in detail in [88]. The laser with the spectral linewidth as
well as the frequency stability of about 60 Hz and 1 kHz, respectively is stabilized to an
external ultrastable cavity and provides a wide comb of precisely equidistant frequencies,
which associates to the modes of the laser cavity mutually phase locked. The splitting of
these modes is equal to the reptition rate of the laser, which is more than 100 MHz and
electronically phased locked to the radio frequency of the atomic cesium fountain clock.
The repetition rate more than 100 MHz is sufficiently enough for high resolution spec-
troscopy. Therefore, the 60 nm laser can probe the 1S–2S transition in 4He+ ion, which
characterizes the feasibility of our proposal to measuring the 1S–2S transition frequency
in the 4He+ ion.

As mentioned in Sec. 5.4, the general scheme of our proposal is depicted in Fig. 5.5. We
suppose that Helium ion in the ground state 1S1/2 is guided to a nozzle cooled with a liquid
Helium flow-through cryostat in the vacuum chamber. A static magnetic field of a few tesla
mounted around the vacuum chamber leads to the separation of Zeeman sublevels of the
participating levels (1S and 2S states). The frequency of a dye laser at 120 nm is locked
to a high finesse optical resonator. This ultrastable laser light is frequency doubled, and
the consequence UV radiation at 60 nm is coupled into an enhancement resonator inside
the vacuum chamber for the excitation of the two-photon, Doppler-free 1S–2S transition
in 4He+ ion. Therefore, cold Helium ion beams in the ground state 1S1/2(mj = −1

2
),

which already leave the nozzle in the direction of laser beam are excited to the metastable
2S1/2(mj = −1

2
). These excited Helium ions are detected l = 10 cm downstream in a

quench zone, where a small electric field Eadd mixes 2S1/2(mj = −1
2
) and 2P1/2(mj = 1

2
)

[see Fig. 5.5]. The quenching mechanism makes it possible to observe the emission of
Lyman-α photons by a solar blind photomultiplier tube. A chopper frequently stops the
60 nm UV light. The photomultiplier is read out when the blocked UV light evades
background counts. Due to the delay time τ between blocking UV light and detection of
the excited ion signals, the slow 4He+ ion with velocity less than l/τ can be registered by
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the photomultiplier. This technique makes it possible to reduce the two main systematic
effects (see below), i.e., the finite transit time and the second Doppler effect, responsible
for broadening and shift of energy levels in the 1S–2S experiment of the Helium ion.

Table 5.3: Individual contributions to the 1S–2S transition frequency for 4He+ are listed in
units of MHz. These corrections are evaluated for the two different nuclear charge radiuses
〈r2〉1/2. The abbreviations used are as follows: “P.L.” stands for photon-line radiative-recoil
correction, “S.E.” for a self energy correction, “E.L.” for the electron-line radiative-finite size
correction, and “P.O.” for the polarization-operator radiative-finite size correction. The value of
α−1 = 137.035 999 11(46) is the 2002 CODATA recommended value [69]. Here m and M refer to
the electron and the nuclear masses, respectively.

Corrections to the f1S−2S in 4He+ 〈r2〉1/2 = 1.673(1)fm 〈r2〉1/2 = 1.680(5)fm

Relativistic effect (Zα)4 9 867 227 064.451 6 9 867 227 063.935 6
Pure recoil (Zα)6m2/M 0.104 195 106 164 2 0.104 195 106 164 2

Radiative recoil (Zα)5m2/M 0.097 725 444 158 5 0.097 725 444 158 5
P.L. radiative recoil (Zα)5m2/M 0.003 260 173 283 2 0.003 260 173 283 2

Radiative recoil α(Zα)6m/M -0.015 840 953 062 1 -0.015 840 953 062 1
Leading nuclear size -1.543 910 687 185 6 -1.556 857 470 665 7

E.L. radiative finite size 0.000 489 592 321 8 0.000 493 697 899 8
P.O. radiative finite size -0.000 123 323 002 9 -0.000 124 357 153 6

Nuclear S.E. (Z2α)(Zα)4 0.002 373 022 615 3 0.002 373 022 615 3
Total value of f1S−2S 9 867 227 063.099 8 9 867 227 062.570 9

In principal, there are several systematic effects caused the observed line width of the
excited state 2S1/2(mj = −1/2) is larger than its natural width. These systematic effects
are responsible for the broadening and shift of the energy lines. The major systematic
effects on determination of 1S1/2(mj = −1/2)–2S1/2(mj = −1/2) transition frequency are
mainly originated from the presence of an ultra-violet laser light, the small electric field
Eadd responsible for quenching, a static magnetic field B mounted around the vacuum
chamber as well as the Helium ion velocity. It is clear that the contributions of these
systematic effects influence on the accuracy level of the 1S1/2(mj = −1/2)–2S1/2(mj =
−1/2) transition frequency determination in the 4He+ ion. In the following, we discuss the
major systematic effects related to our proposed excitation arrangement by which one may
measure 1S–2S transition frequency in the 4He+ ion.

• Finite transit time. Since the metastable 4He+ ion beam and the laser beam are
colinear, we can expect a long interaction length, that results in a line broadening.
Choosing the slowest atoms by turning the laser light frequently off with a chopper
and counting signal photons that reach after a time delay τ leads to the reduction of
the finite transit time broadening [90]. For the time delay between 0.5 and 1.5 ms,
our estimation for the maximum finite transit time broadening is 25.16 kHz.

• Doppler shift. It is well known that the first Doppler effect in a two-photon transition
is vanished by using counterpropagating laser beams, while the second Doppler shift
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can not be suppressed [91]. In fact, the latter one shifts to lower frequency in com-
parison with the resonance frequency of an atom at rest and its contribution should
be taken into account in a high precise measurement of 1S–2S transition frequency.
Practically, the broadening due to this systematic effect is reduced by the method ex-
plained in the case of finite transit time [90]. An upper limits for the second Doppler
effect for the time delay τ between 0.5 and 1.5 ms and the two different nuclear charge
radiuses are ∆νmax ≤ 0.242 kHz. Here, we use the absolute transition frequencies
of 4He+ obtained in Table 5.3, which is relevant to the excitation scheme given in
Fig. 5.5 [details of the calculations regarding to the relativistic and QED corrections
of the absolute transition frequencies of 4He+ are presenred in appendix D].

• AC Stark shift. AC Stark shift, which blueshifts the 1S–2S two-photon transition
frequency linearly with intensity of the driving laser field exists for both the ground
state 1S and excited state 2S [see Fig. 5.5]. The AC Stark shifts for metastable
2S1/2(mj = −1/2) and ground state 1S1/2(mj = −1/2) , which are proportional
to the real part of ∆EAC(φ) in Eq. (5.27) are βAC(2S) = 0.08745 Hz × IUV and
βAC(1S) = −0.01673 Hz × IUV in a linearly polarized laser field with intensity IUV

(Wcm−2). Since the AC Stark shifts of the ground and excited states are of the same
order of magnitude and almost close to each other, the AC Stark shift of metastable
2S1/2(mj = −1/2) nearly compensates that of the ground state; and the final shift
βAC for the two-photon transition is small but considerable. This indicates that for
a typical laser beam of 100 W/cm2, the final shift is [µ/me]

3βAC = 9.920 3 Hz, where
µ refers to the reduced mass. Finally, we take notice of the ionization rate of the
upper level in our scheme, which is γioni = 47.2 Hz.

• DC Stark shift. DC Stark shift is due to the presence of the static electric field
Eadd responsible for quenching between the 2S1/2(mj = −1/2) and 2P1/2(mj = 1/2)
states [see Fig. 5.5]. For metastable 2S state, the linear and quadratic Stark shifts
in the static electric field Eadd reads

EL.S.E = 1 919 Eadd kHz

EQ.S.E = 0.225 E2
add kHz, (5.28)

where Eadd is measured in units of mV/cm. Here, the notations of L.S.E and Q.S.E
stand for linear and quadratic Stark effects, respectively. The numerical values of
these two corrections for a typical value of the electric field are shown in Table 5.4.

• Saturation effect. Another systematic effect, which also depends on the laser intensity
similar to the AC Stark shift (light shift) is the so-called saturation coefficient, βsat.
This coefficient is expressed in terms of the transition matrix element β12 introduced
in Eq. (5.26), i.e.,

βsat = 8
( β

Γ2S

)2

(5.29)
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Table 5.4: Corrections due to Stark effect for the 1S1/2 ⇔ 2S1/2 transition. These values are
obtained in the frame work of time-independent perturbation based on Eq. (5.28) for a typical
value of an additional electric field Eadd = 2 mV/cm.

D.C. Stark shift 1S1/2 ⇔ 2S1/2

Linear shift 3 838 kHz

Quadratic shift 0.9 kHz

Total shift 3 838.9 kHz

According to the natural width of the excited state 2S introduced in Eq. (5.23), our
estimation for the saturation coefficient is βsat = 6.023×10−7 I−2

UV. For a typical laser
intensity 100 W/cm2, the numerical value of the Rabi frequency is about 28 Hz [ see
Eq. (5.26)]. Thus, for the interaction time, which is about 1 ms, the contribution of
saturation effect may be ignored in our proposed excitation arrangement.

• Magnetic field. The magnetic field around the vacuum chamber yields a small shift
of the participating states in our proposed scheme given in Fig. 3.1. This shift
is essentially due to the relativistic Zeeman effect and originates from the small
difference in the g factors of the electron in the two bound states, which depend on
the binding energy via Eq. (5.14). Our estimation for the relativistic Zeeman shift is

βrel. =
µ0B

4
(Zα)2 = 745.319 B kHz/T, (5.30)

where the magnetic field B is measured in units of Tesla.

5.5.2 Transition frequency determination of the ground to high-
Rydberg states

The methodology above could also be generalized for the 1S–n′S transition frequency
determination, n′ → ∞. Lifetime of Rydberg States [see Chapter 3] varies as n′3. This in-
dicates that these states have long lifetimes and are promising platforms for high-resolution
spectroscopy. Consequently, 1S–n′S transition frequency can be measured with a much
higher precision. This implies that fundamental constants, such as Rydberg constant can
be determined very exactly via 1S–n′S transition frequency.

The idea for determination of 1S–n′S transition frequency in a Helium ion is the same
as the previous case. By using Doppler-free, two-photon spectroscopy technique, a UV
laser field, in a two-photon process, excites the Helium ion to the Rydberg state and
drives the transition 1S–n′S, n′ → ∞. The 1S ⇔ n′S (n′ → ∞) transition frequency
of 4He+ ion can be measured by Doppler-free, two-photon laser spectroscopy. Since the
Rydberg atoms are very sensitive to the UV laser field, by absorption of an additional
photon from the laser field, the Helium ion is rapidly ionized [see Chapter 3]. The AC
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Stark shift of the initial state 1S state is βAC(1S) = −0.02148 Hz× IUV, where IUV is the
laser intensity measured in units W/cm2. This ionization, as indicated in Sec. 3.3, occurs
through the channel n′S ⇒ εP , n′ → ∞. We therefore find an ionization cross section
n′3σioni = 6.2225 × 10−18cm2 and Rabi frequency n′3/2ΩRabi = 0.2362 Hz IUV, where IUV

is the laser intensity measured in units W/cm2. In obtaining the ionization cross section
and Rabi frequency, we use the time-dependent perturbation theory and the Z-scaling of
ionization cross section and βif that were introduced in Chapters 2 and 3 [see Eq. (2.44)
and Eq. (3.19)].

5.6 Partial summary and tentative concluding remarks

In this chapter, an estimation of the 1S bound-electron g factor of 4He+ spinless ion is
discussed. In this regard, two experimental setups are proposed and discussed. In our
theoretical considerations, substantial corrections are introduced that would correct the
Dirac value of the g factor. These corrections play very important roles in testing bound-
state QED. Both experiment and theory focus on the 1S bound-electron g-factor and the
1S–2S transition frequency of a 4He+ spinless ion (nuclear spin I = 0).

We express the 1S bound-electron g factor in terms of the QED loop expansion pa-
rameter α and the electron-nucleus interaction strength Zα. These terms are corrections
that are originated from electron self-interaction and electron interaction with an external
Coulomb field. These corrections improve the accuracy of the 1S bound electron g factor
to the 10−12 level and chief among them is the “(Zα)0 one-loop QED correction [see Ta-
ble 5.4], which is due to the uncertainty in the fine-structure constant α [85]. In addition,
on this level of accuracy, one has to take into account the relativistic effects for the ratio
ωL/ωc, which plays a crucial role in the measurement of the bound-electron g factor [see
Eq. (5.6)]. To estimate the relativistic correction, as the first step, the relativistic form of
the cyclotron frequency can be written as follows [76],

ωrel.
c =

qB

γm
=

1

γ
ωnon-rel.

c , (5.31)

where γ = (1 − v2/c2)−1/2 is the so-called Lorentz factor. Then, in the case of Larmor
frequency ωL, the following two cases are considered to a better extent. First, we assume
that motion of an ion is parallel to the direction of the magnetic field in the Penning trap.
In this case, the Larmor frequency reads [76]

ωrel.
L =

(

1 + a
)

ωe
c(γ) =

1

γ
ωnon-rel.

L , (5.32)

where a = g/2 − 1 is the so-called anomaly of the magnetic moment of the electron.
Comparison of Eq. (5.32) with Eq. (5.31) leads to the conclusion that the amount of the
displacement in the cyclotron and Larmor frequencies is the same, due to the axial motion
of the ion. Hence, the ratio ωL

ωc
is independent of the axial energy of the ion motion. In the
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second case, we assume that the motion of the ion is perpendicular to the magnetic field.
In this case, the relativistic Larmor frequency of the electron as indicated in Ref. [76] reads

ωrel.
L =

(

1 + γa
)

ωe
c(γ) =

1

γ
ωnon-rel.

L +
v2

2c2
aωnon-rel.

L . (5.33)

By comparing Eq. (5.33) with the relativistic cyclotron frequency ωrel.
c [see Eq. (5.31)], one

can see that there is a small difference in their values. However, this small difference is a
critical correction in determining the bound-electron g factor. The order of this correction
can be obtained in terms of the anomaly a and v2/c2, which are in the order of 10−3 and
10−9, respectively [ see Eqs. (5.31 and 5.33)]. Therefore, the relativistic uncertainties of
ωL/ωc is of the order of 10−12. This leads to the fact that the relativistic correction for
the ratio ωL/ωc has an important contribution in determining of the accuracy level of the
bound-electron g factor.

In the proposed experiments, we also introduce and discuss different mechanisms for
measuring the 1S bound-electron g factor of 4He+ spinless ion (nuclear spin I = 0) [see
Secs. 5.3 and 5.4]. The two discussed proposals are based on combination of the Penning
trap and high-resolution spectroscopy techniques to study the 1S bound-electron g factor
of 4He+ ion. The first proposal is based on a double resonance, two-photon excitation setup
and the other one is relied on a double-resonance, three-photon excitation arrangement.
These proposals offer possibilities using which ultra-high precision-spectroscopy techniques
can be applied for ultra-accurate g measurements of Hydrogen-like ions with low nuclear
charge number Z. In these proposals, laser excitation among Zeeman sublevels of 4He+

ion offers additional channels that might improve the accuracy level of the bound-electron
g factor determination through quantum jump spectroscopy. The excitations among the
Zeeman sublevels take place via absorption of one or two photon(s) from a laser field,
resulting in AC Stark shift. In high-precision two-photon spectroscopy, this shift can not
be suppressed and its exact value must be calculated.

In Sec. 5.3, two simultaneous radiations in the UV and microwave regions are used in the
double-resonance, two-photon excitation arrangement. The first one, the UV electromag-
netic radiation, is responsible for Lyman-α transition 1S1/2(mj = +1/2) ⇔ 2P3/2(mj =
+3/2), which is a closed cycle. This is because the excited state 2P3/2(mj = +3/2)
has a short lifetime and it decays rapidly to the ground state 1S1/2(mj = +1/2) by
emission of a fluorescence photon. As a consequence, 4He+ spinless ion can be detected
with a high sensitivity in the trap. The second one, a microwave radiation, operates at
1S1/2(mj = −1/2) ⇔ 1S1/2(mj = +1/2) to induce a flip in the spin of the electrons.
This transition yields spin-flips resulting in the resonance spectrum of Larmor frequency.
The Larmor frequency together with the cyclotron frequency, which is obtained by the
invariance theorem determines the 1S bound-electron g factor for a Helium ion.

In Sec. 5.4, a double-resonance, three-photon excitation arrangement involves two si-
multaneous radiations i.e., the UV laser and microwave fields and an additional static
electric field. In this process, at a specific value of the magnetic field of the Penning
trap, the upper states 2S1/2(mj = −1/2) and 2P1/2(mj = 1/2) energetically become
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degenerate. An additional static electric field is applied to quench these two states .
This causes the natural lifetime of 2S1/2(mj = −1/2) to be reduced and decay to the
ground state 1S1/2(mj = −1/2) . At the same time, a UV laser light drives the transi-
tion 1S1/2(mj = −1/2)–2S1/2(mj = −1/2) via a two-photon transition mechanism. This
two-photon excitation along with the quenching mechanism makes a closed cycle [ i.e.,
1S1/2(mj = −1/2) → 2S1/2(mj = −1/2) → 2P1/2(mj = 1/2) → 1S1/2(mj = −1/2)].
During this cycle, due to the reduced lifetime of the excited state 2S1/2(mj = −1/2), a
fluorescence emission of a single Helium ion can be observed in the trap. Similar to the first
proposal, a microwave radiation induces spin-flip transition between the ground state of
Zeeman sub levels, yielding the resonance spectrum of Larmor frequency. The excitation-
decay cycle above along with the microwave radiation makes it possible to measure the g
factor of 4He+ ion in a single trap.

The major drawback to measure the bound-electron g factor via a double-resonance,
two-photon excitation arrangement is that a UV laser light with a wavelength of 30nm
is not currently available. However, it is possible to predict a technology to support all
the necessary requirements for fulfilling this experiment [85]. Experimentally, the latter
proposal is more feasible than the former one, because the required UV laser driven at
1S–2S transition has been generated by a frequency comb technique operating in the
ultraviolet region of the spectrum [88].

Based on these two proposals, an estimate could be made about the accuracy level of
measuring 1S bound-electron g factor that is at the experimental accuracy level 10−12 · · · 10−13.
Within this accuracy range, more accurate determination of the fine-structure constant and
electron mass can be obtained.

In Sec. 5.5, we focus on the 1S1/2(mj = −1/2)–2S1/2(mj = −1/2) transition fre-
quency determination in 4He+ ion. The multi-photon spectroscopy technique above, i.e.,
three-photon, double-resonance excitation arrangement, could be applied to determine the
1S1/2(mj = −1/2)–2S1/2(mj = −1/2) transition frequency of 4He+ ion.

In this case, the uncertainty of the determination 1S1/2(mj = −1/2)–2S1/2(mj = −1/2)
transition frequency is restricted by the intensity-dependent frequency shift due to dynamic
Stark shift, saturation effect, DC Stark shift, the first and second Doppler effects and finally
the effect of magnetic field mounted on the nozzle. It was shown that these uncertainties
are originated from the absorption of high power two photons from a UV laser, the effect
of an additional electric field , the thermal velocity of the ions and the magnetic field. We
also discuss 1S–n′S, n′ → ∞ transition, which results in a better accuracy in transition
frequency measurement. For this purpose a Doppler-free, two-photon spectroscopy is used
as well. The better accuracy is due to a need for laser excitation that induces a smaller
AC Stark shift.
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Chapter 6

General conclusion

In this thesis, the interaction of a laser light and one-electron bound systems, e.g., Hydrogen-
like atoms, is extensively investigated. The primary goal is to improve the accuracy of the
bound-electron g factor value. To this end, we explore different platforms for increasing
the precision of measuring 1S bound-electron g factor. In this regard, theoretical analyses
of the laser light interaction with a bound-electron system as well as a Rydberg state in the
high-n region have been performed in the framework of time-dependent perturbation the-
ory to obtain the major systematic effects relevant to high-precision atomic spectroscopy
in this thesis. These investigations also yield more insights into our understanding of the
bound-state properties and two-photon excitation in Rydberg atom 1S–n′S and 2S–n′S
transitions, n′ → ∞.

Studying the ultra-high resolution spectrum of one-electron bound systems is one of the
most intriguing subject in physics that offers a wonderful opportunity for high precision
investigations. In this regard, we used quantum mechanics tool sets to study the properties
of a spinless Helium ion stored in a Penning trap and in the presence of two simultaneous
radiations ultraviolet and microwave fields. Using the platform described, it makes possible
to accurately determine the 1S bound-electron g factor and to analyze certain properties
of systematic effects that impact the ultra-high-precision measurements in atomic physics.
We proposed two excitation arrangements in which two- and three- photon electronic ex-
citations are used to measure the 1S bound-electron g factor. In the two-photon double
resonance, we investigated transition 1S1/2(mj = 1/2) ⇔ 2P3/2(mj = 3/2). In three-
photon double resonance, we studied transitions 1S1/2(mj = −1/2) ⇔ 2S1/2(mj = −1/2)
and 1S ⇔ n′S, n′ → ∞.

In the proposed excitation arrangements, two groups of systematic effects were taken
into account to precisely determine 1S bound-electron g factor. The first group is due to
the presence of imperfections in a real Penning trap. The effect of the imperfections on the
cyclotron frequency of an ion and a bound-electron g factor is extensively studied by using
the invariance theorem in Chapter 4. In the second group, we dealt with systematic effects
originated from the interaction of a laser and an external electric fields with a Hydrogen-
like atom. These systematic effects called AC and DC Stark shifts were investigated in
the framework of time-dependent and time-independent perturbation theory in Chapter 2.
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Using these precise considerations , a new accuracy level for the 1S bound-electron g
factor could be determined, which in comparison with the previous measurements [62, 73]
could show about two order of magnitude improvement,i.e., on the level 10−12 · · · 10−13

[see Secs. 5.3, 5.4]. In addition, in the 1S-2S transition frequency determination in Helium
ion, the second group of the systematic effects was considered.

In studying Rydberg states in the high-n region, due to the wiggling motion of an
electron in a laser field, the dynamic Stark shift of high-n Rydberg states was exactly
calculated in the framework of time-dependent perturbation theory in Chapter 3. Based
on this calculation, we evaluated the AC Stark shift and transition matrix elements for
1S-n′S and 2S-n′S, transitions n′ → ∞ in a unified treatment in Hydrogen-like atoms.
The calculated energy shifts for initial state 1S and high Rydberg state n′S, n′ → ∞
served as major systematic effects in 1S-n′S, n′ → ∞ transition frequency determination
via Doppler-free, two-photon laser spectroscopy, which was explained in Sec. 5.5 of this
thesis.

With the theoretical analyses presented in this thesis, we establish two proposals which
might lead to an improved measurement of the bound-electron g factor in the mid-term
future. Double- and triple-resonance excitation schemes, which are unavailable for free
electrons, provided additional quantum pathways by which the measurement of the g factor
of a bound as opposed to a free electron can be simplified. The combination of UV and
microwave radiation is crucial to our proposals. We are fortunate to be able to combine
the g factor proposals with a new proposal for the measurement of the 1S-2S absolute
frequency in an ionized Helium. The details of the proposals are laid out in Secs. 5.3, 5.4
and 5.5 of this thesis.

With respect to the high-n Rydberg state, our investigation for 1S-n′S and 2S-n′S
transitions, n′ → ∞ could be generalized to the other class of transitions such as 1S-n′D
and 2S-n′D, n′ → ∞ and envisage the quantities such as ionization of Hydrogen-like atoms.
The properties of highly excited Rydberg states are considered to be useful in a host area
in fundamental physics including cavity QED.



Appendix A

Quenching effect on metastable
2S1/2(mj = −1

2) state

This section is dedicated to the influence of very weak field E on the lifetime of 2S1/2(m =
−1/2) and 2P1/2(m = +1/2), which are assumed to be degenerate according to Fig. 5.5.
We have assumed that Stark effect is very small in comparison with the fine struture
splitting, but lamb shift can not be ignored. In the presence of the electric field E, the
corresponding splitting can be evaluated by using the matrix elements of the perturbing (E)
,which connect the states 2S1/2(mj = −1/2) and 2P1/2(mj = +1/2).

H =

(

H11 H12

H21 H22

)

. (A.1)

Here, H11, H12, H21and H22 read

H11 = H22 = 〈ψ+|z|ψ+〉 = 〈ψ−|z|ψ−〉 = 0,

H21 = H12 = 〈ψ+|z|ψ−〉 = 〈ψ−|z|ψ+〉

= − 3nmj

4Z

√

n2 − (j + 1/2)2

j(j + 1)
E. (A.2)

Note that the Schrödinger-Pauli theory with spin is applied. Here ψ+ and ψ− refer to
the Schrödinger–Pauli eigenfunctions, which can be found in Ref. [5]. Therefore, the per-
turbation Hamiltonian regarding Lamb shift, which is an indispensable effect in this case
reads

H ′ = H + L, (A.3)

and

H ′ =

(

L −n
√

n2−1mjE

Z

−n
√

n2−1mjE

Z
0

)

, (A.4)
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2
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where L is the lamb shift of the S state. The eigenvalues ε and eigenfunctions H ′ are as
follow:

ε =
L

2
± L

2

√

1 +
4(n2 − 1)mjE

Z2L2
,

ψmix = aψ2S1/2
+ bψ2P1/2

,

a

b
=

2η/Z

1 ±
√

1 + 4η2/Z2
, (A.5)

where η = n
√

n2 − 1mjE/L. In Eq. (A.5), there is a direct relation between two stationary
states with n = 2 and j = 1/2. The energy separation of 2S1/2 state is larger than that
of 2P1/2 state. Therefore, the contributtion of transition matrix element from the part of
the wave function of ψ2S is smaller than the corresponding contribution of ψ2P . Hence, the
lifetime of 2S1/2(m = −1/2) and 2P1/2(m = +1/2) read [5].

τ±(E) =
[

1 +
(a±

b±

)2]

t2P , (A.6)

where the plus sign and minus sign refer to the stationary 2P1/2(mj = +1/2) and 2S1/2(mj =
−1/2), respectively. Now, one can evaluate the two following limits:

• Stark effect is much bigger than Lamb shift splitting(η ≫ 1):

τ2S1/2
(E,mj = −1

2
) = τ2P1/2

(E,mj = +
1

2
) =

= 2τ2P1/2
= 199.4 ps. (A.7)

• Stark effect is much smaller than Lamb shift splitting(η ≪ 1)

τ2P1/2
(E,mj = +

1

2
) = 99.7 ps, (A.8)

τ2S1/2
(E,mj = −1

2
) = η−2 τ2P1/2

, (A.9)

where η = E/475( V
cm

).

Now one can write the above results in terms of the width in frequency units (Γ
h

= (2πτ)−1)

(Γ

h

)′

2S1/2(mj=−1/2)
= 1597.148η2 MHz. (A.10)

Regarding the two-photon decay natural width of the metastable 2S state, one can write,

(Γ

h

)

2S1/2(mj=−1/2)
= 83.823 × 10−6 + 1597.148η2 MHz. (A.11)



Appendix B

Breit–Rabi diagram

In the presense of an external magnetic field, the energy levels of atoms are split. In
principle, the interaction between the atoms and the field can be classified into two regimes:

• Weak magnetic field leads the Zeeman effects, either normal (in atoms with no spins)
or anomalous (in all atoms with an odd number of electrons).

i.e., for weak magnetic fields, it is clear that the fine-structure and hyperfine-structure
levels will experience individual energy shifts which can be summarized in terms of
a coupling of the total angular momentum of the electron, or of the electron plus
nucleus, to the magnetic field. This is, so-to-say, the “Zeeman effect of the fine or
hyperfine structure.”

• Strong field leads the Paschen-Back effect. Unlike the (weak) magnetic field, S and
L couple more strongly to the external magnetic field than to each other.

This is the regime where the we can speak of the “fine or hyperfine structure of the
Zeeman effect,” where the leading-order effect is given by the (linear) couplings of
the electron or nuclear magnetic momenta to the magnetic field, but the individual
components are separated from each other by frequencies which are approximately
equal to the field-free fine and hyperfine structure splittings.

In the following, we intend to study the effect of the magnetic field of a Penning trap
B on 2P1/2(mj = ±1/2) and 2S1/2(mj = ±1/2) states conducting us to the Breit-Rabi
diagram for arbitrary magnetic field B , which interpolates between the above mentioned
regimes. To do so, we consider following Hamiltonian in which W is considered as pertur-
bation [5] (we have followed the notation appeared in Ref. [5])

H = H0 + Σ + W,

Σ =
α2Z

2
〈r−3〉J · S,

W = µ0B · (J + 2S), (B.1)
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where α is fine structure constant. We have used the Pauli eigenfunctions with spin in the
absence of a magnetic field with inner quantum number j = l ± 1/2. Hence, Hamiltonian
H read

H =





1
2

+
2mj(l+1)

2l+1
δ

√
(l+1/2)2−m2

j

2l+1
δ√

(l+1/2)2−m2
j

2l+1
δ −1

2
+

2mjl

2l+1
δ



 . (B.2)

After diagonalizing H, one can obtain the following eigenvalue for the total Hamiltonian.

E ′ = ∆E
[

mj δ ± 1

2

√

1 +
4mj δ

2l + 1
+ δ2

]

, (B.3)

where ∆E is the magnetic field free energy and δ = µ0B
∆E

. Fig. 5.7 shows that the energy E ′

is linear at (weak) magnetic field. This is no longer valid for medium field (i.e. Paschen
-Back regime).

In the following, the magnetic field value B has been obtained provided that 2S1/2(mj =
−1/2) and 2P1/2(mj = +1/2) states have been degenerated. According to Fig. 5.7, one can
consider a situation where the magnetic field precisely induces a degeneracy in the energy
levels,

E2S1/2
+ ∆E2S1/2

(mj = −1

2
)

= E2P1/2
+ ∆E2P1/2

(mj = +
1

2
) (B.4)

Using Eq. (5.14) and regarding the lamb shifts of the 2S1/2 and 2P1/2 states in 4He+ [92],
one can evaluate the experimental value of the magnetic field which is Bexp = 0.752 T.



Appendix C

Calculation of relativistic and leading
order QED contributions to
bound-electron g factor

In this section, we try to calculate relativistic and leading order QED contributions to the
g factor for 2Pj(j = 1

2
, 3

2
) states in the presence of a homogeneous magentic field. First,

we want to evaluate the relativistic correction to the g factor. To do so, we consider the
following Hamiltonian:

H = −eα · A = −e
∑

q

(−1)q α−q Aq, q = ±1, 0 (C.1)

where A = 1
2
(B × r). One can use the following representation:

Aq = −i
√

2
∑

m1,m2

C1q
1m1,1m2

Bm1
rm2

. m1 = 0,m2 = q. (C.2)

Here, we choose the z direction for the magnetic field B = Bez. Therefore the Hamiltonian
reads

H = ie
√

2
∑

q

(−1)qα−qC
1q
10,1qBrq, (C.3)

which can be rewritten as follows,

H = −ie
√

2
[

α0C
10
10,10Br0 − α−1C

11
10,11Br1 − α1C

1−1
10,1−1Br−1

]

. (C.4)

The values of Clebsch-Gordon coefficient read

C10
10,10 = 0, C11

10,11 =
−1√

2
, C1−1

10,1−1 =
1√
2
. (C.5)

Now, if we put these values in the Hamiltonian, we will reach the following relation:

H = ieB
[

α−1r1 − α1r−1

]

, (C.6)
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where r+1, r−1, α+1 and α−1 read ,

r−1 =

√

4π

3
rY11(θ, ϕ) r1 =

√

4π

3
rY1−1(θ, ϕ)

α+1 =
−1√

2
(α1 + iα2) α−1 =

1√
2
(α1 − iα2), (C.7)

where α1, α−1 and α0 can be written in terms of the Pauli matrix,

αi =

(

0 σi

σi 0

)

. (C.8)

One can summarize α+1 and α−1 as follows:

α+1 =
−1√

2

(

0 σ1 + iσ2

σ1 + iσ2 0

)

, (C.9)

α−1 =
1√
2

(

0 σ1 − iσ2

σ1 − iσ2 0

)

. (C.10)

Therefore, one can rewrite Eq. (C.6) in the following form:

H = C(r)

(

0 (σ1 − iσ2)Y11(θ, ϕ) + (σ1 + iσ2)Y1−1(θ, ϕ)

(σ1 − iσ2)Y11(θ, ϕ) + (σ1 + iσ2)Y1−1 0

)

,

(C.11)

where C(r) =
√

4π
3

iBer√
2

.

The energy shift in the magnetic field B can be obtained by using the following matrix
element.

E = 〈ψE(r, θ, ϕ)|H|ψE(r, θ, ϕ)〉, (C.12)

where ψE(r, θ, ϕ) in the relativistic representation is defined as follow: [93]

ψE(r, θ, ϕ) =

(

f1(r)χ
M
κ (θ, ϕ)

if2(r)χ
M
−κ(θ, ϕ)

)

, (C.13)

and

χM

κ (θ, ϕ) =

(

−κ
|κ| (

κ+1/2−M
2κ+1

)1/2Y|κ+ 1
2
|− 1

2
,M− 1

2
(θ, ϕ)

(κ+1/2+M
2κ+1

)1/2Y|κ+ 1
2
|− 1

2
,M+ 1

2
(θ, ϕ)

)

. (C.14)

In the special case 2P3/2 (with κ = +2 and mj = +3/2), the radial part of Eq. (C.12) has
the following familiar form,

Mrad =

∫ ∞

0

r3f1(r)f2(r)dr, (C.15)
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where f1(r) and f2(r) for κ = −2 read [93]:

f1(r) = −

√

j + 1
2
− γ

2γ
×

(

√

j +
1

2
− γg1(r) −

√

j +
1

2
+ γ g2(r)

)

,

f2(r) =

√

j + 1
2
− γ

2γ
×

(

√

j +
1

2
+ γg1(r) −

√

j +
1

2
− γ g2(r)

)

. (C.16)

In the above relations, g1(r) and g2(r) read

gNκ
1 (r) = N1(2rωNγ )

γe(−rωNγ )L2γ+1
N−1 (2rωNγ ),

gNκ
2 (r) = N2(2rωNγ )

γ−1e(−rωNγ )L2γ−1
N (2rωNγ ), (C.17)

where the symbols L2γ−1
N refers to the associated Laguerre polynomials. Note that N1 = 0

and N2 = 4γ
(

ε0αZ
|κ|

)3/2

/
√

Γ(2γ + 1)κ(κ + γ). In Eq. (C.18), we have,

ωNγ =
√

ε2
0 − ε2

Nγ,

ω0γ =
ε0

κ

√

κ2 − γ2, (C.18)

where γ =
√

κ2 − (αZ)2, ε0 = m and ε0γ = ε0γ
|κ| in atomic unit. Putting Eq. (C.17) into

Eq. (C.16) leads the radial part of matrix element of Eq. (C.13).
To calculate angular part of matrix element of Eq. (C.13), the following useful relation

can be applied.

σ1| ↑〉 = | ↓〉, σ2| ↑〉 = i| ↓〉, σ3| ↑〉 = | ↑〉, (C.19)

σ1| ↓〉 = | ↑〉, σ2| ↓〉 = −i| ↑〉, σ3| ↓〉 = −| ↓〉. (C.20)

Finally for 2P3/2(mj = +3/2), the g factor reads,

gj(2P3/2) =
4

3
− 2

15
(Zα)2. (C.21)

One can repeat the above calculation for 2P1/2(mj = +1/2) and reach,

gj(2P1/2) =
2

3
− 1

6
(Zα)2. (C.22)

The second part of this appendix is dedicated to the calculation of leading-order QED
correction to the bound-electron g factor. To evaluate this correction, one has to obtain
〈HL.O

QED〉, where the Hamiltonian is

HL.O
QED = − α

2π
(σ · B)(

e

2me

). (C.23)



98 C. Calculation of relativistic and leading order QED contributions · · ·

To evaluate the expectation value of 〈HL.O
QED〉, we use the fact that the time averaged spin

vector is the projection of the spin onto the direction of J ,

Savg =
S · J
J2

J · . (C.24)

Therefore, one can obtain 〈σ · B〉 as follows:

〈σ · B〉 =
B

2

j(j + 1) − l(l + 1) + S(S + 1)

j(j + 1)
mj. (C.25)

As a result, the leading order of QED correction to the bound-electron g factor is

gL.O
QED(2P3/2) = +

α

3π
,

gL.O
QED(2P1/2) = − α

3π
. (C.26)

Eqs. (C.21), (C.22) and (C.26) give Eqs. (5.17) and (5.22).
We have introduced an alternative method to calculate the leading-order QED correc-

tion to the bound-electron g factor. In this method, one should evaluate the expectation
value of Eq. (C.23). To do so, one has to utilize the relativistic representation of wave
function defined in Eq. (C.13).

〈HL.O
QED〉 =

〈

ψ2P3/2

∣

∣

∣
HL.O

QED

∣

∣

∣
ψ2P3/2

〉

=

=
µ0αB

2π

〈

ψ2P3/2

∣

∣

∣σz

∣

∣

∣ψ2P3/2

〉

, (C.27)

where HL.O
QED is introduced in Eq. (C.23) and σz is the Pauli matrix. Eq. (C.27) reads the

following form which just depends on the radial part.

〈HL.O
QED〉 =

µ0αB

2π

∫ ∞

0

r2
[

f1(r)
2 − f2(r)

2
]

dr, (C.28)

where f1(r) and f2(r) are defined in Eq. (C.16). This integral can be easily solved. Re-
garding the prefactors in Eq. (C.23), one can redrive the same value for gL.O

QED as appeared
in Eq. (C.26).



Appendix D

Relativistic and QED corrections for
absolute transition frequencies of
4He+

In this appendix, we deal with the contributions of several relativistic and QED corrections,
which modify the energy value of the Hydrogen-like atom given by shrödinger equation.

We start with the most significant correction due to the relativistic effect illustrated by
the Dirac equation. This correction is given by,

∆Erel. = µ
[

f(n, j) − 1
]

− µ2

2(M + m)

[

f(n, j) − 1
]2

, (D.1)

where f(n, j) is defined as follows:

f(n, j) =
[

1 +
(Zα)2

[n − j − 1
2

+
√

(j + 1
2
)2 − (Zα)2]2

]−1/2

. (D.2)

Here, n is the principal quantum number and m and Z refer to the mass of electron and
the number of protons, respectively.

In the following, the contribution of the QED corrections are considered. The recoil
corrections that are due to the displacement of the nucleus can modify the energy value
of the Hydrogen-like atom. This correction is divided into the pure and radiative recoil
corrections. The first part of this correction (pure recoil) comes from the exchange of
photons between electron and nucleus, in which the contribution of the self-interaction is
neglected. The corresponding Fynman diagram is shown in Fig. D.1. The corresponding
result of this correction for nS state reads,[94]

∆EP.R =
m2

M

(Zα)2

n3
(4 ln 2 − 7

2
). (D.3)

The second part of the recoil correction, i.e., the radiative recoil correction, is due to the
emition and absorption by the same particle or the modification of the photon propagator
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Figure D.1: Diagrams for the pure recoil correction. The wavy and dash lines denote the trans-
verse and Coulomb photon, respectively.

Figure D.2: Diagrams for the radiative correction.

by the the Fermi loop. The corresponding Feynman diagrams are depicted in Fig. D.2.
Finally, this correction can be evaluated by the following relation [94],

∆ER.R. = −α(Zα)5m2

Mn3
1.36449 (D.4)

The Finite nuclear size correction as another QED correction due to the finite size of
the nuclear is [94]

∆EF.N. =
2

3n3
(Zα)4µ3〈r2〉, (D.5)

where 〈r2〉 denotes the nuclear charge radius. The nuclear self-energy correction is also
[94]

∆ES.E. =
4µ3

3πn3M2
(Z2α)(Zα)4

[

ln
( M

µ(Zα)2

)

− ln k0(n)
]

, (D.6)
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where ln k0(n) refers to the Bethe logarithms.
We also consider the radiative recoil induced by one-loop polarization insertions in the

exchanged photon lines. The corresponding contribution of this correction is [94]

∆E =
(2π2

9
− 70

27

)α(Zα)5

π2n3

m

M
mδl0 (D.7)

In the last part of the QED corrections, we take into account the radiative correction to
the leading nuclear size effect. In fact, there are two sources for this correction. The first
one is due to one-loop radiative insertions in the electron line, while the second one comes
from the one-loop polarization insertions in one of the external Coulomb lines. The first
correction is so-called the electron-line correction and the second one is called polarization
correction. These two corrections are [94],

∆Ee-line = −1.985(1)
α(Zα)5

n3
µ3〈r2〉δl0,

∆Epol. =
α(Zα)5

2n3
µ3〈r2〉δl0,

(D.8)

,respectively. All of the numerical results related to these corrections are summarized in
Table 5.3, where they play an essential role in the development of the proposal introduced
in Sec. 5.5.1.
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