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Abstract
Cellular differentiation is a complicated and highly important system in

all multicellular organisms. The remarkable aspect about differentiation is

that the multitude of different and highly specialised cell types are all descen-

dant from one cell, the zygote. Not surprisingly differentiation is a highly

regulated process. A complicated interplay of environmental signals and in-

tracellular regulation defines the ultimate mature state of all cell types.

In this work a method was developed that can analyse differentiation

trees computationally. The development of the method was guided by three

questions. Do microarrays contain enough information to retrace steps in

differentiation? Can this information be used to validate proposed differen-

tiation paths? Can this information be used to compare differentiation in

different contexts?

The method starts from microarray data and uses a combination of meth-

ods to identify the most likely differentiation tree out of all possibilities. The

method has two components, one component identifies the most likely con-

formation using a scoring system. The other component identifies the most

likely root node using a comparison system. The conformation scoring sys-

tem relies on transcriptional changes in previously defined subnetworks, all

possible differentiation conformations are tested in a manner similar to max-

imum parsimony. Maximum parsimony is used in molecular phylogeny to

score possible evolutionary trees, a problem similar to the one tackled in this

work. Root node identification is done using a value calculated based on

within cell type gene expression correlations, high values indicate the cell is

less mature.

The method was tested on microarray data from the myeloid lineage of

hematopoiesis. The datasets are comprised of expression data taken from

four different cell types: Hematopoietic Stem Cells, Common Myeloid Pro-

genitors, Granulocyte Monocyte Progenitors and Megakaryocyte Erythro-

cyte Progenitors. Data was gathered from healthy donors and patients suf-

fering Chronic Myeloid Leukemia and Multiple Myeloma respectively.

The method performed well, in most cases the correct differentiation tree

could be identified. This indicates that there is indeed enough information



present in microarray data to retrace differentiation. Interesting results where

seen for the root node identification component. When analysing the dataset

taken from patients with CML, the method predicted known differences in

stemness in that particular cancer.



Zusammenfassung
Zelluläre Differenzierung ist ein kompliziertes und äusserst wichtiges Sys-

tem in allen multizellularen Organismen. Der bemerkenswerte Aspekt bei der

Differenzierung ist, dass die Vielzahl an unterschiedlichen und enorm spezial-

isierten Zelltypen alle von einer Zelle abstammen, der Zygote. Es überrascht

daher nicht, dass Differenzierung ein stark regulierter Prozess ist. Ein kom-

pliziertes Zusammenspiel von umweltbedingten Signalen und intrazellulärer

Regulierung definiert den endgültigen, vollentwickelten Zustand von allen

Zelltypen.

In Rahmen dieser Arbeit wird ein Verfahre entwickelt, mit der Differen-

zierungsbäme programmatisch analysiert werden können. Die Entwicklung

dieser Methode wurde von drei Hauptfragen bestimmt: Enthalten Microar-

rays genügend Informationen, um die Schritte der Differenzierung nachzuver-

folgen? Können diese Informationen verwendet werden, um vorgeschlagene

Differenzierungs-Wege zu validieren? Können diese Informationen verwen-

det werden, um Differenzierung in verschiedenen Kontexten miteinander zu

vergleichen?

Das im Rahmen dieser Arbeit entwickelte Verfahren verarbeitet Microar-

ray Daten zu einem Differenzierungsbaum, indem es aus allen möglichen

den wahrscheinlichsten Differenzierungsbaum ermittelt. Die Transformation

der Daten wird im wesentlichen von zwei Komponenten bernommen: Eine

Komponente identifiziert die wahrscheinlichste übereinstimmung basierend

auf einem Bewertungssystem. Die andere bestimmt den wahrscheinlichsten

Wurzelknoten des Differenzierungsbaums durch ein Vergleichssystem. Das

Conformation Scoring System bzw. das Bewertungssystem für Übereinstim-

mungen beruht auf transkriptionellen Änderungen in vorher definierten Sub-

netzwerken, in denen auf mögliche bereinstimmungen bei der Differenzierung

getestet wird, ähnlich wie bei Maximum-Parsimony. Maximum-Parsimony

wird im Bereich der molekularen Phylogenie eingesetzt, um die Wahrschein-

lichkeit von Stammbäumen zu bewerten, einer Problemstellung, die der in

dieser Arbeit besprochenen Problematik sehr ähnlich ist. Die Identifizierung

des Wurzelknotens basiert auf einem Wert, der mithilfe der Korrelation von

Genexpressionen innerhalb eines Zelltyps berechnet wird. Ein hoher Wert



deutet darauf hin, dass die Zelle noch nicht voll entwickelt ist.

Das Verfahren wurde mit Microarray Daten von hämatopoetischen Zellen

der myeloischen Linien getestet. Die Dateien bestehen aus Expressionsdaten,

die von vier verschiedenen Zelltypen stammen: hämatopoetischen Stam-

mzellen, Common Myeloid Progenitors, Granulocyte-Monocyte Progenitors

and Megakaryocyte-Erythrocyte Progenitors. Die Daten stammen sowohl

von gesunden Spendern als auch von Patienten, die an chronischer myelois-

cher Leukmie (CML) erkrankt sind.

Das Verfahren arbeitete erfolgreich und führte in den meisten Fällen zur

Bestimmung des korrekten Differenzierungsbaums. Dies ist ein Indikator

dafür, dass Microarray Daten genügend Informationen enthalten, um die

Schritte der Differenzierung nachzuverfolgen. Die Komponente zur Identi-

fizierung des Wurzelknotens lieferte besonders interessante Resultate. Bei

der Analyse von Datenstzen, die von Patienten mit CML stammen, kon-

nten mithilfe des Verfahrens bekannte Unterschiede in der Stemness dieser

Krebsform vorausgesagt werden.
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Chapter 1

Introduction

Cellular differentiation is a complicated and highly important system in all

multicellular organisms. The remarkable aspect about differentiation is that

the multitude of different and highly specialised cell types are all descen-

dant from one cell, the zygote. Not surprisingly, differentiation is a highly

regulated process. A complicated interplay of environmental signals and in-

tracellular regulation defines the ultimate mature state of all cell types. It is

clear that errors in this system could lead to disastrous effects. Indeed, such

defects may be the underlying cause of some cancers. Although the system

is of high importance, a lot of questions remain open.

Research is complicated by several factors. The first issue is that the

percentage of stem cells is usually quite small in comparison to that of fully

differentiated cells, making isolation and identification troublesome. Up to

now, the most studied lineage stem cell is the hematopoietic stem cell. There-

fore the system that is generally the most studied in regard to differentiation

is the hematopoietic system. Another problem comes from the fact that it

is difficult to follow differentiation in vivo while it may not be possible to

correctly simulate differentiation in vitro. As will be more explained in the

section below, cellular differentiation does not occur in a vacuum. Inter-

action with surrounding cells provides important guidance throughout the

differentiation process. The complexity of these interactions complicates in

vitro studies. It may be possible to induce differentiation in vitro but, due
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to the lack of intercellular contact, the complete in vivo-picture may not be

reflected in these experiments. Thus constructing differentiation trees be-

comes a complicated inference game integrating biological data from several

sources. In fact the only organism to date for which the full differentia-

tion tree is known is Caenorhabditis elegans: a small transparent nematode

counting roughly a thousand somatic cells at maturity (Sulston and Horvitz,

1977). Given these complications it is not surprising that there is a lot of

uncertainty surrounding differentiation and proposed differentiation trees are

often challenged and need to be readjusted.

In this section the reader will be given an overview on transcriptome

analysis techniques and differentiation will be introduced by the example

of hematopoietic differentiation. Since this study also includes microarray

data from two myeloid malignancies, chronic myeloid leukemia and multiple

myeloma, those will also be treated briefly. Finally epigenetic changes will

be introduced since they play a pivotal role in the design of the method.

1.1 Background

1.1.1 Transcriptome analysis techniques

Analysis of the transcriptome measures quantitative data about the concen-

trations of various mRNA molecules. One of the first techniques to analyse

gene expression was Northern blotting, the name derives from the analogy

to the technique for DNA called Southern blotting (named after the inven-

tor, Southern). In Northern blotting RNA samples are first size-separated

using gel electrophoresis. By means of capillary force or vacuum, the RNA

molecules are then transferred to a nylon membrane. The RNA molecules

have a negative charge and are attracted to the positively charged nylon

membrane. The RNA molecules are then cross linked to the membrane by

UV radiation. The immobilised RNA molecules can be quantified and iden-

tified using labelled complementary probes. Probe detection can occur by a

variety of methods including radioisotopes and chemiluminescense. A follow-

up method does the reverse, instead of fixating the RNA to the membrane,
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pieces of genomic DNA are fixated and RNA molecules are used as probe.

This method can be seen as a rough first version of the now popular mi-

croarrays. Microarrays take reverse Northern blotting to the microscopic

level. Essentially the same as reverse Northern blotting, microarrays consist

of a support structure, on which short stretches of DNA are fixated. Due

to advances in modern technology thousands of these oligomers can be at-

tached to a small surface, similar to how electronic microchips are produced.

The oligomers, called probes, correspond to known coding regions. Sets of

probes can then be mapped to known genes. The microarray platform offers

several possibilities dependant on the probes attached to the support struc-

ture, the most common application is expression profiling. RNA is extracted

and converted into labelled cDNA by reverse transcriptase, fluorescent dyes

are generally used. The labelled cDNA is then hybridized to the oligomers,

and specialised machinery takes intensity readings (Lockhart et al., 1996).

These readings can then be used to calculate the expression levels of the

genes represented on the microarray. There are two possibilities: relative

expression levels comparing two cases directly, or absolute measurements on

a single case. They are called two-channel and one-channel techniques re-

spectively, “channel” indicates a colour channel (or emission wavelength).

In two-channel experiments the cDNA of the different cases to compare are

labelled in a different colour. Figure 1.1 illustrates the steps in a two-channel

experiment.
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Figure 1.1: Illustration of the steps in a two-channel microarray experiment

The methods described above are all based on hybridisation and base

complementarity. Around the time of the first microarray experiments, a

competing technique was developed: Serial Analysis of Gene Expression

(SAGE) (Velculescu et al., 1995). SAGE tackles the expression profiling issue

by means of DNA sequencing. With SAGE, RNA is converted to cDNA and

then cut by a restriction enzyme. This cut is then used to connect the cDNA

pieces through a known linker sequence. This concatenate can be sequenced

and, because the linker sequences are known, the RNA sequences and their

abundance in the initial sample can be identified. This technique has a draw-

back and an advantage when compared to micoarrays. The drawback is that

this technique is rather expensive, the advantage is that the sequences don’t

need to be known beforehand. Recently, with the development of Next Gen-

eration Sequencing (NGS), the technique has become viable again because

the costs associated with sequencing have decreased drastically.
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1.1.2 Similarities between evolution and differentiation

The similarities between the evolution of species and the differentiation of

cells has a central place in this work. Evolutionary analysis aims to identify

tree structures that explain the relationships between the different organisms

that exist today. Central to any method to identify such trees is a component

that changes over time. Early efforts in evolution could only use morpholog-

ical attributes but recently it has become possible to use genomic sequence

information in such research. The further apart two organisms are in an

evolutionary sense, the more changes there should be in the genome.

Cellular differentiation can be approached in a similar way. In each step

of differentiation, cells become more specialised for their particular role and

cells with similar functions are organised into specific lineages. This process

follows a tree structure with intermediate progenitors stages making up the

internal nodes, an analogy can be made with ancestral states in the evolution

of species. In the case of differentiation, changes in the transcriptome dictate

changes in the identity of the cell. These changes occur gradually during the

maturation process of the cell.

There are two important differences between the differentiation of cells

and the evolution of species. In the evolution of species the object that

changes is the genomic sequence, in the case of cellular differentiation the

genome remains constant in all cell types (excluding mutation events and

genome reorganisation events in immune cells) and the object that changes

is the transcriptome. Another notable difference is that evolution is blind, a

combination of random mutation events and how these mutations affect the

fitness of the organism in its particular environment are what drive evolution.

Clearly such randomness in undesirable in the context of a multicellular

organism. Instead cellular differentiation proceeds along a, more or less,

defined path towards a defined end point: the mature state. The changes in

the transcriptome needed to arrive at this mature state are dictated by the

environment through elaborate cell to cell contact. Hence, the environmental

aspect of evolution is shared with cellular differentiation.

The analogy between evolution and cellular differentiation is know as the
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Evo-Devo concept (David, 2001).

1.1.3 Hematopoietic differentiation

A well-studied differentiation system is that of blood cells, hematopoiesis. It

will be outlined here as a general example of differentiation.

Hematopoiesis starts from the Hematopoietic Stem Cell (HSC) and gives

rise to all types of blood cell present in the body. The system is highly active

and can produce more than a billion of new blood cells each day. The differ-

entiation process is guided by a complex combination of intracellular signals

and communication with the environment, in adults this process occurs in

the bone marrow.

The HSC, as all stem cells, has self-renewal potential. Cellular division

can be performed asymmetrically. The results of this division are two daugh-

ter cells of a different type. One daughter cell is again a HSC, and the other

cell a more mature progenitor. This is important because this asymmetri-

cal division ensures that the pool of HSC never depletes and new blood cells

can be continuously produced. The more differentiated daughter cell marks a

new level of maturity and has lost self-renewal potential. These more mature

progenitors are destined to terminally differentiate. In this first asymmet-

ric division the lineage is determined. The strict lineage separation is now

known as the classic model since new evidence suggests a different model. In

this work the classic model will be taken as the working model.

In the classical model there exist two clearly defined and separated lin-

eages: the myeloid lineage and the lymphoid lineage. Both development

paths are entered based on the result of the asymmetric division of the

HSC. The HSC either generates a Common Lymphoid Progenitor (CLP)

or a Common Myeloid Progenitor (CMP). These cells are the progenitors

for their respective lines. The lymphoid line consists of T-cells, B-cells and

plasma cells. The myeloid line generates all the other blood cell types. There

are still distinctions present in the myeloid line since it contains both cells

from the innate immune system in addition to red blood cells and platelet-

producing cells. This distinction is brought about by two possible progenitors
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descendant from the CMP: Granulocyte Monocyte Progenitors (GMP) and

Megakaryocyte Erythrocyte Progenitors (MEP). This short description al-

ready covers a lot of the basics of differentiation in general. The process

is stratified with a decrease in differentiation potential in each step. The

most important step is the loss of self-renewal potential, which drives the

cell towards a determined end point (Giebel and Punzel, 2008). Figure 1.2

illustrates this.

Figure 1.2: Schematic representation of the classical model of hematopoietic dif-
ferentiation

This reduced potential and increased specialisation is a consequence of

gradual yet profound changes in gene expression due to interactions with the

environment, the niche. The niche provides stem cells with a favourable yet

controlled environment. The niche exerts control over differentiation in a

variety of ways, either by keeping stem cells in the stem cell state or induc-

ing differentiation to a certain cell type. Cells in the niche maintain close

contact with the stem cells by means of adhesion molecules. In addition,

the niche cells influence stem cells by signalling to a variety of receptors.

In the case of hematopoiesis the niche exists inside the bone. In the bone

marrow niche the main interaction partners of HSCs are the osteoblasts. Os-

teoblasts produce several hematopoiesis related cytokines such as GM-CSF,

which induces differentiation into granulocytes. Interaction with osteoblasts

can also regulate self-renewal in HSCs through an elegant mechanism involv-

ing Notch signalling. When activated by parathyroid hormone, osteoblasts

produce Jagged1, which in turn interacts with the Notch receptors on HSCs

16



and increases self-renewal. Osteoblasts can also influence HSC self-renewal

through signalling through the Wnt pathway (Rizo et al., 2006). Osteoblasts

also directly influence the retention of the HSC in the niche by producing

CXCL12, which interacts with CXCR4. Decreased CXCL12 causes increased

mobilization of HSCs. In this light it is interesting that osteoclasts oppose

niche retention by osteoblasts. Osteoclasts, once activated by RANKL, cause

cleavage of CXCL12 and thus promote mobilisation into the bloodstream. It

would appear that osteoblasts and osteoclasts don’t only oppose one an-

other in bone formation, but also in their influences on HSCs (Forsberg and

Smith-Berdan, 2009; Porter and Calvi, 2008; Rizo et al., 2006).

The previous is but a small example of the complexity and variety of

interactions in the bone marrow niche that govern hematopoietic differentia-

tion. The important message is that cellular differentiation does not occur in

a vacuum, but that the system is guided and controlled by the environment.

Figure 1.3 shows some additional interactions as an illustration.
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Figure 1.3: Illustration of niche interactions, image was taken from Rizo et al.
(2006)

It should be noted that this classical model has recently been challenged

by new evidence. The competing model argues that the separation between

the the myeloid and the lymphoid line is not as strict as previously assumed.

It was shown that progenitors destined for lymphoid differentiation may still

differentiate into cells of the myeloid lineage. It is suggested that myeloid

cells, in this case granulocytes, are a default or prototype form of blood

cell and that all other varieties are a specialised form of this prototype cell.

This model is quite elegant and does manage to explain characteristics of

the different cell types. The prototypic myeloid cells have functionality that
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overlaps with the more specialised cells, in this case mobility and phagocyto-

sis. These characteristics are also found in B-cells in addition to the specific

functionality they have. This theory may also help explain why there are

two branches of the immune system: innate and adaptive. (Kawamoto et al.,

2010)

Hematopoietic differentiation is not only governed by regular signalling

but also by epigenetic events. DNA methylation is an important factor in

hematopoietic differentiation REF showed that disruption of the DNA methyl

transferase DNMT1 in HSC caused defects in a variety of systems such as self

renewal and niche retention (Towbridge et al., 2009). These adverse effects

were not restricted to the HSC alone, but could also be seen in the more

mature progenitors. This indicates that correct epigenetic regulation is of

high importance for successful differentiation.

1.1.4 Myeloid malignancies

1.1.4.1 Chronic Myeloid Leukemia

Chronic Myeloid Leukemia (CML) is a malignancy of the hematopoietic sys-

tem which manifests itself in the myeloid line. The system becomes malignant

quite early in development at the point of the HSC. Interestingly the trans-

formation to CML is caused by a single specific translocation event in 95

percent of the reported CML cases. The resulting chromosome is called the

“Philadelphia” chromosome. The Philadelphia chromosome is the result of

a translocation between chromosomes 9 and 22. It generates a fusion gene

consisting of parts of the ABL gene and the BCR gene. The BCR-ABL fu-

sion gene transforms HSC by eliminating the the possibility to regulate the

tyrosine kinase activity through the SH1 domain of ABL. The fusion results

in a constitutively active ABL tyrosine kinase, which overtakes the activities

of regulated ABL. Because of the importance of ABL and its regulation in

cellular differentiation, the continuous activity of this enzyme has profound

implications on normal development. The inability to control signalling from

this enzyme results in a wide variety of abberations such as uncontrolled

proliferation and growth factor independence, in essence cells retain stem
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cell-like characteristics while normal differentiation is impaired.

Because of the time point at which the cells become transformed (HSC)

it is perhaps not surprising that CML can progress into any of the possible

outcomes of hematopoiesis. Interestingly it most cases an expansion of the

granulocyte fraction is seen.

CML progresses through three phases: the chronic phase, the accelerated

phase, and blast crisis. The chronic phase is the longest phase. In that

phase the effects of the disease are not very pronounced. After 3 to 5 years

however, the disease progresses into the so-called blast crisis. In this phase

the disease is highly similar to Acute Myeloid Leukemia (AML) with the same

disastrous effects. It is not entirely clear what causes the progression of the

chronic phase into the highly aggressive blast crisis. A possible explanation

is the inhibition of DNA repair by the BCR-ABL fusion gene which would

allow additional mutations to develop. (Bruns et al., 2009; Burke and Carroll,

2010; Frazer et al., 2007; Jamieson, 2008)

1.1.4.2 Multiple Myeloma

Multiple Myeloma (MM) is a malignancy of the hematopoietic system which

manifests itself in plasma cells. Plasma cells are a terminally differentiated

form of B-cells. After activation by antigen and T-cells, B-cells can dif-

ferentiate into plasma cells which behave as factories for a specific type of

immunoglobulin. An important step in the differentiation to plasma cells

are several rounds of somatic hypermutation. Hypermutation occurs in the

hypervariable regions of the immunoglobulin genes. These comprise the com-

plementarity regions of the folded immunoglobulin domains. The desired

effect of these mutation events is to allow for small variations in the im-

munoglobulines that may lead to increased affinity for the specific antigen.

Inducing such mutations also holds certain risks, chromosome breaks may

be induced elsewhere in the genome, and oncogenes may be placed near the

rather strong immunoglobulin enhancer sequences. Indeed, it is exactly those

mutations that are causative for progression into MM. Because of the some-

what random nature of this process there is no single fusion or translocation
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that is causative for MM, unlike the Philadelphia chromosome in CML. (Di-

mopoulos et al., 2006)

Although an uncontrolled population of plasma cells is clearly undesir-

able, it is interesting that the main impact of this malignancy on the system

is due to the influence of the MM plasma cells on bone. MM cells cause an im-

balance between bone destruction and bone formation. The bone is subject

to two opposing forces: bone formation by osteoblasts and bone destruction

by osteoclasts. MM cells alter the balance in favour of the osteoclasts by both

stimulating osteoclasts and inhibiting osteoblasts. The imbalance results in

netto bone destruction and, as a consequence, hypercalciemia. Due to the

toxicity of calcium, hypercalciemia has a negative impact on wide variety of

organs and systems. In light of what was discussed previously in relation to

the involvement of osteoblasts and osteoclasts in the HSC niche the inter-

ference with the balance between osteoblasts and osteoclasts becomes even

more interesting.

MM cells seem to interfere with bone primarily because of similarities

in the optimal niche for both MM cells and osteoclasts. MM cells attempt

to create a preferable environment for themselves and, in doing so, activate

osteoclasts and inhibit osteoblasts. There is at least some evidence for this,

MM cells produce the chemokine MIP −1α, which interacts with the CCR5

receptor. Both MM cells and osteoclast precursors express this receptor.

In osteoclast precursors, signalling from CCR5 promotes differentiation into

mature osteoclasts, for MM cells signalling from CCR5 promotes growth and

survival. As mentionned earlier, activity of osteoclasts negatively impacts

retention of HSCs in the bone marrow niche. Taken together, the influence

of MM on osteoclasts is a nice example of how important the interactions

between different cell types are for successful differentiation. (Sezer, 2009)

1.1.5 Epigenetics

Epigenetics is a general term for a series of processes that influence cellular

regulation but do not involve changes in DNA sequence while being heritable.

Epigenetic regulation provides cells with the ability to regulate over time, in
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essence it provides cells with a memory. In the case of differentiation, this

is a memory of past differentiation stages, but the system can also provide

different time-related regulation. In plants for instance, the exact moment

to progress from the vegetative stage to the reproductive state is to a large

extent governed by epigenetic mechanisms (Sung and Amasino, 2004). En-

vironmental signals are registered over time, and a developmental decision is

made based on the accumulated information. Perhaps the most important

characteristic of epigenetic regulation is that it can persist after cell division,

this quality is of high importance in regard to differentiation.

This time-stable regulation is made possible by an intricate interplay be-

tween methylation of DNA and chemical modifications to its support struc-

ture, the histones. Histones are proteins that form disc-like structures (nu-

cleosomes), the DNA is wound up around them into an efficiently packed

structure. Because of the close contact between histones and DNA modifi-

cation of these histones can influence transcription. Because of this unique

possibility, histones are modified quite heavily with a number of possible

molecular attachments. Of those possible modifications, modifications in-

volving the attachment of a methyl group or an acetyl group are the most

understood and studied. Histones have protruding stretches of amino acids,

called tails, on which the modifying groups are attached. There is some

combinatorial variation allowed here, specific groups can be added to spe-

cific amino acids in the tail. It appears that attaching a specific modifying

molecule to a specific location in the histone provides a specific function.

This specificity combined with the almost overwhelming amount of possi-

ble combinations has lead some authors to speculated that they may form a

specific histone code. (Ruthenburg et al., 2007)

Some of the more known modification will be briefly covered here, because

they are important in the interaction between histone modification and DNA

methylation. By convention the position of the modified amino acids in the

histone tail are indicated like in this example: H3K9. What is indicated is

that histone 3 (histones form complexes) is modified at the lysine residue (K)

at position 9 in the tail.

Histone modifications, unlike DNA methylation, can promote transcrip-
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tion or suppress it based on which residue is modified. In this regard two

methyl modifications are on opposite sides: H3K4 methylation and H3K9

methylation. H3K4 methylation is associated with genes that are actively

transcribed. H3K4 methylation can exist in three methylation states: mono-,

di- and trimethylated. Although methylation of H3K4 can be found along the

entire length of the transcribed region there is a gradient in the methylation

state. Trimethylation is found at the transcription start site, monomethyla-

tion at the end and dimethylation in the middle (Ruthenburg et al., 2007).

The methylation of this residue is closely linked to transcription itself. The

enzyme responsible for the methylation of H3K4 in yeast, Set 1, associates

with RNA polymerase (Sims et al., 2004).

On the other side of the spectrum is H3K9 mehtylation. Methylation

at this residue is associated with transcriptional silencing. The trimethy-

lated form is primarily localised to heterochromatin, but methylated forms

of H3K9 can be found in active sites. Since H3K9 methylation is not present

in promotor regions and at transcription start sites, it is speculated that it

could prevent faulty transcription initiation. H3K9 plays a central role in

epigenetic silencing due to its interactions with DNA methylating enzymes

(Stewart et al., 2005). It can also be acetylated. Acetylation of histones is

associated with open and active chromatin. H3K9 acetylation also excludes

recruitment of DNA methyltransferases. Methylated H3K9 can recruit the

DNA methyltransferase DNMT1 to the site by means of HP1 that interacts

with the methylated H3K9 (Stewart et al., 2005).

Methylated DNA is associated with silenced DNA in mammals. In Drosophila

methylation is associated with active transcription. Fortunately the mech-

anisms depositing the methylation marks are largely similar across differ-

ent organisms, however the interpretation thereof is not necessarily similar.

Methylation marks are generally deposited in areas rich in the CG dinu-

cleotides called CpG islands, where cytosine is the methylated residue. These

CG repeats are undermethylated in the promotor regions of active genes.

There are two possible ways in which methylation negatively impacts

transcription, either by interfering with the binding sites of proteins that

initiate or enhance transcription, or by promoting the binding of repressive
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proteins.

More important than how methylation silences transcription is how the

methylation marks are deposited. Silencing by methylation is a consequence

of inactive transcription rather than a cause. Earlier it was mentionned that

the transcriptional machinery can indeed deposit epigenetic marks associated

with active transcription. As a consequence of transcription-related silencing

certain genes will have to be active, at least transcribed, in early development

even though they are not required. It was indeed shown that this is the

case for some genes. By transcribing these genes, undermethylated CpG

islands can be formed in their promotor regions allowing expression later in

development when they are required (Bird, 2002).

This last observation is important for the work presented here as it sug-

gests that in early stages of differentiation CpG islands in promotor regions

should be mostly undermethyhlated, and methylation in general should be

lower. Fortunately there is evidence to support this mechanism. It was shown

that in stem cells the amount of methylation in CpG islands is low, while

methylation of these sequences increases during differentiation. Since there

is almost no detectable demethylation this means epigenetic silencing in-

creases during differentiation (Mohn and Schubeler, 2009). The link between

increased methylation, and resulting silencing, and differentiation serves as

one of the core principles of the method presented in this work. The increas-

ing silencing provides a possibility to organise cell types in a chronological

order. Methylation data was not available for this project, but by looking

at transcriptional changes silencing can be indirectly analysed. The way in

which this increased silencing is used in the method will be explained in more

detail in the Method section.

1.2 Related work

The analysis of transcriptome changes over time and in an evolutionary con-

text was also performed by Giger et al. (2010). In their work, compar-

isons were made between neuronal cells and endothelial cells. These two cell

types were chosen specifically because neuronal cells are highly tissue spe-
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cific, whereas endothelial cells exist in a variety of tissues. By comparing

the endothelial transcriptome to that of neuronal cells two groups of genes

were defined: a group of genes preferentially expressed in neuronal cells and a

group of genes preferentially expressed in endothelial cells. Those two groups

served as a basis to analyse transcriptome changes over time and across re-

lated species. They found that during development there is more variation

in the group of endothelial genes than in the group of neuronal genes. Ad-

ditionally genes from the endothelial cells are also expressed in other tissues

whereas the neuronal group is very specific for brain (brain being the neu-

ronal tissue analysed). A comparison between humans, chimpanzees and

macaques revealed that there were more changes in the neuronal group than

in the endothelial group. This is likely a consequence of the rapidly increased

evolution of the brain in primates compared to other organs.

Although this work touches on similar topics as the work presented here,

the outcome and direction are substantially different. From the work of Giger

et al. (2010) it is not clear how this information can be used to recreate or

score a differentiation tree. Also, the study is based on fully differentiated

mature cells whereas in the work here the emphasis lies specifically on stem

and progenitor cells.

Modelling of differentiation, specifically hematopoiesis, has been under-

taken by several groups (reviewed by Foster et al. (2009)) but the focus there

seems to be more on inferring regulatory networks than specifically recon-

structing differentiation trees as is the aim of this work.

The study by Felli et al. (2010) approaches hematopoietic differentiation

from a computer-science related angle. They consider the transcriptome of

a cell at any given time as a representation of the state of the system at

that particular time point. They suggest that cellular differentiation can be

seen as the evolution of the system from an unstable state (the progenitor)

to an attractor state (mature cell) following a given trajectory. To test this,

they induced differentiation in vitro and did a microarray analysis at fixed

time points. Using a correlation-based analysis, they could indeed show that

the transcriptomic changes follow an identifiable trajectory towards a given

attractor state. In addition they showed that this behaviour can be observed
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when considering the transcriptome as a whole or parts of it.

Clearly this work is of relevance to the work presented here and makes

a strong case for the possibility to analyse differentiation trees using tran-

scriptome data. The ability to identify specific differentiation trajectories

also indicates that global transcriptome changes are not random but instead

follow a clearly defined path. Unfortunately it was not clear from the study

how these trajectories run and if it is possible to identify positions in a dif-

ferentiation tree where a where a lineage separation occurs.

1.3 Aim of the thesis

This thesis will explore the possibilities of analysing differentiation in a com-

putational manner using only transcriptome data, under the form of microar-

ray data, and gene interaction data.

The analysis presented in this work will be guided by three questions. Do

microarrays contain sufficient information about the differentiation process

to analyse differentiation computationally? Can this information be used to

validate or verify proposed differentiation trees? Can this information be

used to compare differentiation in different contexts? The first question is

general in nature but paves the way for the two following and more impor-

tant questions. These questions will be addressed by stepwise developing a

method that can, based on a combination of microarray data and cellular

network topology, score the likeliness of any proposed differentiation tree in

comparison to all other possible differentiation trees given a collection of cell

types and corresponding microarray data. The method will be developed in

such a way that it is easy to implement with tools that are readily available

to the bioinformatics community. In addition to this, the method is built up

in a modular fashion so the results of the component steps can have merit in

their own right. Ideally the method should also be able to raise new questions

and not only serve as a validation tool.
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Chapter 2

Method

2.1 Principles behind the method

It is not uncommon in nature to see certain themes reappear in different

systems. In the case of cellular differentiation there are parallels to be found

with the evolution of species. The evolution of species is considered to have

started with a single organism, as time progressed the descendants of this

organism became more and more distinct and specialised in their role. In the

initial phase of evolution the amount of different species was rather small,

and the differences between them minor. With time the amount of different

species and the differences amongst them gradually increased through stages

that would later become ancestral species. This outbranching and rooted

structure led to the adoption of the term ”tree of life” or phylogenetic tree.

At any point in time, the tree contains ancestral internal nodes and leaf

nodes. The leaf nodes represent a set of species that are highly specialised

for their environment because of their environment. The environment is what

drives the phylogenetic tree.

Cellular differentiation follows similar principles as the evolution of species.

Cellular differentiation starts at the zygote. During subsequent cell divisions

the amount of cell types increases and they become more specialised for their

role until a terminally differentiated or mature cell type is reached. Along

the path to mature cell there are several progenitor cell types which can be
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seen as ancestral to the mature cell types. Based on these ancestral stages

the different cell types can be classified according to lineages. An example

of this is the early separation into the ectoderm, mesoderm and endoderm

germ layers. Similarly to evolution, the characteristics of the leaf nodes are

largely due to communication with the environment during a cell’s lifetime.

The environment drives the differentiation tree.

Although there clearly is a likeness between both systems, there are also

substantial differences. The most important difference is that evolution is

undetermined, there is no fixed end point. Differentiation on the other hand

is a determined process and has a defined end point. Evolution appears to

be following a random trial and error system, while differentiation follows

a more or less defined program. Because of these substantial differences

the similarities between both systems serve a more philosophical purpose in

identifying possible methods to analyse differentiation computationally.

In recent years phylogenetic analysis is mostly done by computational

methods because of the increasing availability of sequence data. Central to

these methods are base changes between genomes or parts of genomes or

genes. Two methods are commonly used: maximum parsimony and maxi-

mum likelihood. In both methods all possible trees are evaluated and then

scored based on some criterion. Maximum parsimony is non-parametric and,

starting with an initial alignment of genome sequences, scores the trees based

on the total amount of changes needed to arrive at the data analysed. Trees

that score low are considered the best. Maximum likelihood follows a sim-

ilar strategy, but is parametric. All trees are evaluated, but base changes

are scored based on probabilities. The tree with the highest likelihood given

the data is considered the best. Although both methods looks suitable to

reconstruct differentiation trees, there is an important shortcoming due to

the nature of phylogeny: the internal nodes are only inferred and the actual

data always ends up in the leaves. This is not surprising since in the case of a

phylogenetic study, data from the ancestral species is difficult to obtain, so it

makes sense in that case to not consider them explicitly. For differentiation,

however, the internal nodes are of importance, since they are progenitors,

and data is available for them. Nevertheless, the idea of scoring all trees
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according to a change-based criterion is appealing in the case of differentia-

tion. What remains is to identify what is changing, and how it is expected

to change throughout differentiation.

Although every cell contains the full genomic information, fully differenti-

ated cells only call upon a fraction of the possibilities. This is even required:

it is undesirable that a liver cell, for instance, expresses gene programs char-

acteristic for neural cells. As a result of differentiation, cells become more

specialised and as a consequence loose potential. Cells are progressively pro-

grammed for their specific task in the organism. This requires the changes to

be constant. Common cellular regulation systems do not carry over between

generations, this function is provided by epigenetic regulation.

As mentioned in the introduction (1.1.5 on page 24), the netto methyla-

tion of the genome increases as differentiation progresses. As a consequence

increasing parts of the genome will be covered by silencing methylation

marks. One could make the analogy of an island that becomes progressively

more flooded. In this case land represents active, non silenced chromatin

while flooded areas represent chromatin that is silenced and therefore no

longer accessible to the transcription machinery. Clearly, this decreases the

potential of the genome. However, this decreasing amount of available chro-

matin or genes is exactly what gives cells their specialised nature. Similar to

how an ocean oil rig only has very limited available surface but can provide a

very specialised function, so can a cell with only a small amount of available

genes.

Clearly the decrease of available chromatin does not occur in a random

fashion. Instead, the silencing progresses in such a way that the gene pro-

grams available to the cell get gradually more restricted until a terminal

specialisation stage is reached. In this light, the island analogy can be mod-

ified a bit. Instead of looking at differentiation as a gradual flooding of the

genome with methylation marks, differentiation can be seen as a blueprint

or operations manual out of which sections are deleted or blacked out with

progressive differentiation. The zygote starts with a fully accessible and read-

able operations manual, and each time a cell enters a more mature stage a

part of this manual is blocked, ultimately leading to a cell type that is locked
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into and performs a specific function. There is at least some evidence that

the full array of gene programs is available to the cell in the early stages. As

pointed out in the introduction (1.1.5), at least one study has stated that

in the early stages of development cells can and do express genes that are

neither specific nor useful for the early development stages. This is some-

what counter-intuitive, but given the thermodynamically stable nature of

methylation it makes sense to not deposit methylation marks prematurely.

Although it is clear what the term “gene program” means it is not clear

how these gene programs should be identified. Pathways are an early ef-

fort to somehow structure the multitude of genes present. In pathways,

connected genes that together provide some kind of functionality, such as

signalling from a receptor, are grouped together. The pathway system is

inspired by biochemical knowledge derived from text and somtimes appears

to be composed in a somewhat arbitrary manner. The most important is-

sue with pathways is that they tend to overlap. This is mostly caused by

highly connected “hub” genes. Recently a lot of attention has gone to net-

work topology in order to identify gene programs. The cellular regulation

network falls into the category of scale-free networks. This structure is com-

monly seen in many large naturally occurring networks. The internet and

the human social interaction network are good examples. Scale-free networks

have an interesting property: they consist of several highly interconnected

subnetworks, called communities, which are themselves connected by highly

connected hub genes. It is reasonable to assume that the genes in these com-

munity structures together provide a function in the cell similar to pathways.

Hence, there are two possible ways to identify gene programs: by means of

pre existing pathways, or by means of topology analysis. From now on gene

programs will be referred to as subnetworks.

After identifying these gene programs, there has to be a way to assess

whether or not they have become silenced. This can be done by means of

statistical testing. A change from active program to inactive program should

be visible in expression changes. A subnetwork that changes along an edge

of the differentiation tree is regulated in some different way. This can either

mean the subnetwork is epigenetically silenced along the edge, or it is influ-
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enced by the regular regulation machinery. For a subnetwork that does not

change along an edge there are two possibilties: it was already silenced along

that edge or the expression is exactly the same. We will assume here that

there is no statistically significant difference for a subnetwork that is already

silenced, the issue lies with subnetworks that are not regulated along an edge

but are also not silenced. It is difficult to separate both. Nevertheless, it

would seem that subnetworks that are neither silenced nor regulated do not

confer any specific characteristics to the cell. Housekeeping genes and by

extension housekeeping subnetworks are likely candidates here. Subnetworks

may provide metabolic functions or they may be specific to the lineage of

the cells under study. Hence, they also should not add any significant infor-

mation to the method. The main principle here is the change from active to

epigentically silenced. When scoring conformations there are two extremes

to consider: all subnetworks change along every edge in the differentiation

tree, and the opposite that none of them changes. In the first case this

could mean two things: the subnetworks are all alternatingly silenced and

reactivated, or they all remain active but are differentially regulated along

every edge. Both scenarios are unlikely since the amount of methylation and

therefore the amount of silencing should increase during differentiation. The

other extreme is that none of the subnetworks changes during differentia-

tion. This is would mean that either all subnetworks were silenced to begin

with or that they are not specific to any cell type in the analysis. Clearly

those extremes are not expected to be encountered. A normal differentiation

process will probably lie somewhere in between. The main scoring princi-

ple will therefore rely on counting the amount of subnetworks that change

along multiple edges in the conformation. Subnetworks that change along

one edge are not counted because these changes are to be expected given

increased silencing. Changes along multiple edges, although possible, are

considered unlikely. The scoring method will consider the conformation with

the smallest amount of subnetworks that change along multiple edges is the

most likely.

The conformation does determine the position of the root node. A pos-

sible method to address this issue stems from a gene clustering experiment
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unrelated to this project. A graphical representation of the correlation co-

efficients between the genes in the clusters revealed that the complexity of

these correlation matrices decreases when differentiation progresses. Figure

2.1 shows this progression for one of the mentioned clusters. The images

representing the more mature cell types clearly have lower complexity than

the less differentiated hematopoietic stem cell. This observed decrease in

complexity shall serve as a basis for identifying the root nodes.

Direction of di�erentiation
HSC CMP GMP MEP

Figure 2.1: Changes in the complexity of the correlation matrices as observed after
a clustering analysis

In what follows, the individual parts of the method will be outlined and

explained in more detail. There are two main components: conformation

scoring similar to maximum parsimony and root node identification based

on correlation entropy.

Although this method should be applicable to any kind of high through-

put expression data, in this case the method was tailored to microarray data.

2.2 Conformation scoring

Conformation scoring is analogous to maximum parsimony in that all possi-

ble conformations are scored based on changes in some vector. In the case

of maximum parsimony, every node is assigned a vector, in that case a vec-

tor containing genomic sequence information with each base making up one

element. In the method described here, edges instead of nodes are assigned

vectors. The vectors are binary in nature and of length N where N is the
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amount of subnetworks, either pathways or topology-derived gene groups.

The values of the N elements reflect whether or not a change has occurred

in that particular subnetwork along that specific edge. For brevity, these

vectors will be referred to as change vectors in what follows. Central here is

the identification of the subnetworks.

2.2.1 Subnetworks

2.2.1.1 Predefined Pathways

The pathway system has its origins in an effort to group different cellular

metabolic reactions. Cells perform a wide variety of chemical conversions on

an equally wide variety of organic molecules. These conversions are usually

not simple educt-product reactions and proceed over a range of intermedi-

ates, usually each step is performed by a particular enzyme or complex. A

specific metabolic pathway contains all the reactions that together perform

a certain conversion. For instance the glycolysis pathway contains all the

chemical steps involved in the conversion of glucose to pyruvate. This path-

way principle has been extended to also include groups of genes that together

transmit information in the cell. Transmission of information is similar to

metabolic reactions in that information is transmitted by means of chemical

modifications, in most cases attachment or detachment of phosphate groups

by kinases or phosphatases, respectively. This is referred to as a phosphory-

lation cascade and starts at a specific receptor.

Pathways are grouped in pathway databases. These databases are projects

undertaken by research institutes or private companies. There is a lack of

standardisation here, and because of this databases from different sources

may not be completely identical and for all but the older metabolic path-

ways it is likely that the pathways in different databases are not equal or only

partially agree. Different databases may also have a different focus, whereas

one database may focus on metabolic pathways, another may focus more on

signalling. Because of these discrepancies combining different pathways is no

trivial task. It is recommended to select one particular database and stay

with it. For the method described here, it is important that the database
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has enough coverage and is not specific to any kind of cellular process. It

has to be large enough to cover most of the genes present on the microarray

platform used so as not to loose potentially interesting information.

2.2.1.2 Topology-Derived Subnetworks

Cellular interaction networks fall in the category of scale-free or power law

networks. This is a type of network commonly seen in naturally occurring

networks such as the internet, social networks or predator-prey networks.

This type of network has some interesting characteristics. The degree distri-

bution of the nodes in the network follows a power law. This means that the

bulk of the nodes in the network are of low degree, while a small percentage

of nodes has a comparatively high degree. These nodes are referred to as

hub nodes. Another interesting characteristic is that the length of the mean

geodesic is surprisingly short and is fairly constant in regard to the overall

size of the network. The exact length may vary, but is always fairly close to

5. It was shown by Stanley Milgram that this also holds for social networks

(Milgram, 1969). He showed that any two people are connected by an av-

erage path length of 6 regardless of who those people are. This somewhat

extraordinary fact is rooted in the structure of the network: it consists of a

large amount of highly connected subnetworks that are themselves connected

through high-degree hub nodes. These subnetworks are referred to as com-

munities. An important consequence of this community structure is that the

amount of connections between communities (outgoing connections) is low

in comparison to the amount of internal connections.

Although the problem of dividing a network according to those commu-

nities is conceptually simple, it has proven quite difficult in practice. So this

particular area of graph theory has been subject to a lot of research. Several

possible algorithms are proposed. Most try to exploit the expected difference

between inter community connections and intra community connections. Ex-

haustive use and analysis of these different algorithms is beyond the scope

of this project. Instead, two methods are selected, one of them being novel

modification to the already popular Markov graph clustering algorithm call
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R-MCL METIS

Figure 2.2: Illustration for how scale-free networks can be decomposed into indi-
vidual subnetworks

regularised markov clustering (Satuluri and Parthasarathy, 2009), the other

is an industry standard library from the field of parallel computing called

METIS (Abou-Rjeili and Karypis, 2006). Both will be explained in more

detail below.

Figure 2.2 illustrates how scale-free networks can be decomposed into

individual subnetworks, taking the community structure into account.

2.2.1.2.1 METIS METIS (Abou-Rjeili and Karypis, 2006) is a program-

ming library containing a variety of tools and functions for parallel com-

puting. Specifically, the algorithms were designed to efficiently distribute

computation jobs over several processors. Although this problem seems un-
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related to community detection in biological networks, both questions are

nonetheless similar: efficient distribution of jobs over different machines re-

quires that the connections between the machines is low. This is because

moving data between different physical machines or CPUs is a slow step and

hence a performance bottleneck. One of the core principles in community

detection in scale free networks is exactly that: the amount of connections

between communities needs to be low. Communities can be seen as groups

of jobs that are assigned to a single physical machine or CPU. This quality

makes METIS an interesting candidate for identifying subnetworks to pop-

ulate the change vectors. In addition to the aforementioned qualities, the

algorithm also allows the user to specify the amount of desired groups and

attempts to balance group sizes.

METIS, or more specifically kMETIS, the component program used here,

works by means of multilevel k-way partitioning. The algorithm first per-

forms a series of coarsening steps, in which the amount of edges is reduced.

Edges are collapsed (removed) in such a way that the resulting graph still has

the same overall structure as the initial graph. This smaller, coarse graph

is then partitioned. After this partition the graph is uncoarsened and the

previous partitions are partitioned again, this is referred to as the refinement

phase. The effect of this is that instead of working on one large graph, the

algorithm operates on a series of smaller graphs instead. This speeds up

the algorithm, but also makes it easier to account for the hub structures in

the graph. METIS has been heavily optimised and uses a series of modifica-

tions that speed up the algorithm and increase the quality of the partitioning.

These technicalities are outside of the scope of this project and the interested

reader is referred to Abou-Rjeili and Karypis (2006).

2.2.1.2.2 R-MCL Regularized Markov graph clustering (R-MCL) is a

modification made to Markov graph clustering by Satuluri and Parthasarathy

(2009). Markov graph clustering is based on the manipulation of the tran-

sition matrix or flow matrix of the network. This matrix is the column-

normalised adjacency matrix. Because all elements in a column sum to one,

they can be seen as the transition probabilities away from the node associ-
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ated with a particular column. By multiplying this flow matrix with itself, a

random walk is performed in the network. This is called the expansion step.

One multiplication step is the equivalent of a random walk of length two in

the network. The expansion step is followed by an inflation step, in which

every matrix element is raised to a power between 1 and 2 (the default value

being 2) and the matrix is again column-normalised. This has the effect of

exaggerating the results of the random walk performed in the expansion step.

After iterating both operations for a while the matrix reaches convergence,

in this case only one column entry is non-zero. This non-zero entry is the

attractor node, a specific node that other nodes cluster around. These nodes

define the communities in the graph. In essence, each column is a proba-

bility distribution of the flow out of a given node. After every iteration the

distribution becomes more centered around a specific node.

Satuluri and Parthasarathy (2009) suggest that this method is not opti-

mal because the initial distribution is lost after the first iteration. This causes

divergence of the probability distribution of neighbourring nodes and may

lead to community fragmentation. Satuluri and Parthasarathy (2009) prove

that minimising the Kullback-Leibler divergence between the distributions

(the lower the Kullback-Leibler divergence the more two distributions are

alike) of neighbourring nodes can be easily accomplished by right-multiplying

the expanded matrix with the initial flow matrix instead of multiplying it by

itself in each expansion step. Thus they attempt to overcome the problem of

community fragmentation.

As mentioned earlier, scale-free networks may contain nodes with a fairly

high degree in comparison to the other nodes in the network. Often degrees as

high as 250 are seen. Especially connections between those high degree nodes

may have a negative effect on the decomposition because they tend to draw

a lot of nodes to them. To down-weight the influence of these nodes Satuluri

and Parthasarathy (2009) suggest performing a weight transformation given

by the following formula:

Amodified(i, j) = A(i,j)
D(i,i)

+ A(i,j)
D(j,j)

Where A is the adjacency matrix of the network and D the degree matrix

of the network.
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Because the cellular network consists of a large amount of nodes, the size

of the flow matrices increases dramatically. Serialised matrix multiplication

runs, assuming the standard algorithm is used, in O(n3) time. This is disas-

trous for large matrices and it may take as much as three hours to perform a

matrix multiplication on a 5000 by 5000 matrix. Clearly this is a serious bot-

tleneck for the algorithm because it expects to perform this operation several

times till convergence. Satuluri and Parthasarathy (2009) suggest a multi-

level work around, similar to how METIS functions, that uses a coarsening

and refining phase.

Alternatively, the algorithm can be speed up dramatically by parallelising

all operations. The largest speed boost comes from parallelising the matrix

multiplication, but the algorithm also greatly benefits from parallelising the

inflation step and the column normalisation procedure. For this project,

the regularised Markov graph clustering algorithm was parallelised using the

nVidia CUDA architecture. With CUDA, nVidia has managed to bring mas-

sive parallelisation down to affordable levels. Although the primary market

for 3D accelerators lies in video gaming, it was quickly realised that these

relatively cheap dedicated SIMD (Single Instruction, Multiple Data) devices

could be used to parallelise mathematical operations in general. Early efforts

to harness the potential of these devices had to use openGL to be able to

access the raw potential of the card. nVidia developed an architecture espe-

cially for such computation called CUDA. CUDA provides an extension to C

and obscures most of the technicalities of threading from the user. In addi-

tion several mathematical functions have already been ported to the system.

The full documented source code for the parallisation of R-MCL is presented

in the code appendix, and the description of the code is also presented at the

end of this section 2.5.1.

2.2.2 Score calculation

2.2.2.1 Differences in subnetworks

There are two possible ways to test for differential expression: univari-

ate or multivariate. Univariate analysis tests for differences between single
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Figure 2.3: Illustration of the meaning of the change vectors and how they relate
to differentiation conformations

genes,while multivariate analysis tests for differences in groups of genes as a

group. Since the aim here is to test for differences in subnetworks between

differentiation states, a multivariate, or group testing, method is required.

There are several possible methods to accomplish this. The test used has

no influence on the function of the presented method. For this project the

globaltest was chosen (Goeman et al., 2004). The global test uses a linear

model approach to test for differences in gene groups. Normally, a linear

model is used to classify an unknown instance based on a set of training

data. The globaltest takes the reverse path and uses a linear model to assess

whether or not there is enough difference between two groups of genes to

make a clear distinction between two cell types. The null hypothesis is that

none of the genes in the tested group provide any information regarding the

two cell types. In other words it test if all the regression coefficients are

simultaneously zero.

The process of assigning the change vectors and how they are uses is

illustrated in figure 2.3.

2.2.2.2 Conformation Scoring

By applying the globaltest to all subnetworks generated by one of the meth-

ods described above, a binary change vector can be constructed for each
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possible edge between the cell types under study.

Each proposed conformation is scored by taking the sum of all the change

vectors in the conformation. The result vector indicates which gene programs

have changed and how many times they changed in the tested conformation.

As stated earlier it is assumed that a large amount of programs that change

along multiple edges is unlikely because it would mean a large percentage

of gene programs would stay active which contradicts the assumption that

silencing increases with differentiation.

2.3 Rooting the tree

A method to compare the maturity states of different cell types comes from

analysing the correlations in the transcriptome, it was mentionned earlier

(2.1) that the complexity of the correlation matrices appears to be dependant

on the differentiation state of the cell.

Correlation allows for the analysis of interactions between genes. Al-

though correlation does not imply causality, it would seem that interaction

information is reflected by the correlation matrix of the genes. Here Spear-

man rank correlation was used. Spearman rank correlation is calculated with

the following formula:

ρ = 1− 6
P

d2
i

n(n2−1)

where di = xi − yi the difference between the ranks of both observations,

i indicates the location of the variable in the vector and n is the amount of

samples.

Spearman correlation is rank-based, this makes the calculation of the

correlation entropy more robust. In addition it is also more resistant to noise

because it does not require the relation between both variables to be linear.

In the case of microarray data this is often the case.

Calculating the correlation coefficient between all genes on a microarray

poses technical problems, the calculation is not limited by time but by mem-

ory. Common analysis software such as R or Matlab tend to allocate space

for the results in memory. This limits the amount of genes between which

correlation can be calculated in one run. To address these issues, a custom C
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implementation was written for the calculation of the Spearman correlation

on large matrices. The program handles storage issues by deliberately keep-

ing a small memory footprint and outputting to disk on regular intervals.

Caution was taken to balance disk access with memory usage in an effort

to reduce overall runtime. The program starts from a pre rank converted

matrix and exploits the fact that the bulk of the calculations for Spearman

correlation can be handled by vector operations. This makes the code easy to

parallelise if needed. The full source code is presented in the code Appendix,

and the description of the code is also presented at the end of this section.

Information entropy is the standard tool to analyse complexity or random-

ness of a dataset. Information entropy was developed by Shannon (Shannon,

1948) as a way to optimise telegraph communications. Shannon developed

the following formula:

H(X) = −
∑n

i=1 p(xi) log2(p(xi))

where i indicates the position in the vector, and p(xi) the probability of

the character that appears at position i in the vector. From the formula it

can be seen that low probability leads to high entropy. The total entropy

of a source, in the case of Shannons work the sender of the message, is the

absolute limit of the best possible lossless compression of that source. The

formula has some flexibility and the main principles that it relies on can

be applied in a different setting. In this case the message entropy will be

calculated, given some distribution of possible characters in a message, the

entropy of a message can be calculated. Messages containing a large amount

of rare characters will therefore have a high entropy. As an example, the

English language rarely contains the letters Q and X. Thus based on the

distribution of letters in the English language the message entropy of a text

containing only Xs and Qs would be fairly high. In this case the characters

are the possible correlation coefficients. The correlation matrix associated

with a cell type is the message, and the distribution is derived based on all

the messages in the set (the correlation matrices for all the cell types in the

dataset).

The correlation values do not have to be discretised for this because the

possible outcomes of Spearman correlation are discrete. This is because
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Spearman correlation is rank-based and therefore dependant on the possible

permutations of numbers between 1 and n, where n is the amount of sam-

ples. This makes the amount of outcomes directly dependant on n, hence

Spearman correlation is not continuous between -1 and 1 if n is fixed.

2.4 System studied and data used

Although the method should be applicable to any differentiation system,

the ease with which data can be gathered from the hematopoietic system

in comparison to other differentiation systems makes this particular system

an excellent choice to test and apply the presented method. The data used

consists of two datasets derived from separate studies. One dataset consists

of data gathered from CML patients and a healthy control (Bruns et al.,

2009), the other dataset consists of MM data with a healthy control (data

not published at time of writing). Samples were taken from bone marrow.

In both datasets HSC and progenitors of the myeloid line were isolated

and microarray data was gathered for the following cell types: Hematopoi-

etic Stem Cells (HSC), Common Myeloid Progenitors (CMP), Granulocyte

Monocyte Progenitors (GMP) and Megakaryocyte Erythrocyte Progenitors

(MEP).

The different cell fractions were obtained by means of immunofluorescence-

based cell sorting. The four fractions can be identified based on the presence

or absence of particular proteins expressed on the cell surface. The total frac-

tion is defined as: Lin- CD34+. The HSC can be separated from the more

mature progenitors because HSC are CD38-, while the more mature progen-

itors are CD38+. The CD38+ fraction can be further subdivided by using

two additional markers: IL− 3Rα and CD45RA. The marker configurations

for the respective fractions are: IL− 3Rαlo CD45RA- for CMP, IL− 3Rαlo

CD45RA+ for GMP and IL− 3Rα− CD45RA- for MEP. Additionally, the

fractions were tested for the presence of the BCR-ABL fusion gene with in

situ hybridisation.

Microarray data was gathered from each of the fractions using the Affymetrix

HGU133a2 platform which has 22277 probe sets. The data was normalised
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using GCRMA (Zhang et al., 2003).

Data from the healthy donors was explicitly not mixed, although the

experiments are highly similar it is still possible that there is an experimental

bias between both datasets. This bias could complicate the analysis of the

results of the method. The datasets from the CML project and the MM

project are considered separately. The following list gives an overview of the

data in the experiment:

* Healthy set 1: 5 biological replicates for each cell type taken from

healthy donors in the CML project

* Healthy set 2: 5 biological replicates for each cell type taken from

healthy donors in the MM project

* CML set: 7 biological replicates for each cell type taken from CML

donors in the CML project

* MM set: 5 biological replicates for each cell type taken from MM donors

in the MM project

2.5 Code details

2.5.1 Code description for rmcl-cuda

This program is a parallelised implementation of Regularised Markov Graph

Clustering (R-MCL). R-MCL is a modification of ordinary Markov graph

clustering by Satuluri and Parthasarathy (2009). The improved algorithm

was presented at SIGKDD 2009 in Paris under the title: Scalable graph

clustering with stochastic flows: applications to community discovery

Regarding computation there is no difference between R-MCL and or-

dinary Markov graph clustering. Both perform an expansion step and an

inflation step, as described above. Computationally those are equivalent to

matrix multiplication and raising all elements in a vector to a given power.

These operations, especially the matrix multiplication, can consume sub-

stantial amounts of computation time if the matrices are large. Since the
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algorithm expects to perform this action at least several times in succession

the time cost can become unmanageable rather quickly.

Because of the nature of the operations, they can be easily parallelised.

This program uses the nVidia CUDA architecture to perform parallelisa-

tion on nVidia GPUs. GPUs are by nature SIMD devices and are therefore

suitable for parallelisation.

The code relies on the sgemm function from the CUBLAS library to

perform matrix multiplication. CUBLAS is a library containing a variety of

linear algebra functions ported to the CUDA framework.

The other operations are parallelised by means of custom functions, in the

CUDA world referred to as kernels. Kernels are functions that are ran directly

on the GPU, each thread executes the same kernel, but may have different

internal variables. Because of this the code has two types of functions: those

that are run directly on the device and those that run on the host machine.

It is impossible (at least in the current CUDA versions) to access data in

the device memory directly from the host. Accessing the data requires a

memory copy operation. Because it can be time-expensive to perform this

operation multiple times the data is kept on the device until the computation

has ended.

It should be noted that the CUBLAS library expects matrices to be in

column major format instead of row major format. Because of this, all func-

tions expect the data to be in column major format. The fully documented

source code can be found in the code appendix.

2.5.2 Code description for SpearmanPreranked

The program calculates the Spearman rank correlation coefficient for large

datasets. The issue with calculating correlation on matrices with a high

amount of rows is memory. The program solves this by keeping the usage

of memory low and instead calls on disk space to progressively store the re-

sult. It is not advised to continuously output to disk since this would mean

constant disk access which may slow down the program, and the operating

system in general, considerably. In this case, each time a row of the cor-
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relation matrix is calculated it is appended to an output file on disk. The

program outputs the results as strings instead of binary values so as to ease

integration with other programs.

The program starts from a matrix in which the rows have already been

converted to ranks. The rows are calculated at once by exploiting the fact

that most of the calculation of Spearman correlation can be done by means

of vector operations. Note that this also makes the described program easy

to parallelise or to distribute.

The program keeps one copy of the original ranked matrix in memory

which is used as a one dimensional vector. This is the master.

For the calculation of each row, a slave is loaded, the slave consists of N

repeats of a given row, where N is the total amount of rows in the matrix. The

resulting vector is hence of the same length as the master. By using vector

operations combining both the slave and the master a row of the correlation

matrix is calculated. The fully documented source code can be found in the

code appendix.
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Chapter 3

Results

3.1 Network data

The Transpath database was chosen as a source for pathway data. It contains

1059 pathway entries and covers both signalling and metabolic processes. The

mean pathway size is 9.4 and the standard deviation 14.1.

For the topology based methods, data from the STRING database was

used (Jensen et al., 2009). STRING consists of a large amount of interactions

that come with a confidence score between 0 and 999. Interactions scoring

600 or higher were used to build up the network. This score strikes a bal-

ance between the size of the network and the confidence in the interactions.

The network should contain a large amount of genes so the genes on the

microarray are covered as much as possible.

The resulting network of interactions with a confidence of 600 or more

consists of 14,764 nodes and 487,552 interactions.

Because the Transpath database contains the fixed amount of 1059 sub-

networks, it was attempted to reach a similar amount of subnetworks with

the topology approaches.

This can be easily accomplished with METIS by setting a parameter.

The STRING network was decomposed by METIS in 1000 subnetworks, the

average size of the subnetworks was 14.1 and the standard deviation 8.3. It

should be noted that it may not be possible to divide the network in exactly
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1000 subnetworks. In this case and METIS managed to identify 976 distinct

subnetworks.

For R-MCL it is not immediately clear how the amount of subnetworks

could be influenced. One possible approach is to vary the exponent in the

inflation step. However applying the algorithm on very large graphs, such

as the one used here, caused major issues with the algorithm. These issues

will be discussed in more detail in the discussion section (4.1 on page 71). A

method was found to influence the amount of subnetworks directly: by setting

the desired amount of expansion-inflation steps and thereby influencing the

length of the random walks performed in the network. Figure 3.1 shows the

amount of subnetworks in relation to the amount of steps in the random

walks. The amount of steps was set to 22 which resulted in a decomposition

into 903 distinct subnetworks. the average subnetwork size is 16.3 and the

standard deviation 43.9.
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Figure 3.1: Graph showing the amount of iterations and the resulting amount of
subnetworks for the R-MCL method

The performance of the graph decomposition algorithms can be scored
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with measures specific for scale free networks. The idea was to decompose

the network into communities, tightly connected subnetworks. It is likely

that these communities together perform a specific function. One such mea-

sure is the clustering coefficient, also called transitivity, which measures how

interconnected the nodes in a given network are. More precise, the cluster-

ing coefficient calculates the probability that the nodes adjacent to a node

are connected. Assuming the algorithm correctly decomposed the network

into the respective communities, the average clustering coefficient of the sub-

networks should be close to one. For the R-MCL algorithm the average

transitivity of the subnetworks is 0.603 with a standard deviation of 0.274.

For the subnetworks generated by METIS the mean transitivity is 0.23 and

the standard deviation 0.397. Another possible evaluation criterion is ver-

tex connectivity, also called graph cohesion, which calculates the minimum

number of vertices (nodes) that need to be removed in order to make the

graph not strongly connected. Intuitively one would expect this number to

be quite high in highly interconnected subnetworks. Nevertheless, this num-

ber is also dependant on the size of the subnetworks and whether or not

the subnetworks also have a large dependence on internal hub nodes. Elim-

ination of one such hub node may severely impact the flow in the network.

For R-MCL the average vertex connectivity is 1.294 with a standard devia-

tion of 0.834, for METIS the average is 0.779 with a standard deviation of

0.46. For Transpath is was not possible to calculate the clustering coefficient

and vertex connectivity since interaction information was not available for

these pathways. Taken together these numbers seem to indicate that the

R-MCL algorithm managed to decompose the network according to com-

munities more effectively than METIS. This is perhaps not too surprising

since METIS does not implicitly perform community detection but a calcu-

lation related to community detection, the minimisation of inter-subnetwork

connections.
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3.2 Identification of differentiation trees

3.2.1 Change vectors

Based on the subnetworks a change vector was calculated for each possible

edge between cell types in each of the four data sets. Differences in subnet-

work expression were tested using the globaltest as described in the method

section (2.2.2.1 on page 38) . The significance level was set to 0.05. Subnet-

works that were found to be differentially expressed were assigned a 1, the

others a 0. Table 3.1 gives an overview of the total amount of changing sub-

networks in each edge. There are four cell types, which leads to six possible

edges per dataset. The table contains the total amount of changes per edge

for each of the three subnetwork identification methods.
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Edge METIS Transpath R-MCL

Healthy set 1

Healthy set 1: hsc-cmp 225 287 196

Healthy set 1: hsc-mep 52 76 117

Healthy set 1: gmp-mep 7 13 69

Healthy set 1: cmp-gmp 10 9 69

Healthy set 1: hsc-gmp 28 47 79

Healthy set 1: cmp-mep 15 19 86

CML set

CML set hsc-cmp 27 15 61

CML set cmp-mep 23 37 65

CML set cmp-gmp 10 16 57

CML set hsc-gmp 17 10 56

CML set gmp-mep 10 20 61

CML set hsc-mep 10 25 62

Healthy set 2

Healthy set 2 hsc-cmp 64 64 122

Healthy set 2 gmp-mep 222 361 196

Healthy set 2 hsc-gmp 240 292 225

Healthy set 2 cmp-mep 130 168 138

Healthy set 2 cmp-gmp 251 318 236

Healthy set 2 hsc-mep 159 234 164

MM set

MM set gmp-mep 61 29 98

MM set cmp-gmp 29 42 78

MM set hsc-mep 90 85 104

MM set hsc-cmp 59 35 98

MM set cmp-mep 24 11 74

MM set hsc-gmp 53 68 97

Table 3.1: Total changes per edge in the four dataset using the three described
subnetwork identification methods
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From the table 3.1 it can be seen that the ranking of the edges, in regard

to the total amount of changing networks, is not completely the the same for

the three subnetwork identification methods.

Because of the amount of data the change vectors are illustrated graph-

ically for a comprehensive overview. Figures 3.2, 3.3, 3.4 and 3.5 show the

different edges and their associated change vectors. Zeroes (no change) are

represented by white, ones (changes) are represented by black. Figures 3.6,

3.7, 3.8 and 3.9 show the distance between the change vectors, the distance

metric used is the Manhattan distance. The Manhattan distance is defined

as: ∑n
i=1 |pi − qi|

where p and q are the vectors between which the distance is calculated,

and i indicates the element in those vectors.
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Transpath

METIS

R-MCL

Graphical representation of the change vectors in Healthy set 1

hsc-cmp cmp-gmp cmp-mep hsc-gmp hsc-mep gmp-mep

hsc-cmp cmp-gmp cmp-mep hsc-gmp hsc-mep gmp-mep

hsc-cmp cmp-gmp cmp-mep hsc-gmp hsc-mep gmp-mep

Figure 3.2: Black and white representations of the binary change vectors for
Healthy set 1 using the three described methods for subnetwork identification52



Change vector distances for Healthy set 1 using Transpath

Change vector distances for Healthy set 1 using METIS

Change vector distances for Healthy set 1 using R-MCL
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Figure 3.6: Colour representations of the distance matrices between the change
vectors of Healthy set 1 using the three described methods for subnetwork identi-
fication
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Transpath

METIS

R-MCL

Graphical representation of the change vectors in Healthy set 2
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Figure 3.3: Black and white representations of the binary change vectors for
Healthy set 2 using the three described methods for subnetwork identification54



Transpath

METIS

R-MCL

Graphical representation of the change vectors in the CML set
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Figure 3.4: Black and white representations of the binary change vectors for CML
set using the three described methods for subnetwork identification55



Transpath

METIS

R-MCL

Graphical representation of the change vectors in the MM set
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Figure 3.5: Black and white representations of the binary change vectors for MM
set using the three described methods for subnetwork identification56



Change vector distances for Healthy set 2 using Transpath

Change vector distances for Healthy set 2 using METIS

Change vector distances for Healthy set 2 using R-MCL
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Figure 3.7: Colour representations of the distance matrices between the change
vectors of Healthy set 2 using the three described methods for subnetwork identi-
fication
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Change vector distances for the CML set using Transpath

Change  vector distances for the CML set using METIS

Change vector distances for the CML set using R-MCL
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Figure 3.8: Colour representations of the distance matrices between the change
vectors of the CML set using the three described methods for subnetwork identi-
fication
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Change vector distances for the MM set using Transpath

Change vector distances for the MM set using METIS

Change vector distances for the MM set using R-MCL
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Figure 3.9: Colour representations of the distance matrices between the change
vectors of the MM set using the three described methods for subnetwork identifi-
cation
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The first thing that stands out when looking at the total changes in

each change vector (table 3.1) is the large difference between both healthy

sets. In Healthy set 1, about 25 percent of the subnetworks change along

the edge between HSC and CMP, while there are only few changes when

looking at the other edges. In Healthy set 2, on the other hand, it seems to

be reversed: the edge between HSC and CMP shows the least change of all

edges. It would appear that in Healthy set 2 the CMP cells are rather close

or similar to the HSC cells while in Healthy set 1 they are very dissimilar and

hence rather far from each other. The difference between Healthy set 1 and

Healthy set 2 becomes especially clear when looking at the distance matrices:

in Healthy set 2 all change vectors have roughly the same distance to one

another, while in Healthy set 1 it is clear that the change vector from HSC to

CMP lies rather far from the other vectors while at the same time the other

change vectors are fairly close to one another. A similar observation can be

made while observing the graphical representations of the change vectors: in

Healthy set 1, most changes occur in the step from HSC to CMP while in

Healthy set 2 most changes seem to occur between the CMP (or HSC) and

the more mature progenitors GMP and MEP.

In addition to showing differences between the datasets, the graphical

representations of the change vectors also show noticeable differences between

the subnetwork identification methods. Most changes were found when using

subnetworks generated with R-MCL.

3.2.2 Scoring possible conformations

In order to score the conformations, all possible trees were built. There are

only four cell types in the analysis, so the amount of possible conformations

is manageable. A tree contains v− 1 edges, where v is the amount of nodes.

All possible combinations of three edges out of six were generated. Not all of

the twenty possible combinations are biologically plausible, some conforma-

tions contain loops which are not allowed. After removing the conformations

that contain loops, sixteen conformations remain. Four of those are star

conformations, with one cell type in the middle, and the rest are chain con-
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formations. The conformations will be rooted later by means of correlation

entropy. Tables 3.2, 3.3, 3.4 and 3.5 give an overview of the three best scores

in the respective data sets. The full tables with the scores for each possible

conformation can be found in the Appendix. For each conformation in each

of the data sets there are three columns, two columns showing the amount

of subnetworks that change along two or three edges respectively, and one

column giving the total amount of subnetworks that change along more than

one edge. This total amount is used to rank the conformations. The amount

of subnetworks that changes twice or thrice was explicitly indicated because

the amount of subnetworks that changes along every edge (thrice) was found

to constant, regardless of the conformation for which these changes were cal-

culated. This observation will be analysed in more detail in the discussion

section 4.3.

Edges Total Twice Thrice

METIS

Healthy set 1: cmp-mep gmp-mep hsc-gmp 5 1 4

Healthy set 1: cmp-mep gmp-mep hsc-mep 6 2 4

Healthy set 1: cmp-gmp gmp-mep hsc-mep 6 2 4

Transpath

Healthy set 1: cmp-gmp gmp-mep hsc-mep 7 4 3

Healthy set 1: cmp-mep gmp-mep hsc-gmp 9 6 3

Healthy set 1: cmp-gmp gmp-mep hsc-cmp 9 6 3

R-MCL

Healthy set 1: cmp-gmp cmp-mep hsc-gmp 63 12 51

Healthy set 1: cmp-gmp gmp-mep hsc-cmp 64 13 51

Healthy set 1: cmp-mep gmp-mep hsc-gmp 66 15 51

Table 3.2: Top three conformation scores for Healthy set 1 using the three described
subnetwork identification methods
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Edges Total Twice Thrice

METIS

CML set : cmp-gmp gmp-mep hsc-mep 2 0 2

CML set : cmp-gmp hsc-gmp hsc-mep 3 1 2

CML set : cmp-gmp cmp-mep hsc-gmp 4 2 2

Transpath

CML set : cmp-gmp hsc-gmp hsc-mep 3 1 2

CML set : cmp-gmp cmp-mep hsc-gmp 5 3 2

CML set : gmp-mep hsc-cmp hsc-gmp 6 4 2

R-MCL

CML set : cmp-gmp cmp-mep hsc-gmp 47 13 34

CML set : cmp-gmp gmp-mep hsc-cmp 48 14 34

CML set : cmp-gmp gmp-mep hsc-mep 48 14 34

Table 3.3: Top three conformation scores for the CML set using the three described
subnetwork identification methods

Edges Total Twice Thrice

METIS

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 51 34 17

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 68 48 20

Healthy set 2: cmp-mep gmp-mep hsc-cmp 78 59 19

Transpath

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 57 43 14

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 79 65 14

Healthy set 2: hsc-cmp hsc-gmp hsc-mep 99 84 15

R-MCL

Healthy set 2: cmp-mep gmp-mep hsc-cmp 111 37 74

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 116 43 73

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 122 49 73

Table 3.4: Top three conformation scores for Healthy set 2 using the three described
subnetwork identification methods
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Edges Total Twice Thrice

METIS

MM set: cmp-gmp cmp-mep hsc-cmp 13 4 9

MM set: cmp-gmp cmp-mep hsc-gmp 13 4 9

MM set: cmp-mep gmp-mep hsc-cmp 17 8 9

Transpath

MM set: cmp-mep gmp-mep hsc-cmp 6 1 5

MM set: cmp-gmp cmp-mep hsc-mep 6 1 5

MM set: cmp-mep gmp-mep hsc-gmp 10 5 5

R-MCL

MM set: cmp-mep gmp-mep hsc-gmp 63 14 49

MM set: cmp-gmp cmp-mep hsc-gmp 64 16 48

MM set: cmp-gmp cmp-mep hsc-mep 65 17 48

Table 3.5: Top three conformation scores for the MM set using the three described
subnetwork identification methods

3.2.3 Root node identification: Correlation entropy

In each dataset the message entropy of the correlation matrices of the four

cell types was calculated as described in the method section. Table 3.6 sum-

marizes the entropy values, and figure 3.10 shows them in graph form. It

is known from biological research that the HSCs are the starting point of

hematopoietic differentiation. The entropy values suggest that a high en-

tropy is associated with a less mature cell. The conformations will be rooted

according to this observation, the cell with the highest correlation entropy

is chosen as the root of the tree. It should be noted here that the shape of

the graphs, the downward trend, is considered of more importance than the

actual values of the correlation entropy. The graphs seem to indicate that

in normal differentiation the correlation entropy of the cell types decreases

from less mature to more mature state. Because the graphs for Healthy set 1,

Healthy set 2 and the MM set have similar shapes and show a clear decrease

in entropy from less mature to more mature cell type, the HSC was chosen

as the root node for those particular datasets. The entropy values for the
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CML set follow a different pattern, for this set the GMP was chosen as the

root node of the conformation.
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Dataset hsc entropy cmp entropy gmp entropy mep entropy

Healthy set 1 129427135.486 120378663.211 111449987.890 119433676.774

Healthy set 2 151960435.466 153857752.140 146371679.570 144384082.194

CML set 75839727.320 69025338.092 79020678.721 77610089.118

MM set 146945623.969 142512313.451 131696946.821 134062516.281

Table 3.6: Correlation entropy values for all four datasets in all four cell types

3.2.4 Identifying rooted conformations

By combining the conformations with the most likely root node, the confor-

mations can be rooted. Figures 3.11, 3.12, 3.13 and 3.14 give an overview of

the top three best scoring rooted conformations for the four datasets using

the three described methods for subnetwork identification.

Aside from identifying the correct differentiation tree according to the

classical model, the method should be able to identify the correct differenti-

ation chronology for the data derived from the samples taken from healthy

donors. This means the CMP should be positioned between the HSC and

the GMP/MEP in the those datasets.

In Healthy set 1, CMP was placed between HSC and GMP/MEP only

twice: when using Transpath and R-MCL as subnetwork identification method.

In the other cases, the HSC was connected to either the GMP or the MEP,

causing the CMP to be connected to the more mature progenitors MEP and

GMP.

In Healthy set 2 the differentiation tree according to the classical model

could be identified in all of the three subnetwork identification methods. In

addition, the edge between the HSC and the CMP was present in all of the

top three differentiation trees. Interestingly, the edge between HSC and GMP

was added in four of the nine cases. In one particular case (using Transpath),

the HSC was linked to all of the more mature progenitors.

In the top three for the CML set, there are noticeable differences between

both healthy sets. These difference are primarily due to the fact that the

GMP was identified as the root node in this dataset. Interestingly, the HSC
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was positioned as “least mature” cell in three of the nine differentiation

trees. Even when ignoring the rooting of the differentiation trees, the correct

differentiation chronology could not be identified in this dataset.

For the MM set, the correct differentiation tree could be identified once

when using METIS as subnetwork identification method. The correct differ-

entiation chronology is among the top three in three out of nine cases. The

top threes for the MM set are similar to those found for Healthy set 1.
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Chapter 4

Discussion

The different steps in the calculation will first be discussed in detail and

afterwards a general analysis of the method will be presented followed by the

outlook section where possible improvements of the method are discussed.

4.1 Subnetwork identification

As briefly mentioned in the result section, the R-MCL algorithm could not be

applied as specified by Satuluri and Parthasarathy (2009). The encountered

issues and how they were, at least partially, resolved will be covered in more

detail here.

The highly connected hub nodes in scale-free networks tend to have a neg-

ative influence on graph decomposition, they may cause the entire network

to cluster around one highly connected hub node. Clearly, this is undesirable

since it defeats the purpose of performing such an operation. Satuluri and

Parthasarathy (2009) suggest down-weighting the edges between high-degree

hub nodes. These particular edges can be seen as large highways in the net-

work and therefore draw a lot of traffic. Initial tests of the algorithm were

run on a small test network composed of all the interactions in the STRING

database with a confidence score of 999. The test network consisted of 1789

nodes. During these tests the suggested weight transformation did indeed

eliminate the negative effects of the hub nodes. Satuluri and Parthasarathy
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(2009) did not report any issues relating to the influence of hub nodes, but it

would appear they worked on a network of comparable size. When applying

the algorithm to the large network used in this project (the network contains

14,764 nodes) the hub-node related problems showed up, and already quite

early in the computation. The presence of highly connected hub can com-

plicate graph decomposition, they have a tendency to draw a lot of nodes

to them and in some extreme case a subnetwork around such a node may

comprise almost the entire network. A possible yet somewhat aggressive way

to reduce the effect the hub nodes is to simply remove them. It should be

noted that in the case of the network used in this project some nodes have

degrees higher than 800. This means they are directly connected to about

5 percent of the total network. After removing the 5 percent nodes with

the highest degree, the results of the computation appeared better in the

sense that the decompostion was not clearly influenced by a small number of

nodes, but there were still issues. The output consisted of a handful of very

large subnetworks and a large amount of subnetworks with only one gene.

After further experimentation it was observed that the amount of random

walks that the algorithm performs (essentially the amount of iterations times

two) is the most sensitive parameter to keep the effect of the hub nodes un-

der control. Coincidently, this also provided a way to influence the amount

of subnetworks, something that is required here to be able to compare the

three different methods. The Results section refers to a figure (3.1 on page

47) showing the influence of the length of the random walks on the amount

of subnetworks. It can be seen that the number of subnetworks decreases

dramatically after a certain amount of steps. This is when the influence of

the hub nodes starts showing.

The second issue lies with the inability of the algorithm to reach the

convergence criterion, both for natural networks and networks simulated by

a Barabasi game (Barabasi and Albert, 1999). The convergence criterion

states that convergence is reached when all except one element in each of

the columns of the flow matrix are zero. More theoretical, this means that

the flow distribution out of that particular node (column) has completely

collapsed and only peaks at one particular node. When performing standard
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Markov graph clustering, the algorithm did reach the mentioned conver-

gence criterion. Perhaps this is not so surprising, because the expansion step

(multiplication) is very similar to the power method for computing eigen-

vectors of a matrix. The eigenvectors of graphs represented as matrices are

a central point in spectral graph theory, which attempts to solve a similar

problem. It is possible, and likely that the very addition made by Satuluri

and Parthasarathy (2009) to Markov clustering is causing this issue. Recall

that the addition was made so as to not break up subnetworks, essentially

forcing minimal divergence on the probability distributions in the columns.

However, this issue has not been reported or encountered by Satuluri and

Parthasarathy (2009). The answer may lie in how the convergence criterion

was handled. To minimise storage and to speed up the algorithm a pruning

step was added that removes small values based on a heuristic. This essen-

tially means that the theoretical convergence criterion was not followed. The

pruning step removes small values and turns them into zeroes. In addition,

the algorithm was run similar to METIS, using a multi-level approach with a

pre-set number of iterations as a means to decrease computation time. If not

parallelised, this particular computation may take days to complete even on

networks of modest size. Nevertheless, it is tempting to speculate that Satu-

luri and Parthasarathy (2009) may have unintentionally reduced the amount

of random walks and as a consequence avoided the hub node issues.

Because the Transpath database contains a fixed amount of pathways,

an attempt was made to influence the topology-based subnetwork identifica-

tion methods, namely METIS and R-MCL, so as to ensure that each of the

three methods has a comparable amount of subnetworks. This is important,

because large differences in the number of subnetworks used to score the dif-

ferentiation conformations could lead to difficulties comparing and analysing

the results. This effort turned out to be fruitful for both topological methods.

However, looking at the reported mean subnetwork sizes and the standard

deviations for the three different methods, it can be seen that mean subnet-

work sizes for both METIS and R-MCL are similar while there is a large

difference in standard deviation. The standard deviation for the subnetwork

sizes generated by R-MCL is fairly large in comparison to METIS. This is not
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surprising given the discussion regarding R-MCL above: the large standard

deviation is caused by the hub nodes. So it seems that removing nodes of

high degree and performing a weight transformation step, still can not com-

pletely eliminate the effect of hub nodes in large scale-free networks. METIS

on the other hand, explicitly tries to keep subnetwork sizes similar.

4.2 Change vectors

It is unclear what could have caused the differences between the datasets

observed in 3.2.1. Both datasets consist of samples taken from healthy donors

albeit in different experiments. Because only those two healthy sets are

available for analysis, it is difficult to assess whether HSC should be close to

CMP or not. It is possible that this difference has a biological background.

It could be that the CMP state is not very clearly defined and is instead

comprised of a mixture of progenitors along the differentiation path from

the HSC to the GMP or MEP. A similar noticeable difference comes from

looking at the possible edge between GMP and MEP cells. In Healthy set

1, there appear to be very little differences between both cell types while

the opposite is true in Healthy set 2. An alternative explanation for these

observed differences could be that there is some experimental bias between

both datasets. The procedure to generate a dataset such as the one used here,

is made up of several complicated steps (cell sorting and RNA extraction,

for example) and even small variations in any of these steps may lead to

different results. Because the possible conformations are scored based on

operations on the change vectors, the differences between both healthy sets

will manifest themselves throughout the analysis. An interesting question to

ask is whether these differences are also clear in a hierarchical clustering of

the samples in the respective datasets. Figures 4.1 and 4.2. For Healthy set 1

the samples cluster predominantly according to the donor, and not according

to cell type. For Healthy set 2 the GMPs cluster together in a small cluster.

Although the majority of the samples also seem to cluster together according

to the donor, CMPs and HSCs do group close together which is in line with

what was observed from the change vectors.
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Looking at all the datasets in a more general sense, it appears that the

R-MCL method can on average identify the most changes in the transcrip-

tome. The graphical representations of the change vectors show this clearly

(figures 3.2, 3.3, 3.4 and 3.5). The R-MCL algorithm performed the best at

decomposing the global regulation network according to communities (the

highly connected subnetworks in the global scale-free network). This can be

seen from the values for the vertex connectivity and clustering coefficients.

Combined with the observation that the most changes can be found in sub-

networks generated by this method provides evidence for the fact that cellular

function indeed does overlap with the community structure as obtained by

R-MCL.

There appear to be large differences in the mean amount of changes

between all datasets. When comparing the datasets within the individual

projects, Healthy set 1 versus CML set and Healthy set 2 versus MM set,

the cancer datasets always show lower mean changes. In light of the theo-

ries underlying this method this would seem to indicate that there are more

subnetworks switched off in the cancer cells studied here because a smaller

percentage of them can change, or they are constantly active.

An important general conclusion to draw from the analysis of the change

vectors is that there are noticeable systematic differences between the data

in the two different projects. In light of this, the decision to keep the healthy

data out of both projects separated is well justified. Most notably the differ-

ences between HSC and CMP cells could have caused issues in interpreting

the results.

4.3 Conformation scoring

It is assumed in this discussion that at least the differentiation of the myeloid

line occurs according to the classical model of hematopoiesis. Although this

was covered in the Introduction, the steps in myeloid differentiation according

to the classical model will be quickly outlined here again.

According to this model, myeloid differentiation starts from the HSC cell

which in turn differentiates into a CMP cell. The CMP cell, as the full name
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suggests, is a common ancestral cell type to all the cell types comprising the

myeloid line. As such, it has a similar position as the CLP cell (Common

Lymphoid Progenitor) which itself also descends from a HSC cell and is

ancestral to all the cell types in the lymphoid line. The CMP cell can further

differentiate into either a GMP cell or an MEP cell. This means that the

conformation that should score the best, given that the method is able to

recover the truth, is the combination of the following edges: hsc-cmp, cmp-

gmp and cmp-mep. In the discussion that follows the focus will be on the

top three best scoring conformations in each of the datasets and for each of

the subnetwork identification methods.

In Healthy set 1, the expected conformation does not appear among the

top three of conformations for the three subnetwork identification methods.

The best ranking for the assumed conformation is 9 when using the Transpath

database. Although this seems to be a poor result, the top threes of both the

Transpath-based and R-MCL based conformations contain a conformation

that puts CMP in between HSC and the more mature progenitors GMP and

MEP.

In Healthy set 2, the correct conformation did appear in all the top three

results, making this a very favourable result. In addition, all conformations

contain the edge between HSC and CMP. In this case the differences between

Healthy set 1 and Healthy set 2 show up again. While the edge between HSC

and CMP was present in all conformations in the top three for Healthy set

2, it appears only twice in the top three of Healthy set 1.

Interestingly, in the MM set the expected conformation ranks number one

when using subnetworks based on METIS. For the other subnetworks the re-

sults are not very good, especially in the top three based on R-MCL where

the edge between HSC and CMP does not appear in any of the conformations

among the top three. In the case of the Transpath based conformation the

situation is slightly better, the number one ranking conformation does place

CMP in between HSC and GMP and MEP. In addition, the expected con-

formation is ranked sixth with only a minor difference to the conformation

ranked third when it comes to multiple changes.

An unexpected observation is that the amount of subnetworks that change
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along all edges (in this case three times) is rather constant in all conforma-

tions in each dataset. Those subnetworks are the same for all conformations

in the respective datasets, including the top scoring conformations. This

means they add no information to the analysis. This is interesting in a bi-

ological sense since it could mean that they are pathways that are actively

involved in myeloid differentiation because they are differentially regulated in

each cell type. The Transpath-based conformations allow for a quick verifica-

tion of these subnetworks since they are established pathways. The biology

behind the pathways will be briefly covered here. The following lists show the

Transpath pathways that change along every edge in the respective datasets:

Healthy set 1

* CD14 pathway

* Bub1 pathway

* Smurf-1 pathway

CML set

* Bub1 pathway

* NICD pathway

Healthy set 2

* E2F pathway

* SHP-1 pathway

* Aurora-A pathway

* Beta Catenin pathway

* APP pathway

* Usp7 pathway

* Caspase 8 pathway
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* Cyclin D pathway

* PI3K pathway

* Bub1 pathway

MM set

* ZAP70 pathway

* Usp7 pathway

* Beta catenin pathway

* Caspase 8 pathway

Here there is a small overlap between Healthy set 1 and Healthy set

2: the Bub1 pathway. This pathway is involved in cell cycle regulation,

more specifically the spindle assembly check point (Williams et al., 2007).

Additionally, the list for Healthy set 1 contains the pathway involving Smurf-

1 which in involved in cell adhesion and mobility (Wang, 2010). It is possible

that this pathway plays a role in release and retention from the stem cell

niche.

Interestingly, apart from the Bub1 pathway, the pathway around NICD

also seems heavily regulated in CML. NICD is formed as a result of the

cleavage of the Notch receptor. This pathway is of high importance for stem

cell maintenance in hematopoiesis, and signalling form this receptor is a

consequence of niche interactions (Porter and Calvi, 2008). The fact that

this pathway is differentially expressed throughout differentiation in CML

also means it remains active throughout differentiation which may, in part,

explain the stem cell like behaviour of CML cells. Although Bub1 seems to

be heavily regulated in both healthy sets in addition to the CML set, this

does not necessarily mean that this regulation has the same cause and effect.

It was shown that in CML cells with the BCR-ABL fusion gene expression

of the Bub1 pathway is negatively influenced (Wolanin et al., 2010). This

influence may in part explain the increased mutation rate in CML cells.
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In the pathway listing for Healthy set 2 there are some interesting entries.

SHP-1 is a tyrosine phospathase involved in hematopoietic differentiation

(Wu et al., 2003). The beta catenin pathway is part of the important niche

interactions and is required for maintenance of hematopoietetic progenitors

(Nemeth et al., 2009). In this light one would expect this pathway to be

regulated throughout hematopoiesis. The Aurora-A pathway is related to

the function of the Bub1 pathway. While Bub1 performs quality control on

spindle formation, Aurora-A performs quality control on successful segrega-

tion of chromatin (Libertini et al., 2010). Cyclin D is an important player in

cell cycle regulation. This specific variety of cyclin controls transition into

the S-phase (Assoian and Klein, 2008). The PI3K pathway and the Caspase

8 pathway both play a role in inducing apoptosis (Duronio, 2008; Ghavami

et al., 2009), regulation of apoptosis is expected in differentiation. For the

APP pathway, no specific connection to hematopoiesis could be found, how-

ever this particular protein has been linked to glial cell differentiation (Kwak

et al., 2010) which could mean it also plays a role in hematopoietic differen-

tiation. Usp7, also called HAUSP, is an ubiquitine ligase that interacts with

a variety of targets and in doing so influences the activity of the important

tumor suppressor p53 (Shan et al., 2008). The E2F pathway has similar

tumour suppressor activity and is an important regulator of cellular prolif-

eration (van den Heuvel and Dyson, 2008). It is possible that there is cross

talk between the E2F pathway and the p53 pathway (Polager and Ginsberg,

2009). Taken together the findings in Healthy set 2 are in line with current

knowledge which expects these pathways to be actively regulated throughout

differentiation.

Comparing the pathways listed for Healthy set 2 to those listed for the

MM set there is a large overlap, although clearly some important players are

missing. Interestingly ZAP70 is in the list for MM. This particular protein is

associated with the lymphoid line and seems to be expressed by all types of

B-cells independant of maturity stage and whether or not they are malignant

(Scielzo et al., 2006). This is highly interesting in this case because MM is

primarily a malignancy of the B-cell population. It is especially peculiar to

see this pathway here, since the cells analysed are from the myeloid line. It
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would appear that this observation is in line with the recent observations

that the distinction between the myeloid and lymphoid line is not as strict

as assumed by the classic model of hematopoiesis.

When comparing the pathways listed for Healthy set 1 to those listed for

the CML set the most striking difference is the absence of the CD14 pathway

in the CML set list. The CD14 pathway is specific for the myeloid lineage

and influences the differentiation to macrophages upon contact with LPS.

Looking deeper into the changes reveals that the CD14 pathway does not

change along any edge (Jerala, 2007; Seta and Kuwana, 2010). Looking back

at the principles outlined in the method section this could mean two things:

either the pathway is constantly active but never regulated, or the pathway

was already silenced at the HSC stage and remained so during differentiation.

From this brief look into pathways that are regulated differently in all

the cell types of the differentiation, it can be concluded that these pathways

are indeed either lineage-specific or are housekeeping pathways that perform

tasks required in the differentiation process, in this case cell cycle regulation

pathways.

Although the aim of this work is not to identify pathways or subnetworks

that are specific to differentiation, the change vectors do offer the possibil-

ity to look into differences in regulation between healthy differentiation and

differentiation in malignancies. An important step in hematopoietic differen-

tiation is the step from HSC to CMP; differences in this step will be briefly

covered here. To ease interpretation only the Transpath pathways were con-

sidered. Healthy set 1 was compared to the CML set, and Healthy set 2 was

compared to the MM set. Comparison of the edge between HSC and CMP

for Healthy set 1 and CML set revealed that 5 Transpath pathways were

specifically regulated in CML, whereas no regulation was seen in the healthy

set. Those pathways were the pathways: procaspase 9, GATA3, ATF-2, trkA

and AF6. Caspases are important for apoptosis, a system that is often dereg-

ulated in cancers (Ghavami et al., 2009). The transcription factor GATA3

has recently also been linked to cancer progression (Chou et al., 2010). The

transcription factor ATF-2 activates a variety of targets, although its role in

cancer is somewhat ambiguous. There are indications that ATF-2 may be
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involved in cancer maintenance (Vlahopoulos et al., 2008). TrkA, although

strictly speaking a receptor for nerve growth factor, was shown to be ex-

pressed on CML cells transformed by the BCR-ABL fusion gene making this

a very interesting result (Koch et al., 2008). The activity of AF6 is related to

cell adhesion. Overexpression of this particular gene decreases cell adhesion

(Zhang et al., 2005), this is very interesting in relation to the importance of

the niche in hematopoietic differentiation. In MM, 21 pathways are regulated

in MM that are not regulated in healthy differentiation. Among those are

some interesting pathways: the SOCS family, PDGF and p300. The SOCS

family has a negative effect on signalling in several cytokine pathways, most

importantly the JAK/STAT pathway. At least for SOCS1 there is evidence

that this gene is hypermethylated, and therefore silenced, in MM (Galm

et al., 2003). PDGF is a growth factor. Greco et al. (2006) show that the

interaction of the BB form of PDGF with c-MYC can confer resistance to

the chemotherapeutic agent melphalan in MM cells, indicating the possible

importance of PDGF in MM. p300 is both a transcriptional co-factor and a

histone acetyl transferase. Although there doesn’t appear to be any specific

function of this protein in MM, it has been implicated in several malignan-

cies and is involved in known tumor-related pathways such as the pathways

around p53 and TGF-beta (Lyer et al., 2004).

4.4 Correlation entropy

The results from the correlation message entropy are encouraging. The

graphs are in accordance with what was stated in the Method section. It

would seem that there is in fact an entropy decrease between HSC cells and

the more mature progenitors GMP and MEP. This would mean that the be-

haviour observed in the gene clusters mentioned in the method section can

indeed be extended to whole microarrays and is not a phenomenon specific

to certain groups of genes. All but the CML set show a clear downward trend

starting at the HSC. More important perhaps, is that there is a clear dis-

tinction between HSC and CMP on the one side and GMP and MEP on the

other. This is interesting, because both groups form distinct developmental
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stages. It should be noted that in the entropy analysis there don’t appear

to be very noticeable differences between both healthy sets. This is in sharp

contrast with the change vector-related analysis, where there were substan-

tial differences between both datasets. The CML set shows clearly divergent

behaviour, here the situation seems to have reversed: the more mature pro-

genitors have a higher entropy than the HSC and CMP cells. Assuming

that the observed trend in both healthy sets and the MM set are caused by

changes due to differentiation, it could be concluded that differentiation is

indeed impaired in patients with CML. In addition it could indicate that all

the cell types have retained stem cell like behaviour and characteristics. The

results for both the MM set and the CML set seem to agree with what is

known about both diseases. Bruns et al. (2009) showed that in CML progen-

itors do retain stem cell-like qualities Interestingly the GMP fraction exhibits

the most stem cell-like behaviour, this is in accordance with the results of

the entropy method. For MM it could be found that this is very close to the

normal situation. This also seems to hold because MM is a malignancy that

manifests itself in B-cells. It is therefore likely that normal differentiation

and the correct loss of stem cell characteristics in not severely impacted by

this disease. Nevertheless, MM plasma cells do influence the niche and so

may interfere with differentiation.

As was mentioned in the Method section, the idea to use this correlation

entropy came from observing this peculiar behaviour in an unrelated clus-

tering experiment. While observing colour-coded images of the correlation

matrices, more accurately the correlation distance matrices, it can be seen

that the image complexity of those images decreases with progressing differ-

entiation. Here it was shown that this behaviour was not limited to the gene

clusters analysed in that experiment, but in fact seems to be a characteristic

of the entire microarray and, by extension, for the part of the transcriptome

represented by it. However, it is not at all clear why this is the case. The

decrease in entropy indicates that in the later stages more and more matrix

elements start taking on the same value. Or more general, that the probabil-

ity distributions in the individual matrices starts narrowing around certain

values.
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An attractive possibility is that due to the increased silencing the over-

all interaction complexity in the network decreases. Since the increasing

silencing should cause the amount of active genes to decrease, one would

expect that the overall interaction possibilities should also decrease. In this

sense correlation coefficients allow for an increased flexibility because a strong

correlation does not imply a direct interaction. Given the optimised com-

munication within the cellular network, the correlation profile also captures

non-direct and long-range effects. Unfortunately it did not prove possible

to analyse this in more detail at this given time. It would be desirable to

analyse time-resolved data for this dynamic process, rather than the static

data available for this study. The interpretation is also further complicated

because of the question what the correlation between two silenced genes

should be. Using the correlation entropy to identify the degree of maturity

in differentiation should therefore be considered as a grey box approach.

4.5 General conclusions

For the last part of the discussion the focus will be on the results of the

complete method. The top three scoring conformations rooted by means of

the entropy method in each dataset are illustrated in figures 3.11, 3.12, 3.13

and 3.14 in the Results section. From now on these conformations will be

referred to as differentiation trees to indicate the combination of the results

of change vector-based conformation scoring and correlation entropy.

Validating the performance of the method is complicated in this case by

the differences in both healthy datasets. For Healthy set 1, the expected

differentiation tree could not be identified at all, while in Healthy set 2 it

could be identified regardless of the subnetwork identification method used.

Probably more important than this is that there are almost no similarities in

the top three sets of both datasets. This divergence, and the lack of a third

dataset with healthy samples, makes it difficult to decide which dataset is

telling the truth. This makes evaluating the method based on the data alone

impossible.

An alternative method would be to look at how well the method man-
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ages to identify the expected differentiation tree. The tree is referred to as

expected and not correct because, as was mentioned in the Introduction,

it is possible that the classical model of differentiation may not be correct.

Nevertheless, we will assume here that the expected differentiation tree ac-

cording to the classical model is indeed the correct one. Based on this fact it

can be concluded that the method performed well. It is of interest whether

the appearances of the correct differentiation tree among the top-three set is

due to some random chance event. This question can be easily answered by

considering the presence of the correct differentiation tree in the top three as

a Bernouili trial. The chance for the correct differentiation tree to appear in

the top three is 3 over 16. If all the results are considered, all data sets us-

ing the three different subnetwork identification methods, there are 12 trials

and 4 successes. This puts the p-value at 0.2561. This can be made more

favourable by excluding Healthy set 1 based on the differences with Healthy

set 2 and the fact that in Healthy set 2 it was possible to identify the correct

differentiation tree regardless of the subnetwork identification method used.

Excluding Healthy set 1 brings the p-value to a substantially lower 0.07003.

In this case it is not possible to get really low P-values due to the limited

number of possible conformations.

Some biological evidence can be gathered from the brief look at the path-

ways that are regulated differently in each cell type. As mentioned earlier,

those pathways are either lineage-specific or perform some kind of general

utility function, as one would expect in differentiation such as cell cycle reg-

ulation.

The method should be evaluated against the questions posed at the be-

ginning of this work. The main question was if microarray data contains

enough information to analyse and reconstruct the differentiation tree given

only transcriptome data of the individual cells. Based on the data presented

it would appear that microarrays do indeed contain useful information spe-

cific to the differentiation process. Even though the correct differentiation

tree could not be identified in some cases, the trees that the method sug-

gested were usually close to the correct one, meaning that they positioned

the CMP cells in between the HSC cells and the GMP and MEP cells.
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The other two questions are similar in nature: can this information be

used to verify proposed differentiation paths and if so can it also be used to

spot changes in differentiation. Validation of proposed differentiation trees

may not be possible with the method given the divergent results between

both healthy datasets. It was not possible to fully validate the method on

the data used here. On the other hand, it was possible to identify differences

between normal differentiation and differentiation in cancer. The clearest

differences come from the correlation entropy analysis, the CML cells really

stand out here with a practically reversed curve.

The method presented here should be approached as a proof of concept

rather than a fully functional analysis tool. In the outlook section improve-

ments and suggestions for further development will be discussed. Never-

theless, it was shown that differentiation trees can indeed be reconstructed

based on transcriptome data alone. In addition, the correlation entropy-

based method for root node identification could in principle be deployed as a

stand alone method, it could potentially be adapted as a diagnostic method

for certain cancers such as was demonstrated here for CML. Further, aside

from its main goal of identifying correct differentiation trees the method also

managed to identify pathways and subnetworks that are actively regulated

and involved in the differentiation process. The work presented here may

further the understanding of the differentiation process and could lead to the

development of new diagnostic tools.

4.6 Outlook

An interesting path of development to follow is to convert the method from

a non-parametric method to a parametric method. This is similar to how

maximum parsimony and maximum likelihood compare in the case of phylo-

genetics and combines nicely with the evolution theme the method is based

on. Central to maximum likelihood is the existence of some probability of

change. The previous discussions already hinted at the fact that the chance

of changing or becoming silenced along an edge is likely to be somewhat

subnetwork- and context-specific. It was observed that some subnetworks do
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not change at all while some subnetworks change in each cell type. It is also

possible that changes in one subnetwork influence the change probabilities

of other subnetworks. A simple example would be that a pathway for neural

cell-specific signalling should not be expressed in cells that have entered the

myeloid line and have active hematopoiesis-specific pathways. Although this

system of conditional change probabilities is clearly more elaborate than the

change probabilities in phylogentics, there is an analogy to be made with the

so called mutation hot spots in the genome. Clearly this requires a substan-

tial amount of data to learn these complicated probability interactions, and

preferably in vitro-data. Generating this data is not a trivial task, however.

Another aspect from the method that could benefit from parameterisa-

tion is the correlation entropy decay. Here it would be helpful to have a

function that defines the expected entropy decrease. If the expected trend is

known, observed entropy values can be better evaluated based on confidence

intervals. The critical reader may have noticed that for the generation of the

differentiation trees for Healthy set 2, HSC was chosen as root node, while

the entropy of CMP was slightly higher. This decision was made based on

the general trend in the other graphs and prior knowledge about the system.

With a known expected entropy decrease it would have been easier to make

this decision more accurately.

What would benefit the method and the understanding of the underlying

principles the most is of course methylation data. The method essentially

tests for silencing methylation indirectly by looking at the amount of changes.

This causes practical problems when interpreting what it means if a subnet-

work does not change along an edge: it could be silenced or it could be active

and not regulated. When looking at methylation data directly, this duality

does not exist. Additionally, using methylation data makes the method more

similar to maximum parsimony and maximum likelihood since there would

be a vector per node instead of a vector per edge. The transcriptome can

still be viewed as an array of subnetworks, but in this case the vectors will

indicate whether or not a subnetwork is silenced by methylation. The core

principle that methylation should increase with differentiation can still be

used to score the conformations in that case. The main difference would be
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that the method analyses the methylome and not the transcriptome.
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Appendix A

Tables

Edges Total Twice Thrice

Healthy set 1: cmp-mep gmp-mep hsc-gmp 5 1 4

Healthy set 1: cmp-mep gmp-mep hsc-mep 6 2 4

Healthy set 1: cmp-gmp gmp-mep hsc-mep 6 2 4

Healthy set 1: cmp-gmp gmp-mep hsc-gmp 6 2 4

Healthy set 1: cmp-gmp cmp-mep hsc-mep 7 3 4

Healthy set 1: cmp-gmp gmp-mep hsc-cmp 8 4 4

Healthy set 1: cmp-gmp cmp-mep hsc-gmp 8 4 4

Healthy set 1: cmp-mep hsc-gmp hsc-mep 9 5 4

Healthy set 1: cmp-gmp hsc-gmp hsc-mep 10 6 4

Healthy set 1: cmp-mep gmp-mep hsc-cmp 12 8 4

Healthy set 1: cmp-gmp cmp-mep hsc-cmp 15 10 5

Healthy set 1: gmp-mep hsc-cmp hsc-gmp 21 17 4

Healthy set 1: cmp-mep hsc-cmp hsc-gmp 28 24 4

Healthy set 1: gmp-mep hsc-cmp hsc-mep 38 34 4

Healthy set 1: cmp-gmp hsc-cmp hsc-mep 40 36 4

Healthy set 1: hsc-cmp hsc-gmp hsc-mep 51 43 8

Table A.1: Ranked conformation scores for Healthy set 1 using METIS
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Edges Total Twice Thrice

Healthy set 1: cmp-gmp gmp-mep hsc-mep 7 4 3

Healthy set 1: cmp-mep gmp-mep hsc-gmp 9 6 3

Healthy set 1: cmp-gmp gmp-mep hsc-cmp 9 6 3

Healthy set 1: cmp-gmp cmp-mep hsc-gmp 9 6 3

Healthy set 1: cmp-mep gmp-mep hsc-mep 11 8 3

Healthy set 1: cmp-gmp cmp-mep hsc-mep 11 8 3

Healthy set 1: cmp-gmp gmp-mep hsc-gmp 11 8 3

Healthy set 1: cmp-mep gmp-mep hsc-cmp 18 15 3

Healthy set 1: cmp-gmp cmp-mep hsc-cmp 20 17 3

Healthy set 1: cmp-gmp hsc-gmp hsc-mep 29 26 3

Healthy set 1: cmp-mep hsc-gmp hsc-mep 31 28 3

Healthy set 1: gmp-mep hsc-cmp hsc-gmp 35 32 3

Healthy set 1: cmp-mep hsc-cmp hsc-gmp 44 41 3

Healthy set 1: gmp-mep hsc-cmp hsc-mep 60 57 3

Healthy set 1: cmp-gmp hsc-cmp hsc-mep 62 59 3

Healthy set 1: hsc-cmp hsc-gmp hsc-mep 70 45 25

Table A.2: Ranked conformation scores for Healthy set 1 using Transpath
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Edges Total Twice Thrice

Healthy set 1: cmp-gmp cmp-mep hsc-gmp 63 12 51

Healthy set 1: cmp-gmp gmp-mep hsc-cmp 64 13 51

Healthy set 1: cmp-mep gmp-mep hsc-gmp 66 15 51

Healthy set 1: cmp-gmp gmp-mep hsc-mep 67 16 51

Healthy set 1: cmp-gmp hsc-gmp hsc-mep 68 17 51

Healthy set 1: cmp-gmp gmp-mep hsc-gmp 69 18 51

Healthy set 1: gmp-mep hsc-cmp hsc-gmp 70 19 51

Healthy set 1: cmp-mep gmp-mep hsc-cmp 81 30 51

Healthy set 1: cmp-gmp cmp-mep hsc-mep 81 30 51

Healthy set 1: cmp-gmp cmp-mep hsc-cmp 85 33 52

Healthy set 1: cmp-mep hsc-cmp hsc-gmp 85 34 51

Healthy set 1: cmp-mep hsc-gmp hsc-mep 86 35 51

Healthy set 1: cmp-mep gmp-mep hsc-mep 88 37 51

Healthy set 1: cmp-gmp hsc-cmp hsc-mep 95 44 51

Healthy set 1: gmp-mep hsc-cmp hsc-mep 98 47 51

Healthy set 1: hsc-cmp hsc-gmp hsc-mep 106 50 56

Table A.3: Ranked conformation scores for Healthy set 1 using R-MCL
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Edges Total Twice Thrice

CML set : cmp-gmp gmp-mep hsc-mep 2 0 2

CML set : cmp-gmp hsc-gmp hsc-mep 3 1 2

CML set : cmp-gmp cmp-mep hsc-gmp 4 2 2

CML set : gmp-mep hsc-cmp hsc-mep 4 2 2

CML set : cmp-gmp cmp-mep hsc-mep 4 2 2

CML set : cmp-mep hsc-gmp hsc-mep 5 3 2

CML set : cmp-mep gmp-mep hsc-mep 5 3 2

CML set : hsc-cmp hsc-gmp hsc-mep 5 3 2

CML set : gmp-mep hsc-cmp hsc-gmp 6 3 3

CML set : cmp-gmp gmp-mep hsc-cmp 6 4 2

CML set : cmp-gmp hsc-cmp hsc-mep 6 4 2

CML set : cmp-gmp gmp-mep hsc-gmp 6 4 2

CML set : cmp-mep gmp-mep hsc-gmp 7 4 3

CML set : cmp-mep hsc-cmp hsc-gmp 10 7 3

CML set : cmp-mep gmp-mep hsc-cmp 11 8 3

CML set : cmp-gmp cmp-mep hsc-cmp 12 9 3

Table A.4: Ranked conformation scores for the CML set using METIS
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Edges Total Twice Thrice

CML set : cmp-gmp hsc-gmp hsc-mep 3 1 2

CML set : cmp-gmp cmp-mep hsc-gmp 5 3 2

CML set : gmp-mep hsc-cmp hsc-gmp 6 4 2

CML set : cmp-gmp gmp-mep hsc-cmp 6 4 2

CML set : hsc-cmp hsc-gmp hsc-mep 6 4 2

CML set : cmp-mep hsc-cmp hsc-gmp 7 5 2

CML set : cmp-gmp hsc-cmp hsc-mep 7 5 2

CML set : cmp-mep gmp-mep hsc-gmp 8 5 3

CML set : cmp-gmp gmp-mep hsc-gmp 8 6 2

CML set : cmp-mep gmp-mep hsc-cmp 9 7 2

CML set : cmp-gmp gmp-mep hsc-mep 9 7 2

CML set : cmp-gmp cmp-mep hsc-cmp 10 8 2

CML set : gmp-mep hsc-cmp hsc-mep 10 8 2

CML set : cmp-mep hsc-gmp hsc-mep 12 10 2

CML set : cmp-gmp cmp-mep hsc-mep 12 10 2

CML set : cmp-mep gmp-mep hsc-mep 18 16 2

Table A.5: Ranked conformation scores for the CML set using Transpath
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Edges Total Twice Thrice

CML set : cmp-gmp cmp-mep hsc-gmp 47 13 34

CML set : cmp-gmp gmp-mep hsc-cmp 48 14 34

CML set : cmp-gmp gmp-mep hsc-mep 48 14 34

CML set : cmp-gmp hsc-gmp hsc-mep 48 14 34

CML set : gmp-mep hsc-cmp hsc-gmp 49 15 34

CML set : cmp-mep gmp-mep hsc-gmp 49 15 34

CML set : cmp-mep gmp-mep hsc-cmp 50 16 34

CML set : cmp-mep hsc-cmp hsc-gmp 50 16 34

CML set : cmp-gmp cmp-mep hsc-mep 50 16 34

CML set : cmp-mep hsc-gmp hsc-mep 51 17 34

CML set : gmp-mep hsc-cmp hsc-mep 51 17 34

CML set : cmp-gmp hsc-cmp hsc-mep 51 17 34

CML set : cmp-gmp gmp-mep hsc-gmp 55 21 34

CML set : cmp-gmp cmp-mep hsc-cmp 57 22 35

CML set : cmp-mep gmp-mep hsc-mep 57 23 34

CML set : hsc-cmp hsc-gmp hsc-mep 57 23 34

Table A.6: Ranked conformation scores for the CML set using R-MCL
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Edges Total Twice Thrice

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 51 34 17

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 68 48 20

Healthy set 2: cmp-mep gmp-mep hsc-cmp 78 59 19

Healthy set 2: cmp-gmp hsc-cmp hsc-mep 79 57 22

Healthy set 2: hsc-cmp hsc-gmp hsc-mep 81 65 16

Healthy set 2: gmp-mep hsc-cmp hsc-mep 97 73 24

Healthy set 2: cmp-mep hsc-gmp hsc-mep 113 90 23

Healthy set 2: cmp-gmp cmp-mep hsc-mep 122 99 23

Healthy set 2: cmp-mep gmp-mep hsc-mep 124 78 46

Healthy set 2: gmp-mep hsc-cmp hsc-gmp 133 114 19

Healthy set 2: cmp-gmp gmp-mep hsc-cmp 142 118 24

Healthy set 2: cmp-mep gmp-mep hsc-gmp 162 139 23

Healthy set 2: cmp-gmp gmp-mep hsc-mep 180 141 39

Healthy set 2: cmp-gmp cmp-mep hsc-gmp 182 155 27

Healthy set 2: cmp-gmp hsc-gmp hsc-mep 195 159 36

Healthy set 2: cmp-gmp gmp-mep hsc-gmp 220 133 87

Table A.7: Ranked conformation scores for Healthy set 2 using METIS
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Edges Total Twice Thrice

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 57 43 14

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 79 65 14

Healthy set 2: hsc-cmp hsc-gmp hsc-mep 99 84 15

Healthy set 2: cmp-mep gmp-mep hsc-cmp 103 89 14

Healthy set 2: cmp-gmp hsc-cmp hsc-mep 108 85 23

Healthy set 2: cmp-mep hsc-gmp hsc-mep 156 124 32

Healthy set 2: gmp-mep hsc-cmp hsc-mep 161 137 24

Healthy set 2: cmp-gmp cmp-mep hsc-mep 177 143 34

Healthy set 2: gmp-mep hsc-cmp hsc-gmp 184 170 14

Healthy set 2: cmp-gmp gmp-mep hsc-cmp 206 182 24

Healthy set 2: cmp-mep gmp-mep hsc-mep 208 148 60

Healthy set 2: cmp-gmp cmp-mep hsc-gmp 232 187 45

Healthy set 2: cmp-mep gmp-mep hsc-gmp 236 200 36

Healthy set 2: cmp-gmp hsc-gmp hsc-mep 251 199 52

Healthy set 2: cmp-gmp gmp-mep hsc-mep 287 222 65

Healthy set 2: cmp-gmp gmp-mep hsc-gmp 294 152 142

Table A.8: Ranked conformation scores for Healthy set 2 using Transpath
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Edges Total Twice Thrice

Healthy set 2: cmp-mep gmp-mep hsc-cmp 111 37 74

Healthy set 2: cmp-mep hsc-cmp hsc-gmp 116 43 73

Healthy set 2: cmp-gmp cmp-mep hsc-cmp 122 49 73

Healthy set 2: gmp-mep hsc-cmp hsc-mep 126 50 76

Healthy set 2: cmp-gmp hsc-cmp hsc-mep 128 52 76

Healthy set 2: cmp-mep hsc-gmp hsc-mep 134 52 82

Healthy set 2: hsc-cmp hsc-gmp hsc-mep 135 59 76

Healthy set 2: cmp-gmp cmp-mep hsc-mep 137 59 78

Healthy set 2: cmp-mep gmp-mep hsc-mep 144 59 85

Healthy set 2: gmp-mep hsc-cmp hsc-gmp 163 85 78

Healthy set 2: cmp-gmp gmp-mep hsc-cmp 169 91 78

Healthy set 2: cmp-mep gmp-mep hsc-gmp 172 91 81

Healthy set 2: cmp-gmp gmp-mep hsc-mep 173 79 94

Healthy set 2: cmp-gmp cmp-mep hsc-gmp 193 112 81

Healthy set 2: cmp-gmp hsc-gmp hsc-mep 200 110 90

Healthy set 2: cmp-gmp gmp-mep hsc-gmp 211 83 128

Table A.9: Ranked conformation scores for Healthy set 2 using R-MCL
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Edges Total Twice Thrice

MM set: cmp-gmp cmp-mep hsc-cmp 13 4 9

MM set: cmp-gmp cmp-mep hsc-gmp 13 4 9

MM set: cmp-mep gmp-mep hsc-cmp 17 8 9

MM set: cmp-gmp gmp-mep hsc-cmp 17 7 10

MM set: cmp-gmp cmp-mep hsc-mep 18 8 10

MM set: cmp-mep gmp-mep hsc-gmp 19 10 9

MM set: cmp-mep hsc-cmp hsc-gmp 20 11 9

MM set: cmp-gmp gmp-mep hsc-gmp 21 11 10

MM set: cmp-gmp hsc-gmp hsc-mep 24 15 9

MM set: gmp-mep hsc-cmp hsc-gmp 26 17 9

MM set: cmp-mep hsc-gmp hsc-mep 27 18 9

MM set: cmp-gmp gmp-mep hsc-mep 31 20 11

MM set: cmp-mep gmp-mep hsc-mep 36 25 11

MM set: cmp-gmp hsc-cmp hsc-mep 37 28 9

MM set : hsc-cmp hsc-gmp hsc-mep 45 32 13

MM set: gmp-mep hsc-cmp hsc-mep 51 41 10

Table A.10: Ranked conformation scores for the MM set using METIS
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Edges Total Twice Thrice

MM set: cmp-mep gmp-mep hsc-cmp 6 1 5

MM set: cmp-gmp cmp-mep hsc-mep 6 1 5

MM set: cmp-mep gmp-mep hsc-gmp 10 5 5

MM set: cmp-mep hsc-gmp hsc-mep 11 6 5

MM set: cmp-mep gmp-mep hsc-mep 11 5 6

MM set: cmp-gmp cmp-mep hsc-cmp 13 8 5

MM set: cmp-gmp gmp-mep hsc-mep 13 8 5

MM set: gmp-mep hsc-cmp hsc-mep 13 8 5

MM set: cmp-gmp gmp-mep hsc-cmp 15 10 5

MM set: cmp-gmp hsc-cmp hsc-mep 15 10 5

MM set: cmp-mep hsc-cmp hsc-gmp 19 14 5

MM set: cmp-gmp cmp-mep hsc-gmp 19 14 5

MM set: hsc-cmp hsc-gmp hsc-mep 22 15 7

MM set: gmp-mep hsc-cmp hsc-gmp 23 18 5

MM set: cmp-gmp gmp-mep hsc-gmp 23 17 6

MM set: cmp-gmp hsc-gmp hsc-mep 24 19 5

Table A.11: Ranked conformation scores for the MM set using Transpath
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Edges Total Twice Thrice

MM set: cmp-mep gmp-mep hsc-gmp 63 14 49

MM set: cmp-gmp cmp-mep hsc-gmp 64 16 48

MM set: cmp-gmp cmp-mep hsc-mep 65 17 48

MM set: cmp-gmp gmp-mep hsc-cmp 66 18 48

MM set: cmp-gmp gmp-mep hsc-mep 67 19 48

MM set: cmp-mep gmp-mep hsc-cmp 69 21 48

MM set: cmp-gmp hsc-gmp hsc-mep 71 23 48

MM set: cmp-gmp gmp-mep hsc-gmp 71 22 49

MM set: gmp-mep hsc-cmp hsc-gmp 72 22 50

MM set: cmp-mep hsc-gmp hsc-mep 72 23 49

MM set: cmp-gmp cmp-mep hsc-cmp 73 25 48

MM set: cmp-mep hsc-cmp hsc-gmp 78 30 48

MM set: cmp-mep gmp-mep hsc-mep 78 27 51

MM set: cmp-gmp hsc-cmp hsc-mep 80 32 48

MM set: gmp-mep hsc-cmp hsc-mep 83 34 49

MM set: hsc-cmp hsc-gmp hsc-mep 90 38 52

Table A.12: Ranked conformation scores for the MM set using R-MCL
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1 R-MCL source code

/*
rmcl-cuda by Ir Frederik Roels

Description:

This program is a parallelised implementation Regularised Markov graph clustering (R-MCL).
R-MCL is an addition made to normal Markov graph clustering by Satuluri. The improved algorithm
was presented by Venu Satuluri at SIGKDD 2009 in Paris under the title: Scalable graph
clustering using stochastic flows: applications for community discovery.

Regarding computation there are no differences between R-MCL and normal Markov graph
clustering. Both perform an expansion step and an inflation step. Computationally those
are equivalent to matrix multiplication and raising all elements in a vector to a given power.
These operations, especially the matrix multiplication, can consume incredible amounts of
computation time if the matrices are large. Since the algorithm expects to perform this
action at least several times in succession the time cost can become unmanageable
rather quickly.

Because of the nature of the operations, they can be easily parallelised. This program uses
the nVidia CUDA architecture to perform parallelisation on nVidia GPUs. GPUs are by nature
SIMD devices and are therefor suitable for parallelisation.

The code relies on the sgemm function from the CUBLAS library to perform matrix
multiplication. CUBLAS is a library containing a variety of linear algebra functions
ported to the CUDA architecture.

The other operations are parallelised by means of custom functions, in the CUDA world
referred to as kernels. Kernels are functions that are ran directly on the GPU, each thread
executes the same kernel, but may have different internal variables. Because of this the code
has two types of functions: those that are ran directly on the device and those that run on the
host machine. It is impossible (at least in the current CUDA versions) to access data in the
device memory directly from the host, accessing the data requires a memory copy operation.
Because it can be time expensive to perform this operation multiple times the data is kept on
the device until the computation has ended.

It should be noted that the CUBLAS library expects matrices to be in column major format
instead of row major format. Because of this, all functions expect the data to be in
column major format.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "/opt/cuda/include/cublas.h"

/*

An upper limit is hard coded, check your hardware for the optimal value, this one requires a
maximum of 4.8 gigabyte of video RAM and 1.6 gigabyte of host RAM

*/



#define MAX_MAT 20000 * 20000

// Datastructure used to hold the matrices

typedef struct Matrix {
int length;
int rows;
int cols;
float *data_ptr;

} Matrix;

// Function reading in a matrix from file

Matrix *read_matrix( char *filename, int rows, int cols ) {

int i,j;
int counter;
float *data_ptr;
float *data_ptr_resize;
float *seek_ptr;
float *data_ptr_colmajor;
float *tmp_ptr;
int total_size = rows * cols;
Matrix *return_struct;

FILE *f_ptr = fopen(filename, "r");
if( !f_ptr ) {

fprintf(stderr, "error opening file");
}

// We’ll allocate as much as possible and later resize, because user input can’t be trusted

data_ptr = (float *)malloc(MAX_MAT * sizeof(*data_ptr));

if( !data_ptr ) {
fprintf(stderr, "error allocating memory for %s\n", filename);
exit(1);

}

seek_ptr = data_ptr;
counter = 0;

while( fscanf(f_ptr, "%f", seek_ptr) != EOF) {
seek_ptr++;
counter++;

if( counter > MAX_MAT ) { fprintf(stderr, "Data too large\n");
free(data_ptr); exit(1); }

}

if( counter != rows * cols ) {
fprintf(stderr, "Dimensions dont fit size for matrix %s\n", filename); exit(1);
}

// Shrink the memory to size

data_ptr_resize = (float *)realloc(data_ptr, counter * sizeof(*data_ptr));
data_ptr_colmajor = (float *)malloc(counter * sizeof(*data_ptr));

if( data_ptr_resize ) {



data_ptr = data_ptr_resize;
}
else{

fprintf(stderr, "Realloc failed\n"); free(data_ptr); free(data_ptr_resize); free(data_ptr_colmajor); exit(1);
}

/*
Here the matrices are converted from Row Major to Column Major, the CUBLAS library expects
Column Major
*/

for( i = 0; i < rows; i++ ) {
for( j = 0; j < cols; j++ ) {

*(data_ptr_colmajor + j * rows + i) = *(data_ptr + i * cols + j);
}

}

tmp_ptr = data_ptr; // Hold on to that memory !!!
data_ptr = data_ptr_colmajor;

free(tmp_ptr);

/* Return everything as a Matrix struct */

return_struct = (Matrix *)malloc(sizeof(*return_struct));

return_struct->length = counter;
return_struct->rows = rows;
return_struct->cols = cols;
return_struct->data_ptr = data_ptr;

return(return_struct);

}

/* Prints out the Column Major stored matrices in Row Major */

void print_mat(const Matrix *mat) {

int i,j;
float *matrix_ptr = mat->data_ptr;

for( i = 0; i < mat->rows; i++ ) {
for( j = 0; j < mat->cols; j++ ) {

printf("%.40f ", *(matrix_ptr + j * mat->rows + i));
}
printf("\n");

}

}

/*

Calculates the degree of every node based on the adjacency matrix. One thread is
executed per column (node)

*/



__global__ void degreevec_gpu(int size, int *vector, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;

if( idx < size ) {
vector[idx] = 0;
for( i = idx * size; i < (idx + 1) * size; i++ ) {

vector[idx] = vector[idx] + *(matrix + i);
}

}
}

/*

Performs weight transformation on edge weight based on the degree of both
nodes in the edge. Influence of connections between high degree nodes is
reduced. One thread per column (node)

*/

__global__ void weighttransform_gpu(int size, int *degreevec, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;

if( idx < size ) {
for( i = idx * size; i < (idx + 1) * size; i++ ) {

*(matrix + i) = ( *(matrix + i) / *(degreevec + idx) )
+ ( *(matrix + i) / *(degreevec + i - idx * size) );

}
}

}

/* Adds self loops to the network. One thread per column (node) */

__global__ void selfloops_gpu (int size, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if( idx < size ) {
*(matrix + idx * size + idx) = *(matrix + idx * size + idx) + 1;

}
}

/*

Converts colum entries to transition probabilities by making all the entries
sum up to one

*/

__global__ void col2prob_gpu (int size, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;
float denom = 0.0f;



if( idx < size ) {

for( i = idx * size; i < (idx + 1) * size; i++ ) {
denom = denom + *(matrix + i);;

}

for( i = idx * size; i < (idx + 1) * size; i++ ) {

*(matrix + i) = *(matrix + i) / denom;
}

}
}

/*

Matrix multiplication on the gpu. Function calls a function from the CUBLAS
linear algebra library

*/

void mult_gpu( float *mat1Dev_ptr, float *mat2Dev_ptr, float *mat3Dev_ptr, int dim ) {

cublasSgemm(’n’, ’n’, dim, dim, dim, 1.0f, mat1Dev_ptr, dim,
mat2Dev_ptr, dim, 0.0f, mat3Dev_ptr, dim);

}

/* Raises each element of a given matrix to a power. One thread per column */

__global__ void power_gpu( int size, float *matrix, float power) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;

if( idx < size ) {
for( i = idx * size; i < (idx + 1) * size; i++ ) {

*(matrix + i) = pow(*(matrix + i), power);
}

}
}

/* The following two functions work together */

/*

Function checks whether there are more than on non zero element in a column
(convergence criterion) and returns the information as a binary vector

*/

__global__ void checkconverge_gpu(int size, int *vector, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;
int counter = 0;

if( idx < size ) {
vector[idx] = 0;
for( i = idx * size; i < (idx + 1) * size; i++ ) {

if( *(matrix + i) > 0 ) {
counter++;



}
}
if( counter == 1 ) {

vector[idx] = 1;
}

}
}

/*

Host function calling checkconverge_gpu(). Verifies if all columns have converged based
on the sum of the vector elements, if the sum is equal to the dimension all columns
have converged

*/

int checkconverge( int dim, int *dev_ptr, int *host_ptr, float *matrix) {
dim3 dimBlock(1);
dim3 dimGrid(dim);
int i;
cublasStatus status;
int sum = 0;

checkconverge_gpu<<<dimGrid, dimBlock>>>(dim, dev_ptr, matrix);

status = cublasGetVector(dim, sizeof(int), dev_ptr, 1, host_ptr, 1);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "!!!! device access error (read C)\n");
exit(1);

}

for( i=0; i < dim; i++ ) {
sum = sum + *(host_ptr + i);

}

if( sum == dim ) {
return(1);

}
else {

return(0);
}

}

/*

Function identifies the row index of the largest value in a column (greedy search).
Greedy search is not a problem here since there should only be one non zero.
This is the center of the subnetwork and the attractor node of the column

*/

__global__ void colmax_gpu (int *vector, int size, float *matrix) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int max_index = 0;
float last_max = 0.0f;
int i;



if( idx < size ) {

for( i = idx * size; i < (idx + 1) * size; i++ ) {
if( *(matrix + i) > last_max ) {

last_max = *(matrix + i);
max_index = i;

}
}
vector[idx] = max_index - idx * size;

}
}

/* Main loop */

int main(int argc, char** argv) {

Matrix *adjacency_ptr;
Matrix *intermed_ptr;
Matrix *result_ptr;

float *devA_ptr = 0;
float *devB_ptr = 0;
float *devC_ptr = 0;

int dim = atoi(argv[2]);
float exp = atof(argv[3]);

int max_runs = atoi(argv[4]);
int i;

/*

dimBlock and dimGrid are used to set the thread configuration of CUDA. The grid
can be subdivided in blocks, all threads in a block can access a certain amount of
shared memory. In the case of this algorithm, communication between threads
is not needed and the block size is set to contain only one thread. The grid holds
all the blocks, an hence all the threads. The maximum grid size is 256 * 256
which is also the maximum amount of available threads.

*/
dim3 dimBlock(1);
dim3 dimGrid(dim);

cublasStatus status;

if( argc < 3 ) { fprintf(stderr, "Not enough parameters\n"); return(1);}

/* Allocation for the matrices on host memory */

adjacency_ptr = read_matrix(argv[1], dim, dim);

intermed_ptr = (Matrix *)malloc(sizeof(intermed_ptr));
intermed_ptr->length = dim * dim;
intermed_ptr->rows = dim;
intermed_ptr->cols = dim;
intermed_ptr->data_ptr = (float *)malloc(intermed_ptr->length * sizeof(float));



result_ptr = (Matrix *)malloc(sizeof(result_ptr));
result_ptr->length = dim * dim;
result_ptr->rows = dim;
result_ptr->cols = dim;
result_ptr->data_ptr = (float *)malloc(result_ptr->length * sizeof(float));

status = cublasInit();

if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "Couldn’t start CUBLAS\n");
exit(1);

}

/* Allocation memory for the matrices in the video RAM */

status = cublasAlloc(dim * dim, sizeof(float), (void**)&devA_ptr);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t allocate memory for matrix A in video RAM\n");
exit(1);

}

status = cublasAlloc(dim * dim, sizeof(float), (void**)&devB_ptr);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "Couldn’t allocate memory for matrix B in video RAM\n");
exit(1);

}

status = cublasAlloc(dim * dim , sizeof(float), (void**)&devC_ptr);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t allocate memory for result matrix in video RAM\n");
exit(1);

}

/* Copy the matrices from the main RAM to the allocated space in the video RAM*/

status = cublasSetVector(dim * dim, sizeof(float), adjacency_ptr->data_ptr, 1, devA_ptr, 1);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t write matrix A to the card");
exit(1);

}

status = cublasSetVector(dim * dim, sizeof(float), adjacency_ptr->data_ptr, 1, devB_ptr, 1);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t write matrix B to the card\n");
exit(1);

}

status = cublasSetVector(dim * dim, sizeof(float), result_ptr->data_ptr, 1, devC_ptr, 1);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t initialize the result matrix on the card\n");
exit(1);

}

int *hostvector_ptr;
int *devicevector_ptr;

hostvector_ptr = (int *)malloc(adjacency_ptr->cols * sizeof(*hostvector_ptr));



status = cublasAlloc(adjacency_ptr->cols , sizeof(int), (void**)&devicevector_ptr);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Couldn’t initialize device vector\n");
exit(1);

}

/* Calculation part starts here */

/*

In the following steps the adjacency matrix is converted to the cannonical flow matrix on
which the calculations will be performed

*/

// Calculate the degree for each node

degreevec_gpu<<<dimGrid, dimBlock>>>(dim, devicevector_ptr, devA_ptr);

// Calculate the degree for each node

weighttransform_gpu<<<dimGrid, dimBlock>>>(dim, devicevector_ptr, devA_ptr);

// Add self loops

selfloops_gpu<<<dimGrid, dimBlock>>>(dim, devA_ptr);

// Normalise the columns converting them to probabilities

col2prob_gpu<<<dimGrid, dimBlock>>>(dim, devA_ptr);

int run = 1;
int runs = 0;
float *buffer_ptr;

/*

The expansion step (mult_gpu) and the inflation step (power_gpu) are performed in succession
until either the convergence criterion is reached, or a maximum amount of runs is exceeded.

*/
while( run ) {
runs++;

mult_gpu(devA_ptr, devB_ptr, devC_ptr, dim);
power_gpu<<<dimGrid, dimBlock>>>(dim, devC_ptr, exp);

// Columns are renormalised after the expansion and inflation steps

col2prob_gpu<<<dimGrid, dimBlock>>>(dim, devC_ptr);

buffer_ptr = devA_ptr;
devA_ptr = devC_ptr;
devC_ptr = buffer_ptr;

if( checkconverge( dim, devicevector_ptr, hostvector_ptr, devA_ptr) ) {
run = 0;

}



if (runs >= max_runs ) { run = 0; }

}

/*

After either the convergence criterion or a maximum amount of runs is reached, for each
column the row index of the largest element is calculated and outputted to console

*/

colmax_gpu<<<dimGrid, dimBlock>>>(devicevector_ptr, dim, devA_ptr);

status = cublasGetVector(dim, sizeof(int), devicevector_ptr, 1, hostvector_ptr, 1);
if (status != CUBLAS_STATUS_SUCCESS) {

fprintf (stderr, "Could not retrieve resulst from device\n");
exit(1);

}

for( i = 0; i < dim; i++ ) {
printf("%d\n", *(hostvector_ptr + i));

}
printf("\n");

}

2 SpearmanPreranked source code

/*

SpearmanPreranked by Ir Frederik Roels.

Description:

The program calculates the Spearman rank correlation coefficient for large datasets.
The issue with calculating correlation on matrices with a high amount of rows is memory.
The program solves this by keeping the usage of memory low and instead calls on disk
space to progressively store the result. It is not advised to continuously output to disk
since this would mean constant disk access which may slow the program, and the operating
system in general, down considerably. In this case, each time a row of the correlation matrix is
calculated it is appended to an output file on disk. The program outputs the results as strings
instead of binary so as to ease integration with other programs.

The program starts from a matrix in which the rows have already been converted to ranks.
The rows are calculated at once by exploiting the fact that most of the calculation of Spearman
correlation can be done by means of vector operations. Note that this also makes the described
program easy to parallelise or to distribute if one would be so inclined.

The program keeps one copy of the original ranked matrix in memory which is used as a one
dimensional vector, this is the master.

For the calculation of each row, a slave is loaded, the slave consists of N repeats of a given row,
where N is the total amount of rows in the matrix. The resulting vector is hence the same length
as the master. By using vector operations combining both the slave and the master a row of
the correlation matrix is calculated.



Usage: SpearmanPreranked <path to preranked matrix> <rows> <columns> <path to output file>

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_MAT 6000 * 6000 // Hard coded upper limit to matrix size

/*

General purpose data structure to hold matrices. Even if the matrices are considered
as vectors, the same struct will be used

*/

typedef struct Matrix {
int length;
int rows;
int cols;
float *data_ptr;

} Matrix;

/*

Utility function that reads in a matrix from file and returns it as a Matrix data structure.
The function first allocates MAX_MAT memory and later resizes the memory when to
fit the size of the matrix

*/

Matrix *read_matrix( char *filename, int rows, int cols ) {

int counter;
float *data_ptr;
float *data_ptr_resize;
float *seek_ptr;
int total_size = rows * cols;
Matrix *return_struct;

FILE *f_ptr = fopen(filename, "r");
if( !f_ptr ) {

fprintf(stderr, "error opening input file");
}

data_ptr = (float *)malloc(MAX_MAT * sizeof(*data_ptr));

if( !data_ptr ) {
fprintf(stderr, "error allocating space for input matrix\n");
exit(1);

}

seek_ptr = data_ptr;
counter = 0;
while( fscanf(f_ptr, "%f", seek_ptr) != EOF) {

seek_ptr++;
counter++;



if( counter > MAX_MAT ) { fprintf(stderr, "Data too large\n"); exit(1); }
}

if( counter != (rows * cols ) ) {
fprintf(stderr, "Dimension does not match array size, rows:
%d cols: %d array size: %d (for %s)\n", rows, cols, counter, filename);
exit(1);

}

data_ptr_resize = (float *)realloc(data_ptr, counter * sizeof(*data_ptr));

if( data_ptr_resize ) {
data_ptr = data_ptr_resize;

}
else{ fprintf(stderr, "Realloc failed\n"); exit(1); }

return_struct = (Matrix *)malloc(sizeof(*return_struct));

return_struct->length = counter;
return_struct->rows = rows;
return_struct->cols = cols;
return_struct->data_ptr = data_ptr;

return(return_struct);

}

// Utility function that prints out the matrix

void print_mat(const Matrix *mat) {

int i,j;
float *matrix_ptr = mat->data_ptr;

for( i = 0; i < mat->rows; i++ ) {
for( j = 0; j < mat->cols; j++ ) {

printf("%f ", *matrix_ptr);
matrix_ptr++;

}
printf("\n");

}

}

/*
Function that loads the slave vector from the master vector based on a

row index (the offset in the data vector)

*/

void load_slave( Matrix *mat, Matrix *slave_mat, int offset ) {

int i, j;
float *master_ptr = mat->data_ptr;
float *slave_ptr = slave_mat->data_ptr;
int cols = mat->cols;
int rows = mat->rows;



for( i = 0; i < rows; i++ ) {
for( j = 0; j < cols; j++ ) {
*(slave_ptr + ( (i * cols) + j) ) = *(master_ptr + ( (offset * cols) + j) );
}
}
}

/* Function that calculates the difference between two vectors */

void vector_diff( Matrix *matA, Matrix *matB, Matrix *ret_mat) {

int i,j;
int length = matA->length;
float *matA_ptr = matA->data_ptr;
float *matB_ptr = matB->data_ptr;
float *ret_ptr = ret_mat->data_ptr;

for( i = 0; i < length; i++ ) {
*(ret_ptr + i) = *(matA_ptr + i) - *(matB_ptr + i);
}
}

/* Function that squares every element of a given vector */

void vector_square( Matrix *mat ) {

int i,j;
int length = mat->length;
float *mat_ptr = mat->data_ptr;

for( i = 0; i < length; i++ ) {
*(mat_ptr + i) = *(mat_ptr + i) * *(mat_ptr + i);
}
}

/*

Function that takes the sum of parts of a given vector and returns the results of
these partial sums as a vector of reduced length This has the effect of converting
the master vector and slave vector operations to the value used in the correlation
formula. Generating one value to be used in calculating the correlation value for
one column in the row that is being calculated of the correlation matrix.

*/

void sum( Matrix *mat, float *row_vec, int offset ) {

int i;
int cols = mat->cols;
float *mat_ptr = mat->data_ptr;
float sum;
sum = 0.0;

for( i = offset * cols; i < (offset + 1) * cols; i++ ) {
sum = sum + *(mat_ptr + i);
}
*(row_vec + offset) = sum;
}

/*



Final step in calculating the correlation for all columns in the correlation
matrix row that is being calculated

*/

void calc_cor( float *row_vec, float *ret_vec, float factor, int length ) {

int i;

for( i = 0; i < length; i++ ) {
*(ret_vec + i) = 1.0 - ( *(row_vec + i) * factor );
}
}

/*

Wrapper function which computes the steps required to calculate one
row of the correlation matrix

*/

void calc_row( Matrix *rank_mat, Matrix *inter1_ptr, Matrix *inter2_ptr,
float *row_ptr, float *ret_ptr, float factor, int row ) {

int i;

load_slave(rank_mat, inter1_ptr, row);
vector_diff(inter1_ptr, rank_mat, inter2_ptr);
vector_square(inter2_ptr);

for( i = 0; i < rank_mat->rows; i++ ) {
sum(inter2_ptr, row_ptr, i);

}

calc_cor(row_ptr, ret_ptr, factor, rank_mat->rows);
}

/* Utility function that writes a row to a specified file */

void write_row( float *row_ptr, int size, FILE *file_ptr ) {

int i;

for( i = 0; i < size; i++ ) {
fprintf(file_ptr, "%f ", *(row_ptr + i));

}
fprintf(file_ptr, "\n");
}

/* Main loop */

int main(int argc, char** argv) {

int i, j;
Matrix *matrix_ptr;
Matrix *intermediate_ptr;
Matrix *intermediate2_ptr;
Matrix *intermediate3_ptr;



float *row_vec1;
float *row_vec2;
float factor;
int n;

matrix_ptr = read_matrix(argv[1], atoi(argv[2]), atoi(argv[3]));

FILE *output_ptr = fopen(argv[4], "w");

if( !output_ptr ) {
fprintf(stderr, "error creating output file");

}

/* Some space is allocated to hold intermediate resulst of the computations */

intermediate_ptr = (Matrix *)malloc(sizeof(*intermediate_ptr));
intermediate_ptr->length = matrix_ptr->length;
intermediate_ptr->rows = matrix_ptr->rows;
intermediate_ptr->cols = matrix_ptr->cols;
intermediate_ptr->data_ptr = (float *)malloc(intermediate_ptr->length * sizeof(float));

if( !intermediate_ptr->data_ptr ) {
fprintf(stderr, "error allocating space for intermediate storage\n");
exit(1);
}

intermediate2_ptr = (Matrix *)malloc(sizeof(*intermediate2_ptr));
intermediate2_ptr->length = matrix_ptr->length;
intermediate2_ptr->rows = matrix_ptr->rows;
intermediate2_ptr->cols = matrix_ptr->cols;
intermediate2_ptr->data_ptr = (float *)malloc(intermediate2_ptr->length * sizeof(float));

if( !intermediate2_ptr->data_ptr ) {
fprintf(stderr, "error allocating space for intermediate storage\n");

exit(1);
}

row_vec1 = (float *)malloc(matrix_ptr->rows * sizeof(float));
row_vec2 = (float *)malloc(matrix_ptr->rows * sizeof(float));

/* Calculation of the coeficient used in the calculation of the correlation */

n = matrix_ptr->cols;

int denom = ((n * n) - 1) * n;

factor = 6.0 / denom;
float test = 6.0 / 2;

/* Loop that calculates all the rows of the correlation matrix and outputs them to file */

for( i = 0; i < matrix_ptr->rows; i++ ) {
calc_row( matrix_ptr, intermediate_ptr, intermediate2_ptr, row_vec1, row_vec2, factor, i );
write_row(row_vec2, matrix_ptr->rows, output_ptr);
}
}
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