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Abstract

In this thesis methods and applications of supervised learning for the segmentation and
analysis of digital imagery coming from a variety of research domains are investigated.
Segmentation and classification are important tasks in biomedical and industrial imag-
ing and often provide the basis for recognition and quantification. Various specialized
solutions exist for an enormous amount of distinct types of data and these are usually
designed to meet and exploit given domain knowledge. In this work, an interactive su-
pervised learning framework is proposed that is able to tackle multi-object segmentation
and multi-class discrimination in a unified way. The method is general enough to cover
a reasonable range of use cases in which local image descriptors are sufficient. The per-
formance of the segmentation results is demonstrated on various data sets with distinct
tasks to solve. This emphasizes the versatility of this approach to many biomedical and
industrial data sets without requiring explicit image processing expertise and the need
for custom programming. The approach builds upon a generic feature set that is able to
characterize local cues such as color, texture and edges. To this end, an interactive tool
that performs real-time processing on usual image sizes was developed, enabling do-
main experts to perform segmentation and classification tasks in an explorative fashion.
No prior expertise in image processing is required since user interaction is facilitated via
intuitive brush strokes. Once the algorithm/system has been trained, it can be applied to
thousands of images with no further interaction with the user. The approach is limited
to the segmentation of objects that can be discriminated based on local cues such as
color or texture; but within this setting, the supervised framework yields surprisingly
good results; on top of those, application-dependent post-analysis can be applied. The
framework supports up to 4-dimensional multi-spectral data in an integrated fashion.

In order to show the applicability and transferability of the method, several real world
data sets – from very diverse imaging fields – are examined. Among them is the seg-
mentation of tumor tissue from fluorescent wide-field microscopy, quantification of cell
migration in confocal microscopy images for surveys on adult neurogenesis, segmenta-
tion of blood vessels in the retina of the eye, tracing of copper wires spread on tags for
brand-owner authentication in an industrial context, and the application to image quality
control for high-throughput siRNA screens. Furthermore an industrial problem is con-
sidered: a novel sequence classification procedure on the basis of localized frequency
estimates is proposed for the process control and visualization of the sheet-feeding pro-
cess for offset printing machines.
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Zusammenfassung

In der vorliegenden Dissertation werden Methoden des überwachten Lernens untersucht
und auf die Analyse und die Segmentierung digitaler Bilddaten angewendet, die aus di-
versen Forschungsgebieten stammen. Die Segmentierung und die Klassifikation spielen
eine wichtige Rolle in der biomedizinischen und industriellen Bildverarbeitung, häufig
basiert darauf weitere Erkennung und Quantifikation. Viele problemspezifische An-
sätze existieren für die unterschiedlichsten Fragestellungen und nutzen meist spezifis-
ches Vorwissen aus den jeweiligen Bilddaten aus. In dieser Arbeit wird ein überwachtes
Lernverfahren vorgestellt, das mehrere Objekte und deren Klassen gleichzeitig segmen-
tieren und unterscheiden kann. Die Methode ist generell genug um einen wichtigen
Bereich von Anwendungen abzudecken, für deren Lösung lokale Merkmale eine Rolle
spielen. Segmentierungsergebnisse dieses Ansatzes werden auf verschiedenen Daten-
sätzen mit unterschiedlichen Problemstellungen gezeigt. Die Resultate unterstreichen
die Anwendbarkeit der Lernmethode für viele biomedizinische und industrielle An-
wendungen, ohne dass explizite Kenntnisse der Bildverarbeitung und Programmierung
vorausgesetzt werden müssen. Der Ansatz basiert auf generellen Merkmalsklassen,
die es erlauben lokal Strukturen wie Farbe, Textur und Kanten zu beschreiben. Zu
diesem Zweck wurde eine interaktive Software implementiert, welche, für gewöhn-
liche Bildgrößen, in Echtzeit arbeitet und es somit einem Domänenexperten erlaubt
Segmentierungs- und Klassifikationsaufgaben interaktiv zu bearbeiten. Dafür sind keine
Kenntnisse in der Bildverarbeitung nötig, da sich die Benutzerinteraktion auf intuitives
Markieren mit einem Pinselwerkzeug beschränkt. Das interaktiv trainierte System kann
dann ohne weitere Benutzerinteraktion auf viele neue Bilder angewendet werden. Der
Ansatz ist auf Segmentierungsprobleme beschränkt, für deren Lösung lokale diskrim-
inative Merkmale ausreichen. Innerhalb dieser Einschränkung zeigt der Algorithmus
jedoch erstaunlich gute Resultate, die in einer applikationsspezifischen Prozedur weiter
verbessert werden können. Das Verfahren unterstützt bis zu vierdimensionale, multi-
spektrale Bilddaten in vereinheitlichter Weise.

Um die Anwendbar- und Übertragbarkeit der Methode weiter zu illustrieren wurden
mehrere echte Anwendungsfälle, kommend aus verschiedenen bildgebenden Bereichen,
untersucht. Darunter sind u. A. die Segmentierung von Tumorgewebe, aufgenom-
men mittels Weitfeldmikroskopie, die Quantifikation von Zellwanderungen in konfokal-
mikroskopischen Aufnahmen für die Untersuchung der adulten Neurogenese, die Seg-
mentierung von Blutgefäßen in der Retina des Auges, das Verfolgen von Kupferdrähten
in einer Anwendung zur Produktauthentifikation und die Qualitätskontrolle von Mikro-
skopiebildern im Kontext von Hochdurchsatz-Experimenten. Desweiteren wurde eine
neue Klassifikationsmethode basierend auf globalen Frequenzschätzungen für die Pro-
zesskontrolle des Papieranlegers an Druckmaschinen entwickelt.
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.

’The time has come,’ the Walrus said,

’To talk of many things:

Of shoes – and ships – and sealingwax –

Of cabbages – and kings –

And why the sea is boiling hot –

And whether pigs have wings.’

by Lewis Carrol
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Part I.

Introduction and Basics
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1. Introduction

Analysis, processing and quantification of digital imagery is a challenging research area
that demands advanced image processing techniques. The great variety in biological,
medical and industrial imagery gives rise to problem-specific algorithm design. Image
segmentation is a crucial step toward recognizing and understanding image content.
Segmentation in the context of image processing has been be defined as:

“The goal of segmentation is to simplify and/or change the representation

of an image into something that is more meaningful and easier to analyze.”

(Linda Shapiro)

With this in mind, image segmentation is a prerequisite step for many recognition and
quantification problems; it aims to provide a basis for drawing conclusions on a more
abstract and semantic ground than mere image pixels. Despite the fact that several thou-
sand scientific papers are published every year in this research area, the segmentation
problem is still one the main unsolved problems in image processing. However, many
approaches that solve segmentation tasks in specific data domains by utilizing prior
knowledge (e. g. objects of interest are elliptically shaped) or prior data normalization
(e. g. object of interest are centered in each image) do exist. In addition, semi-automatic
approaches, where a computer aids a user in accomplishing a certain segmentation task,
have been proposed in the past. Most of these approaches are bound to work on only
one image: the image the user acts on, and all user input must be repeated for each
and every data item; further images must be processed independently as they cannot
utilize previously entered user input. On the other hand, fully automated methods lack
the ability to generalize into distinct segmentation tasks and are designed to capture a
combination of predefined object characteristics, such as texture, color, or shape.

Over the last 15 years, machine learning has emerged as a key component in many
image processing applications and a major ingredient in related research fields such
as computer vision, pattern recognition and computational neuroinformatics. Machine
learning methods are used to estimate parameters of a given model from the available
data that would have been set manually otherwise. Learning from examples in a su-
pervised fashion has proven to be a fruitful methodology to improve the reliability and
accuracy of image segmentation in various data domains. However, reliable automated
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segmentation techniques are still restricted to specific data sets, whereas generic ap-
proaches lack the desirable accuracy. Similar statements apply also with respect to
object discrimination.

We focus on supervised image analysis techniques that can be adapted to new with
little effort expended by the user. As a first step, segmentation is certainly one of the
most crucial tasks. The quality of further analysis is highly dependent on the accuracy
and relevance of the segmentation results. Fully automated techniques can usually han-
dle limited variability in data appearance, while generic approaches attempt to facilitate
any kind of image data, which is still an unsolved problem. In addition, the identifi-
cation of different types of objects is of vital importance for many problems. Hence
the generic formulation of segmentation and classification in a unified manner can help
address many standard problems in the field of biomedical imaging.

On a practical level, the goal is to provide a software tool for interactive exploration
and segmentation of image data covering a wide range of biomedical and industrial use
cases that do not require higher-level semantic image understanding. Fast algorithms
and efficient implementation, together with a convenient interface, are the basic ingre-
dients of the supervised classification procedure. Offering effective classifiers, feature
selection and the support of up to four-dimensional multi-spectral data comprise the ma-
jor focus of this work. The user is able to label objects of interest via an intuitive graphi-
cal user interface. The restriction to two classes is removed (foreground and background
as often imposed in other approaches) and allow for any number of classes, as required
by the task at hand. The classifications and segmentations are based on a large number
of features, which are computed for every pixel’s neighborhood. These features include
filter bank responses, differential properties and statistical measurements, thus encoding
the appearance of each pixel’s neighborhood on different scales. Given the features and
the user’s labels, a classifier is trained in a batch or incremental fashion. Here, the focus
lies on the random forest classifier. The class probabilities computed by the classifier
are then used to segment the image.

The proposed framework has been successfully applied to various biomedical and
industrial standard applications. The graphical user interface was initially implemented
in Matlab1 using the underlying algorithms written in C++ [62]. Matlab – as a rapid
prototyping language for scientific calculations – is rather limited in its handling of
more advanced graphical effects (e. g. transparent overlays, 3D) and multiple threads,
both of which are indispensable for concurrent processing. Hence, this prototype was
ported and extended to Python/Qt, still interfacing the C++ algorithms. Python was
chosen due to its excellent support of various libraries (e. g. boost, OpenMPI, HDF5,
Qt, etc.) and its elaborate object model, enabling us to benefit from both worlds: rapid

1Convenient Learning and Segmentation Interface for Matlab: http://hci.iwr.

uni-heidelberg.de/people/csommer/clasi/
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development cycles and fast executions times.
The applications described within this thesis range from cell classification with con-

current segmentation to the tracing of fine copper wire structures in an industrial context.
Many interesting data sets and questions arising in life sciences have been successfully
addressed and give witness the performance of the proposed approach. A brief overview
of the applications processed with this framework follows:

• Cell classification is a frequent task in micro biological experiments. A standard
approach is to segment cell nuclei first (which is usually an easier task, due to
good separation of the nuclei) in order to have a good starting point for analyz-
ing cell morphology. The features computed from whole cells (area, eccentricity,
mean gray value, etc) serve as the input for the final classification step. For var-
ious phenotypes of cells the tasks can be accomplished in a more direct manner.
Often the local appearance and structure of cells convey important aspects of their
phenotype. Thus the problem can be tackled in a direct low-level manner by pro-
viding discriminant features of pixel’s neighborhoods to an effective classification
system. An appropriate standard segmentation method used on top of the classi-
fication stage then yields the required readouts, such as counts of cells with their
corresponding type.

• To emphasize the transferability of the classification-based approach, a segmenta-
tion problem focusing on fine elongate structures is presented. The blood vessels
in the retina of mammal eyes provide ophthalmologists with information about
the health of the eye. The approach fares well when compared to other state-of-
the-art methods on this problem, while maintaining good computational perfor-
mance. Another example from ophthalmic medicine depicts the inherent support
of multi-class problems. The discrimination of cellular layers from a cross section
of the retina is performed in exactly the same way and is able to distinguish five
different cell layers reliably without incorporation of prior domain knowledge.

• The studies on adult neurogenesis have become important precursors for a better
understanding of the mammal brain. Hundreds of volumes of data that came from
cross sections of mice brains were analyzed2 in this work to monitor the state of
newly originated stem cells. The suggested framework was applied to various
fluorescent channels in order to quantify the state and maturity of the neurons’
development process. Especially valuable in this application is the fact that the
approach is easily adaptable to three-dimensional volume data.

• Tumor-stroma interaction and blood vessel densities are important factors for tu-

2In collaboration with Jörg Greis [40] and the Ana Martin-Villalba Laboratory (DKFZ) within the SB-
Cancer Project as part of the Helmholtz Initiative for Systems Biology
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mor growth. The method was applied to segment tumor and stroma tissues3,
which is the basis of estimating blood vessel densities. In this case, the classi-
fication was not applicable to the regions (tissues) themselves (due to the lack
of significant local evidence for either tissue type), but to the border separating
the tissues. A customized segmentation method had to be developed to trace this
learned border.

• High-throughput RNAi screens help reveal genetic factors for the pathways in-
volved in virus infection. In this thesis, the image processing routines and the
subjacent data-flow pipeline were developed to analyze millions of images in a
few days4. The fully automated analysis requires effective quality control meth-
ods in order to ensure its reliability.

• To that end, the main approach is adapted to play the role of image quality control.
Multi-class learning is replaced by one-class learning, the class of clean images.
A classifier is trained on a sufficient number of images that do not exhibit artifacts.
After training, the classifier can detect unexpected artifacts like dust, pollution or
hairs in unseen images. Subsequent tasks performed on the processed data set,
clearly benefit from the exclusion of such artifacts.

• As a further demonstration of the versatility of the approach, a industrial problem
is presented that is concerned with obtaining a segmentation of thin copper wires
spread on printing tags. A set of selected features were identified to feed the
classifier, together with user annotations. The resulting probability map of the
two-class problem then served the input to skeletonization algorithm to construct
a continuous one-pixel line for each wire segment found in the printing tag.

Global features based on frequency analysis served as a predictor for the estimation
of the error state for the process control of the sheet-feeder in printing machines. In
this collaboration with a printing machine manufacturer, a novel technique has been
developed that classifies image frames from video sequence data from inside the feeder
into normal or error states. Sequences were also acquired under variation of important
control parameters. These were used to train an online state visualizer, which could then
be implemented into a press to aid the machine operator in adjusting feeder parameters.

3In collaboration with Stephan Kassemeyer [53] and the Margareta Müller Laboratory (DKFZ) within
the SBCancer Project as part of the Helmholtz Initiative for Systems Biology

4Part of the RNAi screening facility in BioQuant. In collaboration with Kathleen Börner, Maik
Lehmann, Julian Kunkel, Lars Kaderali and Hans-Georg Kräusslich. [15]
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1.1. Related Work

Several interactive learning methods, with numerous applications and objectives, have
already been proposed in literature. The most prominent approach of the last few years
was the work of Boykov and Jolly [10], which was extended by Rother et al. to the
famous GrabCut [89] framework. Their approach is based on basic and fast learning
procedures that use the pixel’s color distribution. Histograms or fitted Gaussian mix-
ture models with rather few components are used as representations of the foreground
and background model. Because these are iterated procedures, the algorithm begins
with a few initial user labels (often called seeds) and then gradually refines the color
space representation. In order to achieve this, new labels are generated from a graph

cut [39, 11] segmentation. Graph cut is an efficient (polynomial time) algorithm and a
globally optimal method for computing the solution for a submodular energy [61] func-
tional (typically living on a lattice graph) and is one optimization strategy for MRF-like
problems [61]. An inherent property of graph cut is the restriction that it is only guar-
anteed to find the globally optimal solution in binary segmentation problems. However,
approximative methods exist in which the problem with multi-valued variables is re-
duced to a sequence of graph cut subproblems with binary variables [11]. Despite these
restrictions, GrabCut is a highly suitable and efficient interactive technique for segment-
ing color images into a binary partition.

Other, similar approaches have been proposed: Simple Interactive Object Extraction
(SIOX) [30] is based on clustering and morphological post-processing. The idea of
formulating the graph cut problem on precomputed super-pixels was adapted, which
speeds up processing time immensely (Lazy Snapping [69]), but it can also be negatively
affected by under segmentation of the super pixels. Because they utilize simple pixel
descriptors in the underlying color space, methods based on interactive graph cut may
fail when encountering textured or highly cluttered images. Han et al.’s work proposed,
[43] the integration of multi-scale structure tensor into the GrabCut framework. The
authors showed that this step can overcome the restriction of a pure color representation,
although it is still bound to single specific descriptors.

In contrast, the approach followed in this thesis can inherently cope with arbitrary
input domains, including multi-spectral data. It is not sensitive to feature scaling, such
as the Gaussian mixture model and enables multi-class segmentation in a unified way.
A very recent publication follows a very similar idea. In their work, Santner et al. [93]
proposed the use of random forest classification, together with Histograms of Oriented

Gradients (HOGs) [23] computed as pixel descriptors for color images in several ori-
entations and scales. Their method, which used a supervised approach, is in general
not restricted to those types of features and possibly could include arbitrary feature
sets. They also made use of a Total Variational regularization approach to computing
the final segmentation. Total variational methods in general aim to optimize a convex
energy functional, comprising a point-wise data term and regularizer, which penalizes
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non-smooth solutions by means of total variation. Although promising results were pre-
sented, it is not obvious how this idea could be extended to multi-class segmentation
problems.

A major component of the framework is the incorporation of effective classifiers. The
random forest classifier (see Section 2.3.3) has been shown to be suitable for interactive
learning. In several other domains related to image processing, random forest was also
successfully applied. In the work of Bosch et al. [9] random forest was used for image
categorization by learning a bag of visual words together with the spatial pyramid rep-
resentation [65]. Random forest was extended to clustering in [79] in order to learn a
visual codebook for object recognition. A tracking application presented in [68] relies
on random forest classification for fast key point detection. In addition, random forests
were combined with Hough voting in [33] in application to pedestrian recognition. In
[112], the authors emphasize the much faster training and prediction times of random
forests as compared to traditional classifiers. Recent examples of specific 3D image
segmentation where random forest are used can for instance be found in [67, 3].

The authors in [5] describe a related method to the one proposed here. They also
employ local features, classifiers and feature selection for adaptive binary segmentation.
A pruned decision tree is applied to classify the data samples. For each predefined scale
a tree was evaluated separately, thus restricting the approach to objects present at a single
scale. Under typical conditions the training and prediction time of random forests are
near real-time, whereas the results reported in [5] took several minutes. This was due to
the employed forward selection [44] scheme and various parameter tunings during the
classification process.

Interactive segmentation tools exist for a wide range of target groups and fields of
application. In the area of digital photography, an important task is extracting a fore-
ground object from the background. The standard tool set supported in almost all stan-
dard software comprises the magic wand and the intelligent scissors tool. The magic
wand selects color values and groups unmarked pixels that are similar to the selected
ones. Intelligent scissors [80] (also called magnetic scissors) is a boundary oriented
path tool to aid the user in contouring the object of interest, letting the selection snap to
image edges in a data-adaptive manner. The previously mentioned approaches, such as
SIOX and GrabCut, also made their way into image editing related software. SIOX, for
example, is integrated into GIMP (GNU Image Manipulation Program), while the latter
will be part of MS Office 20105.

Of particular interest to life sciences are tools that interactively segment microscopic
or MRF images. Tools such as ITK-Snap [114], Fiji [110] (image processing package
based on ImageJ) or Seg3D [83] offer 3D visualization in combination with manual and
(semi-)automatic thresholding. These tools, which provide a convenient user interface,

5for more information see http://blogs.technet.com/office2010/archive/2009/

11/30/more-about-background-removal-in-office-2010.aspx
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are used to examine and condition single data items. Basic image processing techniques
such as user initialized snakes [52] are integrated into ITK-Snap, for example. Commer-
cial software, such as Amira [37], offers comfortable interfaces to basic semi-automatic
segmentation techniques with integrated real time 3D rendering.

In contrast to the interactive learning tool developed as part of this thesis, these tools
are not explicitly designed to process unseen data. The incorporation of more expressive
feature sets is vital for various applications beyond color image foreground extraction.
The developed methodology is able to cope with multi-classes and multi-objects in a
unified manner and can be customized for application-specific demands as needed. The
combination of discriminative local features, together with effective classifiers, is also
applicable to a wide range of standard settings in life sciences and industrial image
processing. The interactive tool demonstrates excellent run-time performance of the
underlying algorithms. Thus the concepts described in this thesis may be helpful in
lessening the gap between image analysis research and real-world applications in other
research domains.

Since several applications are presented in this thesis, the related work is reviewed
separately in the corresponding sections of the application description.

1.2. A Guide to this Thesis

This thesis starts by providing a brief overview of the theory behind several tools that
were used in this work: Feature extraction, dimension reduction, supervised classifiers
and evaluation methods (Chapter 2). In the next part, the framework for learning the
segmentation from user labels is introduced along with details regarding the developed
software tool. Chapter 4 provides details on applications for data arising in adult neuro-
genesis and explains both the biological background and the customized quantification
procedure. The evaluation of achieved results is also discussed. The quantification
of blood-vessels in tumor-stroma tissues is described in Chapter 5. Also the globally
optimal shortest path algorithm applied is depicted in more detail there. The devel-
oped image processing pipeline in the context of high-throughput RNIi screening and
its application to two large assays can be found in Chapter 6. Details on the technical
implementation on the ViroQuant RNAi platform are also described. Image quality con-
trol, which is a relevant part of the pipeline, is introduced in that chapter and the results
are also described. Chapter 7 reviews an industrial image segmentation task and depicts
the solution achieved using the classification-based approach; results are compared to
the standard method. The work on process control for sheet feeders in offset printing
machines can be found in Chapter 8.

In Chapter 9 the thesis is summarized and conclusions are drawn about the presented
work. A outlook is given in 10. In addition, each application chapter contains separate
introduction, conclusion and outlook sections since applications and their various issues
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differ widely in the embedding research context.
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2. Basics

In this chapter, the basic methods and algorithms involved are described. Typically, a
recognition system comprises several steps. The feature extraction maps the raw data
samples into a (usually) high-dimensional features space in order to characterize rele-
vant aspects of the data. Afterwards, an optional step is to compact the information –
now contained in the feature representation – via dimension reduction. Classification
yields the desired mapping: from features of data samples to their corresponding class
membership.

2.1. Feature Extraction

To achieve a successful classification it is crucial to compute a sufficiently discrimina-
tive feature vector for each data point. Because this thesis, deals with multi-dimension
data, data points are pixels or voxels x ∈ V , where V is a two-dimensional or volumet-
ric image. Mere processing of individual image elements (pixel or voxels) using point
operations does not provide information about spatial relations present in local neigh-
borhood. Hence, features are computed using neighborhood operations that are able to
capture such local structures, intensity values and textures. A neighborhood around x

consists of a discrete set of image elements within a small sub window centered at x.
Typically, such features are nonlinear filters comprising morphological spectra, in par-
ticular opening- and closing operations, rank-order filters, non-linear transformations
and eigenvalues of structure tensors and a Hessian matrix. In the following, a brief
description of the features that were employed in this work is presented. For a more
thorough presentation, the reader is referred to Jähne [47].
For each voxel x, the feature vector f(x) of length P comprises the filter response
f(x) = [f1(x), . . . , fP (x)]. The filters fi are:

• Eigenvalues of the structure tensor: A spatial neighborhood representation that
can distinguish between constant values and an isotropic orientation distribution
is the squared scalar product (∇gTn)2 between the neighborhood gradient vector
∇g(x) and the unit vector n, which denotes the direction of local orientation.
Thus, to determine the local orientation within a neighborhood that is described
by a window function w the convolution

∫

w(x− x
′)(∇gT n)2dx′
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has to be maximized. This corresponds to n
T
J n with the structure tensor J that

contains the components:

Jpq(x) =

∫

w(x− x
′)

(

∂g(x′))

∂x′
p

∂g(x′))

∂x′
q

)

dx′

The tensor is symmetric and characterizes orientation and coherence of local
structures as described in Jähne [47]. Implementation consists of a pixel wise
multiplication of the convolutions of the image with each discrete partial deriva-
tive operator and a subsequent smoothing using a Gaussian filter.

• Eigenvalues of the Hessian matrix: All combinations of second-order partial
derivatives form the Hessian matrix:

H =







∂2

∂x2
∂2

∂xy
∂2

∂xz
∂2

∂xy
∂2

∂y2
∂2

∂yz
∂2

∂xz
∂2

∂yz
∂2

∂z2







As in the case of the structure tensor, the eigenvalues of the Hessian matrix yield
information about local properties. Second-order derivatives relate to the local
curvature.

The eigenvalues of the aforementioned matrices are rotationally invariant. In or-
der to be able to account for oriented structures, the raw entries of the symmetric
matrices are maintained. For example the local orientation vector o in a two-
dimensional image can be determined by using only the entries of the structure
tensor:

o =

[

J22 − J11

2J12

]

Note that, only additions and constant multiplications are necessary in this case.

• Higher order moments of local neighborhood: The first few moments have an
intuitive interpretation: The second order moment equals the variance, the third
and fourth moments define the skewness and kurtosis. The nth-order moment
about the mean is given by

µn =
n

∑

i=0

(

n

1

)

(−m)n−iµ′
i,

where the mean m of the local neighborhood is implemented by convolving the
image with an averaging mask, and the moment about the origin µ′

i is computed by
convolving the image raised to the power of i with the averaging mask. Moments
up to order four are included in the feature vector.
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• Local entropy and range: The entropy quantifies the information contained in
the neighborhood in the sense of an expected value and can be used to characterize
the texture. It is defined as

−1
∑

i

pi log2 pi,

where p is a vector containing the normalized histogram counts of the local neigh-
borhood. Moreover, the difference between the maximum- and the minimum
value in the neighborhood are computed.

• Morphological opening and closing: The results of morphological opening- and
closing operations [47] with differently sized structure elements can be computed
as well, yielding a morphological spectrum [63].

• Rank-order filter: Another class of operations is defined by rank-order filters.
These filters map a discrete set of voxels onto themselves by sorting and compar-
ing the intensity values of neighboring voxels. Famous examples are the median-,
maximum- and minimum filters, but any percentile of the population can be taken
for separation (i.e. the lower and upper quantiles).

Supplementary to the above-mentioned features, some basic operations, such as the
convolution with an averaging or Gaussian mask and the gradient magnitudes, are com-
puted as additional features. Of course these features depend on the size of the neigh-
borhood, which can also be varied. In most cases, a Gaussian mask that corresponds to
a weighted window function is taken in the convolution. Naturally, an optimal size of
the bandwidth used depends to a certain degree on the size and shape of the object of
interest. If now prior knowledge about the objects’ size is available, these features are
computed on multiple scales. Hence, the choice of the appropriate scale is left up to the
classifier.

2.2. Dimension Reduction

All classifiers inevitably suffer from the curse of dimensionality [44]. In short, the lim-
ited amount of data samples one cannot sufficiently populate high-dimensional spaces.
The volume of the space grows exponentially with the dimension. However, the amount
of data is doomed to limited over time. Therefore various methods have been proposed
in literature to effectively reduce the dimensionality of the input space for machine
learning methods. A reduction can be achieved by two basic approaches. Feature selec-
tion (see Section 2.3.3) aims to reduce dimensionality be selecting important variables,
leaving the data unchanged. Methods related to data compression intend to transform
the data in such a way so that redundancy is minimized. A prominent example of the
latter approach is principal component analysis.
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2.2.1. Principal Component Analysis

Principal component analysis (PCA) can be defined as the orthogonal projection of the
data onto a lower dimensional space, called the principal subspace [7]. The projection
is done by finding a rotated orthogonal coordinate system, such that the variance of the
data is maximized. The principal subspace is spanned by the ordered principal compo-
nents, which gradually account for as much variance of the data as possible. The first
component corresponds to the maximal variance, while the last principal components
can be discarded without much loss of information. This fact makes PCA a widely used
dimension-reduction technique in explorative data analysis [103].

The computation of the principal components of a given n×m data matrix X involve
the following steps:

1. Subtract the sample mean of the data such that E(X) = 0

2. Find the eigenvectors and their corresponding eigenvalues of the covariance ma-
trix of C = X

T
X

3. Rearrange the eigenvectors by sorting them according to their descending eigen-
values

4. Select a subset of the of the eigenvectors Wq by choosing the first q sorted eigen-
vectors, corresponding to the q largest eigenvalues

5. Project the data points onto the new basis by Y = W
T
X

For a derivation of this algorithm, the reader is referred to [7]. One major drawback
of PCA is that it is an unsupervised procedure, since it makes no use of the class la-
bel of the data points. This fact can negatively affect classification performance when
the variance of the labels does not coincide with the variance of the data. Supervised
methods for decorrelation, such as partial least squares (PLS) overcome this problem
by incorporating the label information.

The data normalization technique called Whitening is very similar to PCA. It also
finds an optimal coordinate transformation, but without projecting on a principal sub-
space.

2.3. Supervised Learning Methods

In machine learning, supervised learning refers to the process of deducing a function
from labeled training data. Supervised learning methods are input as a pair, consisting of
a data sample and its corresponding class label. The learned function (classifiers) is then
able to infer the class of new unseen data points autonomously. Important characteristics
of classifiers is their bias and variance.
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Variance refers to the stability of the prediction made by the classifier. It requires
large values if different training sets (drawn from the same underling distribution) also
result in different classification decisions. Variance is low if a particular realization
of training data only has a minor effect on the classifiers. In short, the variance of a
classifier characterizes its inconsistency and does not indicate whether its decisions are
correct or incorrect.

The bias of a classifier describes the flexibility of its subjacent model. The lower
the bias, the more expressive is the classifier in terms of complex decision making.
Together with high variance, a low bias typically leads to overfitting to training data.
Classifiers with a high bias reveal a more rigid behavior and are “biased” by the imposed
restrictions from the model (e. g. decision function must be linear).

A good classifications system is a system that has found the best trade-off between
bias and variance in terms of generalization ability: i.e. true accuracy achieved on
unseen data. Bias and variance are not utterly disjunctive and the values are interlinked
for each particular classifier. For many classifiers, tuning parameters that to some extent
control the amount of bias with regard to variance do exist. In the following the most
important classification methodologies used in this thesis are explained.

2.3.1. Bootstrap Aggregation

Bootstrapping is commonly used to assess the accuracy of a classifier or parameter
setting (see Section 2.4). A bootstrap sample B of data points x1, . . .xn refers to the
process of drawing n-times a sample with replacement. The probability that a data point
xj is in the bootstrap sample B is given by:

P (x ∈ B) = 1−
(

1− 1

n

)n

≈ 0.632, for a reasonably large n

Hence, a bootstrap sample contains about 63% of the data items (some are drawn multi-
ple times). The main idea behind bootstrap aggregation or bagging is to train a classifier
multiple times on each new bootstrap sample and to average the outputs obtained after-
wards. Especially for high-variance and low-bias classifiers, bagging works well [44].
If the individual classifiers based on the bootstrap sample are generated independently,
averaging results leaves the bias unchanged while drastically reducing the ensemble
variance.

An ideal candidate for bagging are unpruned decision trees (see Section 2.3.2). Since
they are able to capture complex decision boundaries, fully grown trees have a relatively
low bias. On the other hand, trees can greatly profit from variance reduction due to their
inherently instable nature.
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2.3.2. Classification and Regression Trees

A widely used technique to partition the feature space into hyper rectangles is called
decision trees. A famous representative among different variants are Classification and

Regression Trees (CARTs) introduced by Breiman [13]. In Figure 2.1, the partition of
a two-dimensional feature space is illustrated. This partition is generated by a binary
tree, where each node corresponds to a decision, or a partition, in the feature space. For
instance the root node of the tree in Figure 2.1 divides the whole feature space according
to whether x1 ≥ Θ1 or x1 < Θ1. This process is recursively applied to all daughter
nodes. Each leaf node of the tree then corresponds to a particular hyper rectangle that
is localized in the feature space. The set of Θ1, . . . ,Θ4 and their corresponding feature
axis (variable) are the parameters of the decision tree model. A new observation from
the feature space can be mapped to a partition by simple traversing down a path in the
tree following each node’s decision. In each leaf node, which corresponds to a region in
the feature space, a separate model is applied to predict the target value. In classification
this refers to the assignment of a leaf partition to a specific class.

Fig. 2.1.: Illustration of the feature space partitioning with classification and regression
trees (CARTs). Picture taken from [7]

Learning a decision tree consists of determining the trees’ structure from training
examples. The variables involved in splitting and their thresholds were assigned for
each node. Finding the optimal tree structure that comprises all combinations of choices
for variables and their corresponding thresholds is generally infeasible due to the large
number of possible solutions. Thus, a greedy optimization scheme is applied for the tree
construction. Starting at the root node, optimal split criteria are computed recursively.
In each node all variables m are examined. The best split threshold Θ – corresponding
to an impurity measure Qm – is computed separately. The variable that achieves the best
split according to the measure is selected. Different impurity measures were proposed
[13] to assess a node’s impurity Qm, including:
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• Gini index:
K
∑

k=1

pmk(1− pmk)

• Cross-entropy: −
K
∑

k=1

pmk log pmk,

where K is the number of classes and pmk is the fraction of training samples in node
m having class k. In this thesis the Gini index is used. In general the cross-entropy
criterion achieves very similar results [87].

The generation of the decision tree is stopped when all leaf nodes are pure (or pu-
rity is smaller than a predefined constant), i.e. only samples from one class fall into to
the corresponding hyper rectangle. However, a large tree where all leaf nodes are pure
might overfit the data, hence pruning strategies have been proposed to prune the tree
in a bottom-up manner. In the following, decision trees are used in the context of ran-
dom forests, where each single tree is fully grown. Therefore, a description of pruning
strategies [44] is of minor relevance and has been omitted.

2.3.3. Random Forests

Random forest is a procedure that grows an ensemble of decision trees and collects
their votes for the most popular class, injecting several moments of randomness along
the way. Random forests were introduced in Breiman [14]. Tree-based classifiers par-
tition the feature space into a set of hyper rectangles. In particular, classification and
regression trees, called CARTs [13], use a recursive binary splitting. These tree-based
methods and the determination of the best split point for a feature variable are described
in Hastie et al. [44, 7].

Training the classifier defines the decision boundary within this feature space. Each
new sample can be classified according to its position relative to the decision boundary.
Since the classifier used is an ensemble of single decision tree classifiers, the classifi-
cation step yields a probability map P(x) of the same size as the data volume for each
given class, which equals the arithmetic mean of the outcomes of the NT single base-
classifiers Ti where i = 1, . . . , NT . The probability of sample x for class c is then
computed by:

Pc(x) =
1

NT

NT
∑

i=1

I(Ti(x) = c)

where I(·) is the indicator function.
Random forests have been demonstrated to have excellent performance in [14], run

efficiently and quickly on large data sets, and are able to handle high numbers of input
variables. There are two main input parameters to be set: The number of trees NT to
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grow and the number of variables that is chosen randomly at each node split. Following
the observations of Breiman [14], the implementation used here sets the second param-
eter to

√
NT . The default value for the number of trees is set to NT = 100. The Vigra1

implementation of random forests is used. Note that, the higher number of trees does
not necessarily imply overfitting. The number of trees used here is a trade-off between
run time and classification accuracy. The random forest algorithm is summarized in
Algorithm 1.

The random forest classifier has been shown superior performance as compared to
standard boosting techniques such as AdaBoost [44] and achieves comparable results to
support vector machines depending on the application [101, 88]. Since random forests
are easy to train and no hyper parameter has to be tuned, they are a reasonable choice
for interactive learning.

Algorithm 1 Random Forest for classification

Set NT : the number of trees
Let n be the total number of samples
Let p be the total number of variables
for i = 1 to Nt do

Draw a bootstrap sample Bi from the training data
repeat

Grow a decision tree Ti on the training data in Bi recursively by:
Selecting mtry < p variables randomly
Computing the best split among the mtry variables according to the split criterion

Splitting the node and propagate the examples
until All terminal nodes are pure

end for

To predict a the probability of a new point xj having class c compute:

1

NT

NT
∑

i=1

I(Ti(xj) = c)

where I(·) is the indicator function.

1The Vigra Computer Vision Library
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Variable Importance

Not all features of the generic feature set contain enough predictive information to jus-
tify their calculation. A huge amount of memory and computation time can be saved
when we restrict the feature set to those features that are essential for the classification.

The out-of-bag samples can be used to estimate the variable importance, which mea-
sures the role of a feature dimension in discriminating the classes. The estimation can
be performed during the training of the classifier and introduces very little additional
computational cost. This is done by evaluating the prediction accuracy of the out-of-
bag cases, permuting the values of a variable m, the importance of which should be
measured, and reevaluating the prediction accuracy with the disturbed values. Under
the assumption that a variable is not important if disturbing it does not increase the
misclassification rate, the difference gives an importance score for the variable: Sub-
tract the number of votes for the correct class in the permuted out-of-bag data from the
number of votes for the correct class in the untouched out-of-bag data. The average
of this number over all trees in the forest is the raw importance score for variable m.
The described estimation is called permutation importance, because the disturbance of
variables is carried out by randomly permuting all out-of-bag cases.

There is another way to quickly assess variable importance: Every time a split of a
node is made on variable xi, the Gini impurity criterion (see decision trees in Section
2.3.2) for the two descendant nodes is less than the parent node. Averaging the amount
of Gini decrease for each individual variable over all trees in the forest gives a fast
variable importance, because a high decrease of the impurity implies high predictive
information. Very often results are consistent with the permutation importance measure
[14].

2.3.4. Linear Support Vector Machines

Given the training data as a set of features and assigned class labels:

D = {(xi, ci)|xi ∈ R
p, ci ∈ {−1, 1}} for i = 1, . . . , n (2.3.1)

where the label ci indicates the class error or normal to which the example belongs.
Each x is a p-dimensional feature vector extracted from the original frame. The aim is
to find the maximum-margin hyperplane that separates the points that have ci = 1 from
those that have ci = −1. A hyperplane can be written as the set of points x satisfying:

〈w,x〉 − b = 0 (2.3.2)

The vector w is a normal vector of the hyperplane. The parameter b
‖w‖

determines the
offset of the hyperplane from the origin along the normal vector w. Now, w and b
must be chosen so as to maximize the margin, that is the distance between the parallel
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hyperplanes. These hyperplanes must be as far apart as possible, while still being able to
distinguish between data points. These hyperplanes can be described by the equations:

〈w,x〉 − b = 1

〈w,x〉 − b = −1 (2.3.3)

Note that if the training data is linearly separable, two hyperplanes can be selected in
a way that there are no points between them and then try to maximize their distance.
Using geometry, we find that the distance between these two hyperplanes is 2

‖w‖
, thus

we want to minimize ‖w‖. In order to prevent data points from falling into the margin,
we add the following constraint:

ci(〈w,xi〉 − b) ≥ 1, for all 1, . . . , n (2.3.4)

Substituting ‖w‖ with 1

2
‖w‖2 leads to a quadratic optimization problem which can be

efficiently solved using Lagrange multipliers. The software package LIBSVM [19],
which we used for the experiments, implements the soft margin extension of support
vector machines. If the data is not linearly separable, the Soft Margin method chooses
a hyperplane that splits the examples as cleanly as possible, while still maximizing
the distance between the nearest cleanly split examples. The method introduces slack
variables, which assign a misclassification cost of the data items.

2.3.5. Kernel Trick

Linear support vector machines separate the data points with a linear decision function.
With the so called kernel trick, this procedure can be extended to non-linear classifica-
tion problems. A remarkable observation in the formulation of the linear support vector
machine is that the data samples xi appear only in scalar products of the form 〈xi,xj〉.
Therefore, it is possible to substitute the scalar product of the original input space with
〈Φ(xi),Φ(xj)〉, where Φ is a non-linear mapping of the input space to a higher dimen-
sional space. The use of positive definite kernel functions:

k(xi,xj) = 〈Φ(xi),Φ(xj)〉
which implicitly define a scalar product in the mapped space enables efficient computa-
tion. A typical choice for such a kernel function is the RBF-Kernel:

kσ(xi,xj) = exp

(

−‖xi,xj‖2
2σ2

)

The parameter σ controls the size of the Gaussian kernel and therefore the smoothness
of the decision boundary.
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2.4. Evaluation Methods

The generalization performance of a learning method, i.e. the predictive power of a
learned model on unseen data, is a matter of great concern. In this chapter the funda-
mental performance measures are discussed in brief.

2.4.1. Cross-Validation

Perhaps the most widely used method for estimation the prediction error is cross-val-
idation [44]. This method uses some parts of the data to train the classifier and other
parts for testing. In K-fold cross-validation, the data is split up into K (roughly equally
sized) chunks. Each of the K parts is chosen once as test data while the classifier
is taught on the remaining K − 1 parts (training data). This results in K prediction
estimates, which are then averaged. Overall, using ten folds (K = 10) is well accepted
choice in literature [44]. In stratified K-fold cross-validation, the folds are selected so
that each fold contains roughly the same proportion of classes. This is in particular
important for highly unbalanced data.

When the number of folds is equal to the number of data points (K = n), K-fold
cross-validation is called leave-one-out cross-validation.

When dealing with sets of images or volumes, the so called leave-one-image-out

cross-validation is applied, where performance is assessed on each image while training
on the remaining ones.

2.4.2. Receiver Operator Characteristics Curve

To assess the classifier performance regarding which type of errors are made, the confu-
sion matrix (see Table 2.1) is widely used. From this representation it is easy to calculate
the accuracy of a classifier by:

accuracy =
TP + TN

TP + TN + FP + FN

For unbalanced data the accuracy is not an appropriate measure, since the classifier
could achieve a high accuracy simply by predicting the majority class for each and
every data sample. Other measures can aid the evaluation of classifiers by looking at the
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false positive and false negative rates:

TP rate (recall) =
TP

TP + FN

FP rate =
FP

FP + TP

FN rate =
FN

FN + TN

If the classifier outputs a probability value, the trade-off between recall and the false
positive rate can be visualized by the receiver operator characteristics (ROC), see [29]
for an introduction. There, the false positive rate is plotted against the recall for varying
output thresholds. The best possible prediction method yields a point in the upper left
corner of the ROC space, accounting for a full recall with no false alarms. A classifier
that assigns class labels randomly would result in a diagonal line. The area under curve
Ac is a popular single-valued measure to compare classifiers.

Prediction/Truth positive negative
positive TP FP
negative FN TN

Table 2.1.: Confusion matrix
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3. The Interactive Framework and

its Properties

3.1. General Framework

The great variety of biological and medical imagery gives rise to problem-specific al-
gorithm design. As a first step, segmentation (the partitioning of a digital image into
multiple regions) is certainly one of the most crucial tasks. The quality of further analy-
sis is highly dependent on the accuracy and relevance of the segmentation results. Fully
automated techniques can usually handle limited variability in data appearance, while
generic approaches attempt to facilitate any kind of image data, which is still an un-
solved problem. Semi-automatic segmentation techniques do not commit to a particular
type of image and try to incorporate the genericity property by allowing user interaction.

Additionally, the identification of the different types of objects is of vital importance
for many problems. Hence, the generic formulation of segmentation and classification
in a unified manner can help address many important standard problems in the field of
biomedical imaging.

Similarly, a biomedical expert is enabled to label objects of interest. There are in
general no restrictions to the number of object classes; this choice depends solely on
the specific question posed to the image data. Given these labels provided by the ex-
pert, supervised learning is used to train a classifier. To that end, a set of generic image
features is computed that are able to capture diverse, local image characteristics. This
ensures the transferability of our approach to a variety of applications in biomedical
image analysis. To demonstrate the performance of the proposed methodology, experi-
mental results on two biomedical problems are presented. Yet, neither problem-specific
preprocessing nor special-purpose features are needed to achieve reliable results.
The contributions of this work are the following:

• The use of generic image features which are not dedicated to a specific problem.
The features are designed to represent diverse, local image characteristics at dif-
ferent scales (see Section 3.1.1);

• Coping with a few user labels, which are inputted via a paint brush interface. Only
these partial user labels are used to train the system;
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• Supervised learning on a pixel-level with a state-of-the-art ensemble classifier
(random forest, see Section 2.3.3), which is able to address the multi-class prob-
lem without the need to optimize any hyper-parameters;

• Results and ROC analysis of our method on public biomedical data sets (illus-
trated in Section 3.3), that corroborates its performance and transferability with
other segmentation and classification tasks (see Section 3.4);

• The implementation of an easy-to-use tool that bundles all the processing steps in
a single piece of software (see Section 3.2 and Figure 3.1);

• The use of this framework to various applications in the field of life sciences and
industrial image processing (see Chapters 4-7).

It is important to note that the proposed method is limited by heavy overlap between
objects and cannot solve tasks that require a higher-level semantic understanding of
the image. However, it is a useful tool that facilitates further post-processing of more
difficult data.

The user can label regions of the input image as instances of meaningful objects (e.g.
background, object-type one, ...). Secondly, for each labeled pixel, a set of generic
features is computed. The pairs of user-provided label and computed features for each
pixel are then used to train a classifier in a supervised fashion. In the prediction step,
the classifier assigns a soft label to every pixel in the image between 0 and 1. This label
stands for the probability of the pixel being of either object class. The resulting image
of soft-labeled pixels is called a probability map. The final segmentation operation is
performed on the probability map rather than on the original image. It is important to
emphasize that there is no hard assignment of user labels.

The combination of discriminative local features and effective classifiers is also ap-
plicable to a wide range of standard settings in life sciences and industrial image pro-
cessing. The interactive tool demonstrates the excellent run-time performance of the
underlying algorithms. Thus the concepts described in this thesis were deployed to
collaboration partners in bundled software. Hence, a variety of applications could be
assessed as described in Chapters 4-7.

3.1.1. Image Features

In addition to the original pixel gray values of the image, the following list of generic
image descriptors at two different scales were used:

1 Morphological closing

2 Morphological opening

3 Local entropy
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4 Local range

5 Gradient magnitude

6 Gaussian filter

7-8 Sorted eigenvalues of Hessian

9-12 Local moments up to the 4th order

13-14 Sorted eigenvalues of the structure tensor

For the an explanation of these features the reader is referred to Section 2.1. In Figure
7.3 several feature responses are displayed. In our experiments the above features were
computed using two neighborhood sizes of 5x5 and 11x11, resulting in 29 feature per
pixel. This feature set compromises statistical measures, linear and non-linear filter
responses. It is able to express diverse local image characteristics depending on the
choice of the fixed scales. In contrast to the work [5] the subsequent classification is not
restricted to one particular scale.

3.1.2. Categorization of Features

In the interactive learning interface, the user can choose between different previously
defined feature sets. Features accounting for a specific type of structure are grouped
together:

• Color and intensity consists of the raw intensity value of the smoothed image
with a Gaussian.

• Edge is defined by including edge indicator functions such as the eigenvalues
of the structure tensor, eigenvalues of the Hessian matrix, gradient magnitude,
difference of Gaussians and local range.

• Texture comprises the structure tensor, Hessian matrix (and its eigenvalues), mor-
phological operations, entropy, higher order moments and local quantiles.

All these groups can be selected on five scales, with a total of 15 different choices.
The user is free to combine these selections in order to generate an appropriate feature
set for the problem at hand.

3.1.3. Pixel-Wise Classification

As mentioned before, classification is performed using the random forest classifier in-
troduced by Breiman [14] (see Section 2.3.3). Random forests consist of many decision
trees. The individual trees are not pruned in the training phase and are built under ran-
dom influence. During prediction each tree classifies the new example. The ratio of
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these votes is interpreted as a posterior probability and provides the basis of the seg-
mentation step. The ability of the random forest to capture highly non-linear decision
boundaries in feature space is a major prerequisite for the application to general set of
use cases. For our experiments, a random forest of NT = 100 decision trees is trained.

3.1.4. Feature Selection

Feature selection refers to the process of selecting a subset of relevant features from
entire set. Indeed, feature selection reduces the dimensionality of the classification
problem, thus reducing the negative effects of high-dimensional problems. In partic-
ular, for applications (e.g. dealing with multi-spectral data) in which each variable has
an associate interpretation the detection of informative features can facilitate the imag-
ing procedure. For the two data sets evaluated in this Chapter feature selection is not
applied. An application, where feature selection is successfully used together with this
framework, can be found in in Chapter 5.

3.1.5. Application-Dependent Quantification

Different segmentation problems require also different outputs. In cell segmentation,
for example, one is interested in reliable and accurate cell counts, whereas in other
domains pixel-precise tracing is required. The framework supports different types of
application-dependent post-processing. The seeded watershed transform operating on
probability maps, for instance, is used for cell segmentation. Locally dominant thresh-
olding (i.e. smoothing of the probability maps with an appropriate kernel before hard
class assignment) can also be applied in a multi-class sense. In Chapter 5 it is illustrated
how to combine globally optimal shortest path algorithms with the learning framework.

3.1.6. Interactive Classification

During labeling the user can enable the interactive mode. This means that the classifier
is updated each time the user inputs new labels; and current image is then predicted. The
results are transparently overlayed onto the raw image. This concept guides the user to
places of the image, where the classification is incorrect and enables the user to refine
the output by given new labels there. Shortly afterwards, the user will see the effect of
his/her refinement by the updated prediction overlay. The margin [14] of the output of
the classifier can also be displayed interactively. The margin relates to the uncertainty
of the prediction and yields high values near decision boundaries and in places of the
feature space, which have not been explored by labeling so far. Providing labels in
regions of high uncertainty accelerates the whole classification process by promoting
steep learning curves.
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The classifier update is achieved using a ring buffer that is implemented via a double-

ended priority queue. The buffer is filled with random forest classifiers comprising 10
decision trees. The capacity of the ring buffer is 10 resulting in an ensemble of 100 trees
once the buffer is full. As new classifiers arrive the oldest trees according to a priority
measure drop out the queue and are replaced. Currently the first in - first out principle
is used promoting the classifiers trained on the latest user labels. Each classifier is
trained in a new thread, thus exploiting the parallel computing capability of modern
multiprocessor computers.

3.2. The Graphical User Interface

The graphical user interface was initially implemented in Matlab using the underlying
algorithms written in C++ [62]. This rapid prototyping language is rather limited to
handle more advanced graphical effects (e. g. transparent overlays, 3D) and multiple
threads, which is indispensable for concurrent processing. Hence, this prototype was
ported and extended to Python/Qt; still interfacing the C++ algorithms. Python was
chosen due to its excellent support of various libraries (e. g. boost, OpenMPI, HDF5,
Qt, etc.) and its elaborate object model. The graphical user interface is shown in Fig-
ure 3.1 and a binary version compiled on the 9th of March 2010 can be downloaded at:
http://hci.iwr.uni-heidelberg.de/software.php. The initial Matlab
prototype is also available1. The user interface written in Qt is modularized using the
widget concept in order to provide reusable user interface units. Code was developed
simultaneously on windows 32-bit and linux 64-bit to ensure portability right from the
beginning. In order to interface to the Vigra C++ library appropriate bindings, docu-
mentation, unit tests and module layout were also developed2 and included in Vigra.

In the following, the graphical user interface guides the user and calls C++ (random
forest) routines and displays the results. In the tool the user can refine his/her labels after
seeing the segmentation result. In the experiments, however, the labels were not refined.
The labeling and feature computation were carried out on a conventional notebook.

3.3. Evaluation of the Framework

To evaluate the basic framework two data sets with available ground truth were selected.
In the former, the aim was to segment low-contrast blood vessels in retinal RGB images.
In the latter, the task was to segment cell nuclei in fluorescence images and to classify
their phenotype into mitotic or normal.

1at http://hci.iwr.uni-heidelberg.de/people/csommer/clasi/
2together with Ullrich Köthe, Nathan Hüsken
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(a) Labels are provided by the paint inter-
face. Classes and brush size are se-
lected in a context menu.

(b) Interactive mode: real-time predic-
tions are overlayed

Fig. 3.1.: The Ilastik GUI: Biomedical use case of the implemented user interface. Left:
A domain expert labels background, cell nuclei, cytoplasm and a phenotype
of interest (red label color). Right: After selecting color features and the
interactive classification, a real-time update of the current classifiers output
is overlayed. The interactively trained classifier can then be applied to more
images.

3.3.1. Retinal Imaging

A common procedure in the examination of the human eye is retinal imaging. An op-
tical camera is used to see through the pupil of the eye to the rear inner surface of the
eyeball. The recorded picture shows the optic nerve, fovea, surrounding vessels and the
retinal layer. The medical doctor can then reference this image in the analysis of any
observed findings. A still active research area is the segmentation and localization of
blood vessels in retinal images.

Here, our method is tested on the publicly available database STARE (Hoover et
al. 2000 [46]), which consists of 20 retinal images captured by a TopCon TRV-50
fundus camera at 35◦ FOV. The images were digitized to 700 x 605 pixels, eight bits
per color channel. Ten of the images contain pathology and the other ten are normal.
Two observers manually segmented all images. The first observer segmented 10.4%
of pixels as vessel, against 14.9% vessels for the second observer. The segmentations
of the two observers are fairly different in that the second observer segmented much
more of the thinner vessels than the first one. Performance is computed by taking the
segmentations of the first observer as ground truth. For the sake of comparability, the
evaluation procedure of Soares et al. [99] is adopted which includes leave-ine-image-out
cross-validation and ROC-curve analysis (see Section 3.4).
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(σ = 1), to reduce spurious noise pixels. The results were compared to the matched filter
results from Chaudhuri et al. [20], 2-D Gabor wavelets from Soares et al. [99], adaptive
local thresholding scheme from Jiang et al. [49] and the ridge-based segmentation pro-
posed by Staal et al. [100]. Performance was measured using ROC curves [29]. ROC
curves are plots of true positive rates versus false positive rates for varying thresholds
on posterior probabilities. The true positive rate is computed by dividing the number
of true positives by the total number of positive (vessel) pixels in the ground truth seg-
mentation, while the false positive rate is the ratio between the false positives and the
total number of non-vessel pixels in the ground truth. Also the areas Az under the ROC
curves and accuracies of the methods (see Figure 3.5) are presented. The closer the
ROC curve gets to the top left corner, the better the performance of the method, leading
to Az = 1, an area of which signifies perfect agreement with the ground truth.

Method Az Accuracy

Soares et al.a 0.9671 0.9480

Chaudhuri et al. 0.8987 −
Jiang et al. 0.9298 0.9009

Staal et al. 0.9641 0.9516

our results 0.9448 0.9593b

a(GMM k = 20)
bAt threshold level 0.455

Fig. 3.5.: ROC analysis results after leave-one-out cross-validation

3.4.2. Human HT29 Colon Cancer 1

The task of this data set is to segment and count the cell nuclei. Some of the cells
are mitotic and appear slightly brighter. In the original experiment a chemical mitosis
dye was used to detect mitotic cells. This data set is used to demonstrate the multi-
class ability of our approach. The background and the two different cell nuclei types
were marked by a user in about 5 minutes, resulting in 5.12% background and 0.37%
cell nuclei (normal and mitotic) coverage. Once again leave-one-out cross-validation
is performed. The probability maps from the supervised classification were fed into a
modified marker-based watershed transform [6]. Seeds for the three different classes are
generated by smoothing (σ = 1) and thresholding (t = 0.5) each probability map. The
actual watershed transform is computed on the gradient of the background probability.
In Figure 3.6 segmentation results for the two different cell phenotypes are shown.

The ground truth for this data set is the total cell count of two observers for each
image. The average absolute deviation from the mean count of the two observers is
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3.5.2. Conclusion

In this chapter it was illustrated how to tackle standard image processing tasks in the
field of biomedics without resorting to programming expertise. Our approach combines
a convenient user interface with a state-of-the-art classifier. The approach is robust
since the user only needs to enter a few labels and because the classifier is trained on
a set of generic features, which work across many types of images. The segmentation
framework was extended in a multi-class sense to allow for different object types and
problems. The method was tested on two public data sets, which demonstrated the good
transferability of our approach. On the STARE database it was shown that the ad-hoc
performance of our proposed framework was in the range of previously published meth-
ods [49, 100, 20, 92] which, however, explicitly take advantage of domain knowledge
and were perhaps developed over months dedicated to that specific problem.

However, this proposed framework is limited to local brightness, color and texture and
is not designed to capture global requirements. Indeed it can easily be utilized as a first
stage tool to solve advanced problems on top of its output. A very interesting point in
our experiments is that the few user labels are more informative than the abundant labels
from the ground truth, which leads to superior classification performance. This raises
the question of how the classifier can actively propose regions in which the system needs
more labels from the user. One idea is to use the out-of-bag samples in the training phase
of the random forest classifier to compute a certainty map. This enables the system to
ask for labels that it deems informative.
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4. Adult Neurogenesis

4.1. Introduction

Analysis of 3D confocal-microscopy images is an essential yet very challenging prob-
lem in many biological studies where quantitative or high-throughput analysis is needed.
The difficulties stem from the variability and complexity of the images, as well as from
artifacts due to staining and imaging. Here, the interactive framework introduced before
is applied. It builds upon discriminant local feature descriptors together with non-linear
classifiers. Again, this approach utilizes the interactive software that allows the domain
expert to annotate a representative subset of the data in order to train a segmentation
system that can then process hundreds of data items in an automated fashion. Based
on these results, relative geometric measures and cell characteristics are extracted that
quantify neurogenetic properties of the underlying experiments. Experimental results
verify the performance and reliability of the proposed approach. Additionally, to cope
with the large amount of data, a parallel pipeline is implemented on high-performance
computers, which dramatically reduces computation time.

4.1.1. Adult Neurogenesis

Adult neurogenesis is a recent example of a century-old dogma being overturned: The
central nervous system was traditionally thought of being fixed or at least very limited
in its regenerative powers and repair mechanisms, limited mainly to synaptic reorgani-
zation. During the past decade, it has become generally accepted that new, functional
neurons are added in distinct regions of the adult mammalian brain. According to Ming
and Song [76], the focus of this newly formed research field has now shifted from the
mere investigation of existence of neurogenesis to understanding the regulatory mecha-
nisms and the evolutionary benefit. However, the essence of this phenomenon remains
elusive in mammals, even today.

The adult neurogenesis originates from neural stem cells that are multipotent, un-
specified precursor cells that have the capacity to proliferate and generate the main
phenotypes of the nervous system. In the intact mammalian brain, active neurogenesis
occurs throughout life in two particular regions of the central nervous system (CNS),
the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ)
of the dentate gyrus in the hippocampus.
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The development in the subgranular zone undergoes five different stages: The stem
cells located within the SGZ give rise to transient new cells, which differentiate into
immature neurons during the second stage; followed by a short distance migration into
the so-called granule cell layer in stage 3. Afterwards, these immature neurons start
to extend their axonal projections to the pyramidal cell layer and their dendrites in the
opposite direction towards the molecular layer. Stage 5 is synaptic integration: The
new granule neurons receive input signals from the entorhinal cortex, which plays an
important role in memory processes in the brain, and send signals to the pyramidal layer
[76, 104, 54].

The mechanisms that are responsible for integrating the newborn neurons into the
existing neuronal networks are unknown. Understanding the structural plasticity in the
adult CNS is of special interest since this knowledge in particular may provide strate-
gies for integrating transplanted neuronal cells for replacement therapies [76]. What is
known, however, is the fact that adult neurogenesis is an extremely dynamic process
[31] with many factors that do influence the development at different stages [31].

The biomedical experiments were designed to monitor the influence of several factors
on the neurogenic process of different groups of mice. In particular, the impact of
specific signaling molecules was investigated: The programmed cell death is usually
controlled by signal triggering biomolecules, the so-called death-ligand systems such as
CD95L; activation of CD95 via CD95L naturally triggers apoptosis. However, this is not
the case in either developing CNS or newly generated adult neural stem cells. Instead
the CD95/CD95L system is believed to have a controlling function that regulates the
differentiation and branching process of immature neurons.

In order to understand the function of the CD95/CD95L system in the adult CNS,
the focus now lies on comparative investigations between wild-type animals and mice
with a functionally deficient CD95 receptor. Thus, the aim is to investigate the signaling
events downstream of the CD95. One necessary task is to do a quantitative comparison
of all the different stages of neurogenic development mentioned above for these two
types of mice.

This comparative analysis, however, comprising mainly cell counts and cell position
identification, is difficult and exhausting for human experts due to the large amount
of data and bad visualization of three-dimensional imagery. Thus, processing of these
neurobiological images and the development of adequate semi-automated methods con-
stitutes a central contribution.

4.1.2. Material

The resulting digital multichannel data sets are four-dimensional arrays: A series of
three-dimensional volumes where each volume contains the observed emission from one
of the separated dyes. These different channels will be referred to as DAPI-, BrdU- and
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DCX-Volume and are shown in Figure 4.1. Each of the three images in the bottom line
of this figure is one slice of a corresponding 3D-Volume. The data is displayed as gray-
scale images to represent the fact that each voxel in a volume only holds one intensity
value although, depending on the volume and the corresponding dye, this intensity value
naturally corresponds to a specific emission wavelength and thus to a color. The upper
image is an overlay of the three channels in the RGB color space. It gives an impression
of how the single, separate biological features in each channel are related.

Fig. 4.1.: Clockwise, starting with RGB overlay of the 3 data channels, the DAPI chan-
nel with a granule cell layer, BrdU-positive cells and the DCX channel

The number of proliferating cells and their location within the granule cell layer of the
dentate gyrus is of particular interest. As described in the earlier section about neuroge-
nesis, the cell position allows conclusions to be drawn about the developmental stage.
After proliferation and fate specification, the cells start to migrate through the layer be-
fore finally extending their dendrites. The main tasks to be accomplished include the
following:

• Segmentation of the proliferating - and thus BrdU-stained - cells

• Segmentation of the DAPI-stained granule cell layer

• Extraction of the relative distance of the proliferating cells to the inner border of
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the segmented granule layer (this is done on the basis of the results from the first
two steps)

• Classification of proliferating cells that have differentiated into immature neurons,
thus both BrdU and DCX positive - since immature neurons in transgenic mice
can be made to express the histology marker DCX.

In order to tackle these tasks, a system is implemented that 1) allows novices in the
field of image processing to train a segmentation system via an intuitive graphical user
interface and 2) that allows the deployment of the trained system on high-performance
computers in order to carry out experiments consisting of several groups and replicates.

4.1.3. Image Acquisition

The task of image acquisition gives raise to several problems such as cell clustering
and decomposition, non-uniform staining, light attenuation throughout the volume and
spatial anisotropy due to different resolutions in (x,y)- and z-direction in the confocal
scanning. Usually, images are stored in 16 bit unsigned integer Tiff- or LIF1 format.

4.2. Methods and Workflow

4.2.1. Overview

Segmentation of the granule cell layer in the DAPI channel and the proliferating cells
in the BrdU channel is realized via supervised classification. This requires pixel-precise
user annotation and discriminant image descriptors. Figure 4.2 illustrates the process
and the necessary user interaction. The labels are provided by brush strokes via a graph-
ical user interface. The labeler can choose between the background class and the fore-
ground object (in one case the granule cell layer in the other BrdU positive cells). Note
that, it is important to label over the whole range of the z-dimension in a 3D image.
This means that illumination artifacts from the confocal microscopy setup, resulting in
lower signal strength in the tail end of the data stack, can be taken into account. Pre-
processing steps are also a possible option for correcting illumination artifacts, but this
was deliberately abandoned in favor of a more generic and less heuristic classification
approach.

For each voxel in the original image data, a descriptive feature vector is computed
(see section 4.2.3) and used as input for the classification stage. Trained on the labeled

1Leica Image Format, for reading lif-files the Bio-Formats Java-library from LOCI the laboratory at
the University of Wisconsin-Madisonis is used (http://www.loci.wisc.edu/software/
bio-formats)

40

http://www.loci.wisc.edu/software/bio-formats
http://www.loci.wisc.edu/software/bio-formats


samples/ voxels, the classifier outputs a probability for each voxel as either belonging
to the background or to one of the specified object classes. The random forest classifier
[14] is used in the classification stage. These resulting probability maps provide the
basis for subsequent segmentation. The seeded watershed transform [6] is utilized to
segment BrdU-positive cells in which both the seeds and the topological surface are
extracted from the classifier output. The granule cell layer is segmented by simple
smoothing and thresholding of the corresponding probability map in the DAPI channel.

Fig. 4.2.: The proposed workflow: For each voxel of the original image data, a feature
vector is computed. Trained with the labeled samples, the classifier outputs a
probability as either belonging to the background or to a specified object class
for each unseen voxel. The resulting probability map provides both the topo-
logical surface for the segmentation and the marker extraction [40]. Results
can be corrected by re- or additive labeling

Having found an appropriate segmentation of the objects, two more steps are per-
formed. First the distance of each BrdU-positive cell to the inner border of the granule
cell layer is calculated. To determine these measurements, the inner region (i. e. in-
ner molecular cell layer) enclosed by the granule cell layer is computed. Using the
anisotropic 3D Euclidean distance transform, each BrdU-positive cell in this inner re-
gion can be associated with a distance to the inner border of the granule cell layer. We
were also interested in whether a BrdU-positive cell would also be DCX-positive. To
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achieve this, the extracted cell masks are utilized. The signal value in the DCX channel
is computed for each BrdU pixel in the cell mask. Based on the histogram of those
values, an optimal threshold is computed. Each cell that has a mean DCX signal greater
than this threshold is designated as DCX positive.

Memory intensive computations like the feature extraction, classification and water-
shed segmentation are done on a Gaussian downsampled version of the original data.
The computations are performed on a computer cluster consisting of up to 30 multi-core
PCs2 with up to 12 GB of main memory. Analysis results and readouts were exported
in csv-file format. The implementation was based on Matlab with underlying C++ rou-
tines.

4.2.2. Related Work

Cell segmentation in particular is a key component in most analytic tasks concerned with
microscopic images: Not only does a segmentation provide access to specific features
related to cell morphology, it also yields information about the spatial organization and
distribution of cells. Roughly speaking, one can categorize the most prominent tech-
niques into edge-based and region-based methods based on the features they use.

Edge finding approaches based on active contours or level-set functions use a user
initiated boundary that is evolved iteratively to minimize a cost function that includes
both local image-related information and prior information about the object boundary.
According to Gudla et al. [41] and Ahmed et al. [2], they are able to detect sharp
changes in the topology of the objects but do not perform well in segmenting clustered
cells. They also require a good initialization and usually results are highly sensitive to
this step [45].

Region-based approaches are the most commonly used techniques. They combine
region-growing and region-merging methods to cope with over-segmentation resulting
from spatial variation in the gray level intensities of objects. A popular method is the
watershed algorithm [6]. In Wahlby et al. [108] a seeded watershed is used for cell
segmentation in which the foreground seeds are created using the extended h-maxima
transform. Merging is done by comparing the mean values of the object borders to
a threshold and cell clusters are separated using an inverse distance transformed seg-
mentation result as input for a second watershed run. Lin et al. [70] performs several
preprocessing steps, including morphological filtering such as erosion and dilation oper-
ations and then uses a gradient-weighted distance transform as input for the watershed
segmentation. Following these steps a statistical model-based merging is performed.
This merging procedure is refined and extended in two companion papers, Lin et al.
[72, 71].

2High-performance computer cluster located at the German Cancer Research Center
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Other approaches include Gudla et al. [41] who performs multi-scale edge enhance-
ment followed by watershed segmentation, region merging based on object area, and a
subsequent classification into single- and clustered nuclei and Wang et al. [111], who
uses a particle moving algorithm on the gradient vector field of an image to generate
the seeds for the watershed segmentation. In Fuchs et al. [32] a combination of edge
detection and morphological opening and closing operations is used to segment poten-
tial nuclei. In order to detect possible false positives, geometrical features of the nuclei
such as ellipticity and shape regularity are computed and used to train a support vector
machine.

All of the aforementioned region-based approaches require seeds for the (watershed-)
segmentation to be effective. Seeds are generated in an unsupervised fashion, i.e. by
subjecting the image to appropriate filtering techniques or transformations. In fact, all
of these operations make the seeds-, or marker-, extraction dependent on parameters
that vary from image to image and thus prior domain knowledge is required.

4.2.3. Feature Generation

To achieve a successful classification it is crucial to compute a sufficiently discrimina-
tive feature vector for each voxel x ∈ V where V in the volumetric image. Therefore,
the features described in Section 2.1 are computed for each volume in a three-dimension
manner. In contrast to mere processing in 2D, this features capture information across
several z-stacks, which facilitates further processing. The window function is adjusted
according to the anisotropy of the x, y, z-resolution.

4.2.4. Random Forest

Random forest is a procedure that grows an ensemble of decision trees and collects
their votes for the most popular class, injecting several moments of randomness along
the way. Random forests were introduced in Breiman [14]. Tree-based classifiers par-
tition the feature space into a set of hyper rectangles. In particular, classification and
regression trees, called CARTs [13], use a recursive binary splitting. These tree based
methods and the determination of the best split point for a feature variable are described
in Hastie et al. [44, 7].

Each voxel is thus mapped into a high dimensional feature space by computing P
feature values for each voxel. Training the classifier defines the decision boundary
within this feature space. Each new sample can be classified according to its position
relative to the decision boundary. Since the used classifier is an ensemble of single
decision tree classifiers the classification step yields a probability map. Random forests
have been demonstrated in [14] to have excellent performance, run efficiently and fast
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on large data sets and can handle high numbers of input variables (also see Section
2.3.3).

4.2.5. Segmentation

Having obtained the segmentations of the molecular layer and the proliferating cells,
the relation between the two channels has to be established to answer the underlying
biological questions and to obtain a final result. The DCX-stained channel has to be
included to identify the number of proliferating cells that have differentiated into imma-
ture neurons. The final part of the workflow is illustrated in Figure 4.3.

Fig. 4.3.: Post-processing workflow resulting in 3D distance measures of BrdU-positive
cells to the inner border of the granule cell layer and DCX positive negative
classification [40].

DAPI-stained volume: In order to measure the distance of the proliferating cells
from the inner border of the molecular layer, the inner region has to be extracted from
the whole layer segmentation. To avoid the introduction of further constraints or as-
sumptions of object properties (i.e. horizontal orientation by simply going through the
layer column by column and selecting the two inner points of the layer), the following
strategy is applied: As can be seen in Figure 4.4, the layer segmentation is used to gen-
erate the difference between the segmentation and its convex hull. One result is shown
in Figure 4.4 in the image on the upper right. Different colors correspond to differently
labeled connected components after building the difference. Not only does this proce-
dure extract the inner region, it also extracts regions on the outer border of the layer. To
resolve the ambiguity, the Euclidean distance transform [47] of the layer segmentation
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is computed. All regional maxima of the distance transformed image, that are not at the
image volume border are selected as markers. These markers are shown in Figure 4.4
in the image on the lower left (for presentation purposes the markers are dilated). By
only selecting regions that contain at least one of the markers, the inner region of inter-
est is reliably and uniquely reconstructed. Note that, the Euclidean distance transform
takes the anisotropy (i.e. the different resolutions in (x,y) and z-direction) into consid-
eration. The Vigra Computer Vision Library [62] provides fast implementation of the
anisotropic distance transform.

Fig. 4.4.: Extraction of the inner region inside the granule cell layer. Clockwise, start-
ing with the original cell layer segmentation, connected components of the
convex hull, maxima of distance transform that are not on the image border,
reconstruction of the inner region

BrdU-stained volume: The seeded watershed transform is applied to segment BrdU-
positive cells. The seeds are extracted by selecting the local maxima after smoothing the
probability map. The watershed operates on the gradient magnitude of the probability
map.

Aftwerwards, the DAPI layer is first used to exclude the BrdU-positive cells (i.e.
discarding all proliferating cells), that are outside the molecular layer. Only cells in
which at least one voxel touches the layer are considered. Afterwards, the geometric
center of each segmented object is computed. Using the resulting coordinates to look
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up the corresponding distance in the final distance transform volume obtained from the
inner region of the granule cell layer, we are able to obtain the required distance of the
proliferating cells relative to the inner border of the molecular layer.

DCX-stained volume: In order to identify the cells that have differentiated into im-
mature neurons, the DCX stained channel has to be analyzed. Instead of subjecting the
DCX volume to the classification procedure it is far more efficient (time and memory
wise) to use the already obtained segmentation masks of the proliferating cells and look
up the intensity values in the DCX channel at the corresponding locations. Assuming
that the histogram is bimodal and consists of two normally distributed populations of
intensity values g(x) from object and background voxels respectively, with mean µi and
standard deviation σi:

p(g|i) = 1√
2πσi

exp−(g − µi)
2

2σ2
i

i = 1, 2

then for given p(g|i) and a priori probability Pi there exists the Bayes minimum error
threshold τ such that:

p(g|1) P1 ≷ p(g|2) P2

{

g ≤ τ
g > τ

The implementation follows the idea of Kittler and Illingworth [56]. This method is
more appropriate than the method from Otsu [85] for thresholding images with highly
unequal population sizes. Due to the already obtained segmentation, the algorithm is
relatively insensitive to the chosen threshold over a wide range. Having obtained τ , it is
compared to the mean intensity value computed for each cell in the DCX volume.

4.2.6. Interface

A graphical user interface was developed to guide the biologist through the offline train-
ing phase. After the data set has been imported, the three axes showing the x/y-, x/z-
and y/z-view can be used for navigation in the 3D-case. In addition, the slider can be
used to browse through the slides along the z-axes. Standard functions such as zooming
in and out, along with a tool to pan the image are integrated into the interface. The tool
is able to load 2D image stacks and 3D data sets and can handle the most common file
formats. Arrays stored as Matlab-files that have the extension .mat can also be opened.
A toolbar provides fast access to the most important tools and functions. Typically, the
user provides the algorithm with class labels using the brush tool. There, users can sim-
ply paint over each object class with its corresponding color using a brush of selectable
size. Mistakes can be corrected with the eraser brush. Correcting or providing addi-
tional labels is possible at any point of the process. Feature computation is handled by
the feature module.
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Human Labels Algorithm Results
1 2 3 1 2 3

Human 1 0 3.298 2.896 3.303 3.260 3.518
Labels 2 0 2.743 4.186 4.354 3.528

2 0 3.278 3.425 3.961
Algorithm 1 0 1.352 4.373

Results 2 0 4.735
3 0

Table 4.1.: Typical Baddeley distances in pixel taken from a 2D slice

As soon as the features have been computed and at least two distinct class labels have
been provided, the classification button is enabled. The classifier used is the default
random forest with NT = 100. The output is shown in a separate window, where all
axes are geometrically linked to the original main view to easily compare the predictions
and the original image. Unsatisfying prediction results can be improved by providing
additional labels in critical regions. A new random forest is then trained from scratch
using the augmented set of labels. The prototype was implemented in Matlab with
underlying fast implementations of the algorithms used and features implemented in
C++ and is available for download3.

4.3. Results

4.3.1. Evaluation

The algorithm was tested on five different data sets in which the labels were provided
by human experts [40]. The evaluation was split into two parts: The comparison of
the segmentation results for the molecular layer shape with labels obtained by visual
inspection, and those from analysis of the cell segmentation accuracy.

The segmentation results for three different data sets are shown in Figure 4.5. Each
column corresponds to one data set, showing one 2D-slice from the volume. The first
row shows the original intensity value data, the second row displays the layer segmen-
tation, and the third row shows the extracted inner region that was used for the distance
computation in the last part of the algorithm. As the data set on the left indicates,
the proposed method yields the expected results even if the layer does not touch the
image border. For evaluation purposes, a numerical measure of the discrepancy be-
tween two images has to be utilized. In particular, an error metric proposed in Baddeley
[4] was used as a numerical benchmark. Pixel/voxel misclassification errors perform

3at http://hci.iwr.uni-heidelberg.de/people/csommer/clasi/
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Fig. 4.5.: DAPI segmentation results: Each column shows the original data and segmen-
tation results for a different data set. The first row displays one slice out of the
original data volume, the second row shows the layer segmentation result, and
the third row provides the extracted inner region of the layer.

poorly when analyzing an algorithm’s reconstruction ability since pattern- and shape-
information are not regarded. As stated in [4], the displacement of a boundary is given
high error values since it usually affects a large number of voxels, even though it might
not severely affect the underlying shape. The proposed measure is thus based on the
generalized p-th order mean of distance values, which is defined as follows:

∆p(L,S) =

[

1

N

∑

x∈V

|d(x,L)− d(x,S)|p
]1/p

, 1 ≤ p ≤ ∞ (4.3.1)

where L denotes the label map obtained by visual inspection, S is the algorithm’s
segmentation result; and N is the total number of voxels in the data volume V . Finally,
d(x,S) denotes the closest distance between pixel x and any of the segmentation S.

Actually, in a more general way, Baddeley [4] uses a cutoff transformation of the
distance-transformed images : w(d(x, ·)) = min(d(x, ·), c) introducing a parameter c
that controls the scale. Positions x that are further than c units away from the shapes in
L and S do not contribute to the sum in equation 4.3.1. This means that the value of
the metric does not change if the layer shape is embedded in a space of a different size.
Since the interesting question deals with the calculation of the distance of the proliferat-
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data set # cells TP FP FN Accuracy Precision Recall
1 25 25 5(4) 0 83.3 86.2 100
2 18 16 2(2) 2 80.0 88.9 88.9
3 16 13 0(0) 3 81.3 100 81.3
4 23 22 3(2) 1 84.6 88.0 95.7

Average: 82.3 ± 2.1 90.0 ± 6.3 91.5 ± 8.2

Table 4.2.: Performance of the proposed algorithm in segmenting the proliferating cells
from the BrdU-stained channel. The algorithm was trained on one of the
available data sets; the results from the residual test sets are shown below.
The numbers in brackets indicate how many of the false positives are due to
over-segmentation.

ing cells within the molecular layer, a value of c = 200 that corresponds to an estimate
of the upper bound of the layer thickness for all available data sets is chosen. The value
of p, on the other hand, determines the relative importance of large localization errors.
Here, the arithmetic mean (p = 1) is used as a statistical measure since it provides the
average pixel difference to the ground truth-distance as an intuitive quantity.

Fig. 4.6.: One slice out of the original data with the labels obtained by visual inspection
(red) and the algorithm’s segmentation result (blue) as overlay

Even though equation 4.3.1 is directly applicable to the 3D case, evaluation was done
on 2D slices only, measuring only the molecular layer discrepancy in x- and y direc-
tion. This was done because labeling by visual inspection is performed separately on
each slice and does not take information from different depths into account. Also, con-
tinuous labels for whole data set volumes are very time-consuming to gather and were
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data set #cells #detected cells
(TP)

#differentiated
cells (DCX-pos.)

#differentiated
cells (vis.

inspection)
1 25 25 21 18
2 28 16 10 9
3 16 13 2 2
4 23 22 16 12

Table 4.3.: Detected cells that have differentiated into immature neurons in the DCX
channel and the number of cells found by visual inspection

not available. Figure 4.6 depicts the proposed metric referred to as Baddeley distance
for one slice from each data set volume, respectively. Three different human labels
were compared to three different algorithm results. The algorithm results differ in the
provided labels for classification and in the fact that several steps of randomness are
injected during classification. As the Baddeley distance satisfies the axioms of a metric,
it is symmetrical and equals zero if and only if L = S. The results are shown in Table
4.1 and Figure 4.6 indicating that the results from the algorithm were slightly worse but
still comparable to the human labeler.

Cell segmentation Several criteria were used to evaluate the performance of the pro-
liferating cell segmentation. Respectively, TP,TN,FP,FN denote the number of ob-
jects being labeled as true positive, true negative, false positive and false negative. The
segmentation accuracy is defined as (TP + TN)/(TP + TN + FP + FN), precision -
or positive predictive value - is TP/(TP + FP) and recall or sensitivity is defined as
TP/(TP + FN), i.e. it measures the proportion of actual positives that were correctly
identified as such. From the five available data sets, one was chosen to train the model,
while the other four were used as test sets. The second table, in Figure 4.2, shows the
segmentation results on the residual data sets. The values denoted in brackets demon-
strate how many of the false positives were due to over-segmentation. Table 4.3 shows
the algorithm’s DCX-positive counts. Note that these closely match the counts governed
by visual inspection.

4.4. Conclusion

In order to deal with the overwhelming amount of information coming from digital
biomedical image data, (semi-)automated algorithms capable of batch-processing and
adapting to the natural variability in data are needed. The method proposed here is
able to analyze confocal microscopy images from the dentate gyrus in the mammalian
brain, enabling it to establish relations between the different staining channels of the
multichannel three-dimensional data volumes. The techniques used within this strategy
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include a generic part, where the image voxels are classified by a random forest classifier
as either belonging to the object or to the background class. Subsequently, a segmen-
tation is performed on the resulting probability map. Object properties from different
channels are set in relation. Particularly, the locations of proliferating cells within the
molecular layer of the dentate gyrus are identified. Equipped with an intuitive interface
the algorithm provides the user with a segmentation tool of satisfactory accuracy. Once
the classifier has been trained on a set of images, it can be processed automatically. The
ease with which the system is trained renders the method highly adaptive, and endows
it with the potential for application to a wider range of related problems in biomedical
image analysis.
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5. Tumor-Stroma Interaction

Another application of the proposed framework is the segmentation and quantification
of tumor tissues. Images of tumor tissue (and its surrounding) were taken using flu-
orescence microscopy at different wave lengths to monitor important growth factors.
In particular, one is interested in the distribution of blood vessels in the tumor tissue
over time. To this end, the tumor and the adjacent tissues are segmented based on the
interactive framework as introduced in Chapter 3.

5.1. Introduction

The two most common kinds of skin cancer have advanced drastically in the last de-
cades. The increasing rate of skin cancer is attributed to intensified exposure to UV
radiation due to changing leisure behavior in combination with the depletion of the
earth’s ozonosphere. A long latency period can be observed prior to the formation of
malignant skin tumors. Gaining knowledge about the mechanisms involved during the
transformation of normal cells into tumor cells (the carcinogenesis) is of great concern
for preventive medicine and the development of therapies. In vitro models for human
carcinogenesis of skin cancer can be developed to study the biochemical aspects of tu-
mor formation [107] as well as genetic aspects and mutations that are involved in this
process. However, in vitro models lack important interactions with the host. Also, it
is not possible to distinguish between benign and malignant tumors in these models.
Therefore an in-vivo step had been developed in which cell cultures of human cell lines
are transplanted onto nude mice. Based on fluorescence microscopy, the interactive
framework introduced in Chapter 3 is applied to analyze the carcinogenesis of the trans-
planted cells. In particular, the learning approach facilitates the segmentation of tumor
and stroma tissues.

5.1.1. Tumor-Stroma Interaction

Tumor cells are steadily interacting with the surrounding tissue. Many tumors are inter-

fused with normal cells. These non-tumorous tissue parts are called stroma. Analysis of
tumor-stroma interactions is crucial to understanding the mechanisms that are responsi-
ble for tumor growth and proliferation. An interesting finding is that the influences are
bidirectional. The stroma can influence the conditions necessary for tumor growth by
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activating special cell types, leading to the formation of supporting cells, inflammatory
cells, progenitor cells and vascular cells. Tumor cells, on the other hand, can induce
a mechanism similar to wound healing, which leads to the activation of stroma cells.
On a molecular level, these interactions are triggered by special proteins called growth
factors. Growth factors are capable of stimulating cellular growth, proliferation and
cellular differentiation.

By emitting growth factors, the stroma can start or accelerate vascularization, the for-
mation of blood vessels. A therapy might involve modification or destruction of the
stroma, or stopping it from growing. This would have an immediate impact on the sup-
ply of the tumor and provide a means of influencing its growth and survival. On the
other hand, the influence of the stroma has to be taken into account when therapeutic
agents are transported into a tumor. In cancer research, the tumor-stroma interactions
can help monitor the state of tumors. For example, the amount of blood vessels pen-
etrating the tumor can be linked to tumor malignancy. The main contribution of this
work concentrates on establishing stable methods for quantification of such indicators
based on image processing to characterize tumor stroma interactions, i.e. is the growth
of blood vessels (vascularization / angiogenesis). The basic idea is to compare these
indicators inside and outside the tumor and track the changes over time. In summary,
the main challenges to solve are the following:

1. Detection of the tumor-stroma border

2. Segmentation of blood vessels

3. Calculation of blood vessel densities in the respective regions

In order to evaluate the algorithms, a data set consisting of 24 multi-channel images
with user annotated tumor-stroma borders is given.

5.1.2. Related Work

This approach is motivated by livewire [28] image segmentation. Livewire is an image-
feature driven method that finds the optimal path between user-selected image locations,
thus reducing the need to manually define the complete boundary. This interaction is
formulated as a dynamic programming problem: the displayed livewire contour is the
shortest path found between the selected points, where the distance metric is based on
image information. The image information used by implementations of livewire has
included image gradients, Laplacian zero-crossings and intensity values [80]. Here, this
approach is extended in two ways. First, the distance metric is based on intermediate and
learned boundary indicator map, which is the output of a classification stage. Second,
an anisotropic metric, i.e. structure tensor, is utilized, which leads to an extension of
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the well known Dijkstra algorithm, similar to work done by Jbabdi et al. [48]. Note
that the techniques in [80, 28] are user-controlled approaches, where a user is enabled
to interactively select points in an image, while in our approach prior knowledge allows
the start and end locations to be located on the left or right border of the image; thus
there is no need for interactive point selection.

5.2. Material and Methods

5.2.1. Material

Cells from the human skin (keratinocyte cell line HaCaT) are grown in a cell culture.
They are subjected to mutations that are essential for carcinogenesis. After being trans-
planted onto the fascia of nude mice, tissue sections are extracted in regular time inter-
vals. Note that the creation of tissue sections is too destructive and cannot be used to
capture the state of a transplant at different times. Different mice with different trans-
plants have to be used to infer the temporal changes.

The different cell types of these tissue sections are then specifically stained with meth-
ods from immunohistochemistry. Fluorescent dyes are used to visually separate blood
vessels, keratin and cell nuclei. Finally, a fluorescence microscope equipped with a dig-
ital camera is used to capture images. The images have a size of 1024 × 1280 pixels
which corresponds to approximately 1mm2 resolution. Figure 5.1 shows an example
image. The cells are not directly transplanted onto the mouse; instead they are put on a
layer of collagen gel. The collagen gel separates the tumor cells from the host tissue for
about one to two weeks. This clear separation enables analysis of tumor invasion and
the activation of stromal cells. Further, benign and malignant cells can be distinguished
at an early stage: benign cells form an epithelial layer similar to human skin and do
not invade the collagen gel and the host tissue. Malignant cells induce the creation of
granular tissue and growth of blood vessels. Invasive growth can be observed as early
as two to three weeks later.

The nuclei of cells that make up the boundary are denser than cells that are not part
of the boundary. Also, these cells are slightly bigger. These observations encourage
the use of image filters to estimate a boundary indicator map, which corresponds to
the probability that a given pixel belongs to the tumor boundary. A separation based
on such a boundary indicator map might not be without ambiguity and there might be
holes in the border due to a lack of local evidence. Also, based on the setup of the
transplantation experiment, the border is guaranteed to be a single line; there cannot be
any stroma regions inside a tumor. Thus the optimal boundary path was to be inferred
from the boundary map (optimal in the sense that the path separating stroma and tumor
has minimal traveling cost).

Pixels are interpreted to be nodes in a regular image graph with associated weights
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Fig. 5.1.: Example fluorescence image. Blue staining: cell nuclei, red staining: blood
vessels, green staining: keratin, continuous red line: manually labeled tumor-
stroma border, the tumor is located in the upper region

that are the reciprocal to the probability of belonging to the border. The optimization
finds the shortest path through the boundary indicator map, where regions with high
boundary evidence correspond to good terrain conditions. All images have the property
that the tumor-stroma border originates somewhere on the left and ends on the right
brim. Such problems can be solved efficiently with fast-marching algorithms. The
result is a smooth polygonal representation of the boundary.

5.2.2. Methods

Two methods come into operation to solve the problem of finding the tumor border:
robust classification based on supervised learning to get local evidence of the border
location and an optimization technique that uses this evidence to find the border as a
global optimal path via fast marching algorithms.

Boundary indicator map: classification strategy: A supervised learning strategy is
employed to construct the boundary indicator map from the raw data. As compared to
other choices from literature, random forest classifiers show excellent empirical perfor-
mance [cite]. Random forests are ensemble classifiers consisting of decision trees. They
were introduced by Breiman [14] (see Section 2.3.3). A main advantage of random for-
est is its intrinsic measure for variable importance, which allows for feature selection in
the training phase. For the experiments, a random forest consisting of 100 decision trees
was used. As illustrated in Figure 5.2, user labels (left) indicating tumor-stroma border
and background pixels were used to learn the random forest classifier.

A generic feature set: Image intensities, edge strengths and the eigenvalues of the
structure tensor can indicate border pixels and their orientation. A Gaussian filter can
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Fig. 5.2.: Generation of the boundary indicator map. The left image shows user labels
from biologists for boundary and non-boundary pixels. A typical boundary
indication map predicted by the trained classifier (right image) [53].

be used to estimate the density of cell nuclei. Derivative filters might be useful to dis-
tinguish between the areas above and below the boundary. To make the feature set
more generic, an exhaustive feature set is compiled, computed on multiple scales of the
image.

The features are calculated for the green (keratin) and blue (cell nuclei) channels. In
total, this amounts to a full feature set containing 130 features consisting of

• Image intensities

• Gaussian filters

• Gradient magnitude

• Derivatives (up to second order)

• Eigenvalues of Hesse matrix

• Eigenvalues of structure tensor

• Central moments (mean, variance, skewness, kurtosis)

• Local quantiles (e.g. median filter)

Feature selection: Not all features of the generic feature set contain enough predic-
tive information to justify their calculation. A huge amount of memory and computation
time can be saved when we restrict the feature set to those features that are essential for
the classification.

The variable importance scores described in Section 2.3.3 are applied. As shown
in Figure 5.3, the Gini importance and permutation importance measure are consistent
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with one another. The most important variables are the highly smoothed keratin inten-
sities (V39), vertical derivatives of cell nuclei (V88, V107), gradient magnitude (V105)
and eigenvalues of the structure tensor (V12, V116). This is what we would expect:
the gradient magnitude attracts the line to the edges, the vertical derivative is impor-
tant because the images are aligned and the boundary is horizontal most of the time.
The derivative can identify the correct side of the edge. Keratin is always part of the
tumor and therefore prevents the boundary from crossing it. A strong smoothing filter
is helpful in this context, because in most cases there is a gap between boundary and
keratin.

Fig. 5.3.: Variable importance for the used features

Fast marching optimization: Fast marching algorithms are numerical methods used
to solve a class of nonlinear partial differential equations called Eikonal equations [48].
These describe the time of arrival at each point in the space as a function of the lo-
cal speed. When the speed is constant, the geodesics are simply straight lines. The
geodesics can curve, when the speed varies across the space, preferring high local speed
locations. In addition, if the speed depends on the local direction of travel (e.g., along
versus across the tumor-stroma border), then the formulation is said to be anisotropic.
Existing methods to solve the isotropic problem are those by Dijkstra [25], Tsitsiklis
[102] and Sethian [97]. The well-known Algorithm of Dijkstra discretizes the problem
and takes advantage of the fact that transition costs are positive in each point. The posi-
tive costs imply that each minimal path is an extension of another minimal path to one
of the adjacent grid points. Starting from the first known minimal route (the one to the
starting point), the algorithm only considers neighbor points of already-found minimal
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routes to extend these to new minimal routes. In [48], a fast anisotropic extension for Di-
jkstra’s algorithm is proposed. It calculates the accumulated distances u(x) by solving
the Eikonal equation with a method similar to Dijkstra’s to find the geodesic pathway
by following the gradient of u(x) with respect to some inverse metric tensor M−1. In
our case the distance metric is set to be the structure tensor that provides information
about the local orientation and strength.

A geodesic is a pathway minimizing an integral:

J(γ) =

∫

F (s, γ, γ′)ds , (5.2.1)

where F (s, γ, γ′) =
√

γ′(s)TM(γ(s))γ′(s) is an infinitesimal distance along a path
γ, relative to a metric tensor M. Let u(x) be the arrival time function starting from a
location x0. Then u(x) is equal to the minimum of J(γ) along a pathway connecting
x0 to x. The arrival time function and the geodesics satisfy these two fundamental
equations:

∇uT
M

−1∇u = 1 (5.2.2)

γ′ ∝M
−1∇u (5.2.3)

where ∇u is the spatial gradient of u [48]. Equation 5.2.2 is the anisotropic version
of the Eikonal equation. In [48] a fast and accurate approximation of the solution is
formulated, which is used here to compute the optimal tumor-stroma border based on
the previously predicted boundary indicator map.

Blood vessel segmentation: The last step is the segmentation of the stained blood
vessels. Until now, the segmentation was performed by a simple thresholding operation,
with a manually adjusted threshold. The main problem is getting rid of shading artifacts
that occur due to autofluorescence and inhomogeneous illumination. An approach has
been developed to simultaneously perform shading correction and segmentation: an
estimate of the background is assessed by means of a low pass filter. Then, pixels that
deviate more than a multiple of a standard deviation are considered to belong to the
foreground and the background is then estimated disregarding the foreground pixels.
This is repeated until convergence or a given count of passes. This procedure gives
satisfactory results, and is both simple and efficient.

Start and end points: Images are aligned and the tumor boundary starts somewhere
on the left side of the image and ends on the right side. The average start and endpoints
have been calculated for a set of training images with known boundaries. When process-
ing an image, an additionally pixel column is added to each side. The metric on these
columns is set to the smallest possible value. Then artificial start and endpoints are set
on these additional rows at the height of the averages from the training set. With this
trick, the geodesic enters the unpadded image at the start point of the tumor boundary,
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Fig. 5.4.: Segmentation of blood vessels by automated thresholding

which means there is no need for user interaction. Afterwards, the artificial columns
can be removed.

User interaction: In cases where the automatic detection has to be refined, the al-
ready computed classification can be used to limit the amount of user interaction to a
few mouse clicks. The user can draw barriers and attractors into the boundary indicator
maps. The barriers simply consist of infinite weights; the attractors amplify the bound-
ary in a region around the user-specified attractor. In this way, the user interaction can
be very coarse and the global optimization finds the best path inside a region around the
attractor. Figure f5.5 shows the result of an exemplary user interaction.

Fig. 5.5.: User refinement using attractors (left) and barriers (right)

5.3. Results

Based on visual inspection, the results are very precise for images from earlier stages
that exhibit a good separation between tumor and stroma. The accuracy easily matches
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the highest manual labeling quality and can surpass the quality of manual labels that
underlie the conditions of a typical workday (see Figure 5.7). In images from later time
points where the tumors heavily invade the host tissue (shown in Figure 5.6, the results
are still satisfactory, albeit not reaching those from the manual reference.

Fig. 5.6.: Tumor-stroma border result for an image from a later time point (heavily in-
vaded tumor): green: reference border, cyan: extracted border. The extracted
path (cyan) is taking several short cuts.

5.4. Conclusion

A framework for analysis of fluorescence microscope images is presented to automate
a recurring task in cancer research: the quantification of tumor growth and its influ-
encing factors. The labor-intensive manual workflow is replaced by a semi-automated
system. Flexible statistical learning methods have been applied to make the solution
generic and easily adaptable. Detection of tumor boundaries posed the main challenge
up to now. This has been approached by choosing sets of generic features that contain
enough discriminative information. Supervised statistical learning is then performed on
these features, resulting in a classifier that is able to predict the boundary probability.
Finally, a global optimization technique is applied to obtain the course of the boundary
as the best path based on the boundary probabilities. Results present excellent perfor-
mance for an image coming from an earlier point in time with regard to the underlying
biological experiment. For more complex formations of the tumor-stroma border, usu-
ally occurring at later time points, the algorithm yields satisfactory results. The problem
of short cuts is still a challenging research topic. In order to supply the user means to
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correct wrong border sections, an interface that provides attractor or blocking guides to
refine the border probability was developed.
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Fig. 5.7.: Resulting tumor-stroma borders (cyan) overlayed onto the 24 microscope im-
ages
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6. Viroquant and Image Quality

Control

6.1. Introduction

An important source of information about cells is provided by fluorescence staining in
combination with optical microscopy. Digital analysis of images produced by a digital
camera attached to a fluorescence microscope allows for fast automated high-throughput
detection and quantification of spatial, spectral and temporal distribution of emitted
fluorescence from single cells. The basis for all automatic image analysis required in
high-content cell screening applications is cell segmentation.

RNA interference (RNAi) is a system within living cells that allows to control which
genes are active and not (knocked down). RNAi plays an important role in understand-
ing cell mechanisms, allowing the investigation of virus-host interactions. Performed in
a high-throughput manner – meaning the investigation of thousands of genes – the pro-
cedure is referred as RNAi screening. Cells are automatically seeded (and transfected
with siRNA) onto so-called well plates: an array of wells that can be accessed by an
automated microscope. Subsequently images of each well are taken corresponding to
different wavelengths of the fluorescent cells. Several distinct image positions in a well
can be accessed, resulting in millions of images. Biological replicates of the transfec-
tion specimen help to improve the significance of the statistical read-out. The enormous
amount of image data taken during the screening process requires a reliable and fully
automated image processing architecture. More than 1.5 million images, each with a
size of more than one mega pixel, have been processed, which is way beyond what
human labor alone could accomplish.

In order to ensure reliable and reproducible analysis results, not only do the under-
lying methodology and algorithms have to meet high quality requirements, but also the
image data itself. For large-scale screens, the absence of disturbing contaminants cannot
be fully guaranteed by careful experimentation. Only high-quality microscopic images
should be used to assess biomedical readouts. Image regions containing dust, hairs,
contaminants or other unwanted objects would falsify the fully automated analysis and
must therefore be excluded beforehand. To that end, the interactive framework (Chapter
3 is adapted to play the role of image quality control. Multi-class learning is replaced
by one-class learning, the class of clean images. A classifier is trained on a sufficient
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number of images that do not exhibit artifacts. After training, the classifier can detect
unexpected artifacts like dust, pollution or hairs in unseen images.

In particular data handling and access are of vital importance in assuring efficient
processing. Within the proposed screening platform, a whole workflow has been devel-
oped, containing interface definitions from the raw output of the microscope, as well as
the design of databases to feed further statistical processing.

The organization of this chapter is as follows: In Section 6.2 the basics of RNA
interference and related work concerning the high-throughput analysis of HIV assays are
briefly reviewed. All essential information regarding the preparation and experimental
setup for the screening assay1 can be found in Section 6.4. Image analysis is described
in Section 6.5 in more detail. Section 6.6 depict the proposed approach to image quality
control and its related methods. How all those different steps are integrated into an
approved workflow can be found in Section 6.7. Finally, results are shown in Section
6.8 and discussed regarding future directions of the screening platform.

6.2. RNA Interference

RNA interference (RNAi) has emerged as a powerful technique for studying loss-of-
function phenotypes by specific down-regulation of gene expression, allowing the in-
vestigation of virus-host interactions by large-scale high-throughput RNAi screens. In
collaboration with the University Hospital Heidelberg (department of virology) a robust
and sensitive siRNA screening platform [15] is presented2. The workflow was estab-
lished to elucidate host gene functions exploited by viruses, monitoring both suppres-
sion and enhancement of viral replication simultaneously by fluorescence microscopy.
The platform comprises a two-stage procedure in which potential host factors are first
identified in a primary screen and then re-tested in a validation screen to confirm true
positive hits. Subsequent bioinformatics enables identification of cellular genes par-
ticipating in metabolic pathways and cellular networks utilized by viruses for efficient
infection. The workflow has been used to investigate host factor usage by the human im-
munodeficiency virus-1 (HIV-1), but can also be adapted to other viruses. Importantly,
the description of the platform will guide further screening approaches for virus-host
interactions.

Despite considerable advances in virological research over the last few decades, vir-
uses continue to represent a major health risk, responsible for millions of deaths world-
wide each year. Like other viruses, HIV-1 has evolved the ability to successfully infect
- and efficiently transmit between - human cells by recruiting various host proteins for
each step of its life cycle [18, 74, 75]. Unraveling these critical cellular factors will not

1Assay and experiments done by Kathleen Börner, Johannes Hermle and Dr. Maik Lehmann
2This work was funded by the BMBF (FORSYS) project VIROQUANT.
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only improve the fundamental understanding of HIV-host interactions, but could even-
tually lead to novel anti-HIV therapeutics. Since the rate of mutations of cellular genes
is substantially lower than for viral genomes, the particular benefit of targeting host fac-
tors is that it may provide a higher barrier to the generation of anti-drug resistance. A
most powerful and versatile approach to identifying such potential cellular interaction
partners of HIV-1 are RNAi-based loss-of-function screens, as suggested by very recent
reports [12, 57, 116].

Although each of the three high-throughput screens published thus far reported a large
number of potential host cell factors, there is very little overlap between the different
sets [16, 38, 86]. This might be explained by differences in the individual experimental
conditions, such as the use of distinct cell lines, siRNA libraries or virus strains, all of
which could have significantly affected the results. However, it may also be due to the
use of different criteria for defining a hit or inconsistencies concerning the techniques
applied to validate potential hits. This highlights the need for comparable experimental
conditions in further studies and for the selection of consistent analytical methods for
future screening approaches.

In [15], a sensitive, automated microscopy-based siRNA screening platform, de-
signed to elucidate host factors utilized by a variety of viruses, was described. In the Vi-
roquant platform, several sub-genomic siRNA libraries were tested in a primary screen
and the identified potential hits were subsequently re-confirmed in a validation screen
using different siRNAs. In both screening stages, a non-silencing siRNA and an siRNA
targeting the HIV-1 specific cell surface receptor CD4 are used as negative and positive
control, respectively. In addition, the knockdown efficacy and cytotoxicity of siRNAs
are determined within the validation screen. Genes that show similar effects in both
the primary and validation screens are considered to be validated. Bioinformatics and
modeling approaches on the validated hits, in combination with published HIV-1 host
factors, known metabolic pathways, and protein-protein interactions enable the identifi-
cation of cellular networks and pathways involved in the replication of HIV-1. Further
studies using this platform will characterize fundamental cellular functions of the iden-
tified hits and shed light on their role in viral pathogenesis.

6.3. Related Work

Several other pipelines for supporting high-throughput screening have been developed
in the past. The most famous one is perhaps CellProfiler [17]. The software supports
basic image processing, databases and visualization and is implemented in Matlab. The
classification package CellAnalyst [50] is designed to closely interact with CellProfiler
in order to promote cell classification and more advanced readout statistics. The Large-
Scale Digital Cell Analysis System (LSDCAS) [24] was designed to provide a highly
extensible open-source live cell imaging system. The LSDCAS software runs on Linux
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and consists of a core library written in C++ and graphical analysis software (GTK). It
also supports Web access to the generated experimental data. The chief design goals
were to provide for the analysis of living cells [24].

P. Horvath and colleagues develop the tool Advanced Cell classification (ACC), which
is a follow up extension of the HTC-Browser. It enables browsing through data recorded
in standard plate formats and integrates an illustrious set of classification techniques for
cell classification. The software requires several Matlab toolboxes and was applied in a
human genome-wide screen3.

The High-Content Data Chain (HC/DC) is a data management, processing and vi-
sualization software designed for biologists working in the field of high-throughput
screening. HC/DC is a platform for workflow generation and data exploration. It is
based on KNIME (Konstanz Information Miner), an open-source project that tries to
embed data integration, processing and analysis in a comprehensive exploration plat-
form. Several interfaces, for example for CellProfiler and ACC, exist. The famous
Bioconductor project [35] also contains several packages relating to high-throughput
screening, which focus on statistical analysis as presented on the workshop [84].

6.4. Preparation and Experimental Setup

A key element of the experimental setup is the reverse transfection of commercially
available siRNA libraries into HIV-permissive HeLa P4 cells. Following a 36 h in-
cubation period to allow target knockdown, the cells are infected with HIV-1 virions
encoding for GFP. This allows the straightforward detection and quantification of in-
fected cells via a highly sensitive automated microscopy-based assay. 384-well plates
were used for the high-throughput screening approach. For validation screens, 96-well
plates were used, allowing collection of even more images per well compared to the 384
wells. All experiments were performed with HeLa P4 cells, as they are well suited for
culturing in all of the tested well plates and also highly transfectable with siRNAs.

To keep replicates as reproducible as possible, the siRNA libraries were printed by
batch using a previously described reverse transfection protocol [26, 27]. To this end,
the respective siRNA are transferred automatically to a 384-well plate. After drying the
well, the substrates can either be stored for up to 15 months without any loss of efficacy
or can be directly used for knockdown studies. This is a major advantage of the reverse
transfection method compared to liquid transfection, as it permits better reproducibility
and comparability between different plates of the same batch.

For the primary screen [15], various libraries containing silencer siRNAs (Ambion,
Applied Biosystems, Austin, TX, USA) were used in 384-well plates, with one indi-
vidual siRNA per well and three distinct siRNAs per target gene. Potential host factors

3as mentioned on http://acc.ethz.ch/acc.html
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identified in the primary screen as hits were subsequently re-tested within a validation
screen with a minimum of five replicates in 96-well plates. At least two novel chemi-
cally modified siRNAs (silencer select siRNAs, Ambion) were used per gene to enhance
specificity and minimize off-target effects. Two siRNAs against CD4 were chosen as
positive controls. CD4 mediates cell entry of HIV-1 and thus represents a pivotal host
factor for HIV-1 infection. Gene knockdown efficiency of approximately 90% within a
period of 24-92 h after siRNA transfection. Thus, in subsequent experiments cells were
infected 36 h after transfection and fixed after an additional 36 h.

6.4.1. Image Acquisition

For high-throughput image acquisition a fully automated epifluorescence ScanR screen-
ing microscope equipped with the ScanR acquisition software is used. Images are ac-
quired with a 10x objective in nine positions per well for 384-well plates, up to 16
positions for 96-well plates. In each position images are acquired in the Hoechst and
in the GFP channel using the corresponding excitation and emission filters. In the vali-
dation screen a third channel is acquired, Phalloidin, which stains actin filaments in the
cell, and as such, is a useful marker for investigating cell morphology.

6.5. Image Analysis

Each position in a well consists of two channels (or three in the validation screen),
which depict the cell nuclei and the cell body, respectively. This fact suggest the fol-
lowing two-step procedure: First segment all cell nuclei in the primary DNA channel
(Hoechst), then use the obtained cell nuclei mask as initial solution for the whole cell
segmentation in the secondary channel (GFP or Phalloidin) and gradually refine them
to obtain a full cell mask. This well-established approach has been widely used and
various variants (usually in a region based manner) exit in literature [17, 51, 109]. For
the sake of efficiency in the context of high-throughput analysis, a similar approach is
adopted within the cell segmentation procedure. Thus, the image analysis consists of
the following three successive steps:

1. Cell nuclei segmentation in the Hoechst channel

2. Cell segmentation in the GFP/ Phalloidin channel based on cell nuclei identifica-
tion

3. Quantification of cell characteristics

A detailed workflow can be found in Figure 6.1. The inputs of the image analysis
routine are the Hoechst and GFP channels, representing cell nuclei and cell cytoplasm
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(see Figure 6.2a). As output, we compute the number of nuclei, the average signal
intensity over all cells (in the GFP channel), and the proportion of cells that have been
infected. These calculations are performed per position in a well and serve as input to
the statistical analysis.

Fig. 6.1.: Workflow diagram for the primary screen.

6.5.1. Cell Nuclei Segmentation

To segment cell nuclei, we use the marker-controlled watershed transform method [6].
This method consists of two basic steps. First, the algorithm detects a unique initial
foreground marker for each cell nucleus (typically the marker that corresponds to the
center of the object). At the same time background markers that lie in the dark region
between cell nuclei are extracted (see Figure 6.2b). Second, the watershed transform
(see Section 6.5.4) expands markers spatially to enclose the cell nuclei in the image.
Finally, basins originating from foreground markers correspond to masks of cell nuclei.
A recent review on the topic of cell segmentation can be found in [22].

6.5.2. Cell Nuclei Marker Extraction

A preliminary binarization of the Hoechst image is found using a histogram adaptive
threshold [85], leading to an initial nuclei versus background mask. In the case of
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uneven illumination of the image, background correction can be applied before bina-
rization. A method proposed in [73] is employed for this purpose. A Gaussian blurred
version of the cell nuclei image is used to detect foreground markers (the variance for
the Gaussian kernel is empirically adapted to cell nuclei size). All local maxima above
the binarization threshold are determined and dilated to suppress spurious markers (see
Figure 6.2b).

To extract background markers, the Euclidean distance map from the initial binary
mask is computed. This map contains the distance from each non-nucleic pixel to its
nearest nucleic pixel in the binarized image. All ridges from the distance map are ex-
tracted to get a Voronoi-net like background marker (as illustrated in Figure 6.2b). Both
types of markers (background from distance map, foreground from Gaussian blur) serve
as the final markers for the watershed transform operating on the gradient image.

6.5.3. Cell Segmentation

The extracted cell nuclei masks are passed to the cell segmentation process as fore-
ground markers. In the primary screen where no actin channel (dyed by Phalloidin)
is available, background markers from the cell nuclei segmentation are reused. Note
that we cannot compute background markers directly from the GFP-channel, as only
infected cells are visible in this channel. When an actin channel is available – like in
the validation screen – this channel is used to directly compute background markers
from its gray values. Segmentation is also done on this channel if available, while the
major readout still is taken from the HIV-sustaining channel GFP. Actin is a very ap-
propriate candidate for cell segmentation because it is distributed throughout the cell’s
cytoskeleton and on the cell wall indicating the cell boundary.

6.5.4. Watershed Segmentation

One algorithm (and its many variants [82]) that is considered to be a very accurate
tool for the segmentation of fluorescence microscope cell images is seeded watershed.
In the watershed algorithm, the intensities of an image are interpreted as elevations in
a landscape. To build the watersheds, the gradient magnitude image in which water
begins to rise from local minima was computed corresponding to areas of low gradient
(such as areas inside the cell or in the background regions). Wherever two water basins
are about to merge, a watershed barrier is built (see left sketch of Figure 6.3 for an
illustration). Ideally, the watersheds coincide with the boundary of the cell, assuming
those edges are well defined. Instead of letting water rise from every local minimum in
the image, water rises only from previously extracted seeds (right picture in Figure 6.3).
This design ensures that there are as many regions as the number of initial seeds. The
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(a) Original image: blue
Hoechst channel indicating
cell nuclei, green:

(b)

(c) (d)

Fig. 6.2.: Illustration of voronoi-like watershed segmentation

algorithm is implemented as a seeded region as described in [1] and is used as realized
in the Vigra computer vision library [62].

6.5.5. Quantification

The main readouts of the image analysis – used in the further statistical analysis so
far – are the overall mean gray value over all cells in the image, the total cell count
and the infection ratio. Uninfected cells appear dark, while infected cells show rather
high gray values over their area. A Gaussian mixture model with two components is
fitted to the extracted mean gray values (see Figure 6.2d). One Gaussian component
explains the variation of uninfected cells, while the other accounts for the variation of
infected cells. If either all cells or no cells are infected, one of the two components
should vanish, however, in practice, an intermediate number of infected cells produces
two overlapping components. To remedy this, a prior is imposed on the position of the
two Gaussian means, which essentially acts as a repelling force between the mixture
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Fig. 6.3.: Illustration of the watershed algorithm. Left: Original watershed formulation:
water rises from all local minima, Right: Seeded watershed transform: seeds
(orange) are used to control the segmentation process]

components. Having found the parameters of the mixture model, an optimal threshold:
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is computed by solving the quadratic equation in Eq. 6.5.2, where ωi are the mixing
coefficients, µi the Gaussian means and σi their standard deviation. Then each cell can
be classified by thresholding as infected or not infected. Finally, the infection ratio is
computed as the number of infected cells divided by the total cell count.

The readouts generated on different biological replicates correlated well as shown
in Figure 6.4a. The aforementioned positive control (CD4) showed the expected down
regulation with a z-score of about −4 compared to non-silencing control (see Figure
6.4b).
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(a) Correlation between z-scores of two
replicates of an RNAi screen to in-
vestigate host cell functions in HIV-1
pathogenesis with individual siRNA-
mediated gene knockdowns (gray),
non-silencing control siRNAs (red)
and CD4 positive controls (green).
The Pearson correlation coefficient is
0.82.

(b) Z-score distributions of the non-
silencing control siRNA and the pos-
itive control CD4. The separation of
the two distributions confirms CD4 as
a significant down-regulator in the as-
say.

Fig. 6.4.: Comparisons between the non-silencing control siRNAs and CD4 positive
controls

Integration into iChip

Besides the primary readouts to assess HIV infections under genetic variation, more
additional measures have been taken. In addition to the primary readouts to assess HIV
infections under genetic variation, additional measures have been taken. For example
in the work of Young et al. [113] various measures describing the cell’s appearance
and shape were successfully employed to investigate cell morphology. Akin to that
approach, a set of generic cell descriptors (see Table 6.1) is calculated on a single cell
level from each channel. In total, this sums up several billions of cell measurements
(assuming about 400 cells per image). Future comparative studies – concerning cell
morphology changes under the reported cell treatment – may benefit from the huge data
collection.

To ensure accessibility of these results, all readouts, including cell segmentations and
quality assessments, are stored and integrated into the iChip framework [64]. iChip is
presently installed within several European and German research networks. It holds
experimental data from key members of the National Genome Research Network. The
goal is to avoid isolated data silos by using comprehensible and reusable data struc-
tures, while being a comfortable and easy to use solution for management of experi-
mental high-throughput experiments. It enables meta analysis to public scientist based
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on well annotated data of different incorporated studies. Data types of different tech-
nologies (Affymetrix, CDNA, tissue microarray, array CGH, mass spectrometry, gel
electrophoreses, RNAi) are supported in iChip.

intensity mean Average intensity in gray values
intensity variance Standard deviation of intensities in gray values

area Area in pixels
perimeter Perimeter in pixels

eccentricity Eccentricity as a measure of elongatedness
position Center position measured in pixel of its center

Table 6.1.: Additional single-cell measures for the channels Hoechst, GFP and Phal-
loidin

6.6. Image Quality Control Using One-Class

Learning

Only high-quality microscopic images should be used for performing a reliable and re-
producible siRNA screen. Image regions containing dust, hairs, cords or other unwanted
objects could falsify the fully automated analysis and must therefore be excluded before-
hand. To find these erroneous regions, we propose an unsupervised learning approach.
A one-class support vector machine is trained on faultless images to detect impurities
without the need for user interaction.

6.6.1. One-Class Support Vector Machine

The one-class support vector machine was introduced by Schölkopf et al. in [95]. The
basic idea is as follows. Given input samples

xi, . . . ,xn ∈ X

and a regularization parameter λ, the aim is to minimize a regularized empirical risk
functional given by:

f̂ = arg minf∈Hλ‖f‖2 +
1

n

n
∑

i=1

(1− f(xi)+,

where the function (·)+ denotes

(a)+ =

{

a if a > 0
0 if a ≤ 0
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andH is a Hilbert space with an associated reproducing kernel [105]. The minimization
of this regularized empirical risk yields an estimate that tends to be 1 at the locations of
input samples (data term), while being as small as possible at the same time (regular-
izer), as measured by the associated scalar product of the used kernel. When a kernel
is used that only depends on the difference between sample points xi − xj (such as the
Gaussian kernel, Schölkopf et al. [95] proved that this minimization can efficiently be
calculated using the standard support vector machine methodology (see 2.3.4) with the
origin as the only negative example in training, thus finding a hyperplane with maximum
margin of separation to the origin.

The features used to characterize local quality appearance comprise the aforemen-
tioned feature descriptors in a patch-wise manner. Features are calculated on the Dapi
and GFP channel (most contamination are visible in these channels) and agglomerated
in image patches of size 64 × 64. Several statistics are computed for each patch, in-
cluding: mean response, standard deviation, higher-order central moments, entropy and
quantiles. In the inference step, a sliding window approach is utilized to spatially pre-
dict the regions of high deviation from the patches discovered in the training phase.
This results in a quality map of the same size as the input images. Thresholding this
map provides the region mask for bad quality areas. Spurious responses due to noise
(small isolated regions) are suppressed by introducing a minimal lower limit for the size
of found regions. Once regions are extracted, all cells that overlap these regions are
excluded from further analysis4. In Figure 6.5 an example that shows a correctly iden-
tified contaminated region as such is given. Cells depicted in red are excluded from the
readout generation.

For the experiments and the processing of the two screens, the implementation of the
one-class support vector machine in the LIBSVM library [19] is used.

6.7. Implementation and Pipeline

A fully automated pipeline was set up to process the large number of images produced
by the screens. Image processing was implemented in Matlab and C++ and runs in a
data parallel fashion distributed over a compute cluster. For each well position, output
that automatically maps data into a relational database is written to a virtual file system
for convenient post-processing.

A graphical user interface has been developed and deployed to the biomedical part-
ners (see Figure 6.6a for a screenshot). Although it is doomed to run on a single desktop
machine, it has turned out to be a useful tool for visually exploring the image data in
order to tune certain parameters (for instance smoothing parameters σ).

4For more details regarding the implementation and a for comparison with other one-class learning
techniques see the forthcoming diploma thesis of Christian Scheelen
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(a) (b)

Fig. 6.5.: Example of a contaminant correctly classified as such (red) and excluded from
the result.

6.7.1. Graphical User Interface

The user interface can handle the image data of whole plates and facilitates browsing
the microscope data. Channels are visualized in their corresponding color. Both single
images and whole sets of selected plates can be processed. When processing single po-
sitions within a plate, the segmentation boundaries and the positive/ negative decisions
(HIV infection) are overlayed onto the original image. The adjusted parameters (within
the graphical user interface) are stored in a configuration file which is then directly
usable by the parallel pipeline.

Additionally, abnormal mitotic and apoptotic behavior was tested using the graphical
user interface as shown in Figure 6.6b. Here, several plates were customized for this
purpose. A mitosis marker (phospho-Histone H3) indicates chromosomes separation
while the TUNEL-method [34] (TdT-mediated dUTP-biotin nick end labeling) is used
to dye apoptosis. Instead of counting HIV-positive cells, the tool is used to classify the
cell’s phenotype into mitotic and apoptotic. The parameters can easily be adjusted to
cope with the new appearance in the readout channel. Analysis of these results revealed
that mitosis and/or apoptosis rates stay in ordinary ranges.

6.7.2. Parallel Pipeline

In order to process the enormous amount of data, a parallelized pipeline was set up as
an integral part of the screening platform (see Figure 6.7). At first, the data is stored on
a NAS (Network Attached Storage) file server in a hierarchical fashion. Starting from
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Primary Screen Validation Screen
Replicates 2-3 5-9
Format 384 wells 96 wells
#Positions 9 16
#Plates 182 115
#Channels 2 3
#Images 1,257,984 529,920
Time
Required to
Process

< 36h < 24h

∑

1,787,904 images ≈ 4.5 TB

Table 6.2.: Key data of the main RNAi and its validation screen

novel cell types, sensor settings, chemical dyes and assay-specific phenotypes, without
reprogramming the image processing routines.

A modular and flexible microscopy-based RNAi screening platform is described for
investigation of host factors involved in virus-host interaction. This uses a two-stage
procedure (primary and subsequent validation screen) comprising four main steps: ex-
perimental assay, image analysis, statistical analysis and bioinformatics, each of which
has been presented in detail. The platform was demonstrated in stably CD4 express-
ing HeLa P4 cells using a modified infectious HIV-1 strain carrying a GFP reporter
(HIV-1-AGFP ). The procedure was shown to be suitable for robust and sensitive de-
tection of host cell factors involved in HIV-1 replication using different cell culture
formats. Design and testing of standardized experimental setups for production of suf-
ficient amounts of virus were found to be critical to obtaining reliable and comparable
data sets. Dedicated image processing procedures were developed to process the very

Fig. 6.7.: Sketch of the parallel pipeline
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large amounts of high-throughput image data (tens of terabytes over the lifetime of a
full genome screen) in reasonable time. Problems associated with the need for different
data normalization approaches in primary and validation screens were addressed in the
statistical analysis step, which also dealt with multiple potential sources of error in the
readout. The bioinformatics step integrate experimental results with data mined from
public databases, allowing screening hits to be functionally classified and embedded
into known pathways and protein-protein interaction networks. Future extensions will
include automated classification of images based on cell morphologies (using the inter-
active framework), so that knockdown phenotypes can be classified in more detail and
better correlated with biological processes. Comparative analysis using other viruses
on the same platform will elucidate commonly used cellular host factors exploited by
different viruses, which may serve as novel drug targets for broad spectrum antivirals.
Finally, we would like to encourage efforts at standardization of RNAi screening pro-
cedures and offer experience with this platform as a robust basis on which to build new
systems.

80



7. Copper Wire Tracing

In the last Chapters, the interactive framework was successfully applied to problems
arising in life science. Here, an application to an industrial segmentation problem is de-
scribed, where accurate pixel-wise tracing of fine copper structures is necessary. Again,
the interactive framework is utilized to provide the basis for further processing. The
whole interactive learning approach was integrated into a framework for product au-
thentication currently developed by our collaboration partner.

7.1. Overview

Authentication frameworks1 for consumer commodities often rely on forgery-proof la-
bels in combination with barcodes. Here, the aim is to provide an image processing
methodology to the backend of the label generation process. Labels are generated by
spreading copper wires on an approximately 1cm2 sized square label. The randomness
of the spatial distribution of the spread copper wires is of essential concern. Further-
more, the whole process is designed to be very difficult to imitate. Once it has placed
the copper wire onto the label square, the probe is varnished with a transparent coating
for fixation. Now, the labels must be automatically analyzed to extract a vectorial de-
scription of all copper wire segments inside the field of interest (that is the label square).

An industrial, monochrome camera is used to capture images of the labels under
favorable light conditions. Preprocessing steps such as cropping the field of interest,
affine transformation to align the image, and rescaling to a fixed resolution are designed
to provide constant conditions for the extraction process. However, the problem of light
reflexes due to the coating and raised wires structures cannot be entirely solved by the
image acquisition setup. Therefore a robust method that 1) detects the copper wires
reliably and 2) is able to deal with the inverted edge appearance due to light reflexes
must be developed (see Figure 7.1a for an example).

The extraction is based on the segmentation of the copper wires and undergoes three
different main steps:

1. Feature generation: A set of discriminative features is manually selected; among
them Gaussian Filters, eigenvalues of the Hessian matrix and a structure tensor.

1The real underlying application is still confidential, which is why it is not explained here in more detail.
As a part of this thesis, however, the contribution from the image analysis side needs to be explained.

81



(a) Original image with some
locations at which light re-
flexes occur (red ellipse)

(b) Probability map after super-
vised classification.

(c) Skeleton extracted from the
probability map. Note that
in spite of light reflexes, the
skeleton is recovered with-
out any gaps

Fig. 7.1.: The proposed methodology based on supervised learning

The features describe important aspects that appear in the images. For example,
a copper wire corresponds to spatially oriented curvature in the digital image do-
main. The large eigenvalue of the Hessian matrix is an excellent measure for this,
as was demonstrated in the domain of blood vessel segmentation [91].

2. Supervised classification: The random forest classifier [14] is used to learn from
the examples given. Copper wires and backgrounds were marked by brush strokes
of varying sizes via a user interface. In Figure 7.2, images with overlayed user
labels are shown. Note, that the images were partially labeled, meaning that not
all the pixels were marked as a representative sample for copper wire respond/or
background. Having learned a random forest from the extracted features and
label information, the classifier predicts new, unseen pixels. Each tree of the
forest votes for the class as either copper wire or background in this case. Once
the votes are collected and averaged, a probability value is yielded for each of
the classes at every pixel. The majority vote (probability > 0.5 for a two-class
problem) is used to obtain a binary class assignment to background versus copper
wire.

3. Skeletonization: Roughly speaking, skeletonization refers to subsequent thinning

of a binary image until only a pixel wide spine is left. This step is necessary to
form the basis for a vectorial description of the copper wires. Sampling from the
skeleton then yields a vectorial description of copper wire sections.
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7.2. Material and Methods

7.2.1. The Data

Preprocessing steps such as cropping the field of interest, affine transformation to align
the image, and rescaling to a fixed resolution are performed prior to labeling and copper
wire extraction. This is done and implemented based on the library BIAS2 [81] by an
external company.

Three different labelers partially marked copper wires and background. A user in-
terface supported the labeling process by providing zoom and pan tools. The effect of
labeling on the classification can be previewed by performing an intermediate learning
and prediction step on the current image.

A data set comprising 39 copper wire images was labeled. Two-thirds of it (26 im-
ages) were used as training images. The remaining set (13 images) served as test im-
ages for estimating the generalization ability of the proposed supervised classification
methodology. In this way, the results of the classifier, learned on two-thirds of the la-
beled sets, can be compared to the remaining user labels given in the test set.

Fig. 7.2.: Three examples from the labeling process. Copper wires (green) and back-
ground (red)

7.2.2. Feature Generation

The features in Table 7.1 were selected due to their ability to describe local intensity
value, edge strength, local curvature and corner response. The original value was also
used. The feature response is shown in Figure 7.3 for five image sections. Each column
corresponds to a feature in ascending order from left to right. The features were com-
puted at different scales, that is under different Gaussian filter bandwidths σ. Gaussian

2The Basic Image AlgorithmS C++ Library (BIAS)
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smoothing needs to be done because gradient generation typically increases the noise in
the image.

1: (OV) Original value

2: (GF1) Gaussian filter (scale 1)

3: (GF2) Gaussian filter (scale 2)

4: (E1H1) Large eigenvalue of the Hessian matrix (scale 1)

5: (E1H2) Large eigenvalue of the Hessian matrix (scale 2)

6: (E1S1) Large eigenvalue of the structure tensor (scale 1)

7: (E2S1) Small eigenvalue of the structure tensor (scale 1)

Table 7.1.: Manually selected features

(OV) (GF1) (GF2) (E1H1) (E1H2) (E1S1) (E2S1)

Fig. 7.3.: Feature response for the selected feature set. A center section of the original-
sized image is enlarged for better visibility.

Feature 5 (=E1H2) presents, for example, a strong increase in contrast. The small
eigenvalue of the structure tensor (feature 6 = E2S1) can be interpreted as a corner
detector and indicates locations where two copper wires meet, cross or get very close to
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each other. Gaussian Filters reduce background artifacts and reveal the main run of the
wire. A non-linear combination of these features can achieve a high level of accuracy
as shown in the results section.

7.2.3. Skeletonization

Skeletonization is the thinning of a binary image to a one pixel-wide spine. Lookup
tables are usually used to repeatedly remove pixels from the brim of objects. The skele-
tonization is based on an a thinning algorithm from [115] implemented in BIAS [81]. A
resulting skeleton is shown in Figure 7.1c.

7.3. Results

To evaluate the strength of the proposed methodology, a ROC curve analysis was per-
formed. In signal detection theory, a receiver operating characteristic (ROC) is a graph-
ical plot of the sensitivity vs. (1 - specificity) for a binary classification system over a
varied discrimination threshold (see Section 2.4).

The resulting ROC curve can be seen in Figure 7.4a. There, the threshold on the prob-
ability map for the hard assignment to copper wire or background is varied and the false
positive rate versus the true positive rate is plotted at every threshold. An alternative ap-
proach based on optimal threshold selection [85] is also shown. The proposed method
achieves an area under curve of Az = 0.9963, while the more simplistic thresholding
approach (on gray values) produces many false alarms, resulting in a flatter curve shape.

Figure 7.4b depicts the threshold robustness of the two methods. Pixel accuracy is
plotted versus the selected threshold. One can conclude that, for the classification ap-
proach, a broad and almost symmetric range of possible threshold values exist, while
for the alternative thresholding method (Otsu’s method), a non-optimal threshold would
have been selected.

7.3.1. Conclusion

The results of the proposed methodology attest: discriminant features, together with a
non-linear classifier, achieved a more accurate and robust performance. In particular,
light reflexes can be handled without problem-specific measures and are intrinsically
learned by the classifier. The random forests show very good generalization perfor-
mance, which is demonstrated by the ROC curve analysis. However, the feature gen-
eration and classification procedures take more time to compute. The bottleneck is
identified to be the prediction time of the random forest. The feature computation is
done in less than 0.2 sec. on a 1.5 GHz notebook, while prediction time is about 1.5
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(a) ROC analysis of the proposed method (red) on a
hold-out test set. Training was done on 26 images
and prediction on 13 images. For comparison,
results from thresholding are plotted in blue.

(b) Threshold selection: The robustness of the
probability map on its threshold selection
(red). For comparison, the results from
thresholding are also shown.

Fig. 7.4.: Evaluation of the proposed method in comparison to thresholding.

sec (random forest with 100 trees) on the same machine. An obvious solution to this
problem is to use an appropriate multi-core CPU, where the prediction can be easily
distributed due to the fact that each tree in the forest is independent from the others. An
alternative is to stop the prediction process earlier when a first fraction of trees agree to
some extent.
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8. Process Control for the Sheet

Feeder

8.1. The Sheet Feeder - An Overview

Process control is a statistics and engineering discipline that deals with mechanisms
and algorithms for controlling the output of a specific process. In this case, the process
refers to one subprocess in offset-printing. Offset printing is a commonly used printing
technique in which the inked image is transferred (or offset) from a plate to a rubber
blanket, then to the printing surface [55]. In this thesis, we are particularly interested in
how sheets of paper originating from a paper stack arrive at the core units of a printing
machine. The very beginning of the print process is the sheet feeding. Sheet-fed refers to
individual sheets of paper or paperboard being fed into a press. A lithographic press uses
principles of lithography to apply ink to a printing plate. Sheet-feeding is commonly
used for printing magazines, brochures, letter headings and general commercial (job)
printing.

Studying this process and the development of adequate algorithms to quantify the
state and quality of the current process state is the focus in this chapter. At first, we
describe the sheet-feeding process. As illustrated in Figure 8.1 the process undergoes
five major steps. In the side sketch of the sheet feeder (Figure 8.1a) the different steps
are illustrated. They consist of:

1) Constant loosening of the upper sheet stack with various air blasts from the side
and back of the stack (see Figure 8.1b)

2) Lift off the top sheet using suction cups

3) Triggered air support in order to provide a air cushion

4) Handover to the drag suction cups which

5) Movement in flow direction towards the suction belt

Various errors can occur during the feeding process. Amongst them are the feeding
of two or more sheets of paper at once (double sheet), slanted papers (slant sheet) and
errors in arrival time (early or late sheet). Usually these errors can be detected at later
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(a) Side sketch of the sheet feeder and the major pro-
cess steps. Shown is the side view of the suction
head and its parts above a paper stack

(b) Top sketch of the sheet
feeder with the positions of
the air blast.

Fig. 8.1.: The sheet-feeding processes

stages in the process (when the sheets enter the press), which usually leads to an instant
stop of the whole work process. This involves comprehensive checkups and clearance
by the machine operator. After all sheets have been removed or aligned the process can
be resumed.

Not only do errors of this kind generate spoilage (maculature), they also delay work
progress. The average time a printing machine is out-of-order due to technical distur-
bance is an essential measure of printing efficiency and an important cost factor. Thus,
early detection of sheet errors and adequate automatic adjustment are in significant de-
mand.

To this end, a camera that points toward the upper front part of the paper stack was set
up. Constructional restrictions do not allow for frontal imaging, so the camera system
is attached near the front corner of the paper stack. A laser diode strip is worked into a
mechanical hatch to provide adequate illumination. The exposure event is triggered by
the machine clock, in the way that one image is acquired once per machine cycle. An
example of such an image can be found in Figure 8.5; note the (unavoidable) projective
distortion due to the lateral camera setup.

With this technique, image sequences are recorded in order to approach the problem
of sheet errors by image processing and machine learning techniques. Process param-
eters such as machine speed and feeder parameters are adjusted and varied to enforce
errors and non-error sequences. Sequences and frames are labeled weakly1 with a bi-
nary process state: normal or error. Image processing is used to extract meaningful
characteristics of the sheet separation as a possible predictor for the error state. Feature
selection is applied to purify the information content. Then a classification system is
trained to learn a decision boundary between to two classes from the given examples.
Once the new system has been trained, new sequences can be predicted on the basis
of the learned classifier. In particular, a learned characterization can be used to project
the (usually) high-dimensional description onto a human-readable representation in the

1Weak labeling refers to labels that are given roughly. For example: a whole image has a specific label
without indicating an exact location
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form of a heat-map, where the color of the current state (represented as a dot on the
map) indicates its process state. Hence, the feeder parameters can be adjusted by a hu-
man operator to guide the current state point into uncritical (green) regions of the state
map.

8.1.1. Experimental Setup

The experimental assembly is shown in Figure 8.2, and summarized in the following:

• Illumination and exposure is triggered automatically once per machine cycle. The
camera is therefore connected to the machine signal generator.

• It is possible to automatically record other machine/ process properties via the
COM interface, for instance the current speed, sheet format and the kind of paper.

• Due to the fact that an increased depth of focus is required; a lens was developed
by an external company.

• A industrial camera with global shutter and trigger is used (see Section 8.2 for
details).

• The scene was illuminated by a diode array integrated into a mechanical hatch
emitting red light.

• Exposure and flash time were set in the range of 400-800 µs to avoid motion blur.

All components were optimized by direct experimentation to ensure ideal acquisition
conditions.

8.2. Data Acquisition

The sequences were recorded using the industrial camera uEyu 2250-M/C [36] from
the vendor IDS. The camera is equipped with the Sony CCD image sensor ICX274AL,
which features square pixel arranged in a 1600 × 1200 array. Each pixel has a size of
4.4µm width and height. Progressive scan allows all pixel signals to be output inde-
pendently. The chip has a global shutter, which makes it possible to realize full-frame
images without a mechanical shutter. At a wavelength of 600nm (red) the chip has
a relative efficiency of 0.75. However, some sequences were recorded using an IR-A
diode array emitting light with wavelength 750nm, where the relative response drops to
≈ 0.5. Especially with the red light, the decreased chip response was compensated by
the rather high efficiency factor of the diodes.
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(a) Side view of the sheet-
feeder with loaded paper
stack: red ellipse depicts the
camera setup

(b) Frontal view of the camera
setup with the first proto-
type lens in use (red ellipse)

(c) Front corner of the feeder:
in the red ellipse, diodes
built into the mechanical
(movable) hatch become
apparent

Fig. 8.2.: The camera setup: assembly of the camera, diode array and optical lens at the
sheet feeder

The aforementioned restriction of the camera location at the corner of the sheet stack
created several drawbacks. The projective distortion results in a high resolution of parts
near the camera, however, parts far apart appear smaller. This effect can be harmless
as long as the projected object is in focus over most of its length. To this end, a en-
gineering office2 was delegated to manufacture a lens system capable of exploiting the
Scheimplfug principle [94]. This principle states that in optical imaging, the lens plane,
image plane and plane of focus intersect in one line. For the normal camera setup, all
of these planes are parallel and intersect in infinity. When the camera is tilted, one can
manipulate the plane of focus. A planar object that is not parallel to the image plane
can be completely in focus. The Scheimpflug principle is illustrated in Figure 8.4. A
test image (stripe pattern) of the camera setup illuminated with red light can be found
in Figure 8.3 depicting the good depth of focus over a range of 500mm.

8.2.1. Data Sets

Two different data sets were recorded. The first data set consisted of 1075 frames from
several sequences. 183 Frames were from an error sequence (double sheet), while the
remaining 892 frames originate from sequences where no error occurred. To provoke
these kinds of errors, feeder parameters were deliberately distorted by an experienced
machine operator.

The second data set was designed to capture the dynamics of the feeding process.
This time, parameters of the feeder were not left static (as in the first data set), but were
varied during the process. 58 Sequences are recorded in which up to three parameters
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Fig. 8.4.: Scheimpflug principle. On the left the usual camera setup is depicted. The
Scheimpflug principle can be utilized to align the plane of focus with the ob-
ject to achieve a focused projection.

is computed. The profiles correspond to gray value columns taken from the image at
different locations. In Figure 8.5, the feature extraction procedure is illustrated. This
allows for the efficient computation of image features in 1D.

Similar features have been used in blood vessel segmentation and fingerprint enhance-
ment, for example [21, 42].

8.3.1. Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a frequency-related transform used to de-
termine the frequency content of local sections of a signal as it changes. In the discrete
case, the signal to be transformed could be broken up into sections (which usually over-
lap each other, to reduce artifacts at the boundary). Each section is Fourier transformed,
and the complex result is added to a matrix, which records magnitude and phase for
each locus and frequency. This can be expressed as:

STFT{x} = X(m,ω) =
∞
∑

n=−∞

x(n)w(n−m)e−iωn (8.3.1)

The magnitude squared of the STFT yields the spectrogram of the function:

spectrogram{x} = |X(m,ω)|2 (8.3.2)

Spectral leakage causes energy from distinct spectral features to leak into adjacent
frequency channels, giving rise to spurious components in the signal’s frequency spec-
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Fig. 8.5.: Feature extraction. From left to right: Original image, selected columns in
red, and the resulting gray-value profiles

trum [98]. While spectral leakage cannot be eliminated entirely, its effects can be re-
duced. This is done by applying a tapered window function in which the sampled signal
is multiplied by a function that tapers toward zero at either end. This reduces the effect
of discontinuities in which the mismatched sections of the signal join, and hence also
the amount of leakage. A number of tapered window functions have been devised. A
popular choice is the Hann window function (see equation 8.3.3), which is essentially
one cycle of a shifted and scaled cosine function, so that it has a maximum value of 1 in
the middle and fades to zero at either ends:

ω(n) = 0.5

(

1− cos

(

2πn

N − 1

))

(8.3.3)

Before the signal is transformed, its gradient is calculated and smoothed with a Gaus-
sian filter in order to reduce noise. The discrete Fourier transform is computed with
the same size as the window size, leading to 64 frequency bins. The frequency is cut
off, maintaining the bins of only the lower 32 frequencies. The highest frequency within
those 32 corresponds to a wavelength of four pixels, which was found to be a reasonable
choice in the compromise between preserving information and feature vector size. All
the parameters of the STFT are summarized in the following table.

Signal Length Window Size Overlap Gaussian Frequencies (Cutoff)
Nx = 1600 Wl = 128 Wo = 64 σ = 1 NFFT = 64(32)

Resulting in a feature vector of length 768 per column profile

The selected STFT parameters yield the following dimensioned spectrogram, where
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each row corresponds to a frequency in the signal and column entries to positions:

#position bins×#frequency bins =

⌊

Nx −Wo

Wl −Wo

⌋

×NFFT = 24× 32 (8.3.4)

The position bins, in ascending order, correspond to locations from top to bottom of the
corresponding column profile. In Figure 8.6, three mean spectrograms of three different
column profiles are visualized. Note that the frequencies increase in the images from
left to right. This is explained by the perspective distortion found in the images3.

Fig. 8.6.: Mean spectrograms of different column profiles. From left to right: column
profile 2, 6, 10 and 12 are shown. The y-axis corresponds to frequencies (from
top to bottom), while the x-axis indicated the location in the profile.

8.3.2. Dimension Reduction

In the order to reduce the high-dimensional features, of which there are 9,216 for the
first data set (12 column profiles) and 13,824 for the second data set (18 column pro-
files), Principal Component Analysis (PCA) is applied (see Section 2.2.1). Similar to
the eigenface method [103], proposed for face recognition, PCA is used to decorre-
late and reduce the feature dimensions. Eigenvectors (in this case called eigenfeatures)
are computed to project the image onto a lower dimensional space. The first resulting
eigenfeatures are shown in Figure 8.7. Any feature (spectrogram) can be considered to
be a linear combination of these eigenfeatures. The eigenfeatures are sorted according
to their contribution toward explaining the variance in data (eigenvalue).

8.3.3. Feature Selection with Random Forest

The feature selection described in [14] was applied to assess the importance of each
feature. The Mean Gini Decrease method was employed to do so. The variable im-

3Efforts made to rectify the images as a preprocessing step caused various types of interpolation artifacts,
which could severely bias the feature extraction.
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Fig. 8.7.: First four eigenfeatures for column profile one, six and twelve.

portance score is visualized in Figure 8.8a. A Gaussian filter (σ = 1) was applied to
spatially smooth the importance map. 32 different random forests with 200 trees each
were used to access the variable importance, and the 32 resulting importance maps were
averaged. In Figure 8.8b, the two most important features selected by the random forest
criteria were plotted against one another. The results provide evidence that the problem
of distinguishing between the two classes (red and blue) is almost linearly separable.
This finding facilitates the use of linear classifiers as explained in the next section.

8.4. Classification

In order to classify each example, two different linear methods were examined. At
first, Linear Discriminant Analysis (LDA), sometimes also called Fisher’s Discriminant
Analysis, was applied. LDA approaches the problem by assuming that the conditional
probability density functions P (x|y = error) and P (x|y = normal) are both normally
distributed for features x. In contrast to Quadratic Discriminant Analysis (QDA), it is
assumed that both classes y share the same covariance matrix. The Gaussian assumption
causes linear decision boundaries in the feature space and renders LDA a widely used
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8.5. Online Visualization of Process State

Ideally, a trained classification system should close the control circuit, meaning that the
feeder parameters are adjusted on the basis of the current estimate of the process state in
relation to a stable state, which was identified during the training phase of the classifier.
Technically this requires an interface that is tunable to the machine’s feeder. However,
the parameters can only be actuated by hand and no computerized interface exists so
far. To this end, an online visualization was developed that assists a human operator
in readjusting the feeder. On the basis of dimension reduction, the high-dimensional
feature space can be mapped onto a two-dimensional grid, indicating the process’ state
by an underlying heat map. This heat map is generated on the basis of self-organizing
maps (see section 8.5.1.

Data set two was designed to capture the dynamics of the feeder process. As men-
tioned above, different controllers at the feeder can be adjusted manually. The variation
of up to three different parameters is examined in 58 sequence experiments, where the
parameter of interest was varied continuously from a start state to an end state (for ex-
ample from almost no air to full pressure at the corner air nozzle). The variation was
designed to end when approximately 100 frames (=100 sheets) were recorded.

In Figure 8.9a an example is plotted. The three dimensional subspace of decorrelated
features (computed using PCA) is shown, where each axis corresponds to one of the
first three principal component directions. The blue curve illustrates the variation of a
main, single factor: strength of the air nozzle at the front corner location. Both a normal
sequence - in which all parameters are set to default values (green) - and a double sheet
sequence are also plotted as a reference (red). In order to see the temporal progress of
the feature points in that space, the frame number of the blue curve is added. Starting
next to the green sequence, the blue curve progresses to another region in the feature
space (starting at frame 13 and ending up at frame 25).

Self-organizing maps (see Section 8.5.1) were applied to map the feature space span-
ned by the spectrogram features onto a two-dimensional grid. The basic procedure is as
follows:

1. Computation of the principal components of the training data. The PCA is done
on each column profile separately (to avoid a high memory load).

2. Training of a self-organizing map, where the first m principal components from
each column profile serve as the input space. For m = 5 this makes up 90-
dimensional space.

3. Use the label information of the sequence data to associate each labeled sample
with a best matching neuron and count how often a neuron was selected by the
given class. This results in a count map per class.
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(a) Decorrelated feature space, where
each axis corresponds to a principal
component direction. The blue curve:
variation of a single parameter. Green:
normal sequence. Red: error sequence

(b) Left: SOM heat map with current estimate of the
process state (white circular dot). Right: corre-
sponding frame from the current time point

Fig. 8.9.: Variation of feeder parameters visualized in the feature space and on the self-
organizing map

4. The counts of the error class are put into the red-channel of an RGB image where
the normal counts are put into the green channel. Smoothing and appropriate
rescaling of the color values yield a color coded image (see Figure 8.9b for an
example).

Once the color coded image is computed, it is used to indicate the current state of
the process by overlaying the present best matching neuron as a white dot. An offline
demonstration tool is implemented in Matlab, where different sequences can be loaded
and visualized. The tool shows the learned SOM heat map and the current winner
neuron next to the current image frame. A more detailed description of self-organizing
maps can be found in section 8.5.1.

8.5.1. Self-Organizing Maps

A self-organizing map (SOM) is a special type of artificial neural network related to
vector quantization. Unsupervised learning of the network results in a low-dimensional
representation of the input space called the map. Self-organizing maps use a neighbor-
hood function to preserve the topological properties of the input space. This discretized
representation of the input space is typically a two-dimensional grid of nodes/neurons
which is useful for visualizing high-dimensional data. The model was first described
as an artificial neural network by Kohonen [58, 59], and is sometimes referred to as a
Kohonen map.

Self-organizing maps operate – like most classifiers – in two modes: training and pre-
diction (in this context also called mapping). Training builds the map in a competitive
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process using input examples. Predicting automatically classifies a new input vector.
A self-organizing map consists of components called neurons. A weight vector of the
same dimension as the input data vectors is associated with each neuron. The neurons
are also located in a low dimensional map space (typically two dimensional). The usual
arrangement of neurons is a regular spacing rectangular grid. The self-organizing map
describes a mapping from the higher dimensional input space to the lower dimensional
map space. The procedure for placing a vector from an input space onto the map is to
find the neuron with the closest weight vector called the best matching unit (BMU).

As mentioned above, the self-organizing map is built in an unsupervised fashion.
Given a set S of training stimuli characterized by their d-dimensional feature vectors:

S = {xi|xi ∈ R
d} for i = 1, . . . , n (8.5.1)

and a map topology N containing each neuron’s weight vector and its position in the
net

N = {ni = (wi, pi)|wi ∈ R
d, pi ∈ N× N} for i = 1, . . . , n (8.5.2)

the adaptation (or learning) phase consist of several steps. From the set of training
stimuli S, a sample x

t
j is drawn randomly. Since the learning of the SOM is an iterative

procedure, t refers to the current time point. Now, the best matching neuron nt
i is found

by comparing the neuron’s weights with the current stimulus x
t
j . The neuron with the

smallest distance to x
t
j is selected by a given metric d(·, ·). A typically choice for the

metric is the Euclidean distance:

d(a, b) =

√

√

√

√

n
∑

i=1

(ai − bi)2. (8.5.3)

The location pj of the winning neuron nt
i is called the excitation center of the stimulus

x
t
j . All neurons close to that excitation are determined by:

E
t = {ni = (wi, pi)|d(pj, pi) < δt}, (8.5.4)

where δt is a time-dependent threshold on the radius surrounding nt
i. A learning step

is applied to all neurons in the set Et. The weights of each neuron change towards the
current input stimuli by:

w
t+1

i ← w
t
i + ǫt · ht · (xt

j −w
t
i), (8.5.5)

where ǫt is the learning rate and ht spatial neighborhood function (typically Gaus-
sian). In order to achieve stable result, the learning rate has to decrease over time. Also
the neighborhood size involved in updating the weights of the neurons has to shrink.
The whole process is iterated until the maximal iteration tmax is reached. For the exper-
iments, the SOM toolbox [106] is used. The learning rate is set to:
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ǫt =
ǫ0

1 + 100t
tmax

, with tmax = 4 · n, (8.5.6)

where n is the number of training examples. The neighborhood function and thresh-
old ht, δt (which defines the circular mask) is chosen to be a Gaussian with default
parameters provided by the toolbox. The training comprises two phases: rough training
with large initial neighborhood radius and initial learning rate ǫ0 = 0.5, and fine tuning
with a small radius and initial learning rate of ǫ0 = 0.05. The map size is set to 31× 31
neurons and is initialized by the principle components method [60].

8.6. Discussion

The dynamics of the sheet feeder process were studied here. Efficient feature extraction
on the basis of Fourier transform were proposed and presented good results together
with a linear classification methodology. Random forests were used to score the feature
importance to select discriminant features. Two data sets were recorded to study the
static and varying feeder parameters. In the first, error frames can be reliably distin-
guished from normal ones. The latter is used to characterize the parameter variation
of the feeder by means of feature response. A dimension reduction method (PCA) is
used to reduce the dimensionality of the feature vectors and to visualize parameter vari-
ation in the decorrelated feature space. Finally the SOM framework was applied to map
the still high-dimensional essence of the dynamics down to a two-dimensional grid of
neurons. This is a prerequisite for semi-automated process control, integrated into the
printing machine, where a human operator reacts to the online visualized process state
by adjusting feeder parameters.

However, the question remains as to whether the learned models (either linear support
vector machine or self-organizing map) generalize to different (printing) substrates. Be-
cause it is a multi-purpose tool, a printing machine is able to handle a variety of paper,
cardboard and transparent films. Cardboard results in a lower-frequency response due
to its thickness and less dynamics as a result of its rigidity. The current camera and illu-
mination setup deals with problems in underexposure and reflections when printing on
transparent films. As a proof-of-concept, the experiments examined in this thesis were
accomplished on standard paper with a height a 135 g/m2.

An important aspect for future considerations is autonomous generation of training
data. Signals (such as feeder parameters, speed and error state) and images could be
recorded under typical workaday conditions and a fixed camera assembly would guar-
antee reproducibility of the acquisition process. This demands a more computerized
machine interface and a computer dedicated to this purpose.
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9. Conclusion

In Chapter 3, a framework and an interactive implementation tool is introduced and ap-
plications to biomedical imagery are evaluated. The learning procedure aids domain
experts in interactively classifying and segmenting images in an explorative and con-
venient fashion. Results for autonomous cell counting show only little deviation from
manual counts and can easily be applied to bigger data sets, where human labor is vir-
tually impossible. In addition, it is shown that the DNA channel is sufficient to segment
and classify mitotic cells, thus avoiding the need for an additional mitosis markers.

The framework was successfully applied to retina blood-vessel segmentation, yield-
ing an area under the curve of Az = 0.94, which lies in the range of previously published
results for that data source. Hence, the learning approach with a general feature set is ap-
plicable to fine structures as exist in the retina images. The incorporation of multi-scale
features has shown to be a beneficial ingredient in coping with structures of varying
size (blood vessels). That the framework inherently supports multiple classes has been
shown in the application to retina cross-sections.

Highly optimized implementations of the underlying algorithms made it possible to
deploy the whole approach in a unifying tool kit that comes along with a graphical user
interface; it is designed to be easily usable, even for novices in the field of image pro-
cessing. Convenient interfaces and object-oriented programming ensure maintainability
and short development cycles for further improvements. The tool supports up to four-
dimensional multi-spectral data; a file specification on the basis of the HDF5-format
was introduced to jointly save raw data, labels, processing results and meta information.
The approach combines a convenient user interface with a state-of-the-art classifier. The
generalization ability of the classifier and its intrinsic support for variable selection has
been exploited for several segmentation tasks. The approach is robust since the user only
needs to input a few labels, and the classifier is trained on a set of generic features that
work across many types of images. The learning procedure was applied without explic-
itly taking advantage of domain knowledge; however, for some data domains, specific
application dependent post-processing was applied, e.g. seeded watershed transform or
shortest path reasoning.

In an application to adult neurogenesis, object properties from various channels are
set in relation. Particularly, the locations of proliferating cells within the molecular
layer of the dentate gyrus are identified. Executed with the intuitive learning interface,
the algorithm provides the user with segmentation that has satisfactory accuracy. Due to
the supervised learning concept used in the initial step for the segmentation, this method
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is highly adaptive to tackling imaging artifacts such as inhomogeneous illumination in
image stacks without employing preprocessing.

Using this framework, the classifier is able to predict the boundary probability of
tumor-stroma borders. A global optimization technique is applied to obtain the course
of the boundary as the best path based on these boundary cues. Results demonstrate
excellent performance for images coming from early time points in the underlying bio-
logical experiment. For more complex formations of the stroma-tumor border, usually
occurring at later time points, the algorithm yields satisfactory results, as is witnessed
by visual inspection.

Apart from the interactive learning approach, a modular and flexible microscopy-
based RNAi screening platform is described for the investigation of host factors in-
volved in virus-host interaction. The procedure was shown to be suitable for robust and
sensitive detection of host cell factors involved in HIV-1 replication using different cell
culture formats. Dedicated image processing procedures were developed to process the
very large amounts of high-throughput image data in reasonable time. Image quality
control mechanisms ensure the reliable and relevance of the autonomously generated
readouts by excluding erroneous image regions originating from contamination and
imaging artifacts. One-class learning techniques on top of similar feature descriptors
(as used in the interactive framework) have been successfully applied for this purpose
and extended to a patch-based recognition system.

For the segmentation of copper wires spread in tag-labels in an industrial collabora-
tion, results of the proposed methodology attest: discriminant features, together with
a non-linear classifier, achieved a more accurate and robust performance comported to
previously used thresholding approaches. In particular, light reflexes can be handled
without problem-specific measures and are intrinsically learned by the classifier. The
random forests present very good generalization performance, which is suggested by
ROC curve analysis.

The dynamics of a sheet feeder process were also studied within this thesis. Global
features extracted on the basis of short-term Fourier transform were proposed and show-
ed good results when taken together with a linear classification methodology. Random
forests are used to score the feature importance in order to select the most discriminant
feature subset. Two data sets were recorded by the author to study static and varying
feeder parameters. In the first, error frames can reliably be distinguished from normal
ones with a test accuracy of 0.997. The latter is used to characterize the parameter
variation of the feeder by means of dimension reduction. Principal component analysis
is used to reduce the dimensionality of the feature vectors and to visualize parameter
variation in the decorrelated feature space. Finally the self-organizing map framework
was applied to map the still high-dimensional essence of the dynamics onto a two-
dimensional grid. This is a prerequisite for semi-automated process control integrated
into the printing machine, where human operators are enabled to react to the online
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visualized process state by manually adjusting feeder parameters.
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10. Outlook

The proposed interactive framework is limited to local brightness, color and texture, and
is not designed to capture global context. Indeed it can easily be utilized as a first stage
tool to solve advanced problems on top of its output. A very interesting point in the
experiments is that the few user labels are more informative than the abundant labels
from the ground truth, which leads to superior classification performance. This raises
the question of how the classifier can actively propose regions where the system needs
more labels from the user. One idea is to use the out-of-bag samples in the training phase
of the random forest classifier to compute a certainty map. This enables the system to
ask for labels that it deems informative. For active learning to be useful in practice, it is
vital that the learner responds swiftly. This may require incremental learning strategies
that are able to gradually adapt their model to new incoming labels. Two incremental
learning algorithms were implemented1 and are currently being examined. The first is
based on LaSVM [8]; the latter extends the random forest for online learning [90].

The interactive learning framework has proven to be a useful tool in several applica-
tions. The main reason for this was the deployment of a tool that bundles the learning
and segmentation methodology into a graphical user interface. A wide scope of im-
provements and extensions are planned to be integrated in the future. A well-engineered
visualization of three-dimensional volume data will further facilitate the labeling pro-
cess. One-class learning showed very good results in image quality control and is a
promising extension to preprocessing general image data. Of particular interest for the
collaboration partners from industry and biology is the organization of meta data be-
longing to the data items in an persistent and integrated manner. This will be added
using the HDF5 file format specification. Huge data sets, which cannot even be loaded
into main memory of standard work stations, need a concept for distributed process-
ing. Remote objects and the message passing interface (MPI) are currently examined
to extend the framework to cluster computing. Python supports both techniques and
promising pilots test were carried out.

The successful analysis of data from the hippocampus of mouse brains opens up
several new directions in which to proceed. The framework can be applied to other
experiments that are currently being carried out at the laboratory of Ana-Martin Vilalba,
concerning similar questions of the adult neurogenesis in the subventricular zone.

The calculation of the optimal path based on a trained classifier model enabled the

1by Nathan Hüsken
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reliable quantification of blood vessels in tumor tissue. The problem of short cuts is still
a challenging research topic. The interface refinement tool enabled the user to provide
attractor or blocking guides to refine the border probability. However, these corrections
steps could also be used to further improve the learner.

Standard image processing on a large scale, combined with machine learning to inte-
grate image quality control, are key components in the Viroquant RNIi platform. Future
extensions will include automated classification of images based on cell morphologies,
so that knockdown phenotypes can be classified in more detail and better correlated with
biological processes. First steps have been taken by integrating the screening results into
the iChip project. Comparative analysis using other viruses on the same platform will
elucidate commonly used cellular host factors exploited by different viruses, which may
serve as novel drug targets for broad spectrum antivirals. Finally, efforts at standardiza-
tion of RNAi screening procedures are made and offer experience with this platform as a
robust basis on which to build new systems. Moreover, correlative microscopy will ben-
efit immensely from learning techniques to bridge the gap between conventional wide
field microscopy to high resolution imaging techniques.

Segmentation of copper wire structures for product authentication has demonstrated
superior performance to other examined methods. However, the bottleneck in runtime
performance is identified to be the prediction time of the random forest. The feature
computation is done in less than 0.2 sec on a conventional notebook, while prediction
time is about 1.5 sec (random forest with 100 trees) on the same machine. An obvious
solution to this problem is to use an appropriate multi-core CPU, where the prediction
can be easily distributed due to fact that each tree in the forest is independent from the
others. An alternative is to stop the prediction process earlier when a first fraction of
trees agree to some extent.

In this thesis several video sequence data sets were acquired to investigate the pro-
cess state of the sheet-feeding process. A novel classification based approach based on
global frequency estimates was proposed for this purpose. An unsupervised online vi-
sualization of the process state was also suggested. However, the question remains as
to whether the learned models (either linear support vector machine or self-organizing
map) can be generalized to different (printing) substrates. Because it is a multi-purpose
tool, a printing machine is able to handle a variety of paper, cardboard, and transparent
films. Cardboard results in lower frequencies due to its thickness and less dynamics as
a result of its rigidity. The current camera and illumination setup will be confronted
with problems in underexposure and reflections when printing on transparent films. As
a proof-of-concept, the experiments examined in this thesis were accomplished on stan-
dard paper. An important aspect for future consideration is autonomous generation of
training data. Machine signals and images could be recorded under typical workaday
conditions and a fixed camera assembly would guarantee reproducibility of the acqui-
sition process. This requires a more computerized machine interface to the printing
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