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1.  Abstract 

Microsatellite instability (MSI), i.e. length variations of repetitive DNA sequences 

(microsatellites) occurs in colorectal cancer (CRC) due to defects in the DNA 

mismatch repair (MMR) system and is a hallmark of tumors associated with hereditary 

non-polyposis colorectal cancer (HNPCC, 1 – 5% of total CRC) as well as sporadic 

CRC (15% of total CRC). Instability in coding region microsatellites (cMNR) of 

expressed genes lead to frameshift mutations and a subsequent loss of protein 

function or the translation of a truncated protein. Despite the obvious significance of 

altered glycoprotein synthesis, transport and glycosylation patterns in colorectal 

cancer, aberrant glycosylation and glycosylation pathways have not been investigated 

in MSI colorectal tumors.  

Using a bioinformatics-based approach 28 cMNR harboring candidate genes 

were identified that encode proteins of the cellular glycosylation machinery. Coding 

MNR mutation analysis in MSI CRC cell lines revealed a high mutation frequency in 

two genes: the glycoprotein transporter gene LMAN1/ERGIC53 (52%; 12/23) and the 

xylosyltransferase gene XYLT2 (35%; 8/23) that catalyzes the first step in 

proteoglycan synthesis. Apart from their occurrence in cultured cell lines these genetic 

alterations were also found at similar frequency in MSI colorectal adenomas (LMAN1: 

40%, 8/20; XYLT2: 21%, 4/19) as well as carcinomas (LMAN1: 46%, 78/170; XYLT2: 

26%, 27/105). Biallelic mutations, abrogating normal protein function, were detected in 

MSI CRC cell lines (LMAN1, XYLT2) and in primary colorectal tumors (LMAN1). 

 Biallelic mutant LMAN1 was transcribed but not translated into a stable protein 

in MSI CRC cell lines or LMAN1-mutated areas in tumors. MSI CRC cell lines with 

biallelic LMAN1 mutations behaved different to LMAN1-proficient CRC cell lines. 

LMAN1-deficient cell lines exhibited severely reduced transport and secretion of the 

LMAN1 cargo protein alpha-1-antitrypsin (A1AT), an inhibitor of angiogenesis and 

tumor growth but impaired secretion could be restored upon LMAN1 re-expression. A 

strong correlation between lower local levels of A1AT and enhanced tumor growth has 

been described. Furthermore, re-expression of LMAN1 in LMAN1-deficient LoVo cells 

led to a cell surface glycoprotein pattern different from the pattern observed on LoVo 

cells lacking LMAN1. Increased binding of PHA-L lectins to the cell surface suggested 

a glycosylation pattern known to be involved in the progression of cancer from a 

tumorigenic to a metastatic phenotype. 
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A radioactive incorporation assay with 3H-xylose also revealed changes in 

proteoglycan synthesis of a XYLT2-deficient MSI CRC cell line transiently transfected 

with a XYLT2-construct.  

Overall, two members of the cellular glycosylation machinery, a glycoprotein 

transporter and a glycosyltransferase, appear to be involved in MSI tumorigenesis. 

Genetic alterations in LMAN1 and XYLT2 mark early events already detectable in 

preneoplastic lesions. Furthermore, loss of LMAN1 and XYLT2 protein function 

changed the secretion of proteins and the cell surface glycosylation pattern. Both 

genes might influence MSI tumor progression by changing cell-cell communication and 

interactions. 

1.1  Zusammenfassung 

Mikrosatelliten-Instabilität (MSI), d.h. Längenvariationen in repetitiven DNA-Sequenzen 

(Mikrosatelliten), wird in kolorektalen Karzinomen (CRC) durch die funktionelle 

Inaktivierung eines zellulären DNA-Reparatursystems verursacht, dem sogenannten 

Mismatch-Reparatur (MMR) System. MSI ist ein Kennzeichen von MSI-Darmtumoren, die 

entweder sporadisch (15% aller Kolonkarzinome) oder im Rahmen des hereditären nicht-

polypösen Kolonkarzinoms (hereditary non-polyposis colorectal cancer HNPCC; 15% aller 

Kolonkarzinome) entstehen. Instabilität in Mikrosatelliten eines kodierenden Genabschnitts 

(cMNR) exprimierter Gene, führen zu Basenfehlpaarungen, die anschließend einen Verlust 

der Proteinfunktion oder die Entstehung verkürzter Proteine (Neopeptide) zur Folge haben. 

Eine veränderte Glykoprotein-Synthese, veränderter Transport und ein verändertes 

Glykolisierungsmuster haben eine offensichtliche Bedeutung in kolorektalen Karzinomen, 

allerdings wurden abnormale Glykosylierung und Glykosylierungswege bisher nicht in MSI 

kolorektalen Tumoren untersucht.

Unter Verwendung von Datenbank-Analysen wurden 28 Kandidatengene mit einem 

cMNR identifiziert. cMNR-Leserastermutations-Analysen bei einer Auswahl von MSI CRC 

Zellinien zeigten bei zwei Genen eine hohe Mutationsfrequenz: bei dem Glykoprotein-

Transporter Gen LMAN1/ERGIC53 (52%; 12/23) und dem Xylosyltransferase Gen XYLT2 

(35%; 8/23), das den ersten Schritt der Proteoglykan-Synthese katalysiert. Neben 

genetischen Veränderungen in MSI CRC Zellinien wurden ähnlich hohe 

Mutationsfrequenzen in MSI kolorektalen Adenomen (LMAN1: 40%, 8/20; XYLT2: 21%, 

4/19) und in MSI kolorektalen Karzinomen (LMAN1: 46%, 78/170; XYLT2: 26%, 27/105) 

beobachtet. Biallelische Mutationen, die eine veränderte Proteinfunktion zur Folge haben, 
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wurden in MSI CRC Zellinien (LMAN1, XYLT2) und in primären kolorektalen Tumoren 

(LMAN1) gefunden.  

Das biallelisch mutierte LMAN1-Gen wurde in MSI Darmkrebs-Zellinien 

transkribiert, jedoch nicht in ein stabiles Protein translatiert. Auch im Gewebe konnte eine 

biallelische LMAN1-Mutation mit einem Proteinverlust assoziiert werden. MSI 

Darmzellinien mit biallelischen LMAN1-Mutationen zeigten ein verändertes Verhalten im 

Vergleich zu LMAN1-exprimierenden MSI Darmzellinien. LMAN1-defiziente Zellinien 

wiesen einen reduzierten Transport und eine reduzierte Sekretion von einem LMAN1-

Transportprotein Alpha-1-Antitrypsin (A1AT) auf. A1AT ist ein Inhibitor der Angiogenese 

und des Tumorwachstums. Die eingeschränkte A1AT-Sekretion konnte durch Re-

Expression von LMAN1 in LMAN1-defizienten Zellinien wieder hergestellt werden. Es 

wurde gezeigt, dass ein Verlust der A1AT-Sekretion einen Wachstumsvorteil für den 

Tumor darstellt. Außerdem führte ein LMAN1-Verlust zu einem veränderten 

Glykosylierungsmuster an der Zelloberfläche von LMAN1-defizienten LoVo Zellen im 

Vergleich zu LoVo Zellen, die LMAN1 stabil exprimierten. Die vermehrte Bindung von 

PHA-L Lektinen an die Zelloberfläche war verbunden mit mehr β1-6 Verzweigungen in 

LMAN1-defizienten LoVo Zellen. β1-6 Verzweigungen sind Glykosylierungsmuster, die mit 

der Tumorprogression und der Metastasen-Entstehung in Verbindung gebracht werden. 

Der radioaktive Einbau von 3H-Xylose zeigte Veränderungen in der Proteoglykan-

synthese XYLT2-defizienter MSI-Darmzellinien, die mit einem XYLT2-Konstrukt transient 

transfiziert wurden.  

Es wurden insgesamt zwei Mitglieder der zellulären Glykosylierungsmaschinerie, 

ein Glykoproteintransporter und eine Glykosyltransferase, identifiziert, die einen Einfluss 

auf die MSI Tumorgenese haben könnten. Genetische Veränderungen in LMAN1 und 

XYLT2 sind früh auftretende Ereignisse, die bereits in prä-neoplastischen Läsionen 

nachweisbar waren. Zudem änderte der Verlust von LMAN1 und XYLT2 die Sekretion von 

Proteinen und das Glykosylierungsmuster an der Zelloberfläche. Beide Gene könnten die 

MSI Tumorprogression durch eine veränderte Zell-Zell Kommunikation oder Interaktion 

beeinflussen. 
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2. Introduction 

2.1 Colorectal Cancer 

Colorectal cancer (CRC) is the fourth most common cancer in men and the third 

most common cancer in women. Worldwide more than one million people develop 

CRC per year [Parkin et al., 2005] and 11% of total cancer deaths are related to 

CRC. The 5-year survival rate depends on tumor stage, varying from 80 – 95% for 

early stage tumors and 0 – 7% for tumors in a late stage [Weitz et al., 2005]. 

During carcinogenesis normal colonic epithelium transforms into colon adeno-

carcinomas, accompanied by a progressive accumulation of genetic alterations 

[Fearon et al., 1990; Lynch et al., 2002]. CRC is caused by the sequential 

accumulation of multiple somatic mutations affecting different cancer-related 

genes. Two major pathways lead to CRC, the chromosomal instability (CIN) 

pathway and the microsatellite instability (MSI) pathway [Lengauer et al., 1997]. 

2.2 Molecular Pathogenesis of MSI and CIN 

Although the majority of CRCs shows CIN (85%), about 15% of CRCs are 

attributable to defects in the DNA mismatch repair (MMR) system [Boland et al., 

1998; Hampel et al., 2005; Ionov et al., 1993]. MMR-deficient CRCs may develop 

sporadically or in the context of hereditary non-polyposis colorectal cancer 

(HNPCC) or Lynch syndrome [Lynch et al., 1999; Thibodeau et al., 1993]. DNA 

MMR deficiency induces a high number of mutational events characterized by 

small alterations at the nucleotide level like missense, nonsense and frameshift 

mutations [Söreide et al., 2006]. These mutations occur mainly at short repetitive 

DNA sequences, termed microsatellites, because these structures are particularly 

prone to DNA polymerase slippage during DNA replication. The resulting 

phenotype is termed high-level microsatellite instability (MSI-H). For molecular 

diagnostics of MSI-H tumors the National Cancer Institute (NCI) has recommended 

a panel of five microsatellite markers, known as Bethesda markers, which include 

two mononucleotide repeats, BAT25 and BAT26 [Boland et al., 1998], and three 

dinucleotide repeats, D2S123, D5S346 and D17S250 [Umar et al., 2004]. If two or 
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more markers are mutated, tumors are diagnosed as MSI-H. In contrast, CIN 

cancer is characterized by large chromosomal alterations like allelic losses, 

chromosomal amplifications and translocations, as well as loss of heterozygosity 

(LOH). Most CIN cancers are microsatellite stable (MSS). Tumors with CIN have 

mutations in APC, p53 and the RAS gene [Samowitz et al., 2001], whereas tumors 

with MSI show, after the initial loss of the MMR function, mutations in specific 

target genes, such as β-Catenin, transforming growth factor ß receptor II 

(TGFBR2) and activin A receptor type IIA (ACVR2A) [Kim et al., 2003; Markowitz 

et al., 1995]. Both pathways require an early step mutation of distinct genes 

followed by characteristic further mutations (Fig. 2.1).  

 

Figure 2.1 Characteristics of the two major pathways in colorectal 
cancer [Söreide et al., 2006]. About 85% of CRCs account for the 

CIN/MSS and 15% for the MSI pathway. MSS tumors show mutations in 

APC, p53 and the Ras-genes, whereas MSI tumors have mutations in the 

MMR genes and subsequently specific target genes are mutated, such as 

beta-Catenin, TGFBR2, BAX and ACVR2. 
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2.3 Microsatellite Instability (MSI) in Colorectal Cancer 

Sporadic as well as hereditary MSI-H cancers show functional inactivation of the 

MMR system. In HNPCC and Lynch syndrome tumors defects are caused by 

germline mutations in one of four MMR genes (MLH1, MSH2, MSH6 and PMS2) 

whereas in sporadic MSI-H tumors defects are attributable to epigenetic silencing 

of the MLH1 promoter [Boland et al., 1998; Ionov et al., 1993; Kane et al., 1997; 

Thibodeau et al., 1993]. In addition to MLH1 promotor methylation in sporadic MSI-

H tumors, these tumors are associated with BRAF mutations [Rajagopalan et al., 

2002]. BRAF is a serine/threonine kinase involved in the MAPK signalling pathway 

[McGivern et al., 2004]. The occurrence of MLH1 promoter hypermethylation and 

BRAF mutations distinguish HNPCC from sporadic MSI-H colon cancers. 

2.3.1 Molecular background of MSI tumors 

Microsatellites represent the most variable types of DNA sequences in the genome 

and are estimated to account for about 3% of the human genome. Microsatellites 

consist of repetitive units of different length with one to five base pairs, non-

randomly distributed throughout the human genome [Ellegren, 2004; Li et al., 

2004]. The maintenance of microsatellite stability is controlled by the MMR system, 

which is able to correct base substitutions and mismatches as well as 

insertion/deletion mutations. Figure 2.2 shows the role of the MMR system in 

maintaining the length of microsatellite sequences. Microsatellites are distributed in 

non-coding regions (intragenic or intergenic) or in coding regions. Intragenic 

regions like promoters, 3`-untranslated regions and introns can be important 

regulators of gene expression, while intergenic regions could have functions in 

chromatin organization and recombination [Shah et al., 2010]. Mutations in 

microsatellites located in coding regions of expressed genes might lead to a loss of 

protein function or the translation of truncated proteins due to frameshift mutations. 

Coding microsatellites consisting one type of nucleotide (in Fig. 2.2 an A8 repeat is 

shown) are known as mononucleotide repeats (cMNRs). Examples for genes 

frequently affected by cMNR mutations in MSI tumors are TGFBR2, ACVR2A, 

caspase 5 (CASP5) or the BCL2-associated X protein (BAX) [Duval et al., 2002]. 

 6 



Introduction 
  

Frameshift-derived truncated proteins harbor neopeptide tails at their C-terminus 

that represent potentially antigenic epitopes capable to induce cellular and/or 

humoral immune responses [Linnebacher et al., 2001; Schwitalle et al., 2008]. It is 

generally assumed that coding microsatellite frameshift mutations in some of these 

genes provide a growth advantage to MMR-deficient cells and hence drive MSI 

tumorigenesis [Woerner et al., 2003].  

 

Figure 2.2 Role of the MMR system in maintaining microsatellite length [Kloor et al., 
2005]. MSI is associated with frameshift mutations in repetitive sequences, which can not be 

repaired by the MMR-system because of a defect either in the germline in HNPCC or by 

epigenetic silencing (MLH1-promotor) in sporadic MSI-H colorectal tumors. In MMR proficient 

cells slippages of polymerase enzymes during replication can occur either on the parental or 

daughter strand (left panel). The MMR system recognizes slippages and they are repaired. In 

MMR deficient cells insertion or deletion mutations are manifested, since they are not 

recognized by the MMR system (right panel).  

Our group has established a database of human cMNR mutations 

(www.seltarbase.org) and proposed a statistical model that allows the prediction of 

genes, that when mutated might provide a growth advantage to affected cells, 

including prediction of selective targets in human MSI-H tumorigenesis [Woerner et 

al., 2010]. The statistical model of this database is based on a sigmoid regression 

analysis aiming at the identification of genes involved in MSI carcinogenesis by 

their mutation frequency in cMNRs. There, the given cMNR length is brought into 
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correlation with the average mutation rate, revealing genes with increased or 

decreased mutation frequency. Accordingly, major efforts in MSI tumor research 

have been directed towards identifying these genes and analyzing their functional 

role. 

2.3.2 Clinicopathological characteristics of MSI tumors 

MSI colorectal tumors show a distinct clinical phenotype characterized by a poor 

differentiation [Greenson et al., 2003], strong lymphocytic infiltration [Dolcetti et al., 

1999; Smyrk et al., 2001], better prognosis and a mucinous histology [Jass, 1998]. 

Besides, MSI tumors are more frequently found in the proximal colon, are nearly 

diploid and when associated with Lynch-syndrome occur at an earlier age [Umar, 

2004]. In contrast, sporadic MSI CRC is most frequently found in older women 

[Young et al., 2001]. Furthermore MSI tumors are resistant against certain DNA-

damaging chemotherapeutic drugs, such as 5-fluorouracil (5-FU) [Carethers et al., 

1999]. In addition, colorectal cancers exhibiting MSI show a strong lymphocytic 

infiltration and a low frequency of distant metastasis [Buckowitz et al., 2005]. This 

might be attributable to enhanced immunogenicity conferred by MSI tumor specific 

neopeptides [Linnebacher et al., 2001; Schwitalle et al., 2008]. In addition to 

neopeptides, MSI-specific changes of glycopeptide expression on the cell surface 

might also contribute to the high immunogenicity in MSI tumors. 
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2.4 Eucaryotic glycosylation 

More than 5% of all mammalian genes are involved in glycosylation, encoding for 

glycosyltransferases, glycoprotein transporters or glycoprotein modifiers [Apweiler 

et al., 1999; Hebert et al., 2005; Lowe et al., 2003]. Nine monosaccharides are 

commonly found in mammals and used in the enzymatic process of glycosylation 

[Ohtsubo et al., 2006]: D-glucose (Glc), N-Acetyl-D-glucosamine (GlcNAc), D-

galactose (Gal), N-Acetyl-D-galactosamine (GalNAc), D-mannose (Man), D-xylose 

(Xyl), D-Glucuronic acid (GlcA), L-Fucose (Fuc) and sialic acid, e.g. N-

Acetylneuraminic acid (NeuAc). Conserved biosynthetic pathways provide all nine 

monosaccharides from sugars ubiquitously present in the diet. These 

monosacchrides can be covalently attached to other molecules and then 

sequentially elongated and branched creating protein-associated N- and O-

glycans, glycosaminoglycans (GAGs), and lipid-associated glycans such as 

glycosphingolipids (GSLs), as well as free glycans in the form of hyaluronan 

[Potapenko et al., 2010]. N-linked glycoproteins possess a glycosidic bond to 

asparagine residues of proteins and O-linked glycoproteins are linked to the core 

protein via serine or threonine residues. Glycans participate in multiple 

mechanisms of cellular regulation, spanning from protein quality control and 

intracellular trafficking to roles in extracellular compartments where cell-cell 

communication is modulated by adhesion, receptor activation, signal transduction 

and endocytosis (Fig. 2.3; [Ohtsubo et al., 2006]). Details on glycan function and 

the different glycan structures important for the available study are presented in 

sections 2.4.1 – 2.4.5.  
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Figure 2.3 Overview of glycan functions. Glycans produced in the secretory pathway 

possess mutilple functions in cellular processes, including protein folding, quality control and 

intracellular trafficking. Cell-cell communication is modulated by adhesion, receptor activation 

and signal transduction. ER: endoplasmic Reticulum; ERGIC: ER-Golgi intermediate 

compartment; PM: plasma membrane. 

2.4.1 N-glycosylation and the secretory pathway 

Transfer of the Dolichol-linked precursor to nascent proteins 
Oligosaccharide chains of N-gycosylated proteins are connected to the core 

protein via an asparagine residue in a distinct sequence motif. They are pre-

assembled on a lipid-based anchor in the Endoplasmic reticulum (ER). This lipid-

based anchor, the lipid-linked oligosaccharide dolicholpyrophosphate (LLO-Dol-

PP) comprises a 14-residue oligosaccharide, composed of nine Man, two GlcNAc 

and three Glc residues. The transfer is catalyzed by an oligosaccharyltransferase 

(OST) linking the 14-residue oligosaccharide en bloc to an asparagine (Asn) 

residue in the consensus sequence Asn-X-Ser/Thr (Fig. 2.4). After the covalent 

attachment of the oligosaccharide from LLO-Dol-PP to asparagine residues, a 

series of processing reactions occur, including folding and quality control [Gabius 

H-J, 2009]. 

Refolding and quality control in the ER 

The ER contains several proteins that accelerate the folding of newly synthesized 

proteins within the ER lumen. ER chaperones, the homologous lectins calnexin 
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(CX) and calreticulin (CR), bind to mono-glucosylated glycoproteins (Fig. 2.4; 

[Trombetta et al., 1998]). The removal of glucose residues, catalyzed by α-

glucosidases (Glc I, II), is associated with protein folding mechanisms and starts 

immediately after transfer from the lipid-linked oligosaccharide.  

 

Figure 2.4 Model for the quality control of glycoprotein folding [Varki et al., 2009]. 
Proteins translocating over the Sec61 transporter into the ER are N-glycosylated by the 

oligosaccharyltransferase (OST (1)). Two glucose residues are removed by the sequential 

 11



Introduction 
  

action of α-glucosidases GI and GII to generate a mono-glucosylated N-glycoprotein (2) that 

is recognized by Calnexin (CX) and/or Calreticulin (CR), associated with the protein disulfide 

isomerase ERp57 (3). Chaperones and protein disulfide isomerase (PDI) Erp57 are part of 

the N-glycoprotein quality control in the ER. Misfolded glycoproteins are re-glucosylated by 

the UDP-dependent glucosyltransferase (UGT) (4). Glycoproteins that have acquired their 

native conformation get hydrolyzed by Gl II removing the remaining glucose residue and are 

subsequently released from the lectin anchors (5). Correctly folded glycoproteins are not 

recognized by UGT and are further transported over COPII vesicles through the secretory 

pathway, in some cases glycoproteins are actively transported by LMAN1/ERGIC53 which 

serves as another checkpoint control (6). Glycoproteins remaining in misfolded 

conformations are re-translocated to the cytoplasm, where they are de-glycosylated by N-

glycanases and degraded by the proteasome (7).  

CX and CR form a complex with protein disulfide isomerase Erp57, exhibiting 

thioredoxin activity und thus helping the bound glycoprotein to build disulfide 

bonds. Properly folded glycoproteins are fully de-glucosylated by glucosidase II 

(Glc II) and the lectins CX and CR release the glycoprotein GlcNAc2Man , which is 

then packaged in COPII-coated vesicles and transferred to the Golgi [Liu et al., 

1999]. Incompletely folded glycoproteins are re-glucosylated by UDP-dependent 

glycosyltranferases (UGT) and moved out of the ER lumen for proteasomal 

degradation. UGT is both a folding sensor and a glucosyltransferase, and it is 

considered to be a decision maker for ER exit of glycoproteins. Further ER-resident 

proteins involved in quality control are ER ManI and EDEM (ER degradation-

enhancing α-mannosidase I–like protein), which trim the mannose residues as an 

indication for correctly folded glycoproteins [Hebert et al., 2005]. For example, 

glycan structures free of α-1,2-linked Man are a prerequisite for further trimming 

and elongation reactions in the Golgi apparatus. 

Transport of glycoproteins to the Golgi 

Correctly folded glycoproteins can be directly transported via lectin-mediated 

transport in CopII vesicles towards the Golgi apparatus or the transport is triggered 

by mature protein conformation-dependent mechanisms [Hauri et al., 2000; Tang 

et al., 2005]. The lectin-mediated transport also functions as a checkpoint for a 

correct folding of glycoproteins, by only binding and transporting correctly folded 

proteins. One prominent example for a lectin is ERGIC53/LMAN1, loading a subset 

of glycoproteins, e.g. coagulation factors V and VIII, cathepsins C and Z and alpha-
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1-antitrypsin (A1AT), into COPII-coated vesicles leaving the ER for the ER-Golgi 

intermediate compartment (ERGIC). 

Further Glycosylation in the Golgi 

In the Golgi apparatus glycoproteins are trimmed, elongated and branched, 

resulting in three main types of N-glycans: oligomannose N-glycans, complex N-

glycans and hybrid N-glycans, each still possessing the main core structure Asn-

GlcNAc2Man3 (Fig. 2.5). Further mannosidases and several glycosyltransferases 

are involved in trimming, elongation and branching. In addition, nucleotide sugar 

transporters import the necessary monosaccharides, like different UDP-

monosaccharides [Mendelsohn et al., 2007; Seelentag et al., 1998]. 

 

Figure 2.5 Major N-glycans present in mammals. The main N-glycans 

are oligomannose-, complex- and hybrid-N-glycans all possessing the 

common core Asn-GlcNAc2Man3. 

Enzymes that catalyze the attachment of terminal sugars 

As the N-glycan transits through the medial- and trans-Golgi, it becomes 

susceptible to glycosyltransferases increasingly localized toward the end of the 

assembly line and therefore controlling more distal structural modifications such as 

the addition of sialic acid, glucuronic acid and sulfate. Terminal sugars added by 

sialyltransferases, glucuronyltransferases and sulfotransferases present the first 

contact sites for lectins and antibodies. 

 

 13



Introduction 
  

2.4.2 O-glycosylation 

O-glycosylated proteins are linked to the polypeptide chain via serine or threonine 

residues, without requiring a consensus sequence. O-glycan biosynthesis is 

simpler than asparagine-linked oligosaccharide generation and is facilitated in the 

ER and Golgi apparatus [Van den Steen P. et al., 1998]. The initiating step is the 

addition of a monosaccharide, mainly GalNAc from a nucleotide-activated 

monosaccharide (e.g. UDP-GalNAc) to a serine or threonine residue, catalyzed by 

site-specific glycosyltransferases (e.g. GalNAc-transferases). Seven different 

linkages of O-glycans to proteins are known: O-linked GalNAc (mucin type), O-

linked GlcNAc, O-linked Gal (collagen), O-linked Man, O-linked Glc, O-linked Fuc 

and glycosaminoglycans referred to in 2.4.3.  

O-GalNAc structures are also known as mucins. Mucins are defined as cell 

surface or secreted glycoproteins less branched than most N-glycans and 

commonly with bi-antennary structures. Mucins (Fig. 2.6) are an essential part of 

the mucosal protective barrier. Secreted mucins, like MUC2, form a negatively 

charged gel which interacts with the apical membrane-anchored glycocalyx. In 

contrast, membrane bound mucins like MUC1 and MUC4 are involved in cell 

signalling. MUC2 is highly expressed in mucinous carcinomas and in early 

colorectal cancers [Allen et al., 1998; Lee et al., 2003] and it is used as a 

diagnostic marker in colorectal cancer [Lugli et al., 2007]. Eight different core 

structures are presently known for extension beyond the GalNAc-Ser/Thr linkage 

with core 1 and core 2 relatively common and core 3 and 4 showing lower 

occurrence, whereas the remaining structures are relatively rare. Each core 

determines the final structure of the extended and completed glycans formed 

through a common biosynthetic pathway [Brockhausen I., 2007; Corfield AP., 

2007; Van den Steen P. et al., 1998]. Several glycosyltransferases are involved in 

the initiating and elongating steps of O-glycan biosynthesis and act in a 

hierarchical and tissue-specific manner [Brockhausen I., 2007]. Each 

glycosyltransferase possesses a substrate specificity determining the resulting O-

glycan structures. Galactosyltransferases (GalT) and N-acetylglucosaminyl 

transferases (GlcNAcT) catalyze the core structures presented in Figure 2.6. 

Incompletely glycosylated cores are known as Tn- and T-antigens. Usually these 
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precursors are further elongated and terminally linked with fucose and sialic acid. 

Also Lewis histo blood group antigens are fucosylated and sialylated at the 

terminus of mucins (Fig. 2.8 A). Other modifications are sulfation, acetylation and 

methylation. 

 

Figure 2.6 Biosynthesis and structure of O-GalNAc structures. The 

linkage of N-acetylgalactosamine to serine or threonine to form the Tn 

antigen, catalyzed by polypeptide-N-acetylgalactosaminyltransferases 

(ppGalNAcTs), is the basis for all core structures. 

Non-mucin O-glycans regulate protein turn over by interacting with kinases and 

phosphatases [Hart et al., 2007; Yang et al., 2006], are common structures in the 

epidermal growth factor (EGF) domains and thereby involved in Notch signalling 

[Luther et al., 2009], control cell adhesion by binding to components of the 

extracellular matrix [Barresi et al., 2006], and can be a major part of the connective 

tissue in form of collagens [Liefhebber et al., 2010].

2.4.3 Glycosaminoglycans: Components of Proteoglycans 

Proteoglycans (PGs) and the attached glycosaminoglycans (GAGs) are 

components of the extracellular matrix (ECM) and the cell surface involved in many 

biological processes including extracellular matrix deposition, biomechanical 

lubrication, cell-cell interactions, tumor cell growth, viral infections or neurite 

outgrowth [Iozzo, 1998].  
PGs consist of a core protein and one or more covalently attached GAG 

chains. GAGs are linear building blocks composed of disaccharide units of an 
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amino sugar (GlcNAc or GalNAc) and an uronic acid (GlcA and IdoA). These 

disaccharide units are attached to all GAGs forming long unbranched chains of 50 

to 150 units. For three GAG types the first step in PG synthesis is the assembly of 

a tetrasaccharide linker region (serine-Xyl-Gal-Gal-Glc), in which an UDP-

xylosyltransferase (XYLT) catalyzes the initial reaction by transferring xylose from 

UDP-xylose to selected serine residues of the core protein. This reaction is 

followed by sequential action of UDP-galactosyltransferase and UDP-

glucuronyltransferase in the ER/Golgi compartments. If assembly occurs on this 

tetrasaccharide linker, heparan sulfate (HS), dermatan sulfate (DS) or chondroitin 

sulfate (CS) can be synthesized. Chondroitin sulfates differ from dermatan sulfates 

by containing iduronic acid (IdoA), which is the post-synthetic epimerization of 

glucuronic acid (GlcA) at position C5. For these three GAGs two 

xylosyltransferases XYLT1 and XYLT2, differentially expressed in human tissues, 

catalyze the rate limiting step [Götting et al., 2007].  

 

Figure 2.7 Structure of disaccharide repeat units in O-linked glycosaminoglycans 
(GAGs). GAGs consist of repeating disaccharide units composed of N-sulfated GalNAc or 

GlcNAc sugars and either an uronic acid (GlcA or IdoA) or Gal. IdoA results from postsynthetic 

epimerization of GlcA at C5. Hyaluronan lacks sulfate groups, but the rest of the GAGs contain 

sulfates at various positions. DS is distinguished from CS by the presence of iduronic acid 

(IdoA). The xylosyltransferases XYLT1 and XYLT2 present initial enzymes in proteoglycan 

synthesis of dermatan, chondroitin and heparan sulfate. Keratan sulfates are not established 

via a tetrasaccharide linker, lack uronic acids and instead consist of sulfated Gal and GlcNAc 

residues. 
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Another linkage without the tetrasaccharide linker is found in keratan sulfates (KS), 

which are characterized by a molecular heterogeneity. KS I molecules are N-linked 

to asparagine over GlcNAc and possess GlcNAc-Gal disaccharide units, whereas 

KS II molecules are O-linked to serine or threonine residues via GalNAc also 

possessing GlcNAc-Gal as repetitive units. Both KS types are highly sulfated. The 

fifth main type of GAGs is hyaluronan. Hyaluronan synthesis is catalyzed by 

hyaluronan synthases (HAS), each of which contain dual catalytic activities 

required for the transfer of GlcNAc and GlcA units from the corresponding 

nucleotide sugars. Figure 2.7 shows the composition of the five GAGs mentioned.  

Four main PG-structures exist in mammals, presented by extracellular 

aggregates, interstitially localized PGs, PGs associated with the basement 

membrane and membrane bound PGs. Interstitially localized extracellular large 

aggregating (hyaluronan-binding) PGs are involved in cellular attachment, cell 

proliferation and differentiation by interacting with cell surfaces and ECM molecules 

[Day, 1999; Hascall et al., 1974; Iozzo et al., 1996; Spicer et al., 2003]. 

Extracellular leucine-rich PGs, named small leucine-rich proteoglycans (SLRPs), 

interact with collagens that form the framework of the ECM. In addition, biglycan 

and decorin can bind growth factors and influence their bioactivity [Bengtsson et 

al., 1995; Iozzo, 1999; Kinsella et al., 2004; Matsushima et al., 2000]. The function 

of PGs in the basement membrane include permeability control by acting as a 

selective barrier for macromolecules, but they also serve as an adhesive matrix for 

endo- and epithelial cells and they can control the invasion of cancer cells [Iozzo, 

2005]. Cell-surface PGs, like the syndecan family act as co-receptors, by 

immobilizing ligands, presenting them to a specific receptor, and preventing their 

degradation. In addition they mediate the adhesion of skeleton structures and 

facilitate focal adhesions. Their ectodomain can be shed from the cell surface by 

enzymatic cleavage mediated by endoglyosidic enzymes, like HS-specific 

endoglycosidases. HS-degradation in mammalian cells is mediated by a single 

dominant endoglycosidase, named heparanase [Parish et al., 2001]. Shed 

syndecans have been found in serum and in body fluids during wound healing and 

cancer, probably altering the integrity and functional state of tissues and providing 

a mechanism by which cells can respond rapidly to changes in the extracellular 

environment [Vlodavsky et al., 2001]. Enzymatic degradation of HS is, therefore, 
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likely to be involved in fundamental biological phenomena, ranging from 

pregnancy, morphogenesis, and development to inflammation, angiogenesis, and 

cancer metastasis [Bernfield et al., 1992]. 

2.4.4 How, where and why are proteins glycosylated? 

After protein synthesis, proteins are post-translationally modified in the ER and 

Golgi apparatus. Polypeptide chains are trimmed, serine, threonine, or tyrosin 

residues are phosphorylated or sulfated, and oligosaccharides can be added. 

Many extracellular proteins in the serum, urine, saliva and lymph as well as integral 

proteins and proteins on the extracellular membrane are glycosylated. Length, 

charge and sequence of sugar chains depend on the species, tissue, age and the 

condition of the organism, like pregnancy, disease or cancer. The glycosylation of 

proteins has various functions: glycosylation protects proteins from proteolytic 

digest, can change the affinity of receptor-ligand interactions and the activity of 

certain hormones and enzymes. It can serve as a signal in intracellular transport 

and the interaction of sugar chains in proteins of extracellular matrices and 

membranes, regulating migration and distribution of cells in the organism (Kobata 

et al., 1992). 

A specific glycoprotein leaving the Golgi apparatus may carry different types 

of glycans depending on the situation and the different purposes to fulfill. The 

complexity of the enzymatic reactions and the topological order of the enzymes 

involved along the assembly line of glycoprotein synthesis determine the display of 

glycans on the cell surface and the sorting of glycosylated proteins. N-glycan 

structures are found on cell receptors for signalling and interaction processes (e.g. 

EGFR, FGFR, PDGFR and integrin/cadherin induced signaling), on immunological 

proteins (immune globulines, NK cells) and N-glycans can form a molecular lattice 

with galectins, opposing glycoprotein endocytosis. N-glycans are thereby involved 

in several cellular processes like cell adhesion, self/nonself recognition, molecular 

trafficking and clearance, receptor activation and endocytosis [Ohtsubo et al., 

2006]. O-glycans, as well as GAGs in proteoglycans, possess physical and 

structural functions as protective barriers (e.g. mucins) or control cell-adhesion and 

cell signalling by mediating cell-cell and cell-matrix interactions. Furthermore they 

are components of the extracellular matrix (ECM) and the cell surface. [Hart et al., 
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2007; Liefhebber et al., 2010; Luther et al., 2009; Parish et al., 2001; Spicer et al., 

2003; Yang et al., 2006]. Overall, with these several functions in fundamental 

biological processes alterations in these structures could lead to abnormalities, 

which are also considered to be functional in tumorigenesis. 
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2.5 Glycans involved in tumorigenesis  

Altered glycosylation is a universal feature of cancer cells, and certain glycan 

structures are well-known markers for tumor progression. Glycosylation plays a 

principal role in a number of cellular processes of key importance for 

tumorigenesis. Enzymes and transporters mediating growth receptor regulation, 

growth factor modulation, cell-cell adhesion, immune system modulation, cell 

motility or the adhesion to endothelium are of great impact for normal cell behavior 

[Potapenko et al., 2010]. If any of these important key players is mutated, normal 

cell behavior is changed, which may affect adhesion properties and cell-cell 

signalling as well as modulate the immune response.  

2.5.1 N-glycans and cancer 

Three main types of N-glycans, oligomannose N-glycans, complex N-glycans and 

hybrid N-glycans, exist which are further trimmed, elongated and branched by 

mannosidases and glycosyltransferases. To yield complex tri- and tetra-antennary 

N-glycans additional branches can be initiated by GlcNAcT-IV (MGAT4) and by 

GlcNAcT-V (MGAT5). GlcNAc-branched complex-type N-glycans are found among 

others on glycoprotein receptors. A striking example of such glycan receptor-

mediated function is the binding of galectins to MGAT5-modified N-glycans at the 

T-cell receptor reduced T-cell activation and autoimmunity by preventing T-cell 

recruitment to antigen presentation sites [Demetriou et al., 2001]. The interaction 

between galectins and branched N-glycans produces a thermodynamically stable 

array of galectins and glycoproteins at the cell surface, called the galectin lattice 

(Fig. 2.8; [Demetriou et al., 2001]). Expression of MGAT5 and branched N-glycans 

are increased in various carcinomas [Dennis et al., 1999], while galectin-3 

expression is associated with tumor progression and cancer metastasis in several 

tumor types [Takenaka et al., 2004]. Cell lines with increased MGAT5 expression 

show an increased frequency of metastasis in animal models [Goetz, 2009]. The 

plant lectin L-phytohemagglutinin (PHA-L) emerged as a marker for preferentially 

recognizing branched N-glycans bearing the β1-6 branched GlcNAcT-V product in 

tumor tissues [Przybylo et al., 2008]. 
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Figure 2.8 N- and O-glycans involved in tumor progression. A. Complex N-glycans 

contain two or more antennae. The O-glycans shown are of the O-GalNAc type, also known 

as mucins. Lewis antigens are carbohydrate determinants composed of four sugars in specific 

linkage to one another, and are commonly over-expressed on tumor-cell mucins. Tn and STn 

are tumor antigens that consist of truncated/incompleted O-linked chains. In many tumors 

their accumulation correlates with invasion. B. shows the involvement of branched complex N-

glycans, generated by the enzyme MGAT5. Galectins bind branched complex N-glycans on 

glycoprotein receptors. Together they build the galectin lattice. Expression of MGAT5 and 

branched N-glycans is increased in various carcinomas [Fuster et al., 2005; Goetz, 2009]. 

2.5.2 O-glycans and cancer 

O-linked glycans, namely mucins, regulate adhesion and modulate immune 

response. The synthesis of core structures 1 – 4, and rare core structures 5 – 8, is 

initiated by GalNAc transferases transferring GalNAc to either a serine or a 

threonine of the core protein [Ten Hagen et al., 2003]. Mucins are produced by 

normal mammalian cells and contain a mixture of extended core 2 structures. 

Mucins play a role in invasion, metastasis and protection [Hollingsworth et al., 

2004]. Cancer cells frequently synthesize mucins with incomplete oligosaccharide 

chains which are often sialylated, resulting in aberrant core 1 structures. The 

synthesized structures are called Tn-antigen (GalNAc-α1-O-serine/threonine) and 

STn-antigen (Siaα2-6GalNAc-α1-O-serine/threonine), which are markers for poorly 
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differentiated adenocarcinoma and their increased occurrence is associated with 

advanced colon cancer [Itzkowitz et al., 1990]. Changes in these mucins influence 

growth and survival of the cell, because potential ligands responsible for 

interactions between cancer cells and their environment are changed. Selectins, 

which mediate cell adhesion by acting as glycoprotein receptors, were reported to 

bind mainly carcinoma mucins [Aychek et al., 2008]. In addition, selectin binding to 

cell surface-bound mucins may also transmit signals into cancer cells during 

cancer progression, e.g. by enhancing growth factor receptor signalling 

[Hollingsworth et al., 2004; Kufe, 2009]. 

2.5.3 Proteoglycans and cancer 

Heparan sulfates (HS) are a central part of the ECM and play an important role in 

many biological processes [Vlodavsky et al., 2001]. As mentioned in section 2.4.3, 

enzymatic degradation of HS in syndecan-molecules of the ECM is involved in 

fundamental biological processes, ranging from pregnancy, morphogenesis, and 

development to inflammation, angiogenesis, and cancer metastasis [Bernfield et al., 

1992]. The HS-specific endoglycosidase, named heparanase, showed an increased 

expression in human malignancies compared with the corresponding normal tissue 

[McKenzie et al., 2000]. Tumor angiogenesis can be processed by the remodelling 

of the vascular system (Fig. 2.9). The importance of mammalian heparanase in 

vascular remodelling was demonstrated [Zcharia et al., 2004]. The cleavage of 

heparan sulfates in the ECM might provide pro-angiogenic factors, including growth 

factors (VEGF, FGF2, PDGF and TGFß), that in addition bind heparan sulfates, 

thereby promoting tumor angiogenesis [Bogenrieder et al., 2003; Jiang et al., 2003]. 
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Figure 2.9 Proteoglycans involved in tumor angiogenesis. Tumor 

angiogenesis is required for tumor growth and the possibility of the tumor 

to metastasize. Heparan sulfate on the cell surface (ECM) facilitates 

growth-factor binding and activation of endothelia glycoprotein receptors 

[Fuster et al., 2005]. 

2.5.4 Glycans and MSI CRC 

The previous sections gave an overview on the important and various functions of 

several glycoproteins and their involvement in tumorigenesis. In particular, 

glycosylation of proteins which is mediated by a framework of genes is changed in 

many tumor entities, affecting important cellular processes. For sporadic MSI tumors 

increased MUC2 gene expression was reported and changed MUC structures may 

be an important step in the neoplastic molecular pathway of colon tumors [Pastrello 

et al., 2005]. In contrast, MUC2 loss was reported to be an appropriate prognostic 

marker in MSI tumor progression [Lugli et al., 2007]. Oligonucleotide microarray 

analysis of MSI-H and MSS colorectal carcinomas showed that expression profiles 

can be distinguished in both cancers [Kim et al., 2004]. For MSI-H carcinomas three 
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genes with an involvement in glycosylation were shown to be upregulated, SIAT4B, 

B4GALT1 and GALNT5. Apart from these preliminary data on glycosylation genes in 

MSI CRC, aberreant glycosylation and glycosylation pathways have not been 

investigated in MSI-H tumors. Detailed analyses of glycosylation genes and their 

involvement in MSI tumorigenesis will be part of this thesis. The specific aims are 

discussed in the next section.

 24



Introduction 
  

2.6 Aims of the work 

The accumulation of tumor-promoting coding microsatellite mutations is considered 

to be the driving force in MSI colorectal carcinogenesis [Furlan et al., 2002; 

Woerner et al., 2001]. Frameshift mutations in coding regions lead to a loss of 

protein function or the mutated protein is translated with a newly synthesized 

carboxy-terminal neopeptide [Linnebacher et al., 2001; Schwitalle et al., 2008]. The 

strong immune response in MSI cancers could be explained by these tumor-

specific neopeptides. However, also deregulated protein glycosylation in cancer 

cells might lead to the formation of highly immunogenic tumor specific 

glycoantigens, mainly located on the cell surface. Besides acting as tumor antigens 

it is likely that they are actively involved in tumor progression and metastasis. 

Therefore detection of defined carbohydrate and/or glycoprotein tumor antigens 

and the identification of abnormal glycosylation pathways in tumors is of special 

interest for improved diagnostic and therapeutic strategies, as well as for better 

understanding of MSI tumorigenesis [Dube et al., 2005; Dwek et al., 2004; Vlad et 

al., 2004; Patsos et al., 2009]. 

The present thesis aimed at the identification and characterization of cMNR 

harboring genes encoding proteins of the cellular glycosylation machinery with 

emphasis on frameshift mutations resulting in abberant cell surface presentation or 

secretion of glycoproteins. Building on that, these alterations in glycoprotein 

structures or secretion patterns should be further analyzed. The final aim was to 

establish a basis for the detection of MSI cell-specific glycosylation patterns that 

can be used for the development of novel diagnostic and therapeutic strategies for 

MSI tumors, and for the detection of changes relevant to MSI tumorigenesis. To 

reach these aims, frameshift mutation analysis and functional analysis were 

combined with biochemical methods. The specific aims of this study are: 

 

I. The identification of cMNR harboring candidate genes encoding proteins 

of the glycosylation machinery and to determine their mutation frequency 

in MSI CRC cell lines, adenomas and carcinomas.  

II. The analysis of protein expression of candidate genes identified in I. in 

MSI CRC cell lines and primary tissues. 
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III. The evaluation of the function of candidate genes mutationally 

inactivated in MSI CRC cell lines by using methods, such as metabolic 

labelling and cell surface staining. 

IV. To perform protein expression and purification experiments to generate 

new tools for the identification of relevant interaction partners of 

candidate genes with an involvement in MSI tumorigenesis. 

 

Overall, frameshift mutation analyses as well as expression and functional 

analyses should reveal novel insights into candidate genes presumably involved in 

MSI tumorigenesis. In addition, MSI tumor-specific glycosylation patterns 

potentially provide the basis for novel diagnostic and therapeutic approaches. 
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3.  Results 

3.1  Glycogenes involved in MSI-H colorectal 
tumorigenesis 

Despite the obvious significance of altered glycoprotein synthesis, transport and 

secretion in CRC, aberrant glycosylation and glycosylation pathways have not been 

investigated in MSI-H colorectal tumors. In order to identify cMNR-harboring genes, 

encoding components of the cellular glycosylation machinery candidate genes were 

selected by a bioinformatics-based approach. Database analysis and specific 

selection criteria such as subcellular localization, cMNR length, and involvement in 

glycosylation were applied to pre-select candidate genes. 

Potential candidates were selected from three databases: for the first 

database a filter for the subcellular localization (Locate database) of candidate genes 

was used, second the MNR_ensembl database was filtered by limiting human 

cMNRs to seven and more basepairs and third the SelTarbase was filtered for 

candidates which were already analysed, e.g. the previously investigated genes 

TGFBR2, ACVR2, AIM2 and UPF3A. For details on database analysis see section 

6.5. These three databases revealed 431 genes and a final short list selection (Filter 

4) was based on literature data showing a function of the corresponding gene 

product in glycan synthesis, modification or transport (Figure 3.1A). As a result, 28 

candidate genes were selected for subsequent analyses. 

DNA frameshift mutation profiles of these 28 candidate genes with 32 cMNRs 

were determined on a panel of 48 CRC cell lines (MSS, n = 25, MSI-H, n = 23; Fig. 

3.2). Mutation frequencies ranged from 0 to 52%, whereas no frameshift mutations in 

any of these genes were detectable in MSS CRC cell lines. For XYLT2 and LMAN1 

even biallelic mutations were found and both genes appeared as positively selected 

target genes according to the statistical model described in 2.3.1 (Fig. 3.1 B). To 

exclude that the observed frequencies of selected genes were restricted to cultured 

cells, mutation profiles were also determined for at least 50 MSI-H colorectal tumors 

(Fig. 3.3). For this analysis only those candidate genes frequently mutated (≥ 10%) in 

the cell culture panel were selected. An equal number of MSS colorectal tumors and 

blood samples from healthy donors served as controls. 
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Figure 3.1 Strategy for the identification of candidate genes and the 
statistical model for the predicition of MSI-H target genes. A. Four filters 

for the selection of candidate genes were applied to three databases. Filters 

selected by location (1), cMNR-length (2) already analysed cMNRs (3), as 

well as by literature-based involvement in glycosylation (4). For details see 

methods. B. Regression analysis of cMNR mutations in MSI-H CRC cell 

lines. LMAN1 and XYLT2 analysed as genes involved in the glycosylation 
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machinery seem to be MSI-H target genes. Green dots represent putative 

positively selected targets. 

 

Figure 3.2 Frameshift mutation analysis of candidate glycogenes in 
MSI-H CRC cell lines. Different wildtype lengths of individual cMNRs are 

indicated by bar color (white, n = 7; gray, n = 8; black, n = 9). Overall 

mutation frequencies are depicted. Three genes (*) contained more than one 

cMNR (B4GALNT4, 3 G7; ALG12, 2 C7; PIGZ, 1 C7 and 1 G7). 

Three genes were found to be frequently mutated (≥ 10%) in MSI-H colorectal 

tumors, namely LMAN1 (46%), XYLT2 (26%) and B4GALNT4 (23%). This finding 

was corroborated by extended analysis of these 3 genes on an additional panel of 

MSI-H tumors (LMAN1 n = 120, XYLT2 n = 55, B4GALNT4 n = 43). Besides, XYLT2 

and LMAN1 harbored biallelic mutations in two (XYLT2: 2/23; 8.6%) and four 

(LMAN1: 4/23; 17,4%) MSI-H CRC cell lines investigated. Biallelic mutations imply a 

complete knockout or a dysfunction for the protein. Because cell lines with biallelic 

mutations represent powerful tools for further research the two genes LMAN1, a 

glycoprotein transporter and XYLT2 (Xylosyltransferase 2), an initial enzyme in 

proteoglycane synthesis were selected for further analysis. 
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Figure 3.3 Frameshift mutation frequencies of a subset of candidate 
glycogenes in primary MSI-H CRCs. Gene-specific mutation data were 

obtained by analyzing 50 MSI-H carcinomas except for LMAN1 (n = 170 

tumors), XYLT2 (n = 105 tumors), and B4GALNT4 (n = 93 tumors). Bar 

characteristics (asterisks, shading) as described in Fig. 3.2. 

To evaluate if LMAN1 and XYLT2 mutations were early events in MSI-H 

tumorigenesis a subset of 20 MSI-H colorectal adenomas was analyzed. A significant 

fraction of these adenomas (LMAN1 40%, 8 of 20; XYLT2 21%, 4 of 19) showed 

cMNR frameshift mutations. LMAN1 gene mutation status was compared with the 

UICC tumor stages for MSI-H CRCs and a comparison of sporadic and HNPCC MSI-

H cancers was examined, but no significant correlation to any UICC stage could be 

made (data not shown). LMAN1 mutations appeared to be more frequently observed 

in HNPCC compared to sporadic MSI-H colorectal carcinomas. However, the low 

number of cases which were available for these analyses revealed no significant 

differences. 

Overall, it was determined that two genes involved in the glycosylation 

machinery were frequently and also biallelically mutated in MSI-H CRCs. These 

genes might play a role in MSI-H tumorigenesis. The following sections will present 

detailed analyses of LMAN1 and XYLT2. 
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3.2  LMAN1 mutational inactivation in MSI-H colorectal 
tumorigenesis 

3.2.1 LMAN1 transcript is present, but LMAN1 protein is not 
detectable in biallelic-mutated cells 

To understand the nature of the genetic defects observed in MSI-H CRC cells and 

tumors (3.1) LMAN1 expression was analyzed at the transcript and protein level. For 

the analysis of LMAN1 transcription cDNAs from 23 MSI-H CRC cell lines, one MSS 

cell line (SW948) and normal human colonic mucosa were used. LMAN1 mRNA was 

found to be expressed in all samples, including cell lines harboring mono- or biallelic 

LMAN1 cMNR frameshift mutations and was also found in normal colon tissue (Fig. 

3.4A).  

To verify the transcription data at the translational level, Western blot analysis 

with an LMAN1-specific antibody was performed on a panel of LMAN1-mutated and 

LMAN1-wild type cells. LMAN1 was detectable in all 19 heterozygously mutated cell 

lines and in cells expressing wildtype LMAN1, whereas four cell lines Colo60H, LoVo, 

HDC9 and Vaco 6, harboring biallelic LMAN1 mutations, lacked LMAN1 protein 

expression (Fig. 3.4B). Although the LMAN1-antibody recognizes an N-terminal 

epitope, no truncated protein (expected size of 36 kDa) was detected in cell lines with 

mono- or biallelic cMNR frameshift mutations. LMAN1 mutated transcript is predicted 

to be NMD-sensitive with a premature termination codon occurring more than 55 

base pairs upstream of the last exon-exon border (explained in 4.2.2) and resulting in 

the degradation of the transcript. However, the transcript could be detected by RT-

PCR in all mutated cell lines.  

Expression analysis showed that biallelically LMAN1-mutated cell lines were 

able to transcribe but not to translate a mutated LMAN1. The identification of LMAN1-

deficient cell lines provides a valuable tool for studying the functional consequences 

of LMAN1 inactivation. 
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Figure 3.4 LMAN1 expression in MSI-H CRC cell lines. A. RT-PCR analysis of LMAN1 

expression in CRC cell lines with homozygous wild-type (+/+), homozygous mutant (−/−), or 

heterozygous (+/−) cMNR status. The expected PCR fragment of 122 bp could be amplified 

from cDNA of normal human colon, 1 MSS cell line (SW948), and all MSI-H CRC cell lines. 

GAPDH was amplified as a cDNA quality control. B. A single band of 53 kDa corresponding to 

the LMAN1 protein was detected in MSI-H and MSS CRC cell lines harboring homozygous 

wild-type or heterozygous cMNR in MSI-H and MSS cell lines. MSI-H CRC cell lines with 

biallelic cMNR frameshift mutations lacked LMAN1 protein expression. No truncated LMAN1 

protein (expected size, ~36 kDa) was visible in heterozygously or homozygously mutated cell 

lines. Molecular weight marker bands are depicted. Actin served as loading control. 
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3.2.2 Complete or partial loss of LMAN1 protein expression in MSI-H 
CRC tumors 

In cultured cells, LMAN1 protein loss was observed as a consequence of biallelical 

LMAN1 mutations (see Fig. 3.4B). In order to investigate the expression of LMAN1 in 

primary tissues we performed immunohistochemical analysis on a set of 50 MSI-H 

colorectal carcinomas. 

 

Figure 3.5 Immunohistochemical detection of LMAN1 protein in MSI-H 
colorectal tumors. Representative immunohistochemical staining patterns 

of MSI-H colorectal tumors using an LMAN1-specific antibody. LMAN1 was 

visualized by using 3,3`-beta-diaminobenzidine (brown). Tumor sections 

were counterstained with hematoxylin (blue). In all tumor sections, positive 

LMAN1 staining of stromal cells and tumor-infiltrating lymphocytes served as 

control. Scale bars: 100 µm in all panels. A. Four carcinomas that display 
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either complete or partial loss of LMAN1 expression, sometimes comprising 

areas with a heterogeneous speckled pattern. B. In two MSI-H colorectal 

adenomas, complete loss (left) as well as focally restricted loss of LMAN1 

expression was observed (right). Arrow, crypt with mixed staining. 

A significant fraction of these carcinomas showed either local (38%; 19/50) or 

complete loss (6%; 3/50) of LMAN1 expression. Representative examples of this 

heterogeneous staining pattern are presented in Figure 3.5. Moreover, when a small 

number of MSI-H adenomas were subjected to immunohistochemical staining, a 

similar pattern (Fig. 3.5B) was observed. Regional loss of LMAN1 expression might 

be attributable to biallelic mutational inactivation of the LMAN1 gene in specific tumor 

areas. In order to address this issue, DNA from areas with or without LMAN1 

expression was isolated by regional microdissection on selected MSI-H carcinomas 

(n = 4) and MSI-H adenomas (n = 3).  

 

Figure 3.6 Molecular analysis of intratumoral LMAN1-deficient areas. Regional 

microdissection of a colorectal carcinoma. Non-malignant colorectal epithelium strongly 

expressing LMAN1 showed only LMAN1 cMNR wild-type allele peaks (+/+) in 

electropherograms of fragment length analysis. Tumor areas that have retained LMAN1 

staining but with reduced staining intensity compared with non-tumorous stromal cells exhibited 

an additional peak in frameshift analysis corresponding to a heterozygous state wildtype and 

one bp deletion at the LMAN1 coding microsatellite (+/−). Tumor areas completely lacking 

LMAN1 staining only displayed homozygous mutant allele and peak pattern (−/−). Arrow 

indicates wild type LMAN1 and should relieve the shifts of one allele (+/−) or both alleles (−/−), 

respectively. 

DNA frameshift mutation analysis revealed biallelic cMNR frameshift mutations in the 

LMAN1 gene in tumor areas and concomitant loss of LMAN1 protein expression (Fig 

3.6 right panel). Areas with decreased LMAN1 expression compared to normal tissue 

(Fig 3.6 left panel) showed heterozygous mutations for LMAN1 (Fig 3.6 middle 

panel). Correlation between protein expression and frameshift mutation pattern was 

also observed in adenomas (data not shown). 
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From these results it can be concluded that primary MSI-H colorectal tumors 

frequently show heterogeneous LMAN1 expression abnormalities caused by regional 

biallelic cMNR frameshift mutations in MSI-H tumor cells. In addition, the occurrence 

of LMAN1 mutations in preneoplastic lesions marks an early event during MSI 

tumorigenesis.
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3.3  LMAN1 expression changes the phenotype in MSI-H 
CRC cells 

It is reasonable to assume that inactivating mutations or altered expression of 

LMAN1 cause changes in the transport of glycosylated proteins that follow the 

secretory pathway. Changes in the glycoprotein export might change the cell’s 

phenotype. In order to identify phenotypical changes in MSI-H CRC cells LMAN1 full-

length cDNA was expressed in LMAN1-deficient MSI-H CRC cells. Stable clones 

were checked for cell viability and LMAN1 expression and subsequently analyzed for 

phenotypic changes. Glycoprotein profiling on the cell surface was performed by 

Lectin-FACS analysis. 

3.3.1 Stable LMAN1 expression does not change cell viability and 
growth 

For stable expression of LMAN1 a LMAN1 clone was established by transfecting 

LMAN1 cDNA into LoVo cells. LoVo cells show a biallelic mutation in the cMNR of 

the LMAN1 gene (A9  A8). The expression of LMAN1 was checked by Western 

blot analysis. Compared to an MSI-H CRC cell line endogenously expressing LMAN1 

(Co115), the expression intensity was weaker in one LMAN1-transfected LoVo clone 

(Fig. 3.7), while all other clones checked after freeze/thaw cycles lacked LMAN1 

expression. This LMAN1-transfected LoVo clone permanently expressed the LMAN1 

gene.  

 

Figure 3.7 Western blot analysis of stably transfected LoVo cells 
constitutively expressing LMAN1 protein. A single band of 53 kDa 
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corresponding to the LMAN1 protein was detected in a MSI-H CRC cell line 

endogenously expressing LMAN1 (Co115) and in LoVo cells constitutively 

expressing LMAN1. No protein was detected in LoVo cells deficient for 

LMAN1 and in mock-transfected LoVo cells expressing the empty vector 

control (pcDNA3.1). Molecular weight marker bands are depicted. Probing 

with an anti-actin antibody served as loading control. 

LoVo cells stably transfected with LMAN1 (LMAN1-transfected LoVo cells) were 

characterized by cell viability and compared to LoVo cells stably transfected with the 

empty vector pcDNA3.1 (mock-transfected LoVo cells). LMAN1-transfected LoVo 

cells did not differ from mock-transfected LoVo cells in a proliferation assay (Fig. 3.8), 

thus no difference in cell viability was observed. In addition, LMAN1-transfected LoVo 

cells showed no growth advantage or disadvantage compared to the parental line 

(LoVo) or to mock-transfected LoVo cells.  

 

Figure 3.8 Cell Proliferation Assay of stably transfected LoVo cells. 
3000 LoVo-, mock-transfected and LMAN1-transfected LoVo-cells were 

sowed per well of a 96-well plate and MTS/formazan solution was added 

after 1, 2 and 5 days. The MTS tetrazolium compound is bio-reduced by cells 

into a colored formazan product that is soluble in tissue culture medium. 

Absorbance was measured at 485 nm. Formazan is directly proportional to 

the number of living cells in culture. Values represent triplets for each cell line 

and day. Error bars represent standard deviations. 
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3.3.2 LMAN1 expression changes the glycan profile on the cell 
surface 

LMAN1 is a mannose-specific lectin and reconstituted LMAN1-expression could 

change the cell surface pattern by the transport of specific LMAN1-cargo proteins 

that function as glycoproteins on the cell surface. To compare the cell surface pattern 

in LMAN1-deficient and LMAN1-reconstituted LoVo cells, Lectin-FACS analysis was 

performed. The experiment was established using LMAN1-transfected LoVo cells or 

mock-transfected LoVo cells (3.3.1). A selection of biotinylated plant lectins, specific 

for distinct building blocks of human glycans was used (Tab. 3.1) with ConA, LEA, 

PSA and PHA-E specifically detecting mannose-harboring structures (Tab. 3.2 in 

bold).  

Table 3.1 Lectin panel for glycan profiling of cell surfaces and effect of LMAN1 expression 

Plant name Acronym LMAN1 effect
in % Oligosaccharide 

Canavalia 
ensiformis  ConA no change GlcNAcβ2Manα6(GlcNAcβ2Manα3)Manβ4Gl

cNAc 

Lycopersicon 
esculentum  LEA no change Core and stem regions of high-mannose-

type N-glycan 

Pisum sativum PSA + 14,6 
(p-value:0,281)

N-Glycan binding enhanced by core 
fucosylation 

Phaseolus vulgaris 
erythroagglutinin  PHA-E no change 

Bisected complex-type Nglycans: 
Galβ4GlcNAcβ2 Manα6 (GlcNAcβ2Manα3) 
(GlcNAcβ4)Manβ4GlcNAc 

Phaseolus vulgaris 
leukoagglutinin  PHA-L − 22,2 

(p-value:0,057)
Tetra- and triantennary N-glycans with β6-
branching 

Maackia 
amurensis I  MAA-I no change Neu5Acα3Galβ4GlcNAc/Glc, 3 -sulfation 

tolerated 

Artocarpus 
integrifolia  JAC + 28,5 

(p-value:0,125) Galβ3GalNAcα, α3-sialylation tolerated 

Triticum vulgare WGA + 19,9 
(p-value:0,267) (GlcNAc)n, Galβ4GlcNAcβ6Gal 

Sambucus nigra  SNA no change Neu5Acα6Gal/GalNAc, clustered Tn antigen 

Viscum album  VAA no change Galβ2(3)Gal, Galα3(4)Gal, Galβ3(4)GlcNAc 
without/with α2,6-sialylation, Fucα2Gal 

Arachis hypogaea  PNA no change Galβ3GalNAcα 

Lectin panel used to identify phenotypic changes on the cell surface of mock-transfected and 

LMAN1-transfected LoVo cells. Plant name, acronym and oligosaccharide specificity for each 
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lectin are given. The column “LMAN1 effect” shows the lectin binding change upon LMAN1 

expression. Mean fluorescence intensities of LMAN1-transfected LoVo cells were compared to 

mock-transfected LoVo cells. (+) for increased and (–) for decreased binding. Values presented 

are the mean of the difference in mean fluorescence of four independent experiments. P-values 

are indicated. 

Both, the percentage of positive cells and mean fluorescence intensity were 

measured for comparison. For LMAN1-transfected LoVo cells a significant decrease 

in cell surface PHA-L lectin binding was observed. Changes in lectin binding were 

also detected for PSA, Jacalin and WGA, but this trend remained statistically 

insignificant. There were no changes on the cell surface for any other lectins 

measured (Table 3.1). Figure 3.9 represents the cell surface profiling of the lectins 

PHA-L and jacalin (JAC). Interestingly, changes on the cell surface were observed 

upon LMAN1 reconstitution, but no mannose-specific lectin showed changes upon 

LMAN1 re-expression in stable LoVo cells. With PHA-L detecting tetra- and tri-

antennary N-glycans and jacalin specific for Galβ3GalNAcα-structures (galactosyl (ß-

(1,3) N-acetylgalactosamine), a N-glycosidically lectin and an O-glycosidically lectin 

showed the highest effects after LMAN1 reconstitution. 
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Figure 3.9 FACS histograms and Box & Whisker Plots for lectins PHA-L and JAC. A. 
Semilogarithmic representation of fluorescent surface staining of LoVo cells. Cells were treated 

with biotinylated lectins and subsequently incubated with Streptavidin-Phycoerithrin (PE) as 

fluorescent dye. Histograms represent the fluorescence intensity for both mock-transfected 

LoVo cells (LoVo pcDNA3.1; light grey) and LMAN1-transfected LoVo cells (LoVo LMAN1; dark 

grey). The values for the percentage of positive cells and the mean are given. JAC lectin 

binding was increased upon LMAN1 expression whereas PHA-L abundance on the cell surface 

decreased upon LMAN1 expression. Experiments represent data from one out of four 

independent measurements. B. Box & Whisker Plots representing the PHA-L and JAC mean 

fluorescence values of four independent experiments. Both lectins showed effects upon LMAN1 

reconstitution. Mean fluorescence, standard deviation and standard error are presented within 

the Box & Whisker Plot.
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3.4  Analyses of LMAN1 cargo proteins relevant to MSI-H 
CRC 

As a transporter for mannose-harboring glycoproteins, LMAN1 plays an important 

role in the secretory pathway enabling the transport from the ER to the Golgi via the 

ERGIC (ER-Golgi Intermediate Compartment). Several LMAN1 cargo proteins are 

known, including the serine protease inhibitor alpha-1-antitrypsin (A1AT), the 

lysosomal glycoproteins cathepsin C and Z as well as the blood coagulation factors V 

and VIII [Nyfeler et al., 2008; Appenzeller et al., 1999; Moussalli et al., 1999; 

Vollenweider et al., 1998]. To get more insight into LMAN1`s role as a cargo protein 

receptor, different strategies for the identification and characterization of LMAN1 

cargo proteins were performed.  

3.4.1 Alpha-1-antitrypsin secretion is impaired in LMAN1 deficient 
cells 

A1AT is an inhibitor of several serine proteases involved in inhibiting angiogenesis 

and tumor growth [Huang et al., 2004]. A1AT also exhibits important regulatory and 

anti-inflammatory roles [Kalsheker, 2009]. Using an A1AT-specific ELISA, A1AT 

secretion in LMAN1-deficient and -proficient MSI-H CRC cells as well as LMAN1-

transfected cells and mock-transfected cells was analyzed. Significantly decreased 

levels of A1AT were measured in a conditioned medium of LMAN1 deficient cells (~ 5 

µg/L) compared to a conditioned medium of LMAN1 proficient cells (~ 15 µg/L, 

Fig.3.10 A). To test whether LMAN1 re-expression could overcome this secretion 

defect, LMAN1-deficient Colo60H cells were transiently transfected with LMAN1-

cDNA. A 10-fold increase in A1AT concentration in the medium of Colo60H 

overexpressing LMAN1 compared with the empty vector control was observed (Fig. 

3.10B). RT-PCR analysis revealed A1AT transcription in all cell lines and thus 

demonstrated that LMAN1 re-expression had no effect on the A1AT transcript levels 

(Fig.3.11).  
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Figure 3.10 A1AT secretion in LMAN1-proficient and LMAN1-deficient cell lines. A. 

A1AT concentration in conditioned medium was measured by an A1AT specific ELISA. 

MSI-H cell lines harboring homozygous mutations for LMAN1 (−/−) showed 3-fold lower 

levels of secreted A1AT than MSS and MSI-H cell lines with wild-type LMAN1 cMNR alleles 

(+/+). The relative A1AT concentration was adjusted to the DNA amount in 80% confluent 

cells. Lactate dehydrogenase measurement excluded distortion by dead cells. Columns: 

mean of three independent experiments; bars: standard deviation. B. Reconstitution of 

A1AT secretion upon LMAN1-cDNA transfection into a LMAN1-deficient cell line. Colo60H 

cells were transiently transfected with an LMAN1-cDNA expression vector (pcDNA3.1-

LMAN1) or empty control vector (pcDNA3.1). Forty-eight hours after transfection, there was 

a significant increase of A1AT concentration in conditioned medium compared with the 

same cell line transfected with the empty vector. 

LMAN1-deficient cell lines showed a decreased A1AT secretion and this secretion 

defect could be abolished after transient expression of LMAN1. For A1AT a 

promotion of tumor progression was reported if less A1AT was secreted [Huang et 

al., 2004]. LMAN1 mutated cells showed a decreased secretion of A1AT therefore 

suggesting a potential role of LMAN1-mediated A1AT secretion in MSI 

tumorigenesis. 
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Figure 3.11 RT-PCR analysis of A1AT. RT-PCR analysis of A1AT 

expression in CRC cell lines used for A1AT ELISA. The expected A1AT PCR 

fragment of 484 bp could be amplified from cDNAs of 2 MSS cell lines 

(SW948 and Caco2), and MSI-H CRC cell lines mutated (−/−) and not 

mutated (+/+) for LMAN1, as well as transiently transfected Colo60H cells. 

As a control for cDNA, GAPDH was amplified.  

3.4.2 Protein retention in the ER/Golgi fraction changes with LMAN1 
expression 

A lack of LMAN1 transport function could affect several yet unknown glycoproteins. 

Since LMAN1 presence or absence changed the A1AT secretion it was determined 

whether LMAN1 expression or loss of expression had effects on further glycoproteins 

which are transported through the secretory pathway. First indications of the overall 

protein pattern were determined by a pulse chase experiment with LMAN1-

transfected LoVo cells (section 3.3.1). LMAN1-transfected LoVo cells and parental 

LoVo cells were pulsed with 35S-methionine medium for 30 min and chased for 30 

min. In 30 min pulse time the cells incorporated 35S-methionine into current newly 

assembled proteins. During the 30 min chase period cargo proteins are expected to 

retain in the ER/Golgi fraction in LMAN1-deficient LoVo cells compared to LMAN1 re-

expressing cells. Subsequently, proteins with incorporated 35S-methionine were 

detected and evaluated using the proteomweaver software. 164 protein spot matches 

were detected between parental LoVo cells and LMAN1-transfected LoVo cells. 
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Among these, five spots showed differences in the ER/Golgi fraction of parental LoVo 

cells compared to LMAN1-transfected LoVo cells (Fig. 3.12).  

 

 

Figure 3.12 Pulse Chase Experiment with parental LoVo cells and LMAN1-transfected 
LoVo cells. Proteins of the ER/Golgi fraction were seperated by molecular weight and 

isoelectric point using 2D-gel electrophoresis and 35S-methionine labelled protein spots were 

detected by a phosphoimager and subsequent analyzed by the Proteomweaver Sofware. The 

upper panel shows the ER/Golgi proteins that incorporated 35S-methionine within the LoVo cells 

and the lower panel represents proteins with incorporated 35S-methionine within LMAN1-

transfected LoVo cells. Spot 584 disappeared in LMAN1-transfected LoVo cells, but was visible 

in parental LoVo cells all other spots appeared in LMAN1-transfected LoVo cells and were not 
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detectable in parental LoVo cells. Overall the protein assembly rate was higher in LMAN1-

transfected LoVo cells. Detected spots are enlarged. 

One spot was present in parental LoVo cells, but absent in the LMAN1-transfected 

LoVo cells (spot 584; Fig. 3.12) whereas four spots appeared only when LMAN1 was 

re-expressed (spots 227, 428, 599 and 624; Fig 3.12). This data is in contrast to the 

expectation that cargo proteins are expected to retain in the ER/Golgi fraction. The 

apparent size and isoelectric point for each spot detected are summarized in table 

3.2. Overall, the protein expression for some proteins appeared to be higher in 

LMAN1-transfected LoVo cells compared to parental LoVo cells, with more 

incorporated 35S-methionine detectable. 

Using an initial pulse-chase experiment we obtained preliminary evidence for 

potential differences in the protein pattern in a steady-state situation between 

parental LoVo cells and LMAN1-transfected LoVo cells.  

Table 3.2 Spot analysis by the Proteomweaver Software

Spot number Apparent 
size in kDa 

Approximate 
isoelectric point 

LMAN1 
expression 

599 60-90 6 + 

624 40-60 6,5 + 

227 20-30 6 + 

428 50-80 8 + 

584 60-90 7 − 

Spots 599, 624, 227 and 428 appeared after LMAN1 expression, whereas spot 584 

disappeared after LMAN1 expression. Spot 624 could correspond to LMAN1 itself with a 

molecular weight of 53 kDa and a isoelectric point of 6.7 and would serve as an internal control. 

3.4.3 The LMAN1 carbohydrate recognition domain shows high 
affinity for LMAN1 substrates 

Previous published studies have analyzed LMAN1 function by using different 

constructs, including or lacking all sub-structures [Appenzeller et al., 1999; 

Appenzeller-Herzog et al., 2004; Kamiya et al., 2008]. It is currently known that 

LMAN1 binding is dependent on pH and on Ca2+ concentration. Most studies used D-

mannose to analyze LMAN1 binding properties. In this context it is important to know 

which conditions are required for binding to its specific substrates. In addition to 
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mannose it was decided to gain insight into LMAN1`s binding behavior using the 

complete cargo molecule A1AT. The aim was the purification of a functional LMAN1 

protein with the carbohydrate recognition domain (CRD) as a powerful tool in search 

of specific yet unknown LMAN1 targets.  

Two strategies were pursued to isolate functional LMAN1 protein: the 

purification of full length native protein expressed in mammalian cells and purification 

of bacterially expressed LMAN1-CRD protein followed by a refolding step. The CRD-

domain including the oligomerization-domain was cloned into the pET44a(+) vector 

for bacterial expression and full length LMAN1 cDNA was cloned into the mammalian 

expression vector pcDNA3.1 (fig. 6.1). After a successful functional binding to 

mannose sepharose the functional binding to A1AT sepharose was verified. 

Full-length LMAN1 has a weak affinity to mannose sepharose 

First, full length LMAN1 was expressed in mammalian cells to simulate almost 

identical conditions to the in vivo situation. It was considered that in mammalian cells 

correct folding conditions and important interaction partners exist. Full length LMAN1 

cDNA was cloned into the mammalian expression vector pcDNA3.1 containing the 

SV40 ori and transfected into the human embryonic kidney cell line 293T, that 

contains the SV40 large T-antigen allowing the episomal replication of the plasmid for 

high-level gene expression. The LMAN1-pcDNA3.1 construct (Fig. 6.1) did not 

contain a pre-purification tag so that protein lysate was directly purified via a 

mannose sepharose column verifying functional binding of full length LMAN1. 

LMAN1 protein only showed weak binding to mannose sepharose column and was 

washed away through all wash fractions and could not be specifically eluted by 

mannose and EGTA (Fig. 3.13). Binding to A1AT-sepharose revealed similar results 

(Data not shown). 
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Figure 3.13 Full length LMAN1 purification using mannose-sepharose. Western blot 

analysis and silver staining of protein fractions for verification of LMAN1 specificity and purity. 

The expected size of full length LMAN1 is 53 kDa. Some LMAN1 protein bound to mannose 

sepharose, but was already washed away during washing steps and could not be specifically 

eluted with mannose and EGTA. Flow Through (FT), wash (W1-W5) and elution fractions (E1-

E5). Marker bands are depicted. 

LMAN1-CRD shows specific binding to selected substrates 

LMAN1-CRD was cloned into the pET44(+)a vector and expressed in the bacterial 

strain BL21. After denaturing cell lysis, protein lysate was refolded by rapid dilution 

into 92 different buffer compositions (iFOLD System1). The binding capacity of 

refolded LMAN1-CRD protein was measured by a radioactive binding assay with 

iodinated alpha-1-antitrypsin (125I-A1AT). The radioactive binding assay is described 

in section 6.3.2. For eight out of 92 buffers analyzed the refolding conditions showed 

high affinity of LMAN1-CRD to the substrate A1AT (Tab. 3.3). Buffer condition 2 was 

chosen, containing CaCl2, which is an essential cofactor of LMAN1 for optimal 

binding to mannose-harboring glycoproteins. Large scale purification of LMAN1-CRD 

was performed under these buffer conditions using either a mannose sepharose 

column or an A1AT sepharose column. Protein purification was first performed using 

a mannose sepharose column. Highest amounts of protein were detected in flow 

through (FT) and wash fractions (W1 – W5), a slightly smaller protein was eluted in 

fraction E2, probably a partially degraded LMAN1-CRD protein. LMAN1-CRD 

showed a higher binding affinity to an A1AT sepharose column compared to the 

mannose sepharose column and was specifically eluted in fraction five (E5) with the 

expected size of 38 kDa (Fig. 3.14). The purified LMAN1-CRD showed a high binding 

capacity to A1AT sepharose column. 
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Table 3.3 Radioactive labelling using 125I-A1AT 

Buffer condition Functional binding 
(DPM-decay per minute) 

Control binding 
(DPM-decay per minute) 

1 15.304 1.236 

2 14.232 1.343 

3 11.005 459 

4 16.731 657 

5 15.287 1.500 

6 18.704 840 

7 17.888 1.929 

8 23.916 415 

LMAN1-CRD was analysed using 125I-A1AT and Ni2+-sepharose. LMAN1-CRD was attached to 

Ni2+ via the N-terminal histidine tag of the pET44-CRD construct and incubated with 125I-A1AT. 

Unbound 125I-A1AT was washed away, followed by elution with 1M imidazole. Eluted material 

was analysed using a liquid scintillation counter (LSC) by measuring decays per minute (DPM). In 

the control labelling experiment labelled LMAN1-CRD was directly incubated with 1M imidazole 

so that imidazole served as a competitor to refolded LMAN1-CRD preventing histidine-tagged 

LMAN1-CRD to bind on the Ni2+-sepharose. For buffer composition see table 6.1. 

The two purification strategies to receive functional LMAN1 binding showed that 

LMAN1-CRD had a higher affinity to A1AT sepharose column compared to mannose 

sepharose column and that full length LMAN1 showed no appropriate binding. Taken 

together, our results demonstrate that LMAN1-CRD was successfully and specifically 

purified using the approach described above. In addition, the A1AT sepharose 

column was established as a highly specific tool for LMAN1 purification, superior to 

mannose sepharose columns.
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Figure 3.14 LMAN1-CRD purification using mannose- and A1AT-sepharose. 
Western Blot analysis and silver staining of protein fractions for verification of 

LMAN1 protein binding and purity, the predicted size of LMAN1-CRD is 38 kDa. A. 
LMAN1 CRD did not specifically bind to mannose (FT) and was washed away (W1-

W5). A smaller band was detected in fraction E2, corresponding to degraded 

protein. B. LMAN1 CRD was able to bind to A1AT sepharose, was weakly washed 

away and specifically eluted with buffer containing mannose and EGTA (E5). Flow 

Through (FT), wash (W1-W5) and elution fractions (E1-E5). Marker bands are 

depicted.
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3.5  XYLT2 loss of function mutation in MSI-H colorectal 
tumorigenesis 

In addition to LMAN1 exhibiting transporter function, the enzyme, termed XYLT2 

(xylosyltransferase 2), was highly mutated in MSI-H CRC cell lines (35%; 8/23). 

XYLT2 catalyzes the initial step in proteoglycan synthesis (Fig. 3.15). To gain a more 

detailed insight into the role of XYLT2 in MSI-H colorectal carcinogenesis the XYLT2 

gene was further analyzed by expression profiling and functional analysis using 3H-

xylose for an incorporation assay. 

 

Figure 3.15 XYLT enzyme activity during proteoglycan synthesis [Götting et al., 2007]. 
The two XYLT enzymes catalyze the first step in proteoglycan synthesis by linking a serine 

hydroxyl group of the core protein with the first sugar xylose. 

3.5.1 Variation of XYLT2 and XYLT1 expression within MSI-H CRC 
cell lines  

Since mammalian cells can express two XYLT isoforms, expression analysis was 

performed for both gene isoforms, XYLT1 and XYLT2. Oligonucleotides spanning at 

least two exons of the gene were designed and for the XYLT2 gene the PCR product 

included the C7 cMNR. XYLT mRNA levels were investigated on 23 MSI-H CRC 

cells, one MSS cell line (SW948), normal human colon mucosa and the 

hepatocellular liver cancer cell line HepG2. For HepG2 cells a moderate XYLT2 

expression was reported [Roch et al., 2010]. XYLT2 transcript was found to be 

expressed in all tested cells, including cell lines harboring mono- or biallelic XYLT2 

cMNR frameshift mutations and was also detected in normal colon tissue and HepG2 
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cells (Fig. 3.16A). XYLT1 mRNA was also found to be expressed in all cell lines and 

normal colon tissue but not in the hepatocellular cell line HepG2 (Fig. 3.16B).  

 

Figure 3.16 XYLT1 and XYLT2 expression in CRC cell lines and control cells. A. RT-PCR 

analysis of XYLT2 expression in CRC cell lines with homozygously wild-type (+/+), 

homozygously mutant (−/−), or heterozygously mutant (+/−) XYLT2 C7 cMNR. The expected 

XYLT2 PCR fragment of 298 bp could be amplified from cDNA of normal human colon, a MSS 

cell line (SW948), and all MSI-H CRC cell lines. As a positive control for XYLT2 expression 

HepG2 cells were used. B. RT-PCR analysis of XYLT1 expression in CRC cell lines and 

HepG2 cells. The expected XYLT1 PCR fragment of 250 bp could be amplified from cDNA of 

normal human colon, a MSS cell line (SW948), and all MSI-H CRC cell lines but not from the 

hepatocellular cancer cell line HepG2.

3.5.2 XYLT2 reconstitution changes xylose incorporation in XYLT2-

deficient MSI-H CRC cell lines  

We hypothesized that XYLT2-deficient MSI-H CRC cell lines might have a lower 

xylose assembly rate compared to XYLT2-proficient cells, because XYLT2 catalyzes 

the first step in proteoglycan synthesis and links xylose to the core protein. For 

functional analysis of XYLT2 a 3H-xylose incorporation assay was chosen. In case of 

a deficiency for XYLT no xylose assembly should occur (see Fig. 3.15). Due to the 

detection of XYLT1 expression in CRC cells (Fig. 3.16B), a direct comparison of 

XYLT2-deficient and -proficient MSI-H CRC cell lines was not suitable, because 
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effects could not be attributed to XYLT2 alone. HepG2 cells only expressing XYLT2 

showed a high xylose assembly. MSI-H CRC cell lines harboring different XYLT2 

mutations, varied in their xylose assembly (Fig. 3.17) as was to be expected.  

 

Figure 3.17 Metabolic H-xylose labelling in MSI-H CRC cell lines.3  
3H-Xylose assembly was performed using CRC cell lines with 

homozygous wild-type (+/+), homozygous mutant (−/−), or heterozygous 

(+/−) cMNR status for XYLT2 and as a positive control the hepatocellular 

cell line HepG2 was used. Radioactive xylose amount was measured 

with a liquid scintillation counter in decays per minute (dpm) and protein 

amount was charged against dpm. HepG2 cells only expressing XYLT2 

showed a high xylose assembly. CRC cell lines harboring different 

XYLT2 mutations, varied in their xylose assembly. Two independent 

experiments are shown. Error bars represent standard errors. 

In addition to the effect that XYLT1 might take over the function of the XYLT2 protein, 

the genetic heterogeneity among the analyzed cancer cells account for the difference 

in xylose assembly rates. For that reason, one biallelically XYLT2-mutated MSI-H 

CRC cell line was transiently transfected with either XYLT2-cDNA or the empty 

vector control (pcDNA3.1). There was a minimal, but not significant increase, in 

xylose assembly in HDC9 cells upon XYLT2 expression (Fig. 3.18) compared to 

mock-transfected HDC9 cells, which might result from low transfection efficiency. An 

involvement of XYLT2 in xylose assembly would probably be measurable if more 
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cells express XYLT2. Results require validation in stably transfected HDC9 cells 

expressing XYLT2, which are currently established in our laboratory. 

 

Figure 3.18 Metabolic H-xylose labelling in HDC9 cells upon XYLT2 
re-expression.

3

 Cells were transiently transfected with either XYLT2 

pcDNA3.1 or the empty vector. Afterwards cells were fed with 3H-xylose 

containing medium and harvested after 48 hours. Radioactive xylose 

amount was measured with a liquid scintillation counter in decays per 

minute (dpm) and protein amount was charted against dpm. Upon 

XYLT2-transfected HDC9 cells showed a minimal increase in xylose 

assembly compared to mock-transfected HDC9 cells. Results present 

two independent experiments. Error bars represent standard errors. 

Expression analysis for XYLT2 revealed similar results to LMAN1 expression profiles. 

Biallelically XYLT2-mutated transcripts were still detectable although XYLT2-mutant 

transcript is predicted to be NMD sensitive with a PTC more than 55 base pairs 

upstream of the last exon-exon border. A changed enzyme function with regard to 

XYLT2 loss of function could not be confirmed yet. 
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4.  Discussion 

4.1 Glycogenes show high mutation frequencies in MSI-H 
CRC 

The major goals of this work were the identification and characterization of coding 

mononucleotide repeat (cMNR) harboring genes encoding proteins of the 

glycosylation machinery, and the characterization of the resulting effects on cell 

surface glycosylation. Database analysis revealed 28 cMNR-harboring genes 

encoding components of the cellular glycosylation machinery. The three glycosylation 

genes which were already brought into correlation with MSI CRC, B4GALT1, 

GALNT5 and SIAT4B [Kim et al., 2004], were not selected by this database 

preselection, because all three coding regions did not possess a cMNR of more than 

seven base pairs. Here, only new genes with an involvement in glycosylation were 

identified. 

Two genes involved in the glycosylation machinery, LMAN1 and XYLT2, 

showed mutation frequencies above the predicted frequency for the length of their 

cMNRs in MSI-H CRC cell lines, colorectal adenomas and carcinomas, suggesting a 

functional role as mutational targets in MSI tumorigenesis. In addition to the most 

frequently mutated genes, candidate genes mutated at lower frequency might 

however also be relevant for MSI tumor development.
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4.2  Genetic alterations in LMAN1 might play a role in MSI 
colorectal tumorigenesis 

4.2.1 LMAN1 transporter function in the cell 

LMAN1 (also known as ERGIC-53: ER/Golgi intermediate compartment 53 kDa) is a 

membrane protein that carries secretory proteins in COPII vesicles from the ER to 

the Golgi apparatus [Stephens et al., 2001]. LMAN1 binds as a mannose-specific 

lectin to its substrates by a luminal carbohydrate recognition domain (CRD) in the 

neutral and Ca2+-rich ER and releases its cargo in the ERGIC because of a more 

acidic environment and a lower Ca2+ concentration [Hauri et al., 2000]. LMAN1 acts 

as a transport receptor for the serine protease inhibitor A1AT [Nyfeler et al., 2008] 

and is involved in the ER-export of the lysosomal glycoproteins cathepsin C and Z as 

well as the blood coagulation factors V and VIII [Appenzeller et al., 1999; Moussalli et 

al., 1999; Nyfeler et al., 2008; Vollenweider et al., 1998]. Genetic alterations in 

LMAN1 are known to be associated with a human disease termed combined 

deficiency of coagulation factors V and VIII (F5F8D), but connections to cancer have 

not been reported so far [Spreafico et al., 2008]. 

 

Figure 4.1 LMAN1 transporter function in the cell [Hauri et al., 2000]. LMAN1 is a Type I 

mannose-binding lectin, which binds to mannose (Man9) bearing glycoproteins in the ER 

after these glycoproteins have undergone folding and quality control (3). LMAN1 monomers 

are translocated into the ER-lumen (1) and form disulfide-linked homo-hexamers (2). LMAN1 

hexamers bind to Man9-N-glycans of correctly folded cargo glycoproteins in the presence of 

Ca2+ (4). It cycles between ER and ERGIC, transporting glycoproteins to the ERGIC (5). In 

the ERGIC glycoproteins are released due to a more acidic, Ca2+-low environment (6). The 
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glycoprotein is further transported through the secretory pathway (8) and either secreted or is 

associated with the cell surface (9). The C-terminal FF-motif of LMAN1 is required as the ER 

exit signal and free LMAN1 is recruited back to the ER via direct interaction of di-lysine (KK) 

with CopI vesicles. 

Mutations of LMAN1 associated with this autosomal recessive bleeding disorder 

(F5F8D) were found throughout the whole gene sequence, including all exons 

except exon 4. Nonsense, frameshift, splicing defect or missens mutations were 

involved. In contrast, LMAN1 mutations that occurred in MSI-H tumors represent 

cMNR frameshift mutations only in exon 8 and interfere with normal LMAN1 

function probably by disrupting the control region of the oligomerization domain. 

Two conserved cysteine residues as well as four α-helices located in the 

oligomerization domain are required for the formation of homohexamers [Neve et 

al., 2005; Nufer et al., 2003]. It was reported that LMAN1 only exits the ER in a 

hexameric form suggesting that only this form is functional for transporting cargo 

proteins [Neve et al., 2005]. Frameshift mutations in the LMAN1 cMNR would 

lead to a loss of both cysteine residues and two α-helices, thus preventing 

oligomerization of LMAN1. The lack of oligomerization leads to misfolding and to 

retention in the ER by chaperones [Hurtley et al., 1989], so that a transport of 

cargo proteins would not be able anymore. This work provides the first evidence 

for LMAN1 being involved in human neoplastic disease apart from F5F8D. 

Several lines of evidence support the involvement of LMAN1 in MSI 

tumorigenesis. 

4.2.2 LMAN1 involvement in MSI-H tumorigenesis 

First, a high mutation frequency of 52% was observed in MSI-H CRC cell lines with 

biallelic mutations in 17% of the cell lines. The LMAN1 mutation frequency was 

significantly higher than the predicted frequency for the length of its cMNR of nine 

nucleotides (A9). Accordingly, LMAN1 mutations most likely are subject to positive 

selection pressure and hence might confer a growth advantage to affected MSI tumor 

cells [Woerner et al., 2010]. Second, a significant fraction of LMAN1 mutations in 

MSI-H CRC cell lines and primary tumors affected both alleles. In general, such 

biallelic mutational inactivation usually points to a tumor suppressor function of the 
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affected gene. To understand the nature of the genetic defects observed in MSI-H 

CRC cells, LMAN1 expression was analyzed at the transcript and protein level. 

Expression analysis showed that LMAN1 mRNA was expressed in all MSI-H CRC 

cell lines, including those with mono- and biallelic mutations. LMAN1-mutant 

transcripts harbor a premature termination codon, thus being predicted to be NMD-

sensitive. Messenger RNA transcripts that carry premature termination codons 

(PTCs) are recognized by the nonsense-mediated mRNA decay (NMD) system when 

the PTC appears 50 – 55 base pairs upstream of the last exon-exon border [El-Bchiri 

et al., 2005; El-Bchiri et al., 2008; Ionov et al., 2004]. NMD-sensitive transcripts 

should be recognized and degraded by the nonsense-mediated mRNA decay (NMD) 

system [You et al., 2007]. However, LMAN1 transcripts were easily detectable by RT-

PCR analysis in cell lines with biallelic frameshift mutations and hence seemed NMD 

resistant. Altered mRNA sequences that are not affected by NMD can lead to the 

generation of truncated proteins, carrying a carboxy-terminal neopeptide sequence 

due to shifts in the reading frame of the encoded amino acid sequence. These 

neopeptides appeared to be highly immunogenic [Linnebacher et al., 2001; 

Schwitalle et al., 2008], thus possibly explaining the high lymphocytic infiltration 

observed in MSI CRCs. To observe whether a truncated LMAN1 protein is expressed 

in LMAN1-mutated cell lines, Western blot analysis with an appropriate LMAN1 

antibody detecting an amino-terminal peptide was performed. Cell lines harboring 

wildtype LMAN1 or heterozygously mutated LMAN1 showed a protein band at the 

expected size of 53 kDa, but no truncated protein band of 36 kDa could be detected 

in heterozygous or homozygous LMAN1 cell lines. This suggests that mutant LMAN1 

transcript could represent a NMD-escape transcript, affected by nonsense-mediated 

translational repression [You et al., 2007] or the truncated LMAN1-mutant protein is 

recognized by ER-associated degradation (ERAD) enzymes and efficiently degraded 

by proteasomal degradation.  

Immunohistochemical analyses on a set of 50 MSI-H colorectal carcinomas 

showed local loss in 38% of all carcinomas and complete loss of LMAN1 expression 

in 6% of all carcinomas. In addition biallelic mutations, associated with complete loss 

of LMAN1 protein expression, occurred frequently in MSI-H colorectal carcinomas 

and adenomas. This was proven by regional microdissection on a few MSI-H 

carcinomas and MSI-H adenomas. DNA frameshift mutation analysis revealed 
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biallelic cMNR frameshift mutations in the LMAN1 gene and loss of LMAN1 protein 

expression in these tumor areas. Interestingly, some LMAN1-stained tumor slides 

gave the impression that LMAN1-deficient tumor regions appeared to show a higher 

invasiveness compared to areas expressing LMAN1. But due to the low number of 

tumors that showed this effect no final conclusion could be drawn. In order to 

address this issue more tumor slides should be analyzed and the metastatic behavior 

of LMAN1-deficient cell lines could be examined. Furthermore, LMAN1 mutations 

were observed through all tumor stages (UICC stages, data not shown) analyzed and 

occurred already in adenomas. Interestingly, LMAN1 mutations seemed to occur 

more frequently in hereditary MSI-H CRCs (HNPCC) than in sporadic MSI-H CRCs 

suggesting that LMAN1 mutations appear in patients with germline mutations in the 

MMR-system and are less frequent observed after epigenetic silencing of the MLH1 

promotor accompanied by BRAF mutations in sporadic MSI tumors. 

Impaired A1AT secretion in LMAN1-deficient MSI-H cancer cell lines 

The third and most striking evidence for an involvement of LMAN1 in MSI 

tumorigenesis relates to the observation that LMAN1-deficient cell lines showed 

impaired A1AT secretion. Alpha-1-antitrypsin (A1AT), a serine protease inhibitor, was 

reported to be involved in tumorigenesis [Huang et al., 2004]. Its expression is found 

in many different tissues including the human colon [Carlson et al., 1988; Geboes et 

al., 1983]. A1AT exerts anti-proteolytic function and confers angio-inhibitory activity 

[Huang et al., 2004]. Comparative cDNA microarray expression analyses of human 

normal and tumor tissues revealed that lower levels of A1AT transcripts correlated 

with larger tumor size [Huang et al., 2004] and higher levels of non-circulating A1AT 

within tumors tend to be associated with a better prognosis [Allgayer et al., 1998]. 

Interestingly, it was hypothesized that A1AT may be protective against MSI-H-CRC 

development, because increased A1AT levels in postmenopausal women receiving 

estrogen were associated with a reduced incidence for MSI-H CRC [Yang et al., 

2000]. Work by Huang and colleagues also shows significant variations in local A1AT 

levels in human tumor tissues [Huang et al., 2004]. The observation of intratumoral 

heterogeneity of local LMAN1 deficiency might provide a molecular explanation for 

this finding. The A1AT-ELISA results showed significantly lower levels of A1AT 

secreted into the cell culture medium in LMAN1-deficient cell lines, reaching about 
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20% of the level secreted by the LMAN1-proficient control cell line Caco2. These 

data on A1AT secretion correspond well with the results of Nyfeler and colleagues on 

mouse embryonic fibroblasts (MEF) derived from LMAN1 (−/−) knockout mice 

[Nyfeler et al., 2008]. LMAN1-deficient MEFs secreted only approximately 25% of 

A1AT in a given time period compared with LMAN1 (+/+) MEFs. Furthermore, the re-

expression of LMAN1 in a LMAN1-deficient cell line abolished the secretion defect, 

thus the A1AT secretion decrease could be attributed to the loss of LMAN1 

transporter function.  

A1AT has an important role in inhibiting several serine proteases with 

essential roles in processes like blood coagulation, apoptosis, cell differentiation, 

ECM degradation and inflammation. One prominent protease which is inhbited by 

A1AT is the enzyme neutrophil elastase (NE). NE is expressed in neutrophils which 

are the first immune cells arriving at a site of inflammation [Heutinck et al., 2010]. In 

addition to their function in promoting bacterial killing, NEs are involved in degrading 

ECM compounds and in migration [Korkmaz et al., 2008; Rao et al., 2004]. NE was 

reported to hydrolyze ECM compounds such as collagens, fibronectins and 

proteoglycans [Mainardi et al., 1980; McDonald et al., 1980; McGowan et al., 1989]. 

Breast tumors with high levels of free NE were associated with a poor prognosis 

[Akizuki et al., 2007]. A loss of A1AT as the inhibitor of NE could contribute to that 

effects. Proteases such as NE may play a pathological role in facilitating cancer cell 

invasion and metastasis by dissolution of the tumor matrix. Other proteases like 

proprotein convertases (PCs) were reported to play an important role in tumor cell 

metastasis in human colorectal tumor cells. Overexpression of another serine 

protease inhibitor termed α-1-antitrypsin Portland (α1-PDX) significantly reduced the 

ability of colorectal tumor cells to form liver metastasis [Scamuffa et al., 2008]. Thus 

inhibition of proteases deregulating the environment of tumor cells is an important 

task and loss of this function generates an advantage for the tumor cell. If α1-PDX 

presents also a cargo protein of LMAN1 has to be proven.  

With the A1AT secretion defects in LMAN1-deficient cell lines and the 

restoration of this defect by transient LMAN1-transfection a direct correlation 

between A1AT and LMAN1 as a specific transporter of A1AT could be made. The 

loss of LMAN1 transporter function might decrease A1AT levels in the tumor tissue 
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thus driving tumor progression or even lead the formation of metastasis by enhanced 

levels of proteases changing the ECM of the tumor [Roeckel et al., 2009]. 
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4.2.3 The screening for new LMAN1 cargo proteins 

Apart from A1AT secretion defects, alternative mechanisms could also contribute to a 

tumor-promoting effect of LMAN1 mutations. LMAN1 mutations might confer more 

indirect effects via impaired transport of known or yet unknown cargo proteins. For 

example, LMAN1 deficiency might promote MSI colorectal tumorigenesis by affecting 

the secretion of client proteins such as cathepsin C and Z or by interfering with 

interacting proteins such as MCFD2, FGFR3 and SUMF1 [Fraldi et al., 2008; Lievens 

et al., 2008; Nyfeler et al., 2006]. Moreover, it is reasonable to assume that additional 

yet unknown LMAN1 cargo proteins exist, which might be affected by a loss of 

LMAN1 function.  

To identify new LMAN1 cargo and binding proteins, two techniques were 

established: (i) a pulse-chase experiment to identify the general distribution of 

proteins in the ER of LMAN1-proficient versus LMAN1-deficient MSI-H tumor cells 

and (ii) the use of purified LMAN1 protein as a bait to capture interacting proteins. 

With the pulse chase experiment the retention of proteins upon LMAN1 re-expression 

in a LMAN1-deficient background was observed using 35S-methionine. By 

comparison of isoelectric points and molecular weights already known cargo proteins 

were excluded. With the functional purification of the LMAN1 protein an important 

tool for the identification of new LMAN1 cargo proteins was generated. An agarose-

immobilized LMAN1 protein should subsequently be used for the fishing of new 

LMAN1 cargo proteins in the medium of MSI-H colorectal cancer cells. 

Protein retention upon LMAN1 expression 

The aim of the pulse chase experiment was to identify new LMAN1 cargo proteins 

retained in the ER/Golgi fraction in LMAN1-deficient LoVo cells due to a loss of 

LMAN1 transporter function. 164 proteins with incorporated 35S-methionine were 

detected in the ER/Golgi fraction. Only five protein spots showed differences in 

LMAN1-deficient LoVo cells compared to LMAN1-transfected LoVo cells. A possible 

reason for the low number of differences detected, might be the cells`s ability to 

compensate some, but not all, of the effects caused by LMAN1 deficiency by utilizing 

other transport pathways. It is known that LMAN1 can interact with additional proteins 

representing a checkpoint for quality control of glycoproteins [Fraldi et al., 2008; 
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Lievens et al., 2008; Nyfeler et al., 2006]. The additional function of LMAN1 as a 

checkpoint together with its interaction partners could also work with other lectins, 

suggesting alternative pathways playing similar roles like LMAN1 complexes and 

taking over their function. An alternative explanation might be that retained proteins 

were detected by a certain quality control system in LMAN1-deficient cells and 

immediately degraded, because normal transport conditions were interrupted.  

However another explanation appears most likely. If one recalls that 

approximately 3000 – 4000 proteins are secreted and just as many pass the 

secretory pathway as membrane bound proteins [Bonin-Debs et al., 2004], it is 

obvious that the employed experimental strategy most likely detected only the most 

abundant proteins. Although only one potential cargo protein was detected in 

LMAN1-deficient cells, other LMAN1 cargo proteins might be present which were 

below the detection limit of this method. If LMAN1 cargo proteins remain in the 

ER/Golgi fraction but can not be detected because they are masked by high 

abundance proteins, variation and optimization of the kinetic parameters would be 

required. In particular, short pulse times in the range of minutes and extended chase 

times between two and 24 hours should be considered, thus removing the label from 

all proteins transported through the secretory pathway. Accordingly, retention of low 

abundant proteins in the ER/Golgi due to LMAN1 deficiency should be increased. To 

further reduce the sample complexity and enrich potential low abundant LMAN1 

cargo proteins, pre-fractionations could be applied before 2D-electrophoresis e.g. by 

liquid phase isoelectric focussing or chromatofocussing. Since LMAN1 is a mannose-

specific lectin, an even more specific enrichment of possible cargo proteins would be 

affinity chromatography via mannose-specific lectins.  

The pulse chase experiment in this study provides a first clue about additional 

LMAN1 cargo proteins and hence also might contribute to understand the role of 

LMAN1 in MSI tumorigenesis. For the identification of new LMAN1 cargo proteins an 

alternative labelling method with the incorporation of 13C-carbon-labelled amino acids 

could be considered. By this labelling method a mass spectrometric distinction 

between proteins with incorporated 13C and non-labelled proteins is possible. 

However, the identification of 13C-labelled proteins in stained 2D-gel spots will be 

hindered by the fact that not only the 13C-labelled proteins but all proteins including 

all ER/Golgi-resident will appear as prominent spots on the gel. In order to address 
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this issue another pre-fractionation step after ER/Golgi fractionation might be 

sufficient e.g. a subsequent fishing with the LMAN1-CRD.  

The LMAN1 carbohydrate recognition domain could provide a powerful tool for 

cargo protein detection 

An alternative experimental strategy was to apply LMAN1`s lectin function for the 

identification of new LMAN1 cargo proteins. To this end functional LMAN1 constructs 

were required.  

For functional analysis two different LMAN1 constructs were applied, the full 

length LMAN1 protein and its carbohydrate recognition (CRD)-domain. The binding 

of these constructs to two affinity matrices, mannose sepharose and A1AT 

sepharose revealed that the LMAN1-CRD construct had the highest binding capacity 

to an A1AT sepharose column. The binding of full length LMAN1 to the mannose 

sepharose column was less efficient. The results of full length LMAN1 were not in 

line with LMAN1 binding assays of Appenzeller-Herzog and colleagues [Appenzeller-

Herzog et al., 2004], although cell lysis and purification steps were performed 

identically. Appenzeller-Herzog purified the full length Myc-tagged LMAN1 via a 

mannose sepharose column and detected the LMAN1 construct indirectly by using a 

Myc-antibody. One possible explanation for the inefficient binding of full length 

LMAN1 in the experiment established in this work, might be insufficient folding upon 

synthesis in 293T cells. Unphysiologically high amounts of LMAN1 protein 

synthesized in these cells might lead to the formation of aggregates and thus 

incorrect folding of monomeric LMAN1 polypeptides. Similarly, impaired 

multimerization could contribute to inefficient binding, since for optimal LMAN1 

function hexamer formation is essential [Neve et al., 2005]. Alternatively, a co-factor 

or interaction partner of LMAN1, required for efficient binding, was missing from or 

was not expressed in 293T so that LMAN1 was not able to bind tightly to the 

mannose sepharose column.  

LMAN1-CRD was purified by a denaturing inclusion body lysis step and 

subsequent refolding was established using the iFOLD™ protein refolding system 1. 

The LMAN1-CRD construct lacked the transmembrane and cytosolic domains, so 

that bacterial expression and protein refolding as well as purification steps were 

easier to handle. In addition, it is known that only the oligomerization domain is 
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sufficient for a functional hexamerization of LMAN1 protein [Neve et al., 2005]. In 

complete, 92 buffer conditions were tested and correct LMAN1-CRD folding was 

controlled using a radioactive binding assay with 125I-A1AT. LMAN1-CRD binding to 
125I-A1AT was efficient for eight buffers. Buffer condition 2 was chosen since this 

condition showed a low dpm-value for the control and besides this buffer contained 

the cofactor Ca2+ which is essential for optimal LMAN1 binding [Zhang et al., 2009]. 

The LMAN1-CRD construct lacking the transmembrane as well as the cytosolic 

domain showed specific binding to the A1AT sepharose column, but binding to the 

mannose sepharose column was not sufficient.  

The low affinity of LMAN1 to mannose might be explained by missing 

cofactors or modifications such as phosphorylation important for LMAN1 function. It 

is known that LMAN1 can interact with additional proteins representing a checkpoint 

for quality control of glycoproteins [Fraldi et al., 2008; Lievens et al., 2008; Nyfeler et 

al., 2006]. Under certain circumstances LMAN1 needs interaction partners for the 

correct transport of cargo proteins as it was shown for the coagulation factors V and 

VIII [Nyfeler et al., 2006], where the MCFD2-LMAN1 complex forms a specific cargo 

receptor for the ER-to-Golgi transport of these proteins. Furthermore LMAN1 was 

reported to function as a checkpoint for FGFR3 maturation, allowing only functional 

receptors to reach the cell surface [Lievens et al., 2008]. There are two further 

publications where an LMAN1 checkpoint function in quality control was 

demonstrated [Anelli et al., 2007; Fraldi et al., 2008]. In both cases LMAN1 interacts 

with another protein, termed Erp44. 

Although it was reported that transmebrane and cytosolic domains are not 

sufficient for the functional binding of LMAN1, these domains might play a role in 

correct conformation of LMAN1 in addition to the efficient cofactors. 

Furthermore LMAN1 might only detect mannose in a specific conformation 

order on the cargo protein. This would explain why LMAN1 binding to A1AT 

sepharose column was more successfull. For A1AT binding best results were 

obtained at a pH of 7.4 at 4°C and Ca2+ concentrations of 1 mM. LMAN1-CRD 

protein was specifically eluted with mannose and EGTA, but also high protein 

amounts were found in the flow through fraction. 

In the present study, optimized conditions for a functional purification of 

LMAN1-CRD have been established and can now be directly applied to large scale 
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functional LMAN1 purification. Future work will concentrate on the establishment of 

experiments for the fishing of LMAN1 substrates in cell extracts and conditioned 

medium with an agarose-immobilized LMAN1-CRD.  

The LMAN1 pulse chase experiment as well as the purification of LMAN1-CRD 

revealed on one hand potential new LMAN1 cargo proteins and on the other hand an 

appropriate tool for the specific identification of new cargo proteins. Additional cargo 

proteins could explain the role of LMAN1 in MSI tumorigenesis. 

4.2.4 LMAN1 re-expression changes the cell surface glycoprotein 
pattern 

Although only secreted proteins are known as LMAN1 client proteins, one might 

speculate that membrane-bound glycoproteins may also be transported by this 

mechanism. Support for this hypothesis was gained from Lectin-FACS analysis that 

showed changes in the cell surface glycoprotein pattern occuring in LMAN1-deficient 

LoVo cells upon reconstituted LMAN1 expression. In particular, the presence of core 

substitutions and branching in N-glycans and the sialylation status of N- and O-

glycans were profiled with a lectin panel. Mock-transfected LMAN1-deficient LoVo 

cells showed a higher binding of PHA-L lectins to the cell surface compared to 

LMAN1-transfected LoVo cells, whereas jacalin (JAC) lectin binding was reduced.  

PHA-L is an N-glycosylation-specific lectin able to agglutinate lymphocytes in 

mitogenic active cells and has been termed the “L” subunit, for leuco-agglutinin 

instead of the PHA-E lectin agglutinating erythrocytes [Leavitt et al., 1977]. As 

mentioned in section 2.5.1, PHA-L is as a marker for N-glycans bearing the β1-6 

branch. The synthesis of the β1-6 branch is catalyzed by the enzyme GlcNAcT-V 

(MGAT5), which was shown to be hyperactive in the progression of cancer from a 

tumorigenic to a metastatic phenotype [Demetriou et al., 1995; Dennis et al., 1999; 

Przybylo et al., 2008]. LMAN1 loss might influence tumor progression, but how 

LMAN1 loss can contribute to a higher β1-6 branching is difficult to reconcile. The 

disturbance of the branching relation on the cell surface might in general influence 

the balance. Increased β1-6 branching could lead to a decrease of other branches for 

cell-cell communication and thus influene cell behavior. Perhaps LMAN1 loss leads 

to an uncontrolled transport of overexpressed MGAT5 resulting in upregulated β1-6 

 65



                                                                                                                                                 Discussion 

branching on the cell surface. Seelentag and colleauges observed an increase in β1-

6 branches in metastatic colon carcinoma cells [Seelentag et al., 1998]. For LMAN1-

deficient MSI-H CRC cells a test for metastatic behavior, as well as the 

overexpression of MGAT5 should be performed to understand the correlation of 

LMAN1 deficiency and increased β1-6 branching. In addition, it is well documented 

that effects of β1-6 branches in glycoproteins may trigger cell growth, motility, cell 

adhesion and differentiation [Mendelsohn et al., 2007]. These N-glycan branches 

generate ligands for lattice-forming lectins, like galectins, that regulate surface levels 

of glycoproteins including epidermal growth factor (EGF) and transforming growth 

factor-beta (TGFß) receptors [Lau et al., 2007]. Influences on signalling in LMAN1-

deficient cells were not addressed yet, but warrant further investigation. 

JAC is an O-glycoside-specific lectin binding to oligosaccharide structures 

containing GalNAc, also called Tn-antigens. JAC will also bind to these structures in 

a mono- or di-sialylated form thus allowing an earlier recognition of changed O-

glycan structures. Surprisingly, PNA another lectin detecting higher sialylated Tn-

antigens failed to show a differential staining pattern to the cell surface upon LMAN1 

re-expression. The Tn-antigen was reported to be present on most human cancers 

[Springer, 1984]. Mock-transfected LoVo cells bound less JAC lectins compared to 

LMAN1-transfected LoVo cells, thus LMAN1-deficient cells did not possess a great 

portion of Tn-antigens on the cell surface. As described in section 2.5.2 Tn-antigens 

are incompletely glycosylated mucins containing less total carbohydrate, and 

frequent sialylated core 1 structures. Possibly enzymes necessary for the elongation 

of O-glycans were no longer transported by LMAN1, thus leaving the O-glycan 

incompletely glycosylated. Conversely, glycoproteins transported by LMAN1 can be 

O-glycosylated in the Golgi apparatus in addition to their N-glycosylation on serine or 

threonine residues of the same protein, so that the higher binding of JAC to the cell 

surface of LMAN1-transfected cells could be explained.  

PSA and WGA showed also less binding to glycan structures on the cell 

surface of LMAN1-deficient LoVo cells compared to mock-transfected LoVo cells. 

PSA has specificity towards α-linked mannose-containing oligosaccharides with core 

fucose and WGA shows specificity towards N-acetylglucosamine structures 

[Monsigny et al., 1980; Tateno et al., 2009]. Core fucosylation of N-glycans is a 

common modification on membrane proteins in humans. Fucosylated N-glycans 
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exhibit a smaller degree of conformational flexibility and lower flexibility increases the 

lifespan of some serum proteins. Fucosylated N-glycans are involved in a variety of 

biological and pathological processes [Ma et al., 2006].  

Overall, loss of LMAN1 expression led to a cell surface glycoprotein pattern 

different from the pattern observed on LoVo cells re-expressing LMAN1. More PHA-L 

lectins bound on the cell surface suggested more β1-6 branching in LMAN1-deficient 

cells, a glycosylation pattern known to be involved in the progression of cancer from 

a tumorigenic to a metastatic phenotype [Demetriou et al., 1995; Dennis et al., 1999; 

Przybylo et al., 2008]. LMAN1-deficient MSI-H CRC cells will be tested for an 

involvement in metastatic behavior in future experiments. 
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4.3  Consequences of XYLT2 mutations in MSI-H colorectal 
tumors 

XYLT2 catalyzes the transfer of xylose from UDP-xylose to selected serine residues 

of a core protein representing the initial enzyme in proteoglycan biosynthesis (Fig. 

4.2). Proteoglycans are present in the extracellular matrix and on the cell surface, 

playing a key role in cellular signalling, as storage depots for growth factors and 

cytokines, and interaction with a broad variety of counterpart molecules [Iozzo, 1998]. 

Two xylosyltranferase isoforms (XYLT1 and XYLT2) are found that are differentially 

expressed in cell types and tissues [Götting et al., 2007] They serve as biochemical 

markers in systemic sclerosis [Götting et al., 1999] and are associated with several 

other diseases like Pseudoxanthoma elasticum, diabetic nephropathy and 

osteoarthritis [Götting et al., 2007]. Changed expression in glycosyltransferases like 

XYLT2 will probably change the glycosylation pattern on the cell surface. Cell surface 

changes will possibly affect cell-cell interaction or cell-matrix interactions. In general, 

the glycan profile of tumor cells shows quantitative differences with increased and 

decreased expression compared to normal cells [Gabius H-J, 2009]. Mucin-type O-

glycans, Lewis antigens and Tn-antigens are already used as tumor markers for 

different tumor entities, like colorectal cancer, breast cancer, pancreatic and prostate 

cancer [Brockhausen, 2006]. This study reported for the first time XYLT2 mutations in 

MSI-H colorectal tumors. The XYLT2 C7 cMNR showed the second highest mutation 

frequencies with 35% on MSI-H CRC cell lines, 26% on MSI-H colorectal carcinomas 

and 21% on MSI-H colorectal adenomas. Furthermore, biallelic XYLT2 mutations 

were observed in two cell lines and XYLT2 was predicted as a positive selected 

gene, thus suggesting XYLT2 as a tumor-promoting gene with a presumably tumor 

suppressor function. Expression analysis of both XYLT genes showed that XYLT1 

transcript was detected in all MSI-H CRC cell lines, as well as the control cell lines 

SW948 and normal colon mucosa but not in the XYLT2 positive control cell line 

HepG2. XYLT1 presents the second isoform of XYLT genes in mammals, but without 

a cMNR in its coding region. XYLT2 mRNA was transcribed in all MSI-H CRC cell 

lines, including HDC9 and Colo60H cells, that are biallelically mutated for XYLT2. 
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Figure 4.2 XYLT metabolism in mammals (modified from [Bakker et al., 2009]). XYLT 

enzymes 1 and 2 catalyze in a tissue specific manner the intial reation in glycosaminoglycan 

(GAG) biosynthesis. UDP xylose is synthesized in two steps by the enzymes UGDH (UDP-

Glycose dehydrogenase), forming UDP-GlcA, and UXS (UDP-Xylose synthase). One 

transporter is capable of transporting UDP-GlcA over the ER-membrane, whereas the other 

transports UDP-xylose over the Golgi membrane. After the tetrasaccharide linker either 

GalNAc-GlcA or GlcNAc-GlcA disaccharide units are attached to form chondroitin and 

dermatan sulfate or heparin and heparan sulfate. 

Mutated XYLT2 transcript should be a subject of nonsense-mediated mRNA decay 

(NMD; [You et al., 2007]. The interesting question was whether a truncated XYLT2 

protein is expressed in biallelically mutated cells or if the transcript is subjected to 

nonsense-mediated translational repression [You et al., 2007] or the truncated 

protein is degraded in the proteasome. So far no appropriate antibody specifically 

detecting the XYLT2 protein is available.  

 3H-xylose incorporation experiments have demonstrated no differences in 

MSI-H CRC cell lines and in comparison a high 3H-xylose incorporation rate in control 

cells HepG2. For HepG2 cells, only expressing the XYLT2 isoform, 3H-xylose 

incorporation could be attributed to XYLT2 enzyme activity alone. XYLT1 expression 

taking over the function of XYLT2, as well as the heterogeneity of examined cancer 

cell lines might contribute to the contradictory effects in different XYLT2 mutated 
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MSI-H CRC cell lines. To investigate solely XYLT2 function 3H-xylose incorporation 

could be examined in cell lines deficient for both isoforms or XYLT1 expression could 

be silenced by XYLT1 siRNA. For the mutant chinese ovary hamster cell line CHO 

pgsA-745 no XYLT1 and XYLT2 transcripts were detected which was accompanied 

by lost chondroitin and heparan sulfate structures on the cell surface [Cuellar et al., 

2007; Esko et al., 1985]. For further analysis in MSI-H colorectal cancer cell lines a 

XYLT2-deficient cell line (HDC9) was used for overexpressing XYLT2. Changed 3H-

xylose incorporation in these cells could be directly linked to higher levels of XYLT2 

expression. To prove that decreased or increased XYLT2 expression influences the 
3H-xylose incorporation rate, HDC9 cells were transiently transfected with either the 

empty vector control pcDNA3.1 (mock-transfected HDC9 cells) or XYLT2-cDNA 

(XYLT2-transfected HDC9 cells). The effects of 3H-xylose incorporation in mock-

transfected HDC9 cells and XYLT2-transfected HDC9 cells showed only a slight 

increase in 3H-xylose in HDC9 cells re-expressing XYLT2. These low effects in 3H-

xylose incorporation were probably caused by low transfection efficiency which was 

less than 10% for HDC9 cells. The effects of XYLT2 in 3H-xylose incorporation, could 

be more reliably evaluated if more cells expressed XYLT2. This could be 

accomplished in stably transfected HDC9 cells expressing XYLT2, which are 

currently established in our laboratory. In addition to a total 3H-xylose metabolic 

labelling the incorporation rate into individual mucin proteins should be analyzed in 

future experiments. 

Taken together, the results for XYLT2 on MSI-H CRC cell lines and tumors 

showed that XYLT2 is mutated frequently and biallelically and mutations occur in 

preneoplatic lesion thus providing first evidence for an involvement in MSI 

tumorigenesis. To further validate these results additional data on XYLT2 protein 

expression need to be acquired in MSI-H CRC cell lines and primary tissues. 

Unfortunately, suitable XYLT2-specific antibodies are not available. Alternatively, 

XYLT2 enzyme activity or loss of activity could be examined in MSI-H colorectal 

tumor tissues known to carry biallelic mutations. 

How might XYLT2 loss of function contribute to MSI-H tumorigenesis? In 

contrast to almost all other glycosyltransferases the xylosyltransferases are secreted 

into the extracellular space, although xylosylation of the core protein occurs in the 

Golgi apparatus [Götting et al., 1999; Götting et al., 2000]. It was shown that 
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xylosyltransferases are secreted into the extracellular space together with large 

chondroitin sulfate proteoglycans [Götting et al., 2002], probably controlling 

proteoglycan synthesis. If the mutated XYLT2 protein is also secreted, this XYLT2 

neopeptide would be a suitable marker for MSI tumorigenesis. Functional evidence 

for XYLT contributing to tumorigenesis and especially of XYLT2 to MSI tumorigenesis 

was not determined yet. However, as an initial enzyme in proteoglycan synthesis 

XYLT2 loss probably changes cell surface structures due to a loss of chondroitin, 

dermatan and heparan sulfates. Significant changes in proteoglycan content have 

been reported in the stroma surrounding tumors, and it has been suggested that 

these alterations can support tumor growth as well as progression and invasion 

[Iozzo et al., 1993; Lesley et al., 1997]. The proteoglycan content in XYLT2-deficient 

cells and tumors has to be proven. 

The current data for the first time provide a preliminary evidence for potential 

association of XYLT2 mutations with MSI tumorigenesis. Finding evidence for 

changed XYLT2 activity in MSI-H colorectal tumors would be of great interest, since 

XYLT2 could be a promising marker for MSI-H tumorigenesis, as measuring the 

XYLT2 activity in patient`s bloods or other body fluids is efficient. 

4.4  Candidate genes with lower mutation frequency or no 
mutations in their cMNRs 

In addition to LMAN1 and XYLT2, cMNR-harboring glycosylation genes with lower or 

no mutation frequency were observed in DNA frameshift mutation analysis. These 

genes will be shortly discussed here.  

B4GALNT4 (beta-1,4-N-acetyl-galactosaminyl-transferase 4), the second gene 

mutated in more than 30% of MSI-H CRC cell lines, might be an interesting 

candidate for further analysis. B4GALNT4 harbors three cMNRS (3 x G7) in its 

coding region, so mutations may result in three different neopeptides, if mutated 

proteins are expressed. However, no biallelic mutations were observed for 

B4GALNT4 making a role as a classical tumor suppressor less likely for this gene. As 

a galactosaminyl-transferase B4GALNT4 catalyzes the linkage of N,N-diacetyl-

lactose-diamine (LacdiNAc) which is found on glycoproteins and glycohormones of 

several tissues [Gotoh et al., 2004]. It was reported that B4GALNT4 showed an 
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elevated expression in prostate cancer, together with fucosyltransferase I (FUT1) 

which is responsible for the high amount of PSA (prostate-specific antigen) in 

prostate cancer [Fukushima et al., 2010]. Expression analyses of B4GALNT4 in MSI-

H CRC have yet not been investigated. 

Furthermore glycogenes not mutated in any MSI-H CRC cell line might play 

such an important role that mutations are suppressed in these genes. Genes as ABO 

(alpha 1-3-N-acetylgalactosaminyltransferase), GOLGA4 (Golgin A 4) or OSGEPL1 

(O-sialoglycoprotein endopeptidase-like 1) might have important functions so that 

mutations in these genes are not compatible with cell survival and/or proliferation. 

ABO encodes proteins determining the individual blood groups dependent on the 

expressed splice variant, with three main variant alleles A, B and 0 [Novaretti et al., 

2008]. AB0 is known to be involved in pancreatic carcinogenesis and frequently 

shows alterations in tumors, known as Lewis antigens [Brockhausen, 1999; Wolpin et 

al., 2010]. AB0 blood type could be incorporated into predictive models for pancreatic 

cancer, because there was a tendency that blood types A, AB, and B were at greater 

risk for developing pancreatic cancer [Wolpin et al., 2010]. For GOLGA4 a potential 

role in dendrocyte differentiation and/or maturation was reported [Cowan et al., 

2002]. For OSGEPL1 only expression analyses made by the human protein atlas 

consortium (www.proteinatlas.org) are available showing a strong staining in a few 

CRCs. 

 This thesis investigated cMNR harboring genes with high mutation frequencies 

in MSI-H colorectal cancer. The analysis of genes showing no mutation frequency 

might also be interesting to understand the biology of MSI tumors.  

4.5  Conclusions and Perspectives 

During the course of this thesis a few frequently mutated genes involved in 

glycoprotein synthesis and modification were identified in MSI CRC. Two candidates 

with significantly increased mutation rates were identified (LMAN1, XYLT2). For 

these genes insights into potential mechanisms for tumor progression were 

evaluated, namely biallelic mutations in both genes led to changed glycosylation 

patterns on the cell surface. The examined cell surface glycoprotein pattern in 

LMAN1-deficient cells revealed structures known to be involved in the progression of 
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cancer from a tumorigenic to a metastatic phenotype. LMAN1 and XYLT2 mutations 

occurred frequently, early and biallelically in MSI-H CRC tumors. Expression analysis 

identified LMAN1- and XYLT2-deficient cell lines providing valuable tools for studying 

the functional consequences of protein inactivation. The results in primary MSI-H 

tumor tissues frequently show heterogeneous LMAN1 expression abnormalities 

caused by regional biallelic cMNR frameshift mutations in tumor cells. LMAN1 

mutations led to decreased secretion of a known tumor growth affecting serine 

protease inhibitor, A1AT. The loss of LMAN1 transporter function might also 

decrease A1AT levels in tumor tissues and thus drive tumor progression. Hence, it 

would be interesting to verify this assumption by determining the A1AT 

immunohistochemical staining pattern in LMAN1 negative areas. The use of a pulse 

chase experiment showed that the method in general provides a good platform for 

the identification of new LMAN1 cargo proteins but several optimization steps have to 

be performed to detect the probably low abundant proteins. Optimized conditions for 

a functional purification of LMAN1-CRD could be established during this thesis, 

however the amounts of protein have to be scaled up. An agarose-immobilized 

LMAN1-CRD domain allows direct fishing of new LMAN1 cargo proteins. Additional 

cargo proteins with an involvement in tumorigenesis like A1AT would support, 

strengthen and/or even explain the role of LMAN1 in influencing MSI tumor 

progression. 

By analyzing the transporter gene LMAN1 and the xylosyltransferase gene 

XYLT2 this thesis identified two members of the cellular glycosylation machinery as 

novel MSI target genes. At least for the LMAN1 gene loss of function leads to severe 

consequences i.e. secretion defects and an altered cell surface glycosylation pattern. 

How these alterations might affect cell-communication, signalling mechanisms and in 

general the biology of MSI tumors and warrants further investigation.  

Moreover, altered glycosylation pattern are expected to result in altered 

glycopeptides that could provide an additional source of MSI tumor-specific antigenic 

peptides complementary to the well-known frameshift neopeptides potentially useful 

for therapeutic application (vaccination).  

Finally, uncovering novel LMAN1-interacting proteins might enhance the 

understanding of the specificity of the secretory pathway, and in addition, give a more 

detailed insight into the molecular pathogenesis of MSI tumors. 
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5.  Materials 

5.1  Instruments 

Instrument (Specification) Supplier 
Agarosegel Chamber Sub Cell GT  Biorad (München, Germany) 

ÄktaPurifier FPLC System GE Healthcare (München, Germany) 

Analytical scale (BP 210 D) Sartorius (Göttingen, Germany) 

Camera (Electrophoresis Docu System 120) Kodak (Stuttgart, Germany) 

Centrifuge (5810R) Eppendorf (Hamburg, Germany) 

Centrifuge (Biofuge 13) Heraeus Holding GmbH (Hanau, Germany) 

Centrifuge (Microcentrifuge 1-14) Sigma Laborzentrifugen (Osterode, Germany) 

Centrifuge (Sigma 3MK) Sigma Laborzentrifugen (Osterode, Germany) 

Centrifuge (Varifuge 3.0R) Heraeus Holding GmbH (Hanau, Germany) 

Centrifuge Heraeus (Modell T 110 L) Heraeus Holding GmbH (Hanau, Germany) 

Digital pH Meter pH 525 WTW (Weilheim, Germany) 

Electrophoresis chamber (Sub Cell GT) Biorad (München, Germany) 

Electroporator for cells (Nucleofector 1)  Lonza Biosystems (Basel, Switzerland) 

ELISA-Reader (GENios) GENios Tecan (Crailsheim, Germany) 

FACS (FACSCalibur) Becton Dickinson (Franklin Lakes, USA) 

Genetic analyzer (ABI 3100) Applied Biosystems (Darmstadt, Germany) 

Incubator (BD6220) Fisher Scientific (Loughborough, UK) 

Liquid Scintillation Counter (TRI-CARB 2900) Perkin Elmer (Boston, USA) 

Microscope (DMBRE) Leica (Bensheim, Germany) 

Microscope (Leica DMIL) Leica (Bensheim, Germany) 

Microscope CK 40 Olympus Europa Holding GmbH (Hamburg) 

NuPAGE MES Running buffer Invitrogen (Karlsruhe, Germany) 

NuPAGE X-Cell Sure Lock  Invitrogen (Karlsruhe, Germany) 

NuPAGE ZOOM IPG Runner Cassette Invitrogen (Karlsruhe, Germany) 

NuPAGE Protein Electrophoresis System Invitrogen (Karlsruhe, Germany) 

PCR system (GeneAmp 22400) Perkin Elmer (Waltham, USA) 

PH meter (Calimatic 761) Knick (Berlin, Germany) 

Phosphorimager (FLA-3000) Fujifilm (Düsseldorf, Germany) 

Photometer (Ultrospec 3300) Amersham Pharmacia (Cambridge, UK) 

Pipet aid (Pipetman) Gilson (Limburg-Offheim) 

Pipettes (2 µl; 10 µl; 20 µl; 200 µl; 1000µl) Gilson (Limburg-Offheim) 

Power supply (Consort E835) Peqlab (Erlangen, Germany) 

Power supply (Power Pac 300) Biorad (Munchen) 
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Robo Cycler Gradient96 Stratagene (Boeblingen, Germany) 

Shaker (Certomat H) Sartorius (Göttingen, Germany) 

Sonopuls Homogenizer (Bandelin-Sonopuls) Bandelin electronic GmbH (Berlin, Germany) 

Thermomixer (5436) Eppendorf (Hamburg, Germany) 

Ultracentrifuge (TLA-100.2 rotor) Beckmann Coulter (Krefeld, Germany) 

Ultra-Low Temperatur Freezer MDF-U53V Sanyo (München, Germany) 

UV Transilluminator Konrad Benda Laborgeräte (Wiesloch, Germany) 

Vortex (MS1 Minishaker) IKA (Staufen, Germany) 

Waterbath (Grant SUB6) Grant (Cambridge, UK) 

Waterbath (SW 20) Julabo Labortechnik (Seelbach, Germany) 

5.2 Consumables, reagents and chemicals 

Item Supplier 
125I-iodine (100 mCi/ml) Hartmann Analytic (Braunschweig, Germany) 
35S-methionine (10 mCi/ml) Hartmann Analytic (Braunschweig, Germany) 

37% formaldehyde Carl Roth (Karsruhe, Germany) 

[1-3 3H]-D--xylose (10 mCi/ml) Hartmann Analytic (Braunschweig, Germany) 

Acetic acid Serva (Heidelberg, Germany) 

Alpha1-Antitrypsin Biopur (Bubendorf, Germany) 

Alpha1-Antitrypsin-Agarose Biopur (Bubendorf, Germany) 

Ampicillin sodium salt Sigma-Aldrich (Taufkirchen, Germany) 

Bacto-Agar Fluka Chemie GmbH (Buchs, Switzerland) 

beta-cyclodextrin Promega (Madison, USA) 

BigDyeTerminator v1.1 Sequencing Kit Applied Biosystems (Darmstadt, Germany) 

Boric acid Merck (Darmstadt, Germany) 

Bovine Serum Albumin (BSA) Sigma-Aldrich (Taufkirchen, Germany) 

CaCl2 Merck (Darmstadt, Germany)  

Citric acid Merck (Darmstadt, Germany) 

Diaminobenzidine (Liquid DAB+ substrate) DAKO (Hamburg, Germany) 

Dimethyl sulfoxide (DMSO) Merck (Darmstadt, Germany) 

Disodium hydrogen phosphate (Na2HPO4) VWR International GmbH (Bruchsal, Germany)  

DMEM / Ham's F-12 with L-Glutamine PAA (Cölbe, Germany) 

dNTP-Mix Invitrogen (Karlsruhe, Germany) 

Dulbecco's PBS (1x) without Ca & Mg PAA (Cölbe, Germany) 

Ethanole absolute Merck (Darmstadt, Germany) 

Ethidiumbromide Sigma-Aldrich (Taufkirchen, Germany) 

Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich (Taufkirchen, Germany) 

Ethylenediaminetetraacetic acid (EDTA) Merck (Darmstadt, Germany) 
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Fetal Calf Serum (FCS) Invitrogen (Karlsruhe, Germany) 

Folin-Ciocalteu phenol reagent Merck (Darmstadt, Germany) 

FuGENE HD Transfection Reagent Roche (Mannheim, Germany) 

G-418 Sulphate PAA (Cölbe, Germany) 

Gel-Dry Drying Solution Invitrogen (Karlsruhe, Germany) 

Glycerol 86% Carl Roth GmbH (Karlsruhe, Germany) 

Guanidine-hydrochloride Novagen/Merck (Darmstadt, Germany) 

HEPES Invitrogen (Karlsruhe, Germany) 

HIDI-formamide Applied Biosystems (Darmstadt, Germany) 

Horse serum Vector Laboratories (Burligame, USA) 

Isopropyl ß-D-1-thiogalactopyranoside (IPTG) Sigma-Aldrich (Taufkirchen, Germany) 

Kodak BioMax films Sigma-Aldrich (Taufkirchen, Germany) 

L-Arginin-hydrochloride Novagen/Merck (Darmstadt, Germany) 

Lipofectamine 2000 Reagent Invitrogen (Karlsruhe, Germany) 

Mannose sepharose 4B GALAB (Geessthacht, Germany) 

Methanol Merck (Darmstadt, Germany) 

MgCl2 Merck (Darmstadt, Germany)  

Milk powder Carl Roth GmbH (Karlsruhe, Germany)  

NaOH AppliChem (Darmstadt, Germany) 

Ni2+-sepharose (HisTrap FF) GE Healthcare (Uppsala, Sweden) 

N-Laurosylsarcosine  Merck (Darmstadt, Germany) 

NuPAGE 4 – 12% Bis-Tris Mini Gel  Invitrogen (Karlsruhe, Germany) 

Oligo(dT) primers  Invitrogen (Karlsruhe, Germany) 

PEG-6000 Sigma-Aldrich (Taufkirchen, Germany)  

Penicillin / Streptomycin (100x) PAA (Cölbe, Germany) 

Pierce Iodination Beads Thermo Scientific (Rockford, USA) 

Potassium chloride J.T. Baker (Deventer, Holland) 

Potassium dihydrogenphosphate Gerbu Biochemicals (Gaisberg, Germany) 

Potassium sodium tartrate (KNaC4H4O6 ) Merck (Darmstadt, Germany) 

RPMI 1640 with L-glutamine PAA (Cölbe, Germany) 

RPMI-1640 without methionine and L-glutamine Sigma-Aldrich (Taufkirchen, Germany) 

Silver nitrate (AgNO3 ) Carl Roth GmbH (Karlsruhe, Germany)  

SOC-medium Invitrogen (Karlsruhe, Germany) 

Sodium acetate (C2H3NaO2) J.T. Baker (Deventer, Holland) 

Sodium bisulfite (Na2S2O3) Merck (Darmstadt, Germany)  

Sodium carbonate (Na2CO3) J.T. Baker (Deventer, Holland) 

Sodium Chloride (NaCl) AppliChem (Darmstadt, Germany) 

Trichloracetic acid (TCA) Carl Roth GmbH (Karlsruhe, Germany)   

Tris (2-carboxyethyl) Phosphine HCl (TCEP) Novagen/Merck (Darmstadt, Germany) 

Tris Base Carl Roth GmbH (Karlsruhe, Germany) 
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Triton-X-100 Sigma-Aldrich (Taufkirchen, Germany) 

Trypsin-EDTA (1x) 0,05 % / 0,02 % in D-PBS PAA (Cölbe, Germany) 

Trypton/Pepton aus Casein Carl Roth GmbH (Karlsruhe, Germany) 

Tween-20 Sigma-Aldrich (Taufkirchen, Germany) 

Ultima Gold LSC Cocktail  Perkin Elmer (Boston, USA) 

UltraPureTM Agarose Invitrogen (Karlsruhe, Germany) 
Western Lightning Chemiluminescence 
Reagent Plus Perkin Elmer (Boston, USA) 

Yeast extract  Carl Roth GmbH (Karlsruhe, Germany) 

5.3  Commercially available kits 

Item Supplier 
A1AT-ELISA ImmunDiagnostik (Bensheim Germany) 

Biorad Protein Assay  BioRad (München, Germany) 
CellTiter 96® AQueous One Solution Cell 
Proliferation Assay (MTS) Promega (Mannheim, Germany) 

DNeasy Blood & Tissue Handbook Qiagen (Hilden, Germany) 

Endo-free Plasmid Maxi Kit Qiagen (Hilden, Germany) 

Endoplasmic Reticulum Isolation Kit Sigma-Aldrich (Taufkirchen, Germany) 

High Pure PCR Product Purification Kit Roche (Mannheim, Germany) 

iFold Protein Refolding System 1 Novagen/Merck (Darmstadt, Germany) 

JetQuick Gel Extraction Kit Genomed (Löhne, Germany) 

NucleoSpin Plasmid Kit Machery Nagel (Düren, Germany) 

QIAfilter Plasmid Purification Qiagen (Hilden, Germany) 

QIAquick Gel Extraction Kit  Qiagen (Hilden, Germany) 

RNeasy blood and tissue kit Qiagen (Hilden, Germany) 

Vectastain Elite ABC kit Vector (Burligame, USA) 

5.4 Enzymes, bacteria, antibodies, markers and vectors 

Item Supplier 
Enzymes

Calf Intestinal Phosphatase (CIP) Roche (Mannheim, Germany) 

T4-Ligase Roche (Mannheim, Germany) 

Taq-Polymerase Invitrogen (Karlsruhe, Germany) 

Phusion High Fidelity Taq-Polymerase New Englan Biolabs (Frankfurt, Germany) 

SuperscriptII Reverse Transcriptase Invitrogen (Karlsruhe, Germany) 

KpnI Promega (Madison, USA) 

NotI Promega (Madison, USA) 
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Enterokinase  Novagen/Merck (Darmstadt, Germany) 

  

Bacteria 

DH5 alpha Invitrogen (Karlsruhe, Germany) 

BL21 (DE3) Invitrogen (Karlsruhe, Germany) 

  

Antibodies (clone, dilution, specification)
LMAN1 (polyclonal, 1:1000, none) Sigma-Aldrich (Taufkirchen, Germany) 

Actin (monoclonal C4, 1:10.000, none) MP Biomedicals (Solon, USA) 

Anti-rabbit IgG (1:2500, HRP Conjugate) Promega (Madison, USA) 

Anti-mouse IgG (1:5000, HRP conjugate)  GE Healthcare (Munich, Germany) 

Anti-mouse/anti-rabbit antibody (1:50,biotinylated) Vector (Burligame, USA) 

  

Streptavidin-conjugated fluorescence
Streptavidin ⁄ R-phycoerythrin  Sigma-Aldrich (Taufkirchen, Germany) 

    

protein molecular weight markers   

See blue plus pre-stained protein standard Invitrogen (Karlsruhe, Germany) 

Mark12 unstained standard Invitrogen (Karlsruhe, Germany) 

    

DNA markers   

1 kb DNA ladder Invitrogen (Karlsruhe, Germany) 

100 bp DNA ladder Invitrogen (Karlsruhe, Germany) 

ROX size standard Applied Biosystems (Darmstadt, Germany) 

    

Vectors   

pET44a(+) Novagen/Merck (Darmstadt, Germany) 

pcDNA3.1 Invitrogen (Karlsruhe, Germany) 

5.5 Oligonucleotides 

Table 5.5.1 Oligoneucleotides designed for Frameshift mutation analysis 

Gene name (Ensembl) Sequence (5`- 3`) 
Abo_a GGACGAGGGCGATTTCTACT 
Abo_sf TCAGGTGGCTCTCGTCGT 
Alg12_c7a_a TCTTGGGGCACCTAAGACAG 
Alg12_c7a_sf TGGGATGCCTGTGAATACAA 
Alg12_c7b_a TCCCATTTCAACTACCCAGG 
Alg12_c7b_sf GTCGGAGCCACAGCAGTC 
B3galtl_a TACATAACTGGCAGACCCCC 
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B3galtl_sf GGAATTGTATTCGTCATCCAGAG 
B4galnt1_a TGTGTAGCTGGGCTCTGATG 
B4galnt1_sf AGCTCGGACTTGTTTCTGGA 
B4galnt4_g7a_a GTGAAGTTCAGTGGCAGCCT 
B4galnt4_g7a_sf GTGTGTGTGACCTCCTCCCT 
B4galnt4_g7b_a CCCCCTCTCACTGAGGAAA 
B4galnt4_g7b_sf GTCAGCCTTGAAGATGGACC 
B4galnt4_g7c_a ATAAATCCCCCTTCCCCATT 
B4galnt4_g7c_sf GAGGAGTTCCGAGACCAGTG 
B4galt2_a CAGAGAAGGAGCACAGCCTT 
B4galt2_sf CCTGACCTGCTGGATCTGTT 
Casd1_a GCAACTACAAAGAAATTTCACACG 
Casd1_sf TCCCCTTGGTCACTGTATGG 
Chgut_a AGTCAGCGTTGTAGAAGCAGC 
Chgut_sf CCCTGTCACCACAGAGATCA 
Chsy1_a CTCTTTCTTGGGCAGACAGG 
Chsy1_sf ACCATTCTCCGAAGCACCT 
Dpagt1_a GACCAAGGTTTGCAGAGGAA 
Dpagt1_sf AGAGCAATCCCAAAGTGGTG 
Galntl1_a CCTTAGAGCAGGTCCTCACG 
Galntl1_sf GGGAAAGTATGATGCCCAGA 
Gcnt2_a CCACATAGGCAGAGCCAAAG 
Gcnt2_sf TCATGCAATTGGACGGACTA 
Gcnt4_a TGAACTTAGACGGGTGCCTT 
Gcnt4_sf CAAAATAAGCACTGCCAACAAA 
Gcs1_a TGTCTTCTGGACCTCCAACC 
Gcs1_sf CTCTGTCCTCCCACTTCAGG 
Glt8d1_a CTTTGTCCCAAATGCTCTCC 
Glt8d1_sf AGCGAGTGTTGTGCTGAATG 
Golg4_a TTTTTCGGATAGGCTGATGC 
Golga4_sf TGTCACATTGATGAAAGAAGAGC 
Gyltl1b_a CACAAGGGTGACATCGTGAG 
Gyltl1b_sf AGACCCCTGCTTTGAGTTCC 
Lman1_a GGAGGAATTTGAGCACTTTCA 
Lman1_sf CACCCATGTCAGCTTTGCTA 
Man1b1_a AACTGCTTGAATGCGAGTCC 
Man1b1_sf CAACCTGTTTGAGAGCACGA 
Osgepl1_a GCTAATCTTGACTAAGACTGCAGGA 
Osgepl1_sf TGAAGAAATAGTGTTCCAGGATGA 
Pigb_a AAAATCATTTGCCTCTGTTCTAAAG 
Pigb_sf GAGTTTGTCTCTGATGATTGATCG 
Pigz_c7_a AGCACACCCACCCACTACAC 
Pigz_c7_sf ATGTCCACCACCTCCACTG 
Pigz_g7_a CAGTGGAGGTGGTGGACAT 
Pigz_g7_sf CAGGGGTTACCACAAAGAGG 
St6galnac6_a GTCTCATTCGTGGTTGAGCA 
St6galnac6_sf GAGGGCTCACCTGCAGTAGT 
St8sia6_a TTTTTAATTTGGCAGATATGGGA 
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St8sia6_sf AGGAAAATGCTGGCAGAAGA 
Ust_a CTCGGTTTCCAGTGGAGTTG 
Ust_sf ACCAGCGGATGAGATACGAG 
Xylt2_a CATGACATCACTGAGCCCAC 
Xylt2_sf TCGAGTCGACTGTGAACCAG 

a: antisense sf: sense Fluorescein labelled; Gene names as annotated on the ENSEMBL 

homepage (www.ensembl.org/index.html). 

 

Table 5.5.2 Oligonucleotides designed for cloning and RT-PCR

Cloning Sequence (5` - 3`)  Usage 

LMAN1-CRD_s PO4-GGACGGCGTGGGAGGA cloning in pET44a(+)  

LMAN1-CRD_a PO4-TCAGTGGACCGTAGACAAACATG   

LMAN1c_KpnI_s GTGGTACCAAGATGGCGGGATCCAGGC cloning in pcDNA3.1 

LMAN1c_NotI_a CCTGGCGGCCGCAGGAAAATGGTAGTCAAAAG   

   

RT-PCR      

LMAN1c_sf GCTCTCGATCTCCTACACTCTCA LMAN1 RT-PCR:  
size: 122 bp 

LMAN1c_a GGAGGAATTTGAGCACTTTCA   

A1AT_s CGAAGAGGCCAAGAAACAGA A1AT RT-PCR Ex2-Ex4 
size: 484 bp 

A1AT_a GACCTTAGTGATGCCCAGTTG   

XYLT2c_s TCGAGTCGACTGTGAACCAG XYLT2 RT-PCR  
size: 298 bp 

XYLT2c_a AGGTAGCCCTGGAAATGGTC   

XYLT1c_Ex6 ATGCAAGGTTCATTCGGAAG XYLT1 RT-PCR  
size: 250 bp 

XYLT1c_Ex8 CTTCCATACGGTCCTGGAGA   

GAPDH_s CCACCCAGAAGACTGTGGAT GAPDH RT-PCR  
size: 119 bp 

GAPDH_a TTCAGCTCAGGGATGACCTT   

a: antisense; sf: sense Fluorescein labelled; c: coding region; PO4: 5`-phosphorylation for blunt 

end ligation; Ex: represents the oligonucleotide location regarding the exons. 
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5.6 Buffers 

Standard buffers used and not specifically mentioned in the method part (section 6). 

 

LB-medium 
 

10 g Trypton 

5 g Yeast 

10 g NaCl 

Ad 1000 ml H2O dest, adjust pH to 7.0, autoclave 
 

LB-Agar with ampicillin 
 

LB-medium 

2% Bacto-agar 

add 100 mg ampicillin per liter (100 µg/ml) 

 

RIPA buffer 
 

 

50 mM Tris base, adjust pH to 7.4 with HCl 

150 mM NaCl 

1% Triton-X-100 

1% Sodium desoxycholate 

0.1 mM CaCl2
0.1% SDS 

0.01 mM MgCl2
 

TBE electrophoresis buffer (10x)  
 

108 g Tris base 

55 g Boric acid 

40 ml 500 mM EDTA 

Ad 1000 ml H2O dest, adjust pH to 8.0 
 

TBS (1x)  
 
 

50 mM Tris base 

150 mM Sodium chloride 

1 M Hydrochloric acid (~ 9.5 ml) 

Ad 1000 ml H2O dest, adjust pH to 7.5 with HCl. 
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Lowry Buffer
 

Reagent A 
0.02% Cupper sulfate (CuSO4)

4% Sodiume carbonate (Na2CO3)

0.8% Sodium hydroxide (NaOH)

0.04% Potassium sodiume tartrate (KNaC4H4O6 •4 H2O) 

Reagent B 
Folin-Ciocalteu phenol reagent 5x diluted in H2O dest. 

 

Citrate Buffer (10 x) 
 

21.0 g Citric acid 

Ad 1000 ml H2O dest, adjust pH to 6.0 by the usage of NaOH platelets, store at 4°C. 

 

Potassium phosphate buffer  
 
 

50 mM K2HPO4

50 mM KH2PO4

Titration to pH 7.4. 
 

HBS-Buffer (10 x) 
 
 

140 mM NaCl 

50 mM HEPES 

750 µM Na2HPO4 

Adjust pH to 7.12. 
 

PBS (10 x) 
 
 

80 g Sodium chloride 

2 g Potassium chloride 

14.4 g Disodium hydrogenphosphate 

2.4 g Potassium dihydrogenphosphate 

Ad 1000 ml H2O dest, adjust pH to 7.2. 
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6. METHODS 

6.1 Molecular Biology methods 

6.1.1 Isolation of genomic DNA and RNA 

Genomic DNA was isolated from cancer cell lines and paraffin-embedded archival 

specimens after manual microdissection of tumor and corresponding normal tissues 

using the DNeasy Blood & Tissue kit. RNA was isolated using the RNeasy Mini kit. 

6.1.2 Oligonucleotide design 

Oligonucleotides for frameshift mutation analysis, sequencing analysis and cloning 

PCRs were designed by the usage of Primer 3.0 software. Oligonucleotides were 

purchased from Thermo Scientific in HPLC-purified quality. Oligo (dT) primers were 

used as suggested by the supplier. 

6.1.3 Standard Polymerase Chain Reaction (PCR) 

For a standard PCR approach taq DNA polymerase with appropriate buffers was 

used. For cloning PCRs the Phusion® High Fidelity taq polymerase was selected 

which exhibits 3` − 5` exonuclease activity for proof-reading (6.1.7). PCRs were 

performed in RoboCycler® Gradient 96 Temperature Cyclers from Stratagene.  

Cycling conditions for Taq DNA polymerase 

Step Number of cycles Temperature Time 

Initial denaturation 1 94°C 4 min 

Cyclic amplification   (1)  35 94°C 30 sec 

                                  (2)  58°C – 62°C 45 sec 

                                  (3)  72°C 1 min 

Final elongation 1 72°C 5 – 10 min 

(1) denaturation, (2) annealing, (3) elongation 
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Standard PCR pipetting scheme 

Component  Final Concentration  Volume  

Reaction buffer (10x) 1 x 2.5 μl  

MgCl2 (50 mM) 1.5 mM 0.75 µl 

dNTP-Mix (2 mM) 200 µM 2.5 μl  

Primer_sense (5µM) 0.5 µM 2.5 μl  

Primer_antisense (5µM) 0.5 µM 2.5 μl  

Taq DNA polymerase 5 U/µl  0.125 μl  

H2O HPLC-grade  - 13.125 μl  

Template DNA*  10 - 500 ng 1.0 μl  

Total volume - 25 µl 

* 10-20 ng for plasmid-DNA and 200-500 ng for genomic DNA 

6.1.4 Sequencing 

PCR products, like frameshift mutation fragments or cloned plasmids were 

sequenced using the BigDye Terminator v1.1 sequencing kit.  

The following reaction mix was used 

 Concentration  Volume  

Template1  -  10.0 μl  

BigDye Ready Reaction Mix  -  8.0 μl  

Sequencing Primer  5 μM  2.0 μl  

1Purified PCR product or plasmid (approx. 350 ng)  

The sequencing reaction was performed under identical conditions for all primers and 

templates used. In order to purify the obtained sequencing products, the products 

were precipitated with 10 μl 3 M sodium acetate (pH 4.5) and 250 μl of 100% EtOH 

and centrifuged at 13.000 rpm for 15 min at room temperature. The supernatant was 

discarded and the products were washed with 250 μl of 70% EtOH and centrifuged at 

13.000 rpm for 5 min at room temperature. The supernatant was again discarded and 

the pellets were dried for 4 min in a vacuum centrifuge to remove traces of EtOH. 

DNA pellets were afterwards resolved in 12 μl Hi-Di formamide and analyzed on an 
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ABI3100 genetic analyzer. The obtained results were evaluated with Sequencing 

Analysis software (Applied Biosystems, version 3.7). 

6.1.5 cMNR Frameshift mutation analysis 

Frameshift mutation analyses were performed on genomic DNA of cell, tumor and 

blood samples derived as mentioned in chapter 6.1.1. For frameshift mutation 

analysis on tumor genomic DNAs (gDNAs) oligonucleotides were designed to obtain 

short amplicons of about 100 bp, thus allowing robust amplification from archival 

tissues. Sense primers were Fluorescein labelled (sf; Table 5.5.1). PCR was 

performed as described in 6.1.2. PCR fragments were analysed in 2% agarose gels 

and subsequently on an ABI3100 Genetic Analyzer. Size, height and profile of 

microsatellite peaks were analyzed using Sequencing analysis software (version 

3.7). Coding microsatellite instability was scored if smaller or larger-sized amplimeres 

were detected in tumor DNA compared to DNA from normal tissue. Frameshift 

mutations were confirmed by DNA sequence analysis. 

6.1.6 Reverse transcription PCR 

One microgram of total cellular RNA was reverse transcribed using Superscript II 

reverse transcriptase according to the manufacturer’s instructions. Primers for the 

LMAN1 gene were designed to flank the A9 cMNR and spanned exon 8 and exon 9 

to exclude amplification from genomic DNA. Primers for the XYLT2 gene were 

designed to flank the C7 cMNR. PCR products were visualized on ethidium bromide-

stained 2% agarose gels. All cell lines were examined by frameshift mutation 

analysis on cDNA for comparison with genomic DNA mutation data. Mutations were 

confirmed by DNA sequence analysis. As a control for loading and integrity of mRNA, 

reverse transcription-PCR (RT-PCR) analysis of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was performed. Table 5.5.2 presents the primers designed 

for RT-PCRs of LMAN1, XYLT2, XYLT1, A1AT and GAPDH. 
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6.1.7 Restriction digest 

Restriction enzymes cut double stranded or single stranded DNA at specific 

restriction sites. The activity of restriction enzymes depends on their sequence 

specificity and cofactor requirements. Many techniques such as cloning, mutational 

analysis, probe preparation and linearization before stable transfection require the 

use of restriction digests. One unit of restriction enzyme will completely digest 1 µg of 

substrate DNA in a volume of 50 µl in 60 min, for most enzymes at 37°C in a water 

bath. Restriction enzymes were received from New England Biolabs, Roche or 

Promega (see section 5). 

Below a typical restriction digest is depicted 

Restriction Enzyme 1 Unit 

DNA 1 µg 

10 x Restriction buffer 5 µl (1x) 

BSA 100 µg/ml (1x) if sufficient 

Total Reaction 50 µl 

Incubation Time 1 hour 

Incubation Temperature enzyme-dependent 

6.1.8 Cloning of DNA fragments 

Preperation of vectors and inserts 

During cloning experiments a DNA fragment (e.g. gene of interest GOI) is inserted 

into a suitable vector for downstream protein expression of the GOI. The coding 

sequence of LMAN1 was PCR-amplified from cDNA with primers introducing KpnI 

and NotI restriction sites for cloning full length LMAN1 into the pcDNA3.1-vector. Wild 

type cDNA of LMAN1 was amplified according to the Phusion PCR program using 2 

μl of cDNA derived from the LMAN1 wild type cell line SW948 as a template. LMAN1-

CRD was PCR-amplified from LMAN1-pcDNA3.1 vector with 5`-phosphorylated 

primers for blunt end cloning into the pET44a(+) vector. Both constructs are outlined 

in Figure 6.1, presenting important amino acid (aa) residues for the transport function 

 86



                                                                                                                                                     Methods 

of LMAN1 and the location site of the cMNR. For the amplification of LMAN1-CRD, 2 

ng of plasmid DNA were used. The XYLT2-pcDNA3.1 vector was a kind gift of Dr. 

Hans Bakker (Medizinische Hochschule Hannover). The obtained PCR products 

were visually controlled on 1 – 2 % agarose gels and purified by gel extraction using 

the JETQuick Gel Extraction Spin Kit. The purified PCR product of full length LMAN1 

was digested with KpnI and NotI (see 6.1.7), creating “sticky ends” to ensure the 

appropriate orientation of the insert in the vector after ligation. 

 

Figure 6.1 LMAN1 constructs [Hauri et al., 2000]. A. Full length LMAN1 

used for mammalian protein expression and B. presenting the LMAN1-CRD 

with oligomerization domain and N-terminal fusion domains for expression in 

bacteria. In both constructs the location of the LMAN1 cMNR is shown (A9  

K302-304). Double lysines in C-terminal position (K507+K508) are required 

as ER-retention motif the double phenylalanine motif (F509+F510) is an ER-

exit determinant. Disulfide linked oligomerization is mediated by two luminal 

cysteine residues C466 and C475. D121 and N156 are two conserved 

residues required for the interaction with Ca2+ ions and the monosaccharides 

over hydrogen bonds. H 178, acts as a pH-sensor, is necessary for Ca2+ 
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binding and substrate release in the ERGIC because of a more acidic 

environment [Zhang et al., 2009]. SP: signal peptide; CRD: carbohydrate 

recognition domain; NusA: fusion tag; His: histidine tag; TMD: 

transmembrane domain; CD: cytosolic domain. 

Pipetting instruction for Phusion-Tag polymerase 

Component  Concentration  Volume  

Reaction buffer 5 x stock  4.0 μl  

dNTP-Mix  10 mM  0.4 μl  

Primer_sense  5 μM  2.0 μl  

Primer_antisense  5 μM  2.0 μl  

Phusion DNA polymerase  2 U/μl  0.2 μl  

H2O HPLC-grade  - 9.4 μl  

Template DNA*  10 - 500 ng/μl 1.0 μl  

* 10-20 ng for plasmid-DNA and 200-500 ng for genomic DNA 

Cycling conditions for Phusion-Tag polymerase 

Step Number of cycles Temperature Time 

Initial denaturation 1 98°C 30 sec 

Cyclic amplification   (1)  25 – 35  98°C 5 – 10 sec 

                                  (2)  58°C – 62°C 10 – 30 sec 

                                  (3)  72°C 15 – 30 sec/1kbp 

Final elongation 1 72°C 5 – 10 min 

(1) denaturation, (2) annealing, (3) elongation 

Vector pcDNA3.1 was also digested with KpnI and NotI and purified by gel extraction. 

For the blunt end cloning of LMAN1-CRD pET44a(+) vector was digested with PshAI 

and dephosphorylated using the calf intestinal phosphatase (CIP) to prevent self-

ligation. One unit CIP dephosphorylates 1 pmol 5`- terminal phosphorylated DNA 

fragments in 60 min at 37°C. 

Calculation for the dephosphorylation of 10 µg (10 x 10-6g) digested plasmid 

MW of one nucleotide (1bp)  = 330 g/mol 

MW of pET44a(+) single stranded = 7311 bp = 2.412.630 g/mol  

MW of pET44a(+) double stranded = 4,82526 x 106 g/mol  
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10 x 10-6 g / 4,75215 x 106 g/mol  = 2,1 x 10-12 mol 

As a double stranded DNA fragment possessed two 5`- ends the pET44a(+)- vector 

contains altogether 2.1 pmol 5`-ends. 2.1 units CIP were required to dephosphorylate 

10 µg of pET44a(+) vector. 

 
Procedure 

Step Component Incubation Time 

10 µg digested vector DNA 

3 units CIP 

5 µl 10 x CIP buffer 

Dephosphorylation

Total volume 50 µl 

1 hour at 37°C  

(water bath) 

Heat inactivation 200 mM EGTA 10 min 75°C 

Ligation 
After restriction digest and dephosphorylation steps vector and PCR product were 

ligated at a molar ratio of vector-DNA to insert-DNA of 1 : 3. The ligation catalyzes 

the formation of phosphodiester bonds between a 5`-phosphate and a 3`-hydroxyl 

terminus in a digested double DNA strand. Blunt end ligation was performed at 16°C 

and sticky end ligation at 4°C over night with T4-ligase and the appropriate 10 x 

reaction buffer. As a re-ligation control vector without insert underwent the same 

procedure.  

Calculation of the molar amounts of PCR products and vectors  

DNA amount (mol) = weight (g) / (660 g/mol x bp) 

Transformation into bacteria 

After ligation the ligation reactions are transformed into bacteria for the production of 

plasmid-DNA. Chemically competent DH5α-cells were stored at – 80°C and thawed 

on ice directly prior to use. 2 μl of a ligation reaction was added and gently stirred. 

The mixture was incubated on ice for 30 min followed by a heat-shock in a water bath 
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at 42°C for exactly 30 seconds and storage on ice for 2 min. Subsequently, 250 μl 

pre-warmed SOC-medium was added to the transformation reaction and mixed. After 

1 hour incubation at 37°C in a shaking incubator 50 μl to 100 μl of each 

transformation reaction were plated on agar plates containing 100 µg/ml ampicillin, 

used for the positive selection of bacteria that had taken up the vector during 

transformation. Grown clones were checked by Colony-PCR with insert-specific 

primers and only clones containing the insert as determined by gel electrophoresis 

were used for the isolation of plasmids. For Colony-PCR bacterial clones were picked 

into a reaction tube containing water and were heated for 10 min at 95°C. 2 µl of 

bacteria solution was used in a Standard-PCR described in 6.1.2. Positive clones 

were grown in 5 ml over-night cultures LB medium (100 µg/ml ampicillin) at 37°C.  

Plasmid preperation 
Plasmids were purified from 4 ml of the 6 ml over-night culture using the NucleoSpin 

Plasmid kit according to the manufacturer’s instructions. Cloned insert cDNAs of 

LMAN1 or LMAN1-CRD in the plasmid-preparation were verified by direct 

sequencing (6.1.3) of overlapping fragments before starting transfection or 

expression experiments. For transfection of plasmid-DNA into mammalian cells, 

bacteria were grown in 100 ml over-night cultures and plamids were purified under 

endotoxin-free conditions using the Endo-free Plasmid Maxi kit. 

Cryopreservation of positive bacteria clones 
For long term storage, bacteria were cryo-preserved by mixing 1 ml of cultured 

bacteria with 250 μl glycerol and storage at –80°C. 

6.2 Biochemical methods 

6.2.1 Determination of protein concentration 

Bradford Assay 
The Bradford protein assay is based on an absorbance shift in the dye Coomassie  

brilliant blue G. Coomassie binds to basic (e.g. arginine) and aromatic amino acid 

(aa) residues of proteins thereby shifting itsabsorbance from 465 nm to 595 nm. The 

increase of absorbance at 595 nm is proportional to the protein concentration present 
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in the sample. Bovine serum albumin was used as a standard (0, 1, 2, 5 and 10 

µg/ml) protein sample was 10 x diluted in H2O dest. The Bradford Assay was 

performed using the BioRad Protein assay reagent according to manufacturer`s 

instructions. 

Lowry Assay 

The Lowry protein assay is based on Cu+-ions binding to peptide bonds under 

alkaline conditions with the oxidation of aromatic protein residues. Cu+ -ions build an 

unstable blue complex with the yellow Folin-Ciocalteau phenol reagent proportional 

to the protein concentration present in the sample. The concentration of the reduced 

Folin reagent is measured by absorbance at 630 nm [LOWRY et al., 1951]. Protein 

standards and protein samples were used as described above. After precipitation of 

proteins with an equal volume of 10% TCA (Trichloroacetic acid), pellets were solved 

in 50 µl 200 mM NaOH at 65°C for 10 min. Proteins were first incubated with 500 µl 

reagent A (5.6) for 20 min at room temperature, followed by an incubation step with 

500 µl reagent B (5.6) for 30 min at room temperature.  

For both methods the protein absorbance was measured using the 

Ultrospec™ 3300 pro UV/Visible Spectrophotometer. 

6.2.2 Polyacrylamide Gelelectrophoresis 

Cell pellets were lysed in RIPA-buffer, sonicated and subsequently ultracentrifugated 

at 430.000 g for 15 min at 4°C (Beckmann TLA 100.2 rotor). Protein concentration 

was determined using the Bradford or Lowry method (6.2.1) and 13 to 65 µg protein 

was incubated in NuPAGE LDS Sample Buffer at 95°C for 5 min. Proteins were 

separated using NuPAGE® Bis-Tris Mini gels from Invitrogen (acrylamide 

concentration 4 – 12%; 1.0 mm x 12 well). The NuPAGE® System is based on a Bis-

Tris-HCl buffered (pH 6.4) polyacrylamide gel, with a separating gel that operates at 

pH 7.0. Denatured protein was loaded together with a molecular weight marker. For 

Western blot analysis the SeeBlue® Plus Pre-stained protein standard and for silver 

gels the Mark12TM unstained standard were applied. As running buffer NuPage MES 

running buffer was used. For run conditions the manufacturer`s instructions were 

followed.
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6.2.3 Western blot analysis  

Protein preparation and separation was perormed as mentioned in 6.2.4. Protein 

concentration was determined by Lowry method (6.2.1). 65 µg of protein was 

seperated as described in 6.2.2 followed by Western blot analysis using primary 

antibody directed against LMAN1 or as a control anti-actin antibody. Horseradish 

peroxidase (HRP) – conjugated antibodies were used as secondary antibodies (Anti-

Rabbit IgG or Anti-Mouse IgG; see 5.4). Visualization was performed with Western 

Lighting Chemiluminescence Reagent Plus on Kodak BioMax light films. 

6.2.4 Silver staining of polyacrylamide gels 

Silver staining is the most sensitive method for permanent visible staining of proteins 

in polyacrylamide gels with a detection limit of 1 – 5 ng protein. Silver ions (Ag+) build 

complexes with Glu-, Asp- and Cys-residues of proteins. By treatment with 

formaldehyde, Ag+-ions are reduced and form an insoluble brown precipitate of 

metallic silver. 65 µg of protein was separated as described in 6.2.2 and 

subsequently stained as described below. All solutions were prepared in H2O dest 

and complete staining protocol was performed at room temperature. Gels were 

preserved in Gel-DryTM-Drying solution for long-term storage. 

Solutions 

Fixing solution 

Fixation 1 Fixation 2 Fixation 3 

10% (v/v) 96% acetic acid 5%(v/v) 96% acetic acid 10%(v/v) ethanol absolute  

40%(v/v) methanol  10%(v/v) ethanol absolute   
  
  
Sensitizing solution Silver solution 

0.02% (w/v) Na2S2O3 0.2% (w/v) AgNO3

0.02% (v/v) 37% formaldehyde  

  
  
  0.05% (v/v) 37% formaldehyde  

  
  
Developing solution Stop solution 

6% (w/v) Na2CO3 10% (v/v) 96% ethanol 

0.4% (w/v) Na2S2O3

0.02% (v/v) 37% formaldehyde 
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Staining protocol  

Staining solution Repeats Incubation time 

Fixation 1  1 x 1      h 

Fixation 2 1 x 30    min 

Fixation 3 1 x 15    min 

H2O dest 3 x 1      min 

Sensitizing solution 1 x 1      min 

H2O dest 1 x 1      min 

Silver solution 1 x 15    min 

H2O dest 3 x 20    sec 

Developing solution   1 x 5-10 min†

H2O dest 3 x 1      min 

Stop solution 1 x 15    min 

H2O dest 3 x 5      min 

Gel-Dry Drying solution 1 x 15    min* 
 

†  Monitor development and change the solution when protein bands are visible and the 
background is just starting to darken. 

*  Gels were placed between two cellophane sheets and spanned into a frame for drying 
over night at RT. 

6.2.5 2D-gel electrophoresis 

During the 2D-gel-electrophoresis proteins are separated by isoelectric focusing 

followed by a molecular weight separation. For the first dimension proteins were 

dissolved in an appropriate buffer (8 M urea, 2% CHAPS, 0.002% Bromophenol 

Blue, 0.5% ZOOM® Carrier Ampholytes pH 3 -10 non-linear) for isoeletric focusing 

containing ampholytes. Ampholytes are small, soluble molecules with positive and 

negative charged groups, which sort based on their isoelectric points in an electric 

field. Isoelectric focusing was established in a ZOOM® IPG Runner cassette 

according to manufacturer´s instructions. For the second dimension focused IPG 

stripe was loaded into a NuPAGE® Bis-Tris Mini gel together with a molecular weight 

marker (6.2.2) and proteins were separated by molecular weight. The manufacturer`s 

instructions were followed.
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6.2.6 Protein expression and purification 

6.2.6.1 Bacterial expression 
LMAN1-CRD was blunt end cloned as described in 6.1.7. The gene product included 

aa 31 – aa 480 of full length LMAN1 protein (see Fig. 3.15). The pET-44 vectors are 

designed for cloning and high-level expression of peptide sequences fused with the 

495 aa NusA-Tag™ protein and encode an additional N-terminal His-Tag. NusA (N 

utilization substance A) is a fusion protein that itself has a high solubility thus 

enhancing the solubility of the fusion partner, LMAN1-CRD. E. coli lysogenic strain 

BL21 (DE3) cells were used for plasmid expression and grown in terrific broth 

medium (TB) for liquid culture. Media contained 100 µg/ml ampicillin. 1 litre of shake-

flask culture was incubated at 37°C for constitutive expression of LMAN1-CRD 

construct. Protein expression was induced by 100 µM IPTG (final concentration) in 

the exponential growing phase (OD = 0.6 – 0.7) and culture was grown over night. 

Bacteria were harvested by centrifugation (3000 rpm, 30 min, 4°C; Sorvall) and after 

cell lysis (50 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.5 mM EDTA, 5% (v/v) glycerol, 1 

mM TCEP and Lysonase Bioprocessing Reagent 20 µl/1g cell paste), a series of 

detergent and buffer washes removed membrane components and contaminating 

proteins from the IB pellet (see Novagen User Protocol). Purified IBs were denatured 

with the reducing agent Tris-(2-carboxyethyl)-phosphine HCl (TCEP) and the 

detergent N-Laurosylsarcosine followed by dialysis (10 mM Tris-HCl, 50 µM EDTA, 

100 µM TCEP, 0.06% N-Laurosylsarcosine solution, pH 8.0) and subsequent testing 

of different refolding conditions using the iFOLD™ Protein Refolding System 1. The 

iFOLD™ Protein Refolding System 1 provides reagents for inclusion body (IB) 

purification and denaturation, combined with a plate-based protein refolding buffer 

matrix. One 96-well plate contains 92 unique refolding solutions (see Novagen user 

protocol). 92 refolding conditions were checked by a radioactive binding assay with 

A1AT-125I (6.3.2). Eight refolding conditions showed high binding capacity and were 

further analysed (Tab 6.1). 
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Table 6.1 iFOLD buffer compositions for 8 buffers showing high binding capacity for LMAN1 

iFold buffer 1 iFold buffer 2 

50 mM Tris pH 7.0 (RT) 50 mM Tris pH 7.0 (RT) 

12.5 mM β-Cyclodextrine 100 mM NaCl 

1 mM TCEP 1 mM CaCl2
0,5 M Guanidine-Hydrochloride (GuHCl) 1 mM MgCl2   

  12.5 mM β-Cyclodextrine 

 

iFold buffer 3 iFold buffer 4 

50 mM Tris pH 7.5 (RT) 50 mM Tris pH 7.5 (RT) 

100 mM NaCl 100 mM NaCl 

1 mM TCEP 0.5 M Guanidine-Hydrochloride (GuHCl) 

0.1% PEG-6000 (w/v)   

  
  

iFold buffer 5 iFold buffer 6 

50 mM Tris pH 7.5 (RT) 50 mM Tris pH 8.0 (RT) 

250 mM NaCl 12.5 mM β-Cyclodextrine 

12.5 mM β-Cyclodextrin 0.5 M Guanidine-Hydrochloride (GuHCl) 

0.1% PEG-6000 (w/v)   
  
   

iFold buffer 7 iFold buffer 8 

50  mM Tris pH 7.5 (RT) 50 mM Tris pH 7.5 (RT) 

100 mM  NaCl 100 mM NaCl 

12.5 mM β-cyclodextrine 12.5 mM β-cyclodextrine 

0.1% PEG-6000 (w/v) 1 mM TCEP 

  0.5 M L-Arginin-Hydrochloride (L-Arg) 

Previous to refolding, LMAN1-CRD was purified over Ni2+-Sepharose using the N-

terminal His-tag of the construct (section 6.2.2.3). N-terminal NusA- and His-tags 

were afterwards removed by Enterokinase. Digested protein was refolded over night 

by room temperature using the best refolding conditions. The pre-purified, digested 

and refolded LMAN1-CRD protein was functionally purified using either mannose- or 

A1AT-sepharose. 
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6.2.6.2 Mammalian protein expression 

293T cells were transiently transfected by the CaPO4-method, gene product was 

expressed for 48 hours and cells were harvested under native conditions using 

Triton-X-100 as detergent. Cells were harvested using trypsin and centrifuged for 

pelleting at 1200 rpm, 10 min at RT. Cells were lysed under native conditions using 

Triton-X-100 as detergent (cell lysis buffer: 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 

mM CaCl2, 1% Triton-X-100), sonicated and ultracentrifuged at 430.000g 4°C for 15 

min (UZ, Beckmann). Supernatant was dialysed against the same buffer containing 

0.04% Triton-X-100. Dialysed protein lysate (dialysis buffer: 20 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1 mM CaCl2, 0.4% Triton-X-100) was functionally purified over 

mannose-sepharose. 

6.2.6.3 Protein purification with ÄktaPurifier FPLC System 

For purification of proteins Ni2+-sepharose self-packed mannose-sepharose or self-

packed A1AT-sepharose were used. All protein solutions were purified using the 

ÄktaPurifier FPLC system.  

His-FPLC conditions 
Column was equilibrated using 2 column volumes (CV) washing buffer and protein 

solution was either loaded over the Superloop or the syringe, depending on protein 

solution volume. A flow rate of 0.5 ml/min was used (maximal pressure: 0.6 MPa). 

Bound protein was washed with 5 CV washing buffer and eluted with 5 CV elution 

buffer. Fractions were separated on a 4 – 12% Bis-Tris Gel and analysed by Western 

blot (6.2.1) using primary antibody directed against LMAN1 or by silver staining 

(6.2.2). 

His-FPLC washing buffer His-FPLC elution buffer 

50 mM Tris-HCl pH 7.4 50 mM Tris-HCl pH 7.4 

200 mM NaCl 200 mM NaCl 

1 mM CaCl2 1 mM CaCl2

20 mM Imidazole 500 mM Imidazole 
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Mannose- and A1AT-FPLC conditions 

Column was equilibrated using 2 CV washing buffer and protein solution was either 

loaded over the Superloop or the syringe, depending on protein solution volume. A 

flow rate of 0.1 ml/min was used (maximal pressure: 0.6 MPa). Bound protein was 

washed with 5 CV washing buffer and eluted with 5 CV elution buffer. Mannose- and 

A1AT-buffers were sampled for both sepharoses. Fractions were separated on a 4 – 

12% Bis-Tris Gel followed by Western blot analysis (6.2.1) using primary antibody 

directed against LMAN1 or by silver staining (6.2.2). 

 

Mannose FPLC washing buffer Mannose FPLC elution buffer 

20 mM Tris pH 7.4 (4°C) 20 mM Tris pH 7.4 (4°C) 

150 mM NaCl 150 mM NaCl 

1 mM CaCl2 1 mM CaCl2

0.04% Triton-X-100 0.04% Triton-X-100 

- 20 mM EGTA 

- 100 mM Mannose 

 

A1AT FPLC washing buffer A1AT FPLC elution buffer 

10 mM HEPES pH 7.4 (4°C) 10 mM Tris pH 7.4 (4°C) 

10 mM MES  150 mM NaCl 

150 mM NaCl 0.04% Triton-X-100 

1 mM CaCl2 20 mM EGTA 

0,04% Triton-X-100 - 

6.2.7 Alpha-1-antitrypsin ELISA 

Cells were grown in T25-flasks to approximately 80% confluence (corresponding to 

approximately 7 µg DNA) and conditioned cell culture medium was harvested after 

24 h. For the Enzyme-Linked-Immuno-Sorbent-Assay (ELISA) 100 µl undiluted 

conditioned medium was used. ELISA was established according to manufacturer´s 

instructions.  
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6.2.8 ER-Golgi Fractionation 

ER-Golgi fraction was isolated using the Endoplasmic reticulum isolation kit. The kit 

is based on a differential centrifugation step for the isolation of the ER. Complete 

Post Mitochondrial Fraction (PMF) was established according to manufacturer´s 

instructions. Pulse Chase Experiments were performed using a defined protein 

amount of whole PMF fractions. 

6.3 Radioactive labelling  

6.3.1  Liquid scintillation counting (LSC) 

Liquid scintillation counting is a standard technique for measuring radiation (α-, ß and 

�-radiation). The radiolabelled sample is incorporated into uniform distribution with a 

liquid chemical medium capable of converting the kinetic energy of nuclear emissions 

into light energy. Ultima Gold was used as a liquid chemical medium. Ultima Gold is 

a liquid scintillation cocktail for a wide range of aqueous and non-aqueous samples. 

Aromatic molecules (scintillators) in LSC cocktails are excited by radiation, 

recognized by scintillation or light emission respectively. Actually pi-electrons in 

aromatic molecules are easily excited and are able to convert and transfer energy. 

By mixing the Ultima Gold solution with the radiolabelled sample the energy of 

radiation, which is the nuclear decay in form of particles emitted freely, is converted 

into excitation energy. After transfer of energy to a primary scinitillator molecule, the 

excited molecule emits light in the range 300 – 400 nm and transits into the ground 

state energy. Emitted light is absorbed by secondary scintillator molecules and 

delivered as fluorescent light with a wavelength of 400 nm – 470 nm. Fluorescent 

light is converted into electrical impulses by photo multipliers (PMT tubes) and 

subsequent translated into a measurable value (counts per minute CPM). Dpm 

calculations were based on the tSIE-method. 

6.3.2 LMAN1 binding to 125I−A1AT 

Radioactive iodine (125I) was incorporated into alpha-1-antitrypsin (A1AT) by 

electrophilic substitution using Pierce ® Iodination Beads. Tyrosine residues of 
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human A1AT were radioactively labelled by the chosen method. First 125I was 

incubated with iodination beads to be in the oxidized form and subsequent positive 

charged iodine reacts with tyrosines to form 125I- tyrosine. 100 µg pure A1AT protein 

(in Tris, NaCl pH 7.8; 10 mg/ml each) was incubated with 74MBq 125I and potassium 

phosphate buffer [Markwell, 1982]. Functional LMAN1-CRD binding was verified by 

the constructs specificity. The N-terminal His-tag of the LMAN1-CRD construct is 

able to bind Ni2+-sepharose whereas functional binding over the LMAN1 CRD-

domain should be performed by A1AT-125I (Fig.6.2).  

 

Figure 6.2 Radioactive binding assay for verification of functional 
LMAN1 binding. In case of LMAN1 CRD binding to its substrate A1AT, 

which was iodinated by 125I, radioactivity could be measured in the elution 

fraction. Bound protein was eluted by 1 M imidazole. 

25 µl Ni2+-sepharose were incubated with radioactive 125I -A1AT (100.000 CPM) and 

refolded protein lysate (92 different buffer conditions; iFold System) for one hour at 

4°C. After washing steps bound protein was eluted using 1 M imidazole. Radioactivity 

in the eluted fractionmeasured with UltimaGold in a liquid scintillation counter (LSC 

TRI-CARB 2900 TR) indicates 125I-A1AT binding. Non-specific binding of 125I-A1AT to 

the agarose was detected in control experiments applying 1M imidazol as 

competitive inhibitor of specific binding.  

6.3.3 Metabolic labelling with 3H–Xylose  

HDC9 cells were transiently transfected with either the empty vector control or 

XYLT2-pcDNA3.1 as described in 6.4.3.1 and 24 hours after transfection cells were 

fed with RPMI-medium containing 5 µCi 3H-Xylose. After 48 hours incorporation time 

cells were harvested with 0.9% NaCl and trypsin. Cells were centrifuged at 4000 rpm 
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for 5 min RT and cell pellet was dissolved in 1 N NaOH for 1 hour at 56°C, sonicated 

and subsequently neutralized in 2.5 N acetic acid. One part was mixed with 10 ml 

Ultima Gold and measured in a LSC. For the other part protein concentration was 

measured using the Lowry method. Results were evaluated as decay per minute for 

a given protein amount in mg. 

6.3.4 Pulse Chase Experiment  

Six million parental LoVo cells or LMAN1-transfected LoVo cells were sowed in 10-

cm dishes with methionine-free medium containing 10% dialysed FCS and 1% 

glutamine. After 24 hours cells were pulsed with the same medium containing 

100µCi/ml 35S-methionine. After 30 min chase time cells were harvested and 

fractionated using the Endoplasmic Reticulum Isolation Kit (6.2.8). 30 µg isolated 

ER/Golgi proteins (PMF; between 1.000.000 to 500.000 DPM) were separated by 2-

D gel electrophoresis (6.2.5) using a nonlinear pH-gradient from 3 – 10 as first 

dimension and 4 – 12% polyacryamide gel were used in the second dimension. Gels 

were fixed in fixation solution 1 (10% (v/v) 96% ethanole, 2.5% (v/v) methanole in 

H2O dest) for 1 hour or over night at room temperature. After washing steps in 

distilled water (H2O dest) gels were fasten-dried on whatman filter papers using 

undertow, afterwards dried gels were exposed to a phosphoimager screen for 1 

week. During phosphorimaging radioactive material can be localized and quantified 

on an imaging plate (IP). IPs are coated with barium fluoro-halide phosphor crystals 

(BaF(Br,I):Eu2+). Europium crystals (Eu2+) within the IP stored emitted radiation of 
35S-proteins on 2-D-gels in form of trapped electrons with an absorption band at 

about 600 nm. Exposed IP was scanned with a He-Ne (633 nm) laser within the FLA-

3000 Phosphorimager, released electrons were recombined with Eu2+ crystals 

releasing photons at 400 nm. The blue light (400 nm) emitted was collected by 

Phosphorimager software producing a digitized image (FLA3000 settings: Sample 

Mode IP; gradiation 256 (8bit); resolution 100 pixel). Digitized images were evaluated 

using the Proteomweaver Software for 2-D gel analysis (2004 Version 3.0.0 beta; 

Definiens AG, Munich, Germany). Proteomweaver software helps in precise verifying 

specific spots on 2-D gel images. 
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6.4 Cell Culture experiments 

6.4.1 Human cancer cell lines 

Most of the MSI-H CRC cell lines were either obtained from ATCC (Manassas, VA, 

USA) or the German Cancer Research Center (DKFZ, Heidelberg, Germany). Cell 

line Vaco6 was a kind gift of J.K.V. Wilson, Cleveland. The MSI-H CRC cell line 

K073A was established in our laboratory. MSI-H status of all colorectal tumor tissues 

used in the present study (n = 170) has been determined previously using the 

National Cancer Institute/ICGHNPCC reference marker panel including BAT25 and 

BAT26 [Boland et al., 1998] and one additional mononucleotide marker CAT25 

[Findeisen et al., 2005].  

6.4.2 Cell culture 

All cell lines were grown under standard conditions in RPMI 1640 supplemented with 

10% FCS, 100 U/mL penicillin, and 0.1 mg/mL streptomycin in a humified incubator 

with 5% CO2 at 37°C. Depending on the cell growth, cells were subcultured twice a 

week at a ratio of 1:5 to 1:20, in order to keep the confluence of the cells between 

approximately 50% and 80%. Mycoplasma contamination of cultured cells was 

excluded by PCR. For cryopreservation, tumor cells were harvested and frozen at     

-80°C. Typically, 1 x 107 to 3 x 107 cells were stored in cryo-vials with 1.5 ml of 10% 

DMSO in FCS. 

6.4.3 Transfection methods 

6.4.3.1 Electroporation 

Tumor cells (n = 107) were transiently transfected by electroporation using the Amaxa 

Nucleofector 1, program T-20 with solution V and 5 µg DNA (program and solution 

dependent on cell line, see User manual). Because of a high mortality rate during 

electroporation medium was changed after 24 hours. Cells were grown in small 

plastic flasks (T25) and pelleted cells or conditioned medium were harvested after 24 

to 48 h. This method was used for transient transfection of Colo60H and HDC9 cells. 
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6.4.3.2 Lipofection 

One day before transfection, 0.5 to 2 x 105 cells (LoVo cells 2 x 105) were plated on 

24-well plate in 500 μl of growth medium without antibiotics so that cells had a 

confluency of 90 – 95% at the time of transfection. For each transfection sample 

complexes were prepared as follows: DNA was diluted in 50 μl DMEM medium 

without serum in Eppendorf tubes. Lipofectamine™ 2000 was gently mixed before 

usage, then the appropriate amount (ratio DNA : Lipofectamin 1 : 2.5) was diluted in 

50 μl DMEM and incubated for 5 minutes at RT in polystyrole tubes. Afterwards, 

diluted DNA was combined with diluted Lipofectamine™ 2000 (total volume = 100 μl). 

Complex formation was incubated for 10 min at RT. 100 μl of complexes were 

pipetted drop-wise to each well containing cells and medium. Cells were incubated at 

37°C for 18 – 48 hours prior to testing for transgene expression. Medium was 

changed after 4 – 6 hours.  

For generating stable cells, cells were selected with G418 (neomycin 

resistance) 24 – 48 hours after transfection. Appropriate concentration of G418 was 

tested prior to transfection. For LoVo cells the selection was performed using 400 

µg/ml G418. Treatment with G418 was continued for a minimum of 14 days. After the 

selection period, single clones were picked by scraping with a sterile pipet tip and 

transferred on 48-well plates. Alternatively, the cells were harvested by trypsination 

and limiting dilution of the bulk culture was performed for the selection of single cell 

clones on 96-well plates.
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6.4.3.3 CaPO4 transfection 

293T cells were cultured in ten 10 cm dishes to a confluence of approximately 80%. 

For each transfection 1 ml 1 x HBS buffer, 10 µg plasmid DNA and 50 µl 2.5 M CaCl2 

were used. LMAN1-pcDNA3.1 was mixed with HBS buffer in a polystyrole tube, 

CaCl2 was added to the bottom of the tube and mixed by rotating the tube until 

disappearing of lines. Complex formation (precipitate) was incubated for 5 min. 

Calcium phosphate forms an insoluble precipitate with DNA, which attaches to the 

cell surface and is taken up by the cells via endocytosis [Jordan et al., 1996]. Formed 

Calcium phosphate/DNA precipitate was incubated on 293T cells for 10 min at RT. 

Subsequent culture medium was added and cells were incubated for 48 h in 37°C 

with 5% CO2, after 24 h medium was changed. 

6.4.4 Cell Proliferation Assay 

100 µl 5 x 104 cells/ml were sowed into a 96-well plate. Parental LoVo cells and 

mock-transfected as well as LMAN1-transfected LoVo cells were included. After one, 

two, and four days cell viability and growth was determined by adding 20 µl 

MTS/formazan. The MTS tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) is bio-reduced by cells into 

a colored formazan product that is soluble in tissue culture medium. The quantity of 

formazan product as measured by the absorbance at 490 nm is directly proportional 

to the number of living cells in culture. MTS/formazan substrate was incubated in the 

cell medium for exactly one hour at 37°C and 5% CO2. Absorbance was measured at 

485 nm in an ELISA-Reader. Cells were measured in triplets and mean values were 

charted against time in days. 

6.4.5 Lectin-FACS analysis 

For cell surface glycan profiling a fluorescence-activated cell sorter (FACS) was 

used. FACS analysis distinguishes cells based on size and granularity as well as 

fluorescence. A laser beam is directed on a stream of fluid containing stained cells 

for analysis. By cells passing the beam, the beam light is scattered and fluorescent 

chemicals are excited. Cells can be determined by cell volume (FCS Forward 
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scatter), granularity (SSC Side Scatter) and by fluorescence (f.e. filters for GFP and 

Phycoerithrin PE). Quantitative determination of carbohydrate-dependent lectin 

binding using streptavidin ⁄ R-phycoerythrin as a fluorescent marker was performed 

by flow cytofluorometry in a FACSCalibur instrument using the CellQuest pro 

software (Becton-Dickinson). Solutions with 4 x 105 cells per sample were carefully 

washed with PBS and incubated with biotinylated lectins for 30 min at 4°C. After 

washing steps in 1 x PBS/0.1% BSA cells were incubated with streptavidin ⁄ R-

phycoerythrin (1 : 40). LoVo cells without staining and LoVo cells incubated with 

streptavidin ⁄ R-phycoerythrin were used for adjusting the parameter settings of 

FACSCalibur. Mean fluorescence intensity was normalized to control values. 

Statistical analysis was performed on four independent experiments using Student’s 

t-test (independent by groups; grouping variable 0=mock-transfected LoVo cells; 

1=LMAN1-transfected LoVo cells) calculated with the program STATISTICA (v7.0 

Stat Soft.Inc; Tulsa. OK, USA).  

6.5 Human tissues 

Human tissues were obtained from the local tissue bank established within the 

German Collaborative Group on HNPCC. Informed consent was obtained from all 

patients and the study protocol was approved by the local Ethics Committee. Human 

tissues were formalin-fixed and paraffin-embedded (FFPE) and sections of 2 µm for 

immunohistochemistry and 5 µm for microdissection were used. 

6.5.1 Immunohistochemistry 

For immunohistochemical staining, 2-µm FFPE sample sections were deparaffinized 

and rehydrated. For antigen retrieval, slides were boiled in 10 mmol/L citrate buffer 

(pH 6) for 3 x 5 min and endogenous peroxidase activity was blocked with hydrogen 

peroxide (0.6%) for 20 min. Slides were rinsed with deionized water and then washed 

in PBS/0.1% Tween 20 (PBS-T) for 5 min. The slides were then stained by 2-h 

incubation at room temperature with anti-LMAN1 primary antibody (1:200) in 1% 

horse serum/PBS-T. A biotinylated anti-mouse/anti-rabbit antibody in 1% horse 

serum/PBS-T was used as secondary antibody for 30 min at room temperature and 

staining procedure was subsequently amplified by the A/B-complex (Vectastain Elite 
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ABC kit) for 30 min at room temperature. Immunoreactions were visualized with 3,3-

diaminobenzidine, followed by counterstaining with hematoxylin. Tumor-infiltrating 

lymphocytes, muscle cells, and normal colonic epithelia served as positive controls. 

6.5.2 Microdissection of Hemalaun- and Eosin- stained tissues 

For morphological assessment of FFPE samples and separate microdissection of 

normal and tumor tissue, slides were stained with hemalaun and Eosin (H&E 

staining), resulting in blue staining of acidic structures such as cell nuclei and red 

staining of eosinophilic structures such as the cytoplasm. Regional microdissection 

was performed to isolate normal or tumor tissue. Whole tumor areas were 

microdissected using the H&E staining, but for a protein-specific microdissection, 

tumor tissues were stained with an appropriate antibody and these brown stained 

areas were microdissected. First, normal control tissue was isolated by use of a 0.9 x 

40 mm needle pre-wetted with ATL buffer (DNeasy Blood & Tissue kit, Qiagen) and 

under a stereomicroscope. In the second step, tumor tissue was removed from the 

slide using a fresh needle. The removed tissue was collected in 180 μl of ATL buffer 

in 1.5 ml reaction tubes. 12 μl of Protease K were added to each tube and the 

samples were incubated at 56°C on a thermomixer over night. On the next day 

genomic DNA was isolated according to the manufacturer`s instructions. 

6.5 Database analysis 

Three databases and four filters were used for candidate gene selection (Fig. 3.1A). 

Information about ER/Golgi resident proteins was retrieved from the LOCATE 

database (http://locate.imb.uq.edu.au/), whose XML source was downloaded (version 

human_v3_20070620) and prepared for local usage as a MySQL database. Protein 

subcellular localization in LOCATE v3 was defined by 463 GO terms, of which 30 GO 

terms were related to ER/Golgi subcellular localization (Filter 1). From this candidate 

subset, the MNR_ensembl database (http://www.seltarbase.org/?topic= 

MNR_ensembl; version 45.36 g) allowed further specification of candidate genes by 

restriction of cMNR lengths to a minimum of seven repeat units (Filter 2). Subsequent 

exclusion of all cMNRs previously investigated revealed a list of 431 candidate genes 

(Filter 3; SelTarbase, 4th release 200707). Final selection by annotation of genes 
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encoding proteins of the cellular glycosylation/deglycosylation and glyoprotein 

transport system led to 28 genes that were used for subsequent analyses (Filter 4). 

Automated primer design was performed by a perl script using primer3_core 

(Primer3 version 0.1; http://primer3.sourceforge.net/) in combination with a self-

constructed human mispriming repeat library (see Tab. 5.5.1). The bioinformatics-

based approach is outlined schematically in Fig. 3.1.A. 

 106



                                                                                                                                                References 

7. References 

 1.  Akizuki M, Fukutomi T, Takasugi M, Takahashi S, Sato T et al. (2007) 

Prognostic significance of immunoreactive neutrophil elastase in human 

breast cancer: long-term follow-up results in 313 patients. Neoplasia 

9:260-264 

 2.  Allen A, Hutton DA, and Pearson JP (1998) The MUC2 gene product: a 

human intestinal mucin. Int J Biochem Cell Biol 30:797-801 

 3.  Allgayer H, Babic R, Grutzner KU, Beyer BC, Tarabichi A et al. (1998) Tumor-

associated proteases and inhibitors in gastric cancer: analysis of 

prognostic impact and individual risk protease patterns. Clin Exp 

Metastasis 16:62-73 

 4.  Anelli T, Ceppi S, Bergamelli L, Cortini M, Masciarelli S et al. (2007) 

Sequential steps and checkpoints in the early exocytic compartment 

during secretory IgM biogenesis. EMBO J 26:4177-4188 

 5.  Appenzeller C, Andersson H, Kappeler F, and Hauri HP (1999) The lectin 

ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 

1:330-334 

 6.  Appenzeller-Herzog C, Roche AC, Nufer O, and Hauri HP (2004) pH-induced 

conversion of the transport lectin ERGIC-53 triggers glycoprotein 

release. J Biol Chem 279:12943-12950 

 7.  Apweiler R, Hermjakob H, and Sharon N (1999) On the frequency of protein 

glycosylation, as deduced from analysis of the SWISS-PROT database. 

Biochim Biophys Acta 1473:4-8 

 8.  Aychek T, Miller K, Sagi-Assif O, Levy-Nissenbaum O, Israeli-Amit M et al. 

(2008) E-selectin regulates gene expression in metastatic colorectal 

carcinoma cells and enhances HMGB1 release. Int J Cancer 123:1741-

1750 

 107



                                                                                                                                                References 

 9.  Bakker H, Oka T, Ashikov A, Yadav A, Berger M et al. (2009) Functional UDP-

xylose transport across the endoplasmic reticulum/Golgi membrane in a 

Chinese hamster ovary cell mutant defective in UDP-xylose Synthase. J 

Biol Chem 284:2576-2583 

 10.  Barresi R and Campbell KP (2006) Dystroglycan: from biosynthesis to 

pathogenesis of human disease. J Cell Sci 119:199-207 

 11.  Bengtsson E, Neame PJ, Heinegard D, and Sommarin Y (1995) The primary 

structure of a basic leucine-rich repeat protein, PRELP, found in 

connective tissues. J Biol Chem 270:25639-25644 

 12.  Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J et al. (1992) Biology 

of the syndecans: a family of transmembrane heparan sulfate 

proteoglycans. Annu Rev Cell Biol 8:365-393 

 13.  Bogenrieder T and Herlyn M (2003) Axis of evil: molecular mechanisms of 

cancer metastasis. Oncogene 22:6524-6536 

 14.  Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR et al. 

(1998) A National Cancer Institute Workshop on Microsatellite 

Instability for cancer detection and familial predisposition: development 

of international criteria for the determination of microsatellite instability 

in colorectal cancer. Cancer Res 58:5248-5257 

 15.  Bonin-Debs AL, Boche I, Gille H, and Brinkmann U (2004) Development of 

secreted proteins as biotherapeutic agents. Expert Opin Biol Ther 

4:551-558 

 16.  Brockhausen I. (2007) Glycobiology, Chapter: Glycosyltranferases specific for 

the synthesis of mucin-type O-glycans. Scion Publishing, Bloxham 

(Eds.: Sansom C, Markman O):217-234 

 17.  Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. 

Biochim Biophys Acta 1473:67-95 

 108



                                                                                                                                                References 

 18.  Brockhausen I (2006) Mucin-type O-glycans in human colon and breast 

cancer: glycodynamics and functions. EMBO Rep 7:599-604 

 19.  Buckowitz A, Knaebel HP, Benner A, Blaker H, Gebert J et al. (2005) 

Microsatellite instability in colorectal cancer is associated with local 

lymphocyte infiltration and low frequency of distant metastases. Br J 

Cancer 92:1746-1753 

 20.  Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS et al. (1999) 

Mismatch repair proficiency and in vitro response to 5-fluorouracil. 

Gastroenterology 117:123-131 

 21.  Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ et al. (1988) 

Multiple tissues express alpha 1-antitrypsin in transgenic mice and 

man. J Clin Invest 82:26-36 

 22.  Corfield AP. (2007) Glycobiology, Chapter: Glycobiology of mucins in the 

human gastrointestinal tract. Scion Publishing, Bloxham (Eds.: Sansom 

C, Markman O):248-260 

 23.  Cowan DA, Gay D, Bieler BM, Zhao H, Yoshino A et al. (2002) 

Characterization of mouse tGolgin-1 (golgin-245/trans-golgi p230/256 

kD golgin) and its upregulation during oligodendrocyte development. 

DNA Cell Biol 21:505-517 

 24.  Cuellar K, Chuong H, Hubbell SM, and Hinsdale ME (2007) Biosynthesis of 

chondroitin and heparan sulfate in chinese hamster ovary cells 

depends on xylosyltransferase II. J Biol Chem 282:5195-5200 

 25.  Day AJ (1999) The structure and regulation of hyaluronan-binding proteins. 

Biochem Soc Trans 27:115-121 

 26.  Demetriou M, Granovsky M, Quaggin S, and Dennis JW (2001) Negative 

regulation of T-cell activation and autoimmunity by Mgat5 N-

glycosylation. Nature 409:733-739 

 109



                                                                                                                                                References 

 27.  Demetriou M, Nabi IR, Coppolino M, Dedhar S, and Dennis JW (1995) 

Reduced contact-inhibition and substratum adhesion in epithelial cells 

expressing GlcNAc-transferase V. J Cell Biol 130:383-392 

 28.  Dennis JW, Granovsky M, and Warren CE (1999) Glycoprotein glycosylation 

and cancer progression. Biochim Biophys Acta 1473:21-34 

 29.  Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M et al. (1999) High 

prevalence of activated intraepithelial cytotoxic T lymphocytes and 

increased neoplastic cell apoptosis in colorectal carcinomas with 

microsatellite instability. Am J Pathol 154:1805-1813 

 30.  Dube DH and Bertozzi CR (2005) Glycans in cancer and inflammation--

potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477-

488 

 31.  Duval A and Hamelin R (2002) Mutations at coding repeat sequences in 

mismatch repair-deficient human cancers: toward a new concept of 

target genes for instability. Cancer Res 62:2447-2454 

 32.  Dwek MV and Brooks SA (2004) Harnessing changes in cellular glycosylation 

in new cancer treatment strategies. Curr Cancer Drug Targets 4:425-

442 

 33.  El-Bchiri J, Buhard O, Penard-Lacronique V, Thomas G, Hamelin R et al. 

(2005) Differential nonsense mediated decay of mutated mRNAs in 

mismatch repair deficient colorectal cancers. Hum Mol Genet 14:2435-

2442 

 34.  El-Bchiri J, Guilloux A, Dartigues P, Loire E, Mercier D et al. (2008) Nonsense-

mediated mRNA decay impacts MSI-driven carcinogenesis and anti-

tumor immunity in colorectal cancers. PLoS One 3:e2583- 

 35.  Ellegren H (2004) Microsatellites: simple sequences with complex evolution. 

Nat Rev Genet 5:435-445 

 110



                                                                                                                                                References 

 36.  Esko JD, Stewart TE, and Taylor WH (1985) Animal cell mutants defective in 

glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82:3197-

3201 

 37.  Fearon ER and Vogelstein B (1990) A genetic model for colorectal 

tumorigenesis. Cell 61:759-767 

 38.  Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM et al. (2005) T25 repeat 

in the 3' untranslated region of the CASP2 gene: a sensitive and 

specific marker for microsatellite instability in colorectal cancer. Cancer 

Res 65:8072-8078 

 39.  Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M et al. (2008) 

Multistep, sequential control of the trafficking and function of the 

multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 

and ERp44. Hum Mol Genet 17:2610-2621 

 40.  Fukushima K, Satoh T, Baba S, and Yamashita K (2010) alpha1,2-

Fucosylated and beta-N-acetylgalactosaminylated prostate-specific 

antigen as an efficient marker of prostatic cancer. Glycobiology 20:452-

460 

 41.  Furlan D, Casati B, Cerutti R, Facco C, Terracciano L et al. (2002) Genetic 

progression in sporadic endometrial and gastrointestinal cancers with 

high microsatellite instability. J Pathol 197:603-609 

 42.  Fuster MM and Esko JD (2005) The sweet and sour of cancer: glycans as 

novel therapeutic targets. Nat Rev Cancer 5:526-542 

 43.  Gabius H-J (2009) The sugar code: The fundamentals of Glycosciences. 

Wiley VCH, Weinheim, 1st edition. 

 44.  Geboes K, Rutgeerts P, Vantrappen G, and Desmet VJ (1983) 

Immunoreactivity of alpha-1-antitrypsin in the human colon. 

Hepatogastroenterology 30:24-26 

 111



                                                                                                                                                References 

 45.  Goetz JG (2009) Bidirectional control of the inner dynamics of focal adhesions 

promotes cell migration. Cell Adh Migr 3:185-190 

 46.  Gotoh M, Sato T, Kiyohara K, Kameyama A, Kikuchi N et al. (2004) Molecular 

cloning and characterization of beta1,4-N-

acetylgalactosaminyltransferases IV synthesizing N,N'-

diacetyllactosediamine. FEBS Lett 562:134-140 

 47.  Götting C, Kuhn J, Brinkmann T, and Kleesiek K (2002) Xylosyltransferase 

activity in seminal plasma of infertile men. Clin Chim Acta 317:199-202 

 48.  Götting C, Kuhn J, and Kleesiek K (2007) Human xylosyltransferases in health 

and disease. Cell Mol Life Sci 64:1498-1517 

 49.  Götting C, Kuhn J, Sollberg S, Huerkamp C, Brinkmann T et al. (2000) 

Elevated serum xylosyltransferase activity correlates with a high level of 

hyaluronate in patients with systemic sclerosis. Acta Derm Venereol 

80:60-61 

 50.  Götting C, Sollberg S, Kuhn J, Weilke C, Huerkamp C et al. (1999) Serum 

xylosyltransferase: a new biochemical marker of the sclerotic process in 

systemic sclerosis. J Invest Dermatol 112:919-924 

 51.  Greenson JK, Bonner JD, Ben-Yzhak O, Cohen HI, Miselevich I et al. (2003) 

Phenotype of microsatellite unstable colorectal carcinomas: Well-

differentiated and focally mucinous tumors and the absence of dirty 

necrosis correlate with microsatellite instability. Am J Surg Pathol 

27:563-570 

 52.  Hampel H, Stephens JA, Pukkala E, Sankila R, Aaltonen LA et al. (2005) 

Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: 

later age of onset. Gastroenterology 129:415-421 

 53.  Hart GW, Housley MP, and Slawson C (2007) Cycling of O-linked beta-N-

acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017-

1022 

 112



                                                                                                                                                References 

 54.  Hascall VC and Heinegard D (1974) Aggregation of cartilage proteoglycans. I. 

The role of hyaluronic acid. J Biol Chem 249:4232-4241 

 55.  Hauri HP, Kappeler F, Andersson H, and Appenzeller C (2000) ERGIC-53 and 

traffic in the secretory pathway. J Cell Sci 113 ( Pt 4):587-596 

 56.  Hebert DN, Garman SC, and Molinari M (2005) The glycan code of the 

endoplasmic reticulum: asparagine-linked carbohydrates as protein 

maturation and quality-control tags. Trends Cell Biol 15:364-370 

 57.  Heutinck KM, Ten B, I, Hack CE, Hamann J, and Rowshani AT (2010) Serine 

proteases of the human immune system in health and disease. Mol 

Immunol 47:1943-1955 

 58.  Hollingsworth MA and Swanson BJ (2004) Mucins in cancer: protection and 

control of the cell surface. Nat Rev Cancer 4:45-60 

 59.  Huang H, Campbell SC, Nelius T, Bedford DF, Veliceasa D et al. (2004) 

Alpha1-antitrypsin inhibits angiogenesis and tumor growth. Int J Cancer 

112:1042-1048 

 60.  Hurtley SM and Helenius A (1989) Protein oligomerization in the endoplasmic 

reticulum. Annu Rev Cell Biol 5:277-307 

 61.  Ionov Y, Nowak N, Perucho M, Markowitz S, and Cowell JK (2004) 

Manipulation of nonsense mediated decay identifies gene mutations in 

colon cancer Cells with microsatellite instability. Oncogene 23:639-645 

 62.  Ionov Y, Peinado MA, Malkhosyan S, Shibata D, and Perucho M (1993) 

Ubiquitous somatic mutations in simple repeated sequences reveal a 

new mechanism for colonic carcinogenesis. Nature 363:558-561 

 63.  Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular 

function. Annu Rev Biochem 67:609-652 

 113



                                                                                                                                                References 

 64.  Iozzo RV (1999) The biology of the small leucine-rich proteoglycans. 

Functional network of interactive proteins. J Biol Chem 274:18843-

18846 

 65.  Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. 

Nat Rev Mol Cell Biol 6:646-656 

 66.  Iozzo RV and Cohen I (1993) Altered proteoglycan gene expression and the 

tumor stroma. Experientia 49:447-455 

 67.  Iozzo RV and Murdoch AD (1996) Proteoglycans of the extracellular 

environment: clues from the gene and protein side offer novel 

perspectives in molecular diversity and function. FASEB J 10:598-614 

 68.  Itzkowitz SH, Bloom EJ, Kokal WA, Modin G, Hakomori S et al. (1990) 

Sialosyl-Tn. A novel mucin antigen associated with prognosis in 

colorectal cancer patients. Cancer 66:1960-1966 

 69.  Jass JR (1998) Diagnosis of hereditary non-polyposis colorectal cancer. 

Histopathology 32:491-497 

 70.  Jiang X and Couchman JR (2003) Perlecan and tumor angiogenesis. J 

Histochem Cytochem 51:1393-1410 

 71.  Jordan M, Schallhorn A, and Wurm FM (1996) Transfecting mammalian cells: 

optimization of critical parameters affecting calcium-phosphate 

precipitate formation. Nucleic Acids Res 24:596-601 

 72.  Kalsheker NA (2009) alpha1-Antitrypsin deficiency: best clinical practice. J 

Clin Pathol 62:865-869 

 73.  Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri HP et al. (2008) 

Molecular basis of sugar recognition by the human L-type lectins 

ERGIC-53, VIPL, and VIP36. J Biol Chem 283:1857-1861 

 114



                                                                                                                                                References 

 74.  Kane MF, Loda M, Gaida GM, Lipman J, Mishra R et al. (1997) Methylation of 

the hMLH1 promoter correlates with lack of expression of hMLH1 in 

sporadic colon tumors and mismatch repair-defective human tumor cell 

lines. Cancer Res 57:808-811 

 75.  Kim H, Nam SW, Rhee H, Shan LL, Ju KH et al. (2004) Different gene 

expression profiles between microsatellite instability-high and 

microsatellite stable colorectal carcinomas. Oncogene 23:6218-6225 

 76.  Kim IJ, Kang HC, Park JH, Shin Y, Ku JL et al. (2003) Development and 

applications of a beta-catenin oligonucleotide microarray: beta-catenin 

mutations are dominantly found in the proximal colon cancers with 

microsatellite instability. Clin Cancer Res 9:2920-2925 

 77.  Kinsella MG, Bressler SL, and Wight TN (2004) The regulated synthesis of 

versican, decorin, and biglycan: extracellular matrix proteoglycans that 

influence cellular phenotype. Crit Rev Eukaryot Gene Expr 14:203-234 

 78.  Kloor M, von Knebel Doeberitz M, and Gebert JF (2005) Molecular testing for 

microsatellite instability and its value in tumor characterization. Expert 

Rev Mol Diagn 5:599-611 

 79.  Korkmaz B, Moreau T, and Gauthier F (2008) Neutrophil elastase, proteinase 

3 and cathepsin G: physicochemical properties, activity and 

physiopathological functions. Biochimie 90:227-242 

 80.  Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev 

Cancer 9:874-885 

 81.  Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN et al. (2007) 

Complex N-glycan number and degree of branching cooperate to 

regulate cell proliferation and differentiation. Cell 129:123-134 

 82.  Leavitt RD, Felsted RL, and Bachur NR (1977) Biological and biochemical 

properties of Phaseolus vulgaris isolectins. J Biol Chem 252:2961-2966 

 115



                                                                                                                                                References 

 83.  Lee MJ, Lee HS, Kim WH, Choi Y, and Yang M (2003) Expression of mucins 

and cytokeratins in primary carcinomas of the digestive system. Mod 

Pathol 16:403-410 

 84.  Lengauer C, Kinzler KW, and Vogelstein B (1997) Genetic instability in 

colorectal cancers. Nature 386:623-627 

 85.  Lesley J, Hyman R, English N, Catterall JB, and Turner GA (1997) CD44 in 

inflammation and metastasis. Glycoconj J 14:611-622 

 86.  Li YC, Korol AB, Fahima T, and Nevo E (2004) Microsatellites within genes: 

structure, function, and evolution. Mol Biol Evol 21:991-1007 

 87.  Liefhebber JM, Punt S, Spaan WJ, and van Leeuwen HC (2010) The human 

collagen beta(1-O)galactosyltransferase, GLT25D1, is a soluble 

endoplasmic reticulum localized protein. BMC Cell Biol 11:33- 

 88.  Lievens PM, De SB, Garofalo S, Lunstrum GP, Horton WA et al. (2008) 

Transient dimerization and interaction with ERGIC-53 occur in the 

fibroblast growth factor receptor 3 early secretory pathway. Int J 

Biochem Cell Biol 40:2649-2659 

 89.  Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP et al. (2001) 

Frameshift peptide-derived T-cell epitopes: a source of novel tumor-

specific antigens. Int J Cancer 93:6-11 

 90.  Liu Y, Choudhury P, Cabral CM, and Sifers RN (1999) Oligosaccharide 

modification in the early secretory pathway directs the selection of a 

misfolded glycoprotein for degradation by the proteasome. J Biol Chem 

274:5861-5867 

 91.  Lowe JB and Marth JD (2003) A genetic approach to Mammalian glycan 

function. Annu Rev Biochem 72:643-691 

 92.  Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951) Protein 

measurement with the Folin phenol reagent. J Biol Chem 193:265-275 

 116



                                                                                                                                                References 

 93.  Lugli A, Zlobec I, Baker K, Minoo P, Tornillo L et al. (2007) Prognostic 

significance of mucins in colorectal cancer with different DNA 

mismatch-repair status. J Clin Pathol 60:534-539 

 94.  Luther KB and Haltiwanger RS (2009) Role of unusual O-glycans in 

intercellular signaling. Int J Biochem Cell Biol 41:1011-1024 

 95.  Lynch HT and de la Chapelle (1999) Genetic susceptibility to non-polyposis 

colorectal cancer. J Med Genet 36:801-818 

 96.  Lynch JP and Hoops TC (2002) The genetic pathogenesis of colorectal 

cancer. Hematol Oncol Clin North Am 16:775-810 

 97.  Ma B, Simala-Grant JL, and Taylor DE (2006) Fucosylation in prokaryotes and 

eukaryotes. Glycobiology 16:158R-184R 

 98.  Mainardi CL, Dixit SN, and Kang AH (1980) Degradation of type IV (basement 

membrane) collagen by a proteinase isolated from human 

polymorphonuclear leukocyte granules. J Biol Chem 255:5435-5441 

 99.  Markowitz S, Wang J, Myeroff L, Parsons R, Sun L et al. (1995) Inactivation of 

the type II TGF-beta receptor in colon cancer cells with microsatellite 

instability. Science 268:1336-1338 

 100.  Markwell MA (1982) A new solid-state reagent to iodinate proteins. I. 

Conditions for the efficient labeling of antiserum. Anal Biochem 

125:427-432 

 101.  Matsushima N, Ohyanagi T, Tanaka T, and Kretsinger RH (2000) Super-

motifs and evolution of tandem leucine-rich repeats within the small 

proteoglycans--biglycan, decorin, lumican, fibromodulin, PRELP, 

keratocan, osteoadherin, epiphycan, and osteoglycin. Proteins 38:210-

225 

 102.  McDonald JA and Kelley DG (1980) Degradation of fibronectin by human 

leukocyte elastase. Release of biologically active fragments. J Biol 

Chem 255:8848-8858 

 117



                                                                                                                                                References 

 103.  McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ et al. (2004) 

Promoter hypermethylation frequency and BRAF mutations distinguish 

hereditary non-polyposis colon cancer from sporadic MSI-H colon 

cancer. Fam Cancer 3:101-107 

 104.  McGowan SE and Thompson RJ (1989) Extracellular matrix proteoglycan 

degradation by human alveolar macrophages and neutrophils. J Appl 

Physiol 66:400-409 

 105.  McKenzie E, Tyson K, Stamps A, Smith P, Turner P et al. (2000) Cloning and 

expression profiling of Hpa2, a novel mammalian heparanase family 

member. Biochem Biophys Res Commun 276:1170-1177 

 106.  Mendelsohn R, Cheung P, Berger L, Partridge E, Lau K et al. (2007) Complex 

N-glycan and metabolic control in tumor cells. Cancer Res 67:9771-

9780 

 107.  Monsigny M, Roche AC, Sene C, Maget-Dana R, and Delmotte F (1980) 

Sugar-lectin interactions: how does wheat-germ agglutinin bind 

sialoglycoconjugates? Eur J Biochem 104:147-153 

 108.  Moussalli M, Pipe SW, Hauri HP, Nichols WC, Ginsburg D et al. (1999) 

Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate 

compartment-53-mediated ER to Golgi trafficking of coagulation factors 

V and VIII. J Biol Chem 274:32539-32542 

 109.  Neve EP, Lahtinen U, and Pettersson RF (2005) Oligomerization and 

interacellular localization of the glycoprotein receptor ERGIC-53 is 

independent of disulfide bonds. J Mol Biol 354:556-568 

 110.  Novaretti MC, Domingues AE, Manhani R, Pinto EM, Dorlhiac-Llacer PE et al. 

(2008) ABO genotyping in leukemia patients reveals new ABO variant 

alleles. Genet Mol Res 7:87-94 

 118



                                                                                                                                                References 

 111.  Nufer O, Kappeler F, Guldbrandsen S, and Hauri HP (2003) ER export of 

ERGIC-53 is controlled by cooperation of targeting determinants in all 

three of its domains. J Cell Sci 116:4429-4440 

 112.  Nyfeler B, Reiterer V, Wendeler MW, Stefan E, Zhang B et al. (2008) 

Identification of ERGIC-53 as an intracellular transport receptor of 

alpha1-antitrypsin. J Cell Biol 180:705-712 

 113.  Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, and Hauri HP (2006) Cargo 

selectivity of the ERGIC-53/MCFD2 transport receptor complex. Traffic 

7:1473-1481 

 114.  Ohtsubo K and Marth JD (2006) Glycosylation in cellular mechanisms of 

health and disease. Cell 126:855-867 

 115.  Parish CR, Freeman C, and Hulett MD (2001) Heparanase: a key enzyme 

involved in cell invasion. Biochim Biophys Acta 1471:M99-108 

 116.  Parkin DM, Bray F, Ferlay J, and Pisani P (2005) Global cancer statistics, 

2002. CA Cancer J Clin 55:74-108 

 117.  Pastrello C, Santarosa M, Fornasarig M, Sigon R, Perin T et al. (2005) MUC 

gene abnormalities in sporadic and hereditary mucinous colon cancers 

with microsatellite instability. Dis Markers 21:121-126 

 118.  Patsos G, Andre S, Roeckel N, Gromes R, Gebert J et al. (2009) 

Compensation of loss of protein function in microsatellite-unstable 

colon cancer cells (HCT116): a gene-dependent effect on the cell 

surface glycan profile. Glycobiology 19:726-734 

 119.  Potapenko IO, Haakensen VD, Luders T, Helland A, Bukholm I et al. (2010) 

Glycan gene expression signatures in normal and malignant breast 

tissue; possible role in diagnosis and progression. Mol Oncol 4:98-118 

 119



                                                                                                                                                References 

 120.  Przybylo M, Pochec E, Link-Lenczowski P, and Litynska A (2008) Beta1-6 

branching of cell surface glycoproteins may contribute to uveal 

melanoma progression by up-regulating cell motility. Mol Vis 14:625-

636 

 121.  Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B et al. (2002) 

Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. 

Nature 418:934- 

 122.  Rao RM, Betz TV, Lamont DJ, Kim MB, Shaw SK et al. (2004) Elastase 

release by transmigrating neutrophils deactivates endothelial-bound 

SDF-1alpha and attenuates subsequent T lymphocyte transendothelial 

migration. J Exp Med 200:713-724 

 123.  Roch C, Kuhn J, Kleesiek K, and Götting C (2010) Differences in gene 

expression of human xylosyltransferases and determination of acceptor 

specificities for various proteoglycans. Biochem Biophys Res Commun 

391:685-691 

 124.  Roeckel N, Woerner SM, Kloor M, Yuan YP, Patsos G et al. (2009) High 

frequency of LMAN1 abnormalities in colorectal tumors with 

microsatellite instability. Cancer Res 69:292-299 

 125.  Samowitz WS, Holden JA, Curtin K, Edwards SL, Walker AR et al. (2001) 

Inverse relationship between microsatellite instability and K-ras and p53 

gene alterations in colon cancer. Am J Pathol 158:1517-1524 

 126.  Scamuffa N, Siegfried G, Bontemps Y, Ma L, Basak A et al. (2008) Selective 

inhibition of proprotein convertases represses the metastatic potential 

of human colorectal tumor cells. J Clin Invest 118:352-363 

 127.  Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P et al. (2008) 

Immune response against frameshift-induced neopeptides in HNPCC 

patients and healthy HNPCC mutation carriers. Gastroenterology 

134:988-997 

 120



                                                                                                                                                References 

 128.  Seelentag WK, Li WP, Schmitz SF, Metzger U, Aeberhard P et al. (1998) 

Prognostic value of beta1,6-branched oligosaccharides in human 

colorectal carcinoma. Cancer Res 58:5559-5564 

 129.  Shah SN, Hile SE, and Eckert KA (2010) Defective mismatch repair, 

microsatellite mutation bias, and variability in clinical cancer 

phenotypes. Cancer Res 70:431-435 

 130.  Smyrk TC, Watson P, Kaul K, and Lynch HT (2001) Tumor-infiltrating 

lymphocytes are a marker for microsatellite instability in colorectal 

carcinoma. Cancer 91:2417-2422 

 131.  Söreide K, Janssen EA, Soiland H, Korner H, and Baak JP (2006) 

Microsatellite instability in colorectal cancer. Br J Surg 93:395-406 

 132.  Spicer AP, Joo A, and Bowling RA, Jr. (2003) A hyaluronan binding link 

protein gene family whose members are physically linked adjacent to 

chondroitin sulfate proteoglycan core protein genes: the missing links. J 

Biol Chem 278:21083-21091 

 133.  Spreafico M and Peyvandi F (2008) Combined FV and FVIII deficiency. 

Haemophilia 14:1201-1208 

 134.  Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 

224:1198-1206 

 135.  Stephens DJ and Pepperkok R (2001) Illuminating the secretory pathway: 

when do we need vesicles? J Cell Sci 114:1053-1059 

 136.  Takenaka Y, Fukumori T, and Raz A (2004) Galectin-3 and metastasis. 

Glycoconj J 19:543-549 

 137.  Tang BL, Wang Y, Ong YS, and Hong W (2005) COPII and exit from the 

endoplasmic reticulum. Biochim Biophys Acta 1744:293-303 

 121



                                                                                                                                                References 

 138.  Tateno H, Nakamura-Tsuruta S, and Hirabayashi J (2009) Comparative 

analysis of core-fucose-binding lectins from Lens culinaris and Pisum 

sativum using frontal affinity chromatography. Glycobiology 19:527-536 

 139.  Ten Hagen KG, Fritz TA, and Tabak LA (2003) All in the family: the UDP-

GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 

13:1R-16R 

 140.  Thibodeau SN, Bren G, and Schaid D (1993) Microsatellite instability in cancer 

of the proximal colon. Science 260:816-819 

 141.  Trombetta ES and Helenius A (1998) Lectins as chaperones in glycoprotein 

folding. Curr Opin Struct Biol 8:587-592 

 142.  Umar A (2004) Lynch syndrome (HNPCC) and microsatellite instability. Dis 

Markers 20:179-180 

 143.  Umar A and Srivastava S (2004) The promise of biomarkers in colorectal 

cancer detection. Dis Markers 20:87-96 

 144.  Van den Steen P., Rudd PM, Dwek RA, and Opdenakker G (1998) Concepts 

and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 

33:151-208 

 145.  Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P et al. (2009) 

Glycobiology Chapter: Glycans in Glycoprotein Quality Control. Cold 

Spring Harbor Laboratory Press, New York, 2nd edition. Figure 2. 

 146.  Vlad AM and Finn OJ (2004) Glycoprotein tumor antigens for immunotherapy 

of breast cancer. Breast Dis 20:73-79 

 147.  Vlodavsky I and Friedmann Y (2001) Molecular properties and involvement of 

heparanase in cancer metastasis and angiogenesis. J Clin Invest 

108:341-347 

 122



                                                                                                                                                References 

 148.  Vollenweider F, Kappeler F, Itin C, and Hauri HP (1998) Mistargeting of the 

lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the 

secretion of a lysosomal enzyme. J Cell Biol 142:377-389 

 149.  Weitz J, Koch M, Debus J, Hohler T, Galle PR et al. (2005) Colorectal cancer. 

Lancet 365:153-165 

 150.  Woerner SM, Benner A, Sutter C, Schiller M, Yuan YP et al. (2003) 

Pathogenesis of DNA repair-deficient cancers: a statistical meta-

analysis of putative Real Common Target genes. Oncogene 22:2226-

2235 

 151.  Woerner SM, Gebert J, Yuan YP, Sutter C, Ridder R et al. (2001) Systematic 

identification of genes with coding microsatellites mutated in DNA 

mismatch repair-deficient cancer cells. Int J Cancer 93:12-19 

 152.  Woerner SM, Yuan YP, Benner A, Korff S, von Knebel Doeberitz M et al. 

(2010) SelTarbase, a database of human mononucleotide-microsatellite 

mutations and their potential impact to tumorigenesis and immunology. 

Nucleic Acids Res 38:D682-D689 

 153.  Wolpin BM, Kraft P, Gross M, Helzlsouer K, Bueno-de-Mesquita HB et al. 

(2010) Pancreatic cancer risk and ABO blood group alleles: results 

from the pancreatic cancer cohort consortium. Cancer Res 70:1015-

1023 

 154.  Yang P, Cunningham JM, Halling KC, Lesnick TG, Burgart LJ et al. (2000) 

Higher risk of mismatch repair-deficient colorectal cancer in alpha(1)-

antitrypsin deficiency carriers and cigarette smokers. Mol Genet Metab 

71:639-645 

 155.  Yang WH, Kim JE, Nam HW, Ju JW, Kim HS et al. (2006) Modification of p53 

with O-linked N-acetylglucosamine regulates p53 activity and stability. 

Nat Cell Biol 8:1074-1083 

 123



                                                                                                                                                References 

 156.  You KT, Li LS, Kim NG, Kang HJ, Koh KH et al. (2007) Selective translational 

repression of truncated proteins from frameshift mutation-derived 

mRNAs in tumors. PLoS Biol 5:e109- 

 157.  Young J, Simms LA, Biden KG, Wynter C, Whitehall V et al. (2001) Features 

of colorectal cancers with high-level microsatellite instability occurring in 

familial and sporadic settings: parallel pathways of tumorigenesis. Am J 

Pathol 159:2107-2116 

 158.  Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M et al. (2004) 

Transgenic expression of mammalian heparanase uncovers 

physiological functions of heparan sulfate in tissue morphogenesis, 

vascularization, and feeding behavior. FASEB J 18:252-263 

 159.  Zhang YC, Zhou Y, Yang CZ, and Xiong DS (2009) A review of ERGIC-53: its 

structure, functions, regulation and relations with diseases. Histol 

Histopathol 24:1193-1204 

 

 

 

 124



                                                                                                                                                    Appendix 

8. Appendix 

8.1 Abbrevations 

APC Adenomatous Polyposis Coli 

Asp Asparagine 

B4GALT1 Beta-1,4-Galactosyltransferase 

BAX Bcl-2 Associated X-Protein 

BRAF V-raf murine sarcoma viral oncogene homolog B1 

cMNR Coding Mononucleotide Repeat Mutations 

cMS Coding Microsatellite 

CR Calreticulin 

CRC Colorectal Cancer 

CS Chondroitin Sulfate 

CX Calnexin 

DS Dermatan Sulfate 

ECM Extracellular Matrix 

ER Endoplasmic Reticulum 

ERAD ER associated degradation 

FGF2 Fibroblast Growth Factor Receptor 2 

FGFR3 Fibroblast Growth Factor Receptor 3 

Fuc Fucose 

GAG Glycosaminoglycan 

Gal Galactose 

GalNAc N-Acetylgalactosamine 

GALNT5 N-Acetylgalactosaminyltransferase 5 

Glc Glucose 

GlcA Glucoronic Acid 

GlcNAc N-Acetylglucosamine 

HNPCC Hereditary Non-Polyposis Colon Cancer 

HS Heparan Sulfate 

IdoA Iduronic Acid 

KS Keratan Sulfate 

LDS Lithium Dodecyl Sulfate 

Man Mannose 

MAPK mitogen-activated protein kinase 
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MCFD2 Multiple Coagulation Factor Deficiency Protein 2 

MLH1 MutL homolog 1 

MMR Mismatch Repair 

MSH2 MutS homolog 2 

MSH6 MutS homolog 6 

MSI Microsatellite Instability 

NMD Nonsense-mediated mRNA decay 

NE  Neutrophil Elastase 

NeuAc N-Acetyl-Neuraminic Acid (Sialic Acid) 

PDGF Platelet Derived Growth Factor 

PDGFR Platelet Derived Growth Factor Receptor 

PG Proteoglycan 

PLR3 Phosphatase Of Regenerating Liver-3 

PMF Post-Mitochondrial Fraction 

PMS2  

PMS Post-Meiotic Segregation 

Ser Serine 

SIAT4B Sialyltransferase 4B 

SUMF1 Sulfatase Modifying Factor 1  

TGFBR Transforming Growth Factor Beta Receptor 

TGFß Transforming Growth Factor 

Thr Threonin 

VEGF Vascular Endothelial Growth Factor 

Xyl Xylose 

XYLT Xylosyltransferase 
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