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Summary  

Invasiveness is a critical step in lung tumor progression, and the interaction between 

tumor cells with their surroundings may play an important role in tumor invasion and 

metastasis. To better understand the molecular mechanisms of tumor invasion and the 

interaction of the tumor with the surrounding cellular environment, matched-pair 

transcriptional profile analyses of inner tumor-, tumor invasion front-, adjacent lung- and 

normal lung cells from 18 patients with squamous cell lung carcinoma were undertaken 

to identify novel molecular markers by parallel gene expression profiling using 

oligonucleotide microarrays and microRNA TaqMan Low Density Arrays. Through "punch 

aided laser capture microdissection", T7 based RNA amplification and oligonucleotide 

microarray, 13 genes were identified as being differentially expressed between the tumor 

invasion front and the inner tumor. In addition to the identification of  significant genes in 

the tumor invasion front, Ingenuity pathway analysis ranked eicosanoid pathway 

signalling  high in tumor cells, with prostaglandin E synthase and F synthase being highly 

expressed in the tumor cells and the receptors of prostaglandin E being expressed only in 

lung tissue adjacent to the tumor. CCL19, APLNR and GIMAP7 as well as several proteins 

associated with prostaglandin formation and signalling, were validated by 

immunohistochemistry. Prostaglandins E and F may, therefore, be crucial messenger 

molecules in the interaction of the tumor with its surroundings. In addition to the mRNA 

gene candidates, several microRNAs were identified as being important in lung cancer.  

Hsa-mir-196a was indentified as being expressed less in the tumor invasion front than in 

the inner tumor; hsa-mir-650 was a unique adjacent lung specific microRNA; 66 

microRNAs were differentially expressed between tumor and normal lung. The expression 

patterns of hsa-mir-196a, hsa-mir-650 and hsa-mir-224 were verified by microRNA FISH.  

Hsa-mir-196a and hsa-mir-650 may, therefore, be crucial microRNAs for tumor-

microenvironment interactions. 

 

iii 



Zusammenfassung 

Invasivität stellt einen wesentlichen Aspekt des Krankheitsverlaufs von Lungenkrebs dar. 

Wechselwirkungen zwischen Krebszellen und umgebendem Gewebe spielen eine 

wichtige Rolle bei der invasiven Ausbreitung und Metastasierung von Tumorerkrankungen. 

Das Erstellen von Genexpressionsprofilen von Lungentumoren und angrenzendem 

Gewebe, könnte helfen, die molekularen Mechanismen der Invasion von Tumorzellen und 

deren Interaktionen mit den angrenzenden Zellen zu verstehen. In der vorliegenden 

Studie wurden Analysen von (1) innerem Tumorgewebe, (2) Tumorinvasionsfront, (3) 

angrenzendem Lungengewebe sowie (4) normalem Lungengewebe von insgesamt 18 

Patienten mit Plattenzellkarzinomen der Lunge durchgeführt. Hierbei wurden im 

Wesentlichen die Unterschiede in der Genexpression der verschiedenen Areale pro 

Patient ermittelt. Ziel war es, mittels Oligonukleotidmicroarray-basierter paralleler 

Transkriptmessung und dem TaqMan Low Density Array-Format zur semiquantitativen 

Bestimmung von MicroRNAs, neue molekulare Marker zu identifizieren. Besonderes 

Interesse galt hierbei dem invasiven Prozess von Krebszellen, sowie der Reaktion des 

angerenzenden Gewebes. Unter Verwendung von lasergestützter Mikrodissection, sowie 

einem Protokoll zur linearen Amplifikation von Gentranskripten (T7-basierend) und 

Oligonukleotidmicroarrays, wurden 13 Gene identifiziert, die eine differentielle Expression 

zwischen invasiver Tumorfront und innerem Tumorbereich zeigen. Eine zusätzliche 

Auswertung zu zellulären Signalwegen durch die Ingenuity® Software, ergab eine 

Überrepräsentation der Eikosanoid-Signalkaskade. Dies beinhaltete eine erhöhte 

Genexpression von Prostaglandin E Synthase und Prostaglandin F Synthase in 

Tumorarealen, sowie die erhöhte Genexpression von korrespondierenden Rezeptoren in 

ausschließlich tumorbenachbartem Lungengewebe. Die Proteine CCL19, APLNR und 

GIMAP7, nebst weiteren Proteinen zur Synthese und Signalverarbeitung von 

iv 



  
 

Prostaglandinen, wurden durch immunhistochemische Methoden validiert. Demnach 

könnten Prostaglandin E und F entscheidende Signalmoleküle für die Wechselwirkungen 

zwischen Krebszellen und umliegendem Gewebe sein. Neben diesen Kandidatengenen 

wurden in dieser Studie auch verschiedene MicroRNAs im Zusammenhang mit 

Lungenkrebs identifiziert. Hsa-mir-196a war hierbei in invasiver Tumorfront 

vergleichsweise geringer exprimiert als in inneren Tumorbereichen. Des Weiteren war 

Hsa-mir-650 als einzige MicroRNA spezifisch für Lungengewebe, welches dem Tumor 

angrenzt. Zudem zeigten insgesamt 66 MicroRNAs eine differentielle Expression 

zwischen Tumor und normaler Lunge. Die Expressionsmuster von Hsa-mir-196a, Hsa-mir-

650 und Hsa-mir-224 wurden durch MicroRNA-FISH verifiziert. Folglich könnten Hsa-

mir196a und Hsa-mir650 eine entscheidende Rolle bei der Interaktion zwischen Tumor 

und Mikroenvironment spielen. 
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1 Introduction                                                                             

1.1 Cancer 

Cancer accounted for about 23% of all deaths, ranking second only to heart disease in 

the world (Jemal et al., 2006). Almost all cancers are caused by genetic alteration in 

somatic cells, which generally demonstrate uncontrolled cell division, invasion and 

metastasis. Cancer has been, and is, an increasingly huge global challenge to human 

health (Vogelstein and Kinzler, 2002).  

Incidence of cancer varies dramatically between geographic regions (Figure 1); as some 

cancers are more common in the developed world (for example, breast and prostate); 

others occur more frequently in people, who live in developing countries (for 

example, cervical and stomach). Cancers of the lung have high incidence in both 

developed countries and areas undergoing economic development such as China (Parkin 

et al., 2002). Although these regional differences might be explained by genetic and 

epigenetic differences among populations, variations in lifestyles, environmental 

exposures and medical practices such as screening are also important to determine 

cancer risk (Ferlay et al., 2001) .               
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Figure 1. Global variations in cancer incidence for specific cancers. There is substantial 

global variability in cancer incidence (measured as age-standardized rates) occurring in 

people living in developing countries (a–c) and those in developed nations (d,e).  a. The 

incidence of stomach cancer for men of all ages is highest (orange and red) in developing 

countries such as Asia and South America, and lowest (light and dark green) in North 

America, parts of Africa, India and Australia. b. The incidence of cervical cancer is also 

high in developing regions of the world including Latin America, Africa and India, and is 

low (green) in North America, Europe and Australia. c. Lung cancer incidence is currently 

high in developed countries as well as those countries undergoing economic transition, 

such as China (d,e). Cancers with the highest incidence in developed countries include 

breast and prostate cancer, which occur most commonly in North America, Europe and 

Australia, and with much lower incidence in Asia and Africa. These differences highlight 

the role that environmental and lifestyle factors such as diet have in cancer development. 

(Ferlay et al., 2001). 
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1.2. Lung cancer 

Lung cancer is a malignant neoplasm of uncontrolled cell growth in lung tissue and 

bronchus. This uncontrolled cell growth can lead to tumor cell invasion into normal lung 

tissue and metastasis to other organs. Lung cancer is the most common cause of cancer-

related death in men (31%) and the second most common in women (25%) (Jemal et al., 

2002). Lung cancer is classified into two main types, small cell lung carcinoma and non-

small cell lung carcinoma. While the small cell type is sensitive to chemotherapy and 

radiation, the non-small cell type is mainly treated by surgical resection (Vaporciyan et al., 

2000). 50% of the NSCLCs and 80% of the SCLCs are metastatic at diagnosis,see Table 1.  

Table 1. Frequency of histological types of lung cancer (Travis et al., 1995) 

Histological type Frequency (%) 

Non-small cell lung carcinoma 80.4 

Small cell lung carcinoma 16.8 

Cardinoid 0.8 

Sarcoma 0.1 

Unspecified lung cancer 1.9 

 

1.2.1 Small cell lung carcinoma 

The SCLCs, also named oat cell carcinoma, are mainly centrally located in the lung, 

presenting in the main stem or lobular bronchii. Arising in the peribronchial tissues, they 

infiltrate the bronchial sub-mucosa. Pathological studies show that they arise from basal 

neuroendocrine or Kulchitsky cells, which are rarely found in the adult lung, but common 
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in the fetal lung  (Weitberg et al., 2002). Since the 19th century, SCLC has been known 

as ―Bergkrankheit”, a disease of miners which was discovered originally in the uranium 

and pitchblende mines in the area of Bohemia and Saxony (Meyer et al., 1980). Initially, 

SCLC was not recognized as a carcinoma, but rather a sarcoma, until Barnard identified 

this tumor entity in 1926 (Barnard, 1926). In 1973, the United State Working Party for 

the Therapy of Lung Cancer classified the SCLC as two main sub-types: oat cell carcinoma 

and intermediate carcinoma (Matthews, 1973). The morphological separation of these 

two subtypes was difficult., However, the WHO adopted this classification in 1981 and 

defined oat cell carcinoma as "a malignant tumor composed of uniform small cells, 

generally larger than lymphocytes, having dense round or oval nuclei, diffuse nuclei, and 

very sparse cytoplasm" and SCLC of intermediate type as "a malignant tumor composed 

of small cells, with nuclear characteristics similar to the oat cell, but with more abundant 

cytoplasm. The cells may be polygonal or fusiform and are less regular in appearance 

than those of the oat cell carcinoma" (Hess et al., 1981). As other types of lung cancer, 

SCLC is also of male predominance, but in recent years, female SCLC has been 

increasing. In some areas, the number of women with SCLC even exceeds that of men 

(Curnen, 1983). Only 16.8% of lung cancers are small cell lung carcinoma. It is clinically 

aggressive and associated with early extra-thoracic metastases. At the stage of initial 

diagnosis, 66% of the SCLC patients already show metastases in one or more sites, for 

example in bone, liver, central nervous system, lymph nodes, subcutaneous tissue, and 

pleura (Elliott et al., 1987). Small cell lung carcinoma cells grow fast and typically contain 

dense neurosecretory granules, secreting various mitogenic neuropeptides, which could 

be used as biomarkers for this tumor type (Driscoll et al., 2003). The etiology of SCLC is 

strongly associated to cigarette smoking (Barbone et al., 1997). 
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1.2.2 Non-small cell lung carcinoma  

Non-small cell lung cancer is the most common type of lung cancer, comprising about 

80% of all cases. . There are three main subtype of this carcinoma: squamous cell lung 

carcinoma, adenocarcinoma, and carcinoid (Table 2).  

Table 2 Sub-types of non-small cell lung cancer in smokers and never-smokers (Bryant 

and Cerfolio, 2007) 

Histological subtypes 

Frequency of non-small 

cell lung cancers (%) 

Smokers Never-smokers 

Squamous cell lung carcinoma  42 33 

Adenocarcinoma Adenocarcinoma                              

(not otherwise specified)  

39 35 

Bronchioloalveolar carcinoma  4 10 

Carcinoid  7 16 

Other  8 6 

Adenocarcinoma accounts for about 40% of the non small cell lung cancers (Travis, 

2002). In Western and developed countries, adenocarcinoma are normally found in 

peripheral lung parenchyma and associate with peripheral scar or honeycombing 

(Terasaki  et al., 2003), whereas in India, 50% of the adenocarcinomas are located more 

centrally (Shields et al., 1970). The majority of adenocarcinomas are between 2.0 and 

5.0 cm in diameter with mixed cell types, while tumors smaller than 1.5 cm are usually of 

one cell type. Adenocarcinoma cells grow slower than squamous cell lung carcinoma, and 

usually show a vascular invasion phenotype (Miettinen et al., 2003). Most cases of 

adenocarcinoma are related to smoking; however, among the never smoking population, 

adenocarcinoma is the most common type in lung cancer (Subramanian et al., 2007). As 

a common cause of lung cancer, occupation is also a key risk factor in adenocarcinoma 

development. A study in Missouri, USA, shows that carpenters, furniture makers, 

plumbers, printers, and welders are, a priori, high-risk occupations for adenocarcinoma 

(Zahm et al., 1989). The WHO classification divides adenocarcinomas into four subtypes: 
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acinar adenocarcinoma, papillary adenocarcinoma, bronchoalveolar carcinoma, and solid 

adenocarcinoma with mucin production (World Health Organization, 1982).   

Accounting for 25% of all lung cancers (Travis et al., 2002), squamous cell lung 

carcinomas arise in sub-segmental or larger bronchi, where the tumor shows both 

endobronchial  and invasive growth into the peribronchial soft tissue, lung parenchyma, 

and nearby lymph nodes, often compressing the pulmonary arteries and veins. Mucin-

containing cells, which are normally found in adenocinoma, are frequently seen in 

squamous cell carcinoma of lung, especially in peripheral tumors. More than 50% of the 

peripheral squamous cell lung carcinomas are actually adeno-squamous carcinomas 

(Stephen et al., 1994). Most squamous cell lung carcinomas are between 3.0 and 5.0 cm 

in size when they are detected.  In the center of the tumor, necrosis and hollow cavities 

generated by the necroses are commonly found. Well-differentiated squamous cell lung 

cancers are usually more slowly growing than other types of cancers (Vaporciyan et al., 

2000).  

1.3 Molecular genetics of cancer 

Cancer is caused by alterations of oncogenes, tumor-suppressor genes, and non protein 

coding genes (Croce, 2008). Most cancers originate from a single cell, and this cell and 

its descendants accumulate sufficient mutations in several genes before turning into 

cancer (Nowell, 1976). The mutations of the hundreds of genes that could possibly 

contribute to the causation of cancer are called cancer-critical genes and can be 

classified into two main groups: The genes which undergo gain-of-function mutations, 

which result in deregulation of normal cellular proliferation and differentiation,  are called 

oncogenes. The genes which undergo loss-of-function mutations resulting in a loss of 

feedback inhibition are called tumor suppressor genes.  Cancer is assumed to be a 

genetic disease that is either initiated by activating specific oncogenes, or inactivating 

specific tumor suppressor genes. Those two gene modifications are caused either by 

direct mutation or by chromosomal aberrations in the respective tissue (Alberts et al., 
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2002). In addition to genetic changes, cancer is also a disease driven by 'epigenetic 

changes' — modifiers of gene expression that are regulated by mechanisms that do not 

affect the basic structure of the DNA sequence. DNA methylation and histone 

modifications are two epigenetic processes that appear to regulate cancer-critical gene 

expression in many types of tumors (Weinhold, 2006). Furthermore, microRNAs, 

noncoding short sequence RNAs, also play an important role in the modification of 

cancer-critical gene expression and, at the same time, the expression of microRNAs itself 

can also be modified by other epiginetic factors (Chuang and Jones, 2007).  

1.3.1 Oncogenes   

An oncogene is able to stimulate cellular growth and transformation. When this kind of 

gene is mutated or over-expressed, it can contribute to transform a normal cell into a 

tumor cell. Most somatic cells possess the ability to undergo apoptosis (programmed cell 

death). Activated oncogenes can assist cells to avoid these cellular death programs 

leading to increased proliferation and survival. The activation of most oncogenes requires 

an additional step, such as mutations in another gene, or environmental factors such as 

viral infection, in order to cause cancer (Croce, 2008). In 1982, the first oncogene was 

discovered in bladder carcinoma cell lines in the laboratories of Robert Weinberg, 

Michael Wigler and Mariano Barbacid (Shih and Weinberg, 1982, Pulciani et al., 1982 

and Parada et al., 1982). The cloned cellular gene had the same transforming properties 

as the oncogene from the v-ras containing Harvey Murine Sarcoma Virus. (Parada et al., 

1982). Oncogenes can be switched on by structural alterations causing by gene fusion or 

mutation (Konopka et al., 1985), by gene amplification, or by gene rearrangement 

resulting in the juxtaposition of genes to enhancer sequences (Tsujimoto et al., 1985). 

Translocations and mutations can occur during tumor initiation or progression, while 

amplification usually occurs during progression (Finger et al., 1986). The protein products 

of oncogenes are classified into six groups: transcription factors, chromatin remodelers, 

growth factors, growth factor receptors, signal transducers, and apoptosis regulators 
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(Croce et al., 2008). The oncogenes most relevant to human solid malignancies, their 

mechanism of activation, biochemical function, and the tumor types most often affected 

by each are summarized in Table 3. 

Table 3. Representative oncogenes mutated in human tumors. 

Oncogene Location Mutation Function Tumor 

ABL1 9q34.1 Translocation Signal Transduction 

(tyrosine kinase) 

CML,  other 

hematological neoplasms  

BCL2 18q21.3 Translocation Anti-apoptosis B cell lymphoma 

CCND1  11q13 Amplification 

Translocation 

Cell cycle regulation Breast and                  

other carcinomas,                     

B cell lymphoma 

CDK4 12q14 Amplification 

point mutation 

Cell cycle regulation Sarcoma,                

familial melanoma  

ERBB family N/A Amplification  Growth factor Glioma, squamous cell 

carcinoma, carcinoma 

FOS 14q24.3 Amplification  Transcription factor Osteosarcoma 

HRAS 11q15.1 Point mutation Signal transduction Bladder carcinoma, 

thyroid cancer 

HST 11q13.3 Amplification Growth factor Stomach carcinoma  

INT2 11p13 Amplification  Growth factor family Oesophagus cancer, 

breast cancer, glioma  

KRAS 12p12.1 Point mutation Signal transduction Pancreas-, colon-, lung- 

adenocarcinoma, 

endometrium-  other 

carcinoma, melanoma   

KIT 4q11-21 Constitutive 

activation,  

point mutation 

Receptor tyrosine 

kinase 

(hereditary) GIST, ANLL, 

testis cancer 

MET 7q31 Point mutation Receptor tyrosine 

kinase 

(hereditary) papillary 

kidney tumor 

MYC (C-MYC) 8q24 Amplification 

Translocation 

Transcription factor Lymphoma, carcinomas 

 MYCN 2p24 Amplification Transcription factor Neuroblastoma, SCLC 

NRAS 1p13.2 Point mutation Signal transduction Thyroid cancer,melanoma 

PIM1 6p21 Constitutive 

activation 

Signal transduction T cell lymphoma 

RAF1 3p25 Translocation  Signal transduction Stomach carcinoma 

RET 10q11 Translocation  

Point mutation 

Receptor tyrosine 

kinase 

Thyroid cancer 

http://en.wikipedia.org/wiki/Hematological_malignancy
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1.3.2 Tumor Suppressor Genes 

The discovery of oncogenes appeared to explain cancer cell progression and proliferation 

in a very simple and direct way. However, in the 1970s and early 1980s, our 

accumulated knowledge about oncogenes turned was unable to explain all aspects of 

cancer cell genetics, which hinted that other genes existed that regulate growth control 

and operate to suppress cell proliferation.  These antigrowth genes were called tumor 

suppressor genes (Weinberg, 2007). In the 1980s, Webster Cavanee and colleagues in 

Raymond White‘s lab found that the retinoblastoma gene (RB; also known as RB1) 

located in chromosome 13, had homozygous mutations at the RB loci in inherited and 

sporadic retinoblastoma, thereby confirming the two hit hypothesis (also known as allelic-

hit hypothesis) (Cavenee et al., 1983). In 1989, Bert Vogelstein's group found cancer-

associated deletions of the TP53 gene on chromosome 17p, and showed that one copy 

was mutated and the other deleted in colorectal cancers. Similar to RB, the tumor 

suppressor function of TP53 was confirmed by mutation of TP53 to inhibit carcinoma 

cells growth. Table 4 summarizes the most common tumor-suppressor genes, their 

chromosomal locations, suspected biochemical functions, and the hereditary and 

sporadic tumors with which they are most commonly associated. 
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Table 4. Tumor suppressor genes and their roles in hereditary cancer syndromes  

Gene  Location Syndrome  Function Tumor 

CDH1  16q22 
Regulator of cell 

adhesion 

Regulator of cell 

adhesion 
Stomach carcinoma 

APC  5q21- q22 

Familial 

adenomatous 

polyposis and its 

variants    

β-catenin binding, Wnt 

signal pathway, 

transcription factor    

Gastrointestinal tumor, 

brain, thyroid carcinoma, 

retina lesions   

PTCH  9q22 

Gorlin syndrome/ 

Neviod basal cell 

carcinoma  

Sonic hedgehog pathway 

receptor 

Skin basel cell 

carcinoma, 

medulloblastoma  

SMAD4  18q21 Juvenile polyposis  SMAD4: TGF-β signalling              

Gastrointestinal tumor 

BMPR1A  10q22  BMPR1A: Gatekeeper 

TP53  17q13.1 Li-Fraumeni 

Translocation factor, cell 

cycle, apoptosis, DNA 

repair etc. regulator 

Sarcomas, beast-, brain 

tumor, Leukaemia, 

adenocorticoid tumors 

MEN1  11q13 
Multiplex endocrine 

neoplasia 1 

Inhibit trascription with 

JunD transcription factor   

Insulinoma, Gastroinoma, 

parathyroid tumors, 

pituitary adenomas   

NF1  17q11 

Neurofibramotosis 

1(von 

Reklingenshausen) 

GTPase activator 
Neurofinbroma,  
neurofibrosarcoma 

NF2  22q12 Neurofibramotosis 2 Role in cell adhesion 
Schwannoma, 

meningioma 

BRCA1               17q21 
Hereditary breast 

cancer 
Transcription factor, DNA 

repair 

Breast-, ovary-, pancreas-, 

prostate- cancer            

BRCA2            13q13  

Male and female breast-, 

pancreas-, prostate- 

cancer 

CDKN2/ 

P14/ 

P16/ 

P19ARF  

9p21 
Hereditary 

melanoma 
Cell cycle regulator 

Melanoma, pancreas-, 

prostate, bladder-, 

esophagus- cancer, 

leukaemia   

MLH1  3p21 

Hereditary non 

polyposis colorectal 

cancer (HNPCC) 

DNA mismatch repair 

Gastrointestinal tumor, 

endometrial, ovarian, 

heptabiliary and urinary 

tract cancer, glioblastoma 

MSH2  2p22-p21 

MSH6  2p16 

PMS1  2q31-q33 

PMS2  7p22 

TGFBR2 3p22 TGF-β pathway receptor 

RB1  13q14.3 
Hereditary 

retinoblastoma 

Transcrition factor, cell 

cycle regulator 

Retinoblastoma, 

osteosarcoma 

VHL 3p25 von Hippel-Lindau   

Component of ubiquitin 

ligase complex, regulator 

of cell cycle, adhesion  

Clear cell kidney cancer, 

pheaochromocytoma, 

hemangioblastoma  
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1.3.3 Oncomirs — microRNAs with a role in cancer gene expression 

Gene expression in either normal cells or cancer cells is highly regulated by sophisticated 

gene regulatory networks. MicroRNAs, single strand RNAs about 21 to 23 nucleotides in 

length, are a group of small non protein coding RNAs that play a negative regulatory role 

in such networks. This microRNA negative regulatory mechanism occurs by annealing of a 

portion of the microRNA to its complementary target mRNA, leading either to degradation 

of the target mRNA or blockage of its protein translation (Croce, 2008). 

In the human genome, the genes encoding microRNAs are much longer than the mature 

microRNA molecule; microRNAs genes are first transcribed as large RNA precursors, pri-

microRNAs with 5' cap and poly-A tails, by RNA polymerase II and then processed to 70 

nucleotide -pre-microRNA with stem-loop structures in the cell nucleus by a protein 

complex of the double-stranded RNA binding protein Pasha and the nuclease Drosha 

(Denli et al., 2004). These pre-microRNAs are then exported to the cytoplasm and 

processed to mature microRNAs by the endonuclease Dicer (Bernstein et al., 2001).   

Although either strand of the mature microRNA may potentially act as a functional 

molecule, only one strand is usually incorporated into the RNA-induced silencing complex 

(RISC) where the microRNA and its mRNA target interact. Both the sense and antisense 

strand of genomic DNA can function as templates to generate microRNAs (Stark et al., 

2008).  

Just as other cancer critical genes in cancer cells, microRNAs may locate in chromosomal 

regions, where amplifications, deletions, rearrangements and mutations occur (Calin et 

al., 2004). MicroRNA profiling studies have shown that microRNA expression patterns are 

associated with cancer progression, staging, classification, diagnosis and prognosis, as 

well as response to therapy (Calin and Croce., 2006, 2005, Yanaihara et al., 2006). 
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MicroRNA can be up or down regulated in cancer cells (Volinia et al., 2006). In specific 

tissues, microRNAs, due to their regulatory functions, may play roles similar to that of 

oncogene or tumor suppressor genes. (Zhang et al., 2007, see Figure 2). One example for 

such an oncogene mimicking function is mir-17–92. The mir-17–92 cluster is located on 

chromosome 13q31, a region that is amplified in lung cancer and in some lymphomas, 

for example in diffuses large B-cell lymphoma (Hayashita et al., 2005; He et al., 2005). 

The mir-17–92 is highly expressed in lung cancer and lymphomas when compared to 

normal tissue. The miR-17–92 cluster also contributes to lung cancer cell growth 

(Hayashita et al., 2005). In mir-17–92 overexpressing transgenic mice, mir-17–92 

significantly increases the formation of B-cell lymphomas (He et al., 2005). Let-7 is an 

example of a microRNA with a tumor supressor mimicking function. let-7 was originally 

identified in C. elegans. It is highly conserved in animals, from nematodes to humans 

(Pasquinelli et al., 2000), and the expression of let-7 is dependent on the stage of 

development (Johnson et al., 2003; Johnston and Hobert, 2003; Miska et al., 2004; 

Thomson et al., 2004). Let-7 directly targets the RAS oncogene and negatively regulates 

RAS gene expression by binding to the 3′ UTR of RAS mRNA, leading to translational 

repression. In lung cancer, tumor cells often display a significantly increased expression 

of RAS protein and a significantly reduced expression of let-7 compared to normal lung 

tissue, suggesting that let-7 functions as a tumor suppressor gene in lung cancer by 

regulating of the RAS pathway (Johnson et al., 2005). These findings suggest that 

microRNAs can be used as molecular biomarkers for tumor diagnosis, prognosis of 

disease specific outcomes, and prediction of therapeutic responses (Waldman et al., 

2007).  
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Figure 2. MicroRNAs can function as tumor suppressors and oncogenes.  

a.) In normal tissues, proper microRNA transcription, processing and binding to 

complementary sequences on the target mRNA results in the repression of target-gene 

expression through a block in protein translation or altered mRNA stability (not shown). 

The overall result is normal rates of cellular growth, proliferation, differentiation and cell 

death. b.) The reduction or deletion of a microRNA that functions as a tumor suppressor 

leads to tumor formation. A reduction in or elimination of mature microRNA levels can 

occur because of defects at any stage of microRNA biogenesis (indicated by question 

marks) and ultimately leads to the inappropriate expression of the microRNA-target 

oncoprotein (purple squares). The overall outcome might involve increased proliferation, 

invasiveness or angiogenesis, decreased levels of apoptosis, or undifferentiated or de-

differentiated tissue, ultimately leading to tumor formation. c.) The amplification or 

overexpression of a microRNA that has an oncogenic role would also result in tumor 

formation. In this situation, increased amounts of a microRNA, which might be produced 

at inappropriate times or in the wrong tissues, would eliminate the expression of a 

microRNA-target tumor-suppressor gene (pink) and lead to cancer progression. Increased 

levels of mature microRNA might occur because of amplification of the microRNA gene, a 

constitutively active promoter, increased efficiency in microRNA processing or increased 

stability of the microRNA (indicated by question marks). ORF, open reading frame. 

(Figures are from Esquela-Kerscher  and Slack, 2006) 
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1.3.4 Molecular Genetics of Lung Cancer  

Lung cancer oncogenesis conforms to the multistep model of tumorigenesis (Fearon et al., 

1985). Similar to other tumor entities, activation of oncogenes and inactivation of tumor-

suppressor genes are the basic events underlying lung tumorigenesis (Zochbauer-Müller 

et al. 2002).  

 1.3.4.1 Activation of oncogenes in human lung cancer  

The RAS genes (HRAS, KRAS, and NRAS) encode GTPase proteins that play a role in 

transducing growth-promoting and survival signals from membrane-bound receptor 

tyrosine kinases (RTK)s. The RAS oncogenes acquire their transforming capacity by G-T 

transversal point mutations that are detected in 20%-30% of lung adenocarcinomas and 

in 20% of all NSCLCs (Slebos et al. 1989; Rodenhuis and Slebos 1992). Most of those 

point mutations are found in codon 12, followed by mutations in codons 13 and 61 

(Rodenhuis et al. 1988), and correlate with smoking (Slebos et al. 1989). About 90% of 

the mutations are found in RAS in lung adenocarcinomas, whereas no RAS mutations 

have been detected in SCLC. The RAS mutations relate to poor prognosis for any stage of 

NSCLC (van Zandwijk et al. 1995; Graziano et al. 1999). The MYC proto-oncogenes, MYCL, 

MYCN, and MYC, encode basic helix-loop-helix transcription factors that regulate the 

expression of genes involved in DNA synthesis, RNA metabolism, and cell cycle regulation 

(Oster et al. 2002). Activation of MYC genes occurs by amplification or loss of 

transcriptional control, which results in MYC protein overexpression. In SCLC, MYCN, 

MYCL or MYC are often amplified and aberrantly expressed, whereas in NSCLC, 

exclusively MYC is  affected and only in a fraction of the tumors. MYC amplification occurs 

in 15%-30% SCLCs and 5%-10% NSCLCs (Richardson and Johnson 1993). MYC 
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amplification could therefore be indicative for poor prognosis (Johnson et al. 1996). A 

member of the NOTCH gene family, NOTCH3, was found to be overexpressed in NSCLCs 

on chromosome 19p translocation (Dang et al. 2000). NOTCH3 is involved in 

differentiation and neoplasia (Campese et al. 2003) and likely influences differentiation 

of lung cancer cells (Dang et al. 2003). Finally, overexpression of the proto-

oncogene BCL2 is often found in lung cancer (Pezzella et al. 1993; Kaiser et al. 1996). 

BCL2 is an antiapoptotic protein and is expressed in 75%-95% of SCLCs (Jiang et al. 

1995), whereas it is expressed in 25%-30% of the squamous cell carcinomas and ~10% 

of adenocarcinomas (Pezzella et al. 1993). BCL2 counteracts BAX, a proapoptotic protein 

and a downstream target of TP53. High BCL2 and low BAX expression are frequently 

found in SCLCs that are p53-deficient (Brambilla et al. 1996). Interestingly, SCLCs with 

high BCL2 expression levels are mostly very sensitive to chemotherapy (Pakunlu et al., 

2004). Moreover, BCL2 expression in NSCLC is believed to be a favorable prognostic 

factor, while BCL2 expression does not influence survival in SCLCs (Maitra et al. 

1999; Martin et al. 2003).  

1.3.4.2 Inactivation of tumor suppressor genes in human lung cancer 

Tumor-suppressor genes are frequently inactivated in lung cancer. One of the most 

commonly found aberrations is mutation or deletion of TP53. TP53 is critical for 

maintaining genomic integrity after DNA damage inflicted by γ and UV irradiation or 

carcinogen exposure (Khanna and Jackson, 2001; Hanawalt et al., 2003). Cellular stress 

such as DNA damage or hypoxia causes up-regulation of TP53, which then acts as a  

transcription factor driving expression of a range of genes such as TP21, controlling G1/S 

cell cycle transition, or GADD45, involved in the G2/M DNA damage checkpoint. 

Apoptosis can be induced through TP53 by activating BAX, PERP (Ihrie et al., 2003), and 
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other genes (Mori et al., 2004). Loss of TP53 function in lung cancer often occurs through 

mis-sense mutations and rarely by deletions and is found in ≥75% and ~50% of SCLCs 

and NSCLCs, respectively (Toyooka et al., 2003a). The TP53 mutations in lung tumors, 

mostly G-T transversions, are due to smoking (Lewis and Parry, 2004). Normally, 

expression levels of TP53 are kept low through an autoregulatory feedback loop 

with MDM2, which itself is transcriptionally controlled by TP53. MDM2-p53 binding 

enhances the proteasome-dependent degradation and, therefore, keeps TP53 levels in 

check. Overexpression of MDM2 is found in 25% of NSCLCs (Higashiyama et al., 1997). 

 The p16INK4A (CDKN2A)-cyclin D1 (CCND1)-CDK4-RB pathway is critical in controlling 

the G1/S cell cycle transition, and one of its components is invariably mutated or 

functionally altered in lung cancer. Allelic loss, mutations, or promoter hypermethylation 

of CDKN2A occur frequently in NSCLC but rarely in SCLC (Fong et al., 2003). Between 

30%-50% of primary NSCLCs do not express CDKN2A. p16INK4A (CDKN2A) functions by 

binding to cyclin-dependent protein kinase 4 (CDK4), inhibiting the ability of CDK4 to 

interact withCCND1. The CCND1-associated CDK4 phosphorylates RB, thereby releasing 

the cell from RB-mediated cell cycle arrest (Malumbres et al., 2003). CDK4 as well as 

CCND1 overexpression have been found in NSCLCs (Borczuk et al., 2003; Ratschiller et 

al., 2003) and are correlated with a poor prognosis (Caputi et al., 1997). The key 

component of this pathway, the RB gene, can be inactivated by point mutations, 

alternative splicing, or deletions. Abnormalities in the RB protein have been found 

in >90% of SCLCs and 15%-30% of NSCLCs (Reissmann et al., 1993; Dosaka-Akita et al., 

1997). As would be expected from proteins acting in the same pathway, mutations of 

both RB and CDKN2A are rarely found in the same lung tumor. Interestingly, in spite of 

the mutual exclusiveness of mutations in CCND1, CDK4/6, CDKN2A, and RB, alterations 

in CDKN2A-CCND1-CDK4 are most commonly seen in NSCLC, whereas RB gene 
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inactivation is a typical feature for SCLCs (Zochbauer-Müller et al., 2002). In the case of 

the other members of the RB family, RBL1 and RBL2, only RBL2 is found mutated or  

expressed at a low level in both NSCLCs (Claudio et al., 2000) and SCLCs (Helin et al., 

1997). The alternative reading frame product protein p14ARF encoded by 

the CDKN2A locus, was inactivated in 65% of SCLCs (Gazzeri et al., 1998), 

whereas CDKN2A mutations were found in ∼20% of NSCLCs (Nicholson et al., 2001). 

Since p14ARF interacts with MDM2 and thus prevents p53 degradation, it is an integral 

member of the p53-MDM2-p14ARF pathway (Fong et al., 2003). There remains, however, 

a possibility that p14ARF acts also through a yet unknown pathway (Weber et al., 2000) 

in lung cancer, since loss of p14ARF can be found independent from CDKN2A and 

concurrent with TP53 mutations in both NSCLC and SCLC (Gazzeri et al., 1998; Nicholson 

et al., 2001). Also, other tumor-suppressor genes are of importance as is evident by 

recurrent chromosomal losses found in this cancer type. Several candidate tumor 

suppressor genes were identified in the chromosome 3p region that frequently show LOH 

in lung cancer (Wistuba et al., 2001). One candidate is FHIT in region 3p14.2, showing 

aberrant transcripts in 80% of SCLC and 40% of NSCLCs, while no FHIT protein is seen in 

50% of all lung cancers (Sozzi et al., 1996; Zochbauer-Müller et al., 2001). Other 

candidate tumor-suppressor genes from the 3p region include RASSF1 (Dammann et al., 

2000; Burbee et al., 2001), SEMA3B (Sekido et al., 1996), FUS1 (Kondo et al., 2001), 

and RARB (Virmani et al., 2000).  

An alternative way for inactivating tumor-suppressor genes in lung cancer is 

hypermethylation of promoter regions resulting in transcriptional inactivation of one allele 

while the remaining allele is lost via LOH. This epigenetic inactivation is often found in 

both NSCLC and SCLC (Zochbauer-Müller et al., 2002) but can also be detected in early 

preneoplastic lesions of smokers. Methylated promoter regions of the individual 



Introduction 

 

- 18 - 
 

genes TIMP3, CDKN2A, CDKN2A, CDH13 (H-Cadherin), CDH1 (E-Cadherin), DAPK, GSTP1 

(Zochbauer-Müller et al., 2002), and the genes of the chromosome 3p region (RASSF1, 

SEMA3B, RARB, and FHIT) have been reported (Kuroki et al., 2003). Several regional 

hypermethylation spots at chromosomal regions 4q, 10q, and 17p are present in both 

NSCLC and SCLC, but so far no adjacent candidate tumor-suppressor genes have been 

identified in these regions (Fong et al., 2003). 

1.3.4.3 microRNA and human lung cancer 

Numerous publications have reported aberrant expression of microRNAs in cancer 

(Landgraf et al., 2007). In solid cancers, one of the largest studies of microRNAs 

expression was performed by the group of Carlo M. Croce (Volinia et al., 2006). The 

authors analyzed the ―microRNome‖ of 363 tumors (breast, lung, pancreas, stomach, 

colon and prostate) versus 177 healthy tissues and identified a solid cancer microRNA 

signature composed of a large portion of overexpressed microRNAs, such as mir-21, mir-

191 and mir-17-5p. Comparison of 123 lung cancers and 123 corresponding normal 

lungs led to the detection of 38 microRNAs with abnormal expression (some members of 

the let-7 family, mir-16-2, mir-21, mir-191, mir-17-5p and mir-155). A specific microRNA 

signature in lung cancers was confirmed in the study from the Curtis C. Harris lab 

(Yanaihara et al., 2006). The authors performed a microarray analysis in 104 non 

squamous cell lung carcinoma (NSCLC) and corresponding non-cancerous lung tissues 

and identified 43 differentially expressed microRNAs: 15 upregulated (including mir-21, 

mir-191, mir-155, mir-17-3p) and 28 downregulated (including let-7-a2 and mir-125a). 

These findings have supported the concept of a specific microRNAs signature in solid 

cancers, opening a large field of research. 
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1.4 Invasion and metastasis of cancer 

Approximately 90% of cancer-associated deaths are caused by invasion and metastasis 

(Sporn, 1996), which consists of a complicated series of sequential, interrelated steps. 

Initially, the primary tumor cells invade adjacent host tissues and enter the blood vessels 

or the lymphatic system. These cells then flow through the vasculature, arrest in tissue 

capillaries away from the primary tumor, then escape out of the blood vessel walls, 

invade into the surrounding tissue and finally proliferate from microscopic growths to 

macroscopic secondary tumors (Fidler, 2003). 

 In 1889, a British physician Stephen Paget enunciated the "seed and soil" hypothesis 

which still holds forth today. "When a plant goes to seed, its seeds are carried in all 

directions," he wrote. "But they can only live and grow if they fall on congenial soil" (Paget, 

1889). This idea was a prevalent theory at that time, which stated that disseminating 

cancer cells, having been spread through the body into the blood or lymph "in all 

directions", could colonize in some tissues and transform the adjacent cells to grow in a 

similar way. However the "seed and soil" theory could not explain the metastatic pattern 

of all types of human cancer. Sugarbakeer and Kinsey challenged Paget‘s hypothesis by 

ectopically transplanting various organ tissues in DBA/2 syngeneic mice and injecting 

them from different routes using the melanoma S91 Cloudman strain. They reported that 

tumor cells specifically metastasized to lungs but not any other transplanted organs 

(Sugarbaker, 1952; Kinsey, 1960). 

Epithelial to mesenchymal transition or transformation (EMT) is a program of 

development of biological cells characterized by loss of cell adhesion, repression of E-

cadherin expression, and increased cell mobility. EMT is essential for numerous 

developmental processes including mesoderm formation and neural tube formation. 

http://en.wikipedia.org/wiki/Biological_cell
http://en.wikipedia.org/wiki/Cadherin
http://en.wikipedia.org/wiki/Cadherin
http://en.wikipedia.org/wiki/Germ_layer#Mesoderm
http://en.wikipedia.org/wiki/Neural_tube
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Epithelial to mesenchymal transition (EMT) was first described as a distinct 

embryogenesis process by Garry Greenburg and Elisabeth Hay in 1982 (Greenburg and 

Hay, 1982), although it had been studied for more than a century previously. As a highly 

conserved and fundamental cellular program occurring during critical stages of animal 

embryonic development, EMT had been proposed to promote the cancer phenotype of 

invasion and metastasis during the past ten years (Tepass et al., 1996). Loss of E-

cadherin (CDH1) expression is a key step involved in EMT. E-cadherin is a protein that 

functions in cell-cell adherence and is crucial for formation of the embryonic epithelia. E-

cadherin loss of function studies shows the EMT phenotype in embryogenesis as well as 

in tumor invasion and metastatic processes. (Tepass et al., 1996; Edelman et al., 1983;  

Berx et al., 1995; Becker et al., 1994; Guilford et al., 1998). During embryonic 

development, E-cadherin is tanscriptionally repressed by several E-Box binding zinc-finger 

proteins such as twist, snail, slug and sip1 (Figure 3). Moreover, investigators found that 

SNAIL is highly expressed in human breast carcinoma and also in lymph-node-positive 

tumors; Furthermore, E-cadherin and SNAIL expression levels have an inverse 

correlation in breast- (Blanco et al., 2002) and oral squamous cell carcinoma (Yokoyama 

et al., 2001). SNAIL and SIP1 share partly overlapping binding sites and are normally co-

expressed in E-cadherin-negative carcinomas (Comijn et al., 2001). SIP1 expression is 

controlled both by tyrosine kinase receptor and TGF-ß signalling which also regulates 

SNAIL expression (Comijn et al., 2001). NF-κB was identified as an important mediator of 

EMT in breast cancer progression, and the E-cadherin repressors Twist and Snail are 

downstream targets of NF-κB (Huber et al., 2004). As a key regulator of the EMT process, 

E-cadherin mutation might be a risk factor for oncogenesis. Parry Guilford and colleages 

found E-cadherin germ-line mutations in some families in New Zealand, whose members 

have a high probability of developing diffuse gastric cancer (Guilford et al., 1998). 
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Figure 3. Drivers and mediators of EMT. Early stage tumor cells (green) maintain 

epithelial properties similar to the neighboring normal epithelium (brown). The 

overexpression of master regulators of EMT, such as twist, snail, and sip1, in cancer cells 

(shown with purple nuclei) leads to dramatic changes in gene expression profile and 

cellular behavior. Twist, Snail, and Sip1 repress the expression of E-cadherin via E boxes 

in its promoter and trigger expression of an entire EMT transcriptional program through 

as yet unknown mechanisms. Several pathways are known to regulate TWIST, SNAL, and 

SIP1 expression in tumor cells while others (shown in parentheses) do so at least in 

developmental contexts. (Figure from, Kang and Massagué, 2004) 
 

1.5 Tumor-Microenvironment Interactions  

 
There are two compartments of tissue immediately associated with each other in tumors. 

The first compartment is the malignant tissue with its tumor cells. The second is the 

tumor microenvironment, which is composed of different types of cells, for example, 

resident fibroblasts, endothelial cells, and other nonmalignant cells, infiltrating fibroblasts, 

lymphocytes, macrophages, extracellular matrix, growth factors, cytokines, chemokines, 

antibodies, proteases, other types of enzymes, and various metabolites. All of these 
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molecules may be excreted from the malignant tumor cells or from the nonmalignant 

cells in the tissue complex (Witz et al., 2008a). The tumor microenvironment functions as 

an active ―educational, inductive, selection‖ niche, where the tumor is directed into 

possible cellular signalling pathways by microenvironmental factors. However, the 

interaction between microenvironment and malignant tumor cells is bidirectional: Tumor 

cells and their secreted extracellular factors are also able to regulate gene expression in 

non-tumor cells residing in, or infiltrating into, the microenvironment, which then might 

alter their phenotypes (Witz et al., 2008b). 

It is widely accepted that how the tumor interacts with the components of the associated 

microenvironment is crucial for cell fate, whether malignant cells grow, invade and 

metastasize, or become dormant or even regress completely. These interactions 

influence cellular processes that promote or suppress oncogenesis: invasion, metastasis, 

angiogenesis, inflammation, motility, chemotaxis and protective immunity, Although 

additional mechanisms of interaction probably still have to be uncovered, and the 

significance of other known interactions has still to be elucidated, it is safe to tentatively 

conclude that many, if not most, of these interactions constitute dangerous liaisons: They 

promote tumor progression and metastasis (Witz et al., 2008b).  

The physiological conditions within the tumor microenvironment are considerably 

different from those in normal tissue. Hypoxia, low pH and glucose levels are common in 

the tumor microenviroment. Moreover, massive cell death occurs, releasing proteins and 

small molecules into the surrounding regions. These factors may prevent or promote 

tumor growth (Witz and Levy-Nissenbaum, 2006). Hypoxia in the tumor microenvironment 

may cause the generation of oxygen free radicals, which can lead to DNA damage 

(mutation). Under hypoxic conditions, repairing DNA damage is not efficient. The  result is 

an increase in the mutation rate and variations in the malignant tumor cell populations. 

javascript:openPopWin('dictionary.cfm?lookup_id=gene',%20650,%20250,%20%0d%0a'menubar,scrollbars,resizable,status')
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Another result is that only those mutated cells which can survive in this 

microenvironment will continue to grow and contribute to the tumor (Laconi, 2007). 

Furthermore, the conditions within the tumor microenvironment do not only affect 

malignant tumor cells. The adjacent cells surrounding a tumor demonstrate altered 

characteristics compared to corresponding cells in normal tissue. These cells in adjacent 

tissue also develop mutations, and the tissue itself is often disorganized compared to 

normal tissue (Zalatnai, 2006). These abnormal alterations might arise in two ways: the 

hypoxia and low pH in tumor microenvironment may induce mutations, or soluble 

products (growth factors, cytokines, or other metabolic products) released from the 

malignant tumor cells may alter the genes expression in the stoma cells (Witz and Levy-

Nissenbaum, 2006). Interestingly, mutations were reported in the non-cancerous stroma 

tissue from breast cancer patients, suggesting that the genetic alterations in the stroma 

may play a crucial role in tumor initiation (Laconi, 2007).  

 

1.6 Eicosanoid signalling and cancer 

Human epidemiological and animal model studies proved that a high-fat diet is 

associated with risk of cancer, especially in colorectal, breast, pancreatic and prostate 

cancer (Woutersen et al., 1999). Arachidonic acid has a crucial role in chronic 

inflammation and cancer. It is one of the major ingredients of animal fats and many 

biologically active lipids (prostaglandins, leukotrienes, thromboxins etc.) are derived from 

this substrate. By involvement of the cyclooxygenase (COX), lipoxygenase (LOX) and P450 

epoxygenase pathways, the metabolism of arachidonic acid generates different types of 

eicosanoids, including prostanoids, leukotrienes, epoxyeicosatrienoic acids (EETs), 

hydroxyeicosatetraenoic acids (HETEs) and hydroperoxyeicosatetraenoic acids (HPETEs) 

(Wang and  DuBois, 2010).  
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Figure 4. An overview of eicosanoid synthesis pathways. Arachidonic acid is set free from 

the cellular membranes by cytoplasmic phospholipase A2 (PLA2). Free arachidonic acid 

can be metabolized to eicosanoids through three major pathways: the cyclooxygenase 

(COX), the lipoxygenase (LOX) and the cytochrome P450 monooxygenase pathways. The 

prostaglandin E, F, D and I are synthesized through COX pathway. In the COX pathway, the 

key step is to enzymaticly convert arachidonic acid to the intermediate prostaglandin G2 

(PGG2), which is then reduced to an intermediate form of PGH2 by the COX peroxidase 

activity. Each of the prostaglandins and leukotrienes exerts its biological effects by 

binding to its receptor, kind of G protein-coupled receptor. PGH2 can be metabolized to 

PGE, PGF, PGD and PHI by their specific synthases.  Hydroxyprostaglandin dehydrogenase 

15-(NAD) (15-PGDH) mainly metabolizes intracellular PGE2 and PGF2α to a stable 13,14-

dihydro-15-keto-PGE2 and 13,14-dihydro-15-keto-PGF2α (Wang and  DuBois, 2010). 

 

Among the prostanoids involved in eicosanoid signalling, pro-inflammatory PGE2 plays a 

crucial role in promoting tumor growth. PGE2 is the most common prostaglandin found in 

different human cancers, including lung, colon, breast, and head and neck cancer, and is 

associated with a poor prognosis. (Rigas et al., 1993; Wang et al., 2004; McLemore et al., 

1988; Hambek et al., 2007). 15-PGDH, an inactivator of eicosanoids, is expressed more 

highly in normal tissues than in corresponding human lung, colon, gastric and breast 

malignant tumors (Backlund et al., 2005; Wolf et al., 2006; Hughes et al., 2008; Thiel et 
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al., 2009). Low expression level of 15-PGDH in these tumors results in increasing 

endogenous PGE2 concentration. A recent study show direct evidence that PGE2 

promotes tumor growth, PGE2 treatment strikingly increase intestinal adenoma burden in 

ApcMin/+ mice and significantly promotes azoxymethane (AOM)-induced colon tumor 

progression (Wang et al.,2004; Kawamori et al., 2003). On the other hand, inhibition of 

endogenous PGE2 can suppresses intestinal tumorigenesis in ApcMin/+ and AOM 

models26 by the genetic knock out of prostaglandin E synthase (Ptges). The role that 

PGE2 plays in colorectal tumorigenesis has been confirmed by investigating mice with a 

homozygous deletion of individual PGE2 receptors (Watanabe et al., 1999; Mutoh et al., 

2002; Sonoshita et al., 2001). Limited information is available regarding the role of PGE2 

signalling in animal models of other cancers. By the overexpression of COX2 and PTGES, 

increasing PGE2 levels results in gastric oncogenesis in keratin 19 driven CRE/Wnt1-

transgenic mice (Oshima et al., 2006). Deletion of the EP2 receptor suppresses lung 

tumorigenesis in a chemical carcinogen mouse model. (Keith et al., 2006) and inhibits 

COX2-induced mammary hyperplasia in mice (Chang et al., 2005). Similarly, an EP1 

antagonist inhibits chemically induced breast cancer development in rats (Kawamori et 

al., 2001). Above all, these studies demonstrate that PGE2 is a crucial small molecule in 

cancer progression. 

The role of other prostaglandins in tumor animal models is not well studied. Function loss 

of TBXA2R, FP or IP receptors does not affect colon tumor formation in the AOM mouse 

model (Mutoh et al., 2002), suggesting that the three receptors are not important in 

colon cancer progression. PGF2α can enhance carcinogen-induced transformation of 

fibroblasts in vitro by inducing COX2 (Wolfle et al., 2003). Activation of PPARδ promote 

intestinal tumor growth in ApcMin/+ mice (Wang et al., 2006), suggesting that PGI2 may 

accelerate colon tumor progression through this receptor.  

http://www.nature.com/nrc/journal/v10/n3/full/nrc2809.html#B26
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=64292
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1.7 Aim of this work 

The aim of the present work was to identify genes and microRNAs involved in tumor 

invasion and tumor microenvironment interaction in squamous cell lung carcinoma. First 

after the isolating of four target cell populations (tumor center, tumor front, adjacent lung 

front and normal lung) by laser capture microdissetion and the assurance of high RNA 

intergrity, a novel method, punch aided laser microdissection, was developed to 

investigate these four cell populations in human lung tumor sections. T7 based RNA 

linear amplification was used to amplified total RNA for oligonucleotide microarray 

experiments and then used to identify candidate genes and canonical pathways with 

functions on tumor invasion and tumor microenvironment interactions. Second, in 

parallel, microRNAs expression in the four cell compartments were analyzed using 

TaqMan Low Density Arrays to explore differences in the zonal expression microRNAs, 

which might alter tumor invasion and the microenvironment. Third, integrative 

bioinformatic analysis of the crosstalk between microRNA and mRNA expression was 

carried out in order to find the regulatory role that microRNAs could play in tumor 

microenvironment and invasion. The respective candidate genes discovered by these two 

array techniques are possible targets for diagnosis and anti-cancer therapies. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and Biochemicals 

  

2-mercaptoethanol Sigma-Aldrich, Munich, Germany 

Acetic anhydride Sigma-Aldrich, Munich, Germany 

Alexa Fluor 594, goat anti-mouse IgG Invitrogen, Kalsruhe, Germany 

Aminoallyl-dUTP Fermentas, St. Leon-Rot, Germany 

Ammonium acetate solution, 7.5 M Sigma-Aldrich, Munich, Germany  

Antibody Diluent, Background Reducing Dako, Glostrup, Danmark 

Cot-human DNA       Invitrogen, Kalsruhe, Germany  

Chloroform, pro analysis         Merck, Darmstat, Germany  

Cyanin 3-dUTP   Amersham Bioscience,Freriburg, Germany 

Cyanin 5-dUTP       Amersham Bioscience,Freriburg, Germany 

Cy5-Streptavidin Invitrogen, Camarillo, Germany 

Deoxynucleotide set, 100 mM solution              Fermentas, St. Leon-Rot, Germany  

DEPC (diethylpyrocarbonate)-treated water  Ambion, Austin, USA  

Diaminoethane tetraacetic acid Sigma-Aldrich, Munich, Germany 

Eosin Sigma-Aldrich, Munich, Germany  

Ethanol, pro analysis Sigma-Aldrich, Munich, Germany  

Ethanolamine Sigma-Aldrich, Munich, Germany  

Ethidiumbromide Sigma-Aldrich, Munich, Germany 

Eukitt quick-hardening mounting medium  Sigma-Aldrich, Munich, Germany 

FITC-Streptavidin Invitrogen, Camarillo, Germany 

Formaldehyde solution Sigma-Aldrich, Munich, Germany 

Formamide, pro analysis Merck, Darmstat, Germany  

Glycine Sigma-Aldrich, Munich, Germany 

Goat serum Abcam, Cambridge, UK 

Hematoxylin Sigma-Aldrich, Munich, Germany  

Human Universal Reference RNA Stratagene, La Jolla, USA 

Hydrochloric acid Sigma-Aldrich, Munich, Germany 

Jung Tissue Freezing Medium Leica, Bensheim, Germany 

Linear polyacrylamide (LPA), 5µg/µl Ambion, Austin, USA  

M-MuLV Reverse Transcription Buffer   Fermentas, St. Leon-Rot, Germany 
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miRCURY LNA microRNA Detection Probes.   

(hsa-mir-220, hsa-mir-196a, hsa-mir-650, 6U, 

Scramble-mir)  

Exiqon, Vedbaek, Denmark 

Nuclease-free water (not DEPC treated) Ambion, Austin, USA 

Oligo T7 (dT) 21 Primer BioSpring, Frankfurt am Main, Germany 

PCR nucleotide mix, 10mM GE Healthcare, Buckinghamshire, UK 

Pdn6 random primers Roche Diagnostics, Mannheim, Germany 

Phenol-chloroform-isoamylalcohol 25:24:1,  Sigma-Aldrich, Munich, Germany  

QIAzol Lysis Reagent  Qiagen, Hilden, Germany 

Ribonucleic Acid (tRNA) Sigma-Aldrich, Munich, Germany 

RNaseZap  Ambion, Austin, USA  

RNasin Ribonuclease Inhibitor Promega, Madison, USA 

Roti-Histol Carl Roth GmbH, Kalsruhe, Germany  

Second strand buffer  Invitrogen, Kalsruhe, Germany  

SSC solution (20X) Ambion, Austin, USA  

Tris(hydroxymethyl) aminomethane Sigma-Aldrich, Munich, Germany 

Tween-20 Sigma-Aldrich, Munich, Germany 

Universal Human Reference RNA Stratagene, La Jolla, USA 

Vectashield mouting medium (Dapi) Vector, Burlingame, USA 

Xylene Sigma-Aldrich, Munich, Germany 

  

2.1.2 Enzymes   

DNA ligase                                                   USB, Cleveland, USA 

DNA polymerase I     Promega, Madison, USA 

Proteinase K Qiagen, Hilden, Germany 

RevertAid M-MuLV Reverse Transcriptase Fermentas, St. Leon-Rot, Germany 

Ribonuclease H Epicentre, Madison, USA 

T4 DNA polymerase  NEB,Frankfurt am Main, Germany 

T4 Gene 32 protein (cloned), 500 µg           USB, Cleveland, USA 
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2.1.3 Antibodies 

Anti AKR1C3 antibody Abcam, Cambridge, UK 

Anti Apelin Receptor antibody Novus, Littleton, USA 

Anti CD11b antibody Abcam, Cambridge, UK 

Anti CD45 antibody Abcam, Cambridge, UK 

Anti GIMAP7 antibody Sigma-Aldrich, Munich, Germany 

Anti Macrophage Inflammatory Protein 3 ß  

(CCL19) antibody 

Abcam, Cambridge, UK 

Anti- mouse IgG Chemicon International, Temecula, USA 

Anti Prostaglandin E Synthase-1 antibody Cayman Chemical, Ann Arbor USA 

Anti Prostaglandin E Receptor 1 antibody Cayman Chemical, Ann Arbor USA 

Anti Prostaglandin E Receptor 2 antibody Cayman Chemical, Ann Arbor USA 

Anti Prostaglandin F Receptor  antibody Cayman Chemical, Ann Arbor USA 

Anti- rabbit IgG Chemicon International, Temecula, USA 

Biotinylated Anti-mouse IgG (H+L) VECTOR, Burlingame, USA 

Biotinylated Anti-rabbit IgG (H+L) VECTOR, Burlingame, USA 

 

2.1.4 Kits 

  

BioPrime Array CGH Genomic Labeling System    Invitrogen, Kalsruhe, Germany  

Dako Cytomation Biotin Blocking System Dako, Glostrup, Danmark 

Dako REAL Detection Systems Dako, Glostrup, Danmark 

RNA 6000 Nano Chip kit Agilent, Santa Clara, USA 

RNA 6000 Pico Chip kit Agilent, Santa Clara, USA 

RNeasy Mini Kit (with RNase-Free DNase Set) Qiagen, Hilden, Germany 

RNeasy Micro Kit (with RNase-Free DNase 

Set) 

Qiagen, Hilden, Germany 

RiboMAX Large Scale RNA Production System 

- T7  

Promega, Madison, USA 

TaqMan Low Density Array Human MicroRNA 

Panel v1.0 (including 8 microRNA RT pools ) 

Applied Biosystems, Foster City, USA 

TaqMan MicroRNA Reverse Transcription Kit Applied Biosystems, Foster City, USA 

 TaqMan Universal PCR Master Mix Applied Biosystems, Foster City, USA 

 MiRNeasy mini kit (with RNase-Free DNase 

 Set) 

 

 

 

 

Qiagen, Hilden, Germany 
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2.1.5 Other Materials   

AdhesiveCap 500 opaque  Carl Zeiss, Munich, Germany 

Cover slides Menzel-Glaser, Braunschweig, Germany 

Homo sapiens AROS V4.0 70mer oligo set for 

gene expression profiling 

Operon Technologies, Cologne, Germany 

MembraneSlide NF 1.0 PEN  Carl Zeiss, Munich, Germany 

QMT epoxysilane coated slides Quantifoil Micro Tools, Jena, Germany 

Micro Bio-Spin chromatography columns (P6) Bio-Rad, Munich, USA 

Microcon YM-30 spin-columns Millipore, Schwalbach, Germany 

Phase Lock Gel Heavy 5 PRIME, Hamburg , Germany 

RNase-free microfuge tubes Ambion, Austin, USA  

SuperFrost Plus microscope slides Menzel-Glaser, Braunschweig, Germany 

  

2.1.6 Instruments   

2100 Bioanalyzer  Agilent, Foster City, USA 

7900HT Fast Real-Time PCR System  Applied Biosystem, Foster City, USA 

Biofuge Fresco Heraeus Instruments, Osterode, Germany 

Cryostat CM1850  Leica Microsystems, Wetzlar, Germany 

SureHyb chambers Agilent, Foster City, USA 

Manual Rotary Microtome RM2235  Leica Microsystems, Wetzlar, Germany 

Microarray Scanner G2565BA Agilent, Santa Clara, USA 

Multifuge 3S  Heraeus Instruments, Osterode, Germany 

MultiGourmet steamer Braun, Kronberg, Germany  

Nanodrop ND -1000 spectrometer  Thermo Fisher Scientific,Wilmington, USA 

OmniGrid Microarrayer  Gene Machines, San Carlos, USA 

P.A.L.M. MicroBeam  Zeiss Instruments, Munich, Germany 

Precision hotplates with separate controller Harry Gestigkeit, Dusseldorf, Germany 

Stratalinker Model 2400 UV illuminator  Stratagene, La Jolla, USA 

Thermomixer R Thermal Block  Eppendorf, Hamburg, Germany 

Vortexer for Agilent Bioanalyzer  IKA Werke GmbH, Staufen, Germany 

Wasserbad Julabo Shake Temp SW 22  Julabo Labortechnik, Seelbach, Germany 
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2.1.7 Software   

ChipYard DKFZ, Heidelberg Germany 

GenePix Pro 6.1 Molecular Devices, Union City, USA 

Ingenuity Pathway Analysis Ingenuity System, Redwood City, USA 

PALM Robo V4. Zeiss Instruments, Munich, Germany 

SDS 2.2.2 ABI, Foster City, USA 

R 2.9.2 R Foundation, Viana, Austria  

 

2.1.8 Solutions 
 

2.1.8.1 Standard Solutions 

Name  Compositions 

SSC (20x) 3M NaCl,                                                      

0.3 M Sodium citrate,                                             

pH 7.0 

PBS (10x) 137 mM NaCl                                               

27 mM KCl                                                 

100 mM NaH2PO4  

17 mM KH2PO4                 

TBS-T 20 mM Tris-Base                                         

137 mM NaCl                                                         

3.8 ml 1M HCl                                            

0.1% (v/v) Tween-20  

SDS (10%) 10% SDS (w/v)                                     

dissolve in ddH20 

Tris (1M) 1M Tris base  

1000ml ddH20  

pH 7.5 

TE Buffer 10 mM Tris-Cl,                                                         

1 mM EDTA,                                                        

pH 7.5  
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2.1.8.2 Microarray Solutions 

 
Name Compositions 

Blocking Mix (1X)                                                

(for blocking of unspecific hybridization ) 

Cot-1 DNA (1µg/µl)                     12.5 µl 

PolyA RNA (5µg/µ                         2.5 µl 

tRNA (10µg/µl)                           3.75 µl 

Slide blocking buffer Ethanolamine                               1.5 ml 

10% SDS                                      5.0 ml 

1M Tris (pH 9.0)                        50.0 ml 

H2O                                           448.5 ml     

FBNC spotting buffer Formamide                                2.50 ml                

20 g/l nitrocellulose in DMSO  0.25 ml           

2.5 M betaine hydrochloride    2.00 ml 

dd H2O                                        5.25 ml 

Chip hybridization buffer Formamide                                25.0 ml                

SSC (20X)                                   10.0 ml           

SDS (10%)                                  10.0 ml     

H2O                                               5.0 ml 

Medium stringency washing buffer SSC (20X)                                   25.0 ml           

SDS (10%)                                  10.0 ml 

dd H2O                                     965.0 ml 

High Stringency Washing Buffer SSC (20X)                                     2.5 ml           

SDS (10%)                                  10.0 ml 

dd H2O                                     987.5 ml 

Post-wash buffer SSC (20X)                                     2.5 ml           

dd H2O                                     997.5 ml 

Post-wash buffer/Tween SSC (20X)                                     2.5 ml           

Tween-20                                     0.5 ml 

dd H2O                                     997.0 ml 
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2.1.8.3 Histology solutions for microRNA FISH and immunohistochemistry 

 
Name Compositions 

Hybridization buffer                            Formamide                                 2.50 ml                 

SSC (20X)                                   1.25 ml            

Denhards (50X)                         0.10 ml                                           

Yeast tRNA(20 mg/ml)              0.05 ml 

Signal strand salmon                0.25 ml 

sperm DNA (10 mg/ml)                                                  

dd H2O                                        1.10 ml 

Pre-hybridization buffer                            Formamide                                 25.0 ml                

SSC (20X)                                     2.5 ml           

dd H2O                                        22.5 ml 

Acetylation buffer                               Acetic anhydride                      0.450 ml                

HCl (12N)                                 0.375 ml           

dd H2O                                     72.00 ml 

Wash solution-1                                       SSC (20X)                                   7.00 ml           

Tween-20                                   0.07 ml  

dd H2O                                     62.93 ml 

Blocking buffer B1                                        1M Tris                                        100 ml 

NaCl                                              8.77 g 

dd H2O                                         900 ml  

Blocking buffer B1 plus                                       1M Tris                                        100 ml 

NaCl                                              8.77 g 

dd H2O                                         900 ml 

10% Goat Serum                       1.00 ml 

Tween-20                                 0.005 ml 

Citrate buffer (10X)                                                         Tri-sodium citrate                         29.4 g                           

dd H2O                                      1000 ml  

pH 7.5    
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2.1.9 Tumor Material and Patient Characteristics 

18 human squamous cell lung carcinomas and normal lung tissues were laser 

capture microdissected and analyzed by gene expression oligonucleotide 

microarray and microRNA TaqMan Low Density Array analysis. Clinical data of the 

patients was obtained from the National Center for Tumor Diseases (NCT) in 

Heidelberg, Germany. The average age of the patients was 66 (range from 41 to 

83) and the male/female ratio was 5:4. The use of the samples was approved by 

the local ethics committees and the diagnoses were evaluated by a pathologist. 

Clinical information for the tumors is listed in Table 5 and Table 6.   

 

Table 5. Clinical stage of primary tumors in 18 squamous cell lung carcinoma 

patients. 

Gender 

              Male 

              Female 

 

10  

8 

Average age (range) 66 (41-83) 

Clinical stage 

                        IA 

                        IB 

                        IIB 

                        IIIA 

                        IIIB 

 

1  

8  

3  

3  

3  

 

18 squamous cell lung carcinomas collected for further analysis. Tumors were 

obtained from 8 female and 10 female with average age of 66. Clinical staging is 

based on AJCC Cancer Staging Manual (Greene et al., 2002) 
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Table 6.    Clinical data of each squamous cell lung carcinoma patient. 

Patient No. TNM AGE Gender Note 

1. 1317 pT2N2M0G2R0 58 M Chemotherapy  

2. 2490 pT2N1M0G3R0 72 F   

3. 1316 pT2N0M0G2R0 70 M   

4. 1219 pT2N0M0G3R0 60 F   

5. 1219 pT2N0M0G3R0 60 F   

6. 2496 pT2N0M0G2R0 74 M   

7. 2505 pT3N1M0G2R0 41 M   

8. 1299 pT4N0M0G3R0 64 M Metastasis  

9. 2269 pT4N0M0G3R2 78 F   

10. 1209 pT3N0M0G2R0 48 F   

11. 2275 pT4N1M0G3R1 56 M   

12. 1331 pT2N0M0G3R0 83 F   

13. 1404 pT2N0MxG3 74 M   

14. 1297 pT1N0M0G2R0 69 F Metastasis  

15. 2502 pT3N1M0G3R1 64 M   

16. 2690 pT2N0MxG3R0 70 M   

17. 1417 pT2N0MxG3R0 77 F   

18. 1418 pT2NxMxG3N0 71 M   
 

The table shows the patients information with patient number, TNM stage, age 

and gender. The TNM stage is based on AJCC Cancer Staging Manual (Frederick 

et al., 2002). Primary Tumor (T): TX, Primary tumor cannot be evaluated; T0, No 

evidence of primary tumor; Tis, carcinoma in situ (early cancer that has not 

spread to neighboring tissue); T1, T2, T3, T4, Size and/or extent of the primary 

tumor. Regional lymph nodes (N): NX, Regional lymph nodes cannot be evaluated; 

N0, No regional lymph node involvement (no cancer found in the lymph nodes); 

N1, N2, N3, Involvement of regional lymph nodes (number and/or extent of 

spread). Distant metastasis (M): MX, Distant metastasis cannot be evaluated; M0, 

No distant metastasis (cancer has not spread to other parts of the body); M1, 

Distant metastasis (cancer has spread to distant parts of the body). Tumor grade:   

GX, Grade cannot be assessed (Undetermined grade); G1, Well-differentiated 

(Low grade); G2, Moderately differentiated (Intermediate grade); G3, Poorly 

differentiated (High grade); G4, Undifferentiated (High grade). (Greene et al., 

2002) 

 

 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=carcinoma%20in%20situ&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=regional%20lymph%20node&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=undifferentiated&version=Patient&language=English
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2.2 Methods 

2.2.1 Tissues and Serial Slides Preparation   

Primary squamous cell lung carcinoma samples were obtained from the Thorax 

Clinic, affiliated with the University of Heidelberg, Germany. Tissue samples were 

immediately cryopreserved in a -80°C freezer post-operative. Paraffin-embedded 

squamous cell lung carcinoma tissues were obtained from the tumor bank of The 

National Center for Tumor Diseases (NCT) in Heidelberg. All of the 4 µm paraffin 

tissue sections of squamous cell lung carcinoma for immunohistochemistry and 

microRNA FISH were prepared by the tumor bank of the National Center for Tumor 

Diseases (NCT) in Heidelberg. All tissues tissue sections were analyzed 

histologically and characterized by a pathologist.  

Cryopreserved tissues were imbedded into Jung Tissue Freezing Medium using a 

dry-ice/ethanol bath. Embedded frozen tissue blocks were fixed on the tissue 

holder and trimmed in order to gain access to the tumor tissue. For test 

experiments, the tumor tissues were sliced at 15µm using a cryotome. For the 

actual analysis, tumor tissues were perpendicularly punched three times using a 

needle, 0.5mm in diameter, beginning at the trimmed surface. Thereafter, these 

holes were used as physical reference markers for the orientation and re-

identification of tumor cells in each individual cryosection. Next, serial sections 

were cut (Section1: 35µm; Section2: 8µm, Section3: 35µm; Section4: 35µm; 

Section5: 8µm, Section6: 35µm). The 8 µm slides were used for hematoxylin and 

eosin staining; the 35 um slides were used to prepare total RNA for microarray 

and Taqman expression analysis. All of the 35µm sections were treated with ice 

cold 100% ethanol for 3 minutes, dried for 2 minutes, then tightly sealed and 

stored in a 50ml Falcon tube at -80°C. Normal lung tissues were cryoperserved in 
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a similar manner but without hole punching. For test experiments, consecutive 15 

µm lung tumor sections were prepared in the same way as normal lung tissues 

cryosectionsections. All the sections used for laser capture microdissection were 

attached on Membrane Slides (NF1.0, PEN), all the reference sections were 

attached on normal glass slides.  The procedure for serial cryosectioning is shown 

in Figure 5. 

. 

 

Figure 5. Scheme of serials cryosections. A. Fresh frozen tissue was punched with 

three holes and serials sections made. B. Sections marked with red color were 

saved for H&E staining as reference sections. C. Sections marked with black color 

were treated with 100% ethanol for 3 minutes, then air-dried and stored until use 

at -80°C.    

Normal hematoxylin and eosin staining was performed as described below. The 

reference tissue sections were first incubated in xylene for 5 minutes, thereafter 

twice in 100 % ethanol and once in 70% ethanol, both for 1 minute, followed by  a 

tap water rinse for 5 minutes. Thereafter, the tissue sections were stained with 

hematoxylin for 4 minutes, washed in tap water for 15 minutes, and then 

counterstained with eosin solution for 1 minute, followed by a 5 minute tap water 

35µm section 
8 µm 

section 

For H&E 

staining 

 

Dehydration by ice 

cold 100% ethanol 

treatment 
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washing. In order to dehydrate the sections, the slides were quickly passed 

through 70% and 100% ethanol and then incubated in 100% ethanol for 2 

minutes. Finally, the tissue sections were incubated in xylene for 2 minutes and 

mounted with cover slips.     

In the past, RNA preserved staining protocols have been developed and applied to 

target cell populations in laser microdissection, but certainly, any staining step 

might decrease RNA quality. To compare the RNA qualities of microdissected 

samples from unstained cryosections and RNA preserved hematoxylin and eosin 

stained cryosections, the two types of slides were prepared for later laser capture 

microdissection. RNA preserved hematoxylin and eosin staining was performed as 

following: 15 µm cryosections were cut on the Membrane Slide (NF 1.0 PEN) and 

then dried for 3 minutes in the cryostat. The slides were then directly transfered 

to 70% ethanol for 1 minute, hematoxylin for 3 minutes, 70% ethanol three times 

for 1 minute, eosin staining for 1 minute, then 70%, 90%, and 100% ethanol, 

each for 1 minute. The previous staining was carried out in an ice bath. After 

100% ethanol incubation, the stained slides were air-dried for 3 minutes and 

placed in a 50 ml Falcon tube by -80°C for future microdissection. The unstained 

cryosections from the same tumor tissue were cut at 15 µm onto the 

MembraneSlide (NF 1.0 PEN) and then dried for 3 minutes in the cryostat. The 

slides were directly put in ice cold 100% ethanol for 3 minutes and then air-dried 

for 3 minutes at room temperature. The slides were then stored in a 50 ml Falcon 

tube by -80°C until capture microdissection.   
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2.2.2 Laser capture microdissection 

2.2.2.1 Laser capture microdissection for stained and unstained test 

cryosections 

The Falcon tubes containing the frozen 15µm slides were shortly brought to room 

temperature just before laser capture micro-dissection. On the PALM Robo V4 

laser microdissection program, the cutting energy value was set at 80, speed 

value was set as 60 and the same regions (about 250,000 µm²) from unstained 

cryosetions and RNA preserved hematoxylin and eosin stained cryosections were 

microdissected and catapulted into different AdhesiveCap 500 opaque tubes by 

the P.A.L.M. MicroBeam instrument. 30 µl of QIAzol lysis reagent was added to the 

small pieces of captured tissue and samples were preserved at -80°C.  

2.2.2.2 Consecutive test of microdissection 

The T7-based RNA-amplified  oligonucleotide microarray platform was previously 

established in our laboratory (Schlingemann et al., 2005), but testing was still 

needed to see whether this platform was suitable, and reproducible, in 

combination with laser capture microdissection technology.  Therefore, the 

analysis of 15 µm serial sections of normal tissue was initially performed in order 

to test the reproducibility and reliability of our laser capture mirodissection and 

oligonucleotide microarray system.  The laser capture microdissection procedure 

was perform as previously described, but, in this experiment, the same regions of 

600X800 µm were microdissected on each of the serials test slides, captured and  

the consecutive cryosections were given the designations A-F. The dissected 

tissue from slides A, B, C … (Figure 6) were captured and frozen in a AdhesiveCap 

500 opaque tube with QIAzol Lysis Reagent and evaluated by oligonucleotide 

microarray analysis to determine the reproducibility of the technique. 
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Figure 6. Scheme of consecutive microdissection for testing of reproducibility. 

Consecutive preserved RNA  sections, A, B, C  were microdissected from the same 

regions and harvested for oligonucleotide microarray analysis.   

2.2.2.3 Punch aided serial laser capture microdissection  

For normal lung, the unstained lung tissue cryosections were randomly cut 

without punch aided LCM. For dissection of tumor tissue containing adjacent lung 

tissue, punch aided LCM was carried out as follow: Every second H&E stained 

reference slide was first placed on the mechanical stage of the microscope and a 

complete image of the slide was scanned. The tumor and adjacent tissue 

morphology could easily be assessed on the microscope by H&E staining. Then 

the three reference points were marked in the middle of the punched circles. 

Next, three dissection areas, the tumor center (the tumor cell population 1000 

µm away from the leading edge of the tumor tissue, toward the middle of the 

tumor), tumor invasion front (tumor cells located within 500 µm of the leading 

edge of the tumor tissue, on the tumor tissue side) and adjacent lung tissue (cells 

located over 500 µm away from the leading edge of the tumor away from the 

...... 

and so on 
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tumor tissue side) were marked by different cutting elements by the 

microdissection software.  All of the cutting elements and reference points were 

set to be in one group on the PALM Robo V4 software. Thereafter, the consecutive 

35 µm cryosections were shortly incubated at room temperature and then placed 

on the mechanical stage of the microscope. Using the PALM Robo V4 program, 

the three reference points were marked as the reference slides and set as a 

group on the 35 µm cryosections. Finally, by matching the elements from the 

reference slides with the guide from the three reference points, the cutting 

elements were oriented on the unstained slides and the tissue areas were 

captured by Laser Microdissection and Pressure Catapulting (LMPC). The 

catapulted unstained areas were transferred to AdhesiveCap 500 opaque tubes. 

The cutting energy value was set as 90; the cutting speed was set as 65.  A 

summary of the procedure is shown in Figure 7.  



Materials and Methods 

 

42 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Scheme of punch aided laser microdissection. A. Each reference section 

was stained as a reference section; the tumor region and the adjacent lung tissue 

region are visible. The red regions show the tumor cell populations.. B. Marking of 

the cutting elements on the PALM Robo V4 software. C. Unstained targets of the 

first and the third sections. Only the reference points are visible. D. In the target 

sections, the three reference points are matched to the reference sections, and 

then the target cell populations are excised. R: Reference points; 1, 3: the first 

and the third target sections; 2: the second section is a reference section. 

 

2.2.3 RNA Extraction from LCM Samples 

In order to obtain small amounts of total RNA from microdissected tissue, which 

also contained small sized RNAs (i.e. microRNAs), the Qiagen miRNeasy Kit 

protocol was modified by replacing RNeasy Mini columns with RNeasy MinElute 

columns. For RNA purification, the frozen tissues contained in a small amount of 

QIAzol lysis buffer were collected into different Eppendorf tubes, each tube 

representing different of cell populations. Extra QIAzol lysis reagent was then 

added to a total volume of 350 µl. The lysed cell suspensions were vortexed for 1 
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minute and then placed onto a 42°C heating block for 20 minutes. Thereafter, 70 

μl of chloroform was added to the tubes and the tubes were shaken for 15 

seconds. Then the tubes containing the homogenate were left at room 

temperature for 2–3 min, followed by centrifugation for 15 min by 12,000 g at 

4°C. The upper aqueous phase was transferred to a new collection tube. 260 μl 

of 100% ethanol was then added and mixed, and the mixtures were transferred to 

RNeasy MinElute spin columns and centrifuged for 15 seconds at 1300 rpm. 

Column washing was performed by first adding 350 µl buffer RWT to the column, 

followed by centrifugation at 1300 rpm for 15 sec. Thereafter, an on-column 

DNase digest (27 units/column) was performed for 15 minutes at room 

temperature, followed by a second wash with 350µl Buffer RWT (full speed for 15 

seconds) and two final washes with 500 μl buffer RPE (first by 13,000 rpm for 15 

seconds, second for 2 min). The column was dried by centrifugation at 13,000 

rpm for one minute without any liquid additions. The RNeasy MinElute spin 

columns were then placed in a new 1.5 ml collection tube, and the RNA eluted  

with 14 μl RNase-free water. 

2.2.4 Total RNA and small RNA Quality Control 

High RNA quality is a key factor for gene expression profiling experiments, so RNA 

quality was analyzed using an Agilent Bioanalyzer. The Agilent Bioanalyzer is a 

chip based capillary electrophoresis apparatus that allows the separation of small 

amounts of total RNA (200-5000 pg) and identification of the ribosomal RNA by 

fluorescence staining. The Agilent 2100 BioAnalyzer with RNA 6000 Pico LabChip 

Kit and small RNA Kit were used according to the manufacturers‘ protocol.  
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2.2.5 T7-based Amplification of cDNA and Klenow Labeling (TAcKLE) 

Due to the low amount of total RNA from the LCM samples, the TAcKLE protocol 

was used to amplify sufficient amounts of RNA. TAcKLE utilizes mRNA 

amplification by in vitro transcription of cDNA, and fluorescent labeling by Klenow 

fragment. Initial mRNA is copied using a RNase H− Moloney murine leukaemia 

virus reverse transcriptase, using a modified oligo(dT)-primer which incorporates 

the promoter sequence of phage T7 RNA polymerase. RNase H treatment of the 

resulting heteroduplex creates RNA fragments that prime second-strand synthesis 

by E.coli DNA polymerase I. Repeated transcription from the T7 promoter on the 

cDNA template results in multiple copies of aRNA. Finally, aRNA is reverse 

transcribed into sense cDNA and used as template for Klenow fluorescence 

labelling, yielding mainly fluorescent antisense cDNA as a suitable target for 

oligonucleotide libraries oriented, in sense  (Schlingemann et al., 2005). 
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Figure 8. Schematic overview of the TAcKLE protocol. In the TAcKLE protocol, 

mRNA is linearly amplified by in vitro transcription (‗T7 amplification‘). The 

resulting aRNA is subsequently converted to cDNA and labelled by dye-dUTP 

incorporation using Klenow fragment. 

 

2.2.5.1 First round amplification 

For each first round amplification experiment, 25 ng of total RNA (both sample 

RNA and Universal Human Reference RNA) was loaded to initiate the first reverse 

transcription experiment. 

2.2.5.1.1 Reverse transcription 

 5µl (25ng) total RNA (both samples and references RNA) and 1µl (dt)-T7 primer 

(100ng/µl) mix were denatured at 70°C on a heating block and then chilled on 

ice. Thereafter, the reverse transcription master mix containing 2 µl M-MuLV RT 

buffer, 0.5 µl 10mM dNTP, 0.5µl 5 mg/ml T4gp32, 0.5 µl RNAzin and 0.5 µl 

RevertAid reverse transcriptase were added. The total reaction mixture was 
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incubated at 50°C for 1 hour, followed by incubation at 65°C for 15 minutes and 

then at 4°C. 

2.2.5.1.2 Second strand synthesis  

The second strand synthesis master mix was pipetted and mixed on ice as follows: 

15 µl 2nd strand buffer (5X), 10 mM dNTP for 1.5 µl, 2.22 µl DNA polymerase I (9 

U/µl), 0.1 µl RNase H (10 U/µl), 0.5 µl DNA ligase (10 U/µl) and 45.68 µl RNase-

free water. The total volume of this single master mix was 65 µl. The reverse 

transcription solution from the previous procedure was mixed with the second 

strand synthesis master mix, and then incubated at 15°C for 2 hours. Thereafter, 

3.33 µl T4 DNA polymerase (3U/µl) was added to the solution and incubated for 

15 minutes at 15°C, then heat inactivated at 70°C for 10 minutes. To wash salts 

and organic compounds out of the resulting double strand cDNA, the resulting 

mixture was extracted with 75 µl phenol-chloroform-isoamylalcohol (25:24:1), 

then centrifuged 5 minutes by 13,000 rpm at room temperature in a PLG heavy 

tube. In order to elute the purified cDNA, the upper phase in the PLG heavy tube 

was added to a prespun P-6 MicroSpin column and centrifuged for 4 minutes at 

3500 rpm using a microfuge at room temperature. 

2.2.5.1.3 In vitro transcription  

Initially, the eluted cDNA solution was precipitated at -80°C for 1 hour in 220 µl 

ethanol with 3.5 µl NaCl (5M) and 1 µl Linear polyacrylamide (5µg/µl). The 

solution was then centrifuged at 13,000 rpm for half an hour at room 

temperature, the supernatant removed, the pellet washed with 500 µl of 70% 

ethanol, then centrifuged for 5 minutes at 13,000 rpm and the previous washing 

step repeated. Thereafter, the supernatant was completely removed, the pellet 
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was air-dried for 3 minutes at room temperature and then taken up in 10 µl 

RNase free water. The in vitro transcription experiment was performed using the 

RiboMAX Large Scale RNA Production System kit. The in vitro transcription master 

mix was prepared at room temperature as follows: 3 µl of each ATP, CTP, GTP, 

UTP; 8 µl of RNase free water; 8 µl of T7 transcription buffer (5X); and 4 µl of T7 

Enzyme Mix. 10 µl of the second strand solution was added to the in vitro 

transcription master mix, and mixed well by gentle vortexing at room temperature. 

The mixed reaction solution was incubated for 10 hours at 37°C.        

2.2.5.1.4 aRNA cleanup  

The aRNA cleanup experiment was carried out using a Qiagen RNeasy Mini Kit. 

40µl of the in vitro transcription product was added to 430 µl buffer composed of 

350 µl RLT buffer, 76.5 µl RNase free water and 3.5 µl ß-mercapto-ethanol and 

mixed well. 250 µl of 100% ethanol was added to the previous solution and then 

applied to a RNeasy Mini column and micro-centrifuged at 9900 rpm for 15 

seconds. The flow-through was discarded. The column was washed with 500 µl 

RPE buffer at 9900 rpm for 15 seconds, centrifuged at 13,000 rpm for two 

minutes at room temperature.  This washing was repeated twice. The washed 

column was transferred to a new 2 ml collection tube and centrifuged at 13,000 

rpm for 1 minute in order to remove residual buffer. The 2 ml collection tube was 

then discarded, the dried column was transfer to a new 1.5 ml collection tube and 

the total RNA was eluted with 30 µl RNase free water by centrifugation at 9900 

rpm for 1 minute and repeated once. The eluted total RNA was precipitated at -

80°C for 1 hour in 150 µl ice cold ethanol with 30 µl ammonium acetate solution 

(7.5 M)  and 1 µl Linear polyacrylamide ( 5µg/µl). Thereafter, the tube was 

centrifuged at 13,000 rpm for half an hour at 4° C, the supernatant removed, 
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and the pellet washed with 500 µl ice cold 70% ethanol. The sample was 

centrifuged again for 5 minutes at 13,000 rpm/ 4°C and the previous washing 

step was repeated. Thereafter, the pellet was air-dried for 3 minutes at room 

temperature and then dissolved in 6 µl RNase free water. The concentration of 

total RNA was measured by a Nanodrop ND -1000 spectrometer. 

2.2.5.2 Second round amplification 

To initiate the second round of amplification, 300 ng aRNA (both sample and 

reference RNA) derived from the first in vitro transcription was applied for a 

second round of reverse transcription. The second round of amplification was 

carried out in a very similar way as the first round, except for small differences in 

reverse transcription and second strand synthesis. In the reverse transcription 

step, the 300 ng aRNA was denatured together with a N6 random primer instead 

of a T7-primer. The incubation procedure for the second round reverse 

transcription was performed sequentially using the following conditions: 37°C for 

20 minutes, 42°C for 20 minutes, 50°C for 10 minutes, 55°C for 10 minutes, 

65°C for 15 minutes, hold at 37°C for 5 minutes, add 1 unit RNase H, 37°C for 

30 minutes, 95°C for 2 minutes, and finally cooled at 4° C. For the second round 

second strand synthesis, the 64 µl master mix which contains: 15 µl of 2nd 

strand buffer (5X), 1.5 µl of 10 mM dNTP, 2.22 µl of DNA Pol. I (9 U/µl), 0.1 µl of 

RNase H (10 U/µl) and 45.18 µl of RNase free water, was pipetted and mixed 

well. An important step in this second strand synthesis is that the cDNA products 

have to be denatured at 42 °C for 10 minutes and then chilled on ice with 100 ng 

oligo(dT)-T7 Primer, which was not present in the second strand synthesis step of 

the first round of amplification. The procedures for the second round amplification 

are the same as the first round.   
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2.2.5.3 cDNA Klenow labeling  

After two rounds of amplification, 2µg of the amplified aRNA (both sample and 

reference RNA) were added for a third round of reverse transcription. The single 

strand cDNA product of the reverse transcription was then fragmented and 

labeled using the Klenow labeling system. The third round of the reverse 

transcription protocol was exactly the same as the second round reverse 

transcription. The 10µl cDNA from the third round reverse transcription was 

cleaned up and then added to the following mix: 40 µl of random primer solution 

(2.5X), 10 µl of dNTP (for Klenow labeling), 3 µl of Cy3/Cy5 labeled dUTP, 34 µl dd 

H2O. The solution was mixed, 3 µl of Klenow fragment was added and the solution 

was mixed again. The total solution (100 ul) was incubated at 37°C for 16 hours. 

2.2.6 Labeled sample clean up and labeling efficiency control 

The 100μl of the sample was mixed with 350μl TE buffer and transfered to 

Microcon YM-30 Spin-columns. The Microcon columns were then centrifuged for 

12 minutes by 13000 rpm at room temperature. The Microcon columns were 

washed with 450μl TE buffer, then centrifuged for 11 minutes at 13000 rpm at 

room temperature. 432μl TE buffer was added,, mixed well, and an aliquot was 

taken to measure the labeling efficiency using a Nanodrop spectrometer. 37.5 µl 

blocking mix was added into the Microcon columns and centrifuged for 15 

minutes at13000 rpm in room temperature. The Microcon columns were placed 

upside down on a new collection tube, and centrifuged for 5 minutes in 6000 rpm 

at room temperature to harvest the labeled samples. 
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2.2.7 Preparation and post-processing of microarrays  

Synthetic 70mer oligonucleotides (‗Human Genome Oligo Set Version 2.1; 

consisting of 21,329 oligonucleotides representing human genes and transcripts 

plus 24 controls, as well as ‗Human Genome Oligo Set Version 2.1 Upgrade‘, 

consisting of 5462 human 70mer probes) were dissolved in FBNC spotting buffer 

at 40 µM, using a MiniTrak robotic liquid handling system. DNA spotting was 

performed in duplicate on QMT epoxysilane coated slides using an OmniGrid 

Microarrayer equipped with Stealth SMP3 Micro spotting pins. Spot centers were 

129 µm apart. DNA adhesion to the glass surface was accomplished by 1 h 

incubation at 60°C, followed by ultraviolet (UV) irradiation (2 x 120 mJ/cm2 at 

254 nm) in a Stratalinker Model 2400 UV illuminator. Just prior to hybridization, 

the slides were washed for 2 min in 0.2% SDS (w/v), 2 min in ddH2O at room 

temperature and 2 min in hot ddH2O (95°C), followed by 3 min centrifugation at 

2000 rpm. 

2.2.8 Chip hybridization  

2.2.8.1 Sample preparation 

For the test experiments, the eluted samples were color switched with each other 

(cy3/cy5) and taken up in 520μl hybridization buffer (see Figure 9).  For the 

actual experiments, the eluted samples were color switched with references in 

cy3/cy5 and combined together in 520μl hybridization buffer (see Figure 10). All 

the mixed solutions were incubated first for 30 minutes at 60°C and then for 10 

minutes at 70°C in a thermo shaker at 750 rpm. 
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Figure 9. Color switch between samples with Cy-3/Cy-5 for test experiment.During 

the color switch the A labeled Cy3 was mixed with B labeled Cy5, and vise versa. A, 

B and C are laser microdissected samples from the same regions of consecutive 

sections (see Figure 6 in section 2.2.2.2). 

 

 
 

Figure 10 Color switch of sample against reference with Cy-3/Cy-5. During the 

color switch the sample labeled with Cy3 was mixed with reference labeled with 

Cy5, and vise versa. All the micro-dissected samples for actual experiments were 

color switched with references from the same Human Universal Reference RNA. 

 

2.2.8.2 Chip denaturing 

Slide blocking mix was prewarmed at 50°C in a water bath. Well printed chips 

were selected and incubated for 20 minutes in blocking mix at 50°C in a water 

bath. Thereafter, the chips were incubated for 2 minutes in double distilled water 

at room temperature with gentle agitation. Each chip was dipped for 10 seconds 

in hot water (~95°C) and pulled out slowly. The dry chips were stored in boxes. 
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2.2.8.3 Sample loading 

The hybridization oven, SureHyb-chambers and gasket slides were prewarmed to 

40°C, and then the sample/hybridization buffer mix was loaded within the gasket 

ring. The chips were placed onto the loaded gasket slide with the array surface 

touching the sample/buffer mix. The top of the SureHyb-chambers were put into 

place, the  chambers  locked and hybridized for 23 hours at 42°C. 

2.2.8.4 Chip washing 

Three washing buffers, medium stringency buffer, high stringency buffer and post wash 

buffer, were prewarmed in Hauser-cuvettes at 35°C and and mildly shaken (45 rpm) in a 

water bath. After 23 hours of hybridization, the gasket slide/chip-sandwiches were 

disassembled and put in medium stringency buffer at room temperature. The gasket 

slides were removed from the chip and put in medium stringency buffer in prewarmed 

Hauser-cuvettes. The released chips were washed for 4 minutes in medium stringency 

buffer, 4 minutes in high stringency buffer, 2 minutes in post wash buffer at 35°C and 45 

rpm in a shaking water bath.  Thereafter, the chips were incubated for 30 seconds in post 

wash plus Tween buffer at room temperature.  The chips were then centrifuged 6 

minutes at 2000 rpm with the barcode upside down in a Falcon tube. Finally, the dried 

chips were stored in a box protected from light until scanning.  

2.2.9 Chip scanning and data processing 

An Agilent Microarray Scanner (Agilent Technologies) was used to document the 

fluorescent signals of DNA samples hybridized to the gene-specific sequences 

printed on the array. Scanning resolution was 5µm; Red and Green PMT is 100%.  

The scanned raw data consisted of pixel intensity values, which have to be 

correlated to the individual spots of oligonucleotide DNA found on the array. 
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Therefore, based on the list of the DNA sequences on the slide, a formatted data 

set was assembled as a grid file. The grid file was then loaded on the software 

GenePix Pro 5.0 to match each scanned spot on the array. In the GenePix Pro 5.0 

software, the fluorescent intensity was calculated for each spot, and pixels from 

the surrounding area were measured as background values. Spots with 

fluorescent intensity closer to, or lower than, the background could not be taken 

into account, but were automatically marked by the software. The full dataset was 

then exported and saved as a ―GPR‖ file, which was analyzed using the limma 

package (Smyth, 2004) of the statistical software package R (www.r-project.org). 

After the image analysis, low quality spots were filtered and the background 

intensity corrected by normexp (Ritchie et al., 2007).  Quantized normalization 

was applied between arrays. Differential expression was assed by limma using a 

reference design and estimating effects for the different locations. Venn diagrams 

were used for identifying overlaps between the genes differently expressed 

between the different locations. 

Pathway analyses were generated through the Ingenuity Pathways Analysis 

software (www.ingenuity.com). Data sets between four locations, inner tumor, 

tumor invasion front, adjacent lung tissue, and normal lung were uploaded on the 

Ingenuity Pathways webpage. In the uploaded gene list, only the genes with fold 

change higher than 2 with adjusted P value lower than 0.05 were set as 

differentially expressed genes. The ―core analysis‖ was performed in the Ingenuity 

program, and the results were generated based on the Ingenuity Pathways 

Knowledge Base.  

 

file:///C:/Dokumente%20und%20Einstellungen/rogers/Lokale%20Einstellungen/Temporary%20Internet%20Files/OLK15/which
http://www.ingenuity.com/
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2.2.10 Immunohistochemistry 

The glass slide cuvette was preheated with citrate buffer in a steamer for 20 

minutes, at the same time, the 4 µm paraffin sections were immersed in following 

solutions step by step for deparaffinization: 2 times in Xylol for 5 minutes, 2 times 

in 100% ethanol for 2 minutes, 96% ethanol for 2 minutes, 70% ethanol for 2 

minutes and 1 minute in distilled water. After deparaffinization, the slides were 

put in the heated citrate buffer for 40 minutes in a steamer, and then the slides 

with the cuvette were cooled down to room temperature for ca. 15 minutes. The 

slides were washed in distilled-water for 1 minute and 2 times in TBS buffer for 5 

minutes. A circle was drawn surround each tissue section using a Dako pen. 

Three drops of hydrogen peroxide (3%) were then added to the surface of the 

tissue section and incubate for 10 minute at room temperature, and thereafter, 

the slides were washed two times in TBS solution for 5 minutes. The primary 

antibodies were diluted in antibody diluents as following: APLNR, 1: 500; GIMAP7, 

1:400; CCL19, 1:150; PTGES1,1:200; PTGER1, 1:500; PTGER2, 1:800; PTGFS, 

1:500; PTGFR, 1:700. The diluted antibodies were dropped onto the surface of 

the tissue sections and incubated overnight at 4°C. The primary antibody 

solutions were removed from the slides, and the slides were then washed in TBS 

solution twice for 5 minutes. The secondary antibody application and detection 

was performed using the Dako Real system. Briefly, the biotinylated secondary 

antibody was dropped onto the tissue section surface and incubated for 15 

minutes at room temperature. Thereafter, the biotinylated secondary antibody 

solutions (Dako REAL Detection Systems) were removed from the slides, and the 

slides were washed in TBS solution twice for 5 minutes. Thereafter, the 

streptavidin peroxidase solution (Dako REAL Detection Systems) was dropped 



Materials and Methods  

 

55  
 

onto the tissue section surface and incubated for 15 minutes at room 

temperature. Following this incubation, the streptavidin peroxidase solution was 

removed from slides and then slides were washed in TBS solution twice for 5 

minutes. Thereafter, the detection solution was added onto the surface of the 

tissue section and incubated ~ 5 minutes at room temperature. The slides were 

then placed into a cuvette with distilled water, immersed thereafter in 

1% hematoxylin for 5 minutes and rinsed with tap water for a further 10 minutes. 

The stained slides were then dehydrated and mounted by the following steps: 15 

seconds in 70% ethanol, 15 seconds in 96% ethanol, 1 minute in 100% ethanol, 

2 minute in 100% ethanol and twice for 5 minutes in xylol. The slides were then 

dried and covered using Eukitt mounting medium.    

2.2.11 microRNA TaqMan Low Density Array 

To study the microRNA expression in the four different areas of lung tumor tissue, 

the microRNA TaqMan Low Density Array (TLDA)-based on Applied Biosystems‘ 

7900HT Micro Fluidic Cards were used to detect and quantify mature microRNAs 

according to the manufacturer‘s instructions. 

The TLDA Human MicroRNA Panel v1.0 card contains assays for 365 different 

human microRNAs. In addition, two small nucleolar RNAs (snoRNAs), RNU44 

(SNORD44) and RNU48 (SNORD48), function as endogenous controls for 

expression data normalization. TLDA experiments were run in two steps: In the 

first step, multiplex reverse transcription, consisting of eight pre-defined reverse 

transcription primer pools containing up to 48 RT primers each, was performed 

using the TaqMan MicroRNA Reverse Transcription Kit. The master mix for each 

reaction of this reverse transcription was: 0.2 µl of dNTPs (100mM), 2 µl 

MultiScript Reverse Transcriptase, 1 µl RT Buffer (10X), 0.1 µl RNaser Inhibitor, 
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3.7 µl RNase free water. 12.5 ng of total RNA in 2 µl was added into the master 

mix and vortexed. 1 µl of the Mutiplex Reverse Transcription Human microRNA 

pools, from pool 1 to pool 8, were finally added to 8 reverse transcription mix.  

The reverse transcription reaction was incubated as follows: 16°C for 30 minutes, 

42°C for 30 minutes, 85°C for 5 minutes and then cooled to 4°C. In the second 

step, eight RT pools containing cDNA template were diluted 62.5 fold, mixed with 

the TaqMan Universal PCR Master Mix at a ratio of 1:1, and then injected into 

eight filling ports of the TLDA card. The card was centrifuged for 2 minute at 1200 

rpm in a Multifuge 3S to load the cDNA and master mix into the hundreds of small 

wells on the microfluidic card. The cards were then sealed and analyzed using the 

ABI Prism 7900 HT Sequence Detection System. The thermal cycling conditions 

were 2 min at 50 °C and 10 min at 95 °C, followed by 45 cycles of 30 s at 97 °C 

and 1 min at 59.7 °C. 

2.2.12 microRNA TaqMan Low Density Array Data Processing 

The microRNA data was normalized according to Vandesompele‘s method 

(Vandesompele et al., 2002) after calculating the median expression from 

duplicates. The ct-values were converted to relative expression values. Differently 

expressed microRNAs were identified by SAM (Significance Analysis of 

Microarrays) (Tusher et al., 2001). All calculations were conducted in R using the 

libraries siggenes (Schwender et al., 2006) and SLqPCR. The differentially 

expressed microRNA list was uploaded to the website of miRWalk (www.ma.uni-

heidelberg.de/apps/zmf/mirwalk) and then the data package, which contained 

differentially expressed microRNAs and their validated target genes was 

generated. The expressions of microRNAs and their predicted targets were 

compared over all paired measurements by calculating the Pearson correlation 
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coefficient using the statistical software R (www.r-project.org). All correlations with 

a correlation coefficient below -0.6 and above 0.6 were further inspected using 

the R program.  

2.2.13 MicroRNA fluorescence in situ hybridization  

The slides were deparaffinized by the following steps: Rotihistol twice for 40 

minutes, 100% ethanol twice for 5 minutes, 75%, 50%, 25% ethanol, each for 5 

minutes, double distilled water twice for 5 minutes, 0.2 N hydrochloride for 5 

minutes, PBS solution twice for 5 minutes. Next, the slides were deproteinized 

using the following method: protein kinase K (10 μg/ml) for 2.5 minutes, 0.2% 

glycine twice for 1 minute, PBS twice for 1 minute. The slides were then 

processed through postfixation steps using: 10% formaldehyde for 10 minutes 

and PBS twice for 5 minutes, followed by acetic anhydride for 10 minutes and 

washing 5 times for 4 minutes in PBS. The slides were then dehydrated in 70% 

ethanol, 90% ethanol and 100% ethanol, each for 5 minutes and air-dried for 5 

minutes. 750 µl of hybridization buffer (see Section 3.8.3) was added to the slide 

and pre-hybridized in a humidified, light protected chamber in a 53°C oven for 3 

hours. During this time, 1.6 µl of the LNA probe were mixed with 160 µl 

hybridization buffer, denatured at 80°C for 5 minutes and then chilled on ice.  

After 3 hours of pre-hybridization, the pre-hybridization buffer was removed from 

the slide and the denatured probe was spread onto the slides. The slides were 

then covered with a paraffin membrane and hybridized in a humidified light 

protected chamber in a 53°C oven over night (>16 hours). On the next day, the 

hybridization buffer was removed from the slides, and the slides were washed in 

washing solution 1 for 5 minutes at room temperature, 3 times in SSC buffer for 5 

https://dkfzowa0.dkfz-heidelberg.de/owa/redir.aspx?C=c6454bc8b62d43b6ac50deaf700273e4&URL=http%3a%2f%2fwww.r-project.org
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minutes at 65°C and then rinsed in 3 times in PBS buffer. The washed slides 

were then blocked in buffer B1 for 10 minutes followed by blocking buffer B1 Plus 

for 1 hour under mild shaking at room temperature. The blocked slides were 

hybridized with mouse-anti DIG antibody (1:200 dilutions) for 4 hours at room 

temperature and then washed three times with blocking buffer B1 for 3 minutes. 

Thereafter, the blocking buffer was removed and the slides were hybridized with 

Alexa 594 goat anti-mouse IgG (1:600 dilution) for 4 hours at room temperature. 

Thereafter, the slides were washed three times with blocking buffer B1 for 5 

minutes followed by PBS for 5 minutes. The slides were dipped twice in double 

distilled water and the excess water was removed. Finally, the slides were 

mounted using cover slides with soft mounting medium containing DAPI.   
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3 Results 

3.1 Laser capture microdissection 

3.1.1 High quality RNA is yielded from unstained cryosections after 

laser capture microdissection.  

Staining protocols designed to protect RNA for LCM and microarray analysis have 

been previously established to investigate gene expression profiling (Espina et al., 

2006). However, total RNA quality is still a bottleneck for transcriptional profile 

experiments, especially using laser microdissected frozen tissue samples from 

patients. It appears obvious that any extra step, such as staining, would facilitate 

RNA degradation. To compare different protocols of protecting the total RNA 

quality of laser capture microdissected tissues, we isolated small pieces of tissue 

from RNA preserved hematoxylin and eosin stained cryosections and 100% 

ethanol treated unstained cryosections by laser capture microdissection, and 

then tested the quality of total RNA resulting from these two different protocols by 

the Agilent Bioanalyzer. In the unstained group, the RNA integrity numbers (RIN) 

are around 8.5, whereas the RNA protected hematoxylin and eosin stained 

samples are ~1 lower than the unstained group. RNA integrity numbers are 

ranked from 0 to 10, with 0 being  the lowest integrity and 10 the highest. 

Therefore, the integrity of RNA from unstained 100% ethanol treated cryosections 

is higher than RNA protected hematoxylin and eosin staining (Figure 11 and 12). 
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Figure 11. Laser capture microdissection from RNA protected hematoxylin and 

eosin stained- and unstained section. A, B, C, RNA protected hematoxylin and 

eosin stained cryosection; D, E, F, 100% ethanol treated unstained cryosection. A 

and D, cryosections before laser capture microdissection; B and E, cryosections 

after laser capture microdissection; C and F, microdissected tissues were 

captured on the cap of tube. Bar=300 µm 

 

 

Figure 12. Total RNA from 100% ethanol treated unstained section have a higher 

integrity than hematoxylin and eosin stained sections. A. RNA integrity number 

(RIN) of one RNA sample from RNA protected hematoxylin and eosin stained 

sections (Agilent Bioanalyzer). RIN = 7.5; rRNA ratio[28S/18S] = 0.8; B. Agilent 

Bioanalyzer investigated RNA integrity number (RIN) of one RNA sample from 

100% ethanol treated unstained sections. RIN = 8.5; rRNA ratio [28S/18S] = 1.1; 

C. Statistical comparison of the RNA integrity from 100% ethanol 

treated unstained cryosections showed higher values than RNA protected 

hematoxylin and eosin stained sections. Average value of RIN number for stained 

group is 7.42,  whereas unstained group is 8.6, each group containing 5 cases of 

samples microdissected from the same 5 tumors.  
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3.1.2 Laser capture microdissection plus TAcKLE protocol and 

oligonucleotide microarray profiling are reproducible                                         

The experiments in section 3.1.1., showed that total RNA with a high integrity was 

obtained from unstained sections. However, the laser capture microdissection 

only harvests a small portion of sample for RNA preparation. Therefore, RNA 

amplification using the TAcKLE protocol was established and proved to be a 

reliable method for RNA amplication and oligonucleotide microarray analysis. To 

test its reproducibility, we made a series of serial cryosections and then 

microdissected the same tissue regions (Figure 13). We then pooled the 

microdissected tissue as described in section 2.2.3 and extracted total RNA for 

amplification followed by oligonucleotide microarray analysis. The raw chip data 

were uploaded into the in-house developed ChipYard program for bioinformatic 

analysis. In ChipYard, the Pearson correlation coefficient of fluorescence 

intensities from individual spots was high for RNA from consecutive sections. As 

we could assume that the laser microdissected tissues from consecutive sections 

of the same region are homogeneous, the results of plotting showed that the Cy3 

and Cy5 channel intensity was almost of equal value (Figure 14 A, B) which 

reflects a reliable laser capture microdissection, RNA amplification and consistent 

labeling with both Cy5- and Cy3-dUTPs.  Data from Chip 1 Cy3 and Chip 2 Cy5 

channels were plotted in one graphic. Since Chip 1 Cy3 and Chip 2 Cy5 channels 

are from the same original samples, all the data points are centrally localized in a 

small region (Figure 14 C). This scatter plot proves that the two chips are well 

correlated, and the integrated platform is reproducible.  

In TAcKLE amplification, all dye labeling reactions using Klenow fragment were 

made from separately amplified RNA aliquots. One round of RNA amplification 
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resulted in approximately 103 fold amplification of starting mRNA and two rounds  

amplification yielded up to 105 fold of the starting amount, as determined by 

spectrophotometry based on an estimated initial mRNA content of 2%. 

 

Figure 13. The consecutive unstained cryosections were microdissected, and 

captured from the same tissue region. A, C, unstained  sections before 

microdissection, the blue area shows the same region of the two consecutive 

sections to be dissected. B, D, the dissected tissues captured on  tube caps.   
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Figure 14. Scatter plots of fluorescence intensities after two rounds of 

amplification and labeling reactions. Co-hybridizations of independently amplified 

total RNA from consecutive sections were used to assess the reproducibility of 

amplification and laser capture microdissections. A. Color switch scatter plot of 

sample A with Cy3 and sample B with Cy5. The data plotting shows that the 

intensity of Cy5 and Cy3 are similar. B. Scatter plot of color switch of sample A 

with Cy5 and sample B with Cy3. The data plotting shows that the intensities of 

Cy3 and Cy5 are similar: C. Joint color switch showing the two color channels from 

sample A but from different chips, the scatter plot presents a good correlation of 

signals.   
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3.1.3 Punch aided laser capture microdissection samples yield total 

RNA with high quality  

RNA is a very unstable molecule and offen degraded by remaining RNases under 

humid conditions. In laser capture microdissection experiments, we need to stain 

the target cells and capture them, but the staining protocols often accelerate RNA 

degradation. To yield high quality total RNA for transcriptional analysis of target 

cells, we developed punch aided laser capture microdissection to target and 

capture 4 zones in tissue sections: inner tumor cells, tumor invasion front cells, 

adjacent lung cells and normal lung cells. The procedure was described in section 

2.2.2.3. and showed that by using the three punching holes for orientation it was 

possible to localize the target areas on the unstained slides by matching the 

cutting elements from the adjacent consecutive stained sections. The targeted 

cells were precisely dissected and captured on the caps of microfuge collection 

tubes (Figure 15). The total RNA extracted from the target cells showed high 

integrity upon analysis using the Agilent Bioanalyzer (Figure 16), illustrating that 

punch aided laser capture mcirodissection proved a novel methodical tool to 

collect specific cell populations for transcriptome analysis.  
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Figure 15. Punch aided laser capture microdissection harvest target cell 

populations. A. Reference sides with hematoxylin and eosin staining. The red 

circle shows the two reference points; the third reference point is outside of the 

microscopic field. The green circle marks the targeted tumor invasion front cell 

populations and the blue area marks the adjacent lung tissue. B. The cutting 

elements were matched to the target slides guided by the reference points. The 

target cell populations in the tumor invasion front and adjacent lung were 

removed from the cryosections. C. Normal lung cell were removed from the 

cryosection. D, E, F. The tumor invasion front cells populations, adjacent lung cells 

and normal lung tissue was captured in a cap of a tube.  Bar = 300 µm.  

 

 

Figure 16. Punch aided laser capture microdissection yields high quality total RNA 

A. Quality control of total RNA from the tumor invasion front of patient 1209. RIN 

= 8.5, rRNA ratio [28S/18S]= 1.1 B. Quality control of total RNA from various 

microdissected samples. With the exception of lane 3, all other RNA samples 

have a high integrity with distinct 28S and 18S rRNA band.  
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3.2 Transcriptional profiles of tumor sub-zones 

In order to analyze both mRNA and microRNA transcription, two techniques, 

oligonucleotide microarray and TaqMan Low Density Array were applied in parallel.  

Different from traditional expression profiling, microdissection aided profiling 

enriches specific cell populations but yields lower amounts of analytes for 

genomic, transcriptomic or proteomic analysis. To gain enough cDNA for 

oligonucleotide microarray experiments, we applied RNA amplification using the  

TAcKLE protocol. In addition, TaqMan Low Density Arrays were also used to 

investigate microRNA expression patterns (Figure 17). The TaqMan Low Density 

Array, a sensitive micro-fluidic based method, does not require RNA pre-

amplification, which sometimes causes bias. The stem loop specific reverse 

transcription reaction was implemented to obtain mature microRNA cDNAs 

(Figure 17). In the present study of expression profile in tumor sub-zones, we did 

pairwise comparisons of four different cell populations in order to investigate 

deregulated genes and pathways involved in tumor invasion and to identify tumor-

microenvironment interactions.   
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Figure 17. Strategy of parallel mRNA and microRNA transcription profiling. Four 

zonal tissues; inner tumor, tumor invasion front, adjacent lung and normal lung, 

were microdissected and captured. The total RNA from these four cell populations 

were extracted and used for oligonucleotide microarray and microRNA TaqMan 

Low Density Array via TAcKLE amplification and multiplex loop reverse 

transcription reactions. 

In the oligonucleotide microarray experiments, we analyzed 18 tumors from 17 

patients by hybridization of more than 160 microarray chips. We discarded chips 

which, upon hybridization, did not meet the quality control standards. Finally, we 

analyzed the data for 128 chips using the ChipYard data analysis platform. In the 

TaqMan Low Density Array experiments, we analyzed 9 tumors from the same 

sample pools of oligonucleotide microarray using 35 micro-fluidic cards (Table 7). 
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Table.7 Identification of patient samples used for microdissection 

 

 ―X‖ means the sample has been screened on either an oligonucleotide 

microarray chip or TaqMan Low Density Array card.   ―X‖ with highlighted blue 

background means the chip was analyzed without color switching. Samples 

highlighted in red were either not studied or no sample was available.  

 

3.2.1 Messenger RNA gene expression profile in squamous cell lung 

carcinoma 

3.2.1.1 Unsupervised clustering and statistical analysis reveals 

heterogeneity of tumor, adjacent and normal lung tissue 

To study the gene expression profile in different locations of the tumor tissue, we 

randomly selected 100 genes from the microarray dataset and analyzed these 

data by unsupervised clustering. The clustering results demonstrated that tumor 

tissue and lung tissue samples are well separated in two different clusters. The 
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normal lung and adjacent lung clusters are also well separated, which indicates 

that the  gene expression profile of normal lung is highly different from the tumor 

adjacent lung. In contrast, the clusters of the tumor invasion and the inner tumor 

are poorly separated, indicating only slight difference of gene expression between 

these two tissues (Figure 18).  

 

 
Figure 18. Unsupervised cluster analysis reveals heterogeneity of tumor, adjacent 

and normal lung tissue. 100 genes from the microarray dataset were selected for 

unsupervised clustering analysis.  NL: normal lung (green); LF: adjacent lung 

tissue (red); TF: tumor invasion front (dark blue); TC: inner tumor (weak blue).  

 

Limma and Venn diagram analyses were used to analyze the normalized gene 

expression microarray data.  The Venn diagrams revealed relationships of the 

differentially expressed genes according to the location of tumor or lung cells. 

Compared to the inner tumor cells, the tumor invasion front has only 13 genes 
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differentially expressed, and 10 of them are unique for the tumor invasion front 

when compared to the other three sub-regions. Interestingly, the adjacent lung 

tissue has thousands of differentially expressed, compared to any of the other 

three tissues, which demonstrates that the gene expression pattern in adjacent 

lung tissue has been strongly altered due to the interaction with the tumor tissue 

(Figure 19).   

 

Figure 19. Limma Venn diagram analysis revealed relationships of the 

differentially expressed genes according their location as tumor or lung cells. A. 

Genes differentially expressed between tumor invasion front and the other three 

regions; B. Genes differentially expressed between adjacent lung tissue and the 

other three regions; C. Genes differentially expressed between inner tumor and 

the other three regions; D. Gene differentially expressed between normal lung and 

the other three regions.  NL: normal lung; LF: adjacent lung Tissue; TF: tumor 

invasion front; TC: inner tumor.  
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3.2.1.2 Genes differentially expressed between tumor invasion front and 

the inner tumor. 

One assumption has been made that the gene signature in the tumor invasion 

front should be highly related to tumor invasion and metastasis. Upon 

oligonucleotide microarray and statistical analysis, 13 candidate genes were 

identified as being differentially expressed between the tumor invasion front and 

the inner tumor (adjusted P value lower than 0.05, see Table 8). The 13 genes are 

L3MBTL, AMT, LST, CD1A, AMICA1, CCL18, GIMAP7, APLNR, HLA-DRB7, SFTPC, 

LTB, LILRB4 and CCL19. AMT and L3MBTL were the only two genes 

downregulated in the tumor invasion front. Three upregulated genes, CCL19, 

APLNR and GIMAP7 were selected for further validation by immunohistochemistry 

due to their high statistical significance.  

Table 8. List of differentially expressed genes of the tumor invasion front versus 

inner tumor.    

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

13 genes were identified as being significant based on adjusted P value lower 

than 0.05. adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: 

Chromosomal gene location. Minus sign means down regulation.  

 Symbol Mapping adj.P.Val Lin FC 

CCL19 9p13.3 0.015311 3.26 

APLNR 11q11 0.015311 2.39 

GIMAP7 7q36.1 0.01633 2.16 

CD1A 1q23.1 0.01633 1.82 

LTB  6p21.3 0.01633 1.92 

CCL18 17q12 0.018568 2.84 

LILRB4 19q13.42 0.018568 1.35 

SFTPC 8p21.3 0.029915 3.50 

LST1 6p21.33 0.033905 1.72 

L3MBTL 20q13.12 0.033905 -1.50 

HLA-DRB7  6p21.3 0.045007 2.55 

AMICA1 11q23.3 0.045007 1.86 

AMT 3p21.31 0.049053 -1.90 
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3.2.1.3 Genes differentially expressed between adjacent lung tissue and 

normal lung.  

Global gene expression profiling of human cancer is normally conducted to 

compare tumor tissue and its corresponding normal organ tissue, and very few 

studies have investigated the corresponding organ tissue immediately adjacent to 

the neoplasm. Through biostatistics and bioinformatics processing of 

oligonucleotide microarray data, we identified 1,008 genes deregulated in 

adjacent lung tissue compared to normal lung, with an adjusted P value lower 

than 0.05 and linear fold change higher than 2.  Keratin 5, 6, 16, 17 are among 

the top ten upregulated genes in the adjacent lung tissue. LTF (lactotransferrin) is 

15.4 fold upregulated in adjacent lung tissue. S100A2 (S100 calcium binding 

protein A2), MYBPC2 (myosin binding protein C), SAA2 (serum amyloid A2) and 

CALML3 (calmodulin-like protein 3) are also highly deregulated in adjacent lung 

tissue. In the down-regulated gene list, the top candidate, MYOC (myocilin), is 5.4 

fold lower than normal lung tissue. HBB (hemoglobin-β protein), C2ORF40, LYZ 

(lysozyme), CXCR1 (chemokine (C-X-C motif) receptor 1), CA4 (carbonic 

anhydrase), ECM2 (extracellular matrix protein 2), SYNPO2 (synaptopodin 2), CLC 

(Charcot-Leyden crystal protein) and WIF1 (WNT inhibitory factor 1) are also top 

downregulated genes in adjacent lung tissue compared to normal lung (Table 9). 

The complete list of significantly deregulated genes are found in the 

Supplemental Table  1 and Table 2. 
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Table 9. Top 10 down and up regulated genes in adjacent lung tissue.  

Symbol Mapping adj.P.Val Lin Fc 

KRT6A 12q13.13 5.34E-19 42.74 

KRT6B 12q13.13 2.89E-18 28.75 

KRT17P1 17p11.2 4.61E-12 23.65 

 KRT17  17q21.2 1.50E-12 23.34 

KRT5 12q13.13 1.14E-14 18.98 

AC022596.6 17p11.2 1.92E-07 15.66 

LTF 3p21.31 8.17E-07 15.43 

 KRT14  17q21.2 1.84E-06 13.91 

S100A2 1q21.3 3.85E-09 12.35 

MYBPC2 19q13.33 1.08E-14 11.20 

MYOC 1q24.3 7.01E-16 -5.41 

HBB 11p15.4 5.20E-10 -4.98 

C2orf40 2q12.2 3.24E-06 -4.86 

LYZ 12q15 3.69E-14 -4.84 

IGSF10 3q25.1 5.15E-12 -4.73 

IL8RA 2q35 3.58E-12 -4.68 

CA4 17q23.1 2.12E-09 -4.57 

ECM2  9q22.31  1.70E-11 -4.49 

SYNPO2 4q26 1.91E-08 -4.24 

CLC 19q13.2 2.06E-14 -4.22 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation.  

3.2.1.4 Genes differentially expressed between tumor and normal lung 

As mentioned in Section 3.2.1.1, the tumor invasion front and inner tumor show 

very little differences in global gene expression, as such, with the exception of the 

13 differentially regulated genes. Accordingly, they were considered as one 

compartment of tumor cells. Of the top ten upregulated genes, Keratin 5, 6A/B, 

15, 16, 17, are significantly higher expressed in the tumor cells of the invasion 

front and inner tumor when compared to normal lung tissue. DSG3 (desmoglein 

3), S100A2 (S100 calcium binding protein A2), TRIM29 (tripartite motif-

containing 29), CALML3 (calmodulin-like protein 3) and PTHLH (parathyroid 

hormone-like hormone) are the top upregulated genes in tumor cells. FOSB (FBJ 



Results 

 

74 
 

murine osteosarcoma viral oncogene homolog B), SFTPB (surfactant protein B), 

SFTBC (surfactant protein B), FAM100B (family with sequence similarity 100, 

member B) et al., are the top downregulated in tumor cells when compared to 

normal lung (Table 10). The total signficant gene lists can be found in 

Supplemental Table 3, 4, 5, 6. 

 

Table 10 A. Top 10 down and up regulated gene in inner tumor compared to 

normal lung.  

Symbol Mapping adj.P.Val Lin Fc 

KRT6B 12q13.13 2.62E-32 137.35 

 KRT17P1 17p11.2  4.63E-23 101.90 

KRT17 17q21.2 2.34E-23 97.59 

KRT6A 12q13.13 5.75E-27 91.18 

KRT15 17q21.2 2.17E-22 68.89 

S100A2 1q21.3 2.17E-20 55.33 

KRT5 12q13.13 1.75E-24 51.95 

KRT16 17q21.2 9.37E-21 50.06 

CALML3 10p15.1 8.59E-23 49.94 

PTHLH 12p11.22 6.34E-21 44.79 

AGER  6p21.32  9.71E-33 -79.29 

SFTPC 8p21.3 1.81E-17 -58.70 

INMT 7p14.3 2.64E-38 -39.91 

C7 5p13.1 3.44E-34 -36.95 

MFAP4 17p11.2 1.76E-39 -33.96 

SFTPB 2p11.2 3.16E-16 -32.37 

CLIC5 6p21.1 1.32E-34 -30.72 

SFTA3 14q13.3 1.81E-25 -30.38 

AC105046.10 8p21.3 4.15E-21 -29.94 

C19orf59 19p13.2 3.44E-21 -29.08 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation.  

 

 

A 
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Table 10. B. Top 10 up and down regulated gene in the tumor invasion front 

compared to normal lung.  

Symbol Mapping adj.P.Val Lin Fc 

KRT6B 12q13.13 4.30E-34 154.56 

KRT6A 12q13.13 5.39E-31 137.11 

 KRT17P1 17p11.2  3.97E-25 118.34 

AC022596.6 17p11.2 3.97E-20 113.58 

 KRT17 17p11.2  1.79E-25 108.62 

KRT17 17q21.2 1.95E-24 97.00 

KRT16 17q21.2 1.91E-25 84.18 

KRT15 17q21.2 1.14E-23 70.93 

DSG3 18q12.1 1.85E-24 60.50 

S100A2 1q21.3 3.46E-21 53.69 

AGER  6p21.32  1.14E-29 -46.89 

MFAP4 17p11.2 6.77E-43 -40.78 

INMT 7p14.3 6.21E-37 -30.59 

FOSB 19q13.32 6.9E-22 -23.70 

A2M 12p13.31 6.2E-39 -22.66 

C7 5p13.1 1.17E-30 -22.28 

WISP2  20q13.12  8.79E-37 -21.36 

CLIC5 6p21.1 7.64E-32 -21.11 

FXYD1 19q13.12 5.37E-37 -18.93 

ITLN2  1q23.3  3.66E-18 -18.74 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation. 

Eicosanoid signaling, a cellular pathway producing prostaglandins and other 

bioactive lipid products (Funk, 2001), ranks first in both the tumor invasion front 

and in the inner tumor cell analyses using the Ingenuity software. As such, we 

made a separate clustering of all the genes in the eicosanoid pathway for each of 

the locations and tumor samples. We found prostaglandin synthase E and F are 

highly expressed in tumor cells irrespective of the location, but are expressed at 

very low levels in normal lung. The prostaglandin molecular function is mediated 

by the activation of specific receptors. Surprisingly, we found prostaglandin E and 
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F receptors are highly expressed in lung tissue, but expressed at very low levels in 

tumor cells (Figure 20, Table 11, Table 12). 

 
Figure 20. Gene clustering of eicosanoid signaling molecules. The vertical lines 

divide the graph into different locations tumor, adjacent lung and normal lung. 

The tumor invasion front and inner tumor are not separately clustered. The 

horizontal white lines  show different prostaglandins and their receptors. The red 

color means that the gene is highly expressed and the green color means that the 

gene shows low expression. The intensity of the color indicates the expression 

value of the gene.   

 

Tab 11. Prostaglandin E and F synthase expression in tumor cells versus adjacent 

lung tissue 

Prostaglandin  

Synthase  

Tumor Invasion  Front  

                     vs  Adjacent  Lung  

Inner Tumor  

                vs        Adjacent   Lung  

Gene Symbol Adj. P-Value Lin. FC Adj. P-Value Lin. FC 

PTGES 0.006074423 1.870465 1.8271E-06 2.234084 

PGFS  0.000153797 5.66029 7.46722E-07 10.26025 

PTGES2  0.0103  1.4  0.0013  1.48  

 

Adj. P-Value: adjusted P-Value; Lin. FC: linear fold change.    
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Tab 12. Prostaglandin E and F receptor expression in tumor cells versus adjacent 

lung tissue 

 Prostaglandin  
 Receptor  

Adjacent Lung  
         VS Tumor Invasion Front  

Adjacent Lung  
                   VS Tumor Center 

Gene Symbol Adj. P-Value Lin. FC Adj. P-Value Lin. FC 

PTGER1 1.35E-19 6.333121 8.14523E-21 7.146448 

PTGER2 6.07E-10 1.654693 1.24031E-09 1.661729 

PTGER3 0.774239965 1.05332 0.819730122 0.985361 

PTGER4 0.190931189 1.193341 0.169856299 1.1957 

PTGFRN 4.77E-05 0.518428 9.57512E-05 0.522704 

PTGFR 0.000740221 1.801733 0.00015387 1.962605 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adj. P-Value: adjusted P-Value; Lin. FC: linear fold change.    

3.2.2 MicroRNA expression profile in squamous cell lung carcinoma 

In parallel with mRNA expression profiling, the transcription profile of 365 mature 

microRNAs was accessed by multiplex reverse transcription and TaqMan Low 

Density Array. Through data processing, we identified 66 microRNAs differentially 

expressed between tumor cells when compared to normal lung and 24 

microRNAs differentially expressed in adjacent lung tissue when compared to 

normal lung.   

3.2.2.1 Hsa-mir-196a is differentially expressed between the tumor 

invasion front and the inner tumor 

The tumor invasion front is the leading tissue directly adjacent to the host organ; 

therefore the differentially expressed microRNAs between the tumor invasion 

front and the inner tumor might be crucial for tumor invasion, metastasis or tumor 

microenvironment interactions. Similar to what was seen by mRNA gene 

expression, the differential expression of microRNAs between the tumor invasion 

front and inner tumor is limited. Almost all of the microRNAs from the 365 probe 

pool could not pass the statistical threshold, with the exception of hsa-mir-196a. 
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The expression of hsa-mir-196a is 2.2 fold higher in inner tumors than in the 

tumor invasion front (Figure 21).  

 

Figure 21. The hsa-mir-196a expression in each tumor and its four compartments. 

The hsa-mir-196a expression is distinctly higher in the inner tumor than in the 

other three compartments. Y axis is the normalized expression value; X axis 

shows individual patient values clustered into the four different regions; Different 

colors show tumors from individual patients.  

The expression pattern of hsa-mir-196a suggests a role in tumor invasion and 

metastasis. In 2008, hsa-mir-196a was found to mediate Annexin A1 down-

regulation in esophageal cancers (Luthra et al., 2008). Furthermore, Annexin A1 

has been found to regulate TGF-β signaling to promotes metastasis formation in 

basal-like breast cancer cells. Annexin A1 is a candidate regulator of the EMT-like 

phenotypic switch, a pivotal event in breast cancer progression (de Graauw et al., 

2010). Therefore, the role of hsa-mir-196a in tumor epithelia cells might be one 

of a negative regulator of metastasis induced by EMT. To correlate the expression 

of hsa-mir-196a and Annexin A1, we plotted the Annexin A1 gene expression data 

in the same manner as the microRNA TLDA. The result showed that the 
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expression of Annexin A1 is negatively correlated to hsa-mir-196a in squamous 

cell lung carcinoma epithelial cells (Figure  22).   

 

Figure 22. Annexin A1 expression in each tumor and its four compartments. The 

expression of Annexin A1 in inner tumor is lower than in the invasion front and is 

negative correlated to hsa-mir-196a expression. X axis is samples from the four 

compartments; Y axis is expression value (log ratio). 

3.2.2.2 MicroRNA differentially expressed between adjacent lung tissue and 

normal lung 

In a manner similar to mRNA gene expression (mentioned in 3.2.1.3), the 

alternation of microRNA expression may also be a key issue in tumor 

microenvironment interactions, including the induction of inflammation in 

adjacent lung tissue. Through TLDA and bioinformatic analysis, we identified 24 

deregulated miroRNAs in adjacent lung tissue with Q-values lower than 0.05, and 

fold change higher than 2 (Table 13). Hsa-mir-433, hsa-mir-650, hsa-mir-137 and 

hsa-mir-210, are highly upregulated in adjacent lung tissue. 20 microRNAs, 

including hsa-mir-190 and has-let-7 et al., were downregulated in adjacent lung 

tissue.   
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Table 13. Differentially expressed microRNAs in adjacent lung tissue compared to 

normal lung 

microRNA Q-Value Fold Change 

hsa-miR-433 0.025316077 10.57598397 

hsa-miR-650 3.86E-05 5.808063346 

hsa-miR-137 0.021360267 5.703475901 

hsa-miR-210 0.043911705 3.188950488 

hsa-miR-95 0.023848067 -2.194771481 

hsa-miR-335 0.039497801 -2.195165373 

hsa-miR-422a 0.046082697 -2.221146149 

hsa-let-7c 0.008132383 -2.27251243 

hsa-miR-133a 0.016569005 -2.282230572 

hsa-miR-101 0.01346168 -2.295140765 

hsa-miR-145 0.004326968 -2.347864178 

hsa-miR-125b 0.048659078 -2.351938022 

hsa-miR-130a 0.009679214 -2.362390002 

hsa-miR-195 0.011213984 -2.40643741 

hsa-miR-497 0.004326968 -2.469582395 

hsa-miR-486 0.004326968 -3.076607132 

hsa-miR-30e-5p 0.009396757 -3.191827329 

hsa-miR-23b 0.011213984   -3.209615817 

hsa-miR-143 0.009679214 -3.905281922 

hsa-miR-501 0.033524141 -4.636553761 

hsa-miR-135a 0.01534985 -4.743729606 

hsa-miR-451 0.005643732 -5.712331781 

hsa-let-7e 0.021793669 -7.971231659 

hsa-miR-190 0.023999975 -7.982318253 
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Figure 23. Hsa-mir-650 is highly expressed in adjacent lung tissue. Hsa-mir-650 

expression in adjacent lung tissue is 2.7 fold higher than in the tumor invasion 

front (Q-value: 0.07), 3.7 fold higher than inner tumor (Q-value:0.033) and 5.8 

fold higher than normal lung (Q-value:0.025). The Y axis shows the expression 

value; The X axis shows individual patient data for miR-650 clustered by tumor 

compartment; different colors indicate different patients. 

3.2.2.3 MicroRNA differentially expressed between tumor and normal 

lung 

Lung cancer has characteristic microRNA expression patterns that allow their 

distinction from normal lung epithelia and could facilitate clinical prognosis 

(Diederichs and Haber, 2006). The heterogeneity of expressed microRNAs within 

a primary lung tumor has not been studied, as yet, by large scale microarray 

analysis. We used laser capture microdissction to enrich epithelial tumor cells for 

microRNA TLDA analysis. The comparison of microRNA expression between tumor 

cells and normal lung cells was conducted by data normalization and statistical 

processing as described in the section of Materials and Methods.  Using a 

threshold Q-value lower than 0.05 and a fold change higher than 2, we identified 

66 microRNAs differentially expressed between the inner tumor and the normal 



Results 

 

82 
 

lung, and 52 microRNAs differentially expressed between the tumor invasion front 

and the normal lung. The major parts of the 52 microRNA pool overlap with the 66 

microRNA pool. 32 microRNAs were identified as being upregulated in inner tumor 

cells and 14 microRNAs were identified as upregulated in tumor invasion front 

cells, when compared to normal lung tissue. The 14 upregulated microRNAs in 

the tumor invasion front were included in the 32 microRNA pool (Table 14). Hsa-

mir-205 ranked as the top upregulated microRNA and hsa-mir-190 ranked as the 

most downregulated microRNA in our study. Hsa-mir-190 has never been reported 

in lung cancer as an important candidate. The downregulated microRNA 

candidates are shown in the Supplemental Tables 7 and 8.   
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Table 14. Upregulated microRNAs in tumor cells 

A                                                                       B 

microRNA Q-Value Fold Change 

hsa-miR-205  0.000988 11.94508 

hsa-miR-137  0.008302 11.74847 

hsa-miR-9  0.003448 8.931858 

hsa-miR-9  0.00394 8.526588 

hsa-miR-196a  0.003231 6.30874 

hsa-miR-7  0.033032 6.183923 

hsa-miR-432  0.02561 4.957977 

hsa-miR-424  0.035715 4.753276 

hsa-miR-130b  0.003356 4.666076 

hsa-miR-21  0.006074 4.575175 

hsa-miR-182  0.001457 4.43515 

hsa-miR-196b  0.002304 4.31914 

hsa-miR-337  0.035785 4.26977 

hsa-miR-31  0.017075 4.042417 

hsa-miR-210  0.002304 4.03041 

hsa-miR-301  0.031854 3.843081 

hsa-miR-452  0.011149 3.799441 

hsa-miR-622  0.038638 3.505388 

hsa-miR-224  0.004675 3.503059 

hsa-miR-183  0.00197 3.439698 

hsa-miR-200a  0.008937 3.404669 

hsa-miR-203  0.029232 3.07379 

hsa-miR-93  0.010894 3.020925 

hsa-miR-429  0.029082 2.92244 

hsa-miR-187  0.035785 2.87298 

hsa-miR-149  0.001457 2.676644 

hsa-miR-629  0.018407 2.567627 

hsa-miR-193b  0.019016 2.503741 

hsa-miR-615  0.020806 2.222016 

hsa-miR-485-3p  0.029307 2.082046 

hsa-miR-17-5p  0.00958 2.005979 

 

A. Upregulated microRNAs in inner tumor cells. Thirty-one microRNAs are 

upregulated in the inner tumor compared to the normal lung; B. Up-regulated 

microRNAs in tumor invasion front. 14 microRNAs are upregulated in tumor 

invasion front compare to normal lung.  

 

Hsa-mir-224 is around 3 fold up regulated in tumor cells when compared to 

normal lung (Table G and Figure 24).  We chose hsa-mir-224 as a validation 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

microRNA Q-Value Fold Change 

hsa-miR-205 0.000652 9.4800581 

hsa-miR-149 0.022288 6.7032696 

hsa-miR-210 4.27E-05 6.580751 

hsa-miR-183 0.002822 5.0147267 

hsa-miR-93 0.035671 4.9028400 

hsa-miR-31 0.020747 4.4424260 

hsa-miR-182 0.001182 3.4961395 

hsa-miR-196b 0.011146 2.9523322 

hsa-miR-224 0.022191 2.8621574 

hsa-miR-200a 0.01235 2.6338273 

hsa-miR-200b 0.009567 2.5027317 

hsa-miR-130b 0.011582 2.4660273 

hsa-miR-196a 0.022512 2.2445466 

hsa-miR-650 0.003402 2.0996220 
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candidate, as hsa-mir-224 is upregulated in HepG2 cells and is involved in 

cellular migration and invasion (Li et al., 2010). 

 

Figure 24. Hsa-mir-224 is highly expressed in tumor cells. Hsa-mir-224 expression 

in inner tumor cells is 3.5 fold higher than normal lung (Q-value: 0.005), in tumor 

invasion front cells it is 2.8 fold higher than in normal lung (Q-value:0.022). Y axis 

is normalized expression value, X axis is compartment of tumor as indicated; 

different colors indicate different tumors from patients.  

 

 

3.2.3 Messenger RNA and microRNA crosstalk in squamous cell lung 

carcinoma 

The transcriptional profile of mRNA and microRNA were done in parallel, so it is 

worthwhile and meaningful to explore the interaction of those two data sets and 

find microRNAs targeting molecular networks and pathways.  As described in 

section 2.2.12, Pearson correlation analysis between the microRNA TLDA and the 

mRNA oligonucleotide microarray data was implemented. Twelve microRNAs were 

identified as being well correlated to their target mRNAs with p-values lower than 

0.6 (Figure 25 A).  Hsa-mir-205 expression is highly correlated to BOC mRNA gene 
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and has-let-7 is highly correlated to MKI67 mRNA gene with a P-value lower than 

0.5 (Figure 25 B and C).  

 

Figure 25. Pearson Correlations of microRNAs and their targets. A. 12 microRNAs 

are well correlated to mRNA genes at the transcription level.  -1, perfect 

correlation, -1 to -0.5, close correlation. Each concentric circle indicates a 

different p-value of the Pearson correlation. B, C, Two plotting examples of the 

Pearson correlations for microRNA and mRNA gene expression. B. hsa-mir-205 

correlated to BOC with p-Value = -0.69; C. hsa- let- 7c correlated to MKI67 with p-

Value= -0.7. X axis is the mRNA expression value; Y axis is the microRNA 

expression value; Red line indicates the correlation trend.       
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3.3 Validation of zonal transcriptional profiling of squamous 

cell lung carcinoma 

3.3.1 Verification of CCL19, GIMAP7 and APLNR expression in the 

tumor invasion front by immunohistochemistry 

Using three genes, which were shown by microarray analysis to be relatively highly 

expressed in the tumor invasion front (CCL19, GIMAP7 and APLNR), protein 

immunohistochemistry experiments were carried out to biologically validate the 

oligonucleotide microarray mRNA expression analysis using tissue from the same 

patients in which the microarray analysis was performed.    

As can be seen in Figure 26, CCL19 protein is strongly expressed in the tumor 

invasion front of tumor epithelial cells, tumor stroma cells and adjacent lung 

tissue, but weakly expressed in the inner tumor cells. Positive staining for CCL19 

was typically localized at the subcellular level to the cytoplasm of tumor epithelial 

cells or the tumor stroma cells, close to the leading edge of the tumor invasion 

front.  

GIMAP7 and APLNR expression were both highly enriched in epithelial tumor cells 

in the tumor invasion front. No GIMAP7 and APLNR expression in stroma cells 

were identified. GIMAP7 and APLNR proteins were both localized in the cytoplasm 

of the positive lung epithelial tumor cells (Figure 27). 
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Figure 26. The CCL19 protein is highly expressed in the tumor invasion front. 

Vertical rows show different magnifications of the image. CCL19 is distinctly 

expressed in the leading edge of the tumor invasion front and adjacent lung 

tissue. A, B and C show the positive CCL19 staining in the tumor epithelial cells in 

the tumor invasion front. D, E and F show the positive CCL19 staining in tumor 

stroma cells of invasion front. G, H and I show the weak staining intensity of 

CCL19 protein in the inner tumor. Bar= 300 μm. 
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Figure 27. GIMAP7 and APLNR proteins are highly expressed in the tumor 

invasion front. A-F, GIMAP7 staining, G-L, APLNR staining. Vertical rows show 

different magnifications of the image. A-C shows the positive GIMAP7 staining in 

the tumor epithelial cells of the tumor invasion front. D-F shows the weak GIMAP7 

staining in the inner tumor cells. G-I shows the positive APLNR staining in the 

tumor epithelial cells of the invasion front; and J-L shows the weak staining 

intensity of APLNR protein in the inner tumor. GIMAP7 stained in tumor tissue 

section from patient 2496, APLNR stained in tumor tissue section from patient 

2505. Bar= 300 μm 

 

 

 



Results  

 

89  
 

3.3.2 Prostaglandin E and F‘s role in tumor-microenvironment 

interactions 

Immunohistochemistry staining in patient tissue sections using antibodies 

directed against several members of the eicosanoid pathway also validate the 

microarray findings (Figure 28). Prostaglandin E synthase is highly expressed in 

tumor tissues and a low expression level is found in lung tissue; the positive 

staining is localized in the tumor epithelial cells and in lymphocytes (Figure 28 D). 

There is very weak expression of both the prostaglandin E receptor 1 and receptor 

2 in tumor cells, either in epithelial tumor cells or lymphoid cells of tumor 

associated tissue, whereas in macrophage cells in the adjacent lung tissue, the 

prostaglandin E receptor 1 is highly expressed. Interestingly, the prostaglandin E 

receptor 2 expression occurs in a line of cells, which are at the interface of the 

tumor and lung tissue.   
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Figure 28. The expression pattern of prostaglandin E synthase and its receptors. A, 

B, C show an overview of the staining in whole tissue sections using antibodies to 

prostaglandin E synthase and its receptors. D,E, F show  prostaglandin E synthase 

and receptors staining in the tumor area. D. Prostaglandin E synthase is 

expressed in the tumor area, the white arrow shows the tumor epithelial cells; the 

black arrow shows the lymphocytes. They both express prostaglandin synthase. G. 

Prostaglandin E synthase is not expressed in the cells of the tumor area, neither 

in tumor epithelial cells nor in tumor stroma cells. H. Prostaglandin E receptor 1 is 

expressed in macrophages close to the leading edge between tumor and lung. I. 

Prostaglandin E receptor 2 is expressed in the lung epithelia in the leading edge 

between the tumor and lung. T: Tumor, L: Lung, TS, Tumor side. Red line: leading 

edge between tumor and lung. Bar= 300 μm. 

 

Prostaglandin F synthase is strongly expressed in the cytoplasma of tumor 

epithelial cells, but its receptor is not specifically expressed either in tumor- or 

lung tissue (Figure 29). The protein expression pattern of the prostaglandin E and 

F synthase reveal that those two prostaglandins are mainly synthesized in tumor 

tissues including the lymphoid cells of tumor associated tissue. The protein 

expression patterns of the prostaglandin E receptors suggest that prostaglandin E 
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executes its function in the macrophage cells or lung epithelial cells in adjacent 

lung tissue areas. The unspecific prostaglandin F receptor protein expression 

pattern might suggest that prostaglandin F implements its function in both tumor 

and lung tissues.  

 

Figure 29. The expression pattern of prostaglandin F synthase and its receptor. A. 

Strong prostaglandin F synthase positive staining is found in tumor epithelial cells. 

B. Prostaglandin F receptor expression in the tumor area is weak and non specific. 

C. Prostaglandin F synthase is not expressed in lung tussue. D. Prostaglandin F 

receptor expression in adjacent lung tissue with lymphoid cells. Bar= 300 μm 

 

3.3.3 Verification of hsa-mir-224, hsa-mir-196a and hsa-mir-650 

expression by microRNA fluorescence in situ hybridization.   

Since we found using the microRNA TLDA that hsa-mir-224 is about 3 fold 

upregulated in tumor cells, we used a locked nucleic acid (LNA) probe to detect 

the hsa-mir-224 expression by fluorescence in situ hybridization experiments. The 

fluorescent signal was only detected in tumor cells; no signal was identified in 

normal lung cells. The hsa-mir-224 was localized in the cytoplasm (Figure 30). 
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Figure 30. Has-mir-224 is expressed in tumor tissue but not in normal lung. A, B, 

C tumor area in different fluorescence channels. D, E, F lung area in different 

fluorescence channels. Bar=30µm Alexa 594 fluor channel fluorescence was only  

detected in the cytoplasm of tumor cells. 

  

By microRNA TLDA screening, hsa-mir-196a is the only candidate differentially 

expressed between the tumor invasion front and the inner tumor. MicroRNA in 

situ hybridization confirmed our TLDA findings that hsa-mir-196a expression is 

much higher in the inner tumor region than in the tumor invasion front (Figure 31).  

Hsa-mir-196a is highly expressed in inner tumor cells but expressed at a lower 

level in tumor invasion front cells. 

 

 

 

 

Overlap                                 DAPI                       hsa-mir-224 (Alexa)  
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Figure 31. Has-mir-196a is highly expressed in inner tumor cells, but expressed at 

a lower level in tumor invasion front cells. A, B, C tumor invasion front in 

fluorescence channels. D, E, F inner tumor area in fluorescence channels. 

Bar=20µm.  

 

Through TLDA screening, hsa-mir-650 has been found as the only microRNA 

highly expressed in adjacent lung tissue when compared to any other of the three 

cellular compartments. Using fluorescence in situ hybridization, the hsa-mir-650 

is strongly expressed in adjacent lung tissue; the strongest expressed region 

being in the immediate leading edge between tumor and lung (Figure 32). In the 

tumor invasion front, the hsa-mir-650 expression is weak. Hsa-mir-650 expression 

in the inner tumor is also weak compared to the adjacent lung tissue. Hsa-mir-

650 expression in normal lung tissue is slightly stronger than the inner tumor 

region, but still weaker than the adjacent lung tissue. The hsa-mir-650 expression 

is localized to the cytoplasm (Figure 32).  

 

 

 

Overlap                                 DAPI                           hsa-mir-196a (Alexa)  
  

  
  

T
u

m
o

r 
in

v
a

s
io

n
 f

ro
n

t 
  

  
  

  
  

  
In

n
e

r 
tu

m
o

r 

 



Results 

 

94 
 

 

 

Figure 32. hsa-mir-650 is an unique microRNA highly expressed in adjacent lung 

area. A. Hsa-mir-650 is highly expressed in the adjacent lung at the leading edge 

between tumor and lung area. The arrow shows one of the strongest hsa-mir-650 

expression cell populations. B. Hsa-mir-650 expression in the inner tumor is weak. 

C. Magnification of the region shown by the arrow in ―A‖ Hsa-mir-650 is highly 

expressed in the adjacent lung area. D. Hsa-mir-650 expression in normal lung. 

red channel: Alexa 594 labeled hsa-mir-650; blue channel: DAPI labeled cell 

nuclei. A, B, D Bar=150 µm; C Bar=30 µm. 
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4 Discussion 

4.1 Laser capture microdissection and transcriptome analysis 

Laser capture microdissection, LCM, is a technique for isolating highly pure cell 

populations from a heterogeneous tissue section, a cytological preparation, or 

from live cell culture via direct visualization of the cells. LCM is applicable to 

molecular profiling of tissue, permitting correlation of cellular molecular 

signatures with specific cell populations, and comparison of cellular elements 

within the tissue microenvironment. Applications for laser microdissection have 

been found for every step associated with the dogma of molecular biology, from 

DNA to RNA to protein in specific cell populations. ―Omic studies‖, including 

genomic and proteomic molecular profiling in all three molecular compartments 

have been analyzed by the laser capture microdissection technique (Wulfkuhle et 

al., 2003; Sheehan et al., 2005; Bonner et al., 1997; Simone et al., 2000; 

Gulmann et al., 2005; Grubb et al., 2003; Elliott et al., 2003; Emmert-Buck et al., 

2000; Chen et al., 2002).  Laser capture microdissection has been combined with 

recent epigenetics studies of DNA methylation of spermatogenesis (Hartmann et 

al., 2006).  Protein extracted from microdissected cells can be applied to reverse-

phase protein microarrays (Iyengar et al., 2005; Wulfkuhle et al., 2003; Sheehan 

et al., 2005; Petricoin  et al., 2005; Gulmann et al., 2005; Grubb et al., 2003; 

Paweletz et al., 2001; Liotta et al., 2003), 2D gel electrophoresis (Wulfkuhle et al., 

2002; Ornstein et al., 2000; Jones et al., 2002), western blotting and mass 

spectrometry (Ornstein et al., 2000; Jones et al., 2002; Martinet et al., 2004).   

Laser capture microdissection in combination with oligonucleotide microarray 

based expression profiling via linear RNA amplification allowed us to investigate 
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mRNA transcription in small amounts of specific cell populations. RNA preserved 

hematoxylin and eosin staining is widely used to identify the tissue morphology 

and cell populations in current LCM assist microarray studies, but even if it is a 

RNA preserved method, the staining step, based on our observations, may result 

in RNA degradation. It is hard to control the final RNA quality from LCM, especially 

for clinical samples. The quick and simple 100% ice cold ethanol treatment 

appears to keep good RNA quality for laser microdissection, but makes it hard to 

find target cell populations. A novel method, punch aided laser capture 

microdissection, overcomes the RNA quality problem, still allowing a staining step 

and the capture of target cell populations guided by reference slides.  

To target the cells expressing specific proteins, immuno-LCM, which captures 

immunostained cells, has been developed to study gene expression in 

dopaminergic neurons by q-RT PCR (Uz et al., 2005), but the RNA quality may not 

be good enough to perform gene expression microarrays. To overcome this 

problem, punch aided laser microdissection method could potentially be applied 

to find and capture cell populations expressing specific proteins by reference 

immuno-stained slides, keeping a high integrity of RNA for genome wide 

expression microarray analysis.  

There are also drawbacks to punch aided laser capture microdissection. If the cell 

clusters are two small, for example less than 100 cells in one section layer, or the 

target cells are scattering around the section, it might be quite difficult to localize 

the target cell populations by matching with the reference slides.  The ideal target 

cell population contains more than ~300 cells in one layer of the section and is 

grouped together. 
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4.2 Zonal gene expression profile comparison of squamous 

cell lung carcinoma                                                                                                  

4.2.1 Unsupervised cluster analysis of gene expression between the 

tumor invasion front and the inner tumor 

Laser capture microdissection was first designed to investigate tumor cells 

(Emmert-Buck et al., 1996), and in recent decades, it has been widely used to 

study the heterogeneity of tumor tissue. Using laser capture microdissection 

combined wtih gene expression profiling on oligonucleotide microarrays, 

investigators compared the gene expression of ductal carcinoma in situ (DCIS) 

and invasive ductal carcinoma (IDC) cells of human breast cancer (Schuetz et al., 

2006), the  invasion front and inner tumor, as well as the dedifferentiated and 

non-dedifferentiated invasion fronts, of human colorectal cancer (Oku et al., 2008; 

Staub et al., 2007),  as well as the peripheral zone and central zone tumor mass 

of human pancreatic cancer xenografts in mouse (Nakamura et al., 2007). Similar 

to our unsupervised cluster of the tumor invasion front and inner tumor, most of 

the previous comparison studies also could not well separate distinct clusters 

between two groups of tumor cells (Figure 33). 



Discussion 

 

98 
 

 

Figure 33. Two-way hierarchical clustering of tumor and normal epithelia samples 

based on expression profiles of 7433 genes. The heat map shows expression 

changes relative to the average signal in normal tissues. Red means up-regulation, 

green means down-regulation (see expression ratio color bar at the bottom). The 

dendrogram shows the hierarchical order of similarities between patient samples. 

Note that all normal samples are separated from tumors and both samples of a 

patient that stem from different tumor compartments clustered as neighbors 

(Staub et al., 2007). 

 

One question that arises is what is the difference between the tumor invasion 

front and the inner tumor. The gene expression profiles have already shown us 

that, to a great extent, there is little difference between those two areas. In 

addition, we do not know with certainty, if we have captured the ―right‖ tumor 

invasion front, and if tumor invasion front cell populations are homogeneous. 

There is no authoritative exactly defined area of the ―tumor invasion front‖.  If we 

narrowed our target invasion front from 500 µm to very few layers of cells close to 

the leading edge between tumor and lung, more differences might have arisen 
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from our current study of the tumor center and tumor front. Using 83 differentially 

expressed genes, investigators have shown hierarchical clustering between 

dedifferentiated and non-dedifferentiated phenotype invasion fronts of human 

colorectal cancer (Oku et al., 2008); the result indicated small difference between 

these two tumor cell populations, and did not contain unsupervised clustering. As 

such, we could not evaluate and compare them with our current clustering results. 

The future transcription profiles of tumor invasion front in lung cancer might focus 

on more specific populations, which express special phenotypic markers. For 

example, one could focus on the cells with EMT phenotype in the tumor invasion 

front, and try to profile the cells which express EMT markers using 

immunostaining and the punch aided laser capture microdissections method. 

4.2.2 Genes differentially expressed between tumor invasion front 

and inner tumor of squamous cell lung carcinoma 

Through gene expression profiling with oligonucleotide microarrays, we identified 

13 genes differentially expressed between the tumor invasion front and the inner 

tumor. The gene expression profile datasets were uploaded into the Ingenuity 

software package to analyze molecular networks and pathways. The large 

majority of the candidate genes, 9 in total, were identified as being involved in a 

molecular network comprising 42 genes, which function in cell-to-cell signaling 

and interaction, inflammatory response, cellular movement, gene expression and 

cell cycle arrest (Figure 34). These biological functions are crucial for tumor 

invasion and metastasis. The tumor necrosis factor (TNF) gene plays a central role 

in this molecular network by interacting with other genes, for example NF-κB, IL10, 

RELA, and RELB, although TNF, itself, is not differentially expressed between the 
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tumor invasion front and the inner tumor.  Two interleukin genes, IL4 and IL10, 

are also involved in the network. They both negatively regulate TNFα expression 

(Boussiotis et al., 1994; Körholz et al., 1997).  Two C-C motif chemokine 

members, CCL18 and CCL19, are also present in the network. CCL18 is reported 

to possess a function in the regulation of pulmonary inflammation and fibrosis 

(Pochetuhen et al., 2007). The chemokine molecules may also play an important 

role in attracting immune cells to the tumor stroma microenvironment and in 

regulating tumor growth and invasion. CCL19 has been reported to be involved in 

head and neck squamous cell carcinoma invasion (Wang et al., 2005). 
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Figure 34. A visual representation of the gene expression network of tumor 

invasion front versus inner tumor. The red color shows upregulated genes in the 

tumor invasion front compared to the inner tumor; the green color shows a 

downregulated gene in the tumor invasion front compared to the inner tumor; 

gray or white colors show genes not significantly changed between tumor invasion 

front and the inner tumor.    

4.2.3 Deregulated genes in squamous cell lung carcinoma cells 

Through oligonucleotide microarray, we identified around 13,000 genes 

differentially expressed between tumor and lung. Among the deregulated genes, 

keratin 15 is a hair follicle stem cell and progenitor cell markers (Kanoh et al., 

2008). FOSB and CFOS are down regulated in tumor cells compared to normal 

lung; indicating that the AP-1 pathway plays an important role in squamous cell 

lung cancer progression. In contrast, FOSB and its role in lung cancer have not 
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been revealed. P63 is a specific marker that distinguishes squamous cell lung 

carcinoma from lung adenocarcinoma (Rossi et al., 2009) and is 3 fold 

upregulated in tumor cells when compared to normal lung. EGFR, a key therapy 

target gene in non small cell lung cancer (Belani, 2010), is 2.2 fold upregulated in 

tumor cells. DSG3, 40~60 fold upregulated in lung cancer cells, was recently 

identified to be a squamous cell lung carcinoma diagnostic marker (Savci-Heijink, 

et al., 2009). Interestingly, cancer cells undergoing EMT can acquire invasive 

properties and enter the surrounding stroma, so EMT is involved in cancer 

progression and metastasis (Iwatsuki et al., 2010). Whereas EMT specific genes 

such as TWIST, SNAIL, SIP1, CDH1, CTNNA1, JUP, VIM and CDH2 are not 

significantly deregulated in tumor cells compared to normal lung cells.     

4.2.4 Canonical pathways in squamous cell lung carcinoma cells 

In order to understand the biological implications of our data on lung oncogenesis, 

it was of biological interest to investigate the genes contained in the gene 

expression signature in further detail. Therefore, the Ingenuity software program 

was applied to study pathway deregulation in the specific tumor regions. The 

tumor invasion front and inner tumor cells shared many of the top scoring 

canonical pathways. Metabolic pathways ranked high and were frequent in the 

deregulated pathway list, for example, eicosanoid signaling, arachidonic acid 

metabolism, glutamate metabolism, linoleic acid metabolism, and fatty acid 

metabolism. Most of these pathways are related to fatty acid metabolism and 

bioactive lipid mediated signal transduction (Figure 35, 36).   

As stated in the introduction, prostaglandins are very important in tumor 

progression. Previously, investigators have found that PGE2 helps to shift the 

tumor microenvironment from anti-tumor T helper 1 (TH1) responses to 
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immunosuppressive T helper 2 (TH2) responses by downregulation of TH1 

cytokines (tumor necrosis factor-α (TNFα), interferon-γ (IFNγ) and IL-2) and 

upregulation of TH2 cytokines (IL-4, IL-10 and IL-6) in immune cells (Snijdewint et 

al., 1993; Stolina et al., 2000; Hang et al., 1998). Moreover, PGE2 directly inhibits 

the activity of cytotoxic T cells through the upregulation of a CD94 and NKG2A 

complex and induces regulatory T cell function in vitro (Zeddou et al., 2005; 

Baratelli et al., 2005). PGE2 produced by tumor cells can also indirectly abolish 

the anti-tumor effects of cytotoxic T cells in vivo and in vitro through the 

downregulation of both direct antigen presentation by tumor cells and cross-

presentation by dendritic cells (Ahmadi et al., 2008). In this study, prostaglandin E 

and F, their receptors‘ and their localized expression patterns (Figure 28, 29) 

seem to indicate that the prostaglandin E and F were synthesized in tumor cells 

and then drift into adjacent lung regions to conduct their biological functions. EP1 

expression is observed in macrophages but not T cell lymphocytes, and EP2 is 

located in lung epithelial cells in the leading edge. This suggests that 

prostaglandin E may act as a messenger molecule that drifts from the tumor 

tissue to adjacent lung cells and possesses different functions in different cells of 

the adjacent lung, in macrophages it could play a role in tumor immune-tolerance, 

while in lung epithelial cell it could modulate fibrosis or hypoxia. The roles of 

prostaglandin E in these different cells need further validation throuh functional 

studies. Prostaglandin F is highly expressed in lung tumor epithelial cells but the 

FP receptor is not specifically expressed in any cell types. However,   

prostaglandin F is still produced in lung tumor and could act in tumor 

microenvironments interactions between the tumor and the adjacent lung tissue.  
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Figure 35. Top 16 canonical pathways present in inner tumor cells. The canonical 

pathways were ranked by p-value, threshold is a p-value < 0.05, ratio: number of 

deregulated factors in the pathway. 

 

 

 

Figure 36. Top canonical pathways present in tumor invasion front cells. The 

canonical pathways were ranked by p-value, threshold is a p-value < 0.05, Ratio: 

number of deregulated factors in the pathway.  

 

In addition to the metabolic pathways, hepatic fibrosis signaling and the sonic 

hedgehog signaling pathway are also activated in lung tumor cells (Figure 37). 
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Figure 37. Sonic Hedgehog Signaling is activated in squamous cell lung 

carcinoma. The plasma membrane protein HHIP decreases inhibition of PTCH 

[Patched] protein(s) in plasma membrane, which is increased by Shh protein in 

the extracellular space. The down-regulation of HHIP may result in the inhibition of 

PTCH; due to PTCH induced inhibition of the protein CDC2, the down-regulation of 

HHIP may finally result in the activation of CDC2. CCND2 was 6.6 fold upregulated 

in this study and forms a protein complex with activated CDC2. The CCND2-CDC2 

complex might then be transported into the cell nucleus and would promote M-

phase cell cycle progression. As an important player in the Sonic Hedgehog 

signaling cascade, GLI was 3 fold upregulated in tumor cells. Down regulation of 

PKA might result in increased  activation of GLI protein by reducing inhibition. The 

GLI proteins would then be transported into the cell nuclei to control transcription 

and promote proliferation. The green coloring means mRNA down-regulation; red 

coloring means mRNA up-regulation; gray and white colors mean no change in the 

mRNA level. 

 

4.3 Chemokines in tumor microenvironment interactions 

Based on the structure of their N-terminal cysteine motifs, chemotactic cytokines, 

which are low-molecular-weight cytokines, traditionally divided into four subgroups: 

C, CC, CX3C and CXC; the current nomenclature within these broad divisions 

assigns serial numbers to individual chemokines ligands (Zlotnik and Yoshie, 

2000). Chemokines regulate the chemotaxis of leukocytes and play an essential 
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role in inflammation (Gerard and Rollins, 2001). The chemokine CCL19 is 

expressed especially in lymphoid tissues (Fevang et al., 2009), and also in 

medullary epithelial cells (Annunziato et al., 2000). The ability of CCL19 to 

chemoattract T cells (Kim et al, 1998a, 1998b, 1999; Ngo et al, 1998), B cells 

(Kim et al, 1998a, 1999), DC (Dieu et al, 1998), macrophage progenitor cells 

(Kim et al, 1998c) and NK cells (Kim et al, 1999) is mediated through the specific 

G protein-coupled seven transmembrane domain chemokine receptor CCR7. In 

recent studies, murine breast tumor cells transduced by a retroviral vector 

expressing CCL19 were rejected in vivo by a mechanism that involves both CD4+ 

and NK cells (Braun et al, 2000). 

In the microarray data, CCL19 is highly expressed in the tumor invasion front and 

adjacent lung tissue. Further, our immunohistochemistry staining verified these 

findings. The high expression of CCL19 in adjacent tissues could easily explain the 

ability of CCL19 to attract lymphocytes to the leading edge of tumor and trigger 

imuno-defense against tumor invasion and progression. Although the high 

expression of CCL19 in lung tumor epithelial cells has not been reported, a report 

on CCL21, a chemokine sharing the same receptor as CCL19, reveals that 

invasive cancer cells secrete CCL21 in 3D conditions, and reports a surprising 

function of CCL21 in the promotion of tumor growth by suppression of the hosts‘ 

adaptive immune response (Shields et al., 2010). Aside from the altered 

trafficking of immune cells into and out of tumor tissue, authors show that the 

tumor tissue formed by CCL21-expressing cancer cells selectively accumulate 

more tumor suppressive immune cells, such as regulatory T cells and myeloid-

derived suppressor cells, resulting in the formation of an immune tolerogenic 

stromal structure. The CCL19 expressed in the tumor invasion front of the 
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epithelial tumor cells might also function by the above mechanism of immune 

tolerogenic. Therefore, there might be two CCL19 functional patterns in the 

interface of lung and tumor, the first one is that CCL19 is highly expressed in 

adjacent lung tissue and attracts lymphoid cells close to the tumor and triggers 

immune defense against tumor invasion and progression; the second possibility 

might be, similar to CCL21 expression in epithelial tumor cells, to selectively 

accumulate more tumor suppressive immune cells, such as regulatory T cells to 

establish an immune tolerogenic stroma structure and promote tumor invasion 

and progression. These two mechanisms need to be followed upon by extra in vivo 

and/or in vitro experiments.  

In our findings, prostaglandins E and F play crucial roles in tumor 

microenvironment interactions. As small molecule products of eicosaniod 

metabolism, prostaglandin E and F could raft between the tumor tissue and 

adjacent lung tissue and trigger signal response by activating prostaglandin 

receptors. Previous studies have shown that the addition of prostaglandin E2 was 

required for effective migration of monocyte-derived dendritic cells toward  CCL19 

and CCL21 (Scandella et al., 2004). Costimulation with PGE2 enhanced the 

expression of the CCL19/CCL21 receptor CCR7 on the cell surface of monocyte-

derived dendritic cells, when they matured with soluble CD40 ligand or 

proinflammatory cytokines (Scandella et al., 2002). Therefore, prostaglandin E, 

CCL19 and their receptors appear to work together to mediate tumor 

microenvironment interactions and inflammation.  
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4.4 MicroRNA and lung cancer 

4.4.1 MicroRNA expression between adjacent lung and normal lung 

tissue 

Through TLDA, we found four microRNAs, hsa-mir-433, hsa-mir-650, hsa-mir-137 

and hsa-mir-210, that are upregulated in adjacent lung tissue.  Hsa-mir-433 is 10 

fold upregulated in adjacent lung tissue and was shown previously to be regulated 

by the nuclear receptors ERRgamma/SHP (Song and Wang, 2008). Hsa-mir-433 

was shown to be down regulated in gastric cancers and to target GRB2, RAB34 

and RAB39 (Luo et al., 2009). Grb2 signaling is critical for cell cycle progression 

and actin-based cell motility, and, consequently, more complex processes such as 

epithelial morphogenesis, angiogenesis and vasculogenesis (Giubellino et al., 

2008). RAB34 and RAB39 are RAS signalling molecules and RAB39 may be a 

short variant of RAB34 involved in cellular endocytosis (Chen et al., 2003). Hsa-

miR-137 is 5.8 fold upregulated in adjacent lung tissue and has been shown to 

target CDC42 expression, induce cell cycle G1 arrest, and inhibit invasion in 

colorectal cancer (Liu et al., 2010). Hsa-mir-210 is expressed in various human 

cancers, is related to the modulation of hypoxia pathways (Huang et al., 2010), 

and is 3 fold upregulated in adjacent lung tissue in this study. Hsa-mir-650 is the 

most novel microRNA found in this analysis. Hsa-mir-650 is highly upregulated in 

adjancent lung tissue when compared to any of the other 3 compartments (Figure 

19). Hsa-mir-650 targets ING4 and is involved in lymphatic and distant metastasis 

in human gastric cancer (Zhang et al., 2010). It has been found that microRNAs 

can be actively transported out of the cell via the exosome (Valadi et al., 2007; 

Taylor and Gercel-Taylor, 2008) and that chronic inflammation can lead to lung 

cancer (Engels, 2008). It is interesting to speculate as to whether an 
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inflammatory microenvironment leads to the interstitial transport of microRNAs 

from alveolar macrophages into lung epithelial cells, which could eventually lead 

to the initiation of tumor pathogenesis. This hypothesis remains to be tested. 

 

4.4.2 MicroRNA expression between squamous cell lung carcinoma 

tumor cells and normal lung tissue 

We have profiled the expression of 365 microRNAs in laser microdissected lung 

SCC samples by TaqMan Low Density Array and found 66 microRNAs were 

deregulated in lung SCC tumor cells. In contrast to our above findings, most of 

members of the miR-17-92 cluster were not highly expressed in lung SCC. The 

hsa-miR-17-92 cluster has been found to be overexpressed in many cancers, 

including lung cancer, and has been implicated as an oncogene (Hayashita et al., 

2005; He et al., 2005; Mendell, 2008). Hsa-miR-106a, hsa-mir-20b, hsa-mir-93, 

and hsa-mir-106b, which are paralogues of the hsa-mir-17-92 cluster, have been 

previously found to be upregulated in lung SCC and leukemias and associated 

with oncogenesis (Garzon et al., 2006; Landais et al., 2007). Only one member of 

hsa-mir-17-92 cluster, hsa-mir-17-5p, was 2 fold upregulated in SCC tumor cells 

in our study. In addition, we found has-let-7e and has-let-7c (and its cluster 

member miR-125a) expressed at a low level in lung SCC, which is consistent with 

previous reports (Takamizawa et al., 2004; Johnson et al., 2005; Mayr et al., 

2007). 

Our results were compared with that of Yanaihara and colleagues, who profiled 

microRNA expression in NSCLC samples using an alternative array containing 190 

human microRNAs (Yanaihara et al., 2006). They found 16 microRNAs 

differentially expressed between 39 SCC and 39 matched normal lung tissues. Six 

of the 16 microRNAs were in common between their data set and our (hsa-mir-
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205, hsa-mir-210, hsa-mir-203, hsa-mir-21, hsa-mir-143 and has-mir-30a-5p) 

showing the same general direction of differential expression (Yanaihara et al., 

2006). We also compared our result with that of Mitch Raponi and colleagues 

(Raponi et al., 2009). They found 15 microRNAs differentially expressed between 

SCC and normal lung. 9 of the 15 microRNAs showed the same type of expression 

pattern between their date set and ours (hsa-mir-210, hsa-mir-17-5p, hsa-mir-203, 

hsa-let-7e, hsa-mir-200a, hsa-mir-93, hsa-mir-182, hsa-mir-183, hsa-mir-224). 

Our identification of hsa-mir-224 up-regulation in lung tumor tissue compared to 

normal lung confirmed the findings of Raponi and colleagues (Raponi et al., 

2009), but was contrary to the findings of Yanaihara and colleagues (Yanaihara et 

al., 2006), Furthermore, we verified the expression pattern of hsa-mir-224 by 

microRNA FISH. In addition, in other studies hsa-mir-224 showed elevated 

expression in Perineural invasion (PNI) tumors when compared to non-PNI tumors 

in prostate cancer (Prueitt et al., 2008).                 

4.4.3 Differentially expressed microRNAs and molecular networks 

Through correlation analysis between microRNA and mRNA array data, we 

identified 14 microRNAs that putatively inhibit verified target genes. As such, we 

uploaded the 14 candidate microRNAs with their target genes to the Ingenuity 

Pathway Analysis online platform to study microRNA targeting of molecular 

networks. Through this analysis, we identified a network including 274 factors. 

The molecules in the network are mainly associated with the known pathways 

―molecular mechanism of cancer‖, ―pancreatic adenocarcinoma signaling‖ and 

―hereditary breast cancer signaling‖. The Ingenuity analysis indicates that the 12 

microRNAs could play a crucial role in lung cancer progression in the analyzed 

patients.  
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Figure 38. microRNA target molecule networks. The molecules between two 

dashed lines forming a network engaging in ―molecular mechanism of cancer‖, 

―pancreatic adenocarcinoma signaling‖ and ―hereditary breast cancer signaling‖.  

The molecules at the end of the two dashed line are microRNAs and their directly 

targeted mRNA genes. The green color indicates that the gene is downregulated 

in tumor cells; red color indicates that the gene is upregulated in tumor cells. 
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Supplementary Data 

Table 1. Top upregulated genes in adjacent lung tissue compare to normal lung. 

Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

KRT6A 12q13.13 ENSG00000205420 5.34E-19 42.74305 

KRT6B 12q13.13 ENSG00000185479 2.89E-18 28.75892 

KRT17P1 17p11.2 ENSG00000131885 4.61E-12 23.65115 

 KRT17  17q21.2 ENSG00000128422 1.50E-12 23.34656 

KRT5 12q13.13 ENSG00000186081 1.14E-14 18.98757 

AC022596.6 17p11.2 ENSG00000226145 1.92E-07 15.66267 

LTF 3p21.31 ENSG00000012223 8.17E-07 15.43855 

 KRT14  17q21.2 ENSG00000186847 1.84E-06 13.91658 

S100A2 1q21.3 ENSG00000196754 3.85E-09 12.35406 

MYBPC2 19q13.33 ENSG00000086967 1.08E-14 11.20308 

SAA2 11p15.1 ENSG00000134339 8.81E-07 9.961397 

CALML3 10p15.1 ENSG00000178363 1.71E-09 9.951596 

SAA1 11p15.1 ENSG00000173432 3.56E-07 8.2685 

DSG3 18q12.1 ENSG00000134757 2.05E-07 7.539553 

CCL19 9p13.3 ENSG00000172724 3.85E-11 7.107972 

PRSS2  7q34  ENSG00000235481 6.71E-07 6.95266 

LGALS7B  19q13.2 ENSG00000178934 5.49E-05 6.871594 

FAM83A 8q24.13 ENSG00000147689 7.54E-07 6.733668 

TPX2 20q11.21 ENSG00000088325 2.31E-18 6.646319 

CKMT1B  15q15.3  ENSG00000237289  1.50E-12 6.567734 

 KRT16 17q21.2 ENSG00000186832 0.000175 6.109429 

KRT15 17q21.2 ENSG00000171346 1.93E-05 5.852895 

TRIM29 11q23.3 ENSG00000137699 2.06E-08 5.688379 

KRT6C 12q13.13 ENSG00000170465 0.000223 5.479243 

KIF20A 5q31.2 ENSG00000112984 6.82E-17 5.401128 

HIST1H2BG 6p22.2 ENSG00000187990 4.13E-10 5.331867 

CXCR5 11q23.3 ENSG00000160683 2.45E-11 5.065173 

CDH3 16q22.1 ENSG00000062038 3.89E-10 4.984587 

GPR39  2q21.2  ENSG00000183840  2.26E-07 4.916462 

KRT13 17q21.2 ENSG00000171401  0.000428 4.897326 

VPREB3 22q11.23 ENSG00000128218 9.73E-09 4.864431 

TCL1A 14q32.13 ENSG00000100721 2.07E-09 4.844407 

SDS  12q24.13  ENSG00000135094  1.32E-07 4.822916 

COL3A1 2q32.2 ENSG00000168542 1.98E-06 4.799831 

SPRR2D  1q21.3  ENSG00000163216  0.00134 4.631536 

SPRR1A  1q21.3  ENSG00000169474 0.001415 4.604374 
 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location.  



Supplementary Data 

 

125  
 

Table 2. Top downregulated genes in adjacent lung tissue compare to normal lung. 

Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

MYOC 1q24.3 ENSG00000034971 7.01E-16 -5.41607 

HBB 11p15.4 ENSG00000223609 5.20E-10 -4.98704 

C2orf40 2q12.2 ENSG00000119147 3.24E-06 -4.85811 

LYZ 12q15 ENSG00000090382 3.69E-14 -4.8424 

IGSF10 3q25.1 ENSG00000152580 5.15E-12 -4.7345 

IL8RA 2q35 ENSG00000163464 3.58E-12 -4.68195 

CA4 17q23.1 ENSG00000167434 2.12E-09 -4.56869 

ECM2  9q22.31  ENSG00000106823 1.70E-11 -4.49015 

SYNPO2 4q26 ENSG00000172403 1.91E-08 -4.24155 

CLC 19q13.2 ENSG00000105205 2.06E-14 -4.22914 

WIF1 12q14.3 ENSG00000156076 1.05E-08 -4.21616 

ANGPTL1  1q25.2  ENSG00000116194 9.19E-22 -4.15988 

CTGF 6q23.2 ENSG00000118523 1.20E-08 -4.07801 

HBA1  16p13.3 ENSG00000206172  7.15E-13 -4.07704 

ECM2  9q22.31 ENSG00000106823  4.86E-12 -4.06217 

CLIC5 6p21.1 ENSG00000112782 2.03E-09 -4.01804 

SDR 2q32.3 ENSG00000168497 1.50E-06 -4.01162 

FPR2 19q13.41 ENSG00000171049 1.25E-19 -3.98478 

HBEGF 5q31.3 ENSG00000113070 5.97E-08 -3.95495 

ABCA8 17q24.2 ENSG00000141338 2.31E-18 -3.9473 

CAV1 7q31.2 ENSG00000105974 4.97E-12 -3.94648 

LMBRD1 6q13 ENSG00000168216 2.04E-12 -3.93343 

SELE 1q24.2 ENSG00000007908 8.42E-08 -3.89084 

TCF21 6q23.2 ENSG00000118526 1.21E-13 -3.88908 

AHNAK 11q12.3 ENSG00000124942 2.63E-09 -3.84338 

GPD1 12q13.12 ENSG00000167588 1.71E-11 -3.82156 

OTUD1 10p12.2 ENSG00000165312 2.03E-21 -3.79825 

IL1B 2q13 ENSG00000125538 2.31E-06 -3.79113 

OLFML1 11p15.4 ENSG00000183801 8.60E-12 -3.77525 

CCBE1 18q21.32 ENSG00000183287 2.28E-11 -3.77272 

MRC1  10p12.33  ENSG00000120586  5.67E-11 -3.77094 

AOC3 17q21.31 ENSG00000131471 4.14E-19 -3.73527 

MSRB3 12q14.3 ENSG00000174099 8.43E-15 -3.73301 

GDF10 10q11.22 ENSG00000107623 1.81E-12 -3.70436 

CPE 4q32.3 ENSG00000109472 2.46E-08 -3.70354 

MSR1 8p22 ENSG00000038945 2.44E-11 -3.69612 

SPTBN1 2p16.2 ENSG00000115306 2.26E-14 -3.69206 

PROK2 3p13 ENSG00000163421 7.99E-12 -3.67471 
 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation 
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Table 3. Top upregulated genes in inner tumor compare to normal lung. 

Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

KRT6B 12q13.13 ENSG00000185479 2.62E-32 137.3482997 

 KRT17P1 17p11.2  ENSG00000131885 4.63E-23 101.9028922 

KRT17 17q21.2 ENSG00000128422 2.34E-23 97.59842807 

KRT6A 12q13.13 ENSG00000205420 5.75E-27 91.18385546 

KRT15 17q21.2 ENSG00000171346 2.17E-22 68.89307283 

S100A2 1q21.3 ENSG00000196754 2.17E-20 55.33089972 

KRT5 12q13.13 ENSG00000186081 1.75E-24 51.95136838 

KRT16 17q21.2 ENSG00000186832 9.37E-21 50.06200426 

CALML3 10p15.1 ENSG00000178363 8.59E-23 49.94995011 

PTHLH 12p11.22 ENSG00000087494 6.34E-21 44.79530598 

DSG3 18q12.1 ENSG00000134757 8.83E-21 42.18108798 

KRT14 17p11.2  ENSG00000186847 1.92E-12 41.22537103 

TRIM29 11q23.3 ENSG00000137699 2.45E-27 41.22151786 

CKMT1B  15q15.3  ENSG00000237289  1.65E-33 40.67340403 

GPR87  3q25.1 ENSG00000138271  1.29E-26 40.6721547 

AKR1B10 7q33 ENSG00000198074 7.90E-19 35.80362158 

FNTB 14q23.3 ENSG00000125954 3.39E-25 27.46894584 

FAM83A 8q24.13 ENSG00000147689 2.94E-17 26.38889981 

DST 6p12.1 ENSG00000151914 1.09E-26 26.28945395 

SERPINB5 18q21.33 ENSG00000206075 2.07E-25 26.27429612 

VTCN1 1p13.1 ENSG00000134258 7.76E-19 25.47528147 

SOX2 3q26.33 ENSG00000181449 1.78E-18 25.29739878 

LGALS7B  19q13.2 ENSG00000178934  1.67E-12 24.42788895 

SLC6A8  Xq28  ENSG00000130821  2.70E-36 22.36216573 

TPX2 20q11.21 ENSG00000088325 2.70E-36 21.72252417 

AC022596.6 17p11.2 ENSG00000226145 3.09E-10 21.12563995 

ALDH3A1 17p11.2 ENSG00000108602 7.37E-12 19.88970413 

SERPINB4  18q21.33  ENSG00000206073 5.35E-12 19.4837423 

KRT6C 12q13.13 ENSG00000170465 6.99E-12 19.38524893 

ADH7 4q23 ENSG00000196344 9.44E-15 19.07081661 

CLCA2 1p22.3 ENSG00000137975 2.14E-19 18.99121394 

AKR1C1 10p15.1 ENSG00000187134 1.34E-10 18.51638597 

LY6K  8q24.3 ENSG00000160886 1.20E-19 18.325241 

 IGFBP7  4q12 ENSG00000163453 1.11E-36 18.32179243 

GJB5  1p34.3 ENSG00000189280 3.66E-26 17.51599679 

KRT13  17q21.2  ENSG00000171401  1.15E-11 17.41587712 

KLK6 19q13.41 ENSG00000167755 9.01E-11 16.08513954 

CENPF 1q41 ENSG00000117724 1.59E-42 16.04178315 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location.  
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Table 4. Top downregulated genes in inner tumor compare to normal lung. 
 

Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

AGER  6p21.32  ENSG00000204305  9.71E-33 -79.2911 

SFTPC 8p21.3 ENSG00000168484 1.81E-17 -58.7035 

INMT 7p14.3 ENSG00000106125 2.64E-38 -39.9104 

C7 5p13.1 ENSG00000112936 3.44E-34 -36.9524 

MFAP4 17p11.2 ENSG00000166482 1.76E-39 -33.9663 

SFTPB 2p11.2 ENSG00000168878 3.16E-16 -32.3742 

CLIC5 6p21.1 ENSG00000112782 1.32E-34 -30.7284 

SFTA3 14q13.3 ENSG00000229415 1.81E-25 -30.3843 

AC105046.10 8p21.3 ENSG00000134020 4.15E-21 -29.9423 

C19orf59 19p13.2 ENSG00000183019 3.44E-21 -29.0808 

CACNA2D2 3p21.31 ENSG00000007402 2.45E-25 -28.0355 

A2M 12p13.31 ENSG00000175899 1.18E-39 -27.0021 

FOSB 19q13.32 ENSG00000125740 8.89E-22 -25.7972 

PGC 6p21.1 ENSG00000096088 1.27E-24 -25.682 

WISP2 20q13.12 ENSG00000064205  3.49E-37 -24.8654 

ITLN2  1q23.3  ENSG00000158764  5.00E-19 -23.4193 

MRC1  10p12.33  ENSG00000120586 1.51E-36 -22.8349 

FXYD1 19q13.12 ENSG00000221857 1.55E-37 -22.0589 

VSIG4 Xq12 ENSG00000155659 1.40E-29 -20.3516 

HBB 11p15.4 ENSG00000223609 8.51E-27 -20.3464 

TNNC1 3p21.1 ENSG00000114854 1.49E-25 -20.0629 

DLC1 8p22 ENSG00000164741 8.38E-44 -19.5953 

FCN1 9q34.3 ENSG00000085265 1.52E-34 -19.1559 

ABCA8 17q24.2 ENSG00000141338 2.88E-46 -18.883 

PGM5 9q21.11 ENSG00000154330 5.74E-44 -18.4629 

SFTPA2 10q22.3 ENSG00000185303 4.16E-15 -18.4599 

SFTA2   6p21.33  ENSG00000225454  9.37E-20 -18.445 

CFD 19p13.3 ENSG00000197766 3.28E-27 -18.4153 

GRINL1A 15q21.3 ENSG00000137878 1.17E-30 -17.7111 

SGCA 17q21.33 ENSG00000108823 1.29E-29 -17.6202 

CA4 17q23.1 ENSG00000167434 4.15E-25 -16.695 

FABP4 8q21.13 ENSG00000170323 9.04E-10 -16.5943 

C16orf89 16p13.3 ENSG00000153446 9.25E-24 -16.3112 

NPR1 1q21.3 ENSG00000169418 1.27E-37 -16.2828 

SDR 2q32.3 ENSG00000168497 1.21E-20 -15.9844 

C4BPA 1q32.2 ENSG00000123838 2.12E-16 -15.971 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation 
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Table 5. Top upregulated genes in tumor invasion front compare to normal lung. 
Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

KRT6B 12q13.13 ENSG00000185479 4.30E-34 154.5645 

KRT6A 12q13.13 ENSG00000205420 5.39E-31 137.1149 

 KRT17P1 17p11.2  ENSG00000186831  3.97E-25 118.3397 

AC022596.6 17p11.2 ENSG00000226145 3.97E-20 113.5754 

 KRT17 17p11.2  ENSG00000231645  1.79E-25 108.6275 

KRT17 17q21.2 ENSG00000128422 1.95E-24 97.00643 

KRT16 17q21.2 ENSG00000186832 1.91E-25 84.18846 

KRT15 17q21.2 ENSG00000171346 1.14E-23 70.93647 

DSG3 18q12.1 ENSG00000134757 1.85E-24 60.50598 

S100A2 1q21.3 ENSG00000196754 3.46E-21 53.6924 

 KRT14 17p11.2  ENSG00000226145 2.79E-14 49.67675 

KRT5 12q13.13 ENSG00000186081 8.44E-25 46.63427 

 KRT16  17q21.2 ENSG00000214822  9.35E-17 44.66299 

CKMT1B 15q15.3  ENSG00000237289  1.53E-35 44.03072 

TRIM29 11q23.3 ENSG00000137699 1.95E-28 40.68923 

KRT6C 12q13.13 ENSG00000170465 4.85E-17 39.26701 

CALML3 10p15.1 ENSG00000178363 7.16E-22 38.40687 

KRT13  17q21.2  ENSG00000171401  1.96E-17 38.1287 

SPRR1A  1q21.3  ENSG00000169474 8.18E-16 36.85293 

GPR87 3q25.1  ENSG00000138271 7.81E-27 36.34092 

LGALS7B 19q13.2  ENSG00000178934  2.06E-15 35.20288 

SERPINB5 18q21.33 ENSG00000206075 2.58E-27 28.43915 

SOX2 3q26.33 ENSG00000181449 4.68E-20 28.00406 

PTHLH 12p11.22 ENSG00000087494 2.73E-18 27.25168 

AKR1B10 7q33 ENSG00000198074 2.53E-17 25.45017 

SPRR2D  1q21.3  ENSG00000163216  9.56E-14 25.40704 

DST 6p12.1 ENSG00000151914 1.75E-27 25.23768 

FNTB 14q23.3 ENSG00000125954 2.03E-24 22.39549 

SPRR2A  1q21.3  ENSG00000213166  8.45E-13 22.28788 

VTCN1 1p13.1 ENSG00000134258 2.43E-18 21.21021 

SPRR2A  1q21.3  ENSG00000213166  4.16E-13 20.66738 

GJB5  1p34.3  ENSG00000189280 7.28E-29 20.16415 

CLCA2 1p22.3 ENSG00000137975 1.29E-20 19.58683 

ADH7 4q23 ENSG00000196344 3.21E-15 18.21506 

COL17A1 10q25.1 ENSG00000065618 9.88E-14 18.13308 

FAM83A 8q24.13 ENSG00000147689 3.37E-15 17.67467 

AKR1C1 10p15.1 ENSG00000187134 7.47E-11 17.38196 

ALDH3A1 17p11.2 ENSG00000108602 1.29E-11 17.09044 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location.  
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Table 6. Top downregulated genes in tumor invasion front compare to normal lung. 

Symbol Mapping EnsEMBL.ID adj.P.Val Lin Fc 

AGER  6p21.32  ENSG00000204305  1.14E-29 -46.8989 

MFAP4 17p11.2 ENSG00000166482 6.77E-43 -40.7799 

INMT 7p14.3 ENSG00000106125 6.21E-37 -30.5934 

FOSB 19q13.32 ENSG00000125740 6.9E-22 -23.7059 

A2M 12p13.31 ENSG00000175899 6.2E-39 -22.6565 

C7 5p13.1 ENSG00000112936 1.17E-30 -22.2781 

WISP2  20q13.12  ENSG00000064205 8.79E-37 -21.3595 

CLIC5 6p21.1 ENSG00000112782 7.64E-32 -21.1094 

FXYD1 19q13.12 ENSG00000221857 5.37E-37 -18.9306 

ITLN2  1q23.3  ENSG00000158764 3.66E-18 -18.7364 

NR4A1 12q13.13 ENSG00000123358 1.83E-24 -17.2841 

MRC1  10p12.33  ENSG00000120586  2.53E-34 -16.9544 

PGC 6p21.1 ENSG00000096088 3.59E-21 -16.5795 

DLC1 8p22 ENSG00000164741 6.77E-43 -16.3804 

ICAM1 19p13.2 ENSG00000090339 5.51E-23 -16.3034 

ABCA8 17q24.2 ENSG00000141338 5.64E-46 -16.2486 

PGM5 9q21.11 ENSG00000154330 2.62E-43 -15.7244 

FMO2  1q24.3  ENSG00000094963  5.32E-24 -15.5785 

CA4 17q23.1 ENSG00000167434 2.89E-25 -15.5427 

GRINL1A 15q21.3 ENSG00000137878 1.03E-29 -15.3252 

HBB 11p15.4 ENSG00000223609 6.62E-25 -15.2867 

C19orf59 19p13.2 ENSG00000183019 1.03E-16 -15.109 

TNNC1 3p21.1 ENSG00000114854 1.34E-23 -14.9554 

CXCL12 10q11.21 ENSG00000107562 1.75E-25 -14.8765 

VSIG4 Xq12 ENSG00000155659 6.76E-27 -14.4312 

CACNA2D2 3p21.31 ENSG00000007402 4.55E-20 -14.3696 

ADH1B 4q23  ENSG00000196616  3.4E-13 -14.2711 

SFTPC 8p21.3 ENSG00000168484 7.83E-10 -14.2423 

FABP4 8q21.13 ENSG00000170323 2.21E-09 -14.2014 

FBLN5 14q32.12 ENSG00000140092 3.12E-37 -13.9026 

ZBTB16 11q23.2 ENSG00000109906 2E-26 -13.8517 

DUSP1 5q35.1 ENSG00000120129 1.96E-30 -13.5759 

F13A1 6p25.1 ENSG00000124491 6.15E-16 -13.3616 

ANGPTL1  1q25.2 ENSG00000116194  1.27E-46 -13.1252 

SFTA3 14q13.3 ENSG00000229415 1.69E-18 -12.8797 

IL6 7p15.3 ENSG00000136244 1.21E-13 -12.8604 

F13A1 6p25.1 ENSG00000124491 3.66E-23 -12.6628 

SGCA 17q21.33 ENSG00000108823 1.44E-26 -12.348 

 

adj.P.Val: adjusted P value; Lin FC: linear fold change; Mapping: Chromosomal 

gene location. Minus sign means down regulation 
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Table 7. Downregulated microRNAs in inner tumor cells. 

microRNA q.value Fold Change 

hsa-miR-190 0.009940101 -6.58953 

hsa-miR-451 0.001457199 -6.17 

hsa-let-7e 0.013974043 -5.62798 

hsa-miR-135a 0.005724506 -4.29444 

hsa-miR-194 0.045831708 -4.19197 

hsa-miR-15a 0.020403062 -4.00488 

hsa-miR-338 0.020538837 -3.9441 

hsa-miR-125b 0.000988138 -3.89715 

hsa-miR-143 0.002782112 -3.71458 

hsa-miR-199b 0.011148548 -3.64453 

hsa-miR-501 0.023413255 -3.56648 

hsa-miR-30e-5p 0.001844947 -3.51801 

hsa-miR-486 0.001457199 -3.3031 

hsa-miR-565 0.020806392 -3.21053 

hsa-miR-335 0.002511387 -3.0568 

hsa-miR-133a 0.00168233 -2.79899 

hsa-miR-195 0.001457199 -2.78938 

hsa-miR-497 0.001599137 -2.54194 

hsa-let-7c 0.001844947 -2.50758 

hsa-miR-339 0.032638191 -2.49983 

hsa-miR-23b 0.008995752 -2.49749 

hsa-miR-101 0.002884265 -2.44876 

hsa-miR-145 0.001457199 -2.37872 

hsa-miR-134 0.045860635 -2.28879 

hsa-miR-29a 0.001969757 -2.27967 

hsa-miR-199a 0.019735528 -2.19765 

hsa-miR-223 0.006086033 -2.18971 

hsa-miR-142-5p 0.005133286 -2.18146 

hsa-miR-199a 0.02429884 -2.12823 

hsa-miR-99a 0.002515456 -2.09845 

hsa-miR-30a-5p 0.005475354 -2.05929 

hsa-miR-100 0.002511387 -2.03477 

hsa-miR-192 0.013587897 -2.03461 

hsa-miR-130a 0.009957273 -2.00025 
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Table 8. Downegulated microRNAs in tumor invasion front. 

microRNA q.value Fold Change 

hsa-let-7e 0.022512 -10.37096244 

hsa-miR-190 0.043505 -8.052713881 

hsa-miR-15a 0.02554 -7.045229688 

hsa-miR-451 0.003718 -6.021546746 

hsa-miR-501 0.023938 -5.52870941 

hsa-miR-199b 0.017845 -5.351641225 

hsa-miR-135a 0.011582 -5.331926504 

hsa-miR-134 0.024891 -5.23701634 

hsa-miR-125b 0.000332 -4.691462046 

hsa-miR-143 0.009567 -3.78046963 

hsa-miR-30e-5p 0.002753 -3.71462856 

hsa-miR-199a 0.006856 -3.687690514 

hsa-miR-486 0.001281 -3.23075016 

hsa-miR-335 0.004593 -3.060529808 

hsa-miR-23b 0.011016 -3.017293587 

hsa-miR-195 0.000683 -2.964220227 

hsa-let-7c 0.000566 -2.758378365 

hsa-miR-145 0.000332 -2.707176583 

hsa-miR-133a 0.002018 -2.70704494 

hsa-miR-497 0.000631 -2.578576022 

hsa-miR-130a 0.002018 -2.557047222 

hsa-miR-101 0.002789 -2.522172459 

hsa-miR-10a 0.002011 -2.472195003 

hsa-miR-29a 0.000607 -2.417566908 

hsa-miR-22 0.003202 -2.368991372 

hsa-miR-99a 0.000332 -2.361222156 

hsa-let-7f 0.024891 -2.263648988 

hsa-miR-30a-5p 0.002819 -2.180092544 

hsa-miR-99b 0.001078 -2.141361999 

hsa-miR-125a 0.000332 -2.138887256 

hsa-miR-100 0.000332 -2.127458597 

hsa-miR-214 0.032308 -2.08985287 

hsa-let-7a 0.006538 -2.058469683 

hsa-miR-29c 0.002018 -2.039642777 

hsa-let-7b 0.002011 -2.035463783 

hsa-miR-218 0.003718 -2.018435681 

hsa-miR-142-5p 0.026613 -2.017714222 
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Figure 1.  
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