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Abstract

Hot and Dense Matter in Compact Stars – From Nuclei to Quarks

This dissertation deals with the equation of state of hot and dense mat-

ter in compact stars, with special focus on first order phase transitions.

A general classification of first order phase transitions is given and the

properties of mixed phases are discussed. Aspects of nucleation and

the role of local constraints are investigated. The derived theoretical

concepts are applied to matter in neutron stars and supernovae, in the

hadron-quark and the liquid-gas phase transition.

For the detailed description of the liquid-gas phase transition a new

nuclear statistical equilibrium model is developed. It is based on a ther-

modynamic consistent implementation of relativistic mean-field inter-

actions and excluded volume effects. With this model different equation

of state tables are calculated and the composition and thermodynamic

properties of supernova matter are analyzed. As a first application

numerical simulations of core-collapse supernovae are presented.

For the hadron-quark phase transition two possible scenarios are

studied in more detail. First the appearance of a new mixed phase

in a proto neutron star and the implications on its evolution. In the

second scenario the consequences of the hadron-quark transition in core-

collapse supernovae are investigated. Simulations show that the appear-

ance of quark matter has clear observable signatures and can even lead

to the generation of an explosion.
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Zusammenfassung

Heiße und Dichte Materie in Kompakten Sternen – Von Kernen zu

Quarks Diese Dissertation beschäftigt sich mit der Zustandsgleichung

heißer und dichter Materie in kompakten Sternen, mit besonderem

Fokus auf Phasenübergänge erster Ordnung. Zunächst werden diese all-

gemein klassifiziert und die Eigenschaften von gemischten Phasen disku-

tiert. Anschließend werden Aspekte der Nukleation und die Rolle von

lokalen Zwangsbedingungen untersucht. Die erarbeiteten theoretischen

Konzepte werden dann auf Materie in Neutronensternen und Super-

novae im Hadron-Quark- und flüssig-gas-Phasenübergang angewandt.

Zur detaillierten Beschreibung des flüssig-gas-Phasenübergangs wird

ein neues nukleares statistisches Gleichgewichtsmodell entwickelt. Dieses

basiert auf einer thermodynamisch konsistenten Implementierung von

relativistischen Mittel-Feld-Wechselwirkungen und Ausgeschlossenem-

Volumen-Effekten. Mit diesem Modell werden verschiedene Zustands-

gleichungs-Tabellen berechnet und die Zusammensetzung und thermo-

dynamischen Eigenschaften von Supernova-Materie untersucht. Die

Ergebnisse werden mit anderen bestehenden Modellen verglichen. Als

erste Anwendung werden numerische Simulationen von Kernkollaps-

Supernovae präsentiert.

Für den Hadron-Quark-Phasenübergang werden zwei mögliche Sze-

narien detaillierter betrachtet. Zum einen das Auftreten einer neue

gemischte Phase in einem Proto-Neutronenstern und die zugehörigen

Auswirkungen auf dessen Entwicklung und Stabilität. In einem an-

deren Szenario werden die Konsequenzen des Hadron-Quark-Übergangs

in Kernkollaps-Supernovae untersucht. Simulationen zeigen, dass das

Auftreten von Quarkmaterie mit klaren beobachtbaren Signaturen ver-

bunden ist und sogar zur Entwicklung einer Explosion führen kann.
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Chapter 1

Introduction

In 2003, the Committee on the Physics of the Universe, which is part of the National

Academies of the USA, published a book with the title “Connecting Quarks with the

Cosmos - Eleven Science Questions for the New Century” [CotPotU03]. Most of the

eleven questions deal with aspects of cosmology, extensions of the Standard Model and

its connection to gravity. However, at least two of the questions are directly related to

the main theme of this thesis: the properties of hot and dense matter in the context of

compact stars. These two questions are:

“What Are the New States of Matter at Exceedingly High Density and Temperature?

Computer simulations of quantum chromodynamics (QCD) have provided evidence

that at high temperature and density, matter undergoes a transition to a state known as

the quark-gluon plasma. The existence and properties of this new phase of matter have

important cosmological implications. Quark-gluon plasmas may also play a role in the

interiors of neutron stars. ... X-ray observations of neutron stars can shed light on how

matter behaves at nuclear and higher densities, providing insights about the physics of

nuclear matter and possibly even of new states of matter.”

“How Were the Elements from Iron to Uranium Made?

While we have a relatively complete understanding of the origin of elements lighter

than iron, important details in the production of elements from iron to uranium remain a

puzzle. A sequence of rapid neutron captures by nuclei, known as the r-process, is clearly

involved, as may be seen from the observed abundances of the various elements. Super-

nova explosions, neutron-star mergers, or gamma-ray bursters are possible locales for

this process, but our incomplete understanding of these events leaves the question open.

Progress requires work on a number of fronts. More realistic simulations of supernova

explosions and neutron star mergers are essential; they will require access to large-scale

7
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computing facilities. In addition, better measurements are needed for both the inputs and

the outputs of these calculations.”

These two questions are part of the motivation for this thesis. To put the two

questions and the thesis into the appropriate context we want to give an introduction

into nuclear astrophysics, nucleosynthesis, stellar evolution and the physics of compact

stars. It will also become clear in more detail how the topics of this thesis are connected

to the two questions.

1.1 Primordial Nucleosynthesis

At a time of 10−5 s after the Big Bang, at a temperature of ∼ 190 MeV the QCD phase

transition was reached. Before, matter consisted of elementary particles in the so-called

quark-gluon-plasma, which is a strongly interacting mixture of free quarks, leptons and

photons. After this phase transition the quarks have been confined to hadrons in form

of baryons and mesons. At a temperature of 1 MeV, corresponding to the time of 1 s, all

mesons decayed and besides electrons, positrons and photons only neutrons and protons

remained.

From this point in time on we want to follow the evolution of the baryonic part of the

matter in the universe in more detail. In equilibrium, the ratio of neutrons to protons

is given by their mass difference ∆ of 1.29 MeV:

nn/np = e−
∆

T . (1.1)

For temperatures much larger than 1 MeV, this ratio is equal to unity, for T = 1 MeV

one obtains nn/np = 0.28.

However, already at T = 0.8 MeV the typical weak reaction rates fall below the ex-

pansion rate of the universe, and thus weak equilibrium is not established any more. As

the neutron lifetime is rather long, τn ∼ 890 s, at this temperature the neutron abun-

dance freezes out with a value nn/np ∼ 0.2. At the same time the nuclear reactions set

in. Necessarily the first reaction has to be the production of deuterons. As the deuteron

is only weakly bound, for T ≫ 0.1 MeV the deuterons are immediately destroyed after

their production by photodisintegration. Only below T = 0.1 MeV sufficiently many

deuterons survive to be further processed to 4He alpha particles.

At three minutes after the Big Bang and T ∼ 0.01 MeV the end of the primordial

nucleosynthesis is reached. Almost all the neutrons which did not decay (nn/np ∼ 0.13)
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Figure 1.1: The abundance of nuclei by mass number relative to the abundance of silicon as
106 in the solar system. Data taken from www.webnucleo.org.

are bound to alpha particles, which fixes the alpha particle mass fraction:

Xα =
4nα

nB

=
2nn

nB

= 0.24 , (1.2)

where nα, nn and nB denotes the number density of alphas, neutrons and baryons

respectively. Matter after the primordial nucleosynthesis is composed of mainly 76%

protons and 24% alphas. In addition only small traces of 3He and D in the order of

10−5 − 10−4 have been produced. A tiny amount of 7Li in the order of 10−10 − 10−9

is also formed. The primordial production of all heavier elements is truly negligible, as

there are no stable isotopes with A = 5 and A = 8, and also because the thermal energies

are too low to overcome the increasing Coulomb barrier. We note that these estimated

numbers are in agreement with detailed numerical calculations and measurements in old

stars and metal-poor gas clouds.

1.2 Today’s Element Abundances

The products of the primordial nucleosynthesis represent the initial fuel for the nuclear

fusion in stars. The quest of nucleosynthesis is to explain the element abundances

which we find in our solar system today as shown in Fig. 1.1. In the context of stellar

nucleosynthesis, usually all elements above helium are called “metals”. The fraction of

metals, the “metallicity” is an indication of the age of the star, as will become clear in the

following. Obviously, the first stars of the universe had the vanishingly small metallicity

of the primordial nucleosynthesis. We observe that the fraction of hydrogen and helium

today is still rather similar as in the early universe. However, it is of fundamental
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Figure 1.2: The binding energy of nuclei as a function of mass number A. Shown are experi-
mentally measured values of Ref. [AWT03].

relevance to understand the origin of the small fraction (in the order of percent) of the

metals, i.e. all the other elements.

The abundance pattern is closely connected to the binding energy of nuclei, which is

depicted in Fig. 1.2 for nuclei which have been studied in the laboratory. The binding

energy per nucleon has its maximum value for 62Ni. But the nucleus with the lowest

energy per nucleon including the rest-mass term is 56Fe. Thus 56Fe is the most stable

nucleus. Starting from the initial cosmic fuel consisting of hydrogen and helium, energy

can be gained by nuclear fusion until the maximum of the binding energy around A = 60

is reached. However, we find elements up to 238U here on earth and in our solar system.

As the production of heavier elements than nickel is endothermic, one can expect that

there are different physical processes which are involved in the nucleosynthesis.

1.3 Star Formation

The stellar nucleosynthesis and the cycle of matter can be described starting from a cloud

of interstellar material, i.e. a mixture of mainly primordial hydrogen and helium and a

small fraction of heavier elements in form of atoms, molecules and dust, represented by

the violet cloud in Fig. 1.3. Figure 1.4 shows a real image taken with the Hubble Space

Telescope of a typical star formation region around the star cluster NGC 3603 in the

Milky Way, approximately 20,000 light-years away from our solar system. One can see

pillars of dust and gas (Letter A in the figure) which are formed by the interaction with

the young stars in the center of the picture.

According to the virial theorem, a cold cloud of interstellar material will collapse

under its own gravitational weight if the gravitational energy exceeds twice the kinetic
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Figure 1.3: The cosmic cycle of matter.
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Figure 1.4: Hubble Space Telescope image (true-color) of the giant galactic nebula NGC 3603,
22,000 light-years away from our solar system. A: Gaseous pillars of interstellar
material. B: Bok globules: early stages of star formation. C: Gas and dust
evaporation from protoplanetary disks. D: Starburst cluster dominated by young,
hot Wolf-Rayet stars and early O-type stars. E: Evolved blue supergiant Sher 25
with circumstellar ring and bipolar outflows of chemically enriched material.



Introduction 13

energy. This step is depicted by Arrow 1 in Fig. 1.3. An adiabatic collapse follows,

which leads to compression and heating of the matter. The small black clouds, called

the Bok globules, close to Letter B in Fig. 1.4 show an early stage of this collapse.

The bulk part of the matter in the collapsing cloud will be bound in the central

star. A small fraction of the matter can remain in the environment around the star

and may evolve to a protoplanetary disk (proplyd). The two compact, tadpole-shaped

emission nebulae at Letter C are interpreted as gas and dust evaporation from such

protoplanetary disks. Finally, the proplyds may evolve further to a planetary system

(Arrows 2 and 3 in Fig. 1.3). Five billion years ago, our own solar system may have

looked very similar like the small nebula in Fig. 1.4 C.

1.4 Main Sequence Stars

The temperature in the cloud depends on the collapsing mass and will be the highest

in the center, due to the largest compression. For masses greater than 0.1 M⊙ the core

temperature will exceed 107 K, the critical temperature for which hydrogen burning

starts. At this point the high energy tail of the thermal distribution of the hydrogen

nuclei becomes large enough to overcome the Coulomb barrier between two protons to

form a deuteron in a weak reaction process. In the so-called pp-chain, 4 protons and

electrons are burned to an alpha particle, two electrons and two neutrinos. In one such

fuel cycle an energy of 26.7 MeV is released, of which an average of 0.26 MeV is directly

carried away by the freely escaping neutrinos. The burning energy heats up the star,

further enhances the reaction rate and increases the thermal pressure until a new secular

equilibrium is reached.

The bottle-neck of the pp-chain is the fusion to deuteron, due to the very small

weak reaction cross-section σ < 10−21 fm2. This stabilizes the reaction and allows

for quasi-static burning. As a consequence, our sun will continue hydrogen burning in

the form it does today for the next five billion years. Depending on its mass, a star

will spend the longest time of its life in this static burning phase as a so-called main-

sequence star. The group of blue stars in the center of Fig. 1.4 at Letter D is a so-called

starburst cluster dominated by young, hot Wolf-Rayet stars and early main-sequence

O-type stars. At Letter E we see the evolved blue supergiant called Sher 25 which has

a unique circumstellar ring of glowing gas.

When the hydrogen in the core is exhausted, the star will further contract until

helium burning is ignited for stars more massive than 0.25 M⊙. In this process three
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alpha particles are burned to a carbon nucleus. After helium has been ignited, the

hydrogen burning continuous in a layer around the core, which is called hydrogen shell

burning. Depending on the mass, further burning stages will be reached in which oxygen,

neon, magnesium and silicon are produced and burnt to heavier elements. Massive stars

will develop an onion-like structure during their evolution. The last possible stage is

silicon burning which requires a mass larger than 10 M⊙. The ash of silicon burning

consists of iron-like nuclei which accumulate in the core and cannot be processed further.

The nuclei which are involved in the burning chains represent the main outcome of

the stellar nucleosynthesis. However, in small portions also other nuclei are produced,

including even nuclei beyond iron. Even though the production of heavier nuclei requires

energy, there is a way how to form them as a by-product of the stellar nucleosynthesis

in the so called s-process. The s-process operates in stellar evolution during helium

and carbon burning. “s” abbreviates slow neutron captures. In the s-process neutron

captures take place at a rate which is much smaller than the beta-decay rate of the

nucleus which is formed after the neutron capture. Immediate beta decay follows, until

a stable nucleus is reached. By further subsequent neutron captures and beta decays,

heavier elements can be produced along the line of stability. It turns out that the

s-process gives characteristic abundance patterns, which alone do not agree with the

observed element abundances as shown in Fig. 1.1. Furthermore, nuclei with A > 209

undergo very fast alpha decay which suppresses the production of heavier elements by

slow neutron captures.

1.5 Explosive Nucleosynthesis

Three nuclei with A > 209 are found in the solar system and on earth, which are 232
90Th,

235
92U and 238

92U. The existence of these nuclei and the deviations of the s-process patterns

from the observed abundances require that there are additional nucleosynthesis pro-

cesses. To reach these heavy elements, neutron captures must take place on a timescale

which is much shorter than the decay time of the nuclei. A huge neutron flux is required

to enable such rapid neutron captures. Thus this process is called the r-process, with

“r” standing for rapid. Roughly half of the elements above iron are produced in the

r-process. Neutron captures are possible until the neutron dripline is reached, where the

neutron separation energy becomes positive. Eventually, the formed nuclei which are

located at the dripline will decay to the line of stability. The outcome are r-process abun-

dance patterns with characteristic features which depend on the neutron mass fraction,

the temperatures and the involved time-scales. Since the beginning, core-collapse super-
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novae are thought to be the ideal candidates for the location of the r-process. However,

as noted in the second question, until today it is not clear which astrophysical system

actually provides the conditions for a successful r-process.

Besides the r-process another nucleosynthesis process has to exist, as e.g. the existence

of three stable isobars for certain mass numbers leads to shielded nuclei which neither

can be formed by the r- nor the s-process. This additional process is called the p-process

because it deals with the synthesis of nuclei on the proton rich side. Typically 1% of the

total element abundance are synthesized by the p-process. These nuclei can be produced

by photodisintegration in which a photon is captured and a neutron or alpha-particle is

emitted. One thinks that the p-process occurs in explosive neon-oxygen burning in the

outer part of core collapse supernovae. In addition there is the rp-process, which involves

direct rapid proton-captures. It is expected to take place in X-ray bursts. However, it

is not clear how these systems can eject matter into the interstellar medium.

Even with these four processes one cannot explain the strong abundance of light

proton-rich nuclei. The observations indicate a lighter element primary process (LEPP).

Only very recently the so-called νp-process has been discovered [FML+06]. Progress in

core-collapse supernova simulations revealed slightly proton-rich conditions in the early

phase of the neutrino wind. Anti-neutrino captures on free and bound protons permit

to move upward to nuclei with A < 100. For more details about nucleosynthesis we refer

to the recent review article [TDF+10].

1.6 The Death of a Star

Every star will finally reach the point where all its burnable fuel is exhausted. This

lead to the death of the ordinary burning star and at the same time to the birth of an

extremely dense compact star. Depending on its mass, one expects three very different

scenarios to happen. For stars below 8 M⊙ a white dwarf forms. More massive stars

will collapse to a neutron star. If the progenitor is more massive than 20 M⊙ the mass

of the core may exceed the possible maximum mass of a protoneutron star. Then the

star further collapses to a stellar black hole.

1.7 White Dwarfs

For stars below 8 M⊙, silicon burning is not reached. Usually a mixture of carbon,

nitrogen and oxygen (CNO) accumulates in the core. When the star approach its end,
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the outer hydrogen and helium layers are significantly blown up due to shell burning.

The star increases in size and becomes a red giant (Arrow 4 in Fig. 1.3).

Eventually, the CNO core will further contract until it is stabilized again by the

degeneracy pressure of electrons (Arrow 6). The outer layers further expand and are

finally observed as a planetary nebula. The matter of the outer layers which has partly

been processed by the stellar nucleosynthesis to a higher metallicity is ejected back into

the interstellar space (Arrow 7). The remaining CNO core has a size of roughly 10,000

km and a mass of 1 to 1.4 M⊙. It cools by photon-emission and is observed as a white

dwarf (Arrow 8). The central density in a white dwarf is in the order of 107 g/cm3 and

has an initial temperature of roughly 108 K ∼ 0.01 MeV.

1.8 Core-Collapse Supernovae

For stars more massive than 8 M⊙, an iron core forms in the center, which finally

collapses under its own weight, leading to a core-collapse supernova (Arrow 9). An

enormous amount of gravitational energy of 1053 erg is released. Roughly 1 % of this

energy has to be transferred into kinetic energy to power the stellar explosion. One of

the initial ideas for the explanation of the supernova phenomenon was a direct bounce of

the core. In this scenario the nuclear matter in the center compresses during the initial

collapse until the large compressibility above saturation density leads to the formation

of an outgoing shock wave. The shock wave further accelerates and finally triggers the

explosion and ejection of the outer layers. The biggest part of the mass of the star is

ejected back into the interstellar space (Arrow 11).

However, the idea of a direct bounce does not work in realistic simulations. So far,

even the most comprehensive numerical studies of core-collapse supernovae have difficul-

ties to achieve successful explosions within the progenitor mass range 10 M⊙ ≤Mprog ≤

15 M⊙. Explosions in spherical symmetry where accurate three-flavor Boltzmann neu-

trino transport can be applied, have only been obtained for an 8.8 M⊙ O-Ne-Mg-core

[KJH06, FWM+09]. The correct treatment of neutrino transport and weak reactions

shows that the shock continuously looses energy by dissociation of heavy nuclei and the

emitted neutrinos. The outgoing shock converts into a standing accretion front. The

supernova mechanism, which is needed to transform the released gravitational binding

energy into an explosion with matter ejection, appears to be much more complex than

expected. It represents an outstanding challenge for our current understanding of physics

and modeling capabilities.
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Multidimensional effects as convection and/or increased neutrino-heating behind

the shock may help to revive the shock wave. In general, multidimensional simula-

tions are expected to achieve explosions, but they are computationally very expensive

[BDM+06, JMMS08, MJ09]. In more detail, several explosion mechanisms are proposed

from different groups: the neutrino-driven [BW85] the magneto-rotational [LW70, Bis71]

or the acoustic mechanisms [BLD+06]. In addition to multidimensional effects and the

aforementioned mechanisms, an improved equation of state, uncertainties in the neutrino

opacities and missing nuclear effects could help to revive the shock wave and finally trig-

ger the explosion.

Since very long core-collapse supernovae have been seen as the ideal candidates to

provide conditions for a successful explosive nucleosynthesis. One expects that they con-

tain hot neutron-rich material which is ejected with high velocities. Furthermore, they

are frequent and energetic enough to explain the robustness of the observed abundance

patterns. In more detail, the later, neutron-rich high entropy phase of the neutrino wind

seems to be the most promising site. However, given the difficulties of the simulations to

achieve explosions, self-consistent predictions of core-collapse supernova nucleosynthesis

are not possible at the moment. To circumvent this problem one can trigger the ex-

plosion artificially e.g. by enhancing neutrino heating rates or by depositing additional

energy in the core. This makes sense and is fully correct for the outer stellar layers

where the p-process takes place, but is incorrect for the innermost layers with the r- and

νp-process, which are directly related to the physical explosion mechanism. In general

the outcome of the nucleosynthesis and especially the amount of mass which is ejected

will depend on the way how the artificial explosion is triggered. In conclusion, the un-

derstanding of the supernova mechanism is of great interest by itself but also an essential

step to finally answer the second question.

1.9 Neutron Stars

In the progenitor mass range of 8 to 20 M⊙ an extreme new state of matter is formed

in the center of the core-collapse supernova. The degeneracy pressure of the electrons is

not sufficient to stop the collapse of the core. The densities become so extremely large

that the nuclei are dissolved into uniform nuclear matter or even quark matter. Finally,

the nuclear interactions and the degeneracy of the nucleons balance the gravitational

force again. A neutron star is formed (Arrow 10). During the first ten seconds, in

the initial hot stage of the evolution where neutrinos are trapped, one usually calls it

a protoneutron star. The neutron star initially cools by neutrinos until at 105 years
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photon cooling takes over. Neutron stars have typical massess of 1 to 2 M⊙ and radii

of 10 to 20 km which makes them to the densest objects of the universe besides black

holes. The density in the center of a neutron star may even exceed 1015 g/cm3.

The existence of neutron stars had first been postulated by Landau in 1932 [Lan32].

Baade and Zwicky formulated the idea more precisely in 1934 and even conjectured that

they may be born in a supernova [BZ34b, BZ34a]. It took more than 30 years until

the existence of neutron stars could be confirmed. Unexpectedly, observations in the

radio band lead to the discovery of the first neutron star in the form of a pulsar in

1967 by Jocelyn Bell and Anthony Hewish [HBP+68]. Accidentaly, this group detected

a mysterious pulsating source with a very stable frequency of 1,377 ms. Very quickly

the origin of the signal could be identified as a rapidly rotating neutron star with a

strong magnetic field. In the so-called lighthouse model of Gold [Gol68], the radio-signal

is explained in the following way: Due to the conservation of the magnetic flux the

magnetic field strength can be increased significantly in the stellar collapse and may

easily exceed 1013 G in the neutron star. The strong magnetic fields accelerate charged

particles which leads to beamed electromagnetic radiation in direction of the magnetic

field axis. In general the magnetic field axis is not alined with the rotation axis. If

an observer is in the line of sight of one of the rotating radiation cones he observes a

pulsating radio signal with the frequency of the rotation frequency. Until today, the

radio signal of pulsars belongs to the most important observables of neutron stars and

several thousands of radio-pulsars have been identified.

The rotation frequency is so stable and so well understood, that pulsar timing can

exceed the preciseness of an atomic clock. If the pulsar is in a binary system, one can

deduce the orbital size and period and the total mass of the system. If the system is

compact enough general relativistic effects and the emission of gravitational waves even

allow to determine the separate masses of the two objects. For some pulsars like the

Hulse-Taylor pulsar this can be done so precisely, that the pulsar signal serves as a test

of general relativity. The analysis of the Hulse-Taylor pulsar represents the first indirect

measurement of gravitational waves, for which Hulse and Taylor received the Nobel prize

in 1993. Today, the combined analysis of the timing of several pulsars is also used as

a galactic detector of gravitational waves of cosmological origin. So far no signal was

detected, which gives an upper limit for the maximum amplitude of gravitational waves

in the corresponding frequency band.

Besides in radio, nowadays neutron stars are observed in the optical, X-ray and

γ-ray spectrum. Their are many pulsars with well determined mass, however until

today there is no reliable direct measurement of the tiny radii of neutron stars which
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can be several thousands of lightyears away. It is not possible to deduce the radius of

a compact star from the radio signal. Thus the observation in the other bands give

important complementary information. For some neutron stars which are in accreting

binary systems, so called X-ray bursters, it is possible to deduce the radius based on

certain model assumptions. Quite recently in Ref. [SLB10] for the first time a bayesian

analysis of several objects was used to get constraints for the mass and radius of neutron

stars.

Compact stars provide conditions which cannot be produced in terrestrial laborato-

ries. Compact stars serve as cosmic laboratories for matter at extreme densities, which

give complementary information compared to heavy-ion reactions and lattice data. From

the opposite point of view, there is of course the fundamental interest to explain the

astronomical observations of compact stars with theoretical models.

1.10 Compact Stars and Nucleosynthesis

In Figure 1.3 the remaining compact objects are noted as the “cosmic graveyard”, which

is misleading from our perspective. Compact stars still can participate in the evolution of

the universe and the cosmic cycle of matter. Besides supernovae, also neutron stars and

white dwarves may give an important contribution to the observed abundance patterns

of the chemical elements. Compared to supernovae, the low proton fraction in neutron

star mergers seem to favor a successful r-process. On the other hand, such events are

much more rare (every 105 years in the Milky way) and less matter is ejected back

into space. If a white dwarf ends up in a binary system and accretes matter from the

companion star, it might exceed its maximum mass limit. Explosive carbon and oxygen

burning sets in, which leads to the complete disruption of the star. This energetic event

is observed as a supernova Ia, which also contribute to the nucleosynthesis.

1.11 The Cycle of Matter

In all possible scenarios for the death of the star, the bulk part of the matter is ejected

back into space, where it serves again as fuel for the next star formation process. After

one of these cycles, the matter has partly been processed in the nucleosynthesis processes

and has been enriched with metals. In Figure 1.4 the ring and the bipolar outflows at

Letter E (blobs to the upper right and lower left of the star) show such processed ejected

matter. The color difference between the supergiant’s outflow and the diffuse interstellar
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medium in the giant nebula dramatically visualizes the enrichment in heavy elements

due to synthesis of heavier elements within stars.

1.12 The Equation of State

Almost all simulations and calculations of the previously mentioned scenarios require

thermodynamic information in form of an equation of state (EOS) as an essential input.

The EOS contains the interactions of the constituent particles and gives the connec-

tion between microphysics and macrophysics. Also to perform simulations of supernova

explosions or neutron stars, the thermodynamic properties of matter under the corre-

sponding conditions have to be known. Thus the second question is actually very much

connected to the first one. For example to study nucleosynthesis in a core-collapse su-

pernova one first has to construct an EOS which requires certain assumptions for the

answer to the first question.

Usually the EOS is calculated for a uniform, infinite thermodynamic system. Such

a bulk EOS can contain a thermodynamically unstable region, which leads to a first

order phase transition, occurrence of phase separation and thus to the formation of a

mixed phase with two phases in coexistence. First order phase transitions are especially

interesting because they can lead to extreme effects with clear observable signatures

which could help to reveal the true answer to the first question.

It is fascinating that the conditions in typical core-collapse supernovae extend over

the huge range from zero to several times saturation density, and temperatures from

0 to 100 MeV, which corresponds to roughly 1012 K. These conditions range from the

hadron-quark phase transition down to the occurrence of ordinary nuclei. The high

density part of the EOS controls the formation of the central core which evolves to a

protoneutron star or a black hole. It fixes the gravitational energy which is available

for the explosion. But also the low density part plays a crucial role, because there the

standing accretion front needs to be transformed into an accelerating shock to launch

the explosion. We note that matter in cold compact stars may reach larger densities and

larger neutron to proton asymmetries, but otherwise the EOS of cold compact stars is

just a special subcase of the most general supernova EOS. Depending on its accuracy, a

supernova EOS can also be used for the description of white dwarfs, accretion in binary

systems and mergers of compact stars.



Introduction 21

1.13 Themes of the Thesis

In this thesis we study the properties of matter in supernovae and compact stars. The

physics of compact stars is a wide field of research with an interesting combination of

theory, terrestrial experiments and astronomical observations. Furthermore, in these

astrophysical objects there is an exciting interplay of quite many and very different

physical effects: general relativity, quantum physics, magnetic fields, rotation, super-

conductivity, hydrodynamics, neutrino physics, weak interactions, QCD, nuclear physics,

solid state physics or thermodynamics, just to mention a few. In this thesis we mainly

deal with the thermodynamic and nuclear physics aspects of the (supernova) equation

of state. Thus we will not address the second question directly. We only deliver the

theoretical background which may help to realize the call in the last sentence: “More

realistic simulations of supernova explosions and neutron star mergers are essential.”

Due to the extreme densities which occur in compact stars we necessarily have to

address question number one. Our focus lies on the possible occurrence of first or-

der phase transitions, e.g. to the quark-gluon-plasma, and their correct thermodynamic

description. Later we will present two exciting examples for the implications of the

phase transition to quark matter in a protoneutron star and a core-collapse supernova.

Interestingly, many thermodynamic properties of first order phase transitions can be

described rather universal so that the same concepts can be applied to different systems.

These general aspects of first order phase transitions are also elaborated in the thesis.

The detailed study of the thermodynamics of first order phase transitions also lead to

the discovery of some new effects which have not been discussed in the literature to

compact stars so far.

At the moment there exist only two realistic EOSs which can be applied in the

context of core-collapse supernovae. The reasons for this are the big number of different

nuclear effects which come together and the huge parameter range which has to be

covered. Furthermore, the calculation of supernova equation of state tables requires

huge numerical efforts. As only very few EOS tables are available, the results of the

current simulations are somewhat biased and there is a need for new EOS tables. Plenty

of effects and possible scenarios have not been investigated so far. For example both of

the existing models assume that matter consists of ordinary nucleons up to the largest

densities and temperatures. Even if this was true, the supernova EOS is still very much

model dependent. First of all, the nuclear interactions are not known at large densities.

Second, at densities below saturation density another first order phase transition occurs,

the liquid-gas phase transition of nuclear matter. The properties of the low density EOS

are dominated by this phase transition, thus its precise description is crucial.
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This leads to the main effort of my PhD studies. I developed a new model for a com-

plete supernova equation of state: the excluded volume nuclear statistical equilibrium

(EXV-NSE) model. This model has some new features, which are not contained in the

two existing EOSs and allows to calculate new equation of state tables rather quickly.

New EOS tables enable to explore the role of certain aspects of the EOS in simulations,

like e.g. different nuclear interactions which give different symmetry energies. The ExV

NSE model can give a consistent bridge from ordinary nuclei like they exist here on

earth, to the densities where quark matter is expected to appear. The low density part

is based on experimental and theoretical input for the nuclear masses. This may allow

an easier connection of core-collapse supernovae simulations with nucleosynthesis calcu-

lation. It is convenient that the existing knowledge about the nuclear structure is also

used in the EOS. Eventually a better understanding of the EOS may help to solve the

question of the supernova-mechanism and the missing site for nucleosynthesis.
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QCD Matter

Quantum Chromodynamics (QCD) is the fundamental theory which in principle de-

scribes strongly interacting matter ab initio. However, the complex structure of this

theory defies solutions in the non-perturbative regime relevant for compact stars. Thus

even though the underlying theory is known, experimental observations and phenomeno-

logical models are necessary to understand the properties of matter under such condi-

tions. The high density regime is of special relevance for our fundamental understanding

of nature, because one expects that the transition from hadrons to quarks occurs there.

2.1 General Aspects of QCD

First we want to discuss some characteristic aspects of QCD, the quantum field theory of

the strong interactions. This theory describes the interactions of particles which carry

the conserved baryon quantum number and which are color-charged. Eventually, the

strong interactions are also the origin of the nuclear interactions of the color-neutral

hadrons.

In the standard model the elementary particles which constitute the matter around

us and of which we are made of are electrons and quarks. With the current knowledge,

gained from experiments and theories, one expects that there are six different kind of

quarks: the up, down, strange, charm, bottom and top quark, (sorted by increasing

mass). The interactions of these particles are dominated by the strong interactions

which are described by the QCD Lagrangian:

L = ψ̄f (i/D −mf )ψf −
1

4
Ga

µνG
µν
a , (2.1)

where f denotes the quark flavor and mf the corresponding quark mass. The interaction

of the quarks, which are represented by the quark fields ψf (Dirac spinors) is mediated

23
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by the exchange of gluons. This can be identified with the appearance of the gauge

potential Ga
µ in the covariant derivative:

i/Dψ = γµ

(

i∂µ + gGa
µ

λa

2

)

ψ . (2.2)

Ga
µ also builds up the gauge invariant gluonic field strength tensor:

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gf

abcGb
µG

c
ν (2.3)

where the QCD structure constants fabc appear. Compared to the other two fundamen-

tal interactions of matter besides gravity, the electromagnetic interactions of Quantum

Electrodynamics (QED) and the theory of weak interactions, the structure of the strong

interactions exhibits some fundamental complications which so far do not allow to derive

solutions at low energy scales.

In a qualitative picture there are mainly two aspects which cause these complica-

tions: The charge of QCD is called ‘color’. In contrast to electroweak interactions, the

interaction-bosons of QCD themselves are also charged, i.e. not only the quarks but

also the gluons carry color. Thus the gluons can interact among themselves, which is

not possible in electroweak theory, as the photons do not carry electric charge and the

massive vector bosons do not carry weak charge. This interaction of the gluons can be

identified in Eq. (2.3) by the appearance of the coupling constant g in the gluonic part

of the Lagrangian.

This aspect alone would not be a fundamental problem. But in connection with the

following property of QCD it leads to principle difficulties. In electroweak theory the

coupling constants are small at the energy scales which are of relevance for terrestrial

experiments and for today’s universe. Conversely, in QCD the coupling constant αs =

g2/4π is of order unity. Thus perturbation theory cannot be applied. Diagrams up to

all orders contribute, including the gluon-gluon interactions.

These effects lead to certain characteristic features of QCD matter at densities below

several times saturation density. One effect is called ‘confinement’. It is related to the

fact, that so far no isolated colored objects have been observed. It seems to be that

isolated particles have to be color-neutral. If two quarks, which together are color-

neutral, are tried to be separated from each other, their potential will rise linearly

at large distances. Thus the potential energy will increase until another color-neutral

quark-antiquark pair is created, preventing the separation of quarks from antiquarks on

large distances. In high energy heavy-ion collisions, this effect can be observed and is

called ‘string fragmentation’. There exist only two combinations to form a color-neutral
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object: pairs of quarks and antiquarks, called mesons, or combinations of three quarks,

called baryons. Thus at low energies only mesons and baryons can be observed, but no

single quarks. This effect of confining the color charge to color-neutral objects is yet not

understood quantitatively and cannot be derived directly from QCD. Besides baryons

and mesons, some theories propose that there are additional classes of color-neutral

particles: so called penta-quarks, consisting of five quarks, and four-quark-states called

‘dibaryons’. However, there is no clear experimental evidence for their actual existence.

Another important aspect of QCD is chiral symmetry. Chirality is a symmetry of

the QCD-Lagrangian for massless particles and leads to the conservation of helicity. In

QCD, chiral symmetry is spontaneously broken. At low densities/energies the quarks get

a large mass which is generated dynamically by the fields. The additional consideration

of small ‘constituent’ quark masses, leads to explicit chiral symmetry breaking so that

also at large densities chiral symmetry is restored only approximately.

QCD contains further interesting aspects: With increasing energy scales the coupling

constant αs decreases, which is the opposite behavior compared to the electromagnetic

and weak coupling constants. Thus at high momentum, perturbation theory can be

applied, and the one-gluon exchange is the dominant interaction. In this regime, con-

finement is not observed any more and the quarks behave as ‘deconfined’, free particles.

This effect is called ‘asymptotic freedom’. However, the required densities at T = 0 are

orders of magnitude larger than the typical densities in the center of a neutron star,

even though they are the most compact objects of the universe. Thus the perturbative

description is not of relevance in the context of nuclear astrophysics.

2.2 Phase Transitions in QCD matter

Here we only want to give a brief overview of the possible first order phase transitions in

QCD matter, with the focus on compact stars. The detailed description of such phase

transitions follows in the subsequent chapters. As the underlying theory of strongly

interacting matter cannot be solved, one is left with the possibility to use phenomeno-

logical or effective models. From the study of such models one expects that QCD matter

undergoes a first order phase transition at large densities and temperatures, the so-called

‘QCD phase transition’ or ‘hadron-quark phase transition’, see e.g. [Ito70, HPS93]. This

phase transition is due to the aforementioned chiral symmetry restoration within the

quark phase, i.e. the quarks become (almost) massless. Also confinement can lead to a

first order phase transition. So far, in most theories these two phase transitions coin-

cide, as shown in Fig. 2.1. However, experimentally this is not fixed and some of the
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Figure 2.1: An artistic illustration of the QCD phase diagram, as qualitatively expected from
phenomenological or effective models.

theories for QCD matter predict a different phase diagram. For example in Ref. [MP07]

a new phase of so-called ‘quarkyonic’ matter was proposed, in which chiral symmetry is

restored but quarks are still deconfined.

At large temperatures and vanishing densities numerical solutions of the QCD-

Lagrangian exist for finite discretized space-time volumes. This parameter regime is

of special interest for cosmology, as the evolution of the early universe went along the

temperature-axis according to most of the cosmological models, but different scenarios

are also discussed, see e.g. [BS09]. Monte-Carlo calculations are necessary for the eval-

uation of the QCD equations of motion and thus one also speaks about lattice QCD

simulations. These simulations give important information about the QCD phase dia-

gram. Within the last decades one came to the conclusion that the QCD phase transition

is actually a cross-over at zero density. It occurs at a temperature of roughly 190 MeV

[Kt07]. If at large densities a first order phase transition exists, naturally this leads to

the prediction of a critical endpoint at which the phase transition is of second order.

Unfortunately, the extension of lattice simulations to large densities exhibits severe prob-

lems which so far have not been solved unambiguously. It is one of the major challenges

for theoretical as well as experimental research to prove or disprove the existence of the

first order phase transition line and to finally find the precise location of the possible

critical endpoint.

From an experimental point of view high energy heavy-ion collisions are the best tool

to explore the QCD phase diagram. Physicists have big expectations on the largest ex-
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periment ever built, the Large Hadron Collider LHC at CERN, which started operation

in 2009. Besides proton-proton collisions also an extensive heavy-ion program is planned

at this facility. The most important experiments of the past were performed at the Rel-

ativistic Heavy Ion Collider RHIC in Brookhaven and at the Super Proton Synchrotron

SPS at CERN. Due to the large collision energies evolved, these experiments mainly

probe conditions of large temperatures and small baryo-chemical potentials, which were

also present in the early universe and where the crossover transition is expected. At the

Facility for Antiproton and Ion Research FAIR at GSI Darmstadt one wants to achieve

higher densities, to reach the first order region of the QCD phase diagram.

Besides the QCD phase transition plenty of other phase transitions can occur for

the typical conditions in a compact star, i.e. at large densities and low temperatures.

There is the possibility of a first order phase transition to a kaon condensed phase

[FMMT96, GS98, GS99, PRE+00]. The possible phase transition to a pion condensed

phase [MCM79, HP82, MSTV90] or to hyperon matter [SHSG02] might also be of first

order. Phase transitions between different types of color superconducting quark matter

were proposed e.g. in Refs. [RWB+06a, BFG+05, PS08, IRR+08].

A description on the basis of interacting quarks and gluons would be rather imprac-

tical on an energy scale of the order of the nuclear interactions. Due to confinement, on

this energy scale the relevant degrees of freedom are the baryons and mesons and not the

quarks. Anyhow, so far it was not accomplished to describe hadronic matter by quark

degrees of freedom. An unified EOS which describes quark and hadronic matter within

the same model is not available. This statement is true with one exception: It is possible

to develop a model which always includes hadrons and quarks in a chemical mixture,

see e.g. [DS10]. At low densities the quark contribution vanishes and at large densities

the hadron densities are negligible. Besides such models, usually the quark and the

hadronic EOS are calculated with two separate models. They represent the two regions

of the phase diagram of the imaginative underlying unified EOS, which are separated

from each other by the binodal region of the first order phase transition. At the end of

this chapter we will present some of such phenomenological or effective models for the

two parts of the QCD bulk EOS, first for quark matter and then for nucleonic matter.

At lower densities around saturation density, ρ0 ∼ 2 − 3× 1014g/cm3 and tempera-

tures lower than ∼ 15 MeV, another phase transition occurs: the well-known liquid-gas

phase transition of nuclear matter [RPW83, LLPR83, MS95, BGMG01, IOS03, DCG06,

DCG07]. It leads to the formation of dense nuclei (the liquid) within a dilute, neutron-

rich gas. The stability of nuclei at zero temperature and density can also be seen as

a manifestation of this phase transition. It is very interesting that the nuclear matter
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EOS, which can be seen as a result of the chiral/deconfinement phase transition, con-

tains another first order phase transition. In contrast to quark matter, its existence and

qualitative properties are rather well established by plenty of experimental studies, in

particular by low-energy heavy ion collisions. Also from the theoretical side this phase

transition is understood in much more detail. It is possible to calculate the uniform

nuclear matter EOS with one single model for the nuclear interactions at all relevant

densities, including the binodal and spinodal regions. The nuclear interactions lead to

phase separation into a more dense and symmetric phase, the nuclear liquid, and the

dilute neutron gas phase. The two phases can be calculated with the same model, and

only differ in density and asymmetry, which thus are also order parameters of the phase

transition. The liquid-gas phase transition is one of the main topics of this thesis. In

Chapter 8 we will present a very comprehensive model for its description.

2.3 Implications of Phase Transitions in Compact

Stars

The inclusion of a phase transition to exotic degrees of freedoms can substantially alter

the stability of a compact star. In general, a phase transition leads to a softening of

the EOS and therefore lowers the maximum mass which can be supported by the star.

The formation of quark matter in compact stars is mainly discussed in two scenarios,

in protoneutron stars already during the first stages after their birth in the supernova

explosion [PSPL01] and in old accreting neutron stars [LCC+06, ADRM09]. For the first

case, different interesting associated signatures were proposed [PCL95, DT99, SPL00,

PMP04, NBBS06]. For example in Ref. [PSPL01] a delayed formation of the quark

phase was found. Deleptonization leads to the loss of lepton pressure and therefore

to an increase in the central density so that the phase transition takes place, which

can trigger the collapse of the protoneutron star to a black hole. An observation of a

supernova neutrino signal with a later abrupt cessation of the signal would be a clear

confirmation of this scenario. At the end of this thesis we will present a similar study

in more detail. Further possible observables are the emission of gravitational waves

[LCC+06, ADRM09] due to the contraction of the neutron star or delayed γ-ray bursts

[FW98, MHB+03, BBD+03, DPS08].

Besides the mass and stability, also other observables can be linked to phase tran-

sitions, e.g. sudden spin ups during the rotational evolution of young pulsars [GPW97,

ZBHG06]. Furthermore the appearance and the structure of mixed phases can have

important consequences for transport properties like the thermal conductivity or the
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neutrino emissivities and opacities [RBP00]. Also the shear modulus and the bulk

viscosity can be altered, affecting the glitch phenomena or r-modes [Gle01, BGP01].

Consequently, the occurrence of mixed phases can modify the thermal [PGW06] and

rotational evolution of compact stars.

A different scenario has not been studied in the literature very extensively: The phase

transition from hadronic to quark matter can occur already in the early postbounce phase

of a core-collapse supernova [TS88a, TS88b, GAM+93, DT99, YKaHY07]. For the proper

description of the complex dynamical environment of a supernova detailed numerical

simulations are necessary. The occurrence of the phase transition in a supernova requires

a phase transition onset close to saturation density, which can be realized for high

temperatures and low proton fractions. For such a scenario Ref. [GAM+93] found the

formation of a second shock as a direct consequence of the phase transition. However,

the lack of neutrino transport in their model allowed them to investigate the dynamics

only for a few ms after bounce. Very recently, a quark matter phase transition has been

considered with Boltzmann neutrino transport for a 100 M⊙ progenitor [NSY08]. The

appearance of quark matter shortened the time until black hole formation due to the

softening of the equation of state (EOS), but did not lead to the launch of a second

shock. Later we will present in more detail that an early appearance of quark matter

can lead to very interesting consequences in a core-collapse supernovae.
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2.4 Nuclear Matter - The Relativistic Mean-Field

Model

In this thesis we will use the relativistic mean-field (RMF) model for the description

of the nuclear interactions of the nucleons. It represents a self-consistent, effective

field-theoretical model which successfully reproduces experimental nuclear data. It is

formulated in a covariant way, and the effects of special relativity are taken into ac-

count. Compared to non-relativistic models, it is most important that the relativistic

description naturally contains the spin-orbit coupling of the nucleons, which is of great

importance for calculations of the nuclear structure. Here we only discuss certain aspects

of the RMF model, detailed reviews are given in Refs. [Rei89, BHR03].

The first relativistic description of the nuclear interactions has been the σ-ω-model

of J. D. Walecka [Wal74]. As it is based on a field theoretical approach, the interactions

are not described by potentials but are generated through the exchange of particles. The

scalar, isoscalar σ meson is responsible for a medium-range attraction, the isoscalar ω

vector-meson leads to a strong short-range repulsion. With these two interaction bosons

one achieves a reasonable description of the saturation properties of nuclear matter and

the binding energies of nuclei. For the modeling of isospin-asymmetric matter with an

excess of neutrons or protons, the isovector, scalar ρ meson needs to be introduced in

the RMF model. If one wants to include Coulomb effects, the photon has to be included

in addition. In some models also the isovector, vector δ-meson is taken into account.

However, its inclusion does not lead to a better reproduction of experimental data and

its properties are not well constrained.

It is important to note that the mesons which are used in such models are not nec-

essarily really existing particles, because the RMF model is only an effective description

of the nuclear interactions. For example the σ-meson cannot been identified in experi-

ments. There are only several broad resonances as potential candidates. Furthermore,

not all of the known mesons are included. For example the lightest one, the pion, is not

taken into account due to parity conservation in finite nuclei. Actually the sigma can

be seen as a representation of two pion exchange.

2.4.1 Lagrange Density

The starting point of all relativistic models is a Lagrange density L. It consists of the

contributions of the nucleons, the meson-fields, the photons and the coupling of the
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mesons with the nucleons:

L = Lnucleons + Lmesons + Lphotons + Lcoupling (2.4)

As being Fermions, the nucleons are described by the Dirac equation:

Lnucleons =
¯̂
ψ(iγµ∂µ −mN )ψ̂ . (2.5)

It is assumed that neutrons and protons have equal masses mN , so that the nucleon

operator ψ̂ can be taken as a vector in isospin-space.

For the σ meson the Lagrangian density of the Klein-Gordon equation is applied, for

the vector bosons the Proca equation:

Lmesons = 1
2
(∂µσ̂∂

µσ̂ −m2
σσ̂

2)

− 1
2
(1

2
ω̂µν ω̂

µν −m2
ωω̂µω̂

µ)

− 1
2
(1

2
~̂ρµν · ~̂ρµν −m2

ρ~̂ρµ · ~̂ρµ) .

(2.6)

With the field-strength tensors of the vector bosons:

ω̂µν = ∂µω̂ν − ∂ν ω̂µ , ~̂ρµν = ∂µ~̂ρν − ∂ν ~̂ρµ . (2.7)

The Lagrangian density of the photons is given by their field-strength tensor:

Lphotons = −1
4
F̂µνF̂

µν , F̂µν = ∂µÂν − ∂νÂµ . (2.8)

For the interactions usually the ansatz of the minimal coupling is used:

Lcoupling =− gσσ̂
¯̂
ψψ̂ − gωω̂µ

¯̂
ψγµψ̂ − gρ~̂ρµ ·

¯̂
ψ~τγµψ̂

− eÂµ
¯̂
ψ 1

2
(1 + τ3)γ

µψ̂ − Uσ[σ̂]− Uω[ω̂] .
(2.9)

Here, the RMF model is extended to contain also self-interactions of the σ- and

ω-mesons:

Uσ[σ̂] = 1
3
b2σ̂

3 + 1
4
b3σ̂

4 , Uω[ω̂] = 1
4
c3(ω̂µω̂

µ)2 . (2.10)

These non-linear σ and ω terms are included to achieve a better description of the

properties of nuclei and of the equation of state of nuclear matter.
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With Hamilton’s principle

δ

∫

Ld3x dt = 0 (2.11)

one gets the Euler-Lagrange equations:

∂

∂xµ

(

∂L

∂ (∂qi/∂xµ)

)

−
∂L

∂qi
= 0 . (2.12)

They give the equations of motion for the nucleons, mesons and photons. However, a

full solution of the general field-theoretical problem is impossible and thus additional

approximations are required.

2.4.2 Approximations

Within the mean-field approximation, the field operators of the mesons and photons are

replaced by their expectation values, e.g.:

σ̂ → σ = 〈σ〉 . (2.13)

Thus the meson fields act as mean potentials generated by the nucleons. Furthermore,

the nucleons behave as independent, free particles. The nucleon operator can be ex-

panded in single particle states φα(xµ):

ψ̂ =
∑

α

φα(xµ)âα . (2.14)

In the no-sea approximation all states in the Dirac sea with negative energy are

neglected. One assumes that the sum of these states cancels the vacuum contribution

exactly. Thus vacuum polarizations are not taken into account. This leads to the

occupation of single-particle states, φα, α = 1, 2, ...,∞, which e.g. set the scalar and all

other densities:

ρs =
∑

α

φαφα . (2.15)

For the calculation of finite nuclei and uniform nuclear matter, usually only station-

ary states are being considered. The trivial time dependence of the wave functions is
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separated:

φα(xµ) = φα(r) eiǫαt , (2.16)

with ǫα denoting the single particle energy. In the stationary case all time derivatives

vanish. For homogeneous and isotropic nuclear matter also the spatial components of

densities and fields vanish. Furthermore, one assumes that there is no mixing between

neutron and proton states. Thus only the σ, ω0, ρ00 and A0 remain as the relevant non-

vanishing fields. With these simplifications the equations of motion for the expectation

values of the fields can be determined from the Euler-Lagrange Equations (2.12).

2.4.3 Equations of Motion

For the nucleons one finds a time-independent, single-particle Dirac equation which

contains the interactions with the fields:

ǫαγ0φα =(−i~γ · ∇+mN + gσσ + gωω0γ0

+1
2
gρρ00γ0τ0 + 1

2
eA0γ0(1 + τ0)

)

φα

(2.17)

For the fields one gets the following equations:

− (∆ +m2
σ)σ + U ′(σ) = −gσψ̄ψ (2.18)

(−∆ +m2
ω)ω0 + U ′(ω0) = gωψ̄γ0ψ (2.19)

(−∆ +m2
ρ)ρ00 = 1

2
gρψ̄τ0γ0ψ (2.20)

−∆A0 = 1
2
eψ̄(1 + τ3)γ0ψ . (2.21)

For given nucleon densities the implicit equation of motion for the sigma meson field

needs to be solved numerically to achieve self-consistency. With the approximations one

arrives at a self-consistent relativistic description which is similar to the non-relativistic

Hartree-Fock method. The RMF model is not an ab initio field-theoretical description,

but represents a successful effective model. Different mesons, meson masses and differ-

ent forms of the non-linear couplings can be used. As in non-relativistic Hartree-Fock

models, the free parameters of the model, namely the masses of the nucleons and the

mesons and their coupling strengths, have to be determined from fits to experimental

data.



34 QCD Matter

n0
B [fm−3] E/A [MeV] K [MeV] M∗/M asym [MeV] Mmax [M⊙]

TM1 0.145 -16.3 281 0.634 36.9 2.2

TMA 0.147 -16.0 318 0.635 30.7 2.0

Table 2.1: Nuclear matter and neutron star properties of the relativistic mean field model
TM1 [ST94] and TMA [THS+95]. Listed are the saturation density and binding
energy, the incompressibility, the effective mass at saturation, the symmetry energy
and the maximum mass of a cold neutron star.

2.4.4 Parameterizations

In this work we use the parameter set TM1 [ST94] and TMA [THS+95]. TM1 was

developed together with TM2, which were fitted to binding energies and charge radii of

light (TM2) and heavy nuclei (TM1). TMA is based on an interpolation of these two

parameter sets. The coupling parameters gi of the set TMA are chosen to be mass-

number dependent of the form gi = ai + bi/A
0.4, with ai and bi being constants, to have

a good description of nuclei over the entire range of mass number. For uniform nuclear

matter the couplings become constants and are given by ai.

Table 2.1 lists some characteristic saturation properties of uniform nuclear matter,

and the resulting maximum mass of a cold neutron star. The baryon number density

with the lowest energy per nucleon is defined as the saturation density n0
B. As it is a

minimum, one can characterize the symmetric nuclear matter EOS, which has an equal

amount of neutrons and protons, by a quadratic expansion around saturation density:

E/N(nB) = E/N(n0
B) +

1

18
K(1− nB/n

0
B)2 , (2.22)

with the following definition of the incompressibility K:

K = 9
∂2E/N

∂2nB

∣

∣

∣

∣

n0

B

n0
B

2
. (2.23)

In both parameterizations the saturation density and the binding energy of symmetric

nuclear matter are well determined through the fit to ground state nuclei and lie in

the usual range. But TM1 has a much larger symmetry energy than TMA. Contrary,

in TMA the nuclear incompressibility is rather high, also compared to the value of

K = 240±20 MeV [SKC06] or K = 248±8 MeV [Pie04] deduced with theoretical models

from experimental data on isoscalar giant monopole resonances (ISGMR) which probe

nuclear matter slightly below saturation density. However, it is perceived in the literature
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Figure 2.2: Constraints on the parameters S0 and L from Ref. [TZD+09]. The right axis
corresponds to the pressure of neutron matter at saturation density. The region
bounded by the diagonal lines and the vertical lines at S0 = 30.1 MeV represent
the constraints obtained from isospin diffusion data and proton to neutron ratios.
The vertical line at S0 = 31.6 MeV is from Refs. [LC05, LCK08]. The lower and
upper boxes are formed by the constraints from data [LAN07] for the pygmy dipole
resonance and from symmetry energy analysis on nuclei [DL09], respectively. The
inset shows the density dependence of the symmetry energy of the shaded region.
The symbol in the inset represents results for the giant dipole resonance. The
RMF model TMA is depicted by the blue dot. S0 of TM1 lies out of the shown
range.

that the extraction of K from ISGMR data is not unambiguous as it is dependent on

the density dependence of the symmetry energy of the nuclear interactions which are

taken for the analysis of the data [SKC06, Pie04, Sha09]. For RMF models without

further constraints on the density dependence of the symmetry energy usually similar

large values in the range of 250 to 270 MeV are obtained for K [Pie04]. Later we will

further illustrate the problems of the classification of an EOS by the incompressibility.

The density dependence of the symmetry energy itself can be probed by different

experimental observables, e.g. by isospin diffusion and double neutron to proton ratios

in heavy-ion collisions or the precise measurement of the neutron skin thickness of 208Pb

[AB00, TB01b]. A recent compilation of various experimental results concerning the

density dependence of the symmetry energy is given in Ref. [TZD+09]. The most impor-

tant constraints of this analysis are shown in Fig. 2.2. In this plot the symmetry energy

is characterized by two parameters, S0 and L. S0 is the symmetry energy at saturation

density and thus equivalent to asym used in Table 2.1. L is the slope parameter of the
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Figure 2.3: Zero-temperature EOS for symmetric nuclear matter. The shaded region corre-
sponds to the region of pressure consistent with the experimental flow data from
Ref. [DLL02]. The various curves and lines show predictions for different sym-
metric matter EOSs. The RMF parameterization TMA is compatible with the
experimental constraints, whereas the pressure of TM1 is slightly too large.

symmetry energy at saturation density, which is related to the pressure of neutron mat-

ter at saturation density p0: L = 3p0/n
0
B. With p0 = 4.55 MeV/fm3 TMA is still within

the border of the experimental constraints. The value of S0 of TM1 is out of the range

depicted in Fig. 2.2 which shows that the symmetry energy is unusually large in this

model. TM1 gives p0 = 5.48 MeV/fm3 and would lie in the continuation of the allowed

range shown in Fig. 2.2.

At several times saturation density experimental flow data from high-energy heavy

ion collisions can be used as a constraint for the EOS. In Figs. 2.3 and 2.4 several EOSs

are shown for symmetric and neutron matter, respectively. Here we do not want to

discuss all of the EOSs, but are only interested in the comparison of the RMF models

TM1 and TMA to the region which is deduced from the experimental flow data of

Ref. [DLL02]. For TMA an acceptable agreement is found: it is lying almost completely

in the compatible range for an asymmetric stiff EOS. The pressure of TM1 is slightly

too large.

The comparison of the pressure-density relation of the two parameterizations shown

in Fig. 2.3 with the properties listed in Table 2.1 is very instructive. Usually one asso-

ciates a large incompressibility with a large pressure, as one can deduce the following
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Figure 2.4: Zero-temperature EOS for neutron matter. The upper and lower shaded regions
correspond to the pressure regions for neutron matter consistent with the exper-
imental flow data after inclusion of the pressures from asymmetry terms with
strong and weak density dependencies, respectively. The results are taken from
Ref. [DLL02]. The various curves and lines show predictions for different neutron
matter EOSs. The RMF parameterization TMA is compatible with the experi-
mental data for an asymmetric stiff EOS, whereas TM1 barely touches the allowed
region.
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relation from Eq. (2.22):

p =
K

9
(nB − n

0
B)

(

nB

n0
B

)2

. (2.24)

However, in Fig. 2.3 we observe that TMA with the larger incompressibility has the

lower pressure. Also if the pressure is plotted as a function of the energy density,

one observes that TMA has a lower pressure at all densities besides a very small region

around saturation density. This is rather surprising, as the two parameterizations belong

to the same class of models, have only slightly different saturation densities (difference

of 2%) and binding energies and mainly differ in the incompressibility (difference of

10%), see Table 2.1. This comparison shows, that the commonly used classification of

the stiffness of an EOS by the incompressibility is not adequate. There are two reasons

for the observed behavior. First, close to saturation density the slightly different values

of the saturation densities are more important than the value of K itself. Second, even

for densities in the vicinity of saturation density, e.g. 1.3 n0
B the higher order terms to

the expansion used in Eq. (2.22) give a significant contribution to the EOS. The higher

order terms are negative above saturation density and are smaller in TM1 than in TMA,

leading to the larger total pressure of TM1 at all densities.

Another important constraint for the EOS comes from pulsar timing measurements.

By determining post-Keplerian parameters one is able to determine the mass of pulsars

with very high precision. Currently, the largest precisely known mass of a pulsar is

1.67 ± 0.01 M⊙, of the pulsar PSR J1903+0327 [Fre09]. Obviously every EOS has to

have a maximum mass which is above this value. For TMA the maximum mass of a

cold deleptonized neutron star is Mmax = 2.0 M⊙, and thus fulfills this constraint and

the maximum mass of TM1, Mmax = 2.2 M⊙, is even larger. From the value of K alone,

one would expect the opposite behavior. We already discussed that TM1 has a stiffer

symmetric EOS despite the lower value of K. In addition, the symmetry energy of TM1

is much larger. This stiffens the neutron matter EOS which has a large effect on the

maximum mass of a neutron star.

Fig. 2.5 shows the phase diagram of bulk nuclear matter calculated with TMA. For

symmetric nuclear matter a critical temperature of 17.4 MeV is found. At T = 0 MeV

the mixed phase ends between 0.63n0
B and n0

B for the shown values of Yp. At larger

densities only the uniform nuclear matter phase is present. The phase diagram depends

strongly on Yp: For lower proton fractions the mixed phase region shrinks considerably

and even disappears completely for pure neutron matter.
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Figure 2.5: The phase diagram of bulk nuclear matter calculated with the RMF model TMA
[THS+95]. The lines show the binodals for different Yp, at which the liquid-gas
phase transition of nuclear matter sets in and a mixed phase appears.
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2.5 Quark Matter - The Quark Bag Model

The most simple model for the description of quark matter is the so called quark bag

model. Based on first ideas of Bogolyubov, it was further developed in the 70s by a group

of physicist at the Massachusetts Institute of Technology (MIT) for the description of

hadron spectra. In this context one also speaks about the MIT bag model. However,

the values of the model parameter (the bag constant) deduced from fits to the hadron

masses differ from the values usually applied for infinite quark matter. The quark bag

model gives a phenomenological description of confinement: the quarks are confined in a

bag in the vacuum. Inside this bag they behave as free particles, but the vacuum exerts

a pressure on the bag. Thus the volume of the bag gives a contribution to the energy,

due to the mechanical work of the quark bag volume against the vacuum pressure. Thus

the energy density is the sum of the energy density of the Fermi-Dirac gas of quarks ǫi
and the vacuum energy density B, the so called bag constant:

ǫ =
∑

i=u,d,s

ǫi +B , (2.25)

with i denoting the different quark flavors. The up and down quarks are rather light,

with mu ∼ 5 and md ∼ 10 MeV compared to the strange quark with ms ∼ 100 MeV. As

the other quarks are much heavier, usually only these three flavors are relevant in the

astrophysical context. There is no contribution of the vacuum to the entropy, thus:

s =
∑

i

si . (2.26)

Then the free energy density f = ǫ − ts is well defined, which allows to evaluate the

pressure:

p =
∑

i

pi −B . (2.27)

It becomes apparent that the vacuum pressure reduces the total pressure, as it acts

against the Fermi pressure of the quarks.

One can interpret the quark bag model also in a different way, in which it is not

necessary to consider a vacuum energy outside of the quark bag. In this different in-

terpretation, the volume which is filled by quarks possesses a constant energy density,

representing the non-perturbative contributions of quark-antiquark pairs and gluons. In

addition there is the Fermi-Dirac contribution of the three valence quarks. Thus, the
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energy density remains in the same form as before. A constant positive energy density

always leads to a negative pressure, because

p = n
∂ǫ

∂n
− ǫ . (2.28)

If we use ǫ = B = const., we get p = −B which appears in Eq. (2.27). The vacuum

energy of the quark bag can be reduced by decreasing the size of the bag. This force

acts like a negative pressure.

For the masses of the quarks one can use experimentally determined values. However,

the value of the Bag constant cannot be deduced directly from experiments. The bag

constant represents all the non-perturbative features of QCD expressed in one single

value. It is usually chosen between B1/4 = 145 − 200 MeV [SGST00] as there exist

some important constraints. First of all, up- and down-quark matter at zero pressure

must not be more strongly bound than iron. Otherwise nuclei would decay into quark

matter. This gives a lower limit for the bag constant in the order of B1/4 ∼ 145 MeV,

depending on the chosen quark masses. There is the controversial hypothesis, that

strange quark matter is the true ground state of nuclear matter, see e.g. [Bod71, Wit84].

In this scenario ordinary matter does not decay into strange quark matter, because

deconfinement takes place under strong interactions with flavor conservation. A nucleus

of A nucleons can only decay into up- and down-quark matter which is less bound. To

overcome the barrier, A/3 quarks have to be converted into strange quarks at once. As

flavor conversion is mediated by weak interactions this process is highly unlikely. Even

though it is a very extreme scenario, this possibility is not ruled out yet and is still

discussed in the literature.

There are several extensions of the quark bag model. The simplest is to add first

order corrections in the strong coupling constants αS. A different possibility is a density-

and/or temperature-dependent bag constant. For our purpose, such extensions are not

necessary. We are mainly interested in the general features of first order phase transi-

tions. Of course, the quantitative behavior is governed by the detailed properties of the

EOS. But the particular form of the EOS is not relevant for the general thermodynamic

conditions for phase equilibrium.

2.6 Phenomenological EOS

In this subsection we want to present another phenomenological EOS which has some

interesting features. Namely it allows to tune the characteristic properties of the EOS
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by one parameter a so that it can behave like quark matter or like nuclear matter.

Furthemore we will show the connection between the EOS and the mass-radius relation

of compact stars. The EOS has the following form:

p′ = µ′4 − aµ′2 + a− 1 (2.29)

ǫ′ = 3µ′4 − aµ′2 − a+ 1 . (2.30)

Here we use a dimensionless form of the pressure and of the chemical potentials:

p′ = p/µ4
c (2.31)

µ′ = µ/µc . (2.32)

With this formulation the dimensionless mass-radius M ′(R′) relation becomes indepen-

dent of the parameter µc, with the following scaling behavior:

M ′ = M/M0 (2.33)

M0 =
M3

P l

µ2
c

(2.34)

R′ = R/R0 (2.35)

R0 =
MP l

µ2
c

, (2.36)

with MP l = 1.22 × 1022 MeV denoting the Planck mass. Reasonable values for µc are

between 150 and 250 MeV. If we set a = 0, the EOS is identical to the quark bag EOS

with massless quarks and µ4
c is equivalent to the bag constant. It is interesting to note

that the maximum mass decreases with increasing µc, i.e. the bag constant. a = 2

instead represents a hadronic EOS.

In Fig. 2.6 the dimensionless mass-radius relation has been calculated for different

values of a. We refer to Ref. [SHGS06] for the explanation how the mass-radius curve

is calculated, and the discussion of stability. The curve with a = 2 shows the typical

behavior of a hadronic equation of state: Starting at large radii, the mass increases with

decreasing radius, until a maximum mass is reached. Compact stars which lie on the

curve on the left of the maximum mass are unstable and will collapse to a black hole. The

pure quark EOS with a = 0 shows a very different behavior. The mass-radius curve starts

at the origin, and the mass increases with the radius until the maximum mass is reached.

Usually the mass does not approach zero for large radii. This happens only because no

EOS for the low-density region of the neutron star crust is applied. Strange stars are

stable up to this point. Thus strange stars of arbitrary size can exist in nature. Very
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Figure 2.6: The dimensionless mass-radius relation for different values of a.
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Figure 2.7: The normal mass-radius relation for µc = 150 MeV and different values of a.

tiny lumps of quark matter are usually called strangelets. Strange stars and strangelets

are not bound by gravity, but by the interactions of the quarks, which are represented

by the bag constant. Thus one also speaks about selfbound stars. In contrast, hadronic

stars are only bound by gravity and would explode without it, because of the strong

repulsive hadronic interactions at large densities. It is very typical for quark stars, that

they posses smaller radii. Since very long this is proposed as an observable which allows

to distinguish quark and neutron stars. Unfortunately, measurements of radii are quite

difficult and so far it was not possible to verify or falsify the actual existence of strange

stars.
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Figure 2.7 depicts the mass-radius relation in dimensionfull units of solar masses

and km. µc = 150 MeV gives typical values for the maximum mass of strange stars,

Mmax = 1.9M⊙, and hadronic stars, Mmax = 2.2M⊙. The radii of the EOS with a = 2

are rather large, e.g. R ∼ 30 km for M = 1.4M⊙. This indicates that µc = 150 MeV is

not a very reasonable value for a = 2. The phenomenological EOS is not used further in

the following. We applied it here only to illustrate the connection between the EOS and

the mass-radius relation and the characteristic differences between neutron and quark

stars.



Chapter 3

General Description of First Order

Phase Transitions

In this chapter we want to give a general, system-independent description of first order

phase transitions. Our formalism and results can be applied to any first order phase

transition, as long as the system is in complete thermodynamic equilibrium. We do not

consider any finite size effects, which means that the different phases which appear are

always treated in the thermodynamic limit.

3.1 Classification

As in Ref. [DCG06] we will distinguish between the term ‘phase transition’ and ‘phase

transformation’. According to the Ehrenfest classification a phase transition is of first

order, if at least one of the first derivatives of the grand-canonical potential is discontin-

uous, and of second order if the first derivatives are continuous, but the second are not.

Thus in a first order phase transition the discontinuous first derivatives can serve as an

order parameter. According to Landau [LL69], a first order phase transition is defined

by the appearance of different phases in phase coexistence, which can be distinguished

and are characterized by order parameters. In this theses, we restrict the discussion on

first order phase transitions and note only that the phenomenology and properties of

second order phase transitions are very different.

In our terminology the term ‘phase transformation’ refers to a specific path through

the phase diagram, characterized by a certain set of state variables (also called control

parameters) which are changed in a specific continuous way. As we will show, phase

transformations of a first order phase transition can behave continuously as well as dis-

continuously. This aspect was sometimes not treated very carefully in the literature. For

45
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example in Refs. [MS95, Mue97] a continuous first order phase transition was misinter-

preted as a second order phase transition. In this chapter we want to classify and discuss

the general properties of first order phase transitions in different phase transformations.

The main idea is, that, contrary to common wisdom, the choice of the state variables

and thus the choice of the ensemble is not arbitrary but leads to differences as soon as a

first order phase transition occurs. Still, the different ensembles can be transformed into

each other, and thus are equivalent. Qualitative differences arise, because we assume

that the state variables are changed in a continuous way. Such a continuous change of

a certain set of state variables can not always be mapped continuously onto a different

set of state variables, i.e. a different thermodynamic ensemble. This is the reason for

qualitative differences in phase transformations of different ensembles.

It is important to realize that the choice of state variables is determined by the

physical process which one wants to describe. The state variables are the indepen-

dent parameters that are controlled and fixed externally. In a dynamic (but necessarily

quasistatic) process they are the parameters that characterize the evolution of the ther-

modynamic system. E.g. for an isolated and closed system, only extensive variables can

directly be adjusted from outside. If instead a subsystem in a heatbath is investigated,

the temperature of the subsystem can directly be set to a certain value, but not the

entropy. Only if the exchange of an extensive quantity with the surrounding is possible

its conjugate intensive variable can be used as a state variable. However, in a theoret-

ical investigation or in the analysis of experimental data, the state variables or control

parameters simply correspond to the variables which are chosen as abscissae.

As will be shown, the qualitative properties of a phase transformation are entirely

determined by the number of extensive state variables used and the number of phases

which are involved in the phase transformation. Some of the aspects which will be dis-

cussed below have already been addressed in the literature, like e.g. the role of additional

degrees of freedom which increase the number of extensive state variables. The differ-

ences between a single and a multi-component body in the context of neutron stars were

extensively studied in Ref. [Gle92] for the first time. For heavy-ion collisions, already

in Ref. [GKS87] strangeness conservation was assumed in addition to baryon number

conservation, leading to the phase transition of a multi-component body.

3.2 Thermodynamic Variables and Possible Phases

Consider a thermodynamic system with G globally conserved charges Ck, k = 1, ...,G.

With ‘charge’ we mean any kind of conserved, extensive quantity in addition to the en-
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tropy and the volume, like e.g. particle numbers or e.g. the total electric dipole moment.

In Chapter 5 we will show how to connect a set of particle numbers with a set of different

conserved charges. With ‘global conservation’ it is meant here, that if there are several

phases in equilibrium the charge can be shared among the different phases, and only the

total sum of the entire system has to be conserved. There exist 2(G+2) thermodynamic

variables in total, in G + 2 conjugate pairs. G + 2 of the variables are intensive (also

called non-additive): the G chemical potentials µk, k = 1, ...,G, the temperature T and

the pressure p. G + 2 are extensive (also called additive) variables: the G charges Ck,

the entropy S and the volume V . Of each of the G + 2 pairs either the extensive or the

intensive variable has to be chosen as one of the G+2 independent state variables. These

state variables completely define the state of the system. Let X = (Xi), i = 1, ..., E and

Y = (Yj), j = 1, ..., I denote the vector of the E chosen independent extensive and the

I chosen independent intensive state variables, respectively, whereas

E + I = G + 2 . (3.1)

Here and in the following, bold symbols will always denote vectors.

When the state variables are specified, there remain E dependent intensive and I

dependent extensive quantities Ỹi and X̃j respectively, which are determined by the

EOS. We denote the vector of the dependent extensive variables by X̃ = (X̃j) and the

vector of the dependent intensive variables by Ỹ = (Ỹi). They are given as partial

derivatives of the thermodynamic potential Φ(X,Y) with respect to the corresponding

conjugate state variable:

(Ỹi) =

(

∂Φ

∂Xi

)

(X̃j) = −

(

∂Φ

∂Yj

)

. (3.2)

Opposite signs (e.g. as it is the case in the standard definition of the pressure) can be

absorbed in the definition of Ỹi.

For E = G + 2 the thermodynamic potential is the internal energy:

E(X) =

G+2
∑

i=1

Ỹi(X)Xi . (3.3)

In the general case where I of the extensive variables are replaced by their conjugate

intensive variables through Legendre transformations, the thermodynamic potential be-
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comes:

Φ(X,Y) =
E
∑

i=1

Ỹi(X,Y)Xi . (3.4)

If all the intensive variables are used as state variables (E = 0), we obtain Φ ≡ 0

which implies V ≡ 0. If no extensive state variables are used the size of the system is

not specified and we get the result that the system actually does not exist. We want to

interpret this result further and give a physical explanation for it. In this case we would

consider a subsystem which was controlled by all of the intensive variables. For this, the

exchange of all extensive quantities with the surrounding main system (the bath) has to

be possible (charges, energy and volume). But then there is nothing which distinguishes

the subsystem from the bath, leading to the meaningful result that the subsystem does

not exist. From a different point of view, there is the Gibbs-Duhem relation among the

intensive variables, so that not all of the G + 2 intensive variables are independent. One

of the intensive state variables is fixed through the EOS by the other intensive variables.

Thus only E ≥ 1 is relevant.

Next the case E = 1 is discussed in more detail. There is only one extensive state

variableX1, and the potential is then Φ = Ỹ1(X1,Y)X1. Ỹ1 is the only unknown intensive

variable and as an intensive variable it can actually not depend on X1: Ỹ1 = Ỹ1(Y),

because of the Gibbs-Duhem relation. X1 only specifies the size of the system and to do

so X1 6= 0, necessarily. If X1 = 0 then Φ ≡ 0, so that the system would not exist, similar

to the case E = 0 discussed before. X1 could e.g. be the volume or a non-vanishing

net number of particles. For simplicity, we assume in the following that X1 cannot be

negative. It is easy to deduce all possible kind of mixed phases from the case E = 1

which we want to do now.

Let us consider that there exist P different (intrinsically stable) single homogeneous

phases (SHP). In reality, there should be only one generic equation of state containing

all the possible phases. For simplicity we assume in the following that the different

phases can always be distinguished from each other and that they are described by

different EOSs, i.e. thermodynamic potentials Φκ, κ = 1, ...,P in the entire region of

the state variables under investigation. With this assumption we exclude any critical

points, where the distinction of the different phases would not be possible any more.

Let us assume further that the potential of each SHP exists and behaves continuously,

independent of which state variables are used.

For E = 1, each of the P EOSs Φκ(X1,Y) gives a relation Ỹ κ
1 = Ỹ κ

1 (Y). Because

Ỹ κ
1 is an intensive variable it can not depend on the size of the phase, as noted before.
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Ỹ κ
1 also fixes the thermodynamic potential of each phase: Φκ = Ỹ κ

1 (Y)X1. Thus it is

convenient to investigate the G+2 dimensional parameter space of all intensive variables

{Yj, Ỹ1} to analyze the phase diagram. In this parameter space the P phases will form

P different G+1 dimensional surfaces1 of possible physical states. From the second and

first law of thermodynamics it follows that Φ has to be minimal in equilibrium. Thus

for fixed state variables (X1,Y) the SHP with the lowest Ỹ1 will be the favored phase.

Φ will then be piecewise made up of one of the P SHPs. A typical example would be the

minimization of the negative pressure for given temperature, chemical potentials and

volume.

In the intensive parameter space {Yj, Ỹ1} the coexistence regions of K different phases

are the G + 2 − K-dimensional intersections of K different G + 1-dimensional surfaces

belonging to the different phases. Gibbs’ phase rule is recovered, that at most G + 2

phases can be in equilibrium:

K ≤ G + 2 . (3.5)

On the intersection surfaces the K phases have the same value of Ỹ1 and the rest of the

intensive variables Yj are used as state variables and are therefore equal by construc-

tion. The K phases are indeed in equilibrium, as all intensive variables are equal in the

participating phases, satisfying Gibbs’ conditions for phase equilibrium:

(Y 1
j ) = (Y 2

j ) = ... = (Y K
j ) =: (Yj)

(Ỹ 1
i ) = (Ỹ 2

i ) = ... = (Ỹ K
i ) =: (Ỹi) . (3.6)

These conditions directly follow from the minimization of the thermodynamic potential.

They express chemical, thermal and mechanical equilibrium between all the K phases.

We note that in such a phase coexistence the different SHPs are spatially separated from

each other.

If we return to the parameter space of the state variables {X1, Yj}, we get the fol-

lowing phase diagram. It fragments into G + 2 dimensional volumes in which only one

SHP is present. The G + 3− K dimensional surfaces where K of these phases intersect

are the coexistence regions. The dimensions increased by one compared to the intensive

parameter space {Yj, Ỹ1}, because the intensive variables are independent of the size of

the system in the thermodynamic limit.

1We call every parameter region a surface if it has a dimension D lower than the dimensionality G + 2
of the space of the state variables. If D = G + 2 the region is called a volume.
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3.3 Properties of Mixed Phases

Now we assume that a specific set of state variables with a certain E , 1 ≤ E ≤ G+2, has

been selected. We want to analyze the properties of a (mixed) phase K which consists

of K SHPs, with 1 ≤ K ≤ P. For this we are investigating a certain point (X,Y) in

the phase diagram where K SHPs are indeed in equilibrium. Because of thermodynamic

equilibrium, Eqs. (3.6), one never needs to consider that intensive variables are different

in different SHPs. It is always sufficient to use the G+ 2 intensive variables Yj and Ỹi of

Eqs. (3.6), namely the G chemical potentials, the temperature and the pressure which

are equal in all SHPs. Furthermore, each equation of state of each SHP gives one relation

among the intensive variables, so actually only G + 2−K of the intensive variables are

independent in the coexistence of K SHPs. This reflects that a mixed phase of K SHPs

has the dimensionality G + 2−K in the intensive parameter space {Yj, Ỹi}.

Let us first discuss the case K > E , for which more SHPs are in equilibrium than

extensive quantities are used as state variables. From Equations (3.1) and (3.5) it follows

that I = G + 2− E ≥ 1, so at least one of the state variables is an intensive quantity in

this case. Furthermore I > G + 2−K, which means that the number of intensive state

variables is larger than the dimensionality of the K-phase intersection in the intensive

parameter space {Yj, Ỹi}. If one is inside such a mixed phase the intensive variables

are actually overdetermined, which means that only special intensive state variables

Y = (Yj) allow to have the K phases in equilibrium. Due to this over-determination the

dependent intensive variables Ỹi are fixed by the independent variables Y without the

need to consider the extensive state variables:

(Ỹi) = (Ỹi(Y)) . (3.7)

Furthermore, the overdetermination means that every change of a single intensive state

variable will in general lead to the leaving of the mixed phase into a different (mixed)

phase. Because I > G+2−K, the mixed phase occupies also only a G+2−K-dimensional

surface of the I-dimensional space of the intensive state variables {Yj}, like in the space

of all intensive variables {Yj, Ỹi}.

Next we want to discuss the extension of the mixed phase with respect to the extensive

state variables and the boundaries of the mixed phase further. The total value of the
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extensive quantity Xi is given by the sum over the SHPs:

Xi =

K
∑

κ=1

Xκ
i

=
K
∑

κ=1

Xκ
1

Xκ
i

Xκ
1

(3.8)

In the last line we simply expanded with Xκ
1 , the variable which is meant to fix the size

of the phase, like e.g. the volume. Now we can use that the ratio xκ
i = Xκ

i /X
κ
1 (e.g. an

energy density) of the two extensive quantities of the same SHP can only depend on the

intensive variables:

Xi =
K
∑

κ=1

Xκ
1 x

κ
i (Y, Ỹ) , (3.9)

where we also used that the phases are in equilibrium Ỹ
κ = Ỹ. We note that Eq. (3.9)

becomes trivial for i = 1, because xκ
1 ≡ 1. With Eqs. (3.7) there remain only the K

unknowns Xκ
1 in the set of the E Eqs. (3.9). As E < K, the volumes of K − E SHPs

remain unconstrained by the state variables and the equilibrium conditions. Vice versa,

the extensive state variables can in general be varied at constant intensive state variables

without leaving the mixed phase. Together with Eqs. (3.7) this shows that the intensive

variables Ỹi are indeed independent of the extensive state variables inside the mixed

phase.

We conclude that the mixed phase will be extended in all of the variables Xi. The

boundaries in the space of extensive state variables {Xi} for fixed Y is set by the

constraint that the Xκ
1 (e.g. the volumes) have to be positive and non-zero. According

to Eqs. (3.9) the maximum (minimum) possible value of the extensive variable Xi for

fixed Y, and thus fixed (Ỹi(Y)) is reached when the volumes of all SHPs but the one

with the largest (smallest) xκ
i go to zero. Thus we know that for given Y the points

with the largest and smallest value of each extensive variable actually do not belong to

the mixed phase K, but to one of the SHPs.

There is the very unlikely possibility that by chance for one particular extensive

variable Xi the xκ
i are equal in all the SHPs κ: x1

i = x2
i = ... = xKi =: xi. Then for a

fixed system size X1 the mixed phase exists only for one particular value of Xi:

Xi =
K
∑

κ=1

Xκ
1 x

κ
i (Y, Ỹ)

= X1xi(Y, Ỹ) . (3.10)
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We want to exclude this unlikely case in the following discussion.

One can summarize that if there areK > E phases in equilibrium the volume fractions

of the SHPs remain unconstrained and all intensive quantities are independent of the

extensive state variables. The mixed phase has the dimension G + 2−K in the space of

the intensive state variables {Yj} and is extended in the direction of the extensive state

variables, thus forming a G + 2 − K + E-dimensional surface in the space of the state

variables {Xi, Yj}.

Next the case K ≤ E will be analyzed, in which less or equal SHPs are in equilibrium

than extensive quantities are chosen as state variables. By using the I externally fixed

intensive state variables, there remain G + 2 − K − I = E − K ≥ 0 unknown intensive

variables Ỹi. This means that for K < E also the extensive state variables Xj need to

be considered to determine all intensive variables. The E Eqs. (3.9) involve exactly K

additional unknowns Xκ
1 , so that at the end no unknown variables remain. For K ≤ E

all intensive variables, the Xκ
1 and thus all extensive and intensive quantities can be

determined from the state variables (X,Y) and are therefore fixed.

We want to specify the dependency of the unknown variables on the state variables

inside the mixed phase further. In the special case E = K the unknown intensive

variables Ỹj do not depend on the extensive state variables Xj, so Eqs. (3.7) remain

valid. The intensive state variables Y solely fix Ỹ. The extensive state variables can be

varied, without affecting the dependent intensive variables. The extensive state variables

are only needed to determine the Xκ
1 and by that the extensive dependent variables

(X̃j) = (X̃j(X,Y)).

Contrary, for K < E also the unknown intensive variables depend on all state vari-

ables, including the extensive ones:

(Ỹi) = (Ỹi(X,Y)) . (3.11)

A variation in one of the state variables Xi or Yj will lead to a change in all of the

non-fixed variables X̃j and Ỹi.

Now we want to discuss the dimensionality of a mixed phase with K ≤ E in the

space of state variables {Xi, Yj}. The important point is, that the number of intensive

state variables I is lower or equal to the dimension of the K-SHP-coexistence surface

in the space of all intensive variables, G + 2 − K. Thus inside the mixed phase each

of the intensive state variables can be varied individually without leaving the K-phase

coexistence. The system is not overdetermined as in the case K > E any more. Thus

even though a change of Xi implies a change of Ỹ also the extensive state variables
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case dimension in {Xi, Yj} dependent variables

K < E G + 2 Ỹi = Ỹi(X,Y) X̃j = X̃j(X,Y) Xκ
1 = Xκ

1 (X,Y)

K = E G + 2 Ỹi = Ỹi(Y) X̃j = X̃j(X,Y) Xκ
1 = Xκ

1 (X,Y)

K > E G + 2−K + E Ỹi = Ỹi(Y) X̃j undetermined Xκ
1 undetermined

Table 3.1: Properties of mixed phases with K SHPs in coexistence. Such a mixed phase
has the dimension G + 2 − K in the state of all intensive variables {Yi, Ỹj}. The
dimension in the space of state variables is given in the second column. The third,
fourth and fith column show the dependency of the dependent intensive variables
Ỹi, of the dependent extensive variables X̃j and of the sizes of the SHPs Xκ

1 on
the extensive and intensive state variables (Xi) = X and (Yj) = Y. Note that in
the case K > E the Ỹi are overdetermined because of the equilibrium conditions
Eqs. 3.6.

can be varied within a certain range without leaving the mixed phase. For K ≤ E in

general the mixed phase will be extended in all the variables Xi, Yj filling a certain G+2-

dimensional volume of the parameter space of the state variables {Xi, Yj}. The results

for the properties of mixed phases are summarized in Table 3.1.

3.4 Properties of Phase Transformations

We showed now, that (mixed) phases with K ≤ E extend over a volume of the parameter

space {Xi, Yj}, and (mixed) phases with K > E have a lower dimension. Only such

extended phases with K ≤ E will be considered in the following as the relevant phases

which can actually be accessed for a finite time. For the occurrence of mixed phases

with K > E at least one intensive state variable has to be tuned to an exact value. Any

infinitesimal change of one of the intensive variables would lead to the leaving of the

mixed phase. From a practical point of view, these phases can not be seen as permanent

states of the system.

In the following we will not only consider phase transformations between two SHPs

but also between two extended mixed phases. Inside extended (mixed) phases, specified

by K ≤ E , everything will change continuously because of the assumption of continuous

potentials of the SHPs. It remains to determine the properties of a phase transformation

from one particular (mixed) phase A consisting of the KA ≤ E different SHPs Aκ,

κ = 1, ...,KA, into a different neighboring (mixed) phase B with KB ≤ E different

SHPs Bλ, λ = 1, ...,KB. Let us denote the set of SHPs which are present in phase

A by A = {Aκ} and those of phase B by B = {Bλ}. Even though mixed phases with
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K > E cannot be accessed for a finite time, they can be crossed in such a transformation.

Indeed, we will show that the qualitative properies of the phase transformation depend

on the number of SHPs on the boundary layer which separates phases A and B. For a

systematic classification it is sufficient to consider E ≥ KB ≥ KA, i.e. phase B consists

of more or equal SHPs than phase A. To be more precise we are now investigating a

certain path Γ : (X(t),Y(t)) through the parameter space {Xi, Yj} so that the phase

transition from phase A to phase B occurs at tpt with (X(tpt),Y(tpt)) = (Xpt,Ypt). We

require the path to start inside the volume of phase A and to end inside the volume of

phase B. For the classification we first describe the properties and necessary conditions

for the two possible cases, continuous and discontinuous phase transformations, and will

then draw the connection to the phases A and B.

At the transition point, the state variables Xi and Yj have to be equal in the two

phases by construction, and thus change continuously. Furthermore at tpt Gibbs’ con-

ditions for phase equilibrium have to be fulfilled between the (mixed) phases A and B,

leading to

lim
t<→tpt

(

Ỹ A
i (Xt,Yt)

)

=:
(

Ỹ A
i (Xpt,Ypt)

)

=
(

Ỹ B
i (Xpt,Ypt)

)

:= lim
t>→tpt

(

Ỹ B
i (Xt,Yt)

)

.

(3.12)

Dependent variables evaluated at (Xpt,Ypt) shall refer to the limit of the variable by

approaching the phase transition point within the corresponding phase. These limiting

values are always well defined, also for the extenstive dependent variables, because we

assumed E ≥ KB ≥ KA. We see above that the intensive variables change continuously

across the transition and are therefore continuous in the whole parameter space {Xi, Yj}.

The continuous path in {Xi, Yj} is always mapped onto a continuous path in {Ỹi, Yj}.

Thus the only variables which can be different in the two phases at the transition point

are the dependent extensive variables X̃j.

A phase transformation is continuous, if in addition to the intensive variables also

all of the extensive state variables are equal at the transition point:

(

X̃A
j (Xpt,Ypt)

)

=
KA
∑

κ=1

(

X̃Aκ
j (Xpt,Ypt)

)

=
(

X̃B
j (Xpt,Ypt))

)

=
KB
∑

λ=1

(

X̃Bλ
j (Xpt,Ypt))

)

, (3.13)

whereas X̃Aκ
j denotes the contribution of the SHP Aκ to X̃A

j , and analog for the SHPs

of phase B. Each term in the sums is uniquely fixed by the state variables. We can write
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this equation also in the following way:

KA
∑

κ=1

XAκ
1 (Xpt,Ypt)

(

x̃Aκ
j (Ỹpt,Ypt)

)

=

KB
∑

λ=1

XBλ
1 (Xpt,Ypt)

(

x̃Bλ
j (Ỹpt,Ypt))

)

, (3.14)

by using an equivalent relation to Eq. (3.9). Contrary, for a discontinuous phase trans-

formation, for which Eq. (3.14) is not fulfilled, in general all of the X̃j will behave

discontinuously:

X̃A
j (Xpt,Ypt) 6= X̃B

j (Xpt,Ypt) . (3.15)

Then each of the dependent extensive variables can serve as an order parameter.

It is possible that some of the SHPs of the two mixed phases A and B disappear when

the transition point is reached. The SHPs of phases A and B which are still present at

tpt constitute the boundary layer between the two phases. This boundary layer can be

seen as a new mixed phase C, because all the non-vanishing SHPs of phase A and B are

in equilibrium with each other. Let us denote the set of KC SHPs of phase C, given by

the different SHPs of the phases A and B which are still present at tpt, by C:

C = {Aκ : XAκ
1 (Xpt,Ypt) 6= 0} ∪ {Bλ : XBλ

1 (Xpt,Ypt) 6= 0} . (3.16)

Note that some of the SHPs of phase A and B can be identical, i.e. it is possible that

the element Aκ is identical to Bλ. Obviously,

C ⊆ A ∪ B . (3.17)

To fulfill Eq. (3.14) to achieve a continuous phase transformation all SHPs which A

and B do not have in common necessarily have to disappear at tpt:

C ⊆ A ∩ B , (3.18)

because all terms in Eq. (3.14) are fixed by the state variables. On the other hand,

if Eq. (3.18) is fulfilled both phases A and B go over to phase C by approaching the

phase transition point. Because KA ≤ E and KB ≤ E the two phases are always well

defined, with respect to all variables. Thus, the two phases will become identical when

approaching tpt, i.e. all volumes of the remaining SHPs will approach the same values in

phase A and phase B. All limiting values of the dependent variables become identical.

Thus the condition of Eq. (3.18) is equivalent to a continuous phase transformation.
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Thus, if the condition is not fulfilled, we have a discontinuous phase transformation.

However, it still remains to identify which of the SHPs of

M := A ∪ B (3.19)

do not disappear at tpt, i.e. we have to relate phase C to phase A and B. In the following

we use KM for the number of all different SHPs of phase A and B.

To continue with the discussion we assume now that only two extended mixed phases,

namely phases A and B are in contact at the transition point, which is the most likely

situation. The boundary surface between two phases has the dimension G + 1, but the

boundary layer between a larger number of extended phases has a lower dimensionality.

The latter case would require that at least one of the state variables is tuned to an exact

value. This makes it almost impossible to hit such a special phase transition point. With

the assumption that no other extended mixed phases than A and B are in contact at

tpt we arrive at a contradiction: We realized above that the set C of the non-vanishing

SHPs of phases A and B at tpt can actually be seen as a separate mixed phase. This

contradiction has to be resolved.

Let us consider now a discontinuous phase transformation, i.e. C 6⊆ A∩B. Obviously,

then phase C is different from phase A and B. Thus it is necessary that KC > E so that

phase C is not extended which resolves the contradiction. Because C ⊆ M := A ∪ B,

KC ≤ KM . Thus it is necessary for a discontinuous phase transformation that KM > E :

discontinuous PT =⇒ KM > E . (3.20)

This result leads to an interesting consequence for phase transformations of isolated

systems. For an isolated system only extensive state variables can be used, E = G + 2.

Because of Gibbs’ phase rule, Eq. (3.5), we see that KM ≤ E in this case. Thus, we can

conclude that all phase transformations of isolated systems have to be continuous.

Let us turn back to the general discussion. In a continuous phase transformation

where C ⊆ A∩B, we get KC < E , because KA ≤ E and KB ≤ E and at least one of the

SHPs of A and B have to be different. If all SHPs of phase A and B were the same there

was no phase transition. KC < E means that C is an extended mixed phase which is

in contradiction to our assumption. The only solution is, that C is identical to A or B,

and because we assumed KA ≤ KB we get C=A. This means that the boundary layer

between phases A and B where the phase transition occurs actually belongs to phase

A. At the phase transition point the additional SHPs of phase B appear continuously.

Because A = C ⊆ A ∩ B we have M = A ∪ B = B, so that KM = KB ≤ E and we can
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conclude:

continuous PT =⇒ KM ≤ E . (3.21)

Thus we showed that

continuous PT⇐⇒ KM ≤ E , (3.22)

if no other extended mixed phases than A and B are in contact at (Xpt,Ypt), and with

KM denoting the number of different SHPs of phase A and B.

We can constrain the properties of the two phases in a continuous transformation

even further. Imagine that phase B has more than one SHP in addition to phase A,

KB ≥ KA + 2. Then it must also be possible to go from the transition point into

another phase D which consists of the SHPs of phase A with only one of the additional

SHPs of phase B. This would also be a contradiction to the assumption that only phase

A and B are in contact at the transition point. We conclude: in a continuous phase

transformation, in general the phases A and B differ only in one of the SHPs, which

appears in a continuous way after passing the transition point.

Also in a discontinuous phase transformation the phases A and B have to fulfill some

additional specific properties. Phase C has the dimension G+2+E −KC in the space of

the state variables which has to be equal to the dimension G+1 of the coexistence surface

between the volumes of phases A and B, and thus KC = E + 1. On C, the intensive

variables are independent of the extensive state variables, see Table 3.1. If we keep

the intensive variables fixed but move on phase C to slightly different extensive state

variables (X ′
i) the neighboring phases still have to be phases A and B. This requires that

also inside phases A and B the intensive variables have to be independent of the extensive

state variables, which is only possible if KA = KB = E . In general, in a discontinuous

phase transformation a set of E different SHPs is replaced by a different set of E SHPs.

From the structure of the phase diagram one can conclude, that phase A and B differ only

in one SHP. Finally we note that because of Eqs. (3.7) at least one intensive variables

has to be varied along the path to trigger the phase transition, because we excluded that

we are at the boundary of the surface which separates phases A and B (phase C). As

the maximum possible number of phases in coexistence is G + 2 = I + E ≥ KM > E at

least one intensive variable is indeed also always used as a state variable.
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Next we want to investigate the latent heat Q released or absorbed during the phase

transformation. It is given by the change of the internal energy of the system,

Q = EB(Xpt,Ypt)− EA(Xpt,Ypt) , (3.23)

where the internal energy is related to the thermodynamic potential, Eq. (3.4), by:

E(X,Y) = Φ(X,Y) +
I
∑

j=1

X̃j(X,Y)Yj . (3.24)

With the equality of the two thermodynamic potentials of the two phases and Gibbs’

equilibrium conditions we get:

Q =

I
∑

j=1

Yj

(

X̃B
j (Xpt,Ypt)− X̃A

j (Xpt,Ypt)
)

. (3.25)

In a continuous phase transformation this becomes zero. In a discontinuous phase trans-

formation, because of Eq. (3.15), Q 6= 0 in general. Only a discontinuous phase trans-

formation leads to the release or absorption of latent heat, i.e. energy. We found before

that all phase transformations of isolated systems are continuous. Furthermore, a dis-

continuous phase transformation can only be triggered by a change of the intensive

state variables. The intensive state variables refer to properties of the surrounding

heat/particle/pressure bath. Thus we conclude, that the discontinuous energy change of

the subsystem, i.e. the appearance of latent heat, is caused by a change of the intensive

properties of the bath. The energy is taken from the bath and put into the system

directly (for Q > 0, i.e. the absorption of latent heat). If the system was isolated, this

would not be possible because no surrounding exists, in agreement with our previous

considerations.

Prof. I. Iosilevskiy from the Joint Institute of High Temperature in Moscow submit-

ted an unpublished article to the author of this thesis. This article is a very interesting

complement to some aspects discussed above. In his work the phase transition of a

one-component substance with G = 1 is called a “congruent” phase transition, and of a

multi-component substance with G ≥ 2 a “non-congruent” phase transition. Only the

free enthalpy is considered, so that there are two intensive state variables, I = 2, the tem-

perature T and pressure p. The extensive state variables are all the conserved charges,

E = G, which are kept constant. Only the intensive state variables are varied. Conse-

quently, the congruent phase transitions are discontinuous and the non-congruent ones

are continuous phase transformations. Iosilevskiy especially emphasizes the implications
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on the dimensionality of the mixed phase regions in the phase diagram. In the congruent

case, the coexistence surface is two-dimensional in {T, p,N}, leading to a coexistence

line in {T, p}. In the non-congruent case, the mixed phase fills a four-dimensional vol-

ume in {T, p,N1, N2}, leading to a two-dimensional coexistence region in {T, p}. In his

article Iosilevskiy presents a typical “banana-like” region for the non-congruent phase

transition of a chemically reacting uranium-oxygen plasma and anticipates that such

higher-dimensional phase coexistence regions should also occur in astrophysical environ-

ments. This study is in full agreement with the results derived above.

Let us close with some final remarks to the classification of phase transitions and

phase transformations. The Ehrenfest classification of phase transitions refers to the

grand-canonical potential Φ(V, T, µ), in which only one extensive state variable, namely

the volume, is used. Thus it refers to a specific set of state variables with E = 1 and by

this to a specific phase transformation. According to the Ehrenfest classification a phase

transition is of first order, if at least one of the first derivatives of the grand-canonical

potential is discontinuous, and of second order if the first derivatives are continuous, but

the second are not2. We can directly confirm, that the first order phase transitions inves-

tigated here correspond to discontinuous phase transformations of the grand-canonical

ensemble, because K ≥ 2 > E = 1. We showed that the X̃j, which are first derivatives

of the corresponding potential, are discontinuous in a discontinuous phase transforma-

tion, in agreement with the Ehrenfest classification. Even though phase transformations

with different state variables may be continuous, they are still phase transitions of first

order. However, we want to stress that it is necessary for this consistency that the

grand-canonical potential is used for the classification of phase transitions. For a one-

component system with only one conserved charge the situtation is easier, and e.g. also

the free enthalpy G = G(T, p,N) gives a well-defined classification.

However, the behavior of the thermodynamic variables in a continuous phase transfor-

mation resembles very much a second order phase transition (according to the Ehrenfest

classification). In the continuous phase transformations, the X̃j are continuous. Thus all

first derivatives of the thermodynamic potential are continuous. Also the volume frac-

tions of the SHPs change continuously. The second derivatives of the thermodynamic

potential which are derivatives of the X̃j involve derivatives of the volumes of the SHPs.

The volumes of the non-common SHPs of phase A and B are zero at the transition

point, but the derivatives of these volumes are in general not equal in the two different

phases A and B, leading to discontinuous second derivatives. However, even though the

2Very often second order phase transitions are actually characterized by continuous, but divergent
second derivatives of the thermodynamic potential (λ-transition). An example is the critical point
of the liquid-gas phase transition or the superfluid transition of 4He.
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continuous phase transformations look very similar to second order phase transitions, it

also comes to the coexistence of several SHPs which are spatially separated from each

other. The SHPs can always be distinguished from each other, e.g. by ratios of extensive

variables like the energy density. The occurrence of phase coexistence could be seen as

the characteristic of a first order phase transition.

Finally we note that the globally conserved charges are only important as degrees

of freedoms, if they are actually explored by the single phases. For example in the

liquid-gas phase transition of symmetric nuclear matter both phases will stay symmetric

even in the coexistence region. Thus the proton fraction is not relevant as a globally

conserved charge. Such a substance, which does not change its charge concentrations

by boiling, is called an azeotrope. A different example would be large mixed phase

structures which drive the system to be locally charge neutral. In a practical point of

view also the extension of the mixed phase with respect to the state variables matters.

In a strict sense, for K ≤ E the phase transformation always remains continuous, but

for very small mixed phases (compared to the typical scale of the underlying physical

process), the dependent variables may change actually very rapidly so that a continuous

phase transformation could appear rather discontinuously.

3.5 Applications and Examples

Our general results can be applied to any thermodynamic system without finite-size

effects which is always in full equilibrium. In the following we want to discuss some ex-

amples. We start with the phase transitions of a one-component substance like ordinary

water, for which we will analyze the phase diagram and the possible phase transforma-

tions in detail. Based on the general results we then examine the properties of phase

transformations if only two SHPs are in coexistence. Furthermore we address the im-

plications of first order phase transitions in heavy ion collisions and in hydrodynamic

simulations. First order phase transitions in compact stars will be discussed in full detail

in Chap. 7.

3.5.1 “Water”

Ordinary water consists of one sort of particles, G = 1, and the parameter space is three-

dimensional. Water is a very interesting substance, as at the triple-point the maximum

possible number of three different SHPs are in coexistence. Thus all different kind of
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p
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Figure 3.1: The phase diagram of water for constant number of particles N , and for the
pressure p and the temperature T as the independent control parameters. Red
lines show lines of discontinuous phase transformations, where two different single
homogeneous phases (SHPs) are in equilibrium. The red dot marks the triple
point of water, where all three SHPs are in equilibrium. The arrows show examples
of different phase transformations, belonging to the control parameters of Fig. 3.2,
which are discussed in the text.

possible scenarios can occur. For simplicity, we exclude the critical point of the liquid-

gas transition and we only study a small region around the triple-point, where liquid

water, ice and water vapor are in equilibrium. We are only interested in the topology

of the phase diagram, i.e. the dimensionalities of the phase boundaries. The shapes and

slopes of phase boundaries are irrelevant for the following discussion. We note that the

shown phase diagrams are actually not in full agreement with the true phase diagram

of water.

Let us start with E = 1, where e.g. a fixed number of molecules N are in a container

of variable size inside a heatbath. A different possibility would be a container with fixed

volume V which is permeable for the water molecules in a particle and heat bath. In the

following we will always use the molecule number N and set it to be constant. Therefore

it is sufficient to plot the phase diagram for the remaining two state variables, which is

done in Fig. 3.1. In the parameter space {T, p} there exist the three areas of the SHPs,

separated from each other by the three different coexistence lines of two SHPs which

intersect in the triple point, where all three SHPs coexist. No extended mixed phases

exist and all possible phase transformations are discontinuous because KM = 2 > 1 = E .

We note that it is very unlikely to hit the triple point, as it requires to adjust both the

pressure and the temperature of the surrounding medium to an exact value.

The arrows which are drawn in Fig. 3.1 belong to phase transformations with the

different set of control parameters in which the pressure is replaced by the volume V ,
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Figure 3.2: The phase diagram of water for constant number of particles N , and for the
volume V and the temperature T as the independent control parameters. “s” de-
notes the solid, “l” the liquid and “v” the vapor SHP in the corresponding extended
mixed phases. Black lines show lines of continuous phase transformations. The
red line is the discontinuous triple line, on which all three SHPs are in equilibrium.
The arrows show examples of different phase transformations which are discussed
in the text. Phase transformation No. 1 is continuous, No. 2 is discontinuous.

so that one gets E = 2. Now we are investigating a non-permeable particle container of

fixed size inside the heat bath. The corresponding phase diagram is plotted in Fig. 3.2.

The three mixed phases of two different SHPs become now areas in the plot. The triple-

point becomes a triple line at constant temperature, but now extended in V . It is the

line where the extended mixed phases meet. From Sec. 3.4 we know, that the lines of

continuous phase transformations actually always belong to the phase with the lower

number of SHPs. Thus in Fig. 3.2 the black lines belong to one SHP, e.g. the line

between “s+v” and “v” belongs to “v”. Next we will discuss two characteristic examples

for the two different types of phase transformations in more detail.

Let us begin with phase transformation No. 1. We start with a mixture of the solid

and the vapor SHP, whereas each SHP has a certain finite volume fraction. By increasing

the temperature and slightly increasing the volume we are manipulating the system and

approach the phase transformation into the pure vapor phase. Gradually the solid

transforms into vapor until only the vapor is left at the transition point. Obviously,

this phase transformation is continuous. In the phase transformation No. 2 we start

at a similar state with a mixture of the solid and the vapor. But this time we heat

and compress the system in such a way, that we end up in a mixture of the liquid

and the vapor. Because no other phases are in contact at the transition point, we

know that the phase transformation is discontinuous, because KM = 3 > 2 = E . By

approaching the transition point the volumes of the solid and the vapor part approach

a certain (non-vanishing) value. When we have passed the transition point, the solid is



General Description of First Order Phase Transitions 63

vapor

liquid

solid

1/V

S

s+l

l+v

s+v
1

2s+l+v

Figure 3.3: The phase diagram of water for constant number of particles N , and for the
volume V and the entropy S as the independent control parameters. Black lines
show lines of continuous phase transformations. There are no discontinuous phase
transformations for this set of control parameters. The arrows show examples of
different phase transformations, belonging to the control parameters of Fig. 3.2,
which are discussed in the text.

replaced by the liquid and the vapor part jumps to a new value of the volume fraction.

At the transition point, all three SHPs are in contact, with arbitrary volume fraction.

However, this happens only at one single point, which is not observable and thus not

really relevant. It is interesting to study the paths of the discussed phase transformations

in the {T, p}-plane, which is shown in Fig. 3.1. One sees that all intensive variables

change continuously.

For E = 3 the volume V , the number of particles N and the entropy S are used

as state variables and are therefore fixed externally. the corresponding phase diagram

is shown in Fig. 3.3. We are investigating a completely isolated system, which is the

easiest scenario to realize. For the phase transformation we can imagine all kind of

paths, where heat is put into the system leading to a change in S, and/or changes

of the volume V . The following extended phases exist: First the three different SHPs.

Again, between each pair of these a common mixed phase of the corresponding two SHPs

exists. Between these three mixed phases, there is the region where all three phases are

coexisting, K = 3. This mixed phase of three SHPs also occupies a certain area. Because

E = G + 2 = 3, all possible phase transformations are continuous. As already discussed

for Fig. 3.2 we know that the states on the lines actually belong to the extended (mixed)

phase with the lower number of SHPs. The points where the triple phase is in contact

with a phase consisting only of one SHP must actually belong to this SHP, due to the

same reasons.
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It is very enlightening to investigate the example phase transformations of Fig. 3.2

in the parameter space of extensive variables of Fig. 3.3. Now it becomes obvious, why

the two examples are continuous and discontinuous. The entropy S is the only variable

which can behave discontinuously for the set of state variables of Fig. 3.2. In example

No. 2 the temperature was changed continuously. Thus the entire triple phase region is

crossed at once, because the three SHPs can coexist only at one single temperature. This

is visualized by the dashed line in Fig. 3.3. In example No. 1 there is no discontinuous

change of the entropy.

3.5.2 Two Single Homogeneous Phases

For only two SHPs, the derived formalism simplifies a lot. If E = 1 there exist only

two extended phases in the parameter space {X1, Yj}, namely the two SHPs. The two

volumes are separated from each other by the G + 1-dimensional coexistence surface, in

which the volume fraction of the two SHPs remains arbitrary. The phase transformation

is always discontinuous, unless the two equations of states give the same (X̃j) at the

transition point, meaning that all the first derivatives are equal. Actually this would

correspond to a critical point, because then the two SHPs could not be distinguished

from each other any more. If E ≥ 2, the two SHPs are separated from each other by

their extended mixed phase, which fills a volume in {Xi, Yj}. The transition from one

SHP into the mixed phase is continuous, and the volume of the other SHP is zero at the

onset of the mixed phase. After crossing the phase transformation surface, the volume

fraction of the second SHP increases continuously. When it goes to unity, the first phase

has disappeared and the end of the mixed phase is reached. Obviously, the transition

from the mixed phase into the second SHP is also continuous.

3.5.3 Heavy Ion Collisions

The results of this chapter could also be relevant for the description of the first order

QCD phase transition in relativistic heavy ion collisions which e.g. may be explored at

FAIR at GSI in the future. In the central collision region of a heavy ion experiment

one expects that quark matter is formed at large enough collision energies. After its

generation the central fireball expands and cools. Depending on the densities which are

reached inside the colliding system the phase transition from quarks to hadrons may

be of first order. In general, the state of the system could be described by the internal

energy, the volume, and the baryon and the proton number (U, V,NB, Np). There does

not exist any surrounding heat or particle bath, so it is most natural to describe the
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fireball as an isolated system with evolving state parameters. NB and Np could be

treated as constants, whereas the temporal evolution of U and V have to be calculated

in numerical simulations or require further simplifying assumptions. However, it is very

natural to assume that they change continuously. If thermodynamic equilibrium was

reached during all stages of the heavy ion collision and if the thermodynamic limit is

appropriate for this small system, we can apply our results. Because E > 2, an extended

mixed phase would always form and exist over a finite period of time. The hadron-quark

transition would be continuous regarding global observables.

3.5.4 Hydrodynamics

There are two formulations of hydrodynamics, the Eulerian form in which the evolution

of small stationary cells with fixed volume V is considered, and the Lagrange form

which describes gas packages with fixed number of particles N in comoving frames. In

both formulations the equations of motion are based on the exchange of the conserved

quantities particle number, entropy and momentum between neighboring cells. The

entropy, volume and number of particles of each cell are always known. The concept of

separated subsystems automatically introduces an entirely extensive description of the

cells, E = G + 2. If a phase transition happened in one of the cells, it would always be

continuous and would lead to the formation of a mixed phase. Discontinuities would

never occur which directly lead to the appearance of shocks. For the formation of the

mixed phase inside the hydrodynamic cell it is necessary, that the typical structures

within the mixed phase are much smaller than the size of the cell. This is in agreement

with the statement that hydrodynamics describe the large scale evolution of a system.

For astrophysical simulations of the hadron-quark phase transition this is usually well

fulfilled, because the typical size of the hydrodynamic cells of ∼ 10 m to 1 km are much

larger than the mixed phase structures of order 10−14 m. Contrary, in the hydrodynamic

description of a heavy ion collision this may not be the case, because there the typical

cells in a hydrodynamic simulation are usually very small of order ∼ 0.1 fm. Thus it

could be more realistic to exclude the possibility of a mixed phase in the construction of

the EOS for the hydrodynamic simulation. This could be done by assuming additional

local constraints for the phase transition, so that there is a direct transition between

the two phases. We will present this method in Chapters 5 and 7. Each cell would

then always consist only of one of the SHPs. The phase transition in one cell would

then automatically be discontinuous and would depend on how the EOSs of the two

SHPs were connected with each other, i.e. which conditions were assumed for the phase

transition. Some of the thermodynamic variables would behave discontinuously locally.
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Global entropy, energy, momentum and particle number conservation is assured by the

hydrodynamic description. This procedure would be only a very crude description of the

phase transition. In fact, first order phase transition have to be treated in much more

detail, if the structures of the mixed phase are of similar size as the hydrodynamic cells,

see e.g. [SV09a, SV09b].



Chapter 4

Nucleation

In the previous chapter we studied the implications and properties of first order phase

transitions in full equilibrium. Now some non-equilibrium aspects of nucleation shall be

addressed, in the case of the phase transition between two single homogeneous phases

(SHPs). Nucleation describes the onset and initial formation of the newly appearing

phase. Here, we restrict the discussion on classical thermal nucleation, i.e. we do not

consider any quantum effects, like quantum fluctuations or tunneling which can be more

important than thermal effects at very small temperatures. Furthermore we use only

a thermodynamic description which assumes separable bulk and finite-size parts. Our

approach is based on several chapters of Ref. [LL69], and is mainly only a compact

reformulation and generalization to multi-component systems with G conserved charges

Ck, k = 1, ...,G, denoted by the vector C = (Ck), and more general finite-size effects.

In Chap. 3 we assumed that the phase transition sets in, as soon as the transition

point tpt is reached along the path Γ in the parameter space of the state variables. In

case of a continuous phase transformation, starting from the first SHP, the mixed phase

of the two SHPs begins at tpt with a gradual appearance of the second SHP. In case of a

discontinuous phase transformation we directly jump to the second SHP after tpt. In the

last chapter we treated the SHPs as two different EOS. However, we want to remind the

reader, that the two different SHPs actually only represent different states of the same

underlying unified EOS. Usually there will be a barrier between the two states of the

two phases, which has to be overcome, before the second phase can be formed. This can

be done by local thermal fluctuations, which can become the seed nuclei for the newly

appearing phase. This effect is called nucleation. Small fluctuations will decrease the

entropy so that they will be dissipated. Only above a certain critical fluctuation (the

barrier) the entropy will increase by further increasing the fluctuation.

The parameter space in which phase coexistence is possible is enclosed by the so-

called binodal surface. In our case, the phase transition point tpt is located on the

67
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binodal surface. If the system is driven very far away from the phase transition point

and kept in the first SHP, which is now only metastable, it will eventually reach a

spinodal instability, where the barrier for nucleation vanishes. Any initial fluctuation

will be enhanced and grow further. The states which are between the corresponding

binodal and spinodal are the metastable states. In this metastable region nucleation is

relevant. Spinodal stability is a local criterion, binodal a global one. The metastable

states are locally stable (i.e. for small fluctuations) but a different global minimum of

the thermodynamic potential exists. Local stability is lost at the spinodal, meaning that

any small fluctuation is unstable. However, also in this case the growth time is finite,

see e.g. [Ran09], so that it takes some time until the true equilibrium is established.

Obviously, fluctuations of large size, e.g. changes of a large volume, encounter strong

exponential suppression, thus the question of nucleation cannot be addressed in the

thermodynamic limit. Instead only fluctuations of a small sub-volume will be considered.

Because of the small size of the seed nuclei, surface and other finite-size effects are crucial

and need to be taken into account explicitly. If the finite-size effects are known, one can

give good estimates for the nucleation rate, i.e. the number of critical fluctuations per

unit time and unit volume.

4.1 Fluctuations

In this section we want to describe a certain small fluctuation in a small subsystem

within a much larger particle and heat bath. For simplicity, we consider that the bath

is isolated and closed. This means the system as a whole is treated micro-canonically.

As we will show, only the initial intensive variables (temperature T 0, pressure p0, and

chemical potentials µ0
k) of the heat bath in the meta-stable state are relevant for the

probability that a certain fluctuation occurs. Thus the micro-canonical formulation is

not necessary, but it gives the most comprehensible description of the fluctuations.

The entropy of the total system shall be denoted by Stot, which is the sum of the

entropy of the bath Sbath and of the subsystem S, Stot = Sbath + S. Here and in

the following all variables without index denote the subsystem of the fluctuation. In

equilibrium the total entropy is constant. Now we consider that a certain fluctuation

takes place which decreases the total entropy for a short moment of time by ∆Stot < 0,

because the system is slightly out of equilibrium. The probability for this to happen is

given by the corresponding change of the total entropy:

P ∝ exp(∆Stot) . (4.1)
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This is the thermodynamic probability to be in a different state than its groundstate

after an infinitely long time in the sense of the ergodic hypothesis.

The constant of proportionality could e.g. be determined from a proper normalization,

so that the sum over all fluctuations gives unity. If the expression above is used for a

rate, the factor of proportionality has to have dimensions of MeV4. Usually the rate

is dominated by the exponential term. Thus, quite often one simply takes T 4 for the

prefactor. Furthermore, the exponential term contains the physical aspects of nucleation

which are easy to understand. Thus we will neglect the constant of proportionality in

the following discussion and only speak about the exponential.

Next we have to specify the form of the fluctuation in more detail. Here we assume

the most general case of a subsystem in the equilibrium configuration with size V 0,

internal energy E0 and conserved charges C0
k which encountered a fluctuation to a new

local equilibrium state with changed volume, energy and conserved charges:

V = V 0 + ∆V

E = E0 + ∆E

C = C
0 + ∆C . (4.2)

Here and in the following the index 0 shall always refer to the equilibrium configuration

of the metastable state without any fluctuation. Variables without index correspond to

the state with the fluctuation. We adopt a microcanonical description of the fluctuation

in the subsystem. It does not matter, how the fluctuation was actually formed. It is

only necessary, that a new local equilibrium state is reached in the subsystem, so that

we can apply thermodynamics. The new entropy of the subsystem is then given by the

new values of its state variables:

S = S(E, V,C) . (4.3)

The fluctuation shall conserve the total volume, energy and charges. Thus we get:

∆V = −∆V bath

∆E = −∆Ebath

∆C = −∆C
bath , (4.4)

i.e. the changes of the subsystem correspond to the negative changes of the bath.

The total change of the entropy ∆Stot = Stot−Stot 0 splits into the parts of the bath

and the subsystem, ∆Stot = ∆S+∆Sbath = S−S0 +Sbath−Sbath 0. We assume that the
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relative changes of the main system are vanishingly small, so that the intensive properties

of the bath do not change. Furthermore, in the initial equilibrium configuration, the

subsystem and the bath have the same pressure, temperature and chemical potentials:

T bath = T bath 0 = T 0

pbath = pbath 0 = p0

µbath = µbath 0 = µ0 . (4.5)

Then we can use the first law of thermodynamics to substitute ∆Sbath:

∆Stot = ∆S +
1

T 0

(

∆Ebath + p0∆V bath −
∑

k

µ0
k∆C

bath
k

)

. (4.6)

Using Eqs. (4.4) and ∆S = S(E, V,C)− S0 we obtain:

∆Stot = S(E, V,C)− S0 −
1

T 0

(

∆E + p0∆V −
∑

k

µ0
k∆Ck

)

. (4.7)

By realizing that

S0 =
1

T 0

(

E0 + p0V 0 −
∑

k

µ0
kC

0
k

)

, (4.8)

because finite-size effects do not exist for a state without any fluctuation, and using

Eqs. (4.2) one gets:

∆Stot = S(E, V,C)−
1

T 0

(

E + p0V −
∑

k

µ0
kCk

)

. (4.9)

The probability of a general fluctuation is readily obtained:

Pfluc(E, V,C) ∝ exp

(

S(E, V,C)−
1

T 0
(E + p0V −

∑

k

µ0
kCk)

)

. (4.10)

The entropy change is entirely expressed by the set of G + 2 state variables of the

subsystem, and the intensive variables of the heat bath. Thus the choice of a different

description for the entire system, e.g. a grand-canonical description, would not affect

our results, as long as the bath can be treated in the thermodynamic limit and the

fluctuation is small. We also find that the initial state of the subsystem (E0, V 0,C0) is

irrelevant.
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tot∆S

0

XX Xc X0 gs

Figure 4.1: Illustration of the change of the total entropy with a fluctuation of the variable X
from its equilibrium value X0. For small fluctuations the entropy has to decrease
quadratically. Xc shows the critical fluctuation and Xgs the value of the variable
in the true groundstate which is a global maximum of the total entropy.

4.2 Conditions for Nucleation

Next we have to ask for the criteria, that a certain fluctuation will grow further and not

be dissipated away. In a stable system the entropy is decreased by the fluctuation, and

the system can only increase the entropy again by dissipating the fluctuation. In a stable

equilibrium configuration, the entropy has to decrease quadratically in all directions for

any small fluctuation and the probability distribution is a multi-dimensional gaussian

[LL69].

Nucleation can only occur if the system is not in its true ground state but in a

metastable state. Thus it is necessary, that the system has been driven beyond the

equilibrium phase transition point, which we assume in the following. Initially, the

system shall remain in the first phase which is only metastable. Because we assume that

we have passed the equilibrium transition point, we know that there is a different global

configuration with a larger entropy. Thus it is clear, that there exist some over-critical

fluctuations, for which the system develops to the true ground state with the global

maximum of the entropy, once they are produced.

In case of a continuous phase transformation the ground state will usually be the

mixed phase with phase coexistence. For a discontinuous phase transformation, the

ground state belongs to the second SHPs, because no extended mixed phase exists.

Obviously, the groundstate is intrinsically stable. Thus we know, that the total entropy

of the final configuration also decreases quadratically in all directions. In Figure 4.1 the

behavior of ∆Stot is illustrated for the one-dimensional case.

Equation 4.1 gives the probability for the system to be in the arbitrary state with

∆Stot. Obviously, the probability to be in the groundstate is larger than to be in the
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initial state. This apparent contradiction arises because Eq. (4.1) is the thermodynamic

occupation probability of the state after an infinitely long evolution time of the system.

To deduce the nucleation rate from the probability, we need some additional handwaving

arguments.

Let us denote the set of state variables (E, V,C) by X = (Xi), i = 1, ...,G + 2 in

the following. We cannot follow the dynamical evolution from the nucleation to the

true groundstate, because this is a non-equilibrium process. However, this is not what

we are interested in. We describe the entire nucleation and phase transition process by

three steps, each of them being a (local) equilibrium state: Necessarily, we have to start

any fluctuation from the metastable equilibrium configuration X
0 in the initial phase.

Then follows the intermediate state of the fluctuation in local equilibrium, denoted by

X = X
nucl. For such a critical fluctuation, the system will develop to X

gs, the true

groundstate (mixed phase or the second SHP) in full equilibrium.

The nucleation rate is given by the critical fluctuation which has the largest proba-

bility, i.e. the largest ∆Stot. However, it would not make sense to assume that the state

X
nucl is a maximum of ∆Stot because then this state would be metastable and would

not evolve to the groundstate. Thus we assume only that it is a maximum with respect

to all fluctuation variables but one, here denoted by X1:

∂∆Stot

∂Xi

∣

∣

∣

X=Xnucl
= 0 ∀ i 6= 1

∂2∆Stot

(∂Xi)2

∣

∣

∣

X=Xnucl
< 0 ∀ i 6= 1 . (4.11)

These conditions fix only G+1 of the G+2 fluctuation variables Xnucl
i . One fluctuation

variable, e.g. Xnucl
1 remains unconstrained. This means we need one further condition

to fix the state of the nucleation X
nucl.

To do so, let us assume that X0
1 < Xnucl

1 < Xgs
1 . If ∂∆Stot

∂X1

∣

∣

∣

X=Xnucl
< 0 the system

would increase the entropy by going back to the groundstate configuration so that nu-

cleation would not occur. This corresponds to fluctuations which are to the left of Xc

in Fig. 4.1. If instead ∂∆Stot

∂X1

∣

∣

∣

X=Xnucl
> 0 the system can increase its entropy by further

enhancing the fluctuation. The system can in principle develop to its true ground state

by alone by “rolling up” the entropy hill and nucleation is possible. In Figure 4.1 all

fluctuations to the right of the minimum Xc are overcritical. However, it would not

make sense to calculate the rate of nucleation by a fluctuation which is to the right of

Xc. Every fluctuation Xoc to the right of Xc has a larger probability than Xc, but for

the formation of such a fluctuation it is necessary to pass through Xc. Thus we require
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that the nucleation occurs via the fluctuation which is a minimum of ∆Stot with respect

to X1, corresponding to Xc in Fig 4.1.

From these considerations we conclude that ∆Stot has to be a minimum with respect

to one of the state variables of the fluctuation, but a maximum of the entropy with

respect to all others. The nucleation occurs via a special multi-dimensional saddle-point

of the total entropy. This gives the following necessary conditions for nucleation:

∂∆Stot

∂Xi

∣

∣

∣

∣

X=Xnucl

= 0 ∀i . (4.12)

There is still the possibility that several solutions for Eq. (4.12) exist. Obviously, then the

solution with the largest entropy gives the largest contribution to the rate of nucleation.

Now we want to evaluate the conditions of Eqs. (4.12) for ∆Stot further. Let us define

the temperature, pressure and chemical potentials of the entire subsystem in the usual

manner:

T =
∂S

∂E

∣

∣

∣

∣

V,C

p = T
∂S

∂V

∣

∣

∣

∣

E,C

(µk) = −

(

T
∂S

∂Ck

∣

∣

∣

∣

E,V,{Cl6=k}

)

. (4.13)

Note that E contains bulk and finite-size contributions, thus the Euler equation of

thermodynamics, E = TS − pV +
∑

k Ckµk, is not valid in general. By realizing that

the intensive variables of the heat bath are constant, we then get the following total

differential of ∆Stot:

d∆Stot =

(

1

T
−

1

T 0

)

dE +

(

p

T
−
p0

T 0

)

dV −
∑

k

(

µk

T
−
µ0

k

T 0

)

dCk . (4.14)

From the total differential given in Eq. (4.14) we can read off the partial derivatives,

which have to be zero because of Eqs. (4.12). This gives the following conditions for

nucleation:

T = T 0

p = p0

µ = µ0 . (4.15)
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Nucleation occurs via a state which is in unstable quasi-equilibrium with the initial

phase. These conditions fix the fluctuation variables E, V , and C so that the nucleation

rate can be calculated with Eq. (4.10). The conditions only involve intensive variables,

but due to finite-size effects, also the size of the critical bubble can be determined.

4.3 Finite-Size Effects

To calculate the nucleation rate, i.e. the probability of a fluctuation corresponding to

the conditions of Eqs. (4.15) we first need to specify the finite-size contribution further.

Here we use the simplest approach that the energy of the bubble, i.e. the subsystem,

can be split into a bulk and a finite-size part:

E = EB + EFS . (4.16)

It is not guaranteed that this is always possible and in certain cases this approach will

fail. In fact, the nucleation rate depends crucially on the assumed form of the finite-size

effects.

4.3.1 Nucleation With Finite-Size Entropy

In case there is a contribution of the finite-size effects to the entropy (i.e. the finite-size

energy is temperature dependent), we assume that also the entropy can be split into a

bulk and a finite-size part, whereas the bulk entropy depends only on the bulk energy

and the finite-size entropy only on the finite-size energy:

S(E, V,C) = SB(EB, V,C) + SFS(EFS, V,C) (4.17)

Because the intensive properties of the heat bath are constant, we can also assume

that the finite-size entropy depends additionally on T 0, p0 and µ0, so that actually

SFS = SFS(EFS, V,C, T 0, p0,µ0). Because this additional dependence on constants

does not lead to any changes, we can suppress the additional arguments which refer to

the heat bath.
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In addition to the intensive variables of the entire subsystem of the fluctuation,

Eqs. (4.13), we introduce the following bulk and finite-size variables:

TB/FS =
∂SB/FS

∂EB/FS

∣

∣

∣

∣

V,C

pB/FS = TB/FS ∂SB/FS

∂V

∣

∣

∣

∣

EB/F S ,C

(µ
B/FS
k ) = −

(

TB/FS ∂SB/FS

∂Ck

∣

∣

∣

∣

EB/F S ,V,{Cl6=k}

)

. (4.18)

The maximization of the entropy S with respect to the internal variables EB and EFS

leads to:

TB = T FS = T , (4.19)

which means that the finite-size and bulk part have the same temperature. Contrary,

the pressure and chemical potentials have a bulk and finite-size contribution:

p = pB + pFS

µ = µB + µFS . (4.20)

In this approach the bulk part is treated in the thermodynamic limit so that all the

usual thermodynamic relations can be applied. Starting from Eq. (4.9), thus we can

replace SB in S = SB + SFS to get:

∆Stot =
1

T

(

EB + pBV −
∑

k

µB
k Ck

)

+ SFS −
1

T 0

(

E + p0V −
∑

k

µ0
kCk

)

. (4.21)

With Eq. (4.16) this can be written as:

∆Stot = E

(

1

T
−

1

T 0

)

+ V

(

pB

T
−
p0

T 0

)

−
∑

k

Ck

(

µB
k

T
−
µ0

k

T 0

)

+ SFS −
EFS

T
, (4.22)

which further simplifies by applying Eqs. (4.20):

∆Stot = E

(

1

T
−

1

T 0

)

+ V

(

p

T
−
p0

T 0

)

−
∑

k

Ck

(

µk

T
−
µ0

k

T 0

)

+
1

T
(TSFS − EFS − pFSV +

∑

k

µFS
k Ck) . (4.23)



76 Nucleation

We note that the Euler equation in general does not apply for the finite-size part,

otherwise the last line in the equation would be zero.

4.3.2 Nucleation Without Finite-Size Entropy

If there is no direct entropy contribution (i.e. the finite-size effects are temperature-

independent) we have to modify our approach slightly because SFS ≡ 0. Let us keep the

definitions of Eqs. (4.13) for the total subsystem and Eqs. (4.18) for the bulk part. For

the finite-size part, one now has use the finite-size energy EFS = EFS(V,C) instead:

pFS = −
∂EFS

∂V

∣

∣

∣

∣

C

(µFS
k ) =

(

∂EFS

∂Ck

∣

∣

∣

∣

V,{Cl6=k}

)

. (4.24)

We note again that the finite-size energy may also depend additionally on the constant

parameters T 0, p0 and µ0
k, without any changes arising. With the above definitions one

gets:

T = TB

p = pB + pFS

µ = µB + µFS . (4.25)

By comparing with the previous subsection, we realize that Eqs. (4.21) – (4.23) can also

be applied if the finite-size effects do not depend on temperature, by simply setting SFS

to zero.

4.3.3 Nucleation Rate

By inserting the conditions for nucleation of Eqs. (4.15) in Eq. (4.23), we obtain the

following form of the nucleation rate:

Pnucl ∝ exp

(

1

T
(TSFS − EFS − pFSV +

∑

k

µFS
k Ck)

)

. (4.26)

All variables in this expression are fixed by the nucleation conditions and Eqs. (4.19)

and (4.20) in the case if there is a finite-size entropy and Eqs. (4.25) if there is not.
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It is also interesting to study the case where finite-size contributions are neglected.

Then the conditions for nucleation are the same as for stable phase equilibrium and the

volume of the fluctuation remains arbitrary. If these conditions can be fulfilled one gets

∆Stot = 0 which means that the probability for nucleation is equal to the probability

that the system remains in the metastable state without any fluctuations. This is a

reasonable result, because we can choose an arbitrary small volume V −→ 0 for the

nucleation, as the subsystem is treated like in the thermodynamic limit. Obviously,

such a vanishing small fluctuation takes place immediately. This shows explicitly that

the nucleation rate is exceedingly large if surface effects are neglected.

Let us discuss the conditions for nucleation with finite-size effects a little bit further.

Besides temperature and pressure equilibrium (including the finite-size part), they con-

tain complete chemical equilibrium with respect to all the conserved charges. We want to

stress that still all charges (and the total volume and the total energy as well) are strictly

conserved, see Eqs. (4.4). The total system is treated microcanonically. The fluctuation

with conditions corresponding to unstable phase equilibrium including the finite-size

contributions, Eqs. (4.15), is only the most likely one which leads to nucleation. These

conditions are not in contradiction to the conservation of all charges, because the size

of the fluctuation is negligible small compared to the bath. This aspect was sometimes

confused in the literature, e.g. in [LB98, LDGS10] only partial chemical equilibrium was

assumed to describe the nucleation of a quark phase under the constraint of flavor con-

servation. Instead of full chemical equilibrium the same up- and down-quark fraction

was assumed in the hadronic and in the quark phase. However, as we showed, this is not

necessary, because the derived formulation is always based on the strict conservation of

all charges during the nucleation.

We can also apply our formalism if some charges are actually not conserved in the

initial phase. We will show later in Eq. (5.29) that if the conservation law of the charge

l is lifted, this leads to µ0
l = 0. Even though the initial value of the total charge

Ctot 0
l = Ctot 0

l (µ0
l = 0) remains constant during the nucleation, the equilibrium condition

µ0
l = 0 applies also for the most likely nucleation, because µl = µ0

l . Of course it is

necessary for every fluctuation ∆Ck, that the charge exists already in the heat bath, and

not Ctot 0
k = 0. For example if there is no strangeness in the hadronic phase at all, it is

not possible that there is a thermal fluctuation in the strange quark density. But any

finite Ctot 0
k 6= 0 is enough to produce a fluctuation and our formalism is correct as long

the assumption is fulfilled, that the heatbath is not modified by the fluctuation.

It is possible to suppress fluctuations of certain degrees of freedom. One could allow

only fluctuations in one of the state variables, or alternatively suppress the fluctuations of
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certain particle ratios. The corresponding variable is then fixed by a certain assumption,

and its change does not appear in Eq. (4.7) any more. The corresponding condition for

maximization also drops out of Eqs. (4.12). The artificial suppression of the fluctuations

of some degrees of freedom just give a lower nucleation rate. However, there might be

reasons why to suppress fluctuations, e.g. if the charge does not exist at all, as noted

before, or to simulate forces which are not included in the thermodynamic description.

One such scenario is the assumption of local charge neutrality. To be able to neglect

the Coulomb forces, it is necessary that the fluctuation is strictly charge neutral. Let us

denote this by Qbath = 0, Q = 0. Thus the charge chemical potential will not be equal

in the subsystem and the heatbath, µ0
Q 6= µQ. Instead we could allow the fluctuation

to be charged, but still neglect the Coulomb forces in SFS. Then we would obtain

Qbath = 0 6= Q, with Q fixed by µ0
Q = µQ. If we included the Coulomb energy of

the bubble the last two relations would still hold, but the expression for µQ would be

modified by the Coulomb contribution, as we will show in the last section of this chapter.

4.4 Nucleation with Surface Energy

Now we want to calculate the nucleation rate for the example of the simplest form of

the finite-size energy, namely a surface energy which depends only on the surface area.

Furthermore, we assume spherical geometry. For the notation of this case we use the

index S instead of FS. To achieve a correct description implicitly we consider the

locally charge neutral case, so that the Coulomb energy does not have to be taken into

account. In this case the index k, which denotes the globally conserved charges, does

not include the electric charge Q. Alternatively we could allow for charged fluctuations

but completely neglect the Coulomb energy, as discussed before. Then we would get the

equality of the charge chemical potentials in addition.

For the surface energy belonging to the surface area S we use ES = σS, with σ

denoting a constant surface tension, which may be a function of T 0, p0 and µ0. Expressed

by the volume we get:

ES(V ) = σ(36π)1/3V 2/3 . (4.27)

The only other finite-size contribution is the surface pressure:

pS = −
2

3
σ(36π)1/3V −1/3 = −

2

3

ES

V
. (4.28)



Nucleation 79

The nucleation rate Eq. (4.26) can be expressed as:

P S
nucl ∝ exp

(

−
ES

3T

)

. (4.29)

The conditions for the most likely nucleation take on the following explicit form:

T = T 0

µB = µ0

pB − σ 2
3
(36π)1/3V −1/3 = p0 . (4.30)

Compared to bulk equilibrium, only the surface pressure appears. The intensive variables

of the heat bath are fixed and the EOS gives a relation pB = pB(T, (µB
k )), which allows

to derive the size of the most likely nucleation. Thus all properties of the subsystem can

be determined. Finally, we can express the nucleation rate in the following way:

P S
nucl ∝ exp

(

−
16π

3

σ3

T 0(pB(T 0, (µ0
k))− p

0)2

)

. (4.31)

It follows from Eqs. (4.30) that pB > p0 to get a positive volume V . The case pB = p0

is also interesting. This situation occurs only at the equilibrium phase transition point

denoted by tpt before. In this case we get V −→ ∞ and P S
nucl −→ 0. At the phase

transition line (where the system just begins to become metastable) a fluctuation which

leads to nucleation has to have infinite size and thus has zero probability. From the

opposite point of view, the result V −→ ∞ for bulk phase equilibrium shows explicitly

that the normal conditions for full phase equilibrium correspond to two phases which

are treated in the thermodynamic limit. In the case of a constant surface tension, after

the nucleation has occurred the nuclei of the new phase will grow in size to minimize the

thermodynamic potential. Finally when the groundstate is reached, the thermodynamic

limit V −→∞ applies and the surface energy becomes negligible compared to the bulk

energy.

4.5 Nucleation with Surface and Coulomb Energy

Now we want to go beyond the complete neglect of Coulomb forces, or the other extreme

of strict local charge neutrality. For the notation of this case we use SC. Now the finite-
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size energy consists in addition to the surface energy ES of the Coulomb energy EC :

ESC = ES + EC . (4.32)

Here we use the simplest case of a uniformly charged sphere, so that

EC = α
3

5

Q2

R
(4.33)

with the fine-structure constant α, the total electric charge number Q and the radius R

of the subsystem. Because the fluctuation is small, the Coulomb energy of the heat bath

can be neglected. Actually the charge density of the bath is vanishingly small, because

the bath is assumed to be infinitely large compared to the fluctuation. Expressed by V

and Q We get:

ESC(V,Q) = σ(36π)1/3V 2/3 + α
3

5

(

4π

3

)1/3

Q2V −1/3 . (4.34)

The following contributions of the finite-size effects arise:

µSC
Q = α

6

5

(

4π

3

)1/3

QV −1/3 = 2
EC

Q
(4.35)

pSC = −σ
2

3
(36π)1/3V −1/3 + α

1

5

(

4π

3

)1/3

Q2V −4/3 = −
2

3

ES

V
+

1

3

EC

V
. (4.36)

The nucleation rate then simplifies to:

P SC
nucl ∝ exp

(

1

3

2EC − ES

T

)

. (4.37)

The conditions for nucleation read in explicit form:

T = T 0

µB
k = µ0

k for k 6= Q

µB
Q + α 6

5

(

4π
3

)1/3
QV −1/3 = µ0

Q

pB − σ 2
3
(36π)1/3V −1/3 + α 1

5

(

4π
3

)1/3
Q2V −4/3 = p0 (4.38)

The charge chemical potentials are not equal in the two phases, but are shifted by

the Coulomb contribution. Similarly, the pressure is shifted by a negative surface and a

positive Coulomb contribution. One obtains the following implicit equation which has
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to be solved numerically to determine µB
Q:

pB(T 0, µB
Q, {µ

0
k 6=Q})− 4σ

(

2π

5

α nQ

µ0
Q − µ

B
Q

)1/2

+
1

6
(µ0

Q − µ
B
Q)nQ = p0 (4.39)

with the charge density nQ = Q/V which is also a function of T 0, µB
Q and µ0

k 6=Q, nQ =

nQ(T 0, µB
Q, {µ

0
k 6=Q}). Then the volume of the fluctuation

V =
5

12

(

5

2π

)1/2
(

µ0
Q − µ

B
Q

α nQ

)3/2

(4.40)

and all other thermodynamic variables are fixed. In terms of the intensive variables, the

nucleation rate becomes:

P SC
nucl ∝ exp





1

T0







5

36

(

5

2π

(µ0
Q − µ

B
Q)5

α3nQ

)1/2

−
5

6
σ
µ0

Q − µ
B
Q

α nQ









 . (4.41)

Here we end with the discussion of nucleation, without calculating any examples. The

formalism is derived, and it would be an interesting continuation to study the nucleation

quantitatively for specific EOSs. For example one could compare the nucleation rates

for different conditions, e.g. local charge neutrality, charged nucleation with Coulomb

and without Coulomb or with locally fixed fractions.
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Chapter 5

Equilibrium Conditions with Local

Constraints

In this chapter, we extend the general formalism of Chap. 3 and derive the more con-

crete conditions for phase equilibrium for the set of state variables which is relevant for

compact stars. The results of this and the following chapter have been partly published

in Ref. [HPS09]. We assume that not the single particle numbers of the system but only

some particular charges like e.g. baryon number are conserved. It will derived how the

particle numbers are fixed by the conserved charges through the equilibrium conditions.

In addition to globally conserved charges we analyze the implications of locally conserved

charge fractions, like e.g. local electric charge neutrality or locally fixed proton or lepton

fractions. Such local constraints have not been considered in Chap. 3. We will show

that neither internal degrees of freedom nor locally conserved fractions do not influence

the qualitative behavior of the mixed phase. Thus all the results of Chap. 3 apply also

for a system with local constraints and/or internal degrees of freedom.

Consider a thermodynamic system with volume V and temperature T composed

of two different, spatially separated phases. The numbers of the N I different particle

species of phase I are denoted by N
I = (N I

i ), the N II particles of phase II by N
II =

(N II
j ). To distinguish the two phases we introduce the index κ = I, II. To avoid a

complicated notation in some cases we will also use the index i for the particles of phase

II. Furthermore, for a clear denotation it will later be necessary that i and j are not

integer numbers. For the entire set of particle numbers we introduce N = (NI ,NII).

The thermodynamic potential of the system is the Helmholtz free energy F (T, V,N).

We chose this canonical formulation, because we will apply it later in the description

of phase transitions in compact stars. However, the relations which are found for the

chemical potentials of the particles can also be used for other thermodynamic ensembles.
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In many cases, there exist some conserved charges, but the single particle numbers

are not conserved. Then it will be more convenient to use these conserved charges as the

independent degrees of freedom for the description of the state of the system, instead of

specifying all the single particle numbers. In this subsection the equilibrium conditions

in terms of the chemical potentials of the particles shall be derived. Let us assume there

are C conserved charges Ck, k = 1, ..., C, for which a conservation law of the following

form exists:

Ck(N
I ,NII) = CI

k(NI) + CII
k (NII) = const. ,

Cκ
k (Nκ) =

∑

i

ακ
ikN

κ
i (5.1)

with ακ
ik denoting the amount of charge Ck carried by particle i of phase κ. The total

conserved charge consists of the charge in phase I, CI
k , and in phase II, CII

k . To achieve

a general description applicable for all kind of local and global constraints we will first

assume, that all of the local charges are taken as state variables and are thus fixed

locally. Usually instead of using the charges directly, one takes charge fractions as the

independent degrees of freedom:

Y κ
t (Nκ) =

Cκ
t

Cκ
1

= 1
Cκ

1

∑

i α
κ
itN

κ
i , (5.2)

which is the local charge fractions of the conserved charge Ct, t = 2, ...C. Obviously, it

would not make sense to define the charge fraction Y κ
1 ≡ 1 of charge Cκ

1 . Cκ
1 shall be

a positive, non-vanishing quantity so that it is suitable to characterize the size of the

phases. In some cases we will also use the vector Y
κ = (Y κ

t ) for the notation of the local

charge fractions of phase κ. Our state variables are then (T, V, CI
1 , C

II
1 ,Y

I ,YII).

In the following we want to derive the equilibrium conditions for the internal de-

pendent degrees of freedom Nκ
i if only these state variables are specified F (T, V,N) =

F (T, V,N(T, V, CI
1 , C

II
1 ,Y

I ,YII)) and are kept constant. Thus:

Cκ
1 = const. (5.3)

Y κ
t = const. . (5.4)

As the temperature is one of the state variables of the two phases it is set equal by

construction, so that thermal equilibrium between the two phases is assured. Only the

total volume V = V I + V II is kept constant, but the two subvolumes can vary, leading
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to pressure equality as the condition for mechanical equilibrium:

pI = pII . (5.5)

From the first and second law of thermodynamics we get for the total differential of the

free energy F expressed by the particle numbers Nκ
i

0 = dF =
∑

i,κ

∂F

∂Nκ
i

dNκ
i , (5.6)

if the volume and the temperature are kept constant. With

µκ
i =

∂F (N)

∂Nκ
i

(5.7)

Eq. (5.6) becomes

∑

i,κ

µκ
i dN

κ
i = 0 . (5.8)

The constraints of Eqs. (5.3) and (5.4) can be implemented by the means of Lagrange

multipliers λκ
1 , λ

κ
t , by adding

λκ
1dC

κ
1 = λκ

1

∑

i α
κ
i1dN

κ
i = 0 , (5.9)

and

λκ
t dY

κ
t = λκ

t
1

Cκ
1

(dCκ
t − Y

κ
t dC

κ
1 ) = 0

⇔ λκ
t

1
Cκ

1

(
∑

i α
κ
itdN

κ
i − Y

κ
t

∑

i α
κ
i1dN

κ
i ) = 0 , (5.10)

to dF . This leads to:

µκ
i = λκ

1α
κ
i1 +

∑

t

λκ
t

1

Cκ
1

(ακ
it − Y

κ
t α

κ
i1) . (5.11)

dF can also be expressed as a function of the Cκ
1 and Y κ

t :

0 = dF =
∑

κ

∂F

∂Cκ
1

dCκ
1 +

∑

κ,t

∂F

∂Y κ
t

dY κ
t . (5.12)
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We introduce the chemical potential of the conserved charges Cκ
1 ,

µκ
1 =

∂

∂Cκ
1

F (CI
1 , C

II
1 ,Y

I ,YII) , (5.13)

and of the conserved fractions Y κ
t :

µκ
Yt

=
∂

∂Y κ
t

F (CI
1 , C

II
1 ,Y

I ,YII) . (5.14)

Then it is easy to realize, that the Lagrange multipliers are equal to the chemical po-

tentials of the corresponding charges: λκ
1 = µκ

1 , λ
κ
t = µκ

Yt
, so that:

µκ
i = µκ

1α
κ
i1 +

∑

t

µκ
Yt

1

Cκ
1

(ακ
it − Y

κ
t α

κ
i1) . (5.15)

It is interesting to see, that the chemical potentials of the particles depend now

directly on the value of the locally fixed charge fractions and the unknown value of Cκ
1 .

1/Cκ
1 appears because a change in Y κ

t implies a change in the corresponding particle

numbers of phase κ proportional to Cκ
1 . With

µκ
Yt

= Cκ
1

∂

∂Cκ
t

F (CI
1 , C

II
1 ,Y

I ,YII)

= Cκ
1

∂

∂Cκ
t

F (CI
1 , C

II
1 , (C

I
t ), (C

II
t )) = Cκ

1µ
κ
t , (5.16)

one can see that µκ
Yt

is proportional to Cκ
1 and the chemical potential of the charge

Cκ
t . In fact the local chemical potentials of the particles can only depend on other local

intensive variables, so Cκ
1 has to drop out of Eq. (5.15).

By using this result we get the following expression for the equilibrium conditions

for the chemical potentials of the particles:

µκ
i = µκ

1α
κ
i1 +

C
∑

t=2

µκ
t (ακ

it − Y
κ
t α

κ
i1) . (5.17)

The first two of the three terms simply state that the chemical potential of particle (i, κ)

is given by the sum over the amount of conserved charges that the particle carries mul-

tiplied by the corresponding chemical potentials. The term proportional to Y κ
t appears

only for particles which contribute to Cκ
1 . It is due to the change in the charge Cκ

t

implied by dCκ
1 if Y κ

t is kept constant. It would not appear if instead of the fractions

the charges were used for the description of the state of the system. This shows the im-
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portance in the definition of the chemical potentials of which other quantities are kept

constant.

It is important to realize that the local chemical potentials µκ
1 , µ

κ
t will in general be

different in the two phases, leading to different chemical potentials of all particles. Only

particles of the same phase which carry the same quantum numbers will have equal

chemical potentials. All together there are 2C +N I +N II + 1 unknown variables: the

chemical potentials µκ
1 , µ

κ
t , µ

κ
i and one of the two subvolumes V κ. They can be deter-

mined from the N I +N II chemical equilibrium conditions (5.17), pressure equilibrium

(5.5) and the 2C conservation laws (5.3) and (5.4) for the fixed state (CI
1 , C

II
1 ,Y

I ,YII).

If all the relations Nκ
i = Nκ

i (T, V κ, µκ
i ) are known, the system is determined completely.

Equation (5.17) can also be applied for a single phase κ, by setting V κ̄ = 0 for the

other phase, equivalent to N
κ̄ = 0, with κ̄ denoting the phase different to κ. Then

pressure equilibrium is not required any more, and the whole system of equations can

be solved and all thermodynamic quantities can be determined, too. If the number

of conserved charges C is equal to the number of particles N κ in this phase, then the

conserved charges directly fix all the N κ particle numbers Nκ
i . If C < N κ, N κ − C

equilibrium conditions between the chemical potentials of the particles will exist.

So far, there are only two equilibrium conditions between two phases: pressure equi-

librium (Eq. (5.5)) and temperature equilibrium (by construction). Because all charges

are fixed locally, there is only the volume and the total entropy as globally conserved

extensive variables. The conjugate intensive variables of these two variables have to be

equal in the two phases, in agreement with the results of Chap. 3. Next we want to

understand the consequences if not all of the charges are fixed locally. This means we

are lifting some of the local constraints. First of all we assume that C1 is conserved

only globally and no longer constrained locally. Furthermore, also G − 1 of the other

charges shall be conserved only globally. We will denote the fractions which are no longer

constrained locally but only globally by Yg, g = 2, ...,G. With C1 this gives G lobally

conserved charges. For the fractions Y κ
l which are still fixed locally, we introduce the

index l = G, ..., C. We then have C = G +L. Because the volume is also one of the state

variables we now have E = G+1 extensive state variables and only I = 1 intensive state

variables, the temperature.

To be more specific, we only consider local constraints which require equal local

charge fractions in the two phases:

Y I
l = Y II

l . (5.18)
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If we introduce the global charge fraction Yl,

Yl = Cl/C1 = const. , (5.19)

we find:

Y κ
l = Yl = const. . (5.20)

Eq. (5.20) is the reason why we can evaluate the constraint of Eq. (5.18) independently

for the two phases. The constraint for global conservation of C1 can be written as:

λ1dC1 = λ1

∑

i,κ

ακ
i1dN

κ
i = 0 . (5.21)

All the global charge fractions Yg = Cg/C1 are also conserved:

λg
1

C1
(dCg − YgdC1) = 0

⇔ λg
1

C1

(

∑

i,κ α
κ
igdN

κ
i − Yg

∑

i,κ α
κ
i1dN

κ
i

)

= 0 . (5.22)

We already implemented the new Lagrange multipliers λ1, λg. By comparing Eqs. (5.9)

and (5.10) with (5.21) and (5.22), one finds that the local conservation laws lead to the

same constraints (5.21) and (5.22) which are added to dF if we set:

λI
1 = λII

1 = λ1 , (5.23)
λI

g

CI
1

=
λII

g

CII
1

= λg

C1
, (5.24)

which is equivalent to:

µI
1 = µII

1 =: µ1 , (5.25)
µI

Yg

CI
1

=
µII

Yg

CII
1

⇔ µI
g = µII

g =: µg , (5.26)

where we used Eq. (5.16) in the last line. Equations (5.25) and (5.26) are the new

additional equilibrium conditions for the globally conserved charges in terms of the local

chemical potentials. This is in complete agreement with Chap. 3 where we showed

that every globally conserved extensive variable induces a corresponding equilibrium

condition for the conjugate intensive variable. To express the equality of the chemical

potentials we introduced the variables µ1, µg, which are the global chemical potentials of

the corresponding charges. If a local conservation law is lifted, an additional condition for
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chemical equilibrium between the two phases appears, and the whole set of equilibrium

equations can still be solved. Equations (5.25) and (5.26) is the expected result that

local chemical potentials become equal in the two phases when the corresponding local

constraint is lifted. Then the two local fractions can adjust to minimize the free energy.

After equilibrium is reached, the two phases can be separated from each other without

any changes arising.

We want to comment on Eq. (5.17), which was derived for the situation in which all

charge fractions were fixed locally. In the general case which we discussed here the local

fractions of the globally conserved charges will be different in the two phases and are

not part of the state variables any more. But also in this case we can use Eq. (5.17),

because the new equilibirum conditions still determine all thermodynamic variables,

including the local fractions of globally conserved charges. It is only the dependency of

the variables in Eq. (5.17) which has changed.

If one of the globally conserved charges, denoted by Cg′ in the following, is actually

not conserved any more this means that

∂F

∂Cg′
= 0 (5.27)

to minimize the free energy, leading to

µI
g′ = µII

g′ = 0 . (5.28)

A non-conserved charge gives two local constraints for the chemical potentials. The two

Eqs. (5.28) replace the equilibrium condition (5.25). With this additional information

the whole system can be determined, even though the value of Cg′ is not fixed any more.

This is in agreement with our previous conclusion that all thermodynamic quantities

can be determined, independently of the number of conserved charges C and the number

of particles N I and N II . We note that with the new information of Eqs. (5.28) the

chemical potentials of the remaining conserved charges can possibly be written in a

different simplified form. This procedure for non-conserved charges can also be applied

for a single phase κ, in which only one chemical potential µκ
g′ exists, leading to:

µκ
g′ = 0 . (5.29)

All other conclusions are also analog to the mixed phase.

These are very practical results. It allows to construct an EOS for the most general

case that all possible quantum numbers are conserved, and then apply this EOS to all
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cases in which some of the quantum numbers are actually not conserved any more, by

simply setting the corresponding chemical potential to zero. We will use this procedure

later.

From Eq. (5.17) it follows immediately, that two particles i and j of the same phase

have equal chemical potentials if they carry the same quantum numbers:

µκ
i = µκ

j if ακ
ik = ακ

jk ∀ k = 1, ...C . (5.30)

If particles i and j of two different phases carry the same quantum numbers, e.g. if some

of the particles in the two different phases are identical, this is no longer true in general.

The local chemical potentials of locally fixed fractions will in general be different in the

two phases. Consequently, if a particle carries global and local charges, its chemical

potential will also be different in the two phases. Only if they do not contribute to the

locally conserved charges it follows from Eqs. (5.17), (5.25) and (5.26) that the chemical

potentials of such particles are equal:

µI
i = µII

j . (5.31)

This means that, since such particles can be exchanged freely between the two phases,

in equilibrium always the same amount of energy is needed when the number of particles

N I
i or N II

j is varied in one of the two phases. If no local constraints are applied, the

chemical potentials of all identical particles become equal, which is a well-known form

of the Gibbs conditions for phase equilibrium.

For fixed temperature T , pressure p and particle numbers N, the correct thermody-

namic potential is the Gibbs potential G, which is also called the Gibbs free enthalpy.

With Eqs. (5.17), (5.25) and (5.26) we get the following relations inside the mixed phase:

G (T, p,N(C1, (Yg), (Yl))) =
∑

i,κ

µκ
iN

κ
i

= µ1C1 = µI
1C

I
1 + µII

1 C
II
1 , (5.32)

independently of how many charges are constrained locally. For a single phase κ with

Cκ
1 = C1 and V κ = V , Eq. (5.17) leads to:

G (T, p,Nκ(C1, (Yg), (Yl))) =
∑

i

µκ
iN

κ
i = µκ

1C1 . (5.33)

In this case in principle the index κ can also be suppressed because only one single

phase exists. These two relations can also be used in other thermodynamic potentials or



Equilibrium Conditions with Local Constraints 91

in the fundamental relation of thermodynamics. These results are interesting, because

they show explicitly that we derived a formulation in which the Gibbs free enthalpy is

independent of the local constraints which are actually applied.
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Chapter 6

Description of Matter in Compact

Stars

Before we turn to the discussion of phase transitions in compact stars we want to in-

troduce the state variables which are used for the different stages of the evolution of

a compact star. Furthermore, we want to give the explicit equilibrium conditions for

single phases consisting of quarks or nucleons, if only some charges but not all of the

particle numbers are conserved. There can be different conserved quantum numbers

(denoted by Ck in the previous chapters) in a small closed subsystem of compact star

matter. In all cases, the baryon number NB has to be conserved. Because compact stars

are macroscopic objects, electric charge neutrality has to be fulfilled, which we express

by the total electric charge number NC = 0 (denoted by Q in Chap. 4). Furthermore,

there are two additional conserved charges possible, the lepton number NL if neutrinos

are trapped and the total isospin if weak equilibrium is not established. For nucleon

matter, conservation of isospin and baryon number leads to the conservation of the pro-

ton number Np, which we will use instead of isospin. Obviously, for up and down quark

matter the conservation of isospin is equivalent to flavor conservation. For a consistent

and easy notation we also use Np to express isospin conservation in the quark phase.

Np in the quark phase could be seen as the electric charge of the particles with baryon

number, i.e. of the protons in the nucleon phase, and of the quarks in the quark phase.

In total there are G = 4 possible conserved charges.

We consider that the system is either in a hadronic or in a quark phase. As an

example we assume that the hadronic phase consists of Nν neutrinos, Ne electrons, Np

protons and Nn neutrons (net numbers, including antiparticles). The two-flavor quark

phase shall be composed of Ne electrons, Nν neutrinos, Nu up and Nd down quarks.

Furthermore, at the end of the section we will discuss strange quark matter, too, in

93
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conserved charge hadron phase quark phase

baryon number NB = Nn +Np NB = 1/3(Nu +Nd)

clectric charge NC = Np −Ne NC = 1/3(2Nu −Nd)−Ne

baryonic electric charge Np Np = 1/3(2Nu −Nd)

lepton number NL = Ne +Nν NL = Ne +Nν

Table 6.1: The possible conserved quantum numbers expressed by the particle numbers of a
nucleon and a two-flavor quark phase.

which Ns strange quarks are also part of the system. We note that the inclusion of other

particle species (e.g. muons, hyperons, kaons, or hadron resonances) is straightforward

and does not lead to conceptual differences. The particle numbers of the two considered

phases relate to the conserved quantum numbers as shown in Table 6.1.

Usually instead of fixing (NB, NC , NL, Np), an intensive formulation in terms of the

proton and lepton fractions Yp = np/nB and YL = (ne + nν)/nB, the baryon number

density nB and charge density nC = np − ne = 0 are used, like e.g. in Refs. [LD91a,

STOS98a, STOS98b]. In the thermodynamic limit, the size of the system becomes

irrelevant, so that we can assume that the volume V is also known. Obviously then it is

completely equivalent to fix (nB, nC , Yp, YL, V ) instead of (NB, NC , Np, NL, V ). We note

that nC = 0 is equivalent to zero electric charge per baryon fraction YC = 0. Thus we

can apply the results of Chap. 5 also for the case of local charge neutrality.

In Table 6.2 we show the equilibrium conditions for the most general case, that all four

of the charges are conserved in a way that the fractions are kept constant. The chemical

potentials of the conserved charges NB, NC , Np and NL are expressed in terms of the

chemical potentials of the particles. The opposite relation which expresses the chemical

potentials of the particles in terms of the chemical potentials of the conserved charges is

given by Eq. (5.17). We included the index κ denoting different phases, because we will

use the shown results for phase transitions later. For two phases in equilibrium, Table

6.2 shows the case that the baryon number and all fractions are conserved locally. As

long as only one single homogeneous phase exists, local conservation laws are identical

to global ones. In this chapter we only describe single homogenous phases, thus the

index κ can be suppressed.

The unusual form of the chemical potentials of the conserved charges/fractions,

e.g. µNB
, can be understood in a simple way. µNB

gives the change of the free energy

with the change of the charge NB for constant proton and lepton fraction and electric

charge neutrality. The combination of chemical potentials of the particles which is found
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chemical potentials

conserved charge hadron phase quark phase

Nκ
B µκ

NB
= (1− Yp)µ

κ
n + Ypµ

κ
p µκ

NB
= (2− Yp)µ

κ
d + (1 + Yp)µ

κ
u

+Ypµ
κ
e + (YL − Yp)µ

κ
ν +Ypµ

κ
e + (YL − Yp)µ

κ
ν

Y κ
C µκ

NC
= µκ

ν − µ
κ
e µκ

NC
= µκ

ν − µ
κ
e

Y κ
p µκ

Np
= µκ

p − µ
κ
n − µ

κ
ν + µκ

e µκ
Np

= µκ
u − µ

κ
d − µ

κ
ν + µκ

e

Y κ
L µκ

NL
= µκ

ν µκ
NL

= µκ
ν

Table 6.2: The local chemical potentials of the baryon number NB , electric charge NC , proton
number (or baryonic electric charge number) Np and lepton number NL in terms of
the chemical potentials of the particles in one phase if the baryon number and all
fractions are kept constant. The second column is for a hadronic phase composed
of neutrons, protons, electrons and neutrinos and the third column for a phase of
up quarks, down quarks, electrons and neutrinos. The results also apply for strange
quark matter, with µd = µs. For a single phase the index κ can be suppressed.
For two phases in equilibrium the table shows the results if the baryon number
and all fractions are conserved locally. For global baryon number conservation
µI

NB
= µII

NB
follows. If some of the fractions are conserved only globally and are

no longer restricted by local constraints, the corresponding chemical potentials
become equal, too: µI

g = µII
g .

for µNB
corresponds to the change of the particle numbers induced by the change of NB

under the chosen constraints. The form of a chemical potential depends on which other

quantities are kept constant. For example the baryon chemical potential µNB
would be

equal to µn (for nuclear matter) if instead of the fractions the charges themselves were

used as the other state variables which are kept constant. However, the final equilibrium

conditions are not (and cannot be) affected by the choice of the state variables. Thus

we can use the description presented here, which is most convenient for our purpose

as it can be applied for single phases as well as for all possible combinations of locally

conserved fractions inside mixed phases later.

Table 6.2 corresponds to the special situation of completely trapped neutrinos, but

with too short dynamical timescales to change the proton number by weak reactions.

Next we will discuss the different possibilities in which some of the charges are actually

not conserved any more and will discuss their physical realization. As was shown before,

for every charge becoming not conserved an additional equilibrium condition appears,

see Eq. (5.29). With this new information the chemical potentials of the remaining

conserved charges can possibly be written in a different simplified form.

For non-conserved lepton number from Eq. (5.29) and Table 6.2 µν = 0 follows.

In this case neutrinos are completely untrapped/free streaming. We discuss now the
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meaning and some interesting consequences of the result µν = 0 for matter with neutrinos

but without lepton number conservation further. If a particle i carries no conserved

charges (αik = 0 ∀k) with Eq. (5.17) one finds immediately that its chemical potential is

zero. If neutrinos can be described as an ideal gas in equilibrium it follows that Nν = 0,

which means that the number of neutrinos equals the number of antineutrinos. Only if

T = 0 both contributions vanish. Non-conserved YL would correspond to the situation

when the neutrino mean free path was much larger than the size of the compact star so

that neutrinos could leave the neutron star freely. Thus the energy of the system was

not conserved, but could be carried away by neutrinos as long as they are abundant.

As a logical consequence the neutron star would cool immediately to T = 0 if weak

reaction rates were fast enough (infinitely large emissivities) to allow to describe the

neutrinos as an ideal gas as part of the thermodynamic description. In reality it takes

some 105 years until the neutron star has cooled to a core temperature of ∼ 10 keV and

the photon cooling era is reached. The neutrinos are far away from equilibrium, their

emissivities have to be calculated, and the description of the cooling process requires

detailed numerical simulations [PGW06].

6.1 Supernova Matter

Matter in supernova occurs under very different conditions. In the central regions the

densities and temperatures are so high, that neutrinos are completely trapped, so that

the lepton number is conserved. Usually, then the neutrinos are also in weak equilib-

rium. However, in the outer regions above the neutrino spheres, the neutrinos become

free streaming. Then in general weak reactions are not in equilibrium any more be-

cause the timescales for the weak reactions can become too slow compared to the dy-

namical timescales of e.g. fast ejecta. Thus we consider the most general case, that

weak-equilibrium is not established and the proton fraction is conserved.

Usually for fixed Yp the electrons and neutrinos are not included in the construction

of the EOS but are treated separately. Yp and nB directly set the electron density which

are usually described as an uniform ideal Fermi-Dirac gas. The neutrino dynamics play a

crucial role in supernovae and protoneutron stars. To describe the evolution of such sys-

tems it is necessary to handle the neutrinos with a detailed dynamical transport scheme

in which their emission, scattering and absorption is calculated. Like the electrons, the

neutrinos can also be separated from the non-leptonic EOS: nB and Yp directly fix the

particle number densities of the hadrons, respectively of the quarks. The non-neutrino

part of the EOS does not change, if neutrinos are not included as part of the thermody-



Description of Matter in Compact Stars 97

namic system, e.g. because they are out of equilibrium. At the same time, the neutrino

contribution is also independent of the non-neutrino EOS: If the lepton fraction is con-

served, i.e. if they are completely trapped, the neutrino density is directly specified by

nν = (YL − Yp)nB. Without lepton number conservation, µν = 0 also directly sets the

neutrino contribution. An EOS with fixed Yp can also be used if weak equilibrium is

actually reached, by simply determining the proper Yp for which µNp = 0. Thus we con-

clude that an EOS with fixed proton fraction Yp can be used for all possible conditions

under which the neutrinos appear. In Chap. 7 we will show that the neutrinos also do

not affect the equilibrium conditions in mixed phases as long as the lepton fraction is

conserved globally. Table 6.2 describes the general case of supernova matter, if we ignore

the neutrino part and the lepton number conservation.

Even though most of the matter is characterized by a constant entropy per baryon,

usually the temperature is used as a state variable. This is mainly due to numerical rea-

sons, because the calculation of an EOS table in terms of the entropy per baryon is very

demanding. Thus we assume in the following that the state variables of a typical super-

nova EOS including the electrons are (T, nB, Yp, nC = 0). If the electrons are described

as an ideal gas they can be separated from the EOS, and (T, nB, Yp) are sufficient to fix

the nucleon or quark part. In the thermodynamic limit we can assume any arbitrary

volume V . Thus fixing (T, nB, Yp, nC = 0) is equivalent to fixing (T,NB, Np, NC = 0, V ),

giving G = 3, I = 1 and E = 4. Without electrons we have (T,NB, Np, V ) as state

variables, giving G = 2, I = 1 and E = 3.

6.2 Protoneutron Stars

A protoneutron star is the newly formed compact object in the center of a supernova.

It is characterized by completely trapped neutrinos. Because the central object behaves

rather static there is enough time for the weak reactions to reach equilibrium. This

stage lasts for the first 10 seconds of the evolution of the star. One assumes that lepton

number is conserved but the proton number not. Then from Table 6.2 with µNp = 0 the

well known weak equilibrium conditions

µp − µn − µν + µe = 0 (6.1)

for nuclear matter and

µu − µd − µν + µe = 0 (6.2)
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for quark matter are found.

Because weak equilibrium is assumed, the neutrinos have to be included in the EOS,

thus YL is used as a state variable instead of Yp. Representative static configurations

of protoneutron stars are characterized by a fixed entropy per baryon, because matter

is opaque for neutrinos and photons, see e.g. [PCL95, PBP+97]. In stable hydrostatic

configurations, like in a protoneutron star, the pressure has to be strictly monotonic.

Thus one of the natural state variables for matter in a compact star is the pressure p.

Thus usually instead of the baryon density the pressure is used, because then the EOS

can be used directly in the calculation of the structure of the protoneutron star. This

is a nice example where one of the control parameters is an intensive quantity which is

not the temperature T . The commonly used state variables for protoneutron stars are

(S/NB, p, YL, nC = 0). This is equivalent to fixing (S, p,NB, NL, NC = 0), giving G = 3,

I = 1 and E = 4. At an intermediate stage the lepton number is not conserved any

more. If the neutron star is still isentropic, the state variables are (S/NB, p, nC = 0)

which is equivalent to (S, p,NB, NC = 0). In this case only G = 2 conserved charges and

E = 3 extensive variables would remain.

6.3 Cold Neutron Stars

At a later stage in the evolution, the neutrinos become completely untrapped and the

lepton number is not conserved any more. After roughly 105 years the star can be

described by zero temperature, because the typical densities and chemical potentials are

very large. Thus the temperature is used as one of the state variables, set to the value

T = 0.

The star has reached full weak equilibrium and only baryon number and electric

charge remain as conserved charges. Without lepton number conservation µν = 0, and

the neutrinos drop out in the β-equilibrium conditions

µe + µp − µn = 0 (6.3)

for nucleons and

µu − µd − µe = 0 (6.4)

for quarks. For both sets of particles µNC
= −µe. The baryon chemical potential can

also be expressed in a simpler way: µNB
= µn for nucleons and µNB

= 2µd + µu for
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quarks. For cold neutron stars it is more convenient to use the pressure instead of the

density, thus the appropriate state variables are (T, p, nC = 0). This time the baryon

number NB fixes the size of the system, but its value is arbitrary in the thermodynamic

limit. Thus fixing (T, p, nC = 0) is equivalent to fixing (T, p,NC = 0, NB), giving G = 2,

I = 2 and E = 2..

6.4 Strange Matter

In strange quark matter, in addition to the up and down quarks, Ns strange quarks are

part of the thermodynamic system. In principle, strange quarks carry the additional

quantum number of strangeness. There exist two possibilities to handle this additional

quantum number: First, one can use the total strangeness of the system indeed as

an additional conserved charge, increasing G by one. If strangeness is not taken to be

identical to zero, it is necessary to calculate the EOS for all possible strangeness fractions

YS = NS/NB. The strangeness chemical potential µNS
would appear in addition to the

chemical potentials of the other conserved charges. This approach was e.g. used in

Ref. [GKS87] to describe strangeness separation in heavy ion collisions. Here we will

not discuss the scenario of conserved strangeness any further but will leave it for future

discussion.

Second, there exists a simpler and more commonly used description of strange matter,

by assuming equilibrium with respect to strangeness changing reactions. This means that

strangeness is not conserved, so that µNS
= 0, and G is not changed by the additional

strange quark degree of freedom. In this case the conserved quantum numbers of the

strange quark are identical to the ones of the down quark, so that µd = µs because

of Eq. (5.30). Then all results presented for two-flavor quark matter in this article

can also be applied to strange quark matter, with the baryon number given by NB =

1/3(Nu +Nd +Ns) and the electric charge number by NC = 1/3(2Nu −Nd −Ns)−Ne.

The only subtlety arises when Yp is conserved. First of all, it is necessary to reconsider

the meaning of Yp for strange matter. One possibility would be to interpret Yp as

the net electric charge carried by baryons, Np = 1/3(2Nu − Nd − Ns), so that Np =

Ne still gives charge neutrality. In combination with baryon number conservation, the

conservation of Yp leads then to a fixed number of up quarks, but only the sum of down

and strange quarks is fixed, i.e. reactions which change down into strange quarks are still

in equilibrium. This means one implicitly assumes that these reactions happen on a much

shorter timescale than reactions which change the number of up quarks (semileptonic

reactions).
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The argumentation followed in Ref. [SHP+09], and which we will also use in Sec. 9.1,

is a different one. The EOS is calculated for fixed Yp. But within the application

in a core-collapse supernova, quark matter appears only at such large densities and

temperatures, that neutrinos are completely trapped and weak equilibrium is established.

Hence Yp is actually not conserved but only YL remains approximately constant. Within

the numerical simulation for a given YL the proper Yp is determined for which µNp = 0.

If the EOS is used in this way, it is not necessary to assume different timescales of the

different reactions.

The whole discussion of this subsection applies also for hyperonic matter, i.e. hadronic

matter with strangeness, and the conclusions are analog.



Chapter 7

Phase Transitions in Compact Stars

The general results which have been found in the previous chapters shall now be applied

to the liquid-gas phase transition of nuclear matter and the hadron-quark phase transi-

tion for typical astrophysical environments like in supernovae, protoneutron or neutron

stars, as presented in Chap. 6. Other possible first order phase transitions in compact

stars and their implications were mentioned in the introduction. Here we restrict the

discussion on the thermodynamic aspects of the two examples.

The description of first order phase transitions in cold, deleptonized neutron stars is

rather well understood and extensively discussed in the literature. Because cold neu-

tron stars are well described by T = 0 and the pressure has to change continuously

inside a compact star, there are two intensive state variables, I = 2, compare also with

Sec. 6.3. With charge neutrality and baryon number conservation there are two con-

served charges, G = 2, which are also used as extensive state variables, E = 2. In our

previous formulation the relevant path for the phase transformation corresponds to the

pressure profile of the neutron star, i.e. only the pressure is varied and all the other

state variables are kept constant. Because 2 = E = G = 2 for two phases in coexistence,

the phase transformation is continuous and an extended mixed phase has to be calcu-

lated. In the context of neutron stars this case of a multi-component system is usually

called the Gibbs construction. In other areas of physics it is also called a non-congruent

phase transition. However, as we will discuss in more detail later, it is also a reasonable

assumption that the two phases are actually locally charge neutral. Then the electric

charge is not a globally conserved charge any more, so that one gets G = 1 and E = 1

With this assumption the phase transformation becomes discontinuous. There is no

extended mixed phase which has to be calculated, and the transition pressure can easily

be determined from well-known equililbrium conditions of the pressure and the baryon

chemical potential. The pressure, temperature and chemical potential change continu-

ously across the transition, but there will be discontinuities in the energy, number and

101
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entropy densities. The one-component case is usually called the Maxwell construction.

In other areas of physics one also calls it a congruent phase transition. It was first real-

ized in Ref. [Gle92], that global charge neutrality leads to the appearance of an extended

mixed phase and a continuous phase transformation. References [Mue97] and [BMG10]

also deal with these aspects.

If we look at the other important scenario of protoneutron stars (Sec. 6.2), the sit-

uation is more complicated because additional conserved charges exist and some of the

intensive state variables are replaced by extensive state variables, further increasing E .

In the protoneutron star stage with trapped neutrinos and roughly constant entropy, we

have G = 3, and E = 4 for global charge neutrality and G = 2, E = 3 for local. In both

cases E > 2 so that there will always be a mixed phase of e.g. nucleons and nuclei or

at larger densities of hadrons and quarks. For the supernovae EOS including electrons

but not neutrinos, as introduced in Sec. 6.1, one also has G = 3, E = 4 for global charge

neutraliy and G = 2, E = 3 for local. In both systems all phase tranformations are

continuous, even if one assumes local charge neutrality.

Until now, the conditions for phase equilibrium and the role of local constraints for

matter in supernovae and protoneutron stars were not discussed in detail in the lit-

erature. Without local constraints, one can use the results of [Gle92] for the Gibbs

construction. However, in some cases the Gibbs conditions for phase equilibrium cannot

be fulfilled at all. Furthermore, sometimes the simple Maxwell construction is wanted,

i.e. one wants a discontinuous phase transformation. This could be motivated by phys-

ical reasons or just by the sake of simplicity, as e.g. in Ref. [BP08, IRR+08], because

then there exists no extended mixed phase. One only has to determine the transition

point and the demanding calculation of an extended mixed phase is not necessary.

Obviously, the Maxwell construction for cold deleptonized neutron stars cannot be

used for protoneutron stars. The requirement of conservation of lepton and/or proton

number in addition to baryon number leads to significant differences in the equilibrium

conditions, which was not taken into account in several previous publications, like e.g. in

[YT01, NBBS06, YK09]. It is only possible to obtain a discontinuous phase transforma-

tion if in addition to local charge neutrality some other charges are fixed locally to lower

E to unity. Additional local constraints result in particular new conditions for phase equi-

librium. Because of the additional conserved charges involved, there is a large variety of

different descriptions of the phase transition, all of them representing different physical

scenarios. In this chapter, all relevant possibilities of local and global conservation of

the different conserved charges will be analyzed and the corresponding equilibrium con-

ditions will be presented. Several new kinds of mixed phases are presented, with new,

interesting properties.
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7.1 Local Constraints

If a mixed phase exists, it is crucial whether a charge is conserved globally or locally.

In general the more local constraints are applied, the less extended the mixed phase

will be. Depending on the remaining number of globally conserved charges, the phase

transformation can become discontinuous and the mixed phase may even disappears

completely. Contrary, if all local constraints are lifted, one can expect that the mixed

phase will be most extended. Furthermore the more globally conserved charges exist,

the smoother the phase transformation will be. We expect that the discontinuity in the

second derivatives will become less, if more globally conserved charges exist.

In the following we will assume that each of the conserved charges is either conserved

globally, or its fraction is conserved locally with equal values in the two phases, as before.

Before we start to discuss all relevant combinations of locally and globally conserved

charges, we will analyze the physical meaning of the different local constraints.

7.1.1 Local charge neutrality

There are two possibilities for the implementation of electric charge neutrality. Either

one assumes local charge neutrality, which means that each phase is charge neutral itself.

Or one assumes global charge neutrality, then the two phases can be charged, so that

Coulomb forces will in principle be present. We note that the assumption of global

charge neutrality is in contradiction to the thermodynamic limit in a strict sense, as the

Coulomb energy would diverge for an infinite, electrically charged system [DHN+07].

If one wants to go beyond the bulk limit, finite size effects in form of surface and

Coulomb energies need to be included, as was done in [HPS93, VYT03, MCST07,

MCST08b, MCST08a] for a mixed phase of (hyperonic) hadronic matter and quark

matter. The optimal size and shape of a structure at fixed density is determined by

the competition between the surface and the Coulomb energy, ǫS, respectively ǫC . The

minimization of the total energy gives the well known relation: ǫS = 2ǫC . Under certain

conditions, spherical symmetry does not represent the ground state any more, but exotic

structures, the so called “pasta phases” appear [HPS93, GP95]. It was pointed out in

Refs. [VYT03, EMCT06] that also the effect of charge screening and the rearrangement

of charged particles in presence of the Coulomb interactions must be taken into account

for a realistic description of the mixed phase. Then in the most simple approach there

are three parameters which determine the size of the structures: the Debye screening

lengths of the two phase, given by the charge susceptibilities, and the surface tension σ of
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the interface between the two phases. Presently, the value of σ is not known. The possi-

bility that it has a large value, of say σ ∼ 100 MeV/fm2, cannot be excluded [ARRW01].

In this section we do not want to include any finite size effects in the mixed phases, but

rather want to show how different physical situations can be properly described in the

thermodynamic limit by the choice of appropriate equilibrium conditions.

Already in [VYT03] it was pointed out, that depending on the surface tension and

the Debye-screening length, local charge neutrality might be the better approximation

for the description of the phase transition. If a large surface tension drives the system

to sizes much larger than the Debye screening length, only a negligible small charged

surface layer in the order of the Debye screening length remains and the bulk of the

matter becomes locally charge neutral. Most calculations for the phase transition to

quark matter indicate that this is indeed the case. Then also global properties, like

the mass-radius relation of cold neutron stars, resemble more the results of the Maxwell

construction. The mixed phase window shrinks considerably and it approaches the

constant-pressure Maxwell construction [VYT03, EMCT06]. This effect in turn would

imply the absence of the mixed phase in cold and deleptonized hybrid stars. Already in

[HPS93] it was estimated, that for σ > 70 MeV/fm2 the Maxwellian case is recovered,

recently validated by [MCST08b]. In [MTV+06] a first order phase transition to a

kaon condensed phase was studied and similar results are found. In contrast to these

results, in most of the publications about the hadron-quark phase transition global charge

neutrality is used and finite size effects are completely neglected, as e.g. in Ref. [PSPL01].

Global charge neutrality is the more reasonable assumption only if the surface tension

is so small that the typical structures are smaller than the Debye screening length. This

applies to the liquid-gas phase transition of nuclear matter, as the Debye screening

length is large and only low densities are involved [MTV+05]. However, in a strict sense

for structures smaller than the Debye screening length only the charge screening can be

neglected, but the finite size effects still can be important. There will always be a surface

and Coulomb energy which can give an important contribution to the EOS. Contrary,

local charge neutrality represents always a consistent assumption. Then the Coulomb

energy is exactly zero. Thus the structures can grow arbitrary in size to lower the surface

energy, which then is also negligible small compared to the bulk contribution.

Even though it is not appropriate (because of the large Debye length), we include the

assumption of local charge neutrality for the nuclear phase transition in the following

discussion, because it is instructive and the corresponding equilibrium conditions can

easily be devolved to other kind of phase transitions of nuclear matter.
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If one requires that both of the two phases have to be locally charge neutral, two

different local electric charge chemical potentials appear in Eq. (5.17) leading to different

chemical potentials of all electrically charged particles (electrons, quarks and protons)

in the two phases. If one would do the full calculation including finite-size (surface and

Coulomb) effects and without the constraint of local electric charge neutrality, the total

chemical potential of charged particles would be shifted by the local electric potential,

e.g. µ̃I
p = µI

p+eV
I leading to full chemical equilibrium, µ̃I

p = µ̃II
p , see [VYT03]. In Section

4.5 we found the same result, that the electric charge chemical potential including the

Coulomb contribution is equal in the two phases. In this chapter we are discussing infinite

matter without Coulomb forces, so that the electric potential cannot be determined and

the artificial inequality of the chemical potentials of charged particles remains.

7.1.2 Locally fixed Yp, YL or nB

In general, there is no physical reason why the proton fraction, the lepton fraction or

the baryon number density should be conserved locally or should be equal in the two

phases, as there is no long range force between the two phases which is associated with

these charges. This would imply that the readjustment of the local proton fraction,

lepton fraction and/or baryon density does not take place. Such a situation would occur

only if the system can not lower its potential by readjusting the local charges. This is

the case for isospin symmetric matter for changes with respect to the proton fraction

in the liquid-gas phase transition without Coulomb energies and in some cases also for

the quark-hadron phase transition. Such a substance is called an azeotrope. Besides

this special case, chemical equilibrium with respect to a locally conserved charge is not

established between the two phases. Thus, local constraints may be used to simulate a

non-equilibrium situation with respect to certain reactions.

A non-vanishing locally fixed density (e.g. nI
B = nII

B = nB) influences the condition

for mechanical equilibrium so that pressure equilibrium is not obtained from the first

and second law of thermodynamics any more. For these constraints a change of the

subvolumes would imply a change of the local baryon numbers, too. Instead of pressure

equilibrium only a combination of the local pressures and the local chemical potentials

are equal in the two phases. Consequently, the pressure would change discontinuously

at the phase transition. Thus, we will not use constraints of non-vanishing locally fixed

densities.

The special assumptions of locally fixed Yp or YL might be wanted because they

allow to achieve a Maxwell construction of the mixed phase at the cost of only partial
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chemical equilibrium. Because of the additional conserved charges besides NB local

charge neutrality alone is not sufficient for that (as in the case of cold neutron stars)

and at least one other of the conserved charges needs to be fixed locally. This is another

motivation why to investigate locally fixed Yp or YL and we will focus on this aspect

when discussing different scenarios in the following subsections.

7.2 Properties of Phase Transformations in Compact

Stars

Depending on the number of globally conserved charges the properties of a phase trans-

formation are qualitatively different, as showed in Chap. 3. Here we derive parts of

these general results again, but in a completely different way which is adapted for the

case of compact stars. We only discuss the three relevant phase transformations the

supernova EOS, cold neutron stars and protoneutron stars. Furthermore we will show

that locally fixed charge fractions do not influence the qualitative behavior of the phase

transformation.

7.2.1 Isothermal Compression of a Canonical System

To discuss the properties of a phase transformation we have to specify the state variables

(also called control parameters) which are changed externally in a continuous way. As

in Chap. 5, in this subsection we consider again the general case of a canonical system

in which L ≤ C − 1 of the fractions are fixed locally in the form: Y I
l = Y II

l = Yl.

They are denoted by Y = (Yl). For the globally conserved charges C = (Cg) we will

continue to use the index g instead. The number of globally conserved charges is then

G = C − L. The state variables are (T, V,C,Y), which is equivalent to (T, V, (Cg), (Yl))

and (T, V, C1, (Yg), (Yl)). The Helmholtz free energy is the appropriate potential: F =

F (T, V,C,Y). These state variable correspond to the supernova EOS (Sec. 6.1).

Besides the state variables we have to define our path Γ through the space of state

variables. We consider an isothermal compression, in which only the volume is changed

and all other state variables are kept constant. This is typical for an equation of state

in tabular form which is used in numerical simulations of protoneutron stars and su-

pernovae, as e.g. in Refs. [LD91a, STOS98a, STOS98b]. We note that the chosen path

belongs to the numerical procedure to calculate such an EOS table, and not to a physical

process a priori.
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Already from an intuitive point of view one can expect that we can apply all the

results of Chap. 3 without the need to worry about the local constraints. We anticipate

that an extended mixed phase of the two SHPs will always form, because the number

of extensive state variables E = 1 + G is always larger or equal than K = 2, the number

of phases in equilibrium (as long as G ≥ 1, and only two phases are involved in the

phase transition). Thus the phase transformation will be continuous. In the case G = 1,

we have the special case E = 2 = K and all intensive variables are independent of

the extensive state variables, as was shown in Sec. 3.3, see Table 3.1. Because we

are only varying the volume V , for G = 1 the intensive variables will remain constant

across the phase transformation. This allows a very simple construction of the mixed

phase: Once the intensive variables are fixed by the intensive state variable T and the

coexistence conditions, the extensive state variables V and C1 directly set all other

dependent thermodynamic variables.

Next we will show all this explicitly in a much more explicit and applicable than in

Chap. 3 and with the consideration of the local constraints. To do so we analyze the

condition for pressure equilibrium further. The pressure in each phase can only depend

on the local chemical potentials of the particles in this phase:

pI(T, (µI
i )) = pII(T, (µII

j )) . (7.1)

In the discussion of Eq. (5.17) we argued that also for a single phase the knowledge

of the conserved charges, the temperature and the volume is sufficient to determine all

thermodynamic quantities. Obviously, the chemical potentials of the particles cannot

depend on the size of the phase, so that they have to be determinable by the local

densities cκg = Cκ
g /V

κ and the local fractions Y κ
l alone:

pκ(T, (µκ
i )) = pκ(T, (cκg ), (Y

κ
l )) . (7.2)

Next, we can use (µκ
g) to replace the unknown local parts (cκg) of the densities cg which

are conserved only globally by their local chemical potentials:

pκ = pκ(T, (µκ
g), (Y

κ
l )) . (7.3)

According to Eqs. (5.25) and (5.26) the chemical potentials which appear in Eq. (7.3)

have to be equal in the two phases, and the locally fixed fractions are equal, too (by

construction). Thus:

pI(T, (µg), (Yl)) = pII(T, (µg), (Yl)) . (7.4)
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This formulation, in which the chemical potentials of the globally conserved charges are

treated as known state variables, is most convenient to discuss the properties of the

phase transformation. Of course, the chemical potentials in this equation are actually

fixed by the values of the density cg, the fractions Yl and the chosen local constraints.

First we will analyze the case in which no other globally conserved charges besides

C1 exist, G = 1. Eq. (7.4) then leads to a relation

µ1 = µcoex
1 (T,Y) , (7.5)

with Y = (Yl) denoting the locally fixed charge fractions. The relation above also fixes

the coexistence pressure:

p = pcoex(T,Y) . (7.6)

This means that for fixed T and Y there is only one value of the pressure pcoex and

the chemical potential µcoex
1 , where the two phases can coexist. All other local intensive

variables are also fixed by the local constraints and the equilibrium conditions and

remain constant in the mixed phase, too. This is in complete agreement with the results

of Chap. 3 for mixed phases with E = K (remember that the volume and C1 are the

only two extensive state variables).

We continue with some practical comments regarding the construction of a supernova

EOS table. A simple way to determine the phase transition pressure is to see where the

pκ(T, µ1,Y)-curves of the two phases intersect. The transition from phase I to phase II

occurs, when the pressure is equal in the two phases. The mixed phase will extend over

a certain range in the density c1, with the onset given by cI1(T, µ
coex
1 ,Y) and the end by

cII
1 (T, µcoex

1 ,Y). Inside the mixed phase, the intensive variables are independent of c1
and c1 is only used to specify the volume fraction 0 < χ = V II/(V I + V II) < 1 of the

two phases:

c1 = (1− χ)cI1(T, µ
coex
1 ,Y) + χcII

1 (T, µcoex
1 ,Y) . (7.7)

All extensive variables change linearly with the volume fraction in the same way. E.g. the

energy density is given by:

ǫ = (1− χ)ǫI(T, µcoex
1 ,Y) + χǫII(T, µcoex

1 ,Y) . (7.8)

Therefore the calculation of the mixed phase becomes trivial. After the coexistence

pressure is found it is given by a linear interpolation in the volume fraction between
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the onset and endpoint of the mixed phase. This case corresponds to the well known

Maxwell construction, because the system has only one consered charge.

For G ≥ 2 globally conserved charges, giving E ≥ 3 the dependent intensive variables

depend also on the extensive state variables, see Table 3.1. Eq. (7.4) is not sufficient

to determine all chemical potentials µg. This equilibrium condition only allows to fix

one of the chemical potentials, e.g. µ1 = µ1(T,Y, {µg 6=1}) and G − 1 chemical potentials

remain unknown. But besides the equilibrium conditions, also the total volume and the

globally conserved charges have to have the correct value:

V = V I + V II

Cg = CI
g (V

I , T, (µg),Y) + CII
g (V II , T, (µg),Y) . (7.9)

These G + 1 Eqs. involve only two further unknowns V I and V II so that the whole

system of Eqs. (7.4) and (7.9) can be solved for given (arbitrary) volume V , and all

thermodynamic variables can be determined. Consequently in this case all quantities

(including the pressure) will depend on the values of the densities cg and cg = Cg/V . A

change in the density cg will also imply a change in the pressure. Thus for G ≥ 2 there

will be an extended range in pressure in which the two phases can coexist. The simple

Maxwell construction cannot be applied, as the system does not behave linearly any

more. Instead it is necessary to calculate the mixed phase at every point (T, V,C,Y)

explicitly. Also for G ≥ 2 all our general predictions have been confirmed.

In both cases (G = 1 or G ≥ 2) we have a continuous phase transformation for

the chosen state variables. An extended mixed phase between the two phases forms.

At the onset of the mixed phase the volume of the newly appearing phase is zero.

Similarly, at the end of the mixed phase only the second phase remains. Thus the

mixed phase becomes identical to the neighboring single phases when approaching the

onset or end of the mixed phase. Inside the mixed phase the volume fraction changes

continuously from 0 to 1, and consequently all global thermodynamic variables up to first

derivatives of the thermodynamic potential will change continuously across the whole

phase transformation. The second derivatives will in general be discontinuous at the

onset and endpoint of the mixed phase, as they involve the derivative of the volume

fraction. The thermodynamic potential is the Helmholtz free energy, which also changes

continuously and which has the following form inside the mixed phase:

F = −pV +
∑

i,κ

Nκ
i µ

κ
i

= −pV + µ1C1 , (7.10)
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where we used Eq. (5.32). For G = 1 in which the pressure and the chemical potentials

are constant, the free energy changes linearly with the volume V .

7.2.2 Compression of an Isothermal-Isobaric Ensemble

Next we want to use the different set of state variables (T, p,C,Y), in which the volume

is replaced by the pressure and we want to analyze the properties of this different phase

transformation. Now the Gibbs free enthalpy G = G(T, p,C,Y), already specified by

Eq. (5.32), is the appropriate thermodynamic potential. G, the number of globally

conserved charges, is equal to the total number of extensive state variables, E = G and

thus decreased by one compared to the previous subsection. These state variables are

especially important because they can directly be used for the description of isothermal

neutron stars, see Sec. 6.3. Furthermore, they illustrate the behavior of matter which

is described by a canonical EOS as in the last subsection, if the EOS is applied in a

hydrodynamic simulation.

Under the influence of gravity, the pressure in a compact star has to change con-

tinuously and has to be strictly monotonic, as long as no shocks are present. In the

following we only consider a change of the pressure p and keep all the other state vari-

ables constant, which defines the path of the phase transformation through the space of

state variables. In the previous example we varied the extensive variable V along the

path, but now we vary an intensive variable, which leads to qualitative differences in the

case E = G = 2: The intensive variables are independent of the extensive state variables,

which allowed to use a simple linear interpolation for the construction of the mixed

phase in the previous example. Now, one of the intensive state variables is varied across

the phase transformation, so that all intensive variables will change, too. Thus a linear

interpolation can never be used directly for an EOS in which the pressure is varied. We

remind the reader that for E > 2 this was anyhow not possible. For E < 2 no extended

mixed phase exists at all because the phase transformation is then discontinuous. In the

following we will derive and discuss these results in a more explicit way than in Chap. 3,

and with the consideration of local constraints.

If G = 1 the mixed phase collapses to one single point at the coexistence pressure pcoex

introduced above. There is only a point of coexistence, but no extended mixed phase.

No mixed phase has to be calculated, only the transition point has to be determined.

In the previous formulation we showed that µ1 is constant across the mixed phase and

continuous at the endpoints, thus one gets that the potentials of the two phases are

equal at the transition point, G = GI = GII . The equality of µI
1 = µII

1 leads to the
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equality of the Gibbs free enthalpy. This equality can also be seen as the reason why the

volume fraction of the two phases remains arbitrary at the coexistence point and cannot

be determined from the equilibrium conditions. Thus all extensive quantities but those

of the externally fixed state variables remain unspecified at the coexistence point.

Because of mechanical, thermal and chemical equilibrium the thermodynamic poten-

tial changes continuously across the transition, even though no extended mixed phase

exists. For smaller or larger pressures than the transition pressure only the phase with

the lower Gibbs free enthalpy will be present. Despite this, the phase transformation is

not continuous, as e.g. the volume behaves discontinuously due to the disappearance of

the mixed phase:

lim
p<→pcoex

∂GI

∂p

∣

∣

∣

∣

T,C,Y

= V I 6= V II lim
p>→pcoex

∂GII

∂p

∣

∣

∣

∣

T,C,Y

. (7.11)

Therefore the charge densities, defined by Ck/V will change discontinuously, too. Also

the entropy jumps in an analogous way at the phase transition, if T 6= 0. The internal

energy, given by E = G− pV + TS will also behave discontinuously in general. These

discontinuities appear in the first derivatives of the thermodynamic potential. The dis-

cussed scenario is the familiar case of the Maxwell phase transition of a one-dimensional

system (a simple body), e.g. known from the liquid-gas phase transition of water. All

this is in agreement to the general properties of phase transformations with K > E .

For G ≥ 2 the system is multi-dimensional (a complex body). There will be an

extended range in pressure in which the two phases can coexist and an extended mixed

phase forms. As noted before, the simple Maxwell construction cannot be applied. The

mixed phase does not behave linearly any more and thus it has to be calculated explicitly

for every single pressure. Now the equilibrium conditions and the knowledge of the state

variables become sufficient to specify the volume fractions and all other thermodynamic

variables of the two phases. This case is usually called the Gibbs construction in the

context of cold deleptonized neutron stars with global charge neutrality. The presence

of a mixed phases with χ = 0 at the onset and χ = 1 at the endpoint assures that all

thermodynamic variables (up to first derivatives) change continuously across the phase

transformation, as argued above.

One can conclude that locally conserved charge fractions do not influence the qual-

itative behavior of a phase transformation. It is only the number of globally conserved

charges which determines whether it is continuous or discontinuous. Independently of

any locally conserved charge fractions, for G = 1 the system is one-dimensional and

behaves like a simple body. By replacing globally conserved charges by adequate local
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conservation laws, this allows to reduce the number G of globally conserved charges.

Later we will use this procedure for isothermal phase transformations to arrive at a

Maxwell construction, even if in principle multiple conserved charges exist. One can

expect that the extension of the mixed phase decreases with the number of local con-

straints applied. When C1 remains as the only globally conserved charge, the mixed

phase will disappear completely inside a compact star. Furthermore the discontinuity

of the second derivatives will increase with the number of local constraints. For G = 1

even the first derivatives become discontinuous then.

7.2.3 Compression of an Isentropic-Isobaric Ensemble

The situation becomes different, if we consider a phase transformation in which the pres-

sure is changed, but the entropy per baryon is kept constant instead of the temperature.

This is a common description for protoneutron stars, see Sec. 6.2. Even for G = 1 the

Maxwell construction cannot be applied, because E ≥ 2. In this case there will always

be an extended mixed phase. To keep the entropy constant, necessarily the temperature

has to change across the transition with equal temperatures in the two phases at each

point of the mixed phase. The change in temperature will lead to a change in all other

intensive variables, too. If mechanical and thermal equilibrium between the two phases

is required, the mixed phase does not vanish, even if only one globally conserved charge

exists. Some other local constraints are needed to achieve a linear interpolation in the

mixed phase (e.g. locally fixed entropy) which will influence the conditions for phase

equilibrium in a non-trivial way.

7.3 Possible Mixed Phases

In Tables 7.1 and 7.2 all the relevant combinations of local and global conservation laws of

the conserved charges for the construction of a mixed phase in supernovae, protoneutron

stars and cold neutron stars are listed. We assume that the densities and fractions

are either conserved globally, or locally in a form Y I
p = Y II

p = Yp, Y I
L = Y II

L = YL,

nI
C = nII

C = nC = 0, nI
B = nII

B = nB. The final equilibrium conditions are expressed in

terms of the chemical potentials of the particles in the two phases, in Table 7.1 for the

liquid-gas phase transition and in Table 7.2 for the hadron-quark phase transition.
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conserved densities/fractions

case globally locally equilibrium conditions isothermal mixed phase

0 nB, (Yp), (YL), nC - direct

Ia nB Yp, YL, nC (1− Yp)µ
I
n + Yp(µ

I
p + µI

e) + (YL − Yp)µ
I
ν = Maxwell

(1− Yp)µ
II
n + Yp(µ

II
p + µII

e ) + (YL − Yp)µ
II
ν

Ib nB YL, nC µI
n + YLµ

I
ν = µII

n + YLµ
II
ν Maxwell

Ic nB Yp, nC (1− Yp)µ
I
n + Yp(µ

I
p + µI

e) = (1− Yp)µ
II
n + Yp(µ

II
p + µII

e ) Maxwell

Id nB nC µI
n = µII

n Maxwell

IIa nB, YL Yp, nC (1− Yp)µ
I
n + Yp(µ

I
p + µI

e) = (1− Yp)µ
II
n + Yp(µ

II
p + µII

e ), Maxwell/Gibbs

µI
ν = µII

ν

IIb nB, YL nC µI
n = µII

n , µI
ν = µII

ν Gibbs

IIIa nB, Yp YL, nC µI
n + YLµ

I
ν = µII

n + YLµ
II
ν , Gibbs

µI
p − µ

I
n − µ

I
ν + µI

e = µII
p − µ

II
n − µ

II
ν + µII

e

IIIb nB, Yp nC µI
n = µII

n , µI
p + µI

e = µII
p + µII

e Gibbs

IV nB, YL, Yp nC µI
n = µII

n , µI
ν = µII

ν , µI
p + µI

e = µII
p + µII

e Gibbs

V nB, YL, Yp, nC µI
n = µII

n , µI
ν = µII

ν , µI
p = µII

p , µI
e = µII

e Gibbs

Table 7.1: Equilibrium conditions for the liquid-gas phase transition of nuclear matter for fixed baryon number density nB and charge density
nC . The lepton fraction YL and proton fraction Yp are conserved in addition in some cases. These charge densities/fractions are
fixed locally (with equal values in the two phases) or globally. If Yp is not conserved weak equilibrium (Eq. (6.1)) is established
in both phases. If YL is not conserved µI

ν = µII
ν = 0 is obtained, leading to the same equilibrium conditions as if neutrinos were

not included in the thermodynamic system. The last column denotes whether the Maxwell or the Gibbs construction has to be
used for the construction of an isothermal mixed phase.
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conserved densities/fractions

case globally locally equilibrium conditions isothermal mixed phase

0 nB, (Yp), (YL), nC - direct

Ia nB Yp, YL, nC (1− Yp)µn + Yp(µp + µH
e ) + (YL − Yp)µ

H
ν = Maxwell

(2− Yp)µd + (1 + Yp)µu + Ypµ
Q
e + (YL − Yp)µ

Q
ν

Ib nB YL, nC µn + YLµ
H
ν = 2µd + µu + YLµ

Q
ν Maxwell

Ic nB Yp, nC (1− Yp)µn + Yp(µp + µH
e ) = (2− Yp)µd + (1 + Yp)µu + Ypµ

Q
e Maxwell

Id nB nC µn = 2µd + µu Maxwell

IIa nB, YL Yp, nC (1− Yp)µn + Yp(µp + µH
e ) = (2− Yp)µd + (1 + Yp)µu + Ypµ

Q
e , Maxwell/Gibbs

µH
ν = µQ

ν

IIb nB, YL nC µn = 2µd + µu, µH
ν = µQ

ν Gibbs

IIIa nB, Yp YL, nC µn + YLµ
H
ν = 2µd + µu + YLµ

Q
ν , Gibbs

µp − µn − µ
H
ν + µH

e = µu − µd − µ
Q
ν + µQ

e

IIIb nB, Yp nC µn = 2µd + µu, µp + µH
e = 2µu + µd + µQ

e Gibbs

IV nB, YL, Yp nC µn = 2µd + µu, µH
ν = µQ

ν , µp + µH
e = 2µu + µd + µQ

e Gibbs

V nB, YL, Yp, nC µn = 2µd + µu, µH
ν = µQ

ν , µp = 2µu + µd, µH
e = µQ

e Gibbs

Table 7.2: As Table 7.1, but now for the hadron-quark phase transition. µd = µs is valid if strangeness is in equilibrium. If Yp is not
conserved weak equilibrium (Eqs. (6.1) and (6.2)) is established in both phases.
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7.3.1 Case I

In case Ia, besides local charge neutrality the proton and lepton fractions are fixed locally

and the system has only one globally conserved charge, the baryon number. The only

internal degree of freedom of the two phases is the local baryon density. This case is

relevant for supernova matter with trapped neutrinos and suppressed weak reactions.

However, the local constraints imply different neutrino densities in the two phases. Thus

this case is rather academic and we only show it for completeness. For this case Table

6.1 expresses the local chemical potentials belonging to the conserved charges NB, NC ,

Np and NL in terms of the chemical potentials of the particles in the phase.

There is only one global chemical potential with the corresponding equilibrium con-

dition:

µNB
= µI

NB
= µII

NB
. (7.12)

This condition, which is shown explicitly in Tables 7.1 and 7.2, expresses that only

combinations of particles can be exchanged which do not change the local proton and

lepton fractions and are electrically charge neutral to maintain local charge neutrality.

Thus in the liquid gas phase transition only a combination of 1−Yp neutrons, Yp electrons

and protons and YL−Yp neutrinos can be exchanged freely between the two phases. In the

hadron-quark phase transition only (1+Yp) up and (2−Yp) down quarks, Yp electrons and

YL−Yp neutrinos can be exchanged. As there is only one globally conserved charge NB,

the pressure is constant across the phase transformation and the Maxwell construction

can be used. The chemical potentials of all particles are different in the two phases, as

all particles contribute to the locally conserved fractions. We note that this case was

already discussed in Ref. [LB98]. Equivalent equilibrium conditions were found and the

same conclusions about the disappearance of the mixed phase in a compact star were

drawn.

In the following we will use the results of case Ia in Table 6.1 to derive the equilibrium

conditions for all other cases. When a fraction is not conserved locally but only globally,

the two local chemical potentials specify the new equilibrium conditions. In Eq. (5.26)

it was deduced that by conserving Yg instead of Y κ
g , the two local chemical potentials

µκ
k become equal. If one of the charges is actually not conserved any more, this has to

be seen as a global criterion. To minimize the free energy with respect to this charge, in

Eq. (5.28) it was derived that a non-conserved fraction leads to two new local constraints

for the chemical potentials, µI
g′ = µII

g′ = 0, which replace the two locally fixed fractions

used before.
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In case Ib Yp is no longer conserved, but neutrinos are trapped, as e.g. in protoneutron

stars. By setting µκ
Np

= 0 the weak equilibrium conditions (6.1) respectively (6.2) are

obtained which now have to be fulfilled in both phases. Case Ib leads to different neutrino

densities in the two phases, as case Ia. However, this case is the only possibility to

achieve a Maxwell construction if neutrinos are trapped and in weak equilibrium. In

Ic the conservation of YL is lifted, leading to µI
ν = µII

ν = 0. The chemical equilibrium

conditions are the same if neutrinos are taken out of the thermodynamic description.

Thus Ic is relevant for the non-neutrino EOS of supernova matter and we will also use

this description of the mixed phase later. If both fractions are not conserved any more

as in case Id, the beta-equilibrium conditions (6.3) respectively (6.4) are obtained. The

implications of the non-conservation of the lepton and/or proton fraction are independent

of the other local or global conservation laws. Thus we do not need to discuss them in

the following cases again.

In cases Ia to Id the different conserved charges allow to rewrite the equilibrium

condition µI
NB

= µII
NB

in the simplified forms presented in Tables 7.1 and 7.2. Case Id

describes a cold, deleptonized neutron star. Only global baryon number conservation

and local charge neutrality are considered. The well-known result of the equality of

the neutron chemical potentials is found for the Maxwell construction of the liquid-

gas phase transition. In all other Maxwell constructions the equality of the baryon

chemical potential µκ
NB

takes a different form and involves additional particles besides

the neutrons. Because of the inequality of µκ
NC

in the two phases the chemical potentials

of the electrically charged particles always remain different in the two phases in all cases

Ia to Id.

7.3.2 Case II

In case II lepton number and baryon number are conserved globally. The second equi-

librium condition µI
NL

= µII
NL

from the global conservation of lepton number leads to the

equality of the neutrino chemical potentials. Neutrinos are the only particles which can

be exchanged between the two phases, if the baryon number, the electric charge and the

proton fraction were kept constant in both phases.

Case IIa assumes locally fixed Yp and local charge neutrality in addition. With

fixed Yp it gives a suitable description of e.g. supernova matter which is not in weak-

equilibrium. The same equilibrium condition as in case Ic in which YL is not conserved is

obtained for the non-neutrino part of the EOS. Thus case IIa gives the same description

of the non-neutrino EOS as case Ic. If one does not include the neutrinos in the thermo-

dynamic description at all, the same condition as in Ic are found. Once more this shows
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explicitly that the non-neutrino EOS is independent of the neutrino contribution. As

discussed before, the neutrinos can be calculated separately as long as Yp is conserved

and YL is not fixed locally. From this point of view, the non-neutrino EOSs of cases with

fixed Yp and globally conserved YL are equivalent to fixed Yp and non-conserved YL.

For the non-neutrino EOS the number of globally conserved charges is G = 1, and

the mixed phase without neutrinos can be calculated with the Maxwell construction.

The mixed phase would disappear under the influence of gravity in a hydrostatic con-

figuration. But the inclusion of neutrinos leads to an interesting effect on the mixed

phase: The neutrino contribution is simply given by nν(T, µν) = (YL − Yp)nB. Thus

for increasing baryon density also the neutrino density has to increase. Therefore the

neutrino pressure is not constant across the phase transition, which is in agreement with

our general result for G = 2. If the pressure is used as the continuously varying variable

and is changed strictly monotonic (e.g. in a compact star), a mixed phase appears only

because of the presence of neutrinos.

It is very interesting to see, that all cases with local charge neutrality in which Yp

or YL are conserved globally will lead to an extended mixed phase in a compact star.

After the star has cooled to T = 0 and has become completely deleptonized, Yp and YL

are no longer conserved, and case Id will be reached. Consequently the mixed phase will

disappear during the evolution of the star.

If we compare case IIa to case Ia, we see that the same fractions and charges are

conserved. In both cases only the Maxwell construction is needed, but in case IIa the

additional assumption of a locally fixed lepton fraction is not used so that the neutrino

densities become equal in the two phases. This might be more realistic as the neutrino

mean free path is much larger than of the other particles. Thus case IIa should be

preferred instead of case Ia, if one is only interested in the Maxwell construction.

We conclude that case IIa (or equivalently Ic for the non-neutrino EOS) is the most

convenient scenario which leads for fixed Yp to the desired Maxwell construction of the

system without neutrinos. All other cases with conserved proton fraction Yp involve more

than one globally conserved charge for the non-neutrino EOS and the explicit evaluation

of phase equilibrium is necessary. Because of the additional global conservation of the

proton fraction, only with local charge neutrality a simple Maxwell construction is not

possible for matter in supernovae or protoneutron stars.

In case IIb Yp is no longer conserved, so that the separation of the neutrino EOS is not

possible. The Gibbs construction has to be done with the inclusion of neutrinos. Case

IIb is physically meaningful, as local charge neutrality is the only local conservation law,

applied for a system in weak equilibrium with completely trapped neutrinos, as e.g. in
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a protoneutron star. In Section 9.2 we will study this scenario in more detail, by using

a concrete EOS to calculate the evolution of the compact star and the properties of the

mixed phase.

7.3.3 Case III

The proton fraction is conserved globally in case III. The general equilibrium condition

µI
Np

= µII
Np

shown in the second line of case IIIa in Tables 7.1 and 7.2 expresses that only

a proton and an electron can be moved from one phase into the other, if at the same time

a neutron and a neutrino are converted backwards. All other combinations of particles

would change the local baryon number, the electric charge or the lepton fraction.

In case IIIa the neutrino EOS cannot be separated from the rest of the EOS, as the

lepton fraction is conserved locally so that the Gibbs construction has to be performed.

If one is only interested to achieve the Maxwellian case (without further reasoning why

locally fixed YL instead of locally fixed Yp is assumed), the easier case IIa can be applied

instead. Furthermore, there is no reason why only the lepton concentration should be

equal in the two phases, but all other fractions and the baryon density can vary, leading

to different neutrino densities in the two phases. Thus case IIIa is rather academic and

included here only for completeness.

In case IIIb the proton fraction is fixed, i.e. weak reactions are suppressed. YL is

not conserved which gives µI
ν = µII

ν = 0. The condition for chemical equilibrium is the

same if Neutrinos are not taken to be part of the thermodynamic system. The only local

conservation law in case IIIb is local charge neutrality. Therefore this case gives the

proper physical description of a phase transition of supernova matter with sufficiently

large surface tension between the two phases. The equilibrium conditions for the local

baryon chemical potentials simplify compared to Ic, in which the proton fraction was

fixed locally.

7.3.4 Case IV

The non-neutrino constraints of case IV are equivalent to those of case IIIb. Case IV

gives the correct description of locally charge neutral supernova matter with completely

trapped neutrinos as part of the thermodynamic description, without any weak reactions

taking place.
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7.3.5 Case V

In case V local electric charge neutrality is not required any more, so that all charges

are conserved globally. Equation (5.31) applies now for all particles in the liquid-gas

phase transition of nuclear matter, and the chemical potentials of all identical particles

become equal. For the hadron-quark phase transition the hadronic chemical potentials

directly fix the quark chemical potentials and vice versa.

In Tables 7.1 and 7.2 the cases with global charge neutrality but without the con-

servation of YL and Yp are not listed. This is not necessary, because the equilibrium

conditions remain the same as in case V if one or both of the fractions are actually not

conserved, because this is still a global constraint. Additionally, the corresponding chem-

ical potential, see Table 6.1, becomes zero in the two phases. Thus, every non-conserved

fraction gives rise to two stronger local constraints. They contain the information about

the chemical equilibrium between the two phases with respect to this fraction, so that

one of the equilibrium conditions in Tables 7.1 and 7.2 becomes meaningless. If YL is

not conserved one gets the disappearance of the neutrinos and non-conserved Yp gives

weak-equilibrium, If Yp is not conserved weak equilibrium, Eqs. (6.1) and (6.2). This

is the case in protoneutron stars, or in the core of a supernova. If Yp and YL are both

not conserved, the well-known equilibrium conditions of cold deleptonized neutron stars

with beta-equilibrium, Eqs. (6.3) and (6.4), and global charge neutrality are recovered.

7.3.6 Case 0

Finally, we want to discuss case 0 in which the phase transition is somewhat constructed

by hand. In case 0, all state variables are fixed locally. No mixed phase has to be

calculated, as also the baryon density is fixed locally: nI
B = nII

B = nB. If conserved at

all, the three conserved fractions are fixed locally, too. In case 0 there are no globally

conserved charges so that no chemical equilibrium condition between the two phases is

obtained. Thus, the two equations of state of the two phases can be calculated completely

separately and the phase transition point is then set by one freely selectable condition.

However, it is possible that the chosen condition can not be fulfilled at all so that no

phase transition occurs.

If a phase transition point can be found, the subvolumes of the two phases remain

arbitrary there, similarly as at the transition point of a discontinuous phase transforma-

tion. Accordingly the extensive variables cannot be determined, too. On the other hand,

the local intensive variables remain independent of the volumes of the two phases. Thus
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the chemical potentials of the locally conserved charges, the local pressure and the local

temperature remain well-defined even without knowing the two subvolumes. The two

phases can be treated as independent single homogeneous phases with unknown volume.

Case 0 is interesting if one wants to exclude the possible occurrence of a mixed

phase. If pressure equilibrium is taken as the criterion for the determination of the

phase transition point the two phases can only coexist at one special density ncoex
B if

the other state variables are kept constant. No extended mixed phase appears, and the

phase transformation is discontinuous. Only if electrons and neutrinos can be treated as

ideal gases, µI
e = µII

e follows from equal nB and Yp and µI
ν = µII

ν from equal nB, Yp and

YL. If instead of the baryon number density the pressure is used as the continuous state

variable no mixed phase forms, either. At the transition point pressure and thermal

equilibrium are established, but at least chemical equilibrium of the baryons is not.

Case 0 with pressure equilibrium as the additional constraint assumes implicitly that

no particles can be exchanged between the two phases. Most importantly, therefore the

thermodynamic potential, the free energy F = −pV +
∑

iNiµi, behaves discontinuously.

Because of the local constraints, the sum
∑

i µiNi will not be equal in the two phases.

If the pressure is used instead of the volume as one of the state variables, the free

enthalpy will also behave discontinuously when the transition point is crossed. Thus,

the thermodynamic potential can not be used to determine which of the two phases exists

before and which one after the phase transition. The second law of thermodynamics is

not fulfilled in Case 0 because there is no chemical equilibration.

Besides pressure equilibrium every other possible coexistence condition can be ap-

plied. The conclusions remain the same, and in general all the conditions will lead to

a discontinuous thermodynamic potential. The discontinuity of the thermodynamic po-

tential shows the differences to the Maxwell construction. It can only be prevented if

the corresponding thermodynamic potential (the free energy F for (T, V, (Ck)), the free

enthalpy G for (T, p, (Ck))) is used directly as the phase coexistence criterion. At the

point where the two potentials are equal the phase transition occurs. Before and after

the phase transition only the phase with the lower potential is present. However, with

this choice the pressure (and all other thermodynamic quantities but the state variables)

will behave discontinuously.

We note that case 0 with fixed Yp would imply for the liquid-gas phase transition,

that actually no phase transition occurs, because the same particles appear with equal

densities in the two phases. Case 0 is only relevant if some internal degrees of freedom

remain which can be different in the two phases.
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As proposed in Sec. 3.5.4 case O may be also relevant for hydrodynamic simulations,

if the typical hydrodynamical cells are smaller than the structures in the mixed phase.

A micro-canonical description with S = S(E, V, (Ck)) would conserve energy, charges

and entropy. Consequently there would be local jumps in T , p and µk when the phase

transition occurs, leading to the generation of shocks.

7.4 Adiabatic EOS

Apart from numerical simulations, the EOS is often calculated for the state variables

(S/NB, p, YL, nC). Such an EOS can e.g. directly be used for the description of typical

representative configurations of protoneutron stars which are characterized by a constant

lepton to baryon ratio and a constant entropy per baryon in a first approximation, see

Sec. 6.2.

Because the pressure is chosen to be the independent continuously changing variable,

there exist only two possibilities, as we showed in Sec. 7.2.3: Either the phase transition

occurs only at one single pressure pcoex, or a mixed phase of the two phases forms over an

extended range in pressure. In the first case no mixed phase needs to be calculated. If

thermal and mechanical equilibrium are required, the direct phase transition point can be

found where the temperatures of the two phases become equal T I = T II . This requires

locally fixed S/N I
B = S/N II

B = S/NB, pI = pII = p, Y I
L = Y II

L = YL, nI
C = nII

C = nC

and (arbitrary) globally conserved baryon number NB which can be shared by the two

phases. Pressure equilibrium is automatically given, as the pressure is one of the state

variables which is set to equal values in the two phases.

This case is the adiabatic equivalence to case 0 of the isothermal phase transforma-

tions, in which all state variables but the volume were fixed locally. Now temperature

equilibrium is chosen as the constraint which determines the coexistence point. Even

though thermal equilibrium is enforced, the thermodynamic potential, which is the en-

thalpy H = TS +
∑

iNiµi, will change discontinuously at the transition point. In con-

trast in the Maxwell construction of the isothermal phase transformations of case I the

coexistence pressure is determined by the proper equilibrium conditions of the chemical

potentials. We showed that this leads to continuous thermodynamic potentials.

There exists nothing similar for an adiabatic process to the isothermal case IIa, which

allows an easy construction of the non-neutrino mixed phase but leads to an extended

mixed phase with the inclusion of neutrinos. As explained before, the non-neutrino part

of the EOS depends on the neutrino fraction as soon as Yp is not conserved any more.
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Thus it is not possible to separate the neutrino contribution. In the adiabatic case, in

all scenarios (except for the direct phase transitions) the Gibbs construction has to be

used, with the inclusion of neutrinos and an extended mixed phase is present.

7.5 Role of Neutrinos

In Sec. 6.1 we argued that neutrinos can be separated from the EOS of a single phase,

if Yp is conserved. From the equilibrium conditions discussed in the preceding sections,

it becomes obvious that neutrinos also do not have to be included in the non-neutrino

equilibrium conditions as long as the lepton fraction is not fixed locally. The only

quantum number of the neutrino is the lepton number so that Eq. (5.31) applies for global

lepton number conservation, leading to µI
ν = µII

ν . Because we assumed in addition that

all locally conserved fractions are equal in the two phases, terms proportional to Ylµ
κ
ν (see

Table 6.1) drop out in the equilibrium conditions of globally conserved charges. This is

also the case if the lepton fraction is not conserved, which directly leads to µI
ν = µII

ν = 0.

The same conditions for chemical equilibrium of the non-neutrino part are obtained,

if neutrinos are not taken to be part of the thermodynamic equilibrium. Neutrinos

represent a uniform background, which does not influence the chemical equilibrium be-

tween the two phases if Yp is conserved. Then also their pressure contribution in the two

phases is exactly the same. Thus it is also sufficient to study the pressure equilibrium

without taking neutrinos into account. We conclude it is sufficient to calculate an equa-

tion of state for protons, neutrons and electrons (or quarks and electrons) in terms of

(T, nB, Yp) and this equation of state can be used for all possible conditions under which

the neutrinos appear.

Instead if Yp is not conserved, i.e. one has an EOS in terms of (T, nB) or (T, nB, YL)

the neutrinos influence the rest of the matter via the condition for weak equilibrium.

The neutrino contribution has to be taken into account for the evaluation of the non-

neutrino EOS. Thus the non-neutrino EOS will also depend on whether lepton number

is conserved or not, because the conditions for weak-equilibrium Eqs. (6.1) and (6.2),

are different from those for beta-equilibrium, Eqs. (6.3) and (6.4). In the former case

the lepton number is conserved and the neutrinos are determined by YL. In the latter

case neutrinos are completely untrapped and the neutrino contribution becomes trivial,

µν = 0.



Chapter 8

A Statistical Model for a Complete

Supernova EOS

The equation of state of uniform nuclear matter is qualitatively very similar to a Van-der-

Waals-EOS. Models for the interactions of the nucleons show some long-range attraction

and a short-range hard-core repulsion. The latter becomes dominant at large densities.

This interplay leads to the occurrence of a first-order phase transition below saturation

density, where the binding energy reaches its maximum. Because of the similar behavior

to ordinary water, this phase transition is called the liquid-gas phase transition of nuclear

matter. In the RMF model presented in Sec. 2.4, the attraction is mediated by the

sigma- and the repulsion by the omega-meson. A typical bulk phase diagram was shown

in Fig. 2.5. Compared to water, there is one important conceptual difference: nuclear

matter is a two-component substance because the densities of neutrons and protons can

be varied independently.

Nuclear matter has another very interesting characteristic property. Independent of

density and temperature, symmetric nuclear matter has always the lowest energy with

respect to changes of the proton fraction Yp. Nuclear matter thus behaves like a one-

component simple body for an equal amount of protons and neutrons. For symmetric

nuclear matter the isospin degree of freedom is not explored in two-phase coexistence.

In chemistry a mixture of two or more liquids in such a ratio that its composition cannot

be changed by simple distillation is called an azeotrope. Thus one can classify symmet-

ric nuclear matter as an azeotrope of the strong interactions. Contrary, in asymmetric

nuclear matter isospin distillation occurs. The denser phase, the “liquid”, is more sym-

metric than the more dilute “vapor” phase. Because the interactions are stronger at

large densities, it is favorable to concentrate the protons in the denser region.

In this section, a detailed statistical model for the liquid-gas phase transition of

nuclear matter is presented. This approach goes far beyond the bulk approximation of

123
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phase equilibrium, as presented in the previous chapters. Indeed, instead of modeling

the phase transition by two phases in equilibrium, the picture of a chemical mixture of

nucleons and nuclei is used. The nuclei can be interpreted as the more dense and more

symmetric liquid phase and the nucleons as the vapor. The model is developed with the

intension to describe the equation of state and the composition of supernova matter.

Part of the following three sections has already been published in Ref. [HS10].

8.1 Introduction to the supernova EOS

At present, there exist only three (hadronic) EOSs commonly used in the context of

core collapse supernovae. One of the first EOSs was developed by Hillebrandt and Wolff

[HW85]. More recent EOSs have been developed by Lattimer and Swesty (LS) [LD91b]

and Shen et al. [STOS98a, STOS98b]. In the following we will take the Shen and LS

EOSs as references for comparison. These two EOSs are based on different models for the

nuclear interactions. The former uses a relativistic mean field (RMF) approach, which we

will also apply in our model. Nuclei are calculated in the Thomas-Fermi approximation.

The latter is based upon a non-relativistic parameterization of the nuclear interactions.

Nuclei are described as a compressible liquid-drop including surface effects.

Besides these two, there are plenty of EOSs which focus on particular aspects of

nuclear matter but which are restricted to a certain range in temperature, asymmetry

or density. In their range of validity they give a much more detailed description of the

effects occurring there. The main difficulty in the construction of a complete EOS which

is suitable for supernova simulations is the large domain in density 104 g/cm3 < ρ < 1015

g/cm3, temperature 0 < T < 100 MeV and (total) proton fraction 0 < Yp < 0.6 which in

principle has to be covered. In this broad parameter range the characteristics of nuclear

matter change tremendously: from non-relativistic to ultra-relativistic, from ideal gas

behavior to highly degenerate Fermi-Dirac gas, from pure neutron matter to symmetric

matter. All possible compositions appear somewhere in the extended phase diagram:

uniform nuclear matter, nuclei in coexistence with free nucleons, free nucleons with the

formation of light clusters, or an ideal gas mixture of different nuclei, just to mention

a few possibilities. Thus one needs a rather simple but reliable model which is able

to describe all the different compositions and the phenomenon connected with them.

Furthermore, from a numerical point of view the calculation of the EOS table itself is

also not trivial.

For uniform nuclear matter plenty of different models for the EOS exist and most of

them could in principle be applied in the supernova context. So far, the nuclear EOS
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Figure 8.1: The number of calls of density and temperature bins of the EOS in a typical
simulation are shown in color coding. Blue shows entries which are called the
least, yellow bins are called the most frequent. The red line shows the first order
phase transition line for symmetric bulk nuclear matter. Below the line a mixed
phase is present.

at large densities is not fixed and is still one of the main fields of current research in

high energy physics. From the previous discussion it is clear, that in the application for

supernova physics the main difficulties arise below saturation density, where the liquid-

gas phase transition of nuclear matter takes place. Matter becomes non-uniform, as light

and/or heavy nuclear clusters (nuclei) form within the free nucleon gas. The uniform

nuclear matter EOS is only one of the essential input information for the construction

of an EOS which is suitable for the description of all possible conditions which typically

occur in a core-collapse supernova. For the non-uniform nuclear matter phase further

model assumptions are necessary. In this section we focus on the modeling and the

resulting properties of non-uniform matter.

We want to emphasize that this low-density part of the EOS plays a special role in

core-collapse supernovae. Figure 8.1 shows the number of calls of density and temper-

ature bins of the EOS in a typical simulation. The first order phase transition line for

symmetric nuclear matter is plotted on top as an indicator for the occurrence of nuclei.

It can be seen that most of the computational time is spent in the low-density regime

where nuclei coexist with unbound nucleons.
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The subsaturation EOS is not only called quite often but plays also a particular role

for the dynamics of a supernova. As mentioned earlier, most supernova simulations fail

to achieve successful explosions. The shock front which is initially traveling outwards

after the bounce looses energy due to nuclear dissociation and neutrino emission and

finally stalls at densities ∼ 109 g/cm3, see e.g. [BL85, TBP03]. In the neutrino reheating

paradigm the high energetic neutrinos of the deeper layers heat the matter between the

neutrino-spheres and the stalled shock so that the shock is reenergized until it finally

drives of the envelope of the star. Thus the EOS of subsaturation matter is of particular

importance for the possible reviving of the shock wave. Furthermore, the neutrino-

spheres are located at densities ∼ 1011 g/cm3. The neutrino spectra, which belong to

the most important observables of a supernova, are formed here and thus carry the

information about the properties of low density nuclear matter.

The two EOSs mentioned before have been successfully applied in astrophysical sim-

ulations since many years. However, both of them are based on the single nucleus ap-

proximation (SNA) assuming that the whole distribution of different nuclei which forms

at finite temperature can be represented by only one single nucleus. The single nucleus is

found by a minimization procedure of the thermodynamic potential. The SNA has to be

seen as a necessary assumption for any microscopic calculation based on one single unit

cell with periodic boundary conditions, as e.g. in Ref. [BV81, NS09], too. In such micro-

scopic calculations the nuclei are formed out of the nucleons which are placed in the unit

cell just by the nuclear interactions, which is a very convenient aspect of these models.

Already in Ref. [BL84] it was shown, that under most conditions the EOS is almost not

affected by the SNA. But the SNA gives the composition only in an averaged way, as the

spread in the distribution of nuclei can be large. In microscopic calculations quite often

several similar minima of the thermodynamic potential are found, also indicating the

occurrence of mixtures of different nuclei, in contrast to the SNA, see e.g. [BV81, NS09].

Furthermore, in Ref. [SSL+09] it was presented for some particular EOS models, that the

SNA leads to systematically larger nuclei, which was already shown in Ref. [BL84], too.

The distribution of nuclei can influence the supernova-dynamics, as e.g. electron capture

rates are modified. The electron capture rates are highly sensitive to the nuclear com-

position and the nuclear structure, see e.g. [LM00, LMS+03, HMM+03, MLF06]. More

closely connected to the present work, in Ref. [CHB06] the authors investigated models

which are based on a distribution of various nuclei, so called nuclear statistical equilib-

rium (NSE) models. It was shown with classical molecular dynamics simulations that

these models give systematically larger neutrino cross subsections, leading to shorter

neutrino mean free paths. In their study also the importance of the remaining uncer-

tainty regarding the composition was pointed out. We want to note that the previously
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mentioned systematic change in the composition within the SNA was not analyzed in

Ref. [CHB06]. The NSE distribution of nuclei was only compared to a SNA system

with a nucleus with the mass and charge of the average of the distribution. The results

of Ref. [Saw05] point in the same direction: it was shown that the proper treatment

of a multicomponent plasma leads to greatly reduced ion-ion correlations and thus to

increased neutrino opacities.

There are further limitations of the previously mentioned EOSs, [STOS98a, STOS98b]

and [LD91b]. Both of them do not include any nuclear shell effects. A good description

of nuclei is only achieved on an averaged basis. It might be seen as part of the SNA not

to attribute any certain shell structure to the single nucleus which only represents the

average of the whole distribution of nuclei. But in cases where only very few different or

even only one kind of nuclei appears (e.g. at low densities and temperatures), shell effects

are important and should definitely be taken into account in a self-consistent way in the

composition and in the EOS. Shell effects can substantially alter the composition and

are crucial for the evaluation of the weak reaction rates with neutrinos and electrons. In

our model we do not want to use the liquid-drop formulation or the Thomas-Fermi ap-

proximation, but rather implement as much information gained from experiments about

the nuclear masses as possible. Thus our approach is very contrary to the two other

EOSs, in which the nuclear interactions are the only input information required in the

physical model for non-uniform nuclear matter.

In some supernova EOSs, and also in the LS and in the Shen EOS, the distribution

of light clusters is represented only by α-particles, in the same way as the distribution

of heavy nuclei is represented by only one heavy single nucleus. In the most simple

case the α-particles are described as a non-relativistic, classical ideal gas, without any

interactions with the surrounding nucleons. In contrast to this very simplified treatment,

there are studies which focus exclusively on the role of light nuclei in supernovae and

the medium effects connected with them. A model-independent description of low-

density matter is given by the virial equation of state for a gas of light clusters with

mass number A ≤ 4, [HS06b, HS06a, OGH+07]. In Ref. [AMO+08] the composition of

this model was compared to the composition of a simple NSE model. Up to densities

ρ ∼ 1013 only small differences were found, mainly an increased α-particle fraction due

to attractive nucleon-alpha interactions in the virial EOS. The more elaborated models

of Refs. [SR08, Roe09] are based on a quantum statistical approach. In subsection 8.6 we

will give a detailed comparison to these two approaches. In all these studies it is found

that light clusters in addition to α-particles contribute significantly to the composition,

with a particular role of the deuterons. This is also one of the results of Ref. [HSS09],

where all stable nuclei with A ≤ 13 are included, but medium effects are only considered
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on a simplified level. The inclusion of the additional degrees of freedom of the light

clusters can affect the supernova-dynamics. E.g. in Ref. [AMO+08] the influence of light

nuclei on neutrino-driven supernova outflows was studied and a significant change in the

energy of the emitted antineutrinos was found. As another example, in Ref. [OGH+07]

it was shown, that mass-three nuclei contribute significantly to the neutrino energy loss

for T ≥ 4 MeV. A different topic connected to light clusters is the possible formation of

Bose-Einstein condensates, see e.g. [FYH+08, FHR+08, HSS09].

A lot of knowledge about the properties of hot compressed nuclear matter was gained

from statistical multifragmentation models (SMM) which are used to analyze low-energy

heavy-ion collisions [Gro90, BBI+95]. Later we will give a detailed comparison of our

results with the SMM of Botvina and Mishustin. In Refs. [BM04, BM05, Mis08, BM08]

it was pointed out that the state reached in these experiments (T ∼ 3 − 6 MeV, ρ ∼

0.1ρ0, with the saturation density ρ0) is very similar to the conditions in a core-collapse

supernova in the region between the protoneutron star and the shock front. It is very

attractive that the same well-established models which are used to describe matter in

terrestrial experiments can be applied for matter in some of the most energetic explosions

in the universe.

In an astrophysical context such models are usually called NSE models. In this chemi-

cal picture the bound states of nucleons are treated as new species of quasi-particles. NSE

models are in principle extended Saha-equations, as presented in Ref. [CT65]. Within

this approach the whole distribution of light and heavy nuclei can be included by con-

struction. Furthermore, it is very easy to incorporate experimentally measured masses.

This classical approach gives an excellent description as long as matter is sufficiently

dilute that the nuclear interactions are negligible and if the temperature is so low, that

the structure of the nuclei is not changed significantly, see e.g. [IMN+78]. If the whole

distribution of nuclei is taken into account, it becomes rather difficult to implement

a proper description of the medium effects on the nuclei, which become important at

large densities. Thus, especially the transition to uniform nuclear matter which happens

around 1/2ρ0 leads to difficulties for NSE models. Obviously, in the high density regime

close to saturation density, more microscopic SNA-models give a more reliable descrip-

tion. In this high density regime also very exotic nuclear structures, commonly called

the "nuclear pasta" phases, appear [SWS+08]. In a recent 3D Skyrme-Hartree-Fock cal-

culation [NS09] it was shown, that this frustrated state of nuclear matter is characterized

by a large number of local energy minima, for different mass numbers and for different

nuclear configurations. Thus one can expect that many different pasta shapes will co-

exist at a given temperature and density, which would require a statistical treatment

beyond the present capabilities. Furthermore, in SNA models the Coulomb energy of the
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considered unit cell is included in the Wigner?Seitz approximation. This always imposes

a certain symmetry/periodicity of the system. Also in NSE models the Wigner?Seitz

approximation is commonly used. Monte Carlo and Molecular dynamics simulations,

as e.g. applied in Refs. [WMS+05, MTV+05] can go beyond these simplifications and

incorporate correlations in a more natural way.

In addition to the subtleties at large densities, the assumption of NSE itself, in the

sense that chemical equilibrium is established, is only valid for temperatures larger than

∼ 0.5 MeV. For lower temperatures, the nuclear reactions are too slow compared to

the typical dynamical timescales of ms within a supernova. Anyhow we will present

results below T = 0.5 MeV for completeness and for the sake of comparison with larger

temperatures. For these low temperatures one has to keep in mind that they do not

represent the actual conditions in a supernova, but rather the ground state of matter

after a sufficiently long time.

Before presenting our own model, we want to review briefly the first studies of NSE

models in the context of the supernova EOS. The first publication we are aware of is

Ref. [MLB79]. In this NSE model nucleon and Coulomb interactions and internal parti-

tion functions are included in a consistent way. Similar works followed [EH80, Mur80],

which investigated the different components of NSE models. Excluded volume effects

were first considered in Ref. [HM81]. This work also shows the first hydrodynamic sim-

ulations of core-collapse supernovae, in which a NSE model had been applied. This

NSE model was then further developed in Ref. [HNW84]. More recently, in Ref. [IOS03]

Ishizuka et al. included 9000 nuclei from the theoretical mass table of Myers and Swiate-

cki [MS90]. Excited states of the nuclei are treated with an internal partition function

in the same manner as we will do. However, the model of Ishizuka et al. does not

consider any nuclear interactions or phenomenological excluded volume corrections. In

this sense it is a rather pure NSE model. The SMM model of Botvina and Mishustin

[BM04, BM05, Mis08, BM08] does not use any tabulated binding energies, but is based

on a liquid-drop parameterization of the nuclear masses. We will discuss this model in

more detail in Sec. 8.4 and compare it to our results. The NSE model of Blinnikov et

al. [BPRS09] uses the tabulated theoretical nuclear binding energies of Ref. [KTUY05].

In their model interactions of the free nucleons as well as the modification of the nuclear

surface energy due to the presence of the free nucleons is taken into account. Nuclear

excited states are described by the partition functions of Engelbrecht [EE91]. Besides

the use of different nuclear interactions and partition functions, the major difference of

this model compared to ours, which will be presented below, is, that excluded volume

effects have not been implemented. Nadyozhin and Yudin considered in their NSE cal-

culation only 137 selected nuclei and did not include any nuclear interactions. Instead
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they studied elaborated descriptions of the excited states [NY04] and of the Coulomb

energy [NY05] in great detail. In the other NSE models discussed above, the Coulomb

energies are included in the Wigner-Seitz approximation, which we will also use in our

model.

Despite the principle problems NSE models have to cope with at large densities, we

want to construct a NSE model which allows to bridge the critical region from some

percent of saturation density up to uniform nuclear matter. By using a NSE model

we keep the rather simple but accurate description of low-density and low-temperature

matter. For uniform nuclear matter an RMF EOS will be applied. Our new NSE model

shall be able to give a reasonable description of the transition to uniform nuclear matter,

which in the microscopic SNA models is achieved automatically. For that we include

the nuclear interactions also in the unbound nucleon contribution below saturation den-

sity. In most cases these interactions are not important, but they become crucial where

the free nucleons constitute a significant fraction and the interactions are necessary for

the liquid-gas phase transition. Furthermore, we develop a thermodynamic consistent

description of excluded volume effects, so that we achieve the right asymptotic behavior

for very dense and very dilute nuclear matter. We are aware that we apply the NSE

description at densities at which we can not control all effects of the nuclear interactions

any more, and our very phenomenological description becomes questionable. Anyhow,

we want to explore the limits of a NSE model and compare the arising differences to

other existing EOSs. So far an NSE model has never been applied close to saturation

density and the existing models are not able to describe the transition to uniform nuclear

matter at all. We can discuss the whole phase diagram of supernova matter within one

consistent model and can address all the aspects which were mentioned above, namely

the distribution of heavy nuclei, the importance of the light cluster distribution, or the

role of shell effects. As will be presented below, we will apply the same model which was

used for the calculation of the nuclear masses for the interactions of the free nucleons,

so that all nuclear interactions (apart from excluded volume effects) are based on the

same Lagrangian.

8.2 Description of the model

In our model matter consists of nuclei, nucleons, electrons, positrons and photons. As

we want to describe the most general case of supernova matter, we do not assume weak

equilibrium and thus use the independent state variables (T, nB, Yp) (see also Sec. 6.1).

As discussed in Sec. 7.5, the neutrinos do not have to be taken into account in the
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calculation of the EOS. Electrons are assumed to be distributed uniformly and are

described as a general Fermi-Dirac gas, including the positron contribution. All Fermi-

Dirac integrals for the electrons as well as for the nucleons were calculated using the very

accurate and fast routines from Refs. [Apa98, GZDA01]. Thus the possible degeneracy

of the nucleons is fully taken into account. The photon contribution (Stefan-Boltzmann

law) is also included in the EOS. The nontrivial part of the model is the description of

the baryons, as they are not distributed uniformly and their interactions are significant.

For simplicity, for temperatures above or equal 20 MeV matter is assumed to be uniform,

i.e. without the presence of nuclear clusters.

8.2.1 Nucleons

For the unbound interacting nucleons (neutrons and protons) the RMF model is applied,

which was introduced in Sec. 2.4. We will show results for two different parameter sets,

TMA and TM1 (Subsec. 2.4.4). For very low number densities of the nucleon gas

(nnuc < 10−5 fm−3), where the interactions are negligible, the nucleons are treated as

noninteracting ideal Fermi-Dirac gases for simplicity. The photons and their coupling

to the nucleons are dropped at this point, because the contribution of the free photon

gas is added separately to the EOS and the Coulomb energies will be discussed later.

8.2.2 Nuclei

In our approach we will preferably use experimentally measured masses for the descrip-

tion of nuclei (mass number A ≥ 2). We take the nuclear data from the atomic mass

table 2003 from Audi, Wapstra, and Thibault (AWT) [AWT03] whenever possible. It is

very convenient that we directly can use experimental data for the construction of the

EOS. We do not take any estimated, non-experimental data of the atomic mass table

into account.

For nuclei with experimentally unknown mass we have to use the results of nuclear

structure calculations in form of nuclear mass tables. The mass table from Geng et

al. [GTM05] is calculated with the relativistic mean field model TMA. Thus all nuclear

interactions are consistently based on the same nuclear interactions if the mass table

from Geng is combined with the RMF interactions TMA for the unbound nucleons.

This mass table lists 6969 even-even, even-odd and odd-odd nuclei, extending from 16O

to 331100 from slightly above the proton to slightly below the neutron drip line. The

nuclear binding energies are calculated under consideration of axial deformations and
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Figure 8.2: The proton number Z and neutron number N of the nuclei taken from the mass
table calculated with TMA [THS+95, GTM05] and from the experimental AWT
mass table [AWT03].

the pairing is included with a BCS-type δ-force. With these detailed calculations of

the nuclear masses a good agreement with the experimental masses is achieved, with a

rms deviation σ ∼ 2.1 MeV [GTM05]. For the parametrization TM1 we do not have a

suitable mass table at hand, thus we cannot avoid the minor “inconsistency” to use the

table of Geng et al. [GTM05], which is based on the TMA parameterization.

As long as a mixed phase of free nucleons and nuclei is favored instead of uniform

nuclear matter, our statistical description includes all nuclei which are listed in the

experimental AWT table or in the theoretical mass table TMA respectively. Fig. 8.2

shows all the considered nuclei in a nuclear chart.

8.2.3 Excited States

At finite temperature excited states of the nuclei will be populated and consequently

the number density nA,Z of a certain nucleus (A,Z) with mass number A and proton

number Z will increase. It is given by the sum over all excited states i:

nA,Z =
∑

i

ni
A,Z , (8.1)

which can be put into the following form:

nA,Z = n0
A,Z

∑

i

gi(1 + ∆E∗
i /M0)

3/2 exp(−∆E∗
i /T ) , (8.2)
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with the excitation energy ∆E∗
i of the excited state i, if a Maxwell-Boltzmann distri-

bution is assumed. n0
A,Z is the number density of the ground state, without its spin

degeneracy g0 = 2(J0 + 1), which is still included in the sum over i.

Instead of including all excited states explicitly we use a temperature dependent

degeneracy function gA,Z(T ). It represents the sum over all excited states of a hot

nucleus. We choose the simple semi-empirical expression for gA,Z(T ) from Ref. [FR82]:

gA,Z(T ) = g0
A,Z +

c1
A5/3

∫ Emax

0

dE∗e−E∗/T exp
(

√

2a(A)E∗
)

(8.3)

a(A) =
A

8
(1− c2A

−1/3) MeV−1 (8.4)

c1 = 0.2 MeV−1, c2 = 0.8 , (8.5)

with g0
A,Z denoting the degeneracy of the groundstate. g0

A,Z is very small compared to

gA,Z(T ) and therefore we take g0
A,Z = 1 for even and g0

A,Z = 2 for odd A for simplicity.

Only for the deuteron the true groundstate degeneracy g0
2,1 = 3 is used, because of

its important contribution at large temperatures. For the alpha-particle and most of

the other light clusters the previous values are anyhow correct. In this way the only

information needed about the nuclei are their ground state masses. In the following,

we will use Emax = BE, i.e. we include excited states up to the binding energy BE to

represent that the excited states still have to be bound.

8.2.4 Coulomb energies

For the calculation of the Coulomb energies, which play an important role in the de-

termination of the composition, we assume spherical Wigner-Seitz (WS) cells for every

nucleus. For an uniform electron distribution with electrons present inside and outside

of a nucleus (A,Z) and zero temperature one gets a simple classical expression for the

Coulomb energy of the WS cell:

ECoul
A,Z = −

3

5

Z2α

R(A)

(

3

2
x−

1

2
x3

)

(8.6)
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x =

(

ne

n0
B

A

Z

)1/3

, (8.7)

where we treated the nuclei as homogeneous spheres with radius R(A) of nucleons at

saturation density n0
B: R(A) = (3A/4πn0

B)1/3. ne is the electron number density, which

is fixed by charge neutrality: ne = YpnB. The first term in the brackets corresponds to

the Coulomb energy of a point-like nucleus with charge Z within the electron gas. The

second term in the brackets arises due to the finite size of the nucleus, with electrons

located inside the nucleus.

We do not include the Coulomb energy of the protons because of the following reasons:

In principle they could be added within the WS approximation in the same way as for

the nuclei, without any further complications. But first of all protons are rather light

particles, so that the WS approximation and the above expression for the Coulomb

energy would not be very adequate. Next and more important in our context is the

following aspect: in uniform charge neutral nuclear matter the Coulomb energy has to

be zero. If we included the Coulomb energy of the protons within the approximation

above, this would not be the case. Because protons were described as point-like static

particles, their WS-Coulomb energy would never vanish, not for a locally charge neutral

system either. Instead of the WS approximation one could treat the protons as an

uniform background, which would screen the charge of the electrons and interact with

the charge of the nuclei. Then the Coulomb energy would vanish for uniform nuclear

matter as it has to be. But within our description of the thermodynamic system (which

will be presented next) this would lead to numerical complications as an additional

implicit equation had to be solved. Thus for simplicity we neglect the anyhow small

Coulomb energy of the protons. Then the correct limit of vanishing Coulomb energy for

uniform nuclear matter is also achieved.

8.2.5 Thermodynamic model

In our description we distinguish between nuclei and the surrounding interacting nucle-

ons, and we still have to specify how the system is composed of the different particles.

For nuclei we will apply the following classical description: All baryons (nucleons in nu-

clei or unbound nucleons) are treated as hard spheres with the volume 1/n0
B so that the

nuclei are uniform hard spheres at saturation density of volume A/n0
B. Next, a nucleus

must not overlap with any other baryon (nuclei or unbound nucleons). Thus the volume

in which the nuclei can move is not the total volume of the system, but only the volume

which is not filled by baryons. This is illustrated in Fig. 8.3. For the unbound nucleons
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Figure 8.3: Illustration of the excluded volume effects on the nuclei. Each nucleon and nucleus
has a proper volume, which reduces the volume in which the nuclei can move to
V̄ , which is given by the grey region.
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Figure 8.4: Illustration of the excluded volume effects on the nucleons. Nucleons have to be
outside of nuclei, thus they only fill the volume V ′, which is given by the grey
region.

we use a different description, because the interactions among them are already included

in the RMF model. For unbound nucleons we only assume that they are not allowed

to be situated inside the nuclei, which is shown in Fig. 8.4. We will discuss these two

different excluded volume corrections in more detail later.

To derive all relevant thermodynamic quantities like e.g. the energy density or the

pressure for given (T, nB, Yp), we start from the total canonical partition function of the

system. To do that we will first consider that the entire set {Ni} of all the particle
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numbers of electrons Ne, neutrons Nn, protons Np and all nuclei {NA,Z} is fixed (the

trivial photon contribution is taken out of the following derivation). In our model the

total energy can be split into the contribution of electrons, nucleons, nuclei and the

Coulomb energy. Thus the total canonical partition function is given by the product of

the partition functions of the four different contributions:

Z(T, V, {Ni}) = Ze Znuc

∏

A,Z

ZA,Z ZCoul , (8.8)

with V denoting the volume of the system. From the canonical partition function the

canonical thermodynamic potential follows, which is the Helmholtz free energy:

F (T, V, {Ni}) = −T lnZ (8.9)

= Fe + Fnuc +
∑

A,Z

FA,Z + FCoul . (8.10)

In the following the different contributions to the free energy will be discussed separately

in detail.

The free energy of the electrons Fe = −T lnZe is given by a general noninteracting

ideal Fermi-Dirac gas, including antiparticle contributions:

Fe(T, V, {Ni}) = F 0
e (T, V,Ne) . (8.11)

The electrons are distributed over the entire volume and are not influenced by the

excluded volume effects. Then the Coulomb free energy has the following simple form:

FCoul(T, V, {Ni}) = FCoul(T, V,Ne, {NA,Z})

=
∑

A,Z

NA,ZE
Coul
A,Z (V,Ne) . (8.12)

From Eq. (8.6) and (8.7) it is clear that the Coulomb free energy actually depends only

on the number density of the electrons, ne = Ne/V , which is fixed by charge neutrality,

ne = YpnB, and the numbers of protons Np and nuclei {NA,Z} but not on the volume.

Thus the Coulomb free energy is also not modified by the excluded volume corrections.

The volume available to the nucleons is reduced by the volume which is filled by

nuclei. Therefore the free energy of the nucleons Fnuc = −T lnZnuc is the free energy

calculated with the unmodified RMF model F 0
nuc for the available volume V ′ which is
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not filled by the volumes of the nuclei:

Fnuc(T, V, {Ni}) = F 0
nuc(T, V

′, Nn, Np) (8.13)

V ′ = V −
∑

A,Z

NA,ZVA,Z (8.14)

VA,Z = AV0 = A/n0
B . (8.15)

If no nuclei are present we arrive at the unmodified RMF description, as it should be.

Nuclei are treated as non-relativistic classical particles. Also for the nuclei an ex-

cluded volume correction is introduced, but one which has a different character than the

one for nucleons. The nuclei are allowed to be everywhere in the system as long as they

do not overlap with any other baryon (nucleons inside of the other nuclei or the free

nucleons). Regarding the effect on the nuclei, the same volume as the one of nucleons

in nuclei is attributed to the free nucleons, so that according to Eq. (8.15):

Vn = Vp = V0 = 1/n0
B . (8.16)

Every baryon in the system reduces the free volume V̄ in which the nuclei can move:

V̄ = V −
∑

A,Z

NA,ZVA,Z −NnVn −NpVp . (8.17)

Thus within our assumptions, the free energy of the nucleus (A,Z) is the usual Maxwell-

Boltzmann expression of a classical ideal gas in the free volume V̄ :

FA,Z(T, V, {Ni}) = F 0
A,Z(T, V̄ , NA,Z) (8.18)

F 0
A,Z = NA,ZMA,Z − TNA,Z

(

ln

(

gA,Z(T )V̄

NA,Z

(

MA,ZT

2π

)3/2
)

+ 1

)

. (8.19)

As the volume appears only in the kinetic part of the free energy, naturally this excluded

volume correction does not modify the rest mass term.

The excluded volume correction of the nuclei represents a hard-core repulsion of the

nuclei at large densities close to saturation density. Instead the modification of the

free energy of the unbound nucleons is purely geometric and just describes that the

nucleons fill only a fraction of the total volume. It is important to note that nuclei can

not be present at densities larger than saturation density within this picture, which is

reasonable and wanted. This is also the reason why we chose V0 = 1/n0
B for the value

of the volume of a nucleon, which has to be seen as a free parameter of the model.
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The volume V of the system can be chosen freely and just determines the size of the

system. As its value is completely arbitrary in the thermodynamic limit, a description

in which all extensive quantities are replaced by their corresponding densities is more

convenient. The total particle number densities are the numbers of particles per total

volume:

nn/p = Nn/p/V (8.20)

nA,Z = NA,Z/V . (8.21)

For the nucleons we introduce the local number densities outside of the nuclei, given by

the number of neutrons respectively protons per available volume:

n′
n/p = Nn/p/V

′ . (8.22)

In the following we will use these local number densities of the nucleons instead of their

total number densities, as they directly set the RMF contribution of the nucleons to the

EOS. After introducing the filling factor of the nucleons

ξ = V ′/V = 1−
∑

A,Z

nA,ZVA,Z (8.23)

= 1−
∑

A,Z

A nA,Z/n
0
B (8.24)

the total number and the electric charge density of the baryons take on the following

form:

nB = (Nn +Np +
∑

A,Z

ANA,Z)/V (8.25)

= ξ(n′
n + n′

p) +
∑

A,Z

A nA,Z , (8.26)

nBYp = (Np +
∑

A,Z

ZNA,Z)/V (8.27)

= ξn′
p +

∑

A,Z

ZnA,Z . (8.28)

ξ = 1 corresponds to the case when only free nucleons are present. For ξ = 0 the nuclei

fill the entire space so that there is no available volume for the free nucleons left.
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To replace V̄ in the expressions used later the volume fraction κ is introduced:

κ =
V̄

V
. (8.29)

It is the fraction of the free volume V̄ in which the nuclei can move of the total volume

V . It depends only on nB:

κ = 1−
1

n0
BV

(

∑

A,Z

NA,Z +Nn +Np

)

(8.30)

= 1− nB/n
0
B . (8.31)

1− κ is the volume fraction which is filled by baryons. If κ = 1 (nB = 0) then the free

volume is equal to the total volume, for κ = 0 (nB = n0
B) the entire space is filled by

baryons and the free volume vanishes.

After having specified the free energy, all thermodynamic quantities can be derived

consistently in the standard manner as derivatives of the free energy. Only the internal

energy density ǫ = U/V has to be determined by the inverse Legendre transformation

of the free energy density f = F/V , ǫ = f + Ts, with s = S/V denoting the entropy

density.

In the intensive formulation the free energy density becomes:

f = f 0
e (T, ne) +

∑

A,Z

f 0
A,Z(T, nA,Z) + fCoul(ne, {nA,Z})

+ξf 0
nuc(T, n

′
n, n

′
p)− T

∑

A,Z

nA,Z ln(κ) , (8.32)

fCoul(ne, {nA,Z}) =
∑

A,Z

nA,ZE
Coul
A,Z (ne) , (8.33)

f 0
A,Z(T, nA,Z) = nA,Z

(

MA,Z − T − T ln

(

gA,Z(T )

nA,Z

(

MA,ZT

2π

)3/2
))

. (8.34)

The first two terms in Eq. (8.32) are the ideal gas expressions of the electrons and the

nuclei. The Coulomb free energy of the nuclei appears in addition. The free energy

density of the nucleons is weighted with their volume fraction in the fourth term. This

can be expected as the free energy is an extensive quantity. The last term arises directly

from the excluded volume corrections of the nuclei. Because of this term, as long as nuclei

are present, the free energy density goes to infinity when approaching saturation density
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(κ → 0). Thus uniform nuclear matter will always set in slightly before saturation

density is reached.

The entropy density can be written in the following form:

s = s0
e(T, ne) +

∑

A,Z

s0
A,Z(T, nA,Z) + ξs0

nuc(T, n
′
n, n

′
p) +

∑

A,Z

nA,Z ln(κ) , (8.35)

s0
A,Z(T, nA,Z) = nA,Z

(

ln

(

gA,Z(T )

nA,Z

(

MA,ZT

2π

)3/2
)

+
5

2
+
∂gA,Z

∂T

T

gA,Z

)

. (8.36)

Analog expressions as in the free energy density appear. As the Coulomb energy is

not taken to be temperature dependent it does not give a contribution to the entropy.

In the ideal gas expression of the nuclei, Eq. (8.36), an additional contribution from

the temperature dependent degeneracy arises. The excluded volume correction term in

Eq. (8.35) expresses the reduction of the available number of states for the nuclei with

increasing density.

The energy density looks similar:

ǫ = ǫ0e(T, ne) + ξǫ0nuc(T, n
′
n, n

′
p) +

∑

A,Z

ǫ0A,Z(T, nA,Z) + fCoul(ne, {nA,Z}) , (8.37)

ǫ0A,Z(T, nA,Z) = nA,Z

(

MA,Z +
3

2
T +

∂gA,Z

∂T

T 2

gA,Z

)

. (8.38)

The total pressure becomes:

p = p0
e(T, ne) + p0

nuc(T, n
′
n, n

′
p) +

1

κ

∑

A,Z

p0
A,Z(T, nA,Z) + pCoul(ne, {nA,Z}) (8.39)

p0
A,Z(T, nA,Z) = TnA,Z (8.40)

where the ideal gas pressure of the nuclei is increased by 1/κ as their free volume is

reduced by the excluded volume of the baryons. pCoul denotes the negative Coulomb

pressure:

pCoul(ne, {nA,Z}) = −
∑

A,Z

nA,Z
3

5

Z2α

R(A)

(

1

2
x−

1

2
x3

)

. (8.41)
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The chemical potential of the electrons is reduced by the Coulomb interactions:

µe = µ0
e(T, ne) +

pCoul(ne, {nA,Z})

ne
. (8.42)

The chemical potential of the neutrons and protons is:

µn/p = µ0
n/p(T, n

′
n, n

′
p) +

1

κ

∑

A,Z

p0
A,Z(T, nA,Z)V0 . (8.43)

Because of the excluded volume corrections mechanical work has to be exerted upon the

pressure of the nuclei to add an additional nucleon. The chemical potential of the nuclei

encounters an even stronger modification:

µA,Z = µ0
A,Z(T, nA,Z) + ECoul

A,Z (ne) (8.44)

+

(

p0
nuc(T, nn, np) +

1

κ

∑

A,Z

p0
A,Z(T, nA,Z)

)

VA,Z − T ln(κ) , (8.45)

µ0
A,Z(T, nA,Z) = MA,Z − T ln

(

gA,Z(T )

nA,Z

(

MA,ZT

2π

)3/2
)

(8.46)

Besides the chemical potential of an ideal gas the Coulomb energy of the nucleus appears.

Furthermore to add an additional nucleus volume work has to be performed not only

against the pressure of the nuclei, but also against the nucleonic pressure. The last

term arises directly from the excluded volume correction and shows the increase of the

chemical potential when the density becomes close to saturation density.

The presented approach for the excluded volume corrections is thermodynamically

fully consistent and the part for the nuclei is equivalent to the method described in

Ref. [RGSG91] in which a grand-canonical formulation was used.

So far, all the particle number densities, nn, np, {nA,Z}, ne were treated as fixed

variables. In the following the equilibrium conditions for the baryons will be derived

for the assumption of baryon number and proton number (or proton fraction) conser-

vation which is equivalent to baryon number and isospin conservation. The electron

contribution is fixed by charge neutrality. We note that our procedure, to derive the

thermodynamic variables from the thermodynamic potential for given nn, np, {nA,Z}, ne

first, and to implement chemical equilibrium of the baryons afterwards, gives the correct

result and is much simpler than doing it the other way round. The equilibrium con-
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ditions only set the baryonic composition but do not change the other thermodynamic

functions.

For given nB and Yp the internal variables nn, np and {nA,Z} are no longer indepen-

dent. After including the conservation laws with the help of two Lagrange multipliers the

first and second law of thermodynamics lead to the following relation which expresses

the chemical equilibrium between nuclei and nucleons:

µA,Z = (A− Z)µn + Zµp . (8.47)

With this condition only two degrees of freedom (e.g. nB and Yp) remain, which have to

be specified. Then Eqs. (8.43)–(8.47) can be combined to

nA,Z = κ gA,Z(T )

(

MA,ZT

2π

)3/2

× exp

(

(A− Z)µ0
n + Zµ0

p −MA,Z −E
Coul
A,Z − p

0
nucVA,Z

T

)

. (8.48)

Because all the baryons (including the free nucleons) contribute equally to the excluded

volume of the nuclei, the pressure of the nuclei drops out in the equilibrium condition

Eq. (8.47) and the number density of the nuclei can be written in this form.

We want to emphasize that µ0
n and µ0

p contain the RMF interactions of the nucleons.

As they appear in Eq. (8.48) the interactions of the free nucleons are thus coupled to

the contribution of the nuclei. Compared to the generalized RMF model of Typel et

al. [TRK+10], the mutual counteracting in-medium self energy and the Pauli-blocking

shifts of the light clusters appear in addition in their model. Furthermore, in our ap-

proach the bound nucleons do not contribute to the source term of the meson fields. In

our model the Mott effect and the dissolution of clusters at large densities is mimicked

only by the excluded volume corrections.

The factors ξ and κ in Eq. (8.48) themselves depend on the number densities of the

free nucleons and/or nuclei, and therefore the set of equations (8.23)-(8.31) and (8.48)

still has to be solved numerically in a self-consistent way. Within this formulation the

values of n′
n and n′

p determine the total baryon number density and the proton fraction.

Thus for given nB and Yp only two nested root-findings have to be performed, in addition

to the root-finding for the RMF equations for the nucleons. Thermodynamic consistency

and consistency of the mass fractions is reached on a high level within the calculation

and the relative error never exceeds 10−6.
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8.2.6 Transition to uniform nuclear matter

For certain temperatures and proton fractions the NSE model as presented above still

exhibits a first order phase transition close to saturation density. We want to stress

that the liquid-gas phase transition of nuclear matter is almost completely described

by the statistical model alone. The first order phase transition occurs only in a very

narrow density region in the transition to uniform nuclear matter. This phase transition

is triggered by a rather abrupt turnover in the composition, in which nuclei are replaced

by unbound nucleons. The first order phase transition is an indication that the model

is too restrictive at large densities. We want to illustrate this aspect further.

In the bulk approximation the following behavior for the transition to uniform matter,

i.e. close to the endpoint of the liquid-gas phase transition (see Fig. 2.5), is expected:

Besides of the restricted parameter-space in (T, Yp) where retrograde condensation takes

place, the volume fraction of the liquid phase (nuclei) grows with increasing density

until this phase occupies the entire space, the gas phase disappears and uniform nuclear

matter is reached, see [Gle92, MS95]. In our model the mass and charge number of the

nuclei is limited by the nuclear mass table and thus the nuclear clusters are not able to

grow arbitrary in size. Still it is possible that the volume fraction of nuclei approaches

unity, but as the nuclei are described as unchangeable particles they are obviously not

able to evolve to uniform nuclear matter. Instead they are replaced by unbound nucleons

which leads to the phase transition.

To treat the phase transition correctly we need to construct a mixed phase between

the NSE model and uniform nuclear matter. Because we do not want to include Coulomb

interactions between the two phases, we require the mixed phase to be locally charge

neutral. With this assumption alone we still would have a multi-component system, as

the proton fraction and baryon density can be shared by the two phases. A (non-linear)

Gibbs construction was required. To avoid additional root-findings, we thus impose the

same local proton fraction in both phases in addition, denoted by case Ic in Table 7.1.

Then the system becomes a simple body and the Maxwell construction can be used. We

note that the same mixed phase construction was used in the LS EOS.

This description of the phase transition leads to a constant total pressure with the

electron contribution included. By using these stringent conditions we will get discon-

tinuities in the second derivatives of the free energy. Besides the assumption of locally

fixed Yp another simplification is used: the point at which the pressure in the two phases

is equal is determined in an approximative way. To save computational time the two

phases are only compared at the density grid-points of the final EOS table. Then the

two phases are connected by a thermodynamic consistent interpolation.
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Figure 8.5: The average mass number of heavy nuclei 〈A〉 as a function of the baryon number
density nB in β-equilibrium. The results of the present work at T = 0.1 MeV are
compared to the results from Ref. [RHS06] at temperature T = 0 MeV, which
are also based on the mass table TMA but in which the lattice energy is included
explicitly.

With this construction the non-uniform phase consisting of nuclei and nucleons is re-

placed successively by uniform nuclear matter with increasing density. One can interpret

the second phase (uniform nuclear matter) as an infinitely large nucleus which occupies

a volume fraction which increases with density. As this nucleus is locally charge neutral

it can be treated in the thermodynamic limit, in which the surface energy is negligible

compared to the volume part. Thus the use of the mixed phase construction helps to

overcome the limitation by the use of nuclear mass table.

This interpretation of the denser phase in the phase transition is also used in Refs.

[BGMG00, BGMG01]. In these works an analytic solution of a simplified SMM in the

thermodynamic limit was studied, in which excluded volume effects were treated self-

consistently. The behavior of the mixed phase in our model is qualitatively similar to

their results or of e.g. Ref. [MS95] in which bulk nuclear matter was studied. Inter-

estingly, the results of the recent work [NS09] seem to indicate, that even within a 3D

Skyrme-Hartree-Fock calculation the phase transition to uniform nuclear matter requires

a mixed phase construction.
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8.3 Results

8.3.1 Composition

In the following we will only show and discuss results for the parameterization TMA

and the corresponding mass table. We chose this parametrization, because it is the only

one for which a consistent mass table was available. To have a general overview of the

composition we will distinguish light and heavy nuclei by the charge Z ≤ 5. The mass

fraction of a single particle i is defined by Xi = Aini/nB. For the light and heavy nuclei

we will also use the total light, respectively heavy, nuclei mass fraction Xa, respectively

XA, defined by:

Xa =
∑

A≥2,Z≤5

AnA,Z/nB (8.49)

XA =
∑

A≥2,Z≥6

AnA,Z/nB . (8.50)

Furthermore we introduce the average heavy nucleus

< A > =
∑

A≥2,Z≥6

AnA,Z/
∑

A≥2,Z≥6

nA,Z (8.51)

< Z > =
∑

A≥2,Z≥6

ZnA,Z/
∑

A≥2,Z≥6

nA,Z (8.52)

and average light nucleus

< a > =
∑

A≥2,Z≤5

AnA,Z/
∑

A≥2,Z≤5

nA,Z (8.53)

< z > =
∑

A≥2,Z≤5

ZnA,Z/
∑

A≥2,Z≤5

nA,Z (8.54)

Together with the neutron and proton mass fractions Xn and Xp we achieve:

1 = Xn +Xp +Xa +XA , (8.55)
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which means we have a viable decomposition into four different particle species. Fur-

thermore the density of the average light and heavy nucleus is then correctly given by:

na = nBXA/ < A >=
∑

A≥2,Z≤5

AnA,Z (8.56)

nA = nBXa/ < a >=
∑

A≥2,Z≥6

AnA,Z . (8.57)

Fig. 8.5 depicts the average mass number of the heavy nuclei 〈A〉 as a function of

nB for β-equilibrated neutrino-free matter, i.e. µn = µp − µe. The results of the present

investigation at T = 0.1 MeV are compared to a detailed calculation of the outer crust

of a neutron star at T = 0 [RHS06] which is based on the same nuclear mass table TMA.

Instead of the simplified manner described in Secs. 8.2.4 and 8.2.5, in Ref. [RHS06] the

Coulomb energy of a body-centered-cubic lattice is incorporated explicitly in the EOS

and only the single groundstate nucleus is determined. For T = 0.1 MeV the temperature

effects are small and only lead to a smoothing of the stepwise change in the composition

at T = 0. Regarding the composition, the good agreement between the two different

calculations shows that the simplified treatment of the Coulomb energies in the statistical

model of the present work does not cause any significant differences. We conclude, that

an excellent description of nuclear matter composition at low temperatures and densities

is achieved, which incorporates shell effects.

In both calculations the system exhibits nuclei with smaller Z/A for increasing den-

sity, as the electrons become relativistic and their contribution to the free energy be-

comes larger. The decrease in Z/A leads to an in overall increasing mass number, up

to nB ∼ 10−4 fm−3. Shell effects are strongly pronounced: for 10−6 fm−3 < nB < 10−4

fm−3 only nuclei with the magic neutron number 50 are present and around 10−4 fm−3

only the magic neutron number 82 is populated. It is important to note that up to

∼ 3 × 10−5 fm−3 the composition is given entirely by nuclei whose mass is taken from

experimental data. Around nB ∼ 2.7× 10−4 fm−3 the calculation of Ref. [RHS06] ends,

where the so called neutron drip is reached, at which free neutrons begin to appear.

In the statistical model the nucleus 116Se initially remains the favored nucleus after the

neutron drip. Then 118Se appears and at larger densities 78Ca, a nucleus with very low

Z/A ∼ 0.26 becomes the most abundant nucleus. Obviously, in our statistical model the

composition is restricted on the nuclei which are listed in the used nuclear mass table.

This could be the reason for the unexpected decrease of < A > at densities close to

saturation.

We note that our model is actually not very suitable for the description of neutron

star matter in the inner crust, corresponding to the high density part of Fig. 8.5. In
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Figure 8.6: The phase diagram of nuclear matter for different proton fractions Yp in the T−nB

plane. Solid (dashed) lines enclose the region where the mass fraction of heavy
nuclei with Z ≥ 6 (light nuclei with Z ≤ 5) exceeds 10−4.

contrast to matter in supernovae, in neutron stars the proton fraction is very low causing

a large mass fraction of unbound neutrons. Thus the interactions between free neutrons

and nuclei, which change the structure of the nuclei, are very important. Later we

will discuss this aspect further. We will show that for typical supernova conditions, in

the regime where the contribution of the nuclei is important, the mass fraction of free

nucleons is low instead.

The phase diagram of nuclear matter, in terms of the composition regarding light and

heavy nuclei is depicted in Fig. 8.6. We show the contour lines for a mass fraction 10−4

of the light nuclei Xa and of the heavy nuclei XA, as specified in Eqs. (8.49) and (8.50).

At temperatures above 1 − 2 MeV and low densities nuclear matter consists almost

only of free nucleons. Between 10−7 and 10−4 fm−3 light clusters begin to appear. As

will be seen from Fig. 8.17, discussed in more detail later, these first light clusters are

mainly deuterons. The more symmetric the system is, the earlier is the onset of the light

clusters in form of the isospin symmetric deuterons. For all proton fractions some light
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clusters are present up to nB ∼ 1/2 n0
B where uniform nuclear matter is reached. Only

for temperatures below 1− 2 MeV the system consists almost entirely of heavy nuclei.

At the transition to uniform nuclear matter the following observations can be made: At

low temperatures, T ≤ 2 MeV, the transition density where uniform nuclear matter is

reached is increasing with the proton fraction from nB = 0.3n0
B to 0.7n0

B, similar as in the

bulk nuclear matter phase diagram of Fig. 2.5. Depending on the proton fraction, there

is a certain temperature, above which the transition density is significantly increased.

At the highest temperatures studied, the uniform nuclear matter appears only slightly

below saturation density.

The phase diagram of heavy nuclei in Fig. 8.6 can be seen as a manifestation of the

liquid-gas phase transition of bulk nuclear matter, Fig. 2.5. The critical temperature up

to which heavy nuclei are abundant increases from roughly 2 MeV at Yp = 0.01 above

20 MeV for symmetric nuclear matter. Obviously, the presented phase diagram depends

on the somewhat arbitrary distinction between light and heavy nuclei by the proton

number Z ≤ 5. For example for T ≥ 10 MeV, the heavy nuclei have actually only very

low mass and charge numbers. The appearance of these intermediate nuclei leads to the

broad extension of XA at high temperatures in Fig. 8.6. Nevertheless, if one takes the

peculiarities of the different models into account, there is a qualitative agreement with

the phase diagrams of e.g. Refs. [LD91b, STOS98b, MS95].

Fig. 8.7 shows again the phase diagram, but this time in the Yp − nB plane for

some selected temperatures. Contour lines for a mass fraction of 0.5 are shown by the

thick lines. With this criterion the dominant phase can directly be identified. For all

temperatures, nucleons are the most abundant component for proton fractions below

∼ 0.1. In this case there are only few protons in the system and thus only a small

amount of nuclear clusters can form. For larger Yp the phase diagrams show a strong

temperature dependence. At the lowest temperature T = 0.1 MeV, as expected, the

heavy nuclei fill the rest of the Yp − nB plane up to ∼ 1/2 n0
B where uniform nuclear

matter is reached. At a temperature of 0.5 MeV a small region in the upper left corner

appears which is dominated by light clusters. At such low densities the heavy nuclei

are dissolved into lighter clusters, and as these light clusters are mainly α-particles (see

Fig. 8.17) because of their relatively strong binding, this happens only at very large

proton fractions of ∼ 0.5. At a temperature of 1 MeV this light cluster region is shifted

to higher densities. Again, the light clusters are mainly α-particles which explains their

favorable appearance around Yp ∼ 0.5. At the lowest densities even the light clusters

are dissolved into free nucleons. At densities larger than 10−6 − 10−5 fm−3 the heavy

nuclei dominate until uniform nuclear matter is reached. For T = 5 and 10 MeV light

and heavy nuclei appear only in a very narrow density band between 10−3 and 0.1 fm−3.
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The region dominated by heavy nuclei shrinks with increasing temperature. For T = 20

MeV the mass fraction of light and heavy nuclei never exceed 0.5.

In Fig. 8.7 also the transition to uniform nuclear matter is illustrated. The dots show

the density-grid-points of the calculation which are based on the Maxwell-construction,

as explained earlier. We find that with increasing temperature the mixed phase region

becomes smaller. It even disappears completely for very low Yp and temperatures ≥ 5

MeV, because then the mixture of nuclei and nucleons behaves almost like uniform nu-

clear matter. Due to the same reason the transition is shifted to larger densities. For

T ≤ 5 MeV, where many heavy nuclei exist, the mixed phase becomes most extended at

low Yp ∼ 0.2. On the contrary, at larger Yp the Maxwell transition region becomes nar-

rower. This shows that the Maxwell construction is necessary because of the description

of the heavy nuclei as unchangeable particles.

The independence of the phase diagram on the density at T = 0.1 MeV is further

analyzed in Fig. 8.8. There the mass fraction of heavy nuclei is shown as a function

of density for various proton fractions. For such low temperatures the mass fraction of

heavy nuclei is almost constant throughout all densities. This can be explained in the

following way: For all shown values of Yp free protons are never present and therefore all

the protons are concentrated in nuclei. For proton fractions Yp ≥ 0.3 the system consists

almost only of heavy nuclei. Even though the neutron chemical potential increases slowly

with density, the neutron drip (µn = mn) is never reached and as the temperature is

low the free neutron density remains vanishingly small. There will be a critical Y drip
p ,
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diamonds).

below which the neutron drip occurs, with Y drip
p ∼ 0.31 in our calculations. For proton

fractions below this critical value a dilute free neutron gas with µn ≃ 0 appears, which

leads to the drastic reduction of XA. Under the condition µn ≃ 0 exclusively such nuclei

are being populated, whose two-neutron separation energy are close to zero, which means

that they are neutron drip nuclei. Fig. 8.9 shows the charge to mass ratio of nuclei which

lie on the drip line and of those whose two-neutron separation energy is negative. They

all have Z/A ∼ 0.3. As no free protons are present, the mass fraction of heavy nuclei

is directly determined by the total proton fraction, XA ∼ Yp/0.3 for Yp < 0.31, and is

independent of density, which is in good agreement with the results of Fig. 8.8.

For higher temperatures the composition changes significantly. Depending on the

actual values of temperature, density and proton fraction, free protons, free neutrons

and light and heavy nuclei appear in different concentrations. Fig. 8.10 demonstrates

that for temperatures of T = 1 MeV and densities up to nB ∼ 10−8 fm−3 mainly only

free nucleons are present. At larger densities the protons cluster together to form light

nuclei and thus the free proton density vanishes. The light clusters tend to be symmetric

and thus the fraction of the free neutrons is reduced by the same value as the one for

protons. Due to the same reason, the maximum mass fraction of the light nuclei is

roughly twice the proton fraction. At densities larger than 10−6 fm−3 heavy nuclei

appear and replace the lighter nuclei. With increasing density the nuclei grow in size

and become more asymmetric so that more neutrons are bound in nuclei. The fraction

of heavy nuclei increases further and becomes close to 1 for large proton fractions. As

there are no nuclei with Z/A < 0.1 in the mass table, some free neutrons have to remain
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Figure 8.11: The average mass and proton numbers < A > and < Z > of heavy nuclei with
Z ≥ 6.

for Yp = 0.1. The stepwise change of the fractions which can be seen for Yp = 0.1

and 0.3 can be attributed to transitions between different nuclei which give the main

contribution to the composition.

At a temperature of T = 5 MeV the free nucleon regime extends up to nB ∼ 10−4

fm−3. At larger densities the nucleons are successively replaced by light nuclei. For

larger proton fractions there are sufficiently many protons in the system that finally

all the nucleons can be bound to nuclei. Only in these cases a significant contribution

of the heavy nuclei appears, shortly before uniform nuclear matter is reached. At a

temperature of 10 MeV the overall composition looks similar. The onset of the light

nuclei takes place at roughly the same density, but their presence extends up to higher

densities. For T = 10 MeV heavy nuclei play only a minor role. Only for large Yp heavy

nuclei appear at all, and then only at densities slightly below the transition to uniform

nuclear matter.

The chemical composition regarding the average mass and proton number of heavy

nuclei is further analyzed in Fig. 8.11. Temperatures and densities are shown for which
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their mass fraction is large (see Figs. 8.8 and 8.10). The first thing to note is the stepwise

increase of < A > and < Z > for T = 0.1 and 1 MeV, which was already seen in Fig. 8.5

before. For such small temperatures the distributions of nuclei are narrow and < A >

and < Z > are mainly given by one single nucleus. This causes also the steps in the

mass fractions observed in Fig. 8.10 for T = 1 MeV. Shells effects are strong, as it comes

out that most of these nuclei have neutron magic numbers 28, 50, 82, 126 or 184. This

is in strong contrast to models which are based on the Thomas-Fermi approximation

[STOS98a, STOS98b] or a liquid-drop parameterization [LD91b], which are not able

to reproduce any shell effects. In these models the mass and charge number change

continuously. By looking at the different values of Yp shown in Fig. 8.11, we find that

the largest nuclei appear for Yp = 0.3. For T = 0.1 and 1 MeV a similar composition is

found, differences appear only at low densities. For T = 5 MeV and densities below 10−2

fm−3, where almost no heavy nuclei exist, the average heavy nucleus is 8C, because it is

the lightest nucleus with Z = 6. At larger densities, when the fraction of heavy nuclei

increases, the nuclei grow in size. For this large temperature we observe a continuous

change of the mass and charge number, indicating less pronounced shell effects and broad

distributions.

In the present work the shell structure of nuclei is not modified by the medium.

The results of Ref. [BMG07] show that the impact of the dense electron gas on nuclear

properties is rather small. To estimate the role of free nucleons outside of the nuclei,

their local number density n′
nuc = n′

p + n′
n is depicted in Fig. 8.12. Only for Yp = 0.1

or at a temperature of 5 MeV the free nucleon density exceeds 0.01n0
B. In the latter

case heavy nuclei are only abundant between 10−2 fm−3 < nB < 10−1 fm−3. At larger

temperatures the free nucleon density increases further, but then the heavy nuclei only

play a minor role, see Fig. 8.10. At lower temperatures, more heavy nuclei exist in a

broader range of density. But then the nucleon density is only significantly large, if the

proton fraction is very low. In typical supernova simulations the proton fraction for most

of the matter is actually rather high, 0.3 < Yp, supporting the neglect of the medium

modifications of the nuclei due to the unbound nucleons.

Fig. 8.13 depicts the distributions of nuclei with respect to the mass number A. Here

we are showing relative yields YA =
∑

Z nA,Z/
∑

A,Z nA,Z . At a temperature of 0.1 MeV

the distributions are sharply peaked. We note that the distributions at nB = 10−3 fm−3

and 5× 10−3 fm−3 lie on top of each other for this temperature. The mean value < A >

of the heavy nuclei with Z ≥ 6 coincides with the peak of the distribution. In this case

the single nucleus approximation should give almost identical results compared to the

NSE description. In Fig. 8.14, which shows the neutron number distribution, one can

see that the dominant nuclei at T = 0.1 MeV have the neutron magic numbers 126 or
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184. At nB = 5×10−2 fm−3 the dominant nucleus is already at the border of the nuclear

mass table and therefore no neutron magic number can be identified. At T = 1 MeV

temperature effects become visible and the distributions broaden. The magic nuclei

mentioned before (N = 126 and 184) are still strongly populated, but additional peaks

appear. E.g. for nB = 10−3 fm−3 the strong peaks can be identified with the neutron

magic numbers 50, 82 and 126. Nuclei with N = 40 also seem to be rather strongly

bound in the model TMA. In general most of the peaks in the mass distributions can

be assigned to neutron magic numbers. As was already found in Ref. [RHS06] for the

outer crust of neutron stars, proton magic numbers do not play a significant role. The

proton number determines the Coulomb energy of the nuclei. Thus the charge of the

nuclei can not be adjusted as freely as their neutron number. Although for T = 1

MeV the distributions are still sharply peaked, because several peaks with similar yields

appear, it would not be appropriate to use the mean values to describe the charge and

mass distributions. E.g. at nB = 10−2 fm−3 the distribution shows two similar maxima,

with the mean value < A > lying in between. Compared to statistical models which

are based on a liquid-drop formulation without shell corrections the typical Gaussian

distributions are not found in the present work because the distributions are dominated

by shell effects. In Ref. [BM08] a shell correction was included which resulted in a similar

delta-function like distribution. At a temperature of 5 MeV, which is larger than the

typical energy associated with shell effects, the neutron magic numbers are still visible,

but much weaker. At large densities the distributions become very broad and extend over

the whole nuclear chart. With increasing density the typical behavior expected at the

liquid-gas phase transition line, compare with Fig. 2.5, can be identified, as it was also

discussed in Ref. [BM08]. For nB = 10−3 fm−3 the distribution is an exponential. With

increasing densities it changes to a flattening power-law. Finally at nB = 5× 10−2 fm−3

the distribution has the typical U-shaped form. For T = 10 MeV mainly light clusters

are populated and the distributions are exponential. Only for the largest density which

is shown, the U-shaped distribution is reached. This is again an indication for the onset

of the liquid-gas phase transition. At this large temperature shell effects are almost not

visible any more.

In Figure 8.15 we see the distribution of all nuclei in form of a chart of nuclides,

for conditions which have also been shown in the two plots before. The color coding of

the mass fraction gives a more qualitative overview of the entire distribution in proton

and mass number. As we are in the neutron drip region, there is a strong neutron

contribution, but the light nuclei are almost negligible for this low temperature. The

neutron magic numbers N = 82 and 126 can be clearly identified, and the distribution

drops of sharply for nuclei which have a proton fraction which is much different from
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Figure 8.17: The mass fractions of all light nuclei with Z ≤ 5 Xa (black solid lines), of alpha-
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Also shown is the alpha particle fraction of the EOSs of Shen et al. [STOS98a,
STOS98b] (blue dashed lines) and of Lattimer and Swesty (LS) [LD91b] (red
dashed lines).

0.3. In Figure 8.16 the density and temperature have been increased. The distribution

becomes very broad and extends over the entire nuclear chart. Shell effects are almost

not visible any more. In addition to the heavy and superheavy nuclei, there is still a big

contribution of neutrons and light asymmetric nuclei.

The contribution of the light clusters is further analyzed in Fig. 8.17 and compared

to the results of the LS and the Shen EOSs. At a temperature T = 1 MeV the light

clusters are mainly α-particles in the region where they appear in large fractions. The

three different models give very similar results for the alpha particle fraction, which

thus coincides with the total light cluster fraction. With increasing temperature lighter

particles are favored, leading to an increase of the deuteron fraction and a reduction

of the α-particles. It is interesting to see, that for low densities the α-particle fraction

is still very similar in the three models, even though in the NSE model the deuterons

are more abundant. We can conclude that the formation of deuterons occurs through a

reduction of unbound protons. For T = 10 MeV the deuteron mass fraction surmounts
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the α-particle mass fraction at almost all densities. For T = 5 and 10 MeV and densities

below 10−4 fm−3 the light clusters are almost exclusively deuterons, but at these densities

the light cluster fraction is relatively small, Xa < 0.01. For the same temperatures

but larger densities from nB = 10−4 fm−3 to saturation density not only alphas and

deuterons are important, but rather the whole distribution of light nuclei. Then also

notable differences of the alpha-particle fraction in the NSE model are observed.

The average mass and charge number of the light clusters are depicted in Fig. 8.18.

Note that for T = 1 MeV the light nuclei fraction is actually small for the density range

which is shown in Fig. 8.18. For symmetric matter at T = 1 MeV, the average light

cluster is well represented by 4He. For Yp = 0.3, above 10−4 fm−3 the average mass

< a > and charge < z > are in general smaller. Close to the transition to uniform

nuclear matter very neutron-rich hydrogen isotopes are formed. The contribution of

light, very asymmetric nuclei which form inside the free neutron gas for Yp = 0.1 leads

to the second increase of the light cluster fraction seen in Fig. 8.17 for T = 1 MeV and

Yp = 0.1. For T = 5 the light clusters are mainly deuterons at low densities. At larger

densities, < a > and < z > again behave differently for different Yp. For Yp = 0.1

predominantly light clusters with low charge Z = 1 appear. With increasing density

these hydrogen-isotopes become heavier and more asymmetric, with < z > / < a >∼ 0.2

before matter becomes uniform nuclear matter. With increasing Yp clusters with a higher

charge are populated which are more isospin-symmetric. Thus with increasing density,

the mass does not increase as much as for low Yp. The average mass and charge number

for T = 10 MeV look similar as for 5 MeV, but the distributions are shifted to higher

densities. Only above 10−3 fm−3 the deuterons are replaced by heavier particles. Again,

the clusters become more symmetric and have larger proton numbers but lower mass

when the proton fraction increases.

8.3.2 Equation of State

The thermodynamic potential for given (T, nB, Yp) is the Helmholtz free energy and

all other thermodynamic quantities are derived from it. In Fig. 8.19 the total free

energy density (including baryons, electrons/positrons and photons) is depicted. As

the electron, positron and photon contribution is trivial, we also show the baryonic

part of the free energy. We compare it to the results of LS [LD91b] and Shen et

al. [STOS98a, STOS98b]. We do not use the routine of the LS EOS but their table

for the potential model SkM* [BQB+82], which is publicly available online. For the

LS EOS the temperature of 10.67 MeV is shown, because no entry for T = 10 MeV

exists in the chosen table and we do not want to use any interpolation here. We note
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that the Shen EOS has a higher incompressibility, K =281 MeV, and symmetry energy,

asym = 36.9 MeV, than the LS EOS, which has K =217 MeV and asym = 31.4 MeV.

Thus the Shen EOS represents a stiffer EOS with a higher maximum mass for a cold

deleptonized neutron star, Mmax = 2.2 M⊙ [STOS98a], than the LS EOS, Mmax = 1.62

M⊙ [SR07].

It is important that the three different models are based on very different model

assumption for the description of non-uniform nuclear matter, as described in the in-

troduction. Furthermore, they use different models for the nuclear interactions with

different nuclear matter properties (e.g. saturation density, compressibility, symmetry

energy). For the shown temperatures and proton fractions, up to densities of ∼ 10−4

fm−3 the free energies of the three models are almost identical. Above saturation density

the different properties of uniform nuclear matter become visible. The RMF model TMA

used in the statistical model is more similar to the Shen EOS, which is also based on

a RMF model, but on the different parameterization TM1. In the intermediate density

range the differences in Fig. 8.19 are small and of similar size as the differences between

the EOSs of LS and Shen. It is a surprising result that the present, ‘non-microscopic’

model is able to give a reasonable description regarding the equation of state across all

densities.

One certain feature of the NSE description can be observed at large temperatures,

e.g. at T = 5 MeV: Although the free energy of uniform nuclear matter is rather large,

the free energy is lower than in both of the two single nucleus approximation-models at

10−3 fm−3 < nB < 10−2 fm−3. As can be seen in Fig. 8.13 the distributions develop

from a steep exponential to a very flat power-law shape in this density region. At

the beginning of this transition the light clusters become very abundant, see Fig. 8.17.

Besides a large fraction of α-particles and deuterons all of the light clusters contribute

to the composition. Later we will give further evidence that it is the contribution of

light clusters in the NSE model which leads to the reduction of the free energy as seen

in Fig. 8.19. In the other two EOSs only α-particles are considered and this behavior

can not be observed. However, as was shown in Fig. 8.12, the free nucleon density

is rather large under these conditions, so that medium effects could lead to changes

in the composition. We will address this aspect further in Subsection 8.6. For a low

temperature of 1 MeV there are no systematic differences between the three different

models. As can be seen from Fig. 8.17 here the light clusters are very well described

by α-particles, which are included in all three models. At T = 10 MeV the differences

of the different models are in general more pronounced. The lowered free energy of the

statistical model is still present, but shifted to slightly larger densities ∼ 10−2 fm−3.
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Figure 8.20: As Fig. 8.19, but now for the entropy per baryon.

At densities larger than ∼ 10−2 fm−3 the statistical model has a higher free energy

than the other two models. Here the nuclear mass table and the description of the

transition to uniform nuclear matter is too restrictive, as the nuclei can not grow arbi-

trary in size and are limited in Z/A. The kinks in the baryonic contribution which are

visible around ∼ 10−1 fm−3 come from the Maxwell-construction which is used here. A

Gibbs-construction in which the requirement of local proton fraction conservation would

be replaced by global conservation of the proton fraction (as discussed in Sec. 8.2.6)

would lead to a more continuous transition with an earlier onset of the uniform nuclear

matter phase and a lower free energy. At large temperatures T ≥ 10 MeV and very low

Yp the transition is smoother, as expected from the discussion of Fig. 8.7, because in

this case the contribution of nuclei is low and the non-uniform matter phase behaves

very similar to uniform nuclear matter. In contrast, for Yp = 0.5 and T = 1 MeV the

kink in the baryonic free energy becomes most strongly pronounced. However, these

kinks disappear in the total free energy per baryon, when the electrons are added to the

baryons. The total free energy and its first derivatives behave continuously, as discussed

before and as we will also show in the following.



166 A Statistical Model for a Complete Supernova EOS

Fig. 8.20 depicts the entropy per baryon. All models give very similar results for

T = 1 MeV. The bump around nB = 10−6 fm−3 which is most dominant at Yp = 0.3 arises

when the large light cluster contribution (mostly alphas) is replaced by heavy nuclei.

There the LS EOS shows a rather abrupt change in the entropy. At larger temperatures,

the entropy behaves almost like the one of an ideal gas with s/nB ∝ −ln(nB) + const..

Only above nB ∼ 10−4 fm−3 deviations from the ideal gas behavior appear, when light

clusters are formed.

For higher temperatures at densities around ∼ 5 × 10−3 fm−3 for T = 5 MeV and

∼ 5 × 10−2 fm−3 for T = 10 MeV the entropy is significantly higher in the statistical

model. As noted before, the whole distribution of light and intermediate clusters is

important here and leads to the increased entropy. This increased number of available

states is the reason for the lower free energy discussed before.

For comparison also the total entropy is shown in Fig. 8.20. No discontinuities are

observed, as expected. The total entropy enables to identify the regions where the

nontrivial baryonic contribution is important at all. It is shown only for the statistical

model, because the leptons and photons are treated identical in all three models. At

densities below 10−7 fm−3 for T = 1 MeV, 10−5 fm−3 for T = 5 MeV, and 10−4 fm−3 for

T = 10 MeV, the electron-positron plasma determines the entropy almost completely.

But at larger densities it is the baryon contribution which gives the largest contribution

to the entropy, and electrons, positrons and photons are negligible. In this density range

the different descriptions of the different models become important. Thus we conclude

that regarding the entropy the different results for the baryonic EOS also affect the total

EOS.

Fig. 8.21 shows the binding energy per baryon, which is directly given by the entropy

and the free energy (ǫ = f + Ts). In the third column of Fig. 8.21 the energy density

of the LS EOS is higher at low densities, because it is shown for the slightly larger

temperature of 10.67 MeV, as mentioned before. At lowest densities the ideal gas limit

ǫ = 3/2nBT is reached in all three models. At T = 1 MeV the fraction of heavy

nuclei becomes already important above nB ∼ 10−8 fm−3. Their binding energy leads

to a decrease of the baryonic energy density. At T = 5 and T = 10 MeV the nuclear

interactions become visible above nB ∼ 10−4 fm−3. In general, the maximum binding

energy is achieved close to saturation density.

In the NSE model, around 10−2 fm−3 for T = 5 MeV, the slightly lower free energy

is more than compensated by the increased entropy and therefore the energy density

becomes larger than in the other two EOSs at these densities. The apparent differences

are even more significant than for the free energy and the entropy, because in the ex-
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Figure 8.21: As Fig. 8.19, but now for the binding energy per baryon.
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pression for the energy density, ǫ = f +Ts, the difference in the entropy is multiplied by

the temperature. For T = 10 MeV and densities between 10−3 and 10−2 fm−3 the energy

density is decreased by roughly 2 MeV in the NSE model. By comparing with Fig. 8.17

one sees that the deuterons and some other light cluster give a strong contribution to

the composition and lead to additional binding. Above 10−2 fm−3 the same increase of

the energy density as for T = 5 MeV is observed, but is less pronounced.

As can be seen from Fig. 8.21 the baryons are most important for the total energy

density at intermediate and very large densities. Again, at low densities, because of the

high temperatures, the electron-positron-plasma gives the largest contribution. At larger

densities where the positrons have vanished the electrons become degenerate and their

energy density rises faster than the one of the attractive nuclear interactions. Obviously,

the number density of electrons and their energy density directly depends on the proton

fraction Yp. Thus the baryonic contribution becomes more significant for low Yp. Above

saturation density the nuclear interactions become strongly repulsive and take over to

dominate the energy density. The bumps in the nuclear binding energy which appear

below saturation density can still be identified in the total energy density.

In Fig. 8.22 the baryonic contribution to the pressure is depicted. It is divided by the

baryon density and the temperature is subtracted to see the deviations from the ideal gas

pressure more clearly. Presented in this way, the differences of the three different models

become very pronounced. The onset of the nuclear interactions appears similarly as in

the case for the energy density. At T = 1 MeV and high proton fractions an increasing

fraction of nucleons is bound to heavy nuclei, which grow in size with density, leading

to a decreasing pressure. For larger temperatures nuclei become important only at

larger densities. The baryonic contribution to the total pressure is important in the

same density range as discussed for the energy density. Though the baryonic pressure is

negative in many cases, the total pressure is always positive.

At T = 1 MeV and around nB = 10−1 fm−3 the pressure increases. Here, matter

consists almost exclusively of heavy nuclei. Now the densities are so large that the

excluded volume effects significantly increase the pressure of the nuclei, see Eq. (8.39).

At even higher densities the “repulsive” excluded volume corrections become so strong,

that the transition to uniform nuclear matter takes place. The drop in the pressure

(most clearly seen for Yp = 0.5) arises from the Maxwell construction. In the two other

EOSs the transition to uniform nuclear matter is described very differently, and thus the

behavior of the baryonic pressure is different, too.

The baryonic part of the total pressure is depicted in Fig. 8.23. Here, the pressure

is not divided by the baryon density, as done in Fig. 8.22. Now one sees that the
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Figure 8.22: As Fig. 8.19, but now for the pressure divided by the baryon density and with
the temperature subtracted, to show the deviations from the ideal gas pressure
more clearly.
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Figure 8.23: As Fig. 8.19, but now for the pressure.
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Figure 8.24: As Fig. 8.19, but now for the neutron chemical potential with respect to the
neutron rest mass.

total pressure remains constant during the Maxwell transition. This appears as a sharp

pressure drop across the transition if not the pressure but P/nB−T is plotted. The use

of a Gibbs-construction with non-locally fixed Yp would result in a strictly increasing

pressure.

The neutron chemical potential is shown in Fig. 8.24, the proton chemical potential

in Fig. 8.25. At T = 1 MeV the non-monotonic behavior of the chemical potentials

of the NSE model is striking. It comes from the rather discontinuous change in the

mass and charge number of the heavy nuclei, as temperature effects are weak, see also

Figs. 8.11 and 8.13. Besides this, similar results are found as for the other thermody-

namic variables. For T = 5 MeV around nB ∼ 10−3 fm−3 the chemical potentials are

lower, especially the proton chemical potential at low Yp. We attribute this to the strong

contribution of the light clusters besides alphas. At T = 10 MeV this effect happens at

nB ∼ 10−2 fm−3. At larger densities the excluded volume effects become important and

lead to increased chemical potentials until the phase transition sets in. Here the Maxwell

construction is visible as a rather sharp drop in the chemical potentials, especially pro-

nounced for the proton chemical potential. In our mixed phase construction, only the
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Figure 8.25: As Fig. 8.19, but now for the proton chemical potential with respect to the
proton rest mass.
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Figure 8.26: The baryonic contribution to the free energy, entropy and energy per baryon as
a function of nB for T = 5 MeV and Yp = 0.3. “NSEα” shows the results if
all light clusters with A < 20 besides α-particles are taken out from the NSE
calculation.

total baryon chemical potential for locally fixed Yp and local electric charge neutrality,

µB = (1−Yp)µn+Yp(µp+µe), is equal in the two phases and remains constant across the

transition, see Chapter 7. The drop of µn and µp across the transition is compensated

by the quickly increasing electron chemical potential µe.

To address the origin of the found deviations of the NSE model from the LS and Shen

EOS further, the equation of state is shown if all nuclei with A < 20 besides nucleons

and alphas are taken out in Fig. 8.26. Now one sees that most of the additional entropy

and energy density can indeed be attributed to the light clusters. The decrease of the

free energy compared to the other two EOSs between nB = 10−3 fm−3 and nB = 10−2

fm−3 is not visible any more. The increase of the free energy before the transition to
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uniform nuclear matter still remains, as it is caused by different reasons (limitation of

A and Z/A because of the use of a mass table). Anyhow, by looking at the energy

density and the entropy in Fig. 8.26 one observes that some smaller deviations around

nB ∼ 3× 10−3 fm−3 remain. The remaining differences are much less pronounced.
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8.4 Comparison with the Statistical

Multifragmentation Model

The Statistical Multifragmentation Model (SMM) was mainly developed to interpret ex-

perimental data on multiple fragment production in different nuclear reactions [BBI+95]

and is one of the most established models for this part of nuclear research. Furthermore

it is also applied in the context of core-collapse supernovae [BM04, BM05, Mis08, BM08].

In this section we want to compare our results with the SMM model.

The SMM model uses the following liquid-drop parameterization of the nuclear

masses for nuclei with A > 4:

FAZ(T, ρ) = FB
AZ + F S

AZ + F sym
AZ + FC

AZ , (8.58)

where the different terms denote the bulk, surface, symmetry and Coulomb energies.

The first three terms are taken in the following form

FB
AZ(T ) =

(

−w0 −
T 2

ε0

)

A , (8.59)

F S
AZ(T ) = β0

(

T 2
c − T

2

T 2
c + T 2

)5/4

A2/3 , (8.60)

F sym
AZ = γ

(A− 2Z)2

A
, (8.61)

where w0 = 16 MeV, ε0 = 16 MeV, β0 = 18 MeV, Tc = 18 MeV and γ = 25 MeV are the

model parameters which are extracted from nuclear phenomenology and provide a good

description of multifragmentation data. The Coulomb energy is taken in a similar form

as Eq. (8.6). Nuclear excited states are not taken into account explicitly. Instead there

is a temperature dependent part of the nuclear binding energies, with a separate volume

and surface contribution. Shell effects are not included, but in fact they are expected

to be weak at the large temperatures for which this model is designed for. One of the

purposes of the SMM is that it allows to include arbitrary heavy nuclei and that it is

easy to modify to explore certain aspects of the nuclear interactions. In the SMM nuclei

are treated as an ideal Maxwell-Boltzmann gas. It also contains an excluded volume

correction, which is equivalent to our formulation at low densities.

As a first comparison we chose in Fig. 8.27 a rather low density of 10−6n0
B at Yp =

0.4 and T = 1 MeV. Under these conditions, the main contribution is coming from

nucleons and alpha particles, and the two models give similar results. In the SMM

only for deuterons, helions, tritons and alphas the experimental binding energies are
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Figure 8.27: Comparison of the excluded volume NSE model with the SMM model [BBI+95,
BM04, BM05, Mis08, BM08] at T = 1 MeV, Yp = 0.4 and nB = 10−6n0

B. The
upper left panel shows the summed yields of nuclei with mass number A, the
upper right of nuclei with charge number Z. The lower four panels show the
isotope distributions of 6C, 14Si, 20Ca, and 26Fe.



A Statistical Model for a Complete Supernova EOS 177

4

5

6

7

8

9

10

B
E

(C
a)

[M
eV

]

30 35 40 45 50 55 60 65 70 75

A

...
..............

SMM
SMM, T=1 MeV
SMM, T=1 MeV, ne=10-4 fm-3

TMA. AWT

Figure 8.28: The binding energy per nucleon of calcium isotopes. Blue squares show the
liquid drop formula of the SMM model of Ref. [BM08] at T = 0 and without
electron background, violet squares at T = 1 MeV and red squares if an electron
background is assumed in addition. Black crosses show the results of the theo-
retical mass table of Ref. [GTM05] and black circles the experimental measured
values of Ref. [AWT03].

considered, for all other nuclei the mass formula is used. We find that the fractions of

the aforementioned nuclei agree very well and differences appear only for the more heavy

nuclei.

The mass formula which is used in the SMM is a continuous function of A and Z

because the pairing energy is not included. The even-odd staggering which is observed

in the mass number distribution comes from the fact, that the nuclei have discrete

mass and charge numbers, and that only nuclei with an even number of nucleons can

be symmetric. In contrast, if the nuclei are shown as a function of Z this staggering

disappears, because for each Z there is a symmetric nucleus. In the ExV NSE model

the scattering is larger, because the used binding energies are based on nuclear structure

calculations or experimental measurements. Thus pairing and shell effects are taken into

account.

One observes a faster decline of the mass and charge distribution in the ExV NSE

model. The distribution looks very much like an exponential, whereas the SMM con-

tains a small broader power-law-like contribution. This is also visible in the isotope

distributions. For low charge, the magnitude of the yields are similar, whereas a strong

reduction of the more heavy isotopes is seen in the ExV NSE model.
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To understand the isotope distributions and the differences of the two models we

first want to discuss the binding energies further. For each element there is a most

stable isotope. The symmetry energy shows a quadratic behavior in 2Z/A with the

minimum for Z = N . The Coulomb and surface energy however both decrease with

A, thus the most stable nucleus shifts to more asymmetric nuclei. This effect becomes

more and more important for the heavier nuclei, due to the increasing Coulomb energy.

Figure 8.28 shows the binding energies of calcium isotopes calculated with the SMM

mass formula of Eq. (8.58). In this model 44Ca is the nucleus with the largest binding

energy. As a function of mass number, the binding energy behaves very asymmetric.

This is on the one hand due to the increasing contribution of the surface and Coulomb

energy towards low A, but on the other hand caused by the symmetry energy. The

symmetry energy per nucleon behaves quadratically around N = Z only as a function

of Z/A. For a constant Z thus the parabola is squeezed by a factor 1/A, leading to a

linear decrease of the binding energy for A > 2Z.

However, if we look at the isotope distributions in Fig. 8.27, we see that only nuclei

close to the most stable nucleus are being populated. Very asymmetric nuclei do not

appear. Thus mainly the quadratic behavior of the binding energy is probed, and the

isotope distributions are in most cases very close to Gaussians. However, the ExV NSE

model includes shell effects and pairing and thus the binding energies are in general no

monotonous functions of A and Z. This can e.g. seen by the increase of the yield of 12C.

As another example, the yields of nuclei from 40Ca to 46Ca are all very similar because

the experimentally measured binding energies are almost constant between A = 40 and

46. For A = 40 the neutron and proton magic shell are filled. The neutrons which are

added in addition only give a slight increase of the binding energy. This effect of the

shell closures then manifests itself also in the yields and the distribution becomes flat

instead of a Gaussian.

Figure 8.28 shows also the temperature and density dependence of the SMM mass

formula. The temperature enters the volume term of the binding energy quadratically,

i.e. in the way of a Fermi gas. The surface energy is also temperature dependent and

is constructed in such away, that the surface energy vanishes for T = 18 MeV, so that

nuclei will disappear for larger temperatures. However, at T = 1 MeV the volume effect

is more important and leads to a shift of the binding energies of 63 keV. The inclusion

of the electron screening of the Coulomb energy has a stronger effect on the binding

energy, even though calcium is a rather small nucleus. For larger nuclei it has the effect

of stabilizing highly charged nuclei, thus nuclei become less asymmetric. However, at

the presented temperature and density none of the effects lead to a significant different

functional behavior of the binding energy.
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Figure 8.29: As Fig. 8.27, but for nB = 3.2× 10−6n0
B .
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Figure 8.29 gives the distributions for the same conditions, apart from a slightly

increased density. In both models the yields of more heavy nuclei are increased on

expense of the light clusters and nucleons. The change from exponential to power-law-

like and finally u-shaped distributions which we observe here is usually interpreted as a

consequence of the crossing of the liquid-gas phase transition line. The SMM still tends

to larger nuclei, and has a maximum around A = 40. Contrary, some of the intermediate

nuclei are enhanced by several orders of magnitude in the ExV NSE model. The use of

experimental binding energies leads to an increase of 12C, 8Be and nuclei with A = 5

among others. Furthermore, in the ExV NSE model the distributions show a very non-

monotonic behavior due to shell effects. Two maxima around A 30 and A 50 appear.

Also in the isotope distribution of the four selected elements one can see, that the

fraction of heavy nuclei is increased compared to Fig. 8.29. The distributions of Si and

Fe have a similar gaussian shape in the two models. The enhanced binding energy of
12C and the plateau of the calcium isotopes are still visible. We note that even though

the mass and charge distributions look very different, there is no systematic shift of the

isotope distributions.

In Figure 8.30 the density is further increased. Now the typical u-shaped distribution

around the minimum at A = 10 to 20 is clearly visible. The overall shape of the mass

and charge distribution is now rather similar in the two models. However, the increased

yields of intermediate mass elements and shell effects in the ExV NSE remain as major

differences. The overall magnitudes of the isotope distributions are indeed very close to

each other. In detail one finds that the ExV NSE develops a slightly increased tail of

very neutron-rich isotopes.

In Figure 8.31 the density is increased further by two orders of magnitude. The free

nucleon and light cluster yields have decreased by at least two orders of magnitude, and

approximately only a fraction of 1% of free nucleons (almost only neutrons) remains.

At the same the yields have been shifted to larger nuclei, giving an increased mass

fraction of the heavy nuclei. Due to the negligible role of light clusters, where the

largest differences had been observed before, now the two mass and charge distribution

are even more similar. The differences could be interpreted as shell effects in the ExV

NSE model on top of the continuous mass and charge distribution of the SMM. Also

regarding the isotope distributions, the two models give similar predictions. Besides

small changes for single nuclei the distributions look a bit broader in the ExV NSE

model.

In Figure 8.32 the effect of the total proton fraction is studied. The lowering of Yp

to 0.2 has an interesting effect on the distributions. As was discussed in the analysis of
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Figure 8.30: As Fig. 8.27, but for nB = 10−5n0
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Figure 8.31: As Fig. 8.27, but for nB = 10−3n0
B and with a rescaled axis.
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Figure 8.32: As Fig. 8.27, but for a reduced proton fraction Yp = 0.2.
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Fig. 8.8, in the ExV NSE model there is a critical proton fraction of Y crit
p = 0.3 below

which the neutron drip occurs. From this point of view, Fig. 8.32 shows a different

physical situation then the previous graphs. There is a huge portion of free neutrons,

Yn = 0.430 in the ExV NSE and Yn = 0.443 in the SMM model. In the ExV NSE

could the excluded volume corrections disfavor large nuclei for large nucleon pressures,

see Eq. (8.48). This could explain the shift to smaller mass numbers. The remaining

protons and neutrons are bound in heavy nuclei. The average charge to average mass

ratio of nuclei is thus < Z > / < A >= Y tot
p /(1−Yn) which gives 0.351 in the ExV NSE

and 0.359 in the SMM model. The different neutron densities in the two models lead to

slightly more symmetric nuclei in the SMM model.

In the isotope distributions now some significant differences appear. For carbon the

isotope distribution increases towards the most asymmetric isotopes. The maxima of the

distribution of the other elements are shifted to heavier nuclei by ∼ 10 in mass number.

It is interesting to see, that the distribution of calcium drops from 60Ca to both sides

exponentially. It is not completely clear where these effects come from. They could

be connected to a larger baryo-chemical potential in the ExV NSE. In addition to the

different implementation of excluded volume effects, in the SMM Fermi-Dirac statistics

and the degeneracy of the nucleons are not taken into account. Also the form of the

symmetry energy or the interactions of the nucleons could play a role.

In Figure 8.33 the same proton fraction as in Figs. 8.27 – 8.31 is shown. The density

is the same as in Fig. 8.31, but this time the temperature is raised to 2 MeV. In general

we find, that increasing the temperature has a similar effect as lowering the density.

The shape of the distribution resembles a bit the situation shown in Fig. 8.29. Light

clusters dominate, but the u-shaped dip starts to develop and there is already a small

contribution of the heavy nuclei. This time the ExV-NSE model extends to larger values

of Z and A. This could be an indication of the different description of temperature effects

in the two models, which we will discuss in more detail later. As already found before,

the ExV NSE gives an increased fraction of some of the intermediate nuclei. Compared

to Fig. 8.31 the shell effects in the mass distribution are much less pronounced and

almost not visible in the charge distribution any more.

The isotope distributions of the two models again look similar. The fraction of

Carbon isotopes is increased, whereas Calcium is decreased, even though the latter is

a magic nucleus. The shown isotope distributions are broader in the ExV NSE model

than in the SMM.

In conclusion we found a good agreement of the two models. The main differences

come from the shell effects in the ExV NSE which lead to peaks on top of the smooth
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Figure 8.33: As Fig. 8.27, but for nB = 10−3n0
B and T = 2 MeV.
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distributions found in the SMM. In the transition region from light to heavy clusters, the

two models give different predictions, because the composition is dominated by light and

intermediate nuclei, for which the liquid drop formulation of the binding energy shows

larger differences to the experimental data. Only for the light clusters with A ≤ 4 experi-

mentally measured masses are included in the SMM. Regarding the isotope distributions,

the experimental values lead to deviations from the typical gaussian distributions. Inter-

estingly, we only find significant systematic differences when the neutron drip is reached,

i.e. the chemical potential of the nucleons becomes positive. Possible explanations could

be the different form of the excluded volume, missing degeneracy of the nucleons in the

SMM, interactions in the ExV NSE or different nuclear symmetry energies.



A Statistical Model for a Complete Supernova EOS 187

8.5 Excited States

In this section we want to address the role of excited states in the supernova EOS further.

The internal partition function was already introduced in Paragraph 8.2.3, Eq. (8.3). In

the previous section we only considered excited states with energies below the binding

energy. As an additional case we include excitation energies up to infinity. We want to

compare the function gFR
A,Z(T ) from Fai and Randrup (FR) with and without cutoff with a

more elaborated model, namely the detailed internal partition functions in tabular form

of Rauscher [RTK97, RT00, Rau03]. These tables are based on a backshifted Fermi-

gas model and directly take into account most of the known experimental levels. As

another reference, we use the internal degeneracy calculated with excited states known

from experiment for nuclei with Z ≤ 5, and the four nuclei 55Fe, 56Fe, 57Ni, and 58Ni.

We present them in the same manner as the internal partition functions by showing the

factor

gExp
A,Z =

∑

i

gi(1 + ∆E∗
i /M0)

3/2 exp(−∆E∗
i /T ) , (8.62)

where i denotes the sum over all known states. If the spin of the state is available, we

also use this information in the case labeled ‘Exp’ later. As another reference we take the

temperature dependent part of the binding energy of the SMM (Eq. (8.58)) expressed

in the following way:

gSMM
A,Z =

nA,Z(FA,Z(T ))

nA,Z(FA,Z(T = 0))

= exp

(

T

ε0
A−

β0

T
A2/3

(

(

T 2
c − T

2

T 2
c + T 2

)5/4

− 1

))

. (8.63)

For T > Tc we take the second quotient to be zero. The part proportional to β0

in the equation above comes from the temperature dependence of the surface energy,

whereas the first part is the total excitation energy of a bulk Fermi-Dirac gas. For the

identification of the surface effects, we also show this part separately:

gFD
A,Z = exp

(

T

ε0

A

)

. (8.64)

Equation (8.32) shows that the internal degeneracy function, i.e. the excited states,

gives a direct contribution to the EOS. We introduce the energy coming from the internal
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partition function of a certain nucleus:

∆E =
∂g

∂T

T 2

g
. (8.65)

If excited states are explicitly taken into account these give a similar contribution:

∆Eexp =

∑

i gi(1 + ∆E∗
i /M0)

3/2 exp(−∆E∗
i /T )∆E∗

i
∑

i gi(1 + ∆E∗
i /M0)3/2 exp(−∆E∗

i /T )
. (8.66)

In the SMM we get the following expression for the excess of energy per nucleus between

finite and zero temperature:

∆ESMM = FA,Z(T )− FA,Z(0)− T
∂FA,Z

∂T

=
T 2

ε0
A + β0A

2/3

(

(

T 2
c − T

2

T 2
c + T 2

)5/4(

1 + 5
T 2T 2

c

T 4
c − T

4

)

− 1

)

. (8.67)

For a Fermi-Dirac gas without surface energy one obtains:

∆EFD =
T 2

ε0

A . (8.68)

Figure 8.34 depicts the degeneracy factor for T = 1010 K. Regarding the light clusters,

FR agrees reasonably well with the experimental levels, because the degeneracies are

small. The observed differences are mainly due to the use of known experimental values

for the groundstate angular momentum instead of assuming J = 1/2 for odd and J = 0

for even nuclei which is used in the NSE model and the case FR. The model of Rauscher

connects very well with the experimentally known excited states.

However, the shown levels only give a lower bound for the degeneracy, as the ex-

perimental knowledge may be incomplete, and additional levels could exist. Especially

close to the continuum, the level density becomes very large, so that it is very difficult

to identify single levels. Furthermore, only for the minority of the levels the angular

momentum has been determined. The true angular momentum may be much larger

than the assumed values, and thus would lead to an increase of g.

The experimental degeneracy for the four heavy nuclei is one order of magnitude

larger than for FR, and lies in the region predicted by Rauscher. Rauschers model gives

a much larger contribution to the excited states for the heavy nuclei compared to FR.

In the model of FR only for large nuclei with A > 150 an significant increase of the

degeneracy is visible at all. The model of FR not only shows a lower value of g but

also has a different mass number dependence. We note that for T = 1010 K no effect
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Figure 8.34: The degeneracy factor gA,Z(T ) as a function of mass number A at T = 1010 K.
Shown are the detailed internal partition function of Rauscher [RTK97, RT00,
Rau03], the simple semi-empirical expression of Fai and Randrup (FR) [FR82]
with and without cutoff, known experimental levels of nuclei with Z ≤ 5, and
of the four nuclei 55Fe, 56Fe, 57Ni, and 58Ni, and the multiplication factor of the
SMM [BM08] and a bulk Fermi-Dirac (FD) gas. For details see text.

of the cut-off in FR is observed. For SMM, we find that the general trend of Rauschers

model is well reproduced by considering the bulk and surface energy to be temperature

dependent. Only around the magic shells the degeneracy behaves very differently in

Rauschers model and drops to very low values.

The total excitation energy of the nuclei is depicted in Fig. 8.35. Also for this quantity

one finds that Rauscher connects to the experimental data. For the four heavy nuclei,

we observe that the energy contribution in Rauschers model is above the experimental

values, but in a similar range. Compared to the FR model, the different mass number

dependence is striking, which leads to an overestimation of the energy of the excited

states for light and very heavy nuclei. The SMM gives the largest total excitation

energies and shows a larger deviation from Rauscher than a pure Fermi gas. This means

that the entropy contribution −∂FA,Z/∂T is somehow overestimated in SMM.

Figures 8.36 and 8.37 show the same quantities as the previous two, but for the larger

temperature of ∼ 10 MeV and for nuclei with lower mass numbers (A < 60), because

heavier nuclei are not relevant at this temperature. For the very light nuclei with A < 20

the model of FR is a good approximation of gA,Z of the experimentally known excited

states. At the depicted temperature the cutoff leads to a slightly reduced degeneracy of
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Figure 8.35: The total excitation energy ∆E of a certain nucleus of mass number A at T =
1010 K. The same models as in Fig. 8.34 are shown.
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Figure 8.36: As Fig. 8.34, but now for T = 1011 K.
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Figure 8.37: As Fig. 8.35, but now for T = 1011 K.

the lightest nuclei. For heavy nuclei, the cutoff energy is so large that it has no effect, as

very large excitation energies are exponentially suppressed due to the Boltzmann factor.

For nuclei with A > 20 the different mass number dependence of Rauscher and FR

is obvious, Rauscher predicts a much larger effect of the excited states. Rauscher and

SMM agree rather well, only a slightly different mass-number dependence is observed.

At this temperature the experimental degeneracy of the four heavy nuclei is well below

all the other models. Furthermore their degeneracy is not even much higher than of the

light nuclei. We attribute this to the lack of knowledge of excited states close to the

continuum, where the states are so close that they go over to a band of excited states.

Thus the few experimentally known excited states represent only a lower limit for the

degeneracy.

In Fig. 8.37 an influence of the cutoff on the total excitation energy can be seen. It

leads to lower total excitation energies. The effect of the cutoff on the total excitation

energy is more important than for the internal degeneracy, as can be expected. Com-

pared to the integral over the excitation energies E∗ for the internal degeneracy, in the

integral for the total excitation energy the additional factor E∗ appears. Thus the larger

excitation energies have a larger contribution to the total excitation energy than to the

internal degeneracy. As an outcome, the cutoff energy is relevant for ∆E for nuclei up

to A ∼ 20. We see that especially for the lightest nuclei with A < 10 the FR model

without cutoff leads to an significant overprediction of the total excitation energies com-

pared to the experimental data. With the cutoff FR gives results which are similar to
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Figure 8.38: As Fig. 8.34, but now for T = 2.5 × 1011 K.

the experimental values. For nuclei with A > 15 Rauscher achieves much larger excita-

tion energies. FR and SMM have a similar mass-number dependence, whereas the total

excitation energies are very large in the SMM, as before. In Rauschers model the total

excitation energy increases much more slowly with mass number and in a non-linear

way.

At T ∼ 25 MeV, which is shown in Fig. 8.38, the effect of the cutoff of lowering

the degeneracy is very pronounced. Due to the different cutoffs, nuclei with the same

mass number but different binding energies get a different degeneracy. Strongly bound

nuclei get a larger degeneracy. Only with the cutoff the FR model connects well with

the experimentally known excited states. The degeneracy in Rauschers Model is several

orders of magnitude larger and has a larger slope with respect to the mass number. The

difference between SMM and Rauscher has also further increased.

By studying Fig. 8.39, which shows the excitation energy, the necessity of introducing

the cutoff can be seen. We remind the reader that actually only very light nuclei A < 10

are relevant at such large temperatures. Without the cutoff the excitation energy can

reach several hundreds of MeV, even though many of the light nuclei are only slightly

bound. Excited states far above the binding energy contribute significantly to the exci-

tation energy. However, also in Rauschers model large excitation energies for nuclei with

A > 20 are predicted. Only at A > 60 the FR model with cutoff and Rauscher become

more similar again. Note the interesting effect that the surface energy now decreases

the excitation energy of SMM.
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Figure 8.39: As Fig. 8.35, but now for T = 2.5 × 1011 K.

From this study we conclude the following. Even if only experimentally known ex-

cited states are taken into account, they lead to an important contribution to the internal

degeneracy. For the light clusters the FR model with cutoff is in reasonable agreement

with the experimental data. In most cases it gives a lower value for the internal de-

generacy. However, we don’t see this as a disadvantage, as a quantum treatment of the

medium effects could lead to a suppression of the excited states. Thus it could be, that

the effect of the excited states of the light clusters will be reduced at large densities. For

heavy nuclei with A > 60 FR is orders of magnitude below the other models investigated

here. Thus FR represents a rather conservative model for the role of the excited states.

Regarding the excitation energy, FR gives an overprediction for T ∼ 1 MeV for the light

nuclei. At larger temperatures there is an agreement with the experimental data, if the

cutoff is used.

Even though the model of FR (with the cutoff) is very simple, we chose it for the

description of excited states, instead of neglecting them completely. We showed that

the excited states have an important effect on the EOS as they contribute significantly

to the energy density and other quantities. Without the cutoff the high temperature

behavior would be pathologic. In preliminary hydrodynamic simulations of core-collapse

supernovae we found that the use of FR without the cutoff even does not lead to the for-

mation of the shock in the expected form. Rauschers model is much more sophisticated,

but it is based on a certain model for the nuclear masses and only a selection of nuclei

is available in tabular form. Still it would be interesting to use these detailed internal
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partition functions and to compare the results for the EOS with the results of FR which

have been shown in the previous section. The study presented here is by no means

complete, see e.g. also [NY04] and the aspect of excited states has to be investigated

further.
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8.6 Medium Effects on Light Clusters

In this section we want to compare the excluded volume approach with two many-body

theories, the quantum statistical (QS) model and a generalized relativistic mean field

(gRMF) model. The gRMF model had been introduced in Ref. [TRK+10]. In addition

to the nucleons, the light clusters are included as quasiparticles which contribute as

sources for the meson fields. Like the nucleons, also the light clusters get a mean-

field self energy leading to a reduced effective mass and medium shifts of the chemical

potentials. However, the light clusters are composite particles of nucleons. Thus, at

large densities the light clusters do not behave as free quasiparticles, but feel the filled

Fermi sea of nucleons. This effect is called Pauli blocking and leads to a shift in the

binding energies which cannot be described by the gRMF model itself. It is included as

a density dependent part of the nuclear masses, which is taken from the QS model in

parameterized form.

The QS model is described in detail in Refs. [SR08, Roe09]. It is based on the

thermodynamic Greens function method and uses an effective nucleon-nucleon interac-

tion. Effects of the correlated medium such as Pauli blocking, Bose enhancement and

self-energy are taken into account, leading e.g. to the merging of bound states with the

continuum of scattering states with increasing density (Mott effect). In Ref. [TRK+10]

the nucleon self energies in the QS model are evaluated with the RMF model. Then the

medium modifications can be determined, such as the mass shift and the Mott densities,

where the clusters get dissolved.

Fig. 8.40 shows the Pauli-blocking shift, derived with the QS model based on the RMF

interactions. With increasing temperature the Pauli-blocking becomes less important,

leading to larger Mott densities, at which the binding energy vanishes. The relative

change of the binding energy decreases with mass number.

In the following we will compare the results of Ref. [TRK+10] with the excluded

volume NSE model. For this comparison we will first only consider the following light

clusters with A ≤ 4, which are also used in Ref. [TRK+10]: neutrons, protons, deuterons
2H, tritons 3H, helions 3He and alpha particles 4He. To investigate the role of heavier

clusters, we will then include all available nuclei in the ExV model. Finally we will study

the role of excited states, by also considering the temperature dependent degeneracy

function as presented in Sec. 8.2.3.

Figure 8.41 shows the comparison for T = 2 MeV. We note that the fraction of

tritons is almost equal to the helion fraction, because they are isospin partners and we

are investigating symmetric nuclear matter. The only differences arise due to Coulomb
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Figure 8.40: Figure taken from Ref. [TRK+10]. Change of the binding energy Bi = B0
i +∆Bi

of the clusters i = d, t, h, α in symmetric nuclear matter due to the binding
energy shift ∆Bi in the generalized RMF model as a function of the total nucleon
density of the medium for various temperatures T .
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Figure 8.41: The free energy per baryon, energy per baryon and the mass fractions of protons,
deuterons, helions and alphas, for symmetric nuclear matter at T = 2 MeV. The
results of the generalized relativistic mean-field model gRMF and of the quantum
statistical model QS from Ref. [TRK+10] are compared to the excluded volume
NSE model ExV. “ExV, LC” shows the results if only the same light clusters
with A ≤ 4 as in Ref. [TRK+10] are considered and no excited states are taken
into account. For “ExV, all” all available nuclei are used. “ExV, all, g(T)” also
takes all available nuclei into account, but this time with the internal degeneracy
function.
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interactions and the mass difference. Similarly, the mass fraction of unbound neutrons

is almost equal to the unbound proton fraction. Regarding the composition, up to

nB ∼ 10−3 fm −3 the predictions of the different calculations which only consider the

light clusters agree. It is interesting to note that even though the composition is still

rather similar at nB ∼ 10−3 fm −3, the free energy in gRMF is increased compared to

the other two models. In the QS and gRMF model above the Mott densities the light

clusters start to dissolve due to the Pauli blocking. The binding energies of the light

clusters are reduced gradually with density, which leads to an increasing proton fraction.

Conversely, in the ExV model, the light cluster fraction increases until ∼ 0.3n0
B, where

a sudden turnover in the composition appears. The two quantum many-body models

agree better with each other and do not show this behavior. Still they exhibit different

features in detail, like e.g. the oscillatory behavior in the QS model. Even though the

composition is more similar in the QS and gRMF model, the free energy and binding

energy of QS is more similar to the ExV model. When uniform nuclear matter is reached,

smaller deviations of the three models remain, as they are based on different forms of

the nuclear interactions. One can conclude, that a similar behavior of the composition

does not imply in general that other thermodynamic quantities also behave similarly.

The excluded volume approach gives a very crude representation of the medium mod-

ifications at this low temperature. However, it is enlightening to study the contribution

of the heavy nuclei, which are taken into account in the thin black lines. In comparison

with the light cluster NSE (thick solid black line), one sees that already at very low

densities nB ∼ 10−4 fm−3 the light clusters are actually replaced by heavy nuclei. The

sum of the mass fractions of the light clusters with A ≤ 4 and the nucleons drops below

0.10 for densities above 2 × 10−3 fm−3. Thus the comparison with QS and gRMF at

larger densities is not very significant, because the composition is dominated by heavy

nuclei there. The fraction of the light clusters is reduced considerably by the appear-

ance of heavy nuclei, before the Mott densities are reached. Also the energy and free

energy density changes significantly, if the heavy nuclei are included. Deviations appear

already at nB ∼ 10−4 fm−3 and become similar large as the differences between the QS

and gRMF model.

The dashed thin black line also uses all available nuclei but takes excited states

by the use of the internal degeneracy function into account. As expected, at this low

temperature the inclusion of excited states is not significant and almost no differences

are observed.

Figure 8.42 shows the results of the three models at T = 10 MeV. There is no sudden

turnover of the composition in the ExV model any more, but the clusters are dissolved
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Figure 8.42: As Fig. 8.41, but now for T = 10 MeV.
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continuously. At this temperature the composition of the ExV model agrees much better

with the two quantum models. The maximum deuteron and alpha-particle fractions lie

between the results of gRMF and QS, the maximum helion-fraction is a bit larger. The

total cluster fraction is lower in the ExV model, as can be seen from the proton fraction.

The densities at which the light clusters disappear are slightly larger in the ExV model,

and are closer to the QS model. The differences of the two quantum models are of

similar size as the differences to the ExV model. Thus we can conclude that the ExV

model mimics the quantum medium effects reasonably well at T = 10 MeV.

We explain the better agreement at large temperatures by the following aspects.

First, the unbound nucleon density is in general larger at larger temperatures, and

clusters appear with lower fractions. This is a trivial reason for the better agreement.

Second, the excluded volume corrections give a contribution to the free energy density

proportional to T ln(κ), see Eq. (8.32). Thus the excluded volume has a larger effect at

larger temperatures. On the other hand, also the Pauli-blocking gets weaker at larger

temperatures, see. Fig. 8.40.

If one looks at the free energy and the internal energy in Fig. 8.42, it is apparent that

they are increased in the ExV model at almost all densities, even though the composition

is similar. As noted before, the direct contribution of the excluded volume is proportional

to T and increases the free energy. However, the excluded volume does not add to the

energy density directly which is also increased. We have a possible explanation for these

deviations: Regarding the mean-field there are important conceptual differences in the

three models: In QS and gRMF all nucleons (bound in clusters and unbound) contribute

as sources for the meson fields. Furthermore, the light clusters get a mean field self

energy. These effects are absent in the ExV model, where the mean field is given only

by the unbound nucleons because the interacting nucleons are assumed to be outside of

the light clusters. It would be interesting to compare the effective mass of the nucleons

of the three models directly, to identify the origin of the observed differences further.

Deviations between the QS and the gRMF model arise, because in gRMF the back-

reaction of the composition on the energy shifts is self-consistently taken into account,

whereas in the QS model only the total nucleon densities are used. Furthermore, the

continuum states of the deuteron are treated in a more elaborated way in the QS model,

leading to reduced deuteron fractions in general.

In the calculation with all nuclei (dotted thin black line), one finds that the heavy

nuclei are not as important as before for T = 2 MeV. The maximum fractions of the light

clusters are reduced only slightly and the transition density to uniform nuclear matter

remains similar. The maximum mass fraction of heavy nuclei with A > 4 is ∼ 0.40,

which is reached at nB ∼ 5× 10−2 fm−3.
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At T = 10 MeV the inclusion of excited states has a noticeable effect on the EOS and

the composition. The formation of heavy nuclei is favored because of their large internal

degeneracy. Their maximum mass fraction is increased to ∼ 0.74 and uniform nuclear

matter occurs at slightly larger densities. The degeneracy function acts differently on the

abundances of the light clusters as can be seen by comparing the dotted with the dashed

thin black line in Fig. 8.42: The helion and deuteron fractions are reduced, whereas

the alpha-particle fraction is increased. This change in the composition is also present

at very low densities. The deuteron is only very weakly bound, thus the cutoff for the

maximum excitation energy is rather low, so that the internal degeneracy remains small,

in contrast to the strongly bound alpha particle. Even though the degeneracy function

leads to visible changes in the composition, its effect on the free energy and energy is

almost negligible, compared to the direct contribution of the heavy nuclei.

For T = 20 MeV, which is shown in Fig. 8.43, the composition of the ExV model

agrees very well with the results of gRMF and QS. The maximum mass fractions of the

individual clusters are between the results of the two other models, and the maximum

densities at which the single clusters disappear are in a similar range. This supports the

conclusion which we have drawn before. The reduced deuteron fraction in the QS model

is now even more pronounced. As already mentioned, it is due to the more elaborated

treatment of the continuum states. There are important differences in the EOSs, where

light clusters appear in large concentrations. All the three models have a rather different

behavior, whereas the ExV model gives the largest energy and free energy.

In Fig. 8.43 one sees that heavy nuclei play almost no role at T = 20 MeV, as there

are only very small differences between the solid and the dotted black line. Conversely,

the effect of the degeneracy function on the composition is significant. Due to the large

temperature, now the alpha particles profit the most from the inclusion of the excited

states, as their cutoff energy is very large. The fractions of the other light clusters remain

almost unaffected. Still, the effect of the internal degeneracy function on the EOS is

rather small. As we showed in Sec. 8.5 this is not the case, if no cutoff in the integral

over the excited states is used: Then all possible excitation energies contribute, and with

increasing temperature the contribution to the energy would become arbitrary large.

Conclusions Regarding the composition with only light clusters we conclude, that

the excluded volume description can imitate the complicated quantum medium effects

relatively well at large temperatures. Contrary, at low temperatures the ExV model

behaves very similar to an ideal gas and thus shows crucial deviations. However, in

this case we found that the heavy clusters are the most abundant particles before the
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Figure 8.43: As Fig. 8.41, but now for T = 20 MeV.
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medium effects of the light clusters become very strong. The better agreement at large

temperatures could partly be due to the logarithmic term proportional to T in Eq. (8.32),

and the reduced Pauli-blocking at large temperatures. Regarding the EOS we found

that it is not possible to correlate thermodynamic variables like the energy density

directly with the composition. Even if two different models show a very similar density

dependence of the composition, the EOS can be notably different.

For the three models investigated here, there remain differences in the predictions

for the EOS and the composition. There are even still some uncertainties within the

two quantum many-body models. We showed that the results of the excluded volume

approach are not so far away from the more sound but also more complicated quantum

many-body models. Obviously, due to its phenomenological character, the excluded

volume concept can always only mimic the true quantum effects. On the other hand, this

simpler approach allows to include other aspects, like excited states or the distribution

of heavy nuclei in a simple fashion, which are more demanding to implement into the

quantum many-body theories.
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8.7 Application in Core-Collapse Supernovae

The main motivation for the development of the NSE model is its application in astro-

physical simulations, especially for core-collapse supernovae. In this section we show

some first exploratory studies of the implications of the NSE model in simulations which

have been performed by Tobias Fischer from the group of Prof. Matthias Liebendörfer

in Basel. The applied core collapse model Agile-Boltztran is based on general rela-

tivistic radiation hydrodynamics in spherical symmetry, using three-flavor (anti)neutrino

Boltzmann transport. For details see Refs. [MB93b, MB93a, MB93c, MM99, LMT+01b,

LMT01a, LMM+04]. The following weak reactions are incorporated in the form of

Ref. [Bru85]:

e− + p ←→ n+ νe

e+ + n ←→ p+ ν̄e

e−+ < A,Z > ←→ < A,Z − 1 > +νe

ν + e± ←→ ν + e±

ν +N ←→ ν +N , (8.69)

where N denotes nucleons or nuclei. Nucleon-nucleon Bremsstrahlung is also included,

based on Ref. [TB01a]:

N +N ←→ N +N + ν + ν̄ . (8.70)

The formation of µ/τ neutrinos

νe + ν̄e ←→ νµ/τ + ν̄µ/τ (8.71)

is implemented according to Ref. [Hor02].

In the reactions listed above, only the average nucleus of the single nucleus approx-

imation is considered. As a first step we also use this simplification and do not take

the distribution of nuclei into account. This would require different physical concepts

and tremendous changes in the numerical implementation. Instead we use the average

nucleus < A,Z > as specified by Eqs. (8.51) and (8.52). In the same way, we do not take

the distribution of the light clusters into account but treat all light clusters as alpha-

particles. In the simulation, only the light cluster fraction Xa and the heavy cluster

fraction XA is used, as defined in Eqs. (8.49) and (8.50).
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The general scenario of a delayed explosion in a core-collapse supernova can be split

into four phases with the collapse phase at the beginning. The collapsing star can be

divided into a subsonic homologously collapsing inner core and the outer layers which

are accreted with supersonic infall velocities. Initially this infalling matter has a low

entropy per baryon ∼ 1 and consists of heavy nuclei. Due to the compression and the

raising electron degeneracy, electron captures occur, leading to more and more neutron

rich nuclei. The weak reactions listed above are essential to determine the evolution of

the total proton fraction Yp.

When nuclear saturation density is reached in the center, the increasing compress-

ibility leads to the core rebounce in the bounce phase. A stagnation wave forms which

travels subsonically outwards until it reaches the supersonically infalling outer layers.

The wave turns into a shock wave which heats and dissociates the accreting matter. Free

protons appear which capture electrons very rapidly, causing an energetic neutronization

burst at 2 - 5 ms after bounce.

The moment of the bounce is shown in Fig. 8.44 for the collapse of a 15 M⊙ pro-

genitor star. Three different EOSs are applied, which allow a systematic comparison of

different aspects of the EOS. As a standard reference, we apply the Shen et al. EOS,

shown by the black lines. The red lines show the results for the NSE model, if TM1

is used for the interactions of the nucleons which is also used in the Shen EOS. Thus

NSE TM1 is identical to Shen, when uniform nuclear matter is reached. Because we

do not have a mass table for TM1 at hand, we apply the mass table for TMA from

Ref. [GTM05]. The blue lines show the EOS if the same mass table is combined with

the TMA parameterization for the nuclear interactions. By comparing “Hempel, TM1”

with “Hempel, TMA” we can directly identify the role of the uniform nuclear matter

EOS because the description of the non-uniform matter phase and nuclei is identical in

the two NSE EOSs.

Let us first discuss the main aspects of the simulation at bounce, which all three

models have in common. The homologous core encloses a mass of 0.6 M⊙, and the

accreting layers with negative velocities extend up to 1.6 M⊙, see Fig. 8.44 (a). The inner

core has densities larger than 1014 g/cm3, whereas a sharp density drop is present at the

shock front. Regarding the entropy (Fig. 8.44 (c)) we see that the shock represents an

irreversible process which increases the entropy from ∼ 1 to ∼ 3. Initially, the accreting

matter is mainly heated by compression to T ∼ 4 MeV. Then the shock causes the

huge increase of the temperature above 12 MeV. We observe that the core is almost

isothermal.
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Figure 8.44: Results for the simulation of the collapse of a 15 M⊙ progenitor star at bounce.
Three different EOSs are applied, the Shen et al. EOS based on TM1 [STOS98a,
STOS98b], the NSE EOS based on TM1 and the EOS based on TMA. In plot
(e), “Fe” corresponds to the heavy mass fraction XA and “He” to the light cluster
mass fraction Xa in the NSE EOSs.
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The composition can be studied by Fig. 8.44 (d) - (f). The unprocessed matter in

the outermost layers corresponds to 28Si. During the infall, below M = 1.4 M⊙, electron

captures take place and reduce the electron fraction, see Fig. 8.44 (d). The emitted

neutrinos carry away some of the initially entropy s ∼ 4, see Fig. 8.44 (c). Due to the

compression, the nuclei become more asymmetric and increase in size, which is seen in

Fig. 8.44 (f). The adiabatic compression leads to increasing temperatures with density

so that the alpha particle fraction increases, Fig. 8.44 (e), when approaching the shock at

M = 0.6 M⊙ from above. Behind the shock, matter is mainly composed of free neutrons

and protons.

Let us now turn to the role of the EOS. In general, the differences between NSE TM1

and NSE TMA are much less than the differences to the Shen EOS. Thus we first focus

on the common differences between Shen and the two NSE models. The composition

of the infalling matter above 0.8 M⊙ regarding light and heavy nuclei and nucleons

is rather similar in Shen and the NSE model. The temperature curves lie on top of

each other in this range, but the entropy is slightly increased. By carefully looking at

Fig. 8.20 one finds that the Shen EOS predicts indeed lower entropies at T = 1 MeV. For

the infalling matter, the evolution of the electron fraction proceeds similar in the three

EOSs, whereas small deviations occur. The average mass and proton number exhibit

an unexpected oscillatory behavior in the Shen EOS. In the NSE models this does not

occur, instead some smooth bumps are observed, which can also be identified in the

electron fraction. This could be due to shell effects in the NSE description.

Between 0.6 and 0.8 M⊙the light cluster fraction increases with density in the NSE

model, but decreases in the Shen EOS. This could be due to the alpha particle approxi-

mation in the Shen EOS. The nucleon fraction remains similar, so that the light cluster

fraction is increased on cost of the heavy nuclei. The light cluster give a contribution to

the entropy and thus lower the temperature for an adiabatic compression, which is seen

in Fig. 8.44 (g).

Also below the shock some differences are visible, which may be even more important.

In the NSE model the light cluster fraction close to the shock is above 10 % and two

orders of magnitude larger than in Shen. We already found in Fig. 8.17 that at temper-

atures T > 10 MeV the deuterons are more important than the alphas. The increased

light cluster fraction occurs already in front of the shock but is even more pronounced

behind it. The different predictions for the light clusters are the most evident differences

between Shen and the NSE EOSs. Furthermore, the temperature and entropies behind

the shock are larger in the NSE model, indicating a softer EOS with a more compact

proton-neutron star (PNS) core. This can also be seen directly by the position of the

shock.
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In the comparison of the electron fraction of the Shen and the NSE EOSs one sees that

the NSE models give a significant lower value of Ye in the core. Because the degenerate

electrons give the main contribution to the pressure, Ye determines to large extent the

compactness of the PNS. Thus the lower value of Ye is connected to the larger entropy

and temperature in the PNS and the deeper position of the shock front.

It is surprising that even the TM1 NSE model leads to lower Ye because it differs

from the Shen EOS only by the description of the nuclei and the model for the non-

uniform matter phase. By considering the additional light cluster degrees of freedom

like the deuteron one expects that the system tends to larger values of Ye, but the

opposite is observed here. Thus the reason for the lower electron fraction must come

from somewhere else and has to be even stronger than the effect of the deuterons.

The neutrinos are trapped in the inner core, and the presence of neutrinos in general

increases the electron fraction. Thus the lower Ye could be explained by a faster diffusion

of the neutrinos out of the core, leading to lower lepton and electron fractions. A faster

deleptonization is obtained by larger mean free paths. Maybe it is the reduced fraction

of nucleons and the increased light cluster fraction (see Fig. 8.44 (e)) below the shock

which leads to the smaller neutrino cross sections and the faster deleptonization. This

aspect has to be studied further to fully understand the origin of the reduced electron

fraction of NSE TM1.

If weak equilibrium is achieved, then the electron fraction at a given density is directly

set by the symmetry energy of the EOS. This effect can be studied by comparing TM1

with TMA. TM1 has a significantly larger symmetry energy and lower compressibility.

However, in the discussion of Fig. 2.3 we showed, that the single value of K at saturation

density does not give very much information about the EOS. In our case, TM1 has a

larger pressure than TMA at almost all densities, despite the lower value of K. By

looking at Fig. 8.44 (b) we see that the density profile of the core, which develops from

the interplay of the compressibility and the symmetry energy, looks very similar in the

two EOSs. Thus the electron fraction at a given radius is mainly a result of the symmetry

energy. At low densities, the symmetry energy of the two NSE models is rather similar

due to the presence of light clusters and nuclei. However, at large densities only the

uniform nuclear matter contribution remains. Indeed, we find that the larger symmetry

energy of TM1 drives the core to larger values of Ye.

This aspect can also be identified in Fig. 8.44 (h). Below the shock, NSE TM1 gives

similar values for the neutron chemical potential as Shen, as they are based on the same

nuclear interactions. By approaching the center of the supernova, the electron fraction of

the two models also come closer to each other. NSE TM1 has a larger neutron chemical
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Figure 8.45: As Fig. 8.44, but at 173 ms after bounce.

potential of several MeV than TMA, meaning that it is more difficult to neutronize the

matter which also reflects the larger symmetry energy.
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After the bounce the so-called accretion phase begins. While matter is still accreting

onto the PNS the dynamic shock turns into a hydrostatically expanding accretion front.

This accretion front divides the cold accretion flow from the hot dissociated matter piling

up on the PNS. In Fig. 8.45 we show the simulation at the later time of 173 ms after

bounce. Again, we first want to discuss the most important common features and then

turn to the detailed differences of the three EOSs.

We see that the accretion front has traveled outside to a radius of 200 km and much

lower densities ∼ 108 g/cm3. The infalling matter has entropies of∼ 4, the matter behind

the shock is heated up to 12−14, corresponding to temperatures of 25 MeV. The center

of the PNS remains still rather cold with an entropy per baryon of 1 and a temperature

of ∼ 14 MeV, which is similar as at bounce. In the same way, the electron fraction

remains rather constant in the core, because the neutrinos are completely trapped. Only

further outside at the surface of the PNS their diffusion becomes important. After some

neutrinos have escaped, the electron fraction can decrease further to lower the degeneracy

of the electrons. The electron fraction has its minimum at R ∼ 40 km with a value of

0.1.

The radial profile of the composition still shows some similarities to the situation at

bounce. The infalling matter heats up and dissociates partly into light clusters. When

the accretion front is reached it encounters a strong shock heating, so that also the light

clusters are dissolved, and almost only free nucleons remain. Further inside the PNS the

compression becomes strong enough that the light cluster fraction increases again. The

formation of nuclei is also favored because the entropy decreases towards the center of

the PNS behind the shock. In the innermost zones of the PNS almost only free nucleons

remain, because the densities are too large to allow the presence of nuclei.

By looking at the electron fraction in more detail, one sees that the core below 10

km still behaves similar as during the bounce. NSE TM1 and Shen come closer to each

other when approaching the center, whereas the two NSE model are closer to each other

at lower densities further outside. In Fig. 8.45 (h) it is also evident that the NSE TM1

EOS gives the same neutron chemical potentials like the Shen EOS in the core, but that

the two NSE models lie on top of each other in the outermost layers for R > 100 km. At

the bounce we observed that Shen always gave larger values of Ye below the shock. Now

we find that the NSE models cross the electron fraction of the Shen EOS at R ∼ 10 km

and have a larger electron fraction further outside. This could now be allocated to the

larger symmetry energy due to the inclusion of the additional light clusters besides the

alpha-particle in the NSE models.
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We see in Fig. 8.45 (e) that the light cluster fraction behind the shock is roughly

two order of magnitudes larger than in the Shen EOS. At R ∼ 20 km the light cluster

fraction increases above 10 % in the NSE models, but jumps to zero between 10 and 20

km. This does only occur, because we neglect all nuclei in the EOS for T > 20 MeV for

simplicity.

At 10 km another qualitative difference of the NSE models compared to the Shen

EOS occurs. Before uniform nuclear matter is reached, some heavy clusters appear in

a very narrow density region. This can be seen as the beginning of the uniform nuclear

matter phase and part of the transition to uniform nuclear matter. In the Shen EOS,

the alpha particles extend down to the center of the PNS. In this model, due to the

different description of the excluded volume effects, alpha-particles can also exist above

saturation density which is not physical.

Next we want to compare the NSE TM1 with the NSE TMA EOS in more detail.

The core of the PNS is cooler in TM1 than in TMA. On the other hand, the maximum

temperature of the envelope of the PNS is larger in TM1 and it shows more heating

(in terms of entropy) after the shock. At bounce we mainly observed differences in the

innermost layers and only behind the shock. Now we see some small differences arising

in layers which are still in front of the shock. The accreted matter has now slightly larger

entropies in TM1 than in TMA. Heat is transported to the outer layers by neutrinos,

thus the increased entropy of the infalling matter might be caused by the larger shock

heating in TM1. It is difficult to further explain the differences in the shock heating

and the other small differences which are observed. These differences result from the

complex interplay between neutrino transport, hydrodynamics and different aspects of

the EOS like composition, compressibility and symmetry energy, integrated over the

entire simulation time.

Figure 8.46 shows the simulation at 400 ms after the bounce. The system has con-

tinued its evolution similar as from the bounce to 173 ms postbounce. Neutrinos in the

core are still trapped, so that the electron fraction in the center has almost not changed.

The deleptonization in the layers further outside has continued and the electron fraction

has decreased below 0.1. The surface of the PNS has contracted further, so that the

entropy has increased above 16 and the temperature above 30 MeV. Now we observe

also a slight increase of the temperature in the center of the PNS. The accretion front

has moved further inside to R ∼ 180 km during this contraction. The compression has

also lead to the complete disappearance of the heavy clusters below the shock which

were present in the NSE models before.
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Figure 8.46: As Fig. 8.44, but at 400 ms after bounce. Note the different color coding for
TM1 and TMA compared to Fig. 8.44.
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It is interesting that the two NSE models look now again more similar than they did

at 173 ms. The compression has again leveled off some of the characteristic features of

the two EOSs. The biggest difference occurs in the neutron chemical potential and the

temperature, with the latter being 1 to 2 MeV larger in TMA, indicating that TMA is

the softer EOS with the lower maximum mass.

After the accretion phase has lasted for roughly 500 ms one expects that the explosion

sets in, which marks the beginning of the explosion phase. The hot accumulated matter

drives the shock to larger radii into the outer layers leading to a supernova explosion

and the ejection of matter. A part of the matter is still falling onto the PNS or fills the

space between the surface and the ejecta in form of a neutrino driven wind. However, so

far explosions in spherical symmetry have only been obtained for one particular 8 M⊙

ONeMg progenitor star. The differences which we observe for the different EOSs are

rather small. Thus we do not expect that the new EOSs lead to important changes in

the subsequent (short-time) evolution of the supernova.

However, from this study and in particular from the comparison between NSE TM1

and Shen, we can conclude that the model for the description of the non-uniform matter

phase is more important than a change of the parametrization of the nuclear interac-

tions. Even though the compressibility and the symmetry energy of nucleon matter are

significantly different in TM1 and TMA, different effects cancel each other, so that the

simulation looks almost identical at 400 ms postbounce time. E.g. the consideration of

additional light clusters like the deuteron is more important than the particular form of

the nuclear interactions.

Furthermore, we want to remind the reader that the NSE EOSs were used in a form

which is equivalent to the Shen EOS, i.e. all light clusters are treated as alpha-particles

and only the average nucleus of the distribution of heavy nuclei is considered. Thus we

only probed the thermodynamic differences of the Shen and the NSE EOSs. Actually it

is convenient, that only reasonably small differences occurred. Based on these results one

could now start to include additional nuclear effects into the simulations. For example

it would be interesting to implement the deuterons and their weak reactions or to take

into account the distribution of the heavy nuclei.

To study the impact of the progenitor and to probe different conditions of the EOS,

we also performed simulations for a 40 M⊙ progenitor star. The results at bounce are

shown in Fig. 8.47. By comparing with Fig. 8.44 we see that the shock is located at a very

similar position and that the matter in the core which has passed through the shock has

developed to similar conditions. However, in more detail we find, that a larger baryon
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Figure 8.47: Results for the simulation of the collapse of a 40 M⊙ progenitor star at bounce.
Three different EOSs are applied, the Shen et al. EOS based on TM1 [STOS98a,
STOS98b], the NSE EOS based on TM1 and the EOS based on TMA.
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mass has negative velocities, i.e. more matter is infalling. Furthermore, the temperature

of the core is increased by several MeV and has a slightly lower electron fraction.

Regarding the composition we find the same results as before, namely that the NSE

and the Shen EOS mainly differ below and close to the shock by a significantly increased

light cluster fraction in the NSE models. Furthermore, the transition to uniform nuclear

matter occurs via the appearance of heavy nuclei, which does not happen in the Shen

EOS. The Ye profiles exhibit the same features as discussed before. At low densities the

two NSE models give the same results, only in the most central part the NSE TM1 EOS

goes over to the Shen EOS, which gives larger electron fractions than TMA due to the

larger symmetry energy. In general the two NSE EOSs lead to rather similar results.

Interestingly, only directly at the shock some larger differences occur between NSE TM1

and NSE TMA. The shock is located a little bit further outside in TMA, the accreting

matter has a larger infall velocity and the entropy increase after the shock is larger.

In Figure 8.48 we show the results for the 40 M⊙ progenitor at 218 ms postbounce

time, i.e. at a similar stage as Fig. 8.45 for the 15 M⊙ progenitor. By comparing the

results for the two progenitor stars we find that the shock is still located at a similar

position. The temperature in the case of the more massive progenitor is significantly

larger and reaches almost 40 MeV at the envelope of the PNS. Thus uniform nuclear

matter extends to lower densities than for the 15 M⊙ progenitor. As the temperature in

front of the shock is now slightly larger, the contribution of the light clusters is further

enhanced and even prevails the heavy clusters. In front of the shock the light clusters

are mainly alpha-particles, and thus the results of the Shen and the NSE EOSs coincide.

Below the shock the missing other light clusters in the Shen EOS lead to considerably

different results.

It is interesting to see, that exactly in the region from 10 to 100 km where the light

cluster fraction is different, also the electron fraction deviates in the Shen and the NSE

EOSs. The contribution of the additional light clusters increases the symmetry energy

and thus leads to larger values of Ye below saturation density. The electron fraction in

the core is still the largest in the Shen EOS, due to the different evolution. This could be

seen as the reason for the slightly more compact PNS core and the larger temperature

in the core. Above 11 km, the temperature profiles of the three EOSs are similar. This

leads to the increased entropy in the two NSE models, because of the additional degrees

of freedom which are considered.

Also from the study of the 40 M⊙ progenitor we conclude, that the model for the low-

density EOS is more important than the change of the parametrization of the nuclear

interactions. At this stage of the evolution, the dynamics seem to be dominated by the
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Figure 8.48: As Fig. 8.47, but at 218 ms after bounce. Note the different color coding for
TM1 and TMA compared to Fig. 8.47.
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EOS below saturation density and not so much by the EOS of the core. As a further

study it would be interesting to use a consistent NSE EOS for TM1, i.e. an EOS which

utilizes a mass table which is also based on TM1. The NSE TM1 EOS which was shown

here used the same mass table as in the TMA EOS. Thus we cannot estimate the impact

of the change of the nuclear masses due to the use of different nuclear interactions.

For both progenitors, in the comparison of Shen and NSE TM1 some small but

interesting differences were found. Again, we want to emphasize that these differences

only arise due to the different model assumptions for the description of nuclei and non-

uniform nuclear matter. It would also be interesting to calculate and apply an NSE EOS

with nuclear interactions which are significantly different compared to TM1 or TMA.

This could lead to more pronounced effects of the uniform nuclear matter EOS in the

simulation.

For a future simulation, especially the FSUgold interactions are interesting, because

of the well constrained behavior of the symmetry energy. The inclusion of the ω-ρ-

coupling is much more important than the change from TM1 to TMA which can also

seen by the drastic reduction of the maximum mass of FSUgold to only 1.67 M⊙. Due to

the low symmetry energy at large densities we expect that the electron fraction will be

further decreased in the core with the FSUgold EOS. Thus a larger gravitational binding

energy is in principle available for the explosion. Furthermore, low symmetry energies

at large densities imply in most cases larger symmetry energies at low densities below

saturation density. Then the electron fraction in the region below the shock would be

slightly increased. This could lead to larger neutrino heating below the shock so that it

might be possible that a larger energy will be deposited in the shock. Additional energy

deposition below the shock is one of the key ideas how to achieve an explosion. However,

these expectations need to be verified by simulations, because many other effects can be

counteracting, e.g. the neutrino transfer. By understanding the impact of the EOS in

core-collapse supernovae further, one might find some more insight which aspects of the

EOS help to achieve a robust supernova-mechanism.
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Chapter 9

The Quark-Hadron Phase Transition

9.1 Signals in Core-Collapse Supernovae

In this section we show results for the investigation of the implications of the hadron-

quark phase transition in the dynamical environment of a core-collapse supernova, which

was published in [SHP+09]. So far only few detailed numerical studies have been per-

formed to this scenario (see Sec. 2.3 for the literature review), because very often it

is expected, that the phase transition occurs at later stages of the evolution, either in

the protoneutron star stage or as a cold neutron star. Furthermore, a core-collapse

supernova represents one of the most complex scenarios of astrophysics and its proper

description requires extensive numerical simulations.

As we aim to study the basic effects from quark matter phase transitions on core-

collapse supernovae, we take the very simple but widely applied quark bag model for

the description of quark matter, see Sec. 2.5. We choose the bag constant such that

we obtain an early onset for the phase transition at the density ncrit and a maximum

mass of more than 1.44 M⊙, without enabling absolutely stable strange quark matter.

Within this narrow range we select B1/4 = 162 MeV (eos1 ) and 165 MeV (eos2 ), and a

strange quark mass of 100 MeV as indicated by the Particle Data Group [Par04]. For

the hadronic EOS we use the table of Shen et al. [STOS98a].

For the phase transition to quark matter we assume only global charge neutrality,

thus Case V of Table 7.2 gives the conditions for chemical equilibrium. For the sake

of simplicity, we have neglected finite size effects and Coulomb interactions within the

mixed phase. Supernova timescales are in the range of ms and therefore long enough

to establish equilibrium with respect to weak interactions that change the strangeness

on the timescales of micro-seconds or less. Thus we assumed that strangeness is not

conserved, leading to zero strangeness chemical potential, see Sec. 6.4. The phase dia-

gram using eos1 for different proton fractions Yp is shown in Fig. 9.1. Because several
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Figure 9.1: The onset (thick lines) and the end (thin lines) of the mixed phase from the QCD
phase transition from nuclear matter to quark matter using eos1.

globally conserved charges exist (four), the phase transformation is continuous and very

smooth. The mixed phase extends over a very broad range in density. It would be in-

teresting to repeat the following study, by using different equilibrium conditions, e.g. for

the assumption of local charge neutrality (given by case IV). Additional local constraints

would lead to larger critical densities and decrease the density range of the mixed phase.

Consequently the pressure would increase more slowly with density.

We remark that larger values for the bag constant result in higher critical densities.

The two choices of the bag constants lead to critical densities of ∼ 0.12 fm−3 and ∼ 0.16

fm−3, respectively (for T = 0 and proton fraction Yp = 0.3). However, the small obtained

values for the critical density close to saturation density are not in contradiction with

heavy ion data. In contrast to heavy-ion collisions high-density supernova matter is

isospin-asymmetric with a proton fraction Yp ∼ 0.3. Furthermore the typical expansion

timescale in a relativistic heavy ion collision of 10−22 s, does not allow the equilibration

of any weak reactions. Strangeness is conserved with total strangeness zero. Contrary,

in supernovae the net strangeness can be produced to lower the Fermi momenta of the

other quarks. The additional strange quark degree of freedom and the large asymmetry

energy allow one to obtain small values for ncrit and lead to an early appearance of quark

matter (see Fig. 9.1).

Our choice of parameters is also compatible with the still most precise neutron star

mass measurement of 1.44 M⊙ for the Hulse-Taylor pulsar [LP04]. With eos1 and eos2,

we obtain values for the maximum gravitational mass of 1.56 and 1.50 M⊙ respectively.

Note that higher neutron star masses can be achieved with more sophisticated models of

quark matter [ABD+07]. For B1/4=162 and 165 MeV, almost the entire star is composed

of quark matter, surrounded by a mixed quark-hadronic phase, which is enclosed by a

thin pure hadronic crust.
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Figure 9.2: Neutrino luminosities (a) and (b) and rms-energies (c) calculated at 500 km
radius for a 10 M⊙ progenitor model. The results of the quark EOS eos1 (thin
lines) are compared to the results of the pure hadronic EOS [STOS98a] (thick
lines). A second neutrino burst is clearly visible at ∼ 260 ms after bounce.

For the accurate prediction of the three-flavor neutrino signal, general relativistic

effects may be important. Hence, we choose for our investigation the well-tested general

relativistic description of the neutrino radiation hydrodynamics in spherical symmetry,

that is based on Boltzmann neutrino transport. The simulation is based on the same

computer code which was introduced at the beginning of Sec. 8.7. Quark matter appears

only in optically thick regimes where neutrinos are in thermal and chemical equilibrium

with matter. Thus for this first proof-of-principle study, we use the hadronic weak

interaction rates for the corresponding reactions in the quark phase. The quark chemical

are translated into hadronic chemical potentials by the use of Eq. (5.17) so that weak

equilibrium for neutrinos in quark matter is obtained. Our simulations are launched

from a 10 and a 15 M⊙ progenitor model from Ref. [WHW02].

The standard core-collapse scenario leads to core bounce at nuclear saturation density

and the formation of a shock. This expanding shock looses energy due to the dissociation
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Prog. EOS tpb MQ Mmix MPNS Eexpl BE MG

[M⊙] [ms] [M⊙] [M⊙] [M⊙] [1051erg] [1053erg] [MG]

10 eos1 255 0.850 0.508 1.440 0.44 3.40 1.25

10 eos2 448 1.198 0.161 1.478 1.64 3.19 1.30

15 eos1 209 1.146 0.320 1.608 0.42 4.08 1.38

15 eos2 330 1.496 0.116 1.700 – 4.28 1.46

Table 9.1: Baryon masses of the quark core, MQ, the mixed phase, Mmix, the total PNS,
MPNS , in a late stage when the explosion energies, Eexpl, are positive. BE is
the gravitational binding energy of the corresponding cold hybrid star and MG its
gravitational mass. The pure quark phase first appears at postbounce time tpb.
For the 15 M⊙ progenitor and eos2 at tpb a black hole forms.

of nuclei and the emission of the νe-burst at ∼ 10 ms after bounce (see Fig. 9.2 (a)) and

therefore turns into a standing accretion shock (SAS). The SAS could be revived by

neutrino heating [BW85]. However, explosions in spherically symmetric models with

accurate neutrino transport have only been obtained for a 8 M⊙ ONeMg progenitor star

[KJH06]. The collapse of more massive progenitors leads to an extended postbounce

phase, during which the central protoneutron star (PNS) contracts due to mass accretion.

In our models that allow a transition to quark matter, the onset of the mixed phase

(nB ∼ 0.1 fm−3, T ≃ 10 MeV, Ye ∼ 0.3) is already achieved at core bounce. The initially

reached quark matter fraction at the center of the PNS remains small during the first

50 ms after bounce. In the subsequent compression, the quark matter fraction rises

again and an increasing central region of the PNS enters the mixed phase. The reduced

adiabatic index causes the PNS to collapse.

PNS collapse: At a central density of 4 - 5 times nuclear saturation density the

collapse halts due to the stiffening of the EOS in the pure quark phase. A large fraction

of the PNS is composed of quarks, enclosed by a mixed hadronic-quark phase, which

is surrounded by the infalling hadronic envelope (see Table 9.1). The mixed phase

region shrinks gradually during the PNS collapse as more and more matter converts

from the mixed into the pure quark phase. On this short time scale of ∼ 1 ms, the SAS

remains almost unaffected by this dynamical evolution inside the PNS (see Fig. 9.3).

However, the change in the chemical potentials and the increasing density during the

phase transition establish weak equilibrium at a lower electron fraction Ye ≤ 0.1, while

the mean energy of the trapped νe increases above 200 MeV.

Shock formation and early shock propagation: A subsonic accretion front forms at

the interface between the hydrostatic pure quark phase and the infalling mixed phase
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(thick dashed line Fig. 9.3). The accretion front propagates through the mixed phase,

meets the supersonically infalling hadrons at the sonic point and turns into an accretion

shock (thick dash-dotted line). The high temperature and densities at the shock front

lead to a rapid conversion of hadronic matter into the mixed phase. As the accreted

layers become less dense, the second accretion shock detaches from the mixed phase

boundary and propagates into the pure hadronic phase. This phase was deleptonized

by the continued emission of electron neutrinos after the first neutronization burst.

Weak equilibrium is achieved at an electron fraction ∼ 0.1. When the second shock

runs across this matter, the electron-degeneracy is lifted by shock-heating and the weak

equilibrium is restored at higher values of the electron fraction (Ye ≥ 0.2). The larger

adiabatic index of the hadronic phase turns the accretion shock into a dynamic shock

with positive matter velocities (see thin solid line Fig. 9.3).

Explosion: As the second shock propagates across the steeply declining density gra-

dient in the outer layers of the PNS the shock wave is strongly accelerated. Up to

this point, neutrino transport plays a negligible role since neutrinos are trapped. This

changes when the second shock reaches the neutrino spheres. A second neutrino burst

of all neutrino flavors is released (see Fig. 9.2), dominated by ν̄e stemming from positron

captures that establish the above-mentioned increase in Ye. Due to its compactness the

PNS releases (µ/τ) - neutrinos with significantly higher mean energies as illustrated in

Fig. 9.2 (c). As soon as the expanding second shock merges with the outer SAS, the

scenario resembles the situation of a neutrino-driven explosion mechanism (thin dashed

line in Fig. 9.3), except for the large matter outflow with velocities ∼ 105 km/s. Behind

the expanding matter, a region with matter inflow develops due to neutrino cooling (thin

dash-dotted line). The matter inflow becomes supersonic and produces another standing

accretion shock at the surface of the PNS at a radius of ∼ 50 km. The corresponding

accretion luminosity explains the transient increase of the electron neutrino flavor lumi-

nosities in Fig. 9.2 (a) ∼ 340 ms after bounce. The neutrinos emitted from this cooling

region are partly absorbed behind the expanding shock. After the onset of the explosion

the neutrino luminosities decrease again.

In general, the models with eos1 and eos2 evolve in a qualitatively similar manner.

However, the models with the larger bag constant show a longer PNS accretion time

before the onset of the phase transition due to the larger critical density. This results

in a more massive PNS with a steeper density cliff at its surface. The higher postshock

internal energy and the larger density gradient lead to a stronger second shock accel-

eration at the density cliff and explain the larger explosion energies. In comparison to

the simulations using eos1, the second neutrino burst appears several 100 ms later and

is found to have a larger peak-luminosity. The more massive progenitor stars give an
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Figure 9.3: Velocity profiles at different times during the postbounce evolution of a 10 M⊙

progenitor model based on eos1, illustrating the development of the explosion
through different stages.

earlier onset of the phase transition and result in a more massive PNS with a shallower

density cliff. A special case is the dynamical evolution of the PNS of the 15 M⊙ progen-

itor model using eos2. Almost simultaneously with the formation of the second shock,

the more compact quark core collapses to a black hole.

The goal of this investigation is to predict the general effects of a phase transition to

quark matter in core collapse supernovae. The main result is a strong signature of the

formation of quark matter, if it occurs during the postbounce phase. A second shock

forms inside the PNS, that affects significantly the properties of the emitted neutrinos.

We note that the formation of a second shock caused by the phase transition was already

found in the investigative study of Ref. [GAM+93]. For a Galactic core-collapse super-

nova, the second neutrino burst should be resolvable by the present neutrino detectors.

Unfortunately, the time sequence of the neutrino events from SN1987A [K. 88] was sta-

tistically not significant. While the binding energies of the remaining cold hybrid stars

are in agreement with theoretical estimates for the energy release in SN1987A [Bet90]

further analysis and improvements of the EOS would be required to optimally reproduce

the temporal structure of the neutrino signal. The magnitude and the time delay of the

second neutrino burst provide correlated information about the critical density, the EOS

in different phases and the progenitor model. For low and intermediate mass progenitor

models, the energy of the second shock becomes sufficient to drive an explosion even in

spherical symmetry. We obtain explosion energies of several 1050 erg (see Table 9.1).

The explosion is powered by the accretion of matter into the deep gravitational potential

followed by the shock acceleration at the surface of the PNS. The ejecta contain neutron-

rich material that expands on a fast timescale and should be investigated as a possible

site for the r-process. With respect to the remnant, the narrow range of PNS masses
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found in Table 9.1 may provide an explanation for the clustering of the observed neu-

tron star masses (gravitational) around 1.4 M⊙ (see e.g. [LP04]). The discussed direct

black hole formation at the phase transition could be investigated further in light of the

observed connection between supernovae and γ-ray bursts [Pir05, BBD+03, MHB+03].

The presented analysis should be complemented by multi-dimensional simulations,

to explore the impact of known fluid instabilities that can not be treated in spherical

symmetry. Another interesting scenario would be a weak neutrino driven explosion, fol-

lowed by a fallback-induced QCD phase transition. Since the QCD phase diagram shows

a large variety of color-superconducting phases [RWB+05, SB07], a more sophisticated

quark matter EOS should be adopted. This could lead to a second phase transition

within the quark core of the PNS and would be an interesting extension of the present

study.
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9.2 A New Possible Quark-Hadron Mixed Phase in

Protoneutron Stars

As another application we want to study the quantitative properties of the phase tran-

sition for one of the cases of Chap. 7 by applying the general conditions to specific

equations of state for hadronic and quark matter. For case IIb of Sec. 7.3 we will ana-

lyze the consequences for the protoneutron stars’ evolution during the cooling process

and its stability. We follow the discussion of Ref. [PHSB09] which represents the first

study of a locally charge neutral mixed phase in the context of compact stars.

We assume that the surface tension between the quark and hadron phase is so large,

that the two phases are almost charge neutral, for details see Subsec. 7.1.1. Let us

consider the interface between the two phases: a charge separated interface is formed

with a size of the order of the Debye screening length, ∼ 10 fm, with a layer of positively

charged, electron depleted, hadronic matter on one side and a layer of quark matter

with an excess of the electron on the other side (as discussed in [ARRW01] for the CFL

phase). The interface is stabilized by the resulting electric field.

A calculation of finite size and charge screening effects in the mixed phase for pro-

toneutron star matter, which has fixed entropy per baryon and fixed lepton fraction, has

not yet been performed. Instead of including finite size effects we model this situation

by requiring strict local charge neutrality. This introduces different chemical potential

of charged particles in the two phases, e.g. for electrons. Notice that neutrinos, being

not affected by the electric field, can freely stream across the interface. Consequently,

lepton number is conserved only globally. This additional globally conserved quantum

number has similar effects as the global charge neutrality condition adopted to model

the phase transition for vanishing values of the surface tension.

We already showed that local charge neutrality implies a constant-pressure mixed

phase for cold and catalyzed matter. This is not the case for the hot and lepton rich

matter formed in a protoneutron star due to the conservation of lepton number and

entropy. These additional conserved extensive variables lead to the appearance of a

new kind of mixed phase during the stage of neutrino trapping and its gradual disap-

pearance during deleptonization. The disappearance of the mixed phase at the end of

deleptonization might lead to a delayed collapse of the star into a more compact config-

uration containing a core of pure quark phase. In this scenario, a significant emission of

neutrinos and, possibly, gravitational waves is expected.

We consider here the “standard” conditions of a newly born neutron star, see Sec. 6.2

and Ref. [SPL00]: the matter has a fixed lepton fraction YL = (ne + nν)/nB = 0.4 and
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Figure 9.4: The equations of state are shown for the case of EOS2 for protoneutron star
matter (dashed line) and for cold and catalyzed star matter (solid line). The dots
indicate the onset and the end of the mixed phase in both cases.

fixed entropy per baryon S/NB = 1 where ne, nν and nB are the electron, neutrino and

baryon number densities and S is the entropy. The equilibrium conditions in protoneu-

tron stars for local charge neutrality are given in Table 7.2 by case IIb. In addition we

have pressure and thermal equilibrium. The two phases are locally charge neutral, so

that only the entropy and the lepton number can be shared by the two phases:

(1− χ)(nh
e + nν) + χ(nq

e + nν) = YLnB (9.1)

(1− χ)sh + χsq = S/NnB . (9.2)

The index h denotes the hadronic phase, q the quark phase, and sα the local entropy

density. We used that the neutrino densities are equal in the two phases. χ denotes

the share of the quark phase of the total volume. The last two equations allow to fix

χ and together with temperature and chemical equilibrium the system of equations can

be solved.

To calculate the equations of state of hadronic matter and quark matter we adopt the

relativistic mean field model with the parameterization TM1 for the former [STOS98a]

and the MIT bag model including perturbative corrections for the latter [FPSB01,

ABPR05]. We set the masses of up and down quarks to zero and the mass of the
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Figure 9.5: Density profiles for a star with a baryon mass of 1.9M⊙ for the protoneutron star
stage and the cold configuration. The dots mark the onset and the end of the
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strange quark to 100 MeV. We fix the constant which simulates the QCD perturbative

corrections c = 0.2, and we select two values of the effective bag constant Beff in order

to have a critical density for the phase transition in protoneutron star matter of ∼ n0

and ∼ 3n0 (where n0 = 0.16 fm−3 is the nuclear saturation density), corresponding

to B
1/4
eff = 155 MeV and B

1/4
eff = 170 MeV. The two equations of state are labeled as

EOS1 and EOS2 for the two choices of the effective bag constant. In Fig. 9.4 we show

the equations of state for matter in a protoneutron star (indicated with PNS) and for

cold and catalyzed matter (indicated with “cold”). The remarkable result is that within

the mixed phase, the pressure increases as a function of the density and a large range

of density is occupied by the mixed phase. During deleptonization the pressure in the

mixed phase gradually flattens and finally for deleptonized and cold matter one finds

the usual result of a Maxwell construction with a constant pressure from the onset to

the end of the phase transition. This is in complete agreement with the expectations of

the preceding chapters.

We use now the above presented equations of state to study the structures of pro-

toneutron stars and cold stars. In Fig. 9.5 we show the density profile for a protoneutron

star and the corresponding cold configuration (assuming total baryon number conserva-

tion during the cooling and deleptonization of the newly born star). The mixed phase,
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initially present in a ∼ 2 km large layer of the star, gradually shrinks during the delep-

tonization of the star and finally disappears in the cold configuration. As a result, a

sharp interface separating hadronic matter from quark matter is obtained with a sizable

jump of the baryon density. This shows nicely the evolution from a continuous to a

discontinuous phase transformation during the cooling.

In Fig. 9.6 we show the mass-radius relations for the different cases. The black and

orange thick dashed lines correspond to hybrid protoneutron stars (EOS1 and EOS2

respectively), the black and grey (orange online) thick solid lines correspond to the cold

configurations. Neutron stars mass-radius relations are also shown for comparison (thin

curves labeled with TM1). The new mixed phase appears in a protoneutron star because

the pressure increases with the density. Therefore, we obtain stellar configurations with

a core of pure quark matter, a layer of mixed phase and a layer/crust of hadronic matter

for the case of EOS1 and hybrid stars with only a core of mixed phase in the case of

EOS2. The mixed phase cannot appear anymore in the star for cold and catalyzed matter

because the pressure is constant and only configurations with pure phases are obtained.

As discussed before, a sizable jump of the density occurs at the interface separating

the two pure phases which affects the stability of the stars: at the onset of the phase

transition the stars are gravitationally unstable and only if a sizable volume of the star is
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occupied by the quark phase the stars are stable. The mass-radius relations in this case

correspond to the so called “third family” solutions, see [Ger68, SGST00, SHSG02, BB03]

for a detailed discussion of the properties of these stars.

Concerning phenomenology, an interesting possibility is a delayed transition of a pro-

toneutron star in a third family star during/after deleptonization, which is outlined in

Fig. 9.7. The plot shows the baryon number of the stars as a function of the gravi-

tational mass for protoneutron stars (dashed line) and cold stars (solid line). For the

sake of discussion an intermediate configuration is also included (dotted-dashed line)

corresponding to partially deleptonized matter with YL = 0.25. The insert shows a

magnification of the third family branch of cold hybrid stars. The letter A in the plot

denotes the configuration of a cold neutron star which is unstable with respect to the

collapse to a third family star, indicated by the letter B, with the same baryon number.

The energy released in such a collapse (the difference between the gravitational masses

of the two configurations at fixed baryon number) is of the order of 1051 erg similar to

values found in Ref. [MHB+03]. The letter C marks the maximum mass of cold hybrid
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stars. The letter D stands for the configuration of a protoneutron star for which the

central density is equal to the density of the onset of the phase transition and a core

of mixed phase is formed; the core of mixed phase increases with the central density

and therefore with the mass of the stars. Stellar configurations with a baryon number

lower than A are always composed of purely hadronic matter during the evolution of the

star. Since C is smaller than D, for stellar configurations having baryon number between

the labels A and C the corresponding protoneutron stars do not have quark matter in

the core (neither pure phase nor mixed phase) but during the deleptonization, since the

onset of the phase transition decreases, at a certain point a core of mixed phase forms

(e.g. at point E). As the deleptonization proceeds the mixed phase gradually shrinks, a

pure quark phase core starts to form and finally for fully deleptonized matter the mixed

phase disappears and an hybrid star with pure phases is obtained. Depending on the

detailed dynamics of the formation of the pure quark phase core and the disappearing

of the mixed phase it is possible that the evolution towards the final cold hybrid star

configuration, for stars having a baryon number close to A, proceeds through a gravita-

tional collapse (similarly to the transition from A to B). In that case the gravitational

potential energy is released in a short amount of time and a burst of neutrinos and

gamma rays can be produced as proposed in Ref. [MHB+03] for the collapse to third

family stars. In such a fast dynamics also gravitational waves might be emitted if non-

radial modes are excited. On the other hand it is also possible that the evolution of the

star proceeds through hydrostatical equilibrium configurations, most probably for stars

having a baryon number close to C, and the gravitational potential energy is released

gradually. No strong signature is expected in this case unless finite size effects do play

an important role for the nucleation of the new phase and the hadronic star can be in

a metastable state before converting into a hybrid star [DPP+08]. Finally, stars having

baryon number larger than C will develop a core of mixed phase during deleptonization

and will collapse to a black hole after the full deleptonization (similarly to the results of

Ref. [PSPL01]).

We used here the simple MIT bag model to compute the equation of state of quark

matter but our system of equations for the mixed phase has a general validity. Nev-

ertheless, it would be important to repeat the calculations by using others models like

for instance the NJL model [RWB+06b, SB07, PS08]. We close with remarks about the

interesting properties of the new mixed phase. Because of local charge neutrality no

Coulomb lattice with charged finite structures of the two phases can form. Furthermore,

to minimize the surface energy spherical structures are always favored, which excludes

the occurrence of complex pasta structures. Additionally, the charge neutral structures

can lower there energy by merging. Such locally charge neutral structures can grow



232 The Quark-Hadron Phase Transition

almost arbitrary in size so that asymptotically a full separation of the two phases will

be obtained.

Thus one can expect significant changes of dynamical properties like the neutrino

emissivities and opacities or the thermal conductivity. In such a mixed phase no coherent

scattering of neutrinos with pasta structures can take place [RBP00], as the neutrino

wavelength is much smaller than the size of the structures. A detailed simulation of

neutrino transport within this new mixed phase would be extremely interesting for the

possible implications on the neutrino signal of the changes of the structure of the star

during deleptonization. Also the motion and the interactions of the drops/bubbles within

the mixed phase, in presence of turbulence, might represent an interesting source of

gravitational waves [Meg08]. Finally, the effects of the formation of this new mixed

phase should be investigated quantitatively in supernova simulations and in calculations

of neutrino transport in protoneutron stars.



Chapter 10

Summary

Within my PhD studies I investigated the EOS for hot and dense matter in astrophysics,

with a particular focus on first order phase transitions. My research on the EOS can be

splitted into two parts: on the one hand general thermodynamic concepts, and on the

other hand the concrete application of these concepts to specific models.

We started with an introduction to nuclear astrophysics in Chap. 1 where we ad-

dressed stellar evolution, core-collapse supernovae, neutron stars and nucleosynthesis.

In Chap. 2 we discussed general aspects of QCD, the theory of the strong interactions.

We illustrated that it is not possible to use the QCD Lagrangian directly for applications

in astrophysics because the relevant regime is non-perturbative and also a numerical so-

lution on the lattice is yet not possible. Depending on the state of matter one wants

to describe one has to choose a suitable phenomenological or effective model for the

interactions of the particles so that one can calculate the EOS of bulk matter, i.e. in

the thermodynamic limit. For nucleons I used different relativistic mean-field models,

see Sec. 2.4. They are well-established models for the properties of nuclei and nuclear

matter around saturation density. For larger densities, I applied the quark bag model,

Sec. 2.5, to describe quark matter and the principle effects of deconfinement.

It is possible that a bulk EOS exhibits a first order phase transition. This happens

e.g. at densities below saturation density in the liquid-gas phase transition of nuclear

matter. At densities above saturation density one expects that the first order chiral and

deconfinement transition from hadrons to quarks occurs, see Sec. 2.2. Besides using a

specific model for the bulk EOS, one needs a model for the description of the phase

transition.

In Chap. 3, I presented a system-independent, general classification of first order

phase transitions with arbitrary many components. First order phase transitions can

manifest themselves in two qualitatively different forms, namely as a continuous or a
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discontinuous phase transformation. So far, this aspect has not been worked out in

detail, and sometimes lead to confusion in the literature. In the context of compact

stars there is usually only the distinction between the Maxwell and the Gibbs transition,

and quite often restricted to the case of zero temperature and beta-equilibrium. In a

continuous phase transformation the phase transition occurs via an extended mixed

phase, and the thermodynamic variables change continuously. There is no latent heat

involved in such a phase transformation. In a discontinuous phase transformation one

jumps directly from the first to the second phase, leading to the discontinuous change

of at least one of the extensive variables. Such a phase transformation requires the

release or absorption of latent heat. We could show that first order phase transitions in

an isolated system are always continuous. It was derived that the type of a first order

phase transformation depends only on the number of phases K involved in the phase

transformation, and the number of extensive thermodynamic variables E which are used

as control parameters. The choice of the control parameters depends on how the system

is manipulated to trigger the phase transition. If E ≥ K the phase transformation is

continuous, for E < K discontinuous. This classification is general and can be applied

to any first order phase transition, e.g. also to heavy ion collisions. As an example we

discussed the typical phase transformations and the phase diagram of a substance like

water, for three different sets of control parameters.

In Chap. 4 we turned to some off-equilibrium aspects of first order phase transitions.

The classical thermal nucleation of a multicomponent system was investigated, for differ-

ent forms of finite-size effects. So far, there is no general formalism for multi-component

nucleation in compact stars, and different approaches are used in the literature. Based

on simple thermodynamic arguments I showed, that the most likely nucleation occurs via

a state which is in unstable equilibrium with the heat and particle bath. Nevertheless

all quantum numbers of the entire system are conserved. This has important conse-

quences. For example, one does not have to assume locally fixed fractions to take into

account flavor conservation in the process of deconfinement, which was done in several

published articles. As examples for the particular form of finite-size effects, in Sec. 4.4

we first considered the case of a constant surface tension. We got a nucleation rate in

agreement with the standard result of a one-component system. In Sec. 4.5 we also took

the Coulomb energy of a homogeneously charged sphere into account which lead to a

novel expression for the nucleation rate.

In Chap. 5 we showed how local constraints and internal degrees of freedom can be

taken into account in a phase transition, and how they affect the equilibrium conditions.

In the subsequent Chapter 6, we went away from the general concepts and introduced

the typical state variables which are used for the description of the different stages of the
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evolution of a compact star, from its birth in the supernova, over the cooling protoneu-

tron star to the cold and deleptonized neutron star. In Chap. 7 we then discussed the

phase transitions which can occur in these systems in great detail. It became clear that

under certain conditions one might prefer to use local constraints for the description

of the mixed phase, like e.g. local charge neutrality. We showed that additional local

constraints do not change the general results of Chap. 3. But additional local constraints

may allow a simplified thermodynamic description. For example in case of a strong sur-

face tension and small screening lengths with the assumption of local charge neutrality

one does not need to consider any finite-size effects. Additional local constraints can also

change a continuous to a discontinuous phase transformation, so that no mixed phase

has to be calculated. In this chapter we also presented all the relevant different kind of

mixed phases which can occur in compact stars, and discussed the general features of

the corresponding phase transformations.

The detailed study of the thermodynamics of first order phase transitions lead to the

discovery of some new effects which have not been discussed in the literature so far. It

was anticipated that it is not possible to form a sharp (macroscopic) interface between

quark and hadronic matter (a discontinuous phase transformation) in protoneutron stars.

Instead a hadron-quark mixed phase must always exist, which can disappear potentially

only after the deleptonization and the cooling of the star. This idea was then studied

quantitatively in Sec. 9.2 where we applied the quark-bag model. We investigated the

possible effects on the temporal evolution of newly born hybrid stars in the scenario of

a delayed transition of a neutron star to a third family star.

One of the most important topics of the thesis is the development of a complete

supernova EOS, the excluded volume nuclear statistical equilibrium (ExV-NSE) model

which was presented in Chap. 8. The approach is a phenomenological model for nuclear

matter below saturation density which gives a detailed description of the liquid-gas phase

transition. The interactions of the unbound nucleons are described with the relativistic

mean-field model and two different parameter sets TM1 and TMA. All nuclei are treated

as separate particle species, using the experimental mass table of Ref. [AWT03] and the

theoretical nuclear structure calculations of Ref. [GTM05]. A simple description of

excited states and Coulomb energies was implemented. Most importantly, we derived

a new thermodynamic consistent formulation of the medium effects on light clusters

and heavy nuclei by the excluded-volume approach. This approach assures that nuclei

can not exist above saturation density and that the unmodified RMF description is

achieved if nuclei are not present. Furthermore, the RMF interactions of the nucleons

are coupled to the nuclei via chemical equilibrium. The ExV-NSE generalizes the model

for the outer crust of cold neutron stars which I studied in my diploma thesis, see
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Ref. [RHS06, HS08, GHSM07], to finite temperatures and arbitrary densities. It gives

a consistent bridge from ordinary nuclei like they exist here on earth, to the densities

where quark matter is expected to appear.

After presenting the model we discussed the composition and the EOS for typical

supernova conditions and compared the results with the two commonly used supernova

EOSs of Lattimer and Swesty, and Shen et al. The EXV-NSE model contains innovative

features, which are not contained within the two other EOSs. Most important is the

inclusion of all light clusters and the entire distribution of heavy nuclei. Thus it repre-

sents the first consistent model beyond the single nucleus approximation. We showed

that the light clusters play a particular role at large temperatures and that the alpha-

particle approximation fails under many conditions. The distribution of nuclei leads to

some important differences in thermodynamic variables in the transition region from

unbound nucleons to nuclei. We compared the ExV-NSE with the statistical multifrag-

mentaion model (SMM) of Botvina and Mishustin in Sec. 8.4. Due to the shell effects

in the nuclear masses, the ExV-NSE gives peaks around the magic nuclei on top of the

smooth distributions of the liquid-drop formulation used in the SMM. Otherwise the

two models lead to similar results for the mass, charge and isotope distributions. Only

for conditions where the neutron drip has occurred, significant differences were found,

which were most apparent in the isotope distributions. In Sec. 8.5 we studied the role of

the excited states of nuclei further, by comparing with the internal partition functions

of Rauscher et al., some experimental data and the temperature dependent part of the

binding energies of the SMM. It was found that the simple degeneracy function used in

the ExV-NSE gives a rather conservative estimate for the effects of excited states. Most

importantly, we figured out that it is necessary to introduce a cutoff for the maximal

excitation energy, otherwise the contribution of excited states to the energy density can

become arbitrary large, leading even to an unphysical behavior of the EOS. In Sec. 8.6

we compared the excluded volume approach with two quantum many-body models. The

agreement was satisfactory, and the most important qualitative features are reproduced

with the ExV-NSE. The differences among the three models are of similar size. Only at

very low temperatures significant differences are observed for the light clusters with the

ExV-NSE model. However, it was shown that under these conditions, the composition is

actually dominated by heavy nuclei, which are not included in the quantum many-body

models.

With the EXV-NSE model one can calculate new EOS tables rather quickly. This

allows to explore the role of certain aspects of the EOS in simulations, like e.g. different

nuclear interactions which give different symmetry energies. In Sec. 8.7 we presented

results of some first preliminary supernova simulations which were done in collaboration
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with the Basel group around Matthias Liebendörfer and Tobias Fischer. Two different

ExV-NSE EOSs and the Shen EOS were compared. With this comparison we could

identify the impact of different aspects of the EOS in supernovae. We only got small

differences, which is convenient, because only the thermodynamic differences of the EOS

had been taken into account. Still we came to the conclusion that the model for the low-

density EOS is more important than the change of the parameterization of the nuclear

interactions. In more detail, the important effect of the additional light clusters in the

ExV-NSE became apparent in the core-collapse supernova simulations.

As a very exciting example of the role of the EOS and first order phase transitions

in core-collapse supernova, in Sec. 9.1 we found that an early phase transition to quark

matter can lead to a successful energetic explosion. After quark matter appears a second

shock wave forms, which merges with the standing accretion front and finally triggers

the explosion. A second anti-neutrino burst is released which gives information about

the critical density for the onset of deconfinement.
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Outlook

There exist important experimental constraints on the EOS at low and high densities

which should be fulfilled by a realistic equation of state. It is important to study these

constraints further. For example, there are some recent measurements of the low-density

symmetry energy, which can only be explained if the cluster formation in nuclear matter

is taken into account [KNS+07, NRT+10]. From a theoretical point of view, the com-

parison with the quantum many-body models of Röpke and Typel given in Sec. 8.6 is an

important benchmark regarding the high temperature EOS which is dominated by light

clusters. To probe different conditions it would be good to compare the ExV-NSE with

a detailed calculation of the inner crust of a cold neutron star, using the same nuclear

interactions. This would be a perfect check for the low temperature EOS where heavy

nuclei are embedded in a free neutron gas and changes of the nuclear structure can be

expected.

We just started with the application of the EXV-NSE model in core-collapse super-

novae. It would be interesting to examine different nuclear interactions, which result in

more pronounced differences of the high-density part of the equation of state than TM1

and TMA. In this context, the role of the symmetry energy is of particular interest. Es-

pecially the FSUgold parameterization of the relativistic mean-field model is promising,

because of the well constrained behavior of the symmetry energy. As discussed at the

end of Sec. 8.7 we expect that FSUgold would release more gravitational binding energy

which is deposited more easily in the shock. By understanding the impact of the EOS

in core-collapse supernovae further, one might find some more insight which aspects of

the EOS help to achieve a robust supernova mechanism.

Furthermore, the EXV-NSE model contains some new nuclear physics aspects which

could be investigated further. One possibility would be the consideration of the dis-

tribution of nuclei for the electron and neutrino capture rates. One had to study the
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underlying weak reactions and how they can be implemented into simulations. Such

a project would naturally give a direct connection to nucleosynthesis calculations and

would require close collaborations with people who do simulations. It is convenient that

the same nuclear input of the ExV-NSE model is also used in nucleosynthesis calcu-

lations. Thus it can give a better connection between supernova and nucleosynthesis

calculations than the existing equations of state.

The model for the low-density equation of state itself could also be developed further.

For example a more detailed treatment of the Coulomb energy of a multi-component

plasma at finite temperature could be implemented. Another aspect would be the more

detailed description of the excited states of nuclei. I already started to study a different

formulation of the excluded volume effects, which might be more physical and could help

to resolve the difficulties in the transition to uniform nuclear matter. Another future

project could be to combine a quantum many-body model for the medium effects of the

light clusters with the excluded volume approach for the heavy nuclei in a new NSE

model.

One has just started to analyze the consequences of phase transitions in the context

of core-collapse supernovae. There are still plenty of exciting scenarios which have not

been studied so far. For example one could investigate the implications of different

descriptions of the mixed phase of quarks and hadrons. To take the dynamics of the

nucleation of the quark phase into account, one had to implement estimated nucleation

timescales into supernova simulations and had to consider the possible occurrence of

metastable states in the EOS. This would be a nice application of the nucleation rates

which have been derived in Chap. 4. A non-equilibrium phase transition is connected

with the release of latent heat and a discontinuous behavior of the equation of state.

This would directly cause the formation of shocks and the phase transition would be

much more violent.

The inclusion of strange degrees of freedom both in the hadronic and quark part of

the equation of state would also be interesting. As was shown in Ref. [SHP+09] the

additional strange quark degrees of freedom can significantly lower the critical density

for the onset of deconfinement. So far, weak equilibrium with respect to strangeness

changing reactions was always assumed in such studies. Instead one could explicitly

take the strangeness conservation during the deconfinement process into account. To

achieve a consistent description it would be necessary to include strange hadronic degrees

of freedom in the equation of state as well, which would be an interesting study by its

own.
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A unified supernova equation of state which includes quark and hadronic degrees

of freedom in a consistent manner is very desirable. A further extension could be the

consideration of finite size effects in the hadron-quark phase transition, which then also

fix the size of the quark bubbles in the hadronic phase. So far, for quark matter only the

quark bag model was applied in the context of core-collapse supernovae. One of the next

steps could be the use of more microscopic models than the quark-bag model and thus

to deal more with the quantum field theoretical aspects. For example the (Polyakov-

loop) NJL model for the quarks would be a significant improvement as it contains chiral

symmetry restoration and further (first order) phase transitions to color-superconducting

phases.

Apart from nuclear astrophysics, also the connection to neighboring areas like nu-

clear physics or heavy ion physics is of interest, as they provide important experimental

constraints. So far, in high-energy heavy ion collisions only the cross-over region of the

QCD phase diagram is explored, which is phenomenological very different to a first or-

der phase transition. In the future, at the FAIR facility at GSI one tries to reach the

first order region. Then the physics of heavy ions and neutron stars will come closer

together. The concepts for the description of the phase transition and mixed phases in

neutron stars might then also become relevant for heavy-ion collisions. At lower energies,

radioactive ion beams at FAIR and other facilities will allow the measurement of very

exotic neutron rich nuclei in the future. This will constrain the supernova EOS further.

Obviously, the comparison with astronomical data is of great importance. Hopefully,

some new observations of neutron stars will finally lead to stringent constraints which

rule out some of the exceedingly many different scenarios for the high-density behavior

of the EOS. Especially the observation of a galactic supernovae with modern telescopes

and neutrino detectors seems to be promising to give new information about the two

“Science Questions for the next century”, which were cited in the introduction. A galac-

tic supernova could help to resolve the quests for the understanding of the supernova

mechanism, the site of nucleosynthesis and the possible phase transition to quark matter.
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