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2. Abbreviations and definitions 
 
AJs adhering junctions: collective term including all cadherin-based cell-

cell junctions and half junctions such as desmosomes, adherens      

junctions (puncta, fascia, zonula) as well as the composite junctions 

ARVC  - arrhythmogenic right ventricular cardiomyopathy 

ARVCF - armadillo repeat gene deleted in velo-cardio-facial (syndrome) 
 

Cad - cadherin 
 

cDNA  - complementary deoxyribonucleic acid 
 

DP  - desmoplakin 

Dsc  - desmocollin 

Dsg  - desmoglein 
 

EpCAM - epithelial cell adhesion molecule  
 

JAM  - junctional adhesion molecule 
 

IF  - intermediate-sized filament 

IP  - immunoprecipitation 
 

mabs  - monoclonal antibodies 
 

PAGE  - polyacrylamide gel electrophoresis 

PBS  - phosphate buffered saline 

PCR  - polymerase chain reaction 

PG  - plakoglobin 

Pkp  - plakophilin 
 

RNA  - ribonucleic acid 

RT-PCR - reverse transcriptase - polymerase chain reaction 
 

SDS  - sodium dodecylsulfate 

siRNA  - small interference RNA 

 

- 
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4. Summary 
 

According to the prevailing textbook dogma there are two – and only two – distinct types of 

cell-cell connecting, calcium-dependent adhering junctions (AJs) characterized by dense 

cytoplasmic plaques which frequently anchor cytoskeletal filaments and represents 

architecturally and functionally important structures of epithelia and epithelia-derived tumor 

cells, including all carcinomas. These are the intermediate-sized filament-anchoring 

desmosomes (maculae adhaerentes) and the microfilament-anchoring adherens junctions 

which can appear in various sizes and morphotypes (puncta, fasciae, zonulae).               

The molecular composition of both kinds of AJs is by and large known and the molecule-

specific diagnostic antibodies are used in cell and developmental biology as well as in 

diagnostic pathology. By comparison, very little is known as to the molecular composition 

of the AJs that connect non-epithelial cells, notably those of mesenchymal tissues and 

mesenchymally derived tumors.  

Therefore and because of the general need for an improved immunocytochemically 

based armamentarium of diagnostic reagents and therapeutic methods, it has been the 

aim of this thesis to provide a first cell and molecular biological basis for the diagnostic 

identification and characterization of such AJs from mesenchymal-derived tumors. As I had 

initially noted marked ultrastructural and compositional differences between various AJ 

subtypes connecting non-epithelial cells I have selected for my research five specific novel 

kinds of such junctions which are distinguished by their molecular ensembles and 

organizations.  

A first and widely occurring type is presented by AJs that have acquired, in addition 

to a "mesenchymal type" basis ensemble of N-cadherin and/or cadherin-11 as trans-

membrane glycoproteins and a plaque assembled by some armadillo-type proteins 

including β-catenin, plakoglobin, proteins p120, p0071 and/or ARVCF together with       

actin microfilament-binding proteins such as α-catenin and α-actinin, the major plaque 

protein plakophilin-2 (Pkp2), not infrequently together with Pkp3. These molecules have 

hitherto only been known as important organizational building stones of desmosomes and 

certain desmosome-related junction forms such as the areae compositae of the heart 

muscle connecting cardiomyocytes. I have demonstrated the occurrence of AJs comprising 

Pkp2 – with or without Pkp3 – (coniunctiones adhaerentes) in several mammalian cell lines 

as well as in some tumors in situ, including tumor types for which this protein appears to be 

a general and diagnostically useful molecular marker such as cardiac myxomata. Based on 

a series of first experiments with siRNA-mediated gene product reduction experiments and 

on recent insights of a general role of Pkp2 as a cell-cell-attachment stabilizing protein as 

in the mammalian heart, I discuss the acquisition of Pkp to AJs of mesenchymally-derived 
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cells as a possible enhancer of structural stability and as obviously advantageous in cell 

proliferation. Therefore, I propose generally to distinguish the two major categories of 

mesenchymal AJs, those with and those without Pkp molecules. 

 As a third and functionally different, novel cadherin arrangement form I have 

discovered, in certain subtypes of human melanomas and melanocytes growing in cell 

culture, widely spread, surface membrane-integrated desmoglein Dsg2 glycoproteins 

which apparently occur as frequent but solitary molecules over rather extended areas of 

cell-cell contacts, i.e. without any junction-like local clustering. Detailed characterization of 

these Dsg2 molecules by biochemical as well as immunofluorescence and immunoelectron 

microscopy methods has revealed that they obviously exist out of any desmosomal 

complex and context. A special contribution of these Dsg2 molecules to cell-cell adhesion 

and cell recognition processes seem plausible and may contribute to special heterotypic 

cell associations and metastatic processes. 

 Finally, and this is certainly the most unexpected and though-provoking observation 

that I have followed in my thesis, I have characterized again by biochemical as well as 

immunofluorescence and electron microscopy methods and even in cell cloning series, the 

spontaneous, uninduced, often cumulative syntheses of cell junction molecules in long-

established human hematopoietic cell culture lines (e.g., K562, RPMI 8226) and their 

assemblies to variously-sized and -structured cell-cell junctions. I have identified diverse 

types of cell-cell connection structures of the AJ category the vast majority of which are 

based on plasma membrane clusters of Dsg2 which rarely occurred in complexes with 

desmocollin Dsc2 and/or the major desmosomal plaque protein, desmoplakin, but more 

frequently were found inserted in plaque-like assemblies of Pkp2, with or without Pkp3, 

plakoglobin or rather rarely other armadillo-type junction proteins. Remarkably, even in the 

electron microscope some of these Dsg2-based AJs cannot be readily distinguished from 

true desmosomes. However, these punctate AJ structures based on desmosomal cadherins 

are not the only cell-cell contact structure contributions to the formation of tissue-like        

cell layers or even three-dimensional structures: Relative large amounts of the cell adhesion 

glycoprotein, epithelial cell adhesion molecule (EpCAM), are often also synthesized in these 

cells and accumulate on the plasma membrane, where they are anchored in extended 

subplasmalemmal plaque-assemblies rich in afadin, vinculin and α-actinin. It is obvious that 

such accumulations of carcinoma-characteristic molecules and structures now present a 

disturbing dilemma in tumor diagnosis and for therapeutic treatments. This spontaneous 

change of cell differentiation properties as well as of cell character and behavior is 

discussed, also in relation to corresponding observations in the literature.  

 The finding of such very different AJ structures connecting non-epithelial tumor cells 

have indicated that the textbook chapter on cell-cell junctions in cell and tumor biology 

should be reopened and filled with facts of ultrastructural and molecular analysis. 
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5. Zusammenfassung 
 

Nach dem herrschenden Lehrbuch Dogma exestieren zwei – und nur zwei – verschiedene 

Typen von zell-zell-verbindenden, Calcium-abhängigen Zellkontakten ("Adhering 

Junctions", AJs), die durch dicht-gepackte zytoplasmatische Plaques gekennzeichnet sind 

und so regelmäßig Filamente des Zytoskeletts verankern. AJs sind somit architektonisch 

und funktionell wichtige Strukturen, die bisher insbesondere in Epithelien und davon 

abgeleiteten Tumoren, vor allem den Karzinomen, untersucht worden sind.                     

Hier unterscheided man vor allem zwischen den Intermediärfilamente verankernden 

Desmosomen (Maculae adhaerentes) und den Mikrofilament-Bündel verankernden 

Zellkontakten der Adherenz-Kategorie, die in verschiedenen Größen und Morphotypen 

vorkommen (Puncta, Fasziae, Zonulae). Die molekulare Zusammensetzung dieser beiden 

AJ-Arten ist weitgehend bekannt, und spezifische molekular-diagnostische Antikörper 

werden routinemäßig in der Zell- und Entwicklungsbiologie sowie der diagnostischen 

Pathologie eingesetzt. Im Vergleich dazu ist sehr wenig über die molekulare 

Zusammensetzung der AJs, die nicht-epitheliale Zellen verbinden, bekannt, insbesondere 

die der mesenchymalen Gewebe und der mesenchymal-abgeleiteten Tumore. 

Aus diesem Grund und wegen des allgemeinen Bedarfs an verbesserten 

immunzytochemisch-diagnostischen Reagenzien und molekular-therapeutischen Ansätzen 

war es das Ziel dieser Dissertation, eine zellbiologische und molekular-analytische 

Grundlage für die diagnostische Identifizierung und Charakterisierung solcher AJs von 

mesenchymal-abgeleiteten Tumoren zu liefern. Bereits zu Beginn meiner Untersuchungen 

hatte ich markante Unterschiede der Ultrastruktur und der molekularen Zusammensetzung 

bei verschiedenen AJ-Formen mesenchymaler Zellen festgestellt. Daher habe ich für meine 

weiteren Untersuchungen fünf neue und besonders auffällige Arten solcher AJs 

ausgewählt. 

Der erste neuartige und weitverbreitete AJ-Typ ist einer, der ein grundlegendes 

"mesenchymales" Ensemble von N-Cadherin und/oder Cadherin-11 als transmembrane 

Glykoproteine aufweist, die in einem subplasmalemmalen Plaque verankert sind, der von 

typischen armadillo Proteinen wie β-Catenin, Plakoglobin, den Proteinen p120, p0071 

und/oder ARVCF sowie den Aktin-Mikrofilamente-bindenden Proteinen α-Catenin und        

α-Actinin gebildet wird, hier aber zusätzlich das bedeutende Plaque-Protein Plakophilin-2 

(Pkp2), oft zusammen mit Pkp3, enthält. Dieses Protein ist bisher nur als wichtiger 

organisatorischer Baustein von Desmosomen und bestimmten desmosomen-ähnlichen   

AJ-Formen wie der Areae compositae des Herzmuskels bekannt. Ich habe das Vorkommen 

solcher Pkp2-haltigen AJs – mit oder ohne Pkp3 – (Coniunctiones adhaerentes) in 

verschiedenen Säugetier-Zellkulturlinien gezeigt. Des Weiteren wurden diese AJs in einigen 
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Tumoren in situ nachgewiesen, einschließlich bestimmter Tumore, bei denen dieses Protein 

durchweg ein diagnostisch relevanter molekularer Marker zu sein scheint, wie zum Beispiel 

den kardialen Myxomen. Basierend auf ersten Experimenten mit einer siRNA-vermittelten 

Genprodukt-Reduktion und ausgehend von jüngsten Erkenntnissen über eine allgemeine 

Rolle von Pkp2 als stabilisierendes Zell-Zell-Verbindungs-Protein wie z.B. im Säugetier-

Herz, diskutiere ich die Möglichkeit dass eine Integration von Pkp-Molekülen in AJs von 

mesenchymal-abgeleiteten Zellen wesentlich zur strukturellen Stabilisierung und Festigkeit 

beiträgt und vor allem einen Vorteil beim Zusammenhalten proliferierender Zellen darstellt. 

Ich schlage deshalb auch vor, in Zukunft bei solchen Tumoren zwischen Pkp-positiven und 

Pkp-negativen Tumoren zu unterscheiden. 

Als dritte und strukturell völlig verschiedene Cadherin-Anordnung habe ich in einigen 

Subtypen von in Zellkultur-gewachsenen menschlichen Melanomen und Melanozyten das 

weit verbreitete in die Plasmamembran integrierte Glykoprotein Desmoglein Dsg2 entdeckt, 

dass dort sich offenbar regelmäßig in einzelnen Molekülen über große Areale der 

Zelloberfläche hin erstreckt und in Spiegelbild-symmetrischer Anordnung Zellen verbindet. 

Die Charakterisierung dieser Dsg2-Moleküle durch biochemische sowie immunfluoreszenz- 

und immunelektronenmikroskopische Methoden hat gezeigt, dass sie offensichtlich 

außerhalb jedes AJ-Zusammenhangs vorkommen und nicht mit anderen Cadherinen oder 

mit Plaque-Proteinen zu cis-Komplexen verbunden sind. Ein besonderer Beitrag dieser 

Dsg-Moleküle zu Zell-Zell-Adhäsions- und Zell-Erkennungprozessen scheint aber durchaus 

plausibel und kann daher unter Umständen eine Rolle in Zell-Zell-Verbänden und bei 

Metastasierungs-Prozessen spielen. 

Sicherlich die am meisten unerwartete und auch herausfordernde Beobachtung, die 

ich in meiner Dissertation verfolgt habe und ebenfalls durch biochemische sowie 

immunfluoreszenz- und elektronenmikroskopische Methoden aber auch in Zellklonierungs-

Serien belegt habe, ist die spontane, nicht induzierte, oft kumulative Synthese von 

Zellverbindungsmolekülen in bereits seit langem etablierten hämatopoetischen 

Zellkulturlinien (K562, RPMI 8226) und die Ansammlung solcher Moleküle zu einem 

Spektrum von Zell-Zell AJ-Strukturen. Ich habe verschiedene Arten von unterschiedlich 

großen, meist punktförmigen Zell-Zell-Verbindungs-Strukturen der AJ-Kategorie identifiziert, 

von denen die große Mehrheit auf distinkte Dsg2-Plasmamembran-Anhäufungen basiert, 

die selten auch in Verbindung mit Desmocollin Dsc2 bzw. dem wichtigen desmosomalen 

Plaque-Protein, Desmoplakin, auftreten. Am häufigsten habe ich AJ-Plaque-ähnliche 

Zusammensetzungen mit Pkp2 – mit oder ohne Pkp3 – mit Plakoglobin bzw. eher selten mit 

anderen armadillo Proteinen nachgewiesen. Diese punktförmigen AJ-Strukturen, welche auf 

desmosomalen Cadherinen basieren, können selbst in elektronenmikroskopischen 

Aufnahmen nicht von echten Desmosomen unterschieden werden. Sie sind aber nicht die
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einzigen Zell-Zell-Kontaktstrukturen, die zur Bildung von epithel-ähnlichen Zellschichten 

oder sogar drei-dimensionalen Strukturen beitragen. Zusätzlich können solche 

hämatopoetischen Zellen auch relativ große Mengen des Zelladhäsions-Glykoproteins 

"Epithelial Cell Adhesion Molecule" (EpCAM) synthetisieren welches sich an der 

Plasmamembran anreichert – zunächst in punktförmiger, dann in kontinuierlicher plaque-

artigen Struktur – wo es in erweiterten subplasmalemmalen Plaques verankert wird die 

reich an Afadin, Vinculin und α-Actinin sind. 

Es ist offensichtlich, dass solch unerwartete Analyseergebnisse, vor allem etwa die 

zuletzt geschilderte Anhäufung von Karzinom-charakteristischen Molekülen und Strukturen 

in mesenchymalen Tumoren erst recht in unizellulären Bluttumorzellen, in der 

Tumordiagnostik und für die therapeutische Behandlung, Beunruhigungen hervorrufen. 

Diese spontanen Veränderungen der Zell-Differenzierungs-Eigenschaften sowie des Zell-

Charakters und -Verhaltens werden in Bezug auf entsprechende vereinzelte Angaben in der 

Literatur diskutiert. In jedem Fall hat die Feststellung solcher sehr unterschiedlicher         

AJ-Strukturen, in nicht-epithelialen Tumorzellen gezeigt, dass die Lehrbuchkapitel über Zell-

Zell-Kontakte in der Zell- und Tumorbiologie wiedereröffnet und mit Fakten der 

ultrastrukturellen und molekularen Analyse erneut und verbessert dargestellt werden 

sollten. 
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6. Introduction 
 

During the past decades the cell and molecular biological discoveries of cell type-specific 

cytoskeletal and junctional molecules and their applications as immunocytochemical 

“markers” have been of increasing importance in clinical tumor diagnosis. One of the major 

improvements in the armamentarium of such diagnostically useful marker proteins was   

the definition of diverse types of the intermediate-sized filaments (IFs) forming major       

cell type-characteristic cytoplasmic structures in normal and malignantly transformed cells 

(e.g., Franke et al., 1978a, 1979b; Osborn and Weber, 1983; Banks-Schlegel, 1989; Fuchs 

and Weber, 1994). In particular the various keratins (“cytokeratins”) are synthesized in cell 

type-specific patterns characteristic of certain epithelial and hair follicle cell types and also 

in tumors derived therefrom (Franke et al., 1978b, 1979a, b., 1981; Sun et al., 1979; 

Bannasch et al., 1980, 1981; Gabbiani et al., 1981; Moll et al., 1982; Moll and Franke, 

1986; Moll, 1993; for recent reviews see Chu and Weiss, 2002; Moll et al., 2008). 

Similarly, the molecular analysis of the intercellular junctions that often also      

serve as intracellular anchorage structures of the IF bundles, the desmosomes      

(maculae adhaerentes), has revealed cell type-specificity of their molecular composition. 

And this again has provided another set of valuable markers in tumor diagnostics, 

especially for the detection and characterization of carcinomas, including markers for 

stratified squamous epithelium-derived carcinomas (e.g., Franke et al., 1981, 1982, 1983b; 

Cowin and Garrod, 1983; Müller and Franke, 1983; Moll et al., 1986; Parrish et al., 1986; 

for recent reviews see Godsel et al., 2004; Holthöfer et al., 2007; Garrod and Chidgey, 

2008; Schmidt and Koch, 2008; Franke, 2009). 

The identification of the specific cell type under question and its level of 

differentiation is an essential part of tumor diagnosis, not only with respect to the histogenic 

origin but also as a basis for a prognosis as well as therapeutic decisions. In contrast, 

however, if it comes to questions of cell typing in the field of non-epithelial tissues and their 

tumors, the analytical knowledge and the availability of diagnostic marker proteins is still 

relatively poor. Therefore, in the study for my thesis I have systematically examined the 

molecular composition of potential marker structures of diverse cell types and tumors of 

non-epithelial origin, in particular the molecular components of the junctions connecting 

mesenchymal tumor cells. 
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6.1. Soft tissue tumors 
 

The cytoskeletal and junctional molecules of tumors not derived from epithelia and neural 

cell types but from cells commonly subsumed under the collective term "mesenchymal" or 

"mesenchymal-derived" cells and the corresponding tumors, also known as “soft tissue 

tumors”, have not yet been systematically examined. Obviously these tumors are a very 

heterogeneous group, including tumors of connective tissue cells, diverse muscle types, 

bone or cartilage cells as well as tumors of vascular and blood-forming cells or lymphatic 

tissues (for recent reviews see e.g., Miettinen, 2003; Weiss and Goldblum, 2007). As some 

of these tumors still present great diagnostic and therapeutic problems, there have been 

several attempts over the past few decades to develop a useful diagnostic methodology 

and a comprehensive classification of the various soft tissue tumors (e.g., Lattes, 1983; 

Altmannsberger and Osborn, 1987; Weiss and Goldblum, 2001; Fletcher et al., 2002). 

Soft tissue tumors are a highly multifarious group of tumors, comprising more than 

50 histological subtypes. The aetiology of most benign and malignant soft tissue tumors is 

still unknown, although recent results suggest that most of them directly form from bone 

marrow-derived or soft tissue-resident mesenchymal cells (for references and discussions 

see Miettinen, 2003; Iwasaki et al., 2009). For example, the benign forms arising in more 

than 90 % dermally or subcutaneously often have a limited capacity for autonomous 

growth. Nearly one-third of benign soft tissue tumors are lipomas, one-third "fibrohistiocytic" 

and fibrous tumors, 10 % vascular and 5 % nerve sheath tumors (Fletcher et al., 2002; 

Miettinen, 2003; see there for references). Furthermore, benign soft tissue tumors 

outnumber malignant ones by at least two orders of magnitude.  

Despite the fact that these tumors develop from mesenchymal elements, which 

represent almost two-third of the human body mass, malignant soft tissue tumors            

are rather uncommon tumors (Fletcher et al., 2002). Compared with carcinomas, they are 

relatively rare and constitute less than 1 % of all malignant cancers (Parker et al., 1996; 

see there for further references). On the other hand, the malignant tumors, generally known 

as sarcomas, are often locally aggressive and capable of both invasive and destructive 

growth and distant metastasis. The large majority of sarcomas seem to arise 

"spontaneously", i.e., without any obvious causative factors, whereas chemical  

carcinogens or radiation are rarely involved and certain viral infections have been reported 

to play a role in the formation of some sarcomas (cf. Eriksson et al., 1981, 1990;      

McClain et al., 1995; Karlsson et al., 1998; Weiss et al., 1998; Weiss and Goldblum, 2007). 

They can occur practically anywhere in the body but are preferentially located in the 

extremities. Sarcomas can be developed at any age and are more common in males, but



Introduction 

 

 12

gender and age-related incidences vary amongst the specific histologic tumor types      

(see e.g., Weiss and Goldblum, 2001). While embryonal rhabdomyosarcoma and 

neuroblastoma develop almost exclusively in children, synovial sarcoma "Ewing-type 

tumors" and the alveolar rhabdomyosarcomas occur mostly in juvenile persons and young 

adults. Furthermore, malignant fibrous histiocytomas, liposarcomas or special 

fibrosarcomas as well as leiomyosarcomas are tumors mostly found in elderly persons. 

Since histochemistry, including hematoxylin-eosin-staining and immunohisto-

chemistry, are the most effective and cost-efficient ways to obtain correct diagnoses, these 

methods are widely used for soft tissue tumor diagnosis (for reviews see Folpe and Gown, 

2001; Fletcher et al., 2002; Miettinen et al., 2003; Weiss and Goldblum, 2007). 

Nevertheless, electron microscopy, protein gel electrophoresis followed by immunoblot 

("Western blot"), and polymerase chain reaction (PCR) analysis are also widely used for 

the detection, typing and staging of these tumors (e.g., Weiss and Goldblum, 2001; 

Miettinen et al., 2003). 

While it is believed in a remarkably large part of the medical community that most 

soft tissue tumors can be diagnosed precisely and easily with conventional routine 

stainings of aldehyde-fixed, paraffin-embedded tissue sections, recent trials have revealed 

that the percentage of incorrect diagnoses not only of soft tissue tumors but also of 

carcinomas can be unexpectedly high in some forms, in particular if no appropriate 

immunohistochemistry has been applied (e.g. Rüdiger et al., 2002; Wetherington et al., 

2002; for discussions of general methodological consequences and problems see also 

Wick et al., 1999; Taylor, 2000; Seidal et al., 2001; Wick and Mills, 2001; Rüdiger et al., 

2003). In some specific soft tissue tumors, for instance the dermatofibrosarcoma 

protuberans, the accuracy was as low as 21 % (Rüdiger et al., 2003). Furthermore, in a 

critical review, 159 sarcomas diagnosed as pleomorphic malignant fibrous histiocytomas 

have been re-assessed using morphological as well as immunohistochemical and 

ultrastructural methods (cf. Fletcher, 1992). Unexpectedly, however, of these malignant 

fibrous histiocytomas, 97 cases (63 %) proved to be specific sarcomas, 20 turned out as 

non-mesenchymal neoplasms, and 42 cases were unclassifiable, however, only 13 % were 

eligible for consideration as malignant fibrous histiocytomas (Fletcher, 1992). These 

examples show the frequency of false diagnoses of non-epithelium-derived tumors and 

consequently point to the general and urgent need for an improvement and broadening of 

the spectrum of available immunohistodiagnostic markers, especially as most of these 

tumors prominently appear in younger patients. Thus, one has to conclude that at present 

the “catalog” of diagnostic markers for soft tissue tumors is still rather small and insufficient 

(see, e.g., Folpe and Gown, 2001; Fletcher et al., 2002; Miettinen, 2003). 
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6.2. The cell-cell adhering junctions connecting the cells of mesenchymally-
derived tumors 
 

As the general immunohistodiagnostic experience has shown, the architectonic proteins of 

frequent and relatively stable, e.g., cold stable and extraction-resistant structures are the 

most promising candidates for immunohistochemistry (see the developments of carcinoma-

specific reagents mentioned at the beginning of this chapter), it was obvious that next to 

the IF proteins the components of cell-cell junctions would be of special diagnostic interest, 

as they often are also critically involved in tumor cell invasion, segregation and metastasis. 

Moreover, they are also target structures in several recent therapeutic approaches such as 

in the application of reagents interfering with N-cadherin (Li et a., 2007; Shintani et al., 

2008; Perotti et al., 2009; for recent review see Blaschuk and Devemy, 2009) or epithelial 

cell adhesion molecule (EpCAM)-based cell-cell connections (Naundorf et al., 2002; Punt 

et al., 2002; Hartung et al., 2005; Brischwein et al., 2006; for recent reviews see Baeuerle 

and Gires, 2009; Deonarain et al., 2009). 

This holds in particular as several pathologists have demonstrated that the 

ultrastructural morphology of the cell-cell contact structures of diverse kinds of non-

epithelium-derived tumors appear to be different from the cell-cell junctions characterized 

so far. These authors have often used carefully chosen special names to refer to these 

apparently "novel looking" junctional structures as "desmosome-like", "rudimentary", 

"primitive", "diminutive", "poorly developed" or "intermediate" (e.g., Ghadially, 1980; 

Erlandson, 1981; Henderson et al., 1986; Dickersin, 2000). Some examples of light- and 

electron-microscopic descriptions of such novel junction types in anthologies of prominent 

pathologists are collected in Tables 1A - F. Moreover, as these novel cell-cell contact 

structures do not fulfil the molecular criteria of any of the junctions hitherto known, their 

presence or absence in non-epithelial tumors has been studied in remarkable detail and 

numbers (e.g., more than 1260 cases in the article by Quinonez and Simon, 1988). At the 

end, however, the laborious repetitive studies have not resulted in definitions of clear 

structure types primarily as objective, non-morphological criteria could not be applied. 

Therefore, it has been the aim of my thesis to characterize the various cell-cell junctions of 

soft tissue tumors by molecular biological criteria. 
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Tables 1A - F. Examples of diagnostically mentioned electron-microscopically described 
junctions of non-epithelial tumors which have not yet been molecularly characterized and 
classified but only referred to with misleading names. 
 

A. Ghadially, 1980 Diagnostic Electron Microscopy of Tumours 
 

Fibroadenoma of breast: "desmosome-like junctions" (Fig. 37) 

Atrial myxoma: "desmosome-like structures" (Fig. 41) 

Cardiac myxoma: "unclear junctions" (Fig. 97) 

Schwannomas: "desmosome-like structures" (Figs. 42 and 120) 

Myofibrosarcoma: "desmosome-like junctions" (Fig. 114) 

Phaechromocytoma: "desmosome-like structures" (Fig. 44) 
 

 

B. Erlandson, 1981 Diagnostic Transmission Electron Microscopy of  
    Human Tumors. The Interpretation of Submicroscopic 
    Structures in Human Neoplastic Cells 
 

Pleomorphic angiosarcoma: "cell junctions" (Fig. 3.89) 

Metastatic hemangiopericytoma: "primitive cell junctions" (Fig. 3.92) 

Anaplastic germ cell tumor: "primitive cell junctions" (Fig. 4.34B) 

Sertoli cell tumor: "long intermediate junctions" (Fig. 4.37) 

Metastatic primitive neuroectodermal tumor: "primitive cell junctions" (Fig. 4.39) 

Synovial sarcoma: "abortive junctional complexes" (Fig. 4.40) 

Ewing's sarcoma: "primitive cell junctions" (Fig. 4.41) 
 

 

C. Henderson, Papadimitriou and Coleman, 1986  

    Ultrastructural Appearances of Tumours.   
   Diagnosis and Classification of Human    
   Neoplasia by Electron Microscopy 

 

Stromal myofibroblasts (in carcinomas): "intermediate junctions" (Fig. 3.16) 

Cerebellar medulloblastoma: "small intermediate junctions" (Fig. 17.4) 

Cerebral ependymoma: "junctional complexes" (Fig. 17.10) 

Perineurioma: "small intermediate junctions" (Fig. 18.9) 

Malignant fibrous histiocytoma: "junctions lacking ... morphology of desmosomes" 
      (Fig. 20.7) 

Gastric smooth muscle tumor: "intermediate junctions" (Fig. 21.4) 

Leiomyosarcoma (poorly differentiated): "small intermediate junctions" (Fig. 21.8) 

Angiosarcoma: "poorly developed junctions" (Figs. 23.2 and 23.3.) 

(Malignant) haemangiopericytoma: "intermediate junctions" (Fig. 23.8) 

Haemangiopericytoma: "... small ... plaques" (Fig. 23.9) 

Epithelioid sarcoma: "small intermediate junctions" (Fig. 24.5) 

Clear cell sarcoma: "[unspecified] intercellular junctions" (Fig. 24.6) 

                                "poorly developed intercellular junctions" (Fig. 24.7) 

Small cell tumor resembling atypical Ewing's sarcoma: 

                                "[unspecified] intercellular junctions" (Fig. 25.9) 

Follicular centre cell lymphoma: "desmosomal junctions" Fig. 27.12) 
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C. - continued. 
 

Hairy cell leukemia: "zipper-like intercellular junctions" (Fig. 28.15) 

Testicular seminoma: "intermediate junctions" (Fig. 30.3) 

Endodermal sinus tumor: "intercellular junctions" (Figs. 30.6 and 30.7) 

Blastemal Wilms' tumor (monomorphic): "intercellular junctions" (Figs. 30.8 - 30.11) 
 

 

D. Quinonez and Simon, 1988  Cellular Junctions in a Spectrum  
      of Human Malignant Tumors 

 (observations reported in one of the earlier articles A-C are not included here) 
 

Sarcoma botryoides: "desmosomes", "tight junctions" (Figs. 1 and 5) 
Granulous cell tumor: "desmosomes" (Fig. 2)  
Liposarcoma: "long desmosomes" (Fig. 3) 
Ewing´s sarcoma: "tight junctions", "paired subplasmalemmal densities" (Figs. 4 and 6) 

 

 

E. Dickersin, 2000 Diagnostic Electron Microscopy. A Text/Atlas 
 

Dendritic cell sarcoma: "desmosomes" (Fig. 3.100) 

Neuroblastoma: "intercellular junctions" (Fig. 4.11) 

Primitive neuroectodermal tumor: "diminuitive junctions" (Fig. 4.19) 

Nephroblastoma: "small intercellular junctions" (Fig. 4.40) 

Nephroblastoma (Wilms' tumor): "foci of junctional complexes" (Figs. 4.43 and 4.4.) 

Desmoplastic small round tumor: "multiple intercellular junctions" (Fig. 4.56) 

Fibrosarcoma (in dermatofibrosarcoma): "prominent junctions" (Fig. 6.10) 

Malignant fibrous histiocytoma: "intercellular junctions" (Figs. 6.28 and 6.29) 

Synovial sarcoma: "small intercellular junctions" (Fig. 6.55) 

Hemangioma: "prominent junctional complexes" (Figs. 6.92 and 6.93) 

Hemangioendothelioma: "tight junctions", "lateral junctions" (Fig. 6.95) 

Hemangiopericytoma: "intermediate junctions" (Fig. 6.107) 

Sarcomatoid carcinoma: "myofibroblastic features of desmosomes" (Figs. 6.125 and 6.126) 

Signet-ring stromal tumor: "prominent intercellular junctions" (Fig. 7.51) 

Sertoli-stromal cell tumors (androblastomas): "junctional complexes" (Figs. 7.52 - 7.54) 

Hepatoblastoma (embryonal): "intercellular junctions" (Fig. 9.56) 
 

 
 

F. A short exemplary collection of terms showing that vague pseudomorphological names 
 are also given to junctional structures of non-epithelium-derived tumors in recent years 
 

 

Antonescu and Erlandson, 2001 - Fibrosarcoma: "rudimentary cell junctions" 
                   (Figs. 8 and 9) 
 

Barrett et al., 2002 - Soft tissue perineurioma: "desmosome-like junctions" (Fig. 4) 
 

Zamecnik et al., 2002 - Dermatofibrosarcoma protuberans: "desmosome-like junctions"
                   (Fig. 10)
 

Rampisela and Donner, 2004 - Pleomorphic sarcoma: "desmosome-like junctions" (Fig. 2)
 

Suster and Moran, 2005 - Synovial sarcoma: "desmosome-type cell junctions" (Fig. 12) 
 

Eyden et al., 2009 - Epitheloid sarcoma: "primitive junctions (not desmosomes)" (Fig. 3) 
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6.3. Cell-cell adhering junctions: A brief review 
 

In current textbooks of cell biology, four major categories of cell-cell junctions are  

generally distinguished (for schematic overview see Figure 1; see also Bloom and Fawcett, 

1975; Darnell et al., 1986; Drenckhahn and Zencker, 1994; Alberts et al., 2002; Kühnel, 

2002; Pollard and Earnshaw, 2002; for a historic review see Franke, 2009): the gap 

junctions (nexus), the tight junctions (zonulae occludentes), the desmosomes (maculae 

adhaerentes) and the various forms of adherens junction structures (puncta, zonulae or 

fasciae adhaerentes).  

Since the latter two, the desmosomes and the adherens junctions, are both 

characterized by a dense cytoplasmic plaque, are able to anchor cytoskeletal filament 

bundles and are based on clusters of transmembrane glycoproteins of the larger    

cadherin family, they have been collectively subsumed under the term "adhering junctions" 

(AJs; for reviews on ultrastructural organizations and specificities see, e.g., Farquhar and 

Palade, 1963; Staehelin, 1974; Drochmans et al., 1978; Geiger et al., 1985a, b). The 

molecular compositions of these AJs and several related structures have so far revealed 

members of the cadherin superfamily, comprising not only “classical” type I and type II 

cadherins but also some atypical cadherins (e.g., T- and Li-cadherin), protocadherins and 

cadherin-related proteins (for references see: Takeichi, 1990; Angst et al., 2001; Patel et 

al., 2003; Troyanovsky, 2005; for evolutionary aspects see also Hulpiau and van Roy, 

2009). 

The desmosomes are junctions that tether bundles of IFs to the plasma membrane 

and are present in all epithelial cells and tumors derived therefrom as well as in heart 

structures, meningothelia and meningioma tumors and in certain dendritic reticulum 

structures of lymph nodes (for references see Franke et al., 1982; Kartenbeck et al., 1984; 

Schmidt et al., 1994; Wacker, 1994; Akat et al., 2003; Moll et al., 2009). They are formed 

by cell type-specific combinations of desmogleins (Dsg1-4) and desmocollins (Dsc1-3) 

which are anchored to the plaque forming proteins plakophilins (Pkp1-3), desmoplakin and 

plakoglobin, a protein known as a common constituent of both adherens and desmosomal 

plaques (Cowin et al., 1986; Franke et al., 1987a, b; for recent reviews see Godsel et al., 

2004; Holthöfer et al. 2007; Garrod and Chidgey, 2008; Schmidt and Koch, 2008; 

Waschke, 2008; Delva et al., 2009; Franke, 2009). 

By contrast the adherens junctions are present in a variety of cell types and 

characterized by cell type-specific assemblies of type I cadherins, including E-cadherin, 

which is regarded as typical of epithelial cells, N-cadherin, characteristically occurring on 

mesenchymal and neuronal cells as well as P-cadherin, first identified in the placenta.
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Additionally, type II cadherins, for example the mesenchymal cadherin-11 or VE-cadherin 

specific for vascular endothelial cell junctions, can also be found. These transmembrane 

glycoproteins are anchored in cytoplasmic plaque structures of varying sizes and 

thicknesses containing armadillo-type proteins such as plakoglobin, β-catenin as well as 

proteins p120, p0071 and/or ARVCF, together with the actin microfilament-binding proteins 

α-catenin, α-actinin, vinculin and afadin (see e.g., anthology of Behrens and Nelson, 2004; 

for a recent review see Meng and Takeichi, 2009). 

 

 

  

Figure 1. Schematic overview of a polarized epithelial cell showing the four major 
categories of cell-cell junctions as well as the hemidesmosomes, a specific asymmetric 
cell-matrix attachment structure. The tight junctions and the adherens junctions anchor 
actin microfilaments, whereas the desmosomes as well as the hemidesmosomes are 
usually associated with the intermediate filaments (modified from Matter and Balda, 2003). 
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6.4. The molecular composition of adhering junctions connecting cells of 
mesenchymal tissues and tumors: Novel categories 
 

In addition to the "classical" AJs mentioned afore a number of further cell type-specific AJ 

forms have been identified in recent years that cannot be readily subsumed under the two 

major categories, i.e. desmosomes and adherens junctions. The diverse novel junctions 

connecting non-epithelial cells, including mesenchymal and mesenchymally-derived cells, 

are listed in Table 2 (see also Franke et al., 2009).  

The hitherto most exclusively studied special AJ type is the cardiomyocyte-

connecting composite junction (area composita) of the mature mammalian myocardium 

(Borrmann, 2000; Franke et al., 2006; Goossens et al., 2007), which represents an 

amalgamated form comprising components of both, desmosomal and fascia adhaerens-

type proteins and glycoproteins, specifically Dsg2 and Dsc2 as well as N-cadherin and 

cadherin-11, anchored in plaques containing the major proteins of desmosomes such as 

desmoplakin, plakoglobin and plakophilin-2 (Pkp2) as well as proteins of the adherens 

junction category such as α- and β-catenin, p120, p0071 and ARVCF (Borrmann et al., 

2006; Pieperhoff and Franke, 2007). 

The second type of a morphologically exceptional junction is the complexus 

adhaerens of the endothelial and virgultar cells of the lymph node sinus (Schmelz et al., 

1990, 1994; Schmelz and Franke, 1993; for the most recent review see Moll et al., 2009). 

In addition to VE-cadherin, often in colocalization with N-cadherin as transmembrane 

glycoproteins, these junctions are associated with a plaque containing desmoplakin and 

plakoglobin but also α- and β-catenin, protein p120 and the actin filament-anchoring 

proteins ZO-1 and afadin as well as the tight junction-typical transmembrane proteins 

claudin-1, claudin-5 and JAM-A (see, e.g., Valiron et al., 1996; Dejana, 2004; Hämmerling 

et al., 2006; Baluk et al., 2007; Pfeiffer et al., 2008; Moll et al., 2009). 

Another extreme junctional structure is found in the anucleate prismoid fiber       

cells of the eye lens, which are surrounded and connected by extended plasma   

membrane contacts and a near-continuous cytoplasmic coat forming a giant cell-cell 

adhesive complex, the cortex adhaerens (Straub et al., 2003). These giant cortical plaque-

supported structures, however, show marked regional differences. In some regions, in 

particular at the short polar sides, the membranes are tightly connected by clusters of       

N-cadherin in combination with cadherin-11, anchored in a cytoplasmic plaque composed 

of α- and β-catenin, protein p120 and plakoglobin in which, however, some other adherens 

junction plaque components such as proteins p0071 and ARVCF, afadin and all 

desmosomal proteins have not yet been detected. On the other hand, various other 

proteins can be identified in this cortical plaque such as ezrin, periplakin and periaxin. 
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By contrast, in primary mesenchymal cells of mouse embryos as well as in cultures 

of human bone marrow-, placenta- or adipose tissue-derived mesenchymal stem cells, 

rather small AJs, described as puncta adhaerentia minima, have been shown            

(Franke et al., 1983a; Wuchter et al., 2007),. They are characterized by N-cadherin and 

partly also cadherin-11, in combination with the typical adherens junction plaque proteins  

α- and β-catenin, p120, p0071 and ARVCF as well as plakoglobin and the actin micro-

filament-binding proteins afadin, often together with ezrin and α-actinin (Wuchter et al., 

2007). In addition to these "punctate" AJs, bone marrow-derived mesenchymal stem cells 

growing in culture also often form variably extended, often very long (up to 50 µm) 

invaginations forming near-continuous, sometimes gigantic AJs, the manubria adhaerentia 

(Wuchter et al., 2007).  
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Cell adhesion type 

 

 
Occurrence 

 

 
Associated 
filaments 

 
Transmembrane 

proteins 

 
Specific plaque 

proteins 
 

 
 
Adherens junctions 
 
Zonula adhaerens  
Fascia adhaerens 
Punctum adhaerens 

 
 
Epithelia 
Endothelia 
Myocardium 
 
Diverse 
mesenchymal 
derived cells 

 
 
Microfilaments 
(Actin) 

 
 
Classical 
cadherins 
(E-, N-, VE-, P-  
 or R-cadherin) 
 
Nectin 

 
Plakoglobin 
α-Catenin 
β-Catenin 
Protein p120 
Protein p0071 
Protein ARVCF 
α-Actinin 
Afadin 
Vinculin 
 

 
 
 
Areae compositae 
 
  Borrmann, 2000 
  Franke et al., 2006 
  Goossens et al., 2007 

 
 
 
Cardiomyocytes   
of maturing  
and adult heart 

 
 
 
Microfilaments 
(Actin) 
 
Intermediate-
sized filaments 

 
 
 
N-cadherin 
Cadherin-11 
 
Desmoglein-2 
Desmocollin-2 

 
Plakoglobin 
α-Catenin 
β-Catenin 
Protein p120 
Protein p0071 
Protein ARVCF 
Desmoplakin 
Plakophilin-2 
Proteins ZO-1–3 
Vinculin 
 

 
 
 
Cortex adhaerens 
 
  Straub et al., 2003 

 
 
 
Eye lens interior 

 
 
 
nd* 

 
 
 
Cadherin-11 
N-Cadherin 

 
Plakoglobin 
α-Catenin 
β-Catenin 
Protein p120 
Vinculin 
Ezrin 
Desmoyokin 
Periaxin 
Periplakin 
 

 
 
Complexus adhaerens 
 
  Schmelz and Franke, 1993 
  Schmelz et al., 1994 
  Hämmerling et al., 2006 
  Moll et al., 2009 

 
 
Endothelial and 
virgultar cells of 
lymph node sinus 

 
 
nd 
 

 
 
N-cadherin 
VE-cadherin 
 
Claudin-1 
Claudin-5 
JAM-A 

 
Plakoglobin 
α-Catenin 
β-Catenin 
Protein p120 
Desmoplakin 
Protein ZO-1 
Afadin  
 

 
 
Puncta adhaerentia 
minima 
 
Manubria adhaerentia 
 
 
  Wuchter et al., 2007 
 

 
 
Mesenchymal cells 
Myofibroblasts 
 
Mesenchymal cells 
growing in culture 

 
 
Microfilaments 
(Actin) 

 
 
N-cadherin 
Cadherin-11 

 
Plakoglobin 
α-Catenin 
β-Catenin 
Protein p120 
Protein p0071 
Protein ARVCF 
α-Actinin 
Afadin 
Vinculin 
Ezrin 
 

 

Table 2. The molecular components of junctions connecting non-epithelium-derived cells.   
* Actin microfilaments are seen near the junctions but their specific associations are not 
clear. nd, not decided yet. 
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7. Material and methods (additional information) 
 

The details of the materials and the methods used in the different parts of the thesis have 

been described in the specific publications (see also “3. Publications of Steffen Rickelt...”). 

This chapter briefly summarizes some additional methods used in the course of this study. 

 

7.1. Small interference RNA transfection experiments 
 

Small interference RNAs (siRNAs) specific for human Pkp2 and N-cadherin as well as 

control siRNAs, including ON-TARGETplus SMARTpool, non-targeting control siRNA and 

lamin A/C siRNA, were purchased from Dharmacon Inc. (Chicago, IL, USA). All siRNA 

transfection experiments were essentially performed according to the suppliers instructions. 

The cells were seeded onto six-well plates which contained up to 4 poly-L-lysine-coated 

glass coverslips per well. Transfections were started 24 h after starting culturing, using 

lipid-based transfection reagents (DharmaFECT no. 1 and 4). Improved down-regulation 

results for cell cultures treated with siRNA specific for N-cadherin could be revealed upon 

double transfection (24 h and 48 h after starting culturing). The cells were then incubated 

for further 48 h with the transfection mixture, before the cell culture medium was replaced 

by normal growth medium to prevent cytotoxicity (Rickelt et al., 2009). Alternatively, cells 

were fixed after certain time points (in most cases 48, 72, 96 h) and analyzed using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting as 

well as immunofluorescence microscopy (for further details see the experiments with rat 

cardiomyocytes of Pieperhoff et al., 2008). 

 

7.2. cDNA transfection experiments 

 

Different normal human fibroblastoidal cell lines, including lung fibroblasts of lines WI38 

and LL24 as well as skin fibroblasts of lines Hs295.SK and HG261 (cf. Rickelt et al., 2009), 

were used for transfection experiments. As transfection of fibroblastoidal cell lines is known 

to be difficult, different transfection protocols have been compared. For this reason, 

application protocols of different suppliers, including Mirus transfection reagents TransIT-

LT1 and TransIT-293 (Mirus Bio LLC, Madison, WI, USA); Polyplus transfection reagent 

jetPEI (Polyplus-transfection Inc., Erlangen, Germany) and FuGENE 6 transfection reagent 

(Roche Diagnostics GmbH, Mannheim, Germany) have been used. Additionally, different 

reagents from Invitrogen (Karlsruhe, Germany) were tested (including Lipofectamine;
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Lipofectamine 2000; LTX-PLUS; Superfect). All protocols for transfection of specific human 

Pkp2-cDNA, previously cloned into the eukaryotic expression vector pcDNA3.1                 

(cf. Mertens et al., 1996), were applied according to the individual manufacturer’s 

instructions and subsequently analyzed using immunobiological and immunofluorescence 

microscopical techniques (see, e.g., Köser et al., 2003). 

 

7.3. Reverse transcriptase-PCR 
 

The total RNA from various cell culture lines was isolated with the “TriPure Isolation 

Reagent” (Roche Diagnostics) according to the manufacturer’s instructions. Specific 

primers were applied in reverse transcriptase PCR (RT-PCR) experiments to obtain the 

different sequence intercepts (see Table 3). The PCR protocols were performed according 

to standard protocols (for details see Rickelt et al., 2009). The resulting PCR fragments 

were analyzed by electrophoresis on 2 % agarose gels. 

 

 
 

 
primers 

 
primer sequences 

 
hypothetical 

fragment length 

αE-catenin forward 5’-TTTCTCAAGGAGGAGCTTGTG-3’ 429 bp 

 reverse 3’-TGCCTGGGATGCAGTATAGA-5’  

αN-catenin forward 5’-ATGACTTCGGCAACTTCACC-3’ 444 bp 

 reverse 3’-CTCATGACATCTGCCATGTC-5’  

αT-catenin forward 5’-GAAAAGATTGCTGAGCAAGT-3’ 464 bp 

 reverse 3’-GACATTTTCACTGTTTGCACTA-5’  

Plakophilin-2 forward 5’-GCAAACCAGAGACTTGGAGAC-3’ 373 bp (for Pkp2a) 

 reverse 3’-AGGAGAGGTTATGAAGAATGC-5’ 505 bp (for Pkp2b) 

GAPDH forward 5’-CCATCACCATCTTCCAGGAG-3’ 349 bp 

 reverse 3’-ATCCACAGTCTTCTGGGTGG-5’  

 

Table 3. PCR-primers used to investigate the occurrence of different α-catenins as well as 
plakophilin-2 and GAPDH in various mesenchymal derived cells. 
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8. Results 
 

This thesis reports on some first attempts to elucidate the heterogeneous molecular 

compositions of the specific cell-cell adhering junctions (AJs) connecting normal as well as 

tumor cells of the mesenchymally-derived category. The first part deals with the discovery 

of an unexpected protein ensemble in a series of AJ types connecting a series of 

transformed mesenchymal cell types growing in culture and in some soft tissue tumors. 

The second part of the thesis focuses on the discovery of specific cell-cell contacts and on 

the molecular composition of AJs connecting melanocytes or melanoma cells in cell culture 

and in situ. Finally, I have studied in great detail the unexpected phenomenon of 

spontaneous cumulative syntheses of junctional proteins and glycoproteins as well as their 

assemblies to diverse AJ structures connecting cells of human hematopoietic tumor lines 

growing in culture. 

 

8.1. Adhering junctions of mesenchymally-derived cells: I. The detection and 
characterization of adherens junctions containing plakophilin-2 
 

The plaque protein plakophilin-2 (Pkp2) is a prominent component of simple epithelia, 

basal layers cells with proliferative potential in stratified epithelia, meningothelia and the 

dendritic reticulum cells of lymphatic tissues as well as in the composite junctions of        

the adult mammalian myocardium. Pkp2 is also an important component of the 

desmosomal ensemble of the junctions connecting tumor cells derived from the         

tissues mentioned, including all carcinoma types (see, e.g., Mertens et al., 1996, 1999; 

Borrmann et al., 2000; Akat et al., 2003, 2008; Grossmann et al., 2004; Hämmerling et al., 

2006; for recent review see Bass-Zubek et al., 2009). Thus it was a great surprise to note 

that this protein – sometimes together with Pkp3 – can also occur out of any desmosomal 

context.  
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8.1.1. Molecular composition of adhering junctions of certain proliferative 
mesenchymally derived normal and malignantly transformed cells growing in 
cultures and in tumors 

 

Using biochemical and immunolocalization analyses I could show in a number of 

mesenchymal or mesenchymally-derived normal and malignantly transformed cells growing 

in culture the early acquisition and then the general occurrence of junction complexes 

containing one or both transmembrane glycoproteins, N-cadherin and cadherin-11, which 

were anchored in a submembranous plaque comprising α-catenin and the armadillo 

proteins β-catenin, plakoglobin, p120, p0071 and/or protein ARVCF, which in turn are 

associated with a series of actin microfilament-binding proteins, including vinculin and       

α-actinin. Electron and immunoelectron microscopy then allowed the demonstration of the 

ultrastructural details of these AJs, which mostly display a rather thin electron-dense 

plaque of the puncta adhaerentia-type, also known from a wide range of cells including 

bone marrow-derived mesenchymal stem cells (Wuchter et al., 2007; see there for further 

references). 

Surprisingly, however, I noted that cells of certain human and animal culture lines 

are connected by AJs which in addition to their typical molecular ensemble contained Pkp2 

as a major and stable plaque component (for an example see Figure 2). Pkp2, which so far 

had been known only for its junction-organizing role in desmosomes and the composite 

junctions of cardiomyocytes (for recent reviews see Franke, 2009; Franke et al., 2009)   

was either exclusively present or in combination with Pkp3 whereas other desmosomal 

proteins, including desmosomal cadherins and desmoplakin, were absent. Particularly 

interesting in this context was the finding that SV40-transformed cell lines such as the 

“SV80 fibroblasts” and WI38VA13 embryonic cells were intensely Pkp2-positive while the 

corresponding non-transformed lines were not (see, e.g., Figure 1 in Rickelt et al., 2009). 

Therefore, I dedicated specific effectors to elucidate the structural role of Pkp2 and the 

mode of the frequent and spontaneous acquisition of Pkp2 to the plaques of certain rather 

actively proliferating mesenchymal cells. Specifically, I also tried to identify possible Pkp2-

containing protein complexes by immunoprecipitation (IP) and sucrose gradient 

centrifugation and I found significant tight complexes of Pkp2 with N-cadherin as well as   

α- and β-catenin (Rickelt et al., 2009). As this new Pkp2-rich AJ type has been found in a 

diversity of highly proliferative cell culture lines, including samples derived form soft tissue 

tumors, I had to conclude that Pkp2 is a regular, frequent and characteristic plaque 

component typical of a special AJ subtype of mesenchymal and soft tissue tumor cells    

(for discussions see Franke et al., 2009; Rickelt el al., 2009). 

When I had noticed in many transformed and tumor-derived cell culture lines the 

broad occurrence of relatively large amounts of Pkp2 I examined soft tissue tumors in situ. 
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As the existing antibodies were not readily applicable for sensitive detections of Pkp2 in 

sections through formaldehyde-fixed, paraffin-embedded tissue samples, I decided to 

generate improved, i.e. highly sensitive and stable monoclonal antibodies (mabs) specific 

for Pkp2, which were screened for immunostaining reactivity on formaldehyde-fixed cell 

cultures and tissue materials. In addition, improved buffers and application protocols for 

heat-induced antigen-retrieval had to be established (cf. Rickelt et al., 2010). 

In a first extended series applying these novel and improved Pkp2-specific mabs to 

a variety of cell cultures and tissues I was able to demonstrate this plaque protein in the 

junctional structures of diverse human and animal mesenchymal cell lines (see, e.g.,   

Table 1 in Rickelt et al., 2009) as well as on sections through some human tumors, notably 

some regions of rhabdomyosarcomas and an extended series of cardiac myxomas (for 

details see Rickelt et al., 2009, 2010). It is now clear that with the use of these improved 

antibodies, Pkp2 can serve as a novel cell type – and cell state – diagnostic marker in 

studies of cell cultures (for an example see Figure 2) as well as of tissues. 

 

Figure 2. (A) Double-label immunofluorescence microscopy images of SV40-transformed 
human fibroblasts (line SV80) after reaction with antibodies to desmosomal protein Pkp2 
(red) in comparison with the adherens junction protein β-catenin (green). In all cells shown, 
Pkp2 and β-catenin clearly colocalized in the AJs (A; yellow merge color). Note the 
frequency of such Pkp2-positive AJs in the confluent colonies of near-isodiametric cells.  
(B) The merged picture with a phase contrast background is shown. DAPI stain (blue) has 
been used to visualize nuclei. N, nucleus. Scale bar: 20 µm. This micrograph was taken 
and modified from the Int J Cancer 2009, 125:9; cover figure. 
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8.1.2. Small interference RNA-mediated plakophilin-2 reduction in cultured trans-
formed mesenchymal cells 

 

As small interference RNA (siRNA)-mediated Pkp2-gene product knock-down experiments 

in cell cultures of rat cardiomyocytes have revealed the important role of Pkp2 in the 

organization and stabilization of the composite junctions and even the demonstration of 

complete cardiomyocyte separations (Pieperhoff et al., 2008; for corresponding siRNA 

experiments see also Oxford et al., 2007; Fidler et al., 2008), I decided to also examine the 

role of Pkp2 in transformed mesenchymal cells in detail. 

Therefore, I determined the influence of siRNA-mediated reduction of Pkp2-mRNA 

in human SV80 fibroblasts cultures using specific human lamin A/C-siRNA as a control for 

the specificity of mRNA knock-down (for details and references see Pieperhoff et al., 2008). 

Using SDS-PAGE immunoblot analysis I could show a specific down-regulation of Pkp2 in 

SV80 fibroblasts already after 48 h of PKP2-siRNA treatment whereas N-cadherin, used for 

comparison, remained rather stably synthesized even 96 h after transfection (Figure 3). 

These findings could be supported by immunofluorescence microscopy.               

For example, Figure 4 shows SV80 fibroblasts treated with Pkp2-siRNA and stained with 

antibodies against -catenin or Pkp2 in combination with N-cadherin antibodies. While the 

typical AJ proteins of these cells are still constantly produced and AJ-assembled, the Pkp2 

staining is drastically reduced. By contrast, when I performed siRNA-mediated knock-down 

of N-cadherin in comparison with non-targeting control treatments, a specific and 

continuing reduction of N-cadherin was noted at different time points (48, 72 and 96 h;   

see also the upper right of Figure 3). These drastic reductions of N-cadherin were 

accompanied by noticeable, but not complete reductions of the cell-cell contact structures 

(data not shown). Interestingly, however, the total level of Pkp2 proteins in these cells 

remained rather unchanged (Figure 3). In further immunofluorescence microscopy studies 

of N-cadherin siRNA-treated cells, I was not able do detect any Pkp2 particles at the 

intercellular junctions. These results were not readily explainable but might be due to 

conformational changes of Pkp2, resulting in antibody inaccessibility, or to a change of 

localization of Pkp2 either into the nucleus (cf. Mertens et al., 1996) or as diffusely 

dispersed protein over the cytoplasm or along the entire plasma membrane as recently 

shown for desmoglein Dsg2 in melanocytes and melanoma cells grown in culture    

(Schmitt et al., 2007; Rickelt et al., 2008; see also 8.2.2). 

Clearly, the most important finding of the siRNA-mediated knock-down experiments 

in Pkp2-containing transformed mesenchymal cells, was that a reduction of Pkp2 for an 

extended period of time, did not result in a sufficient dissociation or loosening of cell-cell 
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contacts and did not lead to the separation of cells as reported for rat cardiomyocytes 

(Pieperhoff et al., 2008 and references cited therein). 

 

 

 
 
Figure 3. Selective reduction of plakophilin-2 (Pkp2) and N-cadherin (N-cad) upon siRNA-
mediated interference in transformed human culture cells of line SV80, as seen in cell 
lysates analyzed by SDS-PAGE and immunoblotting with antibodies specific for Pkp2 and 
N-cadherin or for -tubulin as loading control. Cells at 48, 72 and 96 h after transfection 
have been used and compared with the initial cells (C). Pkp2 has been significantly    
down-regulated already 48 h after incubation with Pkp2-siRNA and this decrease continues 
for up to 96 h of siRNA exposure whereas N-cadherin remains stably expressed. By 
contrast, when N-cadherin has effectively been down-regulated a Pkp2 change has         
not been noticed. Cells treated with non-targeting siRNA as well as untreated cells have 
been used as controls. 
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Figure 4. Double-label immunofluorescence microscopy of human SV80 fibroblasts after 
96 h treatment with Pkp2-siRNA followed by immunostaining with antibodies against         
-catenin (A; red) and Pkp2 (B; red), together with N-cadherin (green). Note that the genes 
encoding adherens junction proteins remain stably expressed (A, yellow merge color) while 
Pkp2 is drastically reduced after siRNA treatment (B). DAPI stain (blue) has been 
performed to show the nuclei. Scale bars: 20 µm. 
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8.1.3. Synthesis and stable integration of plakophilin-2 in adhering junctions of 
normal mesenchymal cells upon cDNA transfection  

 

Since Pkp2 is present in AJs of various transformed fibroblastoidal cells, I performed 

human Pkp2 cDNA-transfection experiments in order to determine whether Pkp2 also 

associates with and integrates into the AJ ensembles of normal mesenchymal derived 

cells. Therefore, I used different normal fibroblastoidal cell lines that produce only "normal" 

puncta adhaerentia-type AJs without any Pkp2 (cf. Rickelt et al., 2009). To this end, 

different transfection protocols of various suppliers have been examined (see also 7.2.), 

using SDS-PAGE-separated polypeptides and immunoblotting for product identification 

(Figure 5). In addition, immunofluorescence microscopy with antibodies directed against 

Pkp2, N-cadherin or β-catenin has been performed (Figure 6). Preliminary data             

have shown an enrichment of transgenically expressed Pkp2 and a rather homogeneous 

Pkp2 immunostaining pattern in cell-cell contact regions (Figure 6), an observation 

previously also shown in our laboratory for similarly transfected HT-1080 fibrosarcoma cells 

(Köser et al., 2003). Thus, future and more detailed experiments will have to address the 

questions whether the "normal", mostly nucleoplasmic low concentration "background" 

Pkp2 or both associate with the AJ plaques of these non-epithelial cells and whether this 

AJ association correlates with cell proliferation as recently indicated by the rapid 

appearance of Pkp2 in very early steps of cell culture growth of valvular interstitial cells   

(cf. Barth et al., 2009). 
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Figure 5. Characterization of human mesenchymally-derived skin fibroblasts of line HG261 
transfected with either 2µg or 5µg cDNA encoding human Pkp2. The comparison of 
different transfection procedures, including LTX-Plus, Lipofectamine 2000; Superfect as 
well as Mirus TransIT-LT1 and TransIT-293, was performed, before immunoblots of near 
equal amounts of SDS-PAGE-separated proteins were allowed to react with antibodies 
specific for Pkp2 or vimentin. Note that in cells transfected with LTX-Plus or Mirus TransIT-
LT1 reagents, Pkp2 can be demonstrated in relatively moderate amounts whereas all the 
other reagents have not worked. Interestingly, the transfection rate has not been 
dependent on the amount of cDNA used. Immunoblots reacted with vimentin antibodies 
indicate not only the mesenchymal origin of the cells but also show that equal protein 
amounts had been loaded. Whole lysates of SV80 fibroblasts (right lane) were used as a 
positive control. Molecular weight reference bands (kDa) are shown on the left margin.  

 
 
 

 

Figure 6. (A) Double-label immunofluorescence microscopy of human mesenchymally-
derived skin fibroblasts of line HG261 transfected with cDNA encoding human Pkp2 which 
shows the protein Pkp2 (red) with the endogenous puncta adhaerentia protein β-catenin 
(green). Small arrows point to structures at which colocalization of both armadillo proteins 
(yellow merge color) is partially seen at adherens junctions whereas in non-transfected 
cells only rather weak and homogeneous β-catenin staining along the entire cell-cell 
contact region is seen. (B) The phase contrast image of (A). N, nucleus. Scale bar: 20 µm. 
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8.1.4. Exclusion of a possible role of αT-catenin in the acquisition of plakophilin-2 to 
the adhering junction plaques of mesenchymal cells 

 

Previous investigations have revealed three different highly similar α-catenins: the 

ubiquitously expressed αE-catenin (Herrenknecht et al., 1991; Nagafuchi et al., 1991), the 

neural αN-catenin (Hirano et al., 1992), and the αT-catenin originally discovered in 

peritubular myoid cells of the testis (Janssens et al., 2001). The latter protein, αT-catenin, 

also occurs in some other tissues, however, the highest level has been found in the heart, 

where it occurs together with αE-catenin at the composite junctions of the intercalated disks 

(Janssens et al., 2001). In addition, myocardial αT-catenin is demonstrably involved in the 

binding to Pkp2 and the translocation to – and integration in – the plaque of composite 

junctions (Goossens et al., 2007). 

Since α-catenins play a fundamental role in the AJ association of actin micro-

filament bundles to the classical cadherin mediated cell-cell adhesion complex, I have 

examined the presence of the three catenins in several cell lines using the RT-PCR 

technique (for protocols and primer sequences see 7.3 and Table 3). Figure 7 presents the 

results obtained in 11 different "mesenchymal cell lines" and shows that αE-catenin occurs 

in all lines, while αN-catenin is detected only in bovine fibroblasts of line B1. By contrast 

αT-catenin is not found in any of these cell lines, an observation also confirmed by 

immunofluorescence microscopy (data not shown). In comparison, αT-catenin is well seen 

in heart cells (Figure 7) and Pkp2-mRNA is detectable in all cell lines. 
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Figure 7. RT-PCR analyses of cells of different human cell lines such as multipotential 
leukemia cells of line HL60, lung fibroblasts of line LL24, SV40-transformed fibroblasts of 
lines SV80 and WI38VA13, rhabdomyosarcoma-derived cells of line RD and astrocytoma 
cells of line U333 (glioma), in comparison with bovine fibroblast of line B1 and mouse 
fibroblastoidal cells of lines L929, OP-9, 3T3 and 3T3L1 (for detailed characterization of the 
cells used, see cf. Rickelt et al., 2009), using primers specific for the different α-catenin 
subtypes or Pkp2 or for GAPDH as loading control. As positive controls, cDNA                  
of human heart and/or fetal brain tissue were used. Note that αE-catenin-mRNA is detected 
in all cell lines examined, whereas αN-catenin appears only in bovine fibroblasts of line B1. 
In contrast, αT-catenin is absent in all cell lines examined. Pkp2-mRNA and GAPDH-
mRNA are detected in all cells. Size markers used are indicated on the left margin and 
represent from top to bottom: 1400, 517, 397, 356 and 247 bp. * In some experiments, for 
the demonstration of αN-catenin RNA from fetal brain was loaded as a positive control 
instead of heart tissue derived RNA. 
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8.2. Adhering junctions of mesenchymally derived cells: II. Special forms      
of molecular organizations in normal and malignantly transformed 
melanocytic cells 
 

8.2.1. Molecular composition of homotypic adhering junctions connecting 
melanocytes or melanoma cells grown in culture 

 

Because of their special importance for the understanding of the carcinogenic process, of 

dedifferentiation processes, e.g., ameIanotic melanomas and of melanoma cell metastasis, 

I have begun early in my thesis work to examine the molecular and cellular composition of 

AJs of different melanomas and melanoma cell culture lines, including lines derived from 

primary as well as lines from metastatic tumors (see, e.g., Table 3 in Schmitt et al., 2007). 

To characterize the molecular composition of homotypic cell-cell adhesion structures, SDS-

PAGE-immunoblot analyses of total cell lysates from melanoma cells as well as 

immunofluorescence, electron and immunoelectron microscopy were used. The small 

plaque bearing structures of the puncta adhaerentia-type of melanoma cells revealed the 

presence of E-, P- and N-cadherin mostly in a mutually exclusive pattern, occasionally 

within the same cell showing overlapping localization or even coexistence of all three 

cadherins (Schmitt et al., 2007). These cadherins are anchored in typical but relatively thin 

cytoplasmic plaques assembled by α-catenin and the armadillo proteins β-catenin, 

plakoglobin, p120, p0071 and/or ARVCF as well as proteins ZO-1–3 and the actin 

microfilament-binding proteins vinculin and α-actinin. All cadherins could be                     

co-immunoprecipitated with β-catenin, but, only P-cadherin was enriched in E-cadherin IPs 

indicative of the existence of heterotypic E- and P-cadherin complexes whereas N-cadherin 

seemed to occur in different complexes. Surprisingly, cadherin-11, a type II cadherin, was 

found only in one of the melanoma cell lines analyzed (Schmitt et al., 2007). 

Similar cell-cell junctions have subsequently also been found in human epidermal 

melanocytes (Rickelt et al., 2008). But these cells showed generally an enrichment of       

E- and P-cadherin, whereas N-cadherin, cadherin-11 and VE-cadherin appeared to be 

absent. The latter had previously been reported to be present in a subset of highly 

aggressive melanoma cell lines (cf. Hendrix et al., 2001; Hess et al., 2006). In addition, 

melanocytes also contained the typical AJ plaque proteins detected in melanoma cell lines. 

The molecular AJ components of the examined melanocytic cell culture lines are 

summarized in Table 4. 
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8.2.2. Detection and characterization of a non-junction-bound form of the trans-
membrane glycoprotein desmoglein Dsg2 in melanocytes and melanoma cells 

 

During molecular biological analyses to the AJ proteins of various melanoma cells, I have 

made the surprising observation that the transmembrane glycoprotein, desmoglein Dsg2 

occurs in these cells which apparently do not possess any desmosomes (Schmitt et al., 

2007). Dsg2, a protein normally synthesized in desmosomes of proliferative epithelial     

cells (Schäfer et al., 1994) and in the composite junctions connecting cardiomyocytes 

(Borrmann et al., 2006; Franke et al., 2006; for a recent review see Franke et al., 2009) has 

been regularly detected in MeWo and C32 melanoma cells not only by PCR analysis but 

also performing Western blot experiments. By contrast all other desmosomal cadherins are 

obviously absent, in contrast to recent findings reported for Dsg1 in different melanoma cell 

lines (Li et al., 2001b). However, Dsg1 has not been noted in my analyses, neither at the 

protein nor at the mRNA level (Schmitt et al., 2007). In addition I have also found Pkps1-3 

in WM-115 melanoma cells as well as small amounts of Pkp3 in cells of line MeWo, 

whereas rather small amounts of plakoglobin has been detected in all melanoma lines 

analyzed (Table 4). Using double-laser confocal scanning microscopy localization an 

unexpected and highly specific Dsg2 distribution has been identified as shown in Figure 8. 

Here Dsg2 appears not to be enriched in any junction structure but seems distributed 

rather equally over the entire plasma membrane. Therefore, I have again performed 

immunoelectron microscopy to clarify the cellular localization at the adequate subcellular 

level. And indeed Dsg2 staining can be observed almost along the entire plasma 

membrane, with occasional weak reactions at small AJ plaques of the puncta   

adhaerentia-type, but in contrast to β-catenin without a specific enrichment at such sites 

(Schmitt et al., 2007). Again, IPs of MeWo cell lysates with antibodies to Dsg2, Pkp3, and 

β-catenin have not shown any co-precipitation, indicating that here Dsg2 appears in a 

different form or in different protein complexes, indicative of an existence as a primarily 

solitary cell surface component. 

Encouraged by the surprising distribution pattern of Dsg2 in these melanoma cells,     

I then studied the presence of this desmosomal glycoprotein in melanocytes. As I have not 

found Dsg2 in human epidermal melanocytes in situ, I examined melanocytes grown in cell 

culture. Surprisingly, both cultured NHEM-f as well as NHEM-a melanocytes presented 

Dsg2 as a frequent, solitary cell surface protein (Rickelt et al., 2008). This finding is 

compatible with the fact that in NHEM-f melanocyte IP experiments, followed by MALDI-

TOF analysis, neither α- and β-catenin nor E- and P-cadherin were enriched in the Dsg2 

immunoprecipitates. In summary, these findings show for the first time the presence of
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simple Dsg2 molecules out of a desmosomal context, in a novel, homogeneously dispersed 

kind of cell-cell adhesion system, which is extended over large areas of the plasma 

membrane and characteristic for a subset of melanocytic cells. 

 

 

   

Figure 8. Double-label confocal immunofluorescence microscopy of human melanoma 
culture cells of line MeWo, immunostained with antibodies against the transmembrane 
glycoproteins N-cadherin (A; red) or desmoglein Dsg2 (B; red), in combination with the     
AJ plaque protein β-catenin (green). Note that, β-catenin and N-cadherin show 
colocalization at intercellular junctions (A; yellow merge color) whereas the localizations of 
β-catenin and Dsg2 are completely different (B). Scale bars: 20 µm. Micrographs modified 
from Schmitt et al., 2007. 
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Table 4. AJ molecules in cultured human melanocytes as well as combined results from 
different melanoma cell lines, as determined by SDS-PAGE and immunoblotting (see also 
Schmitt et al., 2007; Rickelt et al., 2008). Symbol +/- indicates that positive as well as 
negative sublines have been noted by immunolocalization. * Five of the seven melanoma 
cell lines tested contain N-cadherin, two possess E-cadherin, four show P-cadherin and 
cadherin-11 has only been found in one line. ** Interestingly, two melanoma lines, MeWo 
and C32, synthesize the desmosomal cadherin Dsg2, in the absence of all other 
desmosomal cadherins and desmoplakin. *** Pkps1-3 have been found in WM-115 cells 
and Pkp3 occurs as the single Pkp in MeWo cells. Brackets indicate cell lines in which the 
specific protein either occurs only weakly or is detected only in some groups of cells. 
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8.3. Spontaneous and cumulative syntheses of desmosomal and epithelial 
cell adhesion molecule-associated proteins and their assemblies into cell-cell 
junction structures of certain cultured human hematopoietic tumor cells  
 

Surprisingly, diverse rather stable junction-like cell-cell contact structures have been noted 

in colonies of certain cell culture lines generally assumed to be unicellular and never to 

form intercellular junctions of any kind. As these lines included some of the worldwide most 

studied hematopoietic cells, I have decided to extend my studies to the hematological 

tumor cell lines K562 and RPMI 8226. 

The myelogenous leukemia-derived cell line K562 is generally used as a cell culture 

research model of hematopoiesis in modern biology, combining inter alia myelogenous and 

erythroleukemic properties (e.g., Lozzio and Lozzio, 1975; Andersson et al., 1979; Lozzio 

and Lozzio, 1979; Rowley et al., 1981, 1985; reviews: Köffler and Golde, 1980; Dimery et 

al., 1983; Drexler, 1994; Tsiftsoglou et al., 2003). Using biochemical as well as light- and 

electron-microscopic immunolocalization methods in combination with techniques of 

selecting and cloning such cells (for methods see, e.g., Knapp and Franke, 1989; Knapp et 

al., 1989) diverse types of non-induced, spontaneous and randomly occurring formations of 

novel kinds of AJs and half-AJ structures in clonal colonies and stable sublines of 

substratum-adherent monolayers or suspended spheroidal aggregates of K562 tumor cells 

have been characterized (Franke and Rickelt, 2010; see also Schäfer, 1995). These AJ 

structures vary greatly in size and molecular architecture but are mostly based on cis- as 

well as trans-connected clusters of the desmosomal transmembrane glycoprotein 

desmoglein, Dsg2. As already reported by Järvinen et al. (1990) we have noted masses of 

bundles of keratin IFs in these cells (see also Zauli et al., 1986) but in contrast to Järvinen 

et al. (1990) we have repeatedly found desmosomal protein-positive structures at the 

plasma membranes of such cells. Detailed analyses then have revealed such proteins 

assembled into small AJ-type structures in most of which Dsg2 is anchored in a 

submembranous plaque often containing plakoglobin and plakophilins Pkp2 and/or Pkp3 

(for details see Figures 3 and 5 of Franke and Rickelt, 2010), sometimes mixed with other 

armadillo proteins such as proteins p120, p0071 and/or small amounts of β-catenin         

(cf. Table 5). Extensive immunocytochemical examinations for other cadherins, including 

desmogleins Dsg1, 3 and 4 as well as desmocollins Dsc1 and 3, and for α-catenin, 

neurojungin and protein ARVCF, have consistently yielded negative results in all K562 

sublines characterized. Surprisingly, in two of the fifteen clonal sublines established I have 

detected both desmosomal cadherins, i.e., Dsg2 and desmocollin, Dsc2, which in some 

clones have shown the expected colocalization but in specific others have shown complete 

differential localization (for details see also Figures S1 of Franke and Rickelt, 2010;



Results 

 

 38

see also Table 5). Additionally, I have also selected two sublines in which cells are 

connected by AJ-type structures containing the desmosome-typical protein desmoplakin  

(cf. Table 5). In some rare situations individual cells with small punctate or whisker-like 

reaction sites positive for N-cadherin. Other classical cadherins examined such as E-, P- or 

VE-cadherin or cadherin-11 have been absent.  

In very densely-grown, substratum-adherent cell monolayer colonies of K562 cells a 

different kind of cell-cell contact structure has also been noted. These contact regions 

which extend over most of the cell periphery are characterized by a non-cadherin 

transmembrane glycoprotein, the epithelial cell adhesion molecule (EpCAM) anchored in a 

cortical cytoplasmic plaque intensely positive for afadin, α-actinin as well as vinculin and 

protein ZO-1 but essentially negative for the diverse armadillo proteins aforementioned   

(for details see Figures 8 and S2 of Franke and Rickelt, 2010; see also Table 6).  

 The discovery of an extended EpCAM-based cell-cell junctional system in 

hematopoietic tumor cells is another major surprise as the name EpCAM already indicates 

this type of plasma membrane-bound cis- and trans-homophilic, calcium-independent 

glycoprotein has so far been reported to be specific for certain, unusually highly 

proliferative epithelial and hair follicle cells (e.g., Tsubura et al., 1992; Litvinov et al., 1994a, 

b, 1996, 1997; Litvinov, 1995; Balzar et al., 1998; Winter et al., 2003). The close and 

massive association of EpCAM with a cortical plaque-like mass rich in α-actinin is, of 

course, in full agreement with the report of Balzar et al. (1998), that the rather short 

cytoplasmic carboxyterminal extension (26 amino acids long) is bound to α-actinin and thus 

connects the intracellular actin microfilament-based cytoskeleton to the extracellular 

adhesive functions of EpCAM. 

The appearance of such cell-cell junctional as well as cell surface-exposed         

half-junctional structures is obviously not restricted to K562 cell, but also demonstrable in 

certain other hematological cell culture lines. Interestingly, in human RPMI 8226 myeloma-

type hematopoietic cells even more complex changes of the cell-cell junction systems can 

be seen. In these cells I have regularly noted in addition to the Dsg2-based (Figure 9A-D) 

and the EpCAM-based plaque systems, typical puncta adhaerentia-type AJs. These are 

based on the transmembrane glycoprotein N-cadherin, anchored in a cytoplasmic plaque 

containing α-catenin and the armadillo proteins β-catenin (cf. Figure 9E-G), plakoglobin as 

well as proteins p120 and p0071, similar to the small AJs previously reported from bone 

marrow-derived mesenchymal stem cells (Wuchter et al., 2007). 

Finally, I have noted further unexpected protein appearances in all sublines 

examined. Especially the rather heterogeneous IF assemblies of vimentin and keratins 

notably keratins 8, 18 and 19 have to be mentioned. These impressive IF bundle 

formations seem to exceed the relative amounts previously described in hematopoietic cell 

cultures (see, e.g., Zauli et al., 1986; Järvinen et al., 1990). Even more surprising was the 
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observation of microfilament bundles of the smooth muscle α-actin type in addition to        

β- and -non-muscle actins, an indication of a transformation to cells such as in 

myofibroblasts (Hinz et al., 2004, 2007). These additional extensive filament systems      

(for details see Figure 1 of Franke and Rickelt, 2010) are also clonally stable. 

Consequently, the cytoskeletal character of cultured hematopoietic cells cannot only    

differ from one line to another but can also differ between colonies of the same line        

and not infrequently accumulate major hallmark proteins of epithelial differentiation.               

Usually the original hematopoietic origin and differentiation can still be specifically 

challenged with a diversity of promoting or inhibitory drugs, including biological growth 

factors (e.g., Fukuda, 1981; Alitalo, 1990; Alitalo et al., 1990; Järvinen et al., 1990; 

Hickstein et al., 1993; Burger et al., 1994; LaMontagne et al., 1998; Shelly et al., 1998; 

Stopka et al., 1998; Bianchi et al., 1999; Kang et al., 1999; Woessmann and Mivechi, 2001; 

Huang et al., 2002; Takagaki et al., 2005). 

Further experiments will have to show the possible mechanisms and functions of 

this non-genetic variability of cell-cell junctional structures and proteins. Moreover, the 

possible roles of these diverse AJ-type cadherin- or EpCAM-based structures in tumor 

spread and metastasis will have to be elucidated and diagnostic and therapeutic 

consequences will have to be considered. 
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Incomplete AJ Subtypes 

 

Table 5. Molecular characterizations of novel types of adhering junctions (AJs) with or 
without desmosomal proteins in clonal sublines of human hematopoietic K562 tumor cells, 
as determined by SDS-PAGE and immunoblotting as well as by immunocytochemistry. 
Symbols: +, moderate intensity of the reaction for the molecules tested; ++ high intensity 
of reaction; - not detected. Seven major different subtypes have so far been distinguished 
with respect to AJ formations: (I) AJs comprising desmosomal molecules, with the 
exception of any desmocollin and desmoplakin; (II) AJs with all desmosomal molecules, 
including desmoplakin, but without any desmocollin; (III) AJs comprising the desmosome-
type molecules as in type (I) plus the armadillo plaque proteins β-catenin, p120 and 
p0071; (IV) AJs with a full desmosomal molecule complement, including desmoplakin and 
desmocollin Dsc2; (V) AJ-type assemblies similar to that presented in type (III) but without 
detectable desmocollins and desmogleins; (VI) punctate AJ-type assemblies positive for 
desmosomal cadherins, Dsg2 and Dsc2, and the plaque proteins as specified; * denote 
reactions of low and sometimes variable intensity; (VII) no demonstrable junction 
assemblies of AJ-type proteins. 
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Figure 9. (A) Confocal laser-scanning immunofluorescence microscopy of substratum-
adherent cultured cells of the hematopoietic line RPMI 8226, showing the results of double-
label experiments, comparing the immunolocalizations of two different antibodies specific 
for the desmosomal glycoprotein, desmoglein Dsg2 (mab Dsg2 - clone 10G11 in red, in 
combination with the polyclonal antibodies Dsg2 - rb8 in green). Note the intense and near-
complete colocalization in punctate structures (yellow) of both antibodies. (B-D) Double-
label micrographs showing the colocalizations of different desmosomal proteins such as 
plakophilin Pkp2 (B; red) in combination with desmoglein Dsg2 (B; green) or Dsg2 (C; red) 
in comparison with desmoplakin (C; green) or Pkp2 (D; red) compared with desmoplakin     
(D; green). Note that in most, but not all of the punctate structures the colocalization of the 
specific desmosomal proteins is seen (yellow merge color). (E-G) Comparison of 
immunolocalizations of adherens junction proteins α-catenin (E and F; red) or N-cadherin 
(G; red) in combination with β-catenin (E-G; green) clearly shows their localization to 
puncta adhaerentia-type junctions. Note also that most, but not all N-cadherin colocalizes 
with the plaque protein β-catenin. All images are shown on a phase contrast background. 
Scale bars: 10 µm. 
 

 

 

 

 
 

Table 6. Major molecular components of a special form of cell-cell junctions in human 
hematopoietic K562 tumor cells, colocalizing in cortical puncta or in extended zones. 
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9. General discussion 
 

The results reported in this thesis have clearly demonstrated that in the field of 

mesenchymal cells, i.e. outside of the epithelial and neural cell systems, in addition to the 

special situations of the "fused" adhering junctions (AJs) of the composite junctions of the 

adult mammalian myocardium (e.g., Borrmann et al., 2006; Franke et al., 2006 for a recent 

review see Pieperhoff et al., 2010) and the heterogeneous adherens cortex of the 

anucleate cell structures of the eye lens (Straub et al., 2003), obviously a series of yet 

unknown cell-cell junction systems exists. The fact that I could identify not less than five 

major cell-cell junction types of different mesenchymal cells (Pkp2 positive- and negative-

forms of coniunctiones adhaerentes, the diverse forms of "incomplete" AJs in certain 

hematopoietic cell lines, the dispersed Dsg2-based system of melanoma cells and 

melanocytes, and the occurrence of an EpCAM-based junction type in non-epithelial cell 

arrays) may be explained by the still existing lack of systematic AJ studies in 

mesenchymal cells. Consequently, this thesis should be regarded as a begin of studies 

elucidating further junctional structures and systems connecting mesenchymal cells. 

 Such a systematic study of the junctions connecting non-epithelial cells will 

certainly be valuable for our biological understanding of the molecular architecture and the 

functions of such cells as it will also provide novel molecule-specific reagents to improve 

the pathological recognition of certain soft tissue tumors (for reviews see Introduction; for 

examples indicative of the potential value of such reagents see, e.g., Table 1 A - E; note 

also cases of non-epithelial tissues in which a positive reaction for a single desmosomal 

antigen or for EpCAM has been noted, including potential perineurial tumors see, e.g., 

Fisher and Miettinen, 1997; Barrett et al., 2002; Zamecnik et al., 2002; Zamecnik and 

Michal, 2002; Suster and Moran, 2005; Eyden et al., 2009). Thus besides a better 

understanding for cell formation processes in developmental biology, the practical value of 

such research results for pathology might be enormous. 

 In view of the findings of a systemic synthesis of Pkp2 – with or without Pkp3 – and 

its integration into the AJ plaques of a major subtype of coniunctiones adhaerentes         

for a schematic presentation see Figure 10) one is inclined to speculate that this 

acquisition enhances the mechanical stability and biochemical resistance in both       

certain proliferative normal and transformed cells as it is also suggested by the occurrence 

of this protein in the AJ connections of very long processes of, e.g., myxoma tumors      

(cf. Rickelt et al., 2010) or of interstitial cardiac cells growing in primary cell culture     

(Barth et al., 2009). How widespread the occurrence of these Pkp-containing AJs is will be 

seen in future studies. That Pkp2 indeed contributes to the special stability to AJ-type
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cell-cell junctions is probably most impressively shown by the sensitivity of the myocardial 

composite junctions with respect to Pkp2-gene mutations – even very small ones – in adult 

mammals, humans included (see, e.g., the role of AJ protein mutations in 

cardiomyopathies as recently reported in the references evaluated in Table 7). It may well 

be that studies of Pkp2-defects in transgenic animal experiments will help identifying and 

mechanistically understanding the functional contributions of special domains in the Pkp2 

molecule to junctional stability of cell junctions. 

 

 

 

Figure 10. Schematic presentation of the hypothetical organization of adhering junction 
(AJ) proteins in the AJs "normal" mesenchymally derived cells in comparison with 
transformed ones. Shown is the cadherin-catenin-complex as well as the nectin-        
afadin-ponsin-system, which both provide anchorage to actin microfilament bundles (only 
one face of the symmetric AJ structure is demonstrated). Note that in the AJ subtype 
(coniunctio adhaerens) of transformed cells plakophilin-2 (Pkp2) occurs in a complex with 
typical puncta adhaerentia proteins. In certain kinds of cells, e.g., in cardiac myxoma cells,           
N-cadherin can be partly or totally replaced by cadherin-11. For the sake of clarity the 
armadillo proteins p0071 and ARVCF are not shown (for details see Hofmann et al., 2009). 
Ca++, calcium ions; pg, plakoglobin; p120, protein p120; α-cat, α-catenin; β-cat, β-catenin; 
ZO-1, protein ZO-1 (modified from Perez-Moreno et al., 2003, to integrate the results of this 
thesis). 
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Protein Reference  

 
Plakophilin-2 

 
Gerull et al., 2004 
Antoniades et al., 2006 
Calkins, 2006 
Nagaoka et al., 2006 
Kannankeril et al., 2006 
Dalal et al., 2006 
Syrris et al., 2006a 
Tsatsopoulou et al., 2006 
van Tintelen et al., 2006 
Awad et al., 2006 
Lahtinen et al., 2008 
Otterspoor et al., 2007 

 
Fidler et al., 2008 
Joshi-Mukherje et al., 2008 
Ram and Wagoner, 2008 
Tandri et al., 2008 
Wu et al., 2009 
Qiu et al., 2009 (5 cases) 

Hall et al., 2009 
Bhuiyan et al., 2009 (23 cases) 

Den Haan et al., 2009 (21 cases) 

Xu et al., 2010 (38 cases) 

Bauce et al., 2010 (7 cases) 

Cox et al., 2010 (58 cases) 
 

 
Desmoplakin 

 
Norgett et al., 2000 
Rampazzo et al., 2002 
Alcalai et al., 2003 
Bauce et al., 2005 
Norman et al., 2005 
Sen-Chowdhry et al., 2005 
Norgett et al., 2006 
Uzumcu et al., 2006 
Sen-Chowdhry et al., 2007 

 
Tsatsopoulou et al., 2006 
Yang et al., 2006 
Den Haan et al., 2009 (1 case) 

Mahoney et al., 2010 
Xu et al., 2010 (10 cases) 
Bauce et al., 2010 (5 cases) 

Cox et al., 2010 (1 case) 

Bolling et al., 2010 
 
 

 
Desmoglein-2 

 
Pilichou et al., 2006 
Tsatsopoulou et al., 2006 
Awad et al., 2006 
Syrris et al., 2007 
Yu et al., 2008 

 
Bhuiyan et al., 2009 (4 cases) 

Den Haan et al., 2009 (8 cases) 

Xu et al., 2010 (10 cases) 
Bauce et al., 2010 (4 cases) 

Cox et al., 2010 (3 cases) 

 
 
Desmocollin-2 

 
Heuser et al., 2006 
Syrris et al., 2006b 
Beffagna et al., 2007 
Bhuiyan et al., 2009 (2 cases) 

 
Simpson et al., 2009 
Xu et al., 2010 (4 cases) 
Bauce et al., 2010 (2 cases) 

Cox et al., 2010 (3 cases) 

 
 
Plakoglobin 

 
McKoy et al., 2000 
Protonotarios et al., 2001, 2002 
Kaplan et al., 2004 
Garcia-Gras et al., 2006 

 
Asimaki et al., 2007 
Asimaki et al., 2009 
Den Haan et al., 2009 (1 case) 

Xu et al., 2010 (2 cases) 

 
 

Table 7. Mutations in desmosomal proteins and glycoproteins contributing to ARVC 
cardiomyopathies and "sudden death" events (taken from Pieperhoff S., Barth M.,    
Rickelt S., and Franke W.W., 2010; see therein for the complete reference list). Note the 
importance of the Pkp2-gene. 
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There is presently little to discuss as to the occurrence of a relatively large 

desmosomal cadherin, Dsg2, that is not integrated into any form of AJ but occurs as 

dispersed individual plasma membrane glycoproteins over large regions of a cell type, i.e. 

in the cases shown in this thesis melanoma cells and certain melanocytes growing in cell 

culture. Apparently, here the relatively long carboxyterminal "tail" portion (for details of 

these domains see Koch et al., 1990, 1991; for recent reviews see Koch and Franke, 

1994; Garrod and Chidgey, 2008) is not anchored in a cytoplasmic plaque, at least it is not 

associated stably enough with any cytoplasmic protein that can be identified as              

co-immunoprecipitate. Nevertheless, the homogenous Dsg2-coating of large regions of the 

plasma membrane, which corresponds with a similarly Dsg2-coated surface of a closely 

adjacent membrane of the neighbouring cell, would be compatible with the concept that 

these dispersed cadherins are also engaged in calcium-mediated cell-cell attachment    

(for a detailed discussion of dermatological aspects see Schmitt et al., 2007; Rickelt et al., 

2008). It is obvious that only cDNA-transfection or transgenic animal experiments 

expressing the Dsg2-gene in cells totally devoid of desmosomal proteins (for problems of 

correct target cells see, e.g., Chitaev and Troyanovsky, 1997; Köser et al., 2003) will be 

able to elucidate possible functions of such Dsg2 forms. 

Even more provocative was the finding that blood tumor cells known to occur in situ 

as in cell cultures only as unicellular cell suspensions, are also able to synthesize AJs as 

well as EpCAM-based junctions and assemble with each other to form monolayers of 

densely-packed cells or even three-dimensional arrays. In the course of my thesis I have 

concentrated on two such hematopoietic cell lines: K562, a multipotential myelogenous 

line with demonstrable erythroleukemic properties, and RPMI 8226, a line with 

lymphoproliferative potential as demonstrated by the synthesis of immunoglobulin            

(a hypothetical presentation of their positioning in a survey scheme of blood cell formation 

is given in Figure 11). Since more than three decades these cell lines are among the 

worldwide most studied ones, serving as prime reference cells in haematology (for review 

see, e.g., Tsiftsoglou et al., 2003). Surprisingly, spontaneous synthesis and accumulation 

of several major epithelial molecules and structures could be noticed in individual cells 

(Franke and Rickelt, 2010; see also Schäfer et al., 1994; Schäfer, 1995), including in K562 

cells the presence of IF bundles of the keratin type (for latter see Zauli et al., 1986; 

Järvinen et al., 1990; Schäfer, 1995). 

In cultures of unicellular K562 cells, which are assumed not to contain any 

junctional proteins, the frequent appearance of diverse novel, clonally rather stable         

AJ structures have been seen and in molecular terms all the different AJ-types analyzed 

were based on the transmembrane glycoprotein, desmoglein Dsg2, in rare sublines 

accompanied by desmocollin Dsc2. This form of tightly clustered Dsg2 molecules is clearly
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distinguishable from the Dsg2 molecules occurring as dispersed, non-junction-integrated 

proteins as described afore in certain subtypes of melanocytes and melanoma cells. 

These K562 AJ-resembling structures of variable sizes frequently also contain the 

desmosomal plaque proteins plakoglobin as well as plakophilins Pkp2 and Pkp3. 

Surprisingly, the additional occurrence of the main desmosomal plaque protein, 

desmoplakin, was only found in some rare subtypes. This seems puzzling in view of the 

important structural role that is generally ascribed to this protein (for reviews see Godsel et 

al., 2004; Delva et al., 2009). Even more interesting was the observation of the 

predominant absence of the glycoprotein desmocollin Dsc2, which in normal desmosomes 

is the isostoichiometric “twin” of Dsg2 (for reviews see Chitaev and Troyanovsky, 1997; 

Troyanovsky, 2005). Obviously, this absence of Dsc2 supports earlier conclusions from 

cDNA transfections into desmosome-lacking cultured fibrosarcoma-derived cells that 

heterophilic pairing of Dsg with a desmocollin is not an absolute requirement for              

AJ formation (Köser et al., 2003). 

In addition, we have also repeatedly noted the acquisition of some armadillo 

proteins such as β-catenin and proteins p120 and p0071 to such AJ type plasma 

membrane structures which often connect adjacent cells into tissue-like higher order 

arrays not readily distinguishable from true epithelial structures. 

The appearance of such Dsg2-based AJs is not even the only kind of junctional 

structures seen in such cultured hematopoietic cells. Small as well as larger EpCAM-

based junctions anchored in a cortical actin-binding protein plaque system are also 

regularly seen. This is remarkable as EpCAM has hitherto been reported to be present 

only on plasma membranes of epithelia or epithelium-derived cells where they form 

special junctions (e.g., Momburg et al., 1987; Berendsen et al., 1988; Litvinov et al., 

1994b; Balzar et al., 1999; Winter et al., 2003; for recent reviews see Trzpis et al., 2007; 

Munz et al., 2009). These two separate biochemically totally different junction systems are 

obviously not restricted to K562 cell, but have also been demonstrable in culture cells of 

the human RPMI 8226 myeloma line which in addition often also presents "normal"         

N-cadherin-based puncta adhaerentia. 

Apparently, this new ability of hematological tumor cells to form AJ-type 

connections and thus to form tissue-like structures would certainly contribute to the 

stability of tumor cell aggregates as well as to potential metastatic interactions (for detailed 

discussions see Brock et al., 2009). 
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Figure 11. Schematic survey of differentiation pathways and the differentiation levels of the 
hematopoietic human tumor cell culture lines K562 and RPMI 8226. 
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Homo- and Heterotypic Cell Contacts in Malignant
Melanoma Cells and Desmoglein 2 as a Novel Solitary
Surface Glycoprotein
Christian J. Schmitt1,2, Werner W. Franke2, Sergij Goerdt1, Berit Falkowska-Hansen3, Steffen Rickelt2 and
Wiebke K. Peitsch1,2

During progression of melanomas, a crucial role has been attributed to alterations of cell–cell adhesions,
specifically, to a ‘‘cadherin switch’’ from E- to N-cadherin (cad). We have examined the adhesion of melanoma
cells to each other and to keratinocytes. When different human melanoma cell lines were studied by protein
analysis and immunofluorescence microscopy, six of eight lines contained N-cad, three E-cad, and five P-cad,
and some lines had more than one cad. Surprisingly, two N-cad-positive lines, MeWo and C32, also contained
desmoglein 2 (Dsg2), a desmosomal cad previously not reported for melanomas, whereas other desmosome-
specific proteins were absent. This finding was confirmed by reverse transcriptase–PCR, immunoprecipitation,
and matrix-assisted laser desorption ionization–time of flight analyses. Double-label confocal and immunoelec-
tron microscopy showed N-cad, a- and b-catenin in plaque-bearing puncta adhaerentia, whereas Dsg2 was
distributed rather diffusely over the cell surface. In cocultures with HaCaT keratinocytes Dsg2 was found in
heterotypic cell contact regions. Correspondingly, immunohistochemistry revealed Dsg2 in five of 10 melanoma
metastases. Together, we show that melanoma cell adhesions are more heterogeneous than expected and that
certain cells devoid of desmosomes contain Dsg2 in a non-junction-restricted form. Future studies will have to
clarify the diagnostic and prognostic significance of these different adhesion protein subtypes.

Journal of Investigative Dermatology (2007) 127, 2191–2206; doi:10.1038/sj.jid.5700849; published online 10 May 2007

INTRODUCTION
Under physiological conditions, melanocytes and keratino-
cytes form the ‘‘epidermal melanin unit’’ of the epidermis.
Melanocytes are located in the basal layer, in a life-long
stable ratio of 1:5 with basal keratinocytes. Dysregulation of
this homeostasis may lead to uncontrolled proliferation of the
melanocytes and, ultimately, to the development of malig-
nant melanoma (MM). The exact molecular mechanism of
this dysregulation is unknown, but an important role has been
attributed to alterations in cell–cell communication and
adhesion. For example, it has been reported that, compared
with normal melanocytes, melanoma cells produce increased
amounts of cell adhesion receptors of the immunoglobulin

superfamily, correlated with enhanced tumorigenicity and
invasiveness (reviewed by Haass et al., 2005).

A group of special importance involved in development
and progression of tumors are the cadherins (cads), calcium-
dependent transmembrane glycoproteins mediating intercel-
lular adhesion, mostly by homophilic interactions (see the
reviews Duguay et al., 2003; Wheelock and Johnson, 2003).
So far, more than 80 members of the larger cad superfamily
have been identified, including the classical type I and type II
cads, which are components of adhering junctions, the
desmosomal cads (desmogleins (Dsgs) 1–4 and desmocollins
(Dscs) 1–3; for a recent review, see Getsios et al., 2004),
protocadherins, fats, seven-pass transmembrane cads, and
Ret tyrosine kinases. The type I cads comprise E-cad, typically
synthesized by epithelial cells, N-cad on neuronal and
mesenchymal cells, and P-cad, first identified in the placenta,
and differ from type II cads by the adhesive HAV domain (for
review see Nollet et al., 2000). Cads can mediate both
homotypic cell–cell interactions, that is, between cells of the
same type and heterotypic adhesions between two different
cell types.

In normal epidermis, heterotypic melanocyte–keratinocyte
adhesions are formed by E-cad (Tang et al., 1994). However,
during development of MM, E-cad often appears to be
downregulated and replaced by N-cad (Hsu et al., 1996).
This phenomenon, also known as ‘‘cadherin switch’’, seems
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important not only for the pathogenesis of MM, but also for
some tumrs of epithelial origin (see the reviews Christofori,
2003; Cavallaro and Christofori, 2004; Haass et al., 2004).
According to some authors (Li et al., 2001a), N-cad
can promote survival and migration of melanoma cells.
For melanoma cells, it has also been reported that re-
expression of E-cad might restore keratinocyte-mediated
growth control and reverse malignancy (Hsu et al., 2000;
Li et al., 2004).

In developmental biology, the differentiation and topogen-
esis of melanocytes provides remarkable examples of cell
migration over long distances as well as of drastic changes of
cell character, including pigmentation and cell–cell adhesion
(for a ‘‘classic’’ review, see Le Douarin, 1984). Thus, in
typical adhering junctions the originally dominant N-cad can
be accompanied and taken over by E-cad and this may then
be reversed during malignant growth (see, e.g., Tepass et al.,
2000; Niessen and Gumbiner, 2002; Duguay et al., 2003;
Foty and Steinberg, 2005).

According to a predominant working hypothesis in cancer
research, the switch from E- to N-cad has several functional
implications. First, it provides the melanoma cells with a new
adhesive repertoire to interact with new, mostly mesenchy-
mal neighbors such as fibroblasts (Li et al., 2001a), blood
vessels, and lymphatic tissues. Moreover, N-cad is also
thought to be responsible for the transendothelial migration
of melanoma cells (Sandig et al., 1997; Li et al., 2001a;
Qi et al., 2005). Second, the ‘‘cadherin switch’’ may provide
proliferative and pro-migratory signals (Kuphal et al., 2004;
Qi et al., 2005, 2006; Kuphal and Bosserhoff, 2006). As to
other mechanisms regulating E- and N-cad expression in
melanoma, several pathways and cell–cell cross-talk interac-
tions have recently been discussed (Poser et al., 2001; Qian
et al., 2004; Robert et al., 2006; Liu et al., 2006; see the
review Huber et al., 2005).

Functional implications of the ‘‘cadherin switch’’ on
melanoma development and progression have been de-
scribed by the Herlyn group and others, who mostly used
in vitro cell culture systems, including two- and three-
dimensional organotypic cultures as well as animal models
(Hsu et al., 2000; Li et al., 2001a; 2004; Liu et al., 2006).
Immunohistochemical examinations on MMs and their
metastases, however, have indicated that this concept in its
purest form cannot be conferred 100% to the situation in situ.
For example, a proportion of melanoma cells in metastases
are still positive for E-cad and negative for N-cad (Danen
et al., 1996; Hsu et al., 1996; Silye et al., 1998; Sanders et al.,
1999). This has led us to search for further cell adhesion
molecules involved, both in melanoma cell cultures, in two-
and three-dimensional melanoma–keratinocyte cocultures,
and in cryostat sections of melanoma metastases. We have
found that the cad repertoire of melanoma cells –even within
one cell – can be much more heterogeneous than expected.
Moreover, most surprisingly, we made the observation that
despite the absence of desmosomes and other desmosomal
constituents, a number of melanoma cell lines in culture as
well as a proportion of melanoma metastatic cells contain, in
addition to classical cads, noticeable amounts of the

desmosomal cad, Dsg2, as a widely spread, non-junction-
bound transmembrane cell–cell adhesion protein.

RESULTS
Coexistence of classical cads in certain melanoma cells

To elucidate the molecular composition of plaque-bearing
junctions in MM cells, we first performed immunocytochem-
istry on several cultured human melanoma cell lines, using
antibodies to classical cads. In general, cells were grown to
rather high density, as the confluency of cell cultures is
known to affect the expression pattern of cads. In WM35
cells, for example (Figure 1), we found more than 90% of the
cells to be intensely positive for N-cad, as expected (Figure
1b, c, e, and f). In addition, B30% of the cells contained
E-cad (Figure 1a, c, h, and i), thus confirming Smalley et al.
(2005) and B20% P-cad (Figure 1d, f, g, and i), both enriched
at intercellular contacts, like N-cad. As seen by double-label
confocal microscopy, these three classical cads often
appeared in mutually exclusive patterns, but occasionally
also within the same cell, showing at least partly overlapping
localization (Figure 1c, f, and i, asterisks). In some cells, we
could notice co-occurrence of all three cads. To examine our
results with a biochemical identification method, immuno-
blot analyses were performed, showing specific bands for N-,
E-, and P-cad in WM35 cells (Figure 1j, lane 5) as well as
coexistence of N- and P-cad in another melanoma cell line,
C32 (lane 4). In coimmunoprecipitation (IP) experiments,
conducted again with WM35 cell lysates, all three cads were
found to coimmunoprecipitate with the adhering junction
plaque protein b-catenin (cat) (Figure 1k, lanes 2–4). N- and
E-cad as well as N- and P-cad did not coprecipitate (lane 2).
Remarkably, however, P-cad was specifically enriched in
E-cad immunoprecipitates (lane 3), an observation made with
two different solubilization buffers (1% Triton X-100 buffer,
Figure 1k, and RIPA buffer; data not shown), suggestive of the
existence of heterotypic E- and P-cad complexes.

Detection and biochemical characterization of Dsg2 in specific
melanoma cell lines

Our findings on WM35 cells led us to a more detailed
analysis of melanoma cell junctions. To this end, immunoblot
analyses with diverse antibodies against proteins of adhering
junctions, desmosomes, and tight junctions were performed
on eight different human melanoma cell lines (Figure 2 and
Table 1). Six of these eight lines contained N-cad, three
WM35, SK-MEL-2, and Malme-3M, were positive for E-cad.
In addition, P-cad was detected in five of eight lines, among
those both N-cad- (WM-115, C32, and WM35) and E-cad-
positive ones (SK-MEL-2, Malme-3M, and WM35). Line WM-
115 also contained, in addition to N- and P-cad, cad 11, a
cad typical for mesenchymal stem cells (Simonneau et al.,
1995; Wuchter et al., 2007). Together, our analyses show that
cad complements of melanoma cells are more heterogeneous
than hitherto thought.

When the different melanoma cell lysates were immuno-
blotted with antibodies against desmosomal proteins
(Figure 2; for a survey see Table 1), we detected Dsg2, a
desmosomal cad normally synthesized in keratinocytes in the
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basal epidermal layer, in two of eight melanoma lines, MeWo
and C32, an unexpected finding confirmed with three
different Dsg2 mAbs (clones DG3.10, 6D8, and 10G11;
Figure 2). By contrast, all other desmosomal cads examined,
that is, Dsg1 and 3 and Dscs 1–3, were absent. With regard to
desmosomal plaque proteins, rather small amounts of
plakoglobin, known as a common constituent of both
desmosomal and adhering junction plaques (Cowin et al.,
1986), were detected in a number of melanoma cell lines,

including the Dsg2-positive line C32. Moreover, the
other Dsg2-positive line, MeWo, contained plakophilin
(PKP) 3 and another line, WM-115, was positive for PKP1,
2, and 3, but negative for desmosomal cads. Interestingly,
MeWo cells also synthesized another plaque protein,
neurojungin, an arm-repeat protein described previously
as a constituent of heterotypic adhering junctions specific
for the outer limiting zone of the retina (Paffenholz et al.,
1999).

Figure 1. Patterns of coexistence of different classical cads in cultured melanoma cells. (a–i) Double-label immunofluorescence confocal microscopy of

human WM35 melanoma cells using antibodies against N-cad (green in b, c, e and f), E-cad (red in a and c, green in h and i), and P-cad (red in d, f, g, and i),

showing that the vast majority of the cells contain N-cad, which appears enriched at intercellular contacts and along cell borders, but also that a minor

proportion of the cells is positive for E- and/or P-cad. The different classical cads can sometimes be found in the same cell (asterisks), but occasionally also in

mutually exclusive cell patterns (c, f, and i). Bars¼20 mm. (j) Immunoblot analysis of the SDS-PAGE-separated polypeptides of total cell lysates from human

HaCaT keratinocytes, SV80 fibroblasts, and different human melanoma lines (MeWo, C32 and WM35), confirming the coexistence of more than one

classical cad in a given cell line, that is, N- and P-cad in C32 cells and N-, E-, and P-cad in WM35 cells. Equal amounts of proteins have been loaded.

(k) Immunoblots of the SDS-PAGE-separated proteins of IPs from WM35 cell lysates, using N-, E-, and P-cad as well as b-cat antibodies. Note that N-cad

coprecipitates neither with E- nor P-cad, whereas P-cad is pulled down in E-cad immunoprecipitates. S, supernatant before IP; P, material after preclearing.

MW markers are indicated on the left margins.
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Analyses of tight junction proteins revealed proteins ZO-1
and -2 in all melanoma cell lines examined (Table 1; see also
Smalley et al., 2005). However, proteins ZO-1 and -2 can
occur both at adhering and at tight junctions (Itoh et al.,
1993, 1999) and indeed, it has been shown that in melanoma
cells, ZO-1 is associated with adhering junctions (Smalley
et al., 2005). All other tight junction proteins probed,
including the transmembrane constituents occludin and
claudins 1 and 4, were not detected.

Clearly, the most unexpected result was the detection of
Dsg2 in cells devoid of almost all other desmosomal
constituents. To substantiate further this finding, PCR analysis
was performed and the expected Dsg2 fragments were seen
in both MeWo and C32 cells (Figure 3a). As another group
had reported the detection of Dsg1 in different melanoma cell
lines (Li et al., 2001b), a finding contrasting with our own
immunoblot results, we also conducted PCR experiments
with Dsg1-specific primers. However, no amplification was
seen in the melanoma lines (Figure 3a).

To identify candidates for interaction with Dsg2, lysates
from lines C32 (Figure 3b) or MeWo (data not shown) were
subjected to IP, followed by SDS-PAGE and matrix-assisted
laser desorption ionization–time-of-flight analysis. In the
Dsg2 immunoprecipitates, a B160-kDa band appeared,
which was identified as Dsg2 (Figure 3b, lane 3), but no
other protein was specifically enriched. By contrast, in
control IPs with b-cat antibodies, a 130-kDa band, corres-
ponding to N-cad, and a 90 -kDa band representing a-cat
were coimmunopreciptated with b-cat (Figure 3b, lane 4),
that is, known functional protein complexes of adhering
junctions. Essentially the same IP results were obtained in
MeWo cells.

Subcellular localization of Dsg2 in melanoma lines
When we determined the subcellular distribution of Dsg2 by
confocal microscopy, Dsg2 enrichment was observed at sites
of cell–cell contacts, but also along free plasma membrane
boundaries (Figure 4d and f). The classic plaque protein,
b-cat, examined for comparison and control, was also
accumulated at intercellular junctions, but appeared weaker
at free cell borders (Figure 4b, c, e, and f) and did not
codistribute with Dsg2 (Figure 4f). On the contrary, double
labelling for b-cat and N-cad gave near-complete colocaliza-
tion (Figure 4a–c) and the same applied for the comparison of
a-cat and protein p120ctn (data not shown). When MeWo
cells were labelled for PKP3 and neurojungin and C32 cells
for plakoglobin, all three proteins were diffusely distributed,
without any specific enrichment at a distinct structure, and
this was observed with different fixation and staining
protocols (data not shown; see Materials and Methods). Co-
IPs in MeWo cells did not reveal interactions of Dsg2 with
PKP3 or b-cat (Figure 4g). When C32 cell lysates were
immunoprecipitated with Dsg2 antibodies, minor amounts of
plakoglobin were pulled down and a weak plakoglobin band
also appeared in b-cat immunoprecipitates (data not shown).
Yet, similar as in MeWo cells, Dsg2 and b-cat did not
coimmunoprecipitate. Moreover, like in WM35 cells, no
co-IP of N- with P-cad was observed (data not shown).

�-cat

Plakoglobin

Neurojungin

Figure 2. Immunoblot detection of adhering junction-associated and

desmosomal proteins in different cultured human melanoma cell lines.

Equal amounts of total proteins from seven human melanoma lines (MeWo,

WM-115, WM-266–4, WM-793, C32, Sk-Mel-2, and Malme-3M) as well as

from HaCaT keratinocytes and SV80 fibroblasts, loaded for comparison, were

probed with antibodies against classical cads (N-, E-, and P-cad and cad 11),

arm-type plaque proteins of adhering junctions (b-cat, protein p120ctn,

plakoglobin, and neurojungin), desmosomal cads (Dsg1–3 and Dsc1–3), and

desmosomal plaque proteins (desmoplakin and PKP1–3). Five of the seven

melanoma cell lines contain N-cad, two possess E-cad, four show P-cad

and cad 11 is only found in one line. Interestingly, two melanoma lines,

MeWo and C32, synthesize the desmosomal cad Dsg2, in the absence of all

other desmosomal cads, a finding confirmed by immunoblotting with three

different Dsg2 mAbs (clones DG3.10, 6D8, and 10G11). PKP1–3 are found in

WM-115 cells and PKP3 occurs as the single PKP in MeWo cells, which,

surprisingly, also contain the neuronal-type component of special kinds of

adhering junctions (cf. Paffenholz et al., 1999). *For immunoblot detection

of Dsg1, whole cell lysates of human epidermis were loaded as positive

control instead of HaCaT cell lysates.
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To clarify the molecular complement of melanoma cell
junctions and, in particular, the localization of Dsg2, we
performed electron and immunoelectron microscopy of
MeWo cells (Figure 5). Ultrathin sections revealed small
plaque-bearing adhering junctions of the puncta adhaerentia
category (Figure 5a–c; arrows) the plaques of which showed
associations with actin microfilaments as well as lateral

neighborhood to intermediate-sized filaments (Figure 5b and
c). In molecular terms, these puncta junctions were identified
by their cat and p120ctn components, and immunoelectron
microscopy in general showed marked and specific enrich-
ment in their plaques (Figure 5d–f; arrowheads). In addition,
minor b-cat reactions could also be detected in junction-free
plasma membrane regions (Figure 5d and e; arrows). Dsg2

Table 1. Detection of proteins associated with adhering junctions, desmosomes, and tight junctions in different
melanoma cell culture lines

MeWo WM-115 WM-226-4 WM-793 C32 SK-Mel-2 Malme-3M WM35

Adhering junction proteins

N-cadherin + + + + + � � +

E-cadherin � � � � � + + +

P-cadherin � + � � + + + +

VE-cadherin � � � � � � � �
Cadherin 11 � + � � � � � �
Cadherin 6 � � � � � � � �
a-catenin + + + + + + + +

b-catenin + + + + + + + +

p120ctn + + + + + + + +

Vinculin + + + + + + + +

a-Actinin + + + + + + + +

Plakoglobin1 (+) (+) + + + + + +

ZO-12 + + + + + + + +

ZO-22 + + + + + + + +

Drebrin3 + + + + + + + +

Neurojungin + � � � � � � �

Desmosomal proteins

Desmoglein 1 � � � � � � � �
Desmoglein 2 + � � � + � � �
Desmoglein 3 � � � � � � � �
Desmocollin 1 � � � � � � � �
Desmocollin 2 � � � � � � � �
Desmocollin 3 � � � � � � � �
Plakophilin 1 � + � � � � � �
Plakophilin 2 � + � � � � � �
Plakophilin 3 + + � + � � � �
Desmoplakin 1 � � � � � � � �
Desmoplakin 2 � � � � � � � �
Plakoglobin1 (+) (+) + + + + + +

Tight junction proteins

ZO-12 + + + + + + + +

ZO-22 + + + + + + + +

Occludin � � � � � � � �
Claudin 1 � � � � � � � �
Claudin 4 � � � � � � � �

1Plaque component of both adhering junctions and desmosomes.
2Proteins occurring both at adhering and at tight junctions.
3For references with respect to adhering junction localization, see Peitsch et al. (1999, 2005).
(+) Trace amounts detectable by immunoblot analysis.
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was seen along the entire cell surface, but without any
specific enhancements at plaques (Figure 5g).

Distribution of adhering junction proteins and Dsg2 in
coculture systems

To assess the possible role of Dsg2 and the adhering junction
proteins in heterotypic cell–cell adhesions of melanoma cells,
coculture systems confronting melanoma cells with fibro-
blasts or keratinocytes of line HaCaT were established. When
two-dimensional MeWo cell-fibroblast cocultures were
reacted with antibodies to adhering junction proteins,
including N-cad, a- and b-cat, and protein p120ctn, they all
labelled homotypic fibroblast and homotypic melanoma
junctions as well as heterotypic melanoma–fibroblast junc-
tions. As an example, the reaction of N-cad is shown in
Figure 6a. Dsg2 staining of such cocultures revealed absence
of this protein from fibroblasts, as expected, but demonstrated
enrichment at the homotypic cell borders of MeWo cells
(Figure 6c). In cocultures of C32 (Figure 6e–j) or MeWo
cells with HaCaT keratinocytes, E-cad and desmosomal
cads, except Dsg2, appeared exclusively in the keratinocytes:
E-cad in linear arrays representing the series of adhering
junctions (Figure 6e and f), the desmosomal proteins in
their typical punctate arrays (data not shown). In contrast,

reaction sites of b-cat (Figure 6g and h) as well as of a-cat,
and protein p120ctn (data not shown) were accumulated
both along homotypic adhering junctions of melanoma and
HaCaT cells and in regions indicative of heterotypic contacts.
Correspondingly, Dsg2 was seen at the heterotypic
interaction borders between melanoma and HaCaT cells
(Figure 6i and j).

As a cell culture model of the situation in vivo organotypic
cultures of MeWo or C32 cells with HaCaT keratinocytes
were prepared. Keratinocytes and melanoma cells were
mixed in a 5:1 ratio, corresponding to the physiological ratio
in the basal epidermal layer and these cultures were exposed
to an air–liquid interface for two weeks to allow differentia-
tion of the keratinocytes and formation of a stratified
epidermal equivalent (Figure 7). In MeWo–HaCaT organo-
typic cocultures, MeWo cells, a line originally generated
from a melanoma lypmph node metastasis (cf. Table 3),
formed cell clusters in subepidermal nests (Figure 7a–f).
Immunostainings for b-cat (Figure 7a and b) and other
adhering junction plaque proteins (data not shown) were
positive not only at homotypic junctions between the
keratinocytes on the one hand and MeWo cells on the other,
but also at contact sites between the basal keratinocytes and
the subepidermally located melanoma cells (Figure 7b). Dsg2
was detected in remarkable intensity at the MeWo cell
contacts as well as in the basal layer of the epidermal
equivalent, corresponding to the situation in vivo and at the
boundaries between MeWo cells and basal keratinocytes
(Figure 7e and f). By contrast, the reactions for Dsg 1 were
rather inverse, showing strongly positive reactions in the
upper epidermal layers. Clearly, this protein was absent from
the melanoma cells (Figure 7c and d; cf. Figure 7i and j).
Different from the MeWo cells, cells of the line C32
originated from a primary amelanotic melanoma, did not
invade the epidermal equivalent but formed a compact
multilayer tumor on top of it (Figure 7g–l). Otherwise, the
distribution pattern of the adhering junction-associated and
desmosomal proteins was similar to that noted in the
MeWo–HaCaT organotypic cocultures.

Cad patterns in melanoma metastases in situ

To verify whether our results with cell culture systems might
also be relevant for genuine tumors in situ, small samples of
melanoma metastases from 10 different patients, originating
from skin, lymph node, or lung tissue, all positive for melan-
A, were analyzed by immunofluorescence microscopy
(Figure 8 and Table 2). Eight of 10 metastases contained
N-cad, enriched along cell boundaries (Figure 8a, c, d, f, j,
and l) and in seven of the 10 metastases, at least a
subpopulation of the tumor cells was positive for E-cad
(cf. Figure 8e, f, n, and o and Table 2). Coexistence of both
classical cads was noted in six metastases and double-label
confocal microscopy revealed that they could occur both
separately in different cell clusters and together within the
same cell (Figure 8f). P- and VE-cad were detected each
in two of 10 metastases, but only in small cell groups,
representing less than 20% of the tumor cells (Table 2).
Interestingly, two metastases contained some cells positive

�-
ca

t I
P

Control

a b

Figure 3. Specific detection of Dsg2 in MeWo and C32 cells at the mRNA

level and by matrix-assisted laser desorption ionization–time of flight

analysis. (a) PCR analysis of MeWo, C32, and WM35 melanoma cells using

primers specific for the Dsg1 and 2 as well as for the actin-binding protein

drebrin. Dsg2 is detected in MeWo and C32 melanoma cells, whereas none

of the melanoma lines analyzed contains Dsg1. Human split skin has been

employed as positive control for the Dsg1 PCR, HaCaT keratinocytes for

the Dsg2 PCR, and SV80 cells as negative control. Size markers: 396 and

356 bp (Dsg1 and Dsg2 PCR) or 356 and 247 bp (drebrin PCR). (b) Coomassie

blue-stained 4–20% acrylamide gel, showing proteins immunopreciptated

from C32 cell lysates with antibodies to Dsg2 or b-cat. In the Dsg2

immunoprecipitate, a solitary band of B160 kDa is seen, which has been

identified as Dsg2 by matrix-assisted laser desorption ionization–time of

flight analysis. In the b-cat immunoprecipitate, a band at B130 kDa

represents N-cad, and bands at 90–100 kDa contain a- and b-cat. Further

bands at 66, 55, and B30 kDa correspond to bovine serum albumin and the

heavy and light Ig chains of the antibodies. P, material of the preclearing step;

M, molecular weight marker, as indicated on the left margin.
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for Dsg1, which at least, in one of these, appeared enhanced
at cell boundaries (Table 2). Moreover, and most remarkably,
Dsg2 was found in five of the 10 metastases and in four
of them, even more than 50% of the tumor cells were positive
(Table 2 and Figure 8g–o). As to subcellular distribution,
significant cell border enrichment was noted in three of the
five Dsg2-positive metastases (cf. Figure 8g, i, j, m, l, o),
whereas the other two showed diffuse cytoplasmic staining
(data not shown). When the Dsg2-positive metastases were
double-labelled with antibodies to N- (Figure 8j–l) or E-cad
(Figure 8m–o), it was evident that Dsg2 could occur both in
N- and E-cad-containing cells (Figure 8l and o), apparently
independent of the two classical cad pattern.

Surprisingly, in one metastasis, no. 864, which in its
histology did not markedly differ from the other metastases,
neither N-, E-, VE-, nor P-cad and cad 11 immunostaining
was significant along cell–cell boundaries. However, most
cell borders were labelled by antibodies against a- and b-cat
and protein p120ctn. Moreover, a variable number of tumor
cells were positive for Dsg1, 2, and 3, all appearing
accumulated along cell boundaries, whereas desmosome-
specific plaque proteins were not detected by immunofluore-
scence microscopy. Therefore, we decided to extend our

research on this specific subtype to a greater number of
tumors.

Together, our observations in situ indicated that the cad
patterns and combinations were more variable than anti-
cipated and that metastases could comprise extremely
heterogeneous subcompartments, reflecting our observations
in vitro.

DISCUSSION
Our study has given three important results: first, the cad
pattern of melanomas can be quite heterogeneous and certain
melanoma cell lines as well as metastases can synthesize
several – up to three – classical cads within the same cell.
Second, a proportion of cultured melanoma cells and
melanoma metastases contain, in addition, the desmosomal
cad Dsg2, which, in the absence of desmosomes, is dispersed
over the cell surface. Third, this complex cad complement
contributes to the remarkable diversity of options of
melanoma cells to form heterotypic cell–cell interactions.
Thus, the facultative cad repertoire of melanoma cells might
be much larger than previously thought, probably depending
not only on the degree of malignancy but also on the specific
growth conditions and the microenvironment.

Figure 4. Differential distribution of Dsg2, compared with adhering junction proteins, in cultured melanoma cells. (a–f) Confocal microscopy of MeWo

melanoma cells, stained for b-cat (green in b, c, e, and f) in combination with N-cad (red in a and c) or with Dsg2 (red in d and f). All three proteins are enriched

at intercellular junctions and along free cell boundaries. Although b-cat and N-cad show (c) far-reaching colocalization , (f) localizations of b-cat and Dsg2 are

completely distinct. Bar¼ 20mm. (g) IP and immunoblot analysis of MeWo cell lysates with antibodies to Dsg2, PKP3, and b-cat, showing no co-IP, indicating

that in the specific lysate they occur in different protein complexes.
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Heterogeneous cad profiles and their implications
It is well known that under certain circumstances, melanoma
cells can synthesize other cads than N- or E-cad. For
example, P-cad has been identified in melanoma cells (Hsu

et al., 1996; Bauer et al., 2005, 2006) and has been reported,
similar to E-cad, to promote cell–cell adhesion and counter-
act invasion (Van Marck et al., 2005). Moreover, the amount
of P-cad appears to have a prognostic relevance, as a loss of
P-cad is commonly seen in advanced melanomas and
melanoma metastases (Bauer et al., 2006). This seems in
accordance with our findings on melanoma metastases in
which only a very small subpopulation of cells was P-cad-
positive. In addition to P-cad, melanoma cells may faculta-
tively also synthesize VE-cad, a cad characteristic for
endothelial cells, that has been related to highly aggressive
melanoma cell lines undergoing ‘‘vasculogenic mimicry’’, a
process facilitating hematogeneous metastasis (Hendrix et al.,
2001; Hess et al., 2006). Our melanoma lines were all VE-
cad-negative, but two of 10 metastases comprised small
subgroups of VE-cad-positive cells.

Surprisingly, one of eight melanoma cell culture lines
examined in our study contained cad 11, a type II classical
cad originally identified in osteoblasts but later also detected
in diverse other cells of mesenchymal origin which had so far
not been described in melanoma cells. In an earlier study, six
novel, yet not further characterized cad fragments, termed
ME1–ME6, have been identified in melanoma cell lines by
PCR (Matsuyoshi et al., 1997).

Heterogeneity of subpopulations of melanoma cells might
also have important implications for the growth and spreading
of these tumors in situ. Although E-cad is known to inhibit and
N-cad to enhance proliferation, migration, and metastasis,
different immunohistochemical investigations have shown that
a proportion of melanoma metastases still contains significant
E-cad amounts (Danen et al., 1996; Silye et al., 1998; Sanders
et al., 1999; Andersen et al., 2004). In our study, one of 10
metastases contained E-cad as the only classical cad and six of
10 synthesized both E- and N-cad, occasionally in different
subcompartments of the tumor but sometimes even within the
same cell. Therefore, loss of E-cad is apparently not a universal
or an inevitable feature of tumor metastasis. Alternatively, it
could also be possible that in some melanomas, E-cad is only
temporarily downregulated during tumor development, but re-
expressed later in metastases. Remarkably, and in contrast to
other melanoma subtypes, it has been reported for uveal
melanoma that E-cad-containing tumors show an increased risk
for metastasis (Onken et al., 2006).

Our biochemical analyses in a melanoma cell line
containing E-, N-, and P-cad together, have shown that all
three cads form complexes with the same set of plaque
proteins of adhering junctions, that is, a- and b-cat,
plakoglobin, and protein p120ctn. Yet, although E- and N-
as well as P- and N-cad occur in different complexes, E- and
P-cad have been found to coimmunoprecipitate. Tradition-
ally, the cell–cell binding specificities of cads have been
considered as primarily homotypic. However, more recent
studies have shown that their interactions can also be more
promiscuous (e.g., Shimoyama et al., 2000; Niessen and
Gumbiner, 2002; see the review Patel et al., 2003). Results of
studies in cocultures of lens and liver cells (Volk et al., 1987)
or of epithelial cells and fibroblasts (Omelchenko et al.,
2001) have been taken as indications of heterotypic

a
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d

e f

g

Figure 5. Electron and immunoelectron microscopy presenting cell–cell

contacts of MeWo cells. (a–c) Conventional electron microscopy. In (a) the

survey as well as in (b and c) more detailed, high-resolution micrographs,

several small, plaque-bearing puncta adhaerentia junctions are seen (arrows

in a–c; inset in a: higher magnification of such a junction). Note that at some

sites devoid of plaques, the plasma membranes of neighboring cells are

extremely close spaced, indicative of another form of junction (c).

L, lysosome. Bar¼ 700 nm. (d–g) Immunoelectron microscopy, using (d–f)

mAbs to b-cat and (g) to Dsg2 in combination with gold-coupled secondary

antibodies and signal enhancement by the silver technique. b-cat is densely

accumulated in the plaques of the puncta adhaerentia (arrowheads in d and e;

higher magnification in f). Moreover, plaque protein reactions are

sometimes also detected at plaque material of free plasma membranes (arrows

in d and e). Dsg2 staining is observed diffusely along the plasma membrane,

both at intercellular contact regions and along free cell membranes, with

occasional weak reactions at plaques (arrow) but, in contrast to b-cat, does

not show specific enrichment at these sites (g). Bar¼700 nm.
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adhesions formed by N- and E-cad. Moreover, L-cells
transfected with E- or P-cad are capable of forming
‘‘E–P heterocadherin’’ adhesions between adjacent cells
(Duguay et al., 2003; Foty and Steinberg, 2005). On the
other hand, it is now clear that certain cads may form lateral
cis-heterodimers (e.g., Shan et al., 2000) and specifically
E- and P-cad cis-heterodimers have been identified in A431
carcinoma cells (Klingelhöfer et al., 2000). As to the
heterotypic E-P-cad complexes found in our study, their
cis- or trans-nature remains to be determined.

Dsg2 as a novel solitary cell surface component characteristic
of a subset of melanoma cells

A totally unexpected result of our study is that certain kinds of
melanoma cells synthesize the desmosomal cad Dsg2,

known as a widespread transmembrane glycoprotein of
desmosomes of all proliferative epithelial cells, keratinocytes
included (Schäfer et al., 1994). Via its intracellular domain,
Dsg2 interacts with plakoglobin which, in turn, can bind
other desmosomal plaque proteins, the PKPs and desmopla-
kin, the latter constituting a linker to intermediate filaments
(Troyanovsky et al., 1993; Chitaev et al., 1996; see the review
Getsios et al., 2004). In addition, Dsg2 is also an important
constituent of the area composita complex connecting
cardiomyocytes (Borrmann et al., 2006; Franke et al., 2006).

In our two melanoma cell lines, the Dsg2 distribution was
radically different from that known from all other cell types.
Here, the adhesive glycoprotein was spread over the cell
surface, with occasional clusters at otherwise inconspicuous
cell–cell contact sites. Biochemically, it was not found in

N-cad+S100

a e f

c d g h

i j

b

Dsg2+S100

Dsg2+S100 Dsg2

E-cad+S100 E-cad

�-cat+melan-A �-cat

Figure 6. Localization of adhering junction proteins and Dsg2 in adherent cell cocultures. (a–d) Confocal microscopy of cocultures of primary human

fibroblasts and MeWo melanoma cells, labelled for N-cad (red in a) or Dsg2 (red in c) in combination with S100 protein as melanoma marker (a and c; green).

(a) N-cad is detected both in homotypic melanoma–melanoma and fibroblast–fibroblast junctions and in regions of heterotypic contacts between the two

cell types, whereas Dsg2 staining is only seen on the surfaces of the S100-positive melanoma cells, here at intercellular contacts as well as along free cell

membranes (b and d, phase contrast images). Bar¼ 20mm. (e–j) Cocultures of HaCaT keratinocytes and C32 melanoma cells, immunostained for (e and f; red)

E-cad, (g and h; red) b-cat, (i and j; red) Dsg2, and the melanoma cell markers, (e and i; green) S100 and (green in g) melan-A. (e and f) Here, E-cad is

exclusively found along keratinocyte cell–cell borders containing adhering junctions. (g and h) By contrast, homotypic melanoma, homotypic keratinocyte,

and heterotypic melanoma–keratinocyte contact sites are strongly positive for b-cat. (i and j) The same holds for Dsg2, which in HaCaT cells appears in the

punctate pattern typical of demosomes. Bar¼20 mm.
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complexes with any other junctional proteins. A similar cell
surface distribution of Dsg2 was observed in the human
fibrosarcoma cell line HT-1080, the only cell line reported so
far to contain endogenous Dsg2 but no other desmosomal
constituents (Chitaev and Troyanovsky, 1997). When this cell
line was stepwise transfected with other desmosomal cads,
junction protein complexes were formed. It was even
possible to induce the formation of desmosomes by
cotransfection of the other desmosomal proteins, of which
the plaque protein, PKP2, played an especially important
anchoring role (Koeser et al., 2003).

When we systematically examined our Dsg2-positive
melanoma cell lines for other desmosomal proteins, we only
found plakoglobin, a constituent of both desmosomes and
adhering junctions, which was synthesized in C32 cells in
minor amounts and only in traces in MeWo cells. In addition,
in MeWo but not in C32 cells, PKP3 was detected, another
member of the p120ctn family of armadillo-related proteins
(see the review Schmidt and Jäger, 2005). However, as seen
by immunolocalization, both plakoglobin and PKP3 occurred
predominantly in the cytoplasm and only small amounts of
plakoglobin coimmunoprecipitated with Dsg2 in C32 cells.
Thus, so far, Dsg2 appears as a primarily solitary cell surface
component. This raises the question whether it can in fact as
a single molecule type exert significant adhesive strength.
When L-cells, a mouse fibroblast line, were transfected with

cDNAs encoding single desmosomal cads or related chimeric
proteins in the absence of other desmosomal components,
the adhesive properties of the transfectants were only very
weak (Amagai et al., 1994; Chidgey et al., 1996; Kowalczyk
et al., 1996). However, in contrast to our melanoma cell
lines, these transfected L-cells were said to be devoid of any
functional adhering junctions and thus may lack initiating
components for desmosome formation (see the review
Getsios et al., 2004).

Another group has reported the synthesis of Dsg1 in
several melanoma cell lines and its downregulation by
autocrine hepatocyte growth factor, in parallel with down-
regulation of E-cad (Li et al., 2001b). In all the melanoma cell
lines we analyzed, including line WM35 used by Li et al.
(2001b), we did not detect Dsg1, neither at protein nor at the
mRNA level. On the other hand, our observation that the
Dsg1 antibody also used by Li et al. (clone 62, from BD
Biosciences Pharmingen; Heidelberg, Germany), not only
reacted with a 160-kDa band present in all melanoma cell
lines but also in fibroblasts used as negative control as well as
our matrix-assisted laser desorption ionization results that the
160-kDa component immunoprecipicated with this antibody
was identified as epidermal growth factor receptor (data not
shown) led us to the conclusion that this represents, most
probably, a cross-reaction of this antibody between the two
proteins.

�-cat 
+ 

vim

Dsg2 
+ 

vim

Dsg1 
+ 

vim

a b

c d

e f

g h

i j

k l

HaCaT-MeWo organotypic cultures HaCaT-C32 organotypic cultures

�-cat 
+ 

vim

Dsg2
+ 

vim

Dsg1
+ 

vim

Figure 7. Immunolocalizations of junctional proteins in organotypic keratinocyte-melanoma cell cocultures. Vimentin (green in a–k) has been generally used

as marker protein for the identification of melanoma cells. (a–f) In organotypic cultures of HaCaT keratinocytes with melanoma cells of line MeWo, the

keratinocytes form a stratified and differentiated epidermis with a stratum corneum equivalent layer on top, whereas cells of line MeWo, derived from a lymph

node metastasis, are densely aggregated in subepidermal cell clusters. As seen by double-label confocal microscopy, b-cat antibodies (a and b; red) mark

homotypic junctions, both between keratinocytes and between melanoma cells as well as regions of heterotypic contacts between the HaCaT and the

MeWo cells. Dsg1-positive reactions (c and d; red) are exclusively observed in the epidermis and here mostly in the upper layers. Clearly, the MeWo cells

appear Dsg1-negative. By contrast, Dsg2 (e and f; red) is enriched in the basal epidermal layer. Moreover, strong Dsg2 immunoreactions are noted at junctions

between the subepidermal MeWo cells as well as in areas of heterotypic MeWo cell–keratinocyte contacts. Bar¼20 mm. (g–l) In organotypic cocultures

confronting HaCaT keratinocytes with C32 cells, originated from a primary melanoma, the melanoma cells do not invade the epidermal equivalent but form

a dense multilayer conglomerate on top of it. Double-label confocal microscopy, using (g and h; red) antibodies to b-cat, (i and j; red) Dsg1, and (k and l; red)

Dsg2, in combination with (g–k; green) vimentin as a melanoma cell marker, reveals distribution patterns for b-cat and the desmosomal cads Dsg1 and 2 that

are similar to those in the organotypic HaCaT-MeWo cell cocultures. Bar¼20 mm.
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We have identified Dsg2 not only in monocultures of
melanoma cells but also in two- or three-dimensional
cocultures and in regions of both homotypic melanoma cell
and heterotypic melanoma–keratinocyte contacts. This im-
plies the possibility that Dsg2 can indeed act as a heterotypic
cell–cell adhesion molecule between keratinocytes and
melanoma cells. It will therefore be mandatory to investigate
the ultrastructural basis of such heterotypic contacts, espe-
cially as keratinocytes contain desmosomes and melanoma
cells do not. Moreover, it will be important to characterize
the subgroup of Dsg2-positive melanoma cells in greater
detail and its impact on melanoma progression and
metastasis. In this context, it may be remarkable that in our
organotypic cocultures, one of the Dsg2-positive lines, C32,
originated from a primary amelanotic melanoma, did not
invade into the artificial epidermis, whereas the other line,
MeWo, derived from a lymph node metastasis, formed
subepidermal melanoma cell nests as well as Dsg2-positive
contact sites with the basal keratinocytes.

Furthermore, it will be interesting to investigate normal
melanocytes for Dsg2. Indeed, our studies on normal human
epidermal melanocytes, both from newborn foreskin (NHEM-
f1, PromoCell, Heidelberg, Germany) and from adult skin
(NHEM-a1, PromoCell), cultured in serum-free medium, have
shown some amounts of Dsg2, both on RNA and on protein
level (unpublished results).

Together, our data indicate that a non-desmosome-
integrated, ‘‘free’’ cell surface glycoprotein Dsg2 might
represent a novel, primitive cell–cell adhesion system

characteristic of a certain subset of melanomas. We propose
to differentiate this subtype of melanoma cells in pathological
diagnosis and to characterize it in detail with respect to
interaction partners and regulatory proteins involved as well
as with respect to its adhesive strength and pathophysiolo-
gical implications, notably the tumor behavior of the Dsg2-
positive melanomas.

MATERIALS AND METHODS
Antibodies

Murine mAbs against N-, E-, and P-cad (clone 56), Dsg1 (clone 62),

a- and b-cat, and protein p120ctn were purchased from BD

Biosciences Pharmingen, whereas mAbs against vinculin (clone

11–5) and a-actinin (clone BM-75.2) as well as rabbit antisera to a- or

b-cat were obtained from Sigma (Deisenhofen, Germany). A rabbit

antiserum to N-cad was from QED Bioscience Inc. (San Diego, CA)

and a rabbit mAb to E-cad from Epitomics (obtained through Biomol

GmbH, Hamburg, Germany). Other mAbs, directed against cad 11,

P-cad (clone NCC-CAD-299), Dsg1 and 2 (clones 27B2 and 6D8),

and claudin 4 were obtained from Invitrogen (Karlsruhe, Germany),

as were polyclonal rabbit antibodies against proteins ZO-1 and -2,

occludin, and claudin 1. A cad 6 mAb was from USBiological

(obtained through Acris, Hiddenhausen, Germany) and a pan-Dsc

rabbit antiserum (clone AHP 322) from Serotec (Düsseldorf,

Germany). A mAb directed against cad 5 (VE-cad; clone BV9) was

kindly provided by Professor Elisabetta Dejana (Department of

Biomolecular and Biotechnological Sciences, School of Sciences,

University of Milan, Italy; cf. Lampugnani et al., 1992). The

neurojungin mAb was from Dr Rainer Paffenholz (Ingenium

Table 2. Classical and desmosomal cadherins in melanoma metastases in the lung, LN, or skin

Case no. MM 770 MM 761 MM 782 MM 841 MM 864 MM 906 MM 941 MM 944 MM 948 MM 962

Primary

melanoma MUP

SSM, back,

1.03 mm,

Clark level

III

NM,

shoulder,

1.5 mm,

Clark level

IV

NM, back,

4.5 mm

NM, chest,

1.0 mm,

Clark level

IV

SSM, chest,

1.9 mm,

Clark level

IV

Type

unknown,

shoulder,

3 mm

NM, knee,

4.0 mm,

Clark level

IV

NM, upper

arm,

4.0 mm,

Clark level

III

Peduncu-

lated,

ulcerated

melanoma

shoulder,

2.6 mm

Metastatic

site Lung

LN, supra-

clavicular LN, groin LN, axilla Lung Skin, axilla LN, groin LN, groin

Skin,

shoulder

Skin,

abdomen

Cadherin pattern in metastases

Classical cads

N-cad + +++ +++ ++ � +++ � +++ +++ +++

E-cad +++ � ++ + � � ++ +++ +++ +++

P-cad � � � � � � + � � +

VE-cad + � + � � � � � � �

Desmosomal cads

Dsg1 + � � � +++ � � � � �
Dsg2 + +++ ++ � ++ � � � � +++

LN, lymph node; MUP, melanoma of unknown primary; NM, nodular melanoma; SSM, superficial spreading melanoma.
Metastases with X10% but o50% immunoreactive tumor cells were classified as ‘‘+’’, those with 50–75% reactive cells as ‘‘++’’, and those with X75% as
‘‘+++’’.
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Pharmaceuticals AG, Martinsried, Germany; cf. Paffenholz et al.,

1999) and for the demonstration of plakoglobin, a mAb (clone 11E4)

from Professor Margaret J. Wheelock (University of Nebraska Medical

Center, Omaha, NE) was used. Rabbit antibodies against Dsg2 (clone

rb5) were a gift from Dr Lutz Langbein, guinea-pig antibodies against

vimentin (clone GP1) from PD Dr. Ilse Hofmann (both Division

of Cell Biology, German Cancer Research Center, Heidelberg,

Germany). The following antibodies against desmosomal and other

cytoskeletal proteins, most of which were generated in the Division

of Cell Biology of the German Cancer Research Center, were

purchased from Progen Biotechnik (Heidelberg, Germany): mAbs

against desmoplakins 1 and 2 (clones DP-2.15, -2.17, and -2.20;

Moll et al., 1986), plakoglobin (clone PG 5.1; Cowin et al., 1986),

PKP1, 2, and 3 (clones PP1–2D6, PP2/86, and PKP3–270.6.2,

respectively; Heid et al., 1994; Mertens et al., 1996; Schmidt et al.,

1999), Dsc1 and 3 (clones Dsc1-U100 and Dcs3-U114; Nuber et al.,

1996); Dsg1 (clone Dsg1-P23; Kurzen et al., 1998), Dsg1 and 2

(clone DG 3.10; Schmelz et al., 1986), Dsg2 (clone 10G11; Schäfer

et al., 1994), Dsg3 (clone Dsg-G194; Kurzen et al., 1998), vimentin

(clone VIM 3B4), and drebrin (clone MX823; Peitsch et al., 2005). As

melanoma markers, a mAb against melan-A and a rabbit antiserum

against S100 protein (both from Progen Biotechnik) were used.

Figure 8. Double-label confocal microscopy presenting heterogeneous cad patterns in melanoma metastases. Cryostat sections of metastasis no. 962

(exemplatory shown) have been labelled with antibodies to N-cad (Red in a, c, d, and f; green in k and l), E-cad (e, f, n, and o; green), and Dsg2 (red in d–m and

h–o) as well as with the melanoma cell marker melan-A (b, c, h, and i; green). In the metastasis presented, the vast majority of the melanoma cells exhibit

strongly positive N-cad staining at cell–cell junctions (a and c; red). A major subset of the tumor cells also contains (e and f, green) E-cad, often appearing in

the same cells as (f) N-cad. Moreover, large cell clusters also synthesize the desmosomal cad (g, j, m; i, l, o, red) Dsg2, which is markedly enriched along

the cell borders. This protein can occur in melanoma cells containing (l) N-cad as well as in those positive (o) for E-cad, thus appearing independent of the

classical cad profile. Bar¼ 20mm.
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For immunofluorescence microscopy, primary antibody com-

plexes were visualized with secondary antibodies coupled to Cy3

(Dianova, Hamburg, Germany) or Alexa 488 (MoBiTec, Göttingen,

Germany). For immunoblot analysis, horseradish peroxidase-

conjugated secondary antibodies were applied in combination with

the enhanced chemiluminescence system (NEN, Köln, Germany).

Cell culture

Human melanoma cells of lines MeWo, WM-115, WM-266–4, WM-

793, C32, SK-Mel-2, Malme-3M, and WM35 as well as Simian virus

(SV40)-transformed human SV80 fibroblasts and human U333

glioma cells were provided by American Type Culture Collection

(Manassas, VA; for origins of the different melanoma lines, see

Table 3). HaCaT keratinocytes were obtained from Professor Petra

Boukamp (Genetics of Skin Carcinogenesis, German Cancer

Research Center; Boukamp et al., 1988). All cell lines, except

WM35, were cultured in DMEM (Invitrogen) supplemented with

10% fetal calf serum (FCS; Biochrom, Berlin, Germany) and 2 mM

glutamine. WM35 cells were propagated in a 4:1 mixture of MCDB

153 medium (with 1.5 g/l sodium bicarbonate) and Leibovitz’s L-15

medium (both from Biochrom), supplemented with 2 mM L-gluta-

mine, 0.005 mg/ml bovine insulin, 1.68 mM CaCl2, and 2% FCS. For

isolation of primary human fibroblasts, human dermis was washed

with phosphate-buffered saline (PBS) and cut into small pieces,

which then were placed on glass coverslips and transferred into

culture flasks containing DMEM plus 10% FCS, 2 mM glutamine, and

100 U/ml penicillin/streptomycin (Invitrogen). Cells were subcul-

tured for the first time after B2 weeks and were used for experiments

in passage 4. Preparation and cell culture of human umbilical vein

endothelial cells, used as controls for VE-cad immunoblots, was as

reported previously (Peitsch et al., 1999). All cell lines were

maintained at 371C with 5% CO2 and subdivided twice a week.

For two-dimensional melanoma–fibroblast or melanoma–kerati-

nocyte cocultures, cells were trypsinized, counted in a Neubauer

chamber, and seeded on glass coverslips in a 5:1 ratio (fibroblasts:

melanoma cells or HaCaT:melanoma cells, respectively). Cocultures

were maintained for 3–4 days in DMEM plus 10% FCS before

procession for immunofluorescence analysis.

Organotypic cocultures
Organotypic cocultures were prepared essentially as described by

Stark et al. (1999). Dermal equivalents were generated with native

type I collagen extracted from rat-tail tendons. The lyophilized

collagen was redissolved with 0.1% acetic acid (final concentration:

4 mg/ml) and eight volumes of ice-cold collagen solution were mixed

with one volume of 10�Hank’s buffered saline, followed by

neutralization with NaOH up to a pH value of 7.0. Fibroblasts were

trypsinized, counted, and resuspended in 100% FCS. One volume of

fibroblast/FCS solution was added, resulting in a final concentration of

3.2 mg/ml collagen and 2� 105 cells/ml. Of this mixture, 2.5 ml each

were poured into PET membrane filter inserts (Falcon no. 3090, BD

Biosciences), placed into special deep six-well trays (Biocoat 355464,

BD Biosciences) and allowed to harden for 1 hour at 371C. Glass rings

(24 mm outer, 20 mm inner diameter) were put on the gels to

compress them and to provide a central flat area for keratinocyte

seeding. The gels were equilibrated over night with DMEM

supplemented with 10% FCS and with 50mg/ml ascorbic acid

(Sigma). In total, 1� 106 cells were seeded. The next day, HaCaT

keratinocytes (passage 40), mixed with MeWo or C32 melanoma cells

in a 5:1 ratio, were seeded on the top of the collagen matrix using

DMEM with 10% FCS and 50mg/ml ascorbic acid as culture medium,

supplemented, for the first week, with 2 ng/ml epidermal growth

factor (PromoCell) and 2 ng/ml transforming growth factor-a (R&D

Systems, Minneapolis, MN). After submerse incubation over night, the

cultures were raised to the air medium interface by lowering the

medium level. The medium was changed every second day. Cultures

were harvested after 14 days, embedded in Tissue-Tek (Sakura,

Zoeterwoude, The Netherlands) and frozen in liquid nitrogen.

Tissues

Samples of human skin, split skin, and human MM metastases were

obtained in the course of routine pathological diagnoses from the

Departments of Dermatology and Pathology of the Medical Center

Mannheim. Samples were snap-frozen in isopentane, which had

been precooled to �801C in liquid nitrogen and stored at �801C.

Procedures were performed with approval of the medical ethical

committee of the Medical Center Mannheim of the University of

Heidelberg, with patients’ informed consent and according to the

Declaration of Helsinki Principles. For analyses of the cad profiles in

melanoma metastases, immunolabelled cryostat sections were

evaluated by two independent investigators with respect to the

proportion of immunoreactive tumor cells. Metastases with 10–50%

immunoreactive tumor cells were classified as ‘‘þ ’’, those with

50–75% reactive cells as ‘‘þ þ ’’, and those with X75% as ‘‘þ þ þ ’’

(Table 2).

Immunoblotting, IP, and matrix-assisted laser desorption
ionization analyses

Immunoblotting was performed as described by Peitsch et al. (1999),

using total protein lysates of cultured cells or of human skin. For IP,

cells grown to confluency were lysed either in a Triton X-100 IP

buffer, containing 1% Triton X-100, 150 mM NaCl, and 20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.4) or in a RIPA

buffer composed of 1% Triton X-100, 0.1% SDS, 0.5% sodium

desoxycholate, 1 mM dithiothreitol, 0.5 mM CaCl2, 150 mM NaCl, and

20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.4),

both supplemented with a protease-inhibitor cocktail (Complete

Table 3. Origins of the different melanoma cell
culture lines used in this study

Melanoma cell
line Origin

MeWo Lymph node metastasis

WM-115 Primary melanoma, skin

WM-266-4 Skin metastasis

WM-793 Primary melanoma, skin (SSM, vertical growth phase)

C32 Primary melanoma, skin (amelanotic melanoma)

SK-Mel-2 Skin metastasis

Malme-3M Lung metastasis

WM35 Primary melanoma, skin (SSM, vertical and radial

growth phase)

SSM, superficial spreading melanoma.
All lines were obtained from American Type Culture Collection.
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Mini Inhibitor Tabs, EDTA-free; Roche Diagnostics, Mannheim,

Germany), for 1 hour on ice. The supernatants obtained after

centrifugation at 14.000 r.p.m. for 10 minutes (41C) were subjected

to IP, using pan mouse IgG or sheep anti-rabbit IgG Dynabeads

(Dynal, Hamburg, Germany; cf. Peitsch et al., 1999, 2005). Trypsin

digestion and matrix-assisted laser desorption ionization–time of

flight analyses were conducted by Dr Martina Schnölzer and Dr Tore

Kempf (Protein Analysis Facility, German Cancer Research Center),

as previously reported (Peitsch et al., 1999).

RNA isolation, cDNA synthesis, and PCR

Isolation of total RNA from cultured cells and human split skin was

performed with TriPure Isolation Reagent (Roche Diagnostics),

according to the manufacturer’s instructions. Cultured cells were

vigorously vortexed and pipetted up and down for homogenization;

split skin was pulverized in a micro-dismembrator (Braun Biotech

International, Melsungen, Germany). The final concentrations of

RNA were determined in an Ultrospec 2100 pro spectrometer (GE

Healthcare Life Sciences, formerly Amersham Biosciences, Buck-

inghamshire, England), and quality was checked on formaldehyde-

containing 1% agarose gels. For long-term storage at �801C, RNA

was precipitated with 2.5 volumes ethanol and 0.1 volume 3 M

sodium acetate (pH 5.2).

Synthesis of cDNA was conducted with 10mg total RNA as

template, using 0.6 mM dNTP , 0,75mg random primer dT7, 40 U

protector RNAse inhibitor, and 10 U AMV reverse transcriptase in 50ml

1�AMV reverse transcriptase buffer (Roche Diagnostics), at 411C for

1 hour, 511C for 30 minutes, and 921C for 3 minutes. The cDNA

samples were replenished to a volume of 1 ml with TE buffer. For PCR,

aliquots of 5ml cDNA were utilized together with 0.2 mM deoxyribo-

nucleotide triphosphate, 100 ng of each oligonucleotide primer and 1 U

TAQ DNA polymerase in 50ml MgCl2-containing PCR buffer (Roche

Diagnostics). The reaction profile was as follows: 3 minutes 941C (initial

denaturation), 34 cycles at 941C (20 seconds), 541C (30 seconds), and

721C (1 minute), followed by a final elongation step at 721C for

10 minutes. PCRs were performed for human Dsg1 (forward primer:

50-GCACTGGTACAATTAATATTAACA-30; reverse primer: 50-TCCC

TGGGTTCAGGCTGTGGTCCT-30), human Dsg2 (forward primer:

50-GCCAAGAAAGTACCAGTGTGCTGC-30; reverse primer: 50-CTTT

CATCGTGGCTTCCTTGGCCA-30) and, for control, for the actin-

binding protein drebrin (forward primer: 50-TTTAGATCTGCCGGCGT

CAGCTTCAGCGGC-30; reverse primer: 50-CGCACTTGCGGGCAT

CAGGCACAT-30). PCR fragments were analyzed on 2% agarose gels.

Immunofluorescence and confocal laser scanning microscopy
For immunostainings, cultured cells grown on glass coverslips were

fixed in 2% formaldehyde for 5–7 minutes, treated with NH4Cl for

blocking of free aldehyde groups (5 minutes), washed in PBS

(5 minutes), and permeabilized with 0.1% Triton-X (2–3 minutes),

followed by two washes in PBS. Alternatively, fixation was

performed for 5 minutes at �201C in methanol and permeabilization

for 20 seconds in acetone (�201C). For staining of tissues and

organotypic HaCaT–melanoma cell cultures, frozen samples were

sectioned at 5mm thickness, using a Jung CM3000 cryomicrotome

(Leica Microsystems, Wetzlar, Germany), air-dried for a minimum of

1 hour and either fixed in 2% formaldehyde as described above or in

acetone for 10 minutes at �201C. Before incubation with the first

antibody, sections were blocked with 5% goat serum for 20 minutes.

Both on cultured cells and on cryostat sections, primary antibodies

were applied for 1 hour at room temperature, followed by three

washes in PBS (5 minutes each), incubation with the secondary

antibody (30 minutes, room temperature), washing with PBS

(3� 5 minutes), a short rinse in distilled water, and dehydration in

100% ethanol (1 minute). After air-drying, specimens were mounted

with Fluoromount-G (Southern Biotech, obtained through Biozol

Diagnostica, Eching, Germany).

PKPs are dual localization proteins, facultatively accumulating

not only in intercellular contacts but also in the nucleus (Mertens

et al., 1996). The latter localization can best be visualized with a

special short staining method guaranteeing minimal loss of soluble

proteins, which was applied for PKP staining in addition to the

above-mentioned protocols (Schmidt et al., 1999). After methanol/

acetone fixation, cells were incubated with primary antibodies only

for 15 minutes, washed only twice for 2 minutes, covered with the

secondary antibodies for 15 minutes, and washed twice for 2 minutes

before mounting.

Immunofluorescence microscopical images were recorded with

an Axiophot II photomicroscope (Carl Zeiss, Jena, Germany)

equipped with an AxioCam HR (Carl Zeiss), for confocal laser

scanning microscopy a Zeiss LSM 519UV microscope was used.

Electron and immunoelectron microscopy

Electron and immunoelectron microscopy was accomplished

essentially as described (Langbein et al., 2002). Briefly, for

conventional electron microscopy, cells grown on coverslips were

fixed in 2.5% glutaraldehyde in 50 mM sodium cacodylate (pH 7.2)

for 30 minutes and then washed thrice in the same buffer.

Postfixation was performed with 2% OsO4 (cacodylate buffer) for

2 hours, followed first by several washes in distilled water and then

by heavy metal staining (0.5% uranylacetate) overnight at 41C. After

three washes in distilled water, samples were dehydrated through an

ethanol series and in propylenoxide, followed by embedding in

Epon. Ultrathin sections for electron microscopy (EM) were made

with a Reichert-Jung microtome (Utracut, Leica, Bensheim, Ger-

many). For contrast enhancement, the sections were stained with 2%

uranylacetate in methanol for 15 minutes and with lead citrate for

5 minutes.

For immunoelectron microscopy, cells were fixed in 2%

formaldehyde and permeabilized with 0.1% Triton X-100 as

mentioned above. Primary antibodies were applied for 2 hours.

Antibodies conjugated with 1.4-nm gold particles (Nanogold,

Biotrend, Cologne, Germany) were used as secondary reagent and

incubated for 4 hours. Postfixation and silver enhancement were

performed as described (Langbein et al., 2002). Electron micrographs

were taken at 80 kV, using an EM 910 (Carl Zeiss).
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Abstract In the tissue integration of melanocytes and
melanoma cells, an important role is attributed to cell
adhesion molecules, notably the cadherins. In cultured
melanoma cells, we have previously described a more
heterogeneous repertoire of cadherins than normal, includ-
ing some melanoma subtypes synthesizing the desmosomal
cadherin, desmoglein 2, out of the desmosomal context.
Using biochemical and immunological characterization of
junctional molecules, confocal laser scanning, and electron
and immunoelectron microscopy, we now demonstrate
homo- and heterotypic cell-cell adhesions of normal
epidermal melanocytes. In human epidermis, both in situ
and in cell culture, melanocytes and keratinocytes are

connected by closely aligned membranes that are inter-
spersed by small puncta adhaerentia containing heterotypic
complexes of E- and P-cadherin. Moreover, melanocytes
growing in culture often begin to synthesize desmoglein 2,
which is dispersed over extended areas of intimate adhesive
cell-cell associations. As desmoglein 2 is not found in
melanocytes in situ, we hypothesize that its synthesis is
correlated with cell proliferation. Indeed, in tissue micro-
arrays, desmoglein 2 has been demonstrated in a sizable
subset of nevi and primary melanomas. The biological
meanings of these cell-cell adhesion molecule arrange-
ments, the possible diagnostic and prognostic significance
of these findings, and the implications of the heterogeneity
types of melanomas are discussed.

Keywords Melanocyte . Melanoma . Cell-cell junctions .

Cadherins . Desmogleins

Introduction

In the epidermis, melanocytes reside in the basal layer,
forming the “epidermal melanin unit” (Montagna and
Parakkal 1974; Jimbow et al. 1986). This cell-type
homeostasis and pattern is maintained by cell-cell adhesion
structures between the melanocytes and the keratinocytes.
Disturbances of this pattern may contribute to uncontrolled
proliferation of the melanocytes and the development of
aberrant structures such as nevi and ultimately malignant
melanomas (for recent reviews, see, e.g., Haass et al. 2004,
2005). Cell adhesion molecules of special importance in
this respect are the cadherins, calcium-dependent trans-
membrane glycoproteins, which can mediate intercellular

Cell Tissue Res
DOI 10.1007/s00441-008-0704-7

Electronic supplementary material The online version of this article
(doi:10.1007/s00441-008-0704-7) contains supplementary material,
which is available to authorized users.

This work was supported in parts by grants from the Deutsche
Forschungsgemeinschaft to W. K. Peitsch (project PE 896/1) and the
Deutsche Krebshilfe to W. W. Franke (project 10-2049).

S. Rickelt :W. W. Franke :Y. Doerflinger :W. K. Peitsch
Helmholtz Group for Cell Biology,
German Cancer Research Center,
Heidelberg, Germany

Y. Doerflinger : S. Goerdt :W. K. Peitsch (*)
Department of Dermatology, University Hospital Mannheim,
University of Heidelberg,
Theodor-Kutzer-Ufer 1-3,
68135 Mannheim, Germany
e-mail: wiebke.peitsch@haut.ma.uni-heidelberg.de

J. M. Brandner
Department of Dermatology and Venerology,
University Hospital Hamburg-Eppendorf,
Hamburg, Germany

http://dx.doi.org/10.1007/s00441-008-0704-7


adhesion by both homophilic and heterophilic cis- and
trans-interactions, and which specifically can establish
homotypic contacts of punctate adhering junctions (puncta
adhaerentia) between cells of the same type or heterotypic
adhering junctions between different kinds of cells (Niessen
and Gumbiner 2002; Duguay et al. 2003; Foty and
Steinberg 2005; Troyanovsky 2005).

So far, more than 80 members of the larger cadherin
superfamily have been identified, comprising the “classi-
cal” type I and type II cadherins as components of adherens
junctions (zonulae adhaerentes), the desmosomal cadherins
as transmembrane proteins of desmosomes, and the atypical
cadherins (e.g., T- and Li-cadherin), protocadherins and
cadherin-related proteins (Niessen and Gumbiner 2002;
Patel et al. 2003; Goodwin and Yap 2004; Troyanovsky
2005). The type I cadherins include E-cadherin, which is
regarded as typical of epithelial cells, N-cadherin, charac-
teristically occurring on mesenchymal and neuronal cells,
and P-cadherin, first identified in the placenta, whereas the
human type II cadherins are a group of 24 members,
including the mesenchymal cadherin 11 and cadherin 5,
also termed VE-cadherin. The subfamily of desmosomal
cadherins can be subdivided into the cell-type-specific
desmoglein isoforms Dsg 1–4 and the desmocollins occur-
ring in three isoforms (Dsc 1–3), each with two splice
variants (Koch et al. 1990, 1991, 1992; Buxton et al. 1993;
Yin and Green 2004; Troyanovsky 2005).

In normal epidermis, melanocytes and keratinocytes are
mostly connected via E-cadherin or P-cadherin (Tang et al.
1994; Nishimura et al. 1999), and the ratio between the two
cadherins has been reported to be essential for the location
of the melanocytes: whereas melanocytes in the basal layer
of the epidermis seem to contain predominantly E-cadherin,
those residing in hair follicles are rich in P-cadherin
(Nishimura et al. 1999). However, the ultrastructure of the
various kinds of heterotypic adherens junctions between
melanocytes and keratinocytes has not yet been clarified,
either in situ or in co-culture.

Dependent on the developmental stage and the specific
microenvironment, the cadherin repertoire of melanocytes
can be remarkably variable. During embryonic develop-
ment, melanocyte precursors provide striking examples of
cells migrating over long distances from the neural crest,
“homing” to specific epidermal tissues, and en route may
also change their character (Le Douarin 1984). In the
neural crest, they have been shown to contain cadherin 6B
and N-cadherin (Hatta and Takeichi 1986; Nakagawa and
Takeichi 1995), which later, i.e., after the onset of
migration, can be replaced, at least in part, by cadherin 7.
The patterns and the amounts of these three cadherins
appear to be important for correct segregation from the
neural crest, as alterations have been reported to inhibit the
emigration of melanocyte precursors and their migration

pathway (Nakagawa and Takeichi 1998; Moore et al.
2004). The general importance of the cadherin-catenin
septum in the embryonal migration and homing processes is
also indicated by the cell-type-targeted gene ablation study
of Hari et al. (2002).

When melanocytes have reached their final position in
the epidermis and are in contact with keratinocytes,
synthesis of E- and P-cadherin is induced (Nishimura et
al. 1999; Jouneau et al. 2000). However, during malignant
transformation this process may be reversed; E-cadherin,
and often apparently also P-cadherin, have been reported to
be downregulated and substituted by N-cadherin (Hsu et al.
1996, 2000a; Sanders et al. 1999; Perlis and Herlyn 2004).
This change, also known as the “cadherin switch”, is widely
discussed as an important prerequisite not only for the
pathogenesis of malignant melanomas, but also for some
tumors derived from epithelial cells and has several
implications (Hazan et al. 2000; Christofori 2003; Cavallaro
and Christofori 2004; Haass et al. 2004, 2005; Perlis and
Herlyn 2004). First, it results in a drastic reduction of the
E-cadherin-mediated coupling of melanocytic and mela-
noma precursor cells to keratinocytes, a reduction that
then will further result in a reduction of gap junctions
between these cell types (Hsu et al. 2000b). Second, it
provides the melanoma cells with a novel adhesive
repertoire for interaction with new, mostly mesenchymally
derived neighbours such as fibroblasts and endothelial cells
of blood and lymphatic vessels (Sandig et al. 1997; Li et al.
2001a; Qi et al. 2005; Haemmerling et al. 2006). Third, N-
cadherin is widely assumed to promote the survival and
migration of melanoma cells and also to provide prolifer-
ative and migratory signals (Li et al. 2001a; Kuphal et al.
2004; Qi et al. 2005, 2006; Kuphal and Bosserhoff 2006).
Conversely, re-expression of E-cadherin has been reported
to restore keratinocyte-mediated growth control and to
reverse malignancy (Hsu et al. 2000a; Li et al. 2004).
Certain UV-light components have also been reported to
reduce E-cadherin not only in melanoma cells, but also in
normal human melanocytes (see, e.g., Jamal and Schneider
2002; Perlis and Herlyn 2004).

The functional consequences of the cadherin switch
have, for the most part, been studied in cell culture systems
and in animal models (Hsu et al. 1996, 2000a; Li et al.
2001a, 2004; Liu et al. 2006). However, immunohisto-
chemical examination of primary melanomas and their
metastases has revealed that a proportion of melanoma cells
are still E-cadherin-positive and present little, if any, N-
cadherin (Danen et al. 1996; Hsu et al. 1996; Silye et al.
1998; Sanders et al. 1999). Therefore, the cadherin switch
as an obligatory prerequisite of malignant behaviour and a
prognostic marker is still controversial and might also
depend on the subtype of melanoma examined (Andersen et
al. 2004; Onken et al. 2006).
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Similar to E-cadherin, P-cadherin has also been reported
to promote adhesion and to counteract the migration of
metastatic melanoma cells (Van Marck et al. 2005). This
concept is also supported by observations that P-cadherin is
frequently lost in advanced melanomas and melanoma
metastases (Bachmann et al. 2005; Bauer et al. 2006).

We have recently examined the repertoire of adhesive
molecules in cultured melanoma cell lines and found that
their cadherin patterns might be more variable than hitherto
thought (Schmitt et al. 2007). In particular, we have found
that a number of melanoma cell lines synthesize, in the
absence of desmosomes, the desmosomal cadherin desmo-
glein 2 (Dsg2) as a frequent plasma membrane glycoprotein
that is not assembled into any junction but is dispersed over
large parts of the cell surface. Therefore, we have analyzed
the molecular composition and the ultrastructure of the
junctions between normal melanocytes and between mela-
nocytes and keratinocytes in situ in human epidermis and in
co-cultures. We here demonstrate new forms of close
adhesive membrane alignments over extended cell surface
areas and small plaque-bearing puncta adhaerentia that
connect melanocytes and keratinocytes and that contain E-
and P-cadherin and the plaque proteins typical of adherens
junctions. Moreover, we show that, when taken into culture,
melanocytes might begin to synthesize Dsg2 as a frequent
solitary glycoprotein out of the desmosomal context; Dsg2
is dispersed over large surface regions, similar to the
distribution patterns recently described in certain types of
melanomas (Schmitt et al. 2007).

Materials and methods

Antibodies

Murine monoclonal antibodies (mabs) specific for N-, E-,
or P-cadherin, α- and β-catenin, and protein p120ctn were
purchased from BD Biosciences Pharmingen (Heidelberg,
Germany). Mabs directed against vinculin (clone 11-5) and
α-actinin (clone BM-75.2) and rabbit antibodies to α- or β-
catenin were obtained from Sigma (Deisenhofen, Ger-
many). Mabs recognizing cadherin 11 and Dsg2 (clone
6D8) and polyclonal rabbit antibodies against proteins ZO-
1 and ZO-2 were from Invitrogen (Karlsruhe, Germany). A
rabbit antiserum to N-cadherin was obtained from Abcam
(Cambridge, UK), and a pan-Dsc rabbit antiserum (clone
AHP 322) from Serotec (Duesseldorf, Germany). The
following antibodies against junction- and cytoskeleton-
associated proteins were purchased from Progen Biotechnik
(Heidelberg; see also Schmitt et al. 2007): mabs against
desmoplakin 1 and 2 (DP; clones DP-2.15, DP-2.17, and
DP-2.20), plakoglobin (clone PG 5.1), plakophilin 1, 2, or 3
(PKP; clones PP1-2D6, PP2/86, and PKP3-270.6.2, respec-

tively), Dsc1 or 3 (clones Dsc1-U100 and Dcs3-U114),
Dsg1 (clone P23) or Dsg1 and 2 (clone DG 3.10) , Dsg3
(clone Dsg-G194), vimentin (clone VIM 3B4), and drebrin
(clone MX823). As a marker for melanocytes, a mab
against Melan A from Progen Biotechnik was used.

A mab against cadherin 5 (VE-cadherin; clone BV9) was
a kind gift from Elisabetta Dejana (Department of Biomo-
lecular and Biotechnological Sciences, School of Sciences,
University of Milan, Italy; Lampugnani et al. 1992). For the
demonstration of plakoglobin, a mab (clone 11E4) gener-
ously provided by Margaret J. Wheelock (University of
Nebraska Medical Center, Omaha, Neb., USA) was used.
Rabbit antibodies against Dsg2 (clone rb5) were kindly
provided by Lutz Langbein, and guinea pig antibodies
against vimentin by Ilse Hofmann (German Cancer Re-
search Center). Secondary antibodies were as described by
Schmitt et al. (2007).

Cell culture

Normal human epidermal melanocytes from foreskin
(NHEM-f) and from adult skin (NHEM-a) were obtained
from PromoCell (Heidelberg) and cultured in melanocyte
growth medium M2 (MGM-M2; PromoCell), which is free
of serum and of mitogens such as phorbol-myristate-
acetate. For passaging, cells were treated with 0.025%
trypsin and 0.01% EDTA, followed by incubation in trypsin
neutralization solution (PromoCell). Human melanoma
cells of the line MeWo were provided by the American
Type Culture Collection (ATTC; Manassas, Va., USA).
Simian virus (SV40)-transformed human (“SV80”) fibro-
blasts and human U333 glioma cells were as previously
described (Franke et al. 1979; Achtstaetter et al. 1986).
HaCaT keratinocytes were a gift from Petra Boukamp
(Genetics of Skin Carcinogenesis, German Cancer Research
Center; Boukamp et al. 1988). All of these lines were
maintained in Dulbecco’s minimal essential medium
(DMEM; Invitrogen) supplemented with 10% fetal calf
serum (FCS; Biochrom, Berlin, Germany) and 2 mM
glutamine. The isolation and cell culture of human
umbilical vein endothelial cells (HUVEC) was as reported
by Peitsch et al. (1999). For melanocyte-keratinocyte co-
cultures, NHEM-f cells and HaCaT keratinocytes were
trypsinized, counted in a Neubauer chamber, and seeded
onto glass coverslips contained in plastic dishes. Co-
cultures were maintained in MGM-M2 plus 5% FCS for
7 days and were then processed for immunofluorescence or
immunoelectron microscopic analysis.

Tissues

Normal human epidermis was obtained during routine
pathological diagnoses from the Departments of Dermatol-
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ogy and Pathology of the University Hospital Mannheim,
Germany. Samples were either fixed with 4% formaldehyde
and embedded in paraffin or snap-frozen in isopentane
precooled in liquid nitrogen and stored at −80°C. All
procedures were approved by the Medical Ethical Commit-
tee of the University Hospital Mannheim, University of
Heidelberg, and were performed with the patients’ informed
consent. Tissue microarrys were purchased from US
Biomax (via BioCat, Heidelberg). The specimens were
subjected to heat-induced antigen retrieval (see below) and
double-labeled with antibodies to cadherins and to vimentin
for cell-type identification, and the proportion of cadherin-
positive tumor cells was determined.

Gel electrophoresis, immunoblotting, immunoprecipitation,
sucrose gradient centrifugation, and MALDI-TOF analyses

Electrophoresis of total cell proteins in the presence of sodium
dodecylsulfate (SDS) was performed in polyacrylamide gels
(SDS-PAGE). Immunoblotting of gel-electrophoretically sep-
arated polypeptides and immunoprecipitation were conducted
as reported (Peitsch et al. 1999, 2005; Schmitt et al. 2007).
For immunoprecipitation, a “Triton X-100 immunoprecipi-
tation buffer”, containing 1% Triton X-100, 150 mM NaCl,
and 20 mM HEPES (pH 7.4), supplemented with a protease
inhibitor cocktail (Complete Mini Inhibitor Tabs, EDTA-
free; Roche Diagnostics, Mannheim), was used. MALDI-
TOF analyses were performed by Martina Schnoelzer and
Tore Kempf (Protein Analysis Facility, German Cancer
Research Center; cf. Peitsch et al. 1999).

For fractionation on sucrose gradients, NHEM-f cells
were extracted with 1% Triton X-100 buffer. Supernatants
obtained after centrifugation at 14,000 rpm for 10 min were
loaded on linear 5%–30% sucrose gradients (Peitsch et al.
2001). Bovine serum albumin (BSA), catalase, and thyro-
globulin (all from Sigma) were used as size markers and
were fractionated on parallel gradients. The gradients were
centrifuged in a SW40 rotor (Beckman Instruments,
Munich, Germany) at 35,000 rpm for 18 h (4°C). Fifteen
fractions of 800 μl were collected from top to bottom and
were either supplemented with three-fold-concentrated
sample buffer and analyzed by SDS-PAGE or were
subjected to immunoprecipitation. For the latter, fractions
(F) 5–7, comprising a peak of E- and P-cadherin-containing
material, were pooled and diluted to a sucrose concentration
of 5%, as determined by using a Zeiss refractometer (Carl
Zeiss, Jena, Germany).

RNA isolation, cDNA synthesis, and polymerase chain
reaction

Isolation of total RNA from cultured cells and human split
skin and the synthesis of cDNA and PCR were conducted

as described by Schmitt et al. (2007). RNA was extracted
with TriPure Isolation Reagent from Roche Diagnostics
according to the manufacturer’s instructions. For polymer-
ase chain reaction (PCR), primers specific for human Dsg1
(forward primer: 5′ AAT ACC AAG GAA CGA TTC 3′;
reverse primer: 5′ CTC CTG ATG TGT CAA TGC 3′), for
human Dsg2 (forward primer: 5′ GCC AAG AAA GTA
CCA GTG TGC TGC 3′; reverse primer: 5′ CTT TCATCG
TGG CTT CCT TGG CCA 3′), and as a control, for the
actin-binding protein drebrin (forward primer: 5′ TTT AGA
TCT GCC GGC GTC AGC TTC AGC GGC 3′; reverse
primer: 5′ CGC ACT TGC GGG CAT CAG GCA CAT 3′)
were used. PCR fragments were analyzed on 2% agarose
gels. The fragments obtained with Dsg2-specific primers
were cloned into the EcoR1 restriction sites of a pCR2.1-
TOPO vector by using a TOPO TA Cloning Kit (Invitro-
gen) and were verified by sequencing.

Transient transfection of NHEM-f cells

The full length human Dsg2 cDNA, generated in this
laboratory, was cloned into the NotI sites of a eukaryotic
p163/7 expression vector (Schaefer et al. 1994, 1996). This
vector contains a major histocompatibility class I H2-2
promotor, which is identical to p164/7 (Niehrs et al. 1992).
Transient transfection of NHEM-f cells was performed with
Lipofectamine 2000 Transfection Reagent (Invitrogen)
according to the manufacturer’s recommendations. Cells
were analyzed 24 h and 48 h after transfection by using
immunostaining with Dsg2 antibodies.

Immunofluorescence and electron and immunoelectron
microscopy

Cultured cells grown on glass coverslips were fixed either
in 2% formaldehyde in phosphate-buffered saline (PBS) for
5–7 min, followed by permeabilization with 0.1% Triton-X
for 2–3 min or with methanol for 5 min at −20°C, followed
by 20 s in −20°C acetone. Procedures for immunostaining
were as reported by Schmitt et al. (2007). For immunoloc-
alization on paraffin-embedded tissue samples, sections of
human epidermis or tissue microarrays were deparaffinized
according to standard techniques. To achieve heat-induced
antigen retrieval, sections were pretreated by microwaving
in 100 mM TRIS-HCl buffer containing 5% urea (pH 9.5,
10 min, 120°C or pH 11, 30 min, 120°C) or in citrate buffer
(82 mM sodium citrate and 18 mM citric acid, pH 6,
10 min, 120°C). This was followed by a wash with PBS
(5 min, room temperature), incubation with PBS containing
2% milk powder (10 min), and blocking with 10% goat
serum and 2% milk powder in PBS (15 min). Primary
antibodies were applied for 2 h, and secondary antibodies
for 30 min. Microscopic images were recorded with an
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Axiophot II photomicroscope (Carl Zeiss) equipped with an
AxioCam HR (Carl Zeiss), and confocal images with a
Zeiss LSM 510 UV microscope.

Electron and immunoelectron microscopy was performed
as described (Langbein et al. 2002; Schmitt et al. 2007). For
immunoelectron microscopy, NHEM-f cells, NHEM-f-
HaCaT co-cultures, and cryostat sections of human epidermis
were fixed in 2% formaldehyde (5–7 min), freshly prepared
from paraformaldehyde, and permeabilized with 0.1%
saponin (1–2.5 min), followed by incubation with primary
antibodies for 2 h. After washing steps, the samples were
incubated with secondary antibodies conjugated with 1.4-nm
gold particles (Nanogold, Biotrend, Cologne, Germany) for
2–4 h, followed by silver enhancement (Langbein et al.
2002). Electron micrographs were taken at 80 kV by using
an EM 910 (Carl Zeiss).

Results

Composition and ultrastructure of heterotypic
melanocyte-keratinocyte connections in human epidermis

To determine the composition of the heterotypic cell
adhesions connecting melanocytes and keratinocytes in
situ, we immunostained cryostat and paraffin sections
through normal human epidermis with antibodies to the
constituents of adherens junctions and desmosomes in
combination with Melan A or vimentin as melanocyte
markers. Analyses of such sections by confocal microscopy
showed an enrichment of E- and P-cadherin and of the
plaque proteins of adherens junctions, i.e., α- and β-catenin
and protein p120ctn, both at homotypic keratinocyte con-
tacts and at heterotypic adhesions between melanocytes and
keratinocytes in the basal epidermis (for examples of E-
cadherin and β-catenin, see Fig. 1a,a′,b,b′). By contrast,
desmosomal cadherins and the desmosomal plaque protein
desmoplakin exhibited the typical punctate staining pattern
of desmosomes but appeared to be absent from melanocytes
and from melanocyte-keratinocyte contacts. These findings
were also obtained with antibodies to Dsg2 (Fig. 1c,c′), the
desmosomal cadherin previously identified in a subset of
melanoma cells (Schmitt et al. 2007). For comparison,
sections of human scalp, showing hair follicles, and of
human basal cell carcinomas were double-labeled and
examined by confocal microsopy. Here, corresponding
observations were made, i.e., an enrichment of α- and β-
catenin and E-cadherin at contact sites between melano-
cytes and follicular epithelia or basal carcinoma cells.
Desmosomal proteins, however, including Dsg2, were
never detected at these sites (data not shown; for localiza-
tion of desmosomal proteins in hair follicles, see Franke
and Heid 1989; Kurzen et al. 1998).

For a detailed characterization of the heterotypic
melanocyte-keratinocyte adhesions, electron and immu-
noelectron microscopy was performed on cryostat sections
of healthy human epidermis. In such electron micrographs,
small junctions with an electron-dense plaque, resembling
puncta adhaerentia, were observed at sites of contacts
between melanocytes and keratinocytes (Fig. 2a,d, arrows).
Moreover, the plasma membranes of the melanocytes and
keratinocytes were closely aligned to each other over
remarkably long distances, with a consistently narrow
intercellular space and occasionally a thin cytoplasmic coat
(Fig. 2b,c, arrowheads). When the sections were labeled
with antibodies to adherens junction proteins such as α- or
β-catenin, significant label was seen at the plaques of
puncta adhaerentia (e.g., Fig. 2e). Moreover, some
catenin-positive reactions were also noted along the
plasma membrane alignments of melanocytes and kerati-
nocytes (data not shown). Using mabs reactive with Dsg2
for immunoelectron microscopy, marked enrichment was
observed at the intercellular spaces of the desmosomes
between keratinocytes. Corresponding to our confocal
microscopical observations, the melanocytes and the
melanocyte-keratinocyte contacts appeared free of Dsg2
(not shown).

Cadherins and cadherin complexes in cultured melanocytes

The synthesis and assembly patterns of junctional compo-
nents were also analyzed in cultured normal human
melanocytes, derived from foreskin (NHEM-f). Cell cul-
tures were grown in medium free of serum and of mitogens
to avoid transformation, and total protein lysates were
prepared for immunoblot analyses after the cultures had
reached 50%–70% confluence. Human HaCaT keratino-
cytes, SV80 fibroblasts, and cultured human melanoma
cells of the line MeWo, which previously had been found to
contain Dsg2 as a solitary plasma membrane protein
(Schmitt et al. 2007), were used for comparison. Immuno-
blotting indeed demonstrated E- and P-cadherin in NHEM-f
melanocytes (Fig. 3, Table 1). By contrast, N-cadherin,
endothelial VE-cadherin, which had been reported to occur
in a subset of highly aggressive melanoma lines (Hendrix et
al. 2001; Hess et al. 2006), and cadherin 11, synthesized by
osteoblasts, myofibroblasts, and various other mesenchy-
mally derived cells, including stem cells (Simonneau et al.
1995; Hinz et al. 2004; Wuchter et al. 2007) and also found
in one of our melanoma lines (Schmitt et al. 2007), were
totally absent. However, the melanocytes contained the set
of plaque proteins typical of adherens junctions, i.e., α- and
β-catenin, protein p120ctn, vinculin, α-actinin, plus proteins
ZO-1 and ZO-2 (Itoh et al. 1993, 1999; Smalley et al. 2005;
for the specific problem regarding the complexity of protein
p120ctn isoforms, see Aho et al. 2002).
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Fig. 1 Double-label confocal microscopy of sections through paraf-
fin-embedded human epidermis, showing cell adhesion proteins at
heterotypic melanocyte-keratinocyte contacts. Sections were double-
immunostained with antibodies to E-cadherin (red in a, a′), β-catenin
(red in b, b′), or Dsg2 (red in c, c′) in combination with antibodies to
vimentin (green in a) or Melan A (green in b, c) as markers for
melanocytes. E-cadherin and β-catenin are enriched at intercellular

junctions between keratinocytes throughout the epidermis and also at
the borders between melanocytes and keratinocytes in the basal layer
(a′, b′, stars). By contrast, Dsg2 is found at the desmosomes of the
basal keratinocytes but is absent from melanocytes and from
melanocyte-keratinocyte contacts (c′, stars). a′′–c′′ Phase-contrast
images. Bars 20 μm
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On immunoblotting with antibodies to desmosomal
proteins, Dsg2 was seen in both the MeWo and the
NHEM-f cells (Fig. 3). By contrast, none of the other
desmosomal cadherins or plaque proteins was detected in
these experiments, with the exception of small amounts of
plakoglobin, a protein known to occur in both adherens
junctions and desmosomes (Table 1; Cowin et al. 1986).
Thus, we concluded that, as in certain melanoma cell lines

(Schmitt et al. 2007), Dsg2 also often occurs in consider-
able amounts in proliferative human melanocytes, obvious-
ly as a solitary plasma membrane glycoprotein, without any
of the other known desmosome-specific components.

To clarify whether other types of melanocytes also
contained Dsg2, immunoblotting was performed with total
cell lysates of cultured melanocytes derived from adult skin
(NHEM-a). Indeed, these cells were also Dsg2-positive, as

Fig. 2 Electron and immunoelectron microscopy showing adhesions
between keratinocytes and melanocytes in the basal human epidermis.
a Survey of a melanocyte surrounded by keratinocytes in the basal
epidermal layer. b–d Conventional electron micrographs of cell-cell
contacts between melanocytes and keratinocytes. Both cell types are
connected by small, plaque-bearing junctions reminiscent of puncta
adhaerentia (arrows in d). d Higher magnification of the boxed region

in a). In regions devoid of such puncta, the plasma membranes of
melanocytes and keratinocytes are often also closely aligned over long
distances, with a narrow intercellular space (b, c, arrowheads). e
Immunoelectron microscopy of melanocyte-keratinocyte contacts,
demonstrating that β-catenin accumulates at the plaques of puncta
adhaerentia. Bars 2 μm (a), 0.25 μm (b–d), 0.125 μm (e)
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confirmed by immunoblot experiments with two different
Dsg2 antibodies (Fig. 4a). Correspondingly, Dsg2 mRNA
was demonstrated in NHEM-f and NHEM-a cells (Fig. 4b),
and sequencing of the PCR products showed full identity

with the human Dsg2 sequence (Schaefer et al. 1994). As
another group had reported the occurrence of Dsg1 in
melanocytes and melanoma cells (Li et al. 2001b; see,
however, also Sanders et al. 1999), we also conducted PCR
experiments with primers specific for Dsg1 (Fig. 4b).
However, amplification of Dsg1 mRNA was observed
neither in NHEM-f nor in NHEM-a cells, in agreement
with our immunoblot results (for a discussion, see Schmitt
et al. 2007).

To identify possible interaction partners of Dsg2,
extracts of NHEM-f cells were subjected to immunopre-
cipitation, followed by SDS-PAGE, Coomassie Blue stain-
ing, and MALDI-TOF analyses of the specifically enriched
proteins. Following immunoprecipitation with Dsg2 anti-
bodies, three bands were observed at about 212, 160, and
42 kDa, which corresponded to non-muscle myosin heavy
chain, Dsg2, and actin (Fig. 5a). For comparison, immuno-
precipitation was performed with β-catenin antibodies,
revealing bands at ~130, ~100, ~90 and 42 kDa, which
represented E- and P-cadherin, α- and β-catenin, and actin
(Fig. 5b). When polypeptides of β-catenin immunoprecipi-
tates were reacted with antibodies to Dsg2, no significant
amounts of co-precipitation products were seen (Fig. 5c).
Vice versa, neither α- or β-catenin (Fig. 5c′) nor E- and P-
cadherin (not shown) were enriched in Dsg2 immunopre-
cipitates. By contrast, when the material precipitated with
Dsg2 antibodies was probed for plakoglobin, specific
enrichment was noted; however, the plakoglobin-specific
band seen after the immunoblot reaction was usually weak
(data not shown). As Dsg2 is normally linked to interme-
diate filaments, Dsg2 immunoprecipitates were also ana-

�Fig. 3 Immunoblot detection of adherens-junction-associated and
desmosomal proteins in cultured human melanocytes. Equal amounts
of total proteins from human HaCaT keratinocytes (HaCaT), SV80
fibroblasts (SV80), melanoma cells of the line MeWo (MeWo), and
normal human epidermal melanocytes from foreskin (NHEM-f) were
applied to SDS-polyacrylamide gels, and the separated polypeptides
were probed with antibodies against classical cadherins (E-, P-, N- and
VE-cadherin, and cadherin 11 [cad cadherin]), plaque proteins of
adherens junctions (α- and β-catenin [cat catenin], α-actinin, and
vinculin), desmosomal cadherins (Dsg1-3 and Dsc1-3 [Dsg desmo-
glein, Dsc desmocollin]) and desmosomal plaque proteins (DP1 and 2
[DP desmoplakin], plakoglobin, and PKP1-3 [PKP plakophilin]).
NHEM-f cells contain E- and P-cadherin and the plaque proteins
typical of adherens junctions. Interestingly, these cells also synthesize
the desmosomal cadherin Dsg2, whereas all other desmosomal
proteins are absent. This finding has been confirmed by immunoblot-
ting with two different Dsg2 antibodies, one recognizing both Dsg1
and Dsg2 (clone DG3.10) and one specific for Dsg2 (clone 6D8). *For
the immunoblot identification of VE-cadherin, whole cell lysates of
human umbilical vein endothelial cells (HUVEC) were loaded as a
positive control, instead of HaCaT cells. For the detection of cadherin
11, total proteins from astrocytic glioma cells were applied, and for the
detection of Dsg1 and Dsc1-3, total proteins of human epidermis were
loaded. **After prolonged exposure, trace amounts of plakoglobin are
detectable in SV80 and MeWo and in NHEM-f cells
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lyzed for vimentin, and indeed, this protein showed co-
precipitation with Dsg2 (Fig. 5c′′).

Further to characterize the cadherin complexes present,
NHEM-f cell lysates were fractionated by sucrose gradient
centrifugation. Immunoblot analyses then showed a peak of
E-cadherin-, P-cadherin-, and β-catenin-containing material
in F5–F8, with a maximum in F6, corresponding to
complexes with a mean S value of ~8 (Fig. 6a). When
F5–F7 were pooled and subjected to immunoprecipitation
with E-cadherin antibodies, E-cadherin, P-cadherin, and β-
catenin were specifically enriched, indicative of heterotypic
complexes of E- and P-cadherin (Fig. 6b). By contrast,

Dsg2 was observed in gradient F3–F6, corresponding to a
monomeric form, but also in ~13S-complexes in F10 and
F11 (Fig. 6a). Actin was revealed mostly in monomers and
in small complexes, but a portion did co-distribute with
Dsg2 in F10 and F11 (Fig. 6a). Taken together with the
immunoprecipitation results, these observations indicate
that NHEM-f cells contain hetero-complexes of E- and P-
cadherin, associated with the plaque proteins of adherens
junctions and actin. In addition, they seem to contain two
sets of Dsg2 complexes: one in which Dsg2 is linked to
vimentin filaments, and another presenting Dsg2 together
with actin and non-muscle myosin.

Localization of cadherins in NHEM-f monocultures
and NHEM-f-HaCaT co-cultures

The subcellular distribution of cadherins in cultures of
NHEM-f cells and in NHEM-f-keratinocyte co-cultures was
studied by immunostaining, confocal laser scanning, and
immunoelectron microscopy. In NHEM-f monocultures, E-
and P-cadherin and the typical plaque proteins of puncta
adhaerentia appeared (as expected) predominantly at
intercellular junctions, but with relatively lower intensity;
such immunoreactions were also seen on free plasma
membrane regions (not shown).

To specify the localization of Dsg2, NHEM-f cells were
transfected with a eukaryotic expression vector containing
the full-length human Dsg2 cDNA, followed by Dsg2
immunostaining and confocal microscopy. Indeed, in the
transfected cells, the protein was enriched at the cell
periphery, both at cell-cell contacts and along free cell
margins (Fig. 7a), reminiscent of the localization seen in the
Dsg2-positive melanoma cell lines (Schmitt et al. 2007).

When co-cultures of NHEM-f melanocytes and HaCaT
keratinocytes were analyzed, an enrichment of E-cadherin
(Fig. 7b,b′) and β-catenin (Fig. 7c,c′) not only at
homotypic keratinocyte and homotypic melanocyte junc-
tions, but also at heterotypic contacts between NHEM-f
and HaCaT cells was seen. To study the intercellular
adhesion sites of cultured melanocytes in greater detail,
we also examined these homo- and heterotypic cell
cultures by electron and immunoelectron microscopy. In
monocultures of NHEM-f melanocytes, electron micro-
graphs revealed numerous plaque-bearing junctions of the
punctum adhaerens type (Fig. 8a–d, arrows). By immu-
noelectron microscopy, E-cadherin (e.g., Fig. 8e) and β-
catenin (Fig. 8f,g) were seen at both kinds of cell-cell
contacts, i.e., at adherens junctions with plaques and at
the extended adhesive associations without noticeable
plaques.

When co-cultures of NHEM-f and HaCaT cells were
studied by electron microscopy, small heterotypic cell
adhesions were observed that revealed thin dense plaques

Table 1 Cell-adhering junction molecules in cell-cell contacts of
cultures of human melanocytes (NHEM-f), as determined by SDS-
polyacrylamide gel immunoblotting (cad cadherin, Cat catenin, Dsg
desmoglein, Dsc desmocollin, PKP plakophilin, + presence of tested
molecule, − absence of tested molecule, (+) small amounts of
plakoglobin were detectable after prolonged exposure of the X-ray film)

Proteins and glycoproteins NHEM-f

Transmembrane molecules
N-cad –
E-cad +
P-cad +
VE-cad –
cad-11 –
Dsg1 –
Dsg2 +
Dsg3 –
Dsc1 –
Dsc2 –
Dsc3 –
Plaque proteins
α-cat +
β-cat +
Plakoglobin (+)
Protein p120ctn +
Vinculin +
α-Actinin +
Drebrina +
Protein ZO-1 +
Protein ZO-2 +
Neurojunginb –
PKP1 –
PKP2 –
PKP3 –
Desmoplakin 1 –
Desmoplakin 2 –

a For details on adherens junction associations of the actin-binding
protein drebrin, see Peitsch et al. 1999, 2005)
b Neurojungin is an arm-repeat protein previously described as a
constituent of heterotypic adhering junctions at the outer limiting zone
of the retina (Paffenholz et al. 1999) and has also been found in one of
our Dsg2-positive melanoma cell lines (MeWo cells; Schmitt et al.
2007)
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on either side (Fig. 9a–e), reminiscent of the puncta
adhaerentia connecting melanocytes and keratinocytes
in human epidermis in situ. Again, immunoelectron
microscopy demonstrated enrichment of the junctional
markers at these sites (data not shown).

Cadherin patterns in tissue microarrays of primary
melanomas and nevi

As Dsg2 was detected in melanocytes growing in cell
culture but not in those residing in situ in the basal
epidermis, we hypothesized that its advent and continual
synthesis might be correlated with proliferation. To exam-
ine this, tissue microarrays comprising 56 primary melano-
mas and 24 nevi were immunolabeled with antibodies to
Dsg2 in combination with vimentin antibodies for the
unequivocal identification of the tumor cells (Fig. 10a,a′,
Table 2; a survey presenting all immunostaining results in
detail is given in Table S1 as Supplementary Material).
Indeed, Dsg2-positive reactions were observed in seven
primary melanomas (13.5%) and seven nevi (30.4%). In the
Dsg2-positive tumor cells, the protein was again seen at
cell-cell contacts. Remarkably, however, the staining
patterns within the tumors were heterogeneous, with
Dsg2-positive tumor cell clusters next to Dsg2-negative
cell groups, and the percentage of Dsg2-containing tumor
cells ranged from ~10% to 100% (Table 2).

In parallel, the tissue microarrays were immunolabeled
for N-, E-, and P-cadherin in combination with vimentin

(Fig. 10b–d, Tables 2, S1). Most of the primary melanomas
(68.5%) and nevi (90.9%) contained N-cadherin accumu-
lated at cell-cell boundaries (Fig. 10b,b′, Table 2). In
another subtype of such tumors, N-cadherin-positive
reactions seemed to occur exclusively in the cytoplasm,
an observation difficult to explain on a cell biological
basis. Here, however, the specificity and significance of
the reaction sites remain to be determined.

A remarkably large group of primary melanomas
(65.5%) and nevi (62.5%) was also positive for E-cadherin
(see, e.g., Fig. 10c,c′, Table 2), whereas a smaller subset
synthesized P-cadherin (27.8% of the primary melanomas
and 37.5% of the nevi; Fig. 10d,d′). As noted for Dsg2
(Table 2), E- and P-cadherin often showed strikingly
heterogeneous reaction patterns, in that E-cadherin- and
P-cadherin-positive and -negative groups of tumor cells
occurred next to each other (Table 2; for an example of P-
cadherin, see Fig. 10d,d′). Within nevi, the E-cadherin-
positive immunoreactions often decreased from epidermal
to deeper dermal melanocyte nests. Interestingly, both E-
and P-cadherin could occur in the same tumors as N-
cadherin, and in a certain subset of primary melanomas,
all three classical cadherins were even seen to occur
simultaneously (6 of 56, 16.1%), without or with Dsg2
(3 of 56, 5.4%). By contrast, another relatively rare
subtype was negative for all of the four cadherins tested
(7 of 56, 12.5%; Table S1). In the 24 nevi examined, all
three classical cadherins together were found in five
tumors (20.8%); two of them were also positive for

Fig. 4 Immunoblot and polymerase chain reaction (PCR) identifica-
tion of Dsg2 in cultured human melanocytes. a Immunoblot analysis
of total protein lysates from HaCaT keratinocytes (HaCaT), SV80
fibroblasts (SV80), MeWo melanoma cells (MeWo), and normal
human epidermal melanocytes from newborn foreskin (NHEM-f) and
from adult skin (NHEM-a). An intense Dsg2-specific band is detected
in MeWo cells and in NHEM-f and NHEM-a cells, both with mab
DG3.10 and mab 6D8. b PCR analysis with primers specific for Dsg1

and 2 and for the near-ubiquitous actin-binding protein drebrin
(Peitsch et al. 1999, 2001, 2005). Dsg2 mRNA is seen both in
NHEM-f and NHEM-a cells, whereas Dsg1 mRNA is not. *Human
split skin was employed as a positive control for the Dsg1 PCR,
HaCaT keratinocytes served as positive control for the Dsg2 PCR, and
SV80 fibroblasts were used as a negative control. Size marker bars
(left): 517, 396, and 356 bp (Dsg1 and Dsg2 PCR) or 356 and 247 bp
(drebrin PCR)
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Dsg2 (8.3%; Table S1). Taken together, these results
obtained in tissue microarrays show that the cadherin
profile can be highly variable not only among different
primary melanomas and nevi, but also within the same
tumor.

Discussion

Researchers studying the cell and molecular biology of
proliferative or even malignantly transformed melano-

cytes are often confronted with “unusual” gene expres-
sion patterns combining, for example, certain epithelial
and mesenchymal cell-type marker molecules or subtype
patterns of proteins and structures that make it difficult
to assign a distinct cell-type character to the specific
cell colony or tumor. For instance, certain melanoma
cells and proliferatively active melanocytes, although
usually subsumed under neuroectoderm-derived mesen-
chymal-type cells, are able to synthesize a set of
molecules that are characteristic of epithelial-type
adhering junctions, such as E-cadherin (Tang et al.

Fig. 5 Immunoprecipitation and MALDI-TOF analyses, showing
cadherin complexes in NHEM-f melanocytes. Proteins immunopreci-
pitated from NHEM-f lysates with antibodies specific for Dsg2 (a) or
for β-catenin (b) were separated on 8% acrylamide gels and stained
with Coomassie Blue. In the Dsg2 immunoprecipitate (a), a band of
~160 kDa was seen (band 2), which was identified as Dsg2 by
MALDI-TOF analysis. Further bands at ~212 kDa (band 1) and at
~42 kDa (band 3) represent non-muscle myosin and actin. In the β-
catenin immunoprecipitate (b), band 1 at ~130 kDa includes both E-
cadherin and P-cadherin, with further bands containing α-catenin

(band 2), β-catenin (band 3), bovine serum albumin (BSA; band 4),
and actin (band 5). Arrows heavy chains of immunoglobulins and
BSA (~66 kDa), P material of the preclearing step, IP immunopre-
cipitate, Ab beads Dynabeads loaded with primary antibodies, M
molecular weight markers denoting (top to bottom): 212, 158, 116, 97,
66, 55, and 42 kDa. c–c′′ Immunoprecipitates (IP) from NHEM-f
cells, obtained with antibodies to Dsg2 and to β-catenin and
immunoblotted for Dsg2 (c), β-catenin (c′) and vimentin (c′′). Dsg2
and β-catenin do not co-precipitate (c, c′), whereas vimentin is
specifically enriched in the Dsg2 immunoprecipitate (c′′)
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1994; Hsu et al. 2000a; Li et al. 2001a) and Dsg2 (Schmitt
et al. 2007). Furthermore, melanocytes and melanoma
cells often form heterotypic adhering junctions with
keratinocytes or with other epithelial and non-epithelial

cells, and some are even able to adhere intimately to
each other or to other kinds of cells over extended
plasma membrane associations without distinct junctional
structures.

Fig. 6 Sucrose gradient fractionation of molecular complexes
present in lysates from cultured melanocytes. a Extracts of proteins
from cultured human melanocytes (NHEM-f) were centrifuged on
linear 5%–30% sucrose gradients, and the fractions were analyzed
by SDS-PAGE and immunoblotting with antibodies to E-cadherin,
P-cadherin, β-catenin, Dsg1+2 (clone DG3.10), and β-actin (S
proteins of the supernatant before fractionation, P pellet). E- and P-
cadherin are found, together with β-catenin, in fractions (F) 5–8,
with a maximum in F6, i.e., in particles of a mean value of ~8S.
Dsg2 immunoreactivity is seen in F3-F6, indicative of Dsg2

monomers but, interestingly, also with a peak in F10 and F11,
corresponding to ~13S. Actin appears with a broad peak from F2 to
F6, suggestive of a monomer, but is also co-distributed with Dsg2 in
F10 and F11, i.e., ~13S. References are: BSA (B: 4.3S), catalase (C:
11.5S), and thyroglobulin (T: 16.5S). b Sucrose gradient F5–F7 were
pooled and immunoprecipitated with antibodies to E-cadherin and to
the tight junction protein occludin as a control. Note that both P-
cadherin and β-catenin are specifically enriched in E-cadherin
immunoprecipitates (S supernatant of the pooled F5–F7, P material
of the preclearing step, IP immunoprecipitate)
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Desmoglein-containing adhesive cell-cell alignments
of proliferative melanocytes and melanoma cells

We have recently reported that certain melanoma cell
culture lines regularly synthesize the desmosomal cadherin
Dsg2, which hitherto had been assumed to be absent from
melanocytes and melanomas (Schmitt et al. 2007). Re-
markably, however, we have now detected Dsg2 as a major
and frequent cadherin also in normal, i.e., not malignantly
transformed, cultured melanocytes. Like the Dsg2-positive
melanoma cell lines (Schmitt et al. 2007), the cultured
melanocytes contain no other typical desmosomal proteins,
except for occasional small amounts of plakoglobin, in
general a widespread junctional plaque protein of both
desmosomes and adherens junctions (Cowin et al. 1986).

Desmosomal cadherins, i.e., members of the desmoglein
and desmocollin subfamilies of cadherin glycoproteins,
have so far been identified only in adhering junction
structures such as in desmosomes (Koch et al. 1990,
1991, 1992; Buxton et al. 1993; Godsel et al. 2004; Yin
and Green 2004) and in the composite junctions (areae
compositae) of mammalian heart muscle cells (Franke et al.
2007; Pieperhoff et al. 2008) or as integral molecules of
“half-desmosomes”. The latter have been described in
processes of desmosome formation such as exocytosis, or
in Ca2+-deficiency-induced junctional splitting and in
endocytic vesicle uptake (Cowin et al. 1984; Duden and
Franke 1988; Demlehner et al. 1995; Schaefer et al. 1996).

The Dsg2 molecules that we have observed as frequent
cell surface components in proliferative melanocytes and in
a certain category of melanoma cells are evenly dispersed
and do not seem to assemble into distinct adhering
junctional structures. Nevertheless, they often appear to be
intimately aligned with cell proteins on the surface of a
neighboring cell, thus forming a novel homogeneous kind
of cell-cell-adhesive association, which often extends over
large areas. The importance of these solitary surface-
exposed Dsg2 molecules, which are not co-assembled with
any other detectable desmosome-specific component or
integrated into any distinct junction structures, for cell-cell
associations in normal and in pathologically altered tissues,
notably in metastatic processes, remains to be determined.

The Dsg2-presenting melanocytes and melanoma cell
subtypes described in this and in our previous report
(Schmitt et al. 2007) are not the only cells found to
synthesize this desmosomal glycoprotein as a solitary
molecule and to expose it over large areas of the cell
surface. A subline of human fibrosarcoma cells has also
been reported to synthesize Dsg2 continuously and to
export this protein to the cell surface where it is seen in
relatively large regions (Chitaev and Troyanovsky 1997).
Only upon the addition of further desmosomal components
by injection or cDNA transfection does an organized co-

assembly of this pre-existing Dsg2 with the other partners
into desmosome-like junctions take place (Koeser et al.
2003).

Obviously, the cell-cell trans-interactions between pro-
liferative melanocytes or melanoma cells with adjacent host
tissue cells, e.g., keratinocytes in the case of the epidermis,
are stable enough to maintain their direct cross-talk in the
architectonic context of the specific tissue or tumor. Indeed,
in view of the surprisingly strong adhesive trans-interaction
forces of individual desmosomal cadherins (Troyanovsky
2005), these numerous and rather widely spread Dsg2
molecules may be essentially involved in cell-cell recogni-
tion and attachment processes, thus also representing a
significant factor in the metastatic process. Clearly, the cell-
cell interaction strengths of such non-junction-integrated
cadherin molecules will have to be experimentally deter-
mined in the future. We also propose to consider this and
other types of cell-cell attachment forms in diagnoses of
melanomas and other melanocyte-related disorders.

E- and P-cadherin heterodimers in melanocyte cultures

Our biochemical analyses of detergent-solubilized cadher-
ins from cultured melanocytes cells have revealed hetero-
typic complexes of E- and P-cadherin, reminiscent of our
previous studies on cultured melanoma cell lines (Schmitt
et al. 2007), which have indicated the existence of such E-
P-cadherin hetero-complexes. Whereas the binding specif-
icities of cadherins have been traditionally considered as
homotypic, it has recently become evident that their
interactions can be more promiscuous (Volk et al. 1987;
Shan et al. 2000; Shimoyama et al. 2000; Omelchenko et al.
2001; Duguay et al. 2003; Patel et al. 2003; Foty and
Steinberg 2005). Specifically, heterodimers of E- and P-
cadherin have been identified in cultures of human
carcinoma cells of line A431 (Klingelhoefer et al. 2000).

When interacting in cell cultures, cadherins can form
both cis-dimers, i.e., lateral dimers in adhering junctions of
the same cell (Shan et al. 2000), or trans-dimers between
two adjacent cells (Duguay et al. 2003). Obviously,
heterotypic trans-cellular cadherin interactions are more
frequent than previously thought (Shimoyama et al. 2000;
Omelchenko et al. 2001; Duguay et al. 2003; Patel et al.
2003). The heterodimers of E- and P-cadherin described to
predominate in cultures of A431 cells are of the cis-type
(Klingelhoefer et al. 2000). On the other hand, many of the
E- and P-cadherin molecules introduced into fibroblasts
(L-cells) by cDNA transfections seem to form “trans E-P-
hetero-cadherin” complexes between adjacent cells
(Duguay et al. 2003; Foty and Steinberg 2005). Such
trans-cellular hetero-cadherin complexes appear to be of a
similar strength as the corresponding trans-cellular homo-
cadherin complexes. Whether the immunoprecipitable
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complexes of E- and P-cadherin found in the melanocytes
and the melanoma cell cultures in the present and the
preceding study (Schmitt et al. 2007) are of the cis- or of
the trans-type remains to be examined. Moreover, these
complexes will have to be further characterized with respect
to their adhesive strength.

Heterotypic adhering junctions between melanocytic cells
and keratinocytes

Melanocytes are known for their frequent (often obligatory)
heterotypic cell-cell junctions. It is thus all the more
surprising to note that the ultrastructure of such heterotypic
adhering junctions has not yet been clarified, even for the
abundant melanocyte-keratinocyte junctions, other than the
repeated statements that they do not include desmosomes
(Breathnach 1974; Montagna and Parakkal 1974; for the
related problem of the association, often via invaginations,
with keratinocytes and melanin transfer between these cells
see, e.g., Jimbow et al. 1986).

In this study, we have presented, for the first time, the
ultrastructure of the heterotypic adhering junctions con-
necting normal melanocytes and keratinocytes in the
epidermis. Both in the human epidermis in situ and in co-
cultures, melanocytes and keratinocytes are connected by
small plaque-bearing structures that contain the protein and
glycoprotein ensemble typical of adherens junctions; thus,
in molecular terms, they represent typical puncta adhaer-
entia as known from a wide range of other cells (see, e.g.,
Wuchter et al. 2007 and references cited therein). In puncta
adhaerentia, one or two of the classical cadherins can
usually be identified that, on the cytoplasmic side, insert
into a thin and indistinct coat formed by plaque proteins
including α- and β-catenin, protein p120ctn, plakoglobin,
and (depending on the specific cell type) a few other,
mostly actin-binding proteins. Morphologically, these
“mini-junctions” are relatively inconspicuous and only
sometimes can be demonstrated to anchor filament bundles
on one or both cytoplasmic plaques. In the puncta-type

adherens junctions of diverse subtypes of melanoma cells,
the junctional plaque can exhibit various cadherin patterns,
i.e., N-, E-, or P-cadherin or cadherin 11 or combinations of
two or three of these cadherins (Schmitt et al. 2007 and
references therein). Some melanoma subtypes, notably of
uveal origin, have also been reported to contain VE-
cadherin (Hendrix et al. 2001, 2003; Seftor et al. 2002;
Hess et al. 2006). In addition, we have now made clear
that not only melanoma cells (whether grown in situ or
in cell culture), but also proliferative melanocytes in
culture can synthesize the desmosomal cadherin, Dsg2.
However, this protein is, for the most part, not integrated
into any particular junction but is dispersed over the cell
surface, without any obvious cytoplasmic coat of anchor-
ing proteins.

Our electron-and immunoelectron-microscopic results
indicate that the heterotypic puncta junctions between
keratinocytes and melanocytes are primarily based on
complexes between E- and P-cadherin, both synthesized
in basal keratinocytes and in melanocytes (Tang et al. 1994;
Nishimura et al. 1999). Moreover, we have noticed that, in
the cells studied, some cadherins, including melanocytic E-
cadherin, are not restricted to puncta adhaerentia structures
but may also occur at plaque-free plasma membranes, both
in tissue-bound and in cultured melanocytes. This indicates
that two forms of cadherins should generally be distin-
guished here: a junction-bound form and a non-junction-
bound form. A similar distribution has been reported by
some authors for N-cadherin in endothelial cells; here, this
cadherin can be enriched at intercellular junctions, appar-
ently often together with VE-cadherin, but may also occur
outside of the junctions on the free endothelial surface (for
controversial discussions, see, e.g., Salomon et al. 1992;
Alexander et al. 1993; Schulze and Firth 1993; Navarro et
al. 1998; Jaggi et al. 2002; Luo and Radice 2005; for a
review, see Dejana 2004).

Different cadherin profiles in primary melanomas and nevi
as determined in tissue microarrys

As we had detected Dsg2 in certain melanomas and in
cultured melanocytes but not in melanocytes in situ, we
reasoned that its synthesis out of the context with the other
desmosomal components might be correlated with cell
proliferation or might be induced by some kind of
activation characteristic of proliferating melanocytes. The
results obtained in tissue microarrays of melanocytic
tumors are to a certain degree compatible with this
hypothesis. Indeed, Dsg2 has been found in a subset of
such tumors, i.e., in 30% of the nevi and in 13% of the
primary melanomas, in which it appears enriched at cell-
cell contacts, essentially in agreement with a small number
of melanoma metastases immunostained for Dsg2 (Schmitt

Fig. 7 Localization of cell junction proteins in NHEM-f mono-
cultures and in keratinocyte-melanocyte co-cultures. a, a′ NHEM-f
cells were transfected with a eukaryotic expression vector containing
human Dsg2 cDNA and immunoreacted with Dsg2 antibodies (clone
DG3.10). Note Dsg2 accumulations at the contact sites between two
melanocytes and at the free cellular margins. b–c′ Co-cultures of
NHEM-f and HaCaT keratinocytes labeled for E-cadherin (red in b,
b′) or β-catenin (red in c, c′) in combination with vimentin as a
melanocyte marker (green in b, c): E-cadherin and β-catenin are
seen at homotypic plasma membrane adhesion sites between
melanocytes, on the one hand, and keratinocytes, on the other, but
also at heterotypic contacts between the two cell types (stars in b, c).
Bars 20 μm

�
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Fig. 8 Electron and immunoelectron microscopy of cultured NHEM-f
melanocytes. a–d As seen by conventional electron microscopy,
closely parallel cell-cell adhesive alignments between two melano-
cytes often consist of several distinct small plaque-bearing adhering
junctions (arrows in b; b presents a higher magnification of the boxed
area in a). Note, at higher magnification (c, d), the equidistance and
parallel character of the extended plasma membrane intercepts, in
places frequently revealing puncta adhaerentia (arrows) coated by a

mostly thin, densely stained plaque. e–g Immunoelectron microscopy
of NHEM-f cells, labeled with antibodies to E-cadherin (e) or β-
catenin (f, g). Here, enrichment of β-catenin is observed at the plaques
of the puncta adhaerentia (f, g), but both E-cadherin (e) and β-catenin
(not shown) are also detectable along plaque-free plasma membranes
connecting the two cells over long distances, i.e., in a non-junction-
bound form. Bars 1 μm (a), 0.25 μm (b, d, e), 0.5 μm (c), 0.125 μm
(f, g)
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et al. 2007). This subtype of Dsg2-positive melanocytic
tumors will have to be specified in the future. In this
context, a minor but especially aggressive subtype of
melanomas is characterized by the addition of VE-cadherin
to normal cadherin complexes and by the appearance of
certain kinases (Hendrix et al. 2001, 2003; Seftor et al.
2002; Hess et al. 2006). Whether the presence of Dsg2 in
nevi and melanomas allows any prognostic conclusions will
have to be examined in future clinically based studies on
larger numbers of samples, in which Dsg2 expression will
also have to be correlated with the Breslow and the Clark
level of the melanomas.

On the other hand, however, marked and systematic
heterogeneity has also been noted for P-cadherin. When the
microarrays were labeled with antibodies to this cadherin,
about 38% of the nevi and 28% of the primary melanomas
exhibited P-cadherin-positive reactions along the cell
boundaries. This is in correspondence with observations

of membrane P-cadherin staining in benign nevi and in
initial melanomas, both correlated with a favourable
prognosis (Bachmann et al. 2005; Bauer et al. 2006). In
contrast to other authors, however, we have not observed
“cytoplasmic” immunoreactions for P-cadherin, probably
because of differences of the antibodies employed or the
protocols used for antigen retrieval and immunostaining.

Both E- and N-cadherin have been detected in a high
percentage of the nevi and melanomas (cf. Tables 2, S1).
Often these two cadherins occur together in the same tumor,
a finding in accordance with our previous observations of
melanoma metastases (Schmitt et al. 2007). Plasma mem-
brane E-cadherin immunostaining has also been noted in a
high percentage of advanced primary melanomas and of
melanoma metastases by other groups (Silye et al. 1998;
Sanders et al. 1999). This appears, at first glance, at
variance with the prevailing hypothesis that a switch from
E- to N-cadherin is essential for the progression of highly

Fig. 9 Electron microscopy, presenting heterotypic cell adhesions in
melanocytes (M) co-cultured with keratinocytes (K). a, d Survey
micrographs of NHEM-f melanocytes co-cultured with HaCaT
keratinocytes. Note the numerous cell protrusions in adjacent
keratinocytes and melanocytes and the local contacts between the

two cell types. b, c, e Details presenting regions of heterotypic cell-
cell adhesions: NHEM-f and HaCaT cells are connected by small
puncta adhaerentia-type junctions (arrows). b Higher magnification
of the boxed region in a. e Detail of the boxed area in d). Bars 1.5 μm
(a, d), 0.5 μm (b, e), 0.25 μm (c)
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malignant melanomas (see Introduction). On the other
hand, a possible explanation for this result might be that
E-cadherin may only temporarily be down-regulated during
certain steps of tumor cell segregation and invasion and
then re-expressed in the advanced metastatic tumor.

To our surprise, we have also frequently noted, for E-
and P-cadherin and for Dsg2, heterogeneous staining
patterns within the same tumor, i.e., groups of tumor cells
strongly positive for the specific cadherin next to tumor
regions negative for this glycoprotein (cf. Tables 2, S1,
Fig. 10d). In nevi labeled for E-cadherin, the immuno-
reaction often shows a gradual decrease from the epidermal
layers to deeper dermal nests, reminiscent of other reports
(Krengel et al. 2004). However, in the melanomas of our
microarray studies, such gradients have not been observed,

possibly because the samples were taken from the very
centers of the melanomas. Here, the heterogeneous cadherin
patterns suggest that one and the same melanoma can
contain multiple small cell colonies with strikingly different
adhesion protein profiles. Mosaic patterns of junctional
proteins have also been observed for desmosomal cadherins
(Kurzen et al. 2003), the desmosomal plaque protein
plakophilin 1 (Moll et al. 1997), the adherens junction-
associated drebrin (Peitsch et al. 2005), and several tight
junction molecules (Langbein et al. 2003) in other kinds of
skin tumors. Such regionalization and subtype differences
might contribute to chemoresistancy, a notorious problem
in the therapy of malignant melanomas. Hence, this is
another reason for mentioning, in diagnostic evaluation, the
degree of regionalization of cell junctions.

Conclusions and recommendations

All three forms, proliferative normal melanocytes grow-
ing in culture, certain cells of nevi in situ, and malignant
melanoma cells, are highly proliferative and markedly
heterogeneous with respect to their cell-cell adhesion
molecule profiles, their junction assemblies, and in the
variety of their surface cluster- and domain-forming
regionalization patterns. Our findings reported here have
made it clear that such heterogeneity patterns are not
restricted to malignant melanomas, but can also be seen
in normal, i.e., non-malignant melanocytes and in nevus
cells. They also suggest that the emergence and wide-
spread regeneration of heterogeneous cell-cell adhesion
structures is a feature intrinsic to the proliferative
melanocyte, and not a special feature of melanomas. As
such diversities, subtypes, or special regional domains
may be of general importance not only for tissue
patterning, but also for pathogenic processes (notably in
melanoma metastasis formation), we propose to charac-
terize the specific adhesion molecule pattern of a given
cell colony or tumor in initial diagnosis, in particular in
cases in which this may be relevant for the metastatic
process. We also postulate that potent “factors” exist that
can interfere with the adhesion of melanocytes or
melanocyte precursors with each other or to other kinds
of cells, and that such factors obviously play important
roles in normal development (Le Douarin 1984; see also
Hari et al. 2002) and in melanoma metastasis.
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Table 2 Cadherin (cad) profiles of primary melanomas and nevi, as
determined in tissue microarrays (Dsg desmoglein). Microarrays were
immunoreacted with antibodies to cadherins, in combination with
vimentin, and analyzed by confocal microscopy. The samples were
classified according to the specific percentage of cadherin-positive
cells (− few or no reactive tumor cells, + 5%–24% reactive cells, ++
25%–49% reactive cells, +++ 50%–74% reactive cells, ++++ more
than 75% reactive cells)

– + ++ +++ ++++ Totala Total positiveb

Primary melanomas
Dsg2 45 0 2 5 0 52 7 (13.5%)
N-cad 17 0 0 1 36 54 37 (68.5%)
E-cad 19 9 2 5 20 55 36 (65.5%)
P-cad 39 4 0 3 8 54 15 (27.8%)

Nevi
Dsg2 16 1 1 2 3 23 7 (30.4%)
N-cad 3 0 1 0 19 22 20 (90.9%)
E-cad 9 5 3 1 6 24 15 (62.5%)
P-cad 15 3 0 4 2 24 9 (37.5%)

a The microarrays comprised 56 primary melanomas and 24 nevi.
Some specimens were insufficiently preserved for adequate
interpretation
b Total number of tumors containing cadherin-reactive cells, indepen-
dent of their percentage

Fig. 10 Cadherin patterns of a primary melanoma, as determined by
double-label immunofluorescence confocal microscopy. Tissue micro-
array samples of a primary melanoma from the left leg (no. 13, cf.
Table S1) stained with antibodies to Dsg2 (a, a′, red), N-cadherin (b,
b′, red), E-cadherin (c, c′, red), and P-cadherin (d, d′, red), in
combination with antibodies to vimentin to identify the tumor cells
(green in a–d). Note that most of the melanoma cells contain Dsg2, N-
cadherin, and E-cadherin, all accumulated at the cell periphery. By
contrast, P-cadherin-positive reactions were observed only in
~20% of the tumor (d, d′). A blood vessel (V) was P-cadherin-
negative (d′). a′′–d′′ Phase-contrast images. Bars 20 μm

�
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Rickelt et al., 2008 - Supplemental Table1 

Table S1. Survey of the results of the tissue microarrays of human melanomas and nevi: clinical data and detailed immunofluorescence 
microscopical results. 
 

No. Sex Age Organ Pathology N-cad E-cad P-cad Dsg2 

1 F 80 Skin Malignant melanoma, pate ++++ + - -
2 M 60 Skin Malignant melanoma, right buttocks ++++ ++++ - -
3 F 16 Skin Malignant melanoma, back - ++++ + -
4 M 74 Skin Malignant melanoma, left foot ++++ ++++ ++++ -
5 M 55 Skin Malignant melanoma, sole ++++ ++++ ++++ -
6 F 38 Skin Malignant melanoma, left upper arm +++ ++ - -
7 F 63 Skin Malignant melanoma,right heel ++++ + ++++ -
8 M 27 Skin Malignant melanoma, right thigh - ++++ - -
9 F 35 Skin Malignant melanoma, waist n.d. n.d. - n.d.

10 M 42 Skin Malignant melanoma, left heel ++++ + + +++
11 M 64 Skin Malignant melanoma, sole ++++ - - -
12 M 64 Skin Malignant melanoma, left shoulder ++++ - - -
13 M 59 Skin Malignant melanoma, left leg ++++ ++++ + +++
14 F 88 Skin Malignant melanoma, left sole ++++ ++++ ++++ -
15 M 57 Skin Malignant melanoma, left shoulder ++++ ++++ - -
16 F 54 Skin Malignant melanoma, left sole ++++ ++++ - -
17 F 42 Skin Malignant melanoma, left thumb - - ++++ -
18 F 58 Skin Malignant melanoma, left buttock - - - -
19 M 38 Skin Malignant melanoma, right abdominal wall - ++++ - -
20 M 62 Skin Malignant melanoma, heel ++++ +++ - -
21 M 40 Skin Malignant melanoma, right chest wall - - n.d. -
22 F 47 Skin Malignant melanoma, perianal ++++ - - -
23 F 77 Skin Malignant melanoma, left sole ++++ +++ +++ -
24 F 62 Skin Malignant melanoma, right thumb n.d. - n.d. n.d.
25 F 66 Skin Malignant melanoma, chest wall ++++ - - -
26 M 25 Skin Malignant melanoma, heel - ++++ - -
27 F 38 Skin Malignant melanoma, right toe - ++++ - -
28 F 52 Skin Malignant melanoma, cunnus ++++ - - n.d.
29 M 52 Skin Malignant melanoma, right heel ++++ +++ - -
30 M 49 Skin Malignant melanoma, shoulder ++++ - - -
31 M 36 Skin Malignant melanoma, back ++++ + - -
32 M 71 Skin Malignant melanoma, thigh - ++++ - -
33 M 51 Skin Malignant melanoma, left oxter ++++ - - -
34 M 35 Skin Malignant melanoma, left instep - - - -
35 M 66 Skin Malignant melanoma, right thigh ++++ +++ - ++
36 F 81 Skin Malignant melanoma, left arm ++++ - - -
37 M 65 Skin Malignant melanoma, scalp ++++ ++++ - -
38 M 45 Skin Malignant melanoma, perianal - + - -
39 M 48 Skin Malignant melanoma, left thumb ++++ ++++ ++++ - 



Rickelt et al., 2008 - Supplemental Table1 – continued. 

  
No. Sex Age Organ Pathology N-cad E-cad P-cad Dsg2 

40 F 45 Skin Malignant melanoma, cunnus ++++ + ++++ - 
41 F 72 Skin Malignant melanoma, cunnus - - - -
42 M 57 Skin Malignant melanoma, right cheek - - - -
43 F 53 Skin Malignant melanoma, right thumb - - - -
44 F 47 Skin Malignant melanoma, right upper arm - + - -
45 M 53 Skin Malignant melanoma, right sole ++++ - - -
46 M 79 Skin Malignant melanoma, left leg ++++ ++++ - -
47 M 70 Skin Malignant melanoma, right sole ++++ ++ +++ -
48 M 65 Skin Malignant melanoma, right thumb ++++ + +++ -
49 M 76 Skin Malignant melanoma, right medial malleolus - - - -
50 F 54 Skin Malignant melanoma, left heel ++++ ++++ - +++
51 M 62 Skin Malignant melanoma, left thumb ++++ - - -
52 M 55 Skin Malignant melanoma, right forearm ++++ ++++ - -
53 M 74 Skin Malignant melanoma, left sole ++++ ++++ - n.d.
54 M 65 Skin Malignant melanoma, right sole ++++ +++ ++++ ++
55 M 31 Skin Malignant melanoma, scalp ++++ ++++ - ++++
56 F 41 Skin Malignant melanoma, scalp - + + ++++
57 M 45 Skin Pigmented mole (sparse) ++++ - - ++++
58 F 29 Skin Atypical melanophoric nevus, left shoulder ++++ ++++ - -
59 F 36 Skin Intradermal nevus, left abdominal wall ++++ ++ - -
60 F 35 Skin Intradermal nevus, chest wall - - - -
61 F 23 Skin Compound nevus, right waist ++++ + - +
62 M 25 Skin Compound nevus, left leg ++++ ++++ - -
63 M 20 Skin Intradermal nevus, left shoulder ++ - + -
64 M 19 Skin Intradermal nevus, right cheek ++++ ++++ +++ ++++
65 F 10 Skin Atypical melanophoric nevus, right foot dorsum ++++ ++++ +++ -
66 F 2 Skin Intradermal nevus, frontal region ++++ ++++ ++++ -
67 M 6 Skin Compound nevus, left face ++++ - - -
68 M 0.5 Skin Intradermal nevus, face ++++ +++ ++++ -
69 M 25 Skin Intradermal nevus, scalp ++++ + - -
70 M 46 Skin Intradermal nevus, back ++++ - - -
71 F 1.5 Skin Intradermal nevus, right leg ++++ - -- -
72 M 42 Skin Intradermal nevus of face ++++ ++ + n.d.
73 M 11 Skin Junctional nevus, left thigh (sparse) - + - -
74 F 30 Skin Compound nevus, right buttock ++++ - - +++
75 M 62 Skin Junctional nevus n.d. - - -
76 M 39 Skin Compound nevus, occiput ++++ + - -
77 F 7 Skin Junctional nevus, right forearm ++++ ++++ + ++++
78 M 50 Skin Compound nevus, upper arm ++++ ++ +++ -
79 M 53 Skin Sebaceous nevus (sparse) ++++ - - +++
80 M 32 Skin Sebaceous nevus, right elbow (sparse) n.d. + +++ ++

 



Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a

novel molecular ensemble of cell–cell-attachment characteristic for transformed

mesenchymal cells
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In contrast to the desmosome-containing epithelial and carcinoma
cells, normal and malignantly transformed cells derived from
mesenchymal tissues and tumors are connected only by adherens
junctions (AJs) containing N-cadherins and/or cadherin-11, anch-
ored in a cytoplasmic plaque assembled by a- and b-catenin, plako-
globin, proteins p120 and p0071. Here, we report that the AJs of
many malignantly transformed cell lines are characterized by the
additional presence of plakophilin-2 (Pkp2), a protein hitherto
known only as a major component of desmosomal plaques, i.e., AJs
of epithelia and carcinomatous cells. This massive acquisition of
Pkp2 and its integration into AJ plaques of a large number of trans-
formed cell lines is demonstrated with biochemical and immunoloc-
alization techniques. Upregulation of Pkp2 and its integration into
AJs has also been noted in some soft tissue tumors in situ and some
highly proliferative colonies of cultured mesenchymal stem cells. As
Pkp2 has recently been identified as a functionally important major
regulatory organizer in AJs and related junctions in epithelial cells
and cardiomyocytes, we hypothesize that the integration of Pkp2
into AJs of ‘‘soft tissue tumor’’ cells also can serve functions in the
upregulation of proliferation, the promotion of malignant growth in
general as well as the close-packing of diverse kinds of cells and the
metastatic behavior of such tumors. We propose to examine its
presence in transformed mesenchymal cells and related tumors and
to use it as an additional diagnostic criterion.
' 2009 UICC

Key words: adherens junctions; cadherins; malignant cells;
mesenchymal cells; plakophilin-2

Among the diverse kinds of normal and transformed cells those
of epithelial and carcinomatous origin are characterized by bun-
dles of intermediate-sized filaments (IFs) containing cytokeratins
which are attached to special cell–cell-connecting adhering junc-
tions, the desmosomes (maculae adhaerentes). These are assem-
blies of glycoproteins of the larger cadherin family, desmogleins
(Dsg1–4), and desmocollins (Dsc1–3), the cytoplasmic tails of
which are anchored in dense cytoplasmic plaques formed by des-
moplakin, plakoglobin and 1 or 2 plakophilins (Pkp1–3).1,2 In
addition, epithelia and carcinomas contain plaque-bearing junc-
tions of the adherens-category which can appear in diverse mor-
phological forms known as zonulae or fasciae adhaerentes or as
puncta adhaerentia and are commonly subsumed under the term
adherens junctions (AJs).

Remarkably, such AJs are the only adhering junctions that
occur in mesenchymally-derived tissues and in tumors grouped by
pathologists as ‘‘soft tissue tumors’’ (e.g., for review refer3,4).
They contain special cadherins (for reviews refer5–7) in cell-type-
specific combinations, mostly N- and/or P-cadherin and cadherin-
11, anchored in a cytoplasmic plaque formed by a-catenin and a
variety of combinations of armadillo proteins such as plakoglobin,
b-catenin as well as proteins p120 and p0071, which in turn are
associated with further actin microfilament binding proteins such
as vinculin, a-actinin, afadin and formin.8–12

In addition, a number of cell type-specific AJ forms have been
identified that cannot be readily subsumed under these 2 major
categories, desmosomes and AJs. These include, for example the
cardiomyocyte-connecting composite junctions (areae composi-
tae) of mature mammalian myocardium,13,14 the complexus
adhaerens of the endothelial and virgultar cells of lymph node
sinus which is characterized by its additional desmoplakin con-
tent15 (for review refer16) and locally can also include certain tight

junction typical proteins (e.g.,16), and as an extreme situation the
extended cortex adhaerens of eye lens tissue.17

In general, the molecular composition of desmosomes and AJs
is essentially identical in normal proliferative tissues and in
tumors derived therefrom, and this is the main reason for the
application of such molecules as cell type markers in tumor diag-
nosis, notably of metastases.18–20 More recently, however, we
have noted that cells of certain culture lines and in tumors of mes-
enchymal origin are connected by AJs which in addition to their
typical molecular ensemble contain plakophilin-2 (Pkp2) as a
major and stable plaque component. Once this Pkp2-modified AJ
type has appeared in such non-epithelial cell types it seems to be a
stable, frequent and characteristic plaque component typical of a
novel AJ subtype.

The integration of Pkp2 into AJ plaques, however, is not only
eye-catching as a phenomenon but also thought-provoking in view
of the functional importance of this molecule in cell–cell adhesion
as well as in some nuclear functions which—just like b-catenin—
has also been identified in certain nucleoplasmic complexes, albeit
in relatively low concentrations.21–23 Moreover, the importance of
Pkp2 as a major regulator of AJ composition and positioning has
not only been reported for desmosomes but also for specific AJ
proteins not restricted to epithelia such as b-catenin and a-T-cate-
nin.14,24 In recent years, the outstanding role of Pkp2 in the assem-
bly, maintenance and functional stability of the myocardial com-
posite junctions (areae compositae) has also been demonstrated in
gene abrogation and siRNA-mediated knock-out and knock-down
experiments25–28 as well as in numerous studies of human Pkp2-
gene modifications resulting in arrhythmogenic cardiomyopathies,
including cases of ‘‘sudden death’’ (e.g.,29–33). Most strikingly, the
absence of the Pkp2-gene or even marked down-regulation of
Pkp2-mRNA in cardiomyocytes can result in drastic changes, i.e.,
in deficient plaques with little or no desmoplakin attached and in a
loss of cell–cell adhesion.25,28

We have, therefore, decided to study systematically the frequent
and spontaneous changes resulting from the de novo acquisition of
Pkp2 to the molecular cell–cell adhesion ensemble of transformed
mesenchymal cells in general.

Material and methods

Cell culture

The cells used were cultured in Dulbeccos’s Minimal Essential
Medium (DMEM; Invitrogen, Karlsruhe, Germany), supple-
mented with 10% fetal calf serum (FCS) and 2 mM glutamine.
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Normal human fibroblasts (hFB, primary and secondary cultures)
were obtained from several sources, including breast dermal tissue
(provided by Dr. P. Angel, this Center), human diploid lung fibro-
blasts of line WI38 (ATCC No. CCL-75) or line LL24 (ATCC No.
CCL-151), grown in 85% Ham’s F12 medium containing 15%
FCS, human fibroblasts of line Hs295.SK derived from healthy
skin parts of a patient suffering from dermatofibrosarcoma protu-
berans (DFSP; ATCC No. CRL-7232) as well as human HG261
skin fibroblasts (ATCC No. CCL-122).

In addition, human ‘‘mesenchymal stem cells’’ (MSC) derived
from bone marrow or umbilical cord blood kindly provided by Dr.
K. Bieback (Institute of Transfusion Medicine and Immunology,
Mannheim, Germany) and mouse bone marrow cells of line OP9
(ATCC No. CRL-2749), kept in MEM containing 10% FCS were
examined as well as mouse 3T3 embryonic mesenchymal cells
(ATCC No. CCL-92) and their SV40-transformants, SV3T3 cells,
in comparison with mouse fibroblasts of strain L-929 (ATCC No.
CCL-1), rat fibroblasts of line Rat2 (ATCC No. CRL-1764) and
bovine dermal fibroblasts of line B1, all grown in 80% DMEM
containing 20% FCS. For comparison, we studied SV40-trans-
formed human fibroblasts of line ‘‘SV80,’’ SV40-transformed
human WI38 fibroblasts (line WI38VA13, subline 2RA; ATCC
No. CCL-75.1) and mouse SV40-transformed embryonic cells of
line VLM (German Collection of Microorganisms and Cell Cul-
tures No. ACC 429).

The human tumor cell lines examined included liposarcoma
cells of line SW-872 (ATCC No. HTB-92), fibrosarcoma SW-684
cells (ATCC No. HTB-91), both grown in Leibovitz L-15 Medium
containing 5% FCS, and DFSP cells of line Hs63.T (ATCC No.
CRL-7043), as well as rhabdomyosarcoma-derived cells of lines
RD (ATCC No. CLL-136) and HS-729 (ATCC No. HTB-153).
Moreover, we examined human astrocytoma cells of line U 333
CG/343 MG (c.f.,34) and promyelocytic leukemia cells of line
HL60 (ATCC No. CCL-240).

For controls, various epithelial cells including human HaCaT-
keratinocytes were used.35

For cell cloning experiments, individual cells or daughter pairs
of cells were picked and grown as purified clonal cultures as previ-
ously described in detail.36,37

Antibodies

For immunofluorescence microscopy and immunoblotting anal-
yses of gel-electrophoretically separated polypeptides, the mono-
clonal mouse antibodies (mabs) against N-, E-, P- (clone 56) and
R-cadherin, a- and b-catenin and protein p120, all purchased from
BD Biosciences Pharmingen (Heidelberg, Germany) as well as
mabs against cadherin-11 from Zymed Laboratories (South San
Francisco, CA) were used, while mabs against vinculin (clone 11–
5) and a-actinin (clone BM-75.2) were obtained from Sigma (St.
Louis, MO). A mab directed against VE-cadherin (clone BV9)
was kindly provided by Elisabetta Dejana (School of Sciences,
University of Milan, Italy), and the cadherin-6 mab used was from
US Biologicals Swampscott, MA (obtained through Acris, Hid-
denhausen, Germany). For the demonstration of plakoglobin, mab
11E4 (from M.J. Wheelock, University of Nebraska Medical Cen-
ter, Omaha, NE) and clone PG 5.1 (from Progen Biotechnik, Hei-
delberg; c.f.,8) were used.

Rabbit polyclonal antibodies routinely used were directed
against N-cadherin (QED Bioscience, San Diego, CA), a- or b-
catenin, N-cadherin* (‘‘Pan-cadherin,’’ a wider spectrum of epi-
topes, for reference refer38), protein p120, a-actinin, l/s afadin or
JAM-C (from Sigma) or against cadherin-11, protein ZO-1, ZO-2,
connexin Cx 43, ponsin or to occludin, claudins 1–5 or 7 (from
Zymed Laboratories). In addition, we used antibodies specific for
protein p0071 (c.f.,39).

The following antibodies against desmosomal and other cytos-
keletal proteins were purchased from Progen Biotechnik, includ-
ing mabs against desmoplakins 1 and 2 (clones DP-2.15, DP-2.17
and DP-2.20;40), plakophilin-1 (clones PP1-2D6 and PP1-5C2;41),

plakophilin-2 (PP2-62, PP2-86, PP2-150;21) and plakophilin-3
(clone PP3-270.6.2;42) as well as mabs against desmocollins (Dsc)
1 and 343 and desmogleins (Dsgs) 1 and 2 (clone DG3.10) or
Dsg 3 (c.f.,44,45). For comparison, a mab against Dsc 2 (mab 7G6)
obtained from Zymed Laboratories and a plakophilin-2-specific
IgG fraction from guinea-pigs21 were also used. To examine the
mesenchymal differentiation state, murine mabs and guinea pig
antisera against vimentin, desmin or keratin 8 and 18 were used
(all obtained from Progen Biotechnik).

Primary antibody complexes were visualized with secondary
antibodies coupled to Cy3 (Dianova, Hamburg, Germany) or
Alexa 488 (MoBiTec, G€ottingen, Germany). For immunoblot
analysis, horseradish peroxidase-conjugated secondary antibodies
were applied (Dianova).

Cell fractionation, gel-electrophoresis of polypeptides, and
immunoblotting

Cells grown to confluence in 10 cm culture dishes, were rinsed
several times with pre-cooled PBS and immediately scraped off in
1.0 ml pre-heated SDS sample buffer (250 mM Tris-HCl, 10%
SDS, 20% glycerol, 100 mM DTT; pH 6.8), using a rubber police-
man. Then the sample was heated at 95�C for 5 min and subse-
quently cooled on ice. Samples were then incubated with Benzo-
nase (1:1000; Merck, Darmstadt, Germany) and homogenized by
sucking up and down in a pipette for several times.

Methods used for SDS-PAGE, 2-dimensional non-equilibrium
pH-gradient electrophoresis (2D-NEPHGE) and immunoblotting
were essentially as described.46 The polypeptides separated were
electrophoretically transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore, Bedford, MA) and stained with
Coomassie Brilliant Blue before immunochemical detection. For
NEPHGE analysis, the material obtained by chloroform/methanol-
precipitation from total cell lysates dissolved in SDS sample
buffer, we used ‘‘lysis buffer’’ (9.5 M urea, 2% NP-40, 2% ampho-
lyte 3–10, 20 mM DTT; from Serva, Heidelberg) to reduce the
final SDS concentration in the sample to 0.2%. For protein separa-
tion in the first dimension electrophoresis, a focusing time of 4 hr
at 400 V was chosen, followed by SDS-PAGE and transfer to
PVDF membranes.

For immunoblotting, background reactions due to non-specific
binding had to be reduced by brief incubation in 5% low-fat dry
milk in PBS containing 0.05% Tween (PBS-T) for 30 min. Blots
were then subsequently incubated with the primary antibody
(diluted to appropriate concentrations in PBS; 1:10 to 1:1000) for
�1 h, washed thrice in PBS-T and incubated for at least 30 min
with HRP-conjugated secondary antibodies, followed by several
washes in PBS. For detection of secondary antibodies bound to
proteins, the ‘‘enhanced chemiluminescence’’ (ECL, Amersham-
Buchler, Braunschweig, Germany) was used.

Immunoprecipitation

For Immunoprecipitation (IP), cells grown to confluence were
lysed in IP-buffer (20 mM HEPES, pH 7.5, 1% NP-40, 0.5 mM
CaCl2, 5 mM EDTA, 150 mM NaCl) containing a protease inhibi-
tor cocktail (Complete Mini Inhibitor Tabs, Roche Diagnostics,
Mannheim, Germany) for 15 min on ice. The lysate obtained was
centrifuged at 14,000 rpm for 10 min (4�C). The supernatant was
then pre-cleared with ‘‘pan mouse IgG’’ Dynabeads (Dynal, Ham-
burg, Germany) for 2 hr on a rotating wheel at 4�C. After centrifu-
gation, the supernatant was incubated overnight at 4�C on a rotat-
ing wheel with IgG Dynabeads coated with specific antibodies
(Pkp2, N-cadherin and b-catenin) in 50 mM Tris-HCl, pH 7.5. As
a control, unrelated mouse antibodies were processed in parallel.
The beads were washed 4 times in ice-cold IP-buffer, then boiled
in 60 ll of SDS sample buffer, processed by SDS-PAGE and
stained either with a silver sodium solution or blotted to PVDF
membranes. Immunoblotting was performed as described earlier.
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Sucrose gradient centrifugation

Confluent cells were homogenized in 5:1 buffer (83 mM KCl,
17 mM NaCl, 10 mM Tris-HCl pH 7.4, 5 mM EDTA, 3 mM DTT
and 0.5% NP-40) containing protease inhibitors, on ice. After
treatment with a Dounce homogenizer (30 strokes) and centrifuga-
tion at 16,000 rpm (10 min, 4�C) supernatants were loaded on top
of a 10 to 40% sucrose gradients and centrifuged at 35,000 rpm in
a Beckman SW40 rotor (Beckman Instruments, M€unchen, Ger-
many) for 18 hr at 4�C. Sixteen density fractions of 0.8 ml each
were collected from the gradient, and BSA (4.3S), catalase
(11.3S) and thyroglobulin (16.5S) were used as markers in parallel
gradients. In addition, 40S and 60S yeast ribosomal subunits
(kindly provided by Dr. Rakwalska, Centre for Molecular Biology,

Heidelberg) were used as S-value references. Single or pooled
fractions were then analyzed by SDS-PAGE and immunoblotting.

Reverse transcriptase-PCR

RNA from various cell culture lines was isolated with the
‘‘TriPure Isolation Reagent’’ (Roche Diagnostics) according to the
manufacturer’s protocol. For reverse transcription assays, 10 lg
samples of total RNA were used. The PCR primers for human N-
cadherin were chosen as follows: a forward primer 50-
GGCTTCTGGTGAAATCGC-30 and reverse 50-TGTAGGTGGC-
CACTGTGC-30 to amplify a 392 bp fragment. To amplify a 521
bp fragment of human Pkp2 the forward 50-TTTGAATTCGAC-
CAATGCCGACATCAGTGG-30 and reverse 50-TTTGAAT

FIGURE 1
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TCGTCTTTAAGGGAGTGGTAGGC-30 primers were used. The
PCR protocols performed for 30 cycles were as follows: 3 min ini-
tial denaturation at 94�C, per cycle 30 sec denaturation at 93�C,
30 sec annealing at 54�C, 1 min elongation at 72�C plus final elon-
gation 10 min at 72�C for semi-quantitative analysis. PCR frag-
ments were analyzed on 2% agarose gels.

Immunofluorescence microscopy

Cells grown on glass cover slips were briefly rinsed in PBS and
fixed for 5 min either with 2% formaldehyde in PBS at room tem-
perature or in methanol (5 min) followed by acetone (20 s), both
at 220�C. The samples were then briefly air-dried and either
stored at 225�C or rehydrated in PBS just prior to the immuno-
staining procedure. After permeabilization in 0.2% Triton X-100
for 5 min, cells were washed several times in PBS. Primary anti-
bodies were applied for 1 hr at RT, followed by 3 washes in PBS
(5 min each), followed by incubation with secondary antibody (30
min, RT), washing with PBS (3 3 5 min), a short rinse in distilled
water and finally dehydration in 100% ethanol (1 min). After air-
drying, specimens were mounted with Fluoromount-G (Southern
Biotech, obtained through Biozol Diagnostica, Eching, Germany).
Immunofluorescence microscopic images were recorded with an
Axiophot II photomicroscope (Carl Zeiss, Jena, Germany),
equipped with an AxioCam HR (Carl Zeiss). For confocal laser
scanning microscopy, a Zeiss LSM 510 Meta microscope was
used.

For immunolocalizations on paraffin-embedded tissue samples,
sections were deparaffinized and heat-induced antigen retrieval
was performed according to protocols published in the anthology
of Shi47 (for specific details refer also48).

Electron microscopy

For conventional electron microscopy (EM), cells and tissue
sections were briefly rinsed in PBS, fixed in 2.5% glutaraldehyde
(50 mM sodium cacodylate, pH 7.2) for 20 min and then washed
thrice in the same buffer. Post-fixation was performed with 2%
OsO4 in cacodylate buffer for 2 hr on ice, followed by several
washes in distilled water and heavy metal staining (0.5% uranyla-
cetate) overnight at 4�C. After 3 washes in distilled water, samples
were dehydrated in an ethanol series and propylenoxide before
embedded in Epon. Ultrathin sections for EM were made with a
Reichert-Jung microtome (Utracut, Leica, Bensheim, Germany).
For contrast enhancement, the sections were stained with 2% ura-
nylacetate in methanol for 15 min and lead citrate for 5 min.

For immunoelectron microscopy, cells grown on coverslips
were fixed in 2% formaldehyde in PBS (5 min, RT), followed by

incubation in 50 mM NH4Cl (5 min), 2 washes in PBS (5 min
each) and permeabilization in either 0.1% saponin in PBS for 2.5
min or 0.1% Triton X-100 in PBS for 1 min, followed by 2 washes
in PBS. Incubation with primary antibodies was performed for at
least 2 hr. After 3 washes in PBS, antibodies conjugated with 1.4
nm-gold particles (Nanogold, Biotrend, Cologne, Germany) were
used as secondary reagents and incubated for 2 to 4 hr. Secondary
antibodies not stably bound were removed by washing in PBS.
Samples were then post-fixed with 2.5% glutaraldehyde in sodium
cacodylate buffer (15 min, RT), briefly rinsed in the same buffer
and twice incubated in 200 mM sucrose in 50 mM HEPES buffer
(pH 5.8) for 10 min. This was followed by silver enhancement
(Nanoprobes, Stony Brooks, New York) for 7 to 10 min, 2 washes
in 250 mM sodium thiosulfate, buffered with 50 mM Hepes (pH
5.8; 5 min each), and up to 10 washes in distilled water. After fixa-
tion with 0.2% OsO4 in cacodylate buffer for 30 min on ice, sam-
ples were dehydrated, embedded in Epon, sectioned and stained as
described earlier. Electron micrographs were taken at 80 kV, using
an EM 910 (Carl Zeiss, Oberkochen, Germany).

Results

In protein chemical and immunolocalization analyses of diverse
cell culture lines of non-epithelial origin, we have made the obser-
vation that some of them were connected by junctions strikingly
positive for plakophilin-2 (Pkp2) but that such Pkp2-positive
adherens junctions (AJs) lacked other obligatory desmosomal
components such as desmoplakin and both kinds of desmosomal
cadherins. A special complication was the finding that some sub-
lines derived from the same original cell type or line differed with
respect to the presence or absence of Pkp2-positive AJs. As we
had not treated the plus and minus Pkp2 cell cultures of related or-
igin in different ways, we hypothesized that such an apparently
spontaneous advent of a major junctional protein may somehow
resemble the spontaneous appearance of other cytoskeletal pro-
teins such as certain cytokeratins or specific actin isoforms in indi-
vidual cells of mesenchymally-derived cell cultures (e.g.,36,37,49).
Because of this apparently spontaneous and frequent change of the
cell–cell adhesion character and also because such changes may
have far-reaching consequences in tumor spread and in diagnoses,
we have decided to examine this phenomenon of a spontaneous
and stable change of the molecular composition of AJs in detail.

Biochemical analyses

The gel-electrophoretic and immunoblot analyses of cytoskele-
tal proteins from a wide range of established mesenchymal cell

FIGURE 1 – Identification of constituent proteins of adherens junctions in a series of cell culture lines of mesenchymally-derived cells: The
addition of plakophilin-2. (a and b) Immunoblot reactions of SDS-PAGE-separated total and cytoskeletal proteins from different fibroblastoidal
cell culture lines. Proteins were probed with antibodies specific for desmosomal proteins (a), including plakophilin-1, plakophilin-2 (a and ba1–
bc1), plakophilin-3, desmoglein 112 and desmoplakin 112 as well as for known adherens junction proteins (b) such as N-cadherin (a2–c2, pol-
yclonal antibodies; a3–c3, broadly reactive antibodies of the ‘‘pan-cadherin’’-type), cadherin-11 (a4–c4), a-catenin (a5–c5), b-catenin (a6–c6)
and protein p120 (a7–c7). Names of cell lines are given on the upper margin of the specific lanes, including human (LL24, hFB, HG261, SV80,
WI38, WI38VA13), bovine (B1), rat (Rat2) and murine (3T3) cells. Note that in addition to HaCaT-keratinocytes plakophilin-2 and plakophilin-
3 are here only seen in the 2 SV40-protein transformed cell lines SV80 and WI38VA13 whereas the desmosomal marker proteins desmoglein or
desmoplakin are not detectable. (b) SV80 and HG261 cells in direct comparison with human rhabdomyosarcoma cells of line RD (b1, Lane 3)
and (c1) direct comparison with fibroblastoidal cells of lines Hs295.SK and Hs63.T, both from dermatofibrosarcoma protuberans (DFSP)
patients. Additional junctional plakophilin-2 (a1–c1) is detected not only in SV40-transformed fibroblasts (SV80, WI38VA13) and in RD cells
but also in the DFSP-derived cell culture line Hs63.T. The absence in murine 3T3 cells may be due to the specific antibody used. (c) RT-PCR
analyses of RNAs from different human cell lines such as promyelocytic leukemia cells of line HL60, lung fibroblasts of line LL24, SV40-trans-
formed fibroblasts of lines SV80 and WI38VA13 and rhabdomyosarcoma-derived cells of line RD, using primers specific for N-cadherin (a) or
plakophilin-2 (b). As positive controls cDNA sequences of N-cadherin and plakophilin-2 PCR were used (Lane 1). Note that N-cadherin mRNA
is detected in all cell lines examined, except of HL60. Plakophilin-2 mRNA is detected as a major component in some cell lines but
only as minor component in lines HL60 and LL24. Size markers used were 517 and 397 bp for N-cadherin and 517, 396 as well as 356 bp for
plakophilin-2. (d) Two-dimensional gel-electrophoresis of cultured human SV40-transformed fibroblastoidal cells and identification of one
major and 2 minor forms of plakophilin-2 by immunoblotting. Non-equilibrium pH gradient electrophoresis (NEPHGE; horizontal arrows
labeled NE) was used in the first and SDS-PAGE (vertical arrows labeled SDS) in the second dimension. Coomassie Brilliant Blue-stained
proteins of the total lysates of the human SV80 (a) or WI38VA13 (b) cells were transferred to PVDF membranes. Positions of plakophilin-2
polypeptide variants are indicated by vertical arrows at a molecular weight of �97 kDa (a0 and b0). As reference proteins, rabbit skeletal muscle
a-actin (A), bovine serum albumin (B, BSA) and rabbit phosphoglycerol phosphokinase (P) were used. Plakophilin-2 migrates as 3 components
at pH 7.4 and 8.2 (right arrows) and a more acidic form at approximately pH 6.4 (left arrows).
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culture lines of human or animal origin showed that some of them
were distinctly rich in Pkp2 while other, even closely related cell
lines were devoid of Pkp2 (e.g., Figs. 1a and 1b). Two of these
cell lines were also positive for Pkp3, a closely related junctional
plaque protein, that is known often to coexist together with
Pkp2.42,50 Whereas a high amount of additional Pkp2 was also
found in typical cytoskeletal residues resistant to extractions with
buffers of high and low ionic strength and with various concentra-
tions of detergent, the amounts of Pkp2 found in nuclear and cyto-
solic complexes were lower by several orders of magnitude and
readily extractable during cell lysis using moderate detergent buf-
fers of near-physiological ionic strength (c.f.,21,23,39,42,51). Other
typical components of AJ structures such as N-cadherin, cadherin-
11, a- and b-catenin, proteins p120 and p0071 as well as afadin
and protein ZO-1 were also readily identified in such residual
junction structures (e.g., Figs. 1b–1d). A number of our analytical
results are summarized in Table I.

Particularly surprising was the observation that SV40-trans-
formed cell lines such as the ‘‘SV80 fibroblasts’’ and the
WI38VA13 embryonic cells were intensely Pkp2-positive while
the corresponding non-transformed lines were totally negative
(e.g., Figs. 1a, 1b and Table I). Such drastic differences between
closely related cell lines could also be observed with different
lines established from the same kind of human tumor such as those
derived from dermatofibrosarcoma protuberans (DFSP) tumor
samples (e.g., Fig. 1bc1) or certain rhabdomyosarcoma sublines
such as RD (e.g., Fig. 1bb1).

These results were generally confirmed by RT-PCR analyses of
mRNAs (for an example refer Fig. 1c), except for some cell lines
devoid of—or very poor in—AJs (Fig. 1c, cell lines HL60 and
LL24), as well as in 2-dimensional gel-electrophoreses in which
mostly 1 major and 2 minor isoelectric variants of Pkp2 were
detected (Fig. 1d; refer also21; for similar patterns of other plako-
philins refer41).

The Pkp2 detected by RT-PCR and in the immunoblot analyses
of gel-electrophoretic separations of cytoskeletal proteins was
identified as a component of junctional complexes of the AJ-type,
as also demonstrable in co-immunoprecipitates obtained with anti-
bodies against N-cadherin or b-catenin (Fig. 2a) or with a-catenin
antibodies (not shown).

We also characterized the possible Pkp2-containing protein
complexes by gel-filtration and sucrose gradient centrifugation
and noticed significant recoveries of Pkp2 in 2 kinds of particles,
one with a mean S-value of a 14S and a larger particle category
around 50S (Fig. 2b). The smaller complex form co-sedimented
with N-cadherin and b-catenin (Fig. 2b) and a corresponding asso-
ciation was also demonstrable in co-immunoprecipitates from the
pooled fractions 5–7 (not shown). Such results further suggested
that the larger (�50S) Pkp2-containing complex category may
also contain some not yet identified plaque proteins, a hypothesis
that is currently under study in our laboratory.

In 2 of the human cell lines examined, SV80 and WI38VA13,
we also noted the spontaneous but also stable advent of appreci-
able amounts of Pkp3, another plaque protein originally discov-
ered in desmosomes which later was also identified in certain nu-
clear and cytoplasmic particles.42,50,51

Localization of plakophilin-2 in adherens junctions

When the various mesenchymally-derived cells under question
were examined by immunofluorescence microscopy using rigor-
ous conditions to optimize antigen accessibility (for special
short and ‘‘gentle’’ preparation conditions that also allow to dem-
onstrate the more readily extractable nuclear plakophilins refer,
e.g.,21–23,42), Pkp2 was distinctly localized to cell–cell junctions,
for the most part in co-localization with N-cadherin and b-catenin
(Fig. 3), with a-catenin, proteins p120 (Figs. 4aa–4ad) and protein
p0071 (not shown; refer also50). Significant co-localization of
Pkp2 with N-cadherin as well as with a-catenin and the AJ-typical
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FIGURE 2 – Analyses of complexes of plakophilin-2 with adherens junction proteins. (a) Immunoblots of the SDS-PAGE-separated proteins
of immunoprecipitates from total cell lysates of human SV40-transformed (SV80) fibroblasts. Antibodies used for immunoprecipitations (IP)
were against plakophilin-2, desmocollin Dsc1, N-cadherin (a) and b-catenin (b). As positive controls, total cell lysates of SV80 cells, lysates as
supernatant before IP (L) and material of the pre-clearing preparation step (P) were used. Immunoblots were performed, using monoclonal anti-
bodies (mabs) specific for plakophilin-2. Note that beside the positive controls, IPs with plakophilin-2, N-cadherin (a) and b-catenin (b) clearly
show immunoreactivity of plakophilin-2. As negative controls, the beads used after pre-clearing (Ab-control) and IP using mabs specific for des-
mocollin Dsc1 clearly showed an absence of plakophilin-2. Molecular weight markers (top to bottom) in kDa: 158, 116, 97.2, 66.4, 55.6, 42.7.
(b) Proteins of lysates from SV40-transformed fibroblastoidal cells of line ‘‘SV80’’ were centrifuged on a linear 10–40% sucrose density gradi-
ent, fractions were collected from top to bottom and analyzed by SDS-PAGE and immunoblotting, using antibodies specific for N-cadherin (a),
plakophilin-2 (b and c) and b-catenin (d). Most of the N-cadherin appears in particles with a maximum between fraction 5 and 7, corresponding
to �14S, and with a second minor peak at �50S. Moreover plakophilin-2 appeared in 2 major particle forms which reacted somewhat differently
with the 2 forms of antibodies used: Immunoreactivity in fractions with a peak between fractions 12 and 14 (mab) and with another peak around
fraction 8, corresponding to mean values of �14S and �50S (arrows). Most of b-catenin is also recovered in fractions 5–8, corresponding to a
mean value of �14S, although here again a broad distribution of particles up to 60S was also noted for a minor proportion. Lanes labeled L and
P contains total lysate (L) or the pellet (P) obtained after fractionation. The relative positions of marker proteins examined in parallel are indi-
cated: BSA (4.3S), catalase (11.15S) and thyroglobulin (16.5S) as well as yeast ribosomal subunits (40S and 60S). N-cadherin*: Polyclonal anti-
bodies of the preparation ‘‘pan-cadherin’’; Plakophilin-2*: Guinea pig antibodies of the serum HP1.21
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armadillo proteins such as b-catenin was also seen in all the other
Pkp2-positive cells, including the WI38VA13-cells, the rhabdo-
myosarcoma RD- and the DFSP-derived cells of line Hs63.T (Fig.
4b). In general, our immunolocalization studies have allowed us to
conclude that the Pkp2 occurring in the mesenchymal cell lines
found positive on gel-electrophoresis and RT-PCR is highly
enriched in AJs, including the small AJs located in slender proc-
esses connecting such cells in non-confluent cultures (Fig. 4ad; for
detailed electron microscopy of such junctions appearing on proc-
essus adhaerentes of mesenchymal cells refer, e.g.,52).

Electron microscopy then allowed the demonstration of the ul-
trastructural details of these AJs, which mostly displayed a rather
thin electron-dense plaque, often laterally attached with actin
microfilament bundles (e.g., Figs. 5ab–5ah) or groups of microtu-
bules (Figs. 5ac and 5af). Particularly, in subconfluent cultures,
rather long filopodia-like processes were frequently seen that were
dominated by a microfilament bundle core (Fig. 5aa) and could
form small AJ-type connections with processes of other cells (Fig.
5ab). In certain cell lines, we also noted that several small AJs
appeared to be laterally clustered as if they were approaching

FIGURE 3 – Double-label immunofluorescence microscopy of SV40-transformed human fibroblastoidal cells, showing plakophilin-2 in adhe-
rens junctions. Double-label immunofluorescence microscopy images of SV40-transformed human fibroblasts (line SV80), after reaction with
antibodies to plakophilin-2 (Pkp2; red), in comparison with constitutive proteins of AJs (green) such as N-cadherin (N-Cad; a and b) and b-cate-
nin (b-cat; c). In both cells grown at low density (a, a0) and to confluency plakophilin-2 (a) and N-cadherin (a0) clearly co-localized in AJs (a0 0;
merge colors: yellow–orange; standard fluorescence microscopy in b and confocal laser scanning microscopy in c). Note the frequency of such
plakophilin-2-positive AJs in the confluent colonies of near-isodiametric cells. DAPI stain (blue) was used to visualize nuclei. Scale bars repre-
sent 10 lm.
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fusion to larger junctional structures (arrows and arrowheads in
Figs. 5ae and 5af).

Using immunogold-labeling electron microscopy, we identified
Pkp2 as an AJ component located in junctional complexes to-
gether with ‘‘classic’’ AJ plaque residents such as b-catenin (Figs.
5ba–5bj show a series of AJ examples of variable sizes). From
such observations it became clear that the plaque-bound Pkp2
occurred in a remarkably symmetrical pattern: Pkp2 present in a
given plaque of a certain cell obviously could induce the assembly
of Pkp2 in the equivalent plaque of the AJ-half in the adjacent
cell, and this phenomenon was visible in different lines, ranging
from human fibroblasts (SV80, WI38VA13) to rhabdomyosar-
coma RD cells and DFSP-derived cells (line Hs63.T).

We also examined some of the cell culture lines found positive
for Pkp3 in SDS-PAGE and immunoblots (refer previous section)
by immunofluorescence microscopy and noted a moderate number
of groups of cells with immunostained AJs (not shown).

Occurrence of plakophilin-2-positive junctions in cultures of non-
malignant mesenchymal stem cells

In primary and secondary cultures of ‘‘mesenchymal stem
cells’’ (MSCs) derived from bone marrow or umbilical cord
blood,52 we were also able to identify sparse but clear signs of a
novel kind of Pkp2-positive AJs in certain individual cells and cell
groups, typically in regions of otherwise Pkp2-AJ-negative cells.
Figures 6a–6a000 and 6b present such arrays of Pkp2-positive cells,
and Figure 6c shows that Pkp2-positive AJs can also be enriched
in the extended cell processes deeply protruding into—and tightly
fitting in—the invaginated cell surface pockets of adjacent cells
(manubria adhaerentia; c.f.,52). This also underscores our conclu-
sion that the Pkp2-containing AJs do not represent a special junc-
tion newly added but that Pkp2 can be integrated in otherwise cell
type-specific subforms of AJs. This sporadic appearance may also
be taken as an indication that the de novo formation of Pkp2-AJs
is not necessarily a change following a certain general signal of
transformation to permanent growth or even malignancy. On the
other hand, however, at present we cannot exclude that this phe-
nomenon may just occur as a rather early change, specific for cer-
tain highly proliferative mesenchymal cells, but not necessarily
for malignant growth.

The advent of plakophilin-2-containing adherens junctions in soft
tissue tumors in situ

When we had noticed in many of our cell cultures of mesenchy-
mally-derived cell lines the increased amounts of Pkp2 and its as-
sembly with other proteins into AJ plaques, we also examined a
variety of sections through samples containing ‘‘soft tissue tumor’’
portions. The example shown in Figure 7 presents evidence that
Pkp2 can also selectively appear in some AJs connecting cells of
such non-epithelial tumors, here in a rhabdomyosarcoma, whereas
all other desmosomal markers examined have been negative (des-
moplakin, desmogleins, desmocollins, Pkp1 and Pkp3). By dou-
ble-label immunolocalization techniques, Pkp2 has been identified
to co-localize in the typical N-cadherin-positive AJs characteristic
of these tumors. In addition, Figure 7b presents groups of tumor
cells in which Pkp2 is seen in practically all visible AJs. Co-local-
ization experiments have again confirmed that the AJs connecting
such Pkp2-positive AJs are also positive for other typical AJ pla-
que marker proteins such as a- and b-catenin (not shown).

The problem of clonal stability of cells containing plakophilin-2-
positive adherens junctions

Although the spontaneous and randomly occurring cytoskeletal
changes such as the advent of cytokeratin IFs in certain mesenchy-
mally-derived cell lines, including some widely used ‘‘soft tissue
tumor’’ reference lines, appeared to be clonally stable so that pure
sublines of cytokeratin IF-rich cells could be cloned,36,37 our
results with AJs of cloned mesenchymal cells were somewhat

FIGURE 4 – Co-localization of adherens junction proteins and pla-
kophilin-2 in human cell lines. (a) Double-label confocal immunofluo-
rescence microscopy of SV40-transformed human fibroblasts (line
SV80), comparing the localization of plakophilin-2 (Pkp2; green) with
that of known AJ components (red). Note the co-localizations (yellow
merge color) of plakophilin-2 with b-catenin (b-cat; a and d), a-cate-
nin (a-cat; b) and protein p120 (c). Such co-localization is also seen in
the small cell–cell junctions connecting slender cell processes (d).
Phase-contrast image of d is indicated in d0. Scale bars represent 10
lm. (b) Double-label immunofluorescence microscopy of SV40-trans-
formed fibroblasts of line WI38VA13 (a), rhabdomyosarcoma cells of
line RD (b) and cells of the DFSP-derived line Hs63.T (c and d), la-
beled for N-cadherin (N-Cad; red; a, c and d) or b-catenin (b-cat; red;
b) in combination with plakophilin-2 (Pkp2; green). All these malig-
nantly transformed cell lines show co-localization of the specific AJ
component with plakophilin-2. Note that not all of the intercellular
junctions and bridges in cells of line Hs63.T contain plakophilin-2
(arrows in c and d). DAPI has been used to visualize nuclei. Scale
bars represent 10 lm.

2043NOVEL ADHERENS JUNCTIONS IN MESENCHYMAL TUMOR CELLS



FIGURE 5 – Electron and immunoelectron microscopy of adherens junctions in mesenchymally-derived human cell culture lines. (a) Electron
micrographs of ultrathin sections through conventionally fixed and embedded monolayer cell cultures, showing neighboring cells of the SV40-
transformed human fibroblastoidal line SV80 (a–f) and of cells of the rhabdomyosarcoma-derived line RD (g, h), also presenting long cell proc-
esses (denoted by arrows in a and by the letter P in b) with small AJs (refer arrowheads in b). Near confluency, cells show numerous cell–cell
contact regions with AJ morphology, including plaque-like structures and often also associated microfilament bundles (denoted by brackets and
arrowheads in c–g; for higher magnification refer also the insert in the upper right of c) and cortical microtubules (e.g., some are denoted by big
arrows in c and f) as well as distinct junctional areas of different sizes and shapes (d–h; arrows and arrowheads). These cells not only show AJs
of heterogeneous sizes (refer, e.g., arrows in d), they can also occur as local clusters of separate junctions (e, arrowheads) composed of a series
of small plaques (f, arrows) or as local close aggregates of very small plaque-like structures (arrows and arrowheads in e and f). By comparison,
larger AJs are relatively rare (refer, e.g., arrow and arrowheads in g and h). Scale bars represent 1 lm (a), 0.5 lm (b–h). (b) Immunoelectron
micrographs of DFSP-derived cells of line Hs63.T (a–d), showing the specificity of the silver-enhanced immunogold grain reaction of antibodies
specific for b-catenin (a, b) as well as for plakophilin-2 (c, d). Note that the various forms of AJs are denoted by the nanogold particles. (e–j)
Cells of the rhabdomyosarcoma-derived line RD also show the localization of b-catenin (e–g), N-cadherin (h, i) and plakophilin-2 (j) in AJs.
Scale bars represent 0.5 lm (a–f and h–j) and 0.25 lm (g).
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FIGURE 6 – Advent of plakophilin-2 in adherens junction connecting individual cells or small groups of cultured human bone marrow-derived
mesenchymal cells. Double-label immunofluorescence microscopy of cultured human bone marrow-derived mesenchymal cells labeled for pla-
kophilin-2 (Pkp2; red; a) in combination with the AJ reference protein, b-catenin (b-cat; green; a0). The merged picture is shown in a00; a00 0[
presents the phase contrast appearance of the confluent cell culture. In a limited region of cell–cell contacts, AJs show co-localization (yellow–
orange) of the 2 plaque proteins. (b) Often the plakophilin-2-containing AJs are locally restricted, small and isolated; (c) presents an example of
extended cell–cell bridges rich in AJs (refer the manubria adhaerentia of52) containing plakophilin-2. Scale bars represent 20 lm.
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different: Clonal progeny of Pkp2-positive fibroblastoid cell types
such as human SV80 cells was rather stable whereas most other
clonally obtained cell lines showed some re-segregation into
Pkp2-positive and Pkp2-negative subforms (data not shown). As
this phenomenon of a tendency of a certain percentage of cells to
switch back to the original Pkp2-negative form is presently a still
unexplainable phenomenon, we have decided to elucidate the mo-
lecular patterns and mechanisms of such segregations in experi-
mental detail in the future.

Discussion

In contrast to epithelial and myocardial cells, the cells of the
mesenchymal tissues of the mammalian body are interconnected
only by a single and simple type of AJs, mostly characterized by
the transmembrane glycoprotein N-cadherin, with or without one
of the other cadherins such as cadherin-11, anchored in a submem-
branous dense cytoplasmic plaque containing a- and b-catenin,
mostly together with at least 3 further armadillo-type proteins,
e.g., plakoglobin as well as proteins p120 and p0071 (for the latter
refer39). Therefore, our finding that AJs of many transformed cell
culture lines of mesenchymal origin constitutively contain an
additional armadillo protein, Pkp2, so far only known as a constit-
uent of desmosomes in epithelia and a few other types (for refer-
ences refer13,14,21,22,28) as well as tumors derived from such tissues
(e.g.,21,22), represents a fundamental change in the molecular en-
semble of a prominent cell–cell adhesion structure. Indeed, Pkp2
has so far never been detected in cell–cell junctions of normal
mesenchymal tissues. The observation of this addition of Pkp2 to
the AJ-plaque protein ensemble is all the more important as this
molecule has been shown to be a molecule capable of binding and
stably complexing a series of other junctional proteins.24,53 In
addition, Pkp2 is complexed to several cadherins such as desmo-
gleins and desmocollins and N-cadherin as reported for cardiomy-
ocytes and in the present report (for reviews refer also2,54).

Finally, the importance of Pkp2 for cell–cell adhesions in inter-
phase as well as in mitosis is also indicated by gene mutation anal-
yses as well as gene abrogation and mRNA knock-down experi-
ments, which all have shown that the reduction of Pkp2 alone for
an extended period of time can be sufficient for loosening cell–
cell contacts and promoting the separation of cells (e.g.,25–28) and
that even small mutations in the Pkp2-gene can result in lethal
dysfunctions of cell–cell adhesion (e.g.,29; for further references

refer Introduction). Therefore, we may hypothesize that the addi-
tional integration of Pkp2 into AJ plaques of mesenchymally-
derived cells and tumors can markedly enhance the stability or the
adhesive potential of these AJs.

The general increase of cellular Pkp2 and its integration into
AJ plaque structures probably has also important effects on other
cell structures and functions. As junctional plaque components
have been shown to be able to compete for plaque binding
capacity24 (for reviews refer also54,55) we presently cannot
exclude the possibility that the addition of sizable amounts of
Pkp2 to the plaque ensemble results in a compensatory release of
other plaque components, in particular of b-catenin, which in turn
is known to be involved in a series of important regulatory func-
tions in the nucleus. Of course, such possible mutual effects of
junction-bound b-catenin and plakophilins on nuclear complexes
and functions (refer also23) will have to be examined in special
experiments.

In general, stability and adhesive force of AJs are also critical
for contact formations, interactions and architectural connections
of mesenchymal cells with each other as well as with other kinds
of cells and tissues, either in normal development or a result of
malignant transformation. Thus, rather small AJs have been shown
to form the initial contacts as well as semistable connections—
even over long distances and for remarkable periods of time—as
shown in special detail for bone marrow- or umbilical cord blood-
derived human mesenchymal stem cells growing in culture.52 It is
also clear that mesenchymally-derived cells can form extended,
thin, AJ-studded cytoplasmic processes some of which can deeply
insert into invaginations of neighboring cells, thus producing a
tight-fitting interdigitation system with extended, laterally fused
AJ-structures (manubria adhaerentia). Further special plaque-
bearing internalizing AJ complexes are also the essential cell con-
tact structures of the engulfment and destruction system named
‘‘entosis,’’ which is also based on cadherin-mediated adhesion,
although here so far only examples of epithelial cells have been
reported in the literature.56

Mesenchymal cells are a highly heterogeneous group of cell
types and this diversity is further magnified by the fact that
during—and as a result of—malignant transformation the diversity
of each cell type may even increase further (for some examples
including tumor cell-stromal tissue refer, e.g.,57–60). This suggests
that the morphological and the molecular typological diversity in
the mesenchymal kingdom of differentiations, including their AJ

FIGURE 7 – Advent of plakophilin-2-containing adherens junctions in a human rhabdomyosarcoma in situ as demonstrated by immunostaining
using double-label confocal immunofluorescence microscopy. Paraffin-embedded tissue of a formalin-fixed sample of human pleomorphic rhab-
domyosarcoma of the corpus uteri has been treated using the microwave ‘‘antigen retrieval’’—technique and reacted with antibodies specific for
plakophilin-2 (Pkp2; red) in combination with antibodies to N-cadherin (N-cad; green). Note that all of the AJs detectable contain N-cadherin,
whereas only some of them are also positive for plakophilin-2 (arrows; yellow–orange merge color). In some tumor regions such plakophilin-2-
positive AJs appear widely dispersed (a) whereas in other parts of the tumor plakophilin-2 can be enriched in certain colonies (arrowheads) of
cells (b). Scale bars represent 20 lm.
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systems, may be almost as great as it has been reported for epithe-
lia and their junction systems (for reviews refer, e.g.,61). From the
present report, it is now also clear that among soft tissue tumor
cells, 2 categories can—and have to—be distinguished, i.e., the
Pkp2-positive and the Pkp2-negative forms. Elucidation of these
molecular differences will certainly provide valuable additional
diagnostic information and the regulatory key protein Pkp2 may
become an important molecular addition to the histodiagnostic ar-
mamentarium for soft tissue tumors.
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Abstract Immunocytochemical, electron-, and immunoelec-
tron-microscopical studies have revealed that, in addition to
the four major “textbook categories” of cell-cell junctions
(gap junctions, tight junctions, adherens junctions, and
desmosomes), a broad range of other junctions exists, such
as the tiny puncta adhaerentia minima, the taproot junctions
(manubria adhaerentia), the plakophilin-2-containing adhe-
rens junctions of mesenchymal or mesenchymally derived
cell types including malignantly transformed cells, the
composite junctions (areae compositae) of the mature
mammalian myocardium, the cortex adhaerens of the eye
lens, the interdesmosomal “sandwich” or “stud” junctions in
the subapical layers of stratified epithelia and the tumors
derived therefrom, and the complexus adhaerentes of the
endothelial and virgultar cells of the lymph node sinus. On
the basis of their sizes and shapes, other morphological
criteria, and their specific molecular ensembles, these

junctions and the genes that encode them cannot be
subsumed under one of the major categories mentioned
above but represent special structures in their own right,
appear to serve special functions, and can give rise to
specific pathological disorders.

Keywords Junctions . Desmosomes . Area composita .

Filopodium . Plaque

Abbreviations
AJ adherens junction
JAM junction adhesion molecule
MAGUK membrane-associated guanylate kinase
TJ tight junction
MSCs mesenchymal stem cells
PAM puncta adhaerentia minima
ARVC arrhythmogenic ventricular cardiomyopathies

Introduction

An essential development in the evolution of multicellular
organisms with a variety of tissues serving different functions
has obviously been the formation of specific semi-stable and
dynamic cell-cell junctions, i.e., architectonically positioned
structures of limited size that connect cells of the same or
different types into higher order organs. Laterally, i.e., in the
same plasma membrane, such assemblies can be homophilic
or heterophilic and are generally oriented head-to-head,
usually with distinct substructures.
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Major junctional types

In present textbooks of cell biology, four major categories
of cell-cell junctions are distinguished (Table 1; for a his-
toric review, see Franke 2009):

(1) Gap junctions (nexus) appear as densely packed
hemichannels composed of tetraspan membrane pro-
teins, which belong to the connexin family and which
are symmetrically oriented into channels that allow
cell-cell exchange of small molecules.

(2) Tight junctions (TJ; zonulae or fascial adhaerentes)
are arrays of tetraspan transmembrane proteins form-
ing tight-sealing bands of various lengths, often
branched or ornamentally woven. These proteins are
arranged head-to-head into membrane barrier struc-
tures containing cell-type-specific combinations of the
claudin and the occludin families of proteins, mostly
in association with specific immunoglobulin-like
proteins of the junction adhesion molecule (JAM)
group spanning the membrane once.

(3) Adherens junctions (AJ) are a group of variously sized
and shaped cell-type-specific assemblies of glycopro-
teins of the cadherin family spanning the membrane once
and capable of forming a continuous cell-surrounding
belt (zonula adhaerens) or streak-like fascia adhaerens,
or local near-isodiametric puncta adhaerentia.

(4) Generally the thickest and most robust junction type is
represented by the desmosomes (maculae adhaer-
entes) formed by special subsets of cadherins (desmo-
gleins, desmocollins).

In addition, these junctions are associated, on their
cytoplasmic face, with specific ensembles of “coating”
proteins, which again display similarities and junction-type-
specific differences:

(1) Gap junctions do not reveal a distinct, i.e., electron
microscopically demonstrable cytoplasmic plaque, but
their connexins are complexed with cytoplasmic
proteins of the membrane-associated guanylate kinase
(MAGUK) family, which in turn can interact with
microtubules or actin filaments (see anthology by
Peracchia 2000).

(2) TJs are also associated with a thin and barely visible
coat containing MAGUK proteins, specifically pro-
teins ZO-1 – ZO-3, plus cingulin and a series of other
proteins (see anthology by Cereijido and Anderson
2001, notably therein the review by Citi 2001).

(3) AJs are characterized by clearly demonstrable plaque
structures of varying thickness, made up of cell-type-
specific combinations of armadillo (arm)-type pro-
teins, e.g., plakoglobin, β-catenin, proteins p120,

p0071, and ARVCF, and neurojungin, together with
vinculin-like or other actin-binding proteins such as α-
catenin, vinculin, and afadin (for reviews, see the
anthologies of Behrens and Nelson 2004; LaFlamme
and Kowalczyk 2008).

(4) The plaques of desmosomes, the cadherins of which
can project into (and even through) the mostly
prominent and dense plaque, also contain plakoglobin,
but in addition plakophilin-2 or combinations of two
plakophilins, together with the special plaque protein,
desmoplakin (for reviews, see the aforementioned
anthologies and Holthöfer et al. 2007; Waschke 2008).

Other junctional types

In recent years, a series of conspicuous cell-type-specific
forms of symmetrical cell-cell junctions with diverse
shapes, sizes, and unusual molecular ensembles or com-
plexities have been ultrastructurally and analytically char-
acterized to a considerable degree. These studies have
strengthened the conclusion that the structures under
question are special junctions in their own right. Their
characteristic structures and molecular ensembles known so
far will be briefly described here and their possible
functional significance will be discussed.

1. Puncta adhaerentia minima (minimal dot junctions)

Extremely small AJs have been found on the surfaces of
several kinds of mesenchymally derived cells grown in cell
culture, in particular in cultures of specific subsets of bone-
marrow-, placenta-, or adipose-tissue-derived mesenchymal
stem cells (MSCs) and in cultures of interstitial cells
derived from specific organs such as the matrix of cardiac
valves. Sparse cultures of such mesenchymally derived
cells are characterized by the frequent occurrence of
filopodia-like cell processes of widely variable lengths,
including some that may even exceed 400 µm and that are
studded in varying frequencies and patterns with punctate,
often extremely small (20–50 nm diameter) AJs (Fig. 1a–c;
see, e.g., Wuchter et al. 2007; Barth et al. 2009). In other
words, the diameters of the smallest of these AJs are not
much greater than those of nearby microtubules. These
“minimal-size” AJs (puncta adhaerentia minima; PAM) are
clearly different from the AJ-like structures located in the
shorter "zipper" bridge structures connecting cultured
murine keratinocytes (Vasioukhin et al. 2000). Light- and
electron-microscopic immunolocalization, supported by the
analytical biochemistry of total cell junctional proteins,
have allowed the identification of N-cadherin and cadherin-
11 in these PAM, together with α- and β-catenin, protein
p120, and afadin as regular components (e.g., Fig. 1d; cf.
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Wuchter et al. 2007; for "normal-size" AJs of mesenchymal
cells in culture, see, e.g., Hinz et al. 2004; Kiener et al.
2006). In recent experiments, we have also localized the
arm-protein p0071 in such PAM, whereas plakoglobin has
been repeatedly seen in some of cell cultures but only
sporadically noted in others (cf. Rickelt et al. 2009).

Small junctions of the AJ type, including PAM, have
also been frequently observed on long processes and on
other surface regions of cells in primary and secondary
cultures of mesenchymal cells derived from other tissues
such as the interstitial cells of the interior of cardiac valves
from various mammalian species, including rat, sheep, cow,
and human (e.g., Fig. 1e-g; for details see Barth et al. 2009;
and references cited therein). In such interstitial cell
cultures, the small AJs are often clustered in specific
regions of the filopodia, in particular at their tips, but may
also occur on the central cell bodies (Fig. 1e–g). Again, the
AJs of such cells, including PAM, have been found to be
positive for N-cadherin and cadherin-11, for the arm-
proteins β-catenin, plakoglobin, proteins p120, ARVCF,
and p0071, and for α-catenin, afadin, and proteins of the
ZO-1 group.

These puncta-studded long cell processes have to be
distinguished from other long, thin and cylindrical
filopodia-like actin-filament-rich cell-cell connections such
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Fig. 1 Double-label immunofluorescence (a, e-g) and electron (b, c)
and immunoelectron (d) microscopy showing cell processes of
cultured human mesenchymal stem cells (MSCs), originally isolated
from bone marrow (a-d) or ovine cardiac valve matrix (e-g). a Note
that some of the cell processes are extremely long. The giant process
extending in the lower part, for example, exceeds 450 µm in length
and forms adherens junctions (AJs) of the puncta adhaerentia minima
type (PAM) with at least five other cells. The microfilament-rich cell
process is immunostained for the actin-binding protein, ezrin (Ezrin,
red), and the numerous AJs have reacted with antibodies specific for
β-catenin (β-cat, green). b Electron micrograph of the overlapping
contact region of two cytoplasmic MSC processes that partly overlap
in the contact region (bracket). c Higher magnification of the contact
region demarcated in b showing a series of extremely small PAM
(arrows; e.g., the diameter of the junction denoted by the arrow right
is below 40 nm). d Immunoelectron microscopy of a similar region as
that shown in c showing an overlap contact of processes of two cells
(a, b); the processes are studded with PAM decorated with silver-
enhanced immunogold-label for β-catenin (arrowheads). For details,
see Wuchter et al. (2007). e–g Clusters of AJs at the tips of cell
processes of cardiac valvular interstitial cells as visualized by
immunostaining with antibodies to N-cadherin (N-cad; for details,
see Barth et al. 2009). N-cadherin-positive (red) AJs connecting
valvular interstitial cells (green, vimentin) are present as terminal
punctate clusters at the tips of filopodium-like processes (e.g., the
segment shown bottom in e exceeds 100 µm in length). Note the
clusters of small AJs connecting the central bodies of three valvular
interstitial cells (f) and the relatively large region densely studded with
AJs connecting the terminal portions of two cell processes (g). For
details, see Barth et al. 2009. Bars 100 µm (a), 2 µm (b), 0.5 µm (c),
0.2 µm (d), 25 µm (e, f), 20 µm (g)
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as the cytonemata (“cytonemes”) described in Drosophila
and other invertebrate cells (Ramirez-Weber and Kornberg
1999 and further references therein) and from the “tunnelling
nanotubes” of various vertebrate cell systems (Rustom et al.
2004; Gurke et al. 2008a, 2008b; Sowinski et al. 2008;
Gerdes 2009; Gousset et al. 2009). Apparently, the presence
of AJs, normal size-range or PAM, provides a good criterion
for distinguishing the aforementioned cell-cell junction-
based contact systems from cytonemes and nanotubes and
possibly from other cell-connecting filopodial structures.

2. Manubria adhaerentia (taproot adherens junction)

In cultures of mesenchymally derived cells, we have also
frequently noted a category of cell-cell junctions that has a
highly conspicuous morphology and that often represents
vast cell-cell contact areas (Wuchter et al. 2007). These
cells are characterized by processes that do not make
distinct small AJ contacts with the main cell bodies or with
processes of other cells but deeply and tight-fittingly insert
into special recesses of adjacent cells. Such taproot-like AJs
(manubria adhaerentia) often occur in batteries of closely
spaced structures of widely variable lengths (the more
frequently observed manubrium-type of short-to-medium
lengths is seen in Fig. 2a), occasionally with intracellular
channel lengths of up to 50 µm (e.g., Fig. 2b). In such long
filopodia-filled invaginations, both membranes (that of the
filopodial process and that of the invagination recess) are in
close contact and are coated on the cytoplasmic and on the
filopodial side by an apparently continuous plaque. In some
regions, this electron microscopically dense coat in some
regions shows clustered, regularly spaced, extremely short
spike-like projections into the cytoplasm (see, e.g., Fig. 2c).
Thus, even at the electron-microscopic level, these taproot
junctions often can be traced as essentially uninterrupted
cylindrical AJ-like structures with cell-cell contact surfaces
of up to ca. 100 µm2, corresponding to 103 μm2 and more
per total cell, i.e., a gigantic cell-cell contact area.

That these manubrial cell-cell adhesion systems are
indeed true AJ structures is evident from their positive
immunostaining reaction for both N-cadherin and cadherin-
11, together with a plaque structure positive for α- and β-
catenin and proteins p120, p0071, and ARVCF, whereas
only weak and variable reactions for plakoglobin have been
seen, and MAGUK proteins of the ZO-1—3 group have not
yet been identified with any significance (Table 1; see also
Wuchter et al. 2007). By contrast, afadin and vinculin have
generally been immunoreaction-positive. Moreover, the
manubria-filling filopodia typically are intensely reactive
for actin and with antibodies to ezrin, moesin, myosin, and
α-actinin (for the general α-actinin-richness of the micro-
filament bundles, including the filopodia, of such cultured
MSCs, see also Fig. 7 of Wuchter et al. 2007).

We have found it impressive to follow the fate of these
taproot junction structures as the cell-packing density
increases with cell culture time. Such studies have
demonstrated that the lengths of the cell processes and,
correspondingly, of the invaginations dynamically decrease
in a spectacular way so that, in cultures of extremely high
density, only short residual manubria structures are seen
(see, e.g., Fig. 11 of Wuchter et al. 2007). The changes of
the molecular packing in these AJ-related manubria
junctions during this foreshortening phase will have to be
studied in future experiments by using fluorescent-marker-
coupled molecules in living cells.

For the sake of clarity, we wish finally to emphasize in
this connection that the manubria adhaerentia structures
only superficially resemble other kinds of "invaginations of
cell processes" such as the filopodia-like “zippers” of
Vasioukhin et al. (2000), the E-cadherin-based Listeria
engulfment structures (Hamon et al. 2006), and the E-
cadherin-AJ-based cell-in-cell "entosis" structures described
by Brugge and collaborators (e.g., Overholtzer et al. 2007).
However, that such filopodia-like processes may also occur
in the body, at least at certain stages of development, is
suggested by the observations of mesenchymal cells during
and after mesoderm formation in mammalian embryos (see,
e.g., Franke et al. 1983; Hashimoto and Nakatsuji 1989;
Tam et al. 1993). Following such processes in their three-
dimensional complexity in situ will clearly be difficult.

3. Coniunctiones adhaerentes (plakophilin-2-containing
adherens junctions)

Recently, we have found that a certain subset of AJs of
mesenchymally derived cells grown in culture or as tumors
in situ is markedly modified by the selective acquisition of
plakophilin-2, i.e., an arm-group protein hitherto only
known as a constituent of desmosomes of proliferatively
active epithelial or epithelium-derived cells (Barth et al.
2009; Rickelt et al. 2009). As in epithelia, this additional
plaque protein in AJs seems to appear in a symmetrical
fashion, i.e., in both plaques of the two cells connected by
the specific AJ. Although AJs with the additional
plakophilin-2 so far have been frequently seen in tumor-
derived cell lines, this plakophilin-2-modified type of AJ is
clearly not restricted to cultures of malignantly transformed
cells (for non-transformed cells, see also Rickelt et al. 2009),
as is shown with special clarity by the advent of this arm-
protein in the AJs of cells growing in primary cultures of
cardiac valvular interstitial cells (Fig. 3; Barth et al. 2009).

In this context, however, we consider it worth empha-
sizing that plakophilin-2 in general is a widespread near-
ubiquitous component of all kinds of cells, i.e., of cells
lacking any desmosomes. This protein appears to occur,
albeit in low concentrations, as a component of certain
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Fig. 2 Double-label immunofluorescence microscopy (a, b) and
conventional ultrathin section transmission electron microscopy (c)
showing connections of mesenchymal human-bone-marrow-derived
stem cells (MSCs), including filopodia-like cytoplasmic processes of
widely variable lengths that either form direct intercellular bridges. a
Note that the cell shown here is connected to five other cells or deeply
and tight-fittingly inserts into plasma membrane invaginations of an
adjacent cell (manubrium adhaerens). b A series of such manubrial-
type junctions of widely variable lengths, including examples up to
50 μm long (e.g., top). Most of these taproot junction formations are
almost continuously positive for N-cadherin (N-cad, red in a, b) and
α-catenin (α-cat, green in b), resulting in the yellow merge color. The

same structures are also positive for β-catenin (β-cat, green in a),
protein p120 (not shown here), and cadherin-11 (see also Wuchter et
al. 2007). c Electron micrograph of a section through such a deep
invagination tightly filled with a cell process from a neighboring cell
forming a continuous plaque-like dense cytoplasmic coat over the
entire length. d Representation showing a cell-cell junction of the
manubrium adhaerens type and the resulting interlocking structure.
Note that this form of structure essentially represents an extended AJ
structure in a special form (inset cross-sectional image). Note also the
continuous plaque system in the whole region. For further details, see
Wuchter et al. (2007). Bars 50 µm (a), 20 µm (b), 0.2 µm (c)
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nuclear complexes, including regulatory complexes (Mertens
et al. 1996, 2001). Consequently, the advent of plakophilin-2
as an additional AJ-plaque protein in mesenchymally
derived cells does not reflect de novo synthesis but appears
to be merely the result of an upregulation of the synthesis
and stabilization of the protein product, perhaps only of
certain posttranslational modifications. Obviously, the func-
tional meaning of this dramatic increase of plakophilin-2
and its “anomalous” integration into AJs will have to be
elucidated in the future, and we should also keep in mind
that, in some of the cells with plakophilin-2-positive
plaques, plakophilin-3 can also be detected as a junction
plaque protein (Table 1; see also Rickelt et al. 2009).

4. Areae compositae (composite junctions)

In non-mammalian vertebrates and during fetal stages of
mammalian development, the cardiomyocytes of the heart are

connected, for the most part, in regions rich in typical AJ
structures accompanied by a low proportion of desmosomes
or at least desmosome-like-looking structures, representing
about 10% or less of the cardiomyocyte contact surface area
(e.g., McNutt 1970; Forbes and Sperelakis 1985). However,
mammalian heart development continues postnatally with
the desmosomal and the AJ structures clustering polarly into
“intercalated disks” (IDs), and their two molecular ensembles
mix and amalgamate (Fig. 4; Franke et al. 2006; Hirschy et
al. 2006; Pieperhoff and Franke 2007).

Consequently, in the IDs of the mature mammalian heart,
these junctional proteins and glycoproteins exist in almost a
completely hybrid structure that has therefore been termed a
“composite junction” (area composita, Table 1, Fig. 5). In
these junctions, desmosomal molecules are no longer
restricted to distinct structures but are major elements
occurring in the entire plaque-coated region at which

Fig. 3 Demonstration of the acquisition of plakophilin-2 (Pkp2) by
some of the AJ-related cell-cell junctions between human mesenchy-
mal cells in culture. a Double-label immunofluorescence microscopy
of cultured human bone-marrow-derived mesenchymal cells (same
culture as shown in Fig. 1a-d) immunostained for plakophilin-2 (red),
in combination with the AJ protein, β-catenin (β-cat, green). Co-
localization of the two plaque proteins appears in yellow in limited
regions of some of the cell-cell contacts. b Plakophilin-2 also shows
co-localization with the AJ-typical proteins, here with N-cadherin (N-
cad, green), in cells of cultures of cardiac valvular interstitial cells of
human origin. Bars 20 µm (a), 100 µm (b)

Fig. 4 Double-label immunofluorescence microscopy of cryostat sections
through myocardium of an adult human heart, as seen after reactions with
antibodies to desmoplakin (DP, green), in combination with antibodies to
(red in each case) desmoglein 2 (Dsg2, a), N-cadherin (N-cad, b), or the
plaque protein ARVCF (c). Only the merged color (yellow) is seen
presenting near-complete colocalization in the composite junctions (areae
compositae) of the intercalated disks and thus representing the amalgam-
ated form containing both desmosomal and AJ proteins. Bars 20 μm

8 Cell Tissue Res (2009) 338:1–17



bundles of contractile myofilaments and of the desmin-rich
intermediate filaments anchor (Kartenbeck et al. 1983;
Borrmann et al. 2006; Franke et al. 2006; for protein p0071,
see Hofmann et al. 2009). This special merger of two major
junction ensembles and the resulting hybrid character is
also seen in the specific interaction of the desmosomal
protein, plakophilin-2, with the myocardium-typical AJ
plaque protein, α-T-catenin (Goossens et al. 2007). The
importance of plakophilin-2 for ID assembly and function
has also been demonstrated in mouse embryogenesis by
using gene knock-out experiments (Grossmann et al. 2004)
and in cardiomyocyte cultures by means of experiments
involving short interfering mRNA (Oxford et al. 2007;
Fidler et al. 2008; Pieperhoff et al. 2008).

The recognition of a special composite junction in the
IDs of mature mammalian hearts has been valuable in
finding a compelling explanation for the recently increasing

number of reports that mutations, even small ones, in
desmosomal proteins are highly correlated with (and
apparently causal for) the so-called arrhythmogenic cardio-
myopathies (ARVC), including major causes of “sudden
death”, in young human beings, notably athletes (Table 2).
As about two thirds of the ARVC cases genetically
analyzed have been associated with specific mutations in
genes encoding desmosomal proteins occurring in the
composite junction ensemble (for specific reviews, see also
Perriard et al. 2003; Herren et al. 2009), we are tempted to
speculate that other mutations in ID proteins are responsible
for the other third of ARVC cases still to be elucidated.

5. Cortex adhaerens (adherens cortex)

An extreme situation of a systemic and near-complete
AJ-type integration of almost the entire cell-cell border is

Fig. 5 Immunoelectron micrographs of sections through intercalated
disks (IDs) of adult human heart. a Survey image showing the
localization of a desmosomal protein, desmoplakin, by an
immunogold-silver enhancement reaction in the entire ID plaque of

the area composita. b Details of the intense plaque reaction in both
small and large ID subdivisions. c An extended, continuous,
completely plaque-covered, desmoplakin-rich junction (for details,
see Franke et al. 2006). Bars 2 μm (a), 0.5 µm (b, c)
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provided by the lens fibers, i.e. the internal tissue of the
vertebrate eye, in which all the anucleate cell bodies are
densely packed, leaving little “free” intercellular space and
thus also contributing to the optical homogeneity of the
lens. Here, the cytoplasmic sides of the large plasma
membrane contacts are coated by a giant cortical plaque-
bearing structure, which, however, shows marked regional
differences. In some regions, in particular at the short polar
sides, this cortical complex represents a junction-equivalent
that contains not only N-cadherin and cadherin-11, but also
classic plaque-components such as α- and β-catenin,
plakoglobin, and protein p120, although it seems to lack
proteins p0071 and ARVCF, afadin, and all desmosomal
components. In addition, various other proteins generally
occurring on cell contact structures of the lens interior, such
as ezrin, periplakin, and periaxin, are also seen in this part
of the cortex (Fig. 6). In some regions, a large proportion of
the “long side” is also positive for AJ markers, including N-
cadherin, with local exceptions of some gap junctions (see,
e.g., Fig. 6a), whereas in other parts of the lens, only the

“short sides” are markedly immunostained for such AJ
molecules (e.g., Fig. 6a, c; for details and references, see
Straub et al. 2003). By contrast, some other markers, in
particular actin and actin-binding proteins such as ezrin, are
present along the entire plasma membrane (e.g., Fig. 6c).

6. Iuncturae structae (sandwich junctions)

A true and trivial assertion is that TJs are recognized by
localizations of TJ molecules. The reverse general conclu-
sion, viz., that the localization of known TJ molecules
identifies a TJ, cannot be upheld as a general dogma (cf.
Table 1; Cereijido and Anderson 2001). Findings of TJ
protein reactions in various epithelial tissues, such as the
stratum spinosum of stratified squamous epithelia and
histologically related tissues of thymic Hassall bodies and
in squamous cell carcinomas, have been published but,
until today, cannot be reconciled with a zonula occludens or
with related “occluding” structures, which to date in normal
stratified epithelia have only been demonstrated in the

Table 2 Recent references reporting that certain mutations in human genes encoding desmosomal proteins and glycoproteins result in
arrhythmogenic ventricular cardiomyopathies (ARVC) and references to related topics and reviews

Molecule References Molecule Reference Related topics/reviews Reference

Plakophilin-2 Gerull et al. 2004 Desmoplakin Norgett et al. 2000 First animal model
(boxer dogs)

Oxford et al. 2007
Antoniades et al. 2006 Rampazzo et al. 2002

Calkins 2006 Alcalai et al. 2003

Dalal et al. 2006 Norman et al. 2005

Kannankeril et al. 2006 Sen-Chowdhry
et al. 2005

Nagaoka et al. 2006 Sen-Chowdhry
et al. 2007

Syrris et al. 2006a Tsatsopoulou
et al. 2006

Tsatsopoulou
et al. 2006

Yang et al. 2006

Van Tintelen et al. 2006

Lahtinen et al. 2007 Desmoglein-2 Awad et al. 2006 Recent reviews Bazzi and Christiano
2007. For an anthology
of review articles, see
Marcus et al. 2007;
Awad et al. 2008;
Herren et al. 2009;
Corrado et al. 2009

Otterspoor et al. 2007 Pilichou et al. 2006

Fidler et al. 2008 Tsatsopoulou
et al. 2006Joshi-Mukherjee

et al. 2008

Ram and Van
Wagoner 2008

Syrris et al. 2007

Tandri et al. 2008

Wu et al. 2009 Yu et al. 2008
Qiu et al. 2009
(5 cases)

Plakoglobin Garcia-Gras et al. 2006 Desmocollin-2 Heuser et al. 2006 Presentation of a
specific plakoglobin
test for diagnosis
of human
ARVC

Asimaki et al. 2009
Asimaki et al. 2007 Syrris et al. 2006b

Beffagna et al. 2007
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uppermost living cell layer, the stratum granulosum (e.g.,
Morita et al. 1998; Brandner et al. 2002; Furuse et al. 2002;
Langbein et al. 2002, 2003; Schlüter et al. 2004, 2007). In
contrast, several authors have shown that such TJ proteins
can also occur in strata spinosa, but that their immuno-
reactions often do not colocalize. For example, some TJ
markers such as claudin-1 occur practically throughout the
spinous layer of the epidermis and other stratified epithelia
and in tissues lacking any lumen such as thymic Hassall
corpuscules and certain cell aggregates in squamous cell
carcinomas, notably the so-called “horn-pearls” (Langbein
et al. 2002, 2003). Indeed, corresponding immunoelectron
microscopy has revealed that, in many of the interdesmosomal
regions of these cell layers and tumors, an intense claudin-1
reaction is seen rather generally (Fig. 7; Langbein et al. 2002,
2003). In the uppermost strata, some of these sites are also
positive for occludin but not for other TJ markers.

Whereas the stratum spinosum structures positive for
specific TJ markers are often small and inconspicuous, a
special heavymetal staining reaction is recognized in some of
them, resulting in the appearance of an electron-dense layer
between the two plasmamembrane domains (Fig. 7; see also,
e.g., Figs. 9–11 of Langbein et al. 2002). Depending on the
thickness and the extent of this electron-dense middle layer
in cell-cell contacts, such structures have been classified as
“lamellated junctions” (coniunctiones laminosae) or as
iunctura structa (sandwich junctions).

Finally, extremely small, i.e. punctate, TJ-resembling
structures have been seen in freeze-fractures preparations
and have been tentatively termed puncta occludentia (stud
junctions; cf. Schlüter et al. 2007).

As the existence of such TJ-related structures in stratum
spinosum structures and probably related layers in other
stratified epithelia and in pathologically altered tissues
derived therefrom now seems established, it is high time
to characterize these TJ-protein-positive structures that are
not TJs in both structural and molecular terms.

7. Complex junctions

As early as 1990, certain kinds of lymphatic
endothelial cells, in particular those of the lymph node

Fig. 6 Double-label immunofluorescence microscopy of cryostat
sections through bovine lens tissue presenting details of the cortex
adhaerens. A comparison of the reaction for N-cadherin (N-cad, red)
with that for the prominently gap-junction-associated protein ZO-1 (a,
green), the actin-filament-associated protein ezrin (b, green), and the
AJ plaque protein α-catenin (c, α-cat, green). Only the merged images
are shown. Note that here the ZO-1 reaction appears to be restricted to
a limited region in the longer lateral wall, whereas N-cadherin and α-
catenin are highly enriched at junction-like structures in the short wall
elements. Ezrin is seen in the entire cell cortex. For further details, see
Straub et al. (2003). Bars 10 μm

R
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sinus, were noted to be characterized by special, highly
unusual kinds of cell-cell junction, collectively referred
to as complexus adhaerentes. These junctions varied
remarkably in their size and junctional architecture,
including some excessively large structures. They

contained VE-cadherin, often in co- or almost co-
localization with N-cadherin, and were not only positive
for other typical endothelial junction markers such as α-
and β-catenin, plakoglobin, p120 protein and afadin, but
were also strongly positive for desmoplakin and for some

Fig. 7 Immunoelectron micros-
copy of ultrathin sections
through the stratified squamous
epithelium of bovine tongue
mucosa (a-d) or a Hassall cor-
puscle of bovine thymus (e), as
seen after reaction with anti-
bodies to occludin. Immunogold
label is not only seen in the
uppermost living cell layer, the
stratum granulosum-equivalent
(for details see, e.g., Brandner et
al. 2002; Langbein et al. 2002,
2003; Schlüter et al. 2004), but
also in inconspicuous interdes-
mosomal regions (arrows in a,
b, d, e) and in special junctions
(iuncturae structae) with an
electron-dense middle layer
(arrowheads in c, d). Tight
junction (TJ) proteins are not
restricted to typical TJs but at
least some of them also occur in
additional, yet insufficiently
characterized junctions (D des-
mosomes). Bars 0.2 μm (a, b),
0.1 μm (c-e)
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typical TJ proteins including, in certain positions, claudin-
5 and JAM-A (Fig. 8, Table 1; cf. Schmelz and Franke
1990, 1993; Schmelz et al. 1994; Hämmerling et al. 2006;
Moll et al. 2009). The unusual locations of, e.g.,
desmoplakin in these lymphatic endothelial junctions
was then confirmed and extended in several ways for
other lymph node structures and for other parts of the
lymphatic vascular system (e.g., Valiron et al. 1996; Ebata
et al. 2001; Baluk et al. 2007; Pfeiffer et al. 2008). The
“strange” morphology of the complex virgultar meshwork
of the intrasinusoidal endothelial cell types and the close
association of cytoplasmic “wraps” with collagen fiber
bundles has been presented in detail elsewhere (Moll et al.
2009). However, the functional relevance of the different
cell-cell junction ensembles in different parts of the
lymphatic system (subtypes of lymphatic endothelia are
also positive for protein p0071; Hofmann et al. 2008)
remains to be elucidated. The obvious importance of
desmoplakin in angiogenesis during embryogenesis
and in experimental systems (Kowalczyk et al. 1998;
Gallicano et al. 2001; Zhou et al. 2004) also indicates that
regional and developmental differences exist with regard
to the influence of such complexus adhaerens-typical
molecules.

Concluding remarks

The list of “special” junctions summarized in this review is
certainly not complete. In particular, we have left out all
those AJ-like junctions that couple two apparently highly

different cell types, i.e., “heterophilic” or “asymmetric”
junctions, simply because the two half-junctions might
contain different molecular components from those in
“symmetric” junctions. We have also omitted the AJs
originally introduced as “contact junctions” (contactus
adhaerentes), i.e., highly specialized AJs that have been
identified to connect the granular cells of the cerebellar
glomeruli. These AJ-type plaque-bearing structures contain
N-cadherin and M-cadherin (Rose et al. 1995). Interesting-
ly, however, M-cadherin in these structures obviously
does not seem to be essential for life, as abrogation of
the gene encoding M-cadherin does not result in major
defects but apparently is compensated by an upregula-
tion of N-cadherin (Hollnagel et al. 2002). Thus,
irrespective of the molecular organization in the M-
cadherin-containing junctions, the special contribution of
this glycoprotein to the function of the junction will have
to be defined in comparison with N-cadherin.

Therefore, although this review has in general to be
considered incomplete, it serves primarily as a mind-opener
indicating that further kinds of junctions may well lie just
around the corner.
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Fig. 8 Double-label immunofluorescence laser-scanning microscopy
images of cryostat cross sections through human lymph nodes,
showing the specific, mutually exclusive localization of VE-cadherin
in the endothelium of small blood vessels (V) and the desmoplakin
and α-catenin immunoreactions in the complexus adhaerentes of the
endothelial and virgultar cells (SEVCs) of the sinus (S). a Colocaliza-

tion of desmoplakin and VE-cadherin in the complexus adhaerentes of
SEVCs cells in the sinus (S) can be seen with special clarity in the
yellow merged image (VE-cadherin, red versus Desmoplakin, green).
b Corresponding merged image showing co-localization (yellow) of
desmoplakin (red) and α-catenin (green) at distinct small junctional
structures (for details, see the review of Moll et al. 2009). Bars 50 μm
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Abstract 

Using novel antibodies of high avidity to – and specificity for – the constitutive 

desmosomal plaque protein, plakophilin-2 (Pkp2), in a systematic study of the 

molecular composition of junctions connecting the cells of soft tissue tumors we have 

discovered with immunocytochemical, biochemical and electron microscopical 

methods in all 32 cardiac myxomata examined, a novel type of adherens junctions 

(AJ). These AJs contain cadherin-11 as their major transmembrane glycoprotein, 

which we could repeatedly show in colocalization with N-cadherin, anchored in a 

cytoplasmic plaque formed by α- and β-catenin, together with the further armadillo 

(arm)-type proteins plakoglobin, p120, p0071 and ARVCF. Surprisingly, all AJs of 

these tumors contained in addition another major arm-protein, plakophilin Pkp2, 

hitherto known as a constituent of desmosomes in epithelium-derived tumors. We 

have not detected Pkp2 in a series of non-cardiac myxomata studied in parallel. 

Therefore we conclude that this acquisition of Pkp2, which we recently have also 

observed in some mesenchymally-derived cells growing in culture, can also occur in 

tumorigenic transformations in situ. We propose to examine the marker value of Pkp2 

in clinical diagnoses of cardiac myxomata and to develop Pkp2-targeted therapeutic 

reagents. 

 

Key words: myxoma; adherens junctions; plakophilin-2; puncta adhaerentia; 

differential histodiagnosis 
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Introduction 

The identification of the specific types of transformed cells and of the kind and level 

of their differentiation is an essential part of tumor diagnosis, not only with respect to 

the histogenic origin but also as a basis for prognoses and therapeutic decisions. 

Therefore molecular markers for cell typing and differentiation have become almost 

obligatory criteria in pathological diagnoses, in particular of epithelium-derived 

tumors, for which reliable immunohistochemical marker antibodies are used 

worldwide (e.g., 1-4; for a review see 5). However, in the field of mesenchymally-

derived tumors, the armamentarium of diagnostic markers is still relatively poor and 

problems of correct identification of certain soft tissue tumors are obvious.6, 7 

Therefore, we have recently begun systematically to determine the molecular 

composition of potential marker molecules of mesenchymal cell types and the diverse 

non-epithelial tumors derived therefrom (see, e.g., 6-9).  

Surprisingly, already in our initial series of experiments we have recognized 

unexpected changes in the molecular ensembles of cell-cell junctions of the 

adherens-category. An especially eye-catching finding has been the phenomenon 

that a series of mesenchymally-derived cells growing in culture, including human 

tumor cell lines, contain adherens junctions (AJs) of a drastically altered composition. 

They are based on clusters of N-cadherin or cadherin-11 anchored in a 

subplasmalemmal plaque which contains α- and β-catenin plus several further 

proteins of the armadillo (arm)-family such as plakoglobin and proteins p120, p0071 

and ARVCF but in addition also contain another major arm-type protein, plakophilin-2 

(Pkp2).10, 11 This rapid acquisition of Pkp2 is perplexing as plakophilins hitherto have 

only been known as obligatory molecules specific for desmosomes of epithelial and 

myocardiac cells as well as of epithelium-derived tumors, including all carcinomas. 

We then have also noted in sections through some tumors of mesenchymal 

origin occasional groups of cells which in immunohistochemistry show AJs positive 

for Pkp2, indicating that this change of molecular composition of the AJs may also 

take place during tumor formation in situ. Consequently, we have examined the 

molecular composition of AJs connecting the cells of various soft tissue tumors. Here 

we present as a first result our finding that all AJs connecting cardiac myxoma cells 

show exactly such a general acquisition of Pkp2. 
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Materials and Methods 

Antibodies 

To generate highly sensitive antibodies specific for plakophilin-2 (Pkp2), that could 

also be used on aldehyde-fixed and paraffin-embedded tissues, we have used 

peptides derived from promising, epitope-containing regions of the human Pkp2 

amino acid (aa) sequence (aa positions 820-837, representing the carboxy-terminal 

aa sequence KTDFVNSRTAKAYHSLKD, and aa positions 611-625; i.e. 

VKEQYQDVPMPEEKS, representing a segment at the border between arm-repeats 

5 and 6), conjugated them to keyhole limpet hemocyanin for the immunization of 

guinea pigs (for details of the molecule and of immunization protocols see reference 
12). The polyclonal antibodies selected, termed PP2-hCT (for the carboxyl terminal 

sequence) and PP2-hM (for the arm-repeat 5/6 border domain), were of excellent 

stability and accessibility in biochemical and immunological experiments. 

Murine monoclonal antibodies (mAbs) to Pkp2 were generated by 

immunization of BalbC mice, using peptides derived from human Pkp2 aa position 

527-872 (for method see 13). The supernatants of the resulting monoclonal 

hybridoma cell cultures were screened by immunofluorescence microscopy using 

methanol/acetone-fixed epithelial cell cultures (for protocol see Supplementary 

Information) and tested by immunoblotting of total cellular proteins separated by 

SDS-PAGE. In addition, we specifically screened for immunostaining reactivity on 

formaldehyde-fixed cultured cells and tissue blocks (see below). From a total of ca. 

2000 different hybridomas, 3 mAbs (Pkp2-402, Pkp2-407 and Pkp2-518) were 

prepared in sufficient amounts and characterized in detail. All antibodies routinely 

used are listed in the Supplementary Table 1 (see also 11, 14).  

 

Tissues 

Thirty-two frozen and formaldehyde-fixed and paraffin-embedded samples of human 

tissues, including a large series of different myxoma types (see Supplementary 

Information) have been examined. Special diagnostic care was taken that no 

malignant heart tumors were included in the study.15 Samples of heart tissues 

obtained from various mammalian, avian, amphibian and fish species (cf. 10, 16) were 

examined in parallel. 
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Gel electrophoresis and immunoreactions of proteins 

For preparations of control cell lysates, monolayer cell cultures were briefly rinsed 

twice with phosphate-buffered saline (PBS), suspended in sample buffer [250 mM 

Tris-HCl, 10 % SDS, 20 % glycerol, 100 mM dithiotreitol (DTT); pH 6.8] containing 

benzonase (1:1000; Merck, Darmstadt, Germany), and scraped off the dishes using a 

rubber policeman. Small pieces of frozen myxoma and control tissues were also 

homogenized in sample buffer containing benzonase. After vigorous vortex-

homogenization, lysates were heated for 5 min at 95°C, briefly centrifuged and 

subjected to SDS-PAGE, followed by blot transfer to PVDF membranes (Millipore, 

Bedford, MA, USA), and reacted with horseradish peroxidase-conjugated secondary 

antibodies, applied in combination with a chemiluminescence system (ECL, 

Amersham-Buchler, Braunschweig, Germany). 11 

 

 

Results 

Generation of highly sensitive plakophilin-2 antibodies 

To detect plakophilin-2 (Pkp2) deep in AJ plaques, notably epitopes masked by 

obscuring complexes (for nuclei see 12), we have generated improved antibodies for 

immunohistochemistry. Figures 1 A-C present two such reagents, a mono- and a 

polyclonal one, showing intense and specific immunoblot reactions as well as 

immunostaining of the Pkp2 located in the composite junctions of the intercalated 

disks of human heart (cf. 17). For comparison, Figures 1 D-E show the very intense 

and desmosome-specific Pkp2-immunostaining a section through formaldehyde-fixed 

and paraffin-embedded tissue sample of human colon (Figure 1D) and on a 

monolayer of human breast carcinoma cells (line MCF-7) grown in culture (Figure 1E 

and E´). The latter illustration also demonstrates that the vast majority of the Pkp2-

positive sites colocalize with desmoplakin, the hallmark component of desmosomal 

plaques. Similarly brilliant results were obtained with numerous other tissues and cell 

cultures of human or other mammalian origins. 

We have recently reported that Pkp2 is not only a permanent constituent of 

true desmosomes of epithelial, myocardiac or meningeal tissues and tumors derived 

therefrom and the composite junctions of cardiomyocytes (e.g., 12, 17, 18) but can also 
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be found in diverse mesenchymally-derived cell cultures.11 Therefore, we have 

decided to examine the possible presence of Pkp2 in AJs of mesenchymal tumors. 

 

The adherens junctions connecting cardiac myxoma cells 

Cardiac myxomata are considered as benign tumors generally characterized by 

“stellate” cells with variously-long cell processes embedded in a jelly-like mucoid 

extracellular matrix.19 They present a predominantly mesenchymal marker protein 

profile with abundant bundles of intermediate-sized filaments (IFs) of the vimentin 

type. Only in a minor proportion of cells in some of these tumors, we have noted 

small groups of cells that are also positive for the IF protein desmin, whereas IFs 

containing any keratins, glia filament or neurofilament proteins have not been seen. 

Non-muscle type actin microfilaments are prevalent, but in a minor proportion of 

myxoma cells we have also detected α-smooth muscle-type actin filaments but no 

sarcomeric α-actins. All our general immunocytochemical observations in the 32 

myxomata studied are grosso modo in agreement with most previous reports 

indicating a derivation from cardiac mesenchymal cells (20-29; for occasional claims of 

special cardiac myxoma tumor cells showing keratin-reactions, mostly in glandular 

elements, see, e.g., 24, 29, 30) 

Most of the myxoma cells formed numerous cell processes and were 

interconnected into a loose irregular meshwork by punctum adhaerens-type AJs. 

Consequently, myxoma cells can occur in relatively close apposition, as shown in 

Figure 2, or distant from each other, connected only by rather thin, variously-long, 

tentacle-like filopodial cytoplasmic processes.24, 25 As the very short processes of 

perinuclear cytoplasm are adequately resolved only by electron microscopy we show 

(Figure 2) an example of such an interaction via short processes and their AJs, 

characterized by a thin (ca. 15 nm) dense plaque (e.g., insert in Figure 2B), i.e. 

myxoma structures that have repeatedly been described in the literature as 

“desmosome-like” (e.g., 8, 28, 31-34). 

 

Biochemical analyses of adhering junction proteins 

Our systematic analyses of cryo-dissected tissue samples of various snap-frozen 

myxomata by SDS-PAGE and immunoblotting revealed consistent but surprising 

results (Figure 3). The predominant transmembrane AJ glycoprotein identified was 
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cadherin-11. Only in limited regions of some of the tumors this glycoprotein was 

accompanied by N-cadherin. VE-cadherin, on the other hand, was clearly seen in the 

zonulae adhaerentes of the endothelial structures of adjacent vascular elements but 

was totally absent from the myxoma cells proper (see also below). On the other 

hand, we found all major AJ-plaque proteins such as α- and β-catenin, plakoglobin, 

protein p120 (Figure 3) as well as proteins p0071 and ARVCF (not shown).  

Unexpectedly, however, we identified in all cardiac myxomata examined the 

plaque protein Pkp2 (Figure 3 presents examples from six different tumors analyzed 

in parallel in the same SDS-PAGE), often together with varying proportions of an 

immunoblot-positive polypeptide of ca. 70 kDa, obviously a distinct proteolytic 

breakdown-product. In a few tumor samples we have also noted the additional 

presence of minor amounts of Pkp3 (not shown) but we have never detected Pkp1. 

Tests for the most predominant protein in desmosomal plaques, desmoplakin, were 

negative in all  myxoma cells of all cases (not shown). 

 

Immunolocalization Studies 

The mostly rather small AJs which connect the myxoma cells in their nucleus-

containing cell bodies as well as in their slender processes, are recognized by the 

colocalization of Pkp2 with typical AJ markers such as α- and β-catenin, plakoglobin 

and proteins p120, p0071 or ARVCF, as demonstrated by their yellow to orange 

merge color (see, e.g., Figure 4, A and B). This is in distinct contrast to the absence 

of Pkp2 from the AJs connecting the vascular endothelial cells (note the green 

immunostaining for β-catenin in Figure 4A). In the myxoma cell processes the AJs 

often are clustered, resulting in continuously yellow immunostaining (Figure 4B) or in 

closely-spaced Pkp2-reactive punctate or “beaded” arrays (Figure 4, B-E). 

 Colocalization of Pkp2 was also obtained with both cadherins mentioned. 

Cadherin-11 generally colocalized with Pkp2 in serial arrays of yellow dots or beaded 

chains of AJ structures (e.g., Figure 5, B and C), in the same way as it reacted with 

β-catenin and other plaque proteins (Supplementary Figure 1, A-E). Similar 

observations were made with N-cadherin which appeared only in AJs of certain 

limited regions in some of the tumors (e.g., Figure 5A). Again all these AJ reactions 

fully contrasted to those of the endothelium of the adjacent vessels (see the red β-

catenin reaction in both Figures 5, A and B). In control experiments, VE-cadherin 
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reacted only with the endothelial AJs which otherwise contained all the plaque 

proteins mentioned above, with the exception of Pkp2 (not shown). As a positive 

colocalization control for junctional plaque immunostaining in the zonulae 

adhaerentes of vascular endothelium an example is shown in the Supplementary 

Figure 1F.  

 

 

Discussion 

The molecular analysis of the cell-cell junctions in cardiac myxomata has led to the 

unexpected identification of a novel adherens junction (AJ) type, the plakophilin-2 

(Pkp2)-containing AJ, hitherto only known as coniunctio adhaerens of certain cell 

cultures  (e.g., 10, 11; for review see 35). Obviously this AJ type represents a cell-cell 

connecting structure of its own kind which is characteristic for certain tumors as 

shown here for cardiac myxomata. So far AJs of this type have only sporadically 

been noted in some isolated cells or cell groups in a rhabdomyosarcoma.11 

The mostly rather small, roundish–to–oval AJs identified as the major myxoma 

cell-cell contacts represent typical mesenchymal structures albeit with a special 

molecular composition. In these AJs we have detected cadherin-11 as the only 

ubiquitous transmembrane glycoprotein, while additional N-cadherin was seen only in 

restricted regions of a few tumors, which we also take as an indication of the 

existence of two myxoma subtypes, one with cadherin-11 only and the other 

containing both cadherin-11 and N-cadherin (for related observations see, e.g., 35-41). 

At present, however, we cannot rigorously exclude the alternative explanation that all 

myxoma AJs may also contain some N-cadherin which tends to be rapidly degraded 

by some of the proteolytic enzymes known to occur in tissue preparations from these 

tumors (see e.g., 42). None of the other cadherins has ever been detected in cardiac 

myxoma cells. 

The molecular pattern of the AJ plaques of the cardiac myxoma cells is 

remarkably complex and specific. While most components identified, including α- and 

β-catenin, together with further arm-proteins such as plakoglobin and proteins p120, 

p0071 and ARVCF, have also been found in other non-epithelial cells (for reference 

see e.g., 11, 35-37), it has been a surprise to find that the AJ plaques of all 32 

myxomata examined contain an additional major arm-protein, Pkp2, which so far has 

been considered to be a protein exclusive to desmosomes and the composite 
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junctions of cardiomyocytes.12, 17,.35, 43, 44 As shown by Goossens et al. (2007) the 

latter, cardiomyocyte-specific plaque integration of Pkp2 is based on its binding to 

myocardial α-T-catenin 45, a protein, however, that does not seem to be present in 

cardiac myxoma cells. Obviously, the specific molecular binding-partners of Pkp2 and 

the mechanisms and functions of its acquisition to the myxoma AJs will have to be 

determined in future experiments. 

 The stable integration of Pkp2 in the AJs of cardiac myxomata is functionally 

remarkable, since this protein is known as the only member of the plakophilin 

subfamily that occurs in all proliferatively active epithelial cells and is also an 

essential architectonic and cytoskeletal filament-anchoring molecule in the 

desmosomes and composite junctions of myocardial cells. In the latter it is necessary 

for heart formation as well as for the onset and coordination of rhythmic heart beat 

(e.g., 18, 44-48), be it directly or indirectly (for further involvements of sodium channels 

or gap junctions see also recent knock-down experiments.49-52 Most impressive in the 

discussions about possible functional roles of Pkp2 are certainly the recent reports 

that cardiac Pkp2 is by far the most sensitive protein which in mutated forms can 

contribute to arrhythmogenic ventricular cardiomyopathies ARVCs (see, e.g., 46-53). 

Moreover, in Pkp2 gene knockdown experiments it has also been shown that its 

stabilizing effect on cell-cell adhesion in rat cardiomyocyte cultures is so important 

that a reduction in Pkp2 can result in a complete separation of the two junctional 

membranes.49-52 Thus, in myxoma tumors growing in a very viscous, mucoid-

gelatinous matrix the acquisition of Pkp2 to the AJs may have an important stabilizing 

effect and strengthen the cell-cell adhesions, in particular those connecting the long 

and thin cell processes. 

 Finally, our findings strongly support the hypothesis that cardiac myxoma cells 

originate from mesenchymal cells of the heart, as their similarity to the cardiac 

interstitial cells is remarkable.10 The molecular AJ marker pattern of cardiac 

myxomata is indeed very similar to that reported for, e.g., valvular interstitial cells in 

culture, including the extensive and relatively rapid acquisition of Pkp2. Both cardiac 

interstitial and myxoma cells are also known for a certain spatial or developmental 

relationship to vascular endothelial cells, and synthesis and secretion of specific 

endothelial and angiogenic molecules have recently also been ascribed to vascular 

elements in myxomata.54-56 By contrast, certain neural, neuroendocrine or glandular 

molecules seen in some elements of these tumors may be differentiation products of 
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some cells “entrapped” during development (for special discussions see, e.g., 24, 34, 40, 

57-59). A rather unexpected finding in our study has been the observation of Pkp2 in all 

AJs of all 32 cardiac myxomata whereas we have not detected this junction protein in 

any of the seven non-cardiac myxomata, including angiomyxomta and tumors grown 

in the vagina or the vulva. Differences of molecular markers and possible cell type-

specific histological heterogeneities will be subject of a future extended study 

comparing cardiac and other myxomata as well as a comparison with some of the 

rare myxoma cases showing malignant behavior, i.e. recurrence and metastasis (for 

general discussions of these problems see, e.g., 20, 25, 29, 60, 61). 

It has also not escaped our attention that the general occurrence of cadherin-

11 and Pkp2 in myxoma AJs may lead to new possible therapeutic concepts of 

molecular interference with these molecules and thus with cell-cell adhesion, and 

tumor growth. Although surgical excision is – and probably will remain – the standard 

therapy for the majority of myxoma cases there are also situations in which the value 

and availability of a pharmacological alternatives should not be underrated (see also 

e.g., 41, 56, 60, 61). Certainly, recent strategies preclinical tests with reagents interfering 

with N-cadherin-mediated cell-cell interactions 62 and the aforementioned results 

using the siRNA-approach should now also encourage projects interfering with other 

AJ molecules. 
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Figure Legends 

Figure 1. a-c: Specificity of two of the newly generated plakophilin-2 (Pkp2) 

antibodies in their immunoblot and immunofluorescence reactions on human heart 

tissue proteins. a: Lysates of total human myocardium, showing the reaction with a 

single polypeptide band of ca. 96 kDa, using monoclonal antibody (mAb) Pkp2-518 

and guinea pig antibodies of antiserum PP2-hCT. Reference protein bands (on the 

left margin) give the molecular weight in kDa values.  

b and c: Confocal laser scanning microscopy of paraffin-embedded human heart 

tissue, treated for antigen retrieval and reacted with mAb Pkp2-518 (red), shows a 

specific reaction of the composite junctions in the intercalated disks (b, fluorescence 

optics; c, fluorescence and phase contrast optics). d-e´: Confocal microscopy images 

showing the intense and specific reactions of mAb Pkp2-518 with desmosomes on a 

section through human intestinal tissue treated for antigen-retrieval (d) and on a 

monolayer of cultured human cells of the breast carcinoma line MCF-7 (e, e´).  
d: Immunofluorescence and phase contrast optics demonstrating that the 

immunofluorescent reaction is specific for the desmosomes of the epithelium. e: The 

immunoreaction of Pkp2 (red) is detected in linear punctate arrays of small closely-

spaced reaction sites, representing desmosomes, and in some sparse and irregularly 

distributed cytoplasmic dots, representing endo- or exocytotic vesicles coated with a 

Pkp2-containing plaque. e`: Interference contrast color image of the same region, 

demonstrating the colocalization of Pkp2 and desmoplakin (green) in desmosomal 

plaques (yellow merged color) and in some cytoplasmic desmosomal plaque 

structures. Scale bars: 20 µm 

 
Figure 2. a and b: Electron micrographs of cross-sections through adjacent cell 

borders in an atrial human myxoma, presenting numerous cell-cell contacts at 

protrusions or variously-long filopodia-like processes, including highly folded and 

packed filopodia (an example is shown in the insert in the lower left). a: Extended 

contact regions of central cell bodies (N1 and N2: nuclei of the two cells; arrows 

denote the ends of the contact zone), embedded in a loose extracellular matrix. b: 
Higher magnification of a contact zone with numerous filopodia-like processes 

(arrows) which appear to be involved in cell-cell contacts, in specific places forming 

plaque-coated adherens junctions (arrowheads), one of which is shown in detail in 
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the insert in the upper left. Scale bars: 1 μm (a); 0.5 µm (b and insert in a), 0.25 μm 

(insert in b) 

 

Figure 3. Immunoblot detection of adherens junction (AJ) proteins in human 

myxomata as revealed by SDS-PAGE-separated total cytoskeletal proteins and 

Western blots, in comparison with such proteins from cultured valvular human 

interstitial cells (hPK, lane 1; cf. 10) or with junctional proteins from cultured human 

liver carcinoma cells of line PLC (primary liver carcinoma; lane 1 with asterisk). The 

following tumors (numbers) are shown here: 1046-06 (lane 2), 1236-08 (lane 3) and 

1334-08 (lane 4). Proteins were probed with antibodies specific for actin and 

vimentin, cadherin-11 (cad-11) and E-cadherin (E-cad), in comparison with the 

desmosomal cadherins desmogleins 1 and 2 (Dsg1+2) as well as AJ plaque proteins 

α- and β-catenin or protein p120. Note that, besides the IF protein vimentin, all AJ 

proteins tested, including cad-11, α- and β-catenin as well as protein p120 can be 

detected in the myxomata. Plakophilin-2 (Pkp2) is detected, at different intensities, as 

a polypeptide band of ca. 96 kDa (arrow at right hand margin); whereas other 

epithelial marker proteins such as E-cad and Dsg1+2 are absent in all myxoma 

samples. To show the general occurrence of Pkp2, samples from three different 

myxomata are presented here. Total proteins of tumor samples were applied as 

follows (tumor numbers given): hPK (lane 1), 1363-07 (lane 2) and 1334-08 (lane 3), 

1236-08 (lane 4), 1046-06 (lane 5), 531-07 (lane 6) and 197-07 (lane 7). Positions of 

polypeptide molecular weights are indicated on the very left margin and correspond 

to 158, 116, 97.2, 66.4, 55.6 and 42.7 kDa (from top to bottom). Note also the 

appearance of a major proteolytic Pkp2 fragment at ca. 70kDa. 

* For the immunoblot identification of E-cadherin and Dsg2 whole cell lysates 

of human liver carcinoma cells of line PLC were loaded as positive control, instead of 

interstitial cells from cardiac valves. 

 

Figure 4. Localization of plakophilin-2 (Pkp2) in AJs of diverse cardiac myxomata. 

Sections through paraffin-embedded human myxomata were treated for antigen-

retrieval and double-immunostained with antibodies to Pkp2 (red) in combination with 

antibodies to β-catenin (a, b, green) and vimentin (c-e, green). Note the extensive 

colocalization (yellow) of Pkp2 and β-catenin in AJs of intervascular myxomata (a) as 

well as in AJs connecting extended processes of myxoma cells (b), whereas the AJs 



Rickelt et al. 

 21

connecting the vascular endothelial cells are negative for Pkp2. Note also that all 

cells positive for Pkp2 contain IFs of the vimentin-type (c-e) and that the AJs 

connecting myxoma cell processes are often clustered and thus appear in some 

situations as “beaded” chains (c-e, red). V, vessel. Scale bars: 20 µm 

 
Figure 5. Immunofluorescence microscopy of sections trough human myxomata 

treated for antigen retrieval and reacted with antibodies to the AJ plaque protein, β-

catenin (a-c, red), and the transmembrane glycoproteins N-cadherin (a, green) or 

cadherin-11 (b, c, green. Note that both cadherins are prominent at cell-cell contact 

sites of the specific myxomata (yellow merged color) but not at the AJs of the 

endothelial cells of the vessels (V), which, however, are recognized here by their 

intense β-catenin immunostaining. c: Magnification showing the colocalization 

(yellow) of the AJ-plaque protein β-catenin (red) and the transmembrane cadherin-11 

(green) in punctate series of distinct AJs. DAPI stain (blue in b and c) has been used 

to visualize nuclei. Scale bars: 20 µm 
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Supplementary Information 

Supplementary Figure 1. - Immunofluorescence microscopy, with (a, b) or without 

(c-f) phase contrast optics of sections through routinely fixed, dehydrated and 

paraffin-embedded tissue samples of human cardiac myxomata, treated for antigen-

retrieval and double-labeled for the adherens junction (AJ) plaque proteins β-catenin 

(a-e, red), α-catenin (f, red) and protein p120 (f, green), in combination with 

cadherin-11 (a, c-e, green) or N-cadherin (b, green), showing colocalizations in 

distinct cell-cell junctions (yellow merged color). By contrast, vascular endothelial 

cells as well as occasional stroma cells are intensely stained for β-catenin but are 

negative for cadherin-11. a and b: Merged images and phase contrast optics (a) 

demonstrate the web-like distribution of thin myxoma cell processes extending 

throughout the extracellular matrix, connected by numerous puncta adhaerentia AJs 

(yellow). c-e: Double-label immunostaining of AJs connecting myxoma cells and their 

processes (red, β-catenin; green, cadherin-11). Note the small yellow merge color-

stained punctate junctions which in some places appear in linear beaded chain 

arrays (d, e). f: Double-label immunostaining of a section through a human myxoma, 

showing AJs positive for the plaque proteins α-catenin (red) and p120 (green) which 

colocalize in many places (yellow merged color). Note that in this combination 

junction colocalization is seen not only on myxoma cell AJs but also in the zonulae 

adhaerentes connecting the endothelial cells of the vessels (V). Scale bars: 20 µm 

 

 

Supplementary Material 
 
Cell cultures 
The human mammary gland adenocarcinoma cell line MCF-7 (ATCC, HTB-22) and 

the hepatocellular carcinoma cell line PLC (ATCC, CRL-8024) were used for antibody 

screening. Primary cell cultures derived from the interstitial tissue of human 

pulmonary valves grown in culture were used for comparison.1 

 

Tumors 
The tumor cases studied (median age 57±17 years, age range: 14-80 years; 14 male 

and 18 female; 27 located in the left atrium, 5 in the right atrium; 17 with a smooth 
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surface, 15 villous) represented prototypic cardiac myxomata, with inflammatory 

infiltrates and blood vessel-like structures (“myxomatous endothelioma”). None of the 

cases included in this report showed glandular elements.  

 

Immunofluorescence and electron microscopy  
For antibody screenings, cultured cells grown on glass coverslips were fixed either in 

PBS containing 2 % formaldehyde for 5-7 min or with methanol for 5 min at -20°C, 

followed by incubation for 20 s in -20°C acetone. Alternatively, to optimize 

permeabilization, cells were exposed for 2-5 min in PBS containing either 0.2 % 

Triton X-100 or 0.1 % saponin. Protocols used for immunostaining were essentially 

as recently reported.3, 4, 5 For immunolocalization experiments using paraffin-

embedded tissue samples, sections obtained with a Rotary Microtome HM 355 S 

(Microm International GmbH, Walldorf, Germany) were deparaffinized and subjected 

to heat-induced antigen retrieval (AR) performed according to standard protocols.6, 7 

In most experiments, the sections were pre-treated in 100 mM Tris-HCl buffer 

containing 5 % urea (pH 11.0, 10 - 20 min, 120°C) or in citrate buffer (82 mM sodium 

citrate and 18 mM citric acid, pH 6.0, 10 - 20 min, 120°C) using a RHS “Rapid 

Microwave Histoprocessor” (Milestone, Sorisole, Italy). This AR-treatment was 

followed by several washes in PBS and a final 20 min incubation in PBS containing 2 

% milk powder and 0.2 % Triton X-100. Primary antibodies were usually applied for 1 

h, followed by three washes in PBS and exposure of the samples to secondary 

antibodies for 30 min.5 In the present study primary antibody complexes were 

visualized with secondary anti-species IgG-directed antibodies coupled to Cy3 

(Dianova, Hamburg, Germany) or Alexa 488 (MoBiTec, Goettingen, Germany). For 

immunoblot analyses, horseradish peroxidase-conjugated secondary antibodies were 

applied (Dianova). 

Microscopic images were recorded with an Axiophot II photomicroscope (Carl 

Zeiss, Jena, Germany) equipped with an AxioCam HR (Carl Zeiss), and confocal 

images were taken with a Zeiss LSM 510 UV microscope. 

Electron microscopy has been described by Rickelt et al. (2009).3 Electron 

micrographs were taken at 80 kV using an EM 910 (Carl Zeiss). 
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Supplementary Table 1. - Primary antibodies used in this study. 
 
Antigen Antibody type Source (reference) 
   

Transmembrane Proteins   

   

E-Cadherin mAb, m  BD Biosciences Pharmingen (Heidelberg, 
Germany) 

N-Cadherin a) mAb, m  BD Biosciences  

 b) As, rb  QED Bioscience Inc (San Diego, CA, USA)

P-Cadherin mAb, m BD Biosciences  

VE-Cadherin a) mAb, m (BV9)  Gift of E. Dejana (University of Milan, Italy) 

 b) As, rb Cayman Chemical Company (Ann Arbor, 
MI, USA) 

Cadherin 11 a) mAb, m  Zymed Laboratories (San Francisco, CA, 
USA) 

 b) As, rb Zymed Laboratories 

Desmoglein 1+2 mAb, (DG 3.10) Progen Biotechnik (Heidelberg, Germany) 

Desmocollin 1 mAb, m (U100) Progen Biotechnik 

Desmocollin 2 As, rb Progen Biotechnik 

Desmocollin 3 mAb, m (U114) Progen Biotechnik 

   

Plaque Proteins   

   
α-Catenin a) mAb, m Zymed Laboratories 

 b) As, rb Sigma (St. Louis, MO, USA) 

β-Catenin a) mAb, m BD Biosciences  

 b) As, rb Sigma 

Plakoglobin a) mAb, m (11E4)  Gift of M.J. Wheelock (University of 
Nebraska, Omaha, NE, USA) 

 b) mAb, m (PG 5.1) Progen Biotechnik 

Protein p120 a) mAb, m BD Biosciences  

 b) As, rb Sigma 

Protein p0071 a) mAb, m Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Protein ARVCF a) mAb, m Gift of I. Hofmann (German Cancer 
Research Center) 

 b) AS, gp Progen Biotechnik 

Plakophilin-1 a) mAb, m (PP1-5C2) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Plakophilin-2 a) mAb, m (Pkp2-518) Progen Biotechnik 

 b) mAb, m (PP2/62,    
    PP2/86, PP2/150) 

Progen Biotechnik 

 c) AS, gp Progen Biotechnik 
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Plakophilin-3 a) mAb, m (PKP3-270) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Desmoplakin a) mAb, m (DP-2.15,     
    DP-2.17, DP-2.20) 

Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

   

Cytoskeletal filament 
proteins  

  

  
Vimentin a) mAb, m (3B4) Progen Biotechnik 

 b) mAb, m (V9) Progen Biotechnik 

 c) AS, gp Progen Biotechnik 

Most keratins  
(“pan-Keratin”) 

mAb, m (Lu5) Progen Biotechnik  

Keratin 8 mAb, m (Ks8-17.2) Progen Biotechnik 

Keratin 18 mAb, m (Ks18.04) Progen Biotechnik 

Keratins 8 and18 AS, gp Progen Biotechnik 

Desmin mAb, m DAKO (Hamburg, Germany) 

Smooth muscle α-Actin mAb, m (ASM-1) Progen Biotechnik 

Cardiac/embryonic α-Actin mAb, m (AC1-20.4.2) Progen Biotechnik 

   

Others   

   
Troponin T skeletal muscle mAb, m Sigma 

Troponin T cardiac AS, rb Zytomed Systems (Berlin, Germany) 

smooth muscle   
 tropomyosin 

AS, rb Sigma 

Myosin skeletal muscle 
 heavy and light chain 

AS, rb Sigma 

Protein Ki67 a) mAb, m Zymed Laboratories 

 b) As, rb Zymed Laboratories 

   

 

Supplementary Table 1 - Primary antibodies used in this study. As - antiserum or 

IgGs prepared therefrom; m - mouse; mAb - monoclonal antibody; rb - rabbit; gp - 

guinea pig 
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SUMMARY 

Using biochemical as well as light- and electron-microscopic immunolocalization 

methods we have studied the phenomenon of spontaneous and cumulative 

syntheses of a series of epithelial proteins and glycoproteins and their assemblies to 

various kinds of small cell-cell junctions resembling adhering junctions (AJs) and half-

AJ structures as well as punctate and extended cell-cell contact structures in various 

lines of human hematopoietic tumor cell cultures. We have enriched clonal cell 

culture colonies and sublines of multipotential human K562 tumor cells which are 

enriched in such newly formed junctions mostly based on cis- and/or trans-connected 

clusters of the epithelial-type cadherin, desmoglein Dsg2, anchored in a 

submembranous plaque containing plakoglobin and plakophilins (Pkp2 and Pkp3), 

with or without other armadillo (arm-) proteins or desmoplakin. A different mostly 

more extended junction system is based on another kind of transmembrane 

glycoprotein, epithelial cell adhesion molecule (EpCAM), which is associated with a 

cytoplasmic plaque rich in actin-microfilament-anchoring proteins such as afadin, α-

actinin and vinculin. Both kinds of junctions are effective in connecting K562 cells to 

dense layers or even tissue-like three-dimensional structures. We discuss possible 

molecular mechanisms organizing these junction and their functions, in particular in 

the spread and metastasis of such tumor cells as well as possible diagnostic 

consequences and novel preventative and therapeutic possibilities. 
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SIGNIFICANCE 

Provoked by observations that in various lines of hematopoietic tumor cells 

spontaneously novel kinds of small adhering junctions (AJs) and half-AJ structures 

appear, resulting in formations of tissue-like higher order structures, we determined 

the molecular composition, the ultrastructure and the stability of such junctions in cell 

cultures of one of the best studied multipotential leukemia lines, K562 cells. We have 

identified an epithelial desmosome-typical cadherin, desmoglein Dsg2, as the central 

cis-clustered transmembrane glycoprotein anchored in a cytoplasmic plaque formed 

by plakophilins and plakoglobin, in some AJ types together with certain other 

armadillo-type proteins or desmoplakin. Another – often extended – type of novel 

junctions is based on the epithelial type glycoprotein, EpCAM, anchored in a plaque 

rich in afadin, α-actinin and vinculin. These novel forms of non-genetic molecular 

heterogeneity of blood tumor cell-cell interactions not only provide new mechanistic 

insights into dysplasia and metastasis processes of specific hematopoietic tumor 

cells but also call for additional criteria and methods in diagnostics and therapy. 
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INTRODUCTION 

Current views of tumorigenic cell transformation are dominated by concepts of 

specific gene mutations and alterations in the regulation of gene expression that 

result in developmentally uncontrolled proliferation, accompanied by changes  of the 

specific cell’s protein ensemble and changes of cell morphology and cell behavior, 

including invasive growth and metastasis. Correspondingly, determinations or 

estimations of the rate of cell proliferation, the cell type of origin of the primary tumor, 

the locations and types of differentiation of metastatic tumors are still the major basis 

of tumor diagnosis, prognosis and therapeutic proposals. In general, conservative 

mutation-genetic views prevail whereas potential non-genetically based but relatively 

stable changes of the cell protein pattern, the structural organization and the 

behavior are still only marginally considered (for reviews see e.g., Slack, 2007; Brock 

et al., 2009; Gilbert and Ross, 2009; Salk et al., 2010). 

 On the other hand, in certain tumors important and systematic non-genetic 

phenotype changes have been observed be they transient or even persistent. Such 

changes include alterations in the frequencies, patterns and forces of cell-cell 

adhesion structures, notably adhering junctions (AJs), which may result in rather 

radical, metaplastic changes of morphology as well as in metastatic spread and 

growth. Extensive changes of the molecular composition and higher order 

architecture of the cytoskeleton and AJs are as such not exclusive for malignant cells 

but resemble processes known from embryology, as for example the so-called 

“epithelial-mesenchymal transition” (EMT) of ectodermal cells. The current concept of 

EMT as an early and necessary step in the evasion of cells from the primary tumor, 

local lysis of the basal lamina or other boundary structures, invasion into a foreign 

tissue and metastatic growth of the resulting secondary tumor, is based on 

observations that at certain stages AJs of both categories, desmosomes and 

adhaerens junctions (zonulae, fasciae and puncta), can be weakened or even split so 

that malignant cells are released from the primary tumor and embark on the route of 

metastasis, often accompanied by a more or less extensive replacement of the 

original E-cadherin by N-cadherin (“cadherin switch”; Chen and Öbrink, 1991; Frixen 

et al., 1991; Navarro et al., 1991; Vleminckx et al., 1991; reviews: Takeichi et al., 

1994; Mareel et al., 1994; Birchmeier, 1994; Brabletz, 2004; Strumane et al., 2004; 

Wheelock et al., 2008). In this scenario, it is also obvious that the docking of 

metastasizing cells to other cells, distant and foreign tissues included, involves 
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formations of novel AJ-type contacts. Thus, metastasis constitutively requires both, 

weakening old AJ contacts as well as establishing novel types of cell attachments to 

other (“host”) cells or to cells of its own kind. 

 In our studies of the molecular assemblies, changes and losses of cytoskeletal 

filaments and cell-cell contacts in normal and tumor cells (Franke et al., 1979a, b; 

Moll et al., 1983; Franke et al., 1983; review: Franke, 2009) we were baffled by 

repeated observations of the “sudden” appearance of new filament proteins which 

could then be followed as clonally stable properties over many generations (e.g., 

Knapp and Franke, 1989; Knapp et al., 1989). In addition, we have observed that 

certain cell-cell junction molecules and structures, including some of the AJ-category, 

spontaneously appeared de novo in colonies of certain cell culture lines and were 

then continuously seen in the specific cell progeny for decades, suggestive of a 

remanence of the underlying changes of gene expression and structure assembly. 

Therefore, we have decided to study this phenomenon, i.e., the spontaneous de 

novo formation of totally new kinds of cells and tissue-like structures in a systematic 

way over extended periods of time. Here we report the spontaneous emergence of 

diverse novel kinds of junctions, resulting in tissue-like cell assemblies, of the 

pluripotential human hematopoietic line K562. 

 

 

RESULTS 

The hematopoietic, myelogenous leukemia-derived cell line K562 represents one of 

the most widely used cell culture model systems for studies of hematopoiesis, 

displaying granulocytic, erythroid and megakaryocytic differentiation potential (e.g., 

Lozzio and Lozzio, 1975; Andersson et al., 1979; Lozzio and Lozzio, 1979; Rowley et 

al., 1981, 1985; reviews: Koeffler and Golde, 1980; Dimery et al., 1983; Drexler, 

1994; Tsiftsoglou et al., 2003). In the course of our study, syntheses of such 

hematopoietic differentiation markers have repeatedly been induced using a diversity 

of agents, with results essentially similar to those previously reported by other 

authors (see Supplemental Experimental Procedures).  

In our previous studies of rare but clonally stable and extensive cell alterations 

characterized by the de novo synthesis of specific cytoskeletal filament proteins we 

had noted that in a series of mesenchymally derived cell lines not only masses of 

bundles of endogenous vimentin intermediate-sized filaments (IFs) are assembled 
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but that in addition bundles of keratin IFs are formed as stable cell structures (Knapp 

and Franke, 1989; Knapp et al., 1989; for K562 cells see Zauli et al., 1986; Järvinen 

et al., 1990; Schäfer, 1995). As we had also noted the synthesis, structure assembly 

and correct topogenesis of large amounts of other unexpected cytoskeletal and 

junctional proteins in some K562 cells, we decided to examine these changes and 

their fate in detail.  

 

Cadherin-based Junctions: Immunofluorescence Microscopy 

Most current K562 cell cultures contain not only abundant bundles of vimentin IFs 

(Figure 1A) but also IF bundles formed in a stoichiometrically coordinated way by 

keratins 8 (Figure 1B), 18 (not shown) and 19 (Figure 1C) in practically all cells, i.e. in 

a ratio and pattern typical for endodermal epithelia and tumors derived therefrom 

(Franke et al., 1981; Moll et al., 1982). All fifteen K562 sublines established in the 

course of our study also showed smooth-muscle (sm)-α-actin-containing 

microfilament bundles in almost all cells that were compacted into a number of 

variously-sized and -shaped whorl aggregates (up to six could be counted per cell; 

Figure 1D). Since the appearance of microfilaments comprising sm-α-actin is widely 

regarded as an indication of a transformation to cells of marked contractility and 

motility such as myofibroblasts (e.g., Hinz et al., 2004, 2007), the massive synthesis 

and filament assembly of this protein in the rather sessile K562 cells seems to call for 

an alternative explanation. 

 In addition, we noted in a number of the K562 cell colonies and sublines 

groups of cells characterized by punctate structures at their surfaces, in particular at 

cell-cell contact sites positively immunostained for the desmosomal cadherin, 

desmoglein 2 (Dsg2), next to other cell colonies lacking this protein (Figure 2). Using 

various techniques of isolating such cells or small cell colonies, followed by growth in 

suspension or as substratum-adherent monolayer colonies (for methods see Knapp 

and Franke, 1989; Knapp et al., 1989), we selected Dsg2-positive cells and obtained 

clonal sublines in which many, in some cases all cells showed punctate Dsg2 

reactions at cell-cell contacts or on free cell surfaces (Figure 3A-A’’). We further 

confirmed the molecular identification of these Dsg2-positive “dot” structures by the 

specific and uniform reaction with different Dsg2-antibodies (e.g., Figure 3A-A’’), 

including some reacting with surface-exposed, extracellular domains (cf. Schäfer et 
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al., 1996) and others reactive with cytoplasmic, plaque-bound epitopes (e.g., 

Schmelz et al., 1986a, b ). 

Such punctate cell surface reaction sites of Dsg2 were also frequently seen in 

co-localization with other desmosomal junctional plaque proteins such as plakophilin 

2 (Pkp2, Figure 3B), plakophilin 3 (Pkp3; not shown) and plakoglobin (PG; Figure 

3C). In two of the 15 cell sublines we observed cell colonies connected by punctate 

AJ structures positive for both desmosomal cadherins, i.e. Dsg2 and desmocollin, 

Dsc2, together with some of the plaque proteins mentioned before (Figure S1A-C). 

Two other sublines were established because they showed punctate cell-cell or cell 

surface reactions for Dsg2 and desmoplakin (Figure 3D). Moreover, similar dots 

showing co-localizations with Dsg2 were also observed, although at lower 

frequencies, for various non-desmosomal armadillo-type plaque proteins such as β-

catenin as well as proteins p120 and p0071 (not shown). Extensive 

immunocytochemical examinations for other cadherins, including desmogleins Dsg 1, 

3 and 4 as well as desmocollins Dsc1 and 3, and for α-catenin, neurojungin and 

protein ARVCF gave negative results in all sublines characterized. 

 Much to our surprise we also noted sublines in which different molecules of 

the desmosomal ensemble were present but clearly did not colocalize. Figure S1D 

presents such an example of cells in which Dsg2 and Dsc2 are assembled in strictly 

different “dots” whereas Figure S1E presents a cell subline in which Dsg2 does not 

colocalize in the same loci as the corresponding plaque partner protein, Pkp2, which 

in turn forms its own separate cluster. Such cell sublines showing differential 

localization of typical desmosomal molecules indicate that their normal co-assembly 

requires additional factors which are missing in the specific sublines. 

 

Cadherin-based Junctions: Electron Microscopy 

Normal as well as malignantly transformed hematopoietic or blood cells are believed 

to be unicellular and not connected by junctions of any kind (for certain N-cadherin–

containing precursor cell types located in – or prepared from – the bone marrow see 

Wuchter et al., 2007; Wein et al., 2010). However, distinct AJ-type cell contact 

structures have been seen in K562 cell cultures by electron microscopy, in particular 

in densely-grown, substratum-adherent cell monolayers or in suspended spheroidal 

cell aggregates. In loose-packed cell associations such AJs were relatively sparse 
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and characterized by close membrane-to-membrane attachments with a dense and 

distinct, though mostly rather thin cytoplasmic plaque (Figure 4A-E). 

Closer inspection, together with morphometric and immunocytochemical 

analyses, further showed that these AJ-type structures could markedly vary in size 

and ultrastructural details. Figure 5A-C presents survey pictures of an extended cell-

cell contact region of two cells in a densely-grown monolayer culture (Figure 5A), 

comprising a number of different types of junctions. Partial magnifications (Figure 5B, 

C) demonstrate the marked structural heterogeneity of neighboring AJ structures, 

including variously-sized, highly-organized junctions of desmosome-like morphology, 

revealing straight, trilaminar membrane regions with connecting mesogloea-like 

(“midline”) – elements and rather thick, densely-stained plaque structures (marked by 

brackets in Figure 5A-C). These typical AJs were interspersed with less distinct 

membrane-membrane associations of a similar wide range of sizes but different 

morphology, characterized by close membrane contact regions and rather thin 

cytoplasmic plaques (denoted by V-shaped symbols in Figure 5A).  

We also frequently noted asymmetric AJ structures in which only one half of 

the junction was coated with a plaque (Figure 5D and E, arrowheads). Simple close 

membrane associations (“kisses”) without a marked plaque layer were also seen 

(Figure 5F). Occasionally we have observed relatively deep plasma membrane 

invaginations with an extended plaque coating (Figure 5F, arrowhead), resembling 

the “taproot” AJs (manubria adhaerentia) described in cultures of human bone 

marrow-derived mesenchymal stem cells (Wuchter et al., 2007; Franke et al., 2009), 

and small spheroidal or flattened vesicles bearing desmosomal plaque-like coats, as 

repeatedly reported from epithelial cells (for review see Cowin et al., 1985b). Finally, 

we have regularly noted small regions of “free” cell surface (ca. 0.1-0.2 micrometer in 

diameter) characterized by a very dense cytoplasmic plaque (Figure 5G), i.e. plasma 

membrane domains similar to the half-desmosomal structures reported from various 

epithelial cell cultures (e.g., Duden and Franke, 1988; Demlehner et al., 1995; 

Schäfer, 1995).  

Correspondingly, by immunoelectron microscopy we repeatedly noted rather 

small (0.05-0.2 micrometer) cell surface domains which on their outer surface 

showed cell coat material intensely immunogold-labeled with Dsg2-antibodies 

specific for epitopes known to be located on the extracellular domain (Figure 5H-J; 

for related electron microscopy with epithelial cells see, e.g., Demlehner et al., 1995). 
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As to the symmetrical desmosome-like junctions, their plaque structures were heavily 

labeled with antibodies to the cytoplasmic, i.e., carboxyterminal portion of Dsg2 

(Figure 5K-M) and with antibodies to plakoglobin (Figure 5N) or Pkp2 (Figure 5O). 

 

Cadherin-based Junctions: Biochemical Methods 

For the identification of the molecular components of the AJs formed in K562 cell 

cultures, the proteins under question have been analyzed by SDS-PAGE or two-

dimensional gel electrophoresis, followed by immunoblotting, in comparison with well-

known epithelial and mesenchymal cell culture lines (see Supplemental Experimental 

Procedures). In such analyses (Figure 6 presents an example) the vast majority of 

the K562 cell sublines and their AJs contain desmoglein Dsg2 but not any of the 

desmocollins Dsc1-3, with the exception of some detectable desmocollin Dsc2 in two 

of the sublines (see below). We have also not identified any of the non-desmosomal 

cadherins (Figure 6, top panel) and of α-catenin whereas β-catenin as well as 

proteins p120 and p0071 were generally detected (Figure 6, second panel from top). 

Moreover, the desmosomal armadillo-type proteins plakophilins Pkp2 and Pkp3 as 

well as plakoglobin were consistently seen. By contrast, the other desmosomal 

cadherin, desmocollin Dsc2, and the major large desmosomal plaque protein, 

desmoplakin, have been identified only in two of the 15 different clonal K562 sublines 

examined (see also Figure S1).  

 The molecular neighborhood relationships of the various AJ components were 

biochemically analyzed by immunoprecipitation, followed by SDS-PAGE and 

immunoblot analysis. As shown in Figure 7, antibodies against Dsg2 co-

immunoprecipitated plakoglobin as well as plakophilins Pkp2 and Pkp3, in some cell 

clones together with rather small amounts of proteins p120, p0071 and β-catenin (not 

shown). Plakoglobin and Pkp3 were also co-immunoprecipitated with plakophilin 

Pkp2, and desmoglein Dsg2 as well as both plakophilins, Pkp2 and Pkp3, were 

pulled down together with plakoglobin (Figure 7). Co-precipitation of very minor 

amounts of desmoplakin with Dsg2 was noted only in two sublines (see below). 

 

Epithelial Membrane Cell Adhesion Molecules-based Junctions 

Obviously, however, the Dsg2-positive punctate plasma membrane sites are not the 

only cell-cell contact structures that can be formed in K562 cultures. In very densely-

grown, substratum-adherent cell monolayer colonies, a different kind of cell-cell 
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contact structure, extending along most of the cell periphery, is also often seen: 

These extended cell contact regions are characterized by a continuous cortical 

cytoplasmic plaque rich in afadin (Figure 8A), α-actinin (Figure 8A and B) as well as 

vinculin, protein ZO-1 and actin (not shown) but essentially negative for desmogleins 

(Figure 8B), desmocollins (not shown), α-catenin and all the armadillo proteins 

mentioned above (not shown). In these cortical layers the diverse actin-binding 

proteins are associated with the non-cadherin type transmembrane glycoprotein, 

epithelial cell adhesion molecule (EpCAM; Figure S2) and some other membrane 

components not yet identified. Figure 8B presents a direct comparison of the two 

fundamentally different cell-cell contact systems that can be seen in these cultures, 

the extended cortical layer and the punctate AJs. 

 As to the composition of the extended, non-AJ cortical plasma membrane 

layers we have consistently found in addition to α-actinin, afadin, vinculin and protein 

ZO-1, the transmembrane glycoprotein EpCAM (Figure S2). 

 

Frequencies, Time Spans and Revertants 

The appearance of the cell-cell junction and cell surface-exposed half-junction AJ-

resembling structures in K562 cells is obviously not restricted to specific culture times 

and conditions but is a true de novo assembly process, again and again, in 

previously negative cell cultures and in clonal subcultures, including several that have 

initially been selected for the complete absence of such proteins and structures. In 

this context it is also noteworthy that Järvinen et al. (1990) have not detected any 

desmosomal protein-positive structure although they have also used some of our 

antibodies. 

Obviously, in most cases of spontaneous, cumulative assembly of AJ 

components, desmoglein Dsg2 appears to act as a pacemaker and nucleator for the 

AJ-type structures while glycoprotein EpCAM is associated with the cortical 

structures containing actin-binding proteins. Rather infrequently have we been able 

to select cells with AJ structures showing reactions for desmoplakin or desmocollin 

Dsc2: Only two clonal sublines have been established which are rich in desmoplakin-

positive junctions (clones K562-2001-DP1a, b; cf. Cowin et al., 1985a), and only one 

clone has been obtained that contains AJs positive for both Dsc2 and Dsg2 (Figure 

S1). Table 1 lists the major clonal sublines identified and grown in the entire period 

1988-2009 (see also Schäfer, 1995, and Tian, 2000). 
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 AJ structures based on cadherin molecules are notorious for their sensitivity to 

reduced Ca2+ concentrations (for Dsg2-containing desmosomes see, e.g., Hennings 

et al., 1980; Watt et al., 1984; Duden and Franke, 1988; Demlehner et al., 1995). At 

two time points, 1995 and 2008, we have also examined whether the formation of the 

AJ structures described was dependent on the Ca2+ content of the culture medium in 

the range from 0.1 mM -1.5 mM. However, in K562 cells exposed to low Ca2+ media 

the amounts of the two plakophilins, plakoglobin, β-catenin and the Ca2+-binding 

protein, Dsg2, were only little reduced but, surprisingly, both the Triton X-100-

extractability and the immunolocalization-positive punctate AJs were by and large lost 

(cf. Schäfer, 1995). 

 In the clonal cultures and sublines containing Dsg2-immunostaining-positive 

AJ structures we have found after a series of passages distinct colonies of K562 cells 

with multiple contact sited but without immunocytochemically demonstrable AJ-type 

reactions (not shown). It will have to be examined in single cell isolation and cloning 

experiments whether cell colonies showing such losses of AJ protein reactions reflect 

revertants of protein synthesis or of masking or of interference with structure 

assembly  

 

 

DISCUSSION 

Our initial observation that in cultures of simple unicellular systems such as the 

hematopoietic tumor cell line K562 novel, adhering junction (AJ) proteins and 

structures appear spontaneously, repeatedly and without specific inductions and that 

these can be maintained in the clonal progeny, was obviously in contrast to current 

textbook dogmata of blood cell histology, developmental biology and carcinogenesis. 

Even more surprising were our findings that in addition asymmetric half-AJ structures 

were frequently seen on free cell surfaces and that all these AJ-type structures were 

primarily based on desmosomal molecules which are commonly regarded as 

hallmarks of epithelial and myocardial differentiation and to be absent from blood 

cells. Therefore and because of the general importance of cadherin molecules and 

their changes in tumor spread and metastasis (see Introduction) we have studied this 

challenging phenomenon over a period of more than two decades, have repeatedly 

cloned and subcloned specific K562 cells and have compared substratum-adherent 

cell colonies with others grown as spheroidal colonies or as individual cells in 
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suspension. Moreover, we have repeatedly bought new batches of K562 cells from 

the suppliers to confirm the phenomenon.  

The fifteen established K562 cell sublines studied in detail were characterized 

by the absence or presence of AJ molecules and AJ structures as demonstrable by 

immunocytochemistry and electron microscopy in many, but not necessarily all cells 

of a given subtype (Table 1). Moreover, the ensembles of the molecules synthesized 

and assembled in AJ-type structures often showed marked heterogeneity: Highly-

organized, desmosome-resembling AJ forms, often presenting typical cell-cell 

connecting mesogloea-structures and dense cytoplasmic plaques, could occur next 

to AJ-type structures with a rather thin plaque and no mesogloea-like elements or 

even AJ structures in which only one half was plaque-coated.  

In most cases the AJ-like structures seen were based on a single common 

type of transmembrane protein, a cadherin, desmoglein Dsg2, particularly known for 

the complex amino acid sequence subdomain pattern of its rather long 

carboxyterminal cytoplasmic extension (Schäfer et al., 1994; for comparisons with 

other desmogleins see Goodwin et al., 1990; Koch et al., 1990, 1991, 1992; Wheeler 

et al., 1991a, b; reviews: Holthöfer et al., 2007; Stokes, 2007; Garrod and Chidgey, 

2008). Only in two of the fifteen clonal sublines established have we detected AJs 

which in addition contained desmocollin Dsc2, in normal desmosomes the 

isostoichiometric “twin” of Dsg2, whereas one clonal subline was characterized by the 

exclusive formation of separated AJ-types, one based on Dsg2 and the other on 

Dsc2. Obviously, our analyses also support earlier general conclusions from Dsg-

cDNA transfections into desmosome-lacking cultured cells that heterophilic pairing 

with a desmocollin is not an absolute requirement of AJ formation and that 

desmocollins may even be wholly dispensable in the formation of certain types of 

junctions (Koeser et al., 2003; for partly controversial discussions on Dsc2-Dsc 

complexes see also Chitaev and Troyanovsky, 1997; Marcozzi et al., 1998; Tselepis 

et al., 1998; Syed et al., 2002; Troyanovsky, 2005; Stokes, 2007; Garrod and 

Chidgey, 2008). It is also noteworthy that this form of tightly cis-clustered, plaque-

anchored Dsg2 molecules is also clearly distinguished from another form of Dsg2 

distribution which has been described as dispersed, non-junction-integrated, “free” 

glycoprotein molecules in certain types of melanocytes and melanoma cells in cell 

cultures and in situ (Schmitt et al., 2007; Rickelt et al., 2008). 
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In all the Dsg2-positive AJ-like structures identified in this study (Table 1) the 

transmembrane Dsg2 clusters are anchored in cytoplasmic plaques constituted by 

the armadillo proteins, plakophilins Pkp2, Pkp3 and plakoglobin, i.e. a plaque 

ensemble well-known from the desmosomes of diverse epithelial cells. Only in a 

minority of the AJ subtypes noted specific non-desmosomal armadillo proteins such 

as β-catenin and proteins p120 and p0071 have also been detected. While co-

assembly of plakophilins Pkp2 and Pkp3 is common in the desmosomes of diverse 

non-hepatocytic epithelial cells with proliferative potential (Bonné et al., 1999; 

Schmidt et al., 1999; reviews: Hatzfeld, 2007; Schmidt and Koch, 2008), Pkp2 co-

localization with β-catenin and proteins of the p120 subgroup of armadillo proteins 

(cf. Anastasiadis and Reynolds, 2000) has previously only been shown for the 

composite junctions (areae compositae) of the intercalated disks connecting 

cardiomyocytes of mature mammalian hearts (e.g., Borrmann et al., 2006; Franke et 

al., 2006; Goossens et al., 2007; Pieperhoff et al., 2008; review: Franke et al., 2009) 

and for a special AJ-type of certain transformed, mesenchymally-derived cells (Barth 

et al., 2009; Rickelt et al., 2009). The pivotal architectonic role of Pkp2 – alone or 

together with Pkp3 – in plaque formations of desmosomes and related AJs is also 

indicated by its ultrastructural location (Mertens et al., 1996; North et al., 1999) and 

from experiments based on gene ablation (Grossmann et al., 2004) or siRNA-

mediated reduction of Pkp2-mRNA (Oxford et al., 2007; Bass-Zubek et al., 2008; 

Pieperhoff et al., 2008; Hall et al., 2009; Li et al., 2009; review: Bass-Zubek et al., 

2009).  

Another surprise in our studies of AJ-type structures in K562 cell cultures has 

been the recognition that two different major plaque forms of AJs can be 

distinguished (Table 1): In most sublines we have found AJs without any detectable 

desmoplakin. However, we have also selected two sublines in which cells are 

connected by AJs containing desmoplakin in addition to plakoglobin and the 

plakophilins. This observation that in K562 cells junctional structures of similar sizes 

and ultrastructural appearance can be formed with and without desmoplakin seems 

puzzling in view of the important structural role that is generally ascribed to this large 

plaque protein (for review see Godsel et al., 2004). It is, however, compatible with the 

demonstrated desmoplakin-dependent occurrence of plaque-coated AJ-type 

structures in both epithelial and endothelial cells of early embryogenesis of mice 

lacking both alleles of the desmoplakin gene (Gallicano et al., 1998, 2001; Zhou et 
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al., 2004) and in early mouse embryo hearts lacking the Pkp2-gene in which 

desmoplakin aggregates are misplaced away from the plaques of the residual cell-

cell junctions (Grossmann et al., 2004). 

Our consistent finding that α-catenin has not been detectable in all fifteen 

subtypes of AJ-type ensembles of K562 cells is both surprising and telling. It reminds 

one of the series of reports on genetically defined losses of α-catenin in certain 

carcinomas and carcinoma-derived cell lines as well as reports on mutant α-catenins, 

all with the conclusion that α-catenin-deficient junctions are characterized by lost or 

highly weakened cell-cell adhesion, up to situations in which the cells are totally 

separated from each other (e.g., Hirano et al., 1992; Shimoyama et al., 1992; Aberle 

et al., 1994; Hülsken et al., 1994; Nagafuchi et al., 1994; Rubinfeld et al., 1995; 

Sacco et al., 1995; Pokutta et al., 2002; reviews: Kanai et al., 1994; Wheelock and 

Johnson, 2003; Benjamin and Nelson, 2008). In contrast to generalizing conclusions 

of some previous authors, our present results suggest that α-catenin is not absolutely 

needed for the formation of AJs with good membrane contact and a cytoplasmic 

plaque. Moreover, they are in agreement with the hypothesis that the α-catenin 

molecules – like the related vinculin and protein ZO-1 – are involved in the regulation 

of the anchorage of actin-microfilament bundles at AJ plaques and their functions 

(reviews: Drees et al., 2005; Benjamin and Nelson, 2008), as such filament 

attachments have only rarely been seen at the AJ-like structures of our K562 cell 

colonies. On the other hand, we have demonstrated that in confluent K562 cells 

vinculin and protein ZO-1 are abundantly present in the cortical layers of the 

extended, EpCAM-based cell-cell contacts. And finally, our observation of an 

apparent loss of α-catenin in a number of K562 sublines are certainly not in conflict 

with recent results interpreted to show that in several myeloid leukemia cell forms a 

decrease of α-catenin correlates with enhanced malignancy (e.g., Ulger et al., 2003; 

Desmond et al., 2007; review: Benjamin and Nelson, 2008). 

The changes of the K562 cell character induced by the reported molecular 

assemblies and the generation of novel AJ-type junctions are profound in several 

ways: (1) Both the frequencies of formation and the stabilities of the molecular 

complexes and AJ structures formed can be rather high. (2) Synthesis and assembly 

of the AJ-line structures can occur spontaneously and randomly in the same 

environment, i.e., without a genetic change or a medium change or any addition of a 

specific inducing agent. (3) As is also the case for the K562 keratin IFs with their 
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isostoichiometric ensembles of keratins 8:18+19, the synthesis and the longevity of 

the AJ proteins are to a remarkable degree coordinated and cumulative so that these 

proteins can assemble into numerous AJ-like structures. (4) The AJs described can 

fundamentally change the cells higher order of organization and contribute to 

formations of epithelioid layers of interconnected cells or of three-dimensional arrays 

and thus of novel tissue-equivalents. (5) This also opens the possibility of 

associations with foreign cells displaying appropriate AJ-type attachment structures. 

Apparently, this new ability to form semistable, heterotypic AJ-type connections with 

complementary domains of other cells might also contribute to metastatic processes.  

In conclusion, these formations of AJ-like junctions in a blood cell tumor 

system represent a case of non-genetic heterogeneity that combines a high 

proliferation rate with dramatically increased cell-cell adhesion potential (for 

discussion see Brock et al., 2009; cf. also Slack, 2007). Specifically, in K562 cells 

and similar cells in situ the cell-cell adhesive molecules and structures described in 

this report, together with the series of K562 surface molecules known to mediate cell 

adherence to basal lamina, stromal and endothelial components (e.g., Bendall et al., 

1996; Turner et al., 1998; Gane et al., 2001; and references cited), certainly would 

contribute to the stability of tumor cell aggregates and to potential metastatic 

interactions. 

 The observations reported here, i.e. the synthesis, stabilization, accumulation 

and orderly structural assembly of a series of major epithelial “marker” molecules and 

structures far out of any epithelial developmental context are obviously worrisome 

challenges for current concepts of diagnoses of tumors based on histogenesis and 

differentiation markers. A blood tumor cell rich in keratin IF bundles, various subtypes 

of cell-cell junction markers and structures that are commonly regarded as to typical 

of desmosomes or epithelial cell adhesion molecule (EpCAM)-based structures will 

be of concern to developmental biologists as well as pathologists. 

 Although we have observed similar and even more complex changes of cell-

cell junction systems also in other hematopoietic cell lines (unpublished work), we 

have selected for the present report cells of the K562 line as it has been the major 

reference system in this field of research for now more than three decades (for 

review see, e.g., Tsiftsoglou et al., 2003). The additions of masses of “foreign” 

molecules and structures to the cytoskeletal and junctional cell systems of these cells 

are obviously compatible with the notoriously high proliferation rate, the malignant 
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character and the isodiametric appearance of these cells. Now one of the logical 

consequences of our findings would have to be the systematic search for possible 

altered tumor cells which immunohistochemically might appear as specific “side 

populations” in hematological or histopathological diagnoses. It will also be important 

to determine the proliferation potential and the differentiation state of the various 

K562 subtypes and the effects of known growth-promoting or -inhibitory drugs on the 

induction or reduction of cell-cell attachment structures.  

The fundamental practical diagnostic problems posed by the results of this 

study are also obvious: The epithelioid cell layers and AJ-mediated higher order 

structures of various subforms of K562 and other hematopoietic tumor cell lines, 

together with the large masses of bundles of sm-α-actin-containing microfilaments on 

the one hand and stoichiometrically correct simple epithelium-type bundles of keratin 

IFs on the other, and now also together with diverse desmosomal components and 

AJ structures and also the EpCAM junctions in immunocytochemical terms represent 

a scenario of potentially misleading, partly bizarre properties. Here only the parallel 

and combined use of haematological and epithelial cell type markers can lead to 

correct diagnostic identifications and classifications. On the other hand, the new 

findings presented in this report now allow one to think of developments of specific 

“anti-AJ molecule drugs” that bind to – and thus may block the binding of – the 

extracellular domains of the tumor cell Dsg2, i.e. a similar concept as it is already in 

promising use for N-cadherin of certain tumor cells (see e.g., Blaschuk and Devemy, 

2009). 

 

 

EXPERIMENTAL PROCEDURES   

Cell Cultures 

Cells of the human multipotential leukemia line K562 were obtained from the 

American Type Culture Collection (ATCC, Rockville, MD, USA) or the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) 

were grown in Iscove´s Modified Dulbeccos´s Medium (IMDM; Invitrogen, Karlsruhe, 

Germany), supplemented with 10 % fetal calf serum (FCS) and 2 mM glutamine in 

suspension culture in small “cages” or as cells adherent to a substratum (plastic 

surface, slides or coverslips; coated with poly-L-lysine, collagen or fibronectin). Single 

cells or colonies were obtained by serial transfer essentially as previously reported 
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for other cell lines (e.g., Knapp and Franke 1989; Knapp et al., 1989) and grown as 

clonally derived sublines. 

 

Antibodies 

The primary antibodies used for immunofluorescence microscopy and for 

immunoblotting analyses of gel-electrophoretically separated polypeptides are listed 

in Table S1. Secondary antibodies for immunofluorescence microscopy were 

species-specific goat antibodies against immunoglobulins of mouse, rabbit or guinea 

pig, conjugated to Cy3 (Dianova, Hamburg, Germany) or Alexa 488 (MoBiTec, 

Göttingen, Germany). For immunoblot analyses, horseradish peroxidase (HRP)-

conjugated secondary antibodies were used (Dianova). 

 

Gel Electrophoresis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed as described (Rickelt et al., 2009) using total protein lysates of repeatedly 

washed cultured cells or cytoskeletal residue material obtained after treatments with 

non-denaturing detergents with or without high salt buffers (e.g., Rickelt et al., 2009; 

see also Achtstätter et al., 1986; Schäfer et al., 1994). For specific biochemical 

experiments cells were washed several times with pre-cooled PBS and then 

immediately dissolved in 1.0 ml pre-heated SDS sample buffer (250 mM Tris-HCl, 10 

% SDS, 20 % glycerol, 100 mM dithiothreitol; pH 6.8), heated at 95°C for 5 min and 

subsequently cooled on ice. The polypeptides separated were electrophoretically 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, 

USA) and stained with Coomassie Brilliant Blue for immunochemical detection. 

Analyses of native protein complexes, exposed to different urea concentrations in the 

range of 4-9.5M urea, by two-dimensional gel electrophoresis were as described 

(e.g., Franke et al., 1983; Achtstätter et al., 1986; Schäfer et al., 1994). For 

immunoblotting protocols see Supplemental Experimental Procedures. 

 

Immunoprecipitation 

Immunoprecipitation (IP) was performed as reported by Rickelt et al. (2009) using 

“Triton X-100 IP buffer” (1 % Triton X-100, 150 mM NaCl, 20 mM HEPES; pH 7.4), 

supplemented with a protease inhibitor cocktail (Complete Mini Inhibitor Tabs, EDTA-

free; Roche Diagnostics, Mannheim, Germany). 
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Phase Contrast, Immunofluorescence and Electron Microscopy 

Cells grown on glass cover slips coated with poly-(L)-lysine, fibronectin or collagen, 

or cells grown in suspension and gently pelleted onto a planar substratum were 

briefly rinsed in PBS and fixed for 5 min in methanol, followed by acetone (20 s), both 

at -20°C. Prior to incubation with the first antibo dy solution for 1 h at room 

temperature, cells were permeabilized by 5 min treatment with 0.2 % Triton X-100 in 

PBS for 5 min. After several washes in PBS, cells were incubated for 30 min with the 

appropriate secondary antibodies, washed again in PBS, dehydrated in ethanol, air-

dried, and mounted in Fluoromount (Biozol, Eching, Germany). Immunofluorescence 

microscopic images were recorded with an Axiophot II photomicroscope (Carl Zeiss, 

Jena, Germany), equipped with an AxioCam HR (Carl Zeiss). For confocal laser 

scanning microscopy a Zeiss LSM 510 Meta microscope was used. 

The protocols used for conventional transmission- and immunoelectron 

microscopy were essentially as described for diverse other mesenchymally derived 

cells (cf. Rickelt et al., 2009; see also Barth et al., 2009). Electron micrographs were 

taken at 80 kV, using an EM 910 (Carl Zeiss, Oberkochen, Germany). 
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FIGURE LEDGENDS 

 

Figure 1. Identification of Diverse Cytoskeletal Filament Proteins in Cultures of 

Multipotential Human Hematopoietic K562 Tumor Cells 

Immunofluorescence microscopy of cultured human K562 cells grown in suspension 

and allowed spontaneously to adhere to the substratum, showing the abundance and 

coexistence of bundles or whorly aggregates of filaments containing vimentin (A, 

green) or keratins 8 (B, red), 18 (not shown) and 19 (C, red) or smooth-muscle-type 

α-actin (D, red). DAPI staining (blue) was used to visualize nuclei. Note the frequent 

densely aggregated forms of bundles of all three kinds of filaments. Scale bars: 20 

µm 

 

Figure 2. Coexistence of Two Major Kinds of Colonies of Human Hematopoietic 

K562 Cells With and Without Adhering Junctions (AJs) 

Light microscopy showing two small colonies of substratum-adherent K562 cells (A, 

phase contrast image) which differ in their reaction with antibodies to the 

desmosomal glycoprotein, desmoglein Dsg2 clustered to small punctate structures, 

mostly located at cell-cell contacts in the colony shown in the right (B, 

immunofluorescence microscopy image), whereas the left hand colony is totally 

negative. Scale bars: 20 µm 

 

Figure 3. Identification and Localization of Desmosomal Proteins in 

Hematopoietic K562 Cells in Clusters of Adhering Junctions and Hemi-

Junctions by Immunofluorescence Microscopy 

(A-A’’) Laser-scanning confocal immunofluorescence microscopy of a double-labeling 

experiment, comparing the reactions of two antibodies against different epitopes of 

the desmosomal glycoprotein, desmoglein Dsg2 (A, red: Dsg2 rabbit antibodies Dsg2 

- rb8; B, green: mAb Dsg2 - clone 10G11). The corresponding merged picture (A’’) 

presented with a differential interference contrast background in A’’, shows a 

complete and intense co-localization of both kinds of Dsg2 antibodies in small 

punctate structures (yellow) which either represent cell-cell-contacts sites or 

asymmetric “free” (half-junctional) plasma membrane domains.  

(B-D) Double-label immunolocalization micrographs, on a differential interference 

contrast optical background, showing co-localizations of glycoprotein Dsg2 (green, B-
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D) with the red-labeled cytoplasmic plaque proteins, plakophilin 2 (B), plakoglobin (C) 

and desmoplakin (D). Note that most, but not all of the punctate Dsg2-positive 

structures show co-localization (yellow) with the specific desmosomal plaque protein. 

Scale bars: 20 µm 

 

Figure 4. Electron Micrographs Demonstrating Intercellular Contacts of the 

Adhering Junction-Type Connecting Cultured K562 Cells 

Survey electron micrographs of ultrathin sections through K562 cells (A and C), 

showing cell-cell junction structures, as indicated by arrows (A, C) and shown in 

higher magnifications in B, D and E. Note that these junctions are defined by thin but 

densely heavy metal-stained plaque structures (B, D, E). N, nucleus. Scale bars: 2 

µm (A, C) and 0.25 µm (B, D, E) 

 

Figure 5. Electron and Immunoelectron Microscopy of Cell-Cell Adhering 

Junctions (AJs) and Surface-Exposed Half-Junctions in Cultures of K562 Cells 

Survey electron micrograph (A) and partial magnifications (B, C) show a series of 

variously-sized and variously-developed AJs formed between these cells (indicated 

by brackets and pairs of bars in A-C). Note that in the example shown here an 

extended region of two cells in contact is presented which comprises AJs of widely 

varying sizes and plaque thicknesses (compare, e.g., in B and C the four junctions 

with “desmosome-like” morphology numbered D1-D4). Note also junctional structures 

showing a well-developed plaque only in one of the two cells in contact (D and E, 

arrowheads), with small plaque-lacking contact sites (E), deep invaginations of 

plaque-coated plasma membrane (an example is denoted by the arrowhead in F) and 

relatively small, surface-exposed half-junctions with a marked dense plaque (G). 

The restriction of the desmosomal molecules to AJs is shown by the intense 

immunogold labeling of Dsg2 as seen in half-junctions (H-J) as well as in AJs (K-M). 

The identity of the plasma membrane domains representing half-junction equivalents 

is best demonstrated by immunoelectron microscopy using antibodies recognizing an 

epitope located in the aminoterminal, glycosylated extracellular part of Dsg2 (H-J), 

including structures located at the tips of filopodial cell processes (J). On the other 

side, the cytoplasmic portion of Dsg2 id demonstrated by the intense labeling of 

typical AJ structures with antibodies recognizing the carboxyterminal, plaque-

integrated part of Dsg2 (K-M). Note also that the left junction shown in M presents 
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little, if any significant Dsg2-label, indicating that in these cells additional junction-like, 

cell-cell contact structures without Dsg2 and a conspicuous plaque may also occur. 

The Dsg2-positive ones are generally coated with junction plaques that are 

immunolabeled with antibodies against plakophilin 2 (N) and plakoglobin (O). M, 

mitochondrion (A). Scale bars: 1 µm (A), 0.5 µm (F, H, J), 0.25 µm (B-E, K, L, N, O) 

and 0.1 µm (G, I, M) 

 

Figure 6. Gel-Electrophoresis and Immunoblot Detection of Adhering Junction 

(AJ) Proteins in Cultured Human Hematopoietic K562 Cells 

Immunoblot reactions of near-equal amounts of SDS-PAGE-separated cytoskeletal 

proteins from cultured human HaCaT keratinocytes (lane 1), SV80 fibroblasts (lane 2) 

and K562 - hematopoietic cells (lane 3), probed with (A) antibodies specific for AJ 

cadherins (E-, P-, N-cadherin and cadherin 11) or for one of the plaque proteins, α- 

and β-catenin, protein p120 or protein p0071 in comparison with known desmosomal 

plaque proteins such as (B) plakophilins Pkp1, Pkp2 and Pkp3, plakoglobin (PG) and 

desmoplakin (DP) or with antibodies specifically recognizing the desmosomal 

cadherins desmoglein Dsg1 and Dsg2, Dsg2 and desmocollin Dsc2. Note that only 

the desmosomal cadherin Dsg2 is detectable in K562 cells whereas all the other 

cadherins are absent. This finding has been confirmed by immunoblotting with two 

different monoclonal antibodies (mAbs) to Dsg2, one recognizing both Dsgs1 and 2 

(clone DG3.10) and the other exclusively Dsg2 (clone 6D8). In addition the plaque 

proteins Pkp2, Pkp3, plakoglobin as well as β-catenin and protein p120 have been 

detected and after prolonged exposure and only in trace amounts, some protein 

p0071 has been also found (arrow). Polypeptide molecular weight marker bands (on 

the left margin) correspond to 212, 158, 116, 97.2, 66.4, 55.6, 42.7 and 34.6 kDa 

(from top to bottom). * For the immunoblot identification of N-cadherin, cadherin 11 

as well as α- and β-catenin whole cell lysates of murine 3T3-L1 cells were used for 

the loading of lane 1 instead of HaCaT cells.  

 

Figure 7. Biochemical Demonstration of Complexes of Desmoglein 2 (Dsg2) 

with Specific Other AJ Proteins in Cultures of K562 Cells 

For direct identification of complex partner proteins of desmoglein Dsg2 

immunoprecipitations (IP) from total lysates of K562 cells were performed, and the 

precipitated proteins were separated by SDS-PAGE and examined by 
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immunoblotting. Antibodies used for IP were directed against plakophilin 2 (Pkp2), 

VE-cadherin (VE-cad), desmogleins Dsg1 and Dsg2 (Dsg1+2) and plakoglobin (PG). 

As positive controls, total cell lysates of K562 cells, the supernatant fraction from the 

lysate before IP (L), and material of the specific pre-clearing preparation step (P) 

were used. Immunoblots were performed using monoclonal antibodies (mAbs) 

reacting with Dsg1+2 (A), PG (B), Pkp2 (C) and Pkp3 (D). Note that besides the 

positive controls, IPs with Dsg2 antibodies clearly show immunoreactivity (arrows) 

with antibodies specific for Dsg1+2, plakoglobin as well as Pkp2 and Pkp3. As 

negative controls, the antibody-coated beads used after pre-clearing (Ab-control) and 

IPs using antibodies specific for VE-cadherin clearly have been used. The lower 

immunoreactive positive band (~50 kDa) represents the heavy chains of the 

antibodies used for IP. Protein marker bands (on the left margin) correspond to 212, 

158, 116, 97.2, 66.4, 55.6, 42.7 and 34.6 kDa (from top to bottom). 

 

Figure 8. Localization of Non-Desmosomal Proteins with Respect to Adhering 

Junctions (AJs) and Other Cortical Structures of Dense-Grown, Substratum-

Adherent K562 Cells 

(A and B) Double-label laser-scanning confocal immunofluorescence microscopy 

comparing the localization of afadin (A, red) and desmoglein Dsg2 (B, red) with that 

of the actin-binding, cortical protein, α-actinin (A, green; B, green). Note extended 

regions of co-localization of afadin and α-actinin, as shown by the yellow merge color 

in A, whereas B shows that the mostly linear localization of α-actinin (green) is 

completely different from the punctate reaction sites of desmoglein Dsg2. Scale bars: 

10 µm 
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Molecular Characterizations of Novel Types of Adhering Junctions (AJs) 

Containing Desmosomal Proteins Which Have Spontaneously Formed in 

Clonal Sublines of Human Hematopoietic K562 Tumor Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Molecules identified in AJs of the fifteen clonal sublines of human 
hematopoietic K562 tumor cells as determined by SDS-PAGE and immunoblotting as 
well as by immunocytochemistry. Symbols: +, moderate intensity of the reaction for 
the molecules tested; ++ high intensity of reaction; - not detected. Six major different 
subtypes have so far been distinguished with respect to AJ formations: (I) AJs 
comprising desmosomal molecules, with the exception of any desmocollin and 
desmoplakin; (II) AJs with all desmosomal molecules, including desmoplakin, but 
without any desmocollin; (III) AJs comprising the desmosome-type molecules as in 
type (I) plus the armadillo plaque proteins β-catenin, p120 and p0071; (IV) AJs with a 
full desmosomal molecule complement, including desmocollin Dsc2; (V) AJ-type 
assemblies similar to that presented in type (III) but without detectable desmocollins 
and desmogleins; (VI) punctate AJ-type assemblies positive for desmosomal 
cadherins, Dsg2 and Dsc2, and the plaque proteins as specified; asterisks denote 
reactions of low and sometimes variable intensity. 

   AJ Subtype    

              Transmembrane 

AJ Cadherins 

I II III IV V VI 

       E-Cadherin - - - - - - 
P-Cadherin - - - - - - 
VE-Cadherin - - - - - - 
N-Cadherin - - - - - - 
Cadherin 11 - - - - - - 
 - -  - - - Desmoglein 1 - - - - - - 
Desmoglein 2 ++ ++ ++ ++ - + 
Desmoglein 3 - - - - - - 
Desmoglein 4 - - - - - - 
 - -  - - - Desmocollin 1 - - - - - - 
Desmocollin 2 - - - + - + 
Desmocollin 3 - - - - - - 
       
AJ Plaque 

Proteins 

      

 - -  - - - α-Catenin - - - - - - 

β-Catenin - - + - + +* 

Plakoglobin ++ ++ ++ ++ ++ + 

Protein p120 - - + - + +* 

Protein p0071 - - + - + +* 

Plakophilin 1 - - - - - - 

Plakophilin 2 + ++ ++ ++ ++ +* 

Plakophilin 3 + + + + + +* 

Desmoplakin - ++ - + - - 
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SUPPLEMENTAL DATA 

Figure S1. Coincident and Differential Immunofluorescence Microscopic 
Localization of the Two Desmosomal Cadherins and Plakophilin, Pkp2, in 
Different Types of Adhering Junctions (AJs) and Half-Junctions in Human 
Hematopoietic K562 Tumor Cells 
 
(A) Survey micrograph showing a colony of cells with punctate AJs positive for 

desmocollin Dsc2 (A; rabbit antibodies, red) and (B) partial magnification of the upper 

part of (A) shown in double-label laser-scanning confocal immunofluorescence 

microscopy a differential interference contrast background, together with the reaction 

for desmoglein Dsg2 (B; mAb, green). Only the merged color picture is shown here. 

Note that in this AJ-type (subtype VIa) most reaction sites are positive for both Dsg2 

and Dsc2 (yellow merge color) but that there are also some additional punctate sites 

which are positive for Dsc2 only (red dots, denoted by triangular marks). (C) Double-

label immunolocalization on a differential interference contrast background as in (B), 

showing complete co-localization of both Dsg2 and Dsc2 in desmosome-like AJs 

(subtype VIb) of varying sizes (only the yellow merge color picture is shown), 

representing either cell-cell AJs or surface-exposed half-AJs, characteristic of a 

specific type of subline (VIa). (D) Double-label immunolocalization (optical conditions 

as in C), presenting a subtype (VIc) showing complete differential localization of 

desmoglein Dsg2 (green arrows) and desmocollin Dsc2 (red, triangular marks), 

illustrating that here the molecular organization of AJ-type junctions is regulated 

differently from the colocalization noted in the other two subtypes and in regular 

desmosomes. (E) Differential topogenesis of AJ-related clusters of desmoglein Dsg2 

(green, small arrows) and plakophilin Pkp2 (red, triangular marks), indicating that in 

this specific subtype both, the cadherin and the plaque protein, are synthesized but 

not co-assembled. Scale bars: 5 µm (E); 10 µm (A-D) 
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Figure S2. Immunolocalization and Molecular Identification of the 
Transmembrane Glycoprotein, Epithelial Cell Adhesion Antigen (EpCAM), in 
Adhering Junctions (AJs) of Colonies of Hematopoietic K562 Cell Cultures 
 

(A) Double-label laser-scanning confocal immunofluorescence microscopy on 

differential interference contrast background, comparing the localization of EpCAM 

(red) with that of desmoglein Dsg2 (green, denoted by triangular marks). Note the 

extended and near-continuous cell-cell associations as well as distinct dots. (B) 

Higher magnification immunofluorescence microscopy of EpCAM (red), showing 

clearly the punctate EpCAM-containing junction structures as well as punctate 

EpCAM sites in free plasma membrane regions. (C) Immunoblot reactions of similar 

amounts of SDS-PAGE-separated cytoskeletal proteins from cultured human HaCaT 

keratinocytes, liver carcinoma cells of line PLC and hematopoietic K562 cells, probed 

with an antibody specific for EpCAM. Note that besides the epithelial reaction in the 

HaCaT and PLC cells, typical “twin band” immunoreactivity is also seen in K562 cell 

proteins, using antibodies specific for EpCAM (in this case mAb 33.2 has been used). 

After somewhat prolonged exposure, the intensity of the EpCAM-reaction indicates 

that EpCAM is indeed a regular frequent and major plasma membrane component of 

K562 cells (lane K562*). Scale bars: 10 µm. Co-electrophoresed reference protein 

bands (on the left margin) indicate molecular weights 158, 116, 97.2, 66.4, 55.6, 42.7 

and 34.6 kDa (from top to bottom).  
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Table S1. - Primary antibodies used in this study. 
 

Antigen Antibody type Source (reference) 

Transmembrane Proteins   

E-Cadherin a) mAb, m  BD Biosciences Pharmingen (Heidelberg, 
Germany) 

 b) As, rb Epitomics Inc. (Burlingame, CA, USA.) 

N-Cadherin a) mAb, m  BD Biosciences  

 b) As, rb  QED Bioscience Inc (San Diego, CA, USA) 

P-Cadherin mAb, m BD Biosciences  

VE-Cadherin a) mAb, m (BV9)  Gift of E. Dejana (University of Milan, Italy) 

 b) As, rb Cayman Chemical Company (Ann Arbor, MI, 
USA) 

Cadherin 11 a) mAb, m  Zymed Laboratories (San Francisco, CA, USA)

 b) As, rb Zymed Laboratories 

Desmoglein 1 a) mAb, (P23) Progen Biotechnik (Heidelberg, Germany) 

Desmoglein 1+2 mAb, (DG 3.10) Progen Biotechnik 

Desmoglein 2 a) mAb, m (10G11) Progen Biotechnik 

 b) mAb, m (G96) Progen Biotechnik 

 c) mAb, m (G129) Progen Biotechnik 

 d) As, rb Progen Biotechnik 

 e) As, gp Progen Biotechnik 

Desmoglein 3 mAb, m (G194) Progen Biotechnik 

Desmoglein 4 As, gp Progen Biotechnik 

Desmocollin 1 mAb, m (U100) Progen Biotechnik 

Desmocollin 2 As, rb Progen Biotechnik 

 As, gp Progen Biotechnik 

Desmocollin 3 mAb, m (U114) Progen Biotechnik 

Occludin a) mAb, m  Zymed Laboratories 

 b) As, rb Zymed Laboratories 

Claudin 1 As, rb Zymed Laboratories 

Claudin 2 As, rb Zymed Laboratories 

Claudin 3 As, rb Zymed Laboratories 

Claudin 4 mAb, m Zymed Laboratories 

Nectin 3 As, rb Santa Cruz Biotechnology Inc. (Santa Cruz, 
CA, USA) 

Human Epithelial Antigen 
   (EpCAM) 

a) mAb, m (HEA125) Progen Biotechnik 

 b) mAb, m (MOC-31) Progen Biotechnik 

 c) mAb, m (33.2) Gift of G. Moldenhauer (German Cancer 
Research Center) 

Junctional Adhesion    
   Molecule (JAM-A) 

As, rb Zymed Laboratories 
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AJ Plaque Proteins   

α-Catenin a) mAb, m Zymed Laboratories 

 b) As, rb Sigma (St. Louis, MO, USA) 

β-Catenin a) mAb, m BD Biosciences  

 b) As, rb Sigma 

Plakoglobin a) mAb, m (11E4)  Gift of M.J. Wheelock (University of Nebraska, 
Omaha, NE, USA) 

 b) mAb, m (PG 5.1) Progen Biotechnik 

Protein p120 a) mAb, m BD Biosciences  

 b) As, rb Sigma 

Protein p0071 a) mAb, m Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Protein ARVCF a) mAb, m Gift of I. Hofmann (German Cancer Research 
Center) 

 b) AS, gp Progen Biotechnik 

Plakophilin-1 a) mAb, m (PP1-5C2) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Plakophilin-2 a) mAb, m (Pkp2-518) Progen Biotechnik 

 b) mAb, m (PP2/62, 
PP2/86, PP2/150) 

Progen Biotechnik 

 c) AS, gp Progen Biotechnik 

Plakophilin-3 a) mAb, m (PKP3-270) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Desmoplakin a) mAb, m (DP-2.15,    
DP-2.17, DP-2.20) 

Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

  
Intermediate Filament 
Proteins  

  

  
Vimentin a) mAb, m (3B4) Progen Biotechnik 

 b) mAb, m (V9) Progen Biotechnik 

 c) AS, gp Progen Biotechnik 

Most keratins  
   (“pan-keratin”) 

mAb, m (Lu5) Progen Biotechnik 

Keratin 8 mAb, m (Ks8-17.2) Progen Biotechnik 

Keratin 18 mAb, m (Ks18.04) Progen Biotechnik 

Keratins 8 and18 AS, gp Progen Biotechnik 

Keratin 19 a) mAb, m (Ks19.10) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Keratin 20 a) mAb, m (Ks20.10) Progen Biotechnik 

 b) AS, gp Progen Biotechnik 

Desmin mAb, m DAKO (Hamburg, Germany) 
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Actin - Microfilament and 
Associated Proteins 

  

Afadin AS, rb Sigma 

α-Actinin a) mAb, m Sigma 

 b) AS, rb Sigma 

Protein ZO-1 a) mAb, m Zymed Laboratories 

 b) AS, rb Zymed Laboratories 

Smooth muscle α-actin mAb, m (ASM-1) Progen Biotechnik 

Cardiac/embryonic α-actin mAb, m (AC1-20.4.2) Progen Biotechnik 

Troponin T skeletal muscle mAb, m Sigma 

Troponin T cardiac AS, rb Zytomed Systems (Berlin, Germany) 

Smooth muscle 
   tropomyosin 

AS, rb Sigma 

Myosin skeletal muscle 
   heavy and light chain 

AS, rb Sigma 

 

Table S1 - Primary antibodies used in this study. As - antiserum or IgGs prepared 

therefrom; m - mouse; mAb - monoclonal antibody; rb - rabbit; gp - guinea pig. 

 

For characterizations of more recently described antibodies see, e.g., Franke et al., 

2006; Hofmann et al., 2008; Barth et al., 2009; Moll et al., 2009; Rickelt et al., 2009. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Special Cell Cultures and Treatments 

Various K562 cell culture sublines (see also Table 1) were repeatedly treated with 

differentiation-promoting or -inhibiting agents added to the culture medium, mostly for 

periods of 3-6 days. In particular, sublines with different AJ patterns were treated with 

inducers or promotors of erythroid or megakaryocytic differentiation, essentially using 

the agents and protocols published in the literature such as hemin, sodium butyrate 

(e.g., Järvinen et al., 1990; Rowley et al., 1985), diverse phorbolesters (e.g., Alitalo et 

al., 1990; Hickstein et al., 1993; Shelly et al., 1998; Cheng et al., 1994), cytosine 

arabinoside, 5-azacytidine or related drugs (e.g., Darmon et al., 1984; Bianchi et al., 

1999; Huang et al., 2002), transforming growth factor-β1 or erythropoietin (EPO) and 

EPO-mimicking peptides (e.g., Burger et al., 1994; Debili et al., 1996; Lutomski et al., 

1997; Stopka et al., 1998; for review see Tsiftsoglou et al., 2003).  

For comparison we studied other hematopoietic and mesenchymally derived, 

human cell lines such as HEL, HL-60, BV173, KG-1a and RPMI 8226, SV40-

transformed human fibroblasts of line “SV80”, and some malignantly transformed or 

untransformed human epithelium-derived cell lines such as human HaCaT-

keratinocytes and hepatocellular carcinoma cells of line PLC (cf. Rickelt et al., 2009), 

all kept in Dulbeccos´s Minimal Essential Medium (DMEM; Invitrogen), supplemented 

with 10 % FCS and 2 mM glutamine. 

 

Immunoblotting 

For immunoblotting of the proteins transferred to PVDF membranes, background 

reactions due to non-specific binding were usually reduced by prior 30 min incubation 

in 5 % low-fat dry milk in PBS containing 0.05 % Tween (PBS-T). Blots were then 

incubated with the specific primary antibodies for 1 h, washed thrice in PBS-T and 

incubated for at least 30 min with HRP-conjugated secondary antibodies, followed by 

at least three washes of the blot paper in PBS. For the detection of the secondary 

antibodies bound to reactive proteins, enhanced chemiluminescence (ECL; 

Amersham-Buchler, Braunschweig, Germany) was applied. 
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