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ZUSAMMENFASSUNG

In der vorliegenden Arbeit untersuchen wir durch starke Felder hervorgerufene relativistische Prozesse
in hochgeladenen Ionen. Im ersten Teil der Arbeit studieren wir die Resonanzfluoreszenz von Laser-
getriebenen Ionen im relativistischen Bereich, indem wir die zeitabhängige Master-Gleichung in einem
Mehrniveaumodell lösen. Unser ab initio Ansatz, basierend auf der Dirac-Gleichung, ermöglicht es
hochrelativistische Ionen zu untersuchen und liefert folglich eine präzise Methode, um korrelierte rel-
ativistische Dynamik, Phänomene der Quantenelektrodynamik gebundener Zustände und Kerneffekte
durch die Anwendung von kohärentem Röntgenlicht zu überprüfen. Atomare Dipol- oder Multipolmo-
mente können bis zu nie da gewesener Genauigkeit bestimmt werden, indem das durch Interferenz ver-
schmälerte Fluoreszenzspektrum gemessen wird. Desweiteren untersuchen wir die Niveaustruktur von
schweren Wasserstoff-ähnlichen Ionen in Laserfeldern. Die Wechselwirkung mit dem Lichtfeld führt zu
dynamischen Verschiebungen der elektrischen Energieniveaus, was relevant ist für Spektroskopieexperi-
mente. Die elektrischen Zustände werden vollständig relativistisch behandelt durch die Dirac-Gleichung.
Unser Formalismus geht über die Dipolapproximation hinaus und berücksichtigt Nicht-Dipoleffekte wie
Retardierung und die Wechselwirkung mit den Magnetfeldkomponenten des Laserfeldes. Wir konnten
Wirkungsquerschnitte für die zwischen-Schalen trielektrische Rekombination (TR) und den quadru-
elektrischen Rekombinationsprozess vorhersagen, welche experimentell mit Hilfe von Elektronenstrahl-
Ionenfallen bestätigt wurden, hauptsächlich für C-artige Ionen von Ar, Fe und Kr. Für Kr30+ wurden
Zwischen-Schalen TR-Beiträge von nahezu 6% zur gesamten resonanten Photorekombinationsrate ge-
funden.

ABSTRACT

In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part,
we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving
the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac
equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means
to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear ef-
fects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be
determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum.
Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction
with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spec-
troscopic experiments. We apply a fully relativistic description of the electronic states by means of the
Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole
effects of retardation and interaction with the magnetic field components of the laser beam. We predicted
cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination
processes which have been experimentally confirmed in electron beam ion trap measurements, mainly
for C-like ions, of Ar, Fe and Kr. For Kr30+, inter-shell TR contributions of nearly 6% to the total
resonant photorecombination rate were found.
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Crespo López-Urrutia, Resonant high-order electronic recombination in medium-Z highly charged
ions, J. Phys: Conf. Ser., accepted (2010)

• O. Postavaru, Z. Harman, C. H. Keitel, High-precision metrology of highly charged ions via rela-
tivistic resonance fluorescence, Phys. Rev. Letter 106, 033001 (2011)

Results from work on the thesis currently in preparation:

• O. Postavaru, Z. Harman, C. H. Keitel, Relativistic light-shifts in hydrogen-like ions

• O. Postavaru, Z. Harman, C. H. Keitel, Relativistic theory of resonance fluorescence in three-level
systems



DECLARATION

The work in this thesis is based on research carried out at the Max Planck Institute for Nuclear Physics
(MPIK) in Heidelberg, Germany, within the Theory Division of Prof. Dr. Christoph H. Keitel, Theoreti-
cal Quantum Dynamics in Intense Laser Fields. No part of this thesis has been submitted elsewhere for
any other degree or qualification and it is all my own work unless referenced to the contrary in the text.

Copyright c©2011 by Octavian Postavaru.
“The copyright of this thesis rests with the author Octavian Postavaru. No quotations from it should be
published without the author’s prior written consent and information derived from it should be acknowl-
edged.”

1



2



Contents

Abstract 1

Declaration 1

1 INTRODUCTION 9

2 RELATIVISTIC THEORY OF RESONANCE FLUORESCENCE IN A TWO- AND THREE-LEVEL SYS-
TEM 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The spectrum of resonance fluorescence in two-level approximation . . . . . . . . . . . 16

2.2.1 Description of the model and equations of motion . . . . . . . . . . . . . . . . . 17

2.2.2 Electric field operator for spontaneous emission from a single atom . . . . . . . 20

2.2.3 The spectrum of resonance fluorescence . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Calculation of the fluorescence spectrum . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Analytic calculation of the spectra in the strong field approximation . . . . . . . 27

2.2.6 Appearance of sidebands in the strong field limit . . . . . . . . . . . . . . . . . 31

2.3 Calculation of transition matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Electric dipole interaction matrix elements with Schrödinger wave functions . . 32

2.3.2 Relativistic dipole interaction matrix elements in the length gauge . . . . . . . . 34

2.3.3 Relativistic dipole interaction matrix elements in the transverse gauge . . . . . . 37

2.3.4 Magnetic dipole interaction in the transverse gauge . . . . . . . . . . . . . . . . 40

2.3.5 Multipole interaction matrix elements in the transverse gauge . . . . . . . . . . 42

2.4 Calculation of relativistic decay widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Nuclear proton distributions explored by relativistic resonance fluorescence . . . . . . . 49

2.5.1 Isotope shifts and nuclear charge distribution parameters . . . . . . . . . . . . . 49

2.5.2 Isotope shifts investigated by means of relativistic resonance fluorescence . . . . 52

2.6 The spectrum of resonance fluorescence in three-level approximation . . . . . . . . . . . 54

2.6.1 Description of the model and equations of motion . . . . . . . . . . . . . . . . . 54

2.6.2 The calculation of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3



4 CONTENTS

2.6.3 Analytic calculation of the spectra in the strong field approximation . . . . . . . 60

2.7 Total fluorescence and steady-state population . . . . . . . . . . . . . . . . . . . . . . . 72

2.8 High-precision metrology of highly charged ions via relativistic resonance fluorescence . 72

3 RELATIVISTIC LIGHT SHIFTS IN HYDROGENIC IONS 77

3.1 Dynamic shift by means of perturbation theory . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Evaluation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Radial matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Angular matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 HIGHER-ORDER RESONANT RECOMBINATION PROCESSES 93

4.1 Total cross section for resonant recombination processes . . . . . . . . . . . . . . . . . 94

4.2 Description of the relativistic many-body system: the multiconfiguration Dirac-Fock
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Evaluation of Coulomb-Dirac continuum wave functions . . . . . . . . . . . . . . . . . 96

4.4 Calculation of Auger rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Radiative transitions between many-electron states . . . . . . . . . . . . . . . . . . . . 98

4.6 Comparision of theoretical and experimental results . . . . . . . . . . . . . . . . . . . . 99

5 CONCLUSIONS AND OUTLOOK 105

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix 109

A Coulomb-Dirac Green’s function 111

B Reduction of angular matrix elements 113

C Couplings of subshell angular momenta 119

Acknowledgments 127



List of Figures

1.1 An example of a highly charged atomic ion: carbon-like krypton. Its charge number is
Z=36, just like that of the neutral krypton atom, and its shell consists of six electrons
just like in the case of the carbon atom. The ions net charge is therefore q = +30e, with
e being the elementary charge, and the ion is denoted as Kr30+. . . . . . . . . . . . . . 10

1.2 Level scheme of an atomic three-level system driven by two different laser fields. In the
relativistic ionic systems studied in our work, the transition between the uppermost level
3 and the ground state 1 has energies in the keV range and is driven by an x-ray laser
(frequency ωx). Level 1 and 2 are hyperfine-split ground state sublevels with transition
energies in the eV range, and are connected by an optical laser (frequency ωo). The thick
arrows represent fast (electric dipole) spontaneous decay channels and the thin arrows
represent slow (magnetic dipole) decay transitions. . . . . . . . . . . . . . . . . . . . . 11

1.3 Diagrams illustrating the second-order light shift effect with bound relativistic electrons.
The double lines represent Furry-picture electronic wave functions and propagators, i.e.
solutions of the Dirac equation with the Coulomb nuclear potential. The wavy lines
represent emitted or absorbed real photons from the laser field. . . . . . . . . . . . . . . 12

1.4 Scheme of resonant electron recombination processes in a six-electron ion: In DR (blue
diagram) one bound electron is excited by the captured electron, in TR (red diagram) two
and in QR (green diagram) three electrons are promoted by the captured electron. . . . . 12

2.1 Schematic setup of a resonance fluorescence experiment with trapped highly charged
ions: the ions are trapped in the electromagnetic potential of an EBIT, Paul trap or Pen-
ning trap, and a laser beam is directed through the ion cloud. Emitted photons (not
shown) are registered with a detector or spectrometer. . . . . . . . . . . . . . . . . . . . 16

2.2 The atomic dipole γ and the k-vector of the electric field in polar coordinates. η denotes
the angle of the dipole with the z axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The scheme of the scattering of an electromagnetic field with frequency ν and bandwidth
D. If Γ � D, the emitted light will have a bandwidth D centered at ν. . . . . . . . . . . 32

2.4 Splitting of the atomic states by the dynamic Stark effect. See text for notations and
further explanations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 The two-parameter Fermi charge distribution normalized by the constant ρ0 (see text).
The half-density radius c and the surface thickness t are indicated. [62] . . . . . . . . . . 50

5



6 LIST OF FIGURES

2.6 Spectrum of fluorescence photons for the 2s–2p3/2 circular (m=3/2–1/2) transition in
Li-like U as a function of the fluorescence photon frequency ωf and the detuning of the
laser frequency ωl from the ionic transition with ωtr = 4106.6 eV. The laser intensity
is 1012 W/cm2. The dashed curve shows the frequency-integrated detected signal as a
function of the detuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Shift of the relativistic resonance fluorescence spectrum as a function of the mean square
proton radius variation δ〈r2〉 for the case of the 2s–2p3/2 transition in Li-like uranium.
The spectrum at the bottom corresponds to the reference isotope A=238 and is plotted
against the fluorescence photon frequency ωf around the transition frequency ωtr of
4106.6 eV. The laser intensity is 1012 W/cm2 and the laser detuning is assumed to be 0
for any isotope. See text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.8 Level scheme of an (a) V -system, (b) Λ-system, and (c) Ξ-system. Here, ω1 and ω2

are laser frequencies, and ∆1 and ∆2 are the corresponding detunings from the atomic
transition frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9 Fluorescence photon spectrum for the 2s↔2p3/2 transition in Li-like 209Bi as a function
of the fluorescence photon frequency ωf . (a) Dashed (red) curve: An x-ray laser (Ix =
5 × 1011 W/cm2) is in resonance with the ionic electric dipole (E1) transition at ωx =
2788.1 eV between the hyperfine-split ground state 1 (2s with F = 4, MF = 4) and the
uppermost state 3 (2p3/2 with F = 5, MF = 5). This curve is multiplied by a factor of
5 × 1011. Thick (thin) dashed arrows represent fast E1 x-ray (slow M1 optical) decays.
(b) Continuous (blue) curve: an additional optical driving (Io = 1014 W/cm2) is applied
on the ωo = 0.797 eV [76] M1 transition between the hyperfine-split magnetic sublevels
1 (F = 4, MF = 4) and 2 (F = 5, MF = 5). The inner sidebands are suppressed. See
text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.10 (a) Density plot of the fluorescence spectrum (logarithmic scale, arb. units) as a function
of the fluorescence photon frequency ωf with respect to the x-ray transition frequency
ω31 (abscissa) and the laser detuning ∆ = ωx − ω31 (ordinate), with the frequencies
normalized by the Γ31 rate. The parameters are for Bi as in Fig. 2.9. (b) Continuous
(blue) curve: ratio of the interference-narrowed width ΓSB of the outer sideband peaks to
their distance Ds(0) = 4G = 4

√
g2
31 + g2

21 as a function of the optical Rabi frequency
g21, with further parameters for the Bi three-level system as given in the third line of
Table 2.2. Dashed (red) curve: deviation of the sideband distance Ds, with ∆ = Γ31.
Dotted (green) curve: deviation of the exact sideband distance D from its value in the
secular limit Ds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Diagrams representing the lowest-order perturbative light shift corrections. The Coulomb-
dressed electron is depicted by a double line and the wavy lines represent photons. . . . 80

4.1 Scheme of correlated resonant electron recombination processes: In dielectronic recom-
bination (blue) one bound electron is excited by the captured electron, in trielectronic
recombination (red) two and in quadruelectronic recombination (green) three electrons
are promoted to higher states by the captured electron (K-LL, KL-LLL and KLL-LLLL
processes, respectively, where the initial and final shells of the bound and active electrons
are specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES 7

4.2 Different contributions to the energy of the ground state and the excited autoionizing
state of a given transition in C-like Kr, as calculated with the methods presented in the
previous sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Total calculated cross section for resonant recombination, involving DR, TR and QR
channels, for few-electron Ar ions. The electron energy range of the K-LL resonances
is shown. The Lorentzian peaks have been convoluted with a Gaussian line shape with a
FWHM of 10 eV for better comparision with experiments. . . . . . . . . . . . . . . . . 100

4.4 Total calculated cross section for resonant recombination, involving DR, TR and QR
channels, for few-electon Fe ions. The electron energy range of the K-LL resonances is
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Ratio of trielectronic to dielectronic recombination resonance strengths for elements with
different atomic numbers Z for certain transitions involving the B-, C- and N-like charge
states. As expected, the relative weight of the TR process which is due to higher-order
electron correlation decreases for stronger central Coulomb fields. . . . . . . . . . . . . 101

4.6 DR and TR resonances in the K-LL DR region of C- to O-like Kr ions as a projection
and in three-dimensional illustration (photon intensity against electron beam energy and
photon energy). Predictions (this work) for DR, TR and QR resonances and their strength
are marked by blue, red and green lines, respectively. At the top the calculated resonances
(color coded) for differently charged ion species are indicated. . . . . . . . . . . . . . . 102

4.7 DR, TR and QR resonances strengths for He- to O-like Kr ions. Theory: DR, blue circles;
TR, red triangles; QR, green squares. Measured TR strength: magenta diamonds. The
relative strengths of the higher-order recombination processes with respect to total DR
are indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Theoretical (uppermost panel) and experimental (middle panel) intensity (arbitrary units)
of x-ray emission as a function of the x-ray photon energy and the electron beam energy,
for B- to O-like Fe ions [9]. Also, the photon yield integrated over the x-ray energies is
shown in the bottom panel. The light spots correspond to DR, TR and QR resonances.
QR resonances, indicated by the long red arrows and the green area, have been observed
for the first time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Two-photon processes involving highly charged ions: excitation, ionization, and free-
free and bound-free electron-positron pair creation, respectively. The panels in the upper
row show the Feynman diagrams of the corresponding processes, while the panels in the
lower row show the level structures involved. See text for further details. . . . . . . . . 108

5.2 Scheme of a Doppler-free spectroscopic experiment with two-photon excitation. The
atomic transition corresponds to two times the photon energy hν. The incoming laser
light is split into two counter-propagating beams by the use of two parallel planar mirrors
(M). The atoms (or ions), trapped in the interaction region between the mirrors, move
with a random thermal velocity v. In the reference frame of the ion, the photons arriving
from the two different directions have slightly Doppler-shifted frequencies; however, as
the shifts have different signs in the dominant linear order in v/c, the blue and red shifts
largely cancel. As a consequence, all ions (possessing different velocities) can absorb
two laser photons and emit fluorescence photons. . . . . . . . . . . . . . . . . . . . . . 108



8 LIST OF FIGURES



–I–

INTRODUCTION

In the present thesis, we theoretically investigate strong-field dynamical processes in highly charged ions.
Highly charged ions (HCI) are ions in high charge states, i.e. with most of the shell electrons removed.
An example of a highly charged ion is e.g. carbonlike (C-like) krypton (see Fig. 1.1), which was also
studied in this work and in our experimental collaboration (see Chapter 4). Research with these exotic
ions is motivated by several areas of science. The strong Coulomb field of the nucleus allows tests of
quantum electrodynamics in the strongest electromagnetic fields accessible. Due to the large overlap of
the electronic probability density with the nuclear matter, nuclear effects on the electronic shell can also
be effectively investigated in such species, and nuclear properties can be inferred through experiments
with ions in high charge states. For example, one can find HCI in cosmic matter, or produce them
artificially in the laboratory by means of Tokamak plasmas or electron beam ion traps (EBITs) .

Quantum electrodynamics (QED) is the best confirmed field theory in physics. QED has an enormous
success in predicting the electrons properties in weak fields. Approximately 50 years ago, Lamb and
Rutherford observed for the first time a shift, the Lamb shift, in the atomic structure scheme of the
hydrogen atom. Now QED effects like the Lamb shift can be calculated with high accuracy. The nuclear
Coulomb field increasing with the charge number Z determines the atomic strucutre of an ion. Thus, a
primary goal of research with HCI is to explore the behavior of electrons in the strongest electromagnetic
fields accessible to experimental investigation. The QED phenomena in intense fields can be studied
by measuring electron binding energies. One can test the QED predictions comparing them with the
experimentally determined level energies. Due to the strong nuclear Coulomb field, the HCI cannot be
described perturbatively. Therefore, one needs to turn to a non-perturbative treatment and apply the exact
wave functions and propagators corresponding to the strong central nuclear field. Also, the appearance
of poles in the Green’s functions due to bound states and the presence of the negative Dirac continuum
introduces further issues that need to be accounted for in a rigorous theoretical treatment of such systems.

Uranium is the heaviest element in which QED effects can be studied in the laboratory: the transuranium
elements are radioactive and usually short lived, forbidding a conclusive experimental study of the elec-
tron shell. Heavy lithium-like ions are particularly well suited because the electron-electron interaction
contributions can be calculated reliably and the relatively low atomic excitation energies are strongly
influenced by QED effects.

HCI do not occur naturally on Earth, but they are highly present in the universe, since astrophysical
plasmas such as those in stars have usually very high temperatures. This motivates to investigate HCI
from an astrophysical point of view. The radiation from HCI is intense and may be detected on the Earth
or in space laboratories, therefore, recorded electromagnetic spectra of HCI may deliver information for
a better understanding of astrophysical processes.

9



10 I 1. INTRODUCTION

Figure 1.1: An example of a highly charged atomic ion: carbon-like krypton. Its charge number is Z=36,
just like that of the neutral krypton atom, and its shell consists of six electrons just like in the case of the
carbon atom. The ions net charge is therefore q = +30e, with e being the elementary charge, and the
ion is denoted as Kr30+.

Research with HCI is also motivated by its interest for controlled nuclear fusion, which may be the dom-
inant source of energy used by mankind in the future. In Tokamak plasmas, atoms from the wall of the
chamber are constantly ionized to high charge states. Also, gases such as argon and krypton are artifically
injected into the plasma: through energetic collisions within the electron beam, they lose most of their
shell electrons, and become highly charged. During this process, and through photorecombination, x rays
are emitted, which works to cool the plasma. This gives one an additional degree of freedom to control
the thermodynamics of the hot plasma. Furthermore, the emission lines originating from HCI provide an
important plasma diagnostic tool. The competing processes of collisional excitation and ionization and
radiative and collisional de-excitation and recombination of HCI in a plasma are defined by the plasma
parameters such as composition, temperature and density. Such a situation can only very approximately
be described by plasma models and is nowadays treated by involved numerical simulations, for which
respective precise atomic data from theoretical calculations or experiments is a prerequisite.

The discovery of the parity non-conservation (PNC) – the lack of left-right mirror symmetry – in the
beta decay of 60Co by Wu and co-workers about forty years ago marked an important landmark in the
history of physics. The parity non-conservation in cesium atoms has lead to the discovery of the nuclear
anapole moment. Even for physics beyond the Standard Model, parity non-conservation could be used
as an important probe. A further increase in sensitivity to PNC phenomena are expected from theoretical
and experimental studies involving highly charged ions: the inner-shell electrons mostly influenced by
PNC effects can be most effectively addressed in heavy few-electron systems. Experiments with highly
charged uranium ions to explore this field are currently planned at FAIR to be constructed as an extension
of the GSI facility at Darmstadt, Germany.

After this general overview about the relevance of HCI in physics, in the following we give a more
detailed summary of the topics discussed in this thesis:

In Chapter 2, we develop a fully relativistic theory of resonance fluorescence. In the process of resonance
fluorescence, a two- or many-level atomic system is driven by a laser field, and the power spectrum is
measured. In principle, if the field is monochromatic, we expect the atom to absorb and to re-emit
photons at the same frequency. The spectral width of the fluorescent light is given by the natural decay
width of the upper state. The situation becomes more complicated when the intensity of light increases
and the Rabi frequency becomes comparable to the transition linewidth. In this situation, due to the Stark
splitting, the sidebands start to show up in the spectrum of fluorescence radiation. This is the so-called
Mollow spectrum.
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Figure 1.2: Level scheme of an atomic three-level system driven by two different laser fields. In the
relativistic ionic systems studied in our work, the transition between the uppermost level 3 and the ground
state 1 has energies in the keV range and is driven by an x-ray laser (frequency ωx). Level 1 and 2 are
hyperfine-split ground state sublevels with transition energies in the eV range, and are connected by an
optical laser (frequency ωo). The thick arrows represent fast (electric dipole) spontaneous decay channels
and the thin arrows represent slow (magnetic dipole) decay transitions.

In the case of atomic systems with higher nuclear charges or in the case of certain transitions, the usual
non-relativistic treatment is not valid. Not only do the electronic wave functions differ significantly from
the Schrödinger wave functions, but also the interaction with the light field is modified. Therefore, we
formulate an ab initio description that is inherently relativistic, i.e. it is based on the Dirac equation.
Such a formalism is especially needed in the case of inner-shell transitions of highly charged ions. These
transitions can nowadays or in the near future be driven by x-ray lasers or coherent x-ray light created by
high harmonic generation schemes, therefore, the understanding of the relativistic resonance fluorescence
spectrum is mandatory.

The theoretical description of resonance fluorescence is not only interesting on its own but it also lays
the foundation of laser spectroscopic methods. High-precision optical laser spectroscopy is a versatile
tool to investigate correlated relativistic quantum dynamics, the testing of fundamental theories like
quantum electrodynamics (QED) [8, 39] or parity non-conservation in atomic systems, as summarized
previously. In the regime of heavy few-electron systems, however, the accuracy of optical spectroscopy
can seldom be exploited due to the scarcity of low-frequency transitions. With the advent of modern
short-wavelength laser systems, the accuracy and versatility of laser spectroscopy may be combined
with the increased sensitivity to relativistic and QED effects and nuclear properties at higher nuclear
charges and for inner-shell transitions. Brilliant x-ray light has recently enabled to study transitions in
the x-ray regime. Coherent light with photon energies over 10 keV becomes experimentally accessible
in the near future [1, 2], allowing for an extension to heavier systems and the exploitation of coherence
properties.

We study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solv-
ing the time-dependent master equation in a multi-level model. Our ab initio approach may provide a
sensitive spectroscopic tool by applying coherent light with x-ray frequencies. In the scheme we put for-
ward, atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring
the interference-narrowed fluorescence spectrum. To this end, we develop a theoretical formalism for
relativistic resonance fluorescence of a three-level atomic configuration driven by two fields, namely, a
short-wavelength laser and a long-wavelength light source in the optical regime. This scheme is illus-
trated in Fig. 1.2. In such a three-level setting, the linewidth of the spontaneous transition of interest may
be rendered much narrower than the natural linewidth, with the simultaneous increase of the total emitted
intensity by orders of magnitude. Due to this effect, the determination of atomic multipole moments by
means of the detection of the fluorescence spectrum is anticipated to largely increase in accuracy.
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Figure 1.3: Diagrams illustrating the second-order light shift effect with bound relativistic electrons.
The double lines represent Furry-picture electronic wave functions and propagators, i.e. solutions of the
Dirac equation with the Coulomb nuclear potential. The wavy lines represent emitted or absorbed real
photons from the laser field.

Figure 1.4: Scheme of resonant electron recombination processes in a six-electron ion: In DR (blue
diagram) one bound electron is excited by the captured electron, in TR (red diagram) two and in QR
(green diagram) three electrons are promoted by the captured electron.

Furthermore, we investigate in Chapter 3 the level structure of heavy hydrogenlike ions in laser beams
with off-resonant frequencies. In heavy ions, the electrons are tightly bound by the Coulomb potential
of the nucleus, which prohibits ionization even by strong lasers. However, interaction with the light field
leads to dynamic shifts of the electronic energy levels. The dominant diagrams are illustrated in Fig. 1.3.
Here we again apply a relativistic description of the electronic states by means of the Dirac equation.
Theoretical investigation so far apply non-relativistic approaches and are restricted to electric dipole
transitions. Our relativistic generalization allows one to extend the field of investigations to stronger
laser fields, higher frequencies – e.g., x-ray lasers [27] –, and to the highest nuclear charges. Interaction
with the monofrequent laser field is treated by time-dependent perturbation theory. Our formalism goes
beyond the Stark long-wavelength dipole approximation and takes into account non-dipole effects of
retardation and interaction with the magnetic field components of the laser beam. The resulting level
shifts are relevant for experiments at present and near-future laser facilities.

In Chapter 4, we develop a relativistic theoretical formalism and summarize the computational scheme
used for the description of resonant many-body recombination processes. Such processes provide a vi-
able alternative to laser spectroscopy: the ions are excited by beams of electrons rather than photons,
which allows the experimental study of transitions with keV energies even without the use of large-scale
x-ray sources such as synchrotrons or free electron lasers. The most fundamental resonant recombination
process is dielectronic recombination (DR). In this two-step process, a free electron is captured into a
bound state of the ion with the simultaneous excitation of a second, bound electron. This inverse Auger
process is followed by a radiative de-excitation of the so-formed state, completing the photorecombina-
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tion process. This process is illustrated in the first panel of Fig. 1.4. DR often represents the dominant
pathway for populating excited states in plasmas and, consequently, for inducing easily observable x-ray
emission lines which are used as diagnostic tools for fusion plasmas (whereby Kr as well as Ar were cho-
sen as ideal candidates) [22,80], triggering a range of DR studies with highly charged Kr ions [11,29,66].
From a more fundamental point of view, the selectivity of DR [13] allows testing stringently sophisti-
cated atomic structure and dynamics calculations, in particular of relativistic and QED effects in strong
electromagnetic fields.

Beyond the well-known DR, resonant recombination processes involving higher-order correlations are
relevant, too. Here, as displayed in Fig. 1.4, two or even three bound electrons can be simultaneously
excited by the resonantly captured electron in trielectronic or even quadruelectronic recombination (TR
and QR, respectively). It is important to mention that in general TR and QR offer new photorecombina-
tion channels and their contribution to the radiative cooling of Tokamak and astrophysical plasmas needs
to be considered in the theoretical modeling. We calculated TR and QR resonance energies and cross
sections in the framework of the multiconfiguration Dirac-Fock (MCDF) method, which can be regarded
as a relativistic generalization of the Hartree-Fock scheme and will be also briefly described in Chapter 4.

We investigate trielectronic recombination with simultaneous excitation of a K-shell and a L-shell elec-
tron, hence involving three active electrons. Our theoretical prediction triggered experimental activities
at the electron beam ion trap facility of the Max Planck Institute for Nuclear Physics. The TR process
was identified in the x-ray emission spectrum of recombining highly charged Kr, Fe and Ar ions trapped
in the EBIT. An energy resolution three times higher than any reported for this collision energy range
around 10 keV resulted in the separation of the associated lines from the stronger dielectronic resonances.
For Kr30+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were
found, and even higher contributions in the case of the lighter elements of Ar and Fe are deduced from
both theoretical and experimental spectra.

In Chapter 5, conclusions and a brief outlook including proposals concerning possible future theoretical
and experimental work are given. Some additional derivations and intermediate results are presented in
the Appendix.
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–II–

RELATIVISTIC THEORY OF RESONANCE

FLUORESCENCE IN A TWO- AND THREE-LEVEL

SYSTEM

2.1 Introduction

High-precision laser spectroscopy has resulted in crucial advancements in our understanding of nature. In
particular, optical laser spectroscopy (OS) is a versatile tool to investigate correlated relativistic quantum
dynamics, the testing of fundamental theories like quantum electrodynamics (QED) [8, 39] or parity
non-conservation in atomic systems. The determination of atomic dipole or multipole moments via
lifetime measurements by means of, e.g., visible emission spectroscopy [53], approaching the accuracy
of one per thousand, sheds light on QED effects like the electron anomalous magnetic moment. Isotope
shifts (IS) in atomic spectra which has been providing valuable insight into the collective structure of
nuclei: for example, recently, isotope shifts were determined two-photon Doppler-free spectroscopy and
by collinear laser spectroscopy [31, 69]. Beyond purely nuclear effects, the interaction of the correlated
motion of electrons and that of the nucleus can be studied in IS measurements: recently, relativistic
effects on nuclear recoil [73] have been measured in visible forbidden transitions of the few-electron
argon ions by a trapped-ion method [77].

In the regime of heavy few-electron systems, however, the accuracy of optical spectroscopy can sel-
dom be exploited due to the scarcity of low-frequency transitions. Therefore, one has to apply other
techniques. Measuring the 2s↔2p x-ray emission lines of highly charged uranium ions confined in an
electron beam ion trap allowed testing strong-field QED on the two-loop level [8] and delivered a new
value for the radius of the radioactive isotope 235U [26]. Recently, a method based on the storage ring
measurement of dielectronic recombination spectra has yielded the change of the mean square charge
radius for Nd isotopes [12, 21].

With the advent of modern short-wavelength laser systems, the accuracy and versatility of laser spec-
troscopy may be combined with the increased sensitivity to relativistic and QED effects and nuclear prop-
erties at higher nuclear charges and for inner-shell transitions. Brilliant x-ray light has recently enabled
to study transitions in the soft x-ray regime in the intermediate range of nuclear charges [27]. Coherent
light with photon energies over 10 keV becomes experimentally accessible in the near future [1], allow-
ing for an extension to heavier systems and the exploitation of coherence properties. This would also ask
for the validity of numerous quantum control schemes of resonance fluorescence [48, 61, 64, 71, 81, 82]
for concrete systems in the relativistic regime.

15
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Figure 2.1: Schematic setup of a resonance fluorescence experiment with trapped highly charged ions:
the ions are trapped in the electromagnetic potential of an EBIT, Paul trap or Penning trap, and a laser
beam is directed through the ion cloud. Emitted photons (not shown) are registered with a detector or
spectrometer.

In the present work, we investigate the possibility of measuring atomic transition dipole – or multipole
– moments and transition energies via relativistic resonance fluorescence of a three-level atomic config-
uration driven by two fields, namely, a short-wavelength laser and a long-wavelength light source in the
optical regime. In such a three-level setting, the linewidth of the spontaneous transition of interest may
be rendered much narrower than the natural linewidth, with the simultaneous increase of the total emit-
ted intensity by orders of magnitude. Due to this effect, the determination of atomic multipole moments
by means of the detection of the fluorescence spectrum is anticipated to increase in accuracy by several
orders of magnitude.

As relativistic effects on the bound electronic wave function increase rapidly with the nuclear charge
number Z, one needs to formulate a fully relativistic theory of coherent laser-atom interaction based
on the Dirac equation [23]. Not only do the electronic wave functions differ significantly from the
Schrödinger wave functions, but also the interaction with the laser light is modified. For example, mag-
netic dipole transitions, which are non-relativistically forbidden even in the visible range, can only be
explained by a relativistic theory. An approach via the time-dependent numerical solution of the Dirac
equation was recently employed to describe ionization phenomena [43]. For our purposes, one needs to
go beyond this approach and incorporate radiative relaxation in bound-bound transitions. These transi-
tions can nowadays or in the near future be driven by x-ray or soft x-ray lasers, therefore, the understand-
ing of the relativistic resonance fluorescence spectrum is indispensable.

2.2 The spectrum of resonance fluorescence in two-level approximation

In the process of the resonance fluorescence, an atomic system is driven by a laser field, and the power
spectrum of the emitted radiation is measured. If the field is monochromatic, we expect the atom to
absorb and to re-emit photons at the same frequency. The spectral width of the fluorescent light is
given by the natural decay width of the upper state. The situation becomes more complicated when the
Rabi frequency associated with the driving field becomes comparable to, or larger than the transition
linewidth. In this situation, due to the Stark splitting, the sidebands start emerging in the spectrum of
emitted radiation. These sidebands, together with the central peak, form the so-called Mollow spectrum.
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2.2.1 Description of the model and equations of motion

In this section, we are interested in the evolution of a two-level system driven by an incident field of
arbitrary strength whose carrier frequency ω is resonant or nearly resonant with the atomic transition.
The aim is to calculate the complete power spectrum of the radiation spontaneously emitted by the
atomic system (’atom’). The atom is assumed to be isolated and fixed in position.

Let us consider the interaction of a laser having the frequency ω with a two-level atomic system. We
consider |a〉 being the upper state, and |b〉 the lower state of the atom. Considering H0 the unperturbed
Hamiltonian, the following eigenvalue equations hold for the states: H0|a〉 = ~ωa|a〉 and H0|b〉 =
~ωb|b〉. The most general wave function of a two-level system has the form [72]

|Ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉 . (2.1)

The coefficient Ca is the probability amplitude to find the atom in state |a〉, and Cb to find it in the
state |b〉. The total Hamiltonian is the sum of unperturbed and the interaction Hamiltonians, i.e., H =
H0 + H1. One may use the closure property |a〉〈a|+ |b〉〈b| = 1 in order to get the relation [72]

H0 = (|a〉〈a|+ |b〉〈b|)H0(|a〉〈a|+ |b〉〈b|) (2.2)

= ~ωa|a〉〈a|+ ~ωb|b〉〈b| .

One can use the same trick in order to put the interaction Hamiltonian H1 in the form [72]

H1 = −exE(t) (2.3)

= −e(|a〉〈a|+ |b〉〈b|)x(|a〉〈a|+ |b〉〈b|)E(t)
= −(γab|a〉〈b|e−iωt + γba|b〉〈a|e−iωt)E ,

where γab = e〈a|x|b〉 is the transition matrix element and E(t) = E (e−iωt + eiωt) is the field. We kept
the conservative terms only, all other being neglected in the rotating wave approximation. In the above
equation we consider that the electric field is linearly polarized along the x-axis. It is easy to derive the
Hamiltonian of a two-level system interacting with a classical field as

H =
2∑

i=1

εi|i〉〈i|+ ΩR(e−iωt|2〉〈1|+ eiωt|1〉〈2|) . (2.4)

The energies of the stationary states are denoted by εi (i=1,2). ΩR is the Rabi frequency, that depends
on the atomic matrix element as well as on the strength of the laser field.

In order to extract a piece of the system’s information from a state vector |Ψ〉, we calculate the quantum
mechanical expectation value of a given operator O,

〈O〉QM = 〈Ψ|O|Ψ〉 . (2.5)

Usualy we may only know the probability PΨ that the system is in the state |Ψ〉. In this sitauations, we
should do the ensemble average over many replica systems that have been similarly prepared

〈〈O〉QM〉ensemble = Tr(Oρ) , (2.6)

with

ρ =
∑
Ψ

PΨ|Ψ〉〈Ψ| . (2.7)
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If one can write ρ = |Ψ0〉〈Ψ0|, than we call |Ψ0〉 a pure state. It is easy to see that Tr(ρ2) = 1.

Starting with the Schrödinger equation, one can write the equation for the density matrix as

|Ψ̇〉 = − i
~
H |Ψ〉 . (2.8)

From Eq. (2.7) one may get

ρ̇ =
∑
Ψ

PΨ(|Ψ̇〉〈Ψ|+ |Ψ〉〈Ψ̇|) , (2.9)

consideringPΨ time independent. Using Eq. (2.8) to replace |Ψ̇〉 and 〈Ψ̇| in Eq.(2.9) we get the reversible
part of the Liouville equation

ρ̇ = − i
~
[H , ρ] . (2.10)

The Liouville equation in the interaction picture is

ρ̇′ = − i
~
[H ′

1 , ρ
′] , (2.11)

with

H ′
1 = ~ΩR(|2〉〈1|ei∆t + |1〉〈2|e−i∆t) , (2.12)

and ∆ = ω21 − ω. The prime denotes that we are dealing with the interaction picture. Now we do the
following transformation:

Rii = ρii (i = 1, 2), R12 = ρ12e
i∆t , (2.13)

and this allows us to write the master equation in terms of Rij . In the case of the irreversible part of the
master equation, the equation is more complicated [61]

ρ̇′irrev ≡ Λρ′ =
∑
i,j

[|i〉〈j|ρ′|j〉〈i|(Ajiij +A∗jiij)− |j〉〈j|ρ′Ajiij − ρ′|j〉〈j|A∗jiij ] , (2.14)

with the Ajiij being the complex rate constants, the µij being the polarization decay rates and the ∆Ωij

frequency shifts. They are defined as [61]

Γij = Ajiij +A∗jiij , (2.15)

µij =
∑

k

<(Aikki +A∗jkkj) =
1
2

∑
k

(Γik + Γjk) ,

∆Ωij = −
∑

k

=(Ajkkj +A∗ikki) .

We shell neglect possible elastic collisions in the following, i.e., we set Aiiii = 0.

The full master equation reads

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.16)
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Written in terms of the variable Rij , Eq. (2.16) becomes

dR12

dτ
= (i∆̃− γ̃12)R12 + 2iβR22 − iβ , (2.17)

dR22

dτ
= −iβR12 + iβR21 − (1 + Γ̃12)R22 + 1 ,

with

R11 = 1−R22and R21 = R∗
12 . (2.18)

In Eqs. (2.17) we used the notation τ = Γ21t, and β = ΩR/Γ21. All other quantities labeled with a tilde
are scaled to Γ21. The master equation in terms of Ψ is

d

dτ
Ψ = LΨ + I , (2.19)

with the components

Ψ1 = R12 , Ψ2 = R21 , Ψ3 = R22 , (2.20)

and L is an (3× 3) matrix

L =

 i∆̃− γ̃12 0 2iβ
0 −i∆̃− γ̃21 −2iβ
−iβ iβ −(1 + Γ̃12)

 . (2.21)

The components of I are

I1 = −iβ , I2 = iβ , I3 = 1 . (2.22)

Applying the regression theorem one gets

Ψ̂(z) = M(z)Ψ(τ0) +
1
z
M(z)I , (2.23)

or

Ψ̂i(z) =
∑

j

Mij(z)Ψj(τ0) +
1
z

∑
j

Mij(z)Ij , (2.24)

with

M = (z − L)−1 . (2.25)

The Eq. (2.19) for the steady-state case gives

Ψ(∞) = −L−1I , (2.26)

or, in component form,

Ψi(∞) = −
∑

j

(L−1)ijIj . (2.27)
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2.2.2 Electric field operator for spontaneous emission from a single atom

We first discuss the interaction of the quantized radiation field with a two- or three-level atomic system
described by a Hamiltonian in the dipole approximation [72]. For a single-mode field it reduces to a
particularly simple form. This Hamiltonian provides the simplest illustration of spontaneous emission
and an explanation of effects of various kind.

The spontaneous decay of an atomic level is treated by considering the interaction of the atomic levels
with the modes in the vacuum state. We examine the state of the field that is generated in the process of
emission of a quantum of energy equal to the energy difference between the atomic levels. Such a state
may be regarded as a single-photon state.

The Hamiltonian of the interaction in the dipole approximation between an atom and an electromagnetic
field is given by:

H = HA + HF − erE. (2.28)

HA represents the Hamiltonian operator for the atom without interaction, and HF is the Hamiltonian
of the radiation field without interaction. The vector r points from the nucleus to the electron. For
relativistic atomic systems, e.g. for a single-electron ion, the Hamiltonian is given by

HA = cαp + βm0c
2 − Ze2

4πε0r
. (2.29)

In the above equation, α and β are the usual Dirac matrices and p is the three-momentum of the electron.
We note here that the above treatment can be extended to many-electron atoms in a rather straightforward
way.

The free field operator, HF , is given in the quantized form, i.e., in terms of the creation and annihilation
operators

HF =
∑

k

~νk

(
a†kak +

1
2

)
. (2.30)

If we are introducing the atomic transition operators

σij = |i〉〈j| , (2.31)

we can write HA and er as a function of these operators. In the following computation we use the
fact that the states {|i〉} represent a complete set of eigenstates, i.e.

∑
i |i〉〈i| = 1. Let us consider the

eigenvalue equation HA|i〉 = Ei|i〉 and then we find the expression for HA [72]

HA =
∑

i

Ei|i〉〈i| =
∑

i

Eiσii . (2.32)

Applying the same procedure, we can express the dipole moment as [72]

er =
∑
i,j

e|i〉〈i|r|j〉〈j| =
∑
i,j

γijσij , (2.33)

where we introduce the notation γij = e〈i|r|j〉.
For the atom at the origin, the electric field operator is evaluated in the dipole approximation as

E =
∑

k

ε̂kEk(ak + a†k) , (2.34)
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with Ek = (~νk/2ε0V )1/2.

After these considerations, it is easy to see that [72]

H =
∑

k

~νka
†
kak +

∑
i

Eiσii + ~
∑
i,j

∑
k

gij
k σij(ak + a†k) , (2.35)

where

gij
k = −γij ε̂kEk

~
. (2.36)

In the next calculations, we assume γij to be real. For a two-level atomic system, γab = γba and one can
write

gk = gab
k = gba

k . (2.37)

Now it is easy to see that

H =
∑

k

~νka
†
kak + (Eaσaa + Ebσbb) + ~

∑
k

gk(σab + σba)(ak + a†k) , (2.38)

with

Eaσaa + Ebσbb =
1
2

~ω(σaa − σbb) +
1
2
(Ea − Eb) . (2.39)

The conservation of energy between these two states gives (Ea − Eb) = ~ω. Using the notation

σz = σaa − σbb = |a〉〈a| − |b〉〈b|, (2.40)

σ+ = σab = |a〉〈b|,
σ− = σba = |b〉〈a| ,

we can put the Hamiltonian (2.38) in the form [72]

H =
∑

k

~νka
†
kak +

1
2

~ωσz + ~
∑

k

gk(σ+ + σ−)(ak + a†k) . (2.41)

It is easy to verify that σ+, σ− and σz satisfy the spin-1/2 algebra of the Pauli matrices, i.e.,

[σ−, σ+] = −σz , (2.42)

[σ−, σz] = 2σ− ,
[σ+, σz] = 2σ+ .

We can represent, σ−, σ+ and σz in the matrix form [72]

σ− =
(

0 0
1 0

)
,

(
0 1
0 0

)
,

(
1 0
0 −1

)
. (2.43)

The σ− operator takes an atom from the upper state into a lower state whereas σ+ promotes an atom in
the lower state into the upper state.

In the expression Eq. (2.41) we keep only the conservative terms –rotating-wave approximation–, i.e.,
a†kσ− and akσ+. The first term describes the atomic de-excitation with the creation of a photon of mode
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k, and the second one describes the atomic excitation with photon annihilation. We get the simplified
Hamiltonian

H =
∑

k

~νka
†
kak +

1
2

~ωσz + ~
∑

k

gk(σ+ak + a†kσ−) . (2.44)

An atom can be excited due to the interaction with a laser, and then it radiates spontaneously in all
directions. In order to describe field propagation from an initial point r0 to a point r, the fluorescent field
should be related to the appropriate atomic operator at a retarded time.

In the rotating-wave approximation, the Hamiltonian (see Eq. 2.44) can be written as [72]

H =
~ω
2
σz +

∑
k,λ

~νκa
†
k,λak,λ +

∑
k,λ

~gk,λ

(
ak,λσ+e

ikr0 + a†k,λσ−e
−ikr0

)
. (2.45)

The field modes are characterized by the wave vector k and polarization λ. One can apply the method of
slowly-varying operators for the operators ak,λ(t) and σ−(t), i.e.,

ak,λ(t) = ãk,λ(t)e−iνκt, (2.46)

σ−(t) = σ̃−(t)e−iωt .

For these operators, the Heisenberg equations of motion can be written as [72]

˙̃ak,λ(t) = −igk,λσ̃−(t)e−i(ω−νκ)t−ikr0 , (2.47)
˙̃σ−(t) =

∑
k,λ

igk,λσz(t)ãk,λ(t)ei(ω−νκ)t+ikr0 ,

or in the integral form

ãk,λ(t) = ãk,λ(0)− igk,λe
−i(ω−νκ)t−ikr0

∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′), (2.48)

σ̃−(t) = σ̃−(0) +
∑
k,λ

igk,λe
i(ω−νκ)t+ikr0

∫ t

0
dt′σz(t′)ãk,λ(t′)e−i(ω−νκ)(t−t′) .

In the right part, the operators at time t = 0 represent field and atomic operators in the absence of the
interaction. Now we study the field modifications due to the interaction with the atom. The positive
frequency part of the electric field is defined as

E(+)(r, t) =
∑
k,λ

Ekε̂
(λ)
k ak,λ(t)eikr , (2.49)

with Ek = (~νκ/2ε0V )1/2. From the Eqs. (2.46) and (2.48) we can write [72]

E(+)(r, t) =
(

i

16π3ε0

)
e−iωt

∫
d3k

∑
λ

ε̂
(λ)
k [ε̂λk · γ̂]νκe

ik(r−r0) (2.50)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′), (2.51)

where we have replaced the sum by an integral via∑
k

→ V

(2π)3

∫
d3k. (2.52)
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Figure 2.2: The atomic dipole γ and the k-vector of the electric field in polar coordinates. η denotes the
angle of the dipole with the z axis.

One can put the vector field operator in the following form [72]

E(+)(r, t) =
(

i

16π3ε0

)
e−iωt

∫
dkdθdϕk2 sin θ

[
γ̂ − k(k · γ̂)

k2

]
νκe

ik(r−r0) (2.53)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νκ)(t−t′) ,

where we used ∑
λ

ε̂
(λ)
k ε̂

(λ)
k = 1− kk

k2
. (2.54)

We consider the geometry of the problem as in Fig. 2.2, with the detector along the z-axis. We can
transform the vectors k and γ̂ in the polar coordinates

k = k(x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ), (2.55)

γ̂ = γ(x̂ sin η + ẑ cos η).

In order to perform the integral in Eq. (2.53), first we apply the following results: [72]∫ 2π

0
dϕ

[
x̂ · γ̂ − (x̂ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[sin η − sin θ cosϕ(sin η sin θ cosϕ+ cos η cos θ)]

= 2πγ sin η(1− 1
2 sin2 θ) , (2.56)

∫ 2π

0
dϕ

[
ŷ · γ̂ − (ŷ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[0− sin θ sinϕ(sin η sin θ cosϕ+ cos η cos θ)] = 0 ,

(2.57)

∫ 2π

0
dϕ

[
ẑ · γ̂ − (ẑ · k)(k · γ̂)

k2

]
=
∫ 2π

0
dϕγ[cos η − cos θ(sin η sin θ cosϕ+ cos η cos θ)]

= 2πγ cos η(1− cos2 θ) = 2πγ cos η sin2 θ . (2.58)
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The integral in Eq. (2.53) can be performed over the variable θ. Using the following identity

eik(r−r0) = eik|r−r0| cos θ , (2.59)

and introducing a new variable µ = cos θ, we get the results [72]

2πγ sin η
∫ π

0
dθ sin θ

(
1− 1

2 sin2 θ
)
eik(r−r0) = 2πγ sin η

∫ 1

−1
dµ
[
1− 1

2(1− µ2)
]
eik|r−r0|µ

= 2πγ sin η

[
eik|r−r0| − e−ik|r−r0|

ik|r− r0|
+O

(
1

|r− r0|2

)]
, (2.60)

and

2πγ cos η
∫ π

0
dθ sin3 θeik(r−r0) = 2πγ cos η

∫ 1

−1
dµ(1− µ2)eik|r−r0|µ ∼ O

(
1

|r− r0|2

)
. (2.61)

After this computation, the expression of the positive frequency part of the electric field in the far-field
region becomes [72]

E(+)(r, t) =
(

cγ sin ηx̂
8π2ε0|r− r0|

)
e−iωt

∫ ∞

0
dkk2

(
eik|r−r0| − e−ik|r−r0|

)
(2.62)

×
∫ t

0
dt′σ̃−(t′)ei(ω−νk)(t−t′) .

Performing the k-integration, and neglecting the incoming wave contribution, one gets the known ex-
pression of E(+)(r, t) [72]

E(+)(r, t) =
ω2γsin(η)

4πε0c2|r− r0|
x̂σ−

(
t− |r− r0|

c

)
. (2.63)

ForE(−)(r, t), a similar expression can be derived. From the equation (2.63) we can see that the positive-
frequency part of the field operator is proportional to σ− at retarded time.

2.2.3 The spectrum of resonance fluorescence

We are interested in the field emitted by the atom fixed in the position along the x-axis. In the following
calculations, the atom is assumed to be isolated. According to the Wiener-Khintchine theorem, the
power spectrum S(ω0) at some suitably chosen point r is the Fourier transform of the normally-ordered
correlation function of the field 〈E(−)(r, t)E(+)(r, t+ τ)〉 with respect to τ [72].

S(ω0) =
1
2π

lim
T→∞

1
T

∫ T

0
dt

∫ T

0
dt′〈E(−)(t)E(+)(t′)〉e−iω0(t−t′) . (2.64)

Demanding the stationary condition, in Eq. (2.64) the correlation function of the field depends only on
the time difference τ = t− t′ [72]

S(ω0) =
1
2π

lim
T→∞

1
T

∫ T

0
dt

(∫ t

0
dt′ +

∫ T

t
dt′
)
〈E(−)(t)E(+)(t′)〉e−iω0(t−t′) (2.65)

=
1
2π

lim
T→∞

1
T

∫ T

0
dt

[∫ t

0
dτ〈E(−)(τ)E(+)(0)〉e−iω0(τ) +

∫ T−t

0
dτ〈E(−)(0)E(+)(τ)〉eiω0τ

]
.
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If the field operators are correlated only over a short period of time, one can extend the upper limit of the
τ -integrations to infinity. Using the property [72]

〈E(−)(τ)E(+)(0)〉 = 〈E(−)(0)E(+)(τ)〉∗, (2.66)

from Eq. (2.65) one gets

S(ω0) =
1
π

Re
∫ ∞

0
dτ〈E(−)(0)E(+)(τ)〉eiω0τ . (2.67)

From Eq. (2.63) one obtains the known formula for the power spectrum [72]

〈E(−)(r, t)E(+)(r, t+ τ)〉 = I0(r)〈σ+(t)σ−(t+ τ)〉, (2.68)

with the quantity

I0(r) =
(

ω2γ sin η
4πε0c2|r− r0|

)2

. (2.69)

2.2.4 Calculation of the fluorescence spectrum

We can introduce the polarization operator of the two-level atom as [61]

P (τ) = γ12(|1〉〈2|+ |2〉〈1|) , (2.70)

where the γij are the moduli of the induced transition dipole (multipole) moments. We may define the
positive and negative parts of the polarization operator as

P (+)(τ) = γ12|1〉〈2| , P (−)(τ) = γ21|2〉〈1| . (2.71)

If M , Q and N are elements of a complete set of system operators {Sµ}, and if the one-time averages
can be expressed in the form

〈M(τ)〉 =
∑

µ

Oµ(τ, τ ′)〈Sµ(τ ′)〉 , τ ′ < τ , (2.72)

then the quantum regression theorem [54] states the the two-time expectation values take the form

〈Q(τ ′)M(τ)N(τ ′)〉 =
∑

µ

Oµ(τ, τ ′)〈Q(τ ′)Sµ(τ ′)N(τ ′)〉 , τ ′ < τ . (2.73)

Oµ(τ, τ ′) is a complex function of time. If one identifies Q and N with the identity operator, one gets
the expression (2.72). One starts with the one-time average of the P (−)(τ1) operator

〈P (−)(τ1)〉 = Tr[ρ(τ1)γ12|2〉〈1|] , (2.74)

or, in terms of Ψ1,

〈P (−)(τ1)〉 = γ12e
iωτ1Ψ1(τ1) . (2.75)

For the elegance of the calculation one may transform Eq. (2.75) in Laplace space. This allows one to
express each of the matrix elements Ψi(τ1) in terms of their initial values τ = τ0

〈P̂ (−)(z)〉 = γ12Ψ̂1(z′) , (2.76)
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with the transformation z′ = z − iω. Using Eq. (2.24), Eq. (2.76) we can put P̂ (−)(z) in the form

〈P̂ (−)(z)〉 = γ12

∑
j

M1j(z′)Ψj(τ0) +
γ12

z′

∑
j

M1j(z′)Ij . (2.77)

The definition of Ψj(τ0) is

Ψ1(τ0) = e−iωτ0ρ12(τ0) = e−iωτ0〈|2〉〈1|〉τ0 . (2.78)

This helps us to express Ψj(τ0) and Ij in the form of expectation values at τ = τ0. The regression
theorem gives

〈P̂ (−)(z)P (+)(τ0)〉τ0 = γ2
12M11(z′)Ψ3(τ0)e−iωτ0 +

γ2
12

z′

∑
j

M1j(z′)Ψ2(τ0)Ij . (2.79)

In the limiting case of τ0 →∞, the above expression becomes

〈P̂ (−)(z)P (+)(∞)〉 = γ2
12M11(z′)Ψ3(∞) +

γ2
12

z′

∑
j

M1j(z′)Ψ2(∞)Ij . (2.80)

Eq. (2.80) shows that the spectrum of resonance fluorescence has a structure with a center located at ω,
and a magnitude proportional to the atomic transition matrix element. The spectrum has the form

f(z) =
A

z
+ g(z) , (2.81)

whereA is independent of z and g(z) is an analytic function of z for <z ≥ 0. The existence of the elastic
scattering of the driving fields is reflected in the singularity of the f(z) function. One can define the full
correlation function as [61]

Γ̂(z) ≡ 〈P̂ (−)(z)P (+)(∞)〉 , (2.82)

and one can substract the coherent Rayleigh peak using the method in Ref. [61] as

Γ̂incoh(z) = Γ̂(z)− 1
z′

lim
z′→0

z′Γ̂(z) . (2.83)

The emission spectrum can be expressed as [61]

S(ω) = <Γ̂incoh(z)|z=iω , (2.84)

with

Γ̂incoh(z) = γ2
12M11(z′)Ψ3(∞) + γ2

12

∑
j

N1j(z′)Ψ2(∞)Ij , (2.85)

where

Nij(z) = (L−1(z − L)−1)ij . (2.86)
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2.2.5 Analytic calculation of the spectra in the strong field approximation

It is more convenient to describe the atomic dynamics in a set of dressed atomic states. In the limit when
the Rabi frequency is much larger than the decay width, the correlation functions and spectra can be
expressed in an analitical form, and this makes possible to have explicit expressions for the line shapes,
line widths, and peak heights. We consider the following atomic states:

|s〉 =
1√

1 + (ΩR/2 +
√

1 + (ΩR/2)2)2
|1〉+

ΩR/2 +
√

1 + (ΩR/2)2√
1 + (ΩR/2 +

√
1 + (ΩR/2)2)2

|2〉 , (2.87)

|t〉 =
1√

1 + (ΩR/2−
√

1 + (ΩR/2)2)2
|1〉+

ΩR/2−
√

1 + (ΩR/2)2√
1 + (ΩR/2−

√
1 + (ΩR/2)2)2

|2〉 ,

where ∆R ≡ ∆
ΩR

. In order to minimize the algebraic effort we limit our considerations to the first order
in ∆R,

|s〉 = (1/
√

2− ΩR/
√

32)|1〉+ (1/
√

2 + ΩR/
√

32)|2〉 , (2.88)

|t〉 = (1/
√

2 + ΩR/
√

32)|1〉+ (−1/
√

2 + ΩR/
√

32)|2〉 .

These states are eigenstates of H ′
1 with the eigenvalues

H ′
1 |s〉 = ~

√
Ω2

R + ∆2/4|s〉 , (2.89)

H ′
1 |t〉 = −~

√
Ω2

R + ∆2/4|t〉 .

The new matrix L, describing the atomic dynamics, has ΩR only on the diagonal. The irreversible part
of the master equation has contributions for all elements of the L matrix. When the Rabi frequency is
sufficiently large, the L matrix is diagonal and we can perform the determination of spectral features
analytically.

In the interaction picture one can writte the master equation as

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.90)

The reversible part of the master equation, Eq. (2.90), has a very simple form:(
d

dt

)
rev

 ρ′st
ρ′ss
ρ′tt

 =

 −2IΩRρ
′
st

0
0

 , (2.91)

with the Hermitian symmetry relation ρ′st = (ρ′ts)
∗.

The irreversible part of the master equation is more complicated:(
d

dt

)
irrev

ρ′ij =
∑
pq

Λijpqρ
′
pq , (2.92)

where Λijpq are some parameters defined in Eq. (2.14). We use the transformation equation ρ′µν =∑
ij〈µ|i〉ρ′ij〈j|ν〉 in order to get

(
d

dt

)
irrev

ρ′µν =
∑
στ

∑
ijpq

〈µ|i〉〈j|ν〉〈p|σ〉〈τ |q〉Λijpq

 ρ′στ ≡
∑
στ

Γµνστρ
′
στ . (2.93)
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The matrix elements 〈µ|i〉 can be calculated using Eq. (2.88). We now consider the limit when the
Rabi frequency is much larger than the relaxation rate. We focus on the derivation of an expression for
resonance fluorescence with an accuracy of order 1/ΩR. We can define the vector Ψ as

Ψ1 = ρ′st , Ψ2 = ρ′ss , Ψ3 = ρ′ts . (2.94)

The master equation in terms of Ψ is

d

dt
Ψ = LΨ + I , (2.95)

with the matrix L defined as

L =

 Γstst − 2IΩR Γstss − Γsttt Γstts

Γssst Γssss − Γsstt Γssts

Γtsst Γtsss − Γtstt Γtsts + 2IΩR

 , (2.96)

and the vector

I1 = Γsttt , I2 = Γsstt , I3 = Γtstt . (2.97)

In the steady state, it takes the form Ψ(∞) = −L−1I . It is not difficult to see that

L−1(O(1/ΩR)) =

 0 0 0
0 1

Γssss−Γsstt
0

0 0 0

 , (2.98)

so the solution is

Ψ1(∞) = Ψ3(∞) = 0 , Ψ2(∞) =
Γsstt

Γsstt − Γssss
. (2.99)

The deviation from the steady is defined as [61]

δΨ = Ψ(t)−Ψ(∞) , (2.100)

which fulfils the condition

d

dt
δΨ = LδΨI . (2.101)

Up to corrections of order 1/ΩR, the L0 in the fluctuation equation Eq. (2.101) has a diagonal form. This
approximation can be easily understood if we consider the equations for δρ′µν :

d

dt
δρ′st = (Γstss − Γsttt)δρ′ss + (Γstst − 2IΩR)δρ′st + Γsttsδρ

′
ts , (2.102)

d

dt
δρ′ss = (Γssss − Γsstt)δρ′ss + Γssstδρ

′
st + Γsstsδρ

′
ts ,

d

dt
δρ′ts = (Γtsss − Γtstt)δρ′ss + Γtsstδρ

′
st + (Γtsts + 2IΩR)δρ′ts .

After introducing the notations

δρ′st = e−2IΩRRst , δρ′ts = e2IΩRRts , δρ′ss = Rss , (2.103)
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we get

d

dt
Rst = ΓtsttRst + O(1/ΩR) , (2.104)

d

dt
Rss = (Γssss − Γsstt)Rss + O(1/ΩR) ,

d

dt
Rts = ΓtstsRst + O(1/ΩR) ,

Dropping the rapidly oscillating terms O(1/ΩR), we may get

d

dt
Rst = (Γtstt − 2IΩR)Rst , (2.105)

d

dt
Rss = (Γssss − Γsstt)Rss ,

d

dt
Rts = (Γtsts + 2IΩR)Rst .

By doing so, the new matrix L0 can be obtained after ignoring the off-diagonal elements

L0 =

 Γstst − 2IΩR 0 0
0 Γssss − Γsstt 0
0 0 Γtsts + 2IΩR

 . (2.106)

One can write Ψ as [see Eq. (2.100)]

d

dt
Ψ(t) = L0Ψ(t) + I∞ , (2.107)

where I∞ = −L0Ψ(∞), with the components

I∞1 = I∞3 = 0 , I∞2 =
Γsstt

Γsstt − Γssss
, (2.108)

and we get I∞ ≡ I∞2 = Γsstt.

One can express the Γµνστ in terms of the Λµνστ as

Γstst = 1
4(Λ1111 − Λ1112 + Λ1121 − Λ1122 − Λ1211 + Λ1212 − Λ1221 + Λ1222 + Λ2111

− Λ2112 + Λ2121 − Λ2122 − Λ2211 + Λ2212 − Λ2221 + Λ2222) ,
Γssss = 1

4(Λ1111 + Λ1112 + Λ1121 + Λ1122 + Λ1211 + Λ1212 + Λ1221 + Λ1222 + Λ2111

+ Λ2112 + Λ2121 + Λ2122 + Λ2211 + Λ2212 + Λ2221 + Λ2222) , (2.109)

where

Λ1211 = 0 , Λ1212 = −µ12 , Λ1221 = 0 , Λ1222 = 0 , (2.110)

Λ2111 = 0 , Λ2112 = −µ12 , Λ2121 = 0 , Λ2122 = 0 ,
Λ1111 = −Γ21 , Λ1112 = 0 , Λ1121 = 0 , Λ1122 = Γ12 ,

Λ2211 = Γ21 , Λ2212 = 0 , Λ2221 = 0 , Λ2222 = −Γ12 .

It is easy to see that

Γstst = 1
4(−2Γ21 + γx) + Γ21∆R/8 , Γssss = −1

4(Γ21 + γx) + Γ21∆R/4 (2.111)

Γsstt = 1
4(Γ21 + γx) + Γ21∆R/4 , Γtsts = −1

2(Γ21 + γx/2)− 1
4(Γ21/2 + γx/2)∆R/4 ,
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where γx is the laser’s decoherence rate. It was added in the theory to the corresponding polarization
decay rate.

One can write the solution of Eq. (2.108)

Ψ̂(z) = M0(z)Ψ(t0) +
1
z
M0(z)I∞ , (2.112)

where the matrix M0 is given as

M0(z) = (z − L0)−1 . (2.113)

The polarization operator is defined as

P (+) = γ12|1〉〈2| , P (−) = γ12|2〉〈1| . (2.114)

Its single-time average is

〈P (−)(t1)〉 = γ12Tr[ρ′(0)|2〉〈1|]eiωt1 . (2.115)

Having the results

|2〉〈1|s〉 = 1
2 |s〉+

(
−1

2 + ∆R/4
)
|t〉 , |2〉〈1|t〉 =

(
1
2 + ∆R/4

)
|s〉 − 1

2 |t〉 , (2.116)

we can write the expression for P̂ (−)(z) as

〈P̂ (−)(z)〉 = 1
2 [2Ψ̂2(z′)− (1−∆R/2) Ψ̂1(z′) + (1 + ∆R/2) Ψ̂3(z′)]−

1
2z′

, (2.117)

where z′ = z − iω. Thus it is easy to write the matrix M0 as

M0 =

 1
2iΩR+z−Γstst

0 0
0 1

z−Γssss+Γsstt
0

0 0 1
−2iΩR+z−Γtsts

.

 (2.118)

Using Eq. (2.112), one can write

Ψ̂1(z) = M0
11(z)Ψ1(t0) , Ψ̂2(z) = M0

22(z)Ψ2(t0) +
1
z
M0

22(z)I∞2 , (2.119)

Ψ̂3(z) = M0
33(z)Ψ3(t0) ,

and then

〈P̂ (−)(z)〉 = 1
2 [2M0

22(z
′)Ψ2(t0)− (1−∆R/2)M0

11(z
′)Ψ1(t0) (2.120)

+ (1 + ∆R/2)M0
33(z

′)Ψ3(t0)] +
1

2z′
[M0

22(z
′)I∞2 − 1] .

The regression theorem gives

Ψ1(t0) → γ12Tr[ρ′(t0)|t〉〈s|1〉〈2|] = γ12Tr[ρ′(t0)|t〉〈s|1〉〈2|] (2.121)

= γ12 exp(−iωt0)1
2

(
ρ′st − (1−∆R/2)ρ′tt

)
,

Ψ2(t0) → γ12 exp(−iωt0)1
2

(
ρ′ss − (1−∆R/2)ρ′ts

)
,

Ψ3(t0) → γ12 exp(−iωt0)1
2

(
(1 + ∆R/2)ρ′ss − ρ′ts

)
.
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With the over-bars we denoted the operators in the interaction picture. In the stationary limit, the off-
diagonal elements of ρµν vanish and the only nonzero element is ρ′ss = Ψ∞, as given by Eq. (2.99). In
this way, Eq. (2.121) becomes

Ψ1(t0) → −1
2γ12(1−∆R/2)(1−Ψ2(∞))e−iωt0 , Ψ2(t0) → 1

2γ12Ψ2(∞)e−iωt0 , (2.122)

Ψ3(t0) → 1
2γ12(1 + ∆R/2)Ψ2(∞)e−iωt0 .

For the inhomogeneous part of the equation, we get

〈1〉t0 → 〈|1〉〈2|〉t0 = Tr[ρ′(t0)1〉〈2] (2.123)

= 1
2 [2ρss + (1 + ∆R/2)ρst − (1−∆R/2)ρts − 1]e−iωt0 ,

therefore, we arrive at the result:

〈P̂ (−)(z)P (+)(∞)〉 = γ12

4 [2M0
22Ψ2(∞) + (1−∆R/2)M0

11(1−∆R/2)(1−Ψ2(∞)) (2.124)

+ (1 + ∆R/2)M0
33(1 + ∆R/2)Ψ2(∞)]− γ12

4z′ (2M
0
22I∞2 − 1)(1− 2Ψ2(∞)) .

We obtain the final results in the first order of ∆R as

〈P̂ (−)(z)P (+)(∞)〉 =
γ12

2

[
1

2z + Γ21 + γx
+

1
4z + 2Γ21 + γx − 8IΩR

(2.125)

+
1

4z + 2Γ21 + γx + 8IΩR

]
+
γ12

4

[
2Γ21

(Γ21 + γx)(2z + Γ21 + γx)
− Γ21 + 2γx

(4z + 2Γ21 + γx − 8IΩR)2

+
2(2Γ21 + γx)

(Γ21 + γx)(4z + 2Γ21 + γx − 8IΩR)
+

Γ21 + 2γx

(4z + 2Γ21 + γx + 8IΩR)2

− 2(2Γ21 + γx)
(Γ21 + γx)(4z + 2Γ21 + γx + 8IΩR)

]
∆R + O(∆R) .

In the case of a resonant interaction (∆R = 0), and an ideal laser without decoherence (γx = 0), we get
the well-known formula [72]

〈P̂ (−)(z)P (+)(∞)〉 =
γ12

2

[
1

2z + Γ21
+

1
4z + 2Γ21 − 8IΩR

+
1

4z + 2Γ21 + 8IΩR

]
. (2.126)

The emission spectrum will be given by the real part of this expression with the corresponding substitu-
tion of the complex energy variable:

S(ω0) = <〈P̂ (−)(z)P (+)(∞)〉|z=i(ω0−ω) . (2.127)

2.2.6 Appearance of sidebands in the strong field limit

In Fig 2.3 we represent a field with a spectral width of D and a central frequency of ν, scattered on
an atom with a characteristic line width Γ and transition frequency ω. The shape of the scattered light
depends on the multipole moment created in the atom by the incident field.

The sidebands start emerging in the spectrum of scattered light when the Rabi frequency, ΩR, becomes
larger than the atomic width Γ. The three-peak spectrum is known as the Mollow spectrum [72]. The
sidebands are centered at ν + ΩR and ν − ΩR.

In order to understand this effect, we consider the so-called dressed atom picture. For the case of a
two-level system, the interaction Hamiltonian in rotating-wave approximation is (see Eq. (2.44)) [72]

H = H0 + H1 =
~ω
2
σz + ~νa†a+ ~g(σ+a+ a†σ−), . (2.128)
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ω υυ

in atom scatt

Light in Atomic profile Light scattered

Figure 2.3: The scheme of the scattering of an electromagnetic field with frequency ν and bandwidth
D. If Γ � D, the emitted light will have a bandwidth D centered at ν.
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Figure 2.4: Splitting of the atomic states by the dynamic Stark effect. See text for notations and further
explanations.

For the present situation, i.e. ω = ν, one can write the Hamiltonian in the interaction picture [72]

H ′
1 = ~g(σ+a+ a†σ−) . (2.129)

The eigenstates of the Hamiltonian are [72]

|±, n〉 =
1√
2
(|a, n〉 ± |b, n+ 1〉) , (2.130)

with the corresponding eigenvalues +~Ωn/2 and −~Ωn/2. Ωn is called the generalized Rabi frequency
and it is given by formula Ωn = 2ΩR

√
n+ 1. Due to interaction with electromagnetic field the dege-

naracy of the state |a, n〉 and |b, n + 1〉 is removed, and they are split into a doublet of dressed states.
This effect is called the dynamic Stark splitting. For a large number of photons, the splitting is almost
the same for both levels. As one can see in Fig. 2.4, there are only three possible transition with different
frequencies, leading to the three-peak Mollow spectrum.

2.3 Calculation of transition matrix elements

The expression for the fluorescence spectrum is now known. What remains is to calculate the corre-
sponding non-relativistic and relativistic matrix elements, i.e. the matrix elements of the radiation field
with the Schrödinger or Dirac wave functions which determine the Rabi frequencies and the radiative
decay widths. In this section we derive analytical formulas for these quantities.

2.3.1 Electric dipole interaction matrix elements with Schrödinger wave functions

The interaction of a radiation field with a single-electron atom in dipole approximation has the matrix
element

γab = e〈Φa|ε̂ · r|Φb〉 , (2.131)
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where Ψa and Ψb are non-relativistic wave functions, solutions of the Schrödinger equation in a Coulomb
potential, e is the elementary charge, and ε̂ is a unit vector defining the polarization of the electric field
component. The subscript a stands collectively for the principal quantum number na as well as the
angular momentum quantum number la and the magnetic quantum number Ma: a ≡ (na, la,Ma),
and the index b plays a similar role. The electric-dipole matrix elements depend on the electric field
polarization, thus we need to discuss the linear, left circular and right circular cases.

1◦ Linear polarization

First we consider linear polarization along the z axis, and we calculate this matrix elements in spherical
coordinates, z = r cosφ. In this case the transition matrix element has the form

γz
ab = e〈Φa|ε̂z · r|Φb〉 = e

∫
drΦ†

a(r)r cos θΦb(r) = eRKz . (2.132)

1◦ Circular polarization

The definition of right- and left-handed polarization is ε̂± = 1√
2
(ε̂x ± iε̂y). In spherical coordinates, i.e.

x = r sin θ cosφ and y = r sin θ sinφ, the transition matrix elements are

γ+
ab = e〈Φa|ε̂+ · r|Φb〉 = e√

2

∫
drΦ†

a(r)r · (ε̂x + iε̂y)Φb(r) = e√
2
R[Kx + iKy] , (2.133)

γ−ab = e〈Φa|ε̂− · r|Φb〉 = e√
2

∫
drΦ†

a(r)r · (ε̂x − iε̂y)Φb(r) = e√
2

e√
2
R[Kx − iKy] .

The integral expression of the radial matrix element R is

R =
∫
drr3Rnala(r)Rnblb(r) . (2.134)

For the Coulomb potential of a point-like nucleus with charge Z|e|, the bound radial function Ra(r) can
be given in an analytical form by means of the generalized Laguerre polynomials:

Ra(r) = − 2Z3/2

n2
aa

3/2
0

√
(na − la − 1)!

(na + la)!

(
2rZ
a0na

)la

e−rZ/a0naL2la+1
na−la−1

(
2rZ
a0na

)
. (2.135)

The Bohr radius a0 is defined a0 = ~
mcα , with α being the fine structure constant. The angular matrix

elements have the integral representation

Kx =

√
2π
3

∫
dorY

†
laMa

(r̂)(Y1−1 − Y11)YlbMb
(r̂) , Kz =

√
2π
3

∫
dorY

†
laMa

(r̂)Y10YlbMb
(r̂) ,

Ky =

√
2π
3

∫
dorY

†
laMa

(r̂)(Y1−1 + Y11)YlbMb
(r̂) , (2.136)

which can be reduced to the result

Kx
1 =

(−1)Ma

√
2

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)[(
la 1 lb
−Ma −1 −Mb

)
−
(
la 1 lb
−Ma 1 Mb

)]
,

Ky
1 =

(−1)Ma

√
2

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)[(
la 1 lb
−Ma −1 −Mb

)
+
(
la 1 lb
−Ma 1 Mb

)]
,

Kz
1 = (−1)Ma

√
(2la + 1)(2lb + 1)

(
la 1 lb
0 0 0

)(
la 1 lb
−Ma 0 Mb

)
. (2.137)
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The final analytical result of radial integration can be expressed in terms of generalized hypergeometric
functions as

R =
4Z3

n2
an

2
ba

3
0

√
(na + la)!

(na − la − 1)!

√
(nb + lb)!

(nb − lb − 1)!

(
2Z
a0na

)la ( 2Z
a0nb

)lb 1
(2la + 1)

1
(2lb + 1)

×
na−la−1∑

p=0

(−na + la + 1)p

(2la + 2)p

1
p!

(
2Z
a0n0

)p

(3 + la + lb + p)!
(

a0nanb

Z(na + nb)

)4+la+lb+p

× 2F1

(
−nb + lb + 1, 4 + la + lb + p, 2lb + 2;

a0nanb

Z(na + nb)

)
. (2.138)

2.3.2 Relativistic dipole interaction matrix elements in the length gauge

We will work first in the so-called length gauge, where the transition matrix elements γab are defined,
similarly to the non-relativistic case, as

γab = e〈Φa|ε̂ · r|Φb〉 , (2.139)

where Ψa and Ψb are relativistic wave functions, solutions of the Dirac equation in a Coulomb potential,
and e is the elementary charge. Because the laser field has a certain polarization, we should again
consider all three possibilities.

1◦ Linear polarization

Let us consider the polarization along the z axis, and calculate the matrix elements in spherical coordi-
nates, z = r cosφ. In this case the transition matrix element has the form

γz
ab = e〈Φa|ε̂z · r|Φb〉 = e

∫
drΦ†

a(r)r cos θΦb(r) = e[R1K
z
1 +R2K

z
2 ] . (2.140)

2◦ Circular polarization

We consider the right (ε̂+) and left (ε̂−) circular polarization, defined with the polarization unit vectors
ε̂± = 1√

2
(ε̂x ± iε̂y). In spherical coordinates, i.e. x = r sin θ cosφ and y = r sin θ sinφ, the transition

matrix elements are

γ+
ab = e〈Φa|ε̂+ · r|Φb〉 = e√

2

∫
drΦ†

a(r)r · (ε̂x + iε̂y)Φb(r)

= e√
2
[R1K

x
1 +R2K

x
2 + iR1K

y
1 + iR2K

y
2 ] ,

γ−ab = e〈Φa|ε̂− · r|Φb〉 = e√
2

∫
drΦ†

a(r)r · (ε̂x − iε̂y)Φb(r)

= e√
2
[R1K

x
1 +R2K

x
2 − iR1K

y
1 − iR2K

y
2 ] . (2.141)

The radial matrix elements are denoted as

R1 =
∫
drr3Gnaκa(r)Gnbκb

(r) , R2 =
∫
drr3Fnaκa(r)Fnbκb

(r) , (2.142)

and

Kx
1 =

∫
dorΩ

†
κaMa

(r̂) sin θ cosφΩκbMb
(r̂) , Kx

2 =
∫
dorΩ

†
−κaMa

(r̂) sin θ cosφΩ−κbMb
(r̂) ,

Ky
1 =

∫
dorΩ

†
κaMa

(r̂) sin θ sinφΩκbMb
(r̂) , Ky

2 =
∫
dorΩ

†
−κaMa

(r̂) sin θ sinφΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
κaMa

(r̂) cos θΩκbMb
(r̂) , Kz

2 =
∫
dorΩ

†
−κaMa

(r̂) cos θΩ−κbMb
(r̂) . (2.143)
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To bring the angular part to a simpler form we use the formula [6]∫
dorΩ

†
κaMa

(r̂)Ylm(r̂)ΩκbMb
(r̂) =

(−1)Ma−1/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2lb + 1)(

la lb l
0 0 0

)(
ja jb l
−Ma Mb m

){
ja jb l
lb la 1/2

}
. (2.144)

Applying Euler’s formula, it is easy to see that

sin θ sinφ = i

√
2π
3

(Y1−1 + Y11) , sin θ cosφ =

√
2π
3

(Y1−1 − Y11) , cos θ = 2
√
π

3
Y10 , (2.145)

and the final result for the angular parts are

Kx
1 =

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.146)

×
[(

ja jb 1
−Ma Mb −1

)
−
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
lb la 1/2

}
,

Kx
2 =

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.147)

×
[(

ja jb 1
−Ma Mb −1

)
−
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
l′b l′a 1/2

}
,

Ky
1 = i

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.148)

×
[(

ja jb 1
−Ma Mb −1

)
+
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
lb la 1/2

}
,

Ky
2 = i

(−1)Ma−1/2

√
2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.149)

×
[(

ja jb 1
−Ma Mb −1

)
+
(
ja jb 1
−Ma Mb 1

)]{
ja jb 1
l′b l′a 1/2

}
,

Kz
1 = (−1)Ma−1/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2lb + 1)

(
la lb 1
0 0 0

)
(2.150)

×
(
ja jb 1
−Ma Mb 0

){
ja jb 1
lb la 1/2

}
,

Kz
2 = (−1)Ma−1/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2l′b + 1)

(
l′a l′b 1
0 0 0

)
(2.151)

×
(
ja jb 1
−Ma Mb 0

){
ja jb 1
l′b l′a 1/2

}
.
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The radial integrals can be calculated to yield

R1 =
(

1 +
Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 −R2

1 −R3
1 +R4

1] , (2.152)

R2 =
(

1− Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 +R2

1 +R3
1 +R4

1] ,

where we introduced the following shorthand notations:

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

(2.153)

× 2F1

(
m+ γa + γb + 2,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R2
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b , 2γb + 1;
2λb

λa + λb

)
,

R3
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 2)
(λa + λb)m+γa+γb+2

× 2F1

(
m+ γa + γb + 2,−nr

b , 2γb + 1;
2λb

λa + λb

)
.

Again, for Coulomb potentials, we used the representation of bound radial functions Ga(r) and Fa(r) in
terms of confluent hypergeometric functions with negative-integral first argument (see, e.g. Ref. [6]):

Ga(r) =
(

1 +
Ea

mc2

)1/2

Ua(Aa −Ba) , (2.154)

Fa(r) = −
(

1− Ea

mc2

)1/2

Ua(Aa +Ba) ,

where the eigenenergies are given by the Sommerfeld formula

Ea = mc2

1 +
(Zα)2(

na − ja − 1/2 +
√

(ja + 1/2)2 − (Zα)2
)2


−1/2

. (2.155)

In the above equations, furthermore, the following functions are used:

Ua =
(2λa)3/2

Γ(2γa + 1)

(
Γ(2γa + nr

a + 1)
4Na(Na − κa)nr

a!

)1/2

, (2.156)

Aa(r) = nr
a1F1(−nr

a + 1, 2γa + 1; 2λar)e−λar(2λar)γa−1 ,

Ba(r) = (Na − κa)1F1(−nr
a, 2γa + 1; 2λar)e−λar(2λar)γa−1 .
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Here, 1F1 is the confluent hyper-geometric function defined by its expansion [3] with coefficients involv-
ing Gamma functions:

1F1(−n, b; z) =
n∑

m=0

(−n)m

(b)m

zm

m!
, (2.157)

(a)m =
Γ(a+m)

Γ(a)
, (a)0 ≡ 1 ,

and its parameters are

λa =

√
m2c4 − E2

a

~c
, Na =

(nr
a + γa)mc2

Ea
, (2.158)

γa =
√
κ2

a − (Zα)2, nr
a = na − |κa| ,

κa =
{
−(la + 1) if ja = la + 1

2 ,
la if ja = la − 1

2 .

As the first argument of the confluent hypergeometric function is an integer, it can be written as a poly-
nomial [3], simplifying the numerical evaluation of the wave function. The spin-angular part of the Dirac
wave function is defined by the spherical spinors

ΩκaMa (r̂) =
la∑

ma=−la

∑
µa=±1/2

C

(
la

1
2
ja;maµaMa

)
Ylama(θ, φ)χµa . (2.159)

Here, χµa denotes the usual two-component Pauli spinors:

χ1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
. (2.160)

2.3.3 Relativistic dipole interaction matrix elements in the transverse gauge

The transverse gauge (also called Coulomb gauge) can be regarded as the relativistic generalization of
the familiar velocity form. In the following we formulate the atom-field interaction in this gauge. As in
the case of the form r ·E, in the case of the α ·A interaction, the transition matrix element can be defined
as

γab =
ec

ω
〈Φa|ε̂ ·α|Φb〉 . (2.161)

One should consider also the two cases of linear and circular polarization for the laser field.

1◦ Linear polarization

For the polarization along the z axis, the matrix elements have the form

γz
ab =

ec

ω
〈Φa|αz|Φb〉 =

ec

ω

∫
drΦ†

a(r)αzΦb(r) = −iec
ω

[R1K
z
1 −R2K

z
2 ] . (2.162)

2◦ Circular polarization
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For the right- and left-circular polarization, the matrix elements are

γ+
ab =

ec

ω
〈Φa|α · ε̂+|Φb〉 =

1√
2
ec

ω

∫
drΦ†

a(r)α · (ε̂x + iε̂y)Φb(r) (2.163)

= − i√
2
ec

ω
{R1[Kx

1 + iKy
1 ]−R2[Kx

2 + iKy
2 ]} ,

γ−ab =
ec

ω
〈Φa|α · ε̂−|Φb〉 =

1√
2
ec

ω

∫
drΦ†

a(r)α · (ε̂x − iε̂y)Φb(r)

= − i√
2
ec

ω
{R1[Kx

1 − iKy
1 ]−R2[Kx

2 − iKy
2 ]} ,

with the radial parts

R1 ≡
∫
drr2Gnbκb

(r)Fnaκa(r), R2 ≡
∫
drr2Fnbκb

(r)Gnaκa(r), (2.164)

and angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σxΩκbMb
(r̂), Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σxΩ−κbMb
(r̂) , (2.165)

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σyΩκbMb
(r̂), Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σyΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σzΩκbMb
(r̂), Kz

2 =
∫
dorΩ

†
κaMa

(r̂)σzΩ−κbMb
(r̂) .

After some lengthy but straightforward calculation, we get the final results for the angular parts:

Kx
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(a1

1 − a1
2) ,

Kx
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 0
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 0
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 0
0 0 0

)
(b11 + b12) ,

Kz
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

×
(
la l′b 0
0 0 0

)
(b21 + b22) , (2.166)
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where the following notations were used:

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 0

−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 0

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 0

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 0

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b 0

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 0

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 0

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)
×
(

la l′b 0
−Ma − 1/2 Mb + 1/2 0

)
. (2.167)

For the radial part we find the final expressions

R1 = −
(

1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 +R2

1 −R3
1 −R4

1] ,

R2 = −
(

1 +
Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 −R2

1 +R3
1 −R4

1] , (2.168)

where the following polynomials need to be inserted:

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
b−1∑

m=0

(−nr
b + 1)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a + 1, 2γa + 1;
2λa

λa + λb

)
, (2.169)

R2
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
b−1∑

m=0

(−nr
b + 1)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a, 2γa + 1;
2λa

λa + λb

)
, (2.170)

R3
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
b∑

m=0

(−nr
b)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a + 1, 2γa + 1;
2λa

λa + λb

)
, (2.171)
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R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
b∑

m=0

(−nr
b)m

(2γb + 1)m

(2λb)m

m!
Γ(m+ γa + γb + 1)
(λa + λb)m+γa+γb+1

× 2F1

(
m+ γa + γb + 1,−nr

a, 2γa + 1;
2λa

λa + λb

)
. (2.172)

Now, we have all analytical expressions needed to calculate the transition matrix elements.

2.3.4 Magnetic dipole interaction in the transverse gauge

We follow the procedure applied in the previous two subsections. Here we are going beyond the electric
dipole approximation, which allows us to describe magnetic transitions and electric transitions of higher
multipolarity. We expand the exponential e±ikr in a sum of the electric and magnetic dipole terms (the
first two terms)

〈Φa|α ·A|Φb〉 ' 〈Φa|α · ε̂kAk

(
ak + ik · rak + a†k − ik · ra†k

)
|Φb〉 (2.173)

= 〈Φa|α · ε̂kAk

(
ak + a†k

)
|Φb〉+ 〈Φa|α · ε̂kAkik · r

(
ak − a†k

)
|Φb〉.

We recognize the first term as the term for the E1 transition, for which

γE1
ab =

ec

ω
〈Φa|ε̂λ ·α|Φb〉 . (2.174)

The second term corresponds to a magnetic transition, and the corresponding γab matrix is defined as

γM1
ab =

ec

ω
〈Φa|ε̂λ ·αik · r|Φb〉 . (2.175)

As in the previous calculations, we need to analyze the problem considering the laser polarization.

1◦ Linear polarization

First we take the polarization along the z direction:

γz
ab = −e〈Φa|ε̂z ·αr cos θ|Φb〉 = −e

∫
drΦ†

a(r)αzr cos θΦb(r) = ie[R1K
z
1 −R2K

z
2 ] . (2.176)

2◦ Circular polarization

In this case, the matrix elements are

γ+
ab = −e〈Φa|ε̂+ ·αr cos θ|Φb〉 = − e√

2

∫
drΦ†

a(r)α · (ε̂x + iε̂y)r cos θΦb(r) (2.177)

= −i e√
2
{R1[−iKx

1 +Ky
1 ] +R2[iKx

2 +Ky
2 ]} ,

γ−ab = −e〈Φa|ε̂− ·αr cos θ|Φb〉 = − e√
2

∫
drΦ†

a(r)α · (ε̂x − iε̂y)r cos θΦb(r)

= −i e√
2
{R1[−iKx

1 −Ky
1 ] +R2[iKx

2 −Ky
2 ]} ,

with the radial integrals

R1 =
∫
drr3Gnbκb

(r)Fnaκa(r), R2 =
∫
drr3Fnbκb

(r)Gnaκa(r) , (2.178)
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and angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σx cos θΩκbMb
(r̂) , Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σx cos θΩ−κbMb
(r̂) ,

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σy cos θΩκbMb
(r̂) , Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σy cos θΩ−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σz cos θΩκbMb
(r̂) ,

Kz
2 =

∫
dorΩ

†
κaMa

(r̂)σz cos θΩ−κbMb
(r̂) . (2.179)

The integrations can again be performed using group theoretic methods, and yield

Kx
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(a1

1 − a1
2) ,

Kx
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 1
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

(
la l′b 1
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2l′a + 1)(2lb + 1)

(
l′a lb 1
0 0 0

)
(b11 + b12) ,

Kz
2 = (−1)ja+jb−Mb+3/2

√
(2ja + 1)(2jb + 1)(2la + 1)(2l′b + 1)

×
(
la l′b 1
0 0 0

)
(b21 + b22) , (2.180)

with the expressions

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 1

−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 1

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb 1

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb 1

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b 1

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 1

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b 1

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)
×

(
la l′b 1

−Ma − 1/2 Mb + 1/2 0

)
. (2.181)



42 II 2. RELATIVISTIC THEORY OF RESONANCE FLUORESCENCE

The analytical results for radial integrals can be written in the rather concise form as

R1 = −
(

1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb[R1
1 −R2

1 +R3
1 −R4

1] , (2.182)

R2 = −
(

1 +
Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb[R1
1 +R2

1 −R3
1 −R4

1] ,

where the quantities Ri
1, i ∈ {1, 2, 3, 4}, have been given previously in the Eqs. (2.153).

2.3.5 Multipole interaction matrix elements in the transverse gauge

We start using the expansion

eikr = 4π
∑
lm

iljl(kr)Y ∗
lm(k̂)Ylm(r̂) . (2.183)

Taking the photons direction along the z-axis, we get

Y ∗
lm(θ = 0 , φ = 0) = Y ∗

l0(0, 0) =

√
2l + 1

4π
(2.184)

Y ∗
lm,m6=0(0, 0) = 0 ,

and with this geometry the expansion of the exponential function simplifies to

eikr = 4π
∑

l

il
√

2l + 1jl(kr)Yl0(r̂) . (2.185)

The matrix element γab = ec
ω 〈Φa|ε̂λ ·αeikr|Φb〉 can then be written in the form

γab = i
√

4π
ec

ω

∑
l

il
√

2l + 1〈Φa|ε̂λ ·αjl(kr)Yl0(r̂)|Φb〉 . (2.186)

1◦ Linear polarization

For the polarization in the z direction, the matrix element takes the form

γz
ab =

√
4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂z ·αjl(kr)Yl0(r̂)|Φb〉 (2.187)

= i
√

4π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)αzjl(kr)Yl0(r̂)Φb(r)

= −
√

4π
ec

ω

∑
l

il
√

2l + 1[−R1K
z
1 +R2K

z
2 ] .

1◦ Circular polarization
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For the case of right- and left-circular polarization, we can express the matrix elements as

γ+
ab =

√
4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂+ ·αjl(kr)Yl0(r̂)|Φb〉 (2.188)

= i
√

2π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)(ε̂x + iε̂y)αjl(kr)Yl0(r̂)Φb(r)

= −
√

2π
ec

ω

∑
l

il
√

2l + 1{−R1[Kx
1 + iKy

1 ] +R2[Kx
2 + iKy

2 ]} ,

γ−ab =
√

4π
ec

ω

∑
l

il+1
√

2l + 1〈Φa|ε̂− ·αjl(kr)Yl0(r̂)|Φb〉

= i
√

2π
ec

ω

∑
l

il+1
√

2l + 1
∫
drΦ†

a(r)(ε̂x − iε̂y)αjl(kr)Yl0(r̂)Φb(r)

= −
√

2π
ec

ω

∑
l

il
√

2l + 1{−R1[Kx
1 − iKy

1 ] +R2[Kx
2 − iKy

2 ]} ,

with the radial integrals

R1 =
∫
drr2Fnaκa(r)jl(kr)Gnbκb

(r) , R2 =
∫
drr2Gnaκa(r)jl(kr)Fnbκb

(r) , (2.189)

and the angular parts

Kx
1 =

∫
dorΩ

†
−κaMa

(r̂)σxYl0ΩκbMb
(r̂), Kx

2 =
∫
dorΩ

†
κaMa

(r̂)σxYl0Ω−κbMb
(r̂) , (2.190)

Ky
1 =

∫
dorΩ

†
−κaMa

(r̂)σyYl0ΩκbMb
(r̂), Ky

2 =
∫
dorΩ

†
κaMa

(r̂)σyYl0Ω−κbMb
(r̂) ,

Kz
1 =

∫
dorΩ

†
−κaMa

(r̂)σzYl0ΩκbMb
(r̂), Kz

2 =
∫
dorΩ

†
κaMa

(r̂)σzYl0Ω−κbMb
(r̂) .

The results of the integration are

Kx
1 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

×
(
l′a lb l
0 0 0

)
(a1

1 − a1
2) , (2.191)

Kx
2 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(a2

1 − a2
2) ,

Ky
1 = −i(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

(
l′a lb l
0 0 0

)
(a1

1 + a1
2) ,

Ky
2 = −i(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(a2

1 + a2
2) ,

Kz
1 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2l′a + 1)(2lb + 1)

(
l′a lb l
0 0 0

)
(b11 + b12) ,



44 II 2. RELATIVISTIC THEORY OF RESONANCE FLUORESCENCE

Kz
2 =

(−1)ja+jb−Mb+3/2

√
4π

√
(2ja + 1)(2jb + 1)(2l + 1)(2la + 1)(2l′b + 1)

(
la l′b l
0 0 0

)
(b21 + b22) ,

with the angular coefficients defined as

a1
1 =

(
l′a ja 1/2

Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)
(2.192)

×
(

l′a lb l
−Ma + 1/2 Mb + 1/2 0

)
,

a1
2 =

(
l′a ja 1/2

Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb l

−Ma − 1/2 Mb − 1/2 0

)
,

b11 =
(

l′a ja 1/2
Ma − 1/2 −Ma 1/2

)(
lb jb 1/2

Mb − 1/2 −Mb 1/2

)(
l′a lb l

−Ma + 1/2 Mb − 1/2 0

)
,

b12 =
(

l′a ja 1/2
Ma + 1/2 −Ma −1/2

)(
lb jb 1/2

Mb + 1/2 −Mb −1/2

)(
l′a lb l

−Ma − 1/2 Mb + 1/2 0

)
,

a2
1 =

(
la ja 1/2

Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b l

−Ma + 1/2 Mb + 1/2 0

)
,

a2
2 =

(
la ja 1/2

Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b l

−Ma − 1/2 Mb − 1/2 0

)
,

b21 =
(

la ja 1/2
Ma − 1/2 −Ma 1/2

)(
l′b jb 1/2

Mb − 1/2 −Mb 1/2

)(
la l′b l

−Ma + 1/2 Mb − 1/2 0

)
,

b22 =
(

la ja 1/2
Ma + 1/2 −Ma −1/2

)(
l′b jb 1/2

Mb + 1/2 −Mb −1/2

)(
la l′b l

−Ma − 1/2 Mb + 1/2 0

)
.

For the radial parts, the results are

R1 = −
√
π

(
1− Ea

mc2

)1/2(
1 +

Eb

mc2

)1/2

UaUb

∞∑
α=0

(−1)αω2α+l

22α+l+1α!Γ(α+ l + 3/2)
(2.193)

×[R1
1 −R2

1 +R3
1 −R4

1] ,

R2 = −
√
π

(
1 +

Ea

mc2

)1/2(
1− Eb

mc2

)1/2

UaUb

∞∑
α=0

(−1)αω2α+l

22α+l+1α!Γ(α+ l + 3/2)

×[R1
1 +R2

1 −R3
1 −R4

1] ,
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with the quantities

R1
1 = nr

an
r
b(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l
(2.194)

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R2
1 = nr

a(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a−1∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b , 2γb + 1;
2λb

λa + λb

)
,

R3
1 = (Na − κa)nr

b(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b + 1, 2γb + 1;
2λb

λa + λb

)
,

R4
1 = (Na − κa)(Nb − κb)(2λa)γa−1(2λb)γb−1

nr
a∑

m=0

(−nr
a + 1)m

(2γa + 1)m

(2λa)m

m!
Γ(m+ γa + γb + 1 + 2α+ l)

(λa + λb)m+γa+γb+1+2α+l

2F1

(
m+ γa + γb + 1 + 2α+ l,−nr

b , 2γb + 1;
2λb

λa + λb

)
.

For the matrix elements in the case of driving between hyperfine-split atomic levels, which will be
necessary later, we are using the formula [52]

〈n′1j′1J ′||f
(1)
k ||n1j1J〉 = (−1)j1,max+j2+Jmin+k

√
(2J + 1)(2J ′ + 1)

×
{
j′1 J ′ j2
J j1 k

}
〈n′1j′1||f

(1)
k ||n1j1〉 , (2.195)

where f1,max = max {j1, j′1}, and (n′1n
′
2j
′
1j
′
2J) ≡ (n′1j

′
1J), i.e. the n′2, j

′
2 are omitted. It is then easy to

find the transition matrix element

γab(nbjbIFb → najaIFa) = (−1)jmax+I+Fmin+J
√

(2Fa + 1)(2Fb + 1) (2.196)

×
(
Fa J Fb

−MFa MFa −MFb
MFb

)
/

(
ja J jb
−Ma Ma −Mb Mb

){
ja Fa I
Fa jb J

}
×γab(nbjb → naja) ,

where Fa = ja + I, with I being the nuclear angular momentum.

2.4 Calculation of relativistic decay widths

In this section we briefly describe how one can derive formulas for the width of radiative decay in-
volving relativistic electrons [46]. Let us add the interaction Hamiltonian HI to H – in general, a
many-electronic atomic Hamiltonian –, where HEM is the electromagnetic Hamiltonian

H = H0 + VI + HEM . (2.197)
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The state function Ψk represents an eigenfunction of H0 + VI with the eigenvalue Ek, and |nk〉 is an
nk-photon eigenstate of HEM with the eigenvalue nk~ω, such that:

(H0 + VI)Ψk = EkΨk , (2.198)

HEM |nk〉 = nk~ω|nk〉 .

The product of the state Ψk and nk, i.e. Φk ≡ Ψk|nk〉 is an eigenstate of H corresponding to a many-
electron atom. The eigenvalue coresponding to this eigenstate of H is Ek + nk~ω. Considering the
interaction HI , we are interested in readiative transitons between these states.

The unitary operator U(t, t0) satisfies [46, 68]

i~
∂U(t, t0)

∂t
= ĤIU(t, t0) , (2.199)

U(t0, t0) = I ,

with I being the identity operator. The equivalent integral equation is [68]

U(t, t0) = I − i

~

∫ t

t0

dt1ĤI(t1)U(t1, t0) , (2.200)

where ĤI(t1) represents the time-dependent interaction Hamiltonian in the interaction picture. The
iterative solution of Eq. (2.200) is [46, 68]

U(t, t0) = I − i

~

∫ t

t0

dt1ĤI(t1) +
(−i)2

~2

∫ t

t0

dt1ĤI(t1)
∫ t1

t0

dt2ĤI(t2)U(t2, t0) (2.201)

=
∞∑

n=0

(−i)n

~n

∫ t

t0

dt1ĤI(t1)
∫ t1

t0

dt2ĤI(t2) · · ·
∫ tn−1

t0

dtnĤI(tn).

By definition S = U(∞,−∞), where the interaction ĤI(t) is assumed to vanish in the distant past
(t = −∞) and in the future (t = ∞).

We can expand S in powers of HI(t), i.e.

S = I +
∞∑

n=1

S(n) , (2.202)

with

S(n) =
(−i)n

~n

∫ ∞

−∞
dt1ĤI(t1)

∫ t1

−∞
dt2ĤI(t2) · · ·

∫ tn−1

−∞
dtnĤI(tn) . (2.203)

It is easy to see that the first order in HI(t) is

S ≈ I − i

~

∫ ∞

−∞
dtĤI(t) , (2.204)

and the first-order transition amplitude is

S
(1)
fi = 〈Φf |S(1)|Φi〉 = − i

~

∫ ∞

−∞
dt〈Φ†

f |e
iH t/~HIe

−iH t/~|Φi〉 . (2.205)
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If one introduces the transition amplitude

Tfi =
{
〈Ψf |HI |Ψi〉, for absorption of radiation,
〈Ψf |H †

I |Ψi〉, for emission of radiation.
, (2.206)

we can write [46]

Sfi = −2πδ(Ef − Ei ∓ ~ω)Tfi

( √
ni√

ni + 1

)
, (2.207)

For isotropic, unpolarized radiation, the absorption probability per second, wb→a, leading from an initial
(lower energy) state a to final (higher energy) state b in presence of n photons of energy ~ω is given in
terms of the spectral density function ρ(ω) as [46]

wab
a→b =

π2c3

~ω3
ρ(ω)

α

2π
ω
∑

λ

∫
dΩk|Tba|2 . (2.208)

The emission probability per second leading from state b to state a in presence of n photons of energy
~ω is given in terms of ρ(ω) by [46]

wem
b→a =

(
1 +

π2c3

~ω3
ρ(ω)

)
α

2π
ω
∑

λ

∫
dΩk|Tba|2 . (2.209)

This probability is given as a sum of two terms, namely, a spontaneous emission term and an induced
emission term.

Thus one can see that the determination of the decay width is essentially reduced to the calculation of
the transition amplitude Tba, given by

Tba =
∫
d3rΨ†

bα ·A(r, ω)Ψa , (2.210)

with the transverse-gauge vector potential A(r, ω) = ε̂eik·r. Afret some computation the transition
amplitude can be put in the form [36, 46]

Tba = 4π
∑
JMλ

iJ−λ
[
Y(λ)

JM (k̂) · ε̂
] [
T

(λ)
JM

]
ba
, (2.211)

where [
T

(λ)
JM

]
ba

=
∫
d3rΨ†

bα · a
(λ)
JM (r)Ψa . (2.212)

The squared transition amplitude contains terms of the form[
Y(λ)

JM (k̂) · ε̂ν
] [
ε̂ν ·Y(λ′)

J ′M ′(k̂)
]
, (2.213)

and one has to sum these terms over the possible polarization directions ε̂ν . The result of this summation
is [46] ∑

ν

[
Y(λ)

JM (k̂) · ε̂ν
] [
ε̂ν ·Y(λ′)

J ′M ′(k̂)
]

=
[
Y(λ)

JM (k̂) ·Y(λ′)
J ′M ′(k̂)

]
, (2.214)
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where we exploited the property that the vector spherical harmonics with λ = 0 , 1 are orthogonal to k̂.
Thus it is easy to integrate this expression over the photon direction∫

dΩk

[
Y(λ)

JM (k̂) ·Y(λ′)
J ′M ′(k̂)

]
= δJJ ′δMM ′δλλ′ . (2.215)

After this discussion one can cast the transition rate in the following form [46]:

wba =
α

2π
ω
∑

ν

∫
dΩk|Tba|2 = 8παω

∑
JMλ

∣∣∣[T (λ)
JM

]
ba

∣∣∣2 . (2.216)

The interaction can be written in terms of the transition operator t(λ)
JM (r) [46][

α · a(λ)
JM (r)− 1

c
ΦJM (r)

]
= i

√
(2J + 1)(J + 1)

4πJ
t
(λ)
JM (r) . (2.217)

The reduced matrix elements 〈i||t(λ)
J ||j〉 are given in the transverse gauge [46] as

〈κi||t(0)J ||κj〉 = 〈−κi||CJ ||κj〉
∫ ∞

0
dr
κi + κj

J + 1
jJ(kr) [Gi(r)Fj(r) + Fi(r)Gj(r)] , (2.218)

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0
dr

{
−κi − κj

J + 1

[
j′J(kr) +

jJ(kr)
kr

]
×

[Fi(r)Gj(r) +Gi(r)Fj(r)] + J
jJ(kr)
kr

[Fi(r)Gj(r)−Gi(r)Fj(r)]
}
,

and in the so-called Babushkin gauge, which is a relativistic generalization of the nonrelativistic length
form [46]:

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0
dr

{
jJ(kr) [Fi(r)Fj(r) +Gi(r)Gj(r)] + (2.219)

+jJ+1(kr)
[
κi − κj

J + 1
[Fi(r)Gj(r) +Gi(r)Fj(r)] + [Fi(r)Gj(r)−Gi(r)Fj(r)]

]}
.

The functions Fi(r) and Gi(r) in the above equations are the large and small components, respectively,
of the radial Dirac wave functions for the principal and angular momentum quantum numbers (ni, κi).

Using the Wigner-Eckart theorem [15]

〈Φb|t
(λ)
JM |Φa〉 = (−1)(jb−mb)

(
jb J ja
−Mb M Ma

)
〈Φb||t

(λ)
J ||Φa〉 (2.220)

the final formula for the decay width is

Γba = 2αω
(2J + 1)(J + 1)

J

∑
Jλ

|〈Φb||t
(λ)
J ||Φa〉|2

∑
Mmb

(
jb J ja
−Mb M Ma

)2

. (2.221)

In a two-level approximation, all quantum numbers of the initial state are well defined, therefore, no
averaging over unresolved quantum numbers has to be performed as in the usual case.

We can express, using the formula (2.195), the decay rate between hyperfine components (Fa,MFa),
(Fb,MFb

) as

Γab(najaIFaMFa → nbjbIFbMFb
) = (2Fa + 1)(2Fb + 1)

(
Fb J Fa

−MFb
MFb

−MFa MFa

)2

/

(
jb J ja
−Mb Mb −Ma Ma

)2{
jb Fb I
Fa ja J

}2

Γab(naja → nbjb) , (2.222)
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2.5 Nuclear proton distributions explored by relativistic resonance fluo-
rescence

A promising application of relativistic resonance fluorescence employing x-ray lasers is the determina-
tion of isotope shifts in highly charged ions. In these species, the large mutual overlap of the nuclear
matter with inner-shell electrons ensures a large sensitivity of ionic transition energies to the protonic
charge distribution. First we summarize the phenomenology of isotope shifts, then, as an application of
the relativistic theory of resonance fluorescence in two-level systems presented in the previous sections
we discuss our results on isotope shift measurements via x-ray lasers.

2.5.1 Isotope shifts and nuclear charge distribution parameters

Isotope shifts are variations of the electron energies without their splitting. The isotope shifts are caused
by two effects, namely, the mass and the field shift. The mass shift – or recoil effect – appears due to the
fact that the nuclear mass is finite. In the first approximation, we replace the electron mass (me) with the
reduced mass [28]

µ =
meMnuc

me +Mnuc
, (2.223)

and the energy will be rescaled as [28]

E =
µ

me
E∞ . (2.224)

E∞ is the energy value when we consider the nucleus is infinitely heavy (Mnuc = ∞). This method
does not work in the relativistic case, because the center of the mass cannot be defined geometrically.
One needs to do more elaborate calculations in the case of relativistic electrons. In the case of many-
electron atoms, correction due to the correlated motion should be included. These relativistic and many-
body effects can be taken into account by, e.g., perturbative means by the use of the relativistic recoil
operator for a general atomic system of electrons with indices i, j (see Refs. [63,75], in relativistic units,
~ = c = ε0 = 1):

Rij =
pi · pj

2M
− Zα

2Mri

(
αi +

(αi · ri)ri

r2i

)
· pj . (2.225)

Here, ri and pi are the position vector and the momentum operator of the ith electron, respectively, and
αi is the vector of Dirac matrices acting on its bispinor wave function. The isotope-dependent nuclear
mass is denoted by M and α is the fine-structure constant. There is no summation convention on i and j.
The normal mass shift correction to a given atomic state is obtained as the expectation value 〈

∑
iRii〉,

whereas the specific mass shift term is given by 〈
∑

i6=j Rij〉. The first term in Eq. (2.225) corresponds
to the mass shift operator also known in the non-relativistic theory.

The other physical effect which can produce isotope shifts is the field or volume shift. In this case
the nucleus is not point-like anymore, its charge is distributed within a finite volume. The different
distribution of the protons will create an electrostatic potential and will influence the motion of the
electrons at short distances.

Several models are in use for the description of the proton distribution. One of them is a spherical nuclear
charge distribution, with a good aproximation. In reality the nuclei have a different distribution, and the
deviation from spherical distribution determines higher-order electric and magnetic moments. These
multipole moments contribute to the splitting of energy levels in an atom, and are so-called hyperfine
structure effects.
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Figure 2.5: The two-parameter Fermi charge distribution normalized by the constant ρ0 (see text). The
half-density radius c and the surface thickness t are indicated. [62]

One of the most studied density function is the two-parameter Fermi distribution

ρnuc(r) =
ρ0

1 + e(r−c)/a
, (2.226)

where c is the half-density radius. For the case of a spherical distribution, c is a constant and it corre-
sponds to the radius at the half of the maximum value of density. We can introduce the surface thickness
of the distribution t as [28]

t = 4a ln 3. (2.227)

The normalization condition is ∫ ∞

0
ρnuc(r)4πr2dr = Ze . (2.228)

Let us note that the density is essentially ρ0 when the radius c is much bigger than a. The Fermi distri-
bution is illustrated in Fig. 2.5.

In more complicated cases, when the nuclei are deformed, one should use a four-parameter Fermi charge
distribution, where the parameter c is written as [86]

c = R0[1 + β2Y20(θ, φ) + β4Y40(θ, φ)] , (2.229)

where R0, β2 and β4 are the monopole, quadrupole, hexadecapole parameters, respectively. One can
introduce the root mean square (RMS) radius [28]

rRMS =

√
1
Ze

∫ ∞

0
r2ρnuc(r)4πr2dr . (2.230)

In general, the energy shift also depends on other radial moments [28]

〈rn〉 =
1
Ze

∫ ∞

0
ρnuc(r)4πrn+2dr . (2.231)

Poisson’s equation expresses the relationship between the density distribution and the corresponding
nuclear potential [45]

∇2Vnuc(r) = −4πρnuc(r) . (2.232)
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For a spherically symmetrical distribution one gets [47]

−rVnuc(r) = 4π
(∫ r

0
ρnuc(s)s2ds+ r

∫ ∞

r
ρnuc(s)sds

)
, (2.233)

if we impose the boundary condition Vnuc → 0 for r →∞.

In many cases, it is sufficient to model the protonic distribution by a homogenous distribution, which has
the form [47]

ρnuc(r) =
{
ρ0 , for r ≤ rnuc

0 , otherwise
, (2.234)

and in this case, the nuclear radius may be simply approximated by the empirical form [47]

rnuc = (1.0793A1/3 + 0.73587)fm . (2.235)

For a Fermi distribution for a spherically symmetric nucleus, the root mean square radius can be similarly
approximated by [47]

rRMS = (0.836A1/3 + 0.570)fm , (2.236)

and the surface thickness parameter may be taken constant as t = 2.30fm .

There are four established methods to measure some properties of the nuclear ground-state distribution:
elastic electron scattering, optical spectroscopy, K x-ray spectroscopy and muonic atom spectroscopy.
In some cases, one needs to use data from different experiments of this type in order to measure some
parameters with high precission [28].

1. Elastic electron scattering

In this measurement, the only interaction playing a role is the electromagnetic interaction between the
probe electron and the nucleus. We need the electron to be accelerated to some certain energy in order to
penetrate the nucleus. Its trajectory will be affected by the nuclear charge distribution. The differential
cross section can be measured, and the deviation from the point-like charge distribution is given by the
form factor F (q) [28]

dσ

dΩ

∣∣∣∣
exp

=
dσ

dΩ

∣∣∣∣
Mott

|F (q)|2 , (2.237)

with
q =

2E
~c

sin
θ

2
, (2.238)

where q is the momentum transfer. The probe electron is in the positive continuum, so it has E � mec
2.

The cross section for a pointlike nucleus is called the Mott cross section and it is given by [28]

dσ

dΩ

∣∣∣∣
Mott

=
Z2e4

4E4

cos2 θ
2

sin4 θ
2

, (2.239)

where θ is the scattering angle. If one performs a Bessel-Fourier transform of the form factor, one can
get the charge distribution density as [28]

F (q) = 4π
∫ ∞

0
ρnuc(r)j0(qr)r2dr , 0 < q <∞ , (2.240)

where j0(qr) denotes the spherical Bessel function of order zero.

The only possibility of determining the radial dependence of the charge distribution ρnuc(r) is the elec-
tron scattering. All other methods deliver integral quantities of ρnuc(r). As a result of such experiments
it has been concluded that most nuclei have an almost Fermi-like distribution.
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2. Optical spectroscopy

In the case of optical spectroscopy, one can only get information about nuclear charge parameters. In
these experiments mean-square radii δ〈r2〉 can be measured, with small correction arising from higher
radial moments.

The total shift between two isotopes is the sum of the field effect and the mass effect. So, for two isotopes
with the masses A and A′, for a transition i of frequency ν we have a frequency shift [28]

δνAA′
i = δνAA′

i,MS + δνAA′
i,FS . (2.241)

In a spectral line i, the FS variation is [28]

δνAA′
i,FS = Fiλ

AA′
, (2.242)

where Fi represents the electronic factor and

λAA′
= δ〈r2〉AA′

+
C2

C1
δ〈r4〉AA′

+
C3

C1
δ〈r6〉AA′

+ ... , (2.243)

with δ〈r2〉AA′
= 〈r2〉A − 〈r2〉A′

. The coefficients C1, C2, C3,... are known. There are severel methods
in order to determine Fi : a semi-empirical method, using Goudsmit-Fermi Segre method, theoretical
with, e.g. a multiconfiguration Dirac-Fock method, or experimentally elpoying the King plot (see [28]).

3. K x-ray spectroscopy

The method is similar to the optical spectroscopy. The formulas (2.241) and (2.243) are still valid. In
the case of x-ray transitions with inner-shell electrons, the sensibility of the measurements to nuclear
properties is higher.

4. Muonic atom spectroscopy

The muon µ is a particle having a mass 207 time bigger then the electron, and the same spin 1
2 . Because

it has a negative charge, it can be bound by a nucleus. The muon is also described by the Dirac equation.
There is a big overlap betwen the muonic wave function and the nuclear wave function, so the nuclear
size effects become relatively large. The binding energies depend on the nuclear charge distribution, as
well the transition energy between atomic levels. So by comparision of the experimental and theoretical
spectra [28], one can determine the nuclear parameters.

An additional independent method such as measuring IS by employing x-ray free electron lasers will be
by no doubt of great use in extending our knowledge on nuclear electromagnetic properties.

2.5.2 Isotope shifts investigated by means of relativistic resonance fluorescence

In Fig. 2.6 we plot the power spectrum of resonance fluorescence for the case of the 2s → 2p3/2 E1
transition in Li-like uranium (Z=92) ions. The dynamic (AC) Stark shift leads to a splitting of the central
peak. At an intensity of 1012 W/cm2, the Rabi frequency of 150 meV is only slightly larger than the
natural line width of Γ = 45 meV. As the figure shows, this leads to a rapid decrease of the fluorescence
signal as function of the laser detuning from the transition frequency of the ion, especially when the
central peak is considered. This enables the determination of ionic resonance energies with a resolution
on the order of the natural line width of the transition. At higher intensities, however, the Rabi frequency
which dominates the width of the detected signal peak (see dashed curve on Fig. 2.6) increases, thus
corrupting the energy resolution.
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Figure 2.6: Spectrum of fluorescence photons for the 2s–2p3/2 circular (m=3/2–1/2) transition in Li-like
U as a function of the fluorescence photon frequency ωf and the detuning of the laser frequency ωl from
the ionic transition with ωtr = 4106.6 eV. The laser intensity is 1012 W/cm2. The dashed curve shows
the frequency-integrated detected signal as a function of the detuning.

In order to deduce nuclear proton distribution parameters via resonance fluorescence spectra, the iso-
tope shifts for a pair of isotopes shall preferably be larger or at least comparable to the width of the
fluorescence peaks.

The structure of the relativistic spectra is different from the non-relativistic one due to the spin-orbit
interaction and the velocity-dependent electron mass only accounted for in the relativistic theory: the
Rabi frequencies depend on the relativistic magnetic sublevels of the upper and lower states, leading to
a complex splitting of the usual three-peak Mollow structure.

Current x-ray laser systems such as the LCLS possess a photon beam bandwidth of 200 meV, which
is expected to yield an accuracy on the 1 meV level for the IS of the transition mentioned above, thus
potentially outperforming the∼50 meV precision of emission spectroscopy techniques [26] by more than
an order of magnitude. Since the only theoretical limitation in our scheme is the rather small natural line
width, anticipated improvements of the bandwidth of short-wavelength lasers in the immediate future will
allow to push these boundaries even further. Besides the radius, further properties of the nuclear charge
distribution such as higher moments, deformation parameters [18] and nuclear polarization contributions
may even be accessible. In the optical range, the superior frequency resolution and intensity of existing
lasers may be exploited by addressing, e.g., hyperfine transitions in few-electron highly charged ions.

In order to infer nuclear proton radii from experimental IS values, the dependence of the complete flu-
orescence spectrum on the variation δ〈r2〉 of the mean square charge radius (averaged over the nuclear
volume) is needed. Given the relative simplicity of such few-electron atomic states, this dependence can
be calculated to higher precision than in the case of light elements [69]. Such a spectrum is shown in
Fig. 2.7 for the case of uranium, delivering directly the radius with respect to that of the 238U isotope.

Laser systems with photon energies of up to a few keV (in the range of Li-like transitions) are presently
available [4,27], allowing to excite elements as heavy as U. Future laser facilities are expected to increase
the frequency limit to the order of tens of keVs, permitting to directly address the most relativistic very
heavy H-like systems. E.g. for the case of Fig. 2.7, experimental photon emission rates are estimated to
be on the order of 107 1/s per ion at a laser intensity of 1012 W/cm2, providing sufficient count statistics
for a high-precision determination of the IS value. Table 2.1 lists values for further elements and charge
states.
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Figure 2.7: Shift of the relativistic resonance fluorescence spectrum as a function of the mean square
proton radius variation δ〈r2〉 for the case of the 2s–2p3/2 transition in Li-like uranium. The spectrum
at the bottom corresponds to the reference isotope A=238 and is plotted against the fluorescence photon
frequency ωf around the transition frequency ωtr of 4106.6 eV. The laser intensity is 1012 W/cm2 and
the laser detuning is assumed to be 0 for any isotope. See text for more details.

Table 2.1: Parameters for H-like (1s–2p1/2) and Li-like (2s–2p3/2) ions. Transition energies, line widths
Γ, laser intensities I, and isotope shifts ∆ωIS , are given. x(y) stands for x× 10y.

Z charge state ωtr [eV] Γ [eV] I [ W/cm2] ∆ωIS [eV]
54 H 3.0904(4) 3.03(0) 1(15) 2.96(-2)

Li 3.6406(2) 1.07(-4) 1(7) 3.44(-3)
60 H 3.8521(4) 5.47(0) 1(16) 3.00(-1)

Li 5.7763(2) 3.38(-4) 1(8) 3.65(-2)
92 H 9.8065(4) 1.81(1) 1(17) 1.07(0)

Li 4.1066(3) 4.48(-2) 1(12) 1.70(-1)

2.6 The spectrum of resonance fluorescence in three-level approximation

Resonance fluorescence in a two-level system discussed sofar constitutes the simplest model of bound
atomic dynamics. A whole range of new phenomena becomes possible if one extends this picture with
a third level and an additional coherent driving. In particular, the quantum manipulation of the system
dynamics becomes possible when using a second laser field. In the following we develop a consistent
relativistic theory of resonance fluorescence in an atomic three-level system.

2.6.1 Description of the model and equations of motion

The state function of a three-level atom can be written in the form

|Ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉+ Cc(t)|c〉 . (2.244)
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Figure 2.8: Level scheme of an (a) V -system, (b) Λ-system, and (c) Ξ-system. Here, ω1 and ω2 are laser
frequencies, and ∆1 and ∆2 are the corresponding detunings from the atomic transition frequencies.

It is easy to see following the calculations of two-levels atoms that the Hamiltonian of the three-level
system interacting with two classical fields is given by [61]

H =
3∑

i=1

εi|i〉〈i|+ Ω13
R (e−iω1t|3〉〈1|+ eiω1t|1〉〈3|) + Ω12

R (e−iω2t|2〉〈1|+ eiω2t|1〉〈2|) . (2.245)

The energies of the stationary states are denoted by εi (i ∈ {1, 2, 3}). Ω12
R is the Rabi frequency between

the levels 1 → 2 and Ω13
R is the Rabi frequency between the levels 1 → 3. The operator |j〉〈i| describes

the creation of the electronic state in level i and annihilation in level j. ω1 and ω2 are the field frequencies
between the levels 1 → 3 respectively 1 → 2. The reversible part of the master equation in the interaction
picture has the form [61]

ρ̇′ = − i
~
[H ′

1 , ρ
′] . (2.246)

The prime denotes quantities in the interaction representation. The Hamiltonian in the interaction picture
is

H ′
1 = ~Ω13

R (|3〉〈1|ei∆1t + |1〉〈3|e−i∆1t) + ~Ω12
R (|2〉〈1|ei∆2t + |1〉〈2|e−i∆2t) , (2.247)

with

∆1 = ω31 − ω1 , ∆2 = ω21 − ω2 . (2.248)

ω31 and ω21 are atomic transition frequencies between the levels 1 → 3 and 1 → 2, respectively. Now
we do the following transformation [61]

Rii = ρ′ii (i = 1, 2, 3), R12 = ρ′12e
i∆2t, R13 = ρ′13e

i∆1t, R23 = ρ′23e
i(∆2−∆2)t , (2.249)

with the aim of writing the master equation using the variables Rij .

The full master equation reads

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ , (2.250)

where the irreversible part of Eq. (2.250) is given by Eq. (2.14). Written in terms of the variable Rij ,



56 II 2. RELATIVISTIC THEORY OF RESONANCE FLUORESCENCE

Eq. (2.250) takes the form [61]

dR12

dτ
= i∆̃2R12 − iβ1R32 − iβ2(R22 −R11)− γ̃12R12 , (2.251)

dR13

dτ
= i∆̃1R13 − iβ1(R33 −R11)− iβ2R23 − γ̃13R13 ,

dR22

dτ
= −iβ2(R12 −R21) + Γ̃12R11 + Γ̃32R33 − (Γ̃21 + Γ̃23)R22 ,

dR23

dτ
= i(∆̃1 − ∆̃2)R23 + iβ1R21 − iβ2R13 − γ̃23R23 ,

dR33

dτ
= −iβ1(R13 −R31) + Γ̃13R11 + Γ̃23R22 − (1 + Γ̃32)R33 ,

with R11 = 1 − R22 − R33, R21 = R∗
12, R31 = R∗

13 R32 = R∗
23. In Eqs. (2.251) we used the

notation τ = Γ31t, β1 = Ω13
R /Γ31 and β2 = Ω12

R /Γ31. All other quantities labeled with a tilde are scaled
by Γ31.

The master equation in terms of Ψ is [61]

d

dτ
Ψ = LΨ + I , (2.252)

with the components

Ψ1 = R12 , Ψ2 = R13 , Ψ3 = R21 , Ψ4 = R22 ,

Ψ5 = R23 , Ψ6 = R31 , Ψ7 = R32 , Ψ8 = R33 , (2.253)
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andL is an 8×8 matrix [61]:
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The components of I are [61]

I1 = iβ2 , I2 = iβ1 , I3 = −iβ2 , I4 = Γ̃12 ,

I5 = 0 , I6 = −iβ1 , I7 = 0 , I8 = Γ̃13 . (2.255)

2.6.2 The calculation of the spectrum

Like in the case of the two-level atom, in the calculation of the spectra we only need to calculate the
atomic correlation function

Γ(τ1, τ0) = 〈P (−)(τ1)P (+)(τ0)〉 . (2.256)

We may introduce the polarization operator of the three-level atom as [61]

P (τ) = γ12(|1〉〈2|+ |2〉〈1|) + γ13(|1〉〈3|+ |3〉〈1|) , (2.257)

where the γij are the moduli of the induced transition dipole (or multipole) moments. We can define the
positive and negative parts of the polarization operator as [61]

〈P (+)(t)〉 = γ12|1〉〈2|+ γ13|1〉〈3| , P (−)(t) = [P (+)(t)]† . (2.258)

One starts with one-time average of the P (−)(τ1) operator

P (−)(τ1) = Tr[ρ(τ1)(γ12(|2〉〈1|+ γ13|3〉〈1|)] , (2.259)

or in terms of Ψi(τ1):

〈P (−)(τ1)〉 = γ12e
iω2τ1Ψ1(τ1) + γ13e

iω1τ1Ψ2(τ1) . (2.260)

For the elegance of the calculation one can start to transform Eq. (2.252) into Laplace space. This allows
one to express each of the matrix element Ψi(τ1) in terms of their initial values τ = τ0. We arrive at

〈P̂ (−)(z)〉 = γ12Ψ̂1(z2) + γ13Ψ̂2(z1) , (2.261)

where we did the transformation z1 = z − iω1 and z2 = z − iω2. Using Eq. (2.24) and Eq. (2.261) we
can put the average of P̂ (−)(z) in the form [61]

〈P̂ (−)(z)〉 =
∑

j

[γ12M1j(z2) + γ13M2j(z1)]Ψj(τ0) +
∑

j

[
γ12

z2
M1j(z2) +

γ13

z1
M2j(z1)

]
Ij . (2.262)

This helps us to express Ψj(τ0) and Ij in the form of expectation values at τ = τ0. The regression
theorem gives [61]

〈P̂ (−)(z)P (+)(τ0)〉τ0 = γ12[γ12M11(z2) + γ13M21(z1)]Ψ4(τ0)e−iω2τ0 (2.263)

+ γ13[γ12M11(z2) + γ13M21(z1)]Ψ7(τ0)e−iω1τ0

+ γ12[γ12M12(z2) + γ13M22(z1)]Ψ5(τ0)e−iω2τ0

+ γ13[γ12M12(z2) + γ13M22(z1)]Ψ8(τ0)e−iω1τ0

+
∑

j

[
γ12

z2
M1j(z2) +

γ13

z1
M2j(z1)]Ij [γ12Ψ3(τ0)e−iω2τ0 + γ13Ψ6(τ0)e−iω1τ0 ] .
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In the limiting case τ0 →∞, the above expression becomes [61]

〈P̂ (−)(z)P (+)(∞)〉τ0 = γ2
12

M11(z2)Ψ4(∞) +M12(z2)Ψ5(∞) +
1
z2

∑
j

M1j(z2)Ψ3(∞)Ij


+γ2

13

M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +
1
z1

∑
j

M2j(z1)Ψ6(∞)Ij

 . (2.264)

Eq. (2.264) shows that the spectrum of resonance fluorescence has a structure with center frequencies
located at ω2 and ω1, respectively, and magnitudes proportional to the atomic transition matrix elements.
The spectrum has the form [61]

Γ̂incoh
V (z) = Γ̂(z)− 1

z1
lim

z1→0
z1Γ̂(z)− 1

z2
lim

z2→0
z2Γ̂(z) . (2.265)

The emission spectrum can ultimately be expressed as [61]

S(ω) = <Γ̂incoh
V (z)|z=iω , (2.266)

with

Γ̂incoh
V (z) = γ2

12[M11(z2)Ψ4(∞) +M12(z2)Ψ5(∞) +
∑

j

N1j(z2)Ψ3(∞)Ij ] (2.267)

+ γ2
13[M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +

∑
j

N2j(z1)Ψ6(∞)Ij ] ,

where

Nij(z) = (L−1(z − L)−1)ij . (2.268)

The result of the calculation in the case of the 3 → 1 transition in a Λ system (see Fig. 2.8 b)) is [56]

Γ̂incoh
Λ1 (z) = γ2

13[M21(z1)Ψ7(∞) +M22(z1)Ψ8(∞) +
∑

j

N2j(z1)Ψ6(∞)Ij ] . (2.269)

In the case of the 3 → 2 emission one gets [56]

Γ̂incoh
Λ2 (z) = γ2

23[M53(z2)Ψ6(∞) +M56(z2)Ψ7(∞) +M55(z2)Ψ8(∞)

+
∑

j

N5j(z2)Ψ7(∞)Ij ] , (2.270)

where z1 = z − iω̃1, and z2 = z − iω̃2.

In the case of the Ξ (or ladder-type) system (see Fig. 2.8 c)), the 2 → 1 power spectrum is [56]

Γ̂incoh
Ξ1 (z) = γ2

12[M11(z1)Ψ4(∞) +M12(z1)Ψ5(∞) +
∑

j

N1j(z1)Ψ3(∞)Ij ] , (2.271)

and the 3 → 2 emission spectrum is given as [56]

Γ̂incoh
Ξ2 (z) = γ2

23[M53(z2)Ψ6(∞) +M54(z2)Ψ7(∞) +M55(z2)Ψ8(∞)

+
∑

j

N5j(z2)Ψ7(∞)Ij ] . (2.272)
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2.6.3 Analytic calculation of the spectra in the strong field approximation

In the following we only consider the case of a resonant interaction of a laser with the 1 → 2 transition,
i.e. the detuning is ∆̃1 = 0 (see Fig.2.8(a)) and we study the emission spectrum of the 3 → 1 transition.
We employ the interaction Hamiltonian of Eq. (2.247) assuming ∆̃1 = 0. We consider the dressed
atomic states

|r〉 =

[
λ2

1

Ω2
2

+ 1 +
(

λ2
1

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ1

Ω2
|1〉+ |2〉+

(
λ2

1

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
, (2.273)

|s〉 =

[
λ2

2

Ω2
2

+ 1 +
(

λ2
2

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ2

Ω2
|1〉+ |2〉+

(
λ2

2

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
,

|t〉 =

[
λ2

3

Ω2
2

+ 1 +
(

λ2
3

Ω1Ω2
− Ω2

Ω1

)2
]−1/2 [

λ3

Ω2
|1〉+ |2〉+

(
λ2

3

Ω1Ω2
− Ω2

Ω1

)
|3〉
]
,

with the λi defined as

λ1 =
~Ω2

2∆1

Ω2
1 + Ω2

2

+ O(∆1)2 , (2.274)

λ2 = ~
√

Ω2
1 + Ω2

2 +
~Ω2

1∆1

2(Ω2
1 + Ω2

2)
+ O(∆1)2 ,

λ3 = −~
√

Ω2
1 + Ω2

2 +
~Ω2

1∆1

2(Ω2
1 + Ω2

2)
+ O(∆1)2 .

In the first order of ∆1, the dressed atomic states become

|r〉 =
∆1

Ω2
sin θ2 cos θ|1〉+ cos θ|2〉 − sin θ|3〉 , (2.275)

|s〉 =
(

1√
2
− 1√

32
∆1

Ω2
sin θ cos θ2

)
|1〉+

(
sin θ√

2
− 3√

32
∆1

Ω2
sin θ cos θ2

)
|2〉

+
(

cos θ√
2

+
1√
32

∆1

Ω2
sin θ cos θ(1 + 3 sin θ2)

)
|3〉 ,

|t〉 =
(
− 1√

2
− 1√

32
∆1

Ω2
sin θ cos θ2

)
|1〉+

(
sin θ√

2
+

3√
32

∆1

Ω2
sin θ cos θ2

)
|2〉

+
(

cos θ√
2
− 1√

32
∆1

Ω2
sin θ cos θ(1 + 3 sin θ2)

)
|3〉 ,

with the angle θ abstractly defined by tan θ = Ω2/Ω1. These states are eigenstates of H ′
1 , i.e.,

H ′
1 |r〉 = sin θ2∆1|r〉 , (2.276)

H ′
1 |s〉 = ~(ΩR + cos θ2∆1)|s〉 ,

H ′
1 |t〉 = ~(−ΩR + cos θ2∆1|t〉 ,

and ΩR = (Ω1 + Ω2)1/2 represents the effective applied Rabi frequency. In fact we show that, while ΩR

must be large for this approximation to hold, no restrictions are posed on the individual magnitudes of
the two Rabi frequencies Ω1 and Ω2.

In the interaction picture one can write the master equation

ρ̇′ = − i
~
[H ′

1 , ρ
′] + Λρ′ . (2.277)
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The reversible part of the master Eq. (2.277) has a very simple form

(
d

dt

)
rev


ρ′st
ρ′sr
ρ′rt

ρ′ss
ρ′tt

 =


−2iΩRρ

′
st

−i(ΩR + cos 2θ∆1)ρ′sr
−i(ΩR − cos 2θ∆1)ρ′rt

0
0

 , (2.278)

with the trace condition

ρ′rr = 1− ρ′ss − ρ′tt , (2.279)

and with Hermitian symmetry relations

ρ′rs = (ρ′sr)
∗ , ρ′tr = (ρ′rt)

∗ , ρ′ts = (ρ′st)
∗ . (2.280)

The irreversible part of the master equation is somewhat more complicated [61]:(
d

dt

)
irrev

ρ′ij =
∑
pq

Λijpqρ
′
pq , (2.281)

where Λijpq are parameters defined in Eq. (2.14). We use the transformation equation ρ′µν =
∑

ij〈µ|i〉ρ′ij〈j|ν〉
in order to get [61](

d

dt

)
irrev

ρ′µν =
∑
στ

∑
ijpq

〈µ|i〉〈j|ν〉〈p|σ〉〈τ |q〉Λijpq

 ρ′στ ≡
∑
στ

Γµνστρ
′
στ , (2.282)

the matrix elements 〈µ|i〉 can be calculated using Eq. (2.275). We now consider the limit when the Rabi
frequency dominates over the relaxation rates. We focus on the derivation of an expression for resonance
fluorescence with an accuracy of order 1/ΩR. We can define the vector Ψ as

Ψ1 = ρ′st , Ψ2 = ρ′sr , Ψ3 = ρ′rt , Ψ4 = ρ′ss ,

Ψ5 = ρ′tt , Ψ6 = ρ′rs , Ψ7 = ρ′tr , Ψ8 = ρ′ts , (2.283)

and ρ′rr = 1− ρ′ss − ρ′tt = 1−Ψ4 −Ψ5. The master equation in terms of Ψ is

d

dt
Ψ = LΨ + I . (2.284)

In the steady state, it takes the form

Ψ(∞) = −L−1I . (2.285)

In Eq. (2.285) the only dominant terms are

Ψ4(∞) =
ΓssttΓttrr − ΓssrrΓtttt)

Γsstt(Γttrr − Γttss) + Γssrr(Γttss − Γtttt + Γssss(−Γttrr + Γtttt)
, (2.286)

Ψ5(∞) =
ΓssssΓttrr − ΓssrrΓttss)

Γsstt(Γttrr − Γttss) + Γssrr(Γttss − Γtttt + Γssss(−Γttrr + Γtttt)
.

The deviation from the steady state is defined as [61]

δΨ = Ψ(t)−Ψ(∞) , (2.287)
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which fulfil the condition

d

dt
δΨ(t) = LδΨ(t) . (2.288)

Up to corrections of order 1/ΩR, the L0 in the fluctuation equation Eq. (2.288) has a diagonal form. This
approximation can be easily understood if we consider the equations for δρ′µν . For simplicity we take
the case when ∆1 = 0. Similar analysis may be done for ∆1 6= 0. One can write

d

dt
δρ′st = − 2iΩRδρ

′
st + Γstrsδρ

′
rs + Γstrtδρ

′
rt + Γstsrδρ

′
sr + Γststδρ

′
st + Γsttrδρ

′
tr (2.289)

+ Γsttsδρ
′
ts + (Γstss − Γstrr)δρ′ss + (Γsttt − Γstrr)δρ′tt ,

d

dt
δρ′sr = − iΩRδρ

′
sr + Γsrrsδρ

′
rs + Γsrrtδρ

′
rt + Γsrsrδρ

′
sr + Γsrstδρ

′
st + Γsrtrδρ

′
tr

+ Γsrtsδρ
′
ts + (Γsrss − Γsrrr)δρ′ss + (Γsrtt − Γsrrr)δρ′tt ,

d

dt
δρ′rt = − iΩRδρ

′
rt + Γrtrsδρ

′
rs + Γrtrtδρ

′
rt + Γrtsrδρ

′
sr + Γrtstδρ

′
st + Γrttrδρ

′
tr

+ Γrttsδρ
′
ts + (Γrtss − Γrtrr)δρ′ss + (Γrttt − Γrtrr)δρ′tt .

Introducing the notation

δρ′st = e−2iΩRtRst , δρ′sr = e−iΩRtRsr , δρ′rt = e−iΩRtRrt , δρ′ss = Rss , (2.290)

δρ′tt = Rtt , δρ′rs = eiΩRtRrs , δρ′tr = eiΩRtRtr , δρ′ts = e2iΩRtRts ,

we get

dRst

dt
= ΓststRst + O(1/ΩR) , (2.291)

dRsr

dt
= ΓsrrtRrt + ΓsrsrRsr + O(1/ΩR) ,

dRrt

dt
= ΓrtrtRrt + ΓrtsrRsr + O(1/ΩR) .

Dropping the rapidly oscillating terms O(1/ΩR), one gets

d

dt
δρ′st = (Γstst − 2iΩR)δρ′st , (2.292)

d

dt
δρ′sr = (Γsrsr − iΩR)δρ′sr + Γsrrtδρ

′
rt ,

d

dt
δρ′rt = Γrtsrδρ

′
sr + (Γrtrt − iΩR)δρ′rt .

Thus the new matrix L0 can be obtained after neglecting the off-diagonal elements

L0 =


(1× 1)

(2× 2)
(2× 2)

(2× 2)
(1× 1)

 . (2.293)

One can write Ψ

d

dt
Ψ(t) = L0Ψ(t) + I∞ , (2.294)
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where I∞ = −L0Ψ(∞). The L0 components are

(L0)1 = Γstst − 2iΩR , (2.295)

(L0)2 =
(

Γsrsr − i(ΩR + ∆1 cos 2θ) Γsrrt

Γstsr Γrtrt − i(ΩR −∆1 cos 2θ)

)
,

(L0)3 =
(

Γssss − Γssrr Γsstt − Γssrr

Γttss − Γttrr Γtttt − Γttrr

)
,

(L0)4 =
(

Γrsrs + i(ΩR + ∆1 cos 2θ) Γrstr

Γtrrs Γtrtr + i(ΩR −∆1 cos 2θ)

)
,

(L0)5 = Γtsts + 2iΩR .

The quantities Γµνστ are calculated in the first order of ∆1

Γstst = 1
8(−4Γ31 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ21 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4) + O(∆1) , (2.296)

Γtsts = 1
8(−4Γ31 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ21 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4) + 1
16(−γ1 cos θ2 sin θ − γ1 cos θ4 sin θ

− 3γ1 cos θ2 sin θ3)
∆1

Ω2
+ O(∆1)2 ,

Γsrsr = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− γ1 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4) + 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 + γ1 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γtrtr = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− γ1 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4)− 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 + γ1 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γrtrt = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4)− 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,
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Γrsrs = 1
4(−Γ21 cos θ2 − Γ21 cos θ4 − Γ31 cos θ4 − Γ32 cos θ4 − Γ31 sin θ2 − Γ32 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 4Γ32 cos θ2 sin θ2 − Γ21 sin θ4 − Γ31 sin θ4

− Γ32 sin θ4) + 1
8(−Γ31 cos θ4 sin θ − Γ32 cos θ4 sin θ + 6Γ21 cos θ4 sin θ2 + 3Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 5Γ31 cos θ2 sin θ3 − 2Γ32 cos θ2 sin θ3 − 3Γ21 cos θ4 sin θ3

− 3Γ31 cos θ4 sin θ3 − 3Γ32 cos θ4 sin θ3 + 3Γ21 cos θ2 sin θ4 + 3Γ31 cos θ2 sin θ4 + 3Γ32 cos θ2 sin θ4

− 6Γ31 cos θ2 sin θ5 − 9Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γsrrt = −1
2Γ32 cos θ2 sin θ2 + 1

8(3Γ32 cos θ4 sin θ2 + 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3

+ Γ32 cos θ2 sin θ3 + 2γ1 cos θ2 sin θ2 + 3Γ32 cos θ2 sin θ5)
∆1

Ω1
+ O(∆1)2 ,

Γrtsr = −1
2Γ32 cos θ2 sin θ2 + 1

8(−3Γ32 cos θ4 sin θ2 − 4Γ21 cos θ2 sin θ3 + 4Γ31 cos θ2 sin θ3

+ −Γ32 cos θ2 sin θ3 + 2γ1 cos θ2 sin θ2 − 3Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γrstr = −1
2Γ32 cos θ2 sin θ2 + 1

8(3Γ32 cos θ4 sin θ2 + 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3

+ Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 − 3Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γtrrs = −1
2Γ32 cos θ2 sin θ2 + 1

8(−3Γ32 cos θ4 sin θ2 − 4Γ21 cos θ2 sin θ3 + 4Γ31 cos θ2 sin θ3

− Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 − Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γssss − Γssrr = 1
8(−4Γ21 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ31 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4 − 4Γ32 sin θ4)
+ 1

16(−2Γ32 cos θ2 sin θ − γ1 cos θ2 sin θ + 4Γ21 cos θ4 sin θ − 4Γ31 cos θ4 sin θ
− 2Γ32 cos θ4 sin θ + γ1 cos θ4 sin θ + 12Γ31 cos θ4 sin θ2 + 6Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3 − 12Γ32 cos θ2 sin θ3 − 7γ1 cos θ2 sin θ3

− 12Γ31 cos θ4 sin θ3 − 12Γ32 cos θ4 sin θ3 + 12Γ21 cos θ2 sin θ4 + 12Γ32 cos θ2 sin θ4

− 12Γ21 cos θ2 sin θ5 + 6Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γtttt − Γttrr = 1
8(−4Γ21 cos θ2 − 2Γ32 cos θ2 − γ1 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4 − 4Γ31 sin θ2

− 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4 − 4Γ32 sin θ4)
− 1

16(−2Γ32 cos θ2 sin θ − γ1 cos θ2 sin θ + 4Γ21 cos θ4 sin θ − 4Γ31 cos θ4 sin θ
− 2Γ32 cos θ4 sin θ + γ1 cos θ4 sin θ + 12Γ31 cos θ4 sin θ2 + 6Γ32 cos θ4 sin θ2

+ 4Γ21 cos θ2 sin θ3 − 4Γ31 cos θ2 sin θ3 − 12Γ32 cos θ2 sin θ3 − 7γ1 cos θ2 sin θ3

− 12Γ31 cos θ4 sin θ3 − 12Γ32 cos θ4 sin θ3 + 12Γ21 cos θ2 sin θ4 + 12Γ32 cos θ2 sin θ4

− 12Γ21 cos θ2 sin θ5 + 6Γ32 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,
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Γsstt − Γssrr = 1
8(−4Γ21 cos θ2 + 4Γ31 cos θ2 + γ1 cos θ2 + 2Γ32 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4

+ 4Γ21 sin θ2 − 4Γ31 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4

− 4Γ32 sin θ4) + 1
8(−Γ31 cos θ2 sin θ + 2Γ21 cos θ4 sin θ − Γ31 cos θ4 sin θ

+ 3Γ21 cos θ2 sin θ2 − 3Γ21 cos θ4 sin θ2 + 3Γ31 cos θ4 sin θ2 + 2Γ21 cos θ2 sin θ3

− 4Γ31 cos θ2 sin θ3 − 4Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 + 6Γ32 cos θ2 sin θ4

− 3Γ21 cos θ2 sin θ5 + 3Γ31 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

Γttss − Γttrr = 1
8(−4Γ21 cos θ2 + 4Γ31 cos θ2 + γ1 cos θ2 + 2Γ32 cos θ2 − 2Γ31 cos θ4 − 2Γ32 cos θ4

+ 4Γ21 sin θ2 − 4Γ31 sin θ2 − 2Γ21 cos θ2 sin θ2 − 2Γ31 cos θ2 sin θ2 − 2Γ21 sin θ4

− 4Γ32 sin θ4)− 1
8(−Γ31 cos θ2 sin θ + 2Γ21 cos θ4 sin θ − Γ31 cos θ4 sin θ

+ 3Γ21 cos θ2 sin θ2 − 3Γ21 cos θ4 sin θ2 + 3Γ31 cos θ4 sin θ2 + 2Γ21 cos θ2 sin θ3

− 4Γ31 cos θ2 sin θ3 − 4Γ32 cos θ2 sin θ3 − 2γ1 cos θ2 sin θ3 + 6Γ32 cos θ2 sin θ4

− 3Γ21 cos θ2 sin θ5 + 3Γ31 cos θ2 sin θ5)
∆1

Ω2
+ O(∆1)2 ,

where γ1 is the decoherence rate of the laser having the frequency ω1.

The only nonzero elements of the vector I∞ (to order 1/ΩR) are

I∞4 = I∞5 = Γssrr . (2.297)

One can write the solution of Eq. (2.294)

Ψ̂(z) = M0(z)Ψ(t0) +
1
z
M0(z)I∞ , (2.298)

where the matrix M0 is given as

M0(z) = (z − L0)−1. (2.299)

The polarization operator is defined as

P (+) = γ13|1〉〈3| , P (−) = γ13|3〉〈1| . (2.300)

The single-time average is

〈P (−)(t1)〉 = γ13Tr[ρ′(t1)|3〉〈1|] exp(Iω31t1) . (2.301)

Using the relations

|3〉〈1|r〉 =
∆1

Ω2
sin θ2 cos θ

(
− sin θ|r〉+

1√
2

cos θ|s〉+
1√
2

cos θ|t〉
)
, (2.302)

|3〉〈1|s〉 =
1
2

cos θ(|s〉+ |t〉)− 1√
2

sin θ|r〉

+
1√
32

∆1

Ω2
sin 2θ(

√
2 sin 2θ|r〉+ 8 sin θ2|s〉 − 4(1 + sin θ2)|t〉) ,

|3〉〈1|t〉 = −1
2

cos θ(|s〉+ |t〉) +
1√
2

sin θ|r〉

+
1√
32

∆1

Ω2
sin 2θ(

√
2 sin 2θ|r〉+ 8 sin θ2|s〉 − 4(1 + sin θ2)|t〉) ,
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we can write the expression for P (−)(z) as

〈P (−)(z)〉 =
1
2

cos θ(Ψ̂4(z1) + Ψ̂1(z1)− Ψ̂8(z1)− Ψ̂5(z1))−
1√
2

sin θ(Ψ̂2(z1)− Ψ̂7(z1)) (2.303)

+
∆1

Ω2
sin θ2 cos θ

[
sin θ(− 1

z1
+ Ψ̂4(z1) + Ψ̂5(z1)) +

1√
2

cos θ(Ψ̂6(z1) + Ψ̂3(z1) +
1
4
Ψ̂2(z1)

+
1
4
Ψ̂7(z1)) + cos θ sin θ2(Ψ̂4(z1) + Ψ̂8(z1))−

1
2

cos θ(Ψ̂1(z1) + Ψ̂5(z1))
]
,

where z1 = z − iω31. We apply the regression theorem

Ψ1(t0) → γ13Tr[ρ(t0)|t〉〈s|1〉〈3|] = γ13Tr[ρ′(t0)|t〉〈s|1〉〈3|] (2.304)

= γ13 exp(−iω31t0)〈s|1〉〈3|ρ′(t0)|t〉 ,

Ψ1(t0) → γ13exp(−iω31t0)
(

1
2 cos θ(ρ′st + ρ′tt)−

1√
2

sin θρ′rt

)
(2.305)

+γ13
∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ3 cos θ2ρ′rt +
1
2

sin θ3 cos θρ′st −
1
4

sin θ cos θ(1 + sin θ2)ρ′tt

)
.

Again, with over-bars we indicate the operators in the interaction picture. Appling the same procedure,
one can get

Ψ2(t0) → γ13 exp(−iω31t0)
(

1
2 cos θ(ρ′sr + ρ′tr)−

1√
2

sin θρ′rr

)
(2.306)

+γ13
∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rr +
1
2

sin θ3 cos θρ′sr −
1
4

sin θ cos θ(1 + sin θ2)ρ′tr

)
,

Ψ3(t0) → γ13
∆1

Ω2
exp(−iω31t0)

(
− sin θ3 cos θρ′rt +

1√
2

sin θ2 cos θ2ρ′st +
1√
2

sin θ2 cos θ2ρ′tt

)
,

Ψ4(t0) → γ13 exp(−iω31t0)
(

1
2 cos θ(ρ′ss + ρ′ts)−

1√
2

sin θρ′rs

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ3 cos θ2ρ′rs +
1
2

sin θ2 cos θρ′ss −
1
4

sin θ cos θ(1 + sin θ2)ρ′ts

)
,

Ψ5(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′st + ρ′tt) +
1√
2

sin θρ′rt

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ cos θ2ρ′rt −
1
4

sin θ cos θ(1 + sin θ2)ρ′st +
1
2

sin θ3 cos θρ′tt

)
,

Ψ6(t0) → γ13
∆1

Ω2
exp(−iω31t0)

(
− sin θ3 cos θρ′rs +

1√
2

sin θ2 cos θ2ρ′ss +
1√
2

sin θ2 cos θ2ρ′ts

)
,

Ψ7(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′sr + ρ′tr) +
1√
2

sin θρ′rr

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rr −
1
4

sin θ cos θ(1 + sin θ2)ρ′sr +
1
2

sin θ3 cos θρ′tr

)
,

Ψ8(t0) → γ13 exp(−iω31t0)
(
−1

2 cos θ(ρ′ss + ρ′ts) +
1√
2

sin θρ′rs

)
+γ13

∆1

Ω2
exp(−iω31t0)

(
1√
32

sin θ2 cos θ2ρ′rs −
1
4

sin θ cos θ(1 + sin θ2)ρ′ss +
1
2

sin θ3 cos θρ′ts

)
.
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In the stationary limit, the only nonzero elements are

ρ′ss = Ψ4∞ , ρ′tt = Ψ5∞ , (2.307)

and the equation (2.304) becomes

Ψ1(t0 →∞) = γ13 exp(−iω31t0)
(

1
2

cos θ − 1
4

∆1

Ω2
sin θ cos θ(1 + sin θ2)

)
Ψ5(∞) , (2.308)

Ψ2(t0 →∞) = −γ13 exp(−iω31t0)
(

1√
2

sin θ − 1√
32

∆1

Ω2
sin θ2 cos θ2

)
(1−Ψ4(∞)−Ψ5(∞)) ,

Ψ3(t0 →∞) = γ13 exp(−iω31t0)
1√
2

∆1

Ω2
sin θ2 cos θ2Ψ5(∞) ,

Ψ4(t0 →∞) = γ13 exp(−iω31t0)
(

1
2

cos θ +
1
2

∆1

Ω2
sin θ2 cos θ2

)
Ψ5(∞) ,

Ψ5(t0 →∞) = −γ13 exp(−iω31t0)
(

1
2

cos θ − 1
2

∆1

Ω2
sin θ3 cos θ

)
Ψ5(∞) ,

Ψ6(t0 →∞) = γ13 exp(−iω31t0)
1√
2

∆1

Ω2
sin θ2 cos θ2Ψ4(∞) ,

Ψ7(t0 →∞) = γ13 exp(−iω31t0)
(

1√
2

sin θ +
1√
32

∆1

Ω2
sin θ2 cos θ2

)
(1−Ψ4(∞)−Ψ5(∞)) ,

Ψ8(t0 →∞) = −γ13 exp(−iω31t0)
(

1
2

cos θ +
1
4

∆1

Ω2
sin θ cos θ(1 + sin θ2)

)
Ψ5(∞) ,

in the first order of 1/ΩR. Now one can write the correlation function as

〈P̂ (−)(z)P (+)(∞)〉 = γ2
13

32z1
[16(I∞4M44 + I∞5M45 − I∞4M54 − I∞5M55) cos θ (2.309)

+ 8z(M44Ψ4(∞)−M54Ψ4(∞) +M88Ψ4(∞) +M11Ψ5(∞)−M45Ψ5(∞) +M55Ψ5(∞)) cos θ2

− 16(M22 +M77)z1(−1 + Ψ4(∞) + Ψ5(∞)) sin θ2] + γ2
13

32z1
{−8M54z1Ψ4(∞) cos θ3 sin θ2

− 8M11z1Ψ5(∞) cos θ3 sin θ2 + 32[−1 + I∞4(M44 +M54) + I∞5(M45 +M55)] cos θ sin θ3

+ 4 cos θ2[M88z1Ψ4(∞) sin θ −M11z1Ψ5(∞) sin θ − z1(M22 + (M11 + 2M45)Ψ5(∞)
+ 2M77(−1 + Ψ4(∞) + Ψ5(∞))) sin θ3 + (8I∞4M44 + 8I∞5M45 +M22z1(−1 + Ψ4(∞)
+ Ψ5(∞))) sin θ4] + (−4I∞4M54 − 4I∞5M55 + 2M44z1Ψ4(∞)− 2M54z1Ψ4(∞)
+ 2M55z1Ψ5(∞) cos θ) sin 2θ2 + z1 sin θ sin 2θ2[4M67 +M22Ψ4(∞) + 4M44Ψ4(∞) + 4M54Ψ4(∞)
− 4M67Ψ4(∞) + 4M76Ψ4(∞) +M88Ψ4(∞) +M22Ψ5(∞)− 4M23Ψ5(∞)− 6M55Ψ5(∞)
− 4M67Ψ5(∞) + 4M32(−1 + Ψ4(∞) + Ψ5(∞)) + 2(M44Ψ4(∞)−M88Ψ4(∞)

− M45Ψ5(∞)) sin 2θ]}∆1

Ω2
+ O(∆1)2

When the detuning ∆1 is zero, we get the well-known expression [61]

〈P̂ (−)(z)P (+)(∞)〉 = γ2
13
4 cos2 θΨ∞(M0

11 +M0
44 −M0

54 +M0
55 +M0

88) (2.310)

+γ2
13
4 sin2 θ(1− 2Ψ∞)(M0

22 +M0
77) .

In order to calculate the matrix elements M0
ij , one uses the formula(

a b
b a

)−1

→ 1
a2 − b2

(
a −b
−b a

)
. (2.311)
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It is easy to put equation (2.310) in the form [61]

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
+γ2

13
2 sin2 θ(1− 2Ψ∞)

(
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

+
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

)
, (2.312)

and the emission spectrum will then be given by [61]

S(ω) = Re〈P̂ (−)(z)P̂ (+)(∞)〉|z=i(ω−ω31) . (2.313)

We list the set of constants that are needed to discuss this result [61]:

Γstst = Γtsts = γ1 , (2.314)

Γsrsr = Γrtrt = Γrsrs = Γtrtr = γ2 ,

Γsrrt = Γrtsr = Γrstr = Γtrrs = γ3 ,

Γssss − Γssrr = Γtttt − Γttrr = γ4 ,

Γsstt − Γssrr = Γttss − Γttrr = γ5 ,

with the γ-s given as

γ1 = −Γ32
1
4 cos2 θ(1 + cos2 θ)− Γ31

3
4 cos2 θ − Γ21

3
4 sin2 θ , (2.315)

γ2 = −Γ32
1
4 [1 + sin2 θ(1 + 2 cos2 θ)]− Γ31

1
4(1 + sin2 θ)− Γ21

1
4(1 + cos2 θ) ,

γ3 = −Γ32
1
2 sin2 θ cos2 θ ,

γ4 = −Γ32(1
4 cos2 θ + 1

4 cos4 θ + 1
2 sin4 θ)− Γ31

1
4(1 + sin2 θ)− Γ21

1
4(1 + cos2 θ) ,

γ5 = Γ32
1
2 sin2 θ(1

2 cos2 θ − sin2 θ) + Γ31(1
4 cos2 θ − 1

2 sin2 θ) + Γ21(1
4 sin2 θ − 1

2 cos2 θ) .

The peak heights of the central component and of the outer sidebands can be calculated using the for-
mula [61]

P (0) = γ2
13
4 cos2 θ

2
γ5 − γ4

Ψ∞ , P (±ΩR) = γ2
13
2 sin2 θ(1− 2Ψ∞)

|γ2|
|γ2

2 − γ2
3 |
, (2.316)

P (±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ .

The full widths of the spectral features are given in an analytic representation by [61]

∆ω(0) = 2(γ5 − γ4) = Γ32 cos2 θ + Γ31 cos2 θ + Γ21 sin2 θ , (2.317)

∆ω(±ΩR) = 2{[4γ4
3 + (γ2

2 − γ2
3)]1/2 − 2γ2

3}1/2 ,

∆ω(±2ΩR) = 2|γ1| = Γ32
1
2 cos2 θ(1 + cos2 θ) + Γ31

3
2 cos2 θ + Γ21

3
2 sin2 θ .

Now, we consider only the emission process for the 2 → 1 transition so that

P (+) = γ12|1〉〈2| , P (−) = γ12|2〉〈1| . (2.318)

The single-time average is

〈P (−)(t1)〉 = γ12Tr[ρ′(t1)|2〉〈1|] exp(iω21t1) . (2.319)
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Using the relations

|2〉〈1|r〉 = 0 , (2.320)

|2〉〈1|s〉 =
1
2

sin θ(|s〉+ |t〉) +
1√
2

cos θ|r〉 ,

|2〉〈1|t〉 = −1
2

sin θ(|s〉+ |t〉)− 1√
2

cos θ|r〉 ,

the power spectrum becomes

〈P (−)(z)〉 =
γ12

2
sin θ(Ψ̂4(z2) + Ψ̂1(z2)− Ψ̂8(z2)− Ψ̂5(z2))

+
γ12√

2
cos θ(Ψ̂2(z2)− Ψ̂7(z2)) , (2.321)

where z2 = z − iω21. The regression theorem yields

Ψ1(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′st + ρ′tt)−

1√
2

cos θρ′rt

)
, (2.322)

Ψ2(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′sr + ρ′tr) +

1√
2

cos θρ′rr

)
,

Ψ3(t0) → 0 ,

Ψ4(t0) → γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′ss + ρ′ts) +

1√
2

cos θρ′rs

)
,

Ψ5(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′st + ρ′tt) +

1√
2

cos θρ′rt

)
,

Ψ6(t0) → 0 ,

Ψ7(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′sr + ρ′tr) +

1√
2

cos θρ′rr

)
,

Ψ8(t0) → −γ12 exp(−iω21t0)
(

1
2 sin θ(ρ′ss + ρ′ts) +

1√
2

cos θρ′rs

)
.

In the stationary limit, the off-diagonal elements of ρ′µν vanish and the only nonzero elements are

ρ′ss = ρ′tt = Ψ∞ . (2.323)

One may write Eqs. (2.322) as

Ψ1(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′tt + O(1/ΩR) , (2.324)

Ψ2(t0 →∞) = γ12 exp(−iω21t0) 1√
2
cos θρ′rr + O(1/ΩR) ,

Ψ4(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′ss + O(1/ΩR) ,

Ψ5(t0 →∞) = γ12 exp(−iω21t0)1
2 sin θρ′tt + O(1/ΩR) ,

Ψ7(t0 →∞) = −γ12 exp(−iω21t0) 1√
2
cos θρ′rr + O(1/ΩR) ,

Ψ8(t0 →∞) = −γ12 exp(−iω21t0)1
2 sin θρ′ss + O(1/ΩR) .

As a result, one obtains the correlation function [61]

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
12
4 sin2 θΨ∞(M0

11 +M0
44 −M0

54 −M0
45 +M0

55 +M0
88) (2.325)

+ γ2
12
4 cos2 θ(1− 2Ψ∞)(M0

22 +M0
77) .
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The final form of Eq. (2.325) is [61]

〈P̂ (−)(z)P̂ (+)(∞)〉 = γ2
12
4 sin2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
+γ2

12
2 cos2 θ(1− 2Ψ∞)

(
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

+
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

)
. (2.326)

By definition, the emission spectrum is [61]

S(ω) = Re〈P̂ (−)(z)P̂ (+)(∞)〉|z=i(ω−ω21) . (2.327)

The formula for the peak heights are given by [61]

P (0) = γ2
12
4 sin2 θ

2
γ5 − γ4

Ψ∞ , P (±ΩR) = γ2
12
2 cos2 θ(1− 2Ψ∞)

|γ2|
|γ2

2 − γ2
3 |
, (2.328)

P (±2ΩR) = γ2
12
4 sin2 θ

1
|γ1|

Ψ∞ ,

and the widths of the spectral features are as follows:

∆ω(0) = 2(γ5 − γ4) = Γ32 cos2 θ + Γ31 cos2 θ + Γ21 sin2 θ , (2.329)

∆ω(±ΩR) = 2{[4γ4
3 + (γ2

2 − γ2
3)]1/2 − 2γ2

3}1/2 ,

∆ω(±2ΩR) = 2|γ1| = Γ32
1
2 cos2 θ(1 + cos2 θ) + Γ31

3
2 cos2 θ + Γ21

3
2 sin2 θ .

In the following, for completeness, we consider the Λ model (see Fig. 2.8 b)). The correlation function
for 3 → 1 transition is [56]

Γ̂incoh
Λ1 (z) = γ2

13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
(2.330)

+ γ2
13
2 sin2 θΨ∞

(
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

+
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

)
,

and for the 3 → 2 transition it is

Γ̂incoh
Λ2 (z) = γ2

12
4 cos2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
(2.331)

+ γ2
12
2 sin2 θΨ∞

(
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

+
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

)
,

with

Ψ∞ =
Γ21 cos4 θ

Γ21(sin4 θ + 2 cos4 θ) + Γ32 cos2 θ + Γ31 sin2 θ
, (2.332)

and with the expressions

γ1 = −1
4 [Γ21 sin2 θ(1 + sin2 θ) + Γ32(2 + sin2 θ) + Γ31(2 + cos2 θ)] , (2.333)

γ2 = −1
4{Γ21[1 + cos2 θ(1 + 2 sin2 θ)] + Γ32 + Γ31} ,

γ3 = −1
2Γ21 cos2 θ sin2 θ ,

γ4 = −1
4{Γ21[sin2 θ(1 + sin2 θ) + 2 cos2 θ] + Γ32(1 + cos2 θ) + Γ31(1 + sin2 θ)} ,

γ5 = 1
4 [Γ21(cos2 θ sin2 θ − 2 cos4 θ) + Γ32 sin2 θ + Γ31 cos2 θ] .
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The full widths at half maximum of the spectral features are given analytically by [56]

∆ω(0) = 2|γ5 − γ4| = Γ21 sin2 θ + Γ32 + Γ31 , (2.334)

∆ω(±ΩR) = 2{−2γ2
3 + [4γ4

3 + (γ2
2 − γ2

3)2]1/2}1/2 ,

∆ω(±2ΩR) = 2|γ1| .

The peak heights of the central component and the outer sidebands may be calculated using the for-
mula [56]

P (0) = γ2
13
4 cos2 θ

2
|γ5 − γ4|

Ψ∞ , P (±ΩR) = γ2
13
2 sin2 θ

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣Ψ∞ , (2.335)

P (±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ .

In order to get the formulas for the spectrum 3 → 2, one should replace sin θ with cos θ, and γ13 with
γ12.

For the Ξ model (see Fig. 2.8 c)), the final result for the correlation function is [56]

Γ̂incoh
Ξ1 (z) = γ2

13
4 cos2 θΨ∞

(
1

z1 − γ1 + 2iΩR
+

2
z1 − γ4 + γ5

+
1

z1 − γ1 − 2iΩR

)
(2.336)

+ γ2
13
2 sin2 θΨ∞

(
z1 − γ2 − iΩR

(z1 − γ2 − iΩR)2 − γ2
3

+
z1 − γ2 + iΩR

(z1 − γ2 + iΩR)2 − γ2
3

)
.

Now, we consider the emission process for the 3 → 2 transition so that [56]

Γ̂incoh
Ξ2 (z) = γ2

12
4 sin2 θΨ∞

(
1

z2 − γ1 + 2iΩR
+

2
z2 − γ4 + γ5

+
1

z2 − γ1 − 2iΩR

)
(2.337)

+ γ2
12
2 cos2 θ(1− 2Ψ∞)

(
z2 − γ2 − iΩR

(z2 − γ2 − iΩR)2 − γ2
3

+
z2 − γ2 + iΩR

(z2 − γ2 + iΩR)2 − γ2
3

)
,

with

Ψ∞ =
1
2(Γ31 cos4 θ + Γ32 cos2 θ)

Γ31(1
2 sin4 θ + cos4 θ) + 1

2Γ21 sin2 θ + Γ32 cos2 θ
, (2.338)

and with

γ1 = −1
4 [Γ31 sin2 θ(1 + sin2 θ) + 3Γ32 sin2 θ + Γ21(2 + cos2 θ)] , (2.339)

γ2 = −1
4{Γ31[1 + cos2 θ(1 + 2 sin2 θ)] + Γ32(1 + cos2 θ) + Γ21} ,

γ3 = −1
2Γ31 cos2 θ sin2 θ ,

γ4 = −1
4 [Γ31(sin2 θ + sin4 θ + 2 cos4 θ) + Γ32(1 + cos2 θ) + Γ21(1 + sin2 θ)] ,

γ5 = 1
4 [Γ31 cos2 θ(sin2 θ − 2 cos2 θ) + Γ32(sin2 θ − 2 cos2 θ) + Γ21 cos2 θ] .

The full widths at half maximum of the spectral features are the given by [56]

∆ω(0) = Γ31 sin2 θ + Γ32 sin2 θ + Γ21 , (2.340)

∆ω(±ΩR) = 2{−2γ2
3 + [4γ4

3 + (γ2
2 − γ2

3)2]1/2}1/2 ,

∆ω(±2ΩR) = 1
2 [Γ31 sin2 θ(1 + sin2 θ) + 3Γ32 sin2 θ + Γ21(2 + cos2 θ)] .
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The peak heights of the central component and of the outer sidebands are given by the formulas [56]

P21(0) = γ2
13
4 cos2 θ

2
|γ5 − γ4|

Ψ∞ , P21(±ΩR) = γ2
13
2 sin2 θ

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣Ψ∞ , (2.341)

P21(±2ΩR) = γ2
13
4 cos2 θ

1
|γ1|

Ψ∞ , P32(0) = γ2
12
4 sin2 θ

2
|γ5 − γ4|

Ψ∞ ,

P32(±ΩR) = γ2
12
2 cos2 θ(1− 2Ψ∞)

∣∣∣∣ γ2

γ2
2 − γ2

3

∣∣∣∣ , P32(±2ΩR) = γ2
12
4 sin2 θ

1
|γ1|

Ψ∞ .

2.7 Total fluorescence and steady-state population

Now, we calculate the total fluorescence of transition 1− 3 which is defined, following Ref. [49], as

I13 =
∫ ∞

−∞
dωS(ω) . (2.342)

From Eq. (2.312) and (2.313) we obtain

I13 =
γ2

13

4
cos2 θΨ∞(π + 2π + π) +

γ13

2
sin2 θ(1− 2Ψ∞)(π + π) , (2.343)

or, by using the expression (2.286) for the Ψ∞, one may gets the following:

I13 =
γ132π

2
cos2

Γ32 sin2 θ + Γ31 sin2 θ + Γ21 cos2 θ
Γ32(1

2 cos4 θ + sin4 θ) + Γ31 sin2 θ + Γ21 cos2 θ
. (2.344)

In the case of the 1 − 2 transition, starting with the formulas (2.326) and (2.327), and using the same
procedure, we get

I12 =
γ2

12π

2
Γ32(sin6 θ + cos6 θ) + Γ31 sin4 θ + Γ21 sin2 θ cos2 θ

Γ32(1
2 cos4 θ + sin4 θ) + Γ31 sin2 θ + Γ21 cos2 θ

. (2.345)

Applying Eq. (2.283) and (2.275) it is easy to see that

I13
ρ33

= πγ2
13 ,

I12
ρ22

= πγ2
12 . (2.346)

2.8 High-precision metrology of highly charged ions via relativistic reso-
nance fluorescence

As an application of our relativistic formalism for describing resonance fluorescence in a three-level
setting, we describe line narrowing phenomena obsevable in highly charged ions and its application for
the accurate metrology of properties of highly charged ions.

In Fig. 2.9 (a) we plot the power spectrum of resonance fluorescence for the case of the 2s↔2p3/2

electric dipole transition in Li-like 209Bi (Z=83) ions. The dynamic (AC) Stark shift leads to a splitting
of the central peak, giving rise to a Mollow spectrum. Due to the long lifetime of the upper level of the
hyperfine-split ground state, level 2, almost 100 % of the population is trapped in this level if only the
3↔1 transition is driven coherently with an x-ray laser. The calculation yields for the population of the
uppermost state a value of approx. Γ21/(Γ32 + 2Γ21) ≈ 10−12 � 1, resulting in a negligibly small total
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Figure 2.9: Fluorescence photon spectrum for the 2s↔2p3/2 transition in Li-like 209Bi as a function of
the fluorescence photon frequency ωf . (a) Dashed (red) curve: An x-ray laser (Ix = 5× 1011 W/cm2) is
in resonance with the ionic electric dipole (E1) transition at ωx = 2788.1 eV between the hyperfine-split
ground state 1 (2s with F = 4, MF = 4) and the uppermost state 3 (2p3/2 with F = 5, MF = 5). This
curve is multiplied by a factor of 5× 1011. Thick (thin) dashed arrows represent fast E1 x-ray (slow M1
optical) decays. (b) Continuous (blue) curve: an additional optical driving (Io = 1014 W/cm2) is applied
on the ωo = 0.797 eV [76] M1 transition between the hyperfine-split magnetic sublevels 1 (F = 4,
MF = 4) and 2 (F = 5, MF = 5). The inner sidebands are suppressed. See text for more details.

x-ray fluorescence 1. This undesirable effect may be reversed if additionally the 2↔1 optical transition
is coherently driven (see Fig. 2.9), leading to an efficient re-population of level 3.

Furthermore, the spectral lines become substantially narrower due to coherence and interference effects
(see [61] for the pioneering non-specific treatment). The width of the central peak and the outer sidebands
are given, following our derivations in the previous sections, by ΓC = (Γ31 +Γ32 +γD)R+Γ21(1−R)
and ΓSB = |32(Γ31 − 1

3γD)R + 1
2Γ32(R + R2) + 3

2Γ21(1 − R)|, respectively, with the ratio R being
g2
31/(g

2
31 + g2

21). This effect is shown in Fig. 2.9 (b). Further increasing the intensity of the long-
wavelength driving field and thus g21 could even assign the narrow linewidth of 7.7 · 10−15 eV of the
M1 hyperfine transition to the E1 x-ray transition of interest. The above line width formulas also imply
that the dephasing width γD – typically on the order of 0.1 eV for XFELs [1] – does not hamper the
observation of sub-natural linewidths in the x-ray regime as their contribution scales with the same factor
R.

Transition lifetimes – and related quantities like the atomic dipole or multipole moments – are of great
interest for astrophysical applications and for testing fundamental theories. Measurements of these
quantities are particularly necessary since they are especially sensitive to the long-range behavior of
atomic wave functions. Currently, even the best measurements do not exceed the 10−3 level of ac-
curacy [53]. In our scheme, the narrowed central and outer lines enable in principle an even more
accurate determination of the atomic Rabi frequencies: the outer sideband peaks’ distance is given by
Ds(0) = 4G = 4

√
g2
31 + g2

21 (in the secular limit and when the x-ray laser is on resonance, i.e. its
detuning ∆ = ωx − ω31 from the transition frequency is 0). In this formula, the optical Rabi frequency
g21 is usually known, therefore, determining its counterpart g31 for the x-ray transition is only limited
by the accuracy of measuring the peak distance D. Fig. 2.10 (b) shows the ratio of the width of the
narrowed outer lines to their distance Ds(0). As shown, this ratio, characterizing the relative accuracy
for the determination of atomic multipole moments, can be improved by several orders of magnitude for

1Our current discussion is valid in the secular limit G =
p

g2
31 + g2

21 � max {Γ31, Γ32, Γ21}. If the effective Rabi
frequency G can not be rendered high enough for a sufficient applicability of this approximation, one has to work with the more
accurate and lengthy expressions of the spectral features.
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Figure 2.10: (a) Density plot of the fluorescence spectrum (logarithmic scale, arb. units) as a function
of the fluorescence photon frequency ωf with respect to the x-ray transition frequency ω31 (abscissa)
and the laser detuning ∆ = ωx − ω31 (ordinate), with the frequencies normalized by the Γ31 rate. The
parameters are for Bi as in Fig. 2.9. (b) Continuous (blue) curve: ratio of the interference-narrowed
width ΓSB of the outer sideband peaks to their distance Ds(0) = 4G = 4

√
g2
31 + g2

21 as a function of
the optical Rabi frequency g21, with further parameters for the Bi three-level system as given in the third
line of Table 2.2. Dashed (red) curve: deviation of the sideband distance Ds, with ∆ = Γ31. Dotted
(green) curve: deviation of the exact sideband distance D from its value in the secular limit Ds.

higher optical laser intensities.

Our calculation shows that the detuning dependence of the outer sideband distance is given by Ds(∆) =
4G+ G

2

(
4R− 3R2

)
(∆/G)2 +O

(
(∆/G)4

)
. This weak dependence is also illustrated in Fig. 2.10 (a).

Hence, the experimental sensitivity on the potentially inaccurately known detuning may be reduced by
orders of magnitude by increasing the optical intensity (Rabi frequency), as also shown on Fig. 2.10
(b). The multipole matrix elements of the ionic transitions can thus be determined in principle to a
high accuracy on the order of 10−4–10−6, once the intensity of the driving field is accurately known.
Conversely, the intensity may be measured to high accuracy if the multipole moments are reliably known
from an independent experiment (e.g. lifetime measurements). At the same time, knowing the Rabi
frequencies, the dependence of sideband positions on the x-ray detuning could allow to measure in
principle the ionic x-ray transition energy in an independent way. Table 2.2 lists values for some elements
and atomic transitions.

Our above results have been demonstrated on the example of highly charged ions with non-vanishing
nuclear spins, i.e. when hyperfine splitting of the electronic ground state occurs. However, certainly, the
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Table 2.2: Parameters for 2s↔2p3/2 transitions in the Li-like ions 203Tl78+ (ω31=2236.5 eV), 209Bi80+

(2788.1 eV) and 235U89+ (4459.4 eV). Optical transition energies (ω21), natural line widths (Γ31, Γ21)
and Rabi frequencies (g31, g21) as well as the interference-narrowed outer sideband width (ΓSB) of the
x-ray transition are given for the laser intensities Ix, Io. x(y) stands for x× 10y.

ω21 Γ31 ΓSB Γ21 g31 g21 Ix Io
[meV] [W/cm2]

Tl 499 6.6 7.1(-2) 1.1(-12) 1.8(2) 2.1(3) 1(12) 1(16)
7.2(-4) 1.8(2) 2.1(4) 1(12) 1(18)

Bi 797 7.2(1) 9.7(-2) 7.7(-12) 8.3(1) 2.9(3) 5(11) 1(16)
1.9(-1) 1.2(3) 2.9(4) 1(14) 1(18)

U 136 2.4(1) 3.7(-2) 3.7(-14) 7.7(1) 2.8(3) 5(11) 1(16)
1.3 3.3(4) 1.9(5) 9(16) 5(19)

results may be applied to further three-level configurations. For example, such configurations may also
be prepared by applying (strong) external magnetic fields, which gives rise to a large Zeeman splitting
of the ground-state level, addressable by long-wavelength coherent radiation such as masers (or even
CO2 lasers). Furthermore, the results can be generalized to other physical systems with high transition
energies, such as electromagnetic transitions in nuclei. In this setting, nuclear multipole moments and
transition energies may in principle be determined by an independent method.
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–III–

RELATIVISTIC LIGHT SHIFTS IN HYDROGENIC IONS

Energy shifts of atomic levels due to laser fields play an important role in high-precision laser spec-
troscopy. The dynamic Stark shift is one of the inherent systematic effects that shifts atomic energy
levels in a laser spectroscopic experiment. In contrast to other shifting effects which may in principle be
experimentally controllable, the dynamic Stark shift is due to the probing laser field itself and as such it
cannot be eliminated. For this reason, it received considerable attention. The dynamic (AC) Stark shift
is also present in laser-induced processes like ionization [7, 19, 50, 78]. Theoretical investigations so far
apply nonrelativistic approaches and are restricted to electric dipole transitions.

In this Chapter we calculate light field shifts in a fully relativistic manner. This allows one to extend the
field of investigations to stronger laser fields, higher frequencies – e.g., x-ray lasers [27] –, and to the
highest nuclear charges.

3.1 Dynamic shift by means of perturbation theory

Let us consider the effect of adding the interaction Hamiltonian V (ε, t) to the sum of relativistic hydrogen-
like ion H0:

H = H0 + V (ε, t) , (3.1)

H0 = cαp + βm0c
2 − Ze2

4πε0r
,

V (ε, t) = −
(
A0αε̂νe

ikr−iωt + c.c.
)
eεt .

Here, ε is an infinitesimal damping parameter [68]. The introduction of an adiabatic damping param-
eter is a key element of time-dependent perturbation theory. In the interaction picture (denoted by the
subscript I), the interaction V is represented by [14]:

VI(ε, t) = e
i
~ H0tV (ε, t)e−

i
~ H0t . (3.2)

We calculate the time evolution operator UI up to second order in VI from the Dyson series:

UI = lim
t→∞

UI(ε, t) , (3.3)

UI(ε, t) = 1− i

~

∫ t

−∞
dt′VI(ε, t) +(

− i
~

)2 ∫ t

−∞
dt′
∫ t′

−∞
dt′′VI(ε, t′)VI(ε, t”) .

77
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Let Φn represent an eigenfunction of the unperturbed Hamiltonian H0 with an eigenvalue En. We
denote the complete set of eigenstates of H0 by {|Φn〉}. |ΦI(t)〉 is a time-dependent atomic state in the
interaction picture. The state function before interaction is an eigenstate of H0: |ΦI(t = −∞)〉 = |Φa〉,
where Φa is an eigenstate of the unperturbed Hamiltonian H0. Thus the state function at any time can be
constructed by applying the evolution operator as

|ΦI(t)〉 = UI(ε, t)|ΦI(t = −∞)〉 =
∑

n

cn(t)|Φn〉 . (3.4)

This condition is also true for the degenerate case [14] without loss of generality. The time-dependent
expansion coefficients cn(t) are given as the projections

cn(t) = 〈Φn|ΦI(t)〉 . (3.5)

For calculating the light shift of a given atomic state a, we are interested in the projection [68]

ca(t) = 〈Φa|ΦI(t)〉 = 〈Φa|UI(ε, t)|Φa〉 . (3.6)

The first-order perturbation 〈Φa|V |Φa〉 vanishes. Substituting UI(ε, t) from Eq. (3.3), the leading order
of the perturbation expansion is V 2 and the problem reduces to calculating the matrix element

M =
∫ t

−∞
dt′
∫ t′

−∞
dt′′〈Φa|VI(ε, t′)VI(ε, t′′)|Φa〉 = (3.7)

∑
n

∫ t

−∞
dt′
∫ t′

−∞
dt′′〈Φa|VI(ε, t′)|Φn〉〈Φn|VI(ε, t′′)|Φa〉 .

The index n counts all bound and continuum states of the unperturbed hydrogen-like ion. After carrying
out the time integration, the matrix element is given as

M = −~
i

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉e2t(ε−iω)

2(ε− iω)(Ea − En + ~ω − i~ε)

+|A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

2ε(Ea − En − ~ω − i~ε)
e2εt

+|A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

2ε(Ea − En + ~ω − i~ε)
e2εt

+(A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉e2t(ε+iω)

2(ε+ iω)(Ea − En − ~ω − i~ε)

)
. (3.8)

For simplicity the notation V1 = −αε̂νe
ikr and V2 = −α∗ε̂∗νe

−ikr is introduced above. In the second
order of perturbation theory one can write

ca(t) = − i
~
M ′(t) , (3.9)

withM ′ = − i
~M . Neglecting higher-order terms, the logarithmic derivative of the expansion coefficient

is
d

dt
ln(ca(t)) = − i

~
dM ′

dt
. (3.10)
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In the limit ε→ 0, the time derivative of the matrix element is

dM ′

dt
=

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉
Ea − En + ~ω

e−2iωt

+ |A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En − ~ω

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

+ (A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉

Ea − En − ~ω
e2iωt

)
. (3.11)

In the static limit ω → 0 of the electromagnetic field, this expression simplifies to

dM ′
(ω=0)

dt
=

∑
n

(
A2

0

〈Φa|V1|Φn〉〈Φn|V1|Φa〉
Ea − En

+ |A0|2
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En

+ (A∗0)
2 〈Φa|V2|Φn〉〈Φn|V2|Φa〉

Ea − En

)
. (3.12)

For ω 6= 0 we use the property e2iωt = 1
2iω

∫ t
0 dt

′e2iωt′ . Using relation (3.3) (see Ref. [46]) to form the
Dyson series, we get

dM ′
ω 6=0

dt
=

∑
n

(
|A0|2

〈Φa|V2|Φn〉〈Φn|V1|Φa〉
Ea − En − ~ω

+ |A0|2
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

)
. (3.13)

Because
dM ′

ω 6=0

dt and
dM ′

(ω=0)

dt are time independent, one can make the ansatz [68]

ċa
ca

= − i
~
∆AC

a (3.14)

and define the energy shift of the state a due to interaction with the light field as

∆AC
a = |A0|2

∑
n

(
〈Φa|V2|Φn〉〈Φn|V1|Φa〉

Ea − En − ~ω

+
〈Φa|V1|Φn〉〈Φn|V2|Φa〉

Ea − En + ~ω

)
. (3.15)

A0 is given as |A0|2 = |E|2c2

ω2 , with E being the electric field strength. On Fig. 3.1, the diagrams
representing the two terms in the above equations are shown.

3.2 Evaluation of matrix elements

In this section we describe how the relativistic wave functions, the vector potential of the electromagnetic
field and the interaction matrix elements in Eq. (3.15) are treated. Our description is fully relativistic and
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Figure 3.1: Diagrams representing the lowest-order perturbative light shift corrections. The Coulomb-
dressed electron is depicted by a double line and the wavy lines represent photons.

accounts for spin and magnetic field effects. A similar description is used for the relativistic theoretical
study of the spontaneous emission in Refs. ( [6, 34, 36, 46]).

The principal task in calculating the light shift is the evaluation of the matrix element

M =
∑

n

〈Φa|α̂∗ε̂∗νe−ikr|Φn〉〈Φn|α̂ε̂νeikr|Φa〉
Ea − En − ~ω

. (3.16)

We apply the multipole decomposition of the transverse electromagnetic plane wave as

α̂ε̂νe
ikr = 4πα̂

∑
lm

1∑
λ=0

il−λ
(
Y

(λ)
lm (k̂) · ε̂ν

)†
a

(λ)
lm (r) , (3.17)

thus M becomes

M = 16π2
∑

nlmλl′m′λ′

〈Φa|α̂∗iλ−l(ε̂νY
(λ)

lm (k̂))a(λ)†
lm (r)|Φn〉

×
〈Φn|α̂(i∗)l′−λ′(Y (λ′)

l′m′ (k̂)ε̂ν)†a
(λ′)
l′m′(r)|Φa〉

Ea − En − ~ω
. (3.18)

To obtain the level shift, a summation over polarization states and integration over photon directions has
to be performed:

M =
1
2

∑
ν

1
4π

∫
dΩkM . (3.19)

Using the orthogonality property∑
ν

∫
dΩk

(
Y

(λ′)
l′m′ (k̂)ε̂ν

)† (
ε̂νY

(λ)
lm (k̂)

)
= δll′δmm′δλλ′ , (3.20)

the expression above simplifies to

M = 2π
∑
nlmλ

〈Φa|α̂∗a(λ)†
lm (r)|Φn〉〈Φn|α̂a

(λ)
lm (r)|Φa〉

Ea − En − ~ω
. (3.21)

Using the spectral representation of Green’s function

G(r, r′; z) =
∑

n

Φn(r)Φn(r)†

En − z
, (3.22)
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and splitting Eq. (3.21) into an electric (λ = 1) and a magnetic (λ = 0) part we get:

M = −2π
∑
lm

∫
drdr′Φ†

a(r)α̂∗a(0)†
lm (r)G(r, r′; z)

×α̂a
(0)
lm(r)Φa(r′)

−2π
∑
lm

∫
drdr′Φ†

a(r)α̂∗a(1)†
lm (r)G(r, r′; z)

×α̂a
(1)
lm(r)Φa(r′) , (3.23)

where the energy variable is z = Ea − ~ω.

We perform a gauge transformation of the matrix elements. The transformed multipole potential can be
written as

aλ
JM (r̂) −→ aλ

JM (r̂) +∇χJM (r̂) ,
ΦJM (r̂) −→ iωχJM (r̂) . (3.24)

where the gauge function χJM (r̂) (and the multipole potential) is a solution to the Helmholtz equation.
We choose the gauge function to be

χJM (r̂) = −1
k
GJjJ(kr)YJM (r̂) . (3.25)

With the choice of GJ =
√
J + 1/J , the so-called Babushkin gauge, i.e. a relativistic generalization

of the length form interaction, is adopted [5, 34, 36]. This transformation has no effect on the magnetic
multipole potentials, but transforms electric potentials to the form

a
(1)
JM (r̂) = −jJ+1(kr)

(
Y

(1)
JM (r̂)−

√
J + 1
J

Y
(−1)

JM (r̂)

)
,

Φ(1)
JM (r̂) = −ic

√
J + 1
J

jJ(kr)YJM (r̂) . (3.26)

The electric multipole potentials can be rewritten as

a
(1)
JM (r̂) = −

√
2J + 1
J

aJJ+1M (r̂) , (3.27)

with aJJ+1M (r̂) given in [46].

Denoting with Mm the magnetic part and with M e the electric part and after some algebraic manipula-
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tions we obtain

Mm =
4π
~c
∑
lmκn

{
(Rm

1 +Rm
4 )Kκn−κa

JJM K−κnκa
JJM

−Rm
2

(
K−κnκa

JJM

)2 −Rm
3

(
Kκn−κa

JJM

)2 }
,

M e =
4π
~c
∑
lmκn

{
2J + 1
J

[
(Re

1 +Re
4)K

κn−κa
JJ+1MK

−κnκa
JJ+1M

−Re
2

(
K−κnκa

JJ+1M

)2 −Re
3

(
Kκn−κa

JJ+1M

)2 ]
−J + 1

J

[
Re

1′
(
Kκnκa

JM

)2 + (Re
2′ +Re

3′)K
κnκa
JM K−κn−κa

JM

+Re
4′
(
K−κn−κa

JM

)2 ]}
. (3.28)

We shall refer to the K’s as the angular matrix elements and to the R’s as the radial matrix elements.

The matrix element

M ′ =
∑

n

〈Φa|α̂ε̂νeikr|Φn〉〈Φn|α̂∗ε̂∗νe−ikr|Φa〉
Ea − En + ~ω

(3.29)

can readily be found from Eq. (3.28) by the substitutions Kκn−κa → K−κa−κn , Kκnκa → Kκa−κn ,
Kκnκa → Kκaκn and K−κn−κa → K−κa−κn . In the radial part, the energy variable z = Ea + ~ω has
to be substituted.

3.2.1 Radial matrix elements

The following notations are introduced for the two-dimensional radial integrals:

Rm
1 =

∫
drdr′r2r′2Fa(r)jJ(kr)g12(r, r′;E)jJ(kr′)Ga(r′) ,

Rm
2 =

∫
drdr′r2r′2Ga(r)jJ(kr)g22(r, r′;E)jJ(kr′)Ga(r′) ,

Rm
3 =

∫
drdr′r2r′2Fa(r)jJ(kr)g11(r, r′;E)jJ(kr′)Fa(r′) ,

Rm
4 =

∫
drdr′r2r′2Ga(r)jJ(kr)g21(r, r′;E)jJ(kr′)Fa(r′) ,

Re
1′ =

∫
drdr′r2r′2Ga(r)jJ(kr)g11(r, r′;E)jJ(kr′)Ga(r′) ,

Re
2′ =

∫
drdr′r2r′2Fa(r)jJ(kr)g21(r, r′;E)jJ(kr′)Ga(r′) ,

Re
3′ =

∫
drdr′r2r′2Ga(r)jJ(kr)g12(r, r′;E)jJ(kr′)Fa(r′) ,

Re
4′ =

∫
drdr′r2r′2Fa(r)jJ(kr)g22(r, r′;E)

×jJ(kr′)Fa(r′) . (3.30)
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In these integrals, jJ(kr) is the spherical Bessel function [3] and the gij (i, j = 1, 2) are the radial
components of the Coulomb-Dirac Green’s function.

All radial matrix elements can be evaluated analytically by the help of the substitution

jl(kr) =
( π

2kr

)1/2
Jl+1/2(kr) (3.31)

and the Taylor expansion of the Bessel functions Jl+1/2:

jl(kr) =√
π

2kr

∑
n=0

(−1)n

22n+l+1/2n!Γ(n+ l + 3/2)
(kr)2n+l+1/2 . (3.32)

The final results are as follows:

Rm
1 =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.33)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

(IA2JIB1J − IA1JIB2J)

)
,

Rm
2 =

(
1 +

Ea

mc2

)
U2

a

ε

2
(2λn)(2γn)

∑
n

(3.34)(
(κn + ν/εn)

n!′(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn)− 2(γn + ν)]
n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J − IA1JIB2J − IA2JIB1J + IB1JIB2J)

)
,

Rm
3 =

(
1− Ea

mc2

)
U2

a

1
2ε

(2λn)(2γn)
∑

n

(3.35)(
(κn + ν/εn)

n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn) + 2(γn + ν)]
n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J + IA1JIB2J + IA2JIB1J + IB1JIB2J)

)
,
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Rm
4 =

(
1− E2

a

m2c4

)
U2

a

1
2
(2λn)(2γn)

∑
n

(3.36)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

(IA2JIB1J − IA1JIB2J)

)
,

Re
1′ =

(
1 +

Ea

mc2

)
U2

a

1
2ε

(2λn)(2γn)
∑

n

(3.37)(
(κn + ν/εn)

n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn) + 2(γn + ν)]
n!(IA1J − IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)

×(IA2JIA1J − IA1JIB2J − IA2JIB1J + IB1JIB2J)

)
,

Re
2′ =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.38)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)
(IA2JIB1J − IA1JIB2J)

)
,

Re
3′ =

(
1− E2

a

m2c4

)1/2

U2
a

1
2
(2λn)(2γn)

∑
n

(3.39)(
− (κn + ν/εn)

n!(I2
A1J − I2

B1J)
Γ(2γn + 1 + n)(n+ γn + 1− ν)

−(κn − ν/εn)
n!(I2

A1J − I2
B1J)

Γ(2γn + 1 + n)(n+ γn − ν)

+
n!2

Γ(2γn + n)(n+ γn − ν)
(IA2JIB1J − IA1JIB2J)

)
,



3.2. EVALUATION OF MATRIX ELEMENTS 85

Re
4′ =

(
1− Ea

mc2

)
U2

a

ε

2
(2λn)(2γn)

∑
n

(3.40)(
(κn + ν/εn)

n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn + 1− ν)
−

[(κn − ν/εn)− 2(γn + ν)]
n!(IA1J + IB1J)2

Γ(2γn + 1 + n)(n+ γn − ν)

− n!2
Γ(2γn + n)(n+ γn − ν)

× (IA2JIA1J + IA1JIB2J + IA2JIB1J + IB1JIB2J)

)
.

For the one-dimensional radial integrals we obtain the following analytical results:

IA1J =
( π

2k

)∑
α,p

ar(−1)α

α!Γ(α+ l + 3/2)
(−ar + 1)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n+ 1)
n!Γ(2γn + 1)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn + 1,
2λn

λan
) , (3.41)

IA2J =
( π

2k

)∑
α,p

ar(−1)α

α!Γ(α+ l + 3/2)
(−ar + 1)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n)
n!Γ(2γn)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn,
2λn

λan
) , (3.42)

IB1J =
( π

2k

)∑
α,p

(Na − κa)(−1)α

α!Γ(α+ l + 3/2)
(−ar)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n+ 1)
n!Γ(2γn + 1)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn + 1,
2λn

λan
) , (3.43)
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IB2J =
( π

2k

)∑
α,p

(Na − κa)(−1)α

α!Γ(α+ l + 3/2)
(−ar)p

(2γa + 1)p

×Γ(γan + l + 2α+ p+ 1)Γ(2γn + n)
n!Γ(2γn)

×
(
k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an

×2F1(−n, γan + l + 2α+ p+ 1, 2γn,
2λn

λan
) . (3.44)

Here we introduced the notations λan = λa + λn and γan = γa + γn for simplicity. The remaining
radial matrix elements can be calculated from the ones given in Eq. (3.33-3.36) by the substitutions
Re

i = Rm
i (J → J + 1) for all i ∈ {1, 2, 3, 4}.

3.2.2 Angular matrix elements

The equations (3.28) contain angular integrals of the form

Kκnκa
JkM =

∫
dorΩ†

κn
(r̂)σ̂YJkM (r̂)Ωκa(r̂) . (3.45)

The direct product of the spin operator σ̂ and the vector spherical harmonic is a spherical tensor operator
and thus its matrix element can be rewritten as

Kκnκa
JkM = 〈ln

1
2
jn|TJ(Ykσ1)|la

1
2
ja〉 . (3.46)

The reduced matrix elements of the tensor T can be calculated using the formula

〈l1
1
2
j||TK(Ckσ1)||l′1

1
2
j′〉 =

= aK(−1)J ′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
, (3.47)

where the coefficients are [15]

ak = (κ− κ′)/
√
k(k + 1) ,

ak−1 = −(k + κ+ κ′)/
√

2k(k + 1) ,
ak+1 = (k + 1− κ− κ′)/

√
(k + 1)(2k + 1) . (3.48)

These formulas are derived in detail in the Appendix. For the integrals containing the scalar spherical
harmonics,

Kκnκa
JM =

∫
dorΩ†

κn
(r̂)YJM (r̂)Ωκa(r̂)

= 〈ln
1
2
jn|YJM |la

1
2
ja〉 , (3.49)

one can compute the reduced matrix elements as [15]

〈l1
1
2
j||CK ||l′1

1
2
j′〉 =

= (−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (3.50)
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Table 3.1: Comparision of non-relativistic (NR) and relativistic (R) light shifts for K and L shell states
in hydrogenic ions, at an optical laser frequency. Eb denotes the binding energy of the orbital and ∆E
stands for the light shift contribution.

Z = 54 Z = 92
Eb ∆E Eb ∆E

NR 1s −39674.2 −1.02586(−4) −115159 −1.21763(−5)
R 1s1/2 −41347.0 −8.17337(−5) −132280 −5.63212(−6)
NR 2s −9918.55 −2.73564(−3) −28789.6 −3.24700(−4)
R 2s1/2 −10443.5 −4.94986(−2) −34215.5 −1.40870(−3)
NR 2p −9918.55 −4.92415(−3) −28789.6 −5.84460(−4)
R 2p1/2 −10443.5 −3.17409(−3) −34215.5 −2.17374(−4)
R 2p3/2 −10016.7 +4.31087(−2) −29649.8 +7.88416(−4)

3.3 Numerical results

To start our discussion on relativistic results of light shifts, we present results for an atom in a laser
field at an infrared frequency (λ = 1054 nm, ~ω = 1.176 eV) and with the widely accessible intensity of
I = 1018 W/cm2. We calculate the light shifts in eV, both in relativistic and nonrelativistic treatments, for
some heavy elements (Z = 54, 92, i.e. Xe and U). Results are shown in Table 3.1. As it is well known, the
AC stark shifts, calculated in a non-relativistic way, follow an exact ∝ Z−4 scaling. It is also intuitively
understandable that external field effects in general have a smaller effect if the electrons are bound by
stronger central potentials. Still, even for elements as heavy as Xe and U, and for orbitals of the L shell,
the light shift exceeds or approaches to the meV range. This is anticipated to be noticeable in near-future
experiments. For measurements with lighter elements, the effects are certainly more pronounced.

As the table also clearly shows, the relativistic and nonrelativistic results greatly differ. For these rela-
tivistic systems, the non-relativistic calculation can only serve as an order-of-magnitude approximation,
since not even the first digits of the results calculated in the two different approaches agree. In some
cases, e.g. for the 2p3/2 state, even the sign of the shift is different, which is originated in the different
level structure as described by the relativistic theory.

For soft x-ray frequencies (~ω = 50 eV), for the same intensity, we display the shifts for the elements
Z = 10, 54 and 92 in Table 3.2. At the heaviest system studied, namely, for U, these results almost
coincide with the light shifts calculated with optical laser frequencies. This illustrates that retardation
effects are only relevant when the photon energy is comparable to the atomic binding energy: in the case
of U, where the binding energies exceed the 10 keV-range, even a photon frequency of 50 eV is negligible
in the description of the dynamic Stark shift. However, for lighter systems such as Xe (Z = 54), the
difference between the optical and the soft x-ray light field is noticeable. This is especially the case for
excited states.

In order to avoid a discussion about the intensity I and for a better comparison with existing non-
relativistic literature data, in the following we introduce the dynamic Stark shift coefficient β:

∆AC
a = hβaI, (3.51)

where ∆AC
a is the Stark shift of the atomic level |Φa〉. In Tables 3.3, 3.4 and 3.5, the nonrelativistic

and relativistic Stark shift coefficients βNR and βR are compared for 1s − ns two-photon resonance
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Table 3.2: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for K and L shell states in
hydrogenic ions at a soft x-ray laser frequency. Notations as in Table 3.1.

Z = 10 Z = 54 Z = 92
Eb ∆E Eb ∆E Eb ∆E

1s −1360.57 −8.74042(−2) −39674.2 −1.02587(−4) −115159 −1.21763(−5)
1s1/2 −1362.39 −8.6767(−2) −41347.0 −8.17339(−5) −132280 −5.63212(−6)
2s −340.142 −2.47409 −9918.55 −2.73583(−3) −28789.6 −3.24703(−4)
2s1/2 −340.710 −2.33842 −10443.5 −5.01577(−2) −34215.5 −1.40885(−3)
2p −340.142 −4.47426 −9918.55 −4.92452(−3) −28789.6 −5.84465(−4)
2p1/2 −340.710 −3.61534 −10443.5 −3.17429(−3) −34215.5 −2.17375(−4)
2p3/2 −340.256 −4.16667 −10016.7 +4.37674(−2) −29649.8 +7.88564(−4)

Table 3.3: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=1.

Z = 1 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −2.67827(−5) −2.67808(−5)
1s− 3s −3.02104(−5) −3.02082(−5)
1s− 4s −3.18301(−5) −3.18278(−5)
1s− 5s −3.26801(−5) −3.26778(−5)
1s− 6s −3.31724(−5) −3.31701(−5)
1s− 7s −3.34805(−5) −3.34781(−5)
1s− 8s −3.36851(−5) −3.36827(−5)
1s− 9s −3.38277(−5) −3.38252(−5)

transitions for nuclear charge numbers Z = 1, 10 and 54. The light shift calculated in the non-relativistic
limit of the formulas derived in this thesis agree perfectly with the calculations of Haas et al. [40]. Also,
they show an exact ∝ Z−4 scaling with the atomic number Z. However, for the relativistic results, a
clear deviation from this law is observable, especially for the highest atomic charge numbers. These
tables also illustrate that the light shifts are most relevant for highly excited, weakly bound states, i.e. for
Rydberg levels.

As we can see from the Eqs. (3.23,3.26), in the final expression of dipole light shifts we have the follow-
ing possible combinations of electromagnetic potentials: matrix elements of scalar-scalar, vector-vector
and scalar-vector potentials. Because of the selection rules incorporated in the angular matrix elements,
the scalar-vector part is zero. In the following tables we give some values of the dynamic Stark shift
coefficient β for scalar-scalar and vector-vector parts and for the interaction with the magnetic field com-
ponent of the laser field, including the retardation contribution caused by the dependence on the photons
frequency. If we calculate the Stark shifts with the rE potential, we get for the scalar-scalar part the same
results as in Eq. (3.2) for dipole approximation, without including the frequency-dependent retardation.
The tables shows that the scalar-scalar contribution is by far the dominant part of the interaction. Thus
we can conclude that the rE form is a rather good approximation of the total relativistic interaction op-
erator. At high nuclear charges and frequencies, the dependence of the scalar-scalar term on the photon
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Table 3.4: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=10.

Z = 10 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −2.67827(−9) −2.65885(−9)
1s− 3s −3.02104(−9) −2.99941(−9)
1s− 4s −3.18301(−9) −3.16030(−9)
1s− 5s −3.26801(−9) −3.24471(−9)
1s− 6s −3.31724(−9) −3.29360(−9)
1s− 7s −3.34805(−9) −3.32418(−9)
1s− 8s −3.36851(−9) −3.34449(−9)
1s− 9s −3.38277(−9) −3.35863(−9)

Table 3.5: Comparison of nonrelativistic (NR) and relativistic (R) light shifts for 1s–ns two-photon
transitions for Z=54.

Z = 54 βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
1s− ns 1s1/2 − ns1/2

1s− 2s −3.14978(−12) −2.51398(−12)
1s− 3s −3.55288(−12) −2.84491(−12)
1s− 4s −3.74337(−12) −3.00038(−12)
1s− 5s −3.84334(−12) −3.08132(−12)
1s− 6s −3.90124(−12) −3.12789(−12)
1s− 7s −3.93747(−12) −3.15688(−12)
1s− 8s −3.96153(−12) −3.17606(−12)
1s− 9s −3.97829(−12) −3.18937(−12)
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Table 3.6: Different relativistic electric dipole (E1) contributions to the light shift for 1s-ns two-photon
transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or without
frequency-dependent retardation (ret.) contributions. The results are given for Z = 10.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.6588(−9) −2.6579(−9) −6.7879(−16) −6.7848(−16) −9.2665(−13) −9.2635(−13)
1s− 3s −2.9994(−9) −2.9978(−9) −1.0200(−15) −1.0193(−15) −1.0973(−12) −1.0968(−12)
1s− 4s −3.1603(−9) −3.1584(−9) −1.1667(−15) −1.1658(−15) −1.1753(−12) −1.1746(−12)
1s− 5s −3.2447(−9) −3.2427(−9) −1.2402(−15) −1.2393(−15) −1.2156(−12) −1.2149(−12)
1s− 6s −3.2936(−9) −3.2915(−9) −1.2818(−15) −1.2808(−15) −1.2387(−12) −1.2380(−12)
1s− 7s −3.3241(−9) −3.3220(−9) −1.3075(−15) −1.3064(−15) −1.2531(−12) −1.2524(−12)
1s− 8s −3.3444(−9) −3.3423(−9) −1.3243(−15) −1.3233(−15) −1.2627(−12) −1.2619(−12)
1s− 9s −3.3586(−9) −3.3564(−9) −1.3360(−15) −1.3349(−15) −1.2693(−12) −1.2685(−12)

Table 3.7: Different relativistic electric dipole (E1) contributions to the light shift for 1s-ns two-photon
transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or without
frequency-dependent retardation (ret.) contributions. The results are given for Z = 54.

Z = 54 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.5139(−12) −2.4873(−12) −6.2890(−16) −6.2032(−16) −2.8362(−14) −2.8093(−14)
1s− 3s −2.8449(−12) −2.8013(−12) −9.5338(−16) −9.3473(−16) −3.3758(−14) −3.3284(−14)
1s− 4s −3.0003(−12) −2.9488(−12) −1.0922(−15) −1.0683(−15) −3.6223(−14) −3.5646(−14)
1s− 5s −3.0813(−12) −3.0255(−12) −1.1615(−15) −1.1347(−15) −3.7490(−14) −3.6859(−14)
1s− 6s −3.1278(−12) −3.0697(−12) −1.2004(−15) −1.1720(−15) −3.8214(−14) −3.7552(−14)
1s− 7s −3.1568(−12) −3.0972(−12) −1.2243(−15) −1.1949(−15) −3.8664(−14) −3.7982(−14)
1s− 8s −3.1760(−12) −3.1153(−12) −1.2400(−15) −1.2099(−15) −3.8960(−14) −3.8266(−14)
1s− 9s −3.1893(−12) −3.1280(−12) −1.2508(−15) −1.2202(−15) −3.9166(−14) −3.8462(−14)

frequency starts to show up; however, the vector-vector and magnetic terms are still orders of magnitude
smaller.

For completeness, in the Tables 3.8-3.9 we present values for the quadrupole contributions to the level
shift. These terms are also approx. 3 orders of magnitude weaker than the dominant electric dipole
interaction. However, with the improvement of experimental accuracy, the thorough understanding of
relativistic light shift effects becomes increasingly stringent.
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Table 3.8: Different relativistic electric quadrupole (E2) contributions to the light shift for 1s-ns two-
photon transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or with-
out frequency-dependent retardation (ret.) contributions. The results are given for Z = 10.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −7.4262(−14) −7.4227(−14) −2.2189(−20) −2.2178(−20) −2.6903(−17) −2.6891(−17)
1s− 3s −1.1060(−13) −1.1053(−13) −4.7669(−20) −4.7635(−20) −4.4819(−17) −4.4790(−17)
1s− 4s −1.2604(−13) −1.2594(−13) −6.1152(−20) −6.1104(−20) −5.3336(−17) −5.3298(−17)
1s− 5s −1.3374(−13) −1.3363(−13) −6.8463(−20) −6.8406(−20) −5.7793(−17) −5.7749(−17)
1s− 6s −1.3808(−13) −1.3797(−13) −7.2755(−20) −7.2693(−20) −6.0368(−17) −6.0320(−17)
1s− 7s −1.4075(−13) −1.4064(−13) −7.5459(−20) −7.5394(−20) −6.1975(−17) −6.1926(−17)
1s− 8s −1.4251(−13) −1.4239(−13) −7.7263(−20) −7.7195(−20) −6.3042(−17) −6.2991(−17)
1s− 9s −1.4372(−13) −1.4360(−13) −7.8522(−20) −7.8452(−20) −6.3784(−17) −6.3732(−17)

Table 3.9: Different relativistic electric quadrupole (E2) contributions to the light shift for 1s-ns two-
photon transitions: scalar-scalar (s-s), vector-vector (v-v), and magnetic field contributions, with or with-
out frequency-dependent retardation (ret.) contributions. The results are given for Z = 54.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.
1s− 2s −2.1019(−15) −2.0727(−15) −6.0334(−19) −5.9420(−19) −2.4280(−17) −2.3956(−17)
1s− 3s −3.1586(−15) −3.0960(−15) −1.3122(−18) −1.2840(−18) −4.0816(−17) −4.0029(−17)
1s− 4s −3.6054(−15) −3.5255(−15) −1.6853(−18) −1.6449(−18) −4.8642(−17) −4.7588(−17)
1s− 5s −3.8269(−15) −3.7378(−15) −1.8859(−18) −1.8384(−18) −5.2707(−17) −5.1505(−17)
1s− 6s −3.9511(−15) −3.8566(−15) −2.0028(−18) −1.9511(−18) −5.5040(−17) −5.3750(−17)
1s− 7s −4.0272(−15) −3.9294(−15) −2.0761(−18) −2.0217(−18) −5.6489(−17) −5.5144(−17)
1s− 8s −4.0771(−15) −3.9770(−15) −2.1248(−18) −2.0686(−18) −5.7447(−17) −5.6065(−17)
1s− 9s −4.1115(−15) −4.0099(−15) −2.1587(−18) −2.1012(−18) −5.8112(−17) −5.6704(−17)
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–IV–

HIGHER-ORDER RESONANT RECOMBINATION

PROCESSES

In the dielectronic recombination process involving two interacting electrons, as sketched in Fig. 4.1,
the kinetic energy of the recombined electron is transferred to a single bound electron by a radiationless
excitation to an intermediate autoionizing state. The recombination is completed by its radiative stabi-
lization. For the case of highly charged ions (HCIs), radiative transition probabilities are high, and the
competition of radiative deexcitation and Auger decay of the intermediate state is biased towards the first
mechanism.

Beyond the well-known DR, resonant recombination processes involving higher-order correlations are
relevant, too. Here, as displayed in Fig. 4.1, two or even three bound electrons can be simultaneously
excited by the resonantly captured electron in trielectronic or even quadruelectronic recombination (TR
and QR, respectively). The higher-order recombination mechanisms can be summarized by the equation

Aq+ + e− →
[
A(q−1)+

](n+1)∗
→ A(q−1)+ + photons , (4.1)

where n represents the number of simultaneously excited bound electrons, respectively the order of the
resonant capture process.

Resonant mechanisms are highly efficient in either ionizing or recombining ions and hence already DR
is of paramount importance for the physics of outer planetary atmospheres and interstellar clouds as
well as an important radiative cooling mechanism in astrophysical and laboratory high-temperature plas-
mas [16,17,57]. DR often represents the dominant pathway for populating excited states in plasmas and,
consequently, for inducing easily observable x-ray lines which are used as diagnostic tools for fusion
plasmas (whereby Kr as well as Ar were chosen as ideal candidates) [22, 80], triggering a range of DR
studies with highly charged Kr ions [11, 29, 66]. From a more fundamental point of view, the selectiv-
ity of DR [13] allows testing stringently sophisticated atomic structure and dynamics calculations, in
particular of relativistic and quantum electrodynamic (QED) effects in bound electronic systems.

Investigating HCIs with DR offers additional important advantages including large cross sections and
the magnification of relativistic and QED contributions by several orders of magnitude. These have
been exploited in experiments both at electron beam ion traps (EBITs) (see, e.g., [32, 33, 42, 51, 60, 85])
and in storage rings (SRs). The 2s1/2 − 2p1/2 splitting in lithiumlike ions was determined in a SR
with an accuracy capable of testing second-order QED corrections [13]. Direct EBIT spectroscopic
measurements have achieved even higher precision [8]. Similarly, using DR in an ultra-cold electron
target at a SR, the same splitting in Li-like Sc18+ has been indirectly determined with a precision of 4.6

93
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ppm [55]. DR measurements have recently become sensitive to isotopic shifts in Li-like 142,150Nd [12]
and to the contribution of the generalized Breit interaction [60].

It is important to mention that in general TR and QR offer new photorecombination channels and their
contribution to the radiative cooling of plasmas needs to be considered in the theoretical modeling. How-
ever, very scarce experimental data are available. At interaction energies of less than 52 eV, intra-shell
TR resonances involving L-shell electrons of Cl13+ ions were observed at the TSR [70]. Contributions of
roughly 10% to the total photorecombination rate at temperatures Te ≈ 1 to 100 eV (a range interesting
for astrophysical photoionized plasmas) were found.

Figure 4.1: Scheme of correlated resonant electron recombination processes: In dielectronic recombina-
tion (blue) one bound electron is excited by the captured electron, in trielectronic recombination (red)
two and in quadruelectronic recombination (green) three electrons are promoted to higher states by the
captured electron (K-LL, KL-LLL and KLL-LLLL processes, respectively, where the initial and final
shells of the bound and active electrons are specified).

4.1 Total cross section for resonant recombination processes

Cross section formulas for dielectronic recombination have been derived in the framework of several
formalisms, including non-relativistic [41] and relativistic [74,84] approaches. These results can be gen-
eralized to describe the higher-order correlated processes of trielectronic, quadruelectronic etc. processes
as well. One can express the differential cross section in the solid angle Ωk of the emitted photon as

dσi→f

dΩk
=

2π
Fi

∑
dd′

〈Φf |Her|Φd〉〈Φd|Vcapt|Φi〉
E − Ed + iΓd/2

〈Φf |Her|Φ′
d〉∗〈Φ′

d|Vcapt|Φi〉∗

E − Ed′ − iΓd′/2
ρf , (4.2)

with Her being the electron-radiation field interaction Hamiltonian and Vcapt being the sum of the
Coulomb and Breit interactions. In the above formula, E is the total initial energy of the system, and Φi,
Φd and Φf (just as their counterparts with primed indices) denote the initial, intermediate and final states
of a given recombination channel. Ed denotes the energy of the intermediate state including radiative
corrections, and Γd is total decay width of that state. Fi and ρf stand for the incoming electron flux and
the density of final photonic states, respectively. In the isolated resonances – or two-level – approxima-
tion the non-diagonal elements of the double sum above are neglected. The differential cross section
becomes [84]

dσi→f

dΩk
=

2π
Fi

∑
d

|〈Φf |Her|Φd〉|2|〈Φd|Vcapt|Φi〉|2

(E − Ed)2 + Γ2
d/4

ρf , (4.3)
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By definition the expression of cross section has to be averaged over the initial states and summed over
the final states. This means an averaging over the magnetic sub-states Mi of the target ion and over the
two spin projections ms of the incoming electron, and summing over the magnetic sub-states Mf of the
final state ion, integrating over the directions Ωk and summing over the polarizations λ of the outgoing
photon. We shall perform an extra averaging over the electron’s emission solid angle, because the total
cross section does not depend on the direction of the electron to be captured. These can be summarized
as [41]

σDR
i→f =

2π2

p2

Ar

Γd
Ld(E − Ed −∆Ed)Va , (4.4)

with the rate of radiative decay from the state d to the final state f

Ar =
2π

2Jd + 1

∑
Mf λ

∑
Md

∫
dΩk|〈Ψf ;JfMf ,k, λ|Her|Ψd;JdMd〉|2ρf , (4.5)

where the total angular momentum of the intermediate state, Jd was introduced, and the normalized
Lorentz resonance profile

Ld(E − Ed) =
Γd/2π

(E − Ed)2 + Γ2
d/4

. (4.6)

The rate of resonant capture into the state d is given by [41]

Va =
p2

4π2Fi

1
2(2Ji + 1)

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt|Ψi;JiMi,pms〉|2 , (4.7)

with the initial state total angular momentum Ji, and it is connected to its time-reversed analogue, the
Auger (autoionization) rate Aa, by the principle of detailed balance [84]

Va =
2Jd + 1

2(2Ji + 1)
Aa . (4.8)

By definition the autoionization (Auger) rate is [84]

Aa =
2π

2Jd + 1

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt|Ψi;JiMi,pms〉|2ρi , (4.9)

where Fiρi = p2/(2π)3.

The appearance of higher-order processes, i.e. the trielectronic and quadruelectronic recombination
channels with more than two active electrons can be understood as follows: Let us consider recombina-
tion with an initially C-like ion in its ground state, labeled by the dominant |1s22s22p2

1/2〉 configuration.
When describing TR, the autoionizing state can be approximated as a minimal linear combination of
two configurations sharing total angular momentum and parity [10], |TR〉 = c1|1s2s22p1/22p3

3/2〉 +
c2|1s2s22p2

1/22p
2
3/2〉. Here, the first term is the dominant one, as represented in the simplified scheme of

Fig. 4.1. The neglect of the second term, i.e. the independent-particle (e.g. Hartree-Fock) approximation,
would in the first order lead to a vanishing transition amplitude, 〈1s2s22p1/22p3

3/2|VCoul|1s22s22p2
1/2〉 =

0. Only the inclusion of configuration mixing, a means of accounting for all-order electron correlation,
leads to a non-vanishing amplitude 〈TR|VCoul|1s22s22p2

1/2〉 = c2〈1s2s22p2
1/22p

2
3/2|VCoul|1s22s22p2

1/2〉.
Thus higher-order processes appear only if correlation effects are taken into account and their measure-
ment can benchmark more thoroughly their theoretical description both in terms of structure and dynam-
ics. In spite of their relevance, the exact quantitative description of such correlations and their scaling
with the number of involved electrons remains an open theoretical problem.
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The resonance strength, which is defined as the integrated area under the peak for a given resonance, can
be expressed as follows – provided the fluorescence x-rays are observed at 90◦ to the incoming electron
beam as in case of a typical EBIT experiment [30]:

SDR
idf =

π~3

2p2

(
1−

βdf

2

)
2Jd + 1

2(2Ji + 1)
Adf

r Adi
a∑

f A
df
r +Adi

a

. (4.10)

In Eq. (4.10), the dipole angular distribution factor for photon detection perpendicular to the electron
beam direction was taken into account by means of the anisotropy parameter βdf [30].

4.2 Description of the relativistic many-body system: the multiconfigura-
tion Dirac-Fock method

For the description of bound atomic states present in the recombination channels we employ the widely
used and versatile multiconfiguration Dirac-Fock (MCDF) method [24, 36]. The Dirac-(Hartree)-Fock
(DF) method is the relativistic generalization of the well-known Hartree-Fock self-consistent procedure,
as it is based on the Dirac equation rather than the Schrödinger wave equation.

In the DF scheme, an atomic state function is approximated in terms of a single Slater determinant, i.e.
antisymmetrized product of Dirac single-electron orbitals, coupled to a well-defined total angular mo-
mentum J . Also, such a configuration state function, denoted by |γJP 〉, possesses a well-defined parity
P , given as the product of individual parities of the single-electron orbitals involved in the determinant.
The index γ represents here the set of quantum numbers necessary to fully define the configuration state
function, i.e. the principal and angular momentum quantum numbers of the single-electron orbitals, the
number of electrons in a given orbital, and the way the single-electron angular momenta j are coupled to
the total angular momentum J .

In the multiconfiguration case, i.e. in the MCDF method, the DF approximation is extended by employ-
ing a linear combination of configuration state functions instead of a single one, i.e. the atomic state
function is given by the ansatz

|ΓJP 〉 =
∑

i

|γiJP 〉 . (4.11)

Here, the different configuration state functions |γiJP 〉 have different orbital occupations, however, they
have the same symmetry, i.e. the same total angular momentum J and parity P .

We use the GRASP suite of codes (General Relativistic Atomic Structure Package) for the generation of
these bound many-electron wave functions [24]. Further details on the method and the numerics used
can be found in Ref. [24, 36].

4.3 Evaluation of Coulomb-Dirac continuum wave functions

In the initial state of the recombination process one has an electron in the positive continuum, and all
other electrons are in the bound state of the target ion. One can make the ansatz [84]

Ψ(γiJiMipms) = A [Ψ(γiJiMi)⊗ ψpms(r)] . (4.12)

The Ψ(γiJiMi) is the wave function of the bound electrons of the ion with the angular momentum Ji and
its projection Mi, and ψpms(r) is the wave function of the incoming electron, with a momentum p and
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spin projection ms = ±1/2. Just as in the previous section, the symbol γi summarizes all information
necessary to specify the orbital occupation and the coupling.

For the continuum solutions one can use a partial wave expansion for the electron with asymptotic mo-
mentum p and the spin projection ms [25]

ψpms(r) =
∑
κµ

ilei∆κ
∑
ml

Y ml∗
l (p̂)C(l 12j;mlmsµ)ψpκµ(r) . (4.13)

The phases ∆κ are chosen in such a way that the wave function satisfies the boundary condition of an
incoming plane wave and an outgoing spherical wave.

The Dirac bispinor wave function ψpκµ(r) is calculated in the frozen orbital approximation. This means
to solve numerically the Dirac equation with the nuclear potential screened by the bound electrons in
the initial state in which the ionic states are assumed to be weakly influenced by the continuum electron.
For highly charged ions, this assumption is well justified. By integrating the radial Dirac equations, one
obtains the continuum radial functions Fpκp(r) and Gpκp(r) [36, 38](

d

dr
+
κp

r

)
Fpκp(r)−

(
2c+

εp
c

+
Yp(r)
cr

)
Gpκp(r) = 0 , (4.14)(

d

dr
− κp

r

)
Gpκp(r) +

(
εp
c

+
Yp(r)
cr

)
Fpκp(r) = 0 ,

with Yp the screened potential. One should impose the boundary conditions

Fpκp(0) = 0 , Gpκp(0) = 0 . (4.15)

The normalization condition for these solutions is given as∫ ∞

0
dr
(
Gpκp(r)Gp′κ′p(r) + Fpκp(r)Fp′κ′p(r)

)
= δκpκ′pδ(E − E′) . (4.16)

4.4 Calculation of Auger rates

The Auger decay rate of the autoionizing intermediate state d is, as defined previously,

Aa =
2π

2Jd + 1

∑
MimsMd

∫
dΩp|〈Ψd;JdMd|Vcapt.|Ψi;JiMi,pms〉|2ρi , (4.17)

where Vcapt. is the sum of the Coulomb potential and the Breit interaction. In the case of energy-
normalized wave functions, ρi = 1. For coordinate representation of the initial state |Ψi;JiMi,pms〉,
after applying the partial wave expansion (4.13) one can obtain [84]

Ψ(γiJiMipms) =
∑
κµ

ilei∆κ
∑
ml

Y ml∗
l (p̂)C(l 12j;mlmsµ) (4.18)

×
∑
JM

C(JijJ ;MiµM)Ψ(γiJiMi, pκ;JM) .

The angular momentum Ji and its magnetic quantum number Mi corespond to the initial state. The con-
figuration state function Ψ(γiJiMi, pκ;JM) is an antisymmetrized product of the bound multi-electron
state also including the continuum state. Knowing this, the Auger rate becomes [84]:

Aa = 2π
∑

κ

|〈Ψd;Jd||Vcapt||Ψi;Ji, pκ;Jd〉|2 . (4.19)
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The reduced matrix element 〈Ψd;Jd||Vcapt||Ψi;Ji, pκ;Jd〉 is defined as in Ref. [15]. It is independent
of the magnetic quantum numbers. These matrix elements have been computed numericaly by using an
adopted version of the code AUGR [83], an extension of the GRASP 1.0 suite of codes [24].

In particular, the matrix elements of the Coulomb potential with configuration state functions can be
written as a linear combination of products of angular coefficients and two-electron radial integrals:

〈γrJr|
∑
i<j

1
|ri − rj |

|γsJs〉 =
∑
abcd

∑
k

V k
rs(abcd)R

k(abcd) , (4.20)

The rather involved coefficients V k
rs(abcd) have been evaluated by the MCP code [35]. The radial inte-

grals Rk(abcd) are defined as [24]

Rk(abcd) =
∫ ∞

0
dr

[
(Fnaκa(r)Fncκc(r) +Gnaκa(r)Gncκc(r))

1
r
Y k(bd; r)

]
, (4.21)

with the relativistic Hartree Y -functions

Y k(ac; r) = r

∫ ∞

0
ds

rk
<

rk+1
>

[Fnaκa(r)Fncκc(r) +Gnaκa(r)Gncκc(r)] . (4.22)

The Breit interaction between the electrons 1 and 2 is defined as [36]

VBreit(1, 2) = −α1α2
cos(ωR)

R
+ (α1∇1)(α2∇2)

cos(ωR)− 1
ω2R

, (4.23)

where ω denotes the energy of the virtual photon exchanged and the distance of the electronic vectors is
R = |r1 − r2|. The matrix element can be expressed as [24]

〈γrJr|
∑
i<j

VBreit(i, j)|γsJs〉 =
∑
abcd

∑
kτ

V kτ
rs (abcd)Skτ (abcd) . (4.24)

In the angular coefficients V kτ
rs the index τ differentiates different types of integrals. They can be eval-

uated using the MCBP code [37]. The expressions for the radial integrals Skτ (abcd) can be found in
Ref. [24], and they are calculated numerically by the code BENA [37].

4.5 Radiative transitions between many-electron states

In this section we outline the calculation of radiative transition probabilities between many-electron
states as described by MCDF state vectors. This can be regarded as a straightforward generalization of
the calculation of radiative rates involving single-electron states as derived in Chapter 2. In Section 4.1,
the electromagnetic transition probability from the intermediate state d to the final state f by the emission
of a photon with all possible wave number vectors k and polarizations λ was defined as

Ad→f
r =

2π
2Jd + 1

∑
Md

∑
Mf λ

∫
dΩk|〈ΓfJfMf ;k, λ|Her|ΓdJdMd; 0〉|2ρf , (4.25)

where Her is the electromagnetic interaction operator. We can express the matrix element between two
atomic state functions d and f as [24]

〈ΓfJfMf ;k, λ|Her|ΓdJdMd; 0〉 =
nc∑

r,s=1

c∗rΓf
csΓd

〈γrJrMr;k, λ|Her|γsJsMs; 0〉 . (4.26)
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In order to be able to evaluate the matrix elements ofHer, one should expand it in multipole components.
This means to decompose it in a sum of electric and magnetic multipoles, i.e., a(0)

LM (r) and a(1)
LM (r). The

matrix element becomes [36, 46]

〈γrJrMr;k, λ|Her|γsJsMs; 0〉 =

√
2πc2

ωkV

∑
L

∑
M

√
2π(−i)L

√
2L+ 1DL

M,−λ(k̂) (4.27)

×
[
〈γrJrMr|αa(0)

LM (r) + iλαa(1)
LM (r)|γsJsMs〉

]
.

The rotation matrix DL
M,−λ(k̂) is defined in Ref. [67].

Introducing the re-coupling coefficients dL
ab(rs) (Ref. [65]), one can write the reduced matrix elements

between configuration state functions as a linear combination of single-electron reduced matrix elements
in the following way:

〈γrJrMr||O(L)||γsJsMs〉 =
∑
ab

dL
ab(rs)〈naκa||O(L)||nbκb〉 , (4.28)

with O(L) the spherical tensor operator defined in Ref. [67]. The magnetic and electric one-particle
matrix elements are in the Coulomb gauge [36]

〈f ||αa(0)
LM ||i〉 = i(−1)ji+L+1/2

√
(2ji + 1)(2L+ 1)

4πL(L+ 1)
(4.29)

×
(
jf ji L
1
2 −1

2 0

)
(κf + κi)

[∫
dr(Ff (r)Gi(r) + Fi(r)Gf (r))jL(kr)

]
,

〈f ||αa(1)
LM ||i〉 = i(−1)ji+L+1/2

√
2ji + 1

4π

(
jf ji L
1
2 −1

2 0

)
(4.30)

×

[√
L+ 1

L(2L+ 1)
(
LI−L−1 − (κf − κi)I+

L−1

)
+

√
L

(L+ 1)(2L+ 1)
(
(L+ 1)I−L+1 + (κf − κi)I+

L+1

)]
,

with the integrals

I± =
∫
dr (Ff (r)Gi(r)± Fi(r)Gf (r)) jL(kr) . (4.31)

The radial orbital functions Fi(r), Gi(r), Ff (r) and Gf (r) are generated numerically in the MCDF pro-
cedure as summarized before, and these functions are used to evaluate the radial integrals by numerical
quadrature. This task is performed by the OSCL module of the GRASP 1.0 package of codes [24].

4.6 Comparision of theoretical and experimental results

Once the bound-state wave functions and energies, and the radiative and Auger transition rates have been
calculated, the cross section and related quantites like the resonance strength can be evaluated. Fig. 4.2
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Figure 4.2: Different contributions to the energy of the ground state and the excited autoionizing state
of a given transition in C-like Kr, as calculated with the methods presented in the previous sections.

Figure 4.3: Total calculated cross section for resonant recombination, involving DR, TR and QR chan-
nels, for few-electron Ar ions. The electron energy range of the K-LL resonances is shown. The
Lorentzian peaks have been convoluted with a Gaussian line shape with a FWHM of 10 eV for better
comparision with experiments.

illustrates the magnitude of contributions to the transition energy of a trielectronic resonance in the C-
like krypton ion. Such calculations have been performed to all possible transitions in the relevant K-LL
energy range for He-, Li-, Be-, B-, C-, N-, and O-like Ar, Fe, and Kr ions, however, we do not list all
numbers here. In Figs. 4.3 and 4.4 we show total theoretical cross sections for resonance recombination
in highly charged Ar- and Fe-ions, respectively, as a function of the electron beam energy.

Fig. 4.5 shows the relative strength of certain TR transitions as compared to the dominant DR process in
some few-electron charge states.
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Figure 4.4: Total calculated cross section for resonant recombination, involving DR, TR and QR chan-
nels, for few-electon Fe ions. The electron energy range of the K-LL resonances is shown.

Figure 4.5: Ratio of trielectronic to dielectronic recombination resonance strengths for elements with
different atomic numbers Z for certain transitions involving the B-, C- and N-like charge states. As ex-
pected, the relative weight of the TR process which is due to higher-order electron correlation decreases
for stronger central Coulomb fields.

The experiment was performed at the Heidelberg EBIT [20] where highly charged Kr, Fe and Ar ions
were produced and radially trapped by an electron beam, as explained at the end of Chapter 2. A magnetic
field of 8 T compresses the beam to a radius of ≈ 22 µm. The ions were axially confined by electrostatic
potentials applied to a set of drift tubes. The electron beam energy was swept over the expected range
of resonance energies. Photons emitted as signature of the direct and indirect photorecombination and
their cascades were detected with a high-purity germanium x-ray detector having a resolution of about
350 eV viewing the trap in a direction perpendicular to the exciting beam. The photons counted are
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Figure 4.6: DR and TR resonances in the K-LL DR region of C- to O-like Kr ions as a projection
and in three-dimensional illustration (photon intensity against electron beam energy and photon energy).
Predictions (this work) for DR, TR and QR resonances and their strength are marked by blue, red and
green lines, respectively. At the top the calculated resonances (color coded) for differently charged ion
species are indicated.

Figure 4.7: DR, TR and QR resonances strengths for He- to O-like Kr ions. Theory: DR, blue circles;
TR, red triangles; QR, green squares. Measured TR strength: magenta diamonds. The relative strengths
of the higher-order recombination processes with respect to total DR are indicated.

represented in a two-dimensional intensity plot as a function of the electron beam energy. Bright spots
at well-defined electron and photon energies reveal the recombination resonances in the illustration in
Fig. 4.6. Projecting the counts within a certain photon energy region around the energy difference of the
K and L shell (about 13 keV) onto the beam energy axis yields the energy-differential cross section of the
photorecombination under perpendicular observation. An excellent electron energy resolution of about
13 eV FWHM at 10 keV was accomplished in the EBIT and actually was prerequisite to resolve the
weak peaks corresponding to inter-shell TR and separate them from the roughly twenty times stronger
DR features.

Fig. 4.6 presents an example of resonances appearing in the electron energy region of C- to O-like K-LL
DR. Well-resolved DR and TR resonances of C- to O-like Kr ions are found. Close to their theoretically
expected positions, signatures of C- and Be-like inter-shell QR resonances are indicated as well. The
experimental resonance energies for inter-shell TR as well as the signatures of QR are compared to the
theoretical values in Table 4.1. Our predictions agree very well within error bars with the inter-shell TR
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Table 4.1: Predicted and measured energies of selected dielectronic (TR), trielectronic (TR) and quadru-
electronic (QR) resonances for Be-like to O-like Kr ions. The autoionizing configurations are given in
the jj coupling notation; subscripts following round brackets denote the angular momentum of coupled
subshells and subscripts following square brackets stand for the total angular momentum of the level.
The experimental errors correspond to statistical uncertainties.

Process charge state intermediate state Eexp (eV) Etheo (eV)
DR C [1s2s22p2

1/2(2p
2
3/2)2]5/2 9429.0(2) 9429(5)

DR C
{

[1s2s22p2
1/2(2p

2
3/2)2]3/2

[1s2s22p2
1/2(2p

2
3/2)0]1/2

}
9455.0(3) 9455(5)

DR N [1s2s22p2
1/22p

3
3/2]2 9543.9(3) 9543(6)

DR N [1s2s22p2
1/22p

3
3/2]1 9561.6(4) 9560(6)

DR O [1s2s22p2
1/22p

4
3/2]1/2 9653.8(4) 9653(7)

TR C [(1s2s22p1/2)02p3
3/2]3/2 9496.3(3) 9495(4)

TR C (blend) 9514.3(3) 9514(5)
TR N [(1s2s22p1/2)12p4

3/2]1 9617.5(7) 9616(6)
QR Be [1s2p4

3/2]1/2 9594(2) 9598(4)
QR C [1s2s22p4

3/2]1/2 9576(2) 9582(4)

results and reasonably with the weaker QR signatures.

In Fig. 4.6 the theoretical resonance strengths were also normalized to the earlier mentioned C-like DR
resonance line for Be-like, B-like and C-like Kr and to the first corresponding DR line for N-like and
O-like ions. These values also show a good agreement with our predictions, thus further confirming the
identification of the features as inter-shell TR resonances.

An overview on the calculated and measured DR, TR and QR resonance strengths is shown on Fig. 4.7.
The DR strength decreases monotonically with a growing number of L electrons. For inter-shell TR,
the possible range of ion charge states spans from the Li- to the N-like isoelectronic sequence. It is
noteworthy that the predicted KL-LLL TR strength vanishes for initially Be-like ions due to parity rea-
sons: while the TR resonances should necessarily be described by |1s2s2p3〉 configurations possessing
negative parity, the nearby K-LL DR configurations |1s2s22p2〉 are of positive parity, forbidding the
requested admixtures. For this case, QR is the dominant higher-order recombination process. Interest-
ingly, the ratio of inter-shell TR to the total DR resonance strength reaches values of up to 6% for C-like
Kr30+. This demonstrates that higher-order recombination processes of such mid-Z HCI contribute in
the 1 – 10 % range to the total resonant photorecombination at interaction energies as high as 10 keV,
which are relevant in the temperature range from Te = 500 eV upwards. The measured values confirm
this statement. Experimental total TR resonance strengths of (6.2±1.8)×10−21 cm2 eV sr−1 for C-like
and (3±2)×10−21 cm2 eV sr−1 for N-like ions agree reasonably well with theoretical values, as seen
on Fig. 4.7. Moreover, they are remarkably large for a higher-order process in an inter-shell reaction
involving a K-shell excitation. Studying HCIs at lower and higher Z values and, therefore, shifting
from the nonrelativistic to the relativistic regime helps quantifying these contributions for the benefit of
fundamental aspects and of plasma physics applications.

These considerations lead to the EBIT measurement of resonant recombination cross sections with the
somewhat lighter Fe ions. Fig. 4.8 shows an experimental spectrum for this case. Beyond the TR
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Figure 4.8: Theoretical (uppermost panel) and experimental (middle panel) intensity (arbitrary units) of
x-ray emission as a function of the x-ray photon energy and the electron beam energy, for B- to O-like
Fe ions [9]. Also, the photon yield integrated over the x-ray energies is shown in the bottom panel. The
light spots correspond to DR, TR and QR resonances. QR resonances, indicated by the long red arrows
and the green area, have been observed for the first time.

peaks observed just as in the case of Kr, by the help of our theoretical calculations QR peaks have been
unambiguously identified for the first time. They appear in the spectral range of the C- and Be-like Fe
ions.
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CONCLUSIONS AND OUTLOOK

5.1 Conclusions

In this thesis we theoretically investigated relativistic processes in highly charged ions, where strong
electromagnetic fields play a decisive role.

In Chapter 2 we developed a fully relativistic ab initio theory of the bound dynamics of atomic systems
in laser fields ranging to the x-ray domain. This study completes and extends a number of earlier inves-
tigations on the response of three-level atoms to external driving fields. Due to the interference effects,
multilevel atoms may feature much more effects than two-level systems. In this thesis we have studied
the spontaneous emission characteristics of a V-model atom. The presence of two driving fields can
largely modify the shape of the emission spectrum.

As relativistic effects on the bound electronic wave function increase rapidly with the nuclear charge
number Z, one needs to formulate a fully relativistic theory of coherent laser-atom interaction. The bare
atomic states are constructed from solutions of the Dirac equation. This approach allows for exploit-
ing the sensitivity of inner-shell electrons to relativistic electron correlation, QED and nuclear effects
in strong Coulomb fields. Also the description of the theory beyond dipole approximation allowed us
to describe forbidden transitions such as M1 transitions. As a demonstrative example, a means to de-
termine ionic transition multipole moments and frequencies via a three-level configuration driven by
an x-ray and an optical field has been put forward. Current or near-future laser systems are expected to
increase the accuracy of multipole moment determinations from the current 10−3 level (via lifetime mea-
surements) to the 10−4 range or better. Furthermore, the undesirable trapping of atomic population in a
long-lived metastable state – naturally occurring in certain three-level systems – can be reversed by the
scheme presented here. Other scenarios developed for the quantum control of non-relativistic resonance
fluorescence emission [48, 64, 71, 81, 82] are anticipated to yield further improvement of detection and
accuracy.

The inner-shell electrons in highly charged ions have a large overlap with the nuclear matter. Also, the
relative simplicity of electronic shell structure in such few-electron ions allows for the accurate theo-
retical extraction of nuclear proton distribution parameters from isotope shift data, as shown in the first
half of Chapter 2. Here, we have investigated isotope shifts measurements and we have extracted in-
formation on heavy nuclei via resonance fluorescence of a two-level atomic configuration driven by a
short-wavelength laser field.

For the case of ions or atoms driven by lasers with off-resonant frequencies, shifts of hydrogenic energy
levels were calculated in Chapter 3 in an analytical way. Interaction with the monofrequent laser field is
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treated by second-order time-dependent perturbation theory. Our formalism goes beyond the Stark long-
wavelength dipole approximation and takes into account non-dipole effects of retardation and interaction
with the magnetic field components of the laser beam. The technics is based on the adiabatically damped
Babushkin gauge interaction. This procedure is based on using the unperturbed Hamiltonian, and treating
the interaction α ·A as the perturbation. This interaction gives rise to a dynamic Stark shift. In order
to calculate the matrix elements, we used the fully relativistic wavefunction, solutions of the Dirac-
Coulomb equation. Because the transition is off-resonant, a Green function representing an infinite sum
over virtual bound states and integration over all virtual continuum states is involved. The computation
takes advantage of an expansion over a Sturmian basis of the first-order Dirac-Coulomb Green function.

At high laser intensities, the light shifts are found to be sizable, especially for excited states with lower
binding energies. These results are relevant in current and near-future spectroscopic experiments, es-
pecially for experiments employing advanced light sources in the x-ray regime. This motivates further
study of the interaction of heavy atoms or ions with an intense, high frequency, radiation field. The
result of the Stark shift calculation shows that the relativistic contributions are indeed significant. In
comparison with the usual nonrelativistic dipole treatment, the influence of relativity is to decrease the
magnitude of the transition matrix elements in two-photon processes. It appears also that retardation
effects cannot be neglected. The relativistic corrections should be included even for small Z ≈ 20 and
become clearly necessary for higher nuclear charges. We saw also that the dipole approximation is a
reasonable approximation in most cases, where only the retardation effects should be added.

A further central point of this work has been the process of dielectronic (DR), trielectronic (TR) and
quadruelectronic (QR) recombination via the KLL resonant channels. We have analyzed various effects
which contribute to the resonance energies observed in DR, TR and QR into He-, Li-, Be-, B-, C-, N-, and
O-like Ar, Fe, and Kr ions. We applied the multiconfiguration Dirac-Fock method to determine atomic
state functions and energies. Our calculations include Coulomb and Breit correlation contributions,
approximations for the many-electron QED terms as well as finite nuclear size effects. The comparison
of our theoretical values with the experimental data shows a good overall agreement.

Due to the complex nature of the physical problem, results in many-body theories are commonly provided
without error estimates in the literature. In our work we assigned theoretical uncertainties to the transition
energies. On the theoretical side, the largest error bars are due to QED screening effects and electron
correlation contributions. As electron interaction terms to DR, TR and QR energies beyond the no-pair
approximation may not be negligible in the case of heavy ions, the calculation of such terms is necessary
in the future to improve the accuracy of theoretical results.

The previously unobserved processes of TR and QR have been unambiguously identified in EBIT mea-
surements performed at the Max Planck Institute for Nuclear Physics [10], involving for the first time a
K-shell electron as one of the actors. By investigating the electronic rearrangements taking place in such
multiple excitations, new access to the study of dynamic correlations of bound electrons is presented.
In the case of Kr ions, the inclusion of these hitherto unexplored contributions raises the total resonant
photorecombination x-ray yield by up to 6% at temperatures in the Te > 500 eV range, an effect which
has to be considered in the quantitative modeling of fusion and other hot, e. g. , astrophysical plasmas.
Future improvements experimental in resolution – e.g. by means of the forced evaporative cooling tech-
nique [10] to decrease Doppler broadening due to ionic motion – may even enable A A.detailed studies
of the hyperfine structure as well as of isotopic shifts.
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5.2 Outlook

In this thesis, a versatile fully relativistic theory of correlated electronic dynamics in strong Coulomb and
laser fields has been developed. Beyond the dynamic processes and level shifts investigated in this work,
a range of other phenomena may be theoretically studied using the same framework.

As seen in Chapter 2, the resonance fluorescence spectrum bears the signature of the driving process.
For monochromatic x-ray light, the spectrum exhibits sidebands with positions determined by the Rabi
frequency. By superimposing a second color, e.g., an optical laser, an efficient manipulation of the fluo-
rescence spectrum could be achieved, e.g., in a V-type system the spectral line widths can be narrowed
by several orders of magnitude. For future investigations, one may think of other schemes in which an
x-ray transition is strongly driven and the fluorescence spectrum is manipulated with optical light. This
should imprint a clear signature on the fluorescence spectrum as seen in our V-type system. Specifically,
one may ask the question what effect an optical twin pulse or a frequency comb have on the fluorescence
spectrum. To this end, the formalism of Chapter 2 needs to be extended to describe the dynamics in
the time domain. This may offer the opportunity for novel frequency combs at x-ray wavelengths, a
finer control over the comb and novel spectroscopic methods. A potential application is a more accurate
spectroscopy of highly charged ions.

Diffraction of x rays represents a salutary method to learn about ionic structure since the photons that are
irradiated and scattered interact only weakly with other ions or electrons in the interaction volume. This
is particularly beneficial for the spectroscopy of highly charged ions. In this context, one may investigate
Raman scattering (Stokes and anti-Stokes processes) of highly charged ions with transitions in the x-ray
range. A high x-ray flux from free electron lasers [1, 2] appears to be necessary to compensate for the
somewhat lower cross sections.

The perturbative description of non-resonant light shifts, described in Chapter 3, may be employed with
little modifications to further two-photon processes: excitation, ionization and electron-positron (or, in
general, fermion-antifermion) pair creation. These processes are illustrated in Fig. 5.1. In case of exci-
tation, the second-order electrodynamic process promotes a bound electron initially in the ground state
to an excited bound state. For ionization, this final state is replaced by an electronic wave function be-
longing to the continuous part of the spectrum with an electron energy above +mc2. Pair creation in
a Coulomb field occurs when the initial electronic state has an energy below −mc2 (,,Dirac sea“), and
then photon absorption promotes the fermion into a bound or positive continuum state (bound-free and
free-free pair production, respectively).

These processes are not only interesting from an academic point of view but they also have important
experimental applications. The theoretical understanding of relativistic two-photon excitation is required
to conceive Doppler-free two-photon spectroscopic experiments with trapped ions, especially for highly
charged ions where a relativistic treatment is mandatory. Our treatment applies for a broad range of
transition energies, also allowing to perform studies in the x-ray range. The scheme of such experiments,
allowing for the determination of ionic transition energies with accuracies much higher than presently
possible, is shown in Fig. 5.2. As the laser intensities required for two-photon excitation are anticipated
to be rather high, the levels involved in the transition are shifted by the polarization effects discussed in
Chapter 3, therefore, the light shift effect calculated in the present work plays an important role in the
interpretation and analysis of such experiments.

The two-photon ionization of highly charged ions is anticipated to become feasible by the use of up-
coming intense x-ray free electron lasers such us the LCLS [2] and XFEL [1] facilities, equipped with
transportable EBITs providing the trapped ions as targets. Experiments of this type are planned by the
Max Planck Institute for Nuclear Physics, therefore, thorough theoretical investigation are necessary.
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Figure 5.1: Two-photon processes involving highly charged ions: excitation, ionization, and free-free and
bound-free electron-positron pair creation, respectively. The panels in the upper row show the Feynman
diagrams of the corresponding processes, while the panels in the lower row show the level structures
involved. See text for further details.

v

h+v/c)hv/c)
h

M M

Figure 5.2: Scheme of a Doppler-free spectroscopic experiment with two-photon excitation. The atomic
transition corresponds to two times the photon energy hν. The incoming laser light is split into two
counter-propagating beams by the use of two parallel planar mirrors (M). The atoms (or ions), trapped
in the interaction region between the mirrors, move with a random thermal velocity v. In the reference
frame of the ion, the photons arriving from the two different directions have slightly Doppler-shifted
frequencies; however, as the shifts have different signs in the dominant linear order in v/c, the blue and
red shifts largely cancel. As a consequence, all ions (possessing different velocities) can absorb two laser
photons and emit fluorescence photons.

The perturbative treatment developed for the calculation of light shift of energy levels (Chapter 3) can
be extended to bound-continuum transitions in a straightforward way. Also, the inclusion of resonance
pathways (resonant excitation-ionization) is feasible by means of a density operator approach such as
that applied for relativistic resonance fluorescence in Chapter 2.

The direct production of electron-positron or even the heavier muon-antimuon pairs by two-photon ab-
sorption from a high-frequency laser wave colliding with an atomic nucleus has been investigated re-
cently [59]. The process is sensitive to the nuclear form factor, i.e. electrodynamic nuclear properties
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such as charge radii and other parameters of the protonic charge distribution. It could be realized exper-
imentally by combining radiation from upcoming x-ray free electron or high harmonic generation [58]
laser sources with an ultra-relativistic ion beam from the present accelerator generation. In Ref. [59], the
strong field approximation has been employed, i.e. the created fermionic pair was described by Volkov
wave functions accounting for interaction with the intense laser field but fully neglecting interaction with
the nucleus. This description may be refined by our formalism described in Chapter 3, taking into ac-
count the nuclear potential to all orders. In the case of µ+µ− pairs, the wave functions and the analytic
Sturmian basis set corresponding to a pointlike nucleus have to be substituted with their counterparts
integrated in the potential of an extended nucleus.
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–APPENDIX A–

COULOMB-DIRAC GREEN’S FUNCTION IN THE

STURMIAN REPRESENTATION

Given a Hermitian operator H , the corresponding resolvent or Green operator G(z) is defined by [79]

(H − z)G(z) = 1, (A.1)

where z is a complex number and corespond to the energy variable. Let us assume that H possesses a
complete set of eigenfunctions Φn corresponding to eigenvalues E [79]:

(H − En)Φn = 0 , (A.2)∑
n

ΦnΦ†
n = 1 . (A.3)

In the spectral representation, G(z) is formally given by [79]

G(z) = −
∑

n

ΦnΦ†
n

z − En
. (A.4)

Generally, the summation is performed over a discrete and a continuous spectrum of eigenfunctions.

Let us represent H by a differential operator Hr acting on a Hilbert space of functions on R3, and G(z)
represented by a function G(r1, r2; z) on R3 ×R3. They satisfies the equation

(Hr1 − z)G(r1, r2; z) = δ(r1 − r2) . (A.5)

For a certain class of Hamiltonians, the Green’s function can be given analytically, without explicitly
carrying out the summation over a complete spectrum. The Green’s function associated with the Dirac-
Coulomb Hamiltonian can be decomposed into radial and angular parts as [44]

G(r1, r2;En) =
1
c~

(
G11 G12

G21 G22

)
, (A.6)

where in the components Gij , i, j ∈ {1, 2}, which are 2 × 2 matrices, we omitted the coordinate and
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energy arguments for brevity. They can be decomposed as

G11 =
∑

κnmn

g11
κn

(r1, r2;En)Ωκnmn(r̂)Ω∗
κnmn

(r̂′) , (A.7)

G12 =
∑

κnmn

−ig12
κn

(r1, r2;En)Ωκnmn(r̂)Ω∗
−κnmn

(r̂′) ,

G21 =
∑

κnmn

ig21
κn

(r1, r2;En)Ω−κnmn(r̂)Ω∗
κnmn

(r̂′) ,

G22 =
∑

κnmn

g22
κn

(r1, r2;En)Ω−κnmn(r̂)Ω∗
−κnmn

(r̂′) .

The radial components gij can be represented as an expansion involving Laguerre polynomials [44]:

g11
κn

=
1
2ε

(2λn)2γn(rr′)γn−1e−λn(r+r′)
∞∑

n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

− [(κn − ν/εn) + 2(γn + ν)]
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

+
n!

Γ(2γn + n)
L2γn−1

n (2λnr)L
2γn
n (2λnr

′) + L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
, (A.8)

g12
κn

=
1
2
(2λn)2γn(rr′)γn−1e−λn(r+r′)

∞∑
n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

+ (κn − ν/εn)
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

− n!
Γ(2γn + n)

L2γn−1
n (2λnr)L

2γn
n (2λnr

′)− L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
, (A.9)

g21
κn

= g12
κn

(r ↔ r′) , (A.10)

g22
κn

=
ε

2
(2λn)2γn(rr′)γn−1e−λn(r+r′)

∞∑
n=0

(
(κn + ν/εn)

n!
Γ(2γn + 1 + n)

L2γn
n (2λnr)L

2γn
n (2λnr

′)
n+ γn + 1− ν

− [(κn − ν/εn)− 2(γn + ν)]
n!

Γ(2γn + 1 + n)
L2γn

n (2λnr)L
2γn
n (2λnr

′)
n+ γn − ν

− n!
Γ(2γn + n)

L2γn−1
n (2λnr)L

2γn
n (2λnr

′) + L2γn
n (2λnr)L

2γn−1
n (2λnr

′)
n+ γn − ν

)
. (A.11)

Here, we introduced the notations

ε =

√
mc2 − E

mc2 + E
, ε =

E

mc2
, ν =

αZε√
1− ε2

. (A.12)
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REDUCTION OF ANGULAR MATRIX ELEMENTS

We collect some formulas which will be important in the calculation of the angular part of matrix ele-
ments. In a general two-component system like a Dirac wave function possessing an orbital and a spin
part, with the tensor Rk1(1) acting only on the first part and Sk2(2) only on the second component, a
tensor acting on the composite system can be written as [15]

TKQ(k1k2) =

=
∑
q1q2

Rk1q1(1)Sk2q2(2)C(k1k2K; q1q2Q) , (B.1)

with the C(k1k2K; q1q2Q) being the Clebsch-Gordan coefficients. The reduced matrix element of the
spherical tensor operator can be written as [15]

〈j1j2j||TK(k1k2)||j′1j′2j′〉 =
= [(2j′ + 1)(2K + 1)(2j1 + 1)(2j2 + 1)]1/2

×


j j′ K
j1 j′1 k1

j2 j′2 k2

 〈j1||Rk1 ||j′1〉〈j2||Sk2 ||j′2〉 . (B.2)

Here, the 9j symbol was introduced in its usual notation. We apply this general theorem to an electron,
i.e. a particle with its spin equal to 1/2, coupled with the orbital angular momentum l (l′) to the quantum
number j (j′) (i.e. we substitute in the above equation j1 = l1, j′1 = l′1, and j2 = j′2 = 1/2):

〈l1
1
2
j||TK(Ck1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)2]1/2

×


j j′ K
l1 l′1 k1
1
2

1
2 1

 〈l1||Ck1 ||l′1〉〈
1
2
||σ1||

1
2
〉 . (B.3)

Using the matrix elements [15]

〈l1||Ck1 ||l′1〉 = (2l′1 + 1)1/2(−1)l1

(
l1 k1 l′1
0 0 0

)
(B.4)

and

〈1
2
||σ1||

1
2
〉 = 2〈1

2
||S||1

2
〉 =

√
3 , (B.5)
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we get

〈l1
1
2
j||TK(Ck1σ1)||l′1

1
2
j′〉 =

=
√

(2j′ + 1)(2K + 1)(2l1 + 1)6


j j′ K
l1 l′1 k1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)l1

(
l1 k1 l′1
0 0 0

)
, (B.6)

where S is the spin operator.

In the case of k1 = K, the expression relating the 9j-symbol to the Racah W -coefficient simplifies
to [15] 

j j′ K
l1 l′1 K
1
2

1
2 1

 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)

[6K(K + 1)(2K + 1)]1/2

×(−1)K+1/2−j−l′1W
(
jj′l1l

′
1;K1/2

)
. (B.7)

Thus, the reduced matrix element can be rewritten as [15]

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)√

K(K + 1)

×(−1)K+1/2−j−l′1+l1
√

(2j′ + 1)(2l1 + 1)(2l′1 + 1)

×W
(
jj′l1l

′
1;K1/2

)( l1 k1 l′1
0 0 0

)
. (B.8)

Let us pay attention to the product of the Racah coefficient and the 3j symbol. The 6j symbol is invariant
under the interchange of any two columns, and also for interchange of the upper and lower arguments
in each of any two columns. Thus the following relation holds: W (abcd; e1/2) = W (dcba; e1/2). If
a+ b+ e is even, a special case is [15]

W

(
abcd; e

1
2

)(
a b e
0 0 0

)
= (B.9)

= − 1
[(2a+ 1)(2b+ 1)]1/2

(
c d e

−1
2

1
2 0

)
.

In our case the corresponding expression is as follows:

W

(
l′1l1j

′j;K
1
2

)(
K l1 l′1
0 0 0

)
= (B.10)

= −(−1)K+l1+l′1
1

[(2l′1 + 1)(2l1 + 1)]1/2

(
j′ j K
−1

2
1
2 0

)
.
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The reduced matrix element thus becomes

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

=
j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l

′
1 + 1)

[K(K + 1)]1/2

×(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (B.11)

Using the relation j(j + 1)− l1(l1 + 1)− j′(j′ + 1) + l′1(l
′
1 + 1) = κ− κ′, we arrive to [15]

〈l1
1
2
j||TK(CKσ1)||l′1

1
2
j′〉 =

κ− κ′

[K(K + 1)]1/2

×(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (B.12)

In the case of k1 = K + 1, the reduced matrix element of the spherical tensor operator can be written
as [15]

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)6]1/2


j j′ K
l1 l′1 K + 1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)−K−1−l′1

(
K + 1 l1 l′1

0 0 0

)
. (B.13)

If c+ d+ e is odd, the following relation holds:

(
c+ 1 d e

0 0 0

)
a b c
d e c+ 1
1
2

1
2 1

 =

=
(d− a)(2a+ 1) + (e− b)(2b+ 1) + c+ 1

[6(c+ 1)(2c+ 1)(2c+ 3)(2d+ 1)(2e+ 1)]1/2

×(−1)b+e+1/2

(
a b c
1
2 −1

2 0

)
, (B.14)

thus the product of the 3j and 9j symbols in our case can be written as

(
K + 1 l1 l′1

0 0 0

)
j j′ K
l1 l′1 K + 1
1
2

1
2 1

 =

=
(l1 − j)(2j + 1) + (l′1 − j′)(2j′ + 1) +K + 1

[6(K + 1)(2K + 1)(2K + 3)(2l1 + 1)(2l′1 + 1)]1/2

×(−1)j′+l′1+1/2

(
j j′ K
1
2 −1

2 0

)
. (B.15)
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Using the formula κ = (l1 − j)(2j + 1), this can be further simplified to [15]

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= − κ+ κ′ +K + 1
[(K + 1)(2K + 3)]1/2

(−1)j′−K−1/2

×(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
. (B.16)

Finally, in the case of k1 = K − 1, the reduced matrix element is given as [15]

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

= [(2j′ + 1)(2K + 1)(2l1 + 1)6]1/2


j j′ K
l1 l′1 K − 1
1
2

1
2 1


×(2l′1 + 1)1/2(−1)−K−1−l′1

(
K − 1 l1 l′1

0 0 0

)
. (B.17)

When the sum c+ d+ e is odd, the product of the algebraic symbols can be written as(
c+ 1 d e

0 0 0

)
a b c
d e c− 1
1
2

1
2 1

 =

=
(d− a)(2a+ 1) + (e− b)(2b+ 1)− c

[6c(2c+ 1)(2c− 1)(2d+ 1)(2e+ 1)]1/2

×(−1)b+e+1/2

(
a b c
1
2 −1

2 0

)
. (B.18)

Applying this relation to the case of interest,(
K − 1 l1 l′1

0 0 0

)
j j′ K
l1 l′1 K − 1
1
2

1
2 1

 =

=
(l1 − j)(2j + 1) + (l′1 − j′)(2j′ + 1)−K

[6K(2K + 1)(2K −K)(2l1 + 1)(2l′1 + 1)]1/2

×(−1)j′+l′1+1/2

(
j j′ K
1
2 −1

2 0

)
, (B.19)

and applying again the formula κ = (l1 − j)(2j + 1), one arrives to [15]

〈l1
1
2
j||TK(CK+1σ1)||l′1

1
2
j′〉 =

=
κ+ κ′ −K

[K(2K − 1)]1/2
(−1)j′−K−1/2

×(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
(B.20)

The results in Eq. (B.11), (B.16) and (B.20) can be summarized as [15]

〈l1
1
2
j||TK(Ckσ1)||l′1

1
2
j′〉 = (B.21)

= aK(−1)j′−K−1/2(2j′ + 1)1/2

(
j j′ K
1
2 −1

2 0

)
,
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with the factors

ak = (κ− κ′)/
√
k(k + 1) , (B.22)

ak−1 = −(k + κ+ κ′)/
√

2k(k + 1) ,
ak+1 = (k + 1− κ− κ′)/

√
(k + 1)(2k + 1) .
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–APPENDIX C–

ALLOWED COUPLINGS OF SUBSHELL ANGULAR

MOMENTA IN RELATIVISTIC ATOMIC STATES

q v J

j = 1
2 0,2 0 0

1 1 1
2

j = 3
2 0,4 0 0

1,3 1 3
2

2 0 0
2 2

j = 5
2 0,6 0 0

1,5 1 5
2

2,4 0 0
2 2,4

3 1 5
2

3 3
2 ,92

j = 7
2 0,8 0 0

1,7 1 7
2

2,6 0 0
2 2,4,6

3,5 1 7
2

3 3
2 ,52 ,92 ,112 ,152

4 0 0
2 2,4,6
4 2,4,5,8

j = 9
2 0,10 0 0

1,9 1 9
2

2,8 0 0
2 2,4,6,8

3,7 1 9
2

3 3
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,212

4,6 0 0
2 2,4,6,8
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120 D. COUPLINGS OF SUBSHELL ANGULAR MOMENTA

q v J

j = 9
2 4 0,2,3,42,5,62,7,8,9,10,12

5 1 9
2

3 3
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,212

5 1
2 ,52 ,72 ,92 ,112 ,132 ,152 ,172 ,192 ,252

Table C.1: Allowed coupling of states jq for j = 1
2 −

9
2 .The seniority of the coupling and the subshell

angular momentum are denoted, respectively, by v and J . The superscript 2 that follows J = 4, 6 for
jq =

(
9
2

)4,6, v = 4 indicates a two-fold degeneracy with respect to this classification scheme [24].
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trielectronic recombination with K-shell excitation in Kr30+. Phys. Rev. A, 80:050702(R), 2009.

[11] M. Bitter, H. Hsuan, C. Bush, S. Cohen, C. J. Cummings, B. Grek, K. W. Hill, J. Schivell, M. Zarn-
storff, P. Beiersdorfer, A. Osterheld, A. Smith, and B. Fraenkel. Spectra of Heliumlike Krypton
from Tokamak fusion test reactor plasmas. Phys. Rev. Lett., 71:1007, 1993.

[12] C. Brandau, C. Kozhuharov, Z. Harman, A. Müller, S. Schippers, Y. S. Kozhedub, D. Bernhardt,
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[33] A. J. González Martı́nez, J. R. Crespo López-Urrutia, J. Braun, G. Brenner, H. Bruhns, A. Lapierre,
V. Mironov, R. Soria Orts, H. Tawara, M. Trinczek, J. Ullrich, A. N. Artemyev, Z. Harman, U. D.
Jentschura, C. H. Keitel, J. H. Scofield, and I. I. Tupitsyn. Benchmarking high-field few-electron
correlation and QED contributions in Hg75+ to Hg78+ ions. i. experiment. Phys. Rev. A, 73:052710,
2006.

[34] I. P. Grant. Gauge invariance and relativistic radiative transitions. J. Phys. B, 7:1458, 1974.

[35] I. P. Grant. A program to calculate angular momentum coefficients in relativistic atomic structure -
revised version. Comput. Phys. Commun., 11:397, 1976.

[36] I. P. Grant. Relativistic Quantum Theory of Atoms and Molecules. Springer, Berlin, Germany, 2006.

[37] I. P. Grant, B.J. McKenzie, P. H. Norrington, D. F. Mayer, and N. C. Pyper. An atomic multicon-
figurational Dirac-Fock package. Comput. Phys. Commun., 21:233, 1980.

[38] W. Greiner. Relativistic Quantic Mechanics. Springer, Berlin, Germany, 2000.

[39] A. Gumberidze, Th. Stöhlker, D. Banaś, K. Beckert, P. Beller, H. F. Beyer, F. Bosch, S. Hag-
mann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P. H. Mokler, M. Steck, D. Sierpowski, and
S. Tashenov. Quantum electrodynamics in strong electric fields: The ground-state Lamb shift in
Hydrogenlike Uranium. Phys. Rev. Lett., 94:223001, 2005.

[40] M. Haas, U. D. Jentschura, C. H. Keitel, N. Kolachevsky, M. Herrmann, P. Fendel, M. Fischer,
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C. D. P. Levy, M. R. Pearson, E. J. Prime, V. Ryjkov, A. Wojtaszek, Z.-C. Yan, and C. Zimmer-
rmann. Nuclear charge radii of 9,11Li: The influence of halo neutrons. Phys. Rev. Lett., 96:033002,
2006.

[70] M. Schnell, G. Gwinner, N. R. Badnell, M. E. Bannister, S. Böhm, J. Colgan, S. Kieslich, S. D.
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