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Abstract
In this thesis, far-from-equilibrium dynamics of fermionic quantum gases is discussed utilising
functional quantum field theoretical methods. Employing the Schwinger-Keldysh path
integral, real-time Schwinger-Dyson/Kadanoff-Baym dynamic equations for the two-point
correlation functions are derived from the two-particle irreducible (2PI) effective action. For
two specific models, these dynamic equations are investigated further. (a) For an N -fold
spin-degenerate ultra-cold Fermi gas, non-perturbative approximation schemes based on
either a loop or a 1/N expansion of the 2PI effective action are presented. Adopting these
approximations, the long-time evolution of a homogeneous Fermi gas with N = 2 after
an initial preparation far from thermal equilibrium is thoroughly studied in one spatial
dimension. Depending on the total energy, the gas is found to evolve into thermal as well
as non-thermal states, the latter becoming manifest in violating the fluctuation-dissipation
relation. (b) A similar 1/N expansion is derived for the SU(N ) symmetric Kondo lattice
model. At leading order, the mean-field dynamic equations of the U = 0 Anderson model are
recovered. At next-to-leading order (NLO), both spin-flip and direct interactions between
localised atoms and conduction band atoms are taken into account non-perturbatively into
the dynamic equations. This allows future studies of possibly existing novel phases in
coupling regimes where the Kondo screening and RKKY-type interactions are competing.

Kurzzusammenfassung
In dieser Arbeit wird die Nichtgleichgewichtsdynamik fermionischer Quantengase anhand
funktionaler Methoden der Quantenfeldtheorie diskutiert. Mit Hilfe des Schwinger-Keldysh-
Pfadintegrals werden dynamische Schwinger-Dyson/Kadanoff-Baym-Gleichungen für die
Zweipunktsfunktionen aus der zweiteilchen-irreduziblen (2PI) effektiven Wirkung abge-
leitet. Diese Gleichungen werden für zwei spezielle Modelle näher untersucht. (a) Für
ein N -fach entartetes, ultrakaltes Fermigas werden nichtstörungstheoretische Näherungs-
verfahren, denen entweder eine Schleifen- oder eine 1/N -Entwicklung der 2PI effektiven
Wirkung zugrunde liegt, betrachtet. Als Anwendung dieser Näherungen wird die Langzeit-
entwicklung eines homogenen Fermigases mit N = 2 in einer Raumdimension von einem
anfänglichen Zustand, der weit entfernt eines thermischen Gleichgewichtszustands liegt,
detailliert untersucht. Abhängig von der Gesamtenergie entwickelt sich das Gas mit der
Zeit in thermische und nichtthermische Zustände, wobei sich die Letzteren durch eine
Verletzung der Fluktuations-Dissipations-Beziehung auszeichnen. (b) Eine ähnliche 1/N -
Entwicklung wird für das SU(N )-symmetrische Modell des Kondo-Gitters abgeleitet. In
führender Ordnung werden die Molekularfeldgleichungen des U = 0 Anderson-Modells
gefunden. In der nächsthöheren Ordnung werden sowohl spinaustauschende als auch spin-
beibehaltende Wechselwirkungen zwischen lokalisierten Atomen und Leitungsbandatomen
nichtstörungstheoretisch berücksichtigt. Dies erlaubt zukünftige Untersuchungen mögli-
cher neuer Phasen in Wechselwirkungsbereichen, in denen Kondo-Abschirmung und eine
RKKY-artige Wechselwirkung konkurrieren.
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Preface

The dynamics of interacting quantum many-body systems far from thermal equilibrium
is a subject of great interest for a deeper understanding of nature and has various
applications within the whole range of physics. Examples are cosmology, where the
inflationary epoch during the very early evolution of our universe requires a quantum
dynamical description [1, 2], high energy and particle physics, where the interest
in non-equilibrium dynamics mainly originates from relativistic heavy-ion collision
experiments [1, 3, 4, 5], molecular physics, where the understanding of many-body
processes is important to analyse molecular reactions (e. g. metabolism in biology) [6],
condensed matter physics, where ultrashort-time spectroscopy techniques using pulsed
lasers with pulse durations and delay times in the attosecond range enable to probe
electron dynamics [7, 8, 9], and AMO physics, where experiments with ultra-cold
atomic quantum gases allow to study strongly interacting model Hamiltonians [10].

In spite of this diversity of applications, non-equilibrium physics still poses a chal-
lenge both for theory and experiment and requires deeper understanding. Two of
the fundamental questions concern the long-time evolution of an isolated interacting
quantum many-body system: Given that it starts in some deliberately chosen initial
non-equilibrium configuration, will the interactions force the system to evolve into a
stationary long-time behaviour, i. e. will equilibration take place? If yes, is this steady
state in agreement with a standard statistical ensemble like the micro-canonical or
(grand-)canonical ensemble, i. e. did thermalisation occur? For classical integrable
systems, such problems have been studied intensively since the pioneering work of
Fermi, Pasta, and Ulam [11, 12]. However, the time evolution of quantum systems
remains much more elusive. In a closed system with unitary time evolution, no
information is lost, irrespective whether or not the system is integrable. Thus, the
system cannot show dissipation or reach thermal equilibrium at a fundamental level.
Nonetheless, we can pose the question whether a closed and finite but sufficiently
large system with a ground state shows, at least approximately, equilibration to a
thermal or to some alternative quasi-stationary state before its unitary time evolution
causes revivals [13]—and if so, we can ask on what time scale this happens. In this
thesis, we will pursue these questions in the context of ultra-cold Fermi gases.

In recent years, new experimental techniques have been developed for ultra-cold
atomic gases and solid-state physics that allow to precisely study quantum many-body
dynamics. In the field of ultra-cold atomic gases, the combination of various trapping
techniques with methods to manipulate the inter-atomic interaction strength opened a
huge variety of possibilities to prepare ultra-cold atomic Bose and Fermi gases in non-
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Preface

equilibrium initial states and investigate important aspects of the subsequent dynamics.
This allows to examine dynamical theories for many-body systems whose parameters
like the particle density and interaction strength can be precisely varied over wide
ranges. In turn, an improved understanding of the capabilities and limitations of
the dynamical theories allows to better interpret the results of other non-equilibrium
experiments whose initial states and system parameters are much less tunable, e. g.
in relativistic heavy-ion collision experiments.
Non-equilibrium experiments with ultra-cold gases have focused on the question

of the equilibration of a one-dimensional quantum gas with quadratic dispersion in
which isolated binary collisions of the particles would not change their momenta
owing to the restrictions of simultaneous momentum and energy conservation [14, 15].
Many of the past experiments with ultra-cold gases can be approximately described
by semi-classical approximations of the quantum many-body field equations such as
the Gross-Pitaevskii, Hartree-Fock-Bogoliubov, or Bardeen-Cooper-Schrieffer theories
[16, 17]. The description of the dynamics of many-body systems of sufficiently weakly
interacting particles is usually based on perturbative approximations that rely on
an expansion in powers of some dimensionless parameter that measures the binary
interaction strength. These approximations are generically based on the smallness
of statistical fluctuations. In the limit of infinitely strong interactions, a number of
approaches exist—in particular for systems in only one or two spatial dimensions—
that allow dual descriptions in which approximations rely on the smallness of the
inverse of the coupling strength [18, 19].
For intermediate interaction strengths, only a few approaches exist. In this re-

gime, quantum as well as strong classical fluctuations generally play an important
rôle. Prime examples for systems in this regime are ultra-cold gases driven into
the vicinity of Feshbach-Fano scattering resonances [20, 21, 22, 23], lattice-trapped
gases in between the superfluid and Mott insulator regimes [24, 25, 26], and low-
dimensional gases in regimes where the transverse confinement strongly affects the
binary scattering dynamics of the particles [15, 17, 27, 28, 29, 30]. Ultra-cold Fermi
gases have been studied extensively in the vicinity of the BEC-BCS crossover, i. e.
superfluid-superconducting crossover [31, 32, 33, 34, 35, 36, 37, 38]. They currently
attract increasing interest, for example, in the context of Kondo phenomena in lattice
environments [39] studied also in this thesis. To appropriately model these exper-
iments, it is crucial to include the quantum and strong classical fluctuations into
the description. As discussed below, taking into account higher-order classical and
quantum fluctuations is also important for describing the late-time behaviour of
initially strongly perturbed as well as of continuously driven systems. This is the
subject of non-equilibrium quantum field theory.

In quantum field theoretic descriptions of non-equilibrium physics, the quantities of
interest are different from those in quantum field theory applied to, for example, high-
energy reactions. In the latter, the primary concerns are cross sections of scattering
processes between particles. These cross sections are related to transition amplitudes
between asymptotically defined initial and final states. In non-equilibrium quantum
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field theory, the main focus lies on the time evolution of expectation values of physical
observables. In this case, only the initial state (density matrix) of the system is
specified, and no information about the final state is available in the first instance.
An adequate method to study the non-equilibrium dynamics for these kind of initial
value problems is the closed-time-path (CTP) formalism developed by Schwinger [40],
Bakshi and Mahanthappa [41, 42, 43], and Keldysh [44]. In this formalism, the initial
conditions are specified by a density matrix that can be far from equilibrium. And
the time evolution is governed by causal equations of motion that are completely
determined by the classical action.
To describe the late-time behaviour of initially strongly perturbed as well as of

continuously driven systems, standard perturbation theory approaches to describe
non-equilibrium quantum field theories suffer from various problems. For example,
the appearance of artificial, so-called secular, terms during the time evolution leads
to a break down of the correct description even for weakly coupled systems after
some evolution time, see e. g. Refs. [45, 46]. The reason for this is that the per-
turbative expansion parameter is generically of the type ‘coupling multiplied by
evolution time’, which is no longer small at sufficiently late times however small the
coupling is. Another example is the presence of pinch singularities [47]. However,
these kind of problems can be resolved by resorting to self-consistent methods. A
prominent example for a self-consistent method discussed in detail in the literature is
the time-dependent Hartree approximation, which qualitatively reproduces the early-
time behaviour to equilibrium but has problems to correctly describe the late-time
behaviour of the dynamics quantitatively because it includes insufficiently scattering
[48, 49, 50, 51, 52]. A quantitative description of the late-time behaviour needs to be
consistent with vital conservation laws such as, for example, the conservation of the
total energy.

A compelling method taking into account the effects of scattering between particles
as well as quantum effects is the two-particle irreducible (2PI) effective action ap-
proach [53, 54, 55, 56, 57]. The 2PI effective action approach extends self-consistent
mean-field formulations like the Hartree approximation by including the effects of
scattering between particles to the desired order of approximation. The 2PI effective
action represents the complete theory in terms of dressed one- and two-point cor-
relation functions. Exact non-equilibrium dynamic equations for these correlation
functions can be derived from the 2PI effective action using the CTP formulation. Ap-
proximations to these dynamic equations can be obtained by truncating the effective
action and obtaining time evolution equations by subsequent functional derivations
with respect to the desired correlation functions. Performing the approximation
on the level of the effective action has two main advantages. First, the resulting
equations are self-consistent and do not suffer from secular problems. And second,
the variational procedure to derive the equation of motion ensures that they preserve
the global symmetries of the action; therefore, they also fulfil the conservation laws
associated with these symmetries through Noether’s theorem. In particular, for a
non-relativistic gas, the dynamic equations respect the local conservation of the
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particle density-current vector as well as of the energy-momentum tensor.
Functional integral techniques based on the 2PI effective action enable an efficient

embedding of summations of infinite series of perturbative processes. In recent years,
systematic non-perturbative expansions of the 2PI effective action to next-to-leading
order in inverse powers of the number of field components [58] have allowed substantial
progress [59, 60]: after first successful applications of these non-perturbative expan-
sions to the study of far-from-equilibrium dynamics as well as thermalisation in relativ-
istic bosonic [60, 61, 62, 63] and fermionic [64, 65] theories, they have recently been
employed in the context of ultra-cold bosonic quantum gases [66, 67, 68, 69, 70, 71].
A related alternative approach based on renormalisation-group-like flow equations
was presented in Refs. [72, 73]. For introductory texts, see, e. g. Refs. [74, 75].

In this thesis, we present a self-consistent formulation of the non-equilibrium dynam-
ics of ultra-cold Fermi gases in terms of beyond-mean-field Schwinger-Dyson/Kadanoff-
Baym equations for correlation functions derived from the 2PI effective action.

Chapter 1 In the first chapter, we present a derivation of an exact non-equilibrium
dynamical equation—an integro-differential Schwinger-Dyson/Kada-
noff-Baym dynamic equation—for the two-point Green function of a
non-relativistic Fermi gas. Thereby, we review the general framework
for deriving this type of equation from the two-particle irreducible (2PI)
effective action. The calculations and formulae in this chapter are
model independent in the sense that we do not specify to any particular
interaction between the fermions.

As pointed out above, the 2PI effective action approach to non-equilibrium dynamics is
well established in the literature. The 2PI effective action for non-relativistic fermions
is also known in the literature [76, 77], where it is discussed in the context of collective
excitations in low-energy nuclear physics but not in the context of non-equilibrium
dynamics. The main task in Ch. 1 was to combine this knowledge in a coherent
presentation, and introduce the reader to the topic. To our knowledge, however, the
derivation of the energy-momentum tensor for non-relativistic fermions from the 2PI
effective action, which we present in Sec. 1.7, has never been shown explicitly.

The dynamical equation derived in the first chapter can generally not be solved
exactly due to the complexity of the proper self-energy appearing therein. In order to
be able to (numerically) solve the dynamical equation, some approximation of the
proper self-energy is necessary. This requires a specification of a precise model in the
first place. In the remainder of this thesis, we specifically investigate two types of
models.

The first model, studied in Ch. 2 and Ch. 3, is an N -component ultra-cold Fermi
gas, where the individual components could be, for example, hyperfine states of
fermionic atoms.
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Chapter 2 In the second chapter, we begin with introducing the model for an
ultra-cold Fermi gas containing N spin components that mutually
interact through local s-wave contact collisions. We present two types
of non-perturbative approximations of the 2PI effective action. The
first type of approximation is based on a coupling expansion of the 2PI
effective action, and a subsequent truncation of this expansion at a
certain order. In the lowest-order approximation, we recover the self-
consistent Hartree-Fock-Bogoliubov equation of motion. The second
type of approximation is based on an expansion of the 2PI effective
action in powers of 1/N . Considering the case of a degeneracy in the
N spin degrees of freedom, we derive the 2PI effective action to next-
to-leading order (NLO) in this expansion. While the 1/N expansion is
entirely classical in leading order approximation, classical fluctuations
and corrections induced by quantum fluctuations, both of which are
introduced by scattering, are included in NLO in a non-perturbative
manner.

For the model of a non-relativistic Fermi gas with N components, the loop expansion
of the 2PI effective action is briefly discussed in the literature [76, 77]; however, for
example, the explicit form of the real-time dynamical equations beyond the first-order
(Hartree-Fock-Bogoliubov) loop approximation has not been given there. Deriving
the Schwinger-Dyson/Kadanoff-Baym equations up to next-to-leading (NLO) order
1/N approximation of the 2PI effective action for non-relativistic Fermi gas with N
components is original work. A major part of the work for my thesis project was the
efficient numerical implementation of the dynamic equations up to 3rd-order in the
loop expansion and up to NLO in the 1/N approximation.
For our numerical investigations, we specify to the most fundamental but also

particular interesting version of this model: a spatially homogeneous gas with two spin
components in one spatial dimension (1D). In this version, the model is integrable in
the sense that it has as many conserved quantities as there are degrees of freedom [78].
Since the model is integrable, it is expected not to thermalise in general if prepared
out of equilibrium [79, 80, 81, 82]. The low-energy properties of the considered 1D
Fermi gas can be approximated by a Tomonaga-Luttinger liquid (TLL) model [83]
that contains a linear free dispersion. The approximating TLL model is known to
form a low-energy fixed point of the full interacting one-dimensional Fermi gas, and
its non-equilibrium dynamics has been studied [84, 85]. Its long-time evolution after
an interaction quench approaches a generalised Gibbs ensemble [82] accounting for the
conserved quasi-particle numbers. In this thesis, however, we consider the dynamic
evolution described by the full interacting fermionic Hamiltonian, approaching the
problem of equilibration from the high-energy end. Our analysis applies away from
zero temperature in a regime of energies where the non-linearity of the dispersion
becomes relevant; therefore, we do not expect to recover the TLL model. For our
analysis, we employ Schwinger-Dyson/Kadanoff-Baym dynamic equations in the 2PI
next-to-leading order 1/N approximation. These equations are generally considered
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to describe thermalisation. We find, however, that the correlation functions emerging
at late times become incompatible with a thermal ensemble at low energies by
analysing the fluctuation-dissipation relation. Non-thermal stationary states have
also been found in a number of other models, both integrable and non-integrable
[82, 84, 85, 86, 87, 88, 89].

Chapter 3 In the third chapter, we study the long-time evolution of a homogen-
eous one-dimensional Fermi gas with two-fold spin degeneracy from
an initial state that is far from thermal equilibrium. We numerically
solve the dynamical equations for such a gas employing the Schwinger-
Dyson/Kadanoff-Baym dynamic equations in next-to-leading order 1/N
approximation of the 2PI effective action. We analyse the dependence
of the late-time behaviour of the dynamics on the details of the initial
state, on the total energy of the system, and on the strength of the inter-
actions. At low energies, the high-momentum tail of the single-particle
momentum distribution develops a power-law behaviour reminiscent
of the p−4 power law of Tan’s relation. By analysing the fluctuation-
dissipation relation, we find furthermore that the correlation functions
emerging at late times are incompatible with a thermal ensemble if the
total energy of the system is sufficiently low.

Large parts of the original work presented in the first three chapters of this thesis are
going to be published in the article [90].

The second model that we study in this thesis is the SU(N ) symmetric Kondo
lattice model (KLM). This model has recently attracted interest in the cold-atom
community because a fermionic quantum gas that is described by the KLM can be
realised in experiments with the help of alkaline-earth-metal atoms trapped in optical
lattice potentials [39, 91, 92, 93]. Alkaline-earth-metal atoms make an exceptional
system to systematically study models with a global SU(N ≥ 2) symmetry in
experiments.
The ground-state phase diagram for the KLM in d > 1 spatial dimensions is

not yet well understood. While the different phases for both sufficiently weak and
stronger coupling can be well described, the understanding of the quantum phase
transition that separates these two phases is the main outstanding challenge in KLM
research. And the 1/N expansion of the 2PI effective action beyond the leading-order
approximation is a promising tool to tackle this challenge. In this thesis, we lay the
foundations for this tackle.

Chapter 4 In the fourth chapter, we derive non-equilibrium dynamical equations for
an ultra-cold Fermi gas that can be described by the SU(N ) symmetric
Kondo lattice model (KLM). We first give a general motivation why
the KLM recently attracted attention in the cold-atom community.
We also discuss relevant properties of fermionic alkaline-earth-metal
atoms that allow to simulate the KLM using optical lattice potentials.
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Afterwards, we review the KLM more formally and show how different
representations of the Kondo lattice Hamiltonian that can be found
in the literature are linked to each other. Subsequently, we derive the
dynamic equations using the 1/N expansion of the 2PI effective action.
In leading-order approximation of the 1/N expansion, we recover the
mean-field dynamic equations of the U = 0 Anderson model used in
Ref. [93] to describe Kondo lattice dynamics. Finally, we derive the
dynamic equations in next-to-leading order approximation. We discuss
how the 1/N expansion of the 2PI effective action beyond the leading-
order approximation is a promising tool to tackle yet outstanding
challenges in KLM research like, for example, the characterisation of
possible novel phases outside the heavy-Fermi-liquid phase at strong
interactions and the dynamics between these phases.

Our conclusions are drawn in the last chapter of this thesis. In the appendices,
we review relevant properties of the ideal non-relativistic Fermi gas in d spatial
dimensions and of Graßmann variables.
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Konrad Schade, Denes Sexty, and Martin Trappe. I would like to thank jila and
CU Boulder for their hospitality during my months in Boulder and the Heidelberg
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Chapter 1

Two-particle irreducible (2PI)
effective action approach to
non-equilibrium dynamics

In this first chapter, we present a derivation of an exact non-equilibrium dynamical
equation for the two-point function of a non-relativistic Fermi gas. Thereby, we review
the general framework for obtaining an exact dynamical equation for the two-point
function from the two-particle irreducible (2PI) effective action. The calculations and
formulae in this chapter are model independent in the sense that we do not specify
any particular interaction between the fermions.

We start with a presentation of the general Lagrangian density for non-relativistic
fermions (Sec. 1.1). Even though the explicit form of this general Lagrangian density
is not needed for our discussion in this chapter (except for the last section), it allows
us to remark on some basic and general properties of the specific models we investigate
in the following chapters of this thesis. In particular, we discuss the symmetries of
the Lagrangian density since it is crucial that also the dynamic equations derived
later on need to respect them in order to appropriately describe the dynamics.
Our main interest is in the dynamic evolution of the lowest-order correlation

functions since most of the experimentally relevant observables are determined by
these functions. Due to the Pauli exclusion principle, which states that no two
identical fermions can occupy the same quantum state simultaneously, there is no
macroscopic field for fermions unlike it can be the case for bosons. And thus, for
fermions, the lowest correlation function of our interest is the two-point (Green)
function. We introduce the two-point Green function and its decomposition into the
spectral function and the statistical propagator in Sec. 1.2.
The ensuing four sections are devoted to the derivation of the exact dynamic

equation for the two-point Green function—approximations of the otherwise generally
unsolvable equation are model dependent and are, therefore, discussed in the respective
chapters (in Ch. 2 for the spin degenerate Fermi gas and in Ch. 4 for the Kondo lattice
gas). In Sec. 1.3, we derive the non-equilibrium generating functional for connected
Green functions using the Schwinger-Keldysh closed time path formulation suitable for
initial value problems. Specifying to Gaussian initial states (in Sec. 1.4), which permit
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

to specify (one- and) two-point functions as initial conditions, allows us to write the
generating functional in a much simpler form. However, written in a real-time path
integral formulation, the generating functional still involves an integration over a
fluctuating field; therefore, it can generally not be directly evaluated1. A solution
is to introduce an effective action that incorporates these fluctuations without the
need for an explicit path integral. As we will see in Sec. 1.5, the 2PI effective action
is a suitable effective action when Gaussian initial states are considered. Similar to
Hamilton’s principle for the classical action, one can determine the exact dynamic
equation for the two-point Green function from the effective action by solving a
variational problem. This is shown in Sec. 1.6. The resulting dynamic equation
for the two-point Green function involves a time integration along the closed time
path; however, it can be transformed into two coupled integro-differential equations
for the statistical propagator and the spectral function that involve only standard
time integrals. This neat feature is especially helpful when solving the (at that time
necessarily approximate) dynamic equations numerically.
Deriving the dynamic equations from the effective action functional has the sub-

stantial advantage that approximations can be made on the level of a functional. The
2PI effective action is constructed in such a way that it, as well as any truncation of
it, owns the same global symmetries as the underlying classical action that specifies
the model. Thus, starting with any truncation of the functional, the variational
procedure then ensures that the resulting equations of motion still preserve the global
symmetries. And hence, the Noether currents associated with these symmetries are
also conserved. This is crucial for an accurate description of long-time and out-of-
equilibrium dynamics. In Sec. 1.7, we discuss and give explicit expressions for the
conserved total particle number, total energy, and total momentum.

1.1 General Lagrangian density for non-relativistic
fermions

In this section, we motivate our choice of Lagrangian density for a fermionic field
obeying the (non-relativistic) Schrödinger equation. Excluding interactions, we first
observe that a continuity equation can be derived from the Schrödinger equation.
The continuity equation implies the existence of a conserved current. And from
the existence of a conserved current follows that the action (i. e. the Lagrangian
density integrated over space-time) must be invariant under some continuous sym-
metry transformation. The fact that continuous symmetries of the action lead to
conserved currents is known as Noether’s theorem. After an obvious educated guess
of the symmetry associated with the conserved current, we use Noether’s theorem to
derive the desired Lagrangian density. Having derived the Lagrangian density for the

1This is in contrast to a path integral formulation in equilibrium. In the latter, one can go over to
an imaginary time description, in which the Euclidean action becomes positive definite and can
be interpreted as a probability distribution. This allows to employ Monte-Carlo techniques to
evaluate the path integral.
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1.1 General Lagrangian density for non-relativistic fermions

non-interacting fermionic fields, we then discuss the inclusion of interactions at cold
temperatures.

We consider an ultra-cold Fermi gas of atoms. For the physical processes discussed
in this thesis, we take all atoms to be of the same kind in the sense that they have
the same masses and several internal states, e. g. fine and hyperfine states, to which
we refer with small Greek letters in this chapter. Over large parts of this thesis, we
will be concerned with a functional integral formulation of the dynamical field theory.
In this formulation, the dynamics of an ultra-cold Fermi gas of atoms translates to
the time evolution of complex Graßmann fields ψα(x), where the index α counts the
internal states, and x = (x0,x) = (t,x) is a space-time coordinate. If there is no risk
of confusion, we use the time coordinates x0 and t synonymously in the following.
As an important property of complex Graßmann fields, the fields ψα(x) obey the
anti-commutation relations

ψα(x)ψβ(y) + ψβ(y)ψα(x) = ψα(x)ψ∗β(y) + ψ∗β(y)ψα(x) = 0 (1.1)

for any combination of α, β, x, and y. Here, the asterisk denotes complex conjugation.
Further properties of Graßmann fields that are relevant for our discussion can be
found in App. B.

The Hamiltonian for a single non-relativistic particle in the internal state α that is
exposed to a possibly time-dependent external (e. g. trapping) potential Vext,α(x) is

H1B
α (x) = −(~∇x)2

2m
+ Vext,α(x) . (1.2)

The field equation for non-interaction fields ψα(x) is given by

i~∂tψα(x) = − ~2

2m
∇2

xψα(x) + Vext,α(x)ψα(x) . (1.3)

This equation is of the same form as the single-particle Schrödinger equation, but the
interpretation is completely different: ψα(x) are fields describing the ultra-cold Fermi
gas and is not a single-particle wave function.
As a first step towards the derivation of a Lagrangian density from the field

equation, we recover a continuity equation and therewith a conserved current from
Eq. (1.3). For this purpose, we multiply the field equation with ψ∗α from the left.
Subsequently, we subtract the complex conjugate of the resulting equation from itself
(using (ψαψβ)∗ ≡ ψ∗βψ

∗
α). If we assume Vext,α(x) to be real then this yields

∂t
(
ψ∗α(x)ψα(x)

)
= ψ∗α(x)

(
∂tψα(x)

)
+
(
∂tψ

∗
α(x)

)
ψα(x)

=
i~
2m

(
ψ∗α(x)

(∇2
xψα(x)

)− (∇2
xψ
∗
α(x)

)
ψα(x)

)
=

i~
2m
∇x ·

(
ψ∗α(x)

(∇xψα(x)
)− (∇xψ

∗
α(x)

)
ψα(x)

)
. (1.4)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

This is a continuity equation of the form

∂tj
0
α(x) +∇x · jα(x) = 0 , (1.5)

where the charge density j0
α(x) and the conventional current density jα(x) for the

spin component α are given by

j0
α(x) = ψ∗α(x)ψα(x) (1.6)

jα(x) = − i~
2m

(
ψ∗α(x)

(∇xψα(x)
)− (∇xψ

∗
α(x)

)
ψα(x)

)
. (1.7)

Since the conserved current involves both ψα(x) and its complex conjugate ψ∗α(x),
both of them will appear in the Lagrangian density. To identify the symmetry of the
action associated with the conserved charge, we note that both the field equation and
the conserved current are invariant under a multiplication of the field with a global
phase. This suggests that a global invariance of the action under the transformation

ψα(x)→ ψ′α(x) = e−iϑα/~ψα(x) ≈ ψα(x)(1− iϑα/~) (1.8)

ψ∗α(x)→ ψ′α
∗(x) = eiϑα/~ψ∗α(x) ≈ ψ∗α(x)(1 + iϑα/~) (1.9)

where ~ and ϑα are real constants, generates the conserved current found above as a
result of the symmetry. Generally, continuous symmetries of the action and conserved
currents are related to each other through Noether’s theorem.

Noether’s theorem: Consider a Lagrangian density L(ψs, ∂µψs, x
µ) that depends on

several fields ψs distinguished by the index s, on the temporal and spatial derivatives
of these fields ∂µψs where (∂µ) = (∂t,∇), and on the space-time coordinates xµ. If the
action S =

∫
dxL, where ∫ dx denotes integration over space and time, is invariant

under the transformations

xµ → x′µ = xµ + δxµ , δxν = Xν
a δεa , (1.10)

ψs(x)→ ψ′s(x) = ψs(x) + ∆ψs(x) , ∆ψs(x) = Ψsa(x)δεa , (1.11)

where X and Ψ are matrices, and δεa are infinitesimal parameters, then there exists
the conserved current2

jµa (x) = Ψsa(x)
∂L

∂(∂µψs(x))
− T µν (x)Xν

a (1.12)

such that ∂µjµa (x) = 0. C

2 In Eq. (1.12), Tµν (x) = (∂L/∂(∂µψs(x)))∂νψs(x) − gµνL is the energy-momentum tensor,
where gµν is the metric tensor. In our case, we use flat Minkowski space-time where
(gµν) = diag{1,−1,−1,−1} such that gµν = δµν .
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1.1 General Lagrangian density for non-relativistic fermions

According to Noether’s theorem, the transformation considered in Eqs. (1.8) and
(1.9) yields

Xνa = 0 , Ψ (x) = (1/i~)ψα(x) , Ψ ∗(x) = −(1/i~)ψ∗α(x) , δεa = ϑα , (1.13)

and the expression for the conserved Noether current is

jµα(x) = Ψ (x)
∂L

∂(∂µψα(x))
+ Ψ ∗(x)

∂L
∂(∂µψ

∗
α(x))

=
1

i~

(
ψα(x)

∂L
∂(∂µψα(x))

− ψ∗α(x)
∂L

∂(∂µψ
∗
α(x))

)
. (1.14)

Using Eq. (1.14) and Eqs. (1.6) and (1.7), one can now work backwards to find the
Lagrangian density. Comparing the left-hand side and the right-hand side of the two
expressions for j0

α(x),

1

2

(
ψ∗α(x)ψα(x) + ψ∗α(x)ψα(x)

)
=

1

i~

(
ψα(x)

∂Lfree

∂(∂tψα(x))
− ψ∗α(x)

∂Lfree

∂(∂tψ
∗
α(x))

)
,

(1.15)

and jiα(x),

i~
2m

((
∂iψ

∗
α(x)

)
ψα(x)− ψ∗α(x)

(
∂iψα(x)

))
=

1

i~

(
ψα(x)

∂Lfree

∂(∂iψα(x))
− ψ∗α(x)

∂Lfree

∂(∂iψ
∗
α(x))

)
,

(1.16)

it is evident that the Lagrangian density Lfree is given by

Lfree =
i~
2

(
ψ∗α(x)

(
∂tψα(x)

)− (∂tψ∗α(x)
)
ψα(x)

)
+

(i~)2

2m

(
∂iψ

∗
α(x)

)(
∂iψα(x)

)
+ L(ψ, ψ∗) .

(1.17)

Thus, from the conserved Noether current, the resulting Lagrangian density is determ-
ined up to a term L(ψ, ψ∗) that depends on the fields only (and a total divergence,
which we did not write down). Since applying the variational principle δS/δψ∗α and
δS/δψα should give the field equation and its complex conjugate, respectively, the
Lagrangian density is given by

Lfree =
i~
2

(
ψ∗α(x)

(
∂tψα(x)

)− (∂tψ∗α)ψα(x)
)

− ~2

2m

(∇ψ∗α(x)
) · (∇ψα(x)

)− ψ∗α(x)Vext,α(x)ψα(x) .

(1.18)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

In the next sections, we choose the field basis ψα,i where the index i distinguishes
real and imaginary parts of the quantum field,

ψα,1(x) ≡
√

2Re[ψα(x)] , (1.19)

ψα,2(x) ≡
√

2 Im[ψα(x)] . (1.20)

To simplify the notation, we include the hyperfine index α and the field index i into
a single index a = (α, i). Sums over a imply a sum over α and one over i ∈ {1, 2}. In
this field basis, the Lagrangian density can be written as

Lfree =
1

2

∫
y

ψa(x)iG−1
0,ab(x, y)ψb(y) , (1.21)

where the inverse free propagator iG−1
0,ab(x, y) is given by

iG−1
0,ab(x, y) = δ(x− y)

(
i~τab∂x0

− δabH1B
α (x)

)
, (1.22)

where
∫
y
≡ ∫ dy0

∫
ddy denotes the integration over the region of space-time under

consideration (with d spatial dimensions), ψa(x) = ψb(x)τba with

τab ≡ −δαβσ2
iaib

, σ2 ≡
(

0 −i
i 0

)
, (1.23)

δab = δiaibδαβ, and δ(x− y) ≡ δ(x0 − y0)δ(d)(x− y) denotes the (d+ 1)-dimensional
Dirac distribution. Note that the notation of overlined fields is introduced in order
to diagonalise the Hamiltonian part of the free inverse propagator; this choice is
commonly preferred in the literature.

Once we take interactions into account, additional terms Lint(ψ, ψ
∗) will appear in

the Lagrangian density. If their dependence on the fields only is of such that Lint(ψ, ψ
∗)

also respects the global invariance discussed above, e. g. Lint(ψ, ψ
∗) = Lint(ψ

∗
αψα),

then the conserved current discussed above will remain a conserved current.
The microscopic interactions we are interested throughout this thesis are contact

interactions where two particles meet to interact. Thus, the corresponding contribution
to the Lagrangian density reads

Lint =
λαβγδ(x)

2
ψ∗α(x)ψ∗β(x)ψγ(x)ψδ(x) + c. c. , (1.24)

where λαβγδ(x) is the coupling constant and c. c. denotes the complex conjugate of
the first term. The detailed form of λαβγδ(x)—in particular, which of these elements
are non-vanishing—determines the specific model one is looking at. In the following
chapters of this thesis, we will consider a spin-degenerate Fermi gas and a Kondo
lattice gas, for which the specific forms of the interactions are given in Eq. (2.1) and
Eq. (4.5), respectively.
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1.2 Two-point Green function

Canonical quantisation

In the next sections, we sometimes resort to field operators rather than Graßmann
fields. Therefore, we derive the canonical anti-commutation relation for the field
operators that results from the Lagrangian density in the real field basis introduced
in Eqs. (1.19) and (1.20) in the following.
Since the considered interactions in Eq. (1.24) do not depend on time-derivatives

of the fields, the canonical momentum πa(x) to the field ψa(x) obtained from the
Lagrangian density in Eq. (1.21) is

πa(x) =
δL

δ(∂x0ψa(x))
= − i~

2
ψb(x)τba = − i~

2
ψa(x) . (1.25)

The minus sign in Eq. (1.25) is due to the fact that ∂x0ψ needs to be anti-commuted
with ψ in the Lagrangian density in order to perform the functional derivative. We
see that the canonical momenta are given by the fields themselves. In the Dirac
classification, this implies the second-class constraint

χa(x) = πa(x) +
i~
2
ψa(x) = 0 , (1.26)

which means that the classical Dirac brackets

{A,B}D ≡ {A,B}P − {A,χa}P (C−1)ab{χb, B}P , (1.27)

where C−1 is the inverse of the matrix Cab = {χa, χb}P , rather than the Poisson
brackets {·, ·}P need to be employed for the quantisation procedure [94, 95]. In our
case, the Dirac brackets evaluate to

{πa(x), ψb(y)}D = −1

2
δabδ(x− y) . (1.28)

Replacing the Dirac brackets by (−i/~) times anti-commutation relations and pro-
moting both the Graßmann fields and the canonical momenta to operators yields the
equal-time anti-commutation relation[

π̂a(x, t), Ψ̂b(y, t)
]

+
= − i~

2
δabδ(x− y) (1.29)

⇔ [
Ψ̂a(x, t), Ψ̂b(y, t)

]
+

= δabδ(x− y) (1.30)

⇔ [
Ψ̂a(x, t), Ψ̂b(y, t)

]
+

= τabδ(x− y) , (1.31)

where Ψ̂b(y) = Ψ̂c(y)τcb, and [·, ·]+ denotes the anti-commutator.

1.2 Two-point Green function

Ultimately, we are interested in the description of the time evolution of expectation
values of observables. These expectation values can be calculated from the time
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

evolution of the density matrix. In general, one can express any density matrix
with the set of n-point Green functions; therefore, the knowledge of the dynamical
evolution of all Green functions amounts to a complete dynamical solution. Our main
interest is in the dynamic evolution of the lowest-order correlation functions since
most of the experimentally relevant observables are determined by these functions.
For fermions, there is no macroscopic field. And the lowest correlation function of
our interest is the two-point function.

At the beginning of this section, we introduce the two-point Green function G, its
statistical and spectral components F and ρ, respectively, and some of their properties
that we use later in this thesis. And at the end, we show how F and ρ are related by
the fluctuation-dissipation relation if the system is in thermal equilibrium.

1.2.1 Two-point Green function and its spectral and statistical
components

The two-point Green function G is defined as the time-ordered expectation value of
two fields at two points in space-time,

Gab(x, y) = 〈TCΨ̂a(x)Ψ̂b(y)〉 , (1.32)

where TC denotes time ordering along the time contour C. Our discussion in this
section will be general and we do not need to specify the time contour here. Both the
time contour and the evaluation of the expectation value will be discussed in Sec. 1.3.
For our purposes in this section, we only need to know that, for Graßmann fields, the
time ordering is defined as

TCΨ̂a(x)Ψ̂b(y) =

{
Ψ̂a(x)Ψ̂b(y) if sgnC(x0 − y0) = 1

−Ψ̂b(y)Ψ̂a(x) if sgnC(x0 − y0) = −1 ,
(1.33)

where sgnC(x0 − y0) denotes the sign function along the time contour C and evaluates
to 1 (−1) if x0 is posterior (prior) to y0. Note that G is automatically connected3 since
there are no fermionic field expectation values, i. e. 〈Ψ̂a(x)〉 = 0, for the situations
relevant to us; however, for higher n-point functions, there is a difference between the
full and the connected function.
At equal times, the time ordering is ill-defined; in other words, the two-point

Green function G defined above is singular at x0 = y0. Particularly, but not only, for
numerical implementations we are aiming at later on, it is convenient to make the
singularity explicit and to decompose G into its non-singular spectral and statistical
components. The spectral function ρ contains information about the spectrum of the
theory, i. e. the energies and decay times of the states, and the statistical propagator

3In the language of probability theory or statistics, one would refer to the connected n-point
function as the nth cumulant.
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1.2 Two-point Green function

F accounts for the respective occupation numbers. They are defined as

ρab(x, y) ≡ i〈[Ψ̂a(x), Ψ̂b(y)
]

+
〉 , (1.34)

Fab(x, y) ≡ 1

2
〈[Ψ̂a(x), Ψ̂b(y)

]
−〉 , (1.35)

where [·, ·]− denotes the commutator and [·, ·]+ the anti-commutator. Since the time
ordering defined in Eq. (1.33) can be rewritten as

TCΨ̂a(x)Ψ̂b(y) =
1

2

([
Ψ̂a(x), Ψ̂b(y)

]
− +

[
Ψ̂a(x), Ψ̂b(y)

]
+

sgnC(x0 − y0)
)
, (1.36)

one finds the decomposition identity

Gab(x, y) = Fab(x, y)− i

2
ρab(x, y) sgnC(x0 − y0) . (1.37)

The sign function accounts now explicitly for the time ordering and the associated
discontinuity at x0 = y0.

Finally, we remark some properties of the two-point functions that we will frequently
use.
From the definitions of the two-point functions follow immediately the symmetry

relations

Gab(x, y) = τbcGcd(y, x)τda = (−1)ia+ibGb̄ā(y, x) , (1.38a)
Fab(x, y) = τbcFcd(y, x)τda = (−1)ia+ibFb̄ā(y, x) , (1.38b)

ρab(x, y) = τbcρcd(y, x)τda = (−1)ia+ībρb̄ā(y, x) , (1.38c)

where, for a = (α, ia), we introduced ā = (α, īa) and īa = 3− ia.
In the definitions of ρ and F , the operator product is not time ordered. Therefore,

the expectation values cannot be directly evaluated in the path integral formalism.
However, expectation values of equal-time anti-commutators of Graßmann fields can be
evaluated using the Bjorken-Johnson-Low theorem [96, 97]. These anti-commutation
relations are consistent with the anti-commutation relations found in the canonical
quantisation approach, cf. Eq. (1.31). Thus, the spectral density function fulfils

ρab(x, y)
∣∣
x0=y0

= iτabδ
(d)(x− y) . (1.39)

In the derivation of the equations of motion, we make use of this relation when
applying the identity

ρab(x, y)∂x0 sgnC(x0 − y0) = 2ρab(x, y)δC(x0 − y0) = 2iτabδC(x− y) . (1.40)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

1.2.2 Fluctuation-dissipation relation in thermal equilibrium

Later in this thesis, when we look at the non-equilibrium dynamics of an interacting
Fermi gas, we want to decide whether or not an equilibrated system is thermalised—in
our terminology, “equilibrated” refers to “observables are stationary in time”, whereas
“thermalised” refers to “observables can also be obtained from one of the standard
statistical ensembles” and requires equilibration. For an interacting system, especially
if the interactions are strong, the single-particle modes are not the eigenmodes of
the Hamiltonian. Hence, a comparison between the occupation number distribution
of the single-particle modes and a Fermi-Dirac distribution cannot be consulted to
decide whether the equilibrated state is thermalised.
Without assuming a particular particle number choice, a necessary condition

for a state to be described as a (grand-)canonical ensemble with density operator
ρ̂ = exp(−βĤ − µN) is the Callen-Welton fluctuation-dissipation relation [98, 99]

Fαα(X0;ω, p) = −i

(
1

2
− nFD(ω − µ)

)
ραα(X0;ω, p) , (1.41)

which connects the statistical propagator F and the spectral function ρ via the
Fermi-Dirac distribution nFD(ω) = (exp(βω) + 1)−1 with the inverse temperature
β = (kBT )−1. Here,

Fαα(X0;ω, p) =

∫
ds exp(iωs)Fαα(X0 + s/2, X0 − s/2; p) , (1.42)

Fαα(t, t′; p) =
1

2
〈[Ψ̂†α(t, p), Ψ̂α(t′, p)

]
−〉 , (1.43)

and similar for ραα(t, t′; p) = i〈[Ψ̂†α(t, p), Ψ̂α(t′, p)]+〉. That means, to see if a system
is possibly thermalised, one should look at the fluctuation-dissipation relation because
it is not based on the choice of a particular field basis.

1.3 Non-equilibrium generating functional

In this section, we derive the Schwinger functional W , which is the generating func-
tional for connected Green functions in the presence of a classical two-point field K.
To describe non-equilibrium physics, where one typically specifies an initial state,
we use the closed-time-path (CTP) formulation developed by Schwinger [40], Bakshi
and Mahanthappa [41, 42, 43], and Keldysh [44], and show how the CTP formulation
emerges naturally when calculating n-point functions. Furthermore, we want to use
a path integral formulation in which time ordering is intrinsically built in (and the
n-point functions we are interested in are expectation values of time-ordered field
operators).

Since we look at non-equilibrium dynamics after the preparation of an initial state
given by the initial density matrix ρ̂D(t0) at time t0, expectation values need to be

10



1.3 Non-equilibrium generating functional

evaluated with respect to the initial density matrix ρ̂D(t0), i. e.

〈·〉 ≡ Tr [ρ̂D(t0)·] . (1.44)

Therefore, it is convenient to evaluate the trace in the basis of eigenstates of the
Heisenberg field operators at the initial time, i. e. Ψ̂a(0,x)|ψ(±)

0 〉 = ψ
(±)
0,a (x)|ψ(±)

0 〉,
such that the matrix elements of ρ̂D(t0) can be evaluated with respect to them. For
example, for the two-point function, we have

〈TCΨ̂a(x)Ψ̂b(y)〉 = Tr
[
ρ̂D(t0)TCΨ̂a(x)Ψ̂b(y)

]
=

∫
Dψ(+)

0 Dψ(−)
0

(
〈−ψ(+)

0 |ρ̂D(t0)|ψ(−)
0 〉

× 〈ψ(−)
0 |TCΨ̂a(x)Ψ̂b(y)|ψ(+)

0 〉
)
,

(1.45)

where we inserted unity in the form
∫ Dψ(−)

0 |ψ(−)
0 〉〈ψ(−)

0 | = 1, cf. Eq. (B.26). Note
that at this stage, the superscripts (±) simply distinguish between the two different
integration fields; but soon, they are promoted to label the two branches of a closed
time path. The differential parts of the path integral measures in Eq. (1.45) are
defined as Dψ(±)

0 =
∏

α,x(i/2)dψ
(±)
α,1 (x, t0)dψ

(±)
α,2 (x, t0), cf. Eq. (B.22).

In the second line on the r. h. s. of Eq. (1.45), the time ordering operator TC still
appears in the matrix elements. As mentioned before, the time ordering operator is
ill-defined if the field operators have the same time arguments; therefore, we want
to circumvent the explicit appearance of it in our expressions. In order to get rid
of the time ordering operator, we aim to rewrite the matrix elements as a path
integral expression since path integrals are intrinsically time ordered. The first step
is to introduce the closed time path. For this purpose, we note that the involved
field operators, in the Heisenberg picture, are evaluated at different times—after
a transformation into the Schrödinger picture, this translates to additional time-
evolution operators Û(t, t′) = T exp[−i

∫ t′
t
Hdt′′] between the field operators. For

example, if x0 > y0 then

〈ψ(−)
0 |TCΨ̂a(x)Ψ̂b(y)|ψ(+)

0 〉
= 〈ψ(−)

0 |Û(t0, x0)Ψ̂a(x)Û(x0, y0)Ψ̂b(y)Û(y0, t0)|ψ(+)
0 〉 .

(1.46)

Since the density matrix elements 〈−ψ(+)
0 |ρ̂D(t0)|ψ(−)

0 〉 are taken on both sides with
respect to states at time t0, the combination of the time-evolution operators in
Eq. (1.46) form a closed time path (CTP), the so-called closed Schwinger-Keldysh
real-time path [40, 44] denoted by C in the following—C for ‘contour’. The closed
time path starts at t0, runs to the maximum time appearing tmax in the arguments of
the field operators, and then back to t0. As depicted in Fig. 1.1, the branch of the
time path that runs from t0 to tmax, is denoted as C(+), and the branch that runs

11



Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

t0

C(+)

C(−)
tmax

t

Figure 1.1: Illustration of the Schwinger-Keldysh closed real-time path (CTP). The CTP
starts at the initial time t0, runs to the maximum time tmax appearing in the
arguments of the field operators, and then back to t0. The branch of the time
path that runs from t0 to tmax, is denoted as C(+), and the branch that runs
back to t0 is denoted as C(−). The branches are depicted above and below the
time axis only in order to make them separately visible.

back to t0 is denoted as C(−), such that∫
C,x

=

∫
C,x0

∫
x

with
∫
C,x0

=

∫
C(+),x0

+

∫
C(−),x0

(1.47)

where∫
C(+),x0

=

∫ tmax

t0

dx0 and
∫
C(−),x0

=

∫ t0

tmax

dx0 . (1.48)

In the example discussed above, cf. Eq. (1.46), we have generically chosen the time
arguments of the field operators to lie on C+; however, this can be generalized such
that the time arguments of the operators can lie anywhere on C. We want to consider
this generalization, see, e. g. Ref. [66] for a discussion of it. Therefore, we have
employed the contour time-ordering operator TC in the definition of the two-point
Green function in Eq. (1.32) in the first place. Contour time-ordering along the CTP
implies that operators evaluated at later times on the CTP stand to the left of those
evaluated at earlier times.
Having introduced the notion of the CTP C, we are in the position to lift the

contour time-ordering operator TC in Eq. (1.45) by writing the matrix elements as a
path integral expression,

〈ψ(−)
0 |TCΨ̂a(x)Ψ̂b(y)|ψ(+)

0 〉 =

∫ ψ
(−)
0

ψ
(+)
0

Dψ ψa(x)ψb(y) exp

[
i

∫
C,x
L
]
, (1.49)

where L is the Lagrangian density of the system. The path integral measure Dψ in
Eq. (1.49) is defined on the complete CTP, i. e. Dψ =

∏
α,x,x0∈C(i/2)dψα,1(x)dψα,2(x).

Thus, Eq. (1.45) can be rewritten as

〈TCΨ̂a(x)Ψ̂b(y)〉 =

∫
Dψ(+)

0 Dψ(−)
0 〈ψ(+)

0 |ρ̂D(t0)|ψ(−)
0 〉

×
∫ ψ

(−)
0

ψ
(+)
0

D′ψ ψa(x)ψb(y) exp
[
iSC[ψ]

]
,

(1.50)
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1.3 Non-equilibrium generating functional

where the action on the CTP is defined as

SC[ψ] =

∫
C,x
L[ψα, ψ

∗
α] . (1.51)

Since the fields ψ(±)
0 are now not only integration fields appearing in the matrix

elements of the initial density matrix but also the (upper and lower) limits of the
dynamical functional integral, the primed measure of this integral needs to exclude
these initial-time fields, i. e. D′ψ =

∏
α,x,x0∈C\{t0}(i/2)dψα,1(x)dψα,2(x).

Knowing how the two-point function can be written as a path integral expression,
cf. Eq. (1.50), it is self-evident that the desired non-equilibrium generating functional
Z[K; ρ̂D] is given by

Z[K; ρ̂D(t0)] =

∫
Dψ(+)

0 Dψ(−)
0 〈−ψ(+)

0 |ρ̂D(t0)|ψ(−)
0 〉

×
∫ ψ

(−)
0

ψ
(+)
0

D′ψ exp

[
iSC[ψ] +

i

2

∫
C,xy

ψa(x)Kab(x, y)ψb(y)

]
.

(1.52)

In Eq. (1.52), the classical external two-point field Kab(x, y) = τbcKcd(y, x)τda is
introduced to allow for the generation of correlation functions of order 2n:

〈TCΨ̂a1(x1)Ψ̂b1(y1) · · · Ψ̂an(xn)Ψ̂bn(yn)〉
=

2n

Z

δnZ[K; ρ̂D(t0)]

iδKa1b1(x1, y1) · · · iδKanbn(xn, yn)

∣∣∣∣
K≡0

.
(1.53)

This implies that the connected two-point Green function in the presence of the
external two-point field K can be derived by a functional differentiation,

−1

2
Gba(y, x;K) =

δW [K]

δKab(x, y)
, (1.54)

of the Schwinger functional

W [K; ρ̂D] = −i lnZ[K; ρ̂D] . (1.55)

Therefore, the Schwinger functional W is the generating functional for G. Note that
for fermionic fields, the two-point Green function G is identical to the connected two-
point function since the field expectation value always vanishes; however, for higher
n-point functions, there is a distinction. Also note that the external two-point field
K is introduced only for the technical reason of deriving the two-particle irreducible
effective action in the following—the physical situation corresponds to the absence of
external two-point fields, i. e. to K = 0. Finally note that two-point Green function
defined in the previous section coincides with the one defined in Eq. (1.54) for a
vanishing external two-point field, i. e.

Gab(x, y) = Gab(x, y;K = 0) . (1.56)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

Before discussing the initial conditions in the next section, we like to close this
section with some further remarks on the non-equilibrium generating functional in
Eq. (1.52):

B The functional integral with action SC, i. e. the second line of the r. h. s. of
Eq. (1.52), embeds the quantum fluctuations of the quantum dynamics. And
the weighted average with the initial-time elements, i. e. the first line of the
r. h. s. of Eq. (1.52), incorporates the statistical fluctuations.

B Causality requires that the contributions from the time path vanish for all
times exceeding the largest time argument of the n-point function. This can
be achieved by setting the external two-point field K to zero for these times
such that the time evolution operators on the C(+) and C(−) branch of the CTP
cancel each other.

1.4 Gaussian initial states

The non-equilibrium generating functional, Eq. (1.52), derived in the last section
allows arbitrary initial conditions. When aiming to describe experimental relevant
scenarios, it is however often enough to specify only a few of the lowest n-point
functions. Often Gaussian initial states, where up to two-point functions are specified
(for example, mode occupation numbers or pair correlation functions), are sufficient.
In this section, we show how considering Gaussian initial states, for which we can
combine the initial density matrix with the external two-point field K, allows to write
the generating functional, Eq. (1.52), in a much simpler form [Eq. (1.61)].

The most general initial density matrix can be parametrised as

〈−ψ(+)
0 |ρ̂D(t0)|ψ(−)

0 〉 = N0 exp
[
ifC[ψ]

]
(1.57)

with normalization factor N0 and a functional fC[ψ] that can be expanded in powers
of the fields,

fC[ψ] = α(0) +
∞∑
n=1

1

n!

∫
C,x(1)···x(n)

α(n)
a1···an(x(1), . . . , x(n))

n∏
m=1

ψam(x(m)) . (1.58)

In the integral, the boundary conditions ψam(x
(m)
0 ∈ C+,x(m)) = ψ

(+)
0 (t0,x) and

ψam(x
(m)
0 ∈ C−,x(m)) = ψ

(−)
0 (t0,x) as well as summations over repeated indices are

implied. The cumulants α(n)
a1···an(x(1), . . . , x(n)) are non-zero only at time t0 (at both

ends of the CTP) since the density matrix ρ̂D(t0) is only specified at the initial time
t0. Note that for a physical density matrix, hermiticity implies that the cumulants
are related amongst each other.

If the cumulants α(n)
a1···an(x(1), . . . , x(n)) vanish for all n > 2 also at time t0 then the

initial density matrix is said to be Gaussian—and we talk about a Gaussian initial
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1.5 Non-equilibrium two-particle irreducible effective action

state. For a fermionic theory, where the vanishing macroscopic field allows to set
α(1) = 0, the generating functional with a Gaussian initial state can then be written
as

Z[K; ρD(t0)] = N0

∫ ψ
(−)
0

ψ
(+)
0

Dψ exp

[
iα(0) +

i

2

∫
C,xy

α
(2)
ab (x, y)ψa(x)ψb(y)

+ iSC[ψ] +
i

2

∫
C,xy

ψa(x)Kab(x, y)ψb(y)

]
.

(1.59)

Here, the path integral measure Dψ also includes the fields at time t0. Compared
to Eq. (1.50), this is now possible because the fields ψ(±)

0 only appear as limits of
the path integral and no longer as parts of the matrix elements of the initial density
matrix—the implementation of the initial conditions is now completely determined by
the cumulants. Finally, we absorb the normalization factor N0 and the cumulant α(0)

into the normalization of the path integral. And finally, we combine the remaining
contribution of the initial density matrix ρD(t0) with the external two-point field R
by defining the non-local source

Rab(x, y) = Kab(x, y)− τacα(2)
cb (x, y) . (1.60)

This allows to write the generating functional in the simpler form

Z[R] =

∫ ψ
(−)
0

ψ
(+)
0

Dψ exp

[
iSC[ψ] +

i

2

∫
C,xy

ψa(x)Rab(x, y)ψb(y)

]
. (1.61)

As we have seen, the non-local source R allows to specify the initial conditions for
the connected two-point function G of a Gaussian initial state in a very elementary
way. And at the same time, a Gaussian initial state simplifies the generating functional.
These are two of the main reasons why we introduce the two-particle irreducible (2PI)
effective action in the next section to describe non-equilibrium dynamics. In the case
where higher (say, up to n) cumulants need to be specified to describe the initial
state, the most convenient way is to use the generalization of this approach to the nPI
effective action [100]. Alternatively, staying within the 2PI effective action approach,
one could also specify an artificial past that describes the desired higher cumulants at
time t0 through the time integrals over the artificial past in the dynamic equations;
however, to find such an appropriate specification is practically very difficult if not
impossible.

1.5 Non-equilibrium two-particle irreducible
effective action

In the previous two sections, we first derived the non-equilibrium generating functional,
and then simplified it by specifically looking at Gaussian initial states, cf. Eqs. (1.52)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

and (1.61). But still, directly evaluating the full quantum real-time path integral in
the simplified generating functional is in general not feasible because the oscillating
complex measure is not positive definite and, thus, represents a variant of the sign
problem [101, 102, 103]. One therefore needs to resort to analytical approaches in
evaluating the dynamics in regimes where quantum fluctuations are relevant. This is
in particular the case for long-time evolutions and where interactions become strong.
Whereas, if quantum fluctuations are small then the quantum part of the fluctuating
fields can be integrated out leading to a classical path integral that can be computed
using Monte Carlo techniques [66, 104, 105, 106, 107].
We aim to simplify the path integral in the generating functional, Eq. (1.61).

Instead of using the classical action SC and a path integral over the fluctuating field
ψ, we want to introduce an effective action Γ that incorporates the fluctuations such
that the only contribution to the path integral comes from the path along the classical
field4 φ for which δSC[φ] = 0; i. e. suggestively written, we take the step∫

Dψ exp
[
SC[ψ]

] −→ ∫
Dψ δ(ψ − φ) exp

[
Γ [ψ]

]
, (1.62)

and the path integration becomes trivial. Furthermore, the goal in constructing an
effective action is not only to simplify the path integral in the generating functional
but also to allow, similar to Hamilton’s principle in the Lagrangian formulation of
classical mechanics, to derive the quantum dynamic equation for the correlation
function G from the effective action, i. e.

δΓ [G]

δG
= 0 . (1.63)

These requirements are fulfilled by the two-particle irreducible (2PI) effective action [53,
56, 57], which is defined by a Legendre transform of the Schwinger functional W [R] =
−i lnZ[R] with respect to the non-local source R defined in Eq. (1.60),

Γ [G] = W [R]−
∫
C,xy

δW [R]

δRab(x, y)
Rab(x, y) = W [R] +

1

2
Tr [GR] , (1.64)

where we have used Eq. (1.54), and where it is implied that

−1

2
Gba(y, x;R) =

δW [R]

δRab(x, y)
(1.65)

can be inverted to give R as a function of G. The trace in Eq. (1.64) denotes
a summation over all field and spin indices, and an integration over all spatial
coordinates and over all times along the CTP. Note that, as compared to the Bose
case, there is no Legendre transform with respect to the one-point source Ja(x) as

4In the fermionic case we consider, the classical field, i. e. the field expectation value of the
fluctuating quantum field, vanishes.
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1.5 Non-equilibrium two-particle irreducible effective action

there is no field expectation value, either. Also note that the stationarity condition
derived from Eq. (1.64),

δΓ [G]

δGba(y, x;R)
=

1

2
Rab(x, y) , (1.66)

becomes the requested stationarity condition in Eq. (1.63) for a vanishing source R.

Next, to get more familiar with Eq. (1.64), we directly evaluate Γ to one-loop order.
For this purpose, we divide the action in Eq. (1.61) into a free part and an interaction
part

SC[ψ] =
1

2

∫
C,xy

ψa(x)iG−1
0,ab(x, y)ψb(y) + SC,int[ψ] , (1.67)

where we introduced the free inverse propagator G−1
0 in the free part of the action.

Taylor expanding the term exp[iSC,int], the generating functional in Eq. (1.61) can be
rewritten as

Z[R] =

∫ ψ
(−)
0

ψ
(+)
0

Dψ exp

[
−1

2

∫
C,xy

ψa(x)
(
G−1

0,ab(x, y)− iRab(x, y)
)
ψb(y)

]

+

∫ ψ
(−)
0

ψ
(+)
0

Dψ exp

[
−1

2

∫
C,xy

ψa(x)
(
G−1

0,ab(x, y)− iRab(x, y)
)
ψb(y)

]
×
∞∑
n=1

(iSC,int)
n

n!
.

(1.68)

The first term on the r. h. s. of this equation is is of one-loop order and involves a
Gaussian functional integral that can be written as a functional determinant [95, 108,
109]. The second term is beyond one-loop order for the kind of interactions we are
interested in, cf. Eq. (1.24). Neglecting the beyond one-loop order term, we find the
generating functional up to one-loop order,

Z(1 loop)[R] = det 1/2
[
G−1

0,ab(x, y)− iRab(x, y)
]

= exp

[
1

2
Tr
[
ln
(
G−1

0,ab(x, y)− iRab(x, y)
)]]

. (1.69)

Correspondingly, the Schwinger functional to one-loop order is

W (1 loop)[R] = −i lnZ(1 loop)[R] = − i

2
Tr
[
ln
(
G−1

0,ab(x, y)− iRab(x, y)
)]
. (1.70)

And thus, the 2PI effective action to one-loop order is given by

Γ (1 loop)[G] = W (1 loop)[R] +
1

2
Tr [GR]

= − i

2
Tr
[
ln(G−1) + (G−1

0 −G−1)G
]
, (1.71)
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where in the last step we set G−1 = G−1
0 − iR, which is justified since the stationarity

condition, Eq. (1.66), at one-loop order then gives

δΓ (1 loop)[G]

δGba(y, x;R)
=

i

2

(
G−1
ab (x, y)−G−1

0,ab(x, y)
)

=
1

2
Rab(x, y) (1.72)

⇒ G−1 = G−1
0 − iR .

Here, we used

δTr [ln(G−1)]

δGba(y, x;R)
= −G−1

ab (x, y;R) . (1.73)

To go beyond the one-loop order, the 2PI effective action Γ is conveniently written
as the one-loop contribution plus a rest term Γ2, which includes per se everything
beyond one-loop,

Γ [G] = − i

2
Tr
[
ln(G−1) + (G−1

0 −G−1)G
]

+ Γ2[G] . (1.74)

The constant term Tr [G−1G] is irrelevant for the dynamics. While the one-loop term
remains within the mean-field approximation, scattering effects are contained in Γ2[G].

Before deriving the actual dynamic equations for the two-point Green function
G in the next section, we discuss the rest term Γ2[G] a bit further. A particularly
illustrative description is to write Γ2[G] in terms of Feynman diagrams. Since the
effective action Γ2[G] is a functional, only closed loop diagrams can contribute5. In
fact, Γ2[G] can be written as the series of all closed 2PI diagrams constructed from the
Green function G and the bare vertices defined by the model Lagrangian [56, 110]—in
the next section, we find another justification why all diagrams contributing to Γ2[G]
are 2PI. A diagram is 2PI if it does not fall apart on opening two of its lines. Written
as a formula, it is

Γ2[G] = −i

〈 ∞∑
n=1

(iSint)
n

n!

〉
2PI & G

, (1.75)

where 〈·〉2PI & G means that only closed 2PI diagrams contribute in which all lines are
full propagators G. The specific form of a diagrammatic expansion of Γ2[G] depends
on the considered model that specifies Sint. In this thesis, we will consider models with
contact interactions that translate in a diagrammatic language to vertices where four
propagator lines meet, cf. Eq. (1.24). For these models, Fig. 1.2 shows the leading
diagrams in the series ordered by the number of bare vertices per diagram.

5Open diagrams would furthermore depend on space-time coordinates.
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Γ2[G] = + +

+ + + · · ·

Figure 1.2: Diagrammatic expansion of the two-particle irreducible (2PI) part Γ2 of the
effective action (1.74) in terms of closed 2PI diagrams. (Blue) solid lines stand
for the full Green function G, and (red) dots for the bare interaction vertex λ.
Explicitly shown are all diagrams that contain up to four vertices. All factors
that determine the relative weights of the diagrams are omitted.

1.6 Exact dynamic equations

In the previous section, we derived the two-particle irreducible (2PI) effective action
that takes into account quantum effects. At this stage, we want to point out that
no approximation of the 2PI effective action Γ [G] has been made. The 2PI effective
action provides an exact representation of the full theory. In this section, we derive
the dynamic equation for the two-point function G (and later for its statistical and
spectral components F and ρ) from the stationarity condition of the 2PI effective
action, which also involves no approximation. Thus, the resulting dynamic equation
provides an exact description of the dynamics. Our specification to Gaussian initial
conditions still allows for higher irreducible correlations to be build up during the time
evolution. These higher correlations are crucial for possible equilibration processes
and, therefore, need to be taken into account by the quantum dynamics. Specifying
the initial density matrix does not approximate the quantum dynamics.

1.6.1 Exact dynamic equation for the Green function

Given the effective action Γ , the stationarity condition in Eq. (1.66) determines G
for a given non-local source R. For a given initial state, Eq. (1.66) represents the
equation of motion for the Green function G. Deriving the equation of motion through
a variational procedure (i. e. applying the stationarity condition) ensures that the
global symmetries of the effective action are still preserved by the resulting equation
of motion. As we will see in Sec. 1.7, this implies that the derived dynamic equation
respects the conservation laws associated with these global symmetries.
Substituting the effective action of Eq. (1.74) into the stationarity condition in

Eq. (1.66), one finds the real-time Schwinger-Dyson/Kadanoff-Baym-type equation

G−1
ab (x, y;R) = G−1

0,ab(x, y)− iRab(x, y)−Σab(x, y;G) , (1.76)
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

where

Σab(x, y;G) = −2i
δΓ2[G]

δGba(y, x;R)
(1.77)

denotes the one-particle irreducible (1PI) self-energy6. From the last equation, we
can infer that Γ2[G] is two-particle irreducible (2PI). Since a functional derivative
with respect to the full propagator G is equivalent to cutting one propagator line in a
Feynman diagram, the 1PI property of the self-energy requires Γ2[G] to be 2PI.
In order to derive a partial differential equation as dynamical equation for the

two-point Green function G that is suitable for initial-value problems, we convolve
Eq. (1.76) with G, which yields∫

C,z
iG−1

0,ac(x, z)Gcb(z, y;R) = iδC(x− y)δab

+ i

∫
C,z

(
Σac(x, z;G) + iRac(x, z)

)
Gcb(z, y;R) .

(1.78)

Equation (1.78) now also clearly highlights how the information about the initial-
time density matrix enters the dynamics. For a closed system (i. e. a vanishing
external two-point field K = 0), the source term Rac(x, z) is non-vanishing only at
x0 = z0 = t0 where it is determined by the initial-time density matrix. Hence, the
source term R fixes the initial values for the two-point function G. At all later times
x0 > t0, no explicit dependence on R remains in the evolution equation since the
term

∫
C,z Rac(x, z)Gcb(z, y;R) vanishes for vanishing R.

Note that the (non-relativistic) free inverse propagator, cf. Eq. (1.22), contains a
first-order time derivative. Since the free inverse propagator is otherwise diagonal in
(x− y), the integral on the left-hand side can be carried out, revealing the integro-
differential structure of Eq. (1.78).
Despite the dynamic equation [Eq. (1.78)] being exact, to be solved, it requires

knowledge of the self-energy and therefore of the 2PI part Γ2 of the effective action.
For practical computations, truncations of the series of 2PI diagrams are chosen—for
a spin degenerate Fermi gas, some possible truncation schemes are discussed in the
next chapter, and for a Kondo lattice gas in Ch. 4. It is crucial that these approxima-
tions are made on the level of the effective action, i. e. on the level of a functional.
Deriving the approximated self-energy from an approximated functional and through
a variational procedure has the advantage that conservation laws associated with the
symmetries of the original effective action are automatically fulfilled by the resulting
approximated dynamic equation [68, 111, 112, 113].

Next, in Sec. 1.6.2, we will rewrite the dynamic equation for the two-point function
G as two equations for the spectral (ρ) and statistical (F ) parts of G and thereby

6In Eq. (1.76), Σ must the self-energy because G−1
0 is the free inverse propagator and G−1 the

inverse full propagator.
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1.6 Exact dynamic equations

simplifying the time integrals over the CTP into standard time integrals. For this
purpose, it is convenient to separate out the local contributions to the proper self-
energy,

Σab(x, y;G) = −iΣ
(0)
ab (x;G)δC(x− y) +Σab(x, y;G) , (1.79)

and include them together with the one-body Hamiltonian term of G−1
0 in the matrix

Mab(x, y;G) = δC(x− y)
(
δiaibH

1B
αβ (x) +Σ

(0)
ab (x;G)

)
. (1.80)

For a closed system (K = 0), the dynamic equation for G, Eq. (1.78), then takes the
compact form

iτac∂x0Gcb(x, y)− iδabδC(x− y)

=

∫
C,z

(
Mac(x, z;G) + iΣac(x, z;G)

)
Gcb(z, y) ,

(1.81)

where

Gab(x, y) = Gab(x, y;R[K = 0]) . (1.82)

We now left out the term
∫
KG completely since it has (as we discussed above) no

influence on the dynamics of G; but we keep in mind that we are allowed to specify
G at the initial time t0.

Note that the dynamic equation [Eq. (1.81)] reduces to a local differential equation
in time if Σ is neglected. In contrast, a non-vanishing Σ introduces memory of the
past evolution of G into the equation. This will be seen explicitly in the following.
Because of the integration over the past evolution, we refer to

∫
ΣG as the so-called

memory integral.

1.6.2 Exact dynamic equations for the statistical propagator
and the spectral function

We employ the decomposition of the full Green function G into the statistical correl-
ation function F and the spectral function ρ, cf. Eq. (1.37). In order to derive the
contributions to the dynamic equations for F and ρ, one also decomposes Σ into its
statistical and spectral parts,

Σab(x, y) = Σ
F

ab(x, y)− i

2
Σ
ρ

ab(x, y) sgnC(x0 − y0) . (1.83)

Finally, inserting the decomposition identities of G, Eq. (1.37), and of Σ, Eq. (1.83),
into the dynamic equation for G, Eq. (1.81), one finds the dynamic equations for F
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

and ρ,[
iτac∂x0 −Mac(x;G)

]
Fcb(x, y) =

∫ x0

t0

dz Σ
ρ

ac(x, z;G)Fcb(z, y)

−
∫ y0

t0

dz Σ
F

ac(x, z;G)ρcb(z, y) ,

(1.84)

[
iτac∂x0 −Mac(x;G)

]
ρcb(x, y) =

∫ x0

y0

dz Σ
ρ

ac(x, z;G)ρcb(z, y) , (1.85)

where
∫ t′
t

dx ≡ ∫ t′
t

dx0

∫
x
. There are now two dynamic equations, one for F and

one for ρ, since after the insertion of the decomposition identities into the dynamic
equation for G there are terms that involve the sign-function and others that do not.
These two types of terms need to fulfil the equal sign independent of each other in
order that the equation holds as a whole. The terms not involving the sign-function
lead to the dynamic equation for F and the others to the dynamic equation for ρ. In
deriving Eqs. (1.84) and (1.85), the decomposition of G and Σ into their statistical
and spectral parts also allows to rewrite time integrals over the CTP into standard
time integrals since∫

C
dz0 sgnC(x0 − z0) = 2

∫ x0

t0

dz0 , (1.86)

and ∫
C
dz0 sgnC(x0 − z0) sgnC(z0 − y0) = 2 sgnC(x0 − y0)

∫ x0

y0

dz0 . (1.87)

The right-hand sides of Eqs. (1.84) and (1.85) introduce scattering effects in form of
memory integrals that render the equations non-Markovian. The form of Eqs. (1.84)
and (1.85) is independent of the order of approximation chosen for Γ2.

From the non-equilibrium dynamic equations (1.84) and (1.85), standard quantum
kinetic (Boltzmann) equations can be derived for the mode occupation numbers
nα(p, t). This is achieved by a transformation to Wigner space, neglecting initial-time
and non-Markovian effects in a gradient expansion with respect to the absolute time
T = (x0 + y0)/2, and making a quasi-particle ansatz—see, e. g. Refs. [74, 114] for
details. The relevance of non-Markovian and initial-time effects provided by the full
dynamic equations has been discussed, for bosonic theories, in Refs. [67, 115]. For
concise discussions of kinetic equations, we refer to Refs. [116, 117].

Before discussing possible approximation schemes of Γ2, which enable us to solve
Eqs. (1.84) and (1.85) numerically, in the next chapter, we discuss the conservation
of the total particle number, the energy, and the momentum in the next section.

1.7 Conservation laws

For a theory of dynamics to be physically meaningful, it is crucial to respect the
conservation laws prescribed by the symmetries present in nature. For example,
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1.7 Conservation laws

for a system that is closed with respect to the exchange of particles and energy
with its surroundings, a theoretical description of its dynamics needs to reflect the
conservation of particle number and energy irrespective of the approximation chosen.
In the preceding section, we have derived (exact) dynamic equations for the two-point
functions from the two-particle irreducible (2PI) effective action. In the present
section, we show how these equation fulfil crucial conservation laws for the total
particle number, the total energy, and the total momentum. Our discussion also
points out these quantities are also conserved at any order of truncation of the 2PI
effective action. To take into account other independent conserved quantities, a
generalization of the 2PI effective action approach to nPI effective actions is required
[100]. In the remainder of this chapter, we assume a vanishing external field, i. e.
Vext = 0.

1.7.1 Particle number conservation

According to Noether’s theorem, a symmetry of the Lagrangian density with respect
to global U(1) transformations of the complex fields ψα implies the conservation of
the total particle number in component α, cf. Sec. 1.1. This symmetry is transferred
to the effective action. And from there, it is passed on to the dynamic equations
through the stationary condition (1.66). A global U(1) symmetry of the Lagrangian
density requires, of course, that also the interaction part of the Lagrangian density
is U(1) symmetric. Thus, the discussion of the particle number is model dependent.
We postpone, therefore, the details of the discussion about the conservation of the
particle number until we introduced specific models in the later chapters of this
thesis. However, we present the general idea how the conservation of the total particle
number can be shown in the following.

For a closed system (K = 0), we can construct the vanishing expression

0 = −2iτab

∫
y

δΓ [G]

δGcb(y, x)
Gca(y, x) (1.88)

from the stationary condition of the effective action, Eq. (1.66). Substituting the
right-hand side of Eq. (1.74) for Γ into this expression and using the identities

∂xµGaa(x, y)
∣∣∣
y=x

=
1

2

(
∂xµGaa(x, y) + ∂yµGaa(x, y)

)∣∣∣
y=x

, (1.89)

τabGba(y, x) = −τabGba(x, y) , (1.90)

∂zµf(z) =
(
∂xµ + ∂yµ

)
f(x, y)

∣∣∣
x=y=z

for f(z) = f(x, y)
∣∣∣
x=y=z

, (1.91)

one finds

∂x0nα(x) +
1

m
∂xkT

0k,α(x) = 2iτab

∫
y

δΓint[G]

δGcb(y, x)
Gca(y, x) (1.92)

23



Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

with the particle density nα(x) of the component α,

nα(x) =
1

2

(
1−Gaa(x, x)

)
, (1.93)

the momentum density T 0k,α(x) of the component α,

T 0k,α(x) =
iτab
2
∂zkGba(z, y)

∣∣∣∣
z=y=x

, (1.94)

and Γint[G] defined as

Γint[G] = Γ [G] +
i

2
Tr
[
G−1

0 G
]
. (1.95)

In Eqs. (1.92), (1.93), and (1.94), it is a = (α, ia) and b = (β, ib), and summations
over ia, ib, β, but not α are implied.

With this, the general framework is set. If we can show that the r. h. s. of Eq. (1.92)
vanishes (due to the U(1) symmetry) then Eq. (1.92) becomes the continuity equation
and the total particle number of component α is conserved. Substituting the 2PI
effective action Γ from Eq. (1.74) into the definition of Γint in Eq. (1.95), and making
use of the identity of Eq. (1.73), the r. h. s. of Eq. (1.92) can be rewritten as

2iτab

∫
y

δΓint[G]

δGcb(y, x)
Gca(y, x)

= −τab
∫
y

G−1
bc (x, y)Gca(y, x) + 2iτab

∫
y

δΓ2[G]

δGcb(y, x)
Gca(y, x)

= 2iτab

∫
y

δΓ2[G]

δGcb(y, x)
Gca(y, x) = −τab

∫
y

Σbc(x, y)Gca(y, x) , (1.96)

where, like above, summations over ia, ib, β, but not α are implied. In the step from
the second to the third line, we used that

∫
y
G−1
bc (x, y)Gca(y, x) = δba is symmetric

under an exchange of ia and ib while τab is anti-symmetric under such an exchange;
therefore, summing over ia and ib sets τabδba to zero and the first term vanishes. Thus,
it is left to show that, due to the U(1) symmetry, also the integrand of Eq. (1.96)
is symmetric under an exchange of ia and ib. As mentioned, this argumentation is
done in the model dependent chapters since the symmetries of Γ2 depend on the
considered interactions. We will find that the argumentation is independent of the
specific approximations made to Γ2.

1.7.2 Energy and momentum conservation

For a time independent Lagrangian density, the system is time translation invariant.
This implies energy conservation. Here, we consider the invariance under general
translations in continuous space and time that vanish at the boundary, xµ → xµ+εµ(x),
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1.7 Conservation laws

where εµ(x) is a time- and space-dependent infinitesimal (d+ 1)-vector. To leading
order in ε, the Green function transforms under these translations as

Gab(x, y)→ Gab(x, y) + εν(x)∂xνGab(x, y) + εν(y)∂yνGab(x, y) , (1.97)

where ∂xν = ∂/∂xν . We will see that under these transformations the variation of the
2PI effective action Γ can be written as Γ [G]→ Γ [G] + δΓ [G], with

δΓ [G] =

∫
x

T µν(x) ∂xµεν(x) . (1.98)

Since, by virtue of the stationarity condition (1.66), the variation δΓ vanishes for all
solutions of the equation of motion for G, an integration by parts shows that T µν is
the conserved Noether current for the space-time translations:

δΓ [G] = −
∫
x

εν(x) ∂xµT
µν(x) = 0 . (1.99)

T µν(x) is identified as the energy-momentum tensor. From the invariance of the
theory under time translations follows a continuity equation for the energy density
T 00 and the energy flux T i0,

∂x0T
00(x) + ∂xi T

i0(x) = 0 , (1.100)

with the total energy
∫

d(d)xT 00(t, ~x) as the conserved charge. And from the invariance
of the theory under space translations follows a continuity equation for the momentum
density T 0i and the momentum flux (or stress tensor) T ij,

∂x0T
0i(x) + ∂xj T

ji(x) = 0 , (1.101)

with the total momentum
∫

d(d)xT 0i(t, ~x) as the conserved charge. The Eqs. (1.100)
and (1.101) can be combined as ∂xµT µν(x) = 0.

To derive explicit expressions for the components of the energy-momentum tensor,
we split the variation of the effective action Γ under space-time translations into
terms,

δΓ [G] = − i

2
δTr

[
lnG−1

]− i

2
δTr

[
G−1

0 G
]

+ δΓ2[G] . (1.102)

The contributions from the particular terms are as follows.

B To obtain the contribution to T µν arising from the one-loop term, we use
Eq. (1.98) and observe that the term δTr [lnG−1] in Eq. (1.102) does not con-
tribute to T µν .
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

B The term Tr
[
G−1

0 G
]
can be written as

δ

(
− i

2
Tr
[
G−1

0 (x, y)G(y, x)
])

= −1

2

∫
xy

iG−1
0,ab(x, y)δGba(y, x) (1.103)

with

iG−1
0,ab(x, y) = δ(x− y)

(
iτab∂

y
0 + δab

1

2m
∂yk∂

y
k

)
, (1.104)

δGab(x, y) =
(
ελ(x)∂xλ + ελ(y)∂yλ

)
Gab(x, y) . (1.105)

Integration by parts and the identity∫
x

∂yk [δ(x− y)G(y, x)] =

∫
x

δ(x− y)(∂xk + ∂yk)G(y, x) (1.106)

allows to rewrite the r. h. s. of Eq. (1.103) in the form of Eq. (1.98). The
resulting contribution to the energy-momentum tensor are

T 00
(G−1

0 G)
(x) =

∂yk∂
x
k

4m
Gaa(x, y)

∣∣∣∣
y=x

, (1.107)

T k0
(G−1

0 G)
(x) = −∂

y
k∂

x
0

2m
Gaa(x, y)

∣∣∣∣
y=x

, (1.108)

T 0j

(G−1
0 G)

(x) =
iτab
2
∂xjGba(x, y)

∣∣∣∣
y=x

, (1.109)

T kj
(G−1

0 G)
(x) =

(
−δba

∂yk∂
x
j

2m
− δkj

2

(
iτab∂

x
0 + δab

∂yl ∂
x
l

2m

))
Gba(x, y)

∣∣∣∣
y=x

.

(1.110)

B As shown in Ref. [61], the contribution from the Γ2 term to the energy-
momentum tensor is given by

T µν(Γ2)(x) = gµν
δΓ2

δξ(x)

∣∣∣∣
ξ=1

, (1.111)

where ξ(x) is a scale factor introduced at every interaction vertex as λ→ ξ(x)λ
and gµν(x) = diag{1,−1,−1,−1} the metric tensor of Minkowski space-time. In
the Feynman graph language, the r. h. s. of Eq. (1.111) means that the diagram
is left unchanged with an additional factor being pulled out. If the diagram has
n vertices then the factor pulled out is n.

For the interactions considered by us, only vertices at which four propagator
lines meet appear in the Feynman graphs contributing to Γ2, cf. Fig. 1.2. In
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1.8 Summary

this case, leaving a diagram unchanged up to a factor can also be achieved by
cutting and repasting a propagator line, i. e.

δΓ2

δξ(x)

∣∣∣∣
ξ=1

=
1

2

∫
C,y

δΓ2[G]

δGab(x, y)︸ ︷︷ ︸
cut

Gab(x, y)︸ ︷︷ ︸
repaste

(together with
R
C,y)

. (1.112)

The factor 1/2 is required since there are 2n propagators for a diagram with
n vertices; therefore, without the factor 1/2, the pulled out factor would be
2n rather than n. Hence, using the definition of the proper self-energy, we can
rewrite the contribution from Γ2 to the energy-momentum tensor as

T µν(Γ2)(x) =
gµν

2

∫
C,y

δΓ2[G]

δGba(y, x)
Gba(y, x)

=
igµν

4

∫
C,y
Σab(x, y)Gba(y, x) . (1.113)

Putting the above results together, the energy-momentum tensor is given by

T µν(x) = T µν
(Tr[G−1

0 G])
(x) + T µν

(G−1
0 G)

(x) + T µν(Γ2)(x) , (1.114)

and its individual components are

T 00(x) =
∂yk∂

x
k

4m
Gaa(x, y)

∣∣∣∣
y=x

+
i

4

∫
C,y
Σab(x, y)Gba(y, x) , (1.115)

T i0(x) = −∂
y
i ∂

x
0

2m
Gaa(x, y)

∣∣∣∣
y=x

, (1.116)

T 0j(x) =
iτab
2
∂xjGba(x, y)

∣∣∣∣
y=x

, (1.117)

T ij(x) = −
(
δba
∂yi ∂

x
j

2m
+
δij
2

(
iτab∂

x
0 − δab

∂yk∂
x
k

2m

))
Gba(x, y)

∣∣∣∣
y=x

− iδij
4

∫
C,y
Σab(x, y)Gba(y, x) .

(1.118)

Note that in the non-relativistic energy-momentum tensor of a Galilean invariant
theory, the energy flux does not necessarily coincide with the momentum density, i. e.
generally T i0(x) 6= T 0i(x), unlike it is the case in a Lorentz invariant theory. However,
the stress tensor T ij(x) is symmetric, which reflects the rotational invariance of the
theory.

1.8 Summary

In this chapter, we presented a derivation of an exact non-equilibrium dynamical
equation—an integro-differential Schwinger-Dyson/Kadanoff-Baym equation—for
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Chapter 1 The 2PI effective action approach to non-equilibrium dynamics

the two-point Green function of a non-relativistic Fermi gas without specifying any
specific model for the interactions. Thereby, we reviewed the general framework for
obtaining an exact dynamical equation for the two-point function from the two-particle
irreducible (2PI) effective action.
First, we derived the general Lagrangian density for non-relativistic fermions.

Second, we introduced the two-point Green function G, its decomposition into the
statistical propagator F and the spectral function ρ, and showed how F and ρ are re-
lated through the fluctuation-dissipation relation if the system is in a (grand-)canonical
thermal state. Then, we derived the non-equilibrium generating functional for connec-
ted Green functions using the Schwinger-Keldysh closed time path (CTP) formulation
suitable for initial value problems. After specifying to Gaussian initial states, we
introduced the two-particle (2PI) effective action, which incorporates the quantum
fluctuations and allows to circumvent the direct evaluation of a path integral. Using
a variational procedure, we derived the exact dynamic equations for the two-point
Green function from the 2PI effective action. We showed how this equation can be
transformed into two coupled integro-differential equations for the statistical propag-
ator and the spectral function. These two equations involve only standard time
integrals rather than time integrals along the CTP. The latter fact will be helpful
when numerically solving the then approximated equations later on.
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Chapter 2

Non-perturbative approximations
of the 2PI effective action for a
Fermi gas with N -fold spin
degeneracy

In the previous chapter, we derived an exact non-equilibrium dynamical equation
for the two-point function of a non-relativistic Fermi gas [Eq. (1.81)]. However, this
dynamical equation can generally not be solved exactly due to the complexity of the
proper self-energy contribution Σ appearing therein. In order to be able to (numeric-
ally) solve the dynamical equation, some approximation of the proper self-energy is
necessary. This requires a specification of a precise model in the first place. In this
and the next chapter, we look into the non-equilibrium dynamics of a non-relativistic
Fermi gas with N -fold spin degeneracy. The model for such a gas is introduced in
Sec. 2.1.

The main focus of this chapter is a discussion of different possible approximation
schemes of the two-particle irreducible (2PI) effective action Γ , which lead to an
approximated proper self-energy. Each of these approximations is characterised
by a certain truncation of the expansion of the 2PI part Γ2 of the 2PI effective
action in terms of 2PI diagrams. As we discussed in the previous chapter, it is
a crucial advantage to first approximate the functional Γ2 and then derive the
corresponding (approximated) proper self-energy from the approximated Γ2 rather
than directly approximating the proper self-energy. The advantage is that the resulting
approximated dynamic equation still preserves the global symmetries of the original
model and, therefore, fulfils the conservation laws associated with these symmetries.

We describe two approximation schemes of the 2PI effective action in detail. Both
of them are non-perturbative. The first approximation scheme, discussed in Sec. 2.2,
is a loop expansion. In this expansion, the contributions to the 2PI part Γ2 of the 2PI
effective action are ordered as a power series in the number of explicitly appearing
bare coupling constants λ. This is very similar to the standard loop or coupling
expansion with the only difference that now only 2PI graphs are considered and
the full propagator G is used for all propagator lines in a diagram. And since the
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Chapter 2 Non-perturbative approximations of the 2PI effective action

full propagator itself contains the bare coupling constant λ to all orders, the loop
expansion using the full propagator is non-perturbative in the coupling even for
small λ. We discuss the first-order (Hartree-Fock-Bogoliubov) approximation in the
loop expansion and obtain dynamic equations for the single particle density and an
anomalous pair-correlation function. In the next order of this approximation, the
resulting coupled equations for the statistical propagator F and spectral function ρ
generalise the quantum Boltzmann kinetic equation for multi-component fermions by
including non-Markovian1 corrections to the propagation kernel as well as many-body
corrections to the two-body T matrix. At the end of this section, we briefly comment
on higher-order loop approximations. It is important to note that the loop expansion
requires a small coupling constant in order to be a controlled approximation.
The second approximation scheme, discussed in Sec. 2.3, is a controlled non-

perturbative approximation, in which the expansion parameter is not based on the
coupling (and which is, therefore, not restricted to the weak coupling regime). Instead,
the 2PI part Γ2 of the effective action is expanded in powers of the inverse number
of spin states N , i. e. in powers of 1/N . We derive the 2PI effective action to next-
to-leading order (NLO) in this so-called 1/N expansion [58]2. At NLO, an infinite
number of diagrams is resummed and both scattering and memory effects are included.
The dynamic equations derived from the NLO approximation in the 1/N expansion
of the 2PI effective action are suitable for a numerical evaluation, as it was first
shown in Refs. [59, 60, 74] for relativistic models. At the end of this section, we give
a short discussion on how to go beyond the NLO approximation of the 1/N expansion.

Using the non-perturbative approximation schemes discussed in the current chapter,
we present our numerical results for a one-dimensional Fermi gas with two-fold spin
degeneracy in the next chapter.

2.1 Fermi gas with N -fold spin degeneracy

The Lagrangian for a non-interacting Fermi gas is given in Eq. (1.18), where the
Greek indices are now spin labels, i. e. α ∈ {1, 2, . . . ,N}. In a physical system, the
spin label could, for example, count N different atomic hyperfine states that can
be populated. In this section, we first characterise the interactions for such a Fermi
gas at ultra-cold temperatures, and discuss the symmetries of the corresponding
Lagrangian. Afterwards, we comment on the structure of the interaction vertex and
introduce a special graphical representation for the vertex in Feynman diagrams. This
representation is especially helpful in the discussion of the 1/N expansion of the 2PI
effective action in Sec. 2.3.

1The term “non-Markovian” refers to the property of a system that its near-future evolution is not
only determined by the present state of the system but also by its past evolution.

2In the literature, the truncated 1/N expansion introduced in Ref. [58] is often also referred to as
the GW approximation (GWA).
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2.1 Fermi gas with N -fold spin degeneracy

2.1.1 The model Lagrangian and its symmetries

Since we consider an ultra-cold gas of fermionic atoms, s-wave contact interactions
between atoms in different hyperfine states are assumed, while Pauli’s principle forbids
s-wave collisions between fermions that are internally in the same state. p-wave and
higher-order partial-wave contributions are neglected. Our formalism, though, can be
readily extended to more complicated interaction potentials. In the contact potential
approximation, the interactions in the channel characterised by the asymptotic
hyperfine states α and β are described by the potential Vint,αβ(x−y, t) = gαβ(t)δ(x−y)
with a possibly time-dependent coupling strength gαβ(t). In three spatial dimensions,
for example, the coupling strength is related to the scattering length aαβ between
states α and β by the relation gαβ = 4π~2aαβ/m. Hence, the interaction Hamiltonian
reads

Hint(t) =
gαβ(t)

2

∫
x

Ψ̂†α(x)Ψ̂†β(x)Ψ̂β(x)Ψ̂α(x) , (2.1)

where we used the shorthand notation
∫
x
≡ ∫ ddx for the spatial integration in d

dimensions.
Furthermore, we generalise the possibly time-dependent trapping potentials or

other external-field matrix elements Vext in Eq. (1.18) such that they can also pairwise
couple between the hyperfine levels, i. e. Vext = Vext,αβ(x), which can be realised in an
experiment, for example, by a magnetic field.

For the contact interactions considered above and the generalisation of the external
potential, the resulting Lagrangian for the N -component ultra-cold Fermi gas reads

L =

∫
x

(
i

2

(
ψ∗α(x)∂x0ψα(x)− (∂x0ψ

∗
α(x)

)
ψα(x)

)
+ ψ∗α(x)

∇2

2m
ψα(x)

− ψ∗α(x)Vext,αβ(x)ψβ(x)− λαβ
2N ψ∗α(x)ψ∗β(x)ψβ(x)ψα(x)

)
,

(2.2)

where ∂x0 denotes the partial derivative with respect to time, and summations over
repeated indices are implied. A factor of 1/N has been taken out of the couplings
λαβ = N gαβ in order to make the relative weight of the interaction to the quadratic
terms in the Lagrangian invariant under a rescaling of N . This will be of use when
considering the expansion of the 2PI effective action in powers of 1/N in Sec. 2.3.
Three symmetries of the Lagrangian play an important rôle:

1. The Lagrangian possesses a global U(1) symmetry (ψ = (ψ1, . . . , ψN )T →
eiθψ), and in the case where Vext does not couple different hyperfine levels, i. e.
where Vext,αβ(x) = δαβVext,α(x), the Lagrangian density possesses a global U(1)
symmetry even within each hyperfine subspace (ψα → eiθαψα). Together with
the linear time derivative, this U(1) symmetry implies the conservation of the
total particle number in both cases, and the total particle number even within
each hyperfine state in the latter case, cf. Sec. 1.1.
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Chapter 2 Non-perturbative approximations of the 2PI effective action

Note that in relativistic physics, where one has a second-order time derivative
in the Lagrangian, the global U(1) symmetry imposes a conserved current with
charge density 〈ψ∂tψ† − ψ†∂tψ〉. In this case the total particle number is not a
conserved quantity, but rather the difference in the total particle number and
the total anti-particle number.

2. For vanishing external fields and time-independent interactions, the Lagrangian
is Galilei invariant. This symmetry implies a local conservation of the energy-
momentum tensor, cf. Secs. 1.7.2 and 1.7.1.

3. If the couplings between the hyperfine levels through both the external field
Vext,αβ and the interactions λαβ are all equal to each other, the Lagrangian has
an additional O(N ) symmetry under rotations in the space of the hyperfine
states.

Note that for the interactions considered here, see Eqs. (2.1) and (2.2), the
fermionic property of the interaction (that two fermions of the same spin
component do not interact with each other) is implemented in the fields since
Ψ̂α(x)Ψ̂α(x) = 0 and ψα(x)ψα(x) = 0; therefore, it is unnecessary to additionally
require λαα, and all couplings λαβ can indeed be chosen to be equal.

As in the previous chapter, we change to the field basis ψα,i where the index i
distinguishes real and imaginary parts of the quantum field,

ψα,1(x) ≡
√

2Re[ψα(x)] , (2.3)

ψα,2(x) ≡
√

2 Im[ψα(x)] . (2.4)

To simplify the notation, we include the hyperfine index α and the field index i into
a single index a = (α, i). Sums over a imply a sum over α ∈ {1, . . . ,N} and one over
i ∈ {1, 2}.

The Graßmann action

S[ψ] =

∫
x0

L[ψα, ψ
∗
α] , (2.5)

where
∫
x0
≡ ∫ dx0, associated with the Lagrangian in Eq. (2.2) then reads

S[ψ] =
1

2

∫
xy

ψa(x)iG−1
0,ab(x, y)ψb(y) + Sint[ψ] . (2.6)

Here, the inverse free fermionic propagator is given by

iG−1
0,ab(x, y) = δ(x− y)

(
iτab∂x0 − δiaibH1B

αβ (x)
)
, (2.7)

with the one-body Hamiltonian

H1B
αβ (x) = −∇

2
x

2m
δαβ + Vext,αβ(x) , (2.8)
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2.1 Fermi gas with N -fold spin degeneracy

∫
x
≡ ∫ dx0

∫
ddx denotes the integration over the region of space-time under consid-

eration, δab = δαβδiaib , and

τab ≡ −δαβσ2
iaib

, with σ2 ≡
(

0 −i
i 0

)
. (2.9)

Furthermore, δ(x− y) ≡ δ(x0 − y0)δ(d)(x− y) denotes the (d+ 1)-dimensional Dirac
distribution and ψa(x) = ψb(x)τba. The interaction part Sint[ψ] corresponding to the
Lagrangian in Eq. (2.2) is

Sint[ψ] = −λαβ
8N

∫
x

ψa(x)ψb(x)ψb(x)ψa(x) . (2.10)

For the sake of completeness, we note that the action for a Fermi gas trapped in a
lattice potential has the same form as in Eq. (2.6) if the tight binding approximation
is applied. In this case, the free inverse propagator is given by

iG−1
0,ab(x, y) = iτab∂x0δ(x− y)− δabH1B

α (x, y)δ(x0 − y0) , (2.11)

where

H1B
α (x, y) = −Jδ(d)

〈n,m〉 + εα,nδ
(d)
nm (2.12)

is the one-body Hamiltonian. Here, x = (x0,n) and y = (y0,m) denote the lattice
space-time coordinates, δ(x − y) = δ

(d)
nmδ(x0 − y0), and δ

(d)
〈n,m〉 = 1 if and only if, in

the single-band approximation, n and m denote adjacent sites in the d-dimensional
lattice; otherwise, δ(d)

〈n,m〉 = 0. The site dependent energy εα,n describes, for example,
an additional external trapping potential for hyperfine mode α, and we neglect spin
mixing by this potential. All other previous and subsequent equations carry over to
the lattice case when spatial integrals are replaced by sums over the lattice sites.

2.1.2 Structure of the interaction vertex

Having chosen a model, we are now in the position to discuss possible approximations
and truncation schemes of the two-particle irreducible effective action. To be precise,
we approximate the infinite sum in Eq. (1.75),

Γ2[G] = −i

〈 ∞∑
n=1

(iSint)
n

n!

〉
2PI & G

, [(1.75)]

with Sint given by the equivalent of Eq. (2.10) in a field operator language. In the
process of evaluating the expectation values of the approximated sum, we use Wick’s
theorem to reduce products of field operators to sums of products of pairs of these
operators (where the two-point Green function G defined in Eq. (1.32) is used for
the expectation value of each of these pairs). For this discussion, it is convenient to
reveal the specific structure of the point interaction vertex and to represent the vertex
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= + +

α β

α β

α α

β β

α β

β α

=

α β

α β

xiλαβ(x)

8N

(a)

(b)

Figure 2.1: (a) Decomposition of the bare vertex λ (red dot) as a sum of the three possible
spin-index contractions. (b) The point interaction vertex λαβ(x) is represented
by a squiggly line at each end of which spin and field indices are conserved and
summed over. In all diagrams, thin black (propagator) lines are not part of the
diagrams themselves—they are only shown to illustrate the possible connections
of the diagrams if embedded into larger diagrams. Furthermore, all field indices
are suppressed.

by a squiggly line where spins are conserved at each end of the vertex—however, to
make this clear, the squiggly line still represents a point interaction. As depicted
in Fig. 2.1, each vertex enables three possible index contractions. The choice of a
spin conservation at each end of a squiggly line is especially useful in Sec. 2.3 when
classifying diagrams according to their contributions in powers of 1/N .

2.2 Loop expansion of the 2PI effective action

The expansion of Γ2 in terms of two-particle irreducible (2PI) diagrams can be ordered
as a power series in the bare coupling constant λ explicitly appearing in the diagrams.
This is like in the standard loop or coupling expansion but now with the restriction
that

B only 2PI graphs are considered and

B the full propagator G is used for all propagator lines in a diagram.

Rewriting Eq. (1.75) as

Γ2[G] =
∞∑
n=2

Γ
(n)
2 [G] , (2.13)

with

Γ
(n)
2 [G] = −i

〈
(iSint)

n−1

(n− 1)!

〉
2PI & G

, (2.14)
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2.2 Loop expansion of the 2PI effective action

the n-loop approximation of Γ2 is given by

Γ
(n loop)
2 [G] =

n∑
m=2

Γ
(m)
2 [G] . (2.15)

From Eq. (2.14), it is evident that each diagram contributing to Γ (n)
2 contains n− 1

explicit interaction vertices λ. Nevertheless, even for small λ, the expansion in
Eq. (2.13) does not constitute a perturbation expansion in powers of λ since the
Green function G entering the diagrams is the full propagator, which is determined
self-consistently by Eq. (1.81). Due to this self-consistency, each Green function G,
and thereby each diagram that involves G, contains contributions up to arbitrarily
high powers in the coupling3—this is why, in our case, “loop expansion” might be
the more adequate name for this expansion than “coupling expansion”. Although
the loop expansion is a non-perturbative expansion in powers of λ, it is, however, a
controlled expansion only if both the coupling is small and the dynamic equation
exhibits G to be a bounded function. Here, ‘controlled’ means that one has a certain
criteria why the left out contributions are less important contributions than the ones
taken into account. Such a controlled expansion can then effectively be viewed to be
perturbative.

2.2.1 Hartree-Fock-Bogoliubov approximation

As a first step, we recover the dynamic equations in the Hartree-Fock-Bogoliubov
(HFB) approximation [118, 119, 120]. Retaining only the lowest-order diagram of
the loop expansion of Γ2, that is, the double-bubble contribution shown as the most
left graph in Fig. 1.2, is known as the HFB mean-field approximation. Due to the
structure of the interaction vertex, see Eq. (2.10) and Fig. 2.1, this contribution
consists of two qualitatively different diagrams, see Fig. 2.2a, and reads

ΓHFB
2 [G] = Γ

(2 loop)
2 [G]

= −λαβ
8N

∫
x

(
Gaa(x, x)Gbb(x, x)− 2Gab(x, x)Gba(x, x)

)
, (2.16)

where it is summed over a = (α, ia) and b = (β, ib), and the relative minus sign occurs
due to the Graßmann nature of the fields when performing the contractions in order

3To make these contributions more evident note that Eq. (1.81) is equivalent to Eq. (1.76) (for
K = 0). The latter can be rewritten as

G = (G−1
0 − iR)−1 + (G−1

0 − iR)−1ΣG

= (G−1
0 − iR)−1 + (G−1

0 − iR)−1Σ(G−1
0 − iR)−1

+ (G−1
0 − iR)−1Σ(G−1

0 − iR)−1Σ(G−1
0 − iR)−1 + · · · ,

where an obvious matrix notation is employed. Thus, the full propagator G can be written as an
infinite series containing the bare propagator (G−1

0 − iR)−1 and the proper self-energy Σ. And
since the proper self-energy consists of 1PI diagrams that themselves contains contributions up
to arbitrarily high powers in the coupling, the full propagator also contains these contributions.
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Chapter 2 Non-perturbative approximations of the 2PI effective action

ΓHFB
2 [G] = i

(
−2

)

Γ
(3 loop)
2 [G] = ΓHFB

2 − 4i

(
−2

)

ΣHFB
ab (x, y) = 4

(
δab − 2

)
δC(x− y)x

a b

a b

x

Σ
(3 loop)
ab (x, y) = ΣHFB

ab (x, y)− 32

(
−2

)
x y

a b

x

ya
b

Gab(x, y) = x y
a b

if then
= =

(a)

(b)

(c)

Figure 2.2: Diagrammatic representation of (a) the two-loop (Hartree-Fock-Bogoliubov) and
three-loop approximation to Γ2 in the loop expansion, (b) their respective self-
energy contributions, and (c) the full propagator—since generally Gab(x, y) 6=
Gba(y, x), an arrow is required for clearness; however, if the orientation of
propagator loops are redundant, the arrows are omitted. In all diagrams,
thick wiggly red lines represent the local vertex λ, see Fig. 2.1(b). Thin black
(propagator) lines are not part of the diagrams themselves—they are only shown
to illustrate the possible connections of the diagrams if embedded into larger
diagrams.
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2.2 Loop expansion of the 2PI effective action

to rewrite the expectation value. The self-energy derived from Eq. (2.16) is

ΣHFB
ab (x, y;G) = −iΣ

HFB(0)
ab (x;G)δC(x− y) , (2.17)

Σ
HFB(0)
ab (x;G) = −λαγ

2N
(
δabGcc(x, x)− 2δγβGab(x, x)

)
, (2.18)

where it is summed only over c = (γ, ic). Hence, the HFB self-energy reduces to its
local part ΣHFB(0).

Inserting the decomposition of Eq. (1.37) into the dynamic equation for G and
using Eq. (1.40), we find the time-dependent Hartree-Fock-Bogoliubov equations for
ρ and F ,

[
iτac∂x0 −MHFB

ac (x;G)
]
Fcb(x, y) = 0 , (2.19)[

iτac∂x0 −MHFB
ac (x;G)

]
ρcb(x, y) = 0 , (2.20)

where MHFB(x;G) is obtained by Eq. (1.80), with Σ(0)(x;G) = ΣHFB(0)(x;G) as
given in Eq. (2.18). As the non-local self-energy contribution vanishes in the HFB
approximation, the dynamic equations for F and ρ decouple. At equal times, x0 = y0,
the spectral function ρ is fixed by the anti-commutation relations, cf. Eq. (1.39).
Hence, one finds that the single-particle density matrix nαβ(x,y, t) = 〈Ψ̂†α(x)Ψ̂β(y)〉t
is solely determined by the statistical correlation function:

nαβ(x,y, t)− 1

2
δαβδ(x− y) = −1

2
δia1δib1

(
Fab(x,y, t) + Fāb̄(x,y, t)

+ i
(
Fab̄(x,y, t)− Fāb(x,y, t)

))
,
(2.21)

where ā = (α, 3− ia), and it is summed over ia and ib. This includes the density of
particles in mode α at point (x, t), nα(x, t) ≡ nαα(x,x, t). Moreover, the anomalous
density matrix or pair function mαβ(x,y, t) = 〈Ψ̂α(x)Ψ̂β(y)〉t is given as

mαβ(x,y, t) = −1

2
δia1δib1

(
Fab(x,y, t)− Fāb̄(x,y, t)

+ i
(
Fab̄(x,y, t) + Fāb(x,y, t)

))
,

(2.22)

where it is summed over ia and ib. Adding Eq. (2.19) and its transpose, one obtains

37



Chapter 2 Non-perturbative approximations of the 2PI effective action

the set of coupled HFB equations for nαβ(x,y, t) and mαβ(x,y, t):(
i∂t +H1B

αα(x)−H1B
ββ (y)

)
ñαβ(x,y, t)

=

{
2λαγ
N
(
−ñγγ(x,x, t)ñαβ(x,y, t) +m∗αγ(x,x, t)mγβ(x,y, t)

+ ñαγ(x,x, t)ñγβ(x,y, t)
)}

− {(α,x)↔ (β,y)
}∗
,

(2.23)

(
i∂t −H1B

αα(x)−H1B
ββ (y)

)
mαβ(x,y, t)

=

{
2λαγ
N
(
ñγγ(x,x, t)mαβ(x,y, t)− ñ∗αγ(x,x, t)mγβ(x,y, t)

−mαγ(x,x, t)ñγβ(x,y, t)
)}

− {(α,x)↔ (β,y)
}
,

(2.24)

where it is summed only over γ, and ñαβ(x,y, t) ≡ nαβ(x,y, t)− δαβδ(x− y)/2. The
last term in Eq. (2.24) (Eq. (2.23)) denotes (the complex conjugate of) the first term
in curly brackets with α and β, and x and y interchanged.

Note that for the case of space-translational invariant two-point functions describing
a spatially homogeneous Fermi gas, the two-point functions only depend on the
spatial relative coordinate x− y, and Eqs. (2.19) and (2.20) are conveniently solved
in momentum space. The solutions are

Fab(p, t) =
(
exp[−iτMHFB(p)t]

)
ac
Fcb(p, t) , (2.25)

ρab(p, t) =
(
exp[−iτMHFB(p)t]

)
ac
ρcb(p, t) , (2.26)

with

MHFB
ab (p, t) = δab

(
p2

2m
− λαγ(t)

2N
∫

q

Fcc(q, t)

)
+
λαβ(t)

N
∫

q

Fab(q, t) , (2.27)

where
∫
q

= (2π)−d
∫

ddq, and it is summed over c = (γ, ic). Inserting the solution for
F into nα(p, t) = [1−F(α,1)(α,1)(p, t)−F(α,2)(α,2)(p, t)]/2, cf. Eq. (2.21), we recover that
the HFB equations, which exclude multiple scattering events, leave all momentum-
mode occupation numbers invariant.

Alternative derivation of the HFB equations

The HFB equations, Eqs. (2.23) and (2.24), can also be derived from the Liouville
equation4 for the density matrix ρD(t),

i∂tρD(t) =
[
H(t), ρD(t)

]
− , (2.28)

4The Liouville equation is valid for both equilibrium and non-equilibrium systems.
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2.2 Loop expansion of the 2PI effective action

and a Weyl ordered Hamiltonian H, i. e.

Hint,Weyl(t) =
λαβ(t)

24N
∫

x

(
Ψ̂†α(x)Ψ̂†β(x)

[
Ψ̂β(x), Ψ̂α(x)

]
−

+ Ψ̂†α(x)Ψ̂β(x)
[
Ψ̂α(x), Ψ̂†β(x)

]
−

+ Ψ̂†α(x)Ψ̂α(x)
[
Ψ̂†β(x), Ψ̂β(x)

]
−

+ Ψ̂α(x)Ψ̂†β(x)
[
Ψ̂†α(x), Ψ̂β(x)

]
−

+ Ψ̂α(x)Ψ̂†α(x)
[
Ψ̂β(x), Ψ̂†β(x)

]
−

+ Ψ̂α(x)Ψ̂β(x)
[
Ψ̂†β(x), Ψ̂†α(x)

]
−

)
,

(2.29)

where we used the commutators only for the reason of compressing the equation.
Using the Liouville equation, the time-evolution of the single-particle density matrix
is given by

i∂tnαβ(x,y, t) = i∂t Tr
[
ρD(t)Ψ̂†α(x)Ψ̂β(y)

]
= Tr

[[
H, ρD(t)

]
−Ψ̂†α(x)Ψ̂β(y)

]
= Tr

[
ρD(t)

[
Ψ̂†α(x)Ψ̂β(y), H

]
−

]
= −〈[H, Ψ̂†α(x)Ψ̂β(y)

]
−
〉

(2.30)

and similarly the time-evolution of mαβ(x,y, t).When evaluating the expectation
value in Eq. (2.30) for the interaction Hamiltonian of Eq. (2.29), the operator identity

[
ÂB̂ĈD̂, ÊF̂

]
−

= ÂB̂
([
Ĉ, D̂

]
+
Ê − Ê[Ĉ, D̂]

+
+
[
Ê, D̂

]
+
Ĉ − D̂[Ĉ, Ê]

+

)
F̂

+
([
Â, B̂

]
+
Ê − Ê[Â, B̂]

+
+
[
Ê, B̂

]
+
Â− B̂[Â, Ê]

+

)
ĈD̂F̂

+ ÂÊB̂
([
Ĉ, D̂

]
+
F̂ − F̂ [Ĉ, D̂]

+
+
[
F̂ , D̂

]
+
Ĉ − D̂[Ĉ, F̂ ]

+

)
+ Ê

([
Â, B̂

]
+
F̂ − F̂ [Â, B̂]

+
+
[
F̂ , B̂

]
+
Â− B̂[Â, F̂ ]

+

)
ĈD̂

(2.31)

together with the fermionic anti-commutation relation is very useful to rewrite
the expectation value with six operators as a sum of expectation values with four
operators. The Hartree-Fock-Bogoliubov approximation then consists of neglecting
all joint cumulants higher than second order, i. e.〈

ÂB̂ĈD̂
〉

=
〈
ÂB̂
〉
c

〈
ĈD̂

〉
c
− 〈ÂĈ〉

c

〈
B̂D̂

〉
c

+
〈
ÂD̂
〉
c

〈
B̂Ĉ
〉
c

+
〈
ÂB̂ĈD̂

〉
c

≈ 〈ÂB̂〉
c

〈
ĈD̂

〉
c
− 〈ÂĈ〉

c

〈
B̂D̂

〉
c

+
〈
ÂD̂
〉
c

〈
B̂Ĉ
〉
c
, (2.32)

where 〈·〉c denotes the joint cumulant, and where we also used that joint cumulants
with an odd number of fermionic operators vanish. For related discussions in the
context of cold gases, see, e. g. Refs. [68, 121, 122, 123, 124].
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Chapter 2 Non-perturbative approximations of the 2PI effective action

2.2.2 Second-order loop approximation

Going beyond the mean-field Hartree-Fock-Bogoliubov contribution to Γ2 discussed
so far, we now additionally take into account the second-order (three loop) diagram
that contains two explicit bare couplings and is shown in Fig. 2.2:

Γ
(3 loop)
2 [G] = ΓHFB

2 [G] + Γ
(3)
2 [G] (2.33)

with

Γ
(3)
2 [G] =

iλαβ(x)λγδ(y)

16N 2

∫
xy

Gbc(x, y)Gcb(y, x)Gda(x, y)Gad(y, x)

− iλαβ(x)λγδ(y)

8N 2

∫
xy

Gad(x, y)Gdb(y, x)Gbc(x, y)Gca(y, x) ,

(2.34)

where it is summed over a = (α, ia), b = (β, ib), c = (γ, ic), and d = (δ, id). Taking
the functional derivative with respect to G, the additional term yields the non-local
self-energy

Σab(x, y) =
λγβ(y)

N Παγ(x, y)Gab(x, y)

− λαγ(x)λδβ(y)

N 2
Gad(x, y)Gdc(y, x)Gcb(x, y)

(2.35)

with

Παβ(x, y) =
λαγ(x)

2N G(γ,i)(β,j)(x, y)G(β,j)(γ,i)(y, x) , (2.36)

where sums over γ, δ, ic, and id are implied in Eq. (2.35), and over i, j, and γ in
Eq. (2.36).

Finally, we want to derive the statistical and spectral components for the non-local
self-energy Σ since they are required in the dynamic equations, Eqs. (1.84) and (1.85).
For this purpose, we need to decompose Π into its statistical and spectral components,

Παβ(x, y) = ΠF
αβ(x, y)− i

2
Πρ
αβ(x, y) sgnC(x0 − y0) , (2.37)

like the two-point Green function G and the non-local self-energy Σ in Eqs. (1.37)
and (1.83), respectively. The resulting statistical and spectral components for the
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2.2 Loop expansion of the 2PI effective action

non-local self-energy Σ are

Σ
F

ab(x, y) =
λγβ(y)

N
(
ΠF
αγ(x, y)Fab(x, y)− 1

4
Πρ
γδ(x, y)ρab(x, y)

)
− λαγ(x)λδβ(y)

2N 2

(
2P F

aδc(x, y)Fcb(x, y)− 1

2
P ρ
aδc(x, y)ρcb(x, y)

)
,

(2.38)

Σ
ρ

ab(x, y) =
λγβ(y)

N
(
ΠF
γδ(x, y)ρab(x, y) +Πρ

γδ(x, y)Fab(x, y)

)
− λαγ(x)λδβ(y)

N 2

(
P F
aδc(x, y)ρcb(x, y) + P ρ

aδc(x, y)Fcb(x, y)

)
,

(2.39)

with

P F
aδc(x, y) = Fa(δ,i)(x, y)F(δ,i)c(y, x) +

1

4
ρa(δ,i)(x, y)ρ(δ,i)c(y, x) , (2.40)

P ρ
aδc(x, y) = ρa(δ,i)(x, y)F(δ,i)c(y, x)− Fa(δ,i)(x, y)ρ(δ,i)c(y, x) , (2.41)

and

ΠF
αβ(x, y) =

λαγ(x)

2N
(
F(γ,i)(β,j)(x, y)F(β,j)(γ,i)(y, x)

+
1

4
ρ(γ,i)(β,j)(x, y)ρ(β,j)(γ,i)(y, x)

)
,

(2.42)

Πρ
αβ(x, y) =

λαγ(x)

2N
(
ρ(γ,i)(β,j)(x, y)F(β,j)(γ,i)(y, x)

− F(γ,i)(β,j)(x, y)ρ(β,j)(γ,i)(y, x)

)
,

(2.43)

where a = (α, i), b = (β, j), and c = (γ, k). And on the right-hand sides of
Eqs. (2.38)–(2.43), it is summed over all indices not appearing on the respective
left-hand sides.

In the second-order loop approximation introduced above, the Schwinger-Dyson/Ka-
danoff-Baym equations of motion, Eqs. (1.84) and (1.85), form a closed set of integro-
differential dynamic equations. Unlike the dynamic equations in the HFB approx-
imation, these equations of motion now include both non-Markovian corrections to
the propagation kernel and many-body corrections to the dynamics through the
non-vanishing memory integrals

∫
ΣG.

Before proceeding to a brief comment on higher-order loop approximations, we
remark on the relation to the quantum Boltzmann approximation and the BBGKY
hierarchy.
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Γ
(4)
2 [G] = 32i

(
4 + 12 + 4 + 6 −

)

Figure 2.3: Diagrammatic representation of the third-order (four-loop) contributions Γ (4)
2

to Γ2 in the loop expansion.

Relation to quantum Boltzmann approximation and BBGKY hierarchy

In the second-order loop approximation discussed in this section, standard quantum
Boltzmann equations can be derived from the dynamic equations (1.84) and (1.85)
after choosing a kinetic approximation—i. e. neglecting initial-time effects, going over
to a quasi-particle basis, and considering the Markovian limit—which is generically
justified for near-equilibrium situations [74, 114]. The relevance of non-Markovian
and initial-time effects has been discussed, for an ultra-cold Bose gas, in Refs. [67, 115].

An alternative possibility to go beyond the Hartree-Fock-Bogoliubov (HFB) ap-
proximation is the so-called Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy [125, 126, 127, 128, 129]. The Liouville equation, Eq. (2.28), can be transformed
into a hierarchy of coupled differential equations for general 2nth-order correlation
functions Tr[ρ̂D(t)Ψ̂a1(x1)Ψ̂b1(y1) · · · Ψ̂an(xn)Ψ̂bn(yn)] that are local in time. Solving
this BBGKY hierarchy of equations is as difficult as solving the Liouville equation;
however, approximating the BBGKY hierarchy makes it possible to truncate this
hierarchy into a finite system of coupled equations. Truncating this hierarchy, e. g. by
neglecting all correlation functions higher than a certain order, and formally solving
the equations for functions of order larger than two, one finally arrives at a closed set
of non-Markovian integro-differential equations for the two-point functions, see, for
example, Ref. [122]. In this truncation scheme, the Hartree-Fock-Bogoliubov (HFB)
approximation in Eq. (2.32) is the lowest-order approximation, and the resulting
dynamic equations are not yet non-Markovian or integro-differential.

We point out that this approximation procedure is, however, prone to inconsistencies
that can lead to equations that do not conserve vital conservation laws. The equations
derived from the 2PI effective action, besides being obtained in a technically simpler
procedure, do not suffer such problems as we have seen in Sec. 1.7.

2.2.3 Higher-order loop approximation

Following the same lines as in Sec. 2.2.1 and Sec. 2.2.2, higher-order loop approxim-
ations can be derived straightforwardly. The resulting equations of motion for the
two-point correlation functions have the form as Eqs. (1.84) and (1.85) with modified
proper self-energy functions ΣF,ρ. The diagrammatic representation of the third-order
(four-loop) contribution Γ (4)

2 to Γ2 in the loop expansion is shown in Fig. 2.3.
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2.3 1/N expansion of the 2PI effective action

2.3 1/N expansion of the 2PI effective action

In this section, we discuss a non-perturbative approximation scheme of the two-
particle irreducible action. In this approximation scheme, the expansion parameter
is superficially not based on the coupling. Thus, this scheme is generally expected
to be useful to describe physics where large fluctuations require a non-perturbative
description. For ultra-cold Fermi gases, the dynamics near a Feshbach resonance,
where the two-body scattering length diverges, is a prime example.

In the special case that all couplings λαβ are equal, the Lagrangian considered in
Eq. (2.2) has an additional O(N ) symmetry in the space of all hyperfine levels N
described by the multi-component field ψα(x). This symmetry can be used to derive
an expansion of the 2PI part Γ2 of the effective action in powers of the inverse number
of hyperfine levels, i. e. in powers of 1/N ,

Γ2[G] = Γ LO
2 [G]︸ ︷︷ ︸
∼N 1

+ΓNLO
2 [G]︸ ︷︷ ︸
∼N 0

+ΓNNLO
2 [G]︸ ︷︷ ︸
∼N−1

+ΓN3LO
2 [G]︸ ︷︷ ︸
∼N−2

+ · · · . (2.44)

2.3.1 Classification of diagrams

To see how one identifies to which order a contribution of Γ2 belongs to in the 1/N
expansion of the effective action, we consider the two different origins of the powers
of N :

1. From the form of the interaction part Sint of the considered action, see Eq. (2.10),
follows that

B each vertex contributes a factor of 1/N .

2. Using the squiggly line notation for the interaction vertex, it is apparent
that each closed propagator loop in a diagram (see, e. g. Fig. 2.4a) is of the
form tr (Gn), where the trace applies to hyperfine (and field) indices, e. g.
tr (G3) = Gab(x, y)Gbc(y, z)Gca(z, x). Thus, at this stage, each propagator
loop of the form tr (Gn) involves n summations over different hyperfine indices.
However, one can diagonalise the argument of the trace by making use of the
O(N ) symmetry for spin balanced situations and a spin-independent coupling.
As a result, only one of the n sums over the hyperfine indices remains, i. e.

B each propagator loop contributes a factor of N .

Note that for spin balanced initial conditions, the dynamical equations conserve
the spin balance at all later times. Thus, for the diagonalisation procedure
described above, it is sufficient to require a spin balanced initial state and a
spin-independent coupling.

Consequently, all diagrams with one new vertex (i. e. one new squiggly line) appearing
for each new propagator loop contribute to Γ2 at the same order.
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Chapter 2 Non-perturbative approximations of the 2PI effective action

We finally note that the one-loop contribution to the 2PI effective action in
Eq. (1.74) is proportional to Tr

[
ln(G−1) +G−1

0 G
]
and scales linear with N , i. e. it

contributes at LO. The logarithmic term corresponds, in absence of all other terms,
to the free field effective action and scales proportional to N . Since the free inverse
propagator is diagonal in the spin index space, it follows that the second term can be
written as a trace in the spin index space, which is also proportional to N .

2.3.2 Leading and next-to-leading order approximation

In the following, we derive the leading-order (LO) and next-to-leading-order (NLO)
terms of Γ2 in the 2PI 1/N expansion, i. e. Γ LO

2 and ΓNLO
2 , respectively. As already

indicated in Eq. (2.44), we will see that the leading order is proportional to N 1 and
the next-to-leading order is proportional to N 0.

The LO contribution, which is shown in Fig. 2.4, is equivalent to the Hartree part
of the Hartree-Fock-Bogoliubov (HFB) diagram,

Γ LO
2 [G] = −λαβ(x)

8N
∫
x

Gaa(x, x)Gbb(x, x) . (2.45)

As there are two sums over α, β ∈ {1, . . . ,N}, this contribution is of the same order
in N as the one-loop part of the action. Hence, in the limit N →∞, the dynamic
equations contain less terms than in the HFB approximation, and the dynamics is
entirely mean-field or classical.

At NLO, the diagrams have to have the same number of invariants (closed propagator
loops) as number of vertices. Thus, the only type of contributing 2PI diagrams are
the so-called ring diagrams depicted in Fig. 2.4a. There are (n− 1)!/2 possibilities
to arrange n vertices as a ring (1/2 because of cyclic property, e. g. 1234 is identical
to 1432). Within the ring, for n > 2, there are 4 · 4n−2 · 2 possible contractions; for
n = 2 there are 4 · 2 and for n = 1 there are 2. Hence, the NLO contribution reads

ΓNLO
2 [G] = −i

∞∑
n=1

1

n!

4n(n− 1)!

2

∫
xy···z

iλαβ(x)

8N Gbc(x, y)Gcb(y, x)

× iλγδ(y)

8N · · · iληε(z)

8N Gea(z, x)Gae(x, z)

= − i

2

∞∑
n=1

in

n
Tr [Πn] . (2.46)

The trace in Eq. (2.46) is over spin indices as well as over space-time coordinates (e. g.
Tr [Π3] =

∫
xyz

Παβ(x, y)Πβγ(y, z)Πγα(z, x)). Παβ(x, y) is defined in Eq. (2.36). In the
first line of Eq. (2.46), the different factors come from the overall (−i) in the defining
functional integral, cf. Eq. (1.55), the remaining power series of the exp-function, the
combinatorics, and the vertices. Remarks:
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2.3 1/N expansion of the 2PI effective action

ΓLO
2 [G] = i

ΓNLO
2 [G] = − i

2

(
4 +

42

2
+

43

3
+

44

4
+ · · ·

)

6∝

ΣLO
ab (x, y) = 4 δabδC(x− y)

ΣNLO
ab (x, y) = −8

iΛαβ(x, y)
8N = = δC(x − y) + 4

iIαβ(x, y) = 4

iΠαβ(x, y) = 4

(a)

(b)

(c)

a b

x

x y

a b

α β α β α β

α β α β α β

x y xx y

α β

α β

x y

α β

α β

x y

Figure 2.4: Diagrammatic representation of (a) the leading order (LO) and next-to-leading
order (NLO) contributions to Γ2 in the 1/N expansion, (b) their respective
self-energies, and (c) the resummed vertex Λ depicted by a dashed red line,
the resummed bubble chain I, and the function Π. In all diagrams, thick blue
lines represent full propagators and thick wiggly red lines the local vertex λ,
see Fig. 2.1(b). Thin black lines (both straight and wiggly) are not part of the
diagrams themselves—they are only shown to illustrate the possible connections
of the diagrams if embedded into larger diagrams.
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Chapter 2 Non-perturbative approximations of the 2PI effective action

1. Since the infinite series in Eq. (2.46) is the Taylor series of the natural logarithm,
one can also use the suggestive notation

ΓNLO
2 [G] =

i

2
Tr
[
ln
[
I− iΠ

]]
(2.47)

with Iαβ(x, y) = δαβδC(x− y).

2. In the computation of the self-energy in the next step, we make use of the
relation

δΠγδ(u, v)

δGba(y, x)
=
λγε(u)

2N
{
δεβδδαδC(u− y)δC(v − x)

+ δεαδδβδC(v − y)δC(u− x)
}
Gab(x, y)

(2.48)

where a = (α, ia) and b = (β, ib).

In deriving the NLO contribution, we made use of the property λαβ(x) = λβα(x). In
analogy to Eq. (2.44), the proper self-energy has LO and NLO contributions,

Σab(x, y;G) = ΣLO
ab (x, y;G) +ΣNLO

ab (x, y;G) + · · · , (2.49)

with

ΣLO
ab (x, y;G) = δab

iλαγ(x)

2N Gcc(x, x)δC(x− y) , (2.50)

ΣNLO
ab (x, y;G) = − iΛαβ(x, y;G)

N Gab(x, y) . (2.51)

The NLO contribution can be understood as a scattering diagram with the resummed
vertex

Λαβ(x, y) =
(
δαγδC(x− y) + iIαγ(x, y;G)

)
λγβ , (2.52)

which is defined through the integral equation

Iαβ(x, y;G) =

∫
z

Λαγ(x, z;G)

2N Gcb(z, y)Gbc(y, z) (2.53)

= Παβ(x, y) + i

∫
z

Iαγ(x, z)Πγβ(z, y) , (2.54)

cf. Fig. 2.4c, where a = (α, ia), b = (β, ib), and c = (γ, ic), and it is summed over
all indices not appearing on the l. h. s. of the equations. One recovers the Hartree-
Fock-Bogoliubov approximation by setting the resummed vertex Λ equal to the bare
vertex, Λαβ(x, y) = λαβ(x)δ(x− y).

The self-energy up to NLO has in general both local and non-local contributions,
the local one being equivalent to the HFB term,

ΣHFB
ab (x, y) = ΣLO

ab (x, y) +ΣNLO
ab (x, y)

∣∣
Λ=λ

. (2.55)
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2.3 1/N expansion of the 2PI effective action

The non-local beyond-mean-field contribution to the self-energy is given by

Σab(x, y;G) = Iαγ(x, y;G)
λγβ(y)

N Gab(x, y) . (2.56)

The real functions Mab(x;G), ΣF

ab(x, y;G), and Σρ

ab(x, y;G) are all regular in x0 and
are obtained in terms of statistical and spectral functions as follows:

Mab(x) = δab

(
H1B
αβ (x)− λαγ(x)

2N Fcc(x, x)
)

+
λαβ(x)

N Fab(x, x) , (2.57)

Σ
F

ab(x, y) =
λγβ(y)

N
(
IFαγ(x, y)Fab(x, y)− 1

4
Iραγ(x, y)ρab(x, y)

)
, (2.58)

Σ
ρ

ab(x, y) =
λγβ(y)

N
(
IFαγ(x, y)ρab(x, y) + Iραγ(x, y)Fab(x, y)

)
, (2.59)

where

IFαβ(x, y) = ΠF
αβ(x, y) +

(∫ x0

0

dz Iραγ(x, z)Π
F
γβ(z, y)

−
∫ y0

0

dz IFαγ(x, z)Π
ρ
γβ(z, y)

)
,

(2.60)

Iραβ(x, y) = Πρ
γβ(x, y) +

∫ x0

y0

dz Iραγ(x, z)Π
ρ
γβ(z, y) , (2.61)

with ΠF and Πρ defined in Eqs. (2.42) and (2.43), respectively. We will see soon that
the appealing part of the NLO approximation is the recursive expressions for IF and
Iρ, Eqs. (2.60) and (2.61), without involving any explicit summations. The structure
of these expressions further allows to solve the equations numerically without requiring
to solve self-consistently any type of gap equation.
Before proceeding to a brief discussion about the beyond-NLO contributions, we

provide some helpful considerations for the next chapter, where we numerical solve
the equation of motions in NLO of the 1/N expansion in momentum space.

2.3.3 Numerical implementation of the dynamical equations

A good portion of this PhD project was the effective numerical implementation of the
dynamical equations derived from the NLO 1/N approximation of the 2PI effective
action. We solve the dynamical equations in momentum space after introducing
dimensionless variables and transforming the equations into an interaction picture.
In this section, we discuss this procedure step by step and provide some remarks
important for the actual numerical implementation.

NLO equations in momentum space

In the next chapter, we consider a spatially homogeneous Fermi gas of N particles
in a box of volume V with periodic boundary conditions in the absence of external
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Chapter 2 Non-perturbative approximations of the 2PI effective action

potentials. In this case, the functions G, Σ, etc. depend only on the relative spatial
coordinates; therefore, a Fourier transformation in momentum space almost suggests
itself.

In the following, we provide the dynamic equations derived from the 2PI effective
action, to next-to-leading order (NLO) in the 1/N expansion, for a spatially homo-
geneous Fermi gas in momentum space. Note that from a numerical point of view,
a convenient side effect of writing the equations in momentum space is the simple
form of M , which involves a multiplication with p2 in momentum space instead of a
second-order derivative in position space. The equations in momentum space are(

i~τac∂x0
−Mac(x0; p)

)
Fcb(x0, y0; p) =

1

~

∫ x0

0

dz0Σ
ρ

ac(x0, z0; p)Fcb(z0, y0; p)

− 1

~

∫ y0

0

dz0Σ
F

ac(x0, z0; p)ρcb(z0, y0; p)

(2.62)(
i~τac∂x0

−Mac(x0; p)

)
ρcb(x0, y0; p) =

1

~

∫ x0

y0

dz0Σ
ρ

ac(x0, z0; p)ρcb(z0, y0; p)

(2.63)

with

Mab(x0; p) = δab

(
p2

2m
− λαδ(x0)

2N
∫

q

Fdd(x0, x0; q)

)
+
λαβ(x0)

N
∫

q

Fab(x0, x0; q) ,

(2.64)

Σ
F

ab(x0, y0; p) =
λγβ(y0)

N
∫

q

(
IFαγ(x0, y0; p− q)Fab(x0, y0; q)

− 1

4
Iραγ(x0, y0; p− q)ρab(x0, y0; q)

)
,

(2.65)

Σ
ρ

ab(x0, y0; p) =
λγβ(y0)

N
∫

q

(
IFαγ(x0, y0; p− q)ρab(x0, y0; q)

+ Iραγ(x0, y0; p− q)Fab(x0, y0; q)
)
,

(2.66)

and

IFαβ(x0, y0; p) = ΠF
αβ(x0, y0; p) +

1

~

∫ x0

t0

dz0 I
ρ
αγ(x0, z0; p)ΠF

γβ(z0, y0; p)

− 1

~

∫ y0

t0

dz0 I
F
αγ(x0, z0; p)Πρ

γβ(z0, y0; p) ,

(2.67)

Iραβ(x0, y0; p) = Πρ
αβ(x0, y0; p) +

1

~

∫ x0

y0

dz0 I
ρ
αγ(x0, z0; p)Πρ

γβ(z0, y0; p) , (2.68)
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and

ΠF
αβ(x0, y0; p) =

λαγ(x0)

2N
∫

q

(
F(γ,i)(β,j)(x0, y0; p− q)F(β,j)(γ,i)(y0, x0; q)

+
1

4
ρ(γ,i)(β,j)(x0, y0; p− q)ρ(β,j)(γ,i)(y0, x0; q)

)
,

(2.69)

Πρ
αβ(x0, y0; p) =

λαγ(x0)

2N
∫

q

(
ρ(γ,i)(β,j)(x0, y0; p− q)F(β,j)(γ,i)(y0, x0; q)

− F(γ,i)(β,j)(x0, y0; p− q)ρ(β,j)(γ,i)(y0, x0; q)
)
,

(2.70)

where

∫
q

=


∫

ddq
(2π~)d

in the thermodynamic limit,

1

V

∑
q

for a finite volume V ,
(2.71)

and all factors ~ are shown explicitly.

Dimensionless equation

To identify the relevant quantities that characterise the dynamics, it is convenient to
introduce dimensionless variables. These above equations can be made dimensionless
with the transformations

t̃ ≡ ~n2/d
dD

m
t , (2.72)

p̃ ≡ 1

~n1/d
dD

p , (2.73)

M̃ ≡ m(
~n1/d

dD

)2M , Ĩ ≡ m(
~n1/d

dD

)2 I , Π̃ ≡ m(
~n1/d

dD

)2Π , (2.74)

Σ̃ ≡
(

m

~2n
2/d
dD

)2

Σ , (2.75)

where we consider d spatial dimensions. The resulting dimensionless equations of
motion are(

iτac∂x̃0
− M̃ac(x̃0; p̃)

)
Fcb(x̃0, ỹ0; p̃) =

∫ x̃0

0

dz̃0 Σ̃
ρ

ac(x̃0, z̃0; p̃)Fcb(z̃0, ỹ0; p̃)

−
∫ ỹ0

0

dz̃0 Σ̃
F

ac(x̃0, z̃0; p̃)ρcb(z̃0, ỹ0; p̃)

(2.76)(
iτac∂x̃0

− M̃ac(x̃0; p̃)

)
ρcb(x̃0, ỹ0; p̃) =

∫ x̃0

ỹ0

dz̃0 Σ̃
ρ

ac(x̃0, z̃0; p̃)ρcb(z̃0, ỹ0; p̃)

(2.77)
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with

Σ̃
F

ab(x̃0, ỹ0; p̃) = γδβ(ỹ0)

∫
q̃

(
ĨFαδ(x̃0, ỹ0; p̃− q̃)Fab(x̃0, ỹ0; q̃)

− 1

4
Ĩραδ(x̃0, ỹ0; p̃− q̃)ρab(x̃0, ỹ0; q̃)

)
,

(2.78)

Σ̃
ρ

ab(x̃0, ỹ0; p̃) = γδβ(ỹ0)

∫
q̃

(
ĨFαδ(x̃0, ỹ0; p̃− q̃)ρab(x̃0, ỹ0; q̃)

+ Ĩραδ(x̃0, ỹ0; p̃− q̃)Fab(x̃0, ỹ0; q̃)
)
,

(2.79)

and

ĨFαβ(x̃0, ỹ0; p̃) = Π̃F
αβ(x̃0, ỹ0; p̃) +

(∫ x̃0

t̃0

dz̃0 Ĩ
ρ
αγ(x̃0, z̃0; p̃)Π̃F

γβ(z̃0, ỹ0; p̃)

−
∫ ỹ0

t̃0

dz̃0 Ĩ
F
αγ(x̃0, z̃0; p̃)Π̃ρ

γβ(z̃0, ỹ0; p̃)

)
,

(2.80)

Ĩραβ(x̃0, ỹ0; p̃) = Π̃ρ
αβ(x̃0, ỹ0; p̃) +

∫ x̃0

ỹ0

dz̃0 Ĩ
ρ
αγ(x̃0, z̃0; p̃)Π̃ρ

γβ(z̃0, ỹ0; p̃) , (2.81)

and

Π̃F
αβ(x̃0, ỹ0; p̃) =

γαγ(x̃0)

2

∫
q̃

(
F(γ,i)(β,j)(x̃0, ỹ0; p̃− q̃)F(β,j)(γ,i)(ỹ0, x̃0; q̃)

+
1

4
ρ(γ,i)(β,j)(x̃0, ỹ0; p̃− q̃)ρ(β,j)(γ,i)(ỹ0, x̃0; q̃)

)
,

(2.82)

Π̃ρ
αβ(x̃0, ỹ0; p̃) =

γαγ(x̃0)

2

∫
q̃

(
ρ(γ,i)(β,j)(x̃0, ỹ0; p̃− q̃)F(β,j)(γ,i)(ỹ0, x̃0; q̃)

− F(γ,i)(β,j)(x̃0, ỹ0; p̃− q̃)ρ(β,j)(γ,i)(ỹ0, x̃0; q̃)
)
,

(2.83)

where

∫
q̃

=


∫

ddq̃
(2π)d

in the thermodynamic limit,

1

N

∑
q̃

for a finite volume V .
(2.84)

From the dimensionless equations, it is now evident that the strength of the
interaction is governed by the dimensionless coupling constant

γαβ(t̃) =
mgαβ(t̃)

~2n
2/d−1
dD

=
mλαβ(t̃)

N~2n
2/d−1
dD

. (2.85)

From Eq. (2.85), one notices that the dependence of the coupling strength on the
density differs significantly for different dimensions. In three spatial dimensions, the
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2.3 1/N expansion of the 2PI effective action

weak-coupling regime (|γ| � 1) corresponds to low densities n3D, and the strong-
coupling regime (|γ| � 1) is achieved at high densities. However, in one spatial
dimension, the dependence is reversed: the weak-coupling regime corresponds to high
densities n1D, and the strong-coupling regime is achieved at low densities. Finally,
note that the relation in Eq. (2.85) can also be derived directly from the Hamiltonian
in Eq. (2.1) through a simple dimensional analysis.

“Interaction picture” transformation

Whereas the rewriting of the equations in momentum space and the introduction of
dimensionless variables had also some physical motivation, the interaction picture
discussed below is of sole interest for the numerical implementation of the equations
later on. The matrix M in the equations of motion causes fast oscillations of the
two-point functions F , ρ, and G in the time plane. And fast oscillations can quickly
be a serious problem for any numerical integration of differential equations. Therefore,
it is advisable to analytically first separate out these fast oscillations through a
transformation into an interaction picture and then perform the numerical integration
only on the envelopes of the two-point functions.
In preparation for the transformation, it is convenient to put the iτ into the

definition of M̃ and Σ̃:

M̃ ′ ≡ −iτ−1M̃ (2.86)

Σ̃
′ ≡ −iτ−1Σ̃ , (2.87)

i. e. in the NLO approximation of the 1/N expansion, one has

M̃ ′
ab(x̃0; p̃) = −iτ−1

ab

(
p̃2

2
− γαδ(x̃0)

2

∫
q̃

Fdd(x̃0, x̃0; q̃)

)
− iτ−1

ac γγβ(x̃0)

∫
q̃

Fcb(x̃0, x̃0; q̃) ,

(2.88)

Σ̃
′
F
ab(x̃0, ỹ0; p̃) = −iτ−1

ac γδβ(ỹ0)

∫
q̃

(
ĨFγδ(x̃0, ỹ0; p̃− q̃)Fcb(x̃0, ỹ0; q̃)

− 1

4
Ĩργδ(x̃0, ỹ0; p̃− q̃)ρcb(x̃0, ỹ0; q̃)

)
,

(2.89)

Σ̃
′
ρ
ab(x̃0, ỹ0; p̃) = −iτ−1

ac γδβ(ỹ0)

∫
q̃

(
ĨFγδ(x̃0, ỹ0; p̃− q̃)ρcb(x̃0, ỹ0; q̃)

+ Ĩργδ(x̃0, ỹ0; p̃− q̃)Fcb(x̃0, ỹ0; q̃)
)
.

(2.90)

Now, we define the interaction picture by

A(x̃0, ỹ0; p̃) ≡ exp

[
−
∫ x̃0

t̃0

dt̃M̃ ′(t̃; p̃)

]
A(x̃0, ỹ0; p̃) exp

[∫ ỹ0

t̃0

dt̃M̃ ′(t̃; p̃)

]
. (2.91)
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With this definition, the dimensionless equations of motion in the interaction picture
are

∂x̃0
F̃ cb(x̃0, ỹ0; p̃) =

∫ x̃0

0

dz̃0 Σ̃
′ρ
ac(x̃0, z̃0; p̃)F cb(z̃0, ỹ0; p̃)

−
∫ ỹ0

0

dz̃0 Σ̃
′F
ac(x̃0, z̃0; p̃)ρ

cb
(z̃0, ỹ0; p̃)

(2.92)

∂x̃0
ρ
cb

(x̃0, ỹ0; p̃) =

∫ x̃0

ỹ0

dz̃0 Σ̃
′ρ
ac(x̃0, z̃0; p̃)ρ

cb
(z̃0, ỹ0; p̃) . (2.93)

To make the advantage of the transformation into the interaction picture more explicit,
we note that, for the special case (which applies in most of the situations we are
interested in) of

A(x̃0, ỹ0; p̃) =

(
a(x̃0, ỹ0; p̃) b(x̃0, ỹ0; p̃)
−b(x̃0, ỹ0; p̃) a(x̃0, ỹ0; p̃)

)
(2.94)

and a time-independent

M̃ ′(t̃; p̃) =

(
0 c(p̃)

−c(p̃) 0

)
, (2.95)

Eq. (2.91) reduces to

A(x̃0, ỹ0; p̃) =

(
cos[c(p̃)(x̃0 − ỹ0)] − sin[c(p̃)(x̃0 − ỹ0)]
sin[c(p̃)(x̃0 − ỹ0)] cos[c(p̃)(x̃0 − ỹ0)]

)
A(x̃0, ỹ0; p̃) , (2.96)

which can be numerically evaluated to a certain accuracy much more easily than a
numerical integration of the oscillations in the differential equation.

Further remarks on the numerical implementation

We would like to finish this section on the NLO contributions to the 1/N expansion
with some further remarks on the numerical implementation of the equations of
motion, Eqs. (2.92) and (2.93).

1. The dynamic equations are differential equations of first-order in the time
derivative. Thus, standard integration methods like the fourth-order Runge-
Kutta algorithm can be used to discretise and solve them.

2. After discretising the time integrals, the structure of equations allows that all
quantities necessary to evolve F and ρ to the next time step can be computed
from already known quantities. This is described in detail in Ref. [74] for a
relativistic bosonic system, but carries over to our case one by one: at the
current time x̃0, one determines successively

B Π̃ρ
αβ(x̃0, ỹ0) and Π̃F

αβ(x̃0, ỹ0) for all ỹ0 with 0 ≤ ỹ0 ≤ x̃0 using Eqs. (2.82)
and (2.83),
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2.3 1/N expansion of the 2PI effective action

B Ĩραβ(x̃0, ỹ0) from Ĩραβ(x̃0, x̃0) to Ĩραβ(x̃0, 0) using Eq. (2.81),

B ĨFαβ(x̃0, ỹ0) from ĨFαβ(x̃0, 0) to ĨFαβ(x̃0, x̃0) using Eq. (2.80),

B Σ̃
′
ρ
ab(x̃0, ỹ0) and Σ̃

′
F
ab(x̃0, ỹ0) for all ỹ0 with 0 ≤ ỹ0 ≤ x̃0 using Eqs. (2.89)

and (2.90),
B and finally ∂x̃0

ρ
ab

(x̃0, ỹ0) and ∂x̃0
F ab(x̃0, ỹ0) for all ỹ0 with 0 ≤ ỹ0 ≤ x̃0

using Eqs. (2.92) and (2.93).

3. For the time-evolution of F ab(x̃0, x̃0) = Fab(x̃0, x̃0) and ρ
ab

(x̃0, x̃0) = ρab(x̃0, x̃0)
along the time diagonal, two considerations are especially beneficial to improve
the numerical accuracy:

B Since ρab(x̃0 + ∆t̃, x̃0 + ∆t̃) is fixed by the anti-commutation relation,
Eq. (1.39), it can be evaluated using this relation and no numerical integ-
ration is needed.

B If the diagonal time step of F is determined according to

Fab(x̃0 + ∆t̃, x̃0 + ∆t̃) = Fab(x̃0, x̃0)

+
(
Fab(x̃0 + ∆t̃, x̃0)− Fab(x̃0, x̃0)

)
+
(
Fab(x̃0, x̃0 + ∆t̃)− Fab(x̃0, x̃0)

) (2.97)

then the discretised equations fulfil the same symmetry associated with the
particle number conservation as the continuous equations. This enables to
conserve the particle number also numerically exactly.

4. The time integrals on the r. h. s. of the equations of motion (and in the equations
for the Ĩ) make the numerical evolution of the equations time consuming.
Furthermore, they require to store the whole past of F and ρ (and Π̃ for
the practical purpose to significantly decrease the run time of the numerical
computation). At first sight, this suggests that the maximum possible time
evolution is limited by the RAM of the computer. However, for large enough
interactions γαβ, Fab(x̃0, ỹ0) and ρab(x̃0, ỹ0) are damped for x̃0 � ỹ0, which
allows to keep only a finite memory kernel, i. e. keeping only the near past in
the memory, at longer times without changing the numerical accuracy of the
resulting dynamics.
Another possibility, not pursued by us, is to parallelise the computation (for
example using MPI) on several computers and distribute the memory kernel
on the different RAMs. Such a distributed memory concept with minimum
MPI communication is described, for example, in Ref. [130], where dynamical
equations of very similar structure as ours are solved. Similar to the distribution
of ΣF , Σρ, F , and ρ described in this reference, one can also distribute IF , Iρ,
ΠF , and Πρ in order to implement their concept for our dynamic equations in
the NLO 1/N approximation.
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Chapter 2 Non-perturbative approximations of the 2PI effective action

5. We use a shared memory concept to solve the dynamic equations numerically.
Thus, we have a high interest in saving memory. A crucial point is to make use
of the symmetries of F and ρ. In the time domain, this means that only those
entries with x̃0 ≥ ỹ0 need to be stored. In the field index domain, two values
need to be stored, the 11- and the 12-entry, since the other two, the 22- and the
21-entry, are (except a possible sign) identical to them—see Eqs. (1.38b) and
(1.38c). In the spin index domain, two values need to be stored, one for α = β
and one for α 6= β for the (spin balanced) initial conditions we are interested.
This implies that the memory costs are the same for all N ≥ 2.

6. All computations can be performed in both position and momentum space.
Practically, one can switch between them using Fast-Fourier-Transform (FFT)
algorithms. This is especially recommendable for computations in larger than
one dimension where the direct evaluation of convolutions are numerically much
more costly. In this case, it is much cheaper to perform an FFT, evaluate the
multiplication associated with the convolution, and transform back with another
FFT.

2.3.4 Beyond the next-to-leading order approximation

We have seen that the combinatorial factors played an important rôle in allowing
a convenient expression of the dynamic equations in the NLO 1/N approximation;
more specifically, it is the iterative form of I, which allowed to write all equations
without any explicit summation over diagrams. This iterative form for I was possible
due to the appearance of adequate combinatorial factors arising when evaluating
the diagrams. As we will see in the following, it is straightforward to identify the
contributing diagrams at each order if we go beyond NLO; however, to rewrite the
resulting dynamic equations without any explicit summation is at least difficult and
maybe impossible.

As a first step, we identify the contributing diagrams without taking care about
the combinatorial factors.

B As we have seen in Sec. 2.3.1, all diagrams with one new vertex (i. e. one new
squiggly vertex line) appearing for each new propagator loop contribute to Γ2

at the same order. In each diagram, a squiggly vertex line can thus be replaced
by a bubble chain without changing the order at which the diagram contributes.
To identify different types of diagrams contributing at the same order in the
1/N expansion, this motivates to replace squiggly vertex lines in the diagrams
by dashed vertex lines. Dashed lines now represent a bubble chain without
specifying the number of bubbles, i. e.

∈ {
, , , , . . .

}
,

and contribute a factor of 1/N to Γ2. As a consequence, all diagrams now
consist of only full propagator lines forming loops that contribute a factor of N
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2.3 1/N expansion of the 2PI effective action

to Γ2 and dashed vertex lines, where at each end of a dashed vertex line two
propagator lines join.

Note that we must not include diagrams in which two dashed vertex lines are
connected by a propagator bubble since this diagram is already included by a
dashed vertex line itself, i. e.

∈ .

Since now all vertex lines are dashed, an equivalent statement is that at each
propagator loop there must join at least three dashed vertex ends if the diagram
contains more than one dashed vertex line.

B In this diagrammatic language, a diagram with k propagator loops contributes
at NnLO with n ≥ 1 if and only if it has n+ k − 1 dashed vertex lines because
N k(N−1)n+k−1 = N 1−n and NnLO is of order O(N 1−n).

Note that this implies that there is only one diagram that contains exactly one
dashed vertex line. This diagram has one propagator loop and is the so-called
sunset diagram. The sunset diagram is the only contribution at NLO, see
Fig. 2.5a.

B Beyond NLO, only a finite number of diagrams contribute at each order, which
can be seen as follows.

As argued above, there must be more than one dashed vertex line appear in the
diagrams at NnLO with n > 1. Therefore, there must join at least three vertex
ends at each propagator loop, i. e. there must be at least 3k dashed vertex ends
in a diagram with k propagator loops. And since there are n+ k − 1 dashed
vertex lines (each having two ends) in a diagram with k propagator loops, this
implies

2(n+ k − 1) ≥ 3k ⇔ 2(n− 1) ≥ k . (2.98)

Therefore, an upper bound for the number of propagator loops, and therewith
also an upper bound for the number of vertices, exists for a given n. Hence,
only a finite number of diagrams contribute at each order.

Examples: As depicted in Fig. 2.5, two diagrams contribute at N2LO, and ten
diagrams contribute at N3LO.

With this, we have seen that it is straightforward to identify the contributing diagrams
when going beyond the NLO approximation of Γ2 in the 1/N expansion. Even though
there are only a finite number of diagrams at each order, we have to keep in mind that
each dashed vertex itself represents a sum over an infinite number of bubble chains. If
there is more than one dashed vertex in a diagram then we find that the combinatorial
factors appearing when evaluating these diagrams make it unobvious how to write
the dynamic equations in a form that does not involve explicit summations over an
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(a)

NLO:

(b)

N2LO:

(c)

N3LO:

Figure 2.5: Diagrammatic representation of the diagrams contributing at (a) NLO, (b)
N2LO, and (c) N3LO to Γ2 in the 1/N expansion. Thick blue lines represent full
propagators and black dashed vertex lines represent a collection of all bubble
chains consisting of full propagator loops and bare interaction vertices (see text
in main body for details).

infinite number of contributions. These explicit summations make a direct numerical
implementation impossible.

An alternative approach to go beyond the NLO approximation in the 1/N expansion
of the 2PI effective action is known within the so-called auxiliary-field formalism
[59, 131, 132, 133]. It was used in Refs. [134, 135] to derive dynamical equations in
N2LO approximation for a relativistic bosonic model with φ4 interactions.

The action needed in the auxiliary-field formalism can be derived from the action S
we used via a Hubbard-Stratonovic transformation. Instead of the original four-vertex
interaction, one then has a three-vertex interaction. Two legs of the three-vertex
are the original fermionic fields. The third leg is the auxiliary-field, which turns
out to be identical to the Iαβ(x, y) we introduced in the NLO approximation. All
NLO diagrams of the original 1/N expansion are then collected in a single diagram,
the sunset diagram. Since this sounds very similar to our discussion above, a word
in caution: The NLO contribution to Γ2 in the auxiliary-field formalism is not
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identical to the NLO contribution Γ2 we discussed in this chapter. In the former, the
resummed bubble chain appears in the sunset diagram in the from of Iαβ(x, y); in the
latter, the bubble chain contributions are, however, differently weighted (with factors
1/2, 1/3, 1/4, . . . ), which is depicted in Fig. 2.4a. In the auxiliary-field formalism,
the dynamic equations derived in N2LO approximation of the 1/N expansion are in
principle suitable for a numerical implementation; however, solving them is numerically
very costly due to additional temporal convolutions5.

2.4 Summary

In this chapter, we discussed different possible approximation schemes of the two-
particle irreducible (2PI) effective action Γ for a non-relativistic Fermi gas with N
components that mutually interact through local s-wave contact collisions. These
approximations were necessary since the exact dynamical equation derived in the
first chapter can generally not be solved exactly due to the complexity of the proper
self-energy contribution Σ appearing therein. The approximated proper self-energies,
which we derived from the approximated 2PI effective action discussed in this chapter,
enabled us to write the dynamical equation in a form suitable for a numerical
integration.
We described two approximation schemes of the 2PI effective action in detail.

The first approximation scheme we discussed was a loop expansion in which the
contributions to the 2PI effective action were sorted in terms of powers of the bare
coupling constant λ. In the first order of this approximation, we derived the well
known Hartree-Fock-Bogoliubov dynamic equations for the single particle density
and an anomalous pair-correlation function. These equations include neither non-
Markovian corrections to the propagation kernel nor many-body corrections to the
scattering matrix. Both types of corrections are included, however, in the second
order of this approximation, the dynamic equations of which we also derived. We
commented on both how these dynamic equations are related to kinetic equations
found in the literature and how one proceeds to higher orders in the loop expansion.
The second approximation scheme we discussed is a controlled non-perturbative

approximation in which we expanded the effective action in powers of the inverse
number of spin states N , i. e. in powers of 1/N . This expansion is not based on
the coupling and which is, therefore, not restricted to the weak coupling regime.
We derived the dynamical equations in leading order and next-to-leading order
approximation of this expansion. We showed that at next-to-leading order, an infinite
number of diagrams is resummed and, thus, both scattering and memory effects
are included. For a homogeneous gas, we presented the dynamical equations in
next-to-leading order approximation also in momentum space. Furthermore, We
wrote them in dimensionless variables and in an interaction picture. This is especially
useful for our numerical investigations, the results of which are presented in the next

5In Refs. [134, 135], the numerical solutions of the dynamic equations in NLO approximation
neglected for this reason the contributions from the diagrams shown on the right side of Fig. 2.4b.

57



Chapter 2 Non-perturbative approximations of the 2PI effective action

chapter. Finally, we gave some ideas on how to proceed beyond the next-to-leading
order approximation in the 1/N expansion of the 2PI effective action.
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Chapter 3

Non-equilibrium time evolution of
a one-dimensional Fermi gas

In the previous chapter, we derived non-perturbative approximation schemes for the
two-particle irreducible (2PI) effective action of an ultra-cold Fermi gas with N -fold
spin degeneracy. The approximation schemes are required in order to be able to solve
the dynamical equations for the two-point functions that we derived in Ch. 1. In
the present chapter, we apply the dynamic equations derived from the 2PI effective
action in next-to-leading order (NLO) approximation of the 1/N expansion to the
case of a homogeneous ultra-cold Fermi gas with two-fold hyperfine or spin degeneracy
(denoted as ↑ and ↓) in one spatial dimension.

The model of a one-dimensional Fermi gas containing two spin components that
mutually interact through local repulsive s-wave collisions is considered to be integrable
in the sense that it has as many conserved quantities as degrees of freedom [78]. Thus,
if such a gas is initially prepared far from an equilibrium state then the gas is expected
not to evolve into a late-time state that can be described by a grand-canonical density
matrix [79, 81, 82]. Recently, there has been an extensive discussion on the required
circumstances that allow the long-time properties of integrable systems to be described
by a generalised Gibbs ensemble (GGE) [82, 85, 86, 87, 88, 89, 136, 137]. From the
experimental point of view, it might be difficult, however, to rule out the equilibration
of the system to a particular statistical ensemble because the expectations of many
of the experimentally accessible observables will appear essentially indistinguishable
from the ones found from the different ensembles once the system evolved into a
steady state [138].
At zero temperature, the one-dimensional Fermi gas containing two spin com-

ponents that mutually interact through repulsive contact interactions is known to
behave as a Tomonaga-Luttinger liquid (TLL) [83, 139, 140], which is obtained by
taking the dispersion to be linear in momentum. The TLL Hamiltonian is quadratic
and therefore integrable, and its equilibrated maximum-entropy state is naturally
described by a GGE [84, 141]. Further away from zero temperature, where our
analysis presented in this chapter is performed, we are in a regime of energies in which
the non-linearity of the dispersion becomes relevant. In this regime, the applicability
of the TLL model has not been shown, and the description of the long-time properties
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is still an open question. As we will see, our results indicate that the considered
Fermi gas at sufficiently low energies approaches a non-thermal late-time state that
does not respect the fluctuation-dissipation theorem. This signature is in principle
accessible in experiments.

In our analysis, the Fermi gas is initially assumed to be non-interacting and prepared
far from equilibrium, characterised by a non-equilibrium single-particle momentum
distribution. In the first section of the present chapter, Sec. 3.1, we discuss how
the initial conditions translate into the specification of two-point functions. The
homogeneous one-dimensional gas is taken to have a line density n1D, and the
constituents have mass m. We assume the interactions to be switched on at the
initial time and investigate the long-time evolution of the interacting gas towards
equilibrium. We study the dynamics of the gas in a finite-size box with periodic
boundary conditions. The numerical implications of this restriction are discussed in
Sec. 3.2. The ensuing sections are devoted to the discussion and interpretation of our
numerical results.

All runs that we performed evolved into a stationary state once they were insensitive
to numerical parameters like the discrete time step size. An exemplary run is discussed
in Sec. 3.3. As we show in Sec. 3.4, these stationary states are insensitive to the details
of the initial state. They are solely determined by the total energy Etot, the total
particle number N (or rather the line density n1D), and the interaction strength γ. In
these stationary states, we find that the occupation numbers of the lowest momentum
modes coincide with a Fermi-Dirac distribution, with which thermodynamic quantities
like the temperature and the chemical potential are connected. This is investigated
in Sec. 3.5. The occupation numbers of the higher momentum modes deviate from a
Fermi-Dirac distribution. This deviation becomes more and more dominant at lower
total energies of the gas. To be more precise, we find that a power-law tail is replacing
the exponential decay of a Fermi-Dirac distribution, as we will see in Sec. 3.6.

There are two possible reasons for a deviation of the momentum mode occupation
numbers from a Fermi-Dirac distribution. First, the system is in a non-thermal state
that cannot be described by a grand-canonical density matrix. Second, the single
particle momentum modes are no longer the eigenmodes of the system, which is
naturally the case for an interacting system at sufficiently low energies. In the latter
case, if the system is in a thermal state then only the occupation numbers of the quasi-
particles corresponding to the eigenmodes of the system need to respect a Fermi-Dirac
distribution in order that the state can be described by a grand-canonical density
matrix. However, for a (strongly) interacting system, the eigenmodes are usually
difficult to extract. Thus, it is advisable employ the fluctuation-dissipation theorem,
which, for a (grand-)canonical state, is exact and independent of a quasi-particle basis
of eigenmodes of the system. In Sec. 3.7, we investigate the fluctuation-dissipation
relation for our data. For the runs with very low total energies, i. e. those where
the single particle momentum distribution deviates the strongest from a Fermi-Dirac
distribution, we also find deviations from the fluctuation-dissipation relation. This
indicates that the Fermi gas approaches a non-thermal state at large times.
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3.1 Initial conditions

3.1 Initial conditions

With initial values for the spectral function ρ(t0, t0; p) and the statistical propag-
ator F (t0, t0; p), Eqs. (2.62) and (2.63) describe the time evolution of the two-time
correlation functions including the momentum distribution

nα(t, p) =
1

2

(
1− F(α,i)(α,i)(t, t; p)

)
. (3.1)

In the following, we will choose different initial momentum distributions nα(t0, p)
away from thermal equilibrium. Furthermore, we choose the initial coherence between
different spins as well as the initial pair correlation function to vanish,

〈Ψ̂†α(x, t0)Ψ̂β(x, t0)〉 = 0 for α 6= β , (3.2)

〈Ψ̂α(x, t0)Ψ̂β(x, t0)〉 = 0 . (3.3)
(3.4)

For α = β, the equal-time pair correlation function always vanishes, which is in
accordance with the conservation of the total particle number and a direct consequence
of the equal-time property of the spectral function (Eq. (1.39)). For α 6= β, a non-
zero initial pair correlation function would account for BCS-type pairs and imply a
non-zero variance of the total particle number. The above initial conditions require

F(α,ia)(β,ib)(t0, t0; p) = 0 for ia 6= ib . (3.5)

Combining Eqs. (3.1) and (3.5) yields the initial condition

F(α,1)(α,1)(t0, t0; p) = F(α,2)(α,2)(t0, t0; p) =
1

2
− nα(t0, p) . (3.6)

The equal-time property of the spectral function, Eq. (1.39), requires

ρab(t0, t0; p) = iτab . (3.7)

For a homogeneous gas and a (p↔ −p)-symmetric initial state, F and ρ are invariant
under p→ −p at all later times.

The initial conditions in Eqs. (3.2) and (3.2) imply that F(α,ia)(β,ib)(t0, t0; p) and
ρ(α,ia)(β,ib)(t0, t0; p) vanishes for α 6= β at the initial time t0. For the model we are
considering, the dynamic equations for F and ρ, Eqs. (2.62) and (2.63), conserve this
property in time, independent of the approximation chosen for Γ2. As a consequence of
this, only diagrams with an even number of vertices yield a non-vanishing contribution
to Γ2 at NLO of the 1/N expansion. A diagram with an even number of vertices
is not sensitive to the sign of the coupling strength γ. Therefore, the dynamical
equations derived from either the second-order approximation in the loop-expansion
or from the NLO approximation in the 1/N expansion of the 2PI effective action are
insensitive to the sign of γ.
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3.2 Numerical implementation

We numerically solve the (dimensionless) equations of motion in momentum space,
Eqs. (2.92) and (2.93), together with the non-perturbative integral equations for the
self-energies, Eqs. (2.78) and (2.79). For this purpose, we need to consider the system
to be discretised in time and momentum space.
Discretising the momentum space is equivalent to using a finite sized system in

position space, which has automatically discretised momentum modes. If the (one-
dimensional) system is of length L in position space and discretised by an even number
Ns of equally spaced lattice sites then the discrete physical momenta pj , whose square
corresponds to the lattice Laplacian (i. e. the Fourier transform of the discrete second
derivative in position space), are given by

pj
n1D

=
2Ns

N
sin(jπ/Ns) , (3.8)

where j ∈ {−Ns/2 + 1,−Ns/2 + 2, . . . , Ns/2} labels the momentum modes, N =∑
α,j nα(pj) is the total particle number, and n1D = N/L is the one-dimensional

particle density. The lattice provides an infra-red (IR) cut-off at the lowest resolved
non-zero momentum

p1

n1D
=

2Ns

N
sin(π/Ns)

π�Ns≈ 2π

N
(3.9)

and an ultra-violet (UV) cut-off at the highest resolved momentum

pNs/2
n1D

=
2Ns

N
. (3.10)

In the last three formulae, the momenta on the left-hand sides of the equations are
divided by the particle density in order to remind us that we actually implement
the dimensionless equations, i. e. we implement the dimensionless momentum p/n1D

rather than the dimensionfull momentum p. Thus, in the dimensionless equations, the
total particle N and the number Ns of lattice sites need to be specified to characterise
the lattice—and there is no need to specify explicitly either the length L of the lattice
or the lattice spacing L/Ns in position space. N controls the IR cut-off and the ratio
Ns/N the UV cut-off. If not stated otherwise, we chose a lattice with Ns = 128 sites
and used N = 26 particles (13 of each spin component) for the results presented
in this chapter. We carefully checked that a change in the size of the box and the
number of the momentum modes does not lead to a significant change in the results
presented, except for finite-size (IR cutoff) effects taken into account explicitly in
our analysis. For example, we chose the interaction strength sufficiently weak such
that the occupation numbers of momentum modes close to the UV cut-off are small
enough not to give rise to UV-cutoff-dependent effects.

Due to the memory integrals, computations are costly, and in computing the results
shown below, we kept a finite memory kernel at longer times, checking that an increase
in the memory time did not change the results.
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3.3 Time evolution from far-from-equilibrium into a stationary state

In the graphs we show in this chapter, the momenta, the energies, and the temper-
atures are given in units of the Fermi momentum pF , the Fermi energy ωF , and the
Fermi temperature TF , which are defined as

pF
n1D
≡ 2Ns

N
sin

(
π(N −N )

2NNs

)
with N = 2, (3.11)

ωF ≡
p2
F

2m
, (3.12)

TF ≡
ωF
kB

, (3.13)

where kB is Boltzmann’s constant.

3.3 Time evolution from far-from-equilibrium into
a stationary state

In this section, we want to address the question how the Fermi gas evolves in time if
it is initially prepared far from an equilibrium state. In particular, it is the question
whether or not the Fermi gas will reach a (quasi) stationary state before the finite size
of the system causes revivals. To address these questions, we present some typical
results that we found when numerically solving the dynamic equations Eqs. (2.62)
and (2.63) (in next-to-leading order approximation of the 1/N approximation of the
effective action) on the basis of an exemplary but typical run.

Our numerical results for the typical run considered here are shown in Fig. 3.1.
As initial state at time t̃ ≡ n2

1Dt/m = 0, we populate all momentum modes of a
non-interacting Fermi gas in a certain momentum interval and leave all other modes
unpopulated. No further correlations are present in the initial state. The interactions
are suddenly switched on at the initial time t̃ = 0. Therefore, the chosen initial
momentum distribution is clearly far-from-equilibrium. The initial distribution of
the momentum mode occupation numbers is shown in Fig. 3.1a together with the
numerically determined late-time (t̃ = 10) distribution. Since there is a (p ↔ −p)-
symmetry, we always show only half of the momentum modes; actually, to be precise,
we show (Ns + 2)/2 of the Ns momentum modes.

Figure 3.1b shows the numerically determined time evolution of the momentum
mode occupation numbers on a double logarithmic plot. After an initial dephasing
period where the occupation numbers show fast oscillations, the occupation numbers
slowly drift into the late-time state. One can virtually see that this late-time state is
stationary. In fact, all runs we performed (i. e. in particular those presented below in
this chapter) reached a stationary distribution of the momentum mode occupation
numbers once the time evolution was insensitive to numerical parameters like the
time step size and the finite size of the memory kernel. Note that a conservative
estimate of the recurrence time on the basis of the slowest oscillating discrete mode
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Figure 3.1: Results for a typical run presented in this chapter. The parameters used in
this run are: Ns = 128 momentum modes, N = 26 particles (13 spin up, 13
spin down), interaction strength |γ| = 4, size of time steps ∆t̃ = 0.0015, and
always the most recent 1500 time steps of the past evolution are used in the time
integrals over the past (i. e. the size of the memory kernel is 1500∆t̃ = 2.25).
(a) Initial (t̃ ≡ n2

1Dt/m = 0) far-from-equilibrium and late-time (t̃ = 10)
distribution of the momentum mode occupation numbers. (b) Numerically
determined time evolution of the momentum mode occupation numbers on a
double logarithmic plot. The occupation numbers virtually reach a stationary
state. (c) Redistribution of the potential and kinetic energy distributions. The
total energy remains constant. (d) Inverse slope function at various times. Since
it becomes a straight line at late times (t̃ = 10), the steady state distribution is
a Fermi-Dirac distribution.
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3.4 Insensitivity of the final state on the details of the initial state

of the free gas is two orders of magnitude larger than the shown total evolution time.

During the time evolution, scattering effects lead to a redistribution of the initial po-
tential and kinetic energy distribution. For the typical run, this is shown in Fig. 3.1c.
Note that the discrete time steps in the numerics break the continuous symmetry
of the equation that is associated with the conservation of the total energy. Hence,
the total energy cannot be exactly conserved in the numerics. However, for small
enough step sizes, the numerically determined time evolution becomes insensitive to
the discreteness of the time. And in this case, the numerics conserves essentially also
the total energy.

At this stage, we also want to introduce the inverse slope function σ↑ = ln[1/n↑−1].
When substituting the inverse slope function for the exponent of the Fermi-Dirac
distribution, i. e.

n↑(t, p) =
1

exp{σ↑[ω(p)]}+ 1
, (3.14)

it is apparent that σ↑, as a function of mode energy ω(p), reduces to a straight line
when the occupation number n↑(t, p) is a Fermi-Dirac distribution. And in the case
where the inverse slope function becomes a straight line, one can extract the inverse
temperature β = (kB) and the chemical potential µ according to σ↑(ω) = β(ω − µ).
In Fig. 3.1d, the inverse slope function of the typical run is shown for various times
during the time evolution. For the exemplary run shown here, it becomes a straight
line at late times. However, this is not characteristic for any generic run but a
distinctive property if the total energy is large enough. We will come back to this
property and investigate it further in Secs. 3.6 and 3.7.

3.4 Insensitivity of the final state on the details of
the initial state

In this section, we want to address the question how much memory of the initial
conditions will remain in the system once it reaches a stationary (or quasi-stationary)
state. For this purpose, we study the time-evolution for two initial states—in the
following called run A and run B—with the same total particle number, total energy,
and interaction strength |γ| = 4 but different far-from-equilibrium distribution of the
initial momentum mode occupation numbers.

The two different initial distributions we consider in this section are shown in
Fig. 3.2a. Once the system evolves in time, multiple scattering events lead to a
redistribution of momenta until the system reaches a stationary state. In Fig. 3.2b, the
numerically determined time evolution of the momentum mode occupation numbers is
shown for six of the momentum modes. The final (n2

1Dt/m = 10) distributions of the
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Figure 3.2: Comparison between two runs with the same total energy and coupling constant
(|γ| = 4) but different initial distributions of the momentum mode occupation
numbers. (a) Initial (t̃ ≡ n2

1Dt/m = 0) and final (t̃ = 10) momentum mode
occupation numbers. Within the numerical precision, the final momentum
distributions are the same for both runs. (b) Numerically determined momentum-
mode occupation numbers as a function of time t. (c) Inverse slope function of
the final distribution of the momentum mode occupation numbers. (d) Nonlocal-
in-time behaviour (i. e. same center but different relative time coordinates) of the
statistical propagator F (↑,1)(↑,1)(X, s; p) in the interaction picture, cf. Eq. (2.91),
at late center times (n2

1DX/m = 10) for four of the momentum modes. Within
the numerical precision, the data from the two runs lie on top of each other,
which proves (together with an exact match of the other components of F̃ and
ρ̃) that the final states of both runs are identical.
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3.5 Thermodynamic properties

momentum mode occupation numbers and the corresponding inverse slope functions
are shown in Fig. 3.2a and c, respectively. We find that the steady states of the
two runs have within the numerical precision the same momentum-mode occupation
numbers at late times.
However, the momentum distribution is just one possible observable. And thus,

the fact that the two runs coincide in this observable does not allow the conclusion
of the final states being the same. For the two runs, the off-diagonal behaviour is
the same as illustrated in Fig. 3.2d. To decide whether the final states are identical,
one has not only to look at the momentum-mode occupation numbers, but also
to compare the nonlocal-in-time behaviour of the two-point functions Fab(x0, y0; p)
and ρab(x0, y0; p) of the two runs. Here, nonlocal-in-time behaviour means same
center time coordinates X ≡ (x0 + y0)/2 but different relative time coordinates
s ≡ x0 − y0. Exemplary, the nonlocal-in-time behaviour of F(↑,1)(↑,1)(X, s; p) at late
times (n2

1DX/m = 10) is depicted in Fig. 3.2d for four of the momentum modes of
runs A and B. The data for the two runs lie on top of each other. Since also the
other two-point functions of the two runs coincide within the numerical precision at
late times, we can conclude that the final states of run A and run B are indeed identical.

The chosen initial conditions for runs A and B allow the Fermi gas to equilibrate over
the considered range of momenta into the same final state. We have also compared
runs with other sets of parameters (N , NS, γ) and always found that the late time
state, on the one hand, depends only on Etot and γ as soon as the dynamics does
not depend on numerical parameters like the size of the time step and the size of the
memory kernel, and on the other hand, loses all other details of the initial preparation.
In conclusion, we find that the final state is determined by the values of the

conserved quantities in the initial state. All other information about the details of
the initial state is lost during the time evolution.

3.5 Thermodynamic properties

In this section, we investigate a few thermodynamic properties of the equilibrated
interacting Fermi gas. For this purpose, we performed additional runs with different
initial energies but the same total particle number and interaction strength as in runs
A and B. Exemplary, the initial momentum distributions of some of these runs are
shown in Fig. 3.3a together with the one from run B (= run 10).
All runs virtually reach a stationary state within the times that are numerically

accessible before the time discretisation leads to a break-down of the energy conserva-
tion (the discrete time breaks the time translational invariance of the action that is
related to the energy conservation). Two examples, one for a high initial energy and
another for the lowest initial energy, are shown in Fig. 3.1b and Fig. 3.7a, respectively.
The late-time momentum distributions look on a first sight like a Fermi-Dirac distri-
butions, see Figs. 3.3b and 3.4a. However, when plotting the inverse slope functions
(Figs. 3.3c and 3.4b), we find that the momentum distribution of the runs with lower
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Figure 3.3: Runs with the same total particle number and interaction strength but different
initial energies. (a) Initial distribution of the momentum mode occupation
numbers. (b) Final (t̃ = 10) momentum distributions that look on a first sight
like Fermi-Dirac distributions. (c) Inverse slope functions of the final momentum
distributions from which it can be seen that the runs with low energies show
an excess population in the high momentum modes. (d) Normalised final
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decay rather than a Fermi-Dirac distribution.
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Figure 3.4: Final (t̃ ≡ n2
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of runs B, C, and D (= runs 10, 7, and 3). (a) Momentum mode occupation
numbers as a function of momentum together with fits of the lowest momentum
mode occupation numbers to a Fermi-Dirac distribution. For the fits, the
momentum modes with |p/pF | ≤ 2 are used. (b) Inverse slope functions together
with the Fermi-Dirac and power-law fits from (a) and (c). (c) Normalised
momentum mode occupation numbers as a function of momentum together
with a power-law fit to the tail of the momentum distribution of run D.

initial energies do not fully settle to Fermi-Dirac distributions. For these runs, the
inverse slope function of the lower momentum modes becomes a straight line and
thus reaches a Fermi-Dirac distribution, but the higher momentum modes show an
excess population, which we characterise further in the next section.

Keeping the total particle number constant, a further reduction of the population
in the higher momentum modes will not significantly alter the population in the lower
momentum modes since the former are already populated much less than the latter.
This suggests that we can extract temperatures and chemical potentials from a fit of
the lowest momentum modes (we use the modes with |p/pF | ≤ 2) to a Fermi-Dirac
distribution as it is shown in Fig. 3.4a and b for three of the runs.
The so found temperature dependence of the chemical potential µ is shown in

Fig. 3.5a. For high temperatures, the chemical potential of the interacting gas
converges towards the results for an ideal Fermi gas. However, as shown in the inset,
it substantially deviates from those of an ideal gas at low temperatures where the
finite coupling constant becomes more significant. Note that for the finite size of our
system, the results for the ideal Fermi gas in the discrete momentum space (green
dashed line in Fig. 3.5) differ from those of an ideal Fermi gas in the thermodynamic
limit (blue dashed line in Fig. 3.5), where the momentum space is continuous. Our
results extracted from the late-time momentum distribution are sensitive to this
finite-size effect, too. For more details on the ideal Fermi gas, see App. A.
In Figs. 3.5b and c, the temperature dependence of the late-time kinetic energy

E
(eq)
kin , and the heat capacity CV = kB∂Etot/∂β

−1 at constant volume are depicted.
They show the same qualitative features as the chemical potential: they converge
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Figure 3.5: Temperature dependence of (a) the mean kinetic energy per particle, (b) the
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Figure 3.6: Independency check of our results from the chosen UV cut-off. The runs are
for the same initial momentum distribution and the same total particle number
N = 26 but different number Ns of momentum modes. We find that neither the
bending of the inverse slope function (right panel) nor the power-law exponent
(left panel) of the late-time momentum distribution depends on the UV cut-off.
Note that in all other runs presented in this chapter, we always used Ns = 128
momentum modes.

to the ideal gas results for high temperatures and deviate from them for lower
temperatures.

3.6 Power-law momentum tail

In the previous section, we have seen that thermodynamic quantities can be extracted
from the occupation numbers of the low momentum modes by fitting them to a
Fermi-Dirac distribution. In this section, we investigate the overpopulation of the
occupation numbers at high momenta as compared to a Fermi-Dirac distribution,
which occurs for runs with sufficiently small initial energies. From the runs depicted
in Fig. 3.3d, we find that the population of more and more momentum modes follow
a power law at late times if the total initial energy of the Fermi gas is reduced.
We stress that the data in Fig. 3.3d are extracted at late times where the time

evolution of the momentum mode occupation numbers is virtually stationary on a
double logarithmic plot. For Run D (= Run 3), which has the smallest total energy
of the shown runs, and which therefore takes the longest time to reach a stationary
state, the time evolution is shown in Fig. 3.7a. One clearly sees that especially the
occupation numbers of the higher momentum modes are stationary. And since the
highest momentum modes of this run would need to be less populated by about three
orders of magnitude if all momentum modes were required to fulfil a Fermi-Dirac
distribution, it is very likely that the overpopulation remains even if the propagation
is taken much longer in real time.
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We also want to check that neither the overpopulation in general nor the power-
law exponent in particular are a result of the UV momentum cut-off. If there was
such a dependence, we would expect that for larger UV cut-offs the inverse slope
function becomes a straight line extending to higher and higher momenta such that
the bending shifts towards higher momenta. To investigate a possible UV cut-off
dependence, we performed runs with the same initial far-from-equilibrium momentum
distribution but different UV cut-offs characterised by different ratios Ns/N . The
resulting equilibrated momentum distributions are shown in Fig. 3.6. We find that
neither the bending of the inverse slope function nor the power-law exponent depend
significantly on the chosen UV cut-off.
Finally, we show that the power-law tail is present not only in the NLO 1/N

approximation. As depicted in Fig. 3.7b, the power-law exponent does not change
when diagrams of order γ3 are included1 in the effective action. Therefore, the
power-law exponent is clearly no artifact of the chosen approximation.
The power-law behaviour for different values of the coupling strength is shown in

Fig. 3.8. Within the range of momenta we can resolve, only the runs with smaller
couplings, i. e. lower total energies, develop a power-law tail. Once the power-law tail
is present, the power-law exponent seems not to be strongly depend on the value of
the coupling.
Note that a p−4 power law for the high-momentum tail of the single-particle

momentum distribution is one of Tan’s relations [142, 143, 144, 145, 146] for a
strongly correlated two-component Fermi gas (independent of the strength and the
sign of the coupling) and is also a feature of the BCS theory.

3.7 Fluctuation-dissipation relation and
non-thermal final states

In this section, we address the question whether or not the late-time stationary states
can be described by a standard statistical ensemble as, e. g. the micro-canonical, the
canonical, or the grand-canonical ensemble. If this is the case, we would speak of
thermalisation.

The single-particle momentum mode occupation numbers of an interacting system
is not a good indicator whether or not the system is in a thermal state. Since only the
the occupation numbers of the eigenmodes need to be Fermi-Dirac distributed in order
for the system to be in a thermal state, the single-particle momentum distribution is
likely not to be Fermi-Dirac distributed once the interactions become a pronounced
feature of the system. The interactions become generically a pronounced feature at
sufficiently low energies. Therefore, we have a closer look at the fluctuation-dissipation
relation (FDR), Eq. (1.41). The FDR does not depend on a particular field basis,

1For the third-order loop approximation, which is sensitive to the sign of the interaction strength,
results are shown for positive γ. For negative γ, the numerics turns out to be much more
sensitive for the discrete time step size, such that no numerically stable evaluation of the dynamic
equations was possible with the computational resources by hand.

72



3.7 Fluctuation-dissipation relation and non-thermal final states

10−4

0.001

0.01

0.1

1

0.01 0.1 1 10

n
↑(

p
i)

n2
1Dt/m

i = 0

6

15

19
23

32
43

64 0.001

0.01

0.1

1

1 2 3 4 5 6 7

n
↑(

p
)/

n
↑(

0)

p/pF

0.001

0.01

0.1

1

1 2 3 4 5 6 7

n
↑(

p
)/

n
↑(

0)

p/pF

10−4

0.001

0.01

0.1

1

0 2 4 6 8 10 12

n
(p

i)

(Etot − ELO
pot)/(NωF )

t̃ = 10

(a) (b)

(c) (d)

t = 0.03
t = 0.1
t = 0.3

t = 1
t = 3

t = 10
t = 20

∝ p−4.4

∝ p−4.4

NLO 1/N
2nd-order loop
3rd-order loop
NLO 1/N & 3rd-order loop

i = 0
i = 14
i = 28
i = 48
i = 64

Figure 3.7: (a) Time evolution of the momentum mode occupation numbers of run D
in NLO 1/N approximation of the effective action. (b) Snap-shots of the
occupation numbers shown in (a) as a function of momentum. This shows how
the power-law tail at larger momenta develops in time and becomes stationary.
(c) Comparison of the late time (t̃ = 10) momentum distribution for different
approximation schemes of the effective action for runs with the same initial
state as run D. For the third-order loop approximation, which is sensitive to the
sign of the interaction strength, results are shown for positive γ. (d) Occupation
numbers in NLO 1/N approximation of the effective action at late time (t̃ = 10)
as a function of the total energy per particle. Here, we subtracted the constant
potential energy contribution ELO

pot from the total energy.
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see Sec. 1.2.2, and does thus not require the knowledge of the eigenmodes of the
system. Specifically, we will look at three distinctive runs whose late-time momentum
distributions are shown in Fig. 3.4:

B Run B at a high energy, where the single-particle momentum distribution
becomes a Fermi-Dirac distribution and the FDR holds,

B Run C at an intermediate energy, where the single-particle momentum distri-
bution does not become a Fermi-Dirac distribution but the FDR still holds,
and

B Run D at a low energy, where neither the single-particle momentum distribution
becomes a Fermi-Dirac distribution nor the FDR holds. Thus, run D evolves
into a non-thermal final state.

For our analysis, it is convenient to introduced the fraction

f(ω, p) = iF↑↑(X0;ω, p)/ρ↑↑(X0;ω, p) (3.15)

as a function of the frequency ω and momentum p. For the definitions of F↑↑(X0;ω, p)
and ρ↑↑(X0;ω, p), see Eq. (1.42). If the system is in a thermal state, which is described
by a (grand-)canonical ensemble, then f is independent of the momentum p and
according to the FDR given by

fthermal(ω, p) ≡ f(ω) =
1

2
− nFD(ω − µ) (3.16)
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Figure 3.9: Emergence of the fluctuation-dissipation relation for several momentum modes
pi in run B. Left to right: the inverse slope function of the fraction f defined
in Eq. (3.15) is plotted for early (t̃ ≡ n2

1Dt/m = 1.125), intermediate (t̃ = 3),
and late times (t̃ = 10.0). The black lines indicate the Fermi-Dirac distribution
with the same β and µ as in Figs. 3.4a and b.

with the Fermi-Dirac distribution nFD(ω) = (exp(βω) + 1)−1. In the following,
f is shown for each momentum mode in a region of frequencies ω around the
peaks of the statistical and spectral functions where the argument of the logar-
ithm ln[(1/2 − f)−1 − 1] is positive, i. e. where |f | < 1/2. Outside this region, the
numerically evaluated argument of the logarithm oscillates around zero due to finite
evolution time after the quench. Propagating the dynamic equations further reduces
these oscillations.

Figure 3.9b shows the emergence of the fluctuation-dissipation relation at late times
for run B. One clearly observes that the inverse-slope function ln[(1/2− f)−1 − 1] of
the fraction f evolves towards a Fermi-Dirac distribution. Note that the Fermi-Dirac
distribution shown in the figures as black solid lines is not a fit to the data; rather, it
is the distribution we extracted from the low-momentum mode occupation numbers
as shown in Figs. 3.4a and b. Hence, the system is approximately thermalised over
the depicted range of energies according to the FDR with all minor deviations being
due to the finite evolution time. In conclusion, the chosen initial conditions for run B
allow the single-particle momentum distributions to thermally equilibrate over the
considered range of momenta.

Figure 3.10c shows the inverse-slope function of the fraction f(ω, p) for run C for
five of the momentum modes. Again, f is shown in a region where the argument
of the logarithm is positive. The mean f(ω) of all momentum modes is depicted in
Fig. 3.10e. In run C, the inverse-slope function is a straight line at late times over
the region of relevant ω and therefore corresponds to a Fermi-Dirac function. As in
run B, the system is thermalised over the depicted range of energies, in spite of the
signs of a power-law tail in run C. This can be understood by considering the spectral
function shown in Fig. 3.10a: The second peak at negative frequencies picks up extra
contributions from the Fermi sea thereby causing the power-law overpopulation at
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Figure 3.10: (a) Spectral functions as a function of frequency at late time X0 = 18.9n−2
1Dm

in run C for five of the momentum modes pi. (c) Inverse-slope function of
fraction f(ω, pi) defined in Eq. (3.15) at X0 = 18.9n−2

1Dm, for the same five
momentum modes as in (a). (e) Mean fraction f of all momentum modes,
error bars are standard deviations. (b), (d), and (f) are the same as (a), (c),
and (e), respectively, but for run D. In all graphs, black solid lines indicate
Fermi-Dirac distributions with the same values for β and µ as in Figs. 3.4a
and b. In run C, the system thermalises, whereas it does not in run D. Note
the exponential decay of the spectral functions away from the peaks in run D.
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3.7 Fluctuation-dissipation relation and non-thermal final states

high momenta. Although the area under the negative-ω peak is reduced by a factor of
∼ 10−4, it is multiplied by 1 on the filled-sea side of the Fermi-Dirac function in f while
the positive-ω peak multiplies the exponentially suppressed tail of the Fermi-Dirac
function. Thus, one may pre-conclude from run C that the one-dimensional Fermi
gas always thermalises to a grand-canonical ensemble, with the eigenmodes of the
strongly interacting system at low temperatures being superpositions of particles and
holes. This contains reminiscence of the Bogoliubov depletion at zero temperature
that gives a p−4 power-law tail of the single-particle momentum distribution for a
Fermi gas in the BCS theory.

However, run D performed at even lower energy shows that the system does in
general not thermalise to a grand-canonical ensemble. Figure 3.10d shows the inverse-
slope function for the fraction f of run D. Even though the momentum overpopulation
is again largely produced by the contributions from the Fermi sea, see Fig. 3.10a,
also the fraction f shows a power-law tail ∼ ω−5.25 ∼ p−10.5 violating the FDR, see
Fig. 3.10f. Despite this, the equilibrated momentum distribution ∝ p−4.4 at low total
energies is still mainly due to the second peak in the spectral function while the
contribution from the non-thermal power-law tail of f is suppressed by another 6
powers of p.

We finally note that the spectral functions of the intermediate and high momentum
modes of run D in Fig. 3.10b show an interesting exponential decay away from the
spectral peaks.

Comparison to Tomonaga-Luttinger liquid model

The model of a homogeneous gas with two spin components in one spatial dimension
(1D) is integrable in the sense that it has as many conserved quantities as there
are degrees of freedom [78]. Hence, if prepared out of equilibrium, it is expected
not to thermalise in general [79, 80, 81, 82]. Its low-energy properties can be
approximated by a Tomonaga-Luttinger liquid (TLL) model [83] that contains a
linear free dispersion. It is important, however, to clearly separate the TLL model,
which is widely discussed in the literature, and the 2PI effective action approach
we choose. The approximating TLL model is known to form a low-energy fixed
point of the full interacting one-dimensional Fermi gas [84]. Owing to the quadratic
form into which the TLL Hamiltonian can be transformed by introducing bosonic
particle-hole operators, the occupation numbers of the resulting quasi-particle modes
represent conserved quantities. As a consequence, the long-time evolution of TLL
fermion and coupled fermion-boson models after an interaction quench is found to
approach a generalised Gibbs ensemble [82, 84, 85], which accounts for the conserved
quasi-particle numbers. We would like to point out that non-thermal stationary states
have also been found in a number of other models, both integrable and non-integrable
[86, 87, 88, 89].
In our work, however, we consider the dynamic evolution described by the full

interacting fermionic Hamiltonian, approaching the problem of equilibration from the
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Chapter 3 Non-equilibrium time evolution of a one-dimensional Fermi gas

high-energy end. Our analysis applies away from zero temperature in a regime of
energies where the non-linearity of the dispersion becomes relevant; therefore, we do
not expect to recover the TLL model.

3.8 Summary

In this chapter, we applied the dynamic equations derived from the 2PI effective
action in next-to-leading order (NLO) approximation of the 1/N expansion to a
homogeneous ultra-cold Fermi gas with two-fold spin degeneracy in one spatial di-
mension with contact interactions between fermions in different spin states. In NLO
1/N approximation, these equations are commonly considered to describe thermal-
isation. At sufficiently high total energies, also we found equilibration of the Fermi
gas to a thermal state satisfying the fluctuation-dissipation relation (FDR) for a
grand-canonical ensemble. However, at sufficiently low total energies, we observed
non-thermal equilibration to a state in which the correlation functions violated the
FDR. This signature is in principle amenable to experiments.

We studied the dynamics of the gas in a finite-size box with periodic boundary
conditions. All runs that we performed evolved into a stationary state once they were
insensitive to numerical parameters like the discrete time step size. These stationary
states were insensitive to the details of the initial state and solely determined by the
total energy, the line density, and the interaction strength.
In the stationary states, we found that the occupation numbers of the lowest mo-

mentum modes coincided with a Fermi-Dirac distribution with which thermodynamic
quantities like the temperature and the chemical potential are connected. We also
extracted the late-time kinetic energy and the heat capacity at constant volume.
The so found thermodynamic quantities had in common that they converged to the
ideal gas results for high temperatures and deviate from them for lower temperatures.
These deviations were expected since the finite coupling constant becomes more
significant at lower temperatures.
In the stationary states, the occupation numbers of the higher momentum modes

deviated from a Fermi-Dirac distribution. This feature was more pronounced at lower
total energies of the system, and a power-law tail was replacing the exponential decay
of the Fermi-Dirac distribution. The power law is reminiscent of the p−4 power law
for the high-momentum tail of the single-particle momentum distribution in both one
of Tan’s relations for a strongly correlated two-component Fermi gas and BCS theory.
Note that our results do not rule out that a power law ultimately appears also at
higher energies in a range of momenta beyond the momentum cut off present in our
numerics.

For the runs with very low total energies, we also found deviations from the FDR
for a grand-canonical ensemble. This indicated equilibration to a non-thermal state.
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Chapter 4

Non-equilibrium dynamics of a
Kondo lattice gas

After analysing the model of an N -component Fermi gas in the previous two chapters,
we investigate a different model in this chapter. In the following, we treat an ultra-cold
Fermi gas on a spatial lattice that can be described by the SU(N ) symmetric Kondo
lattice model (KLM). The crucial difference to the former model is that now the
constituents of the gas have an additional (internal) degree of freedom.

We start, in Sec. 4.1, with a general motivation why the KLM recently attracted
attention in the cold atom community. Here, we also discuss relevant properties of
fermionic alkaline earth atoms that allow to simulate the KLM using optical lattice
potentials. Afterwards, we review the KLM more formally in Sec. 4.2 and show how
different representations of the Kondo lattice Hamiltonian are linked with each other.
Since we use a complex field basis for our description in this chapter, we briefly
review relevant formulae of the 2PI effective action approach in Sec. 4.3 in order to
see which formulae change and which do not. Section 4.4 is devoted to the derivation
of the dynamic equations using the 1/N expansion of the 2PI effective action. In
leading-order approximation of the 1/N , we recover the mean-field dynamic equations
of the U = 0 Anderson model used in Ref. [93] to describe Kondo lattice dynamics.
Finally, we derive the dynamic equations in next-to-leading order approximation.
We elaborate on how the 1/N expansion of the 2PI effective action beyond the
leading-order approximation is a promising tool to tackle yet outstanding challenges
in KLM research.

4.1 Motivation: the Kondo lattice model and
fermionic alkaline-earth-metal atoms

Simulations of condensed matter systems using ultra-cold atomic quantum gases
have become possible through the development of precise optical and magnetical
trapping techniques. While single-band Bose and Fermi Hubbard models have already
been studied in great variety, the description of specific systems where both spin
and orbital electronic degrees of freedom are relevant require the use of more com-

79



Chapter 4 Non-equilibrium dynamics of a Kondo lattice gas

plicated models. Fermionic alkaline-earth-metal atoms have recently been shown to
allow simulations of (condensed matter) models with both spin and orbital degrees of
freedom [39], the Kondo lattice model (KLM) [147] being a particular example of them.

In the original condensed matter KLM, one studies the interaction of mobile con-
duction electrons with immobile, i. e. localised, spin-1/2 scattering centers. Depending
on the strength (both sign and magnitude) of the interaction between the conduction
electrons and the localised impurities, the KLM describes very different physics. For
an anti-ferromagnetic interaction, which specifies the sign of the interaction strength
and favours a spin anti-alignment between mobile electrons and the localised spins,
the KLM has been studied in great detail in the context of so-called heavy-fermion
rare-earth and actinoide compounds, see Ref. [148] for a recent review. The term
“heavy fermion” [149] refers to a deformed band edge leading to an electronic density of
states as much as thousand times larger than in copper, and the conduction electrons
behave as if they had an effective mass up to thousand times the free electron mass.
Depending on the magnitude of the anti-ferromagnetic interactions, two different

phases exist in the limits of sufficiently weak and strong couplings. At sufficiently
weak coupling, the conduction electrons are polarised by the localised spins. Thereby,
they mediate Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions [150] between
the localised spins, which lead to a magnetic ordering of the spins. At sufficiently
strong coupling, spin-flip scattering of the conduction electrons off the localised spins
dominate. As a result, the local spins are screened by the conduction electrons (which
is the so-called Kondo screening) and the ground state is a magnetically disordered
heavy-Fermi-liquid (HFL).
More recently, studies were done in the coupling regimes where the RKKY inter-

actions and the Kondo screening are competing effects, and the resulting possibly
existing novel phases and (quantum) phase transitions between them are not well
understood [148, 151, 152]. Ultra-cold fermionic alkaline-earth-metal atoms allow to
simulate the KLM and to study these phases and phase transitions.

There are three main reasons why fermionic alkaline-earth-metal atoms are especially
suitable to simulate the KLM:

B The excited state 3P0 is metastable; it couples to the ground state 1S0 through
an ultra-narrow doubly forbidden transition. Thus, these two states are available
in experiments to address the orbital degree of freedom. Furthermore, both
states can be trapped independently by two different optical lattice potentials
with the same spatial periodicity [91]. This allows to trap atoms in one state
inside a deep lattice (e. g. one at each lattice site) such that they mimic the
localised spins. And using a very shallow lattice for the atoms in the other state
allows to simulate the mobile conduction electrons.

B Both the metastable excited and the ground state have a vanishing electronic
angular momentum (J = 0). This implies an almost perfect [153] decoupling of
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4.2 The Kondo lattice model

the nuclear spin I from J in these two states and results in an SU(N ) symmetry
in the (hyperfine) spin degree of freedom, where N = 2I + 1.

B The spin multiplicities can be as large as N = 10 for 87Sr (I = 9/2) and
N = 8 for 43Ca (I = 7/2). Moreover, the particular value of N can be chosen
through the controlled population of a subset of the hyperfine states [39]. Hence,
fermionic alkaline-earth-metal atoms offer the unique possibility to employ
controlled large-N expansions in quantum field theory for the study of both,
static and dynamical properties [147, 154, 155, 156].

Due to these properties, ultra-cold gases of fermionic alkaline-earth-metal atoms
in optical lattice potentials open the unique possibility to study, besides the static
properties of Kondo lattice systems, also dynamical properties in a controlled way.
Transport phenomena both close to and far from thermal equilibrium can be induced
through external as well as internal boundary conditions, e. g. by varying additional
linear or harmonic trapping potentials or modifying interaction strengths by use
of Feshbach resonances or lattice depths, respectively. Dynamical correlations like
the evolution of spectral densities can be measured to characterise non-equilibrium
properties. This is of particular interest in regimes where strong correlations are
present such as close to equilibrium phase transitions, where the dynamical properties
have been explored to a limited extent so far.

Using 1/N expansions [154, 155, 156], the SU(N ) symmetric KLM has been
theoretically investigated in the large-N limit [147, 157] (in these studies, N is the
degeneracy of the localised spins), and experimentally observed properties of the
HFL were successfully reproduced. In the large-N limit, only the leading order (LO)
of the 1/N expansion is kept, which eases the analyses of the model a lot. In LO,
the spin-flip scattering contribution of the interaction, which give rise to the HFL
properties, is taken into account; in contrast, the direct interaction contributions
appear almost exclusively at next-to-leading order (this is especially true for N � 2).
Since it is tedious to go beyond the LO in most of these 1/N expansions, this explains
why, so-far, only very little is known about the KLM away from the HFL regime.

In the 2PI effective action approach that we employ, the full next-to-leading order
contribution in the 1/N expansions can be taken into account. This contributions
includes not only the direct interactions missed at LO but also off-energy-shell scat-
tering effects. Thus, applying the 1/N expansion of the 2PI effective action beyond
the leading-order approximation is a promising tool to study dynamics, new phases
and phase transitions possibly appearing outside the HFL regime.

4.2 The Kondo lattice model

In this section, we review the Kondo lattice model (KLM) more formally. We show
how different representations of the Kondo lattice Hamiltonian that are commonly
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used in the literature are linked with each other and discuss the symmetries of the
Hamiltonian. Thereafter, we introduce a decomposition of the interaction vertex,
which will be crucial for the 1/N expansion of the effective action that we discuss
later in this chapter.

4.2.1 The model Hamiltonian and its symmetries

We consider the dynamical evolution of an ultra-cold Fermi gas of atoms in a
d-dimensional optical lattice. The atoms are assumed to be, internally, in two
different electronic states s ∈ {c, f}, and N = 2I + 1 different hyperfine states
α ∈ {−I/2,−I/2 + 1, . . . , I/2}. Hence, the fermionic many-body system can be
described by complex Graßmann-valued fields ψsα(n), where n labels the lattice sites,
obeying

ψsα(t,n)ψs′α′(t
′,m) + ψs′α′(t

′,m)ψsα(t,n) = 0 (4.1)
ψsα(t,n)ψ∗s′α′(t

′,m) + ψ∗s′α′(t
′,m)ψsα(t,n) = 0 (4.2)

for any combination of s, s′, α, α′, t, t′, n, and m.
The Kondo lattice is characterised by the distinction between a localised band

of immobile atoms in electronic states f and a conduction band of mobile atoms
in electronic states c. In the Kondo lattice, the dynamics is defined through the
two-orbital single-band Hubbard Hamiltonian

H = H0 +Hint (4.3)

with

H0 =
∑
〈n,m〉

[
−J
(
ψ∗cα(x0,n)ψcα(x0,m) + c.c.

)
+ Vext,s(x)ψ∗sα(x)ψsα(x)

]
, (4.4)

where x ≡ (x0,n) denotes the lattice space-time coordinate, c.c. the complex conjugate,
and the sum 〈n,m〉 is over pairs of nearest-neighbour sites n and m. J characterises
the hopping rate with which the conducting c-atoms tunnel from site to site. Vext,s(x)
are possibly time-dependent trapping potentials or other external fields that are
identical for all hyperfine states α ∈ {1, . . . ,N}. Summations over the indices s and
α are implied.
Elastic s-wave collisions between atoms in different hyperfine states are assumed,

while Pauli’s principle forbids s-wave interactions between fermions that are internally
in the same state. If one further assumes the scattering lengths to be independent
from the nuclear spin, it follows that the most general interaction Hamiltonian must be
SU(N ) symmetric. In this approximation, with a possibly time-dependent coupling
strength U(t) between the electronic states c and f , the interaction Hamiltonian reads

Hint(t) =
U(t)

N
∑
n

[(
ψ∗cα(x)(Tk)αα′ψcα′(x)

)(
ψ∗fβ(x)(Tk)ββ′ψfβ′(x)

)]
, (4.5)
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where U(t)/N is a possibly time dependent coupling constant,
∑

n is a sum over
all lattice sites, and sums over repeated indices, besides c and f , are implied. The
Tk, k ∈ {1, . . . ,N 2 − 1}, form the algebra of generators of the SU(N ) group in the
fundamental representation in which the group elements act on complex vectors with
N entries. Before rewriting the interaction Hamiltonian in a more suitable form for
the following discussion, we look into the symmetries of the Hamiltonian H in more
detail.

B H is symmetric under global U(1) transformations of the complex-valued fields
ψsα(x),

ψsα(x)→ exp[iφ]ψsα(x) . (4.6)

This U(1) symmetry is associated with the elasticity of collisions regarding the
electronic state. The total population in each of the electronic states c and f is
conserved.

B The interaction term (4.5) is chosen such that the Hamiltonian has an SU(N )
symmetry in the space of all hyperfine levels,

ψsα(x)→ exp[iξkTk]αβψsβ(x) . (4.7)

Note that the independence of the coupling U(t) from the hyperfine states—aside
from the restrictions imposed by Pauli’s principle of fermionic anti-symmetry,
which is taken into account by the Graßmann nature of the field—is crucial for
the fulfilment of the SU(N ) symmetry of the Hamiltonian. As we discussed
in the previous section, this independence is available in the case of fermionic
alkaline-earth-metal atoms in the metastable excited state 3P0 and the ground
state 1S0 since both states have a vanishing electronic angular momentum J
and therefore the nuclear spin I (almost perfectly [153]) decouples from J . In
contrast, assuming an SU(N > 2) symmetric model with alkali atoms is a
substantial idealisation due to strong hyperfine coupling generally present in
these atoms.

B As a distinct feature of the SU(N ) symmetry, the total population in a given
hyperfine state α is conserved. This implies that atoms with large nuclear spin I
can be used to reproduce the dynamics of atoms with smaller I by a controlled
initial population of only a subset of the hyperfine states.

Also note that a factor of 1/N has been taken out of the couplings U in Eq. (4.5) in
order that the interaction Hamiltonian Hint scales as N like the free Hamiltonian H0.
This makes the relative weight of the interaction term invariant under a rescaling of
N . To see that the interaction Hamiltonian Hint scales as N note that the SU(N )
symmetry allows to diagonalise the terms in the round bracket of Eq. (4.5) within
the hyperfine index space, cf. Eq. (4.7). This way, only one of the two sums over
the hyperfine indices remains in each round bracket. Thus, the term in the square
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brackets scales quadratic in N such that Hint as a whole scales linear.

The interaction Hamiltonian in Eq. (4.5) is written in a form that makes the SU(N )
symmetry obvious. For the following discussion, we want to rewrite the interaction
Hamiltonian in the standard form used in the literature. For this purpose, we need
to rewrite the so-called projection operator (Tk)αα′(Tk)ββ′ and, therefore, have to
get familiar with some properties of the Tk, which are discussed in more detail in
Refs. [158, 159, 160]. Choosing the normalisation

Tr[TkTl] = 2δkl , (4.8)

one has a multiplication law of the type

TkTl =
2

N δkl + (dklm + ifklm)Tm (4.9)

since Tk and the unit matrix I together span the space of all complex N ×N matrices
with a unit determinant. The latter fact implies that the projection operator can be
written as

(Tk)αα′(Tk)ββ′ = 2

(
δαβ′δβα′ − 1

N δαα′δββ′

)
. (4.10)

The above relations imply the commutation relations

[Tk, Tl]− = 2ifklmTm , (4.11)

[Tk, Tl]+ =
4

N δkl + 2idklmTm . (4.12)

From the commutation relations follows that the structure constants dklm and fklm
are totally symmetric and anti-symmetric, respectively. Since SU(N ) is compact,
one has

fklmfnlm = N δkn , (4.13)

dklmdnlm =
N 2 − 4

N δkn . (4.14)

With Eq. (4.10), the interaction Hamiltonian in Eq. (4.5) can be rewritten as

Hint =
2U(t)

N
∑
n

(
ψ∗cα(x)ψcα′(x)ψ∗fα′(x)ψfα(x)

− 1

N ψ∗cα(x)ψcα(x)ψ∗fα′(x)ψfα′(x)

)
.

(4.15)

The Hamiltonian defined in Eqs. (4.3), (4.4), and (4.15) was proposed by Coqblin and
Schrieffer [147], and is usually referred to as the Kondo lattice model. It was later
used, for example, to describe strongly correlated electron systems such as manganese
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oxide perovskite [161], and rare-earth and actinoide compounds characterised as
heavy-fermion materials [148]. As pointed out by Zhang and Yu [162], the first term
in (4.15) (for α 6= α′) corresponds to the spin-flip scatterings that gives rise to the
local Kondo screening effect, and has been investigated, e. g. in approaches based
on a 1/N expansion [154, 155, 156]. The second term, together with the α = α′

contributions of the first term, describes direct interactions causing a polarisation
of the conduction atoms by the local impurity spins, which leads to a magnetic
instability [157]. In a 1/N expansion, these two phenomena are not treated on equal
footings since spin-flip scattering terms occur at first order in the expansion, whereas
most of the direct scattering terms occur only at second order. Especially for N � 2
this imbalance in the treatment of these two types of scattering becomes more and
more dominant.

Using the form of the interaction in Eq. (4.15), the Lagrangian for the Kondo
lattice model can be expressed as

L(x0) =
∑
n

[
i

2

(
ψ∗sα(x)(∂x0ψsα(x))− c.c.

)
− Vext,s(x)ψ∗sα(x)ψsα(x)

− 2U(x)

N
(
ψ∗cα(x)ψcα′(x)ψ∗fα′(x)ψfα(x)

+
1

N ψ∗cα(x)ψcα(x)ψ∗fα′(x)ψfα′(x)

)]
+
∑
〈n,m〉

J
(
ψ∗cα(x0,n)ψcα(x0,m) + c.c.

)
,

(4.16)

where ∂x0 denotes the partial derivative with respect to time. In the functional-integral
approach we adopt, we will employ the action S[ψ],

S[ψ] =

∫
x0

L(x0) , (4.17)

where
∫
x0
≡ ∫

dx0. Inserting the Lagrangian (4.16), we write the action in the
compact form

S[ψ] =
1

2

∫
xy

ψ∗a(x)iG−1
0,ab(x, y)ψb(y) + Sint[ψ] , (4.18)

where
∫
x
≡ ∫ dx0

∑
n denotes the integration/summation over the region of space-time

under consideration. Also, we have introduced a triple index a = (sα, i), i ∈ {1, 2},
with

ψsα,1(x) ≡ ψsα(x) , ψsα,2(x) ≡ ψ∗sα(x) , (4.19)

such that the inverse free propagator in Eq. (4.18) is given by

iG−1
0,ab(x, y) = iδabδ(x− y)∂x0 − δsasbδαaαbσ3,iaibH

1B
sa (x, y) (4.20)
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with the one-body Hamiltonian

H1B
s (x, y) = −Jδ〈n,m〉δ(x0 − y0) + δ(x− y)Vext,s(x) . (4.21)

Here, δ(x− y) = δnmδ(x0− y0) and δ〈n,m〉 = 1 if and only if n and m denote adjacent
lattice sites in the single-band approximation, otherwise it is zero. Moreover, here
and in the following, σ1, σ2, and σ3 are the standard Pauli matrices. The interaction
part Sint[ψ] corresponding to the Lagrangian (4.16) is written as

Sint[ψ] = −U(x)

2N σ1,ijσ1,ss′

∫
x

(
ψsα,i(x)ψsα′,j(x)ψs′α′,i(x)ψs′α,j(x)

− 1

N ψsα,i(x)ψsα,j(x)ψs′α′,i(x)ψs′α′,j(x)

)
.

(4.22)

With this, we are in the position to adopt the 2PI effective action formalism and
employ the 1/N expansion. Before doing so, we introduce a graphical decomposition
of the interaction vertex, which will simplify this discussion.

4.2.2 Structure of the interaction vertex

For the following discussion, where we look into a diagrammatic expansion of the
2PI part of the effective action, it is convenient to reveal the specific structure of the
interaction vertex

S
(4)
abcd =

δ4Sint

δψa(xa)δψ∗b (xb)δψc(xc)δψ
∗
d(xd)

(4.23)

and to represent the vertex by a squiggly line for the “spin-exchange” term (pro-
portional to U(x)/(8N )) and a dashed line for the “direct” term (proportional to
U(x)/(8N 2)) of the vertex. The form of the interaction part of the considered Lag-
rangian density in Eq. (4.16) allows us to require that spins are conserved at each
end of the vertex. The possible index contractions at each vertex are depicted in
Fig. 4.1. Note that, beside drawing the interaction vertices as squiggly and dashed
lines, each interaction vertex is still local in space and time.

4.3 2PI effective action approach to
non-equilibrium dynamics reviewed

To derive the non-equilibrium dynamical equations of motion for the Kondo lattice
gas, we use the 2PI effective action approach, which we introduced in Ch. 1, with two
minor modifications: we keep a complex field basis, and use a discrete space. As a
result of the former modification, the dynamic equations look slightly different. And
for completeness, we review the relevant formulae leading to the dynamic equations
in this section.
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= + +

(sα, i) (s̄α, ī)

(sβ, ī) (s̄β, i)

(sα, i) (sβ, ī)

(s̄α, ī) (s̄β, i)

(sα, i) (sβ, ī)

(s̄β, i) (s̄α, ī)

+ + +

(sα, i) (sα, ī)

(s̄β, ī) (s̄β, i)

(sα, i) (s̄β, ī)

(sα, ī) (s̄β, i)

(sα, i) (s̄β, ī)

(s̄β, i) (sα, ī)

Figure 4.1: Decomposition of the bare vertex S4 (black dot) as a sum of the six possible
index contractions. The point interaction vertex is represented by a squiggly
line for the spin-exchange interaction vertex U(x)/(2N ) and a dashed line for
the direct interaction vertex U(x)/(2N 2). At each end of the squiggly and the
dashed line, the spin index is conserved, and it is summed over the indices s, α,
β, and i in each diagram.

4.3.1 2PI effective action

Using the complex field operators Ψ̂sα(n, t) and Ψ̂†sα(n, t) that obey the equal-time
anti-commutation relations, i. e.

[Ψ̂sα(n, t), Ψ̂†s′α′(m, t)]+ = δss′δαα′δnm , (4.24)

and introducing the field operator Ψ̂a with triple index a = (sα, i) such that Ψ̂sα,1 =

Ψ̂sα and Ψ̂sα,2 = Ψ̂†sα, the non-equilibrium generating functional Z[K; ρ̂D] is now
given by

Z[K; ρ̂D] ≡ Tr
[
ρ̂D(t0)TCe

i
2

R
C,xy Ψ̂†a(x)Kab(x,y)Ψ̂b(y)

]
, (4.25)

where ρ̂D(t0) is the normalised density matrix of the system at the initial time t0.
C = C+ ∪ C− indicates that the temporal integrals are to be taken along the closed
(Schwinger-Keldysh) time path (CTP) [40, 44] from the initial time t0 to infinity (path
C+) and back to t0 (C−) such that

∫
C,x =

∫
C,x0

∑
n with

∫
C,x0

=
∫
C+ dx0 −

∫
C− dx0. TC

denotes time-ordering along the closed time path, implying that operators evaluated at
later times stand to the left of those evaluated at earlier times. The classical external
two-point field Kab(x, y) is introduced to allow for the generation of correlation
functions of order 2n.

The two-particle irreducible (2PI) effective action defined by a Legendre transform-
ation of the Schwinger functional W [K] = −i lnZ[K] with respect to K has the same
form as in the real field basis,

Γ [G] = − i

2
Tr
[
ln(G−1) +G−1

0 G
]

+ Γ2[G] + const. . (4.26)
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Γ2[G] = + +

+ + + · · ·

Figure 4.2: Diagrammatic expansion of the two-particle irreducible (2PI) part Γ2 of the
effective action (4.26) in terms of 2PI graphs. (Blue) solid lines stand for the
Green function G, and (black) dots for the interaction vertex S(4). Explicitly
shown are all diagrams that contain up to four vertices. All statistical factors
are omitted.

The 2PI part Γ2 of the effective action is depicted in Fig. 4.2. In Eq. (4.26), unlike
before, the two-point Green function G is now defined as the time-ordered expectation
value of two complex fields at two points in space-time,

Gab(x, y) = 〈TCΨ̂†a(x)Ψ̂b(y)〉 , (4.27)

where the time-ordering is defined as

TCΨ̂†a(x)Ψ̂b(y) =

{
Ψ̂†a(x)Ψ̂b(y) if sgnC(x0 − y0) = 1

−Ψ̂b(y)Ψ̂†a(x) if sgnC(x0 − y0) = −1 .
(4.28)

The spectral function ρ and the statistical propagator F are defined as

Fab(x, y) ≡ 1

2
〈[Ψ̂†a(x), Ψ̂b(y)

]
−〉 , (4.29)

ρab(x, y) ≡ i〈[Ψ̂†a(x), Ψ̂b(y)
]

+
〉 . (4.30)

The symmetry properties of the two-point functions are now given as

Gab(x, y) = −Gb̄ā(y, x) = −G∗ba(y, x) , (4.31a)
Fab(x, y) = −Fb̄ā(y, x) = −F ∗ba(y, x) , (4.31b)
ρab(x, y) = ρb̄ā(y, x) = ρ∗ba(y, x) , (4.31c)

where ā = (αs, 3− i) for a = (αs, i). And for the spectral density function, one finds

ρab(x, y)
∣∣
x0=y0

= δsasbδαβiσ3,iaibδnm , (4.32)

where x = (x0,n) and y = (y0,m).
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4.3.2 Dynamic equations

Since the effective action has the same form in the complex-field basis as in the
real-field basis, also the dynamical equations for the Green function G, which are
derived from the effective action, will not change. The inverse free propagator G−1

0

appearing therein has, however, different representations in the two bases. And as a
result of this, the dynamical equations for the statistical correlation function F and
the spectral function ρ have a slightly different form—compared to Eqs. (1.84) and
(1.85), the τ matrices are now missing. They read

i∂x0Fab(x, y) =

∫
z

Mac(x, z)Fcb(z, y) +

∫ x0

t0

dz Σ
ρ

ac(x, z)Fcb(z, y)

−
∫ y0

t0

dz Σ
F

ac(x, z)ρcb(z, y) ,

(4.33)

i∂x0ρab(x, y) =

∫
z

Mac(x, z)ρcb(z, y) +

∫ x0

y0

dz Σ
ρ

ac(x, z)ρcb(z, y) , (4.34)

where
∫ t′
t

dx ≡ ∫ t′
t

dx0

∑
n,

Mab(x, y) = δC(x− y)Σ
(0)
ab (x) + σ3,iaibδsasbδαaαbH

1B
sa (x, y) , (4.35)

and Σ(0) and Σ are, as before, the local and non-local parts of the proper self-energy.

4.4 Non-equilibrium dynamic equations for the
Kondo lattice gas

In this section, we study the dynamical evolution of two-point function G and its
statistical and spectral components F and ρ. In particular, we will discuss the
dynamic equations obtained from the two-particle irreducible (2PI) effective action,
Eqs. (4.33) and (4.34), in a 1/N expansion beyond the leading order (mean-field)
approximation.

To derive an expansion of the 2PI part Γ2 of the effective action in powers of
the inverse number of hyperfine levels N , the SU(N ) symmetry can be used. This
becomes apparent when considering the powers of N in the diagrams in Fig. 4.3. In
each diagram, each squiggly vertex line contributes a factor of 1/N and each dashed
vertex line a factor of 1/N 2, cf. Eq. (4.16). Each propagator loop contributes a factor
of N , which can be seen as follows: Since the hyperfine index is conserved at each end
of the vertices, each propagator loop can be written as a trace of a matrix product in
the hyperfine space, e. g. GαβGβγGγδ = tr (G3) for a loop out of three propagators,
and where we skipped all other indices that are irrelevant for the moment. For spin
balanced mode populations, one can diagonalise the product of Green functions inside
the trace using the SU(N ) symmetry. As a result, only one sum over the hyperfine
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ΓLO
2 [G] =

ΓNLO
2 [G] = + +

+ + + · · ·

Figure 4.3: Diagrammatic representation of the leading order (LO) and next-to-leading
order (NLO) contributions to Γ2 in the 1/N expansion. All statistical factors
are omitted.

levels remains in the trace, which means that each propagator loop contributes a
factor of N . Hence, propagator loops can be attached to each other to form 2PI
diagrams which are of the same order in N , provided that for every new loop there is
precisely one new squiggly vertex line appearing. Note that the dynamic equations,
Eqs. (4.33) and (4.34), conserve the property of spin balanced mode populations in
time, i. e. choosing spin balaced mode population at the initial time ensures that
the SU(N ) symmetry can be used at all later times to diagonalise the propagator loops.

In the following, we derive explicit expressions for the leading-order (LO) and
next-to-leading-order (NLO) contribution of the 2PI part Γ2 of the effective action in
the 1/N expansion, i. e.

Γ2[G] = Γ LO
2 [G] + ΓNLO

2 [G] + · · · , (4.36)

as well as the resulting proper self-energies.

4.4.1 Leading-order 1/N approximation

As a first step, we derive the dynamic equations in the leading-order (LO) approx-
imation of the 1/N expansion. As depicted in Fig. 4.3, the LO contribution to Γ2

consists of a single double-bubble diagram with a squiggly vertex. It reads

Γ LO
2 [G] = −

∫
x

U(x)

2N G(sα,̄i)(s̄α,̄i)(x, x)G(sα′,i)(s̄α′,i)(x, x) , (4.37)

where ī = 3− i summations over s, i, α, and α′ are implied. As there are two sums
over α, α′ = 1, . . . ,N , this contribution is of the same order in N as the one-loop
part of the action.
The proper self-energy derived from Eq. (4.37) is

ΣLO
ab (x, y) = −iΣ

LO(0)
ab (x)δC(x− y) (4.38)
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with

Σ
LO(0)
ab (x) = −2U(x)

N σ1,sasbδαaαbδiaibG(sbα′ ,̄ia)(saα′ ,̄ib)(x, x) . (4.39)

Hence, in the LO 1/N approximation the proper self-energy has only a temporally
and spatially local part ΣLO(0), which contributes to the energy matrix M defined in
Eq. (4.35). Therefore, in the limit N → ∞, the dynamics is entirely mean-field or
classical. The dynamic equations for F and ρ reduce to

i∂x0Fab(x, y) =

∫
z

MLO
ac (x, z)Fcb(z, y) , (4.40)

i∂x0ρab(x, y) =

∫
z

MLO
ac (x, z)ρcb(z, y) , (4.41)

where MLO(x, y) = M(x, y) is defined in Eq. (4.35) with Σ(0)(x;G) = ΣLO(0)(x;G)
given in Eq. (4.39). As the non-local proper self-energy contribution Σ vanishes, the
dynamic equations for F and ρ decouple. The dynamic equation for F , Eq. (4.40),
can be written as

i∂x0Fab(x, y) = (−1)ia
∫
z

H1B
sa (x, z)Fab(z, y)

− 2U(x)

N F(s̄aα′ ,̄ia)(saα′ ,̄ia)(x, x)F(s̄aαa,ia)b(x, y) ,

(4.42)

where the bar over the orbital index is meant in the sense that c̄ = f and f̄ = c.

Since more frequently used in the literature, we want to derive the dynamical
equations for the single-particle density matrix

n(sα)(s′α′)(n,m; t) = 〈Ψ̂†sα(n)Ψ̂s′α′(m)〉t , (4.43)

which includes the density of particles at lattice site n, nα(n, t) = n(sα)(sα)(n,n; t),
and the anomalous density matrix or pair function

m(sα)(s′α′)(n,m; t) = 〈Ψ̂sα(n)Ψ̂s′α′(m)〉t . (4.44)

Both the single-particle density matrix and the pair function are solely determined
by the statistical correlation function since

ñ(sα)(s′α′)(n,m; t) = n(sα)(s′α′)(n,m; t)− 1

2
δss′δαα′δnm

= F(sα,1)(s′α′,1)(n,m; t) (4.45)

and

m(sα)(s′α′)(n,m; t) = F(sα,2)(s′α′,1)(n,m; t) , (4.46)
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and where we used the fact that the spectral function ρ is fixed by the anti-
commutation relations (4.32) at equal times. Thus, their dynamics is determined
by the equal-time dynamic equation for F . In LO 1/N approximation, the latter is
obtained by adding Eq. (4.42) and its transpose,

i∂tFab(n,m; t) =
∑

l

(
(−1)iaH1B

sa (n, l; t)Fab(l,m; t)

+ (−1)ibH1B
sb

(m, l; t)F ∗ba(l,n; t)

)
−
{

2U(t)

N F(s̄aγ,̄ia)(saγ,ia)(n,n; t)F(s̄aαa,ia)b(n,m; t)

}
−
{

(a,n)↔ (b,m)
}∗
,

(4.47)

where x = (x0,n), y = (y0,m), and the last term represents the complex conjugate of
the first term in curly brackets with a and b, and n and m interchanged, respectively.
The resulting time evolution of ñ(sα)(s′α′)(n,m; t) and m(sα)(s′α′)(n,m; t) is thus given
by ∑

l

(
i∂tδlnδkm +H1B

s (n, l; t)δkm −H1B
s′ (m,k; t)δln

)
ñ(sα)(s′α′)(l,k; t)

=

{
2U(t)

N ñ(sβ)(s̄β)(n,n; t)ñ(s̄α)(s′α′)(n,m; t)

}
−
{

(s, α,n)↔ (s′, α′,m)
}
,

(4.48)∑
l

(
i∂tδlnδkm −H1B

s (n, l; t)δkm −H1B
s′ (m,k; t)δln

)
m(sα)(s′α′)(l,k; t)

= −
{

2U(t)

N ñ(s̄β)(sβ)(n,n; t)m(s̄α)(s′α′)(n,m; t)

}
+
{

(s, α,n)↔ (s′, α′,m)
}
.

(4.49)

The last term in Eq. (4.47), Eq. (4.48), and Eq. (4.49) denotes the first term in curly
brackets with s and s′, α and α′, and n and m interchanged.

LO 1/N and the U = 0 Anderson model

Before proceeding to the next-to-leading order contributions, we show that the
equation of motion for F , Eq. (4.42), derived from the LO approximation in the N
expansion of the 2PI effective action is equivalent to the equation of motion found
from the mean-field Hamiltonian

HMFT = −J
∑
〈n,m〉,α

ψ∗cα(x0,n)ψcα(x0,m)− U(x)
∑
n,α

(
V (x)ψ∗cα(x)ψfα(x) + h.c.

)
+
U(x)N

2

∑
n

V ∗(x)V (x) +
∑
n,s,α

Vext(x)ψ∗sα(x)ψsα(x) ,
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(4.50)

where x = (x0,n) and V is a non-fluctuating bosonic field that in the operator
formulation is given as the hybridisation

V (x) = (2/N )
∑
α

〈
Ψ̂†fα(x)Ψ̂cα(x)

〉
. (4.51)

For N = 2, the mean-field Hamiltonian HMFT defines the U = 0 Anderson model. It
can be derived from the original Hamiltonian defined in Eqs. (4.3), (4.4), and (4.15),
written in terms of fermionic field operators, by means of a Hubbard-Stratonovich
transformation. Dropping the second term in the interaction Hamiltonian (4.15),
which contributes only beyond the LO 1/N approximation, Hint can be written as

Hint = −2U(t)

N
∑
n

(
ψ∗cα(n)ψfα(n)

)(
ψ∗fα′(n)ψcα′(n)

)
(4.52)

This is of the form −[U(t)/(2N )]
∑

nA
∗(n)A(n) with A(n) = ψ∗fα(n)ψcα(n). Using

a Hubbard-Stratonovich transformation,

−2U

N A∗A→ −U
(
V ∗A+ A∗V

)
+
UN

2
V ∗V , (4.53)

and taking V as a non-fluctuating Bose field, one recovers the mean-field Hamiltonian
in Eq. (4.50). This transformation would be exact if the V (x) were treated as
fluctuating variables inside a path integral—which then would lead to the “Read-
Newns” path integral formulation of the Kondo lattice model [156, 163, 164, 165].
In Ref. [93], the dynamic evolution according to HMFT was derived from the

Heisenberg equations of motion for the field operators which read

i∂x0

(
Ψ̂cα(x)

Ψ̂fα(x)

)
=

(∑
l−Jδ〈n,l〉Ψ̂cα(l, x0)

0

)
+ Vext(x)

(
Ψ̂cα(x)

Ψ̂fα(x)

)
− U(x)

(
V ∗(x)Ψ̂fα(x)

V (x)Ψ̂cα(x)

)
.

(4.54)

Applying these dynamic equations of the field operators to the definition of F in
Eq. (4.29) yields the dynamic equation for F ,

i∂x0

(
F(cα,1)b(x, y)
F(fα,1)b(x, y)

)
=

(∑
l Jδ〈n,l〉F(cα,1)b((l, x0), y)

0

)
− Vext(x)

(
F(cα,1)b(x, y)
F(fα,1)b(x, y)

)
+ U(x)

(
V (x)F(fα,1)b(x, y)
V ∗(x)F(cα,1)b(x, y)

)
,

(4.55)

i∂x0

(
F(cα,2)b(x, y)
F(fα,2)b(x, y)

)
=

(∑
l−Jδ〈n,l〉F(cα,2)b((l, x0), y)

0

)
+ Vext(x)

(
F(cα,2)b(x, y)
F(fα,2)b(x, y)

)
− U(x)

(
V ∗(x)F(fα,2)b(x, y)
V (x)F(cα,2)b(x, y)

)
.

(4.56)
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These equations are equivalent to the equation of motion for F , Eq. (4.42), derived
from the LO approximation in the N expansion of the 2PI effective action since

V (x) =
2

N F(cα,2)(fα,2)(x, x) , (4.57)

V ∗(x) =
2

N F(fα,1)(cα,1)(x, x) . (4.58)

Thus, we conclude that the dynamic equations derived in LO approximation of the
1/N expansion of the 2PI effective action describe the same dynamics as the equations
of motion of the U = 0 Anderson model.

4.4.2 Next-to-leading order 1/N approximation

As depicted in Fig. 4.3, the next-to-leading order (NLO) contribution to Γ2 consists
of a double-bubble diagram with a dashed vertex line, and all ring diagrams with only
squiggly vertex lines. Thus, the “dashed line” vertex contributes only to the local part
of the self-energy, i. e. only on-energy-shell scattering contributions are taken into
account from this vertex. This implies that the LO “dashed line” vertex contribution
does not contribute to a redistribution of the momentum mode occupation numbers
during the time-evolution. To include also off-energy-shell scattering contributions
from the “dashed line” vertex, it is necessary to beyond NLO.
For large N , most of the direct interactions leaving the spins of the scatterers

unaltered are included in the “dashed line” vertex contribution, and only a small
fraction is included in the “squiggly line” vertex contribution. At least for N = 2,
the direct interactions describe the polarisation of the conduction-band atoms by
the local impurity spins, leading to magnetical instability, and are important for
RKKY interactions. Thus, it is crucial to include direct interaction contributions if
we want to describe physics away from the HFL phase at strong coupling. To find
out about the relevance of the direct interactions of the “dashed line” vertex on the
dynamics and late-time distribution of the KLM for various N is part of future studies.

In the remainder of this section, we give the explicit formula for the NLO contribu-
tion to the 2PI part ΓNLO

2 of the effective action as well as the resulting dynamical
equations. Finally, we briefly comment on some aspects relevant for a numerical
implementation of the dynamical equations.
The 2PI part ΓNLO

2 is depicted in Fig. 4.3 and reads

ΓNLO
2 [G] =

σ1,ss′

2N 2

∫
x

U(x)G(sα,i)(sα,i)(x, x)G(s′β,i)(s′β,i)(x, x)

+
i

2
Tr
[
ln
[
B(x, y;G)

]] (4.59)

with

B(s,i)(t,j)(x, y;G) = δstδijδC(x− y)− iΠ(s,i)(t,j)(x, y) (4.60)
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and

Π(r,i)(s,j)(x, y) =
2U(x)

N G(rα,̄i)(tβ,k)(x, y)G(t̄β,k)(s̄α,̄i)(y, x)h(t,k)(s,j) , (4.61)

where summations over t, k, α and β are implied and

h(t,k)(s,j) =
1

2

(
σ1,tsδkj − δtsσ1,kj

)
, (4.62)

such that

Tr
[
ln
[
B(x, y;G)

]]
= −i

∫
x

Π(s,i)(s,i)(x, x)

− i2

2

∫
xy

Π(s,i)(t,j)(x, y)Π(t,j)(s,i)(y, x)

− i3

3

∫
xyz

Π(s,i)(t,j)(x, y)Π(t,j)(u,k)(y, z)Π(u,k)(s,i)(z, x)

− · · · .

(4.63)

The resulting proper self-energy contribution ΣNLO has both local and non-local
contributions, i. e.

ΣNLO
ab (x, y;G) = Σ

NLO,(0)
ab (x;G)δC(x− y) +Σ

NLO
ab (x, y;G) . (4.64)

The local contribution is given by

Σ
NLO,(0)
ab (x;G) =

2iU

N 2
δabGba(x, x)− 4iU

N h(sa ,̄ia)(sb,ib)(x, y)Gāb̄(x, y) , (4.65)

and the non-local contribution reads

Σ
NLO
ab (x, y;G) = 2I(sa,ia)(sb,ib)(x, y)Gāb̄(x, y) , (4.66)

where

I(r,i)(s,j)(x, y;G) =

∫
z

Λ(r,i)(t,k)(x, z;G)Π(t,k)(s,j)(z, y) (4.67)

with

Λ(r,i)(s,j)(x, y) =
(

2U(x)h(r,i)(s,j)δC(x− y) + iI(r,i)(s,j)(x, y;G)
)
. (4.68)
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Finally, we combine the LO and the NLO contributions and express all equations
in statistical and spectral components. The local contribution is given by

Σ
(0)
ab (x;G) = −2U

N
(
σ1,sasbδαaαbδiaibF(sbα′ ,̄ia)(saα′ ,̄ib)(x, x)

+
δab
N F(s̄aα,ia)(s̄aα,ib)(x, x)− 2h(sa ,̄ia)(sb,ib)Fāb̄(x, x)

)
.

(4.69)

And the non-local beyond-mean-field contribution of the self-energy is given by

Σ
F

ab(x, y) = 2
(
IF(sa ,̄ia)(sb,ib)

(x, y)Fāb̄(x, y)− 1

4
Iρ

(sa ,̄ia)(sb,ib)
(x, y)ρāb̄(x, y)

)
, (4.70)

Σ
ρ

ab(x, y) = 2
(
IF(sa ,̄ia)(sb,ib)

(x, y)ρ(āb̄(x, y) + Iρ
(sa ,̄ia)(sb,ib)

(x, y)Fāb̄(x, y)
)
, (4.71)

where

IF(sa,ia)(sb,ib)
(x, y) = h(sa,ia)(r,j)Π

F
(r,j)(sb,ib)

(x, y)

+

∫ x0

0

dz Iρ(sa,ia)(t,j)(x, z)Π
F
(t,j)(sb,ib)

(z, y)

−
∫ y0

0

dz IF(sa,ia)(t,j)(x, z)Π
ρ
(t,j)(sb,ib)

(z, y) ,

(4.72)

Iρ(sa,ia)(sb,ib)
(x, y) = h(sa,ia)(r,j)Π

ρ
(r,j)(sb,ib)

(x, y)

+

∫ x0

y0

dz Iρ(sa,ia)(t,j)(x, z)Π
ρ
(t,j)(sb,ib)

(z, y) ,
(4.73)

with

ΠF
(sa,ia)(sb,ib)

(x, y) =
2U(x)

N
(
F(sα,i)(rβ,j)(x, y)F(r̄β,j)(s̄α,i)(y, x)

+
1

4
ρ(sα,i)(rβ,j)(x, y)ρ(r̄β,j)(s̄α,i)(y, x)

)
h(r,j)(sb,ib) ,

(4.74)

Πρ
(sa,ia)(sb,ib)

(x, y) =
2U(x)

N
(
ρ(sα,i)(rβ,j)(x, y)F(r̄β,j)(s̄α,i)(y, x)

− F(sα,i)(rβ,j)(x, y)ρ(r̄β,j)(s̄α,i)(y, x)
)
h(r,j)(sb,ib) .

(4.75)

With this, we derived the dynamical equations for the spectral function ρ and the
statistical propagator F of the SU(N ) symmetric Kondo lattice model in NLO
approximation of the 1/N expansion of the 2PI effective action. The next step would
be to implement them on a computer and study their properties. Since the hyperfine
space we want to considered in this equations can be quite large, a thoughtless
implementation can very easily exceed computational limitations. Therefore, we
close this section with a few crucial remarks on how to realise an efficient numerical
implementation.
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Some considerations for an efficient numerical implementation

When numerically implementing the equations of motion in NLO 1/N approximation,
it is crucial to make use of the symmetries in the hyperfine index in order to save
memory. For the case of spin balanced initial conditions, for each of the functions
F , ρ, ΣF and Σρ only two quantities need to be stored in the hyperfine index space
for each combination of field and space-time indices: one for α = β and another for
α 6= β. In this case, also the sums over the hyperfine indices in IF , Iρ, ΠF , and Πρ

should be performed analytically in order to save computation power and run time.
Taking these ideas into consideration, the resulting code requires the same amount of
memory and run time as the code used for the two-component Fermi gas investigated
in Ch. 3, independent of the actual value of N .

4.5 Summary

In this chapter, we discussed an ultra-cold Fermi gas on a spatial lattice that can
be described by the SU(N ) symmetric Kondo lattice model (KLM). We reviewed
relevant properties of the KLM and derived non-equilibrium dynamical equations
up to next-to-leading order approximation of the 1/N expansion of the 2PI effective
action. With this, we laid the foundations for future studies analysing the dynamic
equations and exploring the phase diagram of the SU(N ) symmetric KLM.

We began with a motivation why the KLM recently attracted more and more
attention in the cold atom community: Fermionic alkaline-earth-metal atoms trapped
in optical lattice potentials allow to simulate the KLM in the laboratory. In fermionic
alkaline-earth-metal atoms, the metastable excited state 3P0 and the ground state
1S0 are only very weakly coupled and can be trapped independently by two different
optical lattice potentials with the same spatial periodicity. This allows to simulate
localised spin impurities in a delocalised conduction band of atoms. The vanishing
electronic angular momentum J in both of these states results in an almost perfect
decoupling of the nuclear spin I from J , which implies an SU(N ) symmetry in the
(hyperfine) spin degree of freedom with N = 2I + 1. Moreover, the particular value
of N , which can be as large as ten for 87Sr, can be chosen through the controlled
population of a subset of the hyperfine states. This offers the unique possibility to
employ controlled large-N expansions in quantum field theory for the study of both,
static and dynamical properties.
Thereafter, we reviewed the KLM more formally and showed how different rep-

resentations of the Kondo lattice Hamiltonian are linked with each other. Since
we used a complex field basis for our description in this chapter, we briefly showed
relevant formulae of the 2PI effective action approach in order to see which formulae
change and which do not. Then, we derived the dynamic equations using the 1/N
expansion of the 2PI effective action. In leading-order approximation of the 1/N ,
we recovered the mean-field dynamic equations of the U = 0 Anderson model used
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Chapter 4 Non-equilibrium dynamics of a Kondo lattice gas

in Ref. [93] to describe Kondo lattice dynamics. Finally, we derived the dynamic
equations in next-to-leading order (NLO) approximation. At NLO, both spin-flip and
direct interactions between localised atoms and conduction band atoms are taken
into account non-perturbatively into the dynamic equations. Therefore, the 1/N
expansion of the 2PI effective action beyond the leading-order approximation is a
promising tool to tackle yet outstanding challenges in KLM research, e. g. possible
novel phases depending on the coupling strength, filling factors, and size of the degen-
eracy N , and phase transitions between them. We closed this chapter by rewriting the
dynamic equations in next-to-leading order approximation in a way that is suitable
for a numerical implementation. Also, we explained how such an implementation can
be done very efficiently even for large N .
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Conclusion

In this thesis, we addressed the description of far-from-equilibrium dynamics of fer-
mionic quantum gases utilising functional quantum field theoretical methods. We
discussed in detail the dynamics of a spin-degenerate Fermi gas in one spatial dimen-
sion from a far-from equilibrium initial state. We found that the gas evolves into
thermal as well as non-thermal states depending on its total energy. Furthermore, we
laid the foundations to study non-equilibrium dynamics and to explore possible new
phases in the SU(N ) symmetric Kondo lattice model (KLM) by deriving dynamical
equations in next-to-leading order approximation of the 1/N expansion of the two-
particle irreducible (2PI) effective action.

In the first chapter, we derived exact non-equilibrium dynamical equations—real-
time integro-differential Schwinger-Dyson/Kadanoff-Baym dynamic equations—for
the two-point correlation functions of a non-relativistic Fermi gas. Thereby, we
reviewed the general framework for obtaining these equations from the 2PI effective
action Γ . The calculations and formulae in this chapter were model independent in
the sense that we did not specify to any particular interaction between the fermions.
We started with a presentation of the general Lagrangian for non-relativistic

fermions and remarked on some basic and general properties of the specific models
that we investigated in the following chapters of this thesis. In particular, we discussed
the symmetries of the Lagrangian since it is crucial that also the dynamic equations
derived later on needed to respect them in order to appropriately describe the
dynamics.

Our main interest throughout this thesis was in the dynamic evolution of the lowest-
order correlation functions since most of the experimentally relevant observables are
determined by these functions. Due to the Pauli exclusion principle, which states that
no two identical fermions can occupy the same quantum state simultaneously, there
is no macroscopic field for fermions unlike it can be the case for bosons. And thus,
for fermions, the lowest correlation functions we are interested in are the two-point
functions. We introduced the two-point Green function G and its decomposition into
the spectral function ρ and the statistical propagator F .

To derive the dynamic equations for the two-point functions, we introduced the non-
equilibrium generating functional for connected Green functions using the Schwinger-
Keldysh closed time path formulation that is suitable for initial value problems.
Specifying to Gaussian initial states, which permit to set (one- and) two-point
functions as initial conditions, allowed us to rewrite the generating functional in a
much simpler form. However, written in a real-time path integral formulation, the
generating functional still involved an integration over a fluctuating field; therefore, it
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could not be evaluated directly. A solution was to introduce an effective action that
incorporated these fluctuations without requiring an explicit path integral. We saw
that the 2PI effective action is a suitable effective action when Gaussian initial states
are considered. We showed that, similar to Hamilton’s principle for the classical
action, one can determine the exact dynamic equation for the two-point Green function
from the effective action by solving a variational problem. The resulting dynamic
equation for the two-point Green function contained a time integration along the
closed time path; however, it could be transformed into two coupled integro-differential
equations for the statistical propagator and the spectral function that involved only
standard time integrals. This neat feature was especially helpful when solving the (at
that time necessarily approximated) dynamic equations numerically for the two-fold
spin-degenerate Fermi gas in Ch. 3.
Deriving the dynamic equations from the effective action functional had the sub-

stantial advantage that approximations could be made on the level of a functional.
The 2PI effective action was constructed in such a way that it, as well as any trunca-
tion of it, owned the same global symmetries as the underlying classical action that
specifies a model. Thus, starting with any truncation of the functional, the variational
procedure then ensured that the resulting equations of motion still preserved the
global symmetries. And hence, the Noether currents associated with these symmetries
were also conserved. This is crucial for an accurate description of long-time and
out-of-equilibrium dynamics. Then, we discussed and derived explicit expressions for
the conserved total particle number and the energy-momentum tensor.
The real-time Schwinger-Dyson/Kadanoff-Baym dynamic equations for the two-

point correlation functions are generally unsolvable due to the non-local proper
self-energy contribution Σ appearing therein. The approximations necessary to (nu-
merically) solve these equations are model dependent. To investigate the dynamic
equations further, we looked at two specific models in this thesis, the spin degenerate
Fermi gas and the Kondo lattice gas.

In the second and third chapter, we studied the non-equilibrium dynamics of a
non-relativistic Fermi gas with N -fold spin degeneracy in which the spin components
mutually interact through local s-wave scattering. In Ch. 2, we discussed different
possible approximation schemes of the 2PI effective action Γ , which lead to an
approximated proper self-energy. Each of these schemes was characterised by a
certain truncation of the expansion of the 2PI part Γ2 of the 2PI effective action in
terms of 2PI diagrams. We first approximated the functional Γ2 and then derived
the corresponding proper self-energy from Γ2 rather than directly approximating the
proper self-energy. This had the advantage that the resulting dynamic equation still
preserved the global symmetries of the original model and, therefore, fulfilled the
conservation laws associated with these symmetries.

We described two approximation schemes of the 2PI effective action in detail. The
first approximation scheme was a loop expansion. In this expansion, the contributions
to the 2PI part Γ2 of the 2PI effective action were ordered as a power series in the
number of explicitly appearing bare coupling constants λ. This is very similar to the
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standard loop or coupling expansion with the only difference that only 2PI graphs were
considered and the full propagator G was used for all propagator lines in a diagram.
And since the full propagator itself contained the bare coupling constant λ to all orders,
the loop expansion using the full propagator was non-perturbative in the coupling even
for small λ. We discussed the first-order (Hartree-Fock-Bogoliubov) approximation in
the loop expansion and obtained dynamic equations for the single particle density and
an anomalous pair-correlation function. In the next order of this approximation, the
resulting coupled equations for the statistical propagator F and spectral function ρ
generalised the quantum Boltzmann kinetic equation for multi-component fermions by
including non-Markovian corrections to the propagation kernel as well as many-body
corrections to the two-body T matrix. We also briefly commented on higher-order loop
approximations. We pointed out that the loop expansion requires a small coupling
constant in order to be a controlled approximation.

The second approximation scheme was a controlled non-perturbative approximation,
in which the expansion parameter was not superficially based on the coupling, and
which was, therefore, not necessarily restricted to the weak coupling regime. Instead,
the 2PI part Γ2 of the effective action was expanded in powers of the inverse number
of spin states N , i. e. in powers of 1/N . We computed the 2PI effective action to
next-to-leading order (NLO) in this 1/N expansion. At NLO, an infinite number of
diagrams was resummed and both scattering and memory effects were included. We
briefly discussed how to go beyond the NLO approximation of the 1/N expansion.

In the third chapter, we thoroughly studied the long-time evolution of a homogen-
eous Fermi gas with two-fold spin-degeneracy in one spatial dimension after an initial
preparation far from thermal equilibrium. For this purpose, we adopted the different
approximation schemes to numerically solve the dynamic equations.
The Fermi gas was initially assumed to be non-interacting and prepared far from

equilibrium, characterised by a non-equilibrium single-particle momentum distribution.
We assumed the interactions to be switched on at the initial time and investigated
the long-time evolution of the interacting gas towards equilibrium. All runs that we
performed evolved into a stationary state once they were insensitive to numerical
parameters like the discrete time step size. These stationary states were insensitive
to the details of the initial state—they were solely determined by the total energy
Etot, the line density n1D, and the interaction strength γ. In the stationary states, we
found that the occupation numbers of the lowest momentum modes coincided with a
Fermi-Dirac distribution with which thermodynamic quantities like the temperature
and the chemical potential are connected. The extracted thermodynamic quantities
converged to the ideal gas results for high temperatures and deviate from them
for lower temperatures. These deviations were expected since the finite coupling
constant becomes more significant at lower temperatures. In the stationary states,
the occupation numbers of the higher momentum modes deviated from a Fermi-Dirac
distribution. This deviation were more pronounced at lower total energies, and a
power-law tail was replacing the exponential decay of the Fermi-Dirac distribution.
The power law is reminiscent of the p−4 power law for the high-momentum tail of the
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single-particle momentum distribution in both one of Tan’s relations for a strongly
correlated two-component Fermi gas and BCS theory. Our results do not rule out
that a power law ultimately appears also at higher energies in a range of momenta
beyond the momentum cut off present in our numerics.
To address the question whether or not the late-time stationary states can be de-

scribed by a standard statistical ensemble, we investigated the fluctuation-dissipation
relation (FDR) for our data. For this purpose, it is convenient to look into the FDR
rather than at, for example, the single-particle momentum mode occupation numbers
since only the the occupation numbers of the eigenmodes need to be Fermi-Dirac
distributed in order for the system to be in a thermal state. Thus, the single-particle
momentum distribution is likely not to be Fermi-Dirac distributed once the interac-
tions become a pronounced feature of the system, which is generically the case at
sufficiently low energies. For the runs with very low total energies, i. e. those where
the single particle momentum distribution deviates the most from a Fermi-Dirac
distribution, we also found deviations from the FDR. This indicated that the Fermi
gas approached a non-thermal state at large times.

In the fourth chapter, we discussed an ultra-cold Fermi gas on a spatial lattice that
can be described by the SU(N ) symmetric Kondo lattice model (KLM). We reviewed
relevant properties of the KLM and derived non-equilibrium dynamical equations
up to next-to-leading order approximation of the 1/N expansion of the 2PI effective
action. With this, we laid the foundations for future studies analysing the dynamic
equations and exploring the phase diagram of the SU(N ) symmetric KLM.

The KLM recently attracted attention in the cold atom community because fermi-
onic alkaline-earth-metal atoms trapped in optical lattice potentials allow to simulate
the KLM in the laboratory. In fermionic alkaline-earth-metal atoms, the metastable
excited state 3P0 and the ground state 1S0 are only very weakly coupled and can
be trapped independently by two different optical lattice potentials with the same
spatial periodicity. This allows to simulate localised spin impurities in a delocalised
conduction band of atoms. The vanishing electronic angular momentum J in both
of these states results in an almost perfect decoupling of the nuclear spin I from J ,
which implies an SU(N ) symmetry in the (hyperfine) spin degree of freedom with
N = 2I + 1. Moreover, the particular value of N , which can be as large as ten for
87Sr, can be chosen through the controlled population of a subset of the hyperfine
states. This offers the unique possibility to employ controlled large-N expansions in
quantum field theory for the study of both, static and dynamical properties.
Thereafter, we reviewed the KLM more formally and showed how different rep-

resentations of the Kondo lattice Hamiltonian are linked with each other. Then,
we derived the dynamic equations using the 1/N expansion of the 2PI effective
action. In leading-order approximation of the 1/N , we recovered the mean-field
dynamic equations of the U = 0 Anderson model used in Ref. [93] to describe Kondo
lattice dynamics. Finally, we derived the dynamic equations in next-to-leading order
approximation. At next-to-leading order (NLO), both spin-flip and direct interactions
between localised atoms and conduction band atoms are taken into account non-
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perturbatively. Therefore, the 1/N expansion of the 2PI effective action beyond the
leading-order approximation is a promising tool to tackle yet outstanding challenges
in KLM research, e. g. possible novel phases depending on the coupling strength,
filling factors, and size of the degeneracy N , and phase transitions between these
phases. We closed this chapter by rewriting the dynamic equations in next-to-leading
order approximation in a way that is suitable for a numerical implementation. Also,
we explained how such an implementation can be done very efficiently even for largeN .

In conclusion, with our research we extended existing work on the study of non-
equilibrium real-time dynamics based on approximations of the 2PI effective action
to systems of non-relativistic Fermi gases. With our numerical investigations of
the ultra-cold Fermi gas with two spin components in one spatial dimension, we
demonstrated the possibility for equilibration to non-thermal states outside the
Tomonaga-Luttinger liquid (TLL) regime, and thereby contributed to the ongoing
discussion on the long-time properties of such a system in view of quantum integrability.
Our work on the KLM laid the foundation for future studies on static and dynamical
properties of this model particular in regimes where strong correlations are present
and beyond-mean-field approximations are required.
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Appendix A

Ideal non-relativistic Fermi gas in d
spatial dimensions

The ideal non-relativistic Fermi gas in three dimensions is discussed in nearly every
textbook on statistical mechanics, e. g. the book by F. Schwabl [166]. The general-
isation to d dimensions is straightforward, but rarely shown explicitly; therefore, we
provide some of the corresponding formulae in this appendix.

A.1 Grand-canonical potential

The state of N non-interacting particles can be written as a tensor product of the
one-particle states |pi〉, i = 1, . . . , N . And to simplify the discussion, it is convenient
to characterise the N -particle state by the occupation numbers np of the one-particle
states.

To derive thermodynamic quantities, it is most convenient to determine the grand-
canonical potential. In the formalism of the second quantisation, the grand-canonical
partition function is given by

ZG = Tr exp[−β(H − µN̂)] , (A.1)

where the Hamiltonian H and the particle number operator N̂ in second quantisation
are given by

H =
∑
p

εpâ
†
pâp and N̂ =

∑
p

â†pâp , (A.2)

where the sum is over all possible one-particle states p = (p,ms) characterised by the
momentum p and the z-component ms of the spin s; ms takes 2s + 1 values. For
fermions, it follows

ZG = Tr
∏
p

exp[−β(εp − µ)â†pâp] = Tr
∏
p

exp[−β(εp − µ)n̂p]

=
∏
p

(
1 + e−β(εp−µ)

)
. (A.3)
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The grand-canonical potential is

Φ = −β−1 lnZG = −β−1
∑
p

ln
[
1 + e−β(εp−µ)

]
. (A.4)

In discrete momentum space, each momentum p occupies the volume (2π~/L)d.
For large volumes V = Ld, the sum over one-particle states can be replaced by an
integral. If the integrand depends only on the absolute value of p then it is convenient
to evaluate the integral in spherical coordinates. In this case, one can integrate out
all but the radial component pr:∑

p

=
s∑

ms=−s

∑
p

≈ V

(2π~)d

s∑
ms=−s

∫
ddp =

V

(2π~)d
2πd/2

Γ (d/2)

s∑
ms=−s

∫ ∞
0

dpr p
d−1
r

=

∫ ∞
0

dε g(ε) (A.5)

with energy density

g(ε) =
gsV

(2π~)d
2πd/2

Γ (d/2)
pd−1
r (ε)

(
∂ε

∂pr

)−1

. (A.6)

Here, gs = 2s+ 1 is the degeneracy factor, which appears since we assumed the mode
energy εp to be independent of the spin s. Γ (ν) is the Euler Gamma function with,
for example, Γ (1/2) =

√
π, Γ (1) = 1, Γ (3/2) =

√
π/2, and Γ (5/2) = 3

√
π/4.

For the special case of non-relativistic particles with dispersion relation

ε =
p2

2m

[
=

p2
r

2m

]
, (A.7)

the energy density is

g(ε) =
gsV

λdT

βd/2

Γ (d/2)
εd/2−1 (A.8)

with the thermal wavelength

λT =
2π~√

2πmβ−1
. (A.9)

A.2 Fermi-Dirac functions

For the following discussion, it is convenient to define the so-called Fermi-Dirac
functions fν(z), which are generalisations of the Riemann zeta function ζ(α) =

∑
k k
−α
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Figure A.1: Illustration of some of the Fermi-Dirac functions fν(z) defined in Eq. (A.10).

for Re[α] > 1. The Fermi-Dirac functions are defined as

fν(z) =
1

Γ (ν)

∫ ∞
0

dx
xν−1

z−1ex + 1
, 0 ≤ z <∞ . (A.10)

For ν ≥ 1, they fulfil the recurrence relation

zf ′ν(z) = fν−1(z) . (A.11)

Some special cases are

f0(z) =
z

z + 1
, f1(z) = ln(z + 1) , f∞(z) = z . (A.12)

For 0 ≤ z ≤ 1, a series expansion exists,

fν(z) =
∞∑
k=1

(−1)k
zk

kν
. (A.13)

And the asymptotic expansion for z � 1 is

fν(z) =
(ln z)ν

Γ (ν + 1)

(
1 +

∞∑
k=1

2(1− 21−2k)n!ζ(2k)

(n− 2k)!(ln z)2k

)
. (A.14)

Some of the Fermi-Dirac functions are shown in Fig. A.1.
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A.3 Total particle number

The mean particle number is

N ≡ −
(
∂Φ

∂µ

)
β

=
∑
p

n(εp) , (A.15)

where

n(εp) ≡ 1

eβ(εp−µ) + 1
(A.16)

is the mean occupation number of the state |p〉. The uncertainty in the occupation
numbers is

(
∆n(εp)

)2
= β−1∂n(εp)

∂µ
= n(εp)

(
1− n(εp)

)
, (A.17)

which vanishes for n(εp) = 0 and n(εp) = 1.
Replacing the sum over p by an integral, one finds for the total particle number

N =
gsV

λdT
fd/2(z) , (A.18)

where z = exp[µβ] is the fugacity. As we will see, the ratio NλdT/(gsV ) can be
replaced in favour of an expression that solely depends on the dimension d and the
temperature β−1, see Eq. (A.40). Since fd/2(z) is invertible for non-negative z and
diverges to positive infinity for d > 0, the fugacity z is thus uniquely fixed for given d
and β.
For later use, note that the mean occupation number in Eq. (A.16) simplifies to

n(εp) =

{
1, for εp < µ

0, for εp ≥ µ
(A.19)

for β−1 = 0.

A.4 Fugacity

The fugacity z is defined as

z = eµβ . (A.20)

The fugacity as a function of temperature is shown in Fig. A.2.

108



A.4 Fugacity
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Figure A.2: Fugacity as a function of temperature for the ideal Fermi gas (red solid lines)
and the ideal classical gas (blue dashed lines) in d dimensions. The asymptotic
behaviour of the ideal Fermi gas for high temperatures is shown as black dotted
lines.

Quantum limit (z � 1):

For z � 1, the Fermi function asymptotically reaches

fν(z) =
(ln z)ν

Γ (ν + 1)

(
1 +O[(ln z)−2

])
. (A.21)

Combining this equation with Eq. (A.40) gives

z ≈ exp[εFβ] . (A.22)

Classical limit (z � 1):

The fugacity can be calculated from the series expansion of fd/2(z),

fd/2(z) = z − z2

2d/2
+O[z3

]
. (A.23)

As we will shortly see, one can write Nλd/(gsV ) in Eq. (A.18) as an expression with d
and β as the only parameters, cf. Eq. (A.40). Combining Eq. (A.23) and Eq. (A.40),
one finds

z = zclassical +
22−d/2/d2

Γ 2(d/2)
(εFβ)d +O[(εFβ)3d/2

]
(A.24)

109



Appendix A Ideal non-relativistic Fermi gas in d spatial dimensions

0

1

2

3

4

5

0 1 2 3 4 5

E
/
(N

ε F
)

(εF β)−1

d = 1

d = 2d = 3

Figure A.3: Mean energy per particle as a function of temperature for the ideal Fermi gas
(red solid lines) and the ideal classical gas (blue dashed lines) in d dimensions.
The asymptotic behaviour of the ideal Fermi gas for low and high temperatures
is shown as black dotted lines.

with

zclassical =
2/d

Γ (d/2)
(εFβ)d/2 . (A.25)

A.5 Mean energy per particle

The internal energy E is given by

E =

(
∂(Φβ)

∂β

)
βµ

=
∑
p

εpn(εp) . (A.26)

Replacing the sum over p by an integral, one finds for the mean energy per particle

E

N
=
d

2
β−1fd/2+1(z)

fd/2(z)
. (A.27)

The mean energies per particle as a function of temperature in d = 1, 2, and 3
dimensions are shown in Fig. A.3.
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A.5 Mean energy per particle

Quantum limit (z � 1):

The asymptotic behaviour for large z, i. e. β−1 � 1, allows to define a characteristic
energy, the Fermi energy εF . For z � 1, we find

fd/2+1(z)

fd/2(z)
≈ d

d+ 2
ln z =

d

d+ 2
βµ . (A.28)

Thus, for β−1 → 0, we find from Eq. (A.27),

E

N
→ d

d+ 2
µ(β−1 → 0) . (A.29)

We call the chemical potential at zero temperature the Fermi energy εF ,

εF ≡ µ(β−1 = 0) , (A.30)

which allows to rewrite Eq. (A.29) as

E(β−1 = 0) = NεF
d

d+ 2
. (A.31)

Classical limit (z � 1):

For z � 1, the series expansion (A.13) allows the approximation

fν+1(z)

fν(z)
=
z − z2/2ν+1

z − z2/2ν
+O[z2

]
=
(

1− z

2ν+1

)(
1 +

z

2ν

)
+O[z2

]
= 1 +

z

2ν+1
+O[z2

]
. (A.32)

Using z ≈ fd/2(z) and Eq. (A.40) gives

fd/2+1(z)

fd/2(z)
≈ 1 +

2−d/2/d
Γ (d/2)

(εFβ)d/2 . (A.33)

Thus, we find

E

NεF
=
Eclassical

NεF

(
1 +

2−d/2/d
Γ (d/2)

(εFβ)d/2
)

(A.34a)

=
Eclassical

NεF
+

2−d/2−1

Γ (d/2)
(εFβ)d/2−1 (A.34b)

with
Eclassical

NεF
=
d

2
(εFβ)−1 . (A.35)

From Eq. (A.34a) follows E/Eclassical → 1 at high temperatures for all d > 0; however,
the behaviour of the difference (E − Eclassical) is dimension dependent:

E − Eclassical

NεF
→


diverges ∼ (εFβ)d/2−1 , for d < 2

1/4 , for d = 2

0 , for d > 2 .

(A.36)
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Appendix A Ideal non-relativistic Fermi gas in d spatial dimensions

fd/2(z) in terms of d and β:

For β−1 = 0, the mean energy can be directly obtained from the defining integral,

E(β−1 = 0) =
∑
p

εpn(εp) with n(εp) given in Eq. (A.19)

≈ gsV

(2π~)d
(2πm)d/2

Γ (d/2)

∫ ∞
0

dε εd/2−1n(ε)

=
gsV

(2π~)d
(2πm)d/2

Γ (d/2)

∫ εF

0

dε εd/2−1

=
gsV

(2π~)d
(2πm)d/2

Γ (d/2)

ε
d/2+1
F

d/2 + 1
. (A.37)

Combining Eqs. (A.31) and (A.37),

NεF
d

d+ 2
= gs

(
L

2π~

)d
(2πm)d/2

1

Γ (d/2)

1

d/2 + 1
ε
d/2+1
F (A.38)

⇔ d

2
NΓ (d/2) = gs

(
L

2π~

)d
(2πmεF )d/2 =

gsV

λdT
(εFβ)d/2 , (A.39)

allows to express fd/2(z) can be expressed in terms of d and β,

fd/2(z)
(A.18)

=
NλdT
gsV

(A.39)
=

2/d

Γ (d/2)
(εFβ)d/2 . (A.40)

For later use, we note that the last equation implies

∂fν(z)

∂(β−1)
= −νβfν(z) . (A.41)

A.6 Heat capacity

The heat capacity CV at constant volume is defined as

CV
NkB

≡ 1

N

∂E

∂β−1
. (A.42)

Using Eq. (A.27) and Eq. (A.41), one finds

CV
NkB

=

(
d

2
+
d2

4

)
fd/2+1(z)

fd/2(z)
− d2

4

f ′d/2+1(z)

f ′d/2(z)
. (A.43)

The chemical potentials as a function of temperature in d = 1, 2, and 3 dimensions
are shown in Fig. A.4.
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Figure A.4: Heat capacity per particle as a function of temperature for the ideal Fermi gas
(red solid lines) and the ideal classical gas (blue dashed lines) in d dimensions.
The asymptotic behaviour of the ideal Fermi gas for low and high temperatures
is shown as black dotted lines.

Quantum limit (z � 1):

At low temperatures, CV goes linearly to zero according to

CV
NkB

=
π2d

6
(εFβ)−1 +O[(εFβ)−2

]
. (A.44)

Classical limit (z � 1):

From the β−1 � 1 behaviour of the energy E, it follows that CV converges to the
classical result in all dimensions:

CV
NkB

=
CV,classical

NkB
+

2−d/2d(1− d/2)

Γ (d/2)
(εFβ)d/2 +O[(εFβ)d

]
(A.45)

with

CV,classical

NkB
=
d

2
. (A.46)

A.7 Chemical potential

Since the fugacity z can be calculated according to Eq. (A.40) for a given (εFβ)−1,
the chemical potential as a function of temperature is given by the definition of the
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Figure A.5: Chemical potential as a function of temperature for the ideal Fermi gas (red
solid lines) and the ideal classical gas (blue dashed lines) in d dimensions. The
asymptotic behaviour of the ideal Fermi gas for low and high temperatures is
shown as black dotted lines.

fugacity,

µ

εF
= (εFβ)−1 ln z . (A.47)

The chemical potentials as a function of temperature in d = 1, 2, and 3 dimensions
are shown in Fig. A.5.

Quantum limit (z � 1):

Per definition of the Fermi energy, it is µ/εF = 1 at zero temperature. Including
second-order corrections, one finds

µ

εF
= 1 +

π2

6

(
1− d

2

)
(εFβ)−2 +O[(εFβ)−4

]
. (A.48)

Classical limit (z � 1):

Using Eq. (A.24), one finds

µ

εF
=
µclassical

εF
+

21−d/2/d
Γ (d/2)

(εFβ)d/2−1 (A.49)
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with

µclassical

εF
= (εFβ)−1 ln

[
2/d

Γ (d/2)
(εFβ)d/2

]
. (A.50)

The high-temperature behaviour of the difference (µ−µclassical) is dimension dependent:

µ− µclassical

εF
→


diverges ∼ (εFβ)d/2−1 , for d < 2

1/2 , for d = 2

0 , for d > 2.
(A.51)

A.8 Pressure

The grand-canonical potential Φ can be written in terms of the total energy E,

Φ = −gsV
λdT

βd/2

Γ (d/2)

∫ ∞
0

εd/2−1 ln
[
1 + ze−βε

]
dε

= −gsV
λdT

βd/2

Γ (d/2)

2

d

{[
εd/2 ln

[
1 + ze−βε

]]∞
0

+ β

∫ ∞
0

εd/2

z−1eβε + 1

}
= −2

d

gsV

λdT
β−1Γ (1 + d/2)

Γ (d/2)
f1+d/2(z)

= −2

d
E . (A.52)

Thus, one finds for the pressure P , defined by PV = −Φ,

PV =
2

d
E . (A.53)

The last equation is the so-called energy-momentum relation. Note that, for an
ideal quantum gas, it can be shown that this relation is independent of the statistics
(Fermi-Dirac, Bose-Einstein, Maxwell-Boltzmann).
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Appendix B

Graßmann variables and coherent
states for fermions

In this appendix, we list properties of Graßmann variables that are needed in the
context of our discussion of non-relativistic fermionic path integrals. For a rigorous and
more detailed discussion of Graßmann variables in the context of path integrals, see,
for example, Ref. [109]. Furthermore, we briefly review coherent states for fermions,
which are discussed in more detail, for example, in Ref. [95].

B.1 Graßmann variables

To distinguish anti-commuting Graßmann variables from commuting real and complex
numbers, the latter will be called c-numbers in this appendix, where c stands for
commuting.

Anti-commutation relation

A set of complex Graßmann variables θa, a ∈ {1, . . . , n}, satisfies

θaθb + θbθa = 0 (B.1)

with a, b ∈ {1, 2, . . . , n}. This implies that Graßmann variables are nilpotent,

(θa)
2 = 0 . (B.2)

Any Graßmann variable commutes with any c-number. Zero is the only number that
is a c-number as well as a Graßmann variable simultaneously.

Complex conjugation

For any pair of Graßmann variables θ and ϑ, complex conjugation (denoted by an
asterisk) is defined by

(θϑ)∗ = ϑ∗θ∗ , (B.3)

which ensures the reality condition (θθ∗)∗ = θθ∗.
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Appendix B Graßmann variables and coherent states for fermions

Functions of Graßmann variables

A function of Graßmann variables is defined as a Taylor expansion of the function.
Since Graßmann variables are nilpotent, Eq. (B.2), there is only a finite number
of Taylor coefficients for a function the depends on a finite number of Graßmann
variables.

For a function f(θ) of a single Graßmann variable θ, it is

f(θ) = a+ bθ (B.4)

with c-numbered Fourier coefficients a and b. We find

a = f(0) (B.5)

b =
∂

∂θ
f(θ) . (B.6)

Since any function f(θ) of a single Graßmann variable is θ at most linear in θ, the
two fundamental integrals∫

dθ = 0 (B.7)∫
dθ θ = 1 (B.8)

determine completely the integral of f . Note that differentiation and integration with
respect to a Graßmann gives the same result,

∂

∂θ
f(θ) = b =

∫
dθ f(θ) . (B.9)

Differentiation and integration

Since Graßmann variables anti-commute, it is necessary to choose an order for
differentiation and integration. The common choice is

∂

∂θ
θϑ = ϑ = − ∂

∂θ
ϑθ ⇔

∫
dθ θϑ = ϑ = −

∫
dθ ϑθ , (B.10)

∂

∂θ

∂

∂ϑ
= − ∂

∂ϑ

∂

∂θ
⇔

∫
dθdϑ = −

∫
dθdϑ , (B.11)

where θ and ϑ are Graßmann variables.

Change of variables

Since differentiation and integration coincides for Graßmann variables, the integral
needs to be transformed with the inverse of the usual Jacobian if Graßmann integration
variables are changed,∫

dθn · · · dθ1 =

∫
dθ′n · · · dθ′1

[
∂~θ

∂~θ′

]−1

. (B.12)
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B.1 Graßmann variables

Functional derivative

We consider a Graßmann variable θ(t) that depends on a c-number parameter t, i. e.
θ(t) is a so-called Graßmann field. Let F [θ(t)] be a functional of θ(t). The functional
derivative of F [θ(t)] with respect to the Graßmann field θ(s) is then defined as

δF [θ(t)]

δθ(s)
≡ F [θ(t) + εδ(t− s)]− F [θ(t)]

ε
, (B.13)

where ε is a Graßmann variable that anti-commutes with Graßmann field. As
mentioned above, the Taylor expansion of F [ψ(t) + εδ(t− s)]− F [ψ(t)] with respect
to ε is linear in ε since ε2 = 0. Since the numerator is proportional to ε, the division
by ε is to be understood as picking up the coefficient of ε in the numerator. Note,
however, that a division by a Graßmann variable is not well defined in general.

Real and imaginary parts of complex Graßmann variables

The real and imaginary parts of a complex Graßmann variable θ are defined as
1√
2
θ1 = Re[θ] ≡ 1

2

(
θ + θ∗

)
, (B.14)

1√
2
θ2 = Im[θ] ≡ 1

2i

(
θ − θ∗

)
. (B.15)

From this definition of θ1 and θ2, and property (B.1) of θ and θ∗ follows immediately

θ1θ1 = θ2θ2 = 0 , (B.16)
iθ1θ2 = −iθ2θ1 = θ∗θ , (B.17)

which implies that iθ1θ2 rather than θ1θ2 is real. This motivates to introduce the
bared notation,

θ1 = −iθ2 =
1√
2

(
θ∗ − θ

)
, (B.18)

θ2 = iθ1 =
i√
2

(
θ∗ + θ

)
, (B.19)

such that

θiθj = −θjθi ∈ R (B.20)

for i, j ∈ {1, 2} and

θ∗θ =
1

2

(
θ1θ1 + θ2θ2

)
. (B.21)

The measure of integration in
∫
dθ∗dθ and

∫
dθ1dθ2 are related by∫

dθ∗dθ =
i

2

∫
dθ1dθ2 , (B.22)

where we used Eq. (B.12).
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Appendix B Graßmann variables and coherent states for fermions

B.2 Coherent states for fermions

Coherent states, i. e. eigenstates of the annihilation operator â, for fermions are defined
as

|θ〉 ≡ e−θ
∗θ/2eâ

†θ|0〉 = e−θ
∗θ/2(|0〉 − θ|1〉) , (B.23)

and their adjoint states read

〈θ| ≡ e−θ
∗θ/2〈0|eθ∗â = e−θ

∗θ/2(〈0|+ θ∗〈1|) . (B.24)

Note that the Graßmann variable θ anti-commutes with the fermionic operators â
and â†. The coherent states |θ〉 are indeed an eigenstates of the annihilation operator
â since

â|θ〉 = âe−θ
∗θ/2(|0〉 − θ|1〉) = e−θ

∗θ/2â
(|0〉 − θ|1〉) = e−θ

∗θ/2θâ|1〉

= e−θ
∗θ/2θ|0〉 (B.2)= e−θ

∗θ/2θ
(|0〉 − θ|1〉) = θe−θ

∗θ/2(|0〉 − θ|1〉)
= θ|θ〉 . (B.25)

The coherent states |θ〉 form an over-complete set in the one-fermion Hilbert space.
They fulfil the identity∫

dθ∗dθ |θ〉〈θ|

=

∫
dθ∗dθ e−θ

∗θ(|0〉〈0| − θ|1〉〈0|+ θ∗|0〉〈1|)
=

∫
dθ∗dθ

(
|0〉〈0|+ |1〉〈0|θ + θ∗|0〉〈1|+ θθ∗

(|0〉〈0|+ |1〉〈1|)) = 1 . (B.26)

For an operator Ô, the trace can be evaluated using the integral over the anti-diagonal
elements

Tr
[
Ô
]

=

∫
dθ∗dθ 〈−θ|Ô|θ〉 =

∫
dθ∗dθ e−θ

∗θ(〈0| − θ∗〈1|)Ô(|0〉 − θ|1〉)
= 〈0|Ô|0〉+ 〈1|Ô|1〉 . (B.27)

120



Bibliography

[1] J. Berges, What the inflaton might tell us about RHIC/LHC, Nucl. Phys. A
820 (2009), 65c–73c.

[2] R. Micha and I. I. Tkachev, Turbulent thermalization, Phys. Rev. D 70 (2004),
043538.

[3] U. W. Heinz and P. F. Kolb, Early thermalization at RHIC, Nucl. Phys. A
702 (2002), 269.

[4] Y. V. Kovchegov and A. Taliotis, Early time dynamics in heavy-ion collisions
from AdS/CFT correspondence, Phys. Rev. C 76 (2007), 014905.

[5] E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl.
Phys. 62 (2009), 48.

[6] R. D. Levine, Molecular Reaction Dynamics, Cambridge University Press,
Cambridge, 2005.

[7] P. H. Bucksbaum, The future of attosecond spectroscopy, Science 317 (2007),
766.

[8] A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath,
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