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Zusammenfassung  
 
Annähernd 30% der weltweiten Todesfälle sind auf Erkrankungen des Herzens 
und der Lunge zurückzuführen, wobei die meisten dieser Erkrankungen während 
ihres Verlaufs die Mobilität des betroffenen Organs verändern. Viele dieser To-
desfälle könnten durch eine frühzeitige Erkennung und Behandlung der Erkran-
kung vermieden werden. Deshalb wurden im Zuge dieser Arbeit Methoden ent-
wickelt, um aus Segmentierungen von dynamischen Magnetresonanztomogra-
phie-Daten quantitative Kennzahlen für die funktionale Analyse der Herz- und 
Lungenbewegung zu generieren. Ein automatisiertes Segmentierungsverfahren 
basierend auf gekoppelten Formmodellen wurde entwickelt, welches wechsel-
seitige Informationen der Form und Geometrie mehrerer korrelierter Objekte 
mit einbezieht, und somit 40% bessere Ergebnisse im Vergleich zur Verwendung 
einzelner Modelle erzielte. Im Fall des Herzens wurde ein Volumenberechnungs-
fehler von unter 13% erreicht, was in der Größenordnung der Interobserver-
Variabilität liegt. Für die Lunge konnte ein Volumenfehler von unter 70ml gezeigt 
werden. Aus den Segmentierungsergebnissen wurden funktionale Parameter der 
lokalen Organdynamik abgeleitet und visualisiert, die gegen konventionelle Diag-
nosemethoden evaluiert wurden und dabei gute Übereinstimmung zeigen, darü-
ber hinaus jedoch eine lokal und regionale Mobilitätscharakterisierung erlauben.  

 

Abstract 
 
Approximately 30% of deaths worldwide originate from diseases of the heart and 
lungs, whereby most of which alter mobility of the organ during their course. 
Many of these deaths could be avoided by early detection and treatment of the 
disease. Therefore, in this thesis, methods have been developed for the analysis 
of dynamic magnetic resonance imaging data, and the generation of quantitative 
measures for the functional cardiac and pulmonary analysis from segmentation 
of these image sequences. An automated coupled shape model segmentation 
scheme has been developed that incorporates mutual information on shape and 
geometry of correlated objects to cope with the difficulties found in the image 
data, showing 40% better results compared to single models. For the heart, a 
volumetric error of below 13% was achieved, which is in the magnitude of inter-
observer variability. For the lungs, a volume calculation error of below 70ml 
could be shown. From the segmentation results, functional parameters describ-
ing the local organ dynamics have been derived and visualized. The quantitative 
parameters were evaluated against conventional diagnostic techniques and 
showed good agreement, but with the benefit of a local and regional mobility 
characterization.  
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1 Introduction 

1.1 Motivation 

According to the World Health Organization, approximately 30% of 
all deaths worldwide result from diseases of the heart and lungs [1]. 
Common for most of these diseases is that they alter or restrict the 
mobility of the organs, and thereby reduce their ability to perform 
their physiological function: The transport of blood, for the heart, 
and the transport of air, for the lungs. Generally these diseases can 
be detected in early stages by functional analysis of the affected 
organs, and can be treated and cured if detected early enough. Con-
ventional techniques, like Electrocardiography (ECG) for the heart, 
and spirometry for the lungs, can in general only detect alterations 
that restrict movement by 20% or more in global, which is not suffi-
cient for the characterization of early disease stages. Therefore, 
medical imaging plays an increasing role in the early diagnosis of 
heart and lung function as well as therapy monitoring due to recent 
technological advancement, as with the help of medical image ac-
quisition like Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI), the organ’s function can be displayed and analyzed 
non-invasively from the outside and can also display local condi-
tions. 

Anyhow, the quantitative analysis of medical image data exhibits an 
increasing challenge in the clinical routine. Due to novel acquisition 
technologies, the spatiotemporal resolution of medical images is 
steadily increasing, making a manual analysis of the data more and 
more time consuming. Especially in the examination of anatomical 
and pathological structures which cover larger parts of the body, 
this trend becomes more and more noticeable in radiological prac-
tice. In thoracic imaging, where spacious scanning regions have to 
be recorded as well as dynamic aspects have to be considered, this 
progress offers a potential for improved diagnosis at the cost of 
more complicated analysis. At least parts of these complications can 
be strongly reduced with the help of automated computer support.  
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In both cases, the heart and the lungs, the first step for computer 
aided diagnosis is the extraction of relevant anatomical structures 
from the medical image data. This procedure is called segmentation, 
i.e. the division of the image data into objects of interest, and back-
ground, thereby splitting it into segments. Segmentation is a very 
active field of research, but regarding the question of mobility anal-
ysis, most existing approaches lack a number of fundamental prere-
quisites: 

• Most existing methods do not consider the three-
dimensional context as an integral part of their functionality. 

• Most existing methods do not consider the temporal con-
text as an integral part of their functionality. 

• The approach needs to be applicable for a wide variety of 
image situations resulting from anatomically variability, pa-
tient condition, image noise, and acquisition artifacts. 

The segmentation results can then be further processed to generate 
physical quantitative measures for diagnostic support. A strong ben-
efit lies here in the high sensitivity in early stage diagnosis that can 
be achieved via image analysis compared to measurements from the 
outside. In the scope of this thesis, therefore methods have been 
developed that allow a local assessment of the heart’s and lung’s 
motion characteristics from dynamic MRI image data with the help 
of a model based segmentation scheme, that provide an intuitive 
visualization of quantitative functional physical and physiological 
parameters for the computer aided diagnosis support.  

1.2 Objectives 

Taking the fact that the spatiotemporal resolution of medical image 
data is steadily increasing, while the time for assessment stays more 
or less the same, it becomes apparent that automation of the analy-
sis is indispensible. Anyhow, the attending physician always has to 
be incorporated in the final diagnostic decision, so a complete au-
tonomy of algorithms is not the intended aim. 

The focus of this work therefore was set on the development of a 
combination of automated image analysis techniques in conjunction 
with adequate methods for visualization of quantitative results to 
give computer aided diagnosis support for cardiologists and radiolo-
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gists, which furthermore allow the physician to easily control and 
manipulate the results. Image data from dynamic MRI should pre-
ferably be analyzed as automated as possible and deliver exact re-
sults in a time that is practicable for clinical routine, i.e. several mi-
nutes. Diagnostic support for the physician then should occur in a 
way that the presentation of results can highlight areas that are 
found to be problematic for further inspection. Concurrently, quan-
titative physical measures should be generated from the image data 
to give additional information aiding diagnosis. 

The goals of this work are the conception and implementation of 
new and improved methods for the diagnosis support of thoracic 
diseases with focus on diseases that alter mobility of the heart and 
lung. The aims can be divided into three thematic complexes and 
are therefore formulated separately. 

To provide a basis for the extraction of medical parameters, relevant 
structures in the image have to be segmented. For this purpose, a 
segmentation scheme must be provided that  

• Can segment dynamic image data automated, with low user 
interaction, and in short time. 

• Provides robust results that are highly reproducible 

• Incorporates as much a priori knowledge as possible, not 
only on single structures, but also on adjacent ones that are 
coupled to these 

• Is flexible to anatomical, pathological, and image condition 
variations 

For the analysis of cardiac function, the main objectives were: 

• Development of methods to extract vital volumetric para-
meters of the heart 

• Development of methods for local dynamic parameter gen-
eration to characterize regional motion behavior   

• Development of meaningful visualizations of these parame-
ters, especially the highlight of potential motion restrictions 
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For the analysis of respiratory function, the main objectives were: 

• Development of methods for individual analysis of both 
lungs to give more specific predictions than conventional 
techniques 

• Development of methods for the estimation of local paren-
chymal mobility to characterize regional motion behavior   

• Development of methods that are sufficiently temporal re-
solved to display potential volumetric changes in breathing 
maneuvers 

1.3 Structure of the Thesis 

This thesis is organized as follows: Chapter 2 introduces the medical 
background for cardiac and pulmonary function analysis that is help-
ful for the understanding of the thesis. In each case, an overview 
over the relevant anatomy and physiology is given, and common 
restrictive diseases and diagnostic standards are presented. Chapter 
3 lists current research that is done in the fields of multiple organ 
segmentation, cardiac functional analysis, and pulmonary functional 
analysis. Chapter 4 is divided into two parts. In the first, new me-
thods for multiple organ segmentation in dynamic MRI images using 
different techniques of shape and geometrical correlation of objects 
are presented, as well as a manual correction possibility for shape 
model based segmentation. The second part shows the generation 
of diagnostic parameters from the segmentation results for the 
heart and lung. In chapter 5, several experiments for the validation 
of the proposed methods are presented, as well as the experimental 
results. All previously presented methods are evaluated step by 
step. Chapter 6 discusses the obtained results in detail, and Chapter 
7 concludes the thesis with a summary of the treated aspects and an 
outlook for future work. 



 

 

2 Background 

This chapter gives an overview of the medical background this work 
is based upon. An understanding of the anatomical and physiological 
properties of the organs covered in this work as well as insight in 
clinical routine of their diagnosis is decisive for the understanding of 
the introduced methods. 

First an overview of the function of the human heart, its diseases 
restricting movement and standard diagnose is enlisted. The second 
part covers the human respiratory system, its restrictive diseases as 
well as diagnosis possibilities. 

2.1 Anatomy of the Human Heart 

The human heart is a hollow, cone-shaped muscle which is located 
between the two lungs in the mediastinum (Fig. 2.1). It is bordered 
dorsally by the esophagus and the aorta, ventrally by the back plane 
of the breast bone and reaches caudally to the diaphragm, with 
which it is adhered. As a rule of thumb, two third of the heart are 
located in the left half of the thorax, one third in the right half. A 
healthy heart of an adult human is approximately as large as his fist 
and weights approximately 300 grams [2]. 

The heart is surrounded by a connective tissue like hull called peri-
cardial sac. There are two layers to the pericardial sac: the fibrous 
pericardium and the serous pericardium. The serous pericardium, in 
turn, is divided into two layers, the parietal pericardium, which is 
fused to and inseparable from the fibrous pericardium, and the vis-
ceral pericardium, which is part of the epicardium. The epicardium is 
the layer immediately outside of the heart muscle proper (the myo-
cardium). In between the parietal and visceral pericardial layers 
there is a potential space called the pericardial cavity which is lubri-
cated by a film of serous fluid. The lubrication prevents that large 
friction forces develop between the two layers as the heart muscle 
contracts and relaxes. 
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Fig. 2.1 Location of the heart in the mediastinum. 

Source: [3]. 

The inside of the heart is built by the heart muscle (myocardium) 
and the inner heart wall (endocardium). The endocardium is backing 
the complete inside of the heart and forms the heart valves. The 
myocardium is the muscle that does the actual contraction of the 
heart and forms the largest part of the heart wall. Microscopically, 
the heart musculature is build of a net of involuntary striated, 
branched muscle fibers that wrap around the heart cavities in a 
spiral. Functionally the heart muscle is between smooth and striated 
musculature, as it possesses the spontaneous activity of smooth 
musculature, meaning it does not need an impulse from outside to 
contract, and the speed of striated musculature. 

The myocardium is supplied with blood by the coronary arteries and 
thereby supplied with oxygen. The coronary arteries branch from 
the ascending aorta immediately after the aortic valve and divide 
into a left (Arteria coronaria sinistra, LCA) und a right artery (Arteria 
coronaria dextra, RCA). The left artery further divides into two main 
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branches, the circumflexus (CX) and the left anterior descending 
(LAD), which normally supply the heart’s front and side walls. The 
RCA has one main branch called Ramus interventricularis posterior 
(RIVP) and supplies the back wall (Fig. 2.2). 

 

 

Fig. 2.2 Schematic display of the coronary arteries 

Source: Adapted from [4] 

Fig. 2.3 shows an overview of the complete heart and its in- and 
outflow tract. The heart is divided in a left and right part by the inte-
ratrioventricular septum, dividing the heart into two functionally 
separate and anatomically distinct units. Both parts consist of a su-
perior atrium and an inferior chamber (ventricle). On both sides, the 



Background 

8 
 

lower ventricles are thicker and stronger than the upper atria. The 
muscle wall surrounding the left ventricle (LV) is thicker than the 
wall surrounding the right ventricle due to the higher force needed 
to pump the blood through the systemic circulation (see next page). 

 

Fig. 2.3 Schematic display of the human heart and the great vessels 

Source: [5] 

Blood flows through the heart in one direction, from the atria to the 
ventricles, and out to the great arteries or the aorta for example. 
Blood is prevented from flowing backwards by the triscupid, mitral, 
aortic, and pulmonary valves. The mitral and tricuspid valves are 
classified as the atrioventricular (AV) valves, because they are found 
between the atria and ventricles. The aortic and pulmonary semi-
lunar valves separate the left and right ventricle from the pulmonary 
artery and the aorta respectively (Fig. 2.4). 
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Fig. 2.4 The heart valves as seen from above. 

Source: [3] 

The function of the right side of the heart is to collect de-
oxygenated blood, in the right atrium, from the body via superior 
and inferior vena cavae and pump it, via the right ventricle, into the 
lungs (pulmonary circulation) so that carbon dioxide can be dropped 
off and oxygen picked up. The left side collects oxygenated blood 
from the lungs into the left atrium. From the left atrium the blood 
moves to the left ventricle which pumps it out to the body (via the 
aorta). 

Starting in the right atrium, the blood flows through the tricuspid 
valve to the right ventricle. Here, it is pumped out the pulmonary 
semilunar valve and travels through the pulmonary artery to the 
lungs. From there, blood flows back through the pulmonary vein to 
the left atrium. It then travels through the mitral valve to the left 
ventricle, from where it is pumped through the aortic semilunar 
valve to the aorta and to the rest of the body. The deoxygenated 
blood finally returns to the heart through the inferior vena cava and 
superior vena cava, and enters the right atrium again (Fig. 2.5, Fig. 
2.6). 
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Fig. 2.5 Circulation diagram of the heart 

Source: [6] 

 

Fig. 2.6 Circulation diagram of the thorax 

Source: [3] 
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Physiologically, the heart cycle is divided into two phases called sys-
tole and diastole. These are defined as follows: 

• Systole: Contraction of the myocardium after closing of the AV 
valves and ejection of blood through the semilunar valves. Sys-
tole ends with the closing of the semilunar valves. 

• Diastole: Relaxation of the heart muscle after closing of the se-
milunar valves and filling of the ventricles with blood through 
the opened AV valves. Ends with closing of the AV valves.   

2.2 Cardiovascular Diseases 

Due to the higher muscle density in the left ventricle, supply short-
ages with oxygen appear more often on the left side of the heart 
(e.g. due to coronary heart disease). Also, an infarct causes a rele-
vant heart dysfunction and clinical symptoms much faster on the left 
ventricle then on the right side. Finally, the left heart chamber has 
to pump the blood a much longer way then the right side, which 
only has to supply the surrounding lungs. Therefore, cardiac diagno-
sis focuses mostly on the left ventricle. This chapter will introduce 
the most relevant cardiac diseases that affect the left heart function. 
Congenital heart diseases will be omitted because they are normally 
corrected after birth or in young ages if they display a vital impair-
ment for the cardiac function.    

2.2.1 Carditis 

Carditis is a general term for an inflammation of the heart or its sur-
roundings. Two specific incidents are of importance here: 

• Myocarditis: The definition of myocarditis varies, but the central 
feature is an infection of the heart muscle, with an inflammatory 
infiltrate, and damage to the heart muscle, without the blockage 
of coronary arteries that define a heart attack. It may or may not 
include necrosis of heart tissue, and may include dilated cardi-
omyopathy (see below). Necrotic tissue leads to decreased mus-
cle contraction and therefore can cause an undersupply of the 
body. 

• Endocarditis: An inflammation of the inner layer of the heart 
that usually involves the valves. It can lead to a reduced valve 
function, heart insufficiency, and is deadly if untreated. 
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2.2.2 Heart Failure 

“The inability of the heart to maintain cardiac output sufficient to 
meet the body's needs; it most often results from myocardial failure 
affecting the right or left ventricle” [7]. 

The term left-sided failure refers to a contraction insufficiency of the 
left heart, leading to a backing-up of blood in the pulmonary vessels. 
Consecutively this can lead to lung edemas and dyspnea (shortness 
of breath) on extortion, or even at rest in severe cases. Diverse eti-
ologies can lead to a heart failure, such as myocardial infarction, 
aortic and mitral insufficiency, and coronary disease, which are de-
scribed below.   

Left-sided failure 

2.2.3 Valvular Insufficiency 

“A failure of a cardiac valve to close perfectly, causing valvular re-
gurgitation;” [7]. Of importance for the left heart are insufficiencies 
of the aortic and the mitral valve. 

Also known as aortic regurgitation, the AI is the leaking of the aortic 
valve, leading to blood flow in reverse direction during ventricular 
diastole, from the aorta into the left ventricle. A common cause can 
be, if not congenital, a beforehand endocarditis. The stroke volume 
of the left ventricle is thereby increased by the regurgitation vo-
lume, which leads to a ventricular dilation over time. Although the 
dilation compensates the increased blood pressure in the ventricle, 
an overexpansion of the heart muscle can irreversibly damage the 
myocardium, leading to heart failure. 

Aortic Insufficiency (AI)  

Also known as mitral insufficiency, it is a closing incapability of the 
mitral valve. It can be caused by coronary disease or cardiomyopa-
thy, among others. Due to the not properly closing valve, a backflow 
of blood from the left ventricle into the left atrium occurs during 
ventricular systole (see 

Mitral Regurgitation (MR)  

Fig. 2.7). The blood flowing back, called re-
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gurgitation volume, leads in acute cases to a pressure increase in the 
left atrium as well as in the pulmonary veins, leading to an increased 
risk of lung edema. It also leads to a decreased ejection volume into 
the aorta, which can lead to an undersupply of organs with blood 
(ischemia). An MR occurring for a longer duration (congenital or 
chronic MR) leads to several anatomical adaptations to compensate 
the regurgitation. The left atrium and ventricle are dilated to com-
pensate the increased pressure. Through the dilation, stroke volume 
is increased due to the Frank–Starling mechanism [8]. At the same 
time, the changed heart geometry due to the enlargement can ne-
gatively influence the mitral valve function in addition. 

 

Fig. 2.7 Development of a mitral insufficiency 

Middle: Light stage, Right: Severe stage; Red areas mark a regurgitation. 
Source: Adapted from [9] 

2.2.4 Valvular Stenosis 

A stenosis is “an abnormal narrowing or contraction of a body pas-
sage or opening” [7]. In case of the left heart, again the mitral and 
aortic valve cases are of importance. 

A narrowing of the aortic valve, which can be caused by calcification 
or an inflammation of the endocardium, among others. It leads to a 
decreased opening area of the valve, and the pressure gradient to-
wards the ventricle has to be increased to allow the same blood 
flow for this reason. This results in a hypertrophy over time (thicken-
ing of the heart muscle) because the muscle must be able to apply 
the increased pressure. This is a problem because the supplying 
coronary arteries do not grow equally in size, so an undersupply of 

Aortic valve stenosis (AS)  
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the muscle can lead to ischemia. Thereby hypertrophy can again 
support a heart failure.  

A narrowing of the mitral valve, which leads to an increased pres-
sure gradient between ventricle and atrium. Outcomes are similar as 
in aortic stenosis. 

Mitral stenosis  

2.2.5 Coronary Heart Disease (CHD) 

CHD, which is also called ischemic heart disease (IHD) and coronary 
artery disease (CAD), is a heart disease that causes a narrowing of 
coronary arteries, leading to inadequate blood supply to the myo-
cardium. In most cases it is caused by atherosclerosis (calcification 
of the coronary arteries), resulting in a reduction of the vessel cross-
sectional area and a reduction of vessel elasticity (Fig. 2.8). Other 
reasons can be thrombosis, embolism, and infectious or autoim-
mune inflammations of the coronary vessels. Due to the reduced 
blood supply of the heart muscle, it is undersupplied with oxygen 
(ischemia). Because the left ventricle has more muscle mass, it is 
rather affected than the right. 

CHD can manifest in several varieties of severity:  

• Asymptomatic CHD 

• Symptomatic CHD: 

• Angina pectoris: Chest pain because of reversible myocardial 
ischemia 

• Myocardial infarction: Ischemic myocardial necrosis 

• Left heart failure due to myocardial necrosis 

• Cardiac dysrythmia 

• Sudden cardiac death 

Most symptoms can rise in varying intensities with angina pectoris 
as cardinal symptom. CHD is a slow process over many years, which 
is normally not found before acute symptoms arise (myocardial in-
farction). 
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Fig. 2.8 Calcifications of the coronary arteries 

These can lead to a coronary heart disease. Source: [9] 

2.3 Cardiac Diagnosis 

This section gives a short overview over commonly used techniques 
in the diagnosis of cardiac function which can be used to identify 
pathological heart conditions. Besides laboratory blood tests, which 
can be used for a range of diseases, these are: 

• Electrocardiography (ECG): A non-invasive, fast and painless 
measurement method which can be used as first choice of diag-
nosis when a heart disorder is suspected. It measures the 
heart’s electrical activity by application of electrodes at the skin 
surface, which allows observation of the heart beat waveform. It 
is very insensitive to early stages of diseases, but can detect e.g. 
progressed ventricular enlargements. 

• Heart catheter: A catheter can be inserted into the coronary 
arteries through the blood vessels from the leg, and can directly 
monitor local blood pressure. Mostly the catheter is guided by 
fluoroscopic X-ray. An advantage is that in case of e.g. calcifica-
tions in the arteries, the therapy can directly be conducted 
through the catheter. 

• Computed tomography angiography (CTA): Via X-ray based 
computed tomography, cardiac studies with good image resolu-
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tion can be obtained in very short time. Drawback is however 
the radiation exposure of the patient. 

• Cardiac Magnetic resonance imaging (MRI): MRI gained increas-
ing importance in cardiology in the last years, due to the fast in-
creases in technology and the lack of radiation exposure for the 
patient. MRI has a better contrast for soft tissue then CTA, al-
lowing a better differentiation, but is much slower and has in 
general a lower spatial resolution.  

A detailed overview can be found e.g. in [10]. 

2.4 Physiological Parameters of the Heart 

Various parameters are routinely surveyed in cardiology to diagnose 
the heart function.  The cardiovascular diseases listed in the last 
section regularly lead to a dilation of the ventricle, myocardial 
hypertrophy or ischemia and end in heart insufficiency if untreated. 
To aid in the diagnosis and quantification of these pathophysiologi-
cal alteration, the parameters introduced in this chapter are com-
monly evaluated. 

2.4.1 Volumetry 

From volumetry, alterations of the heart in terms of size and pump-
ing capacity can be evaluated. To further determine and quantify 
these changes, the following parameters are surveyed: 

The volume of the ventricular blood pool, calculated as the endo-
cardial volume. The volumes at end-systole (ESV) and end-diastole 
(EDV) are hereby the most of interest. It gives an evidence for ven-
tricular dilation and further parameters can be derived from it. 

Blood Volume  

The amount of blood that is ejected in one full heart cycle. It is an 
indicator for infarcts, muscle diseases and heart valve diseases, 
which increase or decrease it, respectively. It can be calculated from 
the blood volumes as 

Stroke Volume  
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SV EDV ESV= −  (2.1) 

The percentage of blood ejected over one cycle relative to the full 
heart volume (end-diastolic volume). It is again an indicator for 
myocardial infarction, muscle diseases and heart valve diseases and 
can be calculated as 

Ejection Fraction  

EDV ESV SVEF
EDV EDV
−

= =  (2.2) 

The volume of blood that is pumped by the heart during one 
minute. It is a measure of the pump capacity of the heart. Given the 
heart rate (HR), it can be calculated as 

Cardiac Output  

Q SV HR= ×  (2.3) 

The amount of blood ejected in one minute relative to the patient’s 
body surface area (BSA). This is for allowing the examination of the 
pump capacity for patients with different physical constitution. It 
can be calculated as 

Cardiac index  

QCI
BSA

=  (2.4) 

2.4.2 Wall mass  

The weight of the myocardium and the papillary muscles. For a 
healthy heart, the mass is approximately 300 grams. In case of a 
hypertrophy of the myocardium as depicted in the last chapter, the 
muscle is thickened, so its mass increases, which is among others 

also a symptom for a valve stenosis. Given the density htρ  of heart 

muscle tissue, it can be calculated as 

( )( )wall epi endo pap htm V V V ρ= − + ⋅  (2.5) 
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2.4.3 Wall motion 

The wall motion describes the temporal change of the myocardial 
shape between end-systole and end-diastole. Main focus here is the 
local contraction and atony of the muscle. If immobile regions are 
observed, i.e. no change is observed for a region, this is mostly due 
to ischemic tissue, which can, among other things, point to a heart 
attack taken place previously.  

2.4.4 Wall Thickness 

The wall thickness is measured to objectively observe thickening and 
thinning of the heart muscle and to quantify these. Wall thickness is 
measure at end-systole, as the heart ventricle is then filled with 
blood and the relaxed muscle has minimal thickness. Several cardi-
ovascular diseases lead to a change of the heart muscle, like ische-
mia (thinning), hypertrophic cardiomyopathy or valve stenosis (both 
thickening). 

2.4.5 Wall Thickening 

Wall thickening describes the change of the wall thickness between 
end-diastole and end-systole. It can be again used to locally diag-
nose ischemia of the muscle tissue, as a necrotic tissue does not 
contract anymore, and so the wall thickness remains unchanged.  

2.5 Bull's Eye Diagram 

The Bull’s Eye diagram is a cardiological diagnostic diagram used for 
the display of several local and global heart physiological parame-
ters (see section 2.4). In this case, “local” means normally that dis-
tinct areas of the heart are evaluated individually, and a mean value 
for a parameter, e.g. myocardial movement, is given. 

As can be seen in Fig. 2.10, the Bull’s Eye diagram resembles a dart 
board, subdivided in different sections. Each segment corresponds 
here to an anatomical area of the heart ventricle. Typically, the 
Bull’s Eye is used to analyze parameters of the left ventricle, al-
though there also exist approaches for the right one [11], and also in 
combination with the coronary arteries [12].  
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In cardiology, different segment arrangements are used. The most 
established methods are a 20 segment division of the American So-
ciety of Nuclear Cardiology (ASNC) [13], which is mostly used in Sin-
gle Photon Emission Computed Tomography (SPECT), and a 17 seg-
ment division standard of the American Heart Association (AHA) 
[14]. As this thesis focuses on cardiac MRI, only the AHA standard is 
regarded. 

2.6 AHA Standard 

The AHA was established 1924 in New York as a national health or-
ganization with the mission to prevent people from impairment, 
handicap, and death from cardiovascular diseases. 

In 2002, the AHA published terms of reference for the visualization 
and subdivision of the Bull’s Eye diagram, allowing a standardized 
analysis of left ventricular function. Background was the diversity of 
imaging modalities in cardiology and the hence resulting differences 
in heart orientation in the images.  Images from Positron Emission 
Tomography (PET), e.g., are not oriented along the ventricle axis. To 
solve this problem, the AHA defined a guideline on how to reorient 
image data according to the heart axis. Hereby, slices have to be in 
line orthogonal to the long axis (axis from apex to mitral valve), so 
the slices then show the short axis view (Fig. 2.9). This alignment 
supports the visibleness of the two- and four-chamber view and of 
the arterial blood flow in the coronaries to the myocardium. 

 

Fig. 2.9 Cardiological definition of the heart planes for the view in tomo-
graphic imaging modalities 

Source: [14] 
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In addition, the AHA defines a subdivision of the left ventricular 
myocardium into 17 reasonable anatomical segments. Here, the 
ventricle is partitioned into three areas of equal size, plus the apex 
as individual structure. The three areas are called, from cranial to 
caudal, basal, mid-cavity, and apical. Fig. 2.10 shows the further 
subdivision of these areas into six segments of 60° (basal and mid-
cavity), and four segments of 90° (apical). The single circle in the 
middle depicts the apex. 

 

Fig. 2.10 Bull’s Eye diagram according to the AHA standard  

Source: [14] 
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2.7 Respiratory System 

This section gives an overview over the human respiratory system 
and its functioning. A basic understanding of these topics is needed 
for the concepts presented in the “Methods” chapter. The descrip-
tion follows roughly the one given in [15]. 

2.7.1 Anatomy of the Respiratory System 

The respiratory system is responsible for the exchange of gases be-
tween the body and the outside world. Hereby, the lungs have the 
function to restock the blood with oxygen from breathing air and to 
drain it of carbon dioxide created during metabolism. Upstream of 
the lung alveoli, in which the actual gas exchange takes place, are 
three other parts of the respiratory system: the naso-oropharynx, 
conducting airways, and respiratory bronchioles. A detailed over-
view of the complete anatomy can be found in Fig. 2.11. As this 
work focuses on lung dynamics, a description in more detail will only 
be given for the lower respiration tract, beginning at the trachea. 

 

Fig. 2.11 The human respiratory system in detail 

Source: [16] 
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The trachea, a muscular tube formed from C-shaped cartilages, 
branches repeatedly to form approximately 14 generations of air 
conduits for reaching the distinct lung segments. The trachea bifur-
cates at the carina into the right and left main stem bronchi. Be-
cause the right main stem has a gentler angle from the trachea, the 
right side contributes more to total aspiration as the left. After a few 
centimeters, the right side further subdivides into three smaller so-
called lobar bronchi supporting the three lobes of the right lung, the 
right superior, middle, and inferior lobe. Same anatomy appears on 
the left side, but only with two lobes, left superior and inferior lobe 
(Fig. 2.12). On both sides, each lobe is further subdivided into sever-
al segments, which each have their own conducting airway. Also, 
each segment is supplied by an individual branch from the pulmo-
nary artery. Therefore, each segment can be seen as an individual 
unit of respiration. 

 

Fig. 2.12 The lung lobes 

Source: [3] 

As the bronchi get smaller, they get simpler and more thin-walled. In 
the smallest branches, called bronchioles, they do not consist of 
cartilages anymore, but of muscular fiber tunnels which actively 
regulate air flow to the alveoli. Here, epithelial cells allow the oxy-
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gen of the air to reach capillary blood vessels, and vice versa for 
blood carbon dioxide. The millions of alveoli are embedded among 
capillaries to create an air–blood interface. 

Both lungs are surrounded by a two-layered serous membrane 
called pleura, which has a thin fluid-filled cavity between the layers. 
The outer pleura is attached to the chest wall, the inner pleura cov-
ers the lungs. Lung movement during respiration is possible because 
of the reduced pressure in the cavity, passing all chest wall move-
ments to the lungs, and the fluid acting as a lubricant so the lungs 
can slide effortlessly in the thorax. 

2.7.2 Physiology of the Respiratory System 

To repeatedly support the alveoli with fresh breathing air, the chest 
has to expand and inflate itself through constant movement. This is 
done approx. 15 times per minute in adults, and approx. 25 times 
per minute in children. The chest expansion is called inspiration, and 
transports air with high oxygen content to the alveoli; the contrac-
tion is called expiration and allows the evacuation of air with high 
carbon dioxide level and low oxygen content. 

During inspiration, the diaphragm contracts, thus lowering the di-
aphragm dome and enlarging the lung lobes (abdominal breathing). 
Also, the external intercostal muscles running between the ribs con-
tract, resulting in an enlargement of the rib cage in ventral direction, 
and to a small amount in lateral direction (shallow breathing). The 
enlargement of the lung cavity leads to a reduced air pressure in it, 
which creates suction of air into the lungs. 

While inspiration is an active process, expiration happens mostly 
passive through relaxation of the intercostal and diaphragmatic 
musculature. The lung tissue tightens again and leads to a contrac-
tion of the thoracic cavity. In forced exhalation, also the internal 
intercostal muscles contract, leading to a lowering of the ribs and 
thus a compression of the chest. Fig. 2.13 gives an overview of the 
breathing physiology.  
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Fig. 2.13 Physiology of the human respiratory system 

Source: Adapted from [17]. 

2.7.3 Lung Volumes and Capacities 

During each breathing cycle, about 0.5 liters of air are inhaled and 
exhaled, depending on body size and build. Only two third of this air 
reaches the alveoli, one third remains in the trachea and bronchi 
und thus does not contribute to gas exchange.  

With an average of 15 breathing cycles per minute, a healthy male 
adult thus in- and exhales thus approximately 7.5 liters of air per 
minute. With strong inspiration, an additional 2-3 liters of air can be 
inhaled; with strong expiration, an additional approx. 1 liter can be 
exhaled. These volumes, along with some other and derived meas-
ures, can be used for functional analysis of respiration. 

The following table lists the most important static and dynamic 
measures for the diagnosis of respiratory function (adapted from 
[18]). 
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Table 2-1 Common static and dynamic measures in respiratory diagnosis 

Measurement Calculation Description 

Tidal volume 
(VT) 

measured 

The amount of air breathed in 
or out during normal respira-
tion. The volume of air an indi-
vidual is normally breathing in 
and out. 

Expiratory 
reserve vo-
lume (ERV) 

measured 

The amount of additional air 
that can be pushed out after 
the end expiratory level of 
normal breathing. (At the end 
of a normal breath, the lungs 
contain the residual volume 
plus the expiratory reserve 
volume). 

Inspiratory 
reserve vo-
lume (IRV) 

measured 

The additional air that can be 
inhaled after a normal tidal 
breath in. The maximum vo-
lume of air that can be inspired 
in addition to the tidal volume. 

Vital capacity 
(VC) 

VC = IRV + VT + ERV 

The amount of air that can be 
forced out of the lungs after a 
maximal inspiration. Emphasis 
on completeness of expiration. 
The maximum volume of air 
that can be voluntarily moved 
in and out of the respiratory 
system.  

Inspiratory 
capacity (IC) 

IC = VT + IRV 
The maximal volume that can 
be inspired following a normal 
expiration. 

Residual vo-
lume (RV) 

measured 
The amount of air left in the 
lungs after maximal exhalation. 
The amount of air that is al-
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ways in the lungs and can nev-
er be expired. 

Total lung 
capacity (TLC) 

TLC = IRV + VT + ERV 
+ RV 

The volume of air contained in 
the lung at the end of maximal 
inspiration. The total volume of 
the lung. 

Forced vital 
capacity (FVC) 

measured 

The amount of air that can be 
maximally forced out of the 
lungs after a maximal inspira-
tion. Emphasis on speed.  

Forced expira-
tory volume 1 
sec (FEV1) 

measured 
The maximal amount of air that 
can be exhaled in one second 
after full inspiration. 

Forced expira-
tory volume 1 
sec in % 
(FEV1%) 

measured 

The maximal amount of air that 
can be exhaled in one second 
after full inspiration relative to 
(forced) vital capacity. For 
healthy persons approx. 80%. 

Functional 
residual ca-
pacity (FRC) 

FRC = ERV + RV 

The amount of air left in the 
lungs after a tidal breath out. 
The amount of air that stays in 
the lungs during normal 
breathing. 

Anatomical 
dead space 

measured 
The volume of the conducting 
airways. Measured with Fowler 
method [18]. 

Physiologic 
dead volume 

2 2

2

( ) ( )

( )
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The anatomic dead space plus 
the alveolar dead space. PA, PE: 
Partial pressure of carbon dio-
xide in arterial blood and ex-
pired air. 
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Fig. 2.14 Static lung volumes and capacities 

Source: Adapted from [19] 

2.8 Restrictive Respiratory Diseases 

From a physiological side of view, respiratory diseases are subdi-
vided into obstructive and restrictive diseases. Obstructive diseases 
originate from a total or partial narrowing or blockage of airways 
and a resulting increased airways resistance. Restrictive diseases 
decrease the elasticity of the lung tissue. An overview of the 
changes in breathing behavior can be seen in Fig. 2.16: Obstructive 
lung diseases (OLD) push the position of the flow-volume curve to 
the left due to hyperinflation. The curve displays different patterns 
with various forms of upper airway obstructions (UAO), with reduc-
tion in respiratory flow if the obstruction is outside the thoracic 
cavity and reduction in expiratory flow if the obstruction is caused 
by a fixed deformity. In restrictive lung diseases (RLD), volumes are 
reduced, but flow for any point in volume is mostly normal.  

As the methods developed in this work mainly focus on movement 
restriction, obstructive diseases will not be covered in detail. Any-
how, the developed methods for computer aided diagnosis could 
also be used for obstructive diseases just as well by showing up 
changes in breathing behavior.  

Common for all restrictive diseases is the increase of airways resis-
tance due to a reduced elasticity of the lung tissue. Symptomatic is a 
drop of the most lung volumes and capacities as listed in the last 
chapter (Fig. 2.14). Several etiological diseases will be specified in 
this chapter. 
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2.8.1 Pleural effusion 

A pleural effusion is an accumulation of a fluid in the pleura. Due to 
the rigidity of the outer surroundings of the pleura (bones, muscles, 
and ligaments), it leads to a compression of the soft and elastic lung 
tissue. If enough fluid is accumulated, the amount of air that can be 
in- and exhaled is reduced. Four types of fluid can lead to a pleural 
effusion: Blood, serous fluid, chyle (lymph fluid), and pus. There are 
many possible causes for a pleural effusion, e.g. a lung tumor, car-
diac diseases, infections (like tuberculosis), and traumatic (like a rib 
fracture). Typical symptoms are shortage of breath and insufficient 
supply with oxygen, among others. 

2.8.2 Adhesive pleurisy 

Also called dry pleurisy, an adhesive pleurisy is an inflammation of 
the pleura without effusion of serum, resulting in adhesion of the 
opposing layers of the pleura. This prevents proper movement of 
the layers against each other, thus decreasing lung motility. There 
can be many different causes for pleurisy, with viral infections being 
the most common. Typical symptoms are strong chest pain resulting 
from the friction of the pleural layers, shortage of breath, fever, and 
coughing. 

2.8.3 Pulmonary Fibrosis 

Due to chronically inflammations of the lung, fibrous connective 
tissue is developed out of the lung parenchyma, which means a 
scarring of the lung tissue. The connective tissue stiffens the lung, 
from which a decrease of compliance results. Also, it does not con-
tribute to gas exchange, thus further reduces the functional capacity 
of the lung. As a result the patient develops breathing irregularities, 
shortage of breath, chronic dry cough, and often fever. Most com-
monly known example is the asbestosis, caused by continuing inha-
lation of asbestos fibers. A fibrosis is irreversible, as the scarred tis-
sue does not restore itself to its former healthy condition.  

2.8.4 Pulmonary Edema 

A pulmonary edema is an accumulation of fluid, typically blood, in 
the lungs. It can be caused by heart diseases, leading to a failure of 
the heart to remove blood from the lungs, like left heart failure, or a 
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direct injury of the lung. It leads to a reduced oxygen intake in the 
blood (hypoxia) and can even lead to respiratory failure resulting in 
death when untreated. Therapy focuses on removing the cause of 
the edema and maximizing respiratory function. 

2.8.5 Lung Cancer 

Cancer is an uncontrolled division and proliferation of cells that 
eventually forms a mass known as a tumor. Malignant tumors grow 
aggressively and can invade other tissues of the body, called metas-
tasis. Depending on the stage of the disease, a lung tumor can have 
distinct influence on respiration, as it occupies space in the lungs 
and stiffens the tissue. Symptoms are coughing, difficulties in 
breathing, chest pain, and paralysis. According to the World Health 
Organization (WHO), several types of lung cancer are distinguished 
[20]. 

A tumor originated in epithelial cells in glandular tissue. Adenocarci-
nomas account for approximately 40% of lung cancers. [21] 

Adenocarcinoma 

A malignant tumor originated in squamous epithelial cells, which are 
backing the bronchi. It is one of the most common types of lung 
cancer, identified in 25-35% of lung cancer occurrences. 

Squamous cell lung carcinoma (SCC) 

A very aggressive tumor. Most cases arise from the primary and 
secondary bronchi and show rapid growth. It also tends to quickly 
develop metastasis. It has a frequency of approx. 15%.  

Small cell carcinoma (SCLC) 

A general term for epithelial tumors that can’t be classified in the 
former three sections. Common for all subclasses is a larger tumor 
cell size than in SCLC. They comprise to about 5-10% of all lung can-
cers. 

Large cell lung carcinoma (LCLC) 
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There are also some rather uncommon cases of tumors arising from 
non-epithelial cells, like sarcoma (from connective tissue), or meso-
thelioma (from mesothelium, like pleura).  

Other 

 

Fig. 2.15 Typical appearance of lung tumors in MRI 

a) Bronchial carcinoma; b) Mesothelioma with pleural effusion; Source: 
[22] 

2.9 Respiratory Diagnosis 

Besides of the importance as differential diagnosis, lung functional 
analysis can be very useful for getting an objective diagnosis of a 
dysfunction, the reversibility of a bronchial obstruction or therapy 
side effects, like in radiation therapy. It can also be seen as a screen-
ing possibility for epidemiological questions. The most important 
and most commonly used methods include according to[23]: 

• Spirometry 

• Bronchospasmolytic test 

• Body plethysmography 

• Arterial Blood Gas Test 

2.9.1 Spirometry 

Spirometry is the most commonly performed measurement for lung 
functional analysis. It is based on measuring the air current while 
inspiring and expiring with an air flux sensor. It is used at basal respi-
ration and while performing defined breathing maneuvers. From the 
flow values measured this way, some medical parameters given in 
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the last chapter can be deviated. Also some additional parameters 
like the maximal expiratory flow (Peak Flow, PEF) can directly be 
gained. 

For clinical diagnostics, especially the expiratory values are of inter-
est. In particular in case of chronically diseases, the FEV1% value is 
an important indicator of condition progress. 

Results of spirometry are often displayed graphically in a flow-
volume diagram. Here, the flow value is printed on the y-axis against 
the expiratory volume on the x-axis. Pathological respiratory pat-
terns can be identified in this diagram the easiest way, as well as the 
cooperation of the patient, who might not be willing or able to per-
form the test (e.g. children), but is essential for correct results. Fig. 
2.16 shows the alteration of the flow-volume curve under several 
pathological conditions. 

 

Fig. 2.16 Flow-volume curves under several conditions 

Alteration of flow-volume curves under several conditions: OLD: 
obstructive lung diseases; RLD: Restrictive lung diseases; UAO: Upper 
airway obstruction. Source: Adapted from [24] 
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2.9.2 Bronchospasmolytic Test 

A bronchospasmolytic test is performed by undertaking a pulmonary 
function test before and after an aerosol bronchodilator is given to 
the patient. Normally a Beta-2 selective sympathomimetic is used 
because it causes bronchodilation but does not stimulate the heart. 
This way the amount of bronchoconstriction that was present can 
be measured, as well as how responsive the patient was to a bron-
chodilator medication. The test assesses the degree of airway ob-
struction that is reversible. It can be used to differentiate between 
asthma, which is normally indicated with a reversible obstruction 
under bronchodilator medication, and other diseases.  

2.9.3 Body Plethysmography 

Also called “Body box” for short, a body plethysmography is a very 
sensitive test of lung function which is mostly performed in the clini-
cal sector. During the measurement, the patient is sitting enclosed 

in an airtight chamber in which the pressure Cp  changes due to 

inspiration and expiration. The patient is breathing through a pneu-
motachometer, from which airflow can be measured, while a mouth 

pressure transducer measures alveolar pressure Ap . Additional to 

the parameters from the flow measurement (like with a spirome-
ter), the thoracic gas volume (VTG), compliance C (strain resistance 
of lung tissue) and airway resistance RAW can be measured or calcu-
lated. 
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Here, AV  and CV denote the volume of the lung and chamber, re-

spectively, V denotes the airflow (temporal volume change). With 
these measures it is possible to distinguish between restrictive and 
obstructive diseases, examine the resistance to airflow and deter-
mine the respiratory response to medication. 
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2.9.4 Arterial Blood Gas 

An arterial blood gas test (ABG) is an indirect method to monitor the 
function of the lung. Standard procedure is to extract and analyze 
arterial blood from peripheral capillaries, e.g. from the earlobe. 
With the method, the constellation of blood gases, namely carbon 
dioxide and oxygen, and the pH value are displayed, which eventual-
ly represents the final result of the different lung tasks. With the 
help of it, the degree of efficiency of the lung as organ for gas ex-
change between body and outside world can be evaluated. A draw-
back is that the gas values can also be altered by non-pulmonary 
factors and diseases. 

 

 





 

 

3 State of the Art 

3.1 Medical Image Segmentation 

Knowledge of the individual morphology of a patient is an important 
constituent for a patient specific model and prerequisite for many 
model based therapy approaches. The extraction of morphological 
information from image data is called segmentation.  

A manual segmentation of image data is an alternative in the clinical 
routine only in special cases because of the high time effort. But, a 
reliable automatic segmentation is usually a complicated problem. 
For this reason, segmentation is often the limiting factor for the 
application of further computer assisted methods in diagnosis, ther-
apy planning and monitoring. 

In the last two decades, model-based approaches have been estab-
lished as one of the most successful methods for image segmenta-
tion. The central assumption of these approaches is that structures 
of interest have a repetitive form of geometry and a distinct gray 
value distribution at their border, so the methods are based on 
matching a model which contains information about the expected 
shape and appearance of the structure of interest to new images. 
Due to the inherent a-priori information, model based approaches 
are more stable against local image artifacts and perturbations than 
conventional low-level algorithms. Because biological objects show a 
considerable natural variability, it is helpful to include information 
about common variations in the model. An overview in detail about 
common techniques for single organ segmentation can be found in 
[25]. 

3.1.1 Multiple Organ Segmentation 

In cases of problematic image data, it can be beneficial to not only 
use a single trained model, but to incorporate knowledge from mul-
tiple objects and their interrelations. This is especially helpful when 
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the objects to be segmented only show diffuse borders, image arti-
facts, or a high noise level. The segmentation of multiple objects by 
utilization of additional mutual information is a relatively new and 
active field of research. This section gives an overview over recent 
achievements and methods developed in the field.  

The first type of methods to find correlations between objects which 
can be found is based on geometrical information. Yao et al. for 
example describe a statistical location model of multiple organs 
used for initialization of a segmentation search [26]. They train a 
statistic location model of several organs in relation to the spine by 
calculating the mean relative location and its variances among the 
training data. Their organ models can then be fitted to unseen im-
age data using an a posteriori maximization of the model inside the 
variability range.  

Another approach by Shen et al. uses two distance-based cost func-
tions to generate spatial constraints between multiple interacting 
surfaces during segmentation [27]. The cost functions penalize devi-
ations from trained mean surface to surface distances using a Gaus-
sian mixture model. These costs are applied as additional force term 
for active volume models.  

An approach by Kainmueller et al. [28] calculates correspondences 
between vertices of adjacent objects. They then define line seg-
ments between corresponding vertices which are used as shared 
displacement direction and as shared intensity profiles. With the 
help of this, an overlap of the adjacent structures can be excluded.   

Another method is to find a correlation between objects by using 
shape information. Frangi et al. describe a way to distribute corres-
ponding landmarks on multiple object by nonrigidly registering 
these objects, and use these landmarks to train a shape model of 
the joint objects [29].  

Tsai et al. present a parametric multi-shape model by applying prin-
cipal component analysis on multiple signed distance functions as 
implicit representation of multiple shape classes in an image and 
derive a parametric model [30, 31]. They thereby calculate a coupl-
ing between multiple shapes in the image, and can then use the co-
dependencies to support the segmentation. They apply such models 
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to the segmentation of subcortical brain structures and lower ab-
dominal structures (prostate gland, rectum, and obturator muscles). 

Babalola et al. [32] build a composite active appearance model on 
the basis of explicit surface-mesh representations of multiple brain 
structures. They apply this model to obtain a good initialization of 
brain structure models to accurately segment the caudate in a single 
object segmentation framework. Composite statistical shape models 
yield a tight coupling of the deformations of multiple objects. Ideal-
ly, no overlap between adjacent objects should be possible in model 
space. Anyway, the approach does not allow for a free form multi-
object segmentation, as model deformation is bound to the respec-
tive shape space. 

Okada et al. train and apply statistical atlases of the liver and its 
neighbors in CT images, and use these for an initial region extrac-
tion. Afterwards, segmentation is refined using shape models of 
multiple organs on different levels of detail in a hierarchical order 
[33].  

Lu et al. presented the training of statistical shape models of multi-
object complexes based on medial representations [34], while Cates 
et al. train a landmark based model of a multi-object shape complex 
by optimizing landmark correspondences in joint shape space [35]. 

3.2 Cardiac Diagnosis 

This chapter introduces different solutions available for the func-
tional analysis of the heart. The main focus is on approaches from 
current research, as for commercially available solutions often not 
sufficient information is available for an adequate comparison. 
Common for all approaches in computer aided cardiac diagnosis is 
that functional parameters of the heart are generated from an initial 
segmentation of the left ventricle from dynamic MRI or CT images. 
Also some segmentation approaches which do not focus on a fully 
functional analysis are presented for comparison. 

3.2.1 Commercially Available Products 

Leading manufacturers of CT and MRI imaging modalities like Sie-
mens, Philips, and GE often offer specialized image processing and 
analysis modules alongside their imaging products. These modules 
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are typically integrated in the fundamental systems of image admin-
istration and can usually not be bought as a separate product. This 
allows for an efficient workflow for the user, as he does not have to 
change work place for post processing of images. Due to the strong 
integration, however, it is nearly impossible to obtain information 
over the used algorithms and methods in these modules. Also, not 
all features are listed and documented in detail or are not publicly 
available. There exist a couple of further, mostly smaller companies 
that produce and sell heart diagnosis applications as well, like Pie 
Medical, Visage Imaging, and Vital Images, but the restrictions in 
public access to their methodology are the same as with the large 
manufacturers. Although some of the applications generate similar 
analysis options as presented in this thesis, the information accessi-
ble via the manufacturers’ web pages is in general not enough to 
allow a reasonable delineation and comparison of the used me-
thods, therefore the next section will list recently published research 
projects in the field of cardiac motion analysis. 

3.2.2 LV Segmentation and Functional Analysis  

Manual segmentation of the left ventricle from 3D+t MRI data is 
highly time consuming, as the endocardium and epicardium has to 
be delineated in each slice in each time step, and is therefore not 
applicable in clinical routine. Further there is a large inter-observer 
variability when segmenting manually. Therefore research is done to 
automate this step, and thereby to increase reproducibility and to 
lower time effort and variability. In this section some existing ap-
proaches are presented. The section focuses on methods in which 
cardiac parameters are extracted from the segmentation results, but 
also describes some interesting segmentation approaches. 

A semi-automatic method is presented by Relan et al. [36], which 
they declare to greatly reduce the time effort for ventricular seg-
mentation. In this method, each a long and short axis slice of the left 
ventricle are combined. These 2D slices are transferred in a 3D 
coordinate system according to their DICOM headers positional 
information. The user then has to mark the mitral valve plane, apex 
point and the contours of epicardium and endocardium. Afterwards 
planes are generated parallel to the mitral valve plane at a distance 
of a millimeter each, which each define four intersection points with 
the drawn contours. These points are then interpolated by Bezier 
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curves in the intersection plane, which together with the user drawn 
contours are used to generate a 3D surface. A drawback is that this 
procedure has to be repeated for each time step to be analyzed. 

A method based on a combination of low-level segmentation tech-
niques is shown by [11]. Interesting here is the extension of func-
tional analysis to the right ventricle and the combination of dynamic 
parameters with a quantification of scar tissue which can help to 
determine correlations between mobility and heart disease progres-
sion. 

Another method presented by Säring et al. [37] uses demon-based 
registration according to Thirion [38] to register a manual segmenta-
tion of the epicardium and endocardium in end-systole and end-
diastole to other time steps. Registration is done slice-wise, but a 3D 
surface is generated again afterwards for each time step. In contrast 
to the previous method, this approach is able to segment a com-
plete time series at once, but with the 25-30 minutes of the initial 
manual segmentation necessary still not really applicable for clinical 
routine. 

The methods of Relan and Säring are integrated into the Heart Anal-
ysis Tool (HeAT) [39], which is designed for the analysis of spati-
otemporal MRI sequences and pathological studies of infracted tis-
sue. 

A method based on level sets is demonstrated by Corsi et al. in [40]. 
It first combines the acquired 2D slices of the short heart axis in a 3D 
volume. Afterwards, four to six slices lying between apex and mitral 
valve are selected in end diastole as well as in end systole. The user 
has to define a couple of points in each of these slices which define 
an initial contour of the endocardium and epicardium. These points 
are connected to a polygon giving an initialization of the level set 
function. This function defines a partial differential equation which 
iteratively alters the initial contour under the effect of two inte-
grated force terms: A regulatory force penalizing high surface curva-
ture, and an image driven force which locally pulls the surface to 
high gray value gradients. In an evolutionary process, the surface is 
translated and deformed until the force terms reach equilibrium. 
The method shows a low inter- and intra-observer variability, but 
still needs a distinct manual input for preparation of the initial con-
tours. 
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Spreeuwers et al. [41] presented an approach based on active con-
tour segmentation. The active contour method can be seen as a 
“rubber band” trying to attach itself to the strongest nearby gray 
value gradient by simultaneously trying to prevent its shape. As this 
can lead to problems with borders lying close together, as it is the 
case for the myocardial wall, they combined two active contours to 
a common system able to preserve its topology.  This leads to a ro-
bust segmentation with low intra-observer variability. The 
processing is done in single 2D slices, however, thus not regarding 
depth information of the data set.  

Besides the above described methods, also statistical shape models 
have been successfully used for ventricular segmentation. An inter-
esting method for analysis of end-systolic and end-diastolic volumes 
is presented by Fritz et al. [42]. They use a temporally correlated 
model of both end heart phases which are simultaneously seg-
mented to compensate for image acquisition artifacts in one time 
step with the help of the other. The so-called bi-temporal model is 
used to segment the endocardium of the left and right ventricle and 
the epicardium of the left ventricle in high-resolution CT data sets. 

Lorentz and van Berg [43] describe the generation of a comprehen-
sive shape model of the cardiac chambers and connected vessels as 
well as the coronary arteries. They use a global registration of the 
model to patient data on multi-slice CT images and acquire segmen-
tation accuracy of below 5mm for all structures.   

A 3D Active Appearance Model (AAM) of the heart is used for gain-
ing an initial segmentation of the left ventricle in MRI by Andreo-
poulos and Tsotsos [44]. They compare several search routines 
which do not rely on global similarity transformations. The initial 
result is then refined by 2D+t Active Shape Models to gain better 
local contour results. 

Especially designed for sparse image data with arbitrarily oriented 
slice orientation is an active shape model based method presented 
by van Asses et al. [45], called SPASM. Sparse here means images 
with largely undersampled regions. Because the approach does not 
rely on a trained appearance model, it is also applicable for different 
imaging modalities. 
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3.3 Pulmonary Diagnosis 

Most pulmonary diseases alter pulmonary mechanics by changes in 
tissue elasticity, airflow resistance or a combination of both. The 
most frequently applied test to assess such changes is spirometry 
(see section 2.9.1), with which static and dynamic volumes as well as 
parameters as resistance and compliance can be determined. A 
common spirometric parameter is the volume expired in the first 
second of forced expiration (FEV1). It is used e.g. for grading of 
chronic obstructive pulmonary disease (COPD) (Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) classification) [46], for 
monitoring of Asthma [47] or for follow up after lung transplanta-
tion [48].  

Since spirometry is an inherently global measurement, it can only 
measure the combined air flow from both lungs. In disease with 
regional inhomogeneous distribution favoring a single lung, patho-
logical changes of lung function might pass unnoticed due to averag-
ing with the less affected lung. A spirometric test for single lungs 
would be able to detect such changes and would thus improve func-
tional pulmonary assessments. An example where this would be 
relevant is single lung transplantation. Here alteration in FEV1% is 
taken as indication of organ rejection induced bronchiolitis oblite-
rans syndrome but changes in the transplanted lung can be covered 
up by the remaining contra lateral lung [49]. Better sensitivity of 
regional functional changes might also improve treatment in COPD. 
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 
provides a severity classification of COPD divided into stages de-
pending on the deviation of dynamic volumes from the index value. 
They recently dropped the GOLD stage 0 (chronic cough, but no 
changes in spirometry) because there was no clear evidence that 
these patients progress to stage 1 (minor ventilation obstruction) 
[46]. Yet, a subpopulation of the patients with clinical symptoms but 
normal lung function does progress to stage 1 and might profit from 
preventive treatment. A spirometric test for single lungs might be 
able to identify some of these patients and help to improve long 
term outcome. 

Topics of recent research for individual and regional assessment of 
lung function include methods for the determination of diaphragm 
movement as a surrogate for breathing motion, for determination of 
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local motility of the parenchyma, and methods for tumor motion 
tracking for the preparation of radiation therapy [50]. Common for 
all research is the necessity of dynamic imaging. 

This first approaches to regional lung function through imaging used 
radiography, fluoroscopy, and ultrasound, initially to measure the 
movement of the diaphragm [51-55]. Modern multi-detector CT 
scanners allow the acquisition of up to ten volume data sets over a 
breathing cycle with only slightly reduced image quality compared 
to static CT [56]. Still, the radiation exposure of the patient is high in 
these procedures [57], which is why 4D CT scan are mostly limited to 
radiation oncology.  

Presently, MRI has more or less substituted other modalities for this 
purpose. Advantages are the lack of radiation and the better repro-
ducibility of MRI because of its operator and projection indepen-
dence. Further, with dynamic MRI, respiratory motion can be im-
aged with a temporal resolution in three dimensions with up to two 
images per second and in two dimensions with up to 10 images per 
second. It has been shown, that functional parameters as forced 
vital capacity (FVC) and forced expiratory volume in the first second 
(FEV1) can be derived accurately from dynamic MRI and the individ-
ual contribution of single lungs can be differentiated [58-60]. More 
recently, it was shown that the changes of thoracic diameters meas-
ured on dynamic 2D MRI of single lungs in sagittal orientation are 
well correlated to spirometric lung volume changes measured simul-
taneously. These measurements allowed to compute meaningful 
volume-time and flow-volume curves for single lungs [61].  

Local motion estimation: Although the previously stated methods 
make an important advancement in functional respiratory analysis, 
they are in general not able to predict local movement impairments 
that become little noticeable globally and can therefore not be pre-
dicted. For the calculation of local parenchymal mobility, two prom-
ising approaches can be found in literature. 

• Grid-Tagging: In this technique, which originates from mo-
tion analysis of the heart, a grid is impressed on the lung tis-
sue in the image, which intersection points are tracked, 
usually in dynamic 2D image sequences [62, 63]. Recently, 
also dynamic 3D image sequences have been reported suc-
cessfully analyzed with the help of this method under em-
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ployment of a contrast agent gas like Helium-3 [64, 65]. 
Problematic in this approach is the low signal-to-noise ratio 
in dynamic MRI images, as well as the short impression 
times, which make it difficult to monitor a complete breath-
ing cycle. In the 3D case, also the necessity of a contrast 
agent is a drawback.  

• Deformable registration: An alternative approach for the 
calculation of deformation fields and thereby analysis of lo-
cal mobility is by deformable registration, which stands for 
the mapping of different time steps onto each other [66-69].  

3.3.1 MRI Lung Segmentation 

Despite the above mentioned techniques for assessment of lung 
function and local mobility, another method to calculate this infor-
mation is from segmentation of the lung surface over the breathing 
cycle. As dynamic imaging of the lung with the help of 3D+t MRI 
sequences is a relatively new field of research, not many publica-
tions exist on this topic.  

A workflow for regional lung perfusion assessment based on slice-
wise semi-automatic region growing was presented by [70], which 
was later enhanced by the use of deformable simplex meshes [71]. 
Here, a user can define attracting points in the original image data. 
The mesh deformation algorithm guarantees that the surface model 
will pass through these interactively set points. Thereby, the user 
can influence the evolution of the deformable model and gets direct 
feedback during the segmentation process.  

With the help of contrast agent and 2D imaging or during breath-
hold, it is sometimes possible to simply segment the lung tissue by 
the application of a threshold [72-74], or by region growing guided 
by confidence-connectedness and fuzzy-connectedness filters [75].  

A more sophisticated approach merges active contours to capture 
lung border contours in contrast agent enhanced 3D MRI images 
[76]. These contours are applied on 2D slices of the image and are 
afterwards merged to a 3D surface by a guiding force based on the 
Navier-Stokes equation of fluid dynamics.  

Another work based on 2D active contours is presented by [77]. 
They add an additional region force to the standard gray value gra-
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dient force that is driving the snake to incorporate global boundary 
information, thus helping to detect fuzzy boundaries.  

Drawback for all of these methods is that they are 2D-based, de-
pend on contrast agent enhanced image acquisition, or require an 
extensive user interaction. 

3.4 Interactive Model Correction 

The segmentation of relevant structures in medical images is nowa-
days, due to the steadily increasing computational power, a task 
which can increasingly be done automated. But still segmentation is 
a complicated and error-prone task even to human specialists, and is 
especially on low-resolution volumes or data showing strong ana-
tomical variations a challenge for automated computer applications. 
Many segmentation frameworks tend to allow user interaction only 
at the beginning to initialize the algorithm, and do not offer a possi-
bility to subsequently correct the segmentation result. Therefore, to 
ensure the validity of segmentation, the user must be given a possi-
bility to interact with the computer system during or after the seg-
mentation. Many types of interaction are possible, as e.g. summa-
rized in [78] or, more recently, [79]. These methods include inter-
ventional methods used during the segmentation process, like the 
response to feedback data or continuously steering of the process. 
And methods working on the final result, like changing parameters 
and repeating the segmentation process [79]. Often found examples 
for model based segmentation are to force landmarks to user set 
positions (see e.g. [80]), or the introduction of a force according to a 
user interaction, working on the model during the segmentation 
process in a predefined pattern (see e.g. [81]).  

 



 

 

4 Methods 

In this chapter, the developed methods for segmentation of moving 
organs as well as the generation of diagnostic parameters from the 
results are described. Firstly, an overview of the deformable shape 
model is given, which is basis for the coupled shape model segmen-
tation used in this thesis.  Secondly, the calculation of medical rele-
vant parameters for restrictive diseases of the heart (section 2.2) 
and the lung (section 2.8) are explained in detail.  

4.1 Deformable Shape Model 

This section gives details on the theory of statistical shape modeling 
and on the deformable model [82] that was used as basis of multiple 
organ segmentation. 

4.1.1 Shape 

Per definition, the shape of an object located in some space is the 
part of that space occupied by the object, as determined by its ex-
ternal boundary. It is the abstraction from other properties such as 
color, content, and material composition, and, for the means of 
statistical shape modeling of especial importance, the object's other 
spatial properties: position, orientation in space, and scale. 

There are different methods to describe a shape in space. While in 
2D it is often possible to describe a shape by basic geometry, like 
with lines, curves, planes and so on, this gets impossible in most 
instances in 3D, especially for complex objects like organs, as they 
appear in medical problems. Therefore, several methods have been 
established to describe the 3D shape of an object approximately. 
Examples are moment based descriptors, spherical harmonics, 
graph based descriptors like M-reps or a landmark based descrip-
tion. Each method targets different aspects of shape and can be 
used for a specific application. As in this thesis the focus is on cap-
turing intra-object variabilities and inter-object correlations, a land-
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mark-based description was applied as it best captures the features 
of interest (see section 4.1.3). 

4.1.2 Statistical Variability of Shape 

Since their introduction by Cootes et al. [83], several fundamental 
extensions and improvements on the construction of statistical 
shape models have been presented. The underlying key concept of 
modeling the shape variability of a certain object class subject to 
statistical variability is still the same, however. Consider a shape 

,d dσ ∈ ∈   showing distinct shape characteristics of the particu-

lar object of interest, thus constituting an instance of the object 

class. Given a set of tn ∈of such shapes, { }| 1,...,i ti nσ = , they 

can be seen as a data basis to differentiate shape features of the 
object class that appear more likely than others. An approach to 
capture the entirety of these differences is therefore to construct a 
model that is capable of representing the statistical variability of the 

object’s shape which can be observed across the set of shapes iσ . 

This model is called statistical shape model (SSM), the set of shapes 
are named training samples, since they have been used to “train” 
the model in such as integrating a priori knowledge into it. The next 
two sections provide the fundamentals necessary for the construc-
tion of a SSM. First, an appropriate mathematical description of 
shape representation is given. Then, the shapes have to be embed-
ded in a common coordinate frame to allow capturing the observed 
shape variability into the model. 

4.1.3 Shape Representation 

Training data in most cases consists of segmented volumetric im-
ages in the medical field, given as an overlay of binary voxel data. 
From the voxel data, the contour of the objects of interest can be 
extracted, e.g. by the Marching Cubes algorithm [84], and an intui-
tive representation of this contour is a distribution of points across 

it. Given a set of training samples { }iσ , each of them is sampled 

along its boundary (=contour in 2D, surface in 3D) using ln ∈

points ( ) , 1,...,i j i lx j nσ∈ = . These points are often referred to as 

landmarks, as they usually represent prominent features of the 
shape. Landmark representation provides the simplest and at the 
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same time the most generic method used to represent shapes, 
which makes it easy to deal with multiple models simultaneously. 
Any point can be represented by a tuple of Cartesian coordinates 

( )1
( ) ( ),..., d d

i j i jx x ∈ . Therefore, each shape iσ  can be represented 

by means of its associated shape vector ix : 

1 1
(1) (1) ( ) ( )( ,..., ,..., ,..., ) l

l l

dnd d
i i i i i n i nx x x x xσ ⇒ = ∈  (4.1) 

As in this thesis the models will be restricted to shapes embedded in 
three-dimensional space, the j-th sample point of the i-th shape 

3
iσ ⊂   can be represented by the tuple ( )( ) ( ) ( ), ,i j i j i jx y z , thus 

the shape vector (4.1) simplifies to 

3
(1) (1) (1) ( ) ( ) ( )( , , ,..., , , ) l

l l l

n
i i i i i n i n i nx x y z x y z= ∈  (4.2) 

This representation of a shape by surface landmarks is commonly 
referred to as point distribution model (PDM) [83, 85]. Additionally, 
the connectivity information between the landmarks can be stored 
in form of a triangle mesh, which allows the reconstruction of a sur-
face during and after segmentation. 

4.1.4 Shape Space 

The set of shape vectors { }| 1,...,i tx i n= spans a ldn -dimensional 

space ldnΣ ⊂  . Accordingly, any shape iσ is represented by a sin-

gle ldn -dimensional point ix ∈Σ . Anyhow, not every point x∈Σ is 

a valid instance for representation of the object class. 

The space that integrates the set of all feasible shapes is the so-
called shape space [86]. Following the definition of shape given pre-
viously this space does contain the Procrustes aligned shapes. Ac-

cording to this, the shape space is a hypersphere ldnΩ on the surface 

of which the size normalized landmark representations { }ix are 

located. An important aspect is that the submanifold ldnΩ of Σ  is 

curved, which may result in considerable non-linearities of the 
shape variation. 
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The tangent space alignment [86] (Fig. 4.1) removes this non-
linearity and thus allows for modeling the shape variability using a 
linear model. Given the mean shape 
 

1

1 sn

i
is

x x
n =

= ∑  (4.3) 

the tangent space of x is the hyperplane that contains all vectors 
normal to x  passing through x [87]. The shapes are projected into 
the tangent space by scaling them with the inverse of the length of 

ix when projected onto x , thus / ,i i ix x x x= . Here, .,. de-

notes the inner product. 

 

 

Fig. 4.1 Tangent space construction 

Scaling projects the normalized shape vector ix into the tangent space of 

the mean shape x , where ( ) 0i ix s x x− ⋅ =  
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4.1.5 Shape Model Construction 

As shape is per definition invariant to similarity transformations, 
these transformations have to be removed from the training data 
first to capture the shape space. This is done by aligning all training 
data in a common coordinate frame. A standard procedure for doing 
this is the generalized Procrustes alignment (GPA) which minimizes 
the mean squared distance between two shapes and can be calcu-
lated analytically [88, 89]. The algorithm iteratively aligns a group of 
shapes to their unknown mean. 

Anyhow, the landmarks the training data consists of still do not cor-
respond to each other. To make a statistical analysis of variation, 
landmarks on all training samples have to be on corresponding ana-
tomical positions. Due to the large number of landmarks and the 
fact that correspondences have to be found in three-dimensional 
space, only automatic methods are of practical relevance. There-
fore, a landmark correspondence optimization as described in [90] is 
utilized here. 

After alignment and correspondence generation, assuming the train-
ing samples represent a unimodal, multivariate Gaussian distribu-
tion in shape space, the next step is to reduce dimensionality of the 
training set. Aim is to determine a small set of modes that best de-
scribe the major directions and respective intervals of valid move-
ment (i.e. the observed variations). This can be done by means of 
principal component analysis  (PCA) [91]. Given the mean shape as 

from equation (4.3), the corresponding covariance matrix C is given 
by 

1

1 ( ) ( )
1

tn
T

i i
it

C x x x x
n =

= − −
− ∑  (4.4) 

An eigenvalue decomposition of C now results in its modes of varia-

tion mp and their variances mλ . 

As PCA is known to be numerically susceptible to ill-posed problems, 
a more stable and therefore mostly preferred way to obtain va-
riances is singular value decomposition (SVD) [92] on the aligned 
landmark matrix L : 
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Here, Σ is a t ln n× dimensional matrix holding the singular values 

{ }mσ  of L in its main diagonal, which are equal to the square root 

of variances { }mλ . The right singular vectors { }mv of V equal the 

principal components of the covariance matrix TC L L= . 

With the knowledge of the principal components and their va-
riances, any valid shape can be represented as a linear combination 
of principal components 
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 (4.7) 

Normally, to reduce dimensionality, only the strongest modes of 
variation are really used. Using the SVD generated eigenvalues or-

dered by their weighting, taking the strongest mn modes into ac-

count leads to: 

1

mn

m m
m

x x y p
=

≅ +∑  (4.8) 

  
Thereby, any valid shape of an object of the same type as the train-
ing data can be approximated by a mean shape x  and its statistical 

modes of shape variation mp  and is described by a number of mn  

parameters my . It is important to choose mn  in a way that a large 

percentage of variation is captured, but dimensionality is reduced 
sufficiently to keep calculation time low. 
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4.2 Model Search 

This chapter describes how the trained model of shape can be used 
to detect valid shapes in new image data. First the idea of how to 
train the appearance of an object in image data is explained, and 
then the algorithm to detect objects iteratively driven by internal 
model forces and external image forces is depicted. 

4.2.1 Local Appearance Model 

To redetect the modeled shape in unseen image data, an additional 
model of the local gray-value appearance around the boundary is 
necessary. This model of appearance can be extracted from the 
training data as well. Similar to the shape training, an appearance 
model should describe the mean appearance (e.g. gray value or 
gradient) for each landmark and its surroundings as well as their 
variations. It is called a local appearance model, as it does not de-
scribe the global appearance of the shape, but the regional gray 
value distribution around the single landmarks. A commonly used 
method in segmentation with deformable models is to sample pro-

files itg perpendicular to the surface at each landmark i  in all train-

ing images t . Mean profiles ig  and the modes of variation for each 

landmark can then be determined as described above via PCA or 
SVD, independent of the feature which is used to describe appear-
ance. 

Two different approaches of appearance models are used for the 
tasks given in this thesis. For the segmentation of the lungs, as their 
borders are relatively obvious in bigger parts of the images, a nor-
malized gradient profile can be used to sample appearance. The a 
priori knowledge incorporated hereby is simply that the highest 
local gray value gradient is at the position of the object border. As 
the heart ventricles border is much more diffuse, an alternative 
approach based on kNN classifiers [93] is used. Hereby, in addition 

to the profiles itg , a number of shifted profiles (i.e. translated to-

wards the inside and outside of the object) are sampled. The set of 
training data thereby consists of three classes, inside, outside, and 
boundary. The probability ( | )p b g of a profile lying on the object 

boundary can therefore be estimated by querying the k nearest 

neighbors to g and calculating the ratio of true profiles trueb  among 
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them. A moderated kNN-classifier [94] is used to prevent zero pos-
sibilities, giving: 

2( | )
1

truebp b g
k
+

=
+  (4.9) 

With a limited number of training images available, for both me-
thods a landmark clustering can increase the amount of training 
data. A k-Means clustering is used to group appearance profiles of 
similar landmarks together [95]. 

4.2.2 Search Algorithm  

Once a rough initial transform for the SSM is determined by manual 
or automatic placement, a local optimization algorithm adapts the 
model further to the data and delivers the final segmentation. Basis 
is a deformable surface model defined as a triangulated mesh M = 
(V, E) with vertices ,p q V∈ and edges[ , ]p q E∈ . M has the same 

topology as the associated statistical shape model, where for each 
vertex p  in the mesh, there is a corresponding vertex 'p  in the 

SSM. The evolution of the deformable model is controlled in a La-

grangian equation of motion fashion: at every vertex ip , a regulariz-

ing internal force int ( )iF p  and an image data driven external force 

( )ext iF p  are applied iteratively. Details on the used force terms in 

particular can be found in [96]. 

In discrete form, this can be written as: 

1
int ( ) ( )t t t t

i i i ext ip p F p F p+ = + +  (4.10) 

This way, the default segmentation pipeline of a SSM works as fol-
lows: in each iteration, the appearance model generates the mo-
mentary possible best adjustment for each landmark from the im-
age data. For these adjustments, the closest possible valid represen-
tation in shape space is determined by solving equation (4.8) for the 

parameter vector 
m

y  and used as restriction for landmark displace-

ment (Fig. 4.2). In this case, the result mesh is not stringently con-
stricted to valid shape representations, but is allowed a confined 
free deformation regulated by internal tension and rigidity forces, 
keeping the mesh similar to the underlying model. Also, an addi-
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tional optimal surface detection step is applied to determine global-
ly optimal displacements in matters of surface smoothness [96]. To 
increase both segmentation speed and accuracy, the model search 
is applied hierarchically on four resolutions of a beforehand calcu-
lated Gaussian image pyramid, from coarse to fine resolution, until a 
convergence criteria for the particular resolution is met, which can 
be the maximal average landmark movement falling below a defined 
value, or a fixed number of steps. Therefore, in problematic image 
areas, a shape model performs an “educated guess” of the local 
shape from the landmark distribution outside of this area due to the 
shape restriction term. 

 

Fig. 4.2 Segmentation scheme for two objects using single deformable 
models. 

4.3 Coupled Models 

In the observed cases of self-moving organs, namely the epicardium 
and endocardium of the left ventricle and the both lungs, the ob-
jects of interest to be segmented are highly correlated in their tem-
poral movement behavior. This correlation can be exploited to gain 
multiple additional information which can be used to greatly in-
crease segmentation quality in difficult image areas, by using corre-
lation information of other objects to increase local information of 
the problematic ones. 

This section describes the methods developed to use coupling in-
formation to initialize models from others, and to facilitate correla-
tion information during the shape model search.   
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4.3.1 Model Initialization 

A common problem in shape based segmentation is that an initial 
model is needed which is located at least nearby the structure of 
interest and should only differ from it in size and orientation in a 
reasonable magnitude. This initial model geometry has to be deter-
mined either by automatic methods based on image features (e.g. 
[97],[98],[99] ), or by user interaction.  

An additional difficulty when analyzing 3D+t MRI images is on the 
one hand that the acquisition field of view (FOV) is freely selectable 
based on the experience of the physician. For the heart, normally it 
is centered on the heart and oriented along the short heart axis. For 
the lungs, it is normally oriented parallel to the standard transversal, 
coronal, and sagittal views, but not necessarily centered in the lungs 
center of mass. Sometimes it is not even possible to fit both lungs in 
inhaled state completely inside the scanner’s FOV. The resulting 
greatly varying image geometries make it difficult to automatically 
find starting points. 

On the other hand, the low image resolution and signal-to-noise 
ratio in time resolved MRI make it very difficult to find landmark 
based features for model initialization.   

Because of these difficulties, a semi-automatic approach based on 
statistical geometry has been chosen for this work. The idea behind 
the method is that in a multi-object complex, if the position, size 
and orientation of one object are given, these transformations can 
directly be estimated for all other objects in the complex based on 
inter-object geometrical statistics. As training data is necessary for 
the construction of the model anyway, geometrical inter-object 
relationships can be extracted directly from the training data.  

So after a first model is placed by a short user interaction, all other 
models can be automatically by: 
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Here, ( )t x




refers to the translation of model x , A  refers to the 

rotation matrix including scale s , and the index n  to the number of 

model to be initialized from model 1. The index i  refers to the train-
ing samples, which have to correspond, for sure (all objects have to 

be delineated in the same original image). The term 1, ,( , )i n iA A  

denotes the normalized Euler angle between orientation of 1x  and 

nx . 

For the application on the epi- and endocardium as well as both 
lungs the rotation term is not used, as in both cases both objects are 

assumed to have very similar orientations, so the matrix A  is or-
thogonal and simply does a rescaling.  

  

  

Fig. 4.3 Example of automatic model initialization 

a) Original image. b) The first model is roughly placed manually from a 
starting position. c) The second model is placed automatically based on 
statistical geometrical correlation to the first model. d) Segmentation 
result. 

a) b) 

c) d) 
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4.3.2 Shape Space Coupling 

Simultaneous multi-object segmentation is an important direction of 
research, since in many applications the objects to be segmented 
are often highly correlated. This information can be used to impose 
further constraints on the boundary estimation problem. 

So, when examining multiple objects of interest in image data, addi-
tional information beyond the shape and appearance of the single 
entities can be taken into account. Of great interest hereby are cor-
relations in inter-object shape variability. These correlations can 
originate from a couple of causes: 

• Common physiology, e.g. the left and right lung 

• Mutual physical linkage, e.g. the endocardium and epicar-
dium of the left ventricle 

• Neighborhood relations, e.g. organs that are adjoining or 
close to each other  

• Common pathology, e.g. alteration in related brain struc-
tures in certain diseases 

This section presents two methods to further increase local informa-
tion of models by taking mutual shape information into account, and 
two different ways to apply this information as an additionally force 
term in the shape model search equation.  

4.3.3 Joint Shape Space 

Having multiple objects of interest present in the same training data 
sets, these can be treated as one complex. A prerequisite is that 
they have corresponding landmarks over all training data in each 
case. 

Given these correspondences, for the first method, called joint 
shape space, corresponding landmarks of multiple objects in each 
training data are joined together and are treated as a single entity of 

a multi-object complex. For e.g. two objects k  and l , this can be 
represented as  

, (1) (1) (1) ( ( )) ( ( )) ( ( ))

(1) (1) (1) ( ( )) ( ( )) ( ( ))

( , , ,..., , , ,

, , ,..., , , )
l l l

l l l

k l k k k k n k k n k k n k

l l l l n l l n l l n l

x x y z x y z

x y z x y z

=
 (4.12) 
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With the help of singular value decomposition as described in sec-
tion 4.1.5, the mean shape and shape variability of the multi-object 

complex can be trained. A joint shape space 
1

,
tn

k l
−Σ ⊆ can be de-

rived from these, which also describes inter-object shape variation 

dependencies. Here, tn  denotes the number of training samples.   

4.3.4 Unified Shape Space 

The other idea to incorporate inter-object shape information is 
based on the calculation of a unified shape space after training of 
the single models. This does not implicitly generate inter-object 
shape dependencies, but can be helpful if objects are assumed to 
have strongly correlated modes of variation, e.g. the endocardium 
and epicardium of the heart over the heart cycle. Having two mod-
els with positively correlated modes of shape variation, i.e. their 
strongest variation eigenvectors don’t differ too much in direction, 
determination of optimal shape parameters can be done in a com-
mon shape space to direct the models towards a similar state of 
shape during search. The unified shape space can be calculated as: 

*
, 1 1

1

[ ( ,..., , ,..., )| , ]

( )
k l k l i k i l

nTS
k l

span u u v v u v
−

Σ = ∈Σ ∈Σ

⊂ Σ ×Σ ⊆ 
 (4.13) 

Here, kΣ denotes the shape space of the first shape model with 

dimensionality k , lΣ  the second shape space with dimensionality l . 

Please note that 1 1( ,..., , ,..., )k lu u v v does not form a basis of ,k lΣ in 

general, but can easily be reduced to one. *
,k lΣ  is called unified 

shape space here to distinguish it from joint shape space, although 
the meanings are synonym. 

To obtain common shape parameters then, an adjusted version of 
equation (4.7) has to be solved: 
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4.3.5 Shape Parameter application 

For both above methods, the additional mutual information can be 
seen as a supplementary regulatory force steering each model by 
means of the shape of the others. The coupling force term tries to 
optimize shape parameters regarding the current shape of all mod-
els. Therefore the coupling forces compete with the internal forces 
of the single models which try to generate optimal shape of the 
single entity.  

For the common shape space method, only one set of common 
shape parameters is obtained for all single models. For the joint 
shape space method, each model receives an individual set of para-
meters. But, in both cases, the landmark distribution generated by 
these parameters does not have to be a valid representation inside 
of the shape space of the particular object. 

Therefore, two possibilities to attribute common shape parameters 
back to the single models have been evaluated:  

• Strict: Directly set the calculated shape parameters to all 
models, regardless of the single models shape space (Fig. 
4.4). 

• Relaxed: Calculate the target landmark coordinates that 
would result from the common parameters for each of the 
models, and then find the closest valid representation in the 
model’s individual shape spaces for these adjustments (see 
Fig. 4.5). 
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Fig. 4.4 Segmentation workflow for strict parameter application 

        

Fig. 4.5 Segmentation workflow for relaxed parameter application 

The segmentation framework depicted in Fig. 4.4 and Fig. 4.5 is dis-
played for two models, but can also be applied to any number of 
correlated models.  

These additional gained coupling parameters can be interpreted as 
an additional internal force term in the shape model search equa-
tion (4.10), extending it to  
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1
int( ( ) ( ) ) ( )t t t t t

i i i coupl i ext ip p F p F p F pα β γ+ = + + +  (4.15) 

where couplF is the force term originating from the common strict or 

relaxed shape parameters,α and β  are parameters to set the 

weighting between the influence of single model shape forces and 
forces derived from coupling. 

In all cases, the evolution of the models is started from a manually 
indicated position in a multi-resolution fashion on a three times 
down-sampled version of the image. After a previously fixed average 
landmark displacement is under-run, resolution is changed to a finer 
version of the image. In case of the newly proposed methods, seg-
mentation is done simultaneously, in case of the standard approach 
subsequently. 

4.3.6 Geometrical Coupling 

Besides the mutual knowledge of shape information, also geome-
trical information can be used to obtain better segmentation results 
in difficult image regions. Neighboring objects usually exhibit strong 
mutual spatial dependencies. In segmentation with statistical shape 
models, a lack of precision due to the restriction on trained shapes is 
generally a problem, as previously unknown patient anatomy cannot 
be contained in the model. While this lack is overcome by the above 
describe admission of an image driven free deformation, this can 
lead to inaccuracies due to the loss of shape knowledge, especially 
when objects to be segmented cannot clearly be distinguished from 
adjacent structures. When objects of interest lie close together or 
adjoin each other, this may especially lead to overlapping segmenta-
tion results.   

A basic idea for further improving segmentation results and simul-
taneously solving the overlap problem is to segment multiple adja-
cent structures at the same time and apply some a priori knowledge 
about their spatial relationship. 

When spatial constraints between multiple objects are available, 
such information can be used to set up an additional force term in 
the shape model search equation which penalizes invalid spatial 
relationships. The relative arrangements among these neighbors can 
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be modeled by obtaining statistical information on the objects geo-
metry from training sets again. 

To deform multiple models with adaptive special constraints simul-
taneously, a cost function has been constructed to modulate exter-

nal forces at each vertex. For each vertex v  of the k -th model, the 
mean Euclidian distance to all other models can be calculated as 

{ }
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where 
jMΦ is the signed distance transform of the j -th model jM , 

and TSn is the number of training samples. With this, a cost function 

that modulates external forces at each vertex v  can be defined as 
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 (4.17) 

The resulting function is shown in Fig. 4.6. The function is designed 

to be normalized to a [ ]0,1 interval, and rises to 0.5 at two standard 

deviation ( , )v kd dσ difference from the mean. A function with a 

steep slope around zero was chosen to deal with overlapping of 
adjacent objects, as these show low deviations (they should be close 
to zero in all training data), but should be penalized still for small 
deviations from zero.  
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Fig. 4.6 Cost function for geometrical coupling 

Shown is 
2 arctan( )

2
x

π σ
, where x  is a distance error in size of 

standard deviations σ . 

With the help of this cost function, at each vertex of a mesh a force 
term can be defined as 

( ) ( ) ( ( ), ( )) ( )geo v D v j v k v v kF d c d v d v d sign d d= ⋅ ⋅ −


 (4.18) 

This force term drives each vertex jv  away or ahead to its nearest 

neighbor on the other model kv depending on the direction of the 

error ( )v ksign d d− , leading to a total force equation of 

1
int ( ) ( ) ( ) ( )t t t t t t

i i i coupl i ext i geo ip p F p F p F p F pα β γ δ+ = + + + +  (4.19) 

4.4 Summary of Model Search 

To give a short overview over the complete segmentation process, 
the following list presents the steps done for segmentation in sum-
mary. 

• Manually initialize first model 

• Automatically initialize all other models 

• Initialize common shape and geometrical information 
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• Evaluate appearance profiles, calculate external forces, calculate 
landmark adjustments 

• Restrict adjustments to trained shapes by internal forces (de-
gree of restriction (stiffness) is decreased over process) 

• Apply optimal landmark detection (ensures surface smoothness) 

• Apply common shape information 

• Apply geometrical restrictions 

• Repeat steps 4-8 until a convergence criteria 1t t
i i

i
p p δ+ − <∑  

is met, or until a maximal number of steps 

4.5 Interactive Correction 

The above described model approach used for automated segmen-
tation showed very good results in almost all cases of segmentation. 
In the proposed diagnostic applications of the left ventricle and the 
lung, anyhow, in some cases the segmentation differed significantly 
from the provided ground truths.  

• For the left ventricle, the segmentation sometimes leaked 
into the atrium or the aorta, as the mitral and aortic valves 
separating them from the LV are not visible in MR images. 

• For the lung lobes, the model generally had problems to 
completely segment the lower tips of the lung over the di-
aphragm. 

Therefore, an interaction possibility has been integrated into the 
segmentation framework to allow the user to quickly and efficiently 
correct erroneous segmentations. A manual correction using a 
Gaussian pattern was chosen, working on the result of the auto-
mated segmentation. The resulting mesh is deformed directly, and 
the underlying model is used to keep the mesh consistent after the 
deformation. The tool allows the user to pick a center landmark µ  

(at position µ ) on the resulting mesh, and drag it with the mouse to 

a new position µ′ . The user is not required to accurately hit a mesh 

point; the point on the mesh closest to the mouse click position is 
automatically selected. Landmarks r  in the surrounding of µ  with 

distance ( )d r r µ= − 
 

 up to a maximal distance maxd  are moved 

along in form of a Gaussian normal distribution. The maximal dis-
tance (i.e. radius of interaction around the point) can be interactive-
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ly set by the user through the GUI. For speed reasons, all points af-

fected by the interaction, i.e. max( )d r d≤


, are stored in a list via 

breadth-first search when an interaction point is picked, so they are 
available until the interaction is finished for that point. This is useful 
for live display of the mesh deformation, and also if the user wants 
to move the point several times or undo his changes. Additionally, 
as it has shown convenient in radiological practice, the standard 
deviation σ of the normal distribution is depending on the interac-

tion radius maxd exponentially: 

max
max( ) ddσ α=  (4.20) 

This exponential dependence means in practice that the normal 
distribution gets very steep for small interaction radii, allowing the 
user to draw “spikes” out of the surface (small σ ), and flattens 
quite fast for increasing radii (big σ ). The parameterα determines 

how fast the steepness decreases with maxd and was chosen 1.25. 

 Putting all together, this leads to a displacement of the form: 

2

max

1
2

0

( )
( )( )

d
dv d v e σ

−

= ⋅  (4.21) 

where 0v µ µ′ −=  

 describes the vector the picked point is moved 

(Fig. 1 and 2). Therefore, each single point within the interaction 
radius is moved to a new position r′ : 

( ( ))r r v d r′= +
  

 (4.22) 

After the interaction is finished, the model is updated once more on 
the lowest level of detail to adjust the shape parameters and 
smoothness conditions to the new shape as good as possible. Be-
cause of this additional update the user only has to approximate the 
surface deformation to the desired image area, and usually the algo-
rithm will then find the correct position. 

The framework for multiple coupled organ segmentation and inter-
active correction has been integrated into a segmentation routine of 
the medical imaging interaction toolkit MITK [100], which again can 
be integrated as a Plug-in for the teleradiological reporting worksta-
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tion Chili® [101]. An example of the graphical user interface (GUI) is 
shown in Fig. 4.9. 

 

    

Fig. 4.7 Deformation basics 

Left: Gaussian normal distribution in 3D. Right: An exemplary mesh grid 
model of a human liver. 

 

Fig. 4.8 Deformation possibilities 

Left: The model from Fig. 4.7 (right), deformed only in a single point. 
Right: The same model, deformed in a large area. The small grey sphere 
marks the interaction point. 
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Fig. 4.9 The segmentation and interaction GUI, integrated in the teleradi-
ological reporting workstation Chili®.  

4.6 Quantitative Analysis of Cardiac Motion 

The result of the segmentation of the epi- and endocardium can 
inherently display wall motion by color encoded landmark displace-
ment visualization (Fig. 4.10). Although this display can be viewed as 
a video of cardiac motion over the complete heart cycle and gives a 
good overview of global 3D+t movement and restrictions, it not 
clearly represented enough to provide a quantitative analysis of 
cardiac diagnostic parameters. It is also not very suited for the dis-
play of parameters like local wall thickness or thickening. There exist 
several standardized methods to visualize these parameters quanti-
tatively, most common in a so-called Bull’s Eye diagram.  
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Fig. 4.10 Exemplary result of cardiac motion 

The outer, wireframe mesh represents the epicardium, the inner, solid 
surface the endocardium. Local motion is color coded from red (high 
motion) to blue (low motion) 
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Therefore, details on how to extract heart physiological parameters 
from deformable model based segmentation are given in this sec-
tion. The following subsections explain the structure of the Bull’s 
Eye diagram, the projection from the segmentation result to the 
diagram and the visualization of the results.  

4.7 Cardiac Diagnosis 

4.7.1 Implementation of the Bull’s Eye Diagram 

The Bull’s Eye diagram (see section 2.5 and 2.6) is implemented as 
17 independent segments, each of which represented as a polygonal 
triangle mesh (Fig. 4.11). Each segment is defined by the parameters 
starting angle, end angle, upper radius, width, and resolution. The 
first four parameters define the geometrical properties of the seg-
ment, from which it is constructed according to the AHA standard 
(see section 2.6). Resolution regulates the number of vertices and 
thereby number of cells per segment. 

Each vertex can be assigned an individual color value; the segment 
can then be colored according to a global lookup table. In addition, 
each segment is time resolved, i.e. allowing saving different color 
values per vertex for each time step. 

 

Fig. 4.11 Structure of a Bull’s Eye segment 

4.7.2 Projection 

For the display of calculation results of the dynamic cardiac parame-
ters wall motion, wall thickness, and wall thickening in the Bull’s Eye 

diagram, a projection 3 2→  is necessary, in this case, from a 
three-dimensional surface resembling an undulated paraboloid to a 
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circular area (Fig. 4.12). As the heart’s shape changes over the car-
diac cycle, an analytical solution of this problem via a transformation 
equation is not easily possible. Also, as the surface is concave-
convex, overlaps can occur, so two points of the surface could be 
projected to the same point in the diagram via a transformation. 
Another general problem is the relatively low number of anatomical 
landmarks of the 3D surface, whose movement information is 
needed for motion calculation.  

 

Fig. 4.12 Projection from heart ventricle to a 2D Bull’s Eye diagram 

Source: Adapted from [12] 

Due to these problems, a strategy to reduce the 3D information into 
2D was chosen, followed by interpolation. The reduction is con-
ducted by a cutting of the 3D surface in a defined number of cut 
planes with normal vectors in direction of the longitudinal heart 
axis. The idea is shown schematically in Fig. 4.13, an example in Fig. 
4.14. Result of each cutting is a circle-like polygon, whose vertices 
can be assigned to the Bull’s Eye according to their angle to the zero 
line and to the height of the cut. Because the vertex density in the 
Bull’s Eye is very much higher than the one from the cut planes, the 
closest point in the diagram can be chosen in the projection without 
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introducing significant errors. Afterwards, the remaining unfilled 
points in the diagram are linearly interpolated from their nearest 
neighbors to assure a continuous color gradient over the Bull’s Eye. 

 

Fig. 4.13 Cut planes – schematic 

First cut plae of the basal, mid, and apical segment. 

 

Fig. 4.14 Cut planes – example 

Only basal segment cut planes are displayed 
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Necessary for the positioning of the cut planes is the longitudinal 
ventricle axis, which has to be calculated first. A first approach for its 
calculation is to create a binary image from the segmentation result, 
and do a principal component analysis (PCA) on it. The resulting first 
eigenvector is always near the long heart axis, besides cases of very 
strong heart deformations, where the method doesn’t make sense 
anyways. This is because of the shape of the ventricle, resembling an 
undulated paraboloid. Anyhow, the found axis is in general not in 
agreement with the anatomical definition of the long heart axis, as 
the heart is no solid of revolution, so the axis does not run through 
the apex point. Thus, the deepest point of the mesh in caudal direc-
tion relative to the central point of the first eigenvector is located 
and considered as apex, according to the anatomical definition. It is 
assumed that there is always a mesh point at the apex due to land-
mark optimization (see section 4.1.5), as it shows high curvature. 
The upper point of the axis is considered the mesh vertex closest to 
the intersection point of the segmentation border and the first ei-
genvector. The longitudinal axis is then defined as the line connect-
ing these two points. An example is shown in Fig. 4.15. 

 

Fig. 4.15 Calculation of the longitudinal heart axis based on ventricular 
segmentation 

The yellow box denotes the coordinate framework for the first 
eigenvectors of the surface; these are shown as red (first), blue (second), 
and green line (third eigenvector). The green dots show the calculated 
starting and ending points of the heart axis. 
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In the next step, the longitudinal heart axis is subdivided into three 

regions of equal size. Each region is further subdivided into Rn  

equidistant regions, which define the resolution of the Bull’s Eye 

diagram. In this work, Rn  was chosen 11. According to this division, 

the segmentation result mesh is cut by a plane with normal vector in 
direction of the longitudinal heart axis in each region. An example of 
this cutting is shown in Fig. 4.14 and Fig. 4.13. In the 3D display, one 
can see that the cuts of the planes with the surface result in circle-
like polygonals. 

In a further step, the single points of the polygonals are picked and 
their angle against the zero line is calculated. The zero line is defined 
as the vector from the center of the left ventricle towards the center 
of the right ventricle, which has to be manually set by placing a 
point in the myocardium between left and right ventricle. According 
to the calculated angle and the height of the cut plane against the 
apex, the color value of the polygonal point is transferred to the 2D 
diagram. Note that the apex point itself is not considered here, as 
the apex is defined as immobile.  

Finally, after each value is transferred to the 2D diagram, the vertic-
es of the diagram which do not already contain information are li-
nearly interpolated over the values of their nearest neighbors. This 
concludes the projection from 3D to 2D space. To create a time re-
solved analysis, the above described procedure is repeated between 
each two consecutive time steps. 

4.7.3 Parameter calculation 

This section describes the realization of the extraction of quantita-
tive cardiac diagnostic parameters as listed in section 2.4 from the 
segmentation results. The calculation of the volumetric parameters 
stroke volume, ejection fraction, cardiac output, cardiac index, and 
wall mass can directly calculated from the segmentation results of 
end-diastole and end-systole according to the formulas given in 
section 2.4. The dynamic parameters wall motion, wall thickness, 
and wall thickening are calculated as described below and are visua-
lized in a Bull’s Eye diagram as described in the last section. 
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Wall motion is defined as the endocardial movement over time. As 
segmentation is performed with the same endocardial model for all 
time steps over the heart cycle, landmark positions of the result 
directly correspond to anatomical positions in each time step. With 
this, wall motion can be calculated as the deformation vector field 
of the result landmarks between two time steps: For each landmark 

Wall motion 

i at position
1,i tp  in time step 1t , the wall motion relative to a time 

step 2t  can be calculated as 

1 2 1, , ,( )i t i t i tWM p p= −


 (4.23) 

This calculation is done between end-systolic and end-diastolic 
phase, which results in the total wall motion over the heart cycle, 
and for each consecutive time step, showing the temporally re-
solved local motion over the complete heart cycle. Both are dis-
played in a Bull’s Eye diagram, in the second case, the diagram is 
temporally resolved, which means each time step has an indepen-
dent diagram, besides the first, where no previous time step is giv-
en. 

Wall thickness is defined as the distance between endocardium and 
epicardium at a given time. There exists a medical standard how this 
distance can be manually delineated in two perpendicular 2D planes 
[102]. Anyhow, as the segmentation result is present in 3D, the cal-
culation was performed as closest distances between surface land-

marks. For a landmark 

Wall Thickness  

i  at position ip  in time step t , this distance 

to another surface jM can be calculated as 

min( )
ji Md = Φ  (4.24) 

where 
jMΦ is the signed distance transform of jM . This is not the 

mathematically closest distance between surfaces, where the dis-
tance vector should be normal to one surface and passing through a 
landmark of the other, but is much faster to calculate, and given a 
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sufficient landmark density, should only induce a small error. This 
will be further investigated in section 5.5.  

Wall thickening can directly be calculated as the difference of local 
wall thicknesses between two time steps. Calculation can directly be 
done between the wall thickness Bull’s Eye diagrams of two time 
steps to leave out the projection and interpolation steps. The error 
of wall thickening calculation is thereby directly dependent on the 
wall thickness calculation error. Again, the calculation can be done 
between end-systole and end-diastole to display the complete 
thickening over the heart cycle, or between all consecutive time 
steps to show temporally resolved thickening behavior. 

Wall Thickening 

4.8 Quantitative Analysis of Pulmonary Motion 

4.8.1 Virtual Spirometry 

Using up to date MRI sequences like FLASH-3D or TREAT, it is possi-
ble to acquire images of the complete thorax of the patient in one 
acquisition step, without radiation exposure of the patient. With 
this, a documentation of the breathing cycle with a temporal resolu-
tion of down to 0.5 seconds is possible, from which not only static 
parameters like vital capacity can be extracted, but even some of 
the dynamic respiratory parameters. Greatest advantage hereby is 
that parameters can be extracted separately for left and right lung. 
As most lung diseases only occur one-sided, techniques that meas-
ure air flow at the mouth like spirometry are not able to detect early 
stage diseases. As the air flow measured at the mouth always is the 
sum signal of both lungs, small changes in respiratory are difficult to 
monitor. A further aspect is that the not affected lung tends to 
compensate the missing respiratory volume of the diseased lung. 
Here, MRI gives the potential to quantify lung specific respiratory 
volumes and thereby help especially in early stage diagnosis and 
therapy monitoring.  

To extract volumetric information from dynamic 3D+t image data, as 
workflow based on deformable shape model image segmentation 
was developed, with the help of which lung volumetry can be done 
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almost fully automatic. The process of MRI based lung volumetry is 
called virtual spirometry.   

4.8.2 Extraction of quantitative Measures 

The superior goal in the analysis of medical image data is the gener-
ation of new insights in on symptoms or diagnostic aspects. In case 
of virtual spirometry, the calculation of the separate lung volumes is 
of greatest importance for the determination of the extent of a dis-
ease or the monitoring of its process during therapy. As the result of 
virtual spirometry is a separated segmentation of both lungs, the 
volumes, and thereby as well static as dynamic parameters, can be 
calculated individually by classic voxel based volumetry. Given a 

3D+t image and spatial resolution , ,dx dy dz of the image tI  at time 

step t , the volume of each time step tV  can be calculated as  

3( ( , ) ) 10

1,
( , )

0,

t

t t
v S

t
t

t

V g I v dxdydz ml

v S
g I v

v S

−

∈

= ⋅ ⋅

∈
=  ∉

∑
 (4.25) 

where v  is iterated over all voxels of tI , and tS means the segmen-

tation of the left and right lung, respectively. The time series can 
then be graphically represented over the total acquisition time (Fig. 
4.16). The static lung volumes and capacities described in section 
2.7.3 can then directly be calculated from these results, both indivi-
dually for both lungs, and for the complete lung as sum of the single 
values. In general, the temporal resolution of the image time series 
will not be high enough to accurately evaluate dynamic parameters 
from volumetry of 3D+t images. This problem will be further ad-
dressed in section 4.9. 
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Fig. 4.16 Virtual spirometry during a breathing maneuver 

Displayed are the individual signals for left and right lung, and the sum 
signal of both. The proband was asked to maximally inhale and exhale 
two times consecutively. Three time steps (Nr. 55-57) could not be 
segmented due to an image acquisition error. 

One must note that the volumes calculated here do not only contain 
air, but also lung tissue and blood circulating inside the lung. Al-
though the tissue can be seen as a constant offset over the breath-
ing cycle, the blood volume changes depending on the heart phase. 
This will be further evaluated in the results part (section 5.6.1) and 
addressed in the discussion.  

4.8.3 Motion field calculation 

Due to the low image resolution and the absence of clearly visible 
lung structures as the bronchial tree in time resolved MRI images, a 
grey value based registration of the inner lung is nearly impossible, 
or has to be strongly restricted in mobility by regularization parame-
ters. But, given the segmentation result of the deformable shape 
model as a triangle mesh with inherent landmark correspondences 
to the training data set and the model, an alternative approach is 
suggested. As for the complete time series a multitude of corres-
ponding landmarks are present at the lung surface, the local move-
ment of the inner lung can be interpolated from the movement of 
the surface landmarks. Here, Elastic-Body-Splines (EBS) developed 
by Davis et al. [103] are used. The basis of EBS is a physical model of 
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three-dimensional deformable objects based on a solution of the 
Navier-Stokes equation. 

So under consideration that the lung is a homogeneous deformable 
body, local deformation of it can be approximated using EBS inter-
polation, allowing it to calculate N-1 deformation vector images for 
N time steps. For each voxel, the movement from time step t to time 

step t+1 is calculated. Hereby, the transformation 1( )t
tEBS g+ is in-

itialized with the surface landmarks of two consecutive time steps, 
then for each voxel g the vector field is calculated as 

1( ) ( )t
t tv g EBS g g+= −  (4.26) 

As the approximation only is a valid solution for the inside of the 
lung (outside the assumption of a homogeneous deformable body is 
not given), for the lung deformation analysis the image is cropped to 
the lung parenchyma via the segmentation result. For convenience 
and easier diagnosis, the local movement is also shown in 2D view 
as color coded voxels, with colors assigned according to the voxels 
movement vector’s magnitude via a lookup table. 

As N-1 vector fields of local movement are still a huge amount of 
data to analyze for large N, and local movement between two time 
steps is often not too informative because it strongly depends on 
the breathing maneuver a patient is undergoing, it is also possible to 
show the sum of all local movements in a color map. Here, the value 
assigned to a voxel is given by 

2

0
( ) ( )

N

i
i

w g v g
−

=

= ∑  (4.27) 

Summation ends at N-2 as for the last image no movement informa-
tion can be calculated. The values calculated this way directly show 
local movement restrictions, as they are directly proportional to the 
tissue elasticity or stiffness, respectively. 

An example of deformation vector fields and a local movement color 
map can be seen in Fig. 4.17. 
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Fig. 4.17 Local lung motion estimation 

Example images of a local lung motion estimation by vector field 
calculation of 3D+t lung images on a patient with a tumor in the upper 
right lung. The last image shows a color map pf the integrated motion for 
each voxel over all time steps (compliance map). Adapted from [22]. 
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4.9 2D+t Pulmonary Function Analysis 

Although 3D+t imaging using MRI is under constant development 
and has achieved considerable increases in terms of tempo-spatial 
resolution, acquisition time is still in the field of 0.5 seconds, which 
is still too slow to thoroughly diagnose a quantitative movement 
restriction or e.g. predict a precise tumor movement path for radia-
tion therapy. Also, although the temporal resolution of 3D+t imaging 
is high enough to calculate static diagnostic parameters precisely, 
the temporal resolution is not sufficient to generate dynamic para-
meters from the images.  

A proposed diagnostic method to gain increased temporal informa-
tion is to apply highly time resolved 2D+t MR imaging on the patient 
after 3D+t image acquisition. Modern 2D+t imaging sequences have 
a temporal resolution of up to 10 images per second, which is suffi-
cient to also analyze dynamic processes in the lung. 

A natural drawback in 2D imaging is that only areas of the lung are 
imaged, which makes it harder to correlate changes in area with 
true volumetric parameters. To analyze the effect of plane orienta-
tion on the correlation of areas and volumes, 3D+t image time series 
have been segmented with the above described methods. Because 
it would be enormously time consuming to really acquire 2D+t im-
ages in a sufficient number of different angles, the image acquisition 
has been simulated. At each time step of these series, acquisition 
planes have been simulated by inserting cut planes at given angles 

θ and φ  against the sagittal plane, and going through the center of 

mass of the left or right lung, respectively (Fig. 4.18). These planes 
therefore show an area of the lung as a so oriented 2D plane would. 
These areas at the particular angles have been normalized to the 
acquired volumes and been compared with the acquired volumes, 
and the mean difference over the whole time series has been calcu-
lated. The calculations and results in detail are presented in section 
5.7. 
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Fig. 4.18 Simulated 2D image acquisition. 

A 2D image acquisition is simulated by clipping with a cut plane at 
different angles in a 3D segmentation result. Example of the left lung. 

4.10 2D+t image analysis 

Although it would be possible to apply a deformable model based 
approach again for the segmentation and lung area calculation of 
the image time steps, it would be very time consuming to do this 
slice-wise with an iterative approach, due to the sheer number of 
time steps that are generally acquired in dynamic 2D MRI. Also the 
images offer a much higher contrast and spatial resolution than the 
dynamic 3D images due to the reduced dimensionality and field of 
view. Therefore an approach was developed to segment all time 
steps simultaneously in a semi-automatic workflow. 

Segmentation of lung area was done for each image stack with a 
semiautomatic application (Fig. 4.19) based on a Graph Cut algo-
rithm [104, 105] that was implemented in the Medical Imaging Inte-
raction Toolkit MITK [100]. For segmentation, the time resolved 2D 
images were considered as a three-dimensional image stack with 
time as the third dimension. On this three-dimensional image, the 
algorithm had to be initialized by first adapting a bounding box as 
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Region of Interest (ROI) to the size of the measurement area and 
then manually marking both the inside and the outside of the lung 
with a rough scribble spanning all time steps. The lung area for each 
time step was then segmented automatically. In about half of the 
segmented lungs, the segmentation leaked into the thoracic wall. In 
these cases, for correction, an additional scribble had to be drawn at 
the point of leakage. For the coronal images, the segmentation was 
performed for each side separately. 

 

Fig. 4.19 Segmentation scheme for 2D+t image analysis 

(a) Two-dimensional (2D) time series visualized as 2D plus time volume 
with the sagittal image of a single time step on the left and a cut through 
the time series on the right. The scribbles marking the inside (white) and 
outside (gray) of the lung are the initialization of the segmentation 
algorithm. (b) Automatic segmentation of the lung seen in lighter gray 
with a segmentation leakage at the apex, which had to be corrected by 
manually drawing the lung boundary in this area. 





 

 

5 Results 

In this chapter, the experimental setups as well as evaluation results 
of the methods developed in the scope of this thesis are listed in 
detail. The first part covers the segmentation basis, evaluating de-
formable model and multi-organ segmentation as well as manual 
correction (section 5.1 to 0). The second and third part deal with the 
usability of the segmentation results for computer aided diagnosis 
of cardiac motion restriction (section 5.5) and pulmonary motion 
restriction (section 5.6 to 5.8), respectively.   

5.1 Evaluation of Segmentation Quality 

This chapter gives an overview over the result quality of the pro-
posed methods compared to a manually segmented gold standard. 
In the first part, it is shown that the segmentation with deformable 
shape models gives sufficient results to conduct medical diagnostics 
with their help. The second part states the improvements in quality 
gained by the incorporation of multi-organ knowledge. The third 
part evaluates the usefulness of a post-segmentation manual cor-
rection. 

5.1.1 Evaluation Metrics 

As quality measures for the segmentation results, the average sym-
metric point-to-surface distance, symmetric RMS point-to-surface 
distance, and the Dice coefficient were used for comparison against 
a gold standard from medical experts. These are defined as follows: 
The distance from a point x  to a surface Y  is given by  



( , ) min
y Y

d x Y x y


  , (5.1) 

where .  denotes the Euclidian distance. When defining surface 

distances, we have to make sure to respect symmetry, a precondi-
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tion for every metric. Thus, the average surface distance is defined 
as: 

 

( , )

1
( ( , ) ( , ) )

avg

x X y Y

D X Y

d x Y dx d y X dy
X Y  




  

, (5.2) 

where .  denotes the area of a surface. In a similar fashion, the 

root mean squared surface distance (equivalent to the RMS error) is 
defined as 

2 2
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( ( , ) ( , ) )
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x X y Y

D X Y

d x Y dx d y X dy
X Y  




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 (5.3) 

The last used metric, the Dice coefficient, is a measure to quantify 
the similarity between two regions A  and B , based on the volume-
tric overlap: 

2
D

A B
C

A B





, (5.4) 

where .  denotes the volume of a region. The Dice coefficient 

yields 1 if both shapes are identical and 0 for no overlap at all. To 
transform the measure into an error metric, the obvious way is to 
negate it. Thus, the volumetric error based on the dice coefficient is 
defined as: 

1
D D

V C   (5.5) 
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5.2 Segmentation of the Left Ventricle 

5.2.1 Experimental setup 

To evaluate the segmentation quality of the deformable model for 
the use of left ventricular volumetry, several 3D images of the end-
diastolic and end-systolic left ventricular (LV) endocardium have 
been segmented and compared with a manually obtained gold stan-
dard. 

The dataset used for evaluation of the segmentation quality consists 
of 22 MRI images of the upper torso, in which the left ventricle has 
been manually pre-segmented by medical experts. The images have 
resolutions of 256x256x160 (19 images), 128x128x88 (1 image) and 
128x128x80 (2 images), respectively. As multiple gold standard 
segmentations per image were available, but were varying distinctly 
in some cases, these where averaged for each single image using a 
STAPLE ground truth image filter, as described in [106]. 

End-diastolic LV 

Because not enough data was provided to separate the dataset in 
training and evaluation parts, leave-one-out tests were performed. 
Thus, 22 shape models were built, and in each case evaluated on the 
single volume not included in the build process. 

This dataset consists of only 21 MRI images and the corresponding 
pre-segmentations. The images have resolutions of 256x256x160 
(18 images), 128x128x88 (1 image) and 128x128x80 (2 images), re-
spectively. All other properties are equal to the diastolic LVs. So this 
time, 21 models were trained and leave-one-out tests were per-
formed. 

End-systolic LV 

The heart stroke volume (SV) is calculated as the difference between 
the segmented end-diastolic and end-systolic ventricle volumes, 
respectively. The results were compared with the differences of the 
given gold standard segmentations. In 13 cases, also direct mea-

Volumetry 



Results 

86 
 

surements of the stroke volume via velocity-encoded cine MR imag-
ing (VEC MRI, see e.g. [107]) were available and used for compari-
son. 

5.2.2 Results 

The segmentation results for the left heart ventricle in systolic and 
diastolic phase are shown in Table 5-1 and Table 5-2. Additionally, 
graphs of the average surface distance results are given in Fig. 5.1 
and Fig. 5.4. 

An example of end-diastolic LV segmentation images is shown in Fig. 
5.2. An example of a 3D view can be seen in Fig. 5.3. 

Table 5-1 Segmentation results for the end-diastolic LVs. 

Results are given as mean ± standard deviation (μ±σ). 

Method Davg[mm] DRMS[mm] VDice[%] 
Deformable model 0.95±0.21 1.58±0.42 6.4±1.2 

Lötjönen et al. [108] 2.01±0.31 n.a. n.a. 
Kaus et al. [109] 2.28±0.93 n.a. n.a. 

van Assen et al. [110] 1.97±0.54[1] n.a. n.a. 
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Fig. 5.1 Distribution of the segmentation error for the end-diastolic LV 
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Fig. 5.2 Example of sagittal, transversal and coronal view of the median 
end-diastolic LV segmentation 

The resulting surface is shown as a black line. 

 

Fig. 5.3 3D view of the segmentation result as a wireframe mesh 

Also, the cut planes from Fig. 5.2 can be seen. 

Table 5-2 Segmentation results for the end-systolic LVs. 

Results are given as mean ± standard deviation (μ±σ). 

Method Davg[mm] DRMS[mm] VDice[%] 
Deformable model 1.69±0.68 2.48±1.01 16.2±5.3 
Kaus et al. [109] 2.76±1.02 n.a. n.a. 

van Assen et al. [110] 1.97±0.54[1] n.a. n.a. 
 

[1] van Assen et al. do not state the cardiac cycle stage they used their seg-
mentation on. 
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Fig. 5.4 Distribution of the segmentation error for the end-systolic LV 

 

Volumetry 
In Table 5-3, the heart stroke volume results, compared with the 
direct measurement and with the calculated gold standard are giv-
en, showing the result of the computation in terms of the mean 
relative error (The relative error of the single results compared to 
the appropriate gold standard, averaged over all results). Also, the 
Pearson product-moment correlation coefficient is stated, giving a 
dimensionless measure of the linear correlation between two ran-
dom variables. 

Table 5-3 Results of stroke volume (SV) computation 

Comparison against two different methods for SV calculation. In both 
cases, only the 13 images for which the direct measurement was given 
are evaluated. 

SV compared to: 
Direct Mea-
surement 

Difference of gold stan-
dard segmentations 

Mean rel. error 
[%] 

12.4 8.4 

Pearson’s corre-
lation coefficient 

0.89 0.97 
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5.3 Coupled Model Segmentation 

In this section, the segmentation quality of the different proposed 
methods for model correlations is evaluated on the epicardium and 
endocardium of the left heart ventricle. The usability of the methods 
for diagnostic purposes is evaluated later on in section 5.5 and 5.6. 

5.3.1 Experimental setup 

Training data for the statistical models consisted of dynamic ECG-
triggered short axis MR images of 32 patient’s hearts. Each image 
was a time series featuring 25 time steps over the complete heart 
cycle. In each image, the epi- and endocardium in systolic and dias-
tolic phases were manually delineated by medical experts. Addition-
ally, from two other patients, complete time series were included. 
Each of these had the epi- and endocardium manually delineated in 
25 time steps, covering one complete heart cycle. The images had a 
resolution of 128 x 128 x 18 voxel with a [1.6, 1.6, 5.0] mm image 
spacing. 

Test data sets were nine images from the same type, covering three 
patients. The images had pairwise different time steps, i.e. points in 
heart phase, except for two. 

These images were chosen because they on the one hand are com-
mon in cardiac diagnosis and on the other hand show low image 
quality in the spatial domain because of the high temporal resolu-
tion, making segmentation very challenging compared to the 3D 
data set evaluated in section 5.2. Imaging artifacts appear very often 
as well as shifts of single planes in x-y direction due to the ECG trig-
gering. 
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Fig. 5.5 Example data set of left ventricular data 

Transversal (left), sagittal (middle) and coronal (right) view. Typical image 
acquisition artifacts are highlighted  

The shape models built for validation were relatively compact and 
allowed a good representation of the heart wall. For segmentation, 
each model was restricted to its first 10 modes of variation, consti-
tuting more than 90% of the overall variation encountered in the 
training sets. The single models and their three strongest modes of 
variation are shown in Fig. 5.6 and Fig. 5.7. 

 

Fig. 5.6 Mean model and three strongest modes of variation of the endo-
cardium 
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Fig. 5.7 Mean model and three strongest modes of variation of the epi-
cardium 

 

5.3.2 Results – Shape Space Coupling 

The segmentation results for the different shape space correlation 
methods are shown in Table 5-4 and Table 5-5. Each number dis-
plays the error between the automated segmentation results and 
the manual gold standard segmentations, averaged over all testing 
data. Fig. 5.9 and Fig. 5.10 show example images in standard views 
for the results from the different methods. 
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Table 5-4 Mean and standard deviation of error for segmentation result 
of the endocardium using shape space coupling 

Endocardium    

 Davg [mm] Drms [mm] VD [%] 

Standard 3.65±1.16 6.21±1.79 29.31±10.48 

Joint - Relaxed 3.82±2.23 6.19±3.53 25.53±14.57 

Joint - Strict 2.54±0.86 4.43±1.33 17.82±7.23 

Unified - Re-
laxed 

3.34±1.21 5.20±1.92 24.61±9.64 

Unified - Strict 3.71±2.16 6.22±3.52 28.06±14.31 

 

Table 5-5 Mean and standard deviation of error for segmentation result 
of the epicardium using shape space coupling 

Epicardium    

 Davg [mm] Drms [mm] VD [%] 

Standard 3.80±1.28 6.61±2.02 18.72±6.43 

Joint - Relaxed 2.34±0.58 4.15±0.91 9.86±2.42 

Joint - Strict 2.14±0.57 4.02±1.00 8.58±2.33 

Unified - Re-
laxed 

4.41±0.63 6.10±0.59 20.66±3.74 

Unified - Strict 2.35±0.64 4.34±0.96 10.27±3.84 
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Fig. 5.8 Error distribution for the joint – strict method. 

 

 

 

 

Fig. 5.9 Exemplary results for the proposed methods 

Left to right: Transversal, sagittal and coronal view; Colors: Red: Manual 
segmentation. Green: Single SSM result. Yellow: Joint – Relaxed method. 
Orange: Joint – Strict method. Light blue: Unified – Relaxed method. 
Purple: Unified – Strict method. 
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Fig. 5.10 Direct comparison of the best method and the manually seg-
mented gold standard  

Left to right: Transversal, sagittal and coronal view; Colors: Red: Manual 
segmentation. Orange: Joint – Strict method. 

5.3.3 Results – Geometrical Coupling 

The usability of a geometrical coupling was evaluated on the same 
image data as in the last section. The geometrical force term was 
applied alone (in addition to the deformable model force terms), 
and together with the joint-strict shape space coupling, which 
showed best results in the last section. Results are given in Table 5-6 
and Table 5-7. Fig. 5.11 shows the error distribution for both endo-
cardium and epicardium, and an example can be seen in Fig. 5.12. 

Table 5-6 Mean and standard deviation of error for segmentation result 
of the endocardium using geometrical coupling 

Endocardium    

 Davg [mm] Drms [mm] VD [%] 

Standard 3.65±1.16 6.21±1.79 29.31±10.48 

Geometrical 3.57±1.19 5.86±1.74 25.29±10.46 

Joint – Strict + 
Geometrical 

2.49±0.77 4.35±1.19 17.10±6.29 
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Table 5-7 Mean and standard deviation of error for segmentation result 
of the epicardium using geometrical coupling 

Epicardium    

 Davg [mm] Drms [mm] VD [%] 

Standard 3.80±1.28 6.61±2.02 18.72±6.43 

Geometrical 2.23±0.50 4.22±0.82 8.62±2.26 

Joint – Strict + 
Geometrical 

2.21±0.65 4.08±1.11 8.58±2.88 

 

 

Fig. 5.11 Error distribution for the joint – strict and geometrical method 

 

 

Fig. 5.12 Direct comparison of geometrical coupling with joint - strict 
shape space coupling against the manually segmented gold standard 

Left to right: Transversal, sagittal and coronal view; Colors: Red: Manual 
segmentation. Brown: Joint – Strict + geometrical method. 
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5.4 Manual Correction 

5.4.1 Experimental setup 

To evaluate the deformation tool as described in section 4.5, two 
radiological experts were asked to manually correct erroneous seg-
mentations of the left heart ventricle and the liver. Although this 
thesis focuses on heart and lung evaluation, in case of the lungs, 
segmentation was in general very good besides the lower tips of the 
lung, which were under-segmented in all cases. As this can be cor-
rected in seconds and does not give much information on the usabil-
ity of the manual correction possibility on more complicated seg-
mentation errors, the liver was chosen as subject of evaluation be-
cause of the more complex segmentation problem and the resulting 
variety of mis-segmentations compared to the lungs. 

For both test cases, a deformable model segmentation approach as 
described in section 4.1 and 4.2 was used without any further opti-
mization, because typical segmentation problems appearing were 
wanted for the evaluation of manual correction. The time effort for 
the manual correction came to an average of 1-2 minutes for the 
heart ventricles, and about 4-5 minutes for the livers. Both the au-
tomated segmentation and the manual correction were compared 
against a given ground truth created by manual delineation of the 
organ by a medical expert, using different distance measures as 
stated in section 5.1.1. 

Left Heart Ventricle (LV)  

Image data and deformable model used for the left ventricle evalua-
tion ware the same as described in section 5.2. On all 22 images, 
automated segmentations were created. Then, the images taken for 
manual correction were selected as the worst five of the automated 
segmentations compared to the ground truth out of the series of 22 
volumes.  

The Liver data consists of 32 CT volumes of the whole body, contain-
ing the complete liver. Again, manually slice-by-slice produced gold 
standard segmentations were given. Automated segmentations 
were created for all images, and the worst 5 out of the series of 32 

Liver  
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volumes were picked for manual correction, without consideration 
of 3 segmentations which were regarded as failed in segmentation 
beyond manually correction. Image resolution differed between 
512x512x41 and 512x512x146 voxel [96].  

The shape model used for segmentation consisted of 2562 land-
marks. For the segmentation of the liver, which is considerable more 
complex in shape, a moderated k-Nearest-Neighbors classifier [94] 
was used. 

5.4.2 Results 

The complete results before and after manually corrections are 
shown in Table 5-8 and Table 5-9. 

Example images with overlaid result segmentations before and after 
manually corrections are shown in Fig. 5.13 for the left ventricle and 
in Fig. 5.14 for the liver. 

Table 5-8 Results for the left ventricle  

Upper: Before correction. Lower: After correction. 

Heart Ven-
tricle before 
Correction 

AvgD
 in mm RMSD  in mm DV  [%] 

Mean 2.71 5.24 14.51 
Std. Deviation 0.83 1.40 3.61 

Heart Ven-
tricle after Cor-

rection 
   

Mean 1.34 2.18 8.29 
Std. Deviation 0.36 0.78 1.87 

 

Table 5-9 Results for the liver  

Upper: Before correction. Lower: After correction. 

Liver before 
Correction AvgD

 in mm RMSD  in mm DV  [%] 
Mean 2.43 4.48 7.25 

Std. Deviation 0.90 1.75 1.74 
Liver after 

Correction    

Mean 2.17 3.96 6.58 
Std. Deviation 0.52 0.87 1.16 
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Fig. 5.13 Exemplary results before and after manual correction – left ven-
tricle 

Upper row: The transversal, frontal and sagittal view of the heart directly 
after the automated segmentation, before manual corrections. Lower 
row: The same view, after manual correction. The segmentation result is 
shown in opaque grey in all views. 
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Fig. 5.14 Exemplary results before and after manual correction – liver 

Upper row: The transversal, frontal and sagittal view of the liver directly 
after the automated segmentation, before manual corrections. Lower 
row: The same view, after manual correction. The segmentation result is 
shown in opaque grey in all views. 

 



Results 

100 
 

5.5 Evaluation of Cardiac Motion Analysis 

This chapter presents the results obtained in the evaluation of the 
Bull’s Eye projection and the calculation of the physiological para-
meters of the heart. The results were obtained both on synthetic 
data and on real patient image data. Aim of the evaluation is to 
show the accuracy of the calculated parameters, and to show that 
the mean calculation error is below the average segmentation error 
and therefore can be neglected. 

5.5.1 Synthetic data 

As synthetic data, open elliptic paraboloids of different radii, but 
equal height were used. These were chosen because they represent 
a mathematically simple geometric shape which is similar to a heart 
ventricle. To further approximate the shape of a ventricle, the low-
est 5% height at the basal part of the paraboloid was not included 
for evaluation, as the ventricle apex is considered as immobile by 
the AHA standard and does not contribute to wall motion.  

For the evaluation of the projection to a Bull’s Eye diagram, an ellip-
tic paraboloid with a radius of 10mm and a height of 30mm was 
used, represented as a highly resolved triangle mesh. Each segment 
of the Bull’s Eye diagram was assigned with a discrete value, from a 
scale of values that covered values occurring in heart physiology for 
wall motion. The range was chosen as 5-20mm per heart cycle. 

Evaluation of Bull’s Eye Projection Error 

Ta-
ble 5-10 shows the assigned values. According to this distribution, 
each point of the paraboloid was assigned a value depending on its 
height and angle. Fig. 5.15 shows how a projection from the parabo-
loid to the Bull’s Eye should look in theory. 

Table 5-10 Discrete values assigned for projection error calculation 

Basal segments       
Segment Nr. 1 2 3 4 5 6 

Assigned value 5 7 9 10 8 6 
 

Mid segments       
Segment Nr. 7 8 9 10 11 12 

Assigned value 15 17 19 20 18 16 
 



Evaluation of Cardiac Motion Analysis 

101 
 

Apical segments     
Segment Nr. 13 14 15 16 

Assigned value 5 7 8 6 
 

 

 

Fig. 5.15 Projection of a color coded surface to a Bull’s Eye diagram. 

A drawback of discrete values per segment is that they are proble-
matic when interpolating in the projection. Therefore, as the surface 
is cut along the longitudinal axis, the values between the vertical 
areas (basal, mid-cavity, and apical) are interpolated. As discontinui-
ties as created here between the segments by the use of discrete 
values normally not appear in cardiac images, the error calculation 
still gives an estimation of the worst case expected value. 

Based on the possibility to evaluate the Bull’s Eye diagram per seg-
ment as described in section 4.7.1, the projected and interpolated 
values can be compared to the theoretically expected values. The 
evaluation thereby gives the mean error of the projection, which is 
necessary to be known for the calculation of the other parameter 
errors and has to be compared against the segmentation error. 
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To evaluate the amount of error the calculation of wall thickness 
contributes due to the calculation of closest landmarks between 
epicardium and endocardium (which is faster to compute) instead of 
the mathematically correct smallest distances at each point (see 
section 

Evaluation of Wall Thickness Calculation Error 

4.7.3), two ellipsoids with same height and different radii 
have been created, featuring the same number of landmarks as the 
used models. For each section, the mean values of the closest-point 
calculation were generated and compared to the calculated expec-
tation values generated from the ellipsoid equations. 

5.5.2 Results on synthetic data 

Fig. 5.16 shows a diagram created using the values given in Table 
5-10. These are color coded according to their assigned value. The 
interpolation errors at discrete borders can be seen as color gra-
dient. Table 5-11 shows the projected mean values per segment, the 
mean projection error for each segment, as well as for each seg-
ment group. Table 5-12 shows the result of the wall thickening cal-
culation error. 

 

Fig. 5.16 Bull’s Eye diagram of the projection error test values 

Table 5-11 Projection error evaluation results 

Basal segments       
Segment Nr. 1 2 3 4 5 6 

Assigned value 5 7 9 10 8 6 
Calculated value 5.22 7.02 8.87 9.76 7.94 6.12 

Difference 0.22 0.02 0.13 0.24 0.06 0.12 
Mean Group Error 0.13±0.08 
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Mid segments       
Segment Nr. 7 8 9 10 11 12 

Assigned value 15 17 19 20 18 16 
Calculated value 14.77 16.72 18.75 19.72 17.74 15.75 

Difference 0.23 0.28 0.25 0.28 0.26 0.25 
Mean Group Error 0.26±0.02 

 

Apical segments     
Segment Nr. 13 14 15 16 

Assigned value 5 7 8 6 
Calculated value 7.66 8.76 6.81 5.69 

Difference 2.66 1.76 1.19 0.31 
Mean Group Error 1.48±0.99 

 

Table 5-12 Wall thickness calculation error 

Difference betweeen expected and calcualted values 

Segment group Basal Mid Apical 
Expected value (mm) 3.75 4.92 3.75 
Mean calculated (mm) 3.61 4.92 3.61 

Difference (mm) 0.14 0.0 0.14 
 

5.5.3 Evaluation on Patient Data 

For a quantitative validation of the presented methods on real pa-
tient image data, the minimal, maximal, and mean values of the wall 
thickness and wall thickening were calculated with the application 
on datasets of ten patients. These datasets consisted of MRI images 
with a spatial resolution of 1.84 x 1.84 x 5.0 mm and a temporal 
resolution of 25 time steps per heart cycle. The calculated values 
were evaluated against manually obtained distance measurements 
done by a cardiologic expert. The expert hereby referred to three 
segments of each data set in which he could obtain the best mea-
surements to his opinion. Each segment was measured in two per-
pendicular image slices, corresponding to the standard described in 
[102]. To compare the measurement results, the expert performed 
two measurements of the minimal and maximal size of the heart 
wall in the plane he could do the best measurement, and one in the 
perpendicular plane. The mean of these three results was compared 
to the mean created by the automated methods (see section 4.7.3) 
and are presented in Table 5-13. 
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Fig. 5.17 gives an example of the used images. For the segmentation 
the parameter generation is based on, first the images were seg-
mented with the deformable model approach as described in sec-
tion 4.1, afterwards with the best performing coupled model (by 
using a joint shape space with strict parameter application, and an 
additional geometrical correlation term), as described in section 4.3. 
The single models used were the same as described in section 5.3.1. 
Both results were then compared as described above. Fig. 5.18 to 
Fig. 5.21 show exemplary results calculated for the patient from Fig. 
5.17. 

 

Fig. 5.17 Example image of an original heart data set 

Top left: transversal view. Top right: sagittal view. Bottom left: Coronal 
view. Bottom right: 3D view. 
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Table 5-13 Results for dynamic parameter generation 

The measurement error of the automatic methods is compared to a 
manually drawn measurement. 

Parameter Wall thick-
ness 

Wall thicken-
ing 

Mean error (deformable model) 
[mm] 2.12±1.89 2.78±2.38 

Mean error (coupled model) [mm] 1.93±1.34 2.75±1.84 
Max error (deformable model) 

[mm] 9.48 8.44 

Max error (coupled model) [mm] 7.55 8.40 

 

 

Fig. 5.18 Exemplary result of volumetric calculation on patient data 

Cardiac output are omitteed as patient’s body mass, height and heart 
rate were not given. 
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Fig. 5.19 Exemplary result of local (left) and regional (right) wall motion 

Calculated between end-systole and end-diastole. Units are mm. 

 

 

Fig. 5.20 Exemplary result of local (left) and regional (right) wall thickness 

Calculated in end-diastole. Units are mm. 

 

 

Fig. 5.21 Exemplary result of local (left) and regional (right) wall thicken-
ing 

Calculated between end-systole and end-diastole. Units are mm. 
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5.6 Evaluation of Pulmonary Motion Analysis 

In this chapter, the experimental setup and the results for the analy-
sis of pulmonary motion are presented. First, the results of the 3D+t 
motion analysis using deformable and coupled models of shape 
(section 4.2 and 4.3) are compared against the gold standard, spi-
rometry, and each other. Afterwards, the results of the plane simu-
lation (section 4.9) are shown, and the results of 2D+t motion analy-
sis (section 4.10) are compared against spirometry.  

For both 3D+t and 2D+t evaluation, imaging was done with a 1.5 T 
Siemens Symphony MRI system. Volunteers were positioned on the 
MRI table and an eight-channel body coil was fixed over the thorax 
loose enough to not inhibit respiratory motion. For simultaneous 
spirometry, an MRI-compatible spirometer was used [111]. The vo-
lunteers held the handhold in whichever hand was more comforta-
ble for them. They were asked to breathe through the spirometer 
only during acquisition of the dynamic sequences. To inhibit breath-
ing through the nose, the patients had to wear a plastic nose clip 
throughout the MRI process.  

5.6.1 3D+t Motion Analysis 

To analyze the respiratory function by means of volumetry statistical 
shape models were trained with datasets from 9 patients for both 
lungs, each consisting of 20 time steps over the complete breathing 
cycle to furthermore incorporate breathing motion information into 
the models. The image data was acquired using a breathing trig-
gered FLASH3D MRI sequence and had a spatial resolution of 
3.75x3.75x3.8 mm, and a temporal resolution of 1 second. As image 
data of all stages of the respiratory cycle is integrated in the model, 
the first mode of variation mostly represents the breathing motion. 

Experimental setup 

The first 10 modes of variation were used for the models, 
representing more than 90% of shape variability. Each single model 
consisted of 1250 landmark. Fig. 5.22 and Fig. 5.23 show the mean 
models of the left and right lung as well as their strongest three 
modes of variation. 
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The evaluation data has been segmented with the deformable mod-
el approach as well as with the coupled model approach that 
showed best results (using a joint shape space with strict shape pa-
rameter application, see section 4.3). A geometrical coupling was 
not used, as the lungs are spatially and anatomically too far apart 
from each other to derive a meaningful spatial correlation.  

Evaluation data consisted of TWIST4D sequences of three probands, 
featuring a spatial resolution of 3.52x3.52x8mm and a temporal 
resolution of 0.5 seconds. Each sequence featured 100 time steps, 
from which three time steps (55-57) were corrupted during image 
acquisition in each sequence and had to be omitted in the evalua-
tion. 

 

 

Fig. 5.22 Mean and strongest modes of variation of the left lung model. 

The three strongest modes of variation are shown, top to bottom. Rows 
show the variation over three standard deviations. 
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Fig. 5.23 Mean and strongest modes of variation of the right lung model. 

The three strongest modes of variation are shown, top to bottom. Rows 
show the variation over three standard deviations. 

 

For all time steps, the physical lung volume was calculated from the 
segmentation results as in equation (4.25). Segmentation quality 
and accuracy of the volumetry was evaluated against the simulta-
neously acquired spirometry data as gold standard. But, as the seg-
mentation result incorporates a complete lung lobe in each case, 
thus also contains blood and tissue and not only the air volume, the 
calculated volume has to be calibrated to the actual breathing vo-
lume. However, calibration only has to be linearly, as the enclosed 
blood and tissue volume stays constant in first approximation over 
the breathing cycle, as it is additionally averaged over the acquisi-
tion time [112]. 

Volumetry 

Therefore, the total segmented volume, which equals the sum of 
the single lung lobe volumes, was normalized against the spirometry 
data as follows: 

min
max min min

max min

( ) ( )
( ) norm norm norm

measured
scaled

V VV V V V
V V

−
= − +

−
 (5.6) 
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Hereby, the indices norm apply to the target interval, min and max 
are the respectively smallest and largest volumes in the time series. 
It can be seen that the correctness of the assumption of a constant 
volume bias can be derived from the deviation of the linear correc-

tion factor 
max min

max min

( )
( )

norm norm
V V

V V
−

−
  from one. 

The volume curves calculated from MRI showed excellent agree-
ment with the parallel obtained spirometric measurement for the 
coupled model approach, with a Pearson product-moment correla-
tion coefficient of r=0.999 (one proband) and r=0.998 (two pro-
bands). The following two tables show the results of virtual spirome-
try for both tested approaches. The three figures afterwards show 
the volume-time curves of the probands. 

Results 

Table 5-14 Experimental results of virtual spirometry using the deforma-
ble model approach 

Proband / De-
formable Model 

Absolute vo-
lume error [ml] 

Rel. volume 
error [%] 

Correction 
factor 

1 46.1±34.0 1.2±1.0 1.03 

2 77.2±41.8 1.9±1.3 1.12 

3 85.5±90.4 3.9±4.2 1.04 

All (mean) 69.6 2.3 1.06 

Table 5-15 Experimental results of virtual spirometry using the coupled 
model approach 

Proband / 
Coupled Model 

Absolute vo-
lume error [ml] 

Rel. volume 
error [%] 

Correction 
factor 

1 34.8±27.2 1.0±0.8 1.04 

2 89.5±73.1 2.2±1.9 1.13 

3 74.1±80.9 3.5±4.1 1.04 

All (mean) 66.1 2.2 1.07 
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Fig. 5.24 Breathing curve for proband 1 

 

 

 

Fig. 5.25 Breathing curve for proband 2 
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Fig. 5.26 Breathing curve for proband 3 

5.7 Acquisition Plane Optimization 

To evaluate the correspondence of 3D+t imaging (more exact) and 
2D+t imaging (faster), the total error between volume calculation 
and area calculation depending on the acquisition plane angle of 
2D+t imaging has been evaluated on six probands. The maps show 
the color coded error between volume and area over the complete 
time series, depending on the acquisition angle. 

The calculated areas had to be calibrated for all time steps to allow a 
comparison to volumes as 

, min
, max min min

max min

( )
( )

( )
measured t

c t

A A
A V V V

A A
−

= − +
−

 (5.7) 

 with maxV  and minV being the minimal and maximal volume over the 

time series. The total difference over a time series can then be cal-
culated as 

max

,
0

( , ) ( , )
t

c t t
t

V A Vθ θ
=

∆ Φ = Φ −∑  (5.8) 

The following graphs show the results displayed as color coded error 
maps depending on the acquisition angle. For better visibility, the 
inverted error is display, with red meaning low error, and blue 
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meaning high error (Fig. 5.27). Rotation around the y-axis (θ ) means 
a rotation of the sagittal plane towards the transversal plane, 
around z-axis (Φ ) means towards the coronal plane. In both direc-
tions, calculation has been done in steps of 1° each. Fig. 5.28 shows 
the mean error maps of the left and right lung, averaged over the six 
probands. For comparison, the errors have been normalized to a 
[0,1] interval for each proband. Table 5-16 gives the numbers for the 
error at worst corresponding, best corresponding, and sagittal 
plane. 
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Fig. 5.27 Error maps of the six probands 

The maps show the color-coded inverted error of lung volume between 
3D volume measurement and 2D area measurement, depending on the 
orientation. Rotation is meant against the sagittal plane (see section 4.9). 
Red indicates lowest difference, blue indicates highest difference. 
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Fig. 5.28 Mean error maps of the left and right lung 

See Fig. 5.27 for detailed description. Maps have been smoothed for 
better readibility. 
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Table 5-16 Correlation between 3D+t and 2D+t measurement 

Mean deviation between volumetric and area measurement, in % of 
maximal volumetric interval. LL = Left lung; RL = Right lung; sag = sagittal 
image plane; min = worst correlation; max = best correlation. 

Proband min LL max LL sag LL min RL max RL sag RL 

1 15.90 1.63 4.05 24.45 1.28 5.09 

2 13.25 1.21 2.96 18.69 0.78 1.10 

3 14.43 2.31 4.14 21.19 1.38 5.57 

4 25.32 1.29 2.69 18.94 1.25 1.88 

5 18.73 1.47 3.86 32.15 0.98 3.04 

6 24.75 1.32 3.46 28.90 1.33 3.73 

Mean 18.73 1.54 3.52 24.05 1.17 3.41 

5.8 2D+t Imaging Evaluation 

5.8.1 Experimental setup 

For imaging, a dynamic 2D fast low angle shot sequence was used 
(Flash 2D; repetition time/echo time: 2.47/1.03 ms; flip angle: 5°; 
parallel acquisition factor 2; field of view: 400 mm; matrix 128 x 128; 
slab thickness: 15 mm; temporal resolution: 8.5 images/second; 
imaging time: 47 seconds). Images were acquired from ten healthy 
volunteers in coronal orientation for simultaneous analysis of both 
lungs and in oblique sagittal orientation because previous results 
indicated that craniocaudal and anteroposterior thoracic diameter 
to be the most relevant determinants of lung volumes in two di-
mensions ([59, 113, 114]). The coronal images were acquired in true 
coronal orientation at the thoracic midline; the oblique sagittal im-
ages were planned on a line, reaching from the diaphragmatic dome 
to the thoracic apex while avoiding the mediastinum, resulting in a 
tilting of the image plane toward the midline. This tilting had to be 
more pronounced on the left because of the more prominent exten-
sion of the heart to the left (see last section). 
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Before acquisition of the dynamic 2D images, the spirometer was 
reset to baseline and the volunteers were asked to breathe through 
the spirometer mouthpiece. During imaging, the volunteers were 
guided to perform a FVC maneuver. The respiratory volume changes 
were recorded spirometrically with a temporal resolution of 10 ms. 

5.8.2 Results 

Images of all volunteers were of sufficient quality for semiautomatic 
segmentation. Mean time for the segmentation of one time series of 
a single lung was 191 seconds with a standard deviation (SD) of ±22. 
Spirometric data was successfully acquired during all measure-
ments. Plotted as volume-time curves, a number of spirometric 
measurements showed seemingly linearly increasing deviations to 
lower volumes as can be seen in an extreme case in the bottom 
right curve in Fig. 5.29. 

 

Fig. 5.29 Flow-volume and volume-time curves from spirometry and sagit-
tal MRI  

Results of four different measurements to illustrate differences of visual 
agreement. The left column (a, c) shows good visual agreement, the right 
column (b, d) worst visual agreement of all measurements with a concave 
shape of the expiratory loop that was not present in simultaneous 
spirometry. FVC = forced vital capacity. 
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The volume-time curves from MRI data were similar to the spirome-
tric curves. The flow-volume curves from MRI showed similar cha-
racteristics to the spirometric curves with a sharp peak of the expi-
ratory flow and a decrease of expiratory flow in parallel to the spi-
rometric curve (top left of Fig. 5.29). In one case, the MRI derived 
flow-volume curve differed largely from the normal spirometric 
curve (Fig. 5.29b) and presented with a pronounced expiratory de-
pression (expiratory coving) suggesting obstruction while spirometry 
was normal. 

Pearson correlation of MRI area with spirometric volumes (Table 
5-17) was very high with a mean correlation coefficient of 0.98 (SD 
0.01) for the left lung in sagittal orientation, 0.99 (SD 0.01) for the 
right lung in sagittal orientation, 0.98 (SD 0.04) for the right lung in 
coronal orientation, and 0.97 (SD 0.05) for the left lung in coronal 
orientation. The only considerable lower correlation coefficients of 
0.86 and 0.84 were found for the right and left of volunteer 6 in 
coronal orientation. Without this outlier (volunteer 6), the mean 
correlation coefficient for coronal measurements was 0.99 (SD 0.01) 
for the right and left lung and thus even higher than for the left sa-
gittal measurement. A paired t-test found no significant differences 
of Pearson correlation coefficients between left and right lung or 
between measurements in sagittal and coronal orientation of the 
image plane ( P  value ≥  0.14). 

The Bland-Altman plots of the pooled data of all 10 volunteers 
showed more positive differences at lower respiratory volumes. 
Nevertheless, mean differences were below 1.1%. The 95% limits of 
agreement intervals extend below 8% to either side from the mean 
for right sagittal, below 10% for left sagittal, and below 11% for both 
coronal measurements. A one-sided t-test on the pooled data found 
significantly smaller absolute differences between spirometric and 
MRI-derived volumes for sagittal right measurement than for sagit-

tal left measurement ( 1510P −< ). Sagittal measurements were also 

significantly better than coronal measurements ( 1510P −< ), whe-
reas no difference was found between left and right coronal mea-
surement (Table 5-18). 

FEV1% calculated from MRI differed from spirometric FEV1% by a 
mean of 2.5% for sagittal right, 2.6% for sagittal left, 4.2% for coron-
al right, and 2.8% for coronal left images. The differences were be-
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low 5% for all but one volunteer for both lungs in sagittal as well as 
coronal orientation. The largest differences in sagittal orientation of 
either lung were not reproduced in the coronal orientation and vice 
versa. As a measure of synchronicity between left and right lung 
motion, the time point when 20% of maximal expiratory flow was 
reached during the FVC maneuver on coronal images was calcu-
lated. It differed between left and right lung by a maximum of 50 ms 
on the interpolated MRI data. 

Table 5-17 Product moment correlation coefficients 

Product moment correlation coefficients of MRI area changes with 
spirometric volume changes for sagittal and coronal image orientation of 
the left and right lung. The large correlation coefficients show that the 
respiratory volume changes are well captured by measurement of the 
lung area on dynamic 2D MRI. 

Volunteer Right sagit-
 

Left sagit-
 

Right coron-
 

Left Coron-
 01 0.99 1.00 0.97 0.98 

02 1.00 1.00 1.00 0.99 

03 0.98 0.99 0.99 0.98 

04 0.99 0.99 0.99 0.98 

05 0.99 0.99 0.98 0.98 

06 0.97 0.96 0.86 0.84 

07 0.99 0.98 1.00 1.00 

08 0.99 0.99 0.98 0.99 

09 0.99 0.98 0.99 0.99 

10 0.97 0.97 1.00 0.99 

Mean 
 

0.99 (0.01) 0.98 (0.01) 0.98 (0.04) 
 

0.97 (0.05) 
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Table 5-18 FEV1% calculated from spirometric and MRI measurement for 
sagittal and coronal imaging of both lungs 

Abbreviations: FEV1% = first second of forced expiration; Vol. = 
volunteer; Spir = spirometric FEV1%; MRI = FEV1% as determined from 
magnetic resonance imaging; Diff = Spir – MRI; R and L = left and right 
lung the Values for Spir and MRI are Rounded, the Values for Diff are 
Calculated from the Original Data and are Rounded to the First Decimal 

 Sagittal Right Sagittal Left Coronal 

Vol. Spir MRI Diff Spir MRI Diff Spir MRI 
R 

Diff 
R 

MRI 
L Diff L 

01 79 78 1.3 81 77 3.1 78 72 6.4 70 8.6 
02 82 79 2.6 82 83 0.3 80 83 3.2 80 0.3 

03 86 89 2.8 82 81 0.8 84 85 0.5 84 0.2 

04 76 73 2.5 75 74 1.5 74 76 1.1 75 0.1 

05 73 72 0.8 73 73 0.4 73 78 4.7 77 3.4 

06 75 71 4.7 75 68 7.7 74 74 0 67 6.3 

07 80 79 0.7 77 81 3.4 80 76 4.4 82 2 

08 69 70 0.2 69 65 3.7 69 84 14.4 69 1 

09 73 65 8.4 73 73 0.4 71 75 4.4 73 2.1 

10 68 68 0.6 68 72 4.6 68 65 3.1 64 4.5 

Mean 
(SD) 

  2.45 
(2.5)   2.59 

(2.39)   4.2 
(4.1)  2.84 

(2.88) 
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Fig. 5.30 Bland Altman plots of both lungs for sagittal (upper row) and 
coronal (lower row) measurements 

The solid line indicates the mean difference between spirometric and 
magnetic resonance imaging (MRI)-derived volumes. The dashed lines 
show the 95% limits of agreement interval (mean ± 1.96 *SD 
[differences]). The figure shows that there is no large systematic 
difference between the two methods and that agreement is better for 
sagittal than for coronal measurement (width of the 95% limits of 
agreement interval. The larger differences for smaller lung volumes are 
probably from an artifact (see Discussion). For purpose of clarity, only 
every 20th data point was plotted. FVC = forced vital capacity. 

 





 

 

6 Discussion 

This chapter presents an in detail discussion of the experimental 
results shown in the last chapter. In the first part, the results in 
segmentation of heart and lung as well as the increase of segmenta-
tion accuracy by coupling multiple models are discussed. The second 
and third part deal with the generation of medical diagnostic para-
meters from the segmentation results for the computer aided de-
tection of motion restriction of the heart and lung, respectively.   

6.1 Segmentation 

First of all, the single deformable shape model was tested for its 
applicability for segmentation of the left ventricular endocardium in 
3D images of the hearts end-systole and end-diastole. These images 
show relatively good contrast and clear borders of the endocardium. 
The model thereby showed the capability to rapidly and robustly 
detect and segment the left heart ventricle, with a segmentation 
time of less than a minute for each image. Volumetric parameters 
like stroke volume and ejection fraction can be directly generated 
from the results, the model is therefore applicable in a wide range 
of clinical applications in diagnosis and therapy aid. The free defor-
mation terms used in the approach help to better adapt the shape 
model to the given data than a model strictly constricted to trained 
shapes. Given a mean segmentation error of 0.95 mm for end-
diastole and 1.69 mm regarding average surface distance, this is 
already sub-voxel accuracy. The error distribution diagrams (Fig. 5.1 
and Fig. 5.4) also show that in some cases outliers in segmentation 
quality show up, three in the case of end-diastole, and two in the 
case of end-systole, always originating from a leaking of the model 
into the aorta due to mis-segmentation of the valvular plane. With 
the possibility of a fast manual correction as evaluated in section 
5.4, the results can quickly be increased to a much lower average 
error. A relative volumetric error of 12.4 % seems fairly high, but 
compared to the error of 8.4 percent between two different gold 
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standards, manual segmentation and direct measurement, used for 
the same evaluation, it can be considered as acceptable because of 
the largely reduced time effort using the automated method. 

According to experience, it is difficult to compare results of shape 
model segmentation using different test data, as the models are 
almost always specialized for a certain purpose derived from the 
data, and developed techniques aim to fulfill this purpose. The 
model introduced by van Asses et al. [110], for example, is particu-
larly suitable for sparse volume data.  

Nevertheless, the segmentation results achieved by the model per-
form better in terms of average surface distance error than prior 
approaches.  

Segmentation of the lung from 3D MRI has been already evaluated 
earlier by [82], resulting in an average surface distance error of 2.3 
mm and a relative volume error of 2.3 %. 

When applying the deformable model to dynamic 3D+t MRI data, 
anyhow, the segmentation quality drops severely. Because of the 
high temporal resolution given in these images which is necessary to 
capture organ motion, the data suffers from a reduced spatial reso-
lution, lower signal-to-noise ratio, and recurring image artifacts. For 
the left ventricular endocardium, this results in an increase of aver-
age surface distance error to 3.7 mm, and 3.8 mm for the epicar-
dium. Therefore, several methods of model correlation presented in 
section 4.3 have been evaluated to show that a model coupling can 
increase segmentation results. 

In all methods, with deformable as well as coupled models, the en-
docardial model tends to misleadingly converge to the papillary 
muscles instead of the ventricle wall in images of a systolic heart 
phase or close to it. This is especially true for the deformable model, 
where two segmentations almost completely failed, leading to a 
very high segmentation error of over 5 mm average surface dis-
tance. This gets better for the common shape space methods, as the 
epicardial model “pulls” the endocardial one further to the true 
ventricle wall. Overall, both common shape space methods generate 
better segmentation results than the single models in terms of aver-
age error of both endocardial and epicardial results. For the epicar-
dium, the severe drop in terms of standard deviation also indicates a 



Segmentation 

125 
 

more robust and reproducible result for all coupled shape space 
methods. The methods with relaxed parameter application, anyhow, 
only show an improvement in one of both cases, and generate even 
worse results than the deformable model in the other case. The 
joint shape space approach with relaxed parameters shows a good 
segmentation result for the epicardium, but a slightly worse result 
for the endocardium. The unified relaxed approach only shows a 
good result of the endocardium, but the worst result of all methods 
for the epicardium. This mis-segmentation problem shows in all 
datasets and seems to be a systematic error which has to be further 
investigated.  

The approaches with strict common shape parameter application 
are clearly superior for the used data. Here, the average segmenta-
tion error is far below one image voxel diagonal (5.5 mm). This can 
also be seen in Fig. 5.9: Both approaches with strict coupled para-
meters show a good segmentation result compared to the manual 
generated gold standard. What can be seen in Fig. 5.9, too, is a 
common problem of the single models: The segmentation of the 
endocardium does not correctly detect the mitral valve plane and 
hence under-segments the ventricle. Large portions of the segmen-
tation error comes from misdetection of the mitral valve plane be-
cause of the z-spacing of 5 mm compared to 1.6 mm in the other 
directions, so a displacement in z-direction leads to a much larger 
error. In the coupled methods, the endocardial segmentation is 
pulled to a more correct position by the epicardial model.  

The  joint shape space methods show overall better results than the 
corresponding unified shape space methods, so it seems to produce 
better segmentation results when all objects are treated as a single 
entity, instead of applying a correlation force term to the single 
models. The best method, using a joint shape space with strict pa-
rameter application, reduces the average surface distance error by 
37 % in average compared to the single deformable models, show-
ing an error of 2.54 mm for the endocardium, and 2.14 mm for the 
epicardium.  

It could also be shown that a geometrical correlation of the heart 
walls improves the segmentation results compared to the single 
deformable models. The geometrical coupling alone generates re-
sults between the single models and the best method of coupled 
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shape models.  Using the geometrical and joint strict force terms 
together, although the segmentation error is with 2.49 mm for the 
endocardium and 2.21 mm for the epicardium comparable to using 
the joint strict method alone, the slight drop in volumetric overlap 
error from 13.2 % to 12.8 % can be observed. As both coupling me-
thods tend to increase segmentation quality in the same problemat-
ic areas, at the valvular plane, the apex, and on local imaging arti-
facts, it is assumed that both methods produce comparatively coin-
ciding results for landmark positions when used together. 

The possibility of a manual correction of segmentation errors can 
further support a good result. For the heart, as can be seen from 
Table 5-8 and Fig. 5.13, the tool allowed for correction of the leaking 
out of the segmentation at the mitral valve, which could be cor-
rected in fewer than two minutes.  

In the case of the liver, the segmentation was only improved to a 
limited extent (Table 5-9 and Fig. 5.14). But, the standard deviation 
of the error is significantly decreasing, as it is in the heart case. This 
is due to the reduction of statistical errors, leaving only behind a 
mostly systematical error. This error results in the liver case from 
the exclusion of the major vessels in the liver in the manual segmen-
tation, which are included in the automated case and for whose 
exclusion the interaction tool is neither intended nor useful. 

Compared to the image resolutions normally present in dynamic 
data, the remaining error with the presented methods is considera-
bly lower than a voxel diagonal and in the magnitude of inter-
observer variability (the variability when two different experts make 
the same measurement). The error distributions of the best eva-
luated methods, given in Fig. 5.8 and Fig. 5.11, show that two third 
of the results have an average surface distance error of below 2.5 
mm, which is half of the image’s z-spacing, and is thereby low 
enough to allow computer aided diagnosis of motion restriction. 
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6.2 Cardiac Motion Analysis 

It was shown that segmentation with coupled models can achieve 
sufficient accuracy of segmentation even on noisy and low-resolved 
cardiac images. Due to the improved segmentation quality using 
coupled models, as presented in the last section, it was possible to 
improve the cardiac volumetric parameter generation. The parame-
ters stroke volume, ejection fraction, cardiac output, cardiac index, 
and wall mass directly depend on the endocardial and epicardial 
volumes as listed in section 2.4, the volumetric error as shown in 
section 5.3.2 is a direct measure for the error of cardiac diagnosis 
for these parameters. Due to the improved segmentation quality, it 
could be dropped from 29.3 % average to 17.1 % for the endocar-
dium, and from 18.7 % average to 8.6 % for the epicardium, com-
pared to the single deformable models.  

As the segmentation result are two surfaces, endocardium and epi-
cardium, with inherent landmark correspondences, the important 
cardiac parameters wall motion, wall thickness and wall thickening 
could be easily calculated and projected to the developed Bull’s Eye 
diagram. As the Bull’s Eye diagram is temporally resolved, it also 
allows a more detailed analysis and visualization of these parame-
ters over the heart cycle, which can intensively help in cardiac diag-
nosis. It might as well be also used to calculate more advanced pa-
rameters like asynchrony [11]. 

The error coming from the interpolation steps when projecting from 
a surface to a 2D plane is with an average of 0.51 mm small com-
pared to the remaining segmentation error (see last section). One 
must note that this error is a worst case estimate, as it is calculated 
by projecting discrete values, which do not occur in real cardiac im-
age data, but lead to a high interpolation error at borders, and can 
therefore be neglected in most clinical questions. The error from 
wall thickness and thereby wall thickening calculation between sur-
face landmarks was evaluated and showed to be very low, with 0.08 
mm in average for wall thickness, and can therefore be neglected, 
too. 

The evaluation of wall thickness and wall thickening calculation 
against a manual obtained measure from a medical expert on pa-
tient data showed that the use of coupled models can decrease the 
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error somewhat, but it is still quite high with an average of 1.93 mm 
for wall thickness calculation and 2.75 mm for wall thickening calcu-
lation, which is still quite large compared to a range of wall thick-
nesses between 5 and 20 mm as they usually appear in anatomy 
over the heart cycle. The problem here is the comparison of meas-
ures obtained in different frames of reference. The medical expert 
only measures in two orthogonal planes which are aligned by defini-
tion relative to the heart axis, and only obtains three measures in 2D 
space which are averaged. The average measures calculated from 
the surface resulting from segmentation is calculated in 3D and is 
averaged over a large number of values from a region. A measure-
ment of thickness in 2D is only absolutely correct when the heart 
wall is perfectly perpendicular to the plane in which is measured, 
which will almost never be the case in patient data.  Therefore, al-
though the manual delineation is regarded as gold standard, the 
measurements calculated from the segmentation results are pre-
sumably closer to real anatomic conditions and a large portion of 
the remaining error results from the measurement in 2D. Wall mo-
tion could not be evaluated as it is very difficult to observe without 
segmentation and can thereby not easily be measured manually. 
Even with a manual segmentation, it is very hard even for a medical 
expert to identify corresponding anatomical points in different time 
steps. 

Overall, the evaluation showed that the developed methods show 
sufficient accuracy to support computer aided diagnosis of the heart 
function. It is assumed that the methods generate better results 
than a manual measurement in 2D, which can be further improved 
by continuing developments. 
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6.3 Respiratory Motion Analysis 

6.3.1 3D+t Respiratory Motion Analysis 

The methods developed in the scope of this thesis for the quantifi-
cation of lung volume over the breathing cycle showed the potential 
to measure the respiratory function individually for each lung in a 
non-invasive manner. The most commonly used methods of thoracic 
image acquisition, thorax CT and MRI, are applied static, and it has 
been shown in previous works that these are able to generate static 
measures of lung volumes (see e.g. [115]). In contrast, the proposed 
methods are able to also generate dynamic quantification of lung 
function under normal breathing and breathing maneuvers that are 
not too fast. The benefit of this, together with the possibility to 
measure both lungs individually, is that even minor changes in respi-
ratory dynamic can be monitored at an early stage. Surface render-
ing of the segmented images with visualization of temporally re-
solved deformation fields also enables a detailed qualitative assess-
ment of free-breathing 3D+t lung motion, which could never have 
been achieved with either free-breathing dynamic two-dimensional 
images or breath-hold 3D images acquired at multiple respiratory 
phases. 

Due to the technical development in MRI allowing for image acquisi-
tion within 0.5 seconds, it could be shown that from 3D+t image 
segmentation a breathing curve with significant correlation to con-
ventional spirometry can be generated under normal breathing and 
slow breathing maneuvers from inspiration to expiration. The utility 
of a temporal resolved model approach reduces user interaction to 
a minimum and actually initially allows for a qualitatively high 4D 
analysis with high temporal resolution, as a manual delineation of a 
time series is not practicable because of the time effort, and low 
level segmentation methods can in general not achieve a sufficient 
segmentation quality at the given spatial resolutions and signal-to-
noise levels. 

Surprisingly, the coupling of both lungs using the joint shape space 
method with strict parameter application, which greatly increased 
the segmentation quality in case of the heart ventricle, did not lead 
to a significant increase of the correlation of the volume curve with 
spirometry. Although for two probands the correlation was some-
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what increased, for one proband the results were inferior, so only a 
slightly average decrease in error was found, from an absolute mean 
error of 69.6 ml to 66.1 ml deviation. This is most likely due to sys-
tematic errors that both methods share, namely the under-
segmentation of the lung’s tips, which leads to a volume bias de-
pending on the breathing state. These errors originate in the 
smoothness restrictions both methods share, which do not allow for 
the creation of spikes into the lung tips, but are essential for an ana-
tomically valid result in most image areas. 

Anyhow, the correlation of virtual spirometry to conventional spi-
rometry has been shown to be very strong. With a relative volume-
tric error of only 2.2 %, this shows that the method is suitable for 
diagnostic purposes. It could also been shown that the influence of 
tissue and blood when comparing calculated lung volumes and 
measured flows is very small. Assuming a linear correlation, a con-
stant volume bias would lead to a linear correction factor (slope) of 
1.0. It could have been shown that the factor only marginally de-
viated from 1.0, so a constant volume bias can be assumed in good 
conformance. 

The quantification of forced breathing maneuvers and thereby many 
dynamic parameters with the developed methods have shown to be 
not possible due to the temporal resolution of image acquisition. For 
these, methods for faster 2D+t imaging have been developed as 
discussed in the next section. Anyhow, independent from these the 
developed 3D+t measurements can generate valuable information 
for quantification in diagnosis and therapy monitoring, and this at an 
early stage of progress where conventional spirometry cannot 
measure restrictions or therapy response, because local impair-
ments tend to be compensated by the other lung. Due to the calcu-
lation of surface motion at each point and the interpolation of inner 
motion from the surface motion, it was made possible to also get 
information about local motion restrictions. The calculation of a 
compliance map allows for an early stage local assessment of lung 
function. Given the diagnosis of a motion restriction, it can be fur-
ther quantified by 2D+t imaging.  
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6.3.2 2D+t Respiratory Motion Analysis 

By measuring lung area changes on dynamic 2D MRI, it was shown 
that it is possible to assess lung function of single lungs with good 
agreement to spirometry. Apart from the post-processing software, 
the technique does not require special hardware and can be easily 
adapted to different MRI machines. With about 3.5 minutes, the 
post-processing time is short in comparison to standard techniques. 
The previous evaluations by semiautomatically measuring thoracic 
diameters took at least 10 minutes for one lung [61], another group 
used manual segmentation without indicating their post-processing 
time [55]. With the newly developed approach based on graph cut 
segmentation, the post-processing time could easily be further re-
duced. Apart from the last step of user interaction, the visual control 
and manual correction of the segmentation result, the area mea-
surement can be automated. This would cut the post-processing 
time down to less than 1 minute per lung. The volume changes were 
plotted as volume-time and flow-volume curves (see section 2.7.3) 
as these are the standard graphical representations of spirometry. In 
most cases, the curves from MRI and spirometry were almost iden-
tical, even the most deviating curves from MRI preserved most of 
the characteristics of the corresponding spirometric curves, espe-
cially the sharp expiratory peak in the flow-volume curves (Fig. 
5.29). Spirometric volume-time curves often showed a progressive 
linear downward deviation that suggested a constant drift in spiro-
metric measurement (Fig. 5.29d). The systematic larger positive 
differences between MRI and spirometry visible in the Bland-Altman 
plots also point in this direction, as data from cyclic breathing at 
smaller volumes was acquired mostly after the FVC maneuver. A 
spirometric downward drift would thus have led to larger positive 
differences at these lower volumes. For this reason, a linear correc-
tion could be considered. But most spirometric measurements also 
included breath holds before or after the MRI measurement and 
spirometric volumes remained constant during these time periods. 
This excluded a technical cause for a spirometric drift. A possible 
explanation for this progressive and seemingly systematic deviation 
is that the volunteers did not tightly seal their lips around the mouth 
piece, drawing in some air from the side during inspiration. The 
larger difference between MRI and spirometry in the flow-volume 
curve of the sagittal measurement of volunteer 9 (Fig. 5.29b) oc-
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curred only in a single volunteer. It was reproduced by repeating the 
segmentation and seemed to be a real feature of the image series. 
The normal spirometric curve and FEV1% suggest that this is an arti-
fact introduced by the limitation of a 2D measurement. An explana-
tion could be that during this measurement the volunteer empha-
sized the contraction of the abdominal muscles at the beginning of 
forced expiration. This would have caused an overestimation of the 
expired volume because the diaphragmatic action is overweighed in 
the 2D measurement relative to the thoracic diameter (Fig. 5.).  

The quantitative evaluation of differences between spirometry and 
MRI asserted the good agreement indicated by the visual represen-
tations. Pearson product moment correlation was extremely high 
with mean correlation coefficients above 0.97 and thus even higher 
than found in previous publications by Plathow (r = 0.93), and Kondo 
(r approx. 0.93) [59, 113] and previous evaluation on thoracic di-
ameters (r = 0.93) [61]. 

Surprisingly, when evaluating previously published data on chest 
wall diameters [61] with the automatic synchronization by cross 
correlation, no advantage could be found for the measurement of 
lung area as was the original hypothesis, indicating that the im-
provement of correlation results from more precise temporal syn-
chronization. However, it has to be noted that the present evalua-
tion only included healthy subjects with homogeneous movement of 
thoracic wall and diaphragm. In patients with thoracic deformities or 
changes of diaphragmatic mobility, the area measurement should 
still have advantages over assessment of thoracic diameters. The 
automatic synchronization by cross correlation could itself influence 
the results because any systematic offset between the data meas-
ured by spirometry and MRI will be eliminated. If such an offset 
were introduced by the measurement equipment, this would be a 
desirable effect because the offset would not have any physiological 
meaning. If an offset were caused by disease, the synchronization 
would indeed suppress interesting information, the comparison of 
the volume movements would nevertheless remain valid and differ-
ences in volume changes would still be visible in the evaluation. 

In any case, for measurement of one-sided delay of respiratory mo-
tion, evaluation of coronary imaging would be most appropriate 
because it provides intrinsically synchronized measurements of both 
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lungs. By automatically calculating FEV1% from the measurements, 
we wanted to avoid bias from a human observer defining the begin-
ning of expiration. The choice of starting at 20% of maximum expira-
tory flow was chosen somewhat arbitrarily, but no description of 
automatic calculation of FEV1% exists in published literature, so the 
lowest flow value that found similar starting points in MRI and spi-
rometry was chosen. With most differences between MRI and spi-
rometry below 5%, the mean difference for sagittal imaging of about 
2.5% and a standard deviation of about 2.5%, the two measure-
ments methods give comparable results. The largest differences of 
14.4% for right coronal measurement was checked several times 
and corresponded to a markedly steeper MRI derived expiratory 
volume-time curve for this lung, which was not obvious from visual 
inspection of the image series. The only apparent possible cause was 
an asymmetric motion of the heart, which moved faster into the 
imaging plane on the right side than on the left and probably caused 
the faster decline in segmented lung area on this side. 

The latter fact points to the big influence of the choice of the imag-
ing plane for correct measurement of lung function through 2D MRI. 
Which orientation to choose for measuring function of individual 
lungs has not been thoroughly investigated yet. Previous studies on 
respiratory changes of thoracic diameters found the craniocaudal 
diameter to correlate best with spirometry with the anteroposterior 
diameter second best and the lateral diameter least important [113, 
114, 116]. This led to a primarily consideration of the sagittal plane 
for lung function measurement. The results of the measurements 
here confirm the superiority of the sagittal plane over the coronal 
measurement. This is especially true for the right lung, where it is 
easy to choose a plane without in and out of plane motion of the 
heart. But the differences between the other imaging planes are not 
large and, on the other hand, the coronal plane allows imaging of 
both lungs at the same time. This simultaneous measurement of 
both lungs eliminates variation between consecutive respiratory 
maneuvers and should make detection of differences between left 
and right lung easier. Certainly, at the present state of development, 
the large side-differences found in some volunteers could still lead 
to a false diagnosis of one-sided lung disease. But errors in one 
evaluation (e.g., on coronal images) are not likely to be reproduced 
in a second measurement with a different image orientation. There-
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fore, a combination of the measurement in two orientations could 
be used to limit false-positive results. 

The measurement in the coronal plane can additionally give infor-
mation about the synchronicity of the respiratory motion of the two 
lungs. This can be useful for quantification of diaphragmatic paresis 
or of functional diaphragmatic insufficiency in patients with scoliosis 
or thoracic deformation. The maximal difference of 50 ms found in 
this study that was calculated on the temporal interpolated MRI 
data is well below the temporal resolution (117 ms per image) and 
thus shows synchronous respiratory action in all volunteers, which 
agrees with the results published by Kiryu et al [117]. 

The developed method still has several limitations. Most important, 
because fast dynamic MRI only provides 2D data, the measurements 
had to be transformed to percentages of FVC for comparison with 
volumetric spirometry. To allow for real volume measurements at 
full temporal resolution with the developed method, an area-
volume mapping function would be necessary, which most likely 
would have to be patient specific. Another limitation is the compari-
son of single-sided MRI measurement with global spirometry. In the 
study population of healthy volunteers, this is not considered to be 
a major limitation because lung motion can be expected to be syn-
chronous, but would be a more serious limitation when trying to 
validate measurements in patients with pulmonary disease. Here, 
again an agreement with global and lung individual volumetry from 
3D+t measurement would have to be found. 

Overall it can be said that measurement of lung area changes on 2D 
MRI allows for spirometric measurement of single lungs with good 
agreement to conventional spirometric measurement. With the 
short postprocessing time of semiautomatic segmentation, it is easi-
ly applicable in a clinical context and thus provides a possibility to 
increase sensitivity of functional measurement in cases of inhomo-
geneous distribution of lung disease and of one-sided diaphragmatic 
weakness. 

6.3.3 Acquisition Plane Optimization 

As stated in the last section, the choice of the image acquisition 
plane has a large influence on the correlation of conventional spi-
rometry and area measurement. First of all, the chosen plane must 
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show all aspects of the breathing motion as good as possible, which 
is comprised of diaphragmatic and thoracic movement. Secondly, 
the influence of the heart must be respected, which moves in and 
out of the imaging plane during the heart cycle. 

Also, as mentioned previously, it has not yet been evaluated wheth-
er the sagittal plane is optimal for functional measurement, al-
though it is commonly used in imaging. 

Examining the simulated image acquisition planes under the aspect 
of correlation between area measurement and volume calculation 
over the complete time series for each of the six probands and the 
mean result, several observations can be made. 

In general, the error depending on plane orientation shows consi-
derable local differences on the individual probands, but show a 
similar global pattern for both lungs. Both lungs show a band of low 
error between sagittal and coronal orientation within about ± 30° 
orientation against transversal. This is in good accordance with 
theory, as in transversal orientation, diaphragmatic movement can-
not be monitored, which contributes most to breathing motion. It 
also shows from the mean motion map that the sagittal plane gives 
good results with an error of approximately 3.5% on both lungs, but 
is not the best choice. For both lungs, this error can be reduced by 
60% and more with the choice of the best corresponding plane. 

Anyhow, to make a universally valid proposal for a best applicable 
acquisition plane, an evaluation on six probands does not give 
enough data basis. Especially, it must be researched how plane 
orientation influences area calculation and volumetry correspon-
dence on patient collectives showing typical motion restriction pat-
terns. The results from this evaluation give a good basis and motiva-
tion for investing more research in this topic.  

 





 

 

7 Summary 

In the course of this thesis, various methods for an automated anal-
ysis of motion restrictions of the heart and lungs were developed. A 
high priority in the development of these new or improved tech-
niques was in the clinical applicability of the approaches. This makes 
high demands on the developed algorithms. The reproduction of 
examined anatomic structures must be as high as possible, generat-
ed quantitative parameters must be as exact as possible, and the 
algorithms must produce results fast and with low user input neces-
sary. 

For both the analysis of heart and lung motion behavior, the extrac-
tion of relevant structures is a premise. The results of the analysis 
are thereby directly affected by the segmentation quality. Also, 
segmentation can be a major bottleneck in computer aided diagno-
sis. In case of the temporally resolved image data treated in this 
thesis, a manual segmentation approach is nearly inapplicable due 
to the vast amount of data and the hence resulting time effort. 
Therefore, an automated approach based on coupled shape models 
was developed in this thesis, with which several structures of inter-
est can be segmented simultaneously. The approach utilizes mutual 
information between correlated structures to cope with the prob-
lems typically arising in 3D+t image data, namely low spatial resolu-
tion, low signal-to-noise ratio, and recurring image artifacts. Correla-
tion methods aiding the segmentation have been developed to au-
tomatically initialize models from each other, and to exploit mutual 
information of geometry and shape during the segmentation search 
to support and correct the particular structure’s segmentation in 
difficult image areas.  

The best of several tested methods leads to a decrease of segmen-
tation error of approximately 40% for the endocardium and epicar-
dium, and leaves a remaining volumetric error of below 13%, which 
is in the magnitude of inter-observer variability. The developed car-
diac dynamic analysis based on the segmentation technique using a 



Summary 

138 
 

temporally resolved Bull’s Eye diagram offers a much more detailed 
analysis of cardiac mobility over the whole heart cycle than standard 
methods only regarding end-systole and end-diastole and is unique 
in literature. The incorporation of temporal information is an intui-
tive extension of standard analytic methods and thereby easy to 
integrate into clinical routine. 

For the lungs, only very few methods for the local characterization 
of lung function and mobility can be found in clinical practice. Given 
a volumetric calculation accuracy of below 70ml mean error that 
could be achieved in volumetric calculation from segmentation of 
dynamic 3D+t MRI, which showed excellent correlation with conven-
tional spirometry (Pearson correlation coefficient r=0.998) in normal 
breathing and slow breathing maneuvers, the information obtained 
from the images can be a valuable support in computer aided diag-
nosis. Contrary to spirometry, which only delivers global breathing 
volumes, the developed method is also able to quantify breathing 
volumes for each lung individually. Also, as spirometry is not very 
sensitive to single sided changes in lung function, the developed 
methods can deliver support in the detection of early stage diseases 
and in therapy monitoring, and can additionally provide information 
on medically problematic areas via the calculation of local deforma-
tion vector fields.  

For the calculation of dynamic lung volumes like e.g. forced vital 
capacity or forced expiratory volume in one second under standard 
forced breathing maneuvers, a method for the quantification of 
respiratory function based on graph cut segmentation of 2D+t MRI 
data was developed. It could be shown that measurement of lung 
area changes for spirometric measurement of single lungs is in good 
agreement with conventional spirometry (Pearson correlation coef-
ficient r=0.98). It was further evaluated which acquisition plane is 
best to be used for local spirometry, resulting in the commonly used 
sagittal plane showing good results for the task, but the plane orien-
tation might be improvable. Further research with patient collec-
tives showing common restrictive pattern could presumably give a 
universally valid proposal of a most suitable acquisition plane orien-
tation. 
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In conclusion, the essential contributions of this work are: 

• Novel methods to utilize mutual shape information to im-
prove model based segmentation of multiple correlated ob-
jects 

• A novel method to utilize mutual geometric information to 
improve model based segmentation of multiple adjoining 
objects 

• A fast correction possibility for erroneous segmentations 

• Implementation of a comprehensive temporally resolved 
analysis method for the local dynamics and volumetry of 
the left heart ventricle 

• Development of a method to individually analyze both lungs 
and to characterize regional lung motion behavior from 
3D+t MRI, and new visualization methods for this purpose 

• Development of a graph cut segmentation scheme that al-
lows highly temporal resolved analysis of breathing beha-
vior from 2D+t MRI 

• Analysis of the impact of acquisition plane orientation in 
2D+t MRI on the correlation with breathing motion 

 

 





 

 

8 Outlook 

A thesis can only follow a limited amount of ideas and directions, 
and even those can sometimes not be explored until the last detail. 
Below is a list of future work, arising from the observations in this 
thesis: 

• The developed coupling methods could be further evaluated 
on other structures of interest in the body, and on images of 
different modalities 

• The developed coupling methods showed different behavior 
on different local image conditions. A hybrid approach of 
the methods using a weighting scheme to determine the in-
fluence of each method based on local condition could be of 
interest 

• The combination of the used methods with information ob-
tained from other imaging modalities could be of great val-
ue 

• The dependency of 2D+t virtual spirometry on acquisition 
plane orientation should be further evaluated on patients 
showing common breathing motion restriction patterns 
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