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SUMMARY 

 

Circadian clocks are biological oscillators that allow organisms to accurately 

predict and adjust to the rhythmic changes in the environment which increases 

their fitness. These oscillators are found in every cell and have three fundamental 

properties: they are endogenous, entrainable and temperature compensated. The 

former two properties of the clock are well studied. However, it is currently 

unknown how clocks accurately keep the time independent of the ambient 

temperature, a phenomenon known as “temperature compensation”. This is 

particularly important for poikilothermic organisms that cannot control their body 

temperature and yet still have accurate circadian clocks. 

We used Neurospora crassa as a eukaryotic circadian clock model organism and 

showed that Glycogen synthase kinase (GSK) binds and specifically 

phosphorylates White Collar 1 (WC-1), which is the critical and rate-limiting 

positive element of the Neurospora clock. We found that these phosphorylations 

decrease the WC-1 stability in a temperature dependent manner. Our data 

completes the picture in our current understanding of temperature compensation 

of circadian clocks and shows that temperature compensation in Neurospora 

crassa is achieved by opposing functions of two kinases (GSK and CK2) on the 

positive (WCC) and negative (FRQ) elements of the clock, respectively. Since 

both kinases are well conserved among eukaryotes, it is also possible that this 

mechanism of temperature compensation is conserved among other eukaryotic 

circadian clocks. 



SUMMARY 

 

 7 

 

 

ZUSAMMENFASSUNG 

Circadiane Uhren sind biologische Oszillatoren, die es Organismen ermöglichen, 

rhythmische Änderungen in der Umwelt vorherzusagen und sich auf diese 

einzustellen. Diese Oszillatoren haben drei fundamentale Eigenschaften: sie sind 

endogen, trainierbar und temperaturkompensiert. Die ersten beiden 

Eigenschaften der Uhr wurden bereits eingehend studiert. Bis heute ist jedoch 

nicht bekannt, wie die zellulären Uhren unabhängig von der 

Umgebungstemperatur akkurat Zeit messen können, ein Phänomen, das als 

Temperaturkompensation bezeichnet wird. Vor allem für poikilotherme 

Lebewesen, die ihre Körpertemperatur nicht selbst regulieren können, ist diese 

Eigenschaft sehr wichtig. 

 

Im eukaryontischen Modellorganismus, Neurospora crassa, haben wir gezeigt, 

dass Glykogen Synthase Kinase (GSK) den Transkriptionsfaktor White Collar 1 

(WC-1) bindet, spezifisch phosphoryliert und damit temperaturabhängig dessen 

Stabilität reguliert. WC-1 ist das limitierende, positive Element in der Neurospora 

Uhr und bildet mit WC-2 den White Collar Complex (WCC). Bei erhöhten 

Temperaturen wird  WC-1 durch GSK-vermittelte Phosphorylierung destabilisiert. 

Die vorliegenden Daten vervollständigen das Bild dessen, wie wir uns 

gegenwärtig das Prinzip der Temperaturkompensation circadianer Uhren 

vorstellen. Sie zeigen, dass Temperaturkompensation bei Neurospora crassa von 

zwei entgegengesetzt wirkenden Kinasen (GSK und CK2) bewerkstelligt wird, 

welche auf die jeweils positiven (GSK auf WCC) und negativen (CK2 auf FRQ) 

Elemente der Uhr einwirken. Da beide Kinasen in Eukaryonten gut konserviert 

sind, ist es sehr gut möglich, dass dieser Temperaturkompensationsmechanismus 

bei eukaryontischen circadianen Uhren ebenfalls konserviert und weit verbreitet 

ist. 
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1. INTRODUCTION 
 

 

1.1 Circadian clocks 
 

1.1.1 Clocks in nature 
 
Circadian rhythms are biological phenomena that occur with a period length of 

about 24 hours. These rhythms are driven by biochemical oscillators which are 

called circadian clocks. These clocks are found in most organisms ranging from 

cyanobacteria to mammals where it enables the organism to accurately predict 

rhythmic events in the environment and thereby increase its fitness. Accurate 

anticipation of dawn and dusk, for example, helps a nocturnal animal to avoid its 

diurnal predators. It also provides a safe window of opportunity for activities such 

as foraging, hunting or breeding. In plants, the circadian system provides cues 

that synchronize the opening and closing of leaves for maximum use of energy 

provided by sunlight. In single celled organisms such as algae, it gates growth and 

metabolic functions.  

 

Circadian clocks not only drive a daily rhythm, but also aid in other aspects of life, 

sometimes in quite unexpected ways. For example, circadian clocks are essential 

for sun-compass navigation in insects, birds and mammals. It also provides time-

of-day information to the brain which integrates this cue with visual input on the 

location of sun in the sky and calculates the correct direction for the organism. 

Without the circadian clock these organisms would not be able to navigate 

towards the correct destination, because the location of the sun in the sky 

changes throughout the day. 

 

In addition to regulating daily rhythms, clocks also regulate annual rhythms such 

as breeding in animals or shedding of leaves in plants. They provide the organism 

with timing information on the avaliablity of resources or prey throughout the year. 
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Some sharks in the pacific, for example, travel thousands of miles and find a 

single island, the size of a football field, where their prey, birds, hatch only during 

a two week window in the year. In fact, they coordinate their feeding to the 

rhythmic availability of preys and hop from one island to another with precise 

timing during the year. Without the aid of circadian clock in navigation and timing, 

they would certainly not be able to utilize these resources. 

 

Although the day-night cycle is the dominant environmental synchronizer for most 

organisms, many other aspects of the environment such as temperature, humidity 

and nutrition are also rhythmic. Circadian clocks enable the organism to anticipate 

changes in these variables also. It is therefore of great interest and importance to 

understand the mechanisms underlying such a common and important aspect of 

biology. 

 

1.1.2 Organization of circadian hierarchy 
 
Circadian clock in in multicellular organisms receives rhythmic environmental input 

and relays it to the rest of the organism in order to keep the individual components 

in harmony (Figure 1). In rodents, for example, the clock resides in brain region 

called the suprachiasmatic nuclei (SCN) located dorsally to the optic chiasm. SCN 

regulate rhythms of locomotor behavior, body temperature and many other 

physiological functions. The input to this clock, mainly light, is received by 

specialized photoreceptors in the retina and then conveyed to the SCN via 

neuronal fibers of the retino-hypothalamic tract (RHT). Other kinds of 

environmental stimuli such as social cues are also relayed to the SCN via various 

neuronal input pathways. These inputs are integrated in the SCN into timing 

information and then relayed to the rest of the organism via humoral or neuronal 

cues. Peripheral tissues also contain endogenous clocks. However, these clocks 

go out of synchrony without the input from SCN. Therefore, SCN is considered to 

be major clock and the orchestrator of peripheral clocks (Davidson, Yamazaki et 

al. 2003). 
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Figure 1 
The circadian hierarchy. Clock receives environmental input such as light and 
temperature and relays to peripheral oscillators in multicellular organisms. In 
single cells the core clock mechanism drives many downstream genes. 
 

 

 

1.2 Molecular mechanism of circadian clocks 
 

1.2.1 The transcription-translation feedback loop (TTFL) 
 
Circadian clocks exist not only in multicellular, but also in single celled organisms. 

In fact, the individual SCN neurons mentioned above are each considered a 

circadian clock cell. The rhythm in these cells is generated by a molecular 

transcription-translation feedback loop (TTFL). Although the individual 

components vary from one organism to another, the basic principle of how this 

mechanism functions is similar throughout taxa. 

 

TTFL consists of positive and negative elements which feedback onto each other 

to generate the rhythm. The positive elements are transcription factors consisting 

of one or more subunits. The activity and sub-cellular localization of this 

transcription factor complex is highly regulated via post-translational mechanisms 

such as phosphorylation. In their active form, they translocate into nucleus where 
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they drive expression of many clock-controlled genes (ccgs). Products of one or 

more of these ccgs form a regulator complex, which are the negative elements of 

TTFL. This negative regulator complex associates with kinases or other proteins 

in the cell and regulate the activity, sub-cellular localization and degradation of the 

positive elements. One of their major roles is to keep the positive elements in 

inactive form in the cytosol. However, this negative regulator complex is also 

regulated via phosphorylation events and is gradually degraded throughout the 

day. Upon its depletion below threshold levels, the respression on the 

transcription factors is released and expression of ccgs resume, starting a new 

cycle. The temporal control of this cycle is achived by various mechanisms that 

introduce delays to the cycle such as phosphorylation dependent sub-cellular 

localization or degradation. This results in lengthening of the period of this cycle to 

roughly 24 hours, hence forms the circadian oscillator. 

 

 

 

 
Figure 2 
The molecular feedback loop. At the core of each clock cell is a molecular timer 
that consists of positive and negative elements that feedback to each other at the 
course of a day. Positive elements, namely transcription factors, drive clock 
controlled genes (ccgs). Some of these ccgs accumulate to high enough levels 
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and form the negative regulator complex, which eventually represses the 
transcription factors that drive them, thereby inhibiting their own synthesis. 
Throughout the day, the negative regulator complex is gradually degraded and the 
repression on the transcription factors is released and the cycle starts again. 
Although the components of these molecular clocks are different, the principle of 
feedback loops is conserved among eukaryotes. 

 

 

 

 

1.2.2 Mammalian TTFL 
 
In mammals, the positive elements of the TTFL are CLOCK and BMAL1 (Figure 

3). These proteins form a heterodimer in the cytoplasm which translocate into the 

nucleus where they drive rhythmic expression of ccgs through binding to E-box 

elements on the DNA. Some of these ccgs are PERIOD (PER) and 

CRYPTOCHROME (CRY) proteins. PER has three isoforms (PER1, PER2 and 

PER3) and CRY has two (CRY1 and CRY2). These proteins form heterodimeric 

complexes in the cytosol with combinations of PER and CRY. Upon accumulating 

to threshold levels, these complexes translocate into the nucleus where they 

repress the activity of the CLOCK/BMAL1 transcription factor complex (Figure 3). 

Therefore, PER/CRY heterodimer is the negative regulator complex of the 

mammalian TTFL (Gallego and Virshup 2007). The stability and the activity of the 

PER/CRY heterodimer is regulated by phosphorylation through effects of kinases 

such as CASEIN KINASE1 epsilon (CK-1e) and GLYCOGEN SYNTHASE 

KINASE 3-beta (GSK-3b). Phosphorylation by these kinases throughout the day 

results in the degradation of the PER/CRY complex and releases the repression, 

starting a new cycle of CLOCK/BMAL1 expression. This molecular feedback loop 

is considered as the “main loop” of the mammalian TTFL. Another feedback 

mechanism called the stabilizing loop involves REVERB- alpha and ROR-alpha 

which are expressed by CLOCK/BMAL1. These proteins regulate the expression 

of BMAL1 which enhances the amplitude of the circadian oscillations (Lowrey and 

Takahashi 2004). 
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Figure 3 
The mammalian molecular circadian oscillator. Positive elements CLOCK and 
BMAL1 drive expression of several ccgs including PERs and CRYs which in turn 
form heterodimeric complexes in the cytoplasm, translocate into the nucleus and 
inhibit the CLOCK/BMAL1 transctiptional activity. Several other ccgs form 
additional feedback loops that stabilize the clock by means of regulating its 
robustness through affecting the total levels of positive or negative elements. 
Figure from (Gallego and Virshup 2007). 
 

 

1.2.3 Drosophila TTFL 
 
The fly circadian clock is similar to mammals and also utilizes a TTFL to generate 

rhythms in individual cells (Figure 4). Although many components of the 

Drosophila TTFL are homologs of their mammalian counterparts, some are 

different. For example, instead of a BMAL1 there is CYCLE (CYC) in Drosophila. 

CYCLE interacts with CLOCK to form the positive transcription factor complex 

which drives ccgs such as PER and TIMELESS (TIM). These proteins are similar 

to PERs and CRYs in mammals and also form heterodimeric complexes which 

negatively regulate the activity of the positive element CLOCK/CYCLE 

heterodimer. Throughout the day, TIM is phosphorylated by SHAGGY (SGG), a 

homolog of the GSK in mammals, which results in its degradation. The stability of 

PER is regulated by kinases DOUBLETIME (DBT), a homolog of CK-1e, and 
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CASEIN KINASE 2 (CK2) which phosphorylate PER and target it for degradation. 

PER and TIM are become stable when they can form a heterodimer. This 

heterodimer translocate into the nucleus where it represses CLOCK/CYCLE 

activity, thereby inhibiting its own synthesis. PER/TIM complex is progressively 

phosphorylated and degraded throughout the day, similar to PER/CRY in 

mammals. When the levels of PER/TIM drop, the repression is released and a 

new cycle starts. The stabilizing loop in Drosophila consists of ccgs VRILLE (VRI) 

and PAR-domain protein 1 (PDP1) which regulate expression of CLOCK, similar 

to the actions of REVERB-alpha and ROR-alpha on BMAL1 in mammals. 

 

 

 
Figure 4 
The Drosophila molecular circadian oscillator. CLOCK/CYCLE heterodimeric 
transcription factor drives expression of several genes in including per and tim. 
PER and TIM form heterodimers which translocate into nucleus where they inhibit 
the transcriptional activity of CLK/CYC, inhibiting their own synthesis. As the 
PER/TIM degrades during the day, this repression is released and the cycle starts 
again. Figure from (Gallego and Virshup 2007). 
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1.2.4 A model organism for over half a century: Neurospora 
crassa 

 
 

During the history of the circadian field, Neurospora Crassa, a filamentous fungi, 

played a major role in our understanding of the circadian biology. Neurospora is a 

eukaryote and also harbors a molecular feedback oscillator which, in essence, is 

very similar to mammalian and fly clocks. It has been used as a model organism 

to study eukaryotic circadian clocks thanks to its ease of handling and powerful 

biochemistry and a circadian output measuring method called a “race-tube” assay 

(Figure 5). This assay is based on the inherent rhythmicity in the asexual 

production of spores which is directly driven by the circadian clock in Neurospora. 

It is easily visualized in a glass tube filled with solid supporting medium where the 

organism grows from one end to the other of the glass tube. As it grows, the 

rhythmic conidiation is observed as “bands”. This assay is sensitive to many 

inputs such as light and temperature and represents the functioning of the 

underlying circadian clock. Analysis of the period length, amplitude or phase of 

this behavior allowed circadian biologists to unravel many biochemical aspects of 

circadian clocks which were later on applied to mammalian and fly clocks. 

Although, the individual components are not homologous to their mammalian or 

fly counterparts, the molecular oscillator in Neurospora is very similar in its 

workings to these clocks. It also employs a TTFL where positive elements drive 

expression of ccgs which feed-back to repress their own transcription.  
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Figure 5 
Rhythmic conidiation in Neurospora crassa. The output of the circadian clock in 
Neurospora is easily observed by analyzing the rhythmic banding on race-tubes. 
As the organism grows from one end to the other, it produces rhythmic conidiation 
which presents itself as “bands“ that can be analyzed using densitometry. 
 

 

1.2.5 Neurospora TTFL 
 

The positive element in the Neurospora TTFL is the White Collar Complex (WCC, 

Figure 6). It consists of two subunits, WHITE COLLAR 1 and 2 (WC-1 and WC-2) 

which are ZINC-finger transcription factors. Similar to BMAL1/CLOCK and 

CLOCK/CYCLE in mammals and flies, WC-1 and WC-2 also form heterodimers 

through their PAS domains. In addition, WC-1 also contains a light-oxygen-voltage 

(LOV) domain, which allows the WCC to act also as a light receptor. Therefore, 

the light input to the circadian clock is at the very core level in the TTFL of 

Neurospora. 

 

Similar to regulation of CLOCK/BMAL1 and CLOCK/CYCLE, the activity and sub-

cellular distribution of WCC is also regulated by its phosphorylation status. Active 

WCC is hypo-phosphorylated and resides in the nucleus. In this form, it is highly 
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unstable and DNA binding leads to its rapid degradation (Schafmeier, Haase et al. 

2005; Schafmeier, Diernfellner et al. 2008).  

 

One of the ccgs that WCC expresses is FREQUENCY (FRQ), which is the 

negative element in the Neurospora TTFL. The promoter of frq harbors one light-

response element (LRE) and a clock-box. WCC recognizes these motifs and bind 

to them to drive expression of frq. LRE is involved in the light-dependent 

transcription of frq while the clock-box is required for rhythmicity in constant dark. 

Upon light exposure, WCC is activated through its LOV domain and binds to the 

LRE of frq. However, light-induced expression of frq gradually diminishes as the 

light induction continues. This is called light adaptation of the circadian clock and 

is necessary for proper entrainment to light/dark cycles in the nature. Recently, 

the mechanism of how this is achieved has been shown (Malzahn, Ciprianidis et 

al. 2010). The light-induced active WCC is counteracted by another light sensitive 

LOV-domain containing protein called VIVID (VVD). VVD is a small light-inducible 

protein, which binds to active WCC and inhibits its DNA-binding. Therefore, 

initially both vvd and frq are produced, but then VVD protein inhibits WCC to 

reduce expression of both proteins, achieving light-adaptation. 

 

Hypo-phosphorylated FRQ forms complexes with several kinases such as Casein 

Kinase 1a (CK1a), casein kinase 2 (CK2) and protein kinase A (PKA) as well as 

FRQ-interacting helicase (FRH). This multimeric complex inhibits and stabilizes 

the WCC by promoting its inactivation and phosphorylation, thereby preventing 

further expression of frq RNA (Liu and Bell-Pedersen 2006; Pregueiro, Liu et al. 

2006; Schafmeier, Kaldi et al. 2006). Similar to PERs in mammals and flies, FRQ 

is also degraded as the circadian cycle progresses. Over the course of the 

circadian cycle, it is progressively phosphorylated by CASEIN KINASE 1a and 2 

(CK-1a and CK2). This leads to its accumulation in the cytosol and degradation 

via the proteasome by FWD-1 (F box and WD40 repeat-containing protein-1) (He, 

Cha et al. 2006; Diernfellner, Querfurth et al. 2009).   

Phosphorylation of WCC by FRQ-dependent processes is in an equilibrium with 

the actions of protein phosphatases PROTEIN PHOSPHATASE 1 and 2A (PP1 

and PP2A) on WCC. Therefore, as the levels of FRQ decrease during the day, 
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PP1 and PP2A-mediated dephosphorylation dominates which results in activation 

and translocation of WCC into nucleus, thereby initiating a new cycle (Brunner 

and Schafmeier 2006; Liu and Bell-Pedersen 2006; Schafmeier, Kaldi et al. 2006; 

Dunlap, Loros et al. 2007; Querfurth, Diernfellner et al. 2007; Schafmeier, 

Diernfellner et al. 2008). 

 

 

 

 
 
Figure 6 
Neurospora TTFL. Positive elements WC-1 and WC2 form the heterodimeric 
transcription factor White Collar Complex (WCC) which drives many ccgs, 
including its own repressor FRQ. As FRQ accumulates, it forms complexes with 
many kinases, such as Casein Kinase 1a, and other proteins (eg. FRH) and form 
the negative regulator complex. This complex inhibits and stabilizes WCC via 
phosphorylation. As the levels of FRQ decrease during the day due to 
degradation, background activity of phosphatases PP4 and PP2A recruit WCC 
which translocates into the nucleus and starts a new cycle. 
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1.3 Temperature compensation of circadian clocks 
 

1.3.1 Fundamental, but poorly understood 
 
All circadian clocks share three fundamental properties: they are endogenous to 

the organism, can be influenced (entrained) by environmental stimuli (e.g. light) 

and are temperature compensated. The former two properties have been well 

studied. However, the mechanism underlying temperature compensation is poorly 

understood, albeit it’s early history.  

 

Temperature compensation of circadian rhythms was reported as early as the 

1950s (Pittendrigh 1954; Bruce and Pittendrigh 1956). It is defined by the relative 

resistance of the speed of circadian clocks to changes in ambient temperature. 

This is actually an intriguing property for a biochemical system. The rates of most 

biochemical reactions increase when the ambient temperature rises. However, the 

output of the circadian clocks are largely unaffected by these changes, even 

though the molecular mechanisms underlying circadian oscillations are 

biochemical interactions themselves (Figure 7). Therefore, a poikilothermic 

organism with a period length of about 22 hours (such as Neurospora) will still 

have the same period length at 20 and 30 oC.  

 

Interestingly, temperature compensation is observed both in poikilothermic and 

homoeothermic organisms (Enright 1967; Zimmerman, Pittendrigh et al. 1968; 

Jacklet 1980; Gardner and Feldman 1981; Anderson, Laval-Martin et al. 1985; 

Barrett and Takahashi 1995; Tosini and Menaker 1998; Izumo, Johnson et al. 

2003; Tsuchiya, Akashi et al. 2003). Although the benefits of temperature 

compensation for a poikilothermic organism are obvious, it is not clear why this 

mechanism is still present in homotherms. One recent study suggested that in 

mammals, while the master clock, SCN, is temperature compensated, the 

peripheral organs are not. The authors suggested that fluctuations in the core 

body temperature which is driven by SCN may the cue for the entrainment of 

peripheral tissues to the master pacemaker (Buhr, Yoo et al. 2010).  
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Considering the natural fluctuations throughout the day, proper compensation of 

the circadian rhythm to changes in the ambient temperature is vital, especially for 

organisms that cannot regulate their own body temperature. 

 

 

 

 

 
 
Figure 7 
Temperature compensation of circadian clocks. Although the speed of most 
biochemical reactions increase with temperature, the period length (i.e. speed) of 
the circadian clock stays relatively constant. There have been many reports on 
mutant strains with defective compensation phenotypes such as over- or under-
compensation where the clock ticks slower or faster (respectively) as the 
temperature increases. However, the molecular mechanism of temperature 
compensation is still unknown. 
 

 

 

1.3.2 Mechanism of temperature compensation: Post-
translational? 

 
 

There have been several mechanisms suggested to explain the molecular 

mechanisms underlying temperature compensation based on the altered circadian 

proteins that give rise to temperature compensation phenotypes (Gardner and 

Feldman 1981; Mattern, Forman et al. 1982; Loros and Feldman 1986; 

Castiglione-Morelli, Guantieri et al. 1995; Huang, Curtin et al. 1995; Hong and 

Tyson 1997; Price 1997). For example, various temperature dependent responses 

of the Neurospora clock have been described to date, all affecting the core 

oscillator FRQ. By a posttranscriptional mechanism, FRQ steady-state levels rise 
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in response to temperature increases, which is critical for temperature dependent 

resetting of the clock and for maintaining robust rhythmicity over a wide 

physiological temperature range  (Garceau, Liu et al. 1997; Liu, Garceau et al. 

1997; Diernfellner, Schafmeier et al. 2005). In addition, two isoforms of FRQ 

mRNA are expressed via temperature sensitive alternative splicing (Colot, Loros 

et al. 2005). Temperature dependent changes in the ratio of these isoforms affect 

period length and tune the clock in response to ambient temperature (Diernfellner, 

Colot et al. 2007; Dunlap, Loros et al. 2007). Temperature dependent alternative 

splicing has also been described to occur in other clocks (Majercak, Sidote et al. 

1999; Collins, Rosato et al. 2004). However, none of these mechanisms has been 

shown to have an effect on temperature compensation. In the cyanobacteria 

circadian clock, it has been shown that temperature compensation is achieved by 

similar kinetics of a kinase and phosphatase that affect the same core clock 

protein at various temperatures. However, this clock does not share the TTFL of 

eukaryotic clocks and can actually continue to run even in a test tube and is not 

considered to reflect the circadian clocks in eukaryotes (Nakajima, Imai et al. 

2005; Nagai, Terada et al. 2010). 

 

In summary, although many mechanisms have been proposed, it has not been 

possible to generalize these, because either the proteins whose mutations result 

in defective compensation are at the core of the circadian clock or the various 

suggested mechanisms are not shared among organisms while temperature 

compensation is. 

 
Recently, the role CASEIN KINASE 2 (CK2) in the temperature compensation of 

the Neurospora Crassa circadian clock has been shown (Mehra, Shi et al. 2009). 

In their report, the authors showed that mutations in the two previously known 

strains with over-compensated phenotypes both map to subunits of CK2. They 

also showed that down-regulation of CK2 leads to over-compensation. When they 

analyzed the targets of CK2 phosphorylation, they found that it phosphorylates 

FRQ. Mutations of CK2 targets on FRQ also resulted in defective temperature 

compensation. The authors suggested that CK2-dependent phosphorylations 

regulate the stability of FRQ in a temperature dependent manner where the FRQ 
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protein is degraded faster upon phosphorylation by CK2 at high temperatures. 

This finding suggested that the mechanism of temperature compensation may be 

post-translational. 

 

It is tempting to think that such a post-translational control of temperature 

compensation mechanism may be conserved among organisms. After all, post-

translational modifications of clock proteins by kinases and phosphatases is a 

common feature of circadian clocks in all organisms (Naef 2005; Dunlap, Loros et 

al. 2007; Fang, Sathyanarayanan et al. 2007; Spengler, Kuropatwinski et al. 2009; 

Qin, Byrne et al. 2010). However, in the study of Mehra et al., the authors did not 

find another kinase or a phosphatase with a temperature compensation 

phenotype. Furthermore, the role of casein kinase 2 in the Neurospora circadian 

clock explained only the over-compensation phenotypes, where the period length 

of the clock increases as the temperature rises. This suggests that another kinase 

or a phosphatase must be involved that is not yet discovered. Therefore, 

elucidating the mechanism underlying under-compensation may reveal the 

molecular mechanism of temperature compensation. 

 

 

1.3.3 Glycogen synthase kinase (GSK) and temperature 
compensation 

 
 

A hint towards completing a picture of the post-translational mechanism of 

temperature compensation is provided in a study by Jolma et al. where the 

authors showed that addition of lithium results in loss of temperature 

compensation in Neurospora Crassa (Jolma, Falkeid et al. 2006). In this study, 

lithium lengthened the period at normal temperatures. However, when the 

temperature was raised, the period length became significantly shorter (Figure 8). 

This showed that lithium resulted in an under-compensated compensated 

phenotype in Neurospora.  
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Figure 8 
Addition of lithium results in loss of temperature compensation in Neurospora 
crassa. Lithium lengthens the period at normal temperatures which becomes 
shorter as the temperature increases, exibiting an under-compensated phenotype. 
 

 

 

Lithium is a well-known inhibitor of GLYCOGEN SYNTHASE KINASE (GSK) 

(Stambolic, Ruel et al. 1996; Iwahana, Akiyama et al. 2004; Meijer, Flajolet et al. 

2004; Padiath, Paranjpe et al. 2004; Gould and Manji 2005). It has also been 

shown to lengthen fungal, insect and mammalian circadian clocks (Engelmann, 

Bollig et al. 1976; Hofmann, Gunderoth-Palmowski et al. 1978; Subbaraj 1981; 

Hafen and Wollnik 1994; Jolma, Falkeid et al. 2006; Hirota, Lewis et al. 2008; 

Mohawk, Miranda-Anaya et al. 2009; O'Brien and Klein 2009). 

 

GSK is the final enzyme in the biosynthesis of glycogen, where it was first 

discovered. It is an Mg2+ dependent kinase that phosphorylates its targets at 

consensus sequence S/T-xxx-S/T, where x is any amino acid. Presence of proline 

residues in the vicinity of this motif have been shown to promote GSK-dependent 

phosphorylations by increasing its catalytic efficiency. The activity of the kinase is 
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regulated by N-terminal phosphorylation of its pseudo-substrate domain which can 

be triggered by many pathways.  

 

GSK is mostly known for its role in the wingless (WNT) signaling pathway which 

regulates segment polarity in flies. In this pathway, GSK is normally bound to 

beta-catenin where it phosphorylates and targets beta-catenin for ubiquitin-

dependent degradation. It has also been shown to be involved in many other 

cellular processes such as insulin signaling, growth factors and TOR signaling 

pathways (Cook, Fry et al. 1996; Sakanaka, Sun et al. 2000; Cohen and Frame 

2001; Frame and Cohen 2001; Papadopoulou, Bianchi et al. 2004). It has also 

been shown to be involved in inactivation and degradation of several transcription 

factors in response to environmental stimuli (Zhou, Deng et al. 2004; Zhou and 

Hung 2005; Punga, Bengoechea-Alonso et al. 2006; Bengoechea-Alonso and 

Ericsson 2009).  

 

GSK is also a known component of the insect and mammalian circadian clocks 

(Figures 3 and 4) and it is highly conserved (Figure 9) and it’s selective inhibitors 

alter the period length in these organisms (Martinek, Inonog et al. 2001; Harms, 

Young et al. 2003; Iitaka, Miyazaki et al. 2005; Kurabayashi, Hirota et al. 2006; 

Yin, Wang et al. 2006; Hirota, Lewis et al. 2008; Vougogiannopoulou, Ferandin et 

al. 2008; Mohawk, Miranda-Anaya et al. 2009; Kurabayashi, Hirota et al. 2010). In 

Drosophila, the GSK homolog SHAGGY (SGG) phosphorylates TIM and its 

overexpression promotes nuclear translocation of the PER/TIM heterodimer. SGG 

also phosphorylates PER in vitro, but its function is not known (Martinek, Inonog 

et al. 2001; Stanewsky 2002). In mammals, GSK interacts with PER2 and 

phosphorylates it in vitro and in vivo (Iitaka, Miyazaki et al. 2005). Furthermore, it 

affects the nuclear localization of PER2 and phosphorylates and stabilizes 

REVERB-alpha (Yin, Wang et al. 2006). Finally, in a recent study, it has been 

found that GSK phosphorylates BMAL1 and targets it for ubiquitin-dependent 

degradation, similar to its role in other transcription factors (Sahar, Zocchi et al. 

2010). 
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Figure 9 
Alignment of GSK protein sequences from Neurospora, Xenopus and human 
showing that GSK is a highly conserved protein. 
 

 

 

 

 

GSK is also involved in many signal transduction pathways where the inputs from 

multiple pathways converge on GSK to regulate its activity. Therefore, it is an 

ideal candidate to serve as an integrator of environmental stimuli that can affect 

many pathways, such as temperature (Figure 10). However, the role of GSK in the 

temperature compensation of circadian clocks have never been studied and it is 

one of the few kinases that was not tested in the (Mehra, Shi et al. 2009) study. 

Therefore, the role of GSK in the Neurospora clock or temperature compensation 

of circadian clocks is currently unknown. Considering that both GSK and CK2 are 

highly conserved and are components of the circadian clocks also in Drosophila 

and Mammals, it is possible that mechanism of temperature compensation is also 

conserved among clocks in eukaryotes and might employ GSK. 
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Figure 10 
Activity of GSK is regulated its N-terminus phopshorylation which is triggered by 
various signals such as insulin, growth factors or nutrition. Therefore, GSK is in a 
good position to receive many environmental stimuli and integrate them into the 
activity of a single kinase and relay this information to the circadian clock. 
 

 

I investigated the role of GSK in the circadian clock of Neurospora and in 

particular, its involvement in temperature compensation. The results showed that 

GSK binds and specifically phosphorylates the rate limiting element of the clock, 

the WHITE COLLAR COMPLEX (WCC) and regulate its stability in a temperature 

dependent manner. Either down-regulation of GSK or mutations of its 

phosphorylation sites on WCC both resulted in elevated levels of WC-1 and 

therefore higher WCC activity and under-compensated phenotypes. These data 

show that the mechanism of temperature compensation in Neurospora Crassa is 

post-translational where the effects of temperature are counter-acted by opposing 

functions of two kinases in the positive (GSK on WCC) and negative (CK2 on 

FRQ) elements of the circadian transcription-translation feedback loop.  
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2. MATERIALS AND METHODS 
2.1 Neurospora strains 
 
Neurospora glycogen synthase kinase (GSK, NCU04185.2) heterokaryon 

knockout strain Gsk het and Abc transporter homokaryon knockout strain Abc 

homo (NCU?????) both contain hygromycin B resistance cassette “hph” in the 

corresponding gene loci and were obtained from the Fungal Genetics Stock 

Center along with their respective background control strains wt9718 and wt74. 

The strains wt74 ras-1bd, ∆wc-1, ∆wc-1/wc-1 ∆C (which lacks c-terminal domain of 

WC-1), frq10/qa-frq, frq10 and ∆vivid all contain the ras-1bd mutation (Belden et al. 

2007). WC1 mutant strains pWC1-wt, pWC1-8A and pWC1-8D were created in 

this study. For a summary of strains used in this study see Figure 11. 

 

2.2 Neurospora growth conditions 
 
Conidial suspensions in 1M Sorbitol were prepared from samples grown on 

standard solid growth medium (2.2% Agar, 0.3% D+ Glucose monohydrate, 

0.17% L-arginine, 1x Vogel’s medium and 0.1% biotin). 200 µg/ml Hygromycin B 

(Applichem A5347) was added to the solid growth medium for Gsk het strain to 

enrich for knock-out conidia. Race tube medium were identical to solid growth 

medium with addition of 10 mM H2O2 or 80µg/ml Hygromycin where indicated. 

Liquid culture medium contained 2% Glucose, 2% Arginine and 1x Vogel’s 

medium. Cyclohexiemide (CHX) was added at a concentration of 10 µg/ml where 

indicated.  

 

2.3 Preparation of total cell lysates from Neurospora 
 
Extraction of Neurospora protein, subcellular fractionation and extraction of 

nuclear proteins were performed as recently described (Schafmeier et al. 2005). 

Briefly, frozen mycelia were grinded using a mortar and pestle in presence of 

liquid nitrogen. Ground mycelia were incubated with bPEX buffer (25ml 1M Hepes 
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pH 7.4, 13.7ml 5M NaCl, 5ml 0.5M EDTA, pH8.0, 58.1ml 86%Glycerin in 500ml 

with water) in presence of protease inhibitors leupeptin (5µg/ml), pepstatin A 

(5µg/ml), PMSF (1mM), and PhosStop phosphatase inhibitor cocktail (Roche) for 

30 minutes followed by centrifugation at 14000rpm. Supernatant was used as total 

cell lysates.  

 

 

 
 
Figure 11 
List of Neurospora strains used in this study 
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2.4 Sub-cellular fractionation of frozen mycelia 
 
For sub-cellular fractionations, frozen mycelia was incubated with solution A (1 M 

sorbitol, 7% [w/v] Ficoll 400, 20% [v/v] glycerin, 5 mM, MgOAc2, 5 mM EDTA, 3 

mM CaCl2, 3 mM DTT, 50 mM Tris/HCl pH 7.5) for 15 minutes. The sample was 

filtered using a cheese cloth and solution B (10% [v/v] glycerin, 5 mM MgOAc2, 5 

mM EDTA, 25 mM Tris/HCl pH 7.5, protease inhibitors) was added in twice the 

volume. The mixture was gently poured over a solution containing solution A and 

B at a ratio of 1:1.7 and centrifuged at 1400rpm for 7 minutes in an Avanti J-26 XP 

(BeckmanCoulter Krefeld, Germany) rotor. An aliquot of the supernatant was 

taken as the TOTAL (T) sample. Rest of the sample was gently poured onto a 

solution containing 1 M saccharose, 10% [v/v] glycerin, 5 mM MgOAc2, 1 mM 

DTT, 25 mM Tris/HCl pH 7.5 and protease inhibitors and centrifuged for 20 

minutes at 7000 rpm. Supernatant was collected as cytosol and the pellet (nuclear 

fraction) was dissolved in bPEX buffer and sonified. 

 

2.5 Protein determination and analysis 
 
Protein concentrations were determined by measuring absorption at 280 nm of an 

undiluted sample (NanoDrop®, PeqLab) and 200µg protein was loaded unless 

stated otherwise. Western blotting was performed as described (Gorl et al. 2001; 

Schafmeier et al. 2005). Enhanced chemiluminescence signals were detected 

with X-ray films. Series of exposures in the range of 10 s to 10 min were 

generated. Quantification of Western blots was performed using ImageJ software 

where indicated (Rasband, W.S., ImageJ, U. S. National Institutes of Health). 

 

2.6 Generation of HIS-tagged CKI and GSK plasmids 
 
Full length GSK and CKIa were amplified from a total cDNA preparation from 

Neurospora using primers with restriction sites SphI and PstI  and inserted into the 

PQE30 plasmid (Qiagen) and transformed into M(15) Prep4 strain (Qiagen) of 



MATERIALS AND METHODS 

 

 30 

E.Coli cells using heat shock along with an empty PQE30 plasmid (mock control). 

See figures 12 and 13 for plasmid maps. 

 

Figure 12 
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Figure 13 
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2.7 Expression and purification of active kinases from 
E.coli 

 
A preculture was inoculated into LB medium containing ampicillin (100ng/µl final) 

and grown at 37 degrees overnight (o/n, 180rpm shaking). Next day, a 2 liter (or 

more depending on the amount of protein needed) culture with 1:100 from the 

pre-culture was inoculated and grown at 37 degrees until OD600 is around 0.3 

and then the temperature was lowered to 20 degrees. The culture was induced 

with 0.1mM IPTG overnight and harvested at 4000rpm for 20min.  

Special care was given to perform all the remaining steps at 4 degrees celcius. 

HIS-tagged kinases were isolated using standard Qiagen protocol for PQE30 

vectors (QIA expressionist) with the following changes. The lysate or any the 

solutions at any step never frozen to avoid precipitation of the proteins. The cell 

pellet was lysed in presence of protease inhibitors (EDTA-free since EDTA will 

interact with the NiNTA-column). Inhibitors were added right before lysing the 

cells. Special care was taken to keep the lysate cold and avoid heating up during 

lysing using a micro-fluidizer.  

The lysed cells were centrifuged at 10 000 rpm for 20min at 4 degrees. During the 

centrifugation, a small column with 1ml NiNTA beads (bead volume) was prepared 

and washed twice with 15ml lysis buffer to equilibrate. The isolation of the HIS-

tagged kinase was done in a cold room using gravity or a pump with max 

0.5ml/min flow rate. Input fraction before running through the column and the flow-

through (FT) after running the column was collected. The column was washed 

twice with 15ml wash buffer and fractions containing wash1 and wash 2 fractions 

(W1, W2) were collected. Elution was done in three steps with 1ml elution buffer 

with 1 min incubation between each step. 

Three fractions of eluate were sampled for later use in SDS-PAGE. Since the final 

buffer contains a lot of Imizadole which may result precipitation, the sample was 

immediately re-buffered into the bPEX (without glycerol) buffer using PD-10 

columns (GE Healthcare). Glycerol was added after re-buffering since it would 

interfere with the PD-10 column. 
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Aliquots from each fraction (Input,Ft, W1, W2, E1, E2 and E3) were tested with 

SDS-PAGE followed by coomassie staining and the purification was confirmed 

with the presence of a thick band near 40 KDa for the purified proteins. Protein 

concentration was measured and small aliquots for your future applications were 

frozen in liquid nitrogen and stored at -80 degrees. Repeated freeze and thaw 

resulted in reduction of activity, especially for GSK and therefore avoided.  

 

2.8 In vitro phosphorylation in Neurospora total cell 
extracts 

 
The amount of enzyme required for saturating phosphorylation was determined by 

a series of kinase dilutions and finally 18.24 µg CKIa, 38.88 µg GSK and 24 µg 

mock control proteins were added to 200 µg of total Neurospora cell lysate in a 

final reaction volume of 30 µl and incubated for 1 hour at 25 oC. Final reaction 

mixture contained 50mM HEPES/KOH pH 7.4, 150mM NaCl, 10mM MgCl2, 

10mM ATP, leupeptin (5µg/ml), pepstatin A (5µg/ml), PMSF (1mM), and 1X 

PhosStop phosphatase inhibitor cocktail (Roche). Samples were analyzed with 

SDS-PAGE followed by western blotting with respective antibodies. 

 

2.9 Co-immunoprecipitation in Neurospora total cell 
lysates 

 
Antibody against Neurospora GSK was raised in rabbit using the C-terminal 

peptide sequence NH2-CDNFTPMNKSEMMAKLD-COOH (Pineda, Germany). 

100 µl Protein A beads were washed 3X with 1ml TBS by inverting followed by 

centrifugation at 2000 rpm for 1 minute. 200µl GSK antibody or 40µl WC2 

antibody (where indicated) was added and the mixture was completed to 1ml 

using TBS. The beads were incubated with the antibody at room temperature for 2 

hours and then washed twice with 1ml bPEX and supernatant discarded. 5% Milk 

solution (buffered in TBS, pH 7.4) was added to beads for blocking and incubated 

at room temperature using a rotary shaker. During blocking, a total of 10mg 

protein from Neurospora cell extract was prepared in 2ml bPEX with fresh 
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protease inhibitors. 1ml of this solution was taken and stored as TOTAL (T). After 

blocking is complete, beads were washed 3X with 1ml bPEX. The remaining 1ml 

of the protein solution (contains 5mg protein) was added to the beads. Incubation 

was performed in a cold room overnight. Following day, the beads were 

centrifuged at 2000 rpm for 1 min and the supernatant was taken as UNBOUND 

(U). After 2 steps of washing with 1ml bPEX buffer, the BOUND (B) fraction was 

collected by cooking the beads with 250µl 1X Laemmli buffer at 95 degrees. The 

total and unbound fractions were also cooked at this time. The samples were 

loaded on SDS-PAGE and analyzed with western blotting. Successful 

immunoprecipitations were confirmed by depletion of GSK or WC2, depending on 

the antibody used. 

 

2.10 Quantitative real-time PCR 
 
Total mRNA from ground frozen mycelia was prepared using peqGOLD 

TriFASTTM (peqLab, Germany) and reverse transcribed using the QuantiTect 

Reverse Transcription Kit (Qiagen, Germany) following the manufacturer’s 

instructions. Transcript levels were analyzed by quantitative real time PCR as 

described previously (LIT). Primer and probes used in this study are as follows: 

 
actin:  F   gat gac aca gat cgt ttt cga gac t  

R   cgg agg cgt aga gag aaa gga  
Probe  6-FAM- ccg cct tct acg tct cca tcc a - TAMRA  

 
 
wc-1:   F  acc tcg ctg tcc tcg att tg  

R  tgc tgg gcc tct ttc aac tc  
Probe   6-FAM - ccg tcc gac atc gtg ccg g - TAMRA  

 
frq:  F   ttg taa tga aag gtg tcc gaa ggt  

R  gga gga aga agc gga aaa cg  
Probe   6-FAM - acc tcc caa tct ccg aac tcg cct g - TAMRA  

 
vvd :  F  acg tca tgc gct ctg att ctg  

R  aaa agc ttc cga ggc gta ca  
Probe   6-FAM - cga cct gaa gca aaa aga cac gcc a - TAMRA 

 
wc-2 :   F  agt ttg cac cca atc cac aga 
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R  agg gtc gag cca tca tga ac 
Probe   6-FAM – agt cgc ctt tct gcc agg ccg – TAMRA  

 
 
gsk :   F  ccc gac tcg agg cac aac t 

R  tgg ata gct cat gac ggg taa agt 
Probe   6-FAM – acc gtt agg gat ctg cca ccg ctc tt– TAMRA  

 

 

 

 

2.11 Generation of pWC1-WC1 plasmids and strains 
 
A vector containing a DNA piece of the WC1 ORF from restriction sites XmaI to 

EagI with mutated serine and threonine residues were synthesized by Genscript 

(USA) in a PUC57 vector. A fragment of WC1 ORF from restriction sites PmlI to 

SexAI was cloned into an empty Pgem4 vector (promega). The source of this 

WC1 ORF fragment was a vector from K.Kaldi (Semmelweis University, 

Budapest). The fragments from the Genscript vector and the Pgem4 vector 

exchanged, creating a new Pgem4 vector with all eight amino acids exchanged 

into alanines or aspartates. Another vector containing the genomic locus (from -

2280bp to +4980 bp from the ATG) of WC1 was cloned into pBM60 vector using 

restriction sites SpeI and NotI. This was is named pWC1-wt and contains both the 

5‘ and the 3‘ UTRs of WC1. The mutant DNA piece from the created pGem4 

vector was exchanged into this vector using restriction sites PmlI and SexAI, thus 

creating the plasmids labeled pWC1-8A and pWC1-8D.  

See the charts below for the flowchart and plasmids of these clonings. All forward 

primers used are marked with red and reverse primers are marked with yellow 

and unique restriction sites indicated. All plasmid maps are also provided in 
digital format with more detail. 
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Figure 14 
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Figure 15 
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Figure 16 
 



MATERIALS AND METHODS 

 

 39 

 

 
 
Figure 17
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3. RESULTS 
3.1 Down-regulation of GSK results in loss of 

temperature compensation   
 
 
GSK is an essential protein and complete knock-outs are not viable. Therefore, 

we obtained a GSK down-regulation strain (Gskhet) to study the effects of altered 

GSK function on the circadian clock of Neurospora, in particular its role in 

temperature compensation.  In this strain, gsk gene has been replaced by a 

Hygromycin B (Hyg) resistance cassette which allows dose dependent reduction 

of the gsk mRNA by positively selecting for knockout nuclei with increasing doses 

of Hyg. Under steady- state conditions (constant light, LL), the Gskhet strain has 

reduced levels of GSK protein and mRNA compared to its background control 

strain wt9718 and the levels of GSK can be further reduced by addition of 

Hygromycin B (Figure 18). Our preliminary experiments showed that addition of 

80µM Hyg provides a balanced compromise between defective growth and 

reduction in GSK levels. Application of higher doses of Hyg simply resulted in 

defective growth and did not actually reduce the GSK levels further.  
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Figure 18 
Total levels of GSK protein and mRNA in the Gskhet strain are lower compared to 
its background control strain wt9718 at steady state conditions (constant light (LL), 
25 and 30 oC). Note that addition of 80µM Hygromycin B results in further 
decrease in the gsk mRNA and protein. 
 
 
 
 
 
 
 
Race-tube assays are a common and well established technique for measuring 

the period length of the circadian clock in Neurospora. The assay relies on a 

phenomenon called “banding” which is, in essence, rhythmic conidiation in a long 

glass tube. The tube is filled with a solid support medium and the strain of interest 

is inoculated from one end. As the Neurospora grows towards the other end, it 

exhibits rhythmic production of aerial hyphae which is seen as bands when the 

tube is scanned and analyzed (see introduction, figure 5). This phenomenon, 

albeit its common use, actually only occurs in a specific mutant strain of 

Neurospora crassa. Recently, this mutation has been identified and its role in the 

amplification of circadian rhythms has been shown to map to a hyper-active form 

of the RAS-1 protein (Belden, Larrondo et al. 2007). 

 

Due to lethality of the complete loss of GSK, Gskhet strain cannot be back-crossed 

to a this mutant rasbd strain to allow for easy investigation of the circadian rhythm 

on race tubes. However, in the same study, it was shown that banding can also be 

induced in wild-type strains by applying oxidative stress using Menadione which 

also results in activation of the RAS pathway (Belden, Larrondo et al. 2007). After 

a series of trials where we also induced oxidative stress using various doses of 

Menadione or H2O2, we found that addition of 10 mM H2O2 to the race-tube 

medium resulted in a clear banding pattern in the Gskhet strain as well as the 

wt9718 strain (Figure 19). This method enabled us to investigate the period length 

of these strains at different temperatures in a reliable way.  
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Figure 19 
Representative banding patterns of the circadian conidiation rhythm in strains that 
are wild-type for ras-1 with or without 10mM H2O2. 
 

 

 

 

 

Using 10 mM H2O2, we performed various race tube experiments where we tested 

the effect of down-regulation of GSK on period length at different temperatures. 

Evaluation of these race tubes showed that there was no significant difference 

between the period lengths of the circadian clock of the wt9718 and the Gskhet 

strains at 25 °C (Figure 20). Furthermore, addition of 80µM Hyg also did not 

change the period length at this temperature.  

 

When the temperature was raised to 30 °C, period length of the wt9718 strain did 

not change significantly, showing that the strain is properly temperature 

compensated. However, period length of the Gskhet strain was significantly shorter 

at 30 °C and this shortening was more pronounced when Hyg was added to the 

race-tube. This data showed that reduced levels of GSK result in loss of 

temperature compensation in the Neurospora crassa circadian clock. 
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Figure 20 
Summary of the average period lengths at 25 or 30 oC. Difference between groups 
were analyzed using two-tailed Student’s t-Test and p-values ≤0.0005 are 
indicated (***). Hygromycin B was added to Gskhet and abc homo strains at a dose 
of 50 µg/ml where indicated. Error bars show ±standard error of the mean (±SEM) 
from at least three independent experiments. Summary of period lengths of all 
strains used in this study are also summarized in figure 41 with ±SEM.  
 

 

 

 

Application of both H2O2 and Hyg in race-tube assays was never done before. 

Therefore, we tested whether presence of both H2O2 and Hyg has any unspecific 

effect on the circadian clock. We used another Hyg resistant, non-banding strain 

called abc homo, because it also harbors a Hyg resistance cassette and our 

unpublished previous work showed that this gene has no effect on the circadian 

clock. The abc strain showed wild-type behavior at both temperatures showing 

that H2O2 alone or in combination with Hyg has no effect on period length or the 

temperature compensation of the circadian clock under these conditions (Figure 

20). These findings show that reduction of GSK levels specifically result in loss of 

temperature compensation. 

3.2 Down-regulation of GSK increases WC-1 levels 
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The results of the race tube assays showed that the clock is running faster in the 

Gskhet strain at elevated temperatures, hence the shorter period length. This can 

be achieved by either increasing the activity of the positive element (WCC) or 

decreasing the effect of the negative element (FRQ) of the clock. Therefore, we 

investigated whether the levels of clock proteins change in the Gskhet strain in a 

temperature dependent manner.  

 

We did not observe a significant effect on the level of FRQ or WC-2 protein in the 

Gskhet strain at either 25 or 30 degrees. However, the level of WC-1 protein was 

ca. 1.8 fold higher in the Gskhet strain compared to its wild-type control at 30 

degrees (Figure 21 and quantification in figure 22, left column).  

 

 

 

 
 
Figure 21 
Representative western blots showing levels of clock proteins in the Gskhet strain 
compared to its background control strain wt9718 at steady state conditions (LL, 
25 and 30 oC). 
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We asked whether this increase is due to elevated levels of wc-1 mRNA. Our 

analysis revealed that the mRNA level of wc2, frq and wc1 does not significantly 

increase when the temperature is elevated to 30°C. Furthermore, they were not 

altered by GSK down-regulation (Figure 22, right column).  

 

 

 

 
 
Figure 22 
Quantification of steady-state levels of WC-1, WC-2 and FRQ proteins and their 
mRNA are shown with ±SEM. All quantifications were normalized to respective 
wt9718 levels at 30 degrees. Difference between wt9718 and Gskhet within each 
temperature was analyzed using two-tailed Student’s t-Test and p-values ≤0.0005 
are indicated with ***. 
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The lack of a difference in the mRNA levels indicated that effects of GSK on WC-1 

levels are post-transcriptional and that WC-1 protein may be more stable when 

GSK levels are lower. Therefore, we performed stability assays using 

Cyclohexiemide (CHX) under constant conditions. We did not see a significant 

difference between wt9718 and Gskhet strains at either temperature (Figure 23). 

 

 

 

 

Figure 23 
Representative western blots from samples grown at 30 degrees showing that the 
stability of WC-1 and FRQ are not affected in the GSK down-regulation strain 
under constant conditions (LL) after addition of CHX up to 8 hours. 
 

 

 

 

GSK has been previously shown to have an effect on the subcellular distribution 

of clock proteins in Drosophila (Ko, Kim et al. 2010). Therefore, we tested whether 

such an effect is also present in Neurospora crassa. However, we did not see any 

significant effect of GSK down-regulation on the distribution of clock proteins WC-

1, WC-2 or FRQ at normal or elevated temperatures in our sub-cellular 

fractionation assays (Figure 24). 
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Figure 24 
Sub-cellular fractionation of Neurospora cell extracts at 25 vs. 30 degrees from 
wt9718 and Gskhet strains. Protein levels in each fraction were normalized to its 25 
degrees wild-type control and the averages of at least six independent 
experiments are shown with ±SEM. Note that although the total WC-1 levels 
increase in the Total and Nuclear fractions, their ratio does not differ between the 
wt9718 and Gskhet strains showing that GSK down-regulation does not affect the 
sub-cellular localization of WC1. 
 
 
 
 
 

3.3 GSK binds to WCC in vivo  
 

Since we observed that GSK down-regulation results in increased levels of WC-1, 

and therefore increased WCC activity, we tested whether GSK physically interacts 

with WCC in vivo. Our preliminary tests with commercially available antibodies 

from other organisms that may recognize Neurospora GSK failed (not shown). 

Therefore, we raised an antibody in rabbit against Neurospora GSK which 
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recognizes the C-terminal end of the Neurospora GSK protein. This antibody 

proved to be very efficient and clean and was used throughout this project. 

 

We performed co-immunoprecipitation assays from whole cell extracts of 

Neurospora grown at 25°C or 30°C and found that both WC-1 and WC-2 co-

immunoprecipitate with GSK (Figure 25). Interestingly, although the interaction of 

GSK with the WCC was stable (since the precipitation was done overnight and the 

WCC-GSK complex survived the process), the fraction we could precipitate was 

approximately only 10% of total WC-1. This shows that GSK is bound to only a 

small fraction of the total WCC at any given time in the cell. 

 

 

 

 

 
 
Figure 25 
A representative co-immunoprecipitation assay using GSK antibody and pre-
immune serum control in total cell extracts from wt9718. An equivalent of 200µg 
Total, 200µg supernatant and 800µg IP protein were loaded. Antibodies used for 
each blot are indicated on the top of each column and the antibodies used for the 
IP are shown on the left of each row.   
 

 

 

Since WCC is comprised of WC-1 and WC-2, we tested whether GSK can bind 

directly to either WC-1 or WC-2 alone.  We used a ΔWC-1 strain where WC-1 

gene is knocked out and found that GSK can bind to WC-2 in the absence of WC-

1 (Figure 26). Unfortunately, WC-1 levels are undetectable in a ∆wc-2 
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background. Furthermore, in the only strain where WC-1 is stable by itself 

(because it lacks the ZINC finger motif); the WC-1 antibody produced excessive 

background with GSK pull-downs in spite of our numerous efforts. Therefore we 

were not able to measure whether GSK can bind WC-1 alone. 

 

 

 

 

 
 
Figure 26 
Co-immunoprecipitation assay using GSK antibody and no antibody control in 
total cell extracts from ∆wc-1 strain. An equivalent of 200µg Total, 200µg 
supernatant and 800µg IP protein were loaded. Antibodies used for each blot are 
indicated on the top of each column and the antibodies used for the IP are shown 
on the left of each row.   
 

 

 

 

FRQ was not detected in the bound fractions in any of the experiments (see 

Figure 25). Furthermore, both WC-1 and WC-2 proteins co-immunoprecipitated 

with GSK in the frq10 strain which lacks FRQ (not shown). This suggests that 

binding of GSK to the white collar complex (WCC) does not depend on FRQ.  

We also did not see a significant effect of binding efficiency between cell lysates 

prepared from samples that were grown at either 25 or 30 oC. These data show 

that WCC is a direct target of GSK in vivo and that GSK is in a stable complex 

with a small population of WCC. 
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The majority of GSK is located in the cytosol, while WCC is predominantly nuclear 

(Figure 27 and 24). Therefore, we tested whether binding of GSK to WCC is 

compartment-specific. Co-immunoprecipitation assays using GSK antibody from 

cytosolic and nuclear fractions showed that WCC is associated with GSK in both 

compartments (Figure 27). Interestingly, the small fraction of GSK present in the 

nucleus was able to pull down more WCC than in the cytosol, suggesting that the 

abundance of GSK is not the rate limiting factor in the formation of the GSK/WC-1/ 

WC-2 complex. 

 

 

 

 

 

 
 
 
Figure 27 
Co-immunoprecipitation assays using GSK antibody from Total, Nuclear and 
Cytosolic fractions of wt9718 cell extract (LL) are shown. 200µg Total and an 
equivalent of 200µg supernatant and 1600µg IP protein were loaded. 1600µg IP 
protein was loaded to compensate for lower efficiency due to buffer conditions. 
Antibodies used for each blot are indicated on the top of each column.  
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3.4 GSK phosphorylates WCC, but not FRQ  
 
 
 
We observed that levels of WC-1 protein are elevated in Gskhet strain and GSK 

forms a stable complex with WCC and reasoned that this transcription factor 

complex might be a substrate for GSK phosphorylation. Therefore, we purified 

recombinant Neurospora GSK in its active form along with Neurospora Casein 

Kinase 1a (CK1a) and a mock control using HIS-tagged expression vectors in 

E.Coli  and tested whether GSK is capable of phosphorylating WC-1 or other 

clock proteins in vitro. The mock control was simply an empty vector expressed 

and purified along with the kinases to account for the unspecific kinases or 

proteins that may come during the purification process and used as negative 

control. We used CK1a as a positive control for saturating phosphorylation states 

because it is essential for circadian clock function and known to phosphorylate 

clock proteins in Neurospora (Querfurth, Diernfellner et al. 2007). 

 

In our preliminary experiments, we added the recombinant kinases to total cell 

lysates from Neurospora using various doses of ATP and buffer conditions and 

established the in vitro phosphorylation assay in such a complex mixture. Addition 

of ATP without the kinases under these conditions did not result in unspecific 

phosphorylation of clock protein. Furthermore, mock control did not result in 

significant phosphorylation of any of the proteins tested. To our knowledge, this is 

assay is the first of its kind in this organism.  

 

The results of these in vitro phosphorylation assays showed that CK1a can fully 

phosphorylate WC-1 as expected. Interestingly, GSK was also able to 

phosphorylate WC-1 to a similar extent, suggesting that WC-1 is a substrate of 

this kinase (Figure 28. GSK was also able phosphorylate WC-2, but the efficiency 

of WC-2 phosphorylations was lower compared to WC-1. This suggests that WC-1 

is a better substrate for GSK. 



RESULTS 

 

 52 

 

Figure 28 
Representative western blots of WC-1 and WC-2 proteins from in vitro 
phosphorylation of LL grown whole cell extracts from wt9718 strain. Saturating 
levels of recombinant Neurospora GSK, CK1a and control (mock purification) 
proteins were added and incubated for 1 hour in presence of 10 mM ATP at 25 
degrees. Hyper-phosphorylated species are indicated as pWC-1, pWC-2. 
 

 

 

 

 

Under steady-state conditions, FRQ is present in many phosphorylation states in 

Neurospora cell extracts. Therefore, in order to test whether GSK can 

phosphorylate FRQ, we induced FRQ from a Quinic acid (QA) inducible promoter 

and obtained a relatively hypo-phosphorylated pool of FRQ. Although FRQ 

harbors many putative GSK phosphorylation sites, to our surprise, it was not 

phosphorylated by GSK in any of our assays (Figure 29). In contrast, our positive 

control, CKI treatment resulted in hyper-phosphorylation of FRQ as well as WC-1 

and WC-2. 
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Figure 29 
A relatively less phosphorylated population of FRQ was obtained by inducing FRQ 
from a quainic acid inducible promoter in the frq10 background (frq10/qa-frq) for 4 
hours. Saturating levels of recombinant Neurospora GSK, CK1a and control 
(mock purification) proteins were added and incubated for 1 hour in presence of 
10 mM ATP at 25 degrees. Hyper-phosphorylated FRQ species are indicated as 
pFRQ. 
 

 

 

Addition of purified kinases in such excess can lead to unspecific phosphorylation 

of proteins. Therefore, we analyzed a typical in vitro phosphorylation assay gel 

using coomassie staining. However, we did not observe any unspecific 

phosphorylation of proteins (Figure 30). 

 

 

 

Figure 30 
Representative Coomassie staining of an in vitro phosphorylation assay gel. Note 
that there is no overall phosphorylation of proteins in this assay. Approximate 
locations of WC-1, WC-2 and FRQ proteins are indicated. 
 

 

 

To further test whether phosphorylation of WC-1 and WC-2 by GSK are specific, 

we used increasing amounts of GSK or specific GSK inhibitors to our in vitro 

assays. We observed that WC-1 and WC-2 phosphorylations by GSK were 
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dependent on the amount of recombinant GSK applied and could be inhibited by 

GSK inhibitors lithium, Kenpaullone (not shown) and Indirubin (Figure 31). These 

data suggest that the phosphorylations are specific to GSK and that WCC is a 

substrate of GSK while FRQ does not seem to be a target. 

 

 

 
 
Figure 31 
Phosphorylation of WCC by GSK is dependent on the amount of GSK and can be 
selectively inhibited by GSK inhibitor Indirubin. 
 
 
 

3.5 GSK phosphorylates a specific region on WC-1  
 

 

WC-1 is the rate limiting factor in the WCC activity and its levels are increased 

when GSK levels are lowered. Furthermore, GSK binds to WCC in vivo and WC-1 

is a good substrate for GSK phosphorylation in vitro. Therefore, we explored 

whether GSK phosphorylates WC-1 at a specific region or if the phosphorylations 

are scattered along the WC-1 protein. WC-1 contains ~85 predicted GSK 

phosphorylation sites (S/T-X-X-X-S/T). Therefore, to test whether the 

phosphorylations can be narrowed down to specific region, we used various WC-1 

truncation strains that were already available to us in our in vitro phosphorylation 

assays (Figure 32). 
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Figure 32 
Full length and various WC1 truncation strains used in this study are depicted with 
respect to the domain structure of WC1. Number of predicted GSK 
phosphorylation sites (S/T-X-X-X-S/T) is also shown (Group-based prediction 
system, GPS software). 
 

 

 

In our assays using truncation mutants, we observed that GSK was able to fully 

phosphorylate the C-terminal truncation mutant WC-1, the ∆C-915, even though 

the deleted region contains 31 predicted GSK phospho-sites. In addition, GSK 

was also able phosphorylate the N-terminal truncation mutant ∆N-185 which lacks 

10 sites. However, the phosphorylations were significantly diminished in the N-

terminal truncation strain ∆287 (Figure 33).  
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Figure 33 
Western blots from representative in vitro phosphorylations of the WC1 truncation 
mutants. Note that the antibody used for ∆C-915 western blot is different from the 
others and shows and unspecific band (indicated with *). 
 

 

 

Interestingly, the difference between the ∆N-185 and ∆N-287 strains is only 8 

phospho-sites. This suggested that either these are the major GSK phospho-sites 

or that the GSK binding site lies between amino acid residues 185 and 287. 

Therefore, we tested whether GSK can still bind to the ∆N-287 WC-1.  

 

Co-immunoprecipitation of WC-1 with GSK showed that GSK is able to bind to this 

truncated form of WC-1 equally well as it can to full-length WC-1 (Figure 34). This 

suggests that the region between amino acids 185 and 287 harbors the major 

GSK phosphorylation sites on the WC-1 protein. However, we cannot exclude 

other sites that are also predicted, since we observe diminished, but not lack of 

phosphorylation in this truncated form of WC-1 

 

 
 
 
 

 
 
 
Figure 34 
Co-immunoprecipitation of the full length WC1 and its truncation mutant ∆N-287 
with GSK antibody. Note that GSK can bind to this truncated form equally well.   
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3.6 Mutations of WC1 result in loss of temperature 
compensation  

 
 

The finding that the deletion of only eight GSK phospho-sites from WC-1 resulted 

in diminished phosphorylation in vitro and that this was not due to lack of GSK 

binding to WC-1 suggested that this region is a major target for GSK. Therefore, 

we mutated these serine or threonine residues to alanines or aspartates to mimic 

unphosphorylated or phosphorylated states, respectively (Figure 35). We 

expressed mutant forms of WC-1 from the endogenous WC-1 promoter and 

created three strains that are wild-type, alanine or aspartate for these eight 

residues (pWC1-wt, pWC1-8A and pWC1-8D, respectively). 

 

 

Figure 35 
Predicted GSK phosphorylation sites between amino acids 223 and 289 of wild-
type WC1 strain pWC1-wt and pWC1-8A and pWC1-8D mutant strains are shown 
with respect to GSK consensus phosphorylation motif. 

 

 

We further tested whether these eight residues are indeed major targets of GSK 

by using in vitro phosphorylation assays. We predicted that if these sites are 

phosphorylated by GSK, the alanine mutant should mimic the phosphorylation 

defect we observed in the ∆N-287 WC-1. As expected, the alanine mutant showed 

diminished phosphorylation by GSK in vitro, while CK1a phosphorylated this 

protein fully (Figure 36). This showed that these sites are indeed major targets of 

GSK.  
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Aspartate mutant showed some phosphorylation by GSK; however, the extent of 

the phosphorylation is hard to measure since the protein is already shifted up on 

SDS-PAGE due to the nature of the mutations. We did not perform any co-

immunoprecipitation assays since we observed that the strains are rhythmic on 

race-tubes, which requires WC-1 and WC-2 interaction (Figure 36).   

 

 

Figure 36 
A representative western blot of in vitro phosphorylation of WC-1 in total cell 
lysates from pWC1-wt, pWC1-8A and pWC1-8D strains are shown. Hyper-
phosphorylated WC-1 species is indicated as pWC-1 

 

 

 

We hypothesized that since these sites are indeed the major GSK 

phosphorylation sites on WC-1, mutations of them to alanine should also result in 

loss of temperature compensation of the circadian clock and phenocopy the 

Gskhet strain. Indeed, our race-tube assays showed that pWC1-8A have 

significantly lost temperature compensation with respect to the wild-type WC-1 

expression strain pWC1-wt and had longer and shorter period lengths at 22 and 

30 degrees, respectively (Figure 37). The aspartate mutant showed a slight effect 

on temperature compensation at 30 degrees, which was intermediate between the 

alanine and the wild-type.  
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The wild-type expression strain pWC1-wt is not actually as compensated as a 

wt9718 non-banding strain. This is due to the background of these strains (ras-

1bd) which is known to shorten by up to 2 hours in its period length from 25 to 30 

degrees. Unfortunately, a ras-1wt strain where endogenous WC-1 is knocked-out 

does not exist which limited expression our WC-1 mutants into only the ras-1bd 

strain. However, the defect in the temperature compensation in the alanine mutant 

was evident even on such a background (Figure 37). 

 

 

 

 
 
Figure 37 
Representative race-tubes from the WC-1 mutant strains along with quantification 
of the average period lengths at 22, 25 and 30 oC are shown. Difference between 
groups were analyzed using two-tailed Student’s t-Test and p-values less than 0.5 
and 0.005 are indicated with * and ***, respectively. Error bars show ±standard 
error of the mean (±SEM) from at least three independent experiments (n≥18 for 
each group). See also Figure 41. 
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We expressed WC-1 from its endogenous promoter rather than an inducible 

promoter as it was shown in literature before due to its limitations on long term 

experiments which require repetitive addition of Quinic acid. This resulted in 

slightly lower levels of WC-1, hence a longer period length compared to other ras-

1bd strains. However, the banding pattern in these mutants was robust and the 

wild-type expression strain was temperature compensated just like a typical ras-

1bd strain (Figure 37). 

 

 

 

3.7 Mutations of WC1 lead to higher levels of WC-1  
 
 
 
Since we observed that alanine mutants of WC-1 also lack proper temperature 

compensation and phenocopy the GSK down-regulation strain, we tested whether 

the WC-1 protein levels were also elevated in this mutant similar to the Gskhet.. 

Our results showed that levels of WC-1 and FRQ clock proteins were altered in 

the alanine and aspartate mutants of WC-1, but WC-2 was not affected (Figure 

37)..  

 

Alanine mutant showed elevated levels of WC-1 and FRQ at 30 degrees (but not 

25 degrees) with respect to the wild-type control (Figure 37). The effect on WC-1 

was much more pronounced than the effect on FRQ. This supports the race-tube 

data where we observed a shorter period length only at 30 degrees in the alanine 

mutant. In contrast, aspartate mutant showed slightly lower levels of WC-1 at 25 

and 30 degrees. There was no effect of the aspartate mutant on FRQ levels. 

Furthermore, we did not observe any significant effect on the levels of WC-2 in 

either mutant. We did not test the aspartate mutant any further in this study since 

it wasn’t significantly different from the wild-type. 
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Figure 38 
Representative western blots showing levels of clock proteins in the pWC1-8A 
and pWC1-8D mutant strains compared to their control strain pWC1-wt at steady 
state conditions (LL, 25 and 30 oC). Quantification of levels of WC-1 and FRQ 
proteins from at least three independent experiments are also shown with ±SEM. 
All values for quantifications were normalized to respective pWC1-wt level at 30 
degrees. Difference between groups within each temperature was analyzed using 
two-tailed Student’s t-Test and p-values less than 0.05 are indicated with *. 

 

 

We further tested the effect of the alanine mutation on clock proteins and mRNA 

with temperature-shift experiments. We found that when the temperature is 

elevated from 25 to 30 degrees for 24 hours, the levels of WC-1 and FRQ 
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increase dramatically (Figure 39). The increase in FRQ was expected since it is 

known that FRQ levels increase at high temperatures due to alternative splicing 

(Diernfellner, Schafmeier et al. 2005; Diernfellner, Colot et al. 2007). However, we 

observed an additional increase on top of the increase in the wild-type in the 

alanine mutant. 

 

 

 

 
 
Figure 39 
Representative western blot of a temperature shift experiment. Samples were 
grown in LL at 25 degrees and then temperature was raised to 30 for 24 hours. 
Note that WC-1 and FRQ levels increase to higher levels in the alanine mutant. 
 

 

 

The levels of wc-1 mRNA were not different between the wild-type and the alanine 

mutant (similar to the case in Gskhet.). However, vvd mRNA was significantly 

elevated to ca. 3 fold at 30 degrees in the alanine mutant (Figure 40). The frq 

RNA was also elevated slightly by 1.4 fold. VVD and FRQ are well-known direct 

targets of active WCC and their mRNA levels are a good measure of the overall 

activity of WCC in the cell. Therefore, an increase in the vvd and frq mRNA is 

consistent with the elevated levels of WC-1 in the alanine mutant. This also 

supports the race-tube results where we observed a shorter period length in the 

alanine mutant, possibly due to higher levels of WC-1; hence higher WCC activity 

and shorter period.  
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Figure 40 
Levels of vvd, frq and wc-1 mRNA after a shift from 25 to 30 degrees for 24 hours. 
vvd and frq mRNAs are markers of WCC activity and both are significantly 
elevated in the alanine mutant at high temperatures. Note that the increase in 
WC-1 protein is not due to an increase in the wc-1 mRNA. 
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Figure 41 
Summary of the average period lengths from at least three independent race-tube 
experiments are shown with ±SEM. n indicates total number of race tubes used. 
50 µg/ml hygromycin B was added where indicated (+). 
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4. DISCUSSION 
 
I investigated the role of Glycogen Synthase Kinase (GSK) in the Neurospora 

crassa circadian clock. In particular, it’s role in the temperature compensation 

mechanism. We hypothesized that inhibition of GSK activity results in loss of 

temperature compensation based on a study by Jolma et al. (Jolma, Falkeid et al. 

2006) where the authors applied a well-known GSK inhibitor, lithium, to race-tube 

assays and observed that the circadian clock runs faster at higher temperatures. 

To elucidate whether this effect is specific to GSK, we obtained a GSK down-

regulation strain, the Gskhet. However, this strain did not produce a banding 

pattern on race-tubes and due to the essential nature of GSK for the cell; it could 

not be back-crossed to a banding background (ras-1bd). Therefore, we established 

a race-tube assay using H2O2 based on the findings of another recent paper 

(Belden, Larrondo et al. 2007). In this study, authors induced banding in wild-type 

(non-banding) strains of Neurospora using drugs such as Menadione that induce 

oxidative stress. However, we found that the use of H2O2 rather than Menadione 

was more reliable, especially at higher temperatures. Furthermore, Menadione is 

highly toxic and expensive, while H2O2 is not. We believe that this method will 

prove very useful in the study of heterokaryon strains of essential genes where 

the strain cannot be backcrossed to a banding background. The results of the 

race-tube assays clearly showed that down-regulation of GSK results in a loss of 

temperature compensation where the clock runs faster at higher temperatures. 

This fits well with the effects of lithium and prompted us to further investigate the 

role of GSK on the circadian clock in Neurospora. 

 

4.1 GSK affects temperature compensation through 
stabilizing the WCC 

 
Neurospora clock consists of two rate-limiting factors: the White Collar Complex 

(WCC) and FREQUENCY (FRQ). WCC is a transcription factor and drives 
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expression of frq mRNA as well as many other clock controlled genes (ccgs). FRQ 

protein, in turn, inhibits its own transcription by promoting the phosphorylation and 

inhibition of the WCC activity. Therefore, WCC and FRQ serve as positive and 

negative elements of the circadian clock, respectively. Our race-tube analysis 

showed that the clock runs faster when GSK is down-regulated. This could be 

achieved by either increasing the activity of WCC (positive element) or decreasing 

the activity of the FRQ (negative element).  Analysis of the Gskhet strain showed 

that the protein levels of White Collar 1, the critical and rate-limiting component in 

WCC, were increased by ca. 2 fold at higher temperatures while there were no 

effects on other clock proteins. This suggests that GSK affects the positive 

elements of the circadian clock rather than the negative. 

 

This is in contrast to the effects of lithium. It was previously shown that application 

of lithium, a known inhibitor of GSK, increases the stability of FRQ and results in 

an under-compensated phenotype in Neurospora (Jolma, Falkeid et al. 2006). 

Although we also observed under-compensation in our experiments with the 

Gskhet strain, we did not observe any significant effects on FRQ. Therefore, the 

effects of lithium on FRQ stability cannot be explained by GSK action. In fact, it 

was recently shown that inhibition of GSK activity by more specific GSK inhibitors 

or siRNA mediated knock-down results in shorter period lengths in the mammalian 

circadian clock in contrast to well-known period lengthening effect of lithium 

(Hirota, Lewis et al. 2008). Furthermore, lithium is known to have effects on other 

cellular compounds such as inositol monophosphatase and β-arrestin-2 (reviewed 

in (O'Brien and Klein 2009). This suggests that the effects of lithium on FRQ may 

be due to its effects on such pathways rather than GSK. 

Elevated levels of WC-1 were previously shown to result in shorter period lengths 

of the Neurospora circadian clock (Cheng, Yang et al. 2001). When WC-1 is 

driven from an inducible and dose-dependent promoter, the period length of the 

clock gradually becomes shorter as the amount of WC-1 protein increases (Figure 

42).  
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Figure 42 
Effect of increasing amounts of WC-1 on the period length of the circadian clock. 
Amount of Quainic acid used to induce WC-1 is shown on the left and 
corresponding period lengths on the right. A representative western blot showing 
the increase in WC-1 and FRQ (due to WC-1) are also shown. Figure 3b from 
(Cheng, Yang et al. 2001) 
 

 

In light of this study and our western blots, it is evident that the shorter period 

length that we observed at higher temperatures in the Gskhet strain are due to 

elevated levels of WC-1 in this strain, but not due to reduced levels of FRQ. The 

effect of GSK on the abundance of WC-1 is particularly interesting because a role 

of GSK in the Neurospora circadian clock has never been shown. GSK is a 

house-keeping kinase and has many roles in the cell. Therefore, down-regulation 

of GSK may result in pleotropic effects that may interfere with WC-1 stability or the 

amount of the wc-1 mRNA. Real-time PCR analysis showed that GSK does not 

have any effects on the wc-1 mRNA. This suggests that GSK affects the stability 

of the WC-1 protein. To test this, we analyzed the half-life of WC-1 using 

Cyclohexiemide (CHX), but we did not see a significant effect.  

 

At first, this seemed contradictory. However, the only published WC-1 variant 

whose stability can actually be resolved in a CHX assayis a C-terminally truncated 
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and transcriptionally inactive form, the ∆C-915 WC-1, which is stable for over 12 

hours. Other mutants of WC-1 that effect the abundance of the protein were 

previously shown, but their stability kinetics were not resolved using CHX. For 

example, a similar limitation of CHX in resolving WC-1 stability has been observed 

before (He, Shu et al. 2005). In this study, the authors observed a 3-fold reduction 

in the abundance of WC-1 protein while wc-1 RNA was not affected (Figure 43).  

 

 

Figure 43 
Cycloheximide assays are not a good tool to study the effect of WC-1 stability. 
Note that although there is ca. 3 fold difference in the abudance of WC-1 protein 
in constant dark (DD) or light (LL) this effect cannot be resolved using CHX. Total 
wc-1 mRNA was not affected by the 3A and 5A mutants. Figure 2 from (He, Shu 
et al. 2005). 
 

 

 

This showed that WC-1 protein was more stable but CHX assays did not resolve 

this difference. It is believed that the WC-1 species that is degraded is the active 

form which is a minor population (Schafmeier, Diernfellner et al. 2008). Therefore, 

application of a drug like CHX which affects many cellular processes may not be 

able to resolve the differences in this rapidly degraded minor population of WC-1. 

Our results are consistent with these data where we also don’t see an effect using 

CHX, but the protein levels are higher and the mRNA is not affected. Therefore, 

we believe that GSK down-regulation increases the WC-1 stability. 
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GSK has a role in determining the sub-cellular localization of PER/TIM 

heterodimer in Drosophila (Ko, Kim et al. 2010). Phosphorylation of PER at 

specific residues by SGG, a GSK homolog in flies, promotes its nuclear entry. 

Therefore, we also investigated whether GSK down-regulation affects sub-cellular 

localization of clock proteins in Neurospora, in particular the WC-1. However, we 

did not find any evidence of an effect of GSK on nuclear translocation. This may 

be due to several reasons. First, such an effect of GSK on WCC or FRQ may not 

exist in the Neurospora circadian clock. Second, this could be due to differences 

in the kinetics or regulation of sub-cellular shuttling of circadian proteins where the 

rate is extremely fast in Neurospora (reviewed in(Tataroglu and Schafmeier 2010). 

Therefore, if GSK has any role in determining the rate of this fast shuttling of 

WCC, it would not be detected in our sub-cellular fractionation assays. 

 

 

4.2 Recruitment of GSK to WCC modulates a phospho-
degron on WC-1 

 

We further tested the function of GSK with co-immunoprecipitation assays. Our 

results showed that GSK is bound to the WCC, but not to FRQ in vivo. We also 

observed that GSK is bound to WCC in the absence of FRQ. Although, the GSK-

WCC interaction was stable, the amount of GSK-bound WCC was only a small 

fraction of total WCC (ca. 10%). This suggests that GSK is in a stable complex 

with a minor population of WCC.  We further tested GSK binding to WCC using a 

WC-1 knockout strain and found that GSK can binds to WC-2 in the absence of 

WC-1. Unfortunately, we were not able to measure whether GSK can bind to WC-

1 alone due to technical limitations. However, this suggests that WC-2 may be 

enough to recruit GSK to WCC. We also tested whether this binding is 

compartment specific and found that amount of GSK is not rate limiting in the 

formation of the GSK/WC-1/WC-2 complex. In summary, our results show that 

GSK forms a stable complex with a small population of the WCC in vivo, in both 

cytosol and nucleus. 
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Being a kinase, we hypothesized that if GSK can bind to WCC and affect its 

stability, it should also phosphorylate it. Indeed, our results from in vitro 

phosphorylation assays showed that GSK specifically phosphorylates WCC, but 

not FRQ in vitro. Efficiency of phosphorylations was quite high for WC-1, but 

slightly lower for WC-2. Furthermore, these phosphorylations were be prevented 

by application of several different GSK inhibitors. We did not observe any 

dependence of these phosphorylations on FRQ. This suggests that WCC is a 

direct and specific target of GSK in which WC-1 is the major substrate. This 

finding is particularly interesting, especially in light of our result that WC-1 levels 

are elevated post-transcriptionally in the Gskhet strain, because this may be due to 

reduced phosphorylation of WC-1 when GSK is down-regulated.  

 

We further analyzed WC-1 phosphorylation by GSK in vitro using various WC-1 

truncation strains in an attempt to find the GSK phosphorylations sites on WC-1. 

The results of these assays showed that major phosphorylations of WC-1 by GSK 

occur at the N-terminal, in particular in a region between amino acids 185 and 

287. We observed significant diminishing in the phosphorylations when this region 

was deleted. In addition, GSK was able to bind to this N-terminally truncated WC-

1 form which suggests that diminished phosphorylation was not due to altered 

GSK binding. It should, however, be noted that we performed co-

immoprecipitation assays in the presence of WC-2 and that may be the reason 

why we were able to pull-down WC-1 with GSK. This suggests that WC-2 may 

serve to recruit GSK to WCC where the kinase phosphorylates the WC-1 at this 

region and modulate its stability. 

 

The region between amino acids 185 and 287 harbors eight consensus GSK 

phospho-sites which fit the GSK recognition motif S/T-X-X-X-S/T. In fact, these 

sites are oriented in such a way that allows for sequential phosphorylation by GSK 

which is known to happen in several known targets of GSK. One of these targets 

is Glycogen Synthase (Figure 44). 
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Figure 44 
Sequential phosphorylation of a GSK target, the glycogen synthase. Note that the 
initial phosphorylation serves as the priming site for the remaining sites which 
leads to phosphorylation of all residues by GSK alone. 

 

 

The substrate binding domain of GSK recognizes a phosphorylated serine or a 

threonine and phosphorylates the serine preceding that site by three amino acids. 

The initial phosphorylation can be primed by many kinases (Ferrarese, Marin et al. 

2007). However, priming only increases the efficiency of phosphorylation and 

GSK can also phosphorylate without a priming kinase. Upon phosphorylation, the 

new phospho-site can now serve as the new priming site for efficient sequential 

phosphorylation of the remaining residues which eventually results in a hyper-

phosphorylated region. Such sequential phosphorylation by GSK was shown to 

result in the degradation of proteins including several ZINC-finger transcription 

factors (Winston, Strack et al. 1999; Zhou, Deng et al. 2004; Jia, Zhang et al. 

2005; Punga, Bengoechea-Alonso et al. 2006; Bengoechea-Alonso and Ericsson 

2009; Sahar, Zocchi et al. 2010; Vinas-Castells, Beltran et al. 2010). The 

phosphorylated residues form a recognition motif called a phosphodegron to 

which other factors bind and target the protein for degradation. One such example 

is SNAIL. It is a highly unstable ZINC-finger transcription factor in mammals that 

regulates E-cadherin expression. Sequential phosphorylation of this transcription 
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factor results in its ß-TRCP mediated degradation ((Zhou, Deng et al. 2004) 

Figure 45). 

 

 

 
Figure 45 
Sequential phosphorylation by GSK creates a phosphodegron on the transcription 
factor SNAIL. Alignment of several SNAILs and the WC-1 region between amino 
acids 223 and 289 are shown for reference. Note the similarity between the 
phosphodegron on SNAIL and the first two serines on WC-1 (DSGSVS). 

 

 

 

4.3 Mutation of the phosphodegron shortens the period 
by stabilizing WC-1 

 

To test whether the eight candidate GSK phosphosites on WC-1 are the major 

phosphorylation targets o GSK and whether if their phosphorylation status affects 

the stability of WC-1 protein, we created mutant forms of WC-1 where we 

replaced all eight candidate serine or threonine residues to aspartate or alanine to 

mimic phosphorylated and unphosphorylated states, respectively. We chose to 

drive WC-1 from its endogenous promoter to allow for in vivo regulation of its 

promoter and to avoid using repeated addition of Quinic acid in long term 

experiments which is used for inducible promoters in Neurospora. Although this 

resulted in slightly lower levels of WC-1 protein expression and longer period 
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length than wild-type, the strains were reliably rhythmic on race-tubes. Our 

analysis at 22, 25 and 30 degrees showed that the alanine mutant have lost 

temperature compensation, similar to the GSK down-regulation strain Gskhet. 

Period length of this strain became gradually shorter as the temperature 

increased, showing an under-compensated phenotype. In contrast, the aspartate 

mutant showed an intermediate phenotype which suggests that these eight 

residues are regulated in a complex manner and that phosphates might be 

necessary. 

 

Consistent with our observations in the race-tube assays, the levels of WC-1 

protein were also higher in the alanine mutant. We also observed a slight effect on 

FRQ protein levels which we believe is due to elevated levels and activity of WC-

1. The difference between the wild-type control strain and the alanine mutant was 

even more evident when we performed temperature-shift assays where we grew 

the cultures at 25 degrees and then increased the temperature to 30 degrees. We 

observed that the levels of WC-1 protein rose to much higher levels than the wild-

type in the alanine mutant within 24 hours. This effect was post-translational since 

there was no effect on the wc-1 mRNA. Furthermore, we also observed an 

increase in expression of two of the main targets of WCC, the vivid and frq 

mRNAs, consistent with elevated levels of WC-1. Both vvd and frq mRNA is 

widely used markers for WCC activity and their expression increases with 

increasing activity of WCC.  

 

This data suggests that the mutated residues affect the stability of WC-1 at high 

temperatures. When we analyzed the disorder tendency of the WC-1 protein using 

prediction software, we found that the region between 185 and 287 is highly 

disordered, at least in prediction (Figure 46). This suggests that phosphorylation 

of these residues may occur more efficiently at higher temperatures since the 

region is flexible and unstructured. Alternatively, the effect of these eight residues 

can be observed only at a higher temperature. In fact, the regulation of this region 

seems complex, because our aspartate mutant did not simply result in an unstable 
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WC-1. This suggests that further work is needed to identify the roles of individual 

serines or threonines in this region on WC-1 stability and temperature 

compensation. 

 

 

 

Figure 46 
The region between amino acids 185 and 287 of WC-1 is highly flexible and 
disordered. Prediction was done by IUPred software. 0.5 was selected as the 
threshold for disorder. WC-1 protein domains are indicated at the bottom.  

 

 

To test whether the phosphorylation by GSK can disrupt the WCC in total cell 

lysates, we performed in vitro phosphorylation by GSK followed by co-

immunoprecipitation with WC-2 antibody. Under these conditions, the 

phosphorylated WC-1 forms were stably bound to WC-2 (Figure 47). However, it 

should be noted that the mechanisms required for dissociation of WC-1 from WC-

2 may not be functional/present in vitro and may require the intact cell. This is 

supported by the fact that the hyper-phosphorylated forms of WC-1 which we see 

in the in vitro assays are not detectable under normal conditions. This suggests 

that these forms may be rapidly degraded in the intact cell. The fact that GSK is 

bound to only a minor fraction of WCC also supports this idea since it is believed 

that the active form of WCC constitutes only a small fraction of the total WC-1 and 

it is highly unstable. 



DISCUSSION 

 

 75 

In all assays, the alanine mutant WC-1 strain pWC1-8A successfully phenocopied 

the GSK down-regulation strain Gskhet. In both strains, the stability of WC-1 

protein was higher which resulted in shorter period lengths at higher 

temperatures. Therefore, our data clearly shows that GSK is essential for proper 

temperature compensation of the Neurospora crassa circadian clock. 

 

 
Figure 47 
Phosphorylation by GSK in vitro does not disrupt the WCC. Total cell lysates from 
Neurospora were subjected to in vitro phosphorylation by GSK followed by co-
immunoprecipitation with WC-2 antibody. Note that the hyper-phosphorylated WC-
1 species co-immunoprecipitates with WC-2. 

 

 

4.4 Opposing functions of GSK and CK2 regulate 
temperature compensation in Neurospora crassa 

 

In a recently published paper from the laboratory of Jay Dunlap (Mehra, Shi et al. 

2009), the authors investigated two previously known temperature compensation 

mutants, chrono and period-3. These mutants are known to have an over-

compensated phenotype; they show longer period lengths as the temperature 

rises (opposite phenotype of the Gskhet strain, Figure 48). They found that both of 

these strains contain mutations that map to two different subunits of Casein 

kinase 2 (CK2) which results in lower CK2 activity. Upon further study using 

radiolabelling, they also showed that CK2 phosphorylates FRQ in vitro and that 



DISCUSSION 

 

 76 

these phosphorylations result in destabilization of FRQ. When they mimicked 

these phosphorylation defects using alanine mutants of FRQ, they observed a 

more stable FRQ protein at higher temperatures. Interestingly, when they looked 

at other kinases that are known to be involved in phosphorylation/ 

dephosphorylation of FRQ, such as Protein kinase A (PKA), CK1a or protein 

phosphatase 1 (PPH-1), they did not find a temperature compensation phenotype.  

 

 

 

Figure 48 
Reduction in the activity of two kinases GSK and Casein kinase 2 (CK2) results in 
opposite temperature compensation phenotypes. CK2 regulates FRQ stability and 
reduction of its activity leads to a more stable FRQ protein and slows down the 
clock at higher temperatures which is manifested as a longer period length. 

 

 

This data fits very nicely with our results on the effects of GSK on WCC stability 

and its role in temperature compensation. At high temperatures, the levels of both 

FRQ and WCC increase. This increase is counteracted by the combined effects of 

two kinases, CK2 and GSK. CK2 phosphorylates FRQ and GSK phosphorylates 

WCC which increases the degradation of these negative and positive elements of 

the clock, respectively. Therefore, opposing functions of these two kinases 

regulate the temperature compensation mechanism in Neurospora crassa 

circadian clock. Such a mechanism also fits with the idea that circadian clocks 

evolved into existing cellular pathways where house-keeping kinases such as CK2 

and GSK have many roles in the cell. Therefore, the clock achieved temperature 
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compensation by simply making its rate-limiting elements susceptible to 

degradation to the background activity of kinases already present in the cell. It is 

possible that this mechanism of temperature compensation is conserved in the 

higher eukaryotes since both GSK and CK2 are highly conserved kinases and 

have roles in other circadian clocks. 

 

 

 

Figure 49 
At elevated temperatures, the levels of both FRQ and WCC increase. This 
increase is counteracted by the combined effects of two kinases, CK2 and GSK. 
CK2 phosphorylates FRQ and GSK phosphorylates WCC which leads to 
increased degradation of the negative and positive elements of the clock, thereby 
achieving proper temperature compensation in a system where the individual 
components are temperature sensitive. 
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