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Abstract  
 
Dendritic cells (DCs) and Natural Killer (NK) cells are two key innate immune effectors 

that are of importance in the initiation and linkage of both innate and adaptive immune 

responses for preventing growth and spreading of malignant tumours. Immune 

dysfunction of DCs and NK cells in cancer patients apparently has a critical role in 

promoting tumour progression and limiting the efficacy of various immunotherapies. 

Therefore, identification of the mechanisms underlying this impairment and the 

molecules involved could facilitate the design of effective cancer therapies.  

 
In the current work, the integrity of the number and functions of peripheral blood DC 

subsets, mDC1, mDC2 and pDCs from stage IV melanoma patients were analysed. We 

found a significant decrease in the absolute numbers of circulating pDCs and mDC2 in 

melanoma patients compared to aged-matched healthy controls. This change led to 

alterations of the mDC1/pDC and mDC2/mDC1 balance. Co-incubation experiments 

revealed an impairment of the mDC/pDC interaction upon CpG A stimulation, with little 

or no enhancement of surface CD40 expression on mDC1 from melanoma patients. This 

was in contrast to an up-regulation of CD40 expression on mDC1 from healthy donors 

under similar condition. 

 

The activation of TLR9 signalling in pDCs by CpG A typically induces the production of 

various pro-inflammatory cytokines and chemokines. Interestingly, purified pDCs and 

PBMCs from melanoma patients when stimulated with CpG A produced lesser amounts 

of IFN-α than healthy controls. Furthermore, PBMCs from melanoma patients showed 

lower CCL5, CCL3 and CCL4 fold change compared to healthy controls, suggesting an 

impairment of TLR9 signalling in pDCs in response to CpG A stimulation. Interestingly, 

a dysregulated profile of cytokines and chemokines including IL-6, IL-8, CXCL10, 

CCL2, CCL4, CCL5 and IL-10 was also observed in the sera of patients. 

 

Further analysis revealed a significantly stronger up-regulation of MyD88 and both IRF7 

mRNA and protein expression in pDCs from healthy controls compared to patients upon 

TLR9 activation. Using flow cytometry and immunoblot analysis, it was demonstrated 
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that phosphorylation levels of the 4E-BP1 protein, controlling IRF7 mRNA translation, 

remained constant in CpG A stimulated pDCs and PBMCs from melanoma patients in 

contrast to healthy donors. Besides, the impairment of IRF7 up-regulation in pDCs from 

melanoma patients was accompanied by a reduced IRF7 translocation into the nucleus. 

Taken together, these data indicate that an impairment of the TLR9 downstream 

signalling cascade is responsible for the reduced IFN-α production by pDCs from 

melanoma patients. 

 

Next, enumeration of NK cells in whole blood from melanoma patients revealed a 

significant reduction in CD56+CD16+ NK cell numbers. Interestingly, we found a 

significantly higher percentage of NKp30 and NKp46 receptor expressing NK cells 

accompanied with a higher expression level of both activating receptors on the peripheral 

blood NK cells from melanoma patients. Furthermore, patient NK cells exhibited 

comparable functional activity to healthy controls. 

 

In conclusion, the data of this study provide evidences for an alteration in the function of 

circulating pDCs but not of NK cells from melanoma patients. An aberrant IFN-α 

production by pDCs is due to an impaired TLR9 signaling. This provides new insights in 

designing and improving melanoma therapy. 
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Zusammenfassung 
 
Dendritische Zellen (DCs) und Natürliche Killer (NK) Zellen sind Immuneffektoren, die 

eine essentielle Rolle in der Initiierung und Verknüpfung von Immunantworten des 

angeborenen und adaptiven Immunsystems im Rahmen der Abwehr von Tumoren 

übernehmen. Eine Fehlfunktion von DCs und NK Zellen in Tumorpatienten scheint das 

Tumorwachstum zu fördern und die Effizienz von Immuntherapien zu beeinträchtigen. 

Daher ist es wichtig, Mechanismen, die zur Beeinträchtigung der Funktion dieser 

Effektoren führen, zu identifizieren, um somit eine Entwicklung effizienter 

Tumortherapien zu ermöglichen.  

 

In der vorliegenden Arbeit wurde die Integrität der Zahl und Funktion von DC 

Subgruppen, mDC1, mDC2 und pDCs, aus dem peripheren Blut von Stadium IV 

Melanompatienten untersucht. Es konnte eine signifikante Reduktion in der absoluten 

Zahl der zirkulierenden pDCs und mDC2 in Melanompatienten im Vergleich zu 

gesunden Kontrollpersonen entsprechenden Alters gemessen werden. Diese Reduktion 

führt zu Veränderungen in der mDC1/pDC und mDC2/mDC1 Balance. Weiterhin konnte 

im Rahmen einer mDC/pDC Koinkubation mit CpG A gezeigt werden, dass eine Störung 

der mDC/pDC Interaktion in Melanompatienten vorliegt. So führte die Koinkubation auf 

den mDC1 von Melanompatienten zu keiner oder nur zu einer sehr schwachen 

Hochregulation der CD40 Oberflächenexpression, während im Falle der mDC1 gesunder 

Spender eine deutliche Verstärkung der CD40 Expression detektiert werden konnte. 

 

Die Aktivierung der TLR9 Signalkaskade in pDCs durch CpG A induziert typischerweise 

die Synthese und Freisetzung verschiedener pro-inflammatorischer Zytokine und 

Chemokine. Interessanterweise zeigten PBMCs und aufgereinigte pDCs von 

Melanompatienten nach Stimulation mit CpG A eine geringere Produktion von IFN-α im 

Vergleich zu den Zellen gesunder Spender. Außerdem produzierten PBMCs aus 

Patienten nach CpG A Stimulation geringere Mengen an CCL5, CCL3 und CCL4, was 

darauf hindeutet, dass die TLR9 Signalgebung in pDCs von Melanompatienten 

beeinträchtigt ist. Interessanterweise konnte auch ein verändertes Profil von Zytokinen 
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und Chemokinen wie IL-6, IL-8, CXCL10, CCL2, CCL4, CCL5 und IL-10 in Seren von 

Melanompatienten nachgewiesen werden. 

 

Weitere Analysen ergaben, dass die Induktion von MyD88 sowie IRF7 mRNA und 

Protein infolge TLR9 Stimulation in den pDCs gesunder Spender im Vergleich zu 

Patienten pDCs signifikant erhöht war. Mittels Durchflusszytometrie und Immunoblot, 

konnte gezeigt werden, dass der Phosphorylierungsstatus der 4E-BP1 Proteins, welches 

die IRF7 mRNA Translation kontrolliert, nach CpG A Stimulierung in pDCs and PBMCs 

von Melanompatienten im Gegensatz zu gesunden Spendern konstant blieb. Neben einer 

verminderten IRF7 Hochregulation wurde auch eine verringerte Translokation von IRF7 

in den Nukleus von pDCs aus Melanompatienten beobachtet. Zusammenfassend deuten 

diese Daten auf eine Beeinträchtigung des TLR9 nachgeschalteten Signalwegs hin, 

welche für die verringerte Produktion von IFN-α durch pDCs aus Melanompatienten 

verantwortlich ist. 

 

Im Anschluss wurde die Zahl von NK Zellen im Gesamtblut von Melanompatienten 

bestimmt. Es zeigte sich, dass diese im Vergleich zu gesunden Spendern signifikant 

reduziert ist. Allerdings konnte in Melanompatienten ein signifikant erhöhter 

prozentualer Anteil von NKp30 und NKp46 Rezeptor-exprimierenden NK Zellen 

detektiert werden, einhergehend mit einem erhöhten Expressionslevel beider Rezeptoren. 

Interessanterweise zeigten NK Zellen aus Patienten und gesunden Spendern eine 

vergleichbare Aktivität. 

 

Die Daten dieser Arbeit beweisen, dass in Melanompatienten die Funktion von 

zirkulierenden pDCs, aber nicht von NK Zellen, beeinträchtigt ist. Die aberrante IFN-α 

Produktion durch pDCs der Patienten wird durch eine Beeinträchtigung des TLR9 

Signalwegs verursacht. Somit konnten neue Erkenntnis für die Verbesserung und 

Entwicklung gewonnen werden.  
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1.0 INTRODUCTION 
 
1.1 Cancer 
 
Cancer is not a modern disease as the awareness of cancer has been documented since a 

few thousand years ago. The use of the term “cancer” to describe this “incurable” disease 

can be found in the oldest description of human breast tumour written on Egyptian 

papyrus between 3000-1500 BC (1). Today, cancer is the leading cause of death 

worldwide. The formation of cancer is initiated with transformation of a normal cell into 

pre-cancerous cells with predisposed genetic defects or under influence of external agents 

of carcinogenesis. Tumours that arise from single transformed cells further evolve into a 

heterogenous population with different genetic signatures. The transformed cancer cells 

usually possess genetic alterations that govern cell physiology including cell 

proliferation, insensitivity to growth-inhibitory signals, evasion of apoptosis, tissue 

invasion and metastasis and sustained angiogenesis (2). Accumulation of genetic 

alterations along the tumour development equips cancer cells with various mechanisms 

that confer protection against recognition and elimination by immune cells.   

 

1.1.1 Melanoma 
 
Melanoma is a malignant tumour mainly originating from melanocytes in the skin and 

thus is generally recognized as type of skin cancer. Indeed it represents a 

neuroectodermal neoplasm that could arise from pigmented cells and is therefore 

detectable in skin, brain, mucous membranes and other organs. Melanoma accounts for 

>76% of skin cancer-related death and the incidence increases fastest among all cancers 

over recent years. Yet, it is one of the cancer types that is highly preventable if 

discovered at early stages and could achieve remission even in advanced stages for some 

instances. Survival of the disease depends on the vertical depth of invasion of the primary 

tumour into the dermis, which is measured as Breslow depth (3). Primary tumour 

thickness of < 1 mm Breslow depth (stage I) at the time of diagnosis gives excellent 

prognosis. Patients having tumours with a Breslow depth > 4 mm (Stage IIB), ulceration 

and metastasis at sentinel lymph node may have intermediate-to-high risk of relapse from 
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treatment. Patients with stage IV melanoma represents those with distant metastases and 

the 5 year survival rate is <10% (4).  

 

Melanoma arises due to predisposed or acquired genetic alterations within the 

melanocytic system. These mutations affect signal transduction pathways that govern 

cellular proliferation, expression of tumour oncogenes and inactivation of tumour-

suppressor genes. One of such genes is B-RAF that acts as a regulator of the MEK-

ERK1/2 pathways. It has been found mutated in over two-thirds of human malignant 

melanoma (5). Mutation up-stream of RAF, exclusively affecting the NRAS gene, have 

also been discovered in human melanoma (6). Furthermore, alteration of PTEN, a tumour 

suppressor gene was detected in approximately 10% of melanomas (7). PTEN is one of 

the phosphatases critical for suppressing the PI3K pathway, its constitutive activation is 

frequently associated with tumorigenesis. Dysregulated PTEN could thus lead to an 

activation of AKT1/2/3, the downstream molecules of the PI3K signaling pathway (8) 

that participate in the cellular proliferation.    

 
1.1.2 Melanoma therapies 
 
Chemotherapy/chemoimmunotherapy 

Chemotherapy is currently the standard treatment for the majority of melanoma patients 

with advanced disease. There are various cytotoxic drugs including Dacarbazine (DTIC), 

Taxanes (including paclitaxel and docetaxel), Temozolomide and Cisplatin, which have 

been used as single chemotherapeutic agents to treat melanoma patients in the early time. 

DTIC is so far the only US Food and Drug Administration (FDA) approved 

chemotherapy agent for metastatic melanoma and the objective response rates are 

between 15-20% (9). Cisplatin, another potential chemotherapeutic agents has modest 

activity with partial responses are observed in about 10% of patients (10,11) On the other 

hand, treatment with Temolozomide in phase III clinical study revealed a median survival 

of 7.7 months in patients with advanced disease and demonstrated efficacy equal to that 

of DTIC (12). Apart from using cytotoxic drugs as single agent, combined chemotherapy 

has been performed in different phase of clinical trials including the combination of 

Cisplatin, Vinblastine and DTIC and the combination of Thalidomide and Temolozomide 
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(13, 14). The combination of DTIC and IFN-α as form of chemoimmunotherapy was 

evaluated in phase III trial and revealed a comparable median survival compared with 

DTIC alone (15).  

 
Surgery  

Surgical excision has been widely used and considered for melanoma patients who have 

residual respectable disease after systemic therapy. Metastasectomy has been associated 

with prolonged survival for recurrent melanoma if all disease could be resected. The 

median survival of patients that underwent complete metastasectomy was 18.2 months in 

comparison to 5.9 months in nonsurgical treatment (16). 

 

Radiotherapy 

Radiotherapy is the usage of ionizing radiation to damage DNA and to arrest the growth 

of malignant cells. Primary radiation is applied as a second-line treatment for non-

resectable lentigo maglina in the skin while it is often used for ocular melanoma (17). 

Radiotherapy has been shown to be effective for the palliation of brain and bone 

metastases. A study by Lavine et al. demonstrated that patients who underwent 

radiosurgery using gamma knife for brain lesion resection achieved a median survival of 

8 months and 77.8% of treated patients experienced either improved or stable 

neurological symptomatology (18).  

 

Immunotherapy 
 
Cytokine immnnotherapy 

IFN-α2b was the first exogenous cytokine approved by the FDA and demonstrated to 

have modest activity as single agent in treating melanoma. This cytokine has been proven 

to exert immunoregulatory effects, anti-proliferative, pro-apoptotic and anti-angiogenic 

activities in multiple maglinancies (19). The use of IFN-α2b in phase I/II trials revealed a 

rate of objective responses at an average of 10-15% for metastatic disease (20). As the 

only cytokine approved for adjuvant therapy, IFN-α2b has been proven to significantly 

reduce the risk of recurrence in melanoma patients (21). Furthermore, high-dose IL-2 was 
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also approved for melanoma treatment and long term analysis of the phase II trials 

showed an objective response rate of 16% (22). 

 
Vaccination 

Tumour vaccines have been applied in several clinical studies, which were designed to 

either enhance the immunogenicity of tumour cells or to enhance the antitumour immune 

response via lymphocyte activation. Cancer vaccines for treating melanoma involve the 

application of mixed antigens or single antigens specific for the tumour target. Antigens 

are delivered as single agents or loaded on monocyte-derived DCs (mo-DCs), which are 

generated in vitro using GM-CSF and IL4 and further matured with cytokine cocktails 

(23, 24). Among these antigens that have been used in clinical trial are melanocyte 

lineage antigens (MART-1/melan-A, tyrosinase or gp100) (24), or those over-expressed 

in tumour tissues such as p53 and survivin. 

 

Novel approaches 

Several new approaches for improving cancer immunotherapy including CTLA4 

blockade and adoptive T cell transfer have shown some promises for treating melanoma. 

The CTLA4 molecule is expressed by T cells upon their activation and its binding to 

CD80/CD86 on antigen presenting cells (APC) delivers inhibitory signals to limit 

excessive T cell activation. CTLA4 blockade is the application of anti-CTLA4 mAbs to 

block inhibitory signals by preventing the CTLA4-CD80/CD86 engagement with the aim 

to prolong T cell activation (25, 26). Adoptive T cell transfer is based on the in vitro 

expansion of autologous anti-tumour lymphocytes and the subsequent re-infusion into the 

patient to boost adaptive immunity of cancer patients. Both approaches are currently 

undergoing further evaluation in clinical trials (27). 

 

1.2 The immune system 

The human immune system is complex and composed of diverse cells and soluble 

mediators that interact in a dynamic network to protect the host from the invasion of 

foreign pathogens and to maintain self tolerance. A large variety of immune cells that 

patrol in the blood and reside in peripheral tissues render the generation of a rapid 
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immune response when encountering ‘danger’ signals. The mammalian immune system 

has evolved in a way that two subsets of immunity can be classified, the innate and the 

adaptive immunity.  

 

1.2.1 Innate immunity 

The innate immune system is the first line of immune defence against infection or 

pathogen invasion. Immune cells that serve in initiating innate immune responses are 

dendritic cells, natural killer cells, macrophages, mast cells and granulocytes (neutrophils, 

basophils, and eosinophils). Together with soluble factors such as cytokines and 

complements, the innate immune sytem cooperates with the adaptive immune system to 

generate protective immune responses. Innate immune cells are generally equipped with 

additional pathogen sensing receptors, such as germline encoded Toll like receptors 

(TLRs) to allow the recognition of conserved pathogen associated molecular patterns 

(PAMPs), uniquely found in microbes and viruses but not in self-tissue.  

 

Cellular-mediated innate immunity 

Macrophages are phagocytes, very efficient in engulfing pathogens. They reside in the 

lymphoid and non-lympohid tissues and maintain tissue homeostasis in steady state. 

Expression of a broad range of TLRs by macrophages including TLR4, allow 

macrophages to respond to bacterial insult. Activation of macrophages is typically 

characterized by the secretion of nitric oxide, pro-and anti-inflammatory cytokines 

depending on the stimulus. 

 

Polymorphonuclear leukocytes comprise neutrophils, eosinophils and basophils, which 

make up approximately 50-70 % of all white blood cells. These cells play an important 

role in acute and chronic inflammation and are essential for host defence. They are also 

involved in the regulation of immune responses, participate in angiogenesis, and play a 

role in tumour biology (28, 29). Mast cells are another cell subtypes found resident in 

tissues throughout the body and appear to play vital roles in innate immunity with 

multiple critical biological functions (30). Dendritic cells (DCs) and natural killer (NK) 
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cells are two major innate immune cell types. Their characteristics are described in detail 

in section 1.3 and 1.4. 

 

1.2.2 Adaptive immunity 

Adaptive immunity is a more specialized immunity than innate immunity in such that it 

supplements the protection rendered by innate immunity. B and T lymphocytes are the 

two major immune cells responsible for the adaptive immunity in which B cells mediate 

humoral immunity while T cells provide cellular-mediated immune responses. Unlike 

innate immune cells, both B and T cells express antigen-specific receptors generated 

somatically, the BCR and TCR, respectively. Both TCR and BCR are highly diverse and 

are generated by random rearrangement of TCR and immunoglobulin (Ig) gene segments, 

respectively, thereby contributing to the diverse lymphocytes repertoire, which is able to 

recognise a broad range of antigens. Since the TCR and BCR are randomly rearranged, 

‘education’ on specific antigens is a pre-requisite to achieve safe and efficient immunity 

and to prevent auto-reactivity. Another characteristic of adaptive immunity is the 

immunological memory of T and B cells, which allows an instant and vigorous response 

to a particular antigen. 

 

T lymphocytes 

There are two major subsets of T cells that have been identified based on the expression 

of the co-receptor molecules CD4 and CD8 on the cell surface. CD4+ T cells can act as 

helper T cells that play a role in the activation of other cells such as CD8+ T cells and B 

cells. Activation of CD4+ T cells requires interaction of the TCR with the antigen 

presented on MHC II that are expressed by professional antigen presenting cells such as 

DCs (30). It has been established that various types of cytokines, which have biological 

impact on other immune cells are secreted by CD4+ T cells upon activation. The distinct 

cytokine profiles secreted by CD4+ T cells are further classified into T helper 1 (Th1) and 

T helper 2 (Th2) cytokines. Generation of Th1 CD4+ T cells relies on the presence of pro-

inflammatory cytokines such as IFN-γ and IL-12 during T cells stimulation, while Th2 

differentiation is promoted by IL-4. Differentiated Th1 cells in turn have been shown to 

secrete IFN-γ, TNF-β, GM-CSF and IL-2 and mediate cell-activated immune responses 



  Introduction 

   7

while Th2 cytokines secreted by Th2 cells including IL-4, IL-10, IL-13, and IL-5 play 

important roles in inducing humoral immune responses (30). 

 

The other major T cell population consists of CD8+ T cells which function in mediating 

lysis of tumour cells or virus infected cells and thus are frequently referred to as cytotoxic 

T cells (30). Naïve CD8+ T cells activated via peptide-MHC I complex-TCR interaction, 

co-stimulatory signals, IL-2 secreted by CD4+ T cells and signals from IL-12 and IFN-α 

further undergo robust expansion and differentiation into effector CD8+ T cells. The 

effector CD8+ T cells recognise targets carrying specific antigens and mediate cytolytic 

activity via the release of perforin, granzymes, IFN-γ and through the FAS/FASL 

pathway (30). The rapid expansion of effector cells is then followed by a phase called 

contraction where most of the cells undergo apoptosis when infection or inflammation is 

resolved. The remaining antigen specific T cells survive and differentiate into long-lived 

memory T cells, which allow a rapid response in subsequent exposure with the same 

antigen.    

 

B lymphocytes 

B lymphocytes are the key cells responsible for generating humoral immune responses. B 

cells are known to recognise soluble antigens specifically via their BCR and additional 

signals derived from T helper cells contribute to their full activation. Upon activation, B 

cells have been shown to secrete antibodies that bind to specific antigens on the surface 

of invading microbes (such as viruses or bacteria), which flags them for destruction by 

phagocytes (30, 31). Similar to T cells, antigen-specific B cells are found to develop into 

memory B cells, which enable them to live for a long time and generate rapid responses 

following a second exposure to the same antigen. 

 

1.3 Dendritic Cells 

Dendritic cells (DCs) are key effector cells in initiating and linking both innate and 

adaptive immune responses. They were first described by Ralph Steinmann and 

colleagues as a rare subset of accessory cells with unique T-cell stimulatory capacity in 

contrast to macrophages (32). Further investigations unveiled the unique capability of 
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DCs to take up, retain, process and to present antigens to T cells. Accompanied by Th1-

driven cytokines e.g IFN-γ and IL-12p70, the interaction of mature DCs and T cells could 

lead to an efficient Th1 immune response that is crucial for protecting the host from 

infection and tumors. To date, DCs are widely accepted as the only APCs capable of 

eliciting primary and boosting secondary immune responses (33, 34). Many different 

subtypes of DCs widely distribute throughout the body. In steady state, DCs can be found 

in trace amounts in the blood, lymphoid tissue, thymus, skin, gastrointestinal and 

respiratory system (34). Each of the DC subtypes exhibits specialized functions 

depending on their anatomical location. For instance, thymic DCs are involved in 

initiating tolerance of developing T cells to prevent reactivity with self antigens (35). 

Whereas, follicular DCs are mainly present within the primary B-cell follicles and play a 

central role in humoral immunity (34).  

 

1.3.1 DC development 

DCs are commonly believed to derive from separate haematopoietic precursors namely 

myeloid and lymphoid precursors. The conventional or myeloid DCs including mo-DCs, 

interstitial DCs and Langerhans DCs are proposed to differentiate from the myeloid 

lineage expressing myeloid makers such as CD33 (33). On the other hand, pDCs are 

believed to derive from a common lymphoid progenitor that is distinct from myeloid DCs 

as pre-pDCs lack most of the myeloid markers (36) and the differentiation of immature 

pDCs depends on IL-3 but not GM-CSF, which is required for mDC differentiation. The 

development of pDCs from haematopoietic progenitors appears to depend on FLT-3 

ligand as injection of FLT-3 ligand in vivo dramatically increases the numbers of pDCs in 

human and mice (37). A recent report by ChiCha et al. however, suggested that pDCs can 

arise from both common lymphoid and common myeloid progenitors (38). In vitro, using 

distinct growth factor and cytokine combinations, different DCs can be generated from 

CD34+ precursor cells, cord blood and monocytes in human whereas bone marrow serves 

as major source for generating murine DCs.  
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1.3.2 Antigen uptake and processing by DCs  

DCs present in the periphery are in a state called immature stage and are highly potent to 

capture and internalize antigens from the surrounding, which may trigger their activation. 

DCs efficiently engulf antigens through pinocytosis and receptor-mediated endocytosis. 

There are many receptors expressed by DCs that appear to have crucial function in 

antigen up-take, among these are the Fc receptors, DEC205/CD205 in mouse, DC-

SIGN/CD209, mannose-receptor/CD206 and langerin/CD207 (39). Meanwhile, 

expression of pattern recognition receptors (PRRs) such as TLRs, retinoic acid-inducible 

gene I (RIG-I) and intracellular oligomerization domain (NOD)-like receptors (NLRs) 

facilitate the recognition of microbes by conserved pathogen associated molecular 

patterns (PAMPs). 

 

Antigens taken up by DCs in peripheral organs are delivered to the cellular antigen 

processing compartment. Extracellular antigens are endocytosed by cells and degraded by 

proteases in endosomes to generate immunogenic peptides. The late endosome containing 

the endocytosed and degraded proteins are then fused with vesicles carrying MHC class 

II molecules that export from endoplasmic reticulum (ER) and allowing the assembly of 

MHC class II molecules with antigenic peptides to form the peptide-MHC II complexes 

(30). On the other hand, cytoplasmic antigens derived from different sources like viruses 

are processed by the proteasome into peptides and transferred by TAP proteins into the 

ER. The peptides are then loaded onto MHC class I molecules and peptide-MHC 

complexes are transported to cell surface via the Golgi apparatus (30). A process called 

cross-presentation occurs when extracellular antigens derived from viruses and bacteria 

were transferred into the MHC class I pathway for triggering CD8+ cytotoxic T cell 

(CTL) activation. Furthermore, DCs express CD1d, another antigen presenting molecule 

that is similar to MHC class I but specialised in presenting lipid instead of protein 

antigens to NKT cells.  

 

1.3.3 DC as Antigen Presenting Cell 

Immature DCs with low expression of MHC, co-stimulatory and adhesion molecules are 

less motile and unable to form conjugates with T cells for priming until they undergo 
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maturation. After the up-taking and processing of antigens and in the presence of 

inflammatory cytokines (e.g. TNF-α), the ‘licenced’ or immunogenic DCs lose the 

capability of antigen acquisition and antigen processing. But, they up-regulate adhesion 

molecules (CD54), chemokine receptors (e.g. CCR7) and co-stimulatory molecules 

including CD40, CD80, CD86 and CD83 (for human DCs) that increase their ability to 

home to lymph nodes and to activate T cells. DCs migrate through lymphatic vessels and 

high endothelial venules to regional lymph nodes or home to T cells zones of lymphoid 

organs for optimal interaction with T and B cells. It has been described that DC-T cell 

interactions in T cell rich areas facilitate engagement of peptide-MHC complexes to 

TCRs, which serve as first signal to educate T cells to specific exogenous antigens (30). 

 

Priming of naïve T cells requires second signals provided by CD80/CD86 expressed on 

mature and immunogenic DCs that are delivered via CD28 to T cells. This signal is 

essential for stabilising IL-2 mRNA (40) and promoting the T cell survival, proliferation 

and antigen-specific clonal expansion (30). Moreover, interaction of CD40, up-regulated 

on DCs, with its ligand expressed predominantly on T cells has shown to stimulate IL-

12p70 production (41), thereby skewing CD4+ T cell priming towards Th1 

differentiation. In contrast, in the presence of IL-10, priming of CD4+ T cell by DCs is 

skewed to the generation of regulatory T cells (Treg). There are evidences that DCs in the 

steady state or absence of maturation signals can tolerize peripheral CD4+ and CD8+ T 

cells by inducing T cell deletion and anergy (42, 43). Furthermore, tolerogenic DCs that 

express substantial levels of co-stimulatory molecules (44, 45) and other maturation 

markers have been indicated to be responsible for generating tolerance. 

 

1.3.4 Human DCs  

DCs are a heterogenous population consisting of multiple subsets with diverse functions. 

These cells present at a very low frequency (0.01%) in normal human blood. Based on 

the origin of DC progenitors and the different sets of genes they express, DCs are 

categorised into myeloid and plasmacytoid DCs. Both DC subsets are specialised in 

different functions and crucial in maintaining the balance of innate and adaptive immune 

responses in the host.  
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Blood myeloid DCs 

Myeloid DCs (mDCs) also named as conventional DCs are known to differentiate from 

the common myeloid haematopoietic precursor and represent the classical antigen 

presenting cells. Phenotyping of mDCs characterised them as cells that express CD11c, 

HLA-DR (high expression) and lack the expression of lineage markers including CD3, 

CD14, CD19 and CD56 (46). They are in general short lived and could be replaced by 

blood borne precursors at steady state. mDCs are believed to be the most efficient APCs 

in priming naïve T cells and in generating antigen specific CTLs polarised towards Th1. 

Furthermore, they possess higher allo-stimulatory capacity than other DC subsets (47). 

Mature mDCs have been reported to produce pro-inflammatory cytokines and 

chemokines such as IL-12, TNF-α, CCL3, CCL4 and CXCL8 when achieving the 

maturation stage (48). However, in different environments, mDCs also appear to be 

tolerogenic and to exert immunosuppression within the host.  

 

In human, mDCs exist in at least three compartments as circulating blood DCs, peripheral 

tissue DCs and secondary lymphoid organ-resident DCs. The circulating human mDCs 

consist of two major subsets: myeloid DC1 (mDC1) and myeloid DC2 (mDC2), which 

express the distinct surface C-type lectin receptors BDCA1 and BDCA3, respectively 

(46). Distinct from mDC2, the BDCA1+ mDC1 express Fc receptors including CD32, 

CD64, and FcεR1 as well as CD2. The lack of Fc receptor expression by mDC2 

suggested functional differences from mDC1 subset in performing Ig-mediated antigen 

uptake (46). Ito et al. provided evidence that GM-CSF and IL-4 cultured mDC1 but not 

mDC2 have the capacity to acquire the characteristics of Langerhans cells, a subtype of 

DCs that resides in the epidermis and expresses the Lag antigen, E-cadherin, langerin and 

CD1a (49). Studies on the morphology, endocytic capacity and the maturation 

requirement unveil similarity between both mDC subsets (46). Moreover, Lindstedt et al. 

reported a significant overlap in gene expression between the two blood DC cell subsets 

(50), suggesting that mDC2 may either represent a distinct DC subset or actually the 

same cell type as mDC1 but at different maturation stage.  
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Monocytes-derived DCs 

Large amounts of DCs can be generated in vitro from CD14+ monocytes isolated from 

the peripheral blood (51). The generation of monocyte-derived DCs (moDCs) depends on 

the presence of GM-CSF and IL-4 that drives monocytes to differentiate into moDCs and 

to lose CD14 but acquire CD1a expression (52). Several reports have shown that moDCs 

acquire distinct maturation features such as high migratory and IL-12p70-producing 

capacity under the influence of distinct cytokine cocktails comprised of IL-1β, TNF-α 

IL-6 together with either IFN-α and IFN-γ or PGE2 (52). Moreover, moDCs that are 

stimulated with IL-15 become more efficient in inducing antigen specific CTL 

differentiation (53). 

 

1.3.5 mDC and NK interaction 

Although mDCs are best known as professional APCs, recent evidences have revealed 

their crucial function in regulating NK cell activation. The interaction of DCs and NK 

cells has been clearly shown to induce the cytolytic activity of NK cells against tumors 

(54). Furthermore, cytokines provided by mature mDCs, such as IL-12, IL-15 and IL-18 

in turn promote optimal IFN-γ production by NK cells and enhance NK cell proliferation 

(55). Interestingly, reciprocal interaction of DCs and NK cells has been documented, in 

which NK cells mediate DC editing by selective elimination of immature DCs, but not 

mature DCs, through the NKp30 receptor (56), to ensure optimal antigen presentation and 

T cell priming. On the other hand, TNF-α and IFN-γ secreted by activated NK cells 

together with cell-cell contacts facilitate DC maturation.   

 

1.3.6 Plasmacytoid DCs 

Plasmacytoid DCs (pDCs) are a unique population of DCs that exhibits plasmacytoid 

morphology. They were first described by pathologists as plasmacytoid T cells or 

plasmacytoid monocytes in the 1950s based on their plasma-cell morphology and 

expression of the T-cell marker CD4 or the myeloid-cell markers MHC class II, CD36 

and CD68 (57). In humans, pDCs comprise < 1% of total peripheral blood mononuclear 

cells (PBMCs) and are now identified as Lin-HLA-DR+ cells expressing BDCA2 and 

BDCA4 (50). Moreover, pDCs displayed high expression of CD123 (IL-3R), CD4 but 
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not CD11c, which is expressed on mDC, and distinct TLRs. BDCA2 is a marker that is 

uniquely expressed by pDCs but not by other DC subsets. However, it was also the first 

receptor found to serve as negative regulator of pDC function by suppressing their ability 

to secrete type I IFN in response to TLR activation (58). Under steady state conditions, 

pDCs have been shown to migrate from the blood into T-cell-rich areas of lymphoid 

organs (59). Following activation with unmethylated deoxycytidyl-deoxyguanosin 

dinucleotide type A (CpG A) or pathogens, pDCs produce a diverse array of cytokines 

and chemokines like TNF-α, IL-1, IL-6, CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5 

(RANTES), CXCL8 (IL-8) and CXCL10 (IP-10) in addition to type I IFN (59, 60, 61). 

Human pDCs do express co-stimulatory molecules and MHC II but at a lower level than 

mDCs and thus, are believed to be less efficient in antigen presentation as well as in 

eliciting proliferation of naïve T cells (62). 

 

pDCs exhibit great functional plasticity and have also been described to be involved in 

the induction of immunological tolerance both in human and mice. They are circulating 

in peripheral tissues and spleen, which are considered to be essential for maintaining 

peripheral immune tolerance against self-antigens. Several studies have shown that pDCs 

can induce the generation of CD8+ T regulatory cells upon CD40L activation (63). These 

CD8+ Treg cells are anergic, non-cytolytic and capable of producing IL-10, which 

inhibits primary T cells responses (66). In addition, pDCs matured by IL-3 together with 

CD40L are able to prime naïve CD4+ T cells into Treg cells secreting IL-10 but not IL-4, 

IL-5 and IL-13 (64, 36). The IL-10-producing Treg can suppress bystander T cell 

activation in an IL-10 dependent manner. Recent evidence suggests that up-regulation of 

ICOS-L by pDCs upon activation with herpes simplex virus mediates the differentiation 

of allogeneic CD4+ T cells into cytotoxic Treg (65). A study on HIV-activated human 

pDCs indicates an indoleamine 2,3-dioxygenase (IDO) dependent pathway in inducing 

the development of CD4+ Treg (66). Likewise, pDCs activated by CpG oligo DNA 

nucloetides (ODN) induce CD4+CD25+ Treg that produce IFN-γ, TGF-β, IL-6 and IL-10 

but little of IL-2 (67).   
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The pDC as professional type I IFN producer  

The biological distinction of pDCs from other DC subtypes is based on their capability to 

sense nucleic acids. Furthermore, they are professional type I IFN-producing cells, 

generating over 95% of type I IFN in response to viruses. Within 6 hours of activation by 

a virus, pDCs initiate a complex intracellular signaling that delegates 60% of the 

transcriptome to type I IFN genes leading to the production of 3–10 pg IFN per cell 

within 24 hours (61). pDCs selectively express TLR7 and TLR9, which allows them to 

sense viral nucleic acids or synthetic oligo DNA nucloetides (ODN) containing 

unmethylated CpG motifs (CpG DNA) (61, 68). It has been shown that pDCs respond to 

a broad range of both enveloped and non-enveloped DNA and RNA viruses, with the 

majority of these viruses being enveloped such as HSV and sendai virus, by inducing 

type I IFN production (69, 70).  

 
Figure 1. The role of pDCs in linking innate and adaptive immunity. pDCs produce IFN-α, IFN-λ 
and various pro-inflammatory cytokines upon exposure to viruses, CpG and DNA or RNA-
containing immune complexes. pDCs then activate NK cells, monocytes and mDCs, which 
mediate innate immune responses either in a cell-cell contact dependent manner or via soluble 
factors. Activated pDCs undergo maturation and migrate to the lymph node and activate adaptive 
immune response by presenting (or cross-presenting) antigens to CD8+, CD4+ T cells or Treg. 
pDCs elicit either Th1 responses (typically in response to viruses), Th2 responses (under non-
IFN-α stimulating conditions) or induce tolerance depending on the stimulus. pDCs also 
participate in inducing B cell maturation and differentiation to antibody-secreting plasma cells, 
which play vital roles in humoral immunity. Adapted from Fitzgerald-Bocarsly P, Cytokine 
Growth Factor Rev. 2008 
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The unique feature of pDCs to act as major producers for type I IFN and various pro-

inflammatory cytokines and chemokines upon activation is crucial for linking innate and 

adaptive immunity (Figure 1). For instance, pDC-mediated proliferation and cytotolytic 

activity of NK cells in vitro and in vivo (71) appear to be mostly type I IFN dependent 

although IFN-independent mechanism have been identified in some cases of virus-

induced NK cell activation. In parallel, pDCs participate in maximising NK cell cytokine 

production through cell-cell contact and in facilitating their recruitment through secretion 

of CXCL10, CCL3, CCL4 and CCL5, which occurs either in the lymph node or at the 

site of infection (59, 72). 

 

On the other hand, it was noted that HIV-1 activated human pDCs induced the maturation 

of mDCs in a type I IFN and TNF-α dependent manner (73). In other studies, IFN-α 

either exerts direct effect or cooperates with resting NK cells to induce maturation of 

human mDCs through CD40, CD86 and CD80 up-regulation (52, 74). Likewise, pDC-

derived IFNs together with CD40 ligand potentially induce maturation of bystander 

mDCs (75). Moreover, recent evidences suggested that pDCs synergise with mDCs in 

shaping anti-bacterial and anti-tumour immune responses in both mouse and human via 

cytokine and cell-cell contact dependent mechanisms (76).  

 

Interestingly, pDCs can increase the ability of mDCs to cross-present exogenous antigens 

to CD8+ T cells and promote their clonal expansion (77, 78). pDC-derived IFN-α is not 

only essential for maintaining innate immunity, but more importantly for generating 

potent adaptive immunity. It was established that pDCs are able to induce the 

differentiation of naive T cells into Th1 or Th2 cells depending on the stimulus (36, 67, 

79). Recent studies revealed that pDCs possess the ability to cross-present viral antigens 

and to generate HIV-peptide specific CD8+ T cells independent of TLR pathways (80). 

 

Furthermore, a study by Le Bon et al. described the role of type I IFN in the enhancement 

of antibody responses and the development of immunological memory (77). pDCs have 

been reported to induce secretion of virus-specific antibodies by promoting the 

differentiation of B cells into plasma cells through the combinatory effect of IL-6 and 
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IFN-α (81). IFN-α secreted by pDCs also facilitates the generation of non-Ig-secreting 

plasma blast (82).  

 

1.3.7 DCs in cancer 

During the formation and progression of tumours, impairment of immune responses is 

mostly associated with deficient immunological function of DCs, NK cells and T cells. 

Several studies performed in different tumor entities such as breast, head and neck, lung, 

colorectal and pancreatic cancer (83-86), revealed numerical defects of circulating DCs 

with reduced numbers of myeloid DCs detected in the peripheral blood. DCs from cancer 

patients have been demonstrated to possess impaired APC function with low T cell 

stimulatory capacity (87) despite exhibiting normal endocytic ability (88). Furthermore, 

DCs often infiltrate into tumours that produce chemokines like MIP-3α, which selectively 

attract MIP-3α receptor (CCR6) expressing immature DCs (89). In an 

immunosuppressive milieu generated by tumours, functional defects of DCs contributed 

substantially to the deficiency in mounting efficient immune responses. For instance, 

vascular endothelial growth factor (VEGF) has been shown to be associated with 

inhibition of phagocytosis and differentiation of DCs in tumour (90-92). Besides, of 32 

breast carcinoma tissues being analysed, more than 90% have been shown to be 

infiltrated by immature CD1a+ mDCs while CD83+DC-Lamp+ mature DCs were detected 

in peri-tumoral areas of ≤ 60% samples (89). These tumour-infiltrating mDCs were 

polarized by the tumour to elicit Th2 instead of Th1 immune responses and favour 

differentiation of naïve CD4+ T cells into IL-13 secreting cells (93). In several mouse 

models, Th2 T cells and IL-13 have been demonstrated to play a vital role in facilitating 

tumor metastases by mediating macrophages activation and the secretion of TGF-β by 

myeloid cells (94, 95). Meanwhile, in multiple myeloma, several studies have suggested a 

direct interaction of mDCs with tumour cells in promoting the survival and clonogenicity 

of tumour cells (96, 97). In mice, tolerogenic CD4−8− DCs were shown to be present in 

progressive P815 tumors and were capable of stimulating the differentiation of IL-10-

secreting CD4+ Tr1 cells (98). 
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Numerous studies also indicate that tumours shift the functional properties of pDCs and 

their roles in eliciting anti-tumour immune response are depending on the secreted 

cytokines. For instance, approximately 10% of breast tumours were detected with 

infiltrated pDCs and their presence correlated with poor prognosis (99). It has been 

reported for breast cancer patients that the presence of IL-12 and IFN-γ producing pDCs 

in draining lymph nodes was correlated with good prognosis whereas, poor clinical 

prognosis was associated with pDCs that released higher amounts of IL-10 and IL-4 

(100). In head and neck cancer, the functional properties of pDCs were shown to be 

altered in a way that they lack the capability in producing type I IFN upon TLR activation 

(101). Likewise, it is noted that pDCs infiltrating melanoma cooperate with other 

immunosuppressive cells in suppressing CD8+ CTL activation in tumour tissues. Gerlini 

and colleagues reported that tolerogenic pDCs from draining lymph nodes of melanoma 

patients exhibited incomplete activation and an impaired IFN-α production in-situ (102). 

 

1.4 NK cells and their subsets 

NK cells are large granular cells of lymphoid origin and comprise about 15% of total 

lymphocytes. They are equipped with a unique ability to recognise and kill pathogenic 

cells especially viruses-infected cells and tumour cells. Unlike T cells, the cytotoxic 

feature of NK cells requires no prior immune sensitization of the host. Thus, NK cells can 

respond rapidly to abnormal cells. They have been shown to play a crucial role in the 

defence against cytomegalovirus, Epstein-Barr virus (EBV) and herpes simplex virus 

infections by resolving and controlling pathogens spread. Upon activation, NK cells 

produce a range of soluble factors such as chemokines to recruit other adaptive immune 

cells for amplifying the immune response. 

 

NK cells are phenotypically categorized as cells expressing CD56 but lacking CD3 

molecules (103). Based on the surface density of the CD56 molecule, NK cells can be 

divided into two sub-populations: approximately 90% of the NK cell population express 

CD56 at a lower density (CD56dim) while 10% of the cells are highly positive for CD56 

(CD56bright). The CD56dim cells also express FcγRIII (CD16) at high density on their cell 

surface and are therefore termed CD56dimCD16+ NK cells, whereas CD56bright NK cells 
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lack CD16 or express it at a very low level (CD56brightCD16dim/-)(104). In mice, the 

counterpart of human CD56+ NK cells is still lacking. Though murine NK cells do not 

express CD56 they have been demonstrated to possess the capability, similar to human 

NK cells, to lyse tumour cells.  

 

Several studies revealed that there are a number of cell surface molecules that serve as 

unique markers and confer distinct functional properties to the human CD56dim and 

CD56bright NK subsets. Early functional studies proposed that CD56dimCD16+ NK cells 

can produce cytokines but are more potent as cytotoxic effectors with a capability in 

mediating antibody dependent cell cytotoxicity (ADCC) (105). In contrast, the 

CD56brightNK cells appear to be poorly cytotoxic but exert regulatory functions by 

producing various immunoregulatory cytokines among them, IFN-γ, TNF-α/β, IL-10 and 

GM-CSF (106). Furthermore, the two NK subsets display unique repertoires of 

chemokine receptors in such a way that CD56brightCD16- NK cells show high levels of 

functional CCR7 and CXCR3 receptors. (107). The CCR7 expressing CD56bright NK cells 

are found to accumulate in lymph nodes in some pathological conditions. On the other 

hand, CD56dimCD16+ NK cells that typically circulate in the blood stream express 

CXCR1 and CX3CR1 and respond to IL-8 (107).  

 

1.4.1 NK cell receptors 

NK cells serve as the first line of defence by recognizing altered “self”. Early studies 

proposed recognition of target cells by a ‘missing self’ mechanism in such a way that 

cells with low expression or complete loss of MHC I alleles are killed by NK cells 

(Figure 2) (108, 109). Conversely, healthy cells expressing normal level of MHC I 

molecules are protected from NK cells recognition (110). Meanwhile, several studies 

demonstrated that NK cell activity is fine tuned by the balance of activating and 

inhibitory signals received via different receptors (110, 111). Different from TCRs and 

BCRs, none of the activating and inhibitory NK cell receptor genes undergo 

rearrangement. Each NK cell expresses several activating or inhibitory receptors that 

sense the expression level of their various ligands expressed on target cells (110, 111). 

Depending on the balance of signal, the engagement of ligands for NK cell activating 
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receptors has also been shown to overcome inhibitory signals delivered by MHC class I 

molecules and thus leads to target cell lysis (109). Normal cells express MHC I 

molecules but poorly express activating ligands (110, 111). In case both activating and 

inhibitory molecules are expressed but when inhibitory signal are stronger than 

stimulatory signals, cells are eventually protected from lysis. 

 

 
Figure 2. NK cell recognition of tumour cells. NK cell activity is regulated by a balance of 
signals received via activating or inhibitory receptors. Virus-infected or tumour cells often reduce 
or lose expression of MHC I molecules that bind to NK cell inhibitory receptors, but up-regulate 
ligands for NK cell activating receptors. The engagement of ligands for NK cell activating 
receptors can overcome inhibitory signals and lead to NK cell activation and cytolytic events. 
Adapted from Fauci et al., Nat Rev Immunol. 2005.  
 
NKG2D and its ligands  

The activating receptor NKG2D and the natural cytotoxicity receptor (NCR) family are 

expressed on NK cells and mediate their cytotoxicity activity. NKG2D is one of the most 

well studied NK cell activating receptors and its expression is not restricted to NK cells 

but also detectable on CD8+ T cells, NKT, γδ T and under certain condition on CD4+ T 

cells (112, 113). NKG2D is a lectin-like type II transmembrane homodimer that is 

associated with two different signalling subunits and provides co-stimulation signals 

through the YxxM-containing DAP10 and activation signals via ITAM-containing 

DAP12 (114). In line with this, activation of NK cells through NKG2D provides a strong 

signal that could overcome the inhibitory signal from MHC class I molecules and 

augment target cell killing. Conversely, NKG2D-ligand ligation confers T cell co-
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stimulation thereby enhancing and sustaining signals from the TCR while protecting 

naïve T cells from activation-induced cell death (115).  

 

Numerous NKG2D ligands have been described, which are structurally similar to MHC 

class I molecules and typically not expressed at substantial levels in normal cells but up-

regulated in cancerous or stressed cells. So far, seven NKG2D ligands have been 

identified in human namely, MICA, MICB, ULBP1-4 and RAET1G (116). Several 

studies showed the expression of NKG2D ligands on melanoma cells, glioblastoma cells 

and ovarian carcinoma (117-119). In addition, accumulating evidence reveals a pivotal 

role of NKG2D in tumour surveillance (117, 120). Both in vivo and in vitro, elimination 

of NKG2D ligand expressing tumour cells by NKG2D expressing NK cells has been 

documented in skin cancer and ovarian carcinoma (118, 119). In the transgenic mouse 

prostate adenocarcinoma model (TRAMP), it was demonstrated that the incidence of 

highly aggressive prostate adenocarcinoma was markedly increased in mice deficient of 

NKG2D (121).  

 

The NCR family 

NK cells express another family of activating receptors, which are collectively termed 

natural cytotoxicity receptors (NCRs). Four of such receptors have been characterised in 

human; NKp30, NKp44, NKp46 and NKp80, however only one of them, NKp46 has 

been identified in mice (122). NKp30, NKp46 and NKp80 are constitutively expressed on 

resting and activated peripheral blood NK cells in human whereas, NKp44 is only 

expressed by NK cells upon activation as demonstrated for IL-2 treated NK cells (123).  

 

NCRs are type I integral proteins with one or two Ig-like extracellular domains that 

contain charged transmembrane residues for association with ITAM-signalling 

molecules. Unlike NKG2D, ligands for NCRs are rather diverse among them, viral 

haematoglutinins are recognised by NKp46 and NKp44 (124) while heparin sulphate 

proteoglycans bind to NKp30 and NKp46 (125, 126). NCRs appear to participate in NK 

cell recognition and blocking one or more of these NCRs prevents the recognition of 

tumour cells of various origins by NK cells and inhibits their lysis (127,128). In mice, the 
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ability to reject transplanted lymphoma cells expressing NKp46 ligands was impaired 

after mutation of the gene encoding NKp46 (127). High expression of NKp46 by resting 

NK cells increases the killing of autologous, allogeneic and xenograft target cells (128).  

 

1.4.2 NK cell killing 

The killing of tumour cells by NK cells is mediated mainly by the release of perforin and 

granzyme B. Perforin is a molecule that polymerizes to form ringlike transmembrane 

channels or pores in the target cells to increase the permeability of the cell membrane, 

which consequently leads to cell death (30). Meanwhile, granzymes, a set of serine 

proteases, migrate through the pores created by perforin and interact with the intracellular 

components of the target cells to induce apoptosis (30). In perforin deficient mice, 

cytotoxicity of NK cells is reduced compared to wild type mice (129). Activation of NK 

cells also leads to the secretion of large amounts of IFN-γ and TNF-α, thereby killing 

locally attached target cells (130). Furthermore, NK cells can employ the FAS/FASL and 

TRAIL pathway to induce apoptosis in tumour cells (131, 132).  

 

1.4.3 NK cells in cancer 

The function of NK cells in tumour immunosurveillance is well-established. Several 

studies have demonstrated that different mouse and human tumour cell lines as well as 

freshly isolated human tumour cells are killed by NK cells. In vivo, NK cells are capable 

of eradicating experimentally induced and spontaneously developing tumours in mice. 

NK cells are efficient predominantly in eliminating metastases and small tumour grafts 

(133). Considerable loss of MHC class I molecules has been detected in tumour sections 

of human head and neck squamous cell carcinoma (HNSCC) (134) and tumour cells with 

MHC class I loss are more susceptible to NK cells lysis (135). Moreover, injection of IL-

2 activated NK cells leads to consistent regression of HNSCC xenografts. NK cells 

virtually infiltrate into tumours and play a crucial role in controlling the outgrowth of 

tumour. In gastric cancer, tumour infiltrating-NK cells have been associated with fewer 

metastases, less lymphactic invasion and better clinical prognosis (136). Likewise, in a 

breast cancer mouse model, depletion of NK cells abrogated the effect of adenoviral 
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transduction of IL-12, which in the presence of NK cells increased tumour regression and 

long-term survival of mice (137).  

 

On the other hand, suppression of NK cell function has been described in cancer patients. 

For instance, NK cells derived from ovarian carcinoma patients often display reduced 

function as a consequence of tumour-induced immune suppression (138). In mice, 

tumour cells of head and neck cancer escape from NK cell recognition by secretion of 

large amounts of TGF-β that down-regulates NKG2D ligands (139). Groh et al. and 

Waldhauer et al. have shown that shedding of NKG2D ligands from the tumour cell 

surface mediated by tumour associated metalloproteases prevents tumour cells 

recognition (140, 141). Furthermore, several lines of evidence suggest that soluble 

NKG2D ligands, which are readily detectable in the sera of cancer patients can trigger a 

down-regulation of the NKG2D receptor on NK and T cells upon prolong interaction 

(140). 

 
1.5 TLR family and signalling 
1.5.1 TLR family  
 
The Toll receptor was originally described to play a role in the development of 

Drosophila and was rapidly identified to have essential functions in response to fungal 

infection (142). Currently, it is well known that Toll-like receptors (TLRs) play a pivotal 

role in all vertebrates for microbial detection via recognition of conserved products 

unique to the microbial metabolism and absent in host cells. Many of these metabolic 

pathways and gene products are essential for microbial survival and are involved in 

housekeeping functions. The recognition of molecular signatures of microbial infections 

allows the initiation of inflammation and innate immunity through engagement of 

differential signalling pathways and activation of DCs for inducing T cells differentiation.  

 

To date, several functional TLRs (10 in human and 12 in mice) have been identified that 

recognize a variety of pathogen-associated molecular pattern (PAMPs) derived from 

bacteria, viruses and fungi to trigger immune responses, including induction of type I IFN 

genes (Figure 3). Based on the sub-cellular localization, TLRs can be subdivided into two 
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groups. The first group includes TLR3, 7, 8 and 9, which are localized intracellularly in 

the endosomal compartment while the second group consists of TLR1, 2, 4, 5 and 6, 

which are expressed on the сell surface at the plasma membrane (143). As illustrated in 

Figure 3, the respective TLR ligands have been identified, for example, TLR4 recognises 

lipopolysaccharide (LPS) of gram-negative bacteria while viral and microbial double 

stranded RNA (dsRNA) are detected by TLR3 (144). Furthermore, TLR7 and TLR8 

mediate the recognition of imidazoquinolines and single-stranded RNA (ssRNA) derived 

from vesicular stomatitis virus, influenza virus and immunodeficiency virus type I (HIV-

I) (145). On the other hand, TLR9 is responsible for the recognition of bacterial and viral 

CpG DNA motifs (143, 145). The recognition of nucleic acids by endosomal localized 

TLRs requires internalisation of viral particles or bacteria followed by their degradation 

in the late endosomes or lysosomes. The degradation allows the release of viral or 

bacterial DNA and RNA. The intracellular localization of TLRs is crucial in facilitating 

the discrimination of viral DNA from self-DNA and in preventing destruction of host 

cells (37).  

 
Figure 3. TLR receptors and their respective ligands. A range of TLR receptors and their ligands, 
the pathogen-associated molecular patterns (PAMPs) derived from bacteria, viruses and fungi 
have been identified. The TLR-ligand interaction activates innate immunity and protects the host 
from invasion by microbes. Adapted from research4.dfci.harvard.edu/innate/TLR 
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1.5.2 TLR signalling 

All TLRs contain an intracellular Toll/IL-1 receptor (TIR) domain that transmits 

downstream signals by recruiting one or more TIR domain-containing adaptor proteins, 

including MyD88, TIRAP, TRIF and TRAM via TIR-TIR interaction (146). In general, 

two main downstream signaling pathways of TLRs have been characterized: the Myd88-

dependent pathway (144) and the TRIF-dependent pathway (144). MyD88 is a universal 

adapter that activates inflammatory pathways and accounts for all TLRs except TLR3. 

The interaction of MyD88 with TLRs stimulates the recruitment of complex signaling 

components including the IRAK family and subsequent association of IRAK to the 

TRAF family that signals down respective pathways (147, 148). On the other hand, TRIF 

was identified as an essential adapter of the MyD88-independent pathway (148, 149) and 

is required for TLR3 activation. TLR4-mediated induction of pro-inflammatory cytokines 

such as TNF-α and IL-6 is MyD88- and TRIF-dependent. A study in MyD88-deficient 

mice supports the role of the TRIF-dependent pathway for IFN-β induction after TLR3 

and TLR4 ligand treatment (150). Observations on the activation of NF-κB and MAP 

kinase (MAPK) with delayed kinetics in MyD88-deficient macrophages also support the 

functional role of TRIF as adaptor protein in TLR signalling (151). The recruitment of 

both adaptor proteins leads to the activation of at least three major downstream 

molecules, NF-kB, IRFs and MAPK. Furthermore, numerous studies showed that 

TLR7/9 activation induce the formation of complexes consisting of MyD88, IRAK-1, 

IRAK-4 and IRF7, which results in type I IFN production. In parallel, the NF-kB 

signalling pathway is also initiated, leading to the production of several pro-inflammatory 

cytokines and chemokines including IL-6, TNF-α, CXCL10, CCL2, CCL3, CCL5 and 

IL-8 (144). 

 

1.5.3 TLRs expression on DC subsets   

Different DC subsets express a unique set of TLRs that allows them to response to 

distinct classes of pathogens. Human pDCs selectively express TLR7 and TLR9 

intracellularly, which reside in the ER (152). The expression of TLR9 is also known in B 

cells but not in other leukocytes such as monocytes, NK cells, γδT cells and memory 

CD8 T cells indicating that there is no direct effect on these cells when stimulated with 



  Introduction 

   25

TLR9 ligands (153, 154 ). Conversely, human blood mDCs express a broad range of 

surface TLRs including TLR1, TLR2, TLR4, TLR5, TLR6 while TLR3 and TLR8 reside 

in the endosomal compartment (152, 155, 156). There are however evidences showing 

that moDCs derived from monocytes under GM-CSF and IL-4 culture express a set of 

TLRs distinct from freshly isolated blood mDCs. moDCs express TLR3 and TLR8 

intracellularly but not TLR7 and show surface TLRs expression (TLR 1, 4, 5, and 6) 

similar to blood mDCs (157). The different expression pattern of TLRs between mDCs 

and moDCs may implicate distinct functional property between physiologically existing 

and in vitro manipulated DCs in sensing pathogens. 

 

1.5.4 TLR9 ligands 

The TLR9 receptor is unique among the TLR repertoire due to its role as the only sensor 

for foreign DNA. It detects the unmethylated CpG sequences in DNA molecules, which 

are present at high frequencies in viruses and bacteria. In the mammalian genome, most 

of the CpGs are methylated and this prevents the recognition of self-DNA by TLR9. The 

detection of viral/bacterial unmethylated CpG DNA by TLR9 requires the internalization 

of nucleic acids into the endolysosomal compartment before the recruitment and 

formation of the signaling complex consisting of MyD88, IRAK1, IRAK4 and TRAF6 

can take place. This complex further interacts and activates IRF7 that can then induce 

type I IFN production. 

 

In addition, synthetic oligonucleotides (ODNs) containing CpG motifs, which mimic 

microbial DNA have been shown to activate TLR9 expressed by pDCs and also B cells 

(158). The synthethic CpG ODNs differ from microbial DNA in the phosphoester 

backbone, which is partially or completely replaced by a phosphorothioated backbone to 

prevent degradation by nucleases (e.g DNase). In addition, the presence of a poly G tail at 

the 3' end, 5' end, or both of the synthethic CpG ODNs enhances their cellular uptake 

(159) and allows the formation of high molecular weight aggregates to increase the 

activity of the poly G sequence (160). Numerous studies have demonstrated that the 

distinct immunostimulatory profile induced by synthetic CpG ODNs depends on the 

species origin, length, DNA backbone, sequence, number and location of CpG dimers as 



  Introduction 

   26

well as on the precise base sequences flanking the CpG dimers. For example, an optimal 

CpG motifs differs between mice and humans (161, 162). Three types of CpG ODN have 

been recently defined and described with distinct immunologic activities on both human 

pDCs and B cells (162). 

 

CpG A with the prototype CpG 2216 was first described by Krug et al. (163). It is 

characterized by its unique poly G tail with phosphorothioate linkages flanking a central 

palindromic CpG motif-containing sequence with a phosphodiester backbone. There are 

five phosphorothioate modifications at the 5’- and 3’-end (polyG region) of the 

oligonucleotide and this structure allows spontaneous formation of CpG aggregate 

structures (164). The unique structure of CpG A has been demonstrated to induce specific 

TLR9 activation in pDCs but not B cells and serves as good stimulator for IFN-α/β 

induction, while possessing poor activity in inducing pDC differentiation (165).  

 

1.6 Regulation of type I IFN production 
1.6.1 Interferons 

Interferons (IFNs) belong to the family of cytokines and are the most diverse of all 

members. The IFN family was first discovered and described for their unique 

characteristic in protecting cells from viral infections. This protection is conferred by 

preventing viral replication in surrounding cells by the expression of antiviral proteins 

during infections. In addition, it is now known that IFN also can induce a broad range of 

biological responses including anti-proliferation, regulation of apoptosis and 

immunoregulation of DCs and of different lymphocyte subtypes (166). The IFN family is 

classified into three distinct types: type I IFN with 30 subtypes (including α, β, ε, ω, μ, 

κ), type II IFN (γ) and type III IFN (λ).  

 

Type I IFN 

There is a large number and diversity of type I IFN genes in mammalian and all of these 

genes are clustered on chromosome 9 in human. IFN-α alone is subdivided into multiple 

subtypes such as IFN-α2a, IFN-α2b and etc, while there is only a single IFN-β gene. 

Most of IFN-α subtypes contain 166 amino acids and are weakly glycosylated in human 
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(166). Together with IFN-β, -ω, -ε and -κ, they are responsible for antiviral responses, 

however, IFN-α/β are known to be the key cytokines that render cells resistant to viral 

infection. Also, type I IFNs are general inhibitors of myelopoesis since higher numbers of 

circulating myeloid cells were observed in IFN α/β receptor (IFNAR)-null mice. In terms 

of apoptosis regulation, type I IFN are known to regulate the expression of p21/waf1, 

IRF1, STAT1, PKR, BCL2, TRAIL, CD95 and caspases 4/8 (167, 168). Another very 

important function of type I IFN is regulation of effector cell function of both the innate 

and adaptive immune system.   

 

Type II and III IFNs 

Type II IFN is represented by a single gene IFN-γ and produced by NK cells, NKT cells 

and T cells upon cytokine stimulation or activation by the antigen. IFN-γ has been shown 

to play an important role in adaptive immune responses to kill tumour cells and to 

provide protection against intracellular pathogens (169). DCs polarised by the 

combination of type I and II IFN are potent inducers of antigen specific T cells against 

chronic lymphocytic leukemia (CLL) (170). The third type of IFNs is type III IFN, which 

comprises three subtypes of IFN-λ : IFN-λ1, -λ2 and -λ3, also known as interleukin-29 

(IL-29), IL-28A and IL-28B, respectively. These cytokines are produced in response to 

viral infections and the mechanisms of their induction have been suggested to be similar 

to those of IFN-α/β (171). The functions and the mechanisms of action of type III IFN, 

however, still remain largely unknown and require further investigation. 

 

1.6.2 The regulation of IFN-α/β production 

The production of type I IFN is primarily governed by the family of IFN regulatory 

factors (IRFs) at the transcriptional level. Activation of IRFs including IRF3, IRF5 and 

IRF7 can be initiated during the recognition of PAMPs (148). To sense the invasion of 

various types of pathogens, there are two main pathways that have been identified 

namely, TLR-dependent and TLR-independent pathways. The TLR-dependent pathways 

for IFN-α/β induction rely mainly on TLR3, 7, 8 and 9 for detecting viral or bacterial 

derived nucleic acids (172). Whereas, TLR-independent pathways refer to two cytosolic 

RNA helicases: retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-
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associated gene 5 (MDA5), which sense actively replicating RNA viruses (173, 174). 

Both TLRs and cytosolic receptors detect the presence of foreign nucleic acids in distinct 

cellular compartments (172, 173). Nevertheless, the two different receptor systems 

converge at the point of IRFs including IRF3 and IRF7, their activation then leads to type 

I IFN induction. 

 

The TLR-independent signaling pathways appear to be essential in most cell types 

including fibroblasts, conventional DCs and macrophages during viral infections. 

However, RIG-I and MDA-5-mediated signaling seems to be cell type specific as it is 

dispensable in pDCs, which respond to a wide range of both DNA and RNA viral 

infection through the TLR7/8 and TLR9 pathways (148, 175, 176). During the 

recognition process, RIG-I senses uncapped viral ssRNA bearing 5’-triphosphate, which 

is absent in the cytosolic RNA of eukaryotes (177, 178). Conversely, MDA-5 recognises 

positive-strand ssRNA viruses by binding to poly I:C (179). The binding of viral RNA to 

cytosolic receptors and adaptor proteins initiates a signaling cascade that leads to NF-κB, 

AP-1 and IRF3/7 activation and translocation of phosphorylated IRFs into the nucleus for 

activating type I IFN gene transcription (180). 

 

In contrast, the induction of IFN-α/β by TLR-dependent pathways involves TLR7 and 

TLR9 that are strongly expressed by pDCs in both human and mouse whereas TLR9 is 

expressed by conventional DCs and macrophages in mouse but not in human (181). Both 

of the TLRs that govern type I IFN production in pDCs are confined to the endosomal 

compartment in which viral particles are degraded upon endosomal acidification, thereby 

exposing viral nucleic acids for recognition. This compartment specifically senses viral 

nucleic acids and allows the recognition of microbial but not mammalian nucleic acids, 

which would have detrimental effects such as autoimmune diseases. The binding of 

ligands to TLRs is mediated via the N-terminal leucine rich repeats (LRR) and this leads 

to the dimerization of TLRs (172). Dimerised TLRs undergo conformational changes that 

lead to the formation of homotypic interactions between the C-terminal TIR domain of 

the TLR and the TIR domain of adaptor molecules such as MyD88 (172). In pDCs, the 

recruitment of MyD88 upon ligand-engagement of TLR7 or TLR9 initiates signalling 
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cascades that involve the formation of a complex of Myd88 with TRAF6 and IRAK-4. 

This complex was proven to act upstream of both NF-kB and IRF-7 as mice deficient in 

MyD88, IRAK-4 and TRAF6 show defects in those pathways (182-185).  The deficiency 

of MyD88 or TLR9 expression in murine pDCs abolishes type I IFN release upon 

TLR7/9 ligand stimulation (186).  

1.6.3 The role of transcription factors IRF3 and IRF7 

The IRF family of transcription factors consists of nine members in human and mice, 

which have been described to play a versatile role in the development of various immune 

cells and in eliciting innate immune responses. IRFs were first discovered as 

transcriptional factors regulating type I IFNs and IFN-inducible genes. Each IRF contains 

a well conserved N-terminal DNA-binding domain of ~120 amino acids that possesses 

five conserved tryptophan repeats (187), which recognise the interferon stimulated 

response element (ISRE) region that is found in the promoter of genes encoding type I 

IFNs as well as many other genes involved in immunity and oncogenesis. Numerous 

studies suggest that IRFs are essential in regulating TLR-dependent and cytosolic PRRs 

signalling pathways that lead to the production of type I IFN. Activation of IRF3/7 is 

dependent on their phosphorylation, which allows their subsequent nucleus translocation 

and binding to the ISRE region of target genes. 

 

IRF3, which is constitutively expressed in cells and not induced by viral infection or IFN 

treatment plays key role in the induction of IFN-β via a TRIF-dependent pathway but not 

in the activation of IFN-α genes (188,189). Phosphorylated IRF3 forms either 

homodimers or heterodimers with IRF7 and activates the transcription of CXCL10 and 

IFN-β, respectively. DCs and macrophages from IRF3-/- mice display a defect in the 

induction of genes including those encoding CXCL9 and CXCL10 (190,181) and do not 

release IFN-β in response to LPS. 

 

IRF7 efficiently activates IFN-α/β genes (188,189) and virus infection induces an up-

regulation of constitutively expressed IRF7 in pDCs, which correlates to the robust 

production of IFN-α by pDCs. Other studies revealed that the induction of type I IFN is 
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MyD88 dependent and that IRF7, in contrast to IRF3, directly interacts with the death 

domain of MyD88 in the endosomal compartment (192,193). Consistently, a severe 

impairment of type I IFN release is observed in mouse embryonic fibroblast (MEF) 

deficient in the IRF7 gene (194) and mice lacking IRF7 display a marked defect in type I 

IFN gene induction by splenic pDCs after exposure to CpG A or infection with HSV, a 

dsDNA virus (194). 

 

The expression of IRF7 is tightly regulated at the transcriptional and translational level. 

Upon encountering of viral products or TLR agonist, IRF7 has been demonstrated to be 

rapidly up-regulated both at the mRNA and protein level for high IFN-α  production in 

pDCs (195). Recent evidence by Colina et al. implicates that the IRF7 protein is rapidly 

generated from a pre-existing but translationally silenced mRNA pool. mRNA silencing 

is controlled by the 4E-BP protein, a repressor of translation initiation (195). 4E-BP has 

been implicated to play a crucial role in controlling cellular growth, survival and 

apoptosis. For example, exchange of specific threonine and serine amino acids at the 4E-

BP protein, as they are detected in multiple myeloma cells, prevent the 

hyperphosphorylation of this protein and sensitise the cells to dexamethasone-induced 

apoptosis (196).  

 

The translational repressor 4E-BP is a crucial molecule for tight regulation of eukaryotic 

cap-dependent mRNA translation and allows rapid production of proteins from pre-

existing mRNA. Under steady state conditions, the cap binding protein eIF4E is 

sequestered by hypophosphorylated 4E-BP and prevented from forming the eIF4F 

multiprotein complex together with the scaffold protein eIF4G and the eIF4A RNA 

helicase (197-199). The eIF4E-4E-BP complex inhibits the ability of eIF4E to bind to the 

5’cap structure or 5’ UTR of mRNA for translation (198). In response to growth stimuli, 

hormones, cytokines, and chemokines, the 4E-BP protein undergoes phosphorylation by 

mTOR at position Threonine 37/46 and Threonine 70/Serine-65, which leads to the 

complete release of eIF4E and allows the formation of eIF4F complexes (eIF4E, eIF4G 

and eIF4A) (199,200). Binding of the eIF4F complex through eIF4E to the 5’ capped 
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mRNA recruits 40S ribosomes and allows the scanning of the ribosome along the mRNA 

towards the translation initiation codon (197,198).  

 
1.6.4 ISGF3 signalling pathway 

Binding of IFN-α/β to IFNAR has a significant role in amplifying type I IFN response by 

establishing a positive feedback loop via ISGF3 signaling. IFNAR is a receptor for type I 

interferons expressed on the cell surface with an extracellular ligand binding domain and 

intracellular kinase domain (201). It possesses two chains, IFNAR1 and IFNAR2c, which 

are required for activating the downstream signalling cascade (202). It is now clear that 

binding of type I IFN to the IFNAR activates Janus kinase family members (JAK) or 

TYK2 and further phosphorylates STAT1 and STAT2, which dimerise and dissociate 

from the receptor (202, 203). STAT1/2 dimers form a heterotrimeric complex with IRF9, 

which is termed as IFN-stimulated gene factor 3 (ISGF3). Translocation of the ISGF3 

complex to the nucleus results in the initiation of de novo transcription of IRF7 as well as 

of several interferon stimulated genes, like PKR, Mx1, OAS1a, that possess ISRE in their 

promoter region (204-206). It is important to note that IFNAR-/- mice are more 

susceptible to a wide range of viral infections and pDCs of IFNAR lacking mice are 

defective in robust type I IFN gene induction by CpG A (207-209). In addition, MEF and 

peritoneal macrophages lacking IFNAR exhibit severe defects in Newcastle disease virus 

(NDV)-induced IFN-α/β gene expression (210). 
 
 
1.7 Chemokines  
1.7.1  Chemokine classification 

Chemokines are small, soluble molecules (8-14 kDa), structurally related to polypeptide 

signalling molecules, that bind to their cognate chemokine receptor. The chemokine 

receptors are seven transmembrane G-protein coupled receptors (GPCRs) (211) and their 

binding by chemokines initiates complex signalling cascades. To date 18 chemokine 

receptors and 47 chemokines have been identified. Many of the chemokines share 

common receptors and this redundancy allows initiation of distinct signaling cascades 

leading to different immune regulation outcome. In addition, it can compensate the 

deficiency of receptor-ligand interaction to fine-tune specific biological responses (212).  
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The chemokine families are classified into four sub-groups: CXC, CC, C and CX3C, 

based on the relative positioning and the presence of first two cysteine residues at the N-

terminus (211). The interactions of chemokines with their receptors have been implicated 

in regulating leukocyte migration to inflammatory sites and maintaining immune 

homeostasis. Chemokines with functions in inflammation are crucial for attracting 

different effector leukocytes including DCs, NK cells, neutrophils, and 

monocytes/macrophages (213). Homoeostatic chemokines such as CXCL12, CXCL13, 

CCL19 and CCL20 have shown to be involved in the homing of APCs and lymphocytes 

to lymph nodes for eliciting immune responses (213). Furthermore, numerous studies 

have provided evidences for the vital role of chemokines in angiogenesis or angiostasis, 

tumour growth and in metastasis. 

 
1.7.2 Chemokines in leukocytes recruitment  
  
DCs and NK cells are two crucial innate immune cell types that are recruited by various 

chemokines to the site of inflammation. Both cell types can produce leukocyte recruiting 

chemokines such as CCL5, CCL3, CCL4, CCL2 and CXCL10 that are also the 

chemoattractants for DCs and NK cells. The roles of these chemokines in recruiting 

leukocytes are described as follow.  

 

CCL5 

CCL5 is a ligand for three distinct chemokine receptors namely, CCR1, CCR3 and 

CCR5. It has been demonstrated that CCL5 secreted by melanoma and breast cancers 

mediates a direct proliferative effect on tumor cells. In melanoma, tumour-derived CCL5 

was up-regulated by TNF-α (214) and was reported to induce the apoptosis of tumour 

infiltrating T cells via CCR5 dependent pathways (213). On the other hand, CCL5 was 

shown to partially protect T cells from anti-CD3 induced apoptosis when acting alone or 

in combination with CCL3 and CCL4 (216-217). CCL5 is also a potential co-stimulator 

in activating T cells during anti-CD3 stimulation (218). Likewise, CCL5-/- mice showed 

impaired T cells activation in response to antigen or anti-CD3 stimulation (219). At 

higher CCL5 concentrations, T cells could be stimulated to proliferate, produce cytokine 

and enhance CD25 expression independent of the presence of antigens (220, 221). 
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Moreover, CCL5 was demonstrated to be involved in the recruitment of DCs, monocytes, 

T cells, NK cells and mast cells, which express CCR5 (221-224).  

 

CCL3 and CCL4 

CCL3 and CCL4 are two important inflammatory chemokines secreted by a variety of 

cells, among them pDCs, mDCs, macrophages, activated NK cells, CD4+ T and CD8+ T 

cells (222-226). Both chemokines are also responsible for the recruitment of CD8+ T cells 

into the infected tissues (225). It has been noted that CCL3 and CCL4 acting alone or in 

combination with CCL5 partially protect T cells from anti-CD3 induce apoptosis and 

induces the expression of B7.1 in APCs (221).  

 

CCL2 

CCL2 is a potent monocyte chemoattractant protein with the capability to recruit NK 

cells, macrophages and certain T lymphocyte populations (227-231). CCL2 derived from 

melanoma as well as breast, ovarian and lung cancer cells has been reported to recruit 

monocytes/macrophages. The recruited macrophages are often polarized to M2 or 

tumour-associated macrophages (TAMs), which have been shown to produce the pro-

angiogenic factors IL-8 and VEGF, to promote tumour angiogenesis, as well as CCL2 to 

amplify their recruitment to the tumour site (229, 230). In melanoma, the promotion or 

inhibition of tumour growth by CCL2, however, depends on the expression level of 

CCL2 (230, 232). 

 

CXCL10 

CXCL10, also designated IP10, is a ligand for CXCR3, a CXC chemokine receptor 

which is expressed especially in activated Th1 cells, B cells, NK cells, and DCs. It is 

categorised as an anti-angiogenic chemokine and related to the Th1-chemokine family 

that participates in Th1-polarized immunity (233). Moreover, it was noted that mature 

DCs in lymphoid tissues secrete CXCL10to mediate migration and recruitment of Th1 

lymphocytes (234). Likewise, virus-activated pDCs from tonsils have shown to secrete 

large amounts of CXCL10 (235). 
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Aims of the study 

 

Dysfunction of DCs and NK cells has been reported in patients with different type of 

malignancies and apparently has a critical role in promoting tumour progression. There 

are indications that the balance and interaction among distinct DC subsets as well as 

between DC and NK cells play crucial roles in inducing and shaping effective immune 

responses.  

 

The objectives of this work were to investigate the absolute numbers integrity and 

functional properties of peripheral blood DCs and NK cells in advanced stage melanoma 

patients. In case of an immune dysfunction, the mechanisms behind had to be elucidated. 

By studying DCs and NK cells from the peripheral blood of melanoma patients in 

comparison to those from healthy controls, it was investigated 

 

1) whether melanoma patients display alterations in the total and subset numbers of 

blood DCs and NK cells. 

 

2) whether DCs display aberrant functions and how the functional defects potentially 

affect the interaction among DC subsets.  

 

3) which mechanisms including alterations in signaling pathways and molecules are 

responsible for the dysfunction of DCs.  

 

4) whether NK cells exhibit phenotypic changes and alterations in functional properties 

including their cytolytic machinery and interaction with DCs. 
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2.0 MATERIALS  
2.1 Lab Equipments  

BD FACSCaliburTM Flow Cytometer  Becton Dickinson, Heidelberg 
Agarose electrophoresis equipment  Biorad Laboratories, Munich 
BD FACSAriaTM Flow Cytometer  Becton Dickinson, Heidelberg 

BD FACSCanto IITM Flow Cytometer  Becton Dickinson, Heidelberg 
Biofuge® Fresco Heraeus Instrument, Wiesloch 

Bio-plex protein reader Biorad Laboratories, Munich 
Blood Cell analyser Abbott,  Wiesbaden-Delkenheim 

Centrifuge Heraeus Instrument, Wiesloch 
Confocal Microscope Sp5 Leica, Wetzlar 

ELISA Reader Anthos Labtec, Krefeld 
Freezer -20°C Liebherr Premium  
Freezer -80°C Thermo Fisher Scientific, Karlsruhe 

Gel Chamber for agarose gel 
electrophoresis Biorad Laboratories, Munich 

Gel Doc Biorad Laboratories, Italy 
Glass pipettes  Hirschmann, Eberstadt 

Glassware  Schott, Mainz 
Incubator HERA Cell 240 Thermo Scientific, Karlsruhe 
Light microscope DMIL Leica, Wetzlar 

MACS® MultiStand  Miltenyi Biotech, Bergisch-Gladbach 
Mikroskop DMLS Leica, Wetzlar 

Microwave Bosch, Frankfurt am main 
pH Meter  LMV Medizinteknik, Vetriebs GmbH 

Power Pac 300 Biorad Laboratories, Munich 
Quadro MACS Magnet Miltenyi Biotec, Bergisch Gladbach 

Real time PCR Mxpro 3005 Stratagene, Waldbronn 
Refrigerator 4�C Liebherr, Biberach an der Riss 

Roller Neolab, Heidelberg 
SDS-PAGE electrophoresis equipment  Biorad Laboratories, Munich 

 Shandon Cytospin Centrifuge Thremo Scientific, Karlsruhe 
Spectrophotometer UltroSpec 3100 pro Pharmacia Biotec, Munich 

Thermocycler PTC-100  MJ Research, Inc., Watertown, Mass. (USA) 
ThermoMixer 5436 Eppendorf, Hamburg  

Vortex  MSI Minishaker IKA, Wilmington 
Water baths  Medingen, Martinsried 

Western blot equipment  Biorad Laboratories, Munich 
 
2.2 Chemicals  
Aqua ad injectabilia, sterile     Braun, Melsungen 
Agarose       Sigma-Aldrich, Schnelldorf 
30% Acrylamide Solution    Biorad Laboratories, Munich 
Ammonium Persulfat     Serva, Heidelberg 
Biorad protien assay reagent    Biorad Laboratories, Munich  
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Bovine Serum Albumin, BSA    Gerbu Biotechnik, Gaiberg  
Bovine Serum Albumin, BSA 2mg/ml    Biorad Laboratories, Munich 
(protein assay) 
Dimethylsulfoxid (DMSO)    Merck, Darmstadt 
EDTA       Gerbu Biotechnik, Gaiberg 
Ethanol, p.a.      Merck, Darmstadt 
Ethidium bromide solution (10 mg/mL)    Merck, Darmstadt 
Biocoll Separating Solution     Biochrom AG, Berlin 
Formaldehyde      Merck, Darmstadt 
GeneRuler™ 100bp DNA Ladder Plus    Fermentas, St Leon-Rot 
Glycine       Carl Roth, Karlsruhe 
PageRulerTm Prestained Protein Ladder    Fermentas, St Leon-Rot 
Isopropanol, p.a.      Merck, Darmstadt 
β-Mercaptoethanol      Merck, Darmstadt 
Methanol, p.a.       Merck, Darmstadt 
Milk powder       Carl Roth, Karlsruhe 
Phorbol Myristate Acetate (PMA)   Sigma-Aldrich, Schnelldorf 
Ionomycin      Sigma-Aldrich, Schnelldorf 
Phosphate Buffered Saline, 1x, 10x PBS   PAA Laboratories, Pasching  
Ortho-Phosphoric acid 85%    Merck, Darmstadt 
Sodium dodecyl sulfate     Gerbu Biotechnik, Gaiberg  
Sodium azide       Merck, Darmstadt 
Sodium chloride      Fluka, Switzerland 
Sulfuric Acid,  5N     Merck, Darmstadt 
TEMED      Sigma-Aldrich, Schnelldorf 
Tris-Base       Sigma-Aldrich, Schnelldorf 
Tris HCl       Sigma-Aldrich, Schnelldorf 
Triton-X 100      Gerbu Biotechnik, Gaiberg 
Trypan blue       Fluka, Switzerland 
Trypsin-EDTA solution, (10x)    Biochrom AG, Berlin 
Trypsin/EDTA       Biochrom AG, Berlin 
Tween20       Gerbu Biotechnik, Gaiberg 
 
2.3 Consumables  
Aluminium foil Forti      Folien, Neuruppin 
Cell culture flasks (25, 75 and 125 cm2)    Renner, Dannstadt 
Cell culture dishes      Renner, Dannstadt 
Cell culture plates (6, 12, 24 and 48 well)   Renner, Dannstadt 
Cell strainer (40 μm)     Becton Dickinson, Heidelberg 
Centrifuge tubes (15 and 50 mL)    BD FalconTM, Heidelberg 
Shandon filter cards     Thermo Electron Corporation, USA 
Cover slips       R. Langenbrinck, Teningen 
Cryovials       Costar, Cambridge 
Disposable cuvette     Sarstedt, Nümbrecht 
ELISA plates      Greiner, Frickenhausen  
FACS tubes       Becton Dickinson, Heidelberg 
FACS tubes with cell strainer (30 μm)   Becton Dickinson, Heidelberg 
Laboratory gloves  Kimberly-Clark, Zaventem (Belgium) 
MACS® Separation Columns LS/LD)    Miltenyi Biotec, Germany 
Micro Centrifuge tubes (0.5, 1.5 – 2.0 mL)   Eppendorf, Hamburg 
Neubauer cell counting chamber    Brand, Wertheim 
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Nitrocellulose membrane    Amersham Pharmacia, Munich 
Parafilm  Pechiney. Menasha 
Pasteur pipettes (Sterile)    Carl Roth, Karlsruhe 
MACS® (R) Pre-Separation Filters (30μm)  Miltenyi Biotec, Bergisch Gladbach  
Polypropylen tubes (15ml, 50 ml)    Falcon, BD Biosceince 
Power supply for electrophoresis    Pharmacia, Freiburg 
Pipette tips (1 – 1000 μL)     Eppendorf, Hamburg 
Pipette filter tips (1 – 1000 μL)     Eppendorf, Hamburg 
Real-time PCR plates, 96 well     Biozym, Hessisch-Oldendorf 
Slides (76x26 mm)     R. Langenbrinck, Teningen 
Syringes (5 – 50 mL)      Terumo, Eschborn 
Syringe-driven filter units, pore size 22 μm   Renner, Dannstadt 
Whatman 3MM paper      Schleicher & Schüll, Dassel 
X-ray film       Amersham Biosciences, Freiburg 
 
2.4   Enzyme/Reagents  
dNTP Mix       Invitrogen, Karlsruhe 
10x Buffer PCR      Bioron, Ludwigshafen 
Taq polymerase      Bioron, Ludwigshafen 
10X BD FACS™ lysing solution   BD Biosciences, Heidelberg 
BD OptEIA TM Substrate Reagent A/B   BD Biosciences, Heidelberg 
 
2.5  Antibodies for flow ctyometry and immunofluorescence staining 
2.5.1 Primary antibody and Fc fusion proteins 
BDCA1-PE/APC, Mouse IgG2a    Miltenyi Biotec, Bergisch Gladbach 
BDCA2-FITC, Mouse IgG1    Miltenyi Biotec, Bergisch Gladbach 
BDCA-3, Mouse IgG1     Miltenyi Biotec, Bergisch Gladbach 
CD14-PE-cy5, Mouse IgG2a    Miltenyi Biotec, Bergisch Gladbach 
CD19-PE-Cy5, Mouse IgG1    Miltenyi Biotec, Bergisch Gladbach 
CD123-Percp 5.5, Mouse IgG1    eBiosceince, USA 
CD11c-APC, Mouse IgG1    eBiosceince, USA 
CD40-FITC, Mouse IgG1    BD Pharmingen, USA 
CD80-PE, Mouse IgG1     BD Pharmingen, USA 
CD86-PE/APC, Mouse IgG2b    BD Pharmingen, USA 
CD14-FITC, Mouse IgG2a    BD Pharmingen, USA 
CD3-FITC, Mouse IgG1    BD Pharmingen, USA 
CD19-APC-Cy7, Mouse IgG1    BD Pharmingen, USA 
TLR9-PE, Mouse IgG1      Imgenex, USA 
MyD88, Rabbit polyclonal IgG    Abcam, UK 
IRF7, Rabbit polyclonal IgG    Santa Cruz Biotech, Heidelberg 
p4E-BP1 (Ser65/Thr70)     Santa Cruz Biotech, Heidelberg 
CD45-Percp, Mouse IgG1    BD Pharmingen, USA 
CD3-APC, Mouse IgG2a    Miltenyi Biotec, Bergisch Gladbach 
CD56-PE, Mouse IgG1     BD Pharmingen, USA 
CD16-FITC, Mouse IgG1    BD Pharmingen, USA 
CD107a-PE-Cy5, Mouse IgG1    BD Pharmingen, USA 
Perforin-FITC, Mouse IgG2b    BD Pharmingen, USA 
IFN-γ-PE, Mouse IgG1     BD Pharmingen, USA 
NKG2D-APC, Mouse IgG1    Miltenyi Biotec, Bergisch Gladbach 
NKp30-PE, Mouse IgG1    Beckmann Coulter, USA 
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NKp46-PE, Mouse IgG1    Beckmann Coulter, USA 
MICA, Mouse IgG1     R&D System, Wiesbaden 
MICB, Mouse IgG?     R&D System, Wiesbaden 
NKp30-Fc fusion protein     R&D System, Wiesbaden 
NKp44-Fc fusion protein    R&D System, Wiesbaden 
NKp46-Fc fusion protein    R&D System, Wiesbaden 
GAPDH, Rabbit polyclonal IgG   Cell signaling, USA 
 
2.5.2 Secondary antibodies 
Goat anti-rabbit IgG, F(ab')2  (H+L),   Invitrogen, Karlsruhe 
Alexa fluor 555-conjugated  
 
Donkey anti-rabbit IgG, F(ab')2  (H+L),   Jackson  Immunotech Laboratory, USA 
PE-conjugated 
 
Goat anti-rabbit IgG, HRP- conjugated   Cell signaling, USA 
 
2.5.3.  Antibodies for soluble MICA/B and ULBP2 ELISA 
purified MICA/B (AMO1), Mouse anti-human monoklonal, IgG1 
purified MICA/B (BAMO3), Mouse anti-human monoklonal, IgG2a 
purified ULBP2 (BUMO1), Mouse anti-human monoklonal, IgG1 
purified anti-ULBP2, Mouse anti-human monoklonal, IgG2a 
HRP-goatanti-mouse IgG2a 
 
2.6 Cell culture media and supplements  
2.6.1 Media 
RPMI 1640 with L-Glutamine,     PAA Laboratories, Pasching 
IMDM with L-Glutamine,    PAA Laboratories, Pasching 
 
2.6.2 Media supplements 
Foetal Calf Serum (FCS)   Gibco Invitrogen, Karlsruhe 
Penicillin/Streptomycin 100X,     PAA Laboratories, Pasching 
 
2.7 Cells  
2.7.1 Primary cells 
Human PBMCs  Prepared from centrifuged human blood (buffy coat); blood was acquired 

from the Institute of Transfusion Medicine, Mannheim 
Human mDCs   Prepared from human PBMCs of buffy coats or leukapheresis products 
Human pDCs   Prepared from human PBMCs of buffy coats or leukapheresis products 
Human NK cells Prepared from human PBMCs of buffy coats or leukapheresis products 
 
2.7.2 Human cell lines 
Mel249    Melanoma; established from melanoma patients 
K562 Chronic Myelogenous leukemia, provided by Prof.Dr 

Schadendorf, Mannheim 
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2.8  Oligonucleotides 
2.8.1 Oligonucleotides used for standard PCR 
 
Primer 
β-Actin:  5’- CGG CTA CCA CAT CCA AGG AA -3’ (Forward) 

5’- GCT GGA ATT ACC GCG GCT -3’ (Reverse) 
 
2.8.2 Labelled oligonucleotides used for quantitative real-time PCR 

Gene  Species Detection chemistry
GAPDH  Human FAM-TAMRA  

IRF7 Human FAM-TAMRA  
 
2.8.3 Oligonucleotides used for Cell stimulation  
CpG A: 5’-ggGGGACGATCGTCgggggg-3’  
 
2.9  Kits and standards 

Kits Manufacturer 
Bio-plex kit Bio-rad, Munich 

Blood Dendritic Cell Enumeration Kit (human) Miltenyi Biotec, Bergisch Gladbach 
CD1c (BDCA-1)+ Dendritic Cell Isolation Kit Miltenyi Biotec, Bergisch Gladbach 

CytoFix and CytoPermTM BD Bioscience, USA 
 Dead Cell Removal kit Miltenyi Biotec, Bergisch Gladbach 

ECL solution Thermo Scientific, Karlsruhe 
First strand cDNA synthesis kit (AMV) Roche, Mannheim 

IFN-α Elisa kit Mabtech, Germany 
IL-10 Elisa kit Diaclone, Cologne 

CD304 Microbead kit Miltenyi Biotec, Bergisch Gladbach 
qPCR Master Mix Applied Biosystem, Darmstadt 

Rneasy-Plus Mini Kit Qiagen, Hilden 
Taqman Gene Expresion Assay Applied Biosystem, Darmstadt 

TMB substrates for ELISA BD Bioscience, USA 
VectaShield Vector Laboratory, Eching 

2.10  Multiple protein bead array (Luminex) cytokine assay  

Kits for luminex cytokine assay include 17-plex Bio-Plex human cytokine and singleplex human 
cytokine for CXCL10, CCl2, CCL3 and CCL5 (Bio-Rad, Munich).  

2.11 Buffers 
 
All buffers used in this study are listed in the Appendix. 
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2.12  Software 
Software Manufacturer 

FACSDivaTM BD Bioscience, USA 
CellQuestTM 3.3 BD Bioscience, USA 
FlowJoTM 7.2; 8.0 TreeStar, USA 
LAS AF Lite Leica, Wetzlar 
GraphprismTM 4.0 GraphPad Software Inc., San Diego, USA 
Image J Wayne Rasband, National Institutes of Health, USA 
Amira Visage Imaging, USA 
WinRead Anthos, Austria 
QuantiOne Biorad Laboratories, Italy 
Bio-Plex manager  Biorad Laboratories, Munich 
Mx3005 pro Stratagene, USA 

 
3.1 Cell biology methods  

3.1.1 Sample collection 

Samples were obtained from 19 female and 41 male melanoma patients (age: 26-84 

years), who were diagnosed with stage IV melanoma according to the AJCC criteria and 

admitted to the Department of Dermato-Oncology, University Medicine Mannheim. 

Material was obtained from patients with or without measurable lesions and irrespective 

of prior treatment. Patients were either had no prior treatment or radiotherapy for at least 

30 days before blood withdrawal and serum collection. Leukapherasis products were 

obtained from a total of 10 patients: 5 patients received no or free from prior treatment, 3 

patients without treatment information and 2 patients were treated with moDC 

vaccination. A total of 63 age-matched normal volunteers (27 female, 34 male and 2 

without information) with age range 25-69 were included as control in this study. 

Materials from normal donors including heparinised or EDTA treated peripheral blood, 

buffy product and serum were obtained from Institute of Transfusion and Immunology, 

Mannheim, Germany. Written informed consent as approved by the local ethical 

committee was obtained from all subjects included in this study.  

 
3.1.2 Cell culture method 

All cells were grown at 37 °C in an incubator with 5 % CO2. If not mentioned otherwise 

all cell culture media were supplemented with 100 U/mL penicillin, 100 μg/mL 

streptomycin and 10% heat-inactivated FCS (at 56°C for 1 h). All media supplements 
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were steril-filtered (pore size: 22 μm) before addition. Adherent cells were detached from 

the surface of the cell culture flasks using trypsin/EDTA. Before the detachment, growth 

medium was removed and the cells were washed by the careful addition and subsequent 

removal of 5–10 mL PBS. Then 2 mL of trypsin/EDTA solution/75cm2 were added and 

the cells were kept for 2-3 minutes at 37 °C in a cell incubator. After detachment, cells 

were washed in 10 mL fresh complete medium to inactivate the trypsin/EDTA. For 

culturing K562, a suspension cell line, cells were maintained by replacement with fresh 

complete medium. Cells were in part used for culture maintenance and for experiments. 

 
3.1.3  Preparation of human PBMCs from buffy coats  

PBMCs used in experiments were prepared from buffy coats of normal donors or from 

peripheral blood or leukapheresis products of melanoma patients diagnosed with disease 

stage IV. Buffy coats, peripheral blood and leukapheresis products were diluted with 1 x 

PBS at 3:1 ratio before subjected to Ficoll (Biocoll) separation solution. PBS diluted buffy 

coat blood was gently layered on the 15 mL pre-chilled Ficoll (Biocoll) solution in 50 ml 

Falcon tubes at ratio of 3:1 and subjected to centrifugation (2000 rpm no break, 20 min). 

The interphase layer, which represents mononuclear cells were gently harvested using a 

sterile pastuer pipette and washed 3 times with 1x PBS followed by centrifugation at 

1200 rpm, 7 min, room temperature. The isolated PBMCs were filtered using a cell 

strainer and then counted using trypan blue and a hemocytometer. The single cell 

suspension was cryopreserved in freezing medium until used in further experiments. 

 
3.1.4 Cryopreservation and thawing of cells  

For freezing isolated PBMCs, cells were adjusted to numbers of 2-5 x 107 in freezing 

medium (see Appendix) pre-cooled on ice. The cell suspension was then transferred into 

1.8 mL cryovials and immediately transferred to freezing containers containing 

isopropanol (MrFrosty, Nunc, Denmark) and stored at -80°C. After 24-48 h the cryo vials 

were transferred to liquid nitrogen containers and stored at approximately -170 °C. In 

order to thaw cells, cryovials were placed in a 37°C water bath for approximately 2 min 

followed by adding pre-warmed growth medium drop wise to the cell suspension. One 

washing step was performed in 10 mL complete growth medium to remove the DMSO. 
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After centrifugation at 1200 rpm for 7 min, cell pellets were resuspended in complete 

medium and seeded as indicated. 

3.1.5 Dead cell removal 

Prior to MACS (magnetic-activated cells sorting) cell separation, dead cells were 

removed using the dead cell removal kit according to the instruction of the manufacturer 

(Miltenyi Biotech). Briefly, 3 x 108 total cells were pelleted by centrifugation at 1200 

rpm for 7 min at room temperature. After complete removal of the supernatant, cells were 

resuspended in 3 mL (100 μL/107 cells) of Dead Cell Removal MicroBeads. Cells were 

mixed well followed by incubation for 15 minutes at room temperature and separated 

using the MACS cell separation technology. 

3.1.6 Isolation of BDCA1+ mDCs and BDCA4+ pDCs from cryopreserved PBMCs 
using MACS Separation 

 
Cryopreserved PBMCs from leukapheresis products of melanoma patients and from 

buffy coats of age-matched healthy donors were used for mDC1 and pDC isolation. One 

day prior to DC subset purification, PBMCs were thawed and cultured as bulk PBMCs 

overnight in fully supplemented RPMI-1640 medium without exogenous stimuli. Dead 

cells were removed using the dead cell removal kit. Both DC subsets were sequentially 

purified by magnetic cell sorting (MACS) using a high gradient Maxi-MACS® device. 

Myeloid DCs (mDC1) were obtained from PBMCs by depletion of CD19+ B 

lymphocytes prior to mDC1 purification via incubation with biotin-conjugated anti-CD1c 

and anti-biotin-conjugated magnetic microbeads. Additional depletion of CD3 and CD14 

cells were performed prior pDC isolation using anti-CD304 (BDCA-4)-conjugated 

magnetic microbeads. 

 

3.1.7 Co-culture of BDCA1+ mDCs with BDCA4+ pDCs 

mDC1 (~1.75 x 104/ well) and pDCs (~5.0 x 103/ well) were seeded in V-bottom 

microwells alone or in co-culture. Cells were cultured with or without the following 

stimuli: CpG A oligodeoxynucleotide (ODN) at 10 µg/ml, LPS at 1 µg/ml or UV-

inactivated Newcastle Disease virus (kindly provided by Prof. Zatwasky, DKFZ, 

Heidelberg) at a dilution of 1:100. Cells were cultured in complete RPMI-1640 medium 

and incubated for 18 h. The supernatants were collected and stored at -20°C until 
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analysis. Expression of CD40, CD80 and BDCA1 on mDC1 was analysed by direct 

immunofluorescence staining with anti-CD80-PE mAb, anti-CD40-FITC and APC-

conjugated anti-BDCA-1 for myeloid DC (mDC1) as described in method 3.2.1, followed 

by flow cytometry analysis. 

 

3.1.8 PBMC stimulation for cytokines, chemokines and growth factor analysis 

PBMCs (2 × 106/200 μl) were seeded in 96-well round-bottom plates and stimulated with 

10 μg/ml CpG A or left untreated for 22 h. Cell culture supernatant were collected after 

22 h stimulation and kept at -20°C until use for IFN-α and IL-10 ELISA analysis 

(method 3.2.6) and for multiplex protein bead array analysis to detect cytokines, 

chemokines and growth factor (method 3.2.10). 

 

3.1.9 Immunofluorescence staining 

IRF-7 translocation was determined by stimulating PBMCs (2 × 106/200 μl/well with a 

total of 1-2 × 108 cells)  in 96-well round-bottom plates with 10 μg/ml CpG A for 6 h. 

Cells were first stained with the following monoclonal antibodies: FITC-labelled anti–

BDCA-2, Percp-Cy 5.5-labelled anti-CD123, APC-labelled anti-CD11c. Subsequently, 

cells were fixed overnight with 1% formaldehyde. Pre-stained cells were then 

permeabilized with 0.25% Triton-X 100 for 5 min at room temperature. Samples were 

blocked with 3% BSA for 1 h and labelled with rabbit polyclonal anti–human IRF-7 

(Santa Cruz Biotechnology). Anti–rabbit IgG Alexa Fluor 555 was used as secondary 

antibody. As a negative control, rabbit polyclonal anti–human IRF-7 was omitted and 

cells were stained similarly with Anti–rabbit IgG Alexa Fluor 555. Cells were subjected 

to cell sorting (method 3.2.4) and the sorted cells were cytospun on glass slides at speed 

of 700 rpm for 4 min. Mounting was performed using Vectashield mounting medium 

containing DAPI (Vector Laboratories).  

 
3.1.10 Confocal microscopy and quantification of nuclear translocation 

All images were acquired using a confocal fluorescence microscope and a 63×/1.4 NA 

objective, with the pinhole set for a section thickness of 1 Airy (95.5 μm). Scan speed of 

100 Hz and 4 frames averaging was used. Sequential image acquisition using separate 
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laser was performed for avoiding cross-talk between different fluorophores. 

Translocation of IRF7 was quantified by measuring nuclear fluorescence alone that was 

compared to the intensity of the cytoplasmic staining to obtain relative measure of IRF7 

as nuclear:cytoplasmic ratio. This prevents increased background levels of IRF7 

expression or artificial differences in staining intensity. Therefore, the IRF7 translocation 

is represented by an increasing nuclear:cytoplasmic ratio. The median of 

nuclear:cytoplasmic ratio derived from 50-80 images of each sample were calculated 

using statistic software. 

 

3.1.11 Analysis on NK and DC interactions 

3.1.11.1 Generation of monocyte-derived DCs  

Monocytes were purified from isolated PBMCs by MACS separation using anti-CD14 

microbeads. Cells were then seeded and cultured in complete RPMI1640 supplemented 

with 10% FCS at density of 2x105 cells/mL in the presence of GM-CSF (1000 IU/mL) 

and IL-4 (500 IU/mL). After 6 days, monocytes developed into immature moDCs that 

were then harvested and subjected to NK/moDC interaction studies.  

 

3.1.11.2 Interaction of IL-2 activated NK cells with moDCs 

NK cells were isolated from PBMCs obtained from healthy controls using the MACS 

Cell separation technology. NK cells were obtained by depleting CD3+ T cells with anti-

CD3 mAb coupled magnetic beads followed by positive selection using anti-CD56 mAb 

coupled magnetic beads. The purified NK cells were either cryopreserved until use as 

resting NK cells or stimulated with IL-2 (100 IU/mL) in complete RPMI1640 culture 

medium for 6 days. Then, IL-2 activated NK cells were harvested while resting NK cells 

were retrieved from cryopreservation. Both activated and resting NK cells were counted 

and adjusted to a concentration of 1 x 106 cells/mL. Similarly, immature moDC were 

harvested and washed two times with complete medium then adjusted to 1 x 106 cells/mL. 

Activated or resting NK cells were co-incubated with immature moDCs at a ratio of 1:1 

and co-cultured for 48 h. As positive control, moDCs were stimulated with IFN-α (1000 

IU/mL) for the same time period. After 48 h, cells were harvested, stained and assessed 

for CD40 and CD80 expression by flow cytometry.  
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3.1.11.3   Interaction of IL-2 activated NK cells with mDC1  

Both mDC1 and NK cells were purified from PBMCs collected from age-matched 

healthy controls and patient by MACS cell separation using anti-BDCA1+ and anti-CD56 

monoclonal antibody coupled magnetic beads, respectively. CD3+ T cells and CD14+ 

monocytes were depleted during the separation procedure. Two rounds of BDCA1+ and 

CD56+ cell selection were performed during isolation. Freshly purified BDCA1+ mDC1 

(2 x 105 cells) were then cultured together with autologous NK cells (1 x 105 cells) in the 

presence of IL-2 (100 IU/mL) or LPS (1 μg/mL) or in medium alone. After 48 h, cells 

were harvested and stained with a FITC-conjugated anti-CD40 monoclonal antibody then 

evaluated by flow cytometry. Fold increase of CD40 expression on mDC1 was derived 

from the ratio of MFIstimulated to MFIunstimulated co-cultures. Data are shown as median from 

three normal donors and four patients. 

 
3.2 Immunological methods 

3.2.1 Determination of cell surface antigen expression using flow cytometry 

Cell surface antigen staining was performed by staining 1-2 x 106 of thawed PBMCs with 

or without stimulation as indicated, or 1 x 105 cultured melanoma cells in round-bottom 

Falcon tubes. Cells were first washed twice with FACS buffer, then centrifuged at 1500 

rpm, 5 min. The cell pellet was dispersed by gentle vortexing and 5 μL of heat 

inactivated pooled human sera (PHS) was added into the tubes when performing staining 

on PBMCs. In parallel, cells were stained with fluorochrome-conjugated or non-

conjugated primary monoclonal antibody against respective cell surface antigen and 

shaked on ice for 20 min at about 200 rpm in the dark. After incubation, pre-stained cells 

were then subjected to 2 washes with FACS buffer at 1500 rpm, 5 min. For the case that 

non-conjugated primary antibody was used, fluorochrome-conjugated secondary antibody 

was added after washing and further incubated at the same condition as mentioned above. 

Cell surface stained cells were then fixed with 3.75% formaldehyde solution and kept at 

4°C in the dark until FACS measurement. Prior measurement, cell clumps were removed 

by passing the cells through a cell strainer with a pore size of 30 μm to obtain single cell 
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suspensions. Appropriate isotype controls or staining with secondary antibody only were 

included in each experiment. FACS measurements were performed either with FACS 

Calibur or FACS Canto II and acquired using Cellquest or FACsDiva software. Forward- 

and side- scatter gates were used to exclude cell debris prior to analysis of expression of 

each phenotypic marker. The gain in the FSC and SSC channel was adjusted so that the 

cell populations were centralised on the dot plot. The desired cell population was 

included in the analysis through the gating approach. FACS data were analysed using the 

Flowjo software and the frequency of cells expressing the proteins of interest or the 

expression were presented as percentage or Median Fluorescence Intensity (MFI), 

respectively.  

 
3.2.2 Whole blood enumeration of mDCs and pDCs  

Blood circulating DCs were identified and enumerated by flow cytometry using the 

FACS Calibur. The assay was performed using the blood DC enumeration kit according 

to the manufacturer's instructions. Briefly, the cell count of white blood cells (WBCs) in 

heparinized peripheral blood samples were obtained by using a blood counter prior to 

labeling of whole blood cells with a cocktail of antibodies containing anti-CD14, anti-

CD19, anti-BDCA1 (mDC1 marker), anti-BDCA3 (mDC2 marker) and BDCA-2 (pDC 

marker) or isotype antibodies. A proprietary dead cell discriminator dye was also 

included to exclude dead cells. Erythrocytes were then lysed using FACS lysing solution 

and after one time washing, cells were fixed and examined using FACS Calibur and 

analysed using the Flowjo software. Results are expressed as the percentage of mDCs or 

pDCs in WBCs or as absolute numbers per mL blood (calculated as [% positive- % 

negative cells] × WBCs per ml [×106/100]).  

 
3.2.3 Whole blood enumeration of NK cells 

The TruCOUNT™ assay was designed to determine absolute CD56+CD16-/dim and 

CD56+CD16+ NK cells counts. 100 μL of well-mixed anti-coagulated, freshly withdrawn 

peripheral blood obtained from age-matched healthy donors and stage IV melanoma 

patients were stained within 6 h after blood collection and were added to TruCOUNT™ 

tubes. The directly fluorophores-conjugated mAbs as follows: CD56-PE, CD45 Percp, 
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CD3-APC and CD16-FITC or isotype controls were then added to the TruCOUNT™ 

tube, mixed well and incubated for 15 min in the dark at room temperature.  

To each tube, 400 μL of FACS Lysing solution was added and incubated for 15 min in 

the dark at room temperature. Samples were vortexed gently just before data acquisition 

and analyzed within 24 h of staining on a FACS Calibur. NK cell number of whole blood 

samples was calculated according to the manufacturer’s instruction, for example: 

[Total NK cells absolute number] = [(CD56+/CD3− cell count) / (bead count)] × [total 

number of beads (provided by manufacturer) / 100 µL].  

The same equation was used for calculating non-specific bindng cells when cells were 

stained with corresponding isotype controls. The corrected total NK cells absolute 

number was calculated by subtracting non-specific binding cell number from total NK 

cells number.  

 

3.2.4  Cell sorting using flow cytometry  

1-2 x108 PBMCs were stimulated as mentioned in method 3.1.9. Cells were stained for 

surface antigens CD123, CD11c and BDCA2 (method 3.2.1). After the last wash, cells 

were suspended at a concentration of 3 x 107 cells/ml in PBS with 10% BSA. Cell clumps 

were then removed using cell strainer (30 μm) to obtain single cell suspensions. PBMCs 

were kept on ice in the dark until cell sorting was performed using the FACSAria. 

Appropriate compensation controls were prepared for setting up parameters for cell 

sorting and dead cells were determined using Sytox-Blue, which only binds to DNA of 

dead cells with compromised cell membrane. pDCs were sorted into PBS containing 5% 

heat in-activated FCS and subjected to cytospin.  

 

3.2.5 Detection of intracellular TLR9, MyD88, p4E-BP1 and IRF7 by flow 
cytometry analysis 

 
PBMCs (1-2 x 106 cells) of healthy donors and patients were thawed and either 

stimulated with CpG A or left unstimulated for the time point described in the result 

section. Cells were stained with antibodies against surface markers specific to pDC (anti-

BDCA2 and anti-CD123) and with markers for exclusion of unwanted cells (anti-CD14, 

anti-CD3 and anti-CD19 or anti-CD11c) as described in 3.2.1. PBMCs were then fixed 



  Materials and methods 
 

   48

and permeabilized with cytofix and perm buffer according to the manufacturer’s 

instruction. Subsequently, cells were then stained with either TLR9 or MYD88 or p4E-

BP1 antibodies in the presence of PHS. The similar procedure as described in method 

3.1.9 was performed for IRF7 staining. After two continuous washes, anti–rabbit IgG-PE 

was used as secondary antibody at a dilution of 1:50. Data were obtained using 

FACSCanto II. Corresponding isotype controls or fluorescence minus one (FMO) 

controls were included to exclude non-specific binding.  

 
3.2.6 Enzyme-link immunosorbent sandwich assay (ELISA) for cytokine detection 

in cell culture supernatants 
 

Cell culture supernatants harvested during mDC1 and pDC co-cultured were measured 

for the presence of IFN-  or IL-10 by ELISA kits.  Both ELISA have a detection range of 

4–400 pg/ml and were performed according to the manufacturer’s recommendations. 

Briefly, a 96-well plate with flat bottom was pre-coated with a capture antibody detecting 

the cytokine of interest for overnight at 4°C. To remove unbound capture antibody, the 

plate was washed 5 times and then blocked with blocking solution for 1 h at room 

temperature. Each standard curve from 0-400 pg/mL of the cytokine of interest was 

prepared by serial dilutions using respective stock standard solutions provided by the 

manufacturer. The frozen cell supernatants stored at -20°C were thawed and diluted 

accordingly with recommended assay diluents and added at 100 μL into individual wells 

of the microtiter plate in duplicates. Plates were incubated with test samples and the 

serially diluted standard for 2 h and then washed 5 times with washing buffer prior to 

adding 100 μL of diluted biotinylated detection mAb. After incubation for the 

recommended period of time, unbound antibody was removed by washing 5 times. Then, 

100 μL of diluted Streptavidin-horseradish peroxidase (HRP) conjugate solution were 

added and incubated as indicated by the manufacturer. Upon completion of the 

incubation, the plate was washed and 100 μL of TMB substrate solution were added into 

each well. The plate was covered with aluminium foil and incubated for 15-30 min in the 

dark. The reaction between HRP and TMB was stopped by adding 50 μL of stop solution 

and by swirling the plate gently for proper mixing. The absorbance value was then 

determined at 450 nm with a reference wavelength at 650 nm using a mircroplate reader 
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within 5-30 minutes after adding the stop solution. The concentrations of the cytokine of 

interest in the samples were determined based on the standard curve. 

3.2.7 ELISA for soluble NKG2DL detection in sera from melanoma patients 

For detecting the soluble NKG2DL including sMICA/B and sULBP2, ELISA was 

performed as previously described by Paschen et al. (236).  

 

3.2.8 Degranulation assay 

NK cell degranulation in response to co-incubation with tumour cells devoid of MHC 

class I molecules (K562, Mel249) was analysed with PBMCs obtained from healthy 

donors and patients. Cryopreserved PBMCs were thawed and rested overnight in 

complete IMDM medium supplemented with 10% PHS and 1 % Pen/Strep. 

Subsequently, 100 µL of 1 x 105 PBMCs in assay medium were transferred to U-bottom 

96-well plate and co-incubated with 1 x 104 target tumour cells. The PE/Cy5 conjugated 

anti-CD107a mAb or an isotype control was added and incubated at 37°C and 5% CO2 

for 1 h. After 1 h incubation, the protein transport inhibitor GolgiStop was added to the 

co-culture, followed by further 3 h co-incubation. To monitor the spontaneous 

degranulation of NK cells, control samples were incubated without target cells. Prior to 

flow cytometric analysis, cells were stained on ice with anti-CD3, -CD56 and -CD16 

mAbs and washed as described in section 3.2.1.     

 

3.2.9 Detection of intracellular IFN-γ and perforin by flow cytometry 

To determine the intracellular perforin expressing NK cells during steady-state and IFN-γ 

production of NK cells upon PMA/ionomycin activation, PBMCs were thawed and rested 

overnight as described in (section 3.2.8). 2 x 106 of untreated PBMCs were used for 

perforin staining. For IFN-γ staining,2 x 105 cells were incubated in a final volume of 200 

µL in the assay medium in the presence or absence of PMA (2.5 µg/mL) and Ionomycin 

(0.5 µg/mL) for 4 h at 37°C in a humidified 5% CO2 incubator. Brefeldin A, a secretion 

inhibitor (10 µg/mL) was added after the first hour of stimulation. Thereafter, cells were 

harvested, washed twice with FACS staining buffer and stained with mAb against CD3 

and CD56 for NK cells identification for 30 min on ice in the dark. Cells were then 

washed and followed by fixation and permeabilization using CytoFix and 
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CytoPerm buffer as recommended by the manufacturer. Intracellular staining was 

performed with anti- IFN-γ or anti-perforin mAbs for 30 min on ice in the dark. Cells 

were washed twice prior to flow cytometric acquisition.         

 
3.2.10 Multiplex protein bead array assays for cytokines, chemokines and growth 

factors detection 

Blood samples were drawn for serum collection by using vacutainers containing no 

anticoagulant. All collected blood samples were allowed to coagulate for 30 min at room 

temperature. For sera separation, samples were centrifuged at 3000 rpm for 10 min. All 

specimens were aliquoted immediately and stored at –20°C before being assayed in a 

Luminex bioassay. Only sera with no more than two freeze-thaw cycles were analysed. A 

variety of different human cytokines and chemokines were investigated following the 

manufacturer's instructions using the multiplex bead array assays. This technology allows 

the simultaneous analysis of different cytokines, chemokines and growth factors in a 

small sample of serum (50 µL) in a single microplate well. Using this technology, it 

allows the quantitation of a panel of cytokines and chemokines (IL-1β, IL-10, IL-6, IL-8, 

IL-12(p70), CXCL10, IFN-γ, TNF-α, CCL2, CCL3, CCL4 and CCL5). The assay was 

performed by first incubating colour-coded polystyrene beads conjugated to a capture 

antibody for the cytokine, chemokine or growth factor of interest with cell culture 

supernatants or sera and corresponding standards for 30 min on a shaker. After 

incubation, a biotinylated antibody was added and incubation was again carried out for 

another 30 min on a shaker. The biotinylated antibody was then bound by streptavidin-

conjugated with PE and analyzed using the Bio-plex protein array reader. During data 

acquisition, the beads are interrogated by a red laser (to identify the bead type) and by a 

green laser, which determines the amount of bound analytes. Data were analyzed using 

the Bio-Plex manager software with 5PL curve fitting.  

3.3 Molecular biological method  

3.3.1 RNA isolation from PBMCs 

PBMCs from stimulation experiments (method 3.2.5) were pelleted by centrifugation 

after washing with PBS, frozen in liquid nitrogen and either stored at -80 °C or used 

immediately for total mRNA extraction with the RNeasy Plus Mini-Kit according to the 
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manufacturers instructions. Isolated RNA was kept at -80°C in RNAse-free water. RNA 

concentration was determined using the spectrophotometer (method 3.3.2). 

 

3.3.2 Quantitation of nucleic acids concentration using the spectrophotometer 

The DNA/RNA concentration in a sample was determined using a spectrophotometer via 

the absorbance at 260 nm (A260) using the following formula:  

Nucleic acid [μg/mL] = ε x A260 x dilution factor, with εDNA = 50 and εRNA = 40.  

The ratio A260/A280 was taken as a measure of the purity of a DNA/RNA sample. 

 

3.3.3. cDNA synthesis from total RNA 

Total RNA was reversely transcribed into cDNA using the First Strand cDNA synthesis 

kit with AMV Reverse Transcriptase according to the manufacturers instructions. In 

general, about 300-400ng total RNA per sample were reverse transcribed using 

oligo(dT)12-18 primers and the generated cDNA was used in subsequent PCR reactions. 

 
Condition for cDNA synthesis: 
1. 25°C    10 min 
2 .42°C    60 min 
3. 99°C   5 min 
4. 4°C   5 min 
 
3.3.4 Polymerase chain reaction (PCR) 

Standard PCR using primers specific for the housekeeping gene beta-actin was performed 

to assess the quality of cDNA product after reverse transcription. The PCR were 

amplified according to the condition described as following: 

 
1. 95°C- 3 min     7. 56°C- 30 sec   
2. 95°C- 30 sec     8. 72°C- 45 sec 
3. 57°C- 30 sec     9. Step 6 29X 
4. 72°C- 45 sec     10. 72°C- 3 min 
5. Step 2 3X     11. 4°C forever 
6. 95°C- 30 sec 
 
After PCR amplification, PCR products were loaded onto 1% agarose gels followed by 

electrophoresis, ran at a constant voltage of 100 V and visualized with ethidium bromide 

staining.  
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3.3.5 Quantitative real-time RT-PCR 

Reverse transcription quantitative real-time PCR is a method that can be used for 

determining gene expression by combining amplification and simultaneous quantification 

on the relative mRNA amount of a gene. This method allows accurate relative 

quantification as the amplified cDNA amount is measured after each cycle during the 

PCR and not only after the last cycle as in traditional standard PCR. Highly accuracy of 

real-time PCR is achieved by normalizing the target gene expression to an endogenous 

control in a given sample. Real-time PCR was performed using cDNA reverse 

transcribed from RNA extracted from PBMCs treated or non- treated with CpG A for 6 h. 

The analysis was performed on a Stratagene sequence detector system. Data were 

analysed with the Mx3005pro software using primers and Taqman probes specific for the 

target gene IRF7 [FAM-labeled probe (Assay ID: HS00242190_g1)], with GAPDH as 

endogenous control (RefSeq: NM_002046.3). Singleplex PCR reactions for amplification 

of target or endogenous control cDNA were performed in 96-well plates. Amplification 

was conducted as follow: 95°C, 10 min, 50 cycles of 95°C, 15s and 60°C, 1 min. In every 

experiment, a negative control was included consisting of a reaction mixture that did not 

contain a cDNA template. For each sample, the threshold cycle (CT) value for IRF7 was 

normalized to the CT value of the endogenous control, using the equation ΔcT = cT (target 

gene) – cT (reference gene). Fold increase of relative quantity of the target genes after 

stimulation with CpG A was calculated by the formula 2-ΔΔcT, with ΔΔcT =ΔcT (stim) – 

ΔcT (unstim), where ΔcT (unstim) and ΔcT (stim) refer to threshold cycle values obtained 

prior stimulation and after CpG A treatment, respectively. For each sample, CT values 

were determined from triplicate of target and housekeeping gene amplifications that were 

performed and set as the mean of these measurements ± the standard deviation.  

 
3.4 Protein chemical methods 

3.4.1 Generation of cell lysates 

Cells were harvested, washed once in PBS (1200 rpm, 7 min.) and counted using trypan 

blue. Second wash with PBS was removed by centrifugation (3000 rpm, 3 min.) and 100 

μL RIPA lysis buffer (containing 4 μL Protease Inhibitor Cocktail) was added per 1x 106
 

cells. The cells were homogenised in the buffer by pipetting up and down and then 
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incubated for 15 minutes on ice. After centrifugation in a table centrifuge (13,000 rpm, 

15 min), the protein containing supernatant was transferred to a pre-cooled eppendorf 

tube and stored at -80 °C until use.  

3.4.2 Bradford protein assay 

The Bradford protein assay is commonly used to determine the total protein concentration 

of a sample. The assay is based on a shift of absorbance from 465 to 595nm for an acidic 

solution of Coomassie Brilliant Blue G-250 when binding of the dye to proteins occurs. 

Both hydrophobic and ionic interactions stabilise the anionic form of the dye, causing a 

visible colour change. Within the linear range of the assay, it can be assumed that the 

more protein is present, the more Coomassie dye binds to proteins. BSA stock solution 

was diluted accordingly (2.0 – 12.0 mg/mL) with 1x PBS and used to generate a standard 

curve. 1 μL of the standardised and the test samples were transferred into a disposable 

cuvette containing 800 μL PBS. Then, 200 μL of Coomassie Brilliant Blue was added to 

each cuvette and the absorbance at 595 nm was read out by a spectrophotometer within 5 

minutes.   

 
3.4.3 SDS poly-acrylamide gel electrophoresis and western blot 

SDS poly-acrylamide gel electrophoresis (SDS-PAGE) is a method used to separate 

proteins based on their molecular weight. During the process, the detergent SDS is used 

to denature proteins to the same linear shape and to coat them with many negative-

charged SDS molecules. During poly-acrylamide electrophoresis, proteins migrate 

towards the positive pole and the migration speed depends on the size of the protein. The 

proteins migrate through two gels of different pore size. The stacking gel enhances the 

sharpness of the protein bands whereas the separation of proteins begins in the separating 

gel. Both stacking and separating gels were prepared as described (Laemmli method) and 

cast with gel cassette. After polymerization of both separating and stacking gels, the 

cassette with the complete gels was fixed in the electrophoresis chamber, which was then 

filled with electrophoresis buffer. 10 μg of protein lysate per sample was denatured in 5x 

sample buffer by heating for 3 minutes at 95 °C and then resolved by SDS-PAGE gel 

electrophoresis. The test samples and molecular weight marker were loaded into separate 

wells. The electrophoresis was run at a constant voltage of 100V. After electrophoresis 
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was stopped, the separated proteins were transferred to a nitrocellulose membrane using a 

wet transfer system. A sandwich was formed by using 2 pre-wet blotting sponges, a total 

of 6 sheets of pre-wet Whatman paper in transfer buffer with the SDS-PAGE gel and a 

nitrocellulose membrane in between the sponges and Whatman papers. The mini 

sandwich was prepared on a blotting cassette without the inclusion of air bubbles. 

Blotting was performed for 60 minutes at constant voltage. Complete transfer of the 

protein onto the nitrocellulose membrane was indicated by the pre-stained molecular 

weight marker. After blotting, the nitrocellulose membrane was blocked with 5% BSA 

(w/v) in PBS-T solution for 1 h at room temperature on a roller. The primary antibody 

binding to the protein of interest was diluted with 5 % blocking buffer and added to the 

membranes and incubated for overnight at 4 °C. Membranes were washed thrice for 5 

minutes in PBS-T solution followed by adding the HRP-conjugated secondary antibody, 

which was diluted in 1.0 % milk solution and incubated for one hour at room 

temperature. Next, washing was performed thrice on membranes for 5 minutes in PBS-T 

solution and once in 1x PBS. Antibody binding was then visualized using the ECL 

detection system. The detection solutions were mixed at equal volume and evenly 

distributed onto the membranes followed by 3 min incubation. The membranes were then 

placed in a film cassette and the chemiluminescence on the membranes was detected with 

x-ray films. The time for development varied depending on the intensity of the 

chemiluminescence. GAPDH antibody was used as loading control. Each film of a blot 

was first scanned and stored as TIF format. The signal intensities on the films were then 

determined using the Image J software. Relative fold increase of signal intensity of a 

target protein e.g p4E-BP1 from stimulated sample is calculated by setting the normalised 

signal intensity of p4E-BP1 from unstimulated sample as 1.  

 
3.5 Statistical analysis 

All the statistical analyses were performed with the GraphPad Prism software version 4. 

The correlation between two qualitative variables was assessed by the Spearman’s rank 

test. The Mann-Whitney rank sum test was performed to compare two groups of values 

for evaluating the significance of difference in the median values between healthy donors 

and melanoma patients. For all statistical analysis, p<0.05 was considered as significant.   
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4.1   Results 

4.2 Absolute number and balance of circulating DC subsets in advanced 
melanoma patients   

 
4.1.1 Reduction of pDC and mDC2 but not mDC1 numbers in melanoma patients 

We characterized and enumerated three subsets of circulating DCs in age-matched 

healthy controls (n = 18) and stage IV melanoma patients (n = 23), who are free from 

previous treatment for at least 30 days.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Enumeration of circulating DC subsets in whole blood from stage IV melanoma patients and 
healthy controls. (a) Gating strategy that was used to define absolute DC numbers, which represented all 
viable cells within total leukocytes using regions (solid boxes) to exclude dead cells, CD19+ and CD14+ 
cells (R1) and to define DC subpopulations by expression of BDCA1+ myeloid DC subpopulation 1 
(mDC1) (R2), BDCA2+ plasmacytoid DC (pDC) (R3) and BDCA3+ myeloid DC subpopulation 2 (mDC2) 
(R4). (b) Absolute numbers of DC populations in peripheral blood samples obtained from age-matched 
healthy donors (HD) (n=18) and stage IV melanoma patients (Pts) (n=23). (c) Frequency of each DC subset 
in peripheral blood of healthy controls and melanoma patients. Data are shown as median. *p<0.05; n.s., 
not significant.  
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The three subsets of blood DCs were identified and quantified based on the expression of 

BDCA1 (mDC1), BDCA2 (pDCs) and BDCA3 (mDC2) as depicted in Figure 4a by 

multiparametric flow cytometry on freshly collected whole blood. The absolute numbers 

of distinct DC subpopulations and total DC count are shown as scatter plots in Figure 4b.  

 

As depicted in Figure 4b, the median (range) absolute numbers of total blood DCs among 

total leukocytes were 66.3 (22.10-173.5) x 103 cells/mL in melanoma patients and 92.85 

(44.13-136.0) x 103 cells/mL in healthy individuals, respectively. There was no 

significant difference in the total circulating DC count between patients and normal 

controls. The absolute number of the mDC1 population in patients (median (range): 45.67 

(11.03-128.5) x 103 cells/mL) was similar to that observed in healthy subjects (47.66 

(23.93-99.62) x 103 cells/mL). In contrast, mDC2, a minute population of circulating DCs 

was found to be significantly reduced in patients as compared with healthy controls with 

median absolute numbers of 1.97 (0.0-16.3) x 103 cells/mL and 3.38 (0.87-4.99) x 103 

cells/mL, respectively. Interestingly, the pDC count was also significantly decreased in 

stage IV melanoma patients (19.01 (4.85-39.58) x 103 cells/mL) compared to normal 

individuals (30.6 (11.2-49.0) x 103 cells/mL) (Figure 4b). The frequency of each DC 

subset displayed the same trend as absolute numbers with significantly reduced 

percentages of pDCs and mDC2 in melanoma patients (Figure 4c).   

 
4.1.2 Imbalance in blood DC compartments of melanoma patients 
 

The homeostatic balance of DC compartments has been previously demonstrated to be 

associated with the successful withdrawal of immunosuppression in liver or heart 

transplanted recipients (237, 238). It was suggested that the mDC/pDC ratio might serve 

as an index for monitoring the immune reconstitution in patients who received 

transplants. Moreover, the balance of the DC compartment has been shown to correlate 

with a shift towards a Th2 immune response in patients with atopic dermatitis (239). 

Thus, the reduction in pDC and mDC2 counts that we observed in melanoma patients 

may implicate an imbalance in circulating DC compartments. To investigate if this is 

indeed the case, we determined the ratio of mDC subsets to pDCs in our sample group 

(Figure 5a). 
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As expected, the mDC1:pDC ratio was significantly higher (p<0.05), while the 

mDC2:mDC1 ratio was significantly reduced (p< 0.03) in patients compared with healthy 

subjects. The ratio of mDC2:pDC in patients, however, remain unchanged. The high 

mDC1:pDC and low mDC2:mDC1 ratios that we observed in melanoma patients were 

associated with a reduction in the number of pDCs and mDC2 in the peripheral blood. 

Notably, the reduced pDC numbers significantly correlated with decreased numbers of 

mDC2 in melanoma patients (p<0.0001, r=0.7441) (Figure 5b). This observation 

implicates an imbalance of DC compartments among melanoma patients which might 

impact the generation of efficient anti-tumour immune responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 
4.2.1 mDC1/pDC interaction upon TLR9 engagement in stage IV melanoma 

patients 
 
4.2.2 TLR9 triggering on pDCs leads to an up-regulation of CD40 on co-cultured 

mDC1 from healthy donors but not from melanoma patients 
 
The cross-talk between mDCs and pDCs has been recently demonstrated to be important 

for anti-bacterial and anti-tumour immune responses, both in vivo (240) and in vitro 

(76)). Phosphorothioate ODNs with specific CpG A motifs, shortly termed CpG A, 

activate human pDCs that in turn can induce partial maturation of mDCs upon 

interaction, detectable as an up-regulation of co-stimulatory surface molecules on mDCs. 

HD 

Figure 5: Imbalance in blood DC 
compartments of melanoma 
patients. (a) Ratio of different 
blood DC subsets in healthy 
donors (HD) and melanoma 
patients (Pts). (b) Correlation 
between mDC2 and pDC 
subpopulations in the peripheral 
blood of melanoma patients 
(p<0.0001, r=0.7541, Spearman’s 
rank test). Data are shown as 
median. *p<0.05; ** p<0.03; n.s., 
not significant. 
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To examine if the interplay of pDCs and mDC1 was disturbed in melanoma patients, 

mDC1 and pDCs were purified from PBMCs of buffy coats from healthy subjects and of 

leukapheresis products from melanoma patients. The isolation of mDC1 and pDCs was 

based on the specific expression of BDCA1 (mDC1) and BDCA4 (pDCs). Due to the 

very high amount of total blood cells needed in order to obtain sufficient numbers of 

pDCs for analysis, the isolation procedure could only be performed on PBMCs from a 

small set of patient and healthy donor (n = 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Aberrant mDC1/pDC interaction in melanoma patients (Pts). (a) mDC1 and pDCs were purified 
from isolated PBMCs by positive selection with anti-BDCA1 and anti-BDCA4 coated magnetic beads, 
respectively. Purified mDC1 and pDCs were either cultured alone or together at ratio of 3.5:1, which 
reflects a close to physiological ratio in circulating blood cells. Cells were incubated with CpG A (10 
μg/mL) or without stimulus (medium) for 18 h and harvested for assessing the expression of co-stimulatory 
molecules by flow cytometry. (a, b) Representative histograms from 2 experiments depict the effect of CpG 
A stimulation on CD40 and CD80 expression by mDC1 in mDC1/pDC co-cultures from healthy donors 
and patients. The background staining using isotype control antibodies in the different co-culture systems 
was similar and representative histograms are depicted. (c, d) The medians of four healthy donors and 
patients are shown and the results are reported as fold increase of MFI on mDC1 (MFI of CD40 and CD80 
on MDC1 in CpG A stimulated relative to non-stimulated cocultures). n.s., not significant. 
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Since responsiveness to TLR4 and TLR9 ligands is restricted to human mDCs and pDCs, 

respectively, the capability of pDCs in inducing mDC1 maturation upon TLR9 ligand 

stimulation was analysed. Histograms in Figure 6a and 6b show the expression of CD40 

and CD80 on mDC1. Compared to unstimulated co-cultures, which provided the basal 

expression of CD40 and CD80 on mDC1 in contact with pDCs, there was a moderate up-

regulation of CD40 and CD80 expression on mDC1 purified from healthy donors after 18 

h of CpG A incubation. However, under the same conditions, mDC1 from melanoma 

patients showed a slightly impaired CD40 and CD80 upregulation. The accumulated data 

on the increase of CD40 expression in melanoma patients in comparison to control 

subjects tested in parallel are depicted in Figure 6c and 6d. Expression of CD40 and 

CD80 plays a crucial role in facilitating the priming of T cells by DCs. Hence, defective 

mDC1/pDC interactions upon TLR9 activation may perturb T cells priming in melanoma 

patients.     

 
4.2.3 Aberrant IFN-α production by pDCs from melanoma patients 
 
pDCs are major producers of IFN-α among all cell types upon sensing of bacteria and 

virus nucleic acids (68-70). The large amount of IFN-α produced during innate defence 

plays a critical role not only in exerting direct protection to host cells, but also in priming 

and activating mDC1 (52, 74). Recently, Piccioli and colleagues provided evidence that 

the TLR mediated mDC/pDC interaction is partially IFN-α dependent (76). Since there 

were reduced peripheral blood pDC numbers and impaired mDC1/pDC interactions in 

melanoma patients, this may suggest a dysfunction in IFN-α production. Thus, we 

examined the secretion of IFN-α by pDCs in response to CpG A, which triggers TLR9 

signaling and induces a strong production of IFN-α rather than the up-regulation of co-

stimulatory molecules on pDCs.   

 

To prove our hypothesis, the purified peripheral blood BDCA4+ pDCs from healthy 

donors and melanoma patients were co-cultured with BDCA1+ mDCs in the presence or 

absence of TLR9 stimulation. As expected, neither LPS nor CpG A stimulation led to 

detectable IFN-α release by mDC1 (Figure 7a). In contrast, we detected substantial levels 

of IFN-α in pDCs cultures (Figure 7b) and in mDC/pDC co-cultures (Figure 7c) from 
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healthy donors after CpG A stimulation. Under the same conditions, no or only minimal 

IFN-α was detected in mDC/pDC co-cultures from melanoma patients. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: IFN-α production by pDCs during mDC1/pDC interaction upon TLR9 activation. Purified 
mDC1 were co-cultured with BDCA4+ pDCs at a ratio of 3.5:1 and stimulated with CpG A (10 μg/mL), 
LPS (1 μg/mL) or left without stimuli (medium) for 18 h. Supernatants were collected and tested for IFN-α 
levels. (a) mDC1, (b) pDCs and (c) mDC1/pDCs were cultured in medium alone or in the presence of CpG 
A or LPS. (b) The purified pDCs from healthy donors (HD) (n=2) and melanoma patients (Pts) (n=2) were 
treated with NDV at a dilution of 1:100.  (a,c) Representative data (mean of duplicates) from one out of 
four healthy donors (HD#) and 2 out of 4 melanoma patients (Pts#) are depicted. (d) Accumulative data on 
IFN-α levels determined in mDC/pDC co-cultures upon TLR9 triggering by CpG A are presented. n.s., not 
significant. 
 
Accumulative data (Figure 7d) point to an impaired IFN-α production by CpG A 

stimulated mDC/pDC cultures from patients (n = 4) with a median concentration of 9.7 

pg/mL versus 297.6 pg/mL in healthy controls, although the levels of IFN-α was proved 

not statiscally different due to the low number of patients. Treatment of pDCs with NDV 

that can trigger TLR7 signaling also revealed an aberrant function of pDCs from 
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melanoma patients in secretion of IFN-α (n=2). Only pDCs purified from normal donors 

produced IFN-α in response to NDV (n=2).  

 

4.2.3 TLR4 engagement up-regulates CD40 and CD80 on mDC1 from patients and 
healthy donors 

 
The unresponsiveness of pDCs from melanoma patients prompted us to determine 

whether mDC1 from patients also displayed dysfunctional properties. Since mDC1 but 

not pDCs express the TLR4 receptor, mDC1 can respond to LPS stimulation and undergo 

maturation. To analyse this, we stimulated mDC1/pDC cultures with LPS and compared 

the expression levels of CD40 and CD80 on mDC1 from stimulated and non-stimulated 

control cultures. As expected, purified BDCA1+ mDC1 from healthy controls that were 

cultured together with autologous pDCs augmented the expression of CD40 and CD80 

after LPS activation for 18 h (Figure 8a, b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Similar up-regulation of CD40 and CD80 on mDC1 from patients (Pts) and healthy donors 
(HD)upon TLR4 engagement. mDC1 and pDCs were isolated from PBMCs of healthy subjects and 
melanoma patients, co-cultured at ratio of 3.5:1 and stimulated with LPS (1 μg/mL) or without stimulus 
(medium) for 18 h. Cells were harvested for assessing the expression of co-stimulatory molecules by flow 
cytometry. Representative histograms of two healthy donors and two patients depict the effect of LPS 
stimulation on (a) CD40 and (b) CD80 expression by mDC1 in mDC/pDC co-cultures. The background 
staining using isotype control antibodies in the presence or absence of stimulus was similar and 
representative histograms are presented. (c) Medians of CD40 expression on mDC1 from four donors and 
four patients are shown and the results are reported as fold increase of MFI on mDC1 (MFI of CD40 on 
MDC1 in CpG A stimulated relative to non-stimulated cocultures n.s., not significant. 
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Similarly, upon TLR4 engagement, expression of both co-stimulatory molecules was also 

up-regulated on mDC1 purified from melanoma patients. As illustrated in Figure 8c, 

statistical analysis revealed no significant increased of MFI fold change on CD40 

expression on mDC1/pDC from patients and healthy controls in response to LPS.  

 

4.2.4 TLR4 activation by LPS triggers IL-10 production by blood mDC1  
 
IL-10, an anti-inflammatory cytokine, has been frequently detected in higher amounts in 

sera of cancer patients and demonstrated to induce tolerogenic feature in DCs. Therefore, 

we examined whether blood mDC1 produced IL-10 and if these cells from melanoma 

patients produced more IL-10 than healthy controls. Interestingly, we found that LPS 

stimulation triggered production of IL-10 by mDC1 from both healthy controls and 

patients when cultured alone as shown by one representative experiment (Figure 9a). 

 

The mDC1 isolated from melanoma patients produced similar levels of IL-10 compared 

to healthy controls after LPS activation. Co-culture of mDC1 together with pDCs without 

stimulus or in the presence of CpG A did not lead to substantial secretion of IL-10 

(Figure 9a). As shown in Figure 9b, there was no significant difference in IL-10 levels 

detected in mDC/pDC co-cultures from healthy donors and patients upon LPS 

stimulation. The interaction of mDC1 with autologous pDCs from patients do not 

enhanced the secretion of IL-10 upon TLR4 activation. These data suggest that unlike 

tumour induced tolerogenic DCs, blood circulating mDC1 from melanoma patients are 

not polarised to produce more IL-10 than healthy donor mDC1 in the presence of LPS. 

 

To further underline that mDC1 are the major producers of IL-10 in response to LPS 

treatment during the mDC/pDC interaction, different mDC1:pDC ratios were tested by 

increasing the amount of mDC1 and keeping the number of pDCs constant. We found 

that co-culture of mDC1 and pDCs without exogenous stimulus produced little to low IL-

10 (~50 pg/mL) (Figure 9c). An increased mDC1 number led to the production of greater 

amounts of IL-10 after LPS stimulation, suggesting that mDC1 are the major IL-10 

producers. 
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Figure 9: IL-10 production by mDC1 upon TLR4 engagement. mDC1 were isolated and co-cultured with 
or without purified pDCs at a 3.5:1 ratio. Cells were exposed to LPS (1 μg/mL) or left without stimulus 
(medium) for 18 h. Supernatants were collected and tested for the IL-10 levels by ELISA. (a) 
Representative data (mean of duplicates) on IL-10 secretion in response to LPS stimulation in mDC1/pDC 
or mDC1 cultures purified from one healthy donor (HD#) and one melanoma patient (Pts#).(total n = 4) (b) 
Accumulative data are shown as median of IL-10 levels in cell culture supernatants after LPS stimulation. 
n.s., not significant (c) Representative IL-10 secretion (mean value for duplicates) by mDC1/pDCs from 
one healthy donor  (n = 2) cultured at different ratios either with or without LPS.  
 

4.3 Cytokine and chemokine levels in PBMCs and in sera of stage IV melanoma 
patients 

 

4.3.1 Aberrant IFN-α secretion by PBMCs from melanoma patients  
 
Due to the limited samples available to perform co-culture experiments with purified 

pDCs, we extended our study by examining the functional properties of pDCs in whole 

PBMCs. This is possible since the production of IFN-α in response to TLR9 ligation by 

CpG A is restricted to pDCs. Hence, we examined whether a similar impairment of IFN-
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α production by pDCs was detectable in PBMCs from melanoma patients compared to 

healthy controls.  

 

The bars depicted in the Figure 10 show accumulative data of IFN-α production by 

PBMCs from 8 patients in comparison to 6 healthy controls. By stimulating PBMCs from 

melanoma patients with CpG A for 22 h, a very low level of IFN-α was detected at a 

range of 1.67-1200 pg/mL. Conversely, PBMCs of all healthy subjects being tested  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 10: IFN-α production by PBMCs stimulated with CpG A. Cryopreserved PBMCs isolated from 
healthy donors (HD) or melanoma patients (Pts) were thawed and stimulated with CpG A (10 μg/mL) or 
left without stimulus (medium) for 22 h. Supernatants were collected and tested the IFN-α content by 
ELISA. Note: *** p=0.0007; ¢, below detection limit.  
 
strongly secreted IFN-α with a range of 2155-4505 pg/mL. There was an approximately 

5-6 fold higher IFN-α production in PBMCs from healthy controls compared to 

melanoma patients. The significantly lower amounts (p = 0.0007) of IFN-α secreted by 

PBMCs from melanoma patients than healthy controls in response to TLR9 activation 

was in agreement with lower level of IFN-α released in mDC/pDC co-cultures from 

patients (Fig.7). This further suggested that an aberrant IFN-α production by PBMCs 

from patients may be associated with a lower responsiveness to TLR9 activation. 

 
4.3.2 Reduced cytokine and chemokine production by PBMCs from stage IV 

melanoma patients 
 
There is increasing evidence that pDCs are critical in bridging innate and adaptive 

immune responses in the context of systemic viral or bacterial infections. This is known 

to be mediated via a complex cytokine and chemokine network released by pDCs upon 
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activation. Taking advantage of the beads based multianalyte profiling technology (MAP) 

from Luminex, we analysed a panel of pro-inflammatory cytokines and chemokines 

secreted or induced by pDCs upon TLR9-ligand engagement.  

 

4.3.2.1 TLR-9 engagement by CpG A results in TNF-α, IL-1β and IL-6 production 

in PBMCs  

 
TLR9-receptor binding by its ligand CpG A not only induces the production of IFN-α in 

pDCs but also stimulates the MyD88-TRAF6 pathway that activates multiple signalling 

cascades for example NF-κB signaling. Activated NF-κB subsequently translocates into 

the nucleus, which allows its binding to the promoter of multiple genes such as TNF-α, 

IL-6 and IL-1β genes that leads to tremendous production of these cytokines. These 

cytokines play crucial roles in inflammation and have been implicated to contribute to 

tumour development and progression. Since there was significant lower production of 

IFN-α by pDCs from patients, which suggested dysregulation of TLR9-MyD88-IRF7 

signaling, we thus asked if there is defect in the production and induction of 

inflammatory cytokines and chemokines by pDCs in PBMCs upon CpG A treatment. 
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Figure 11: Cytokine secretion by PBMCs 
activated with CpG A. PBMCs from 
melanoma patients and healthy donors 
were stimulated with CpG A for 22 h and 
the supernatant were harvested and 
analysed for the production of (a) IL-6, (b) 
TNF-α and (c) IL-1β. Black bars indicate 
median value of cytokine expression in 
healthy donors (HD) and white bars 
represent melanoma patients (Pts). Results 
are reported as fold increase of cytokine 
release in CpG A stimulated relative to 
non-stimulated PBMCs. 
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To address this possibility, we analysed cytokine levels in the supernatant of PBMCs 

from healthy donors and patients after incubation with CpG A for 22 h using the beads 

based multiplex cytokine assay from Luminex. After CpG A exposure, increased levels 

of IL-6, TNF-α and IL-1β were released by PBMCs treated with CpG A compared to 

non-treated cells. (Figure 11a-c) The increase in IL-6 levels secreted by PBMCs from 

healthy controls upon stimulation was stronger compared to that observed for PBMCs 

from patients, however, this did not achieve statistical significance (Figure 11a). The IL-

1β and TNF-α production by PBMCs from healthy controls and patients during TLR9 

activation were not significantly different (Figure 11b, 11c).  

 
4.3.2.2 Reduced CCL3 and CCL5 secretion by CpG A treated PBMCs 
 
In addition, pDCs have been demonstrated to produce Th1 chemokines including CCL3, 

CCL4, and CCL5 after CpG A stimulation (60, 61). These chemokines particularly 

promote the recruitment of DCs, NK cells and activated memory T cells to the site of 

inflammation by the expression of CCR5, the receptor for CCL3, CCL4 and CCL5. Other 

studies have also shown that IFN-α could serve as stimulus for Th1 cytokine production 

by cells other than pDCs in PBMCs, in particular NK cell, CD4+ T and APCs, leading to 

IFN-γ and IL-12p70 secretion (241, 242). Thus, we first assessed the levels of CCL3, 

CCL4 and CCL5 in PBMCs treated with CpG A using the beads based multiplex 

chemokine assay. The analysis revealed a low basal level of CCL3 but moderate levels of 

CCL5 in PBMCs from normal conrols and patients when cultured in the absence of TLR9 

ligands. The stimulatory effect of CpG A on pDCs led to dramatic increase of CCL5 in 

the healthy controls while a less profound effect was observed for PBMCs from patients. 

The overall fold changes of CCL5 after CpG A stimulation were 3.1 and 1.6 for healthy 

donors and patients, respectively (p < 0.05) (Figure 12a). The secretion of CCL3 by 

PBMCs in healthy controls and patients followed a trend similar to CCL5, which showed 

a strong tendency of reduced overall fold change in PBMCs from patients after CpG 

treatment (p=0.0571) (Figure 12b). Similarly, the fold change of CCL4 levels in patients 

also showed tendency of reduction as compared to healthy controls (Figure 12c). 
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Assessing cytokine secretion in PBMCs allowed us to examine other Th1 cytokines, 

which are not produced but induced by activated pDCs. Thus, we also determined the 

IFN-γ and IL-12p70 levels (Figure 12d, e) in PBMCs after TLR9 activation. Both Th1  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Secretion of Th1 cytokines and chemokines by PBMCs activated with CpG A. PBMCs from 
melanoma patients (Pts) and healthy donors (HD) were stimulated with CpG A for 22 h and the supernatant 
were harvested and analysed for the production of Th1 cytokines and chemokines (a) CCL5, (b) CCL3, (c) 
CCL4, (d) IFN-γ and (e) IL-12p70. Black bars indicate median value of fold increase in the release of 
cytokines after CpG A stimulation in PBMCs from healthy donors and white bars represent melanoma 
patients . *p<0.05. 
 
cytokines, that in principle can be secreted or induced by NK and CD4+ T cells, were 

found to be produced at a low level in PBMCs from patients and healthy control prior 

CpG A stimulation. CpG A treatment resulted in a lower extent of IFN-γ secretion in 

PBMCs from patients compared to healthy donors, however the overall fold change 

between both was not significantly different. On the other hand, statistical analysis 

revealed a strong tendency of reduced IL-12p70 levels (p = 0.057) in PBMCs from 

patients as compared to healthy donors upon CpG A exposure. Our observation suggested 

a defect in the cytokine and chemokine production by PBMCs from melanoma patients, 

pointing to an impairment of pDCs since CpG A is designed to stimulate this subset of 
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cells. These factors play a crucial role in initiating and maintaining Th1 immune 

responses via recruitment of DCs, NK and T cells to the site of inflammation. 

 

4.3.2.3 Production of CXCL10 and CCL2 by PBMCs after TLR9 activation 

 
Furthermore, pDCs have been included as one of the cell types besides monocytes, 

endothelial cells and fibroblast that could secrete IFN-γ inducible protein-10 (CXCL10) 

(243, 244). The impaired production of IFN-α and other chemokines by pDCs from 

melanoma patients prompted us to analyse the ability of PBMCs to secret CXCL10 

following CpG A stimulation. Assessment of CXCL10 level using Luminex multiplex 

protein assay revealed a dramatic increase of CXCL10 production in all investigated 

PBMCs from healthy controls (Figure 13a), while PBMCs from patients displayed 

increased production albeit to a lower extent than the healthy donors.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Secretion of CXCL10 by PBMCs activated with CpG A. PBMCs from melanoma patients and 
healthy donors were stimulated with CpG A for 22 h and the supernatants were harvested and analysed for 
the production of (a) CXCL10 and (b) CCL2. Black bars and white bars indicate median values of fold 
increase in the release of chemokines after CpG A stimulation by healthy donors (HD) and melanoma 
patients (Pts),  resepctively. n.s., not significant. 
 

Several studies have suggested CCL2 can be produced by monocytes (61) and it is also 

produced or induced upon the activation of TLR9 signalling in pDCs (37, 59, 61). Here, 

we measured the secretion of CCL2 and found a consistent increase of the CCL2 level in 

PBMCs from healthy donors after CpG A activation (Figure 13b). Also, PBMCs from 

patients released CCL2 upon CpG A stimulation but showed a tendency to lower 

production than PBMCs from healthy donors with medians of 1.6 and 3.5, respectively. 
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The tendency to lower CXLC10 and CCL2 secretion by PBMCs from patients that tested 

in this study suggested altered pDCs functions in patients.  

 

4.3.3 Dysregulated cytokine and chemokine profiles in the sera of melanoma 
patients 

 
Multiple cytokines, chemokines and pro-angiogenic factors appear to be involved in the 

progression of melanoma as they are secreted by malignant cells as well as stromal cells 

and leukocytes of the tumour microenvironment. The defective pDC activation in 

melanoma patients and the diminished secretion of multiple cytokines and chemokines in 

response to TLR9 engagement suggested dysregulated immunity in these patients.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Sera cytokine and chemokine profiles of melanoma patients. Sera from 29 age-matched healthy 
individuals (HD) and 34 melanoma patients (Pts) at disease stage IV were collected and kept at -20°C until 
use. Multiple cytokines and chemokines within the sera including IL8, CXCL10, CCL2, IL-6, CCL3, 
CCL4, CCL5 and IL-10 were analysed using the xMAP multiplex protein bead array assay technology. 
Scatter plots and bars indicate median value of respective cytokine and chemokine concentration (pg/mL). 
Note:  (p < 0.001 (***); 0.001 < p < 0.01 (**); 0.01< p < 0.05 (*)). 
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Dysregulation of cytokine and chemokine profiles in the circulation could have 

substantial impact on the functional properties of immune cells as well as on the 

recruitment of the cells to inflammation sites. We performed a multiple protein bead 

array assay to define the cytokine and chemokine profiles of melanoma patients and 

healthy subjects. Sera collected from patients for this analysis were obtained from those 

who received no previous systemic treatment for at least 30 days. 

 

The multiplex protein bead array assay revealed that serum concentrations of IL-6 and 

IL-8 (p<0.005) were found to be significantly higher in stage IV melanoma (Figure 14). 

Also the CXCL10 level with a median concentration of 620.1 pg/mL in patients was 

significantly higher than in healthy subjects (393.3 pg/mL) (p<0.001). As depicted in 

Figure 14, CCL2 (108.0 pg/mL vs 60.79 pg/mL), CCL4 (126.6 pg/mL vs 98.61 pg/mL) 

and CCL5 (8866 pg/mL vs 6555 pg/mL) were released in lower amounts into the sera 

from melanoma patients than from healthy subjects. Furthermore, the level of CCL3 was 

largely undetectable in both groups. For IL-10, only very low but significantly elevated 

amounts were detected in the sera from patient group (p<0.05) (Figure 14). This analysis 

highlights a significant difference in serum cytokine and chemokine profiles between 

controls and melanoma patients.  

 
4.4 The role of TLR9 signalling in the aberrant immune function of pDCs in 

stage IV melanoma patients 
 
4.4.1 BDCA2 expression by pDCs from melanoma patients  
 
BDCA2, a pDC specific marker was described to be crucial as negative regulator of IFN-

α signalling upon BDCA2 ligation. To define if BDCA2 was differentially expressed in 

pDCs from melanoma patients, we assessed the expression level of BDCA2 on freshly 

collected whole blood from both healthy controls and melanoma patients. We found no 

significant differences in the expression of BDCA2 on pDCs in whole blood from 

patients compared to healthy controls. However, BDCA2 was expressed to a lower extent 

on healthy pDCs after CpG A activation than on non-stimulated pDCs (Figure 15a). This 

was in agreement with the finding (245) that pDCs down-regulated BDCA2 upon 
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encountering maturation signals. Conversely, this effect was not seen in the case of 

patients (Figure 15b).  

 

 
 
 
 
 
 
 
 
 
 
Figure 15: BDCA2 expression by pDCs from melanoma patients. (a) Whole blood cell samples were 
collected from age-matched healthy donors (n=16) and stage IV melanoma patients (n=21). Cells were 
stained with the BDCA2 antibody and measured by flow cytometry. The scatter plot represents median 
fluorescence intensity (MFI) values of BDCA2 expression on pDCs from (    ) healthy donors (HD) and (    
) melanoma patients (Pts). (b) PBMCs (2x106) from healthy donors and patients were either cultured in the 
presence of CpG A (10 μg/mL) or IFN-α (10,000 IU/mL) or in medium only for 6 h. The data represent the 
median of fold change of BDCA2 expression on stimulated to unstimulated pDCs in PBMCs from 7 donors 
(black bars) and 10 patients (white bars). *p<0.05; n.s. not significant.    
 
4.4.2 Conserved intracellular TLR9 expression in pDCs from melanoma patients 
 
Engagement of the TLR9 receptor by its ligands followed by recruitment of the TLR 

adapter protein MyD88 is crucial for activating TLR9 downstream pathways. This 

process leads to pDC activation, maturation, and to the production of large amounts of 

type I IFN (144). As TLR9 is primarily found in the endosomal compartment, the 

detection of CpG A ligands by TLR9 only occurs as these compounds become 

internalized into the endosomal compartment. To investigate whether a defect in TLR9 

signalling could be the potential mechanism that leads to aberrant IFN-α production by 

pDCs from melanoma patients, we first analysed the intracellular expression of TLR9 in 

pDCs. The intracellular TLR9 expression in BDCA2+ pDCs was assessed by flow 

cyotmetry and determined as median fluorescence intensity (MFI). Histograms (Figure 

16a) show intracellular TLR9 expression in pDCs from two representative patients in 

comparison to two healthy controls. As illustrated here, pDCs from normal controls 

expressed abundant TLR9. Similarly, TLR9 was constitutively expressed in BDCA2+ 

pDCs from melanoma patients. Figure 16b depicts accumulative data on TLR9 
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expression by pDCs from nine melanoma subjects in comparison to pDCs from nine 

control subjects tested at the same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: TLR9 expression in pDCs from melanoma patients. PBMCs isolated from melanoma patients 
(Pts) (n=9) and healthy donors (HD) (n=9) were stained with anti-TLR9 mAb. (a) Gating strategy for pDC 
identification is shown. (b) Intracellular expression levels of TLR9 on BDCA2+ pDCs are shown in 
representative histograms from 2 out of 9 (n=9) per each group. Grey histograms represent the background 
staining using isotype control antibodies. (c) Scatter plots show the MFI of TLR9 expression and bars 
indicate median value of expression in healthy donors (HD) and melanoma patients (Pts). n.s., not 
significant.  
 
Statistical analysis revealed no substantial difference in TLR9 expression between 

melanoma patients and healthy controls based on MFI values. This suggests that pDCs 

may be intrinsically impaired in TLR9 signalling that leads to poor responsiveness of 

pDCs to CpG A stimulation and subsequent impaired IFN-α production in melanoma 

patients. 

 
4.4.3 Impaired MyD88 up-regulation in pDCs from melanoma patients upon CpG 

A ligand stimulation 
 

Binding of CpG A ligands by TLR9 has been shown to lead to the recruitment of 

MyD88, which plays a crucial role in activating the downstream complexes including 
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TRAF6, IRAK1 and IRAK4 (182-184). Therefore, we studied if the expression of 

MyD88 was modulated in response to CpG A and IFN-α. Due to the reduced amount of 

circulating pDCs and the lack of adequate patient materials for cell purification and 

stimulation, we performed subsequent experiments investigating downstream molecules 

of TLR9 signalling on BDCA2+CD123+CD11c- pDC from whole PBMCs instead of 

purified pDCs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: MyD88 expression in pDCs from melanoma patients. PBMCs from melanoma patients (Pts, 
n=10) and healthy donors (HD, n=7) were incubated with either CpG A, IFN-α or in medium for 6 h. The 
cells were then harvested and stained with antibodies against surface antigens CD123, CD11c and BDCA-2 
followed by intracellular staining of MyD88. (a) Gating strategy for pDC identification is shown. (b, c) The 
expression level of MyD88 on CD123+BDCA2+CD11c- pDCs are shown in histograms and as median 
fluorescence intensities (MFI). (b) Representative histograms are from one healthy donor and one patient. 
The background staining using only secondary antibody on cells that were cultured in the presence or 
absence of stimulus was similar and representative histograms are presented in the figure. (c) The fold 
changes of MyD88 expression (MFIstimulated / MFIunstimulated) are presented in scatter plots, bars indicate median 
value of expression. *p<0.05.  
 
Dot plots show the gating strategy on BDCA2+CD123+CD11c- pDCs from PBMCs 

(Figure 17a) while histograms (Figure 17b) depict intracellular MyD88 expression in 
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pDCs from one representative patient in comparison to pDCs from one healthy subject. 

The scatter plot indicates the fold changes (MFIstimulated/MFIunstimulated) that were 

calculated for comparing MyD88 expression. PBMCs exposed to CpG A treatment 

significantly up-regulated MyD88 expression in CD123+BDCA2+ pDCs from healthy 

donors. However, as illustrated in both histogram and scatter plot (Figure17b, c), pDCs 

from patients were insensitive to the same stimulation and contained similar amounts of 

MyD88 prior and after CpG A treatment. When we stimulated PBMCs with UV-

inactivated NDV, a tendency of lower fold changes (MFIstimulated/MFIunstimulated) of MyD88 

expression was noted in CD123+BDCA2+ pDCs from patients (Appendix 8.2, Figure 30). 

Furthermore, there was no change in MyD88 expression in pDCs from patients in 

response to IFN-α treatment whereas MyD88 expression was increased in pDCs from 

healthy donors though the difference between both groups did not reach statistical 

significance (Figure17c). Taken together, the lack of MyD88 up-regulation upon TLR9 

activation points to a defective TLR9 signalling pathway in pDCs from melanoma 

patients. 

 

4.4.4 Regulation of IRF7 expression at the mRNA level  
 
The aberrant IFN-α production in parallel to a lack of up-regulation of MyD88 

expression upon TLR9 ligand stimulation among melanoma patients prompted us to 

further examine the signal transduction downstream of TLR9. One of the key players of 

the TLR9 downstream pathway is IRF7, a transcription factor which is responsible for 

TLR9-mediated production of type I IFN. During TLR9 activation, recruitment and direct 

interaction of MyD88 with IRF7 is a pre-requisite for IRF7 phosphorylation and 

activation (182, 192). Thus, the influence of TLR9 triggering on IRF7 expression in 

pDCs of melanoma patients was investigated. Since the responsiveness of TLR9 ligand 

activation and IRF7 up-regulation is restricted to pDCs in PBMCs within 6 h of CpG A 

stimulation, this allows the analysis to be performed on mRNA isolated from PBMCs 

obtained from healthy controls and melanoma patients.  

 

Figure 18a depicts the fold increase of IRF7 mRNA expression in CpG A stimulated 

PBMCs after normalization to endogenous GAPDH from one representative healthy 
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donor in comparison to PBMCs from one patient (Figure 18b). PBMCs of healthy 

controls were found to augment IRF7 expression to a greater extent in response to CpG A 

activation (median = 9) compared to PBMCs from 6 melanoma patients (median = 2) 

(Figure 18c).  

 
 

 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: Real-time quantitative RT-PCR analysis of IRF7 expression in pDCs from melanoma patients 
and healthy controls. Cryopreserved PBMCs (2x106) from healthy donors (HD) and patients (Pts) were 
thawed and either left untreated or stimulated with CpG A (10 μg/mL), or IFN-α (10,000 IU/mL). Cells 
were harvested after 6 h and lysed for mRNA isolation. IRF7 expression levels determined by quantitative 
real time RT-PCR in PBMCs upon CpG A and IFN-α stimulation from one representative (a) HD and (b) 
Pts are depicted. IRF7 levels were normalized to endogenous GAPDH mRNA levels. Relative IRF7 
expression was quantified using the comparative 2-ΔΔCt

 method. (c) The mRNA expression of IRF7 was 
measured in unstimulated and CpG A or IFN-α stimulated PBMCs from melanoma patients (white bar) and 
age-matched healthy controls (black bar) by quantitative real-time RT-PCR. The results are represented as 
median of fold increase of relative expression. The expression level of IRF7 is shown relative to the basic 
level of untreated PBMC. *P<0.05, n.s. not significant. 
 

Statistical analysis revealed significantly higher fold increase of IRF7 mRNA levels in 

PBMCs from the control group compared to PBMCs from melanoma patients. As a 

positive control, the up-regulation of IRF7 mRNA level was determined by stimulating 

PBMCs with a high dose of IFN-α (10,000 IU/mL). Interestingly, the IRF7 mRNA level 

was strongly enhanced when both PBMCs from healthy controls and patients were 
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activated with a high dose of IFN-α. The induction of the IRF7 mRNA level in PBMCs 

from patients after treatment with high doses of IFN-α was greater than stimulation with 

CpG A (8 fold versus 2 fold). 

 
4.4.5 Hyporesponsiveness of pDCs to TLR-9-CpG A activation leads to impaired 

IRF7 up-regulation  
 
In order to define if the IRF7 protein expression corresponded to the mRNA level in 

PBMCs, we further analysed the IRF7 expression in pDCs by flow cytometry. To assess 

the IRF7 protein expression in pDCs, we analysed the expression level on 

CD123+BDCA2+CD11c- gated pDCs in PBMCs (Figure 19a). Histograms (Figure 19b) 

depict intracellular IRF7 expression in pDCs from one representative patient in 

comparison to pDCs from one healthy control in response to CpG A and IFN-α 

simulation. Before CpG A exposure, we found constitutively high expression of IRF7 in 

CD123+BDCA2+ pDCs from both healthy donors and patients. The basal expression level 

of IRF7 was not significantly different between the control and patient group regardless 

of disease burden. 

 

Of note, CpG A stimulation for 6 h strongly up-regulated IRF7 level in CD123+BDCA2+ 

pDCs from the healthy donors with a median of 1.45 fold increase (Figure 19c). The 

effect of CpG A in up-regulating IRF7 expression was abrogated in pDCs from 

melanoma patients (median fold increase = 1.0) (Figure 19c). Incubation of PBMCs 

obtained from healthy donors with high concentrations of exogenous IFN-α led to a 

median fold increase of 1.8 on IRF7 expression. pDCs from melanoma patients 

responded to IFN-α in a similar pattern as healthy controls. A tendency of lower fold 

change of IRF7 expression was observed in CD123+BDCA2+ gated pDCs from patients 

after UV-inactivated NDV treatment (Appendix 8.2, Figure 30). Taken together, these 

data suggested that pDCs from melanoma patients analysed in this study exhibited an 

impaired TLR9-MyD88-IRF7 signalling but retained an intact IFN-α feedback response 

that activates ISGF3-IRF7 signalling. 
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Figure 19: IRF7 expression in pDCs from melanoma patients.PBMCs (1 x 107) from melanoma patients 
(Pts) and healthy donors (HD) were and incubated with either CpG A, IFN-α or in medium for 6 h. The 
cells were then harvested and stained with antibodies against surface antigens CD123, CD11c and BDCA-2 
followed by intracellular staining of IRF7. (a) Gating strategy for pDC identification is shown. (b) The 
expression levels of IRF7 on CD123+BDCA2+CD11c- pDC are shown in histograms, the fluorescence 
intensity is determined as median fluorescence intensity (MFI). Representative histograms from one 
healthy donor and patient are shown. The background stainings using only secondary antibody on cells that 
were cultured in the presence or absence of stimulus was similar and representative histograms are 
presented in the figure. (c) The fold change of IRF7 expression in MFIstimulated / MFIunstimulated pDCs are 
presented in scatter plot and bars indicate median value of expression. *p<0.05.  
 
4.4.6 Low levels of 4E-BP1 phosphorylation in PBMCs from melanoma patients 

after CpG A stimulation 
 
4E-BP1, a 5’UTR dependent translational repressor acts as inhibitory protein that 

suppresses translation via binding to eIF4E. This inhibition is relieved when 4E-BP1 

undergoes sequential phosphorylation first at Threonine-37/46 sites followed by 

phosphorylation of Serine-65 and Threonine-70. The phosphorylation of Ser65/Thr70 

have been shown to play a crucial role in the release of eIF4E and increased eIF4E 

availability leads to translation initiation of a subset of mRNAs with substantial 
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secondary structures in the 5’-UTR (196). The deletion of 4E-BP1 genes increased the 

translation of IRF7 mRNA in fibroblast (195). The discrepancy between the fold changes 

for IRF7 RNA and protein in pDCs after CpG A or IFN-α stimulation prompted us to 

assess the regulation of IRF7 translation in pDCs from melanoma patients in response to 

TLR9 activation. In this regard, we measured the level of p4E-BP1 since the increased 

level of this protein may promote the translation of IRF7 mRNA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
       

  
 
 
Figure 20: PBMCs (1 x 107) were activated with either CpG A (10 μg/mL) for 6 h or left untreated. (a) 
Cells were stained with surface markers for pDCs and gated on CD11c-CD123+BDCA2+ cells followed by 
intracellular staining with anti-p4E-BP1. (b) Fluorescence intensity of stained cells was measured by flow 
cytometry. The background stainings using only secondary antibody on cells that were cultured in the 
presence or absence of stimulus was similar and representative histograms are presented in the figure. 
Relative fold increase of MFIstimulated / MFIunstimulated  is shown for PBMCs from patients (white bars) and healthy 
controls (black bars). (c) CpG A-treated cells and control cells were harvested and total cell lysates were 
resolved by SDS-PAGE followed by immunoblotting with an anti-p4E-BP1 (Ser65/Thr70) antibody. (d) 
Blots were reprobed with anti-GAPDH antibody as a loading control. The intensity of p4E-BP1 was 
normalized to the intensity of GAPDH and the relative fold increase of 4E-BP1 phosphorylation is shown 
as normalized signal intensity of stimulated/unstimulated samples. Data are shown as median. * p<0.05; ** 
p <0.01 

 

Figure 20a shows histograms on p4E-BP1 (Ser65/Thr70) expression determined as MFI 

in pDCs from two representative patients and healthy controls in response to CpG A 

treatment. Exposure of PBMCs from healthy controls to CpG A induced rapid 
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phosphorylation of 4E-BP1 at Ser65/Thr70 in BDCA2+ pDCs already 15 min after 

stimulation onset (Figure 20a, 20b). PBMCs of all control subjects tested contained 

higher amounts of p4E-BP1 (Ser65/Thr70) compared with non-stimulated cells (Figure 

20b). The increased of p4E-BP1 level in BDCA2+ pDCs after CpG A stimulation 

correlated with up-reuglation of IRF7 proteins, suggesting an enhancement of the IRF7 

mRNA translation.  

 

In contrast, p4E-BP1 was not significantly augmented in pDCs from melanoma patients 

in the presence of CpG A (Figure 20b). An increased p4E-BP1 level was also detectable 

in PBMCs from healthy controls after incubation with CpG A as analysed by 

immnunoblotting (Figure 20c & 20d). The relative fold increase of 4E-BP1 

phosphorylation was determined as signal intensity over loading control and compared to 

untreated sample. In controls, the median relative fold increase of 4E-BP1 

phosphorylation assessed by immunoblotting was 2.75 fold whereas the p4E-BP1 level 

remained unchanged in PBMCs from melanoma patients (median relative fold increase = 

1.0) (Figure 20c). Collectively, both flow cytometry and immunoblotting analysis 

revealed low p4E-BP1 levels in pDCs and PBMCs from melanoma patients in 

comparison to healthy subjects upon TLR9 activation.   

 

4.4.7 Hyporesponsiveness of pDCs to TLR-9-CpG A activation is associated with 
an impaired IRF7 nuclear translocation 

 

As previously shown, activated IRF7 regulates IFN-α production in pDCs by 

translocation to the nucleus and lead to type I IFN gene transcription (192). The up-

regulation of IFN-α then promotes the transcription of downstream genes such as 

cytokines and chemokines responsible for inflammation and migration. Although no up-

regulation of IRF7 expression was observed in patients’ pDCs after CpG A treatment, 

constitutively expressed IRF7 may remain capable to undergo phorphorylation and to 

migrate to nucleus. Hence, we investigated if the deficiency of IFN-α production in pDCs 

from patients could be a consequence of the reduced capability of IRF7 translocation to 

the nucleus. 
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After we activated PBMCs using CpG A for 6 h, the cells were further sorted by flow 

cytometer as CD123+BDCA2+ pDC for visualisation using confocal microscopy. In pDCs 

from healthy controls, majority of the IRF-7 translocated to the nucleus, as assessed by 

the localization of IRF-7 (red) and DAPI (blue) stainings (Figure 21a), while the pDCs 

from melanoma patients did not show similar localization of IRF7 in the nucleus after 

TLR9 ligand activation. An accumulation of IRF7 in the nucleus was also not found in 

the pDCs of both healthy donors and patients without CpG A stimulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: Impaired IRF7 nucleus translocation in pDCs from melanoma patients. PBMCs (1-2 x 108) 
were stimulated with CpG A (10 μg/mL) or cultured in the absence of stimulus for 6 h. Cells were then 
harvested and stained with antibodies against the surface antigens CD123, CD11c and BDCA-2 followed 
by intracellular staining of IRF7. CD123+BDCA2+CD11c- pDCs were sorted prior visualisation by confocal 
microscope. The sorted cells were cytospun and mounted with Vectashield containing DAPI. pDCs were 
visualized by cell surface staining of BDCA2 (FITC), whereas the nucleus was identified using DAPI 
(blue). IRF7 antibody labelled with Alexa fluor 555 (red) was used to analyse nucleus translocation of the 
transcription factor. Representative data from a healthy donor (HD) (n = 6) and a melanoma patient (Pts) (n 
= 5) are shown in (a) HD in medium; (b) HD stimulated with CpG A; (c) Pts in medium; (d) Pts stimulated 
with CpG A.  
 
The localization of IRF7 in the nucleus was further confirmed by 3-dimensional 

reconstruction, which allowed the visualisation of the molecule in 3-dimensional images 

versus images acquired as single plane (Figure 22). IRF7 was found to localise in the 

nuclear compartment in both single plane and 3D-reconstructed images.  
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Figure 22: Visualisation of IRF7 localisation in the cell nucleus via 3-dimensional reconstruction of pDC 
stacking images. Stacking images for visualizing of IRF7 translocation in pDC were acquired using 
confocal microscopy and subsequently reconstructed using image processing software.  
In addition, to avoid staining variation, IRF7 translocation was measured as ratio of 

nuclear to cytoplasmic IRF7. Assessment of nuclear:cytoplasmic ratio revealed a strong 

reduction of detectable IRF7 in the nuclear compartment in pDCs from the patient group 

(Figure 23a). There was a similar trend of low nuclear:cytoplamic IRF7 in pDCs sorted 

from patients after CpG A activation, suggesting aberrant IFN-α production is associated 

with impair of IRF7 translocation in pDCs from melanoma patients. 

 

 

 

 

 

 

 
 
 
Figure 23: Quantitative evaluation on IRF7 translocation. (a) IRF7 translocation was determined by the 
ratio of IRF7 fluorescence intensity in the nucleus and cytoplasmic using Image J. (b) Frequency of pDCs 
with clear IRF7 translocation in the nucleus. Quantitative analysis was performed on at least 50 cells from 
six different healthy donors and five different patients. Bar plots indicate the median values of the ratio of 
nulear: ctyoplasmic fluorescence. *P<0.05, statistical significance when compared with the respective 
controls.    
 

Quantitative analysis revealed that a median of 63% sorted pDCs in healthy controls 

showed a clear nucleus translocation of IRF7 upon CpG A stimulation (Figure 23b). In 

contrast, a significant reduced frequency of IRF7 translocated in pDCs from patients 

(median of 38%). Based on both qualitative and quantitative analysis illustrated here, 
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pDCs from melanoma patients displayed impaired TLR9 signal transduction that led to 

reduced IRF7 translocation.     

 
4.5 Absolute number and phenotype analysis of NK cells in melanoma patients 
 
4.5.1  Altered absolute numbers of NK cells in peripheral blood of melanoma 

patients 
 

NK cells are lymphocytes of the innate immunity that play a crucial role in tumour 

recognition. The interplay of DCs and NK cells is of great importance in maintaining 

efficient immune response. To assess the integrity of NK cells in the peripheral blood of 

melanoma patients, we first enumerated absolute NK cell numbers by combining FACS 

staining with Trucount beads, a 7–9 μm mean diameter beads that serve as an internal 

counting standard for precise cellular quantification. The assay was performed on whole  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: Absolute count of NK cell subsets in whole blood of stage IV melanoma patients and healthy 
controls. (a) Gating strategy used to define absolute NK cell numbers by TruCOUNT assay. Total 
lymphocytes and TruCount beads were included in regions (solid boxes) R1 and R2, respectively. R3 was 
created to define CD56+CD3- NK cells. NK subpopulations were defined as CD56+CD16+ (R4), or 
CD56brightCD16- (R5). (b-d) Scatter plots represent absolute numbers of total NK cells, CD56+CD16+ and 
CD56brightCD16-NK cells of age-matched healthy donors (n=18) and stage IV melanoma patients (n=23). 
Data are shown as median. ***p<0.005, ** p<0.02 and n.s., not significant. 
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blood samples without cell isolation to eliminate potential cell loss. Figure 24a shows the 

gating strategy for defining absolute NK cell numbers from one representative patient. 

Assessment by FACS revealed a significantly decreased proportion of total CD56+ NK 

cells in the peripheral blood of stage IV melanoma patients (n=23) compared with age-

matched healthy controls (n=18). 

 

In order to understand the contribution of different NK cell subsets to the total numbers 

of NK cells, co-staining for CD16 and CD56 was performed, which allowed further 

definition of the two major NK subsets, the CD56+CD16+ and CD56brightCD16- NK cells 

(Figure 24b-24d). The absolute CD56+CD16+ NK cells count (cells/μL) was significantly 

reduced in melanoma patients (median (range): 106.8 (38.90-312.42)) compared to 

healthy controls (226.1 (61.75-410.9)). However, there was no significant difference in 

the CD56brightCD16- NK cell number in patients (8.377 (1.74-88.9)) versus healthy 

controls (7.410 (1.74-88.9)). This suggested that the decrease in the CD56+CD16+ NK 

cell subset strongly contributes to the reduction of total circulating NK cell numbers in 

patients.  

 
4.5.2 Melanoma cell line expresses ligands for NK cell-activating receptors and 

sheds sMICA and sULBP2 in the sera of melanoma patients 
 
Ligands for NK cell-activating receptors including NKG2D, NKp30, NKp44 and NKp46 

are expressed on virus infected or transformed cells. The expression of these receptor-

ligands has been detected on several tumour types such as ovarian cancer and 

glioblastoma, both on tumour cell line and primary tumours (119, 120). This implicates 

the capability of NK cells to recognise tumour cells. Thus, we analysed the expression of 

ligands for NK cell-activating receptors on the melanoma cell line Mel 249 that was 

established from an advanced stage melanoma patient. By assessing the surface 

expression of these ligands, we found a constitutive expression of different ligands for the 

NKG2D receptor including MICA, MICB and ULBP2 (Figure 25a). Interestingly, 

NKp30L and NKp46L, the ligands for NCRs were also substantially expressed by Mel-

249. 
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Figure 25: Detection of expression of ligands for NK cell-activating receptors on melanoma cell line Mel 
249 and detection of soluble NKG2D ligands in the sera of melanoma patients. (a) Human melanoma cell 
line, Mel 249 was established from a patient with metastatic melanoma lesion and stained for the surface 
expression of ligands for NK cell-activating receptors including MICA, MICB, ULBP2, NKp30L-Ig and 
NKP46L-Ig fusion proteins. Cells were washed and further stained with either PE-conjugated goat-anti-
mouse or PE-anti-human-Fc secondary antibody. Grey histograms represent the background staining using 
only PE-conjugated secondary antibody (b) Soluble forms of MICA (sMICA) and ULBP2 (sULBP2) in 
sera of stage IV melanoma patients (Pts) (n=33) and healthy donors (HD) (n=50) were determined by 
ELISA. *p<0.05. 
 
Shedding of these ligands has been implicated to facilitate tumour evasion as prolong 

interaction of MIC molecules with the NKG2D receptor could impair NKG2D expression 

(140). The down-regulation of NKG2D receptor has been shown due to the endocytosis 

of the receptor and subsequent degradation upon prolong interaction of NKG2D receptor 

with its ligand (140). Thus, we assessed whether soluble forms of MICA and ULBP2 

could be detected in the sera of stage IV melanoma patients in this study using ELISA. 

Analysis of sera from 33 melanoma patients revealed that MICA was present in most of 

the sera (29/33) while ULBP2 was found in 18 patients (Figure 25b). The levels of 

sMICA (p< 0.0001) and sULBP2 (p=0.0006) were significantly higher in the sera of 

melanoma patients than in healthy controls (n=50). Taken together, melanoma cells not 

only expressed ligands to NK cell-activating receptors but also the soluble forms of these 

ligands are readily detectable in the sera of melanoma patients with advanced disease 

stage.    
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4.5.3 Circulating NK cells from melanoma patients displayed increased NCR 
expression but no aberrant expression of NKG2D  

 
The substantial difference in the NK cell count in melanoma patients compared with 

healthy controls and the detection of soluble ligands for NK cell-activating receptors in 

the sera of melanoma patients prompted us to explore the expression of their cognate 

receptors namely, NKG2D and NCRs (NKp30 and NKp46) (Figure 26a, b). We first 

found that the proportion of CD56+CD3- NK cells expressing the NKG2D receptor was 

comparable between healthy donors and patients. 

 

Surprisingly, analysis of the same population revealed 69.7 % (median) of total NK cells 

expressed NKp30 in healthy controls whereas 81.67% (median) of NKp30+ NK cells 

were detected in melanoma patients. Similarly, fewer NKp46+CD56+ NK cells were 

detected in the control group than in patients with a median of 63.6% versus 78.75% 

(Figure 26b). Parallel analysis of the surface expression levels of NKG2D on CD56+ NK 

cells from melanoma patients and healthy donors demonstrated no difference. In contrast, 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26: Detection of NK cell-activating receptors expression in PBMCs from healthy controls (HD) and 
melanoma patients (Pts). PBMCs (2x106 cells) from healthy subjects (n=6) and melanoma patients (n=6) 
were stained with antibodies against cell surface NK cell-activating receptors including NKG2D, NKp30 
and NKp46. (a) Dot plot represents the gating used to define the region of CD56+ NK cells for further 
analysis. (b) Bar plots indicate median percentage of CD56+CD3- NK cells expressing NKG2D, NKp30 
and NKp46 (c) Expression of NK cell-activating receptors on CD56+CD3- NK cells is given as MFI. All 
data are presented as median value.*p<0.05, **p<0.01, n.s not significant. 
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circulating NK cells from patients displayed significantly increased surface NKp30 and 

NKp46 expression (P<0.05) (Figure 26c). Our data reveal higher frequencies of NKp30 

and NKp46 expressing NK cells and expression level of both receptors in melanoma 

patients compared to healthy donors, but no differences in NKG2D.  

 
4.6 Functional properties of NK cells from stage IV melanoma patients 
 
4.6.1 Conserved NK cell degranulation, perforin content and IFN-γ secretion in 

melanoma patients 
 
We next evaluated the integrity of the functional responsiveness of NK cells in melanoma 

patients. In this analysis, we compared the capability of resting NK cells to produce IFN-

γ in response to PMA/ionomycin stimulation, which bypasses upstream receptor 

signalling. Stimulation with PMA substantially elicits production of IFN-γ by NK cells in 

healthy controls whereas the IFN-γ secretion by NK cells from melanoma patients seems 

to be reduced (Figure 27a, b). However, this did not reach statistical significance.  

 

Apart from IFN-γ production, the perforin content, which is responsible for pore 

formation during cytolysis could also provide hints on the functional status of NK cells. 

FACS analysis revealed that similar percentage of NK cells from melanoma patients and 

healthy donors were positive for perforin (Figure 27c). We further analysed the function 

of NK cells by co-incubation with Mel249 and K562, which are both HLA-class I 

deficient cells (Figure 27d). In this assay, we monitored the expression of CD107a, a 

lysosomal associated membrane protein (LAMP-1), which residing in cytolytic granules 

membranes. Upon activation of NK cells, CD107a is mobilized to the cell surface 

following activation-induced granule exocytosis and serve as surrogate markers for 

degranulation (246, 247). Degranulation of NK cells from patients was not significantly 

impaired, despite of reduced CD56+CD16+ NK cell count (Figure 27d). These data 

suggest augmentation of NKp30 and NKp46 expression together with increased 

frequency of NKp30+ and NKp46+ NK cells that we observed may play a role in 

conferring similar cytolytic property of NK cells in peripheral blood from melanoma 

patients to NK cells from healthy donors. 
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Figure 27: Detection of IFN-γ production, perforin content and degranulation in NK cells from melanoma 
patients. PBMCs (2-5X 107 cells) from healthy subjects (HD) and melanoma patients (Pts) were incubated 
in culture medium containing 10% PHS in IMDM for overnight. 2x106 PBMCs were then either cultured 
alone in complete cell culture medium or stimulated with PMA (2.5 μg/mL) and Ionomycin (0.5 μg/mL) 
for 4 h. After 4 h stimulation, cells were surface stained with antibodies against NK cell markers and fixed 
and permeabilised for intracellular staining. PMA/iono stimulated PBMCs were stained intracellulary with 
anti- IFN-γ and measured by flow cytometry. (a) Dot plot depicts the gating of NK cells. (b) Bars indicated 
the median value of IFN-γ producing cells in healthy donors and melanoma patients. For detecting the 
perforin content, cells after rested in cell cultured medium were harvested and subjected to intracellular 
perforin staining without stimulation. (c) Accumulative data from 4 healthy subjects and 6 patients are 
shown for percentage of perforin positive NK cells. (d) Degranulation capacity of NK cells was examined 
by culturing PBMCs either alone in medium or together with target cells (K562 or Mel 249) at a ratio 10:1 
for 4 h in the presence of CD107a antibody. The cells were then harvested and subjected to surface staining 
and measured by flow cytometry. The percentage of CD107a NK cells was determined. Results are 
reported as fold change of percentage of CD107a+CD56+ NK cells in stimulated relative to unstimulated 
PBMCs.  All data were presented as median value. n.s. not significance when compared with the respective 
controls.  
 

4.6.2 IL-2 activated NK cells induced up-regulation of CD40 and CD80 expression 
on moDCs 

 

To further address the functional role of NK cells in inducing autologous mDC activation 

in melanoma patients, we first determined whether IL-2 activated NK cells could induce 

activation of moDCs in healthy controls. This analysis was performed by co-incubating 

moDCs generated from monocytes with a GM-CSF and IL-4 cocktail together with 

autologous resting or IL-2 activated NK cells at a ratio of 1:1. After 48 h co-culture, the 

expression of co- stimulatory molecules on moDCs was measured by flow cytometry. 
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Figure 28: IL-2 activated NK cells induced up-regulation of CD40 and CD80 expression on monocyte-
derived DCs (moDCs). IL-2 activated (100 IU/mL for 6 days) or resting NK cells from different healthy 
donors were co-incubated with autologous immature moDCs at the NK cell to DC ratio of 1:1. As positive 
control, moDCs were stimulated with IFN-α (1,000 IU/mL). After 48 h, cells were harvested and assessed 
for (a) CD40 and (b) CD80 expression by flow cytometry. Representative results from two healthy controls 
were shown for CD40 and CD80 expression. The background stainings using isotyope control antibodies 
on cells cultured in the presence or absence of stimulus was similar and representative histograms are 
presented in the figure. 
 

As positive control to assess the expression of CD40 and CD80 on maturated moDC, 6 

days cultured immature moDC were stimulated with IFN-α at 1000 IU/mL. IL-2 

activated NK cells increased the expression of CD40 and CD80 on moDC although to a 

lesser extent than IFN-α. However, CD40 and CD80 were only slightly augmented upon 

co-culture of resting NK cells together with moDCs (Figure 28a & 28b). This indicates 

that IL-2 activated NK cells are more efficient than resting NK cells in promoting 

maturation of DCs by up-regulating expression of CD40 and CD80. The expression of 

these two co-stimulatory molecules is essential for the role of DCs in priming T cells.      
  
4.6.3 IL-2 activated NK cells induced up-regulation of CD40 expression on mDC1 

in both healthy donors and melanoma patients 
 
Previous evidence shown by Gerosa et al. (71) and our results demonstrated the ability of 

IL-2 activated NK cells to induce moDC maturation. We then assessed whether mDC1 

from melanoma patients could be activated by NK cells in the presence of IL-2 

stimulation.We evaluated the up-regulation of co-stimulatory molecules on freshly  
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Figure 29: Activation of NK cells by IL-2 induces CD40 expression on mDC1 during NK/DC interaction 
from healthy controls (HD) and patients (Pts). (a) Freshly purified BDCA1+ myeloid DC (mDC1) were 
cultured together with autologous NK cells in the presence of IL-2 (100 IU/mL) or LPS (1 μg/mL) or in 
medium alone at the indicated DC: NK cells ratio. After 48 h, cells were harvested and evaluated for 
expression of CD40 on BDCA1+ gated mDC1by flow cytometry. (a) Representative histograms of one 
experiment from each group of healthy donors and patients depict the effect of IL-2 (left panel) and LPS 
(right panel) stimulation on CD40 expression by mDC1 after mDC1/NK co-culture. The background 
stainings using isotyope control antibodies on cells cultured in the presence or absence of stimulus was 
similar and representative histograms are presented in the figure (b) The bars indicate fold increase of 
CD40 MFI (MFI of stimulated/unstimulated) after stimulation with either IL-2 or LPS at the indicated 
mDC1/NK ratio and data are shown as median from the healthy donor (n=3) and the patient (n=4) group. 
 
purified BDCA1+ mDC1 that were co-cultured with autologous NK cells at mDC1/NK 

ratio of 2:1 in the presence or absence of IL-2 for 48 h. Histograms depict the expression 

of CD40 on mDC1 obtained from one representative control and patient. Upon co-culture 

of mDC1/NK cells together with IL-2, there was up-regulation of CD40 expression in 

mDC1 from healthy donors. This increased expression was also found on mDC1 purified 

from melanoma patients when cultured under the same condition (Figure 29a & 29b). As 

positive control, mDC1/NK cells were treated with LPS, which predominantly activates 

mDC1 by up-regulating CD40 expression. Both mDC1 from healthy donors and 

melanoma patients showed a similar increase of CD40 expression in response to LPS 

stimulation (Figure 29a & 29b), suggesting no differences in activation of NK cells.  
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5.0 Discussion 

Immune dysfunction is an early event in cancer development and exaggerates during 

tumour progression. It is of importance to define the potential mechanisms that are 

involved in immune dysfunction for improving and tailoring new cancer therapy. To 

understand the mechanisms of immune dysfunction, the current study aimed at 

investigating the integrity of peripheral blood DCs and NK cells in melanoma patients 

from the aspect of the absolute numbers and functional properties. It also aimed to 

identify the decisive signalling pathway and molecules that are responsible for the 

functional alteration observed in both immune subsets. Our analyses were performed on 

materials collected from stage IV melanoma patients and age-matched healthy donors. 

This excludes the possibility of aging-related deficiencies in the immune system between 

healthy donors and patients. Besides, a similar defect was observed among all the patients 

included in the analysis and excludes the possibility of therapy-related effect on immune 

deficiency in melanoma patients. 

 

 

 

 

5.1 Reduced DC numbers in the peripheral blood of melanoma patients 

DCs are considered as the most potent antigen presenting cells, responsible for initiating 

and regulating immune responses (33, 34). Circulating blood DCs are essential for 

conferring adequate immunity to the host. Thus, in response to various inflammatory 

stimuli, a substantial increase of DC numbers appears to be important to replenish the 

pool of tissues-resident DCs. Three main DC subsets including mDC1, mDC2 and pDCs 

are found in human peripheral blood and equipped with distinct immunological functions. 

Human mDC1 are believed to be more efficient in presenting antigens and in eliciting 

proliferation of naïve T cells than mDC2 and pDCs. So far, the function of mDC2 is 

largely unknown while pDCs are known to be responsible for robust production of type I 

IFN.  
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During tumour initiation and progression, DCs are frequently targets of tumour immune 

escape mechanisms. Altered circulating DC numbers have been reported for breast 

cancer, lung cancer, head and neck squamous cell carcinoma and hepatocellular 

carcinoma (248-252). Thus, enumeration and functional characterisation of the DC 

subsets in cancer patients are crucial to understand their immunological role, also in 

melanoma. Of specific importance are studies related to distribution of DC subsets in 

fresh peripheral blood and tumour tissues from melanoma patients. The current study 

focuses on DC subsets in peripheral blood from stage IV melanoma patients. The lack of 

tumour tissues in this cohort of patients precluded the possibility to analyse tumour-

infiltrating DCs in the patients. 

 

Based on the application of novel markers for blood DCs (46), the present study analysed 

the numbers of mDC1, mDC2 and pDCs in the peripheral blood of stage IV melanoma 

patients in comparison to age-matched healthy controls. It was observed that numbers of 

circulating human blood pDCs and mDC2 were significantly lower in stage IV melanoma 

patients than in age-matched healthy controls. In contrast, Gerlini et al. reported that the 

frequency of DC subsets in the peripheral blood from melanoma patients with clinically 

evident lymph node metastasis were not statistically different from healthy donors (102). 

The discrepancy between the two analyses might be attributable to the methods used for 

DC subset identification. In the current study, circulating human DC subsets were 

enumerated in freshly collected whole blood in the presence of appropriate anti-

coagulant, whereas Gerlini et al. examined isolated PBMCs. DC subset identification in 

whole blood allows high accuracy and provides reproducible DC subset enumeration as it 

circumvents substantial cell loss and formation of unwanted cell aggregates that occur 

during PBMC isolation, which could lead to inaccuracy in DC count determination. In 

this study, whole blood samples were processed within 6 hours after blood withdrawal 

and the acquisition of antibody stained fixed samples was performed within 24 h after 

blood collection. This reduces the variability related to the method of DC enumeration. 

Moreover, both BDCA1 and BDCA3 low expressing B cells and monocytes as well as 

dead cells, which could non-specifically bind the antibodies, were also excluded from 

analysis within the present study, demonstrating the superiority of this method. As 



  Discussion 

   92

already mentioned, our analyses were performed on materials collected from patients and 

age-matched healthy donors. This excludes aging-related deficiency in the immune 

system between healthy donors and patients. The reduced numbers that we observed in 

our study are unlikely due to prior treatment since materials used to perform this analysis 

were collected according to approved clinical protocol from patients who either had not 

received any treatments or were free from systemic treatment and radiotherapy for at 

least 30 days and had recovered from all toxicities associated with prior regimen. 

Furthermore, similar defects were observed among all patients included in this analysis.  

 

So far, it is unclear whether the reduction of pDC counts observed in melanoma patients, 

is due to poor pDC survival or to the migration of pDCs to lymphoid organs or tumours. 

It has been reported that a high proportion of pDCs is present within metastatic lymph 

nodes and forms aggregates in close vicinity to melanoma nests (102). In particular, 

pDCs have been frequently detected between high endothelial venules and melanoma 

cells (102). This supports the possibility that pDCs migrate from the circulation towards 

the tumour area (102), which potentially leads to reduced pDC numbers in the blood. 

Besides melanoma, tumor-infiltrating pDCs have been detected also in the solid 

malignant tissue of patients with head and neck squamous cell carcinoma and breast 

cancer (99, 101). Furthermore, accumulation of pDCs in the lesions of patients with 

psoriasis and systemic lupus erythematosus has been found to be associated with reduced 

circulating blood pDCs (253, 254). 

 

The migration capability of pDCs is related to the expression of CXCR3, the receptor for 

CXCL10 (255). In this study, substantially elevated CXCL10 was found in sera from 

melanoma patients, which implicates a potential association of decreased pDC numbers 

with their migration. Unfortunately, due to the lack of tissue from patients enrolled in the 

present study, tumor homing of pDCs could not be verified. 

 

Besides migration, the decline of blood DC numbers might be attributed also to cell death 

presumably induced by tumour-derived factors. Increased spontaneous apoptosis of blood 

DCs has been previously described in patients with breast cancer implicating that the 
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inhibitory influence of tumours could extend far beyond the tumour microenvironment 

(256). It has been suggested that IL-10 and TNF-α reduce the viability of pDCs and 

induce apoptosis (257) and both of these cytokines could be produced by tumours for 

example melanomas (258, 259). Moreover, tumour derived TGF-β could induce 

apoptosis of DCs (260). Systemic DC cell death may thus impose chronic stress on the 

immune system of cancer patients and result in progressive paucity of DCs in the 

circulation (261). Alternatively, the reduced DCs numbers in peripheral blood might be 

related to a disturbed DC differentiation. However, the inhibition of pDCs and mDC2 

development from CD34+ progenitors has so far not been well studied.  

 

5.2 Altered balance of the peripheral blood DC compartment in melanoma 
patients 

 
There are increasing numbers of studies exploring the balance of the DC compartment as 

an indicator of the immune status of patients with autoimmune disease and patients who 

underwent transplantation. These studies suggest that the mDC/pDC ratio potentially 

serves as an index of the immune balance and allows monitoring of the patients immune 

reconstitution. Thus, a lower mDC/pDC ratio has been associated with successful 

withdrawal of immunosuppression in liver or heart transplanted recipients (235-237). 

Furthermore, it has been shown that anti-bacterial and anti-tumour immune responses 

rely on the cross-talk of mDCs and pDCs (76, 262) and that the balance of the DC 

compartment potentially influences the distribution of Th1 and Th2 cells in the peripheral 

blood (239). A study on patients with atopic dermatitis revealed a low mDC/pDC ratio 

that was associated with a shift towards Th2 immune responses and disease severity 

(239). In contrast, a higher mDC/pDC ratio has been detected in the synovial fluid 

compared to the peripheral blood of patients with rheumatoid arthritis and has been 

suggested to be involved in the initiation, maintenance and/or regulation of inflammatory 

responses (263). In diabetes, IFN-α production correlates inversely with the mDCs/pDCs 

ratio (264). Thus, the mDCs/pDCs ratio was determined in this study. A profound 

increase of the mDC/pDC ratio was detected in melanoma patients compared to age-

matched healthy controls. The increased mDC/pDC ratio was not related to changes in 
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the IFN-α level in the sera of melanoma patients as IFN-α was not detectable in most of 

the samples being analysed (data not shown).  

 

Interestingly, a positive correlation between pDCs and mDC2 numbers was demonstrated 

in the present study. mDC2 are a minor and rare myeloid DC subset, their numbers 

declined in melanoma patients. So far, there are only a few observations on the behaviour 

of mDC2 in different pathological states (265-267). A recent study revealed an 

association of pDC and mDC2 numbers in Sjoren syndrome, a chronic inflammatory 

disease (268). However, the functional properties of mDC2 are poorly understood due to 

the extreme rarity of this cell type in the blood especially in pathological situation. 

Therefore, it remains unclear how the association between pDCs and mDC2 and the low 

mDC2/mDC1 ratio contribute to the immune status of melanoma patients. A better 

understanding on the significance and function of mDC2, including their role in 

development and/or maintenance of the immune system during various pathological 

situations remains to be established. Besides, it remains unclear if mDC1 and mDC2 are 

two distinct population or the same cell type at different maturation stages. Thus, the 

current study can not rule out if the low mDC2/mDC1 ratio in melanoma patients is due 

to a disturbed differentiation of mDC2 to mDC1 or vice versa.   

 

5.3 Impaired interaction between mDCs and pDCs from melanoma patients 

The role of the mDC and pDC interplay, in which pDCs promote mDC differentiation 

and activation, has been previously established in systemic lupus erythematosus patients 

(269) and during the development of antiviral immunity (270). The synergy of mDCs and 

pDCs has so far not been investigated in cancer patients. The lack of this information is 

mainly attributable to the limited patient material, which does not allow an isolation of 

sufficient pDC numbers especially when pDC numbers are decreased during disease. By 

taking advantage of the availability of leukapheresis products from some melanoma 

patients, the mDC1/pDC cross-talk was analysed in the current study, though only on a 

small number of patients. We are aware of the fact that the enormous amount of blood cells 

needed for purification of minor cell populations such as pDCs is provided only by a few 

advanced-staged melanoma patients. Since alternative systems to perform such study are 
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not available due to the lack of animal models with similar pDCs biology as human and 

in vitro systems that mimic the immune dysfunction of melanoma patients, this is the 

only way to gain insight on the pDCs functions between tumor patients and healthy 

individuals. The small numbers of patients with sufficient blood materials is due to the 

poor survival rate of stage IV melanoma patients and the challenge encountered in patient 

recruitment and follow up process. This can be, at least in part, overcome by improving 

patient recruitment for clinical studies. Furthermore, the application of new technologies 

with increased sensitivity and specificity that allows single cell preparation for multiple 

parameters analysis may overcome the need to obtain large quantity of samples.   

 

When mDC1 and pDCs from healthy controls were co-cultured and stimulated with 

TLR9 ligands, a modest but clear CD40 and CD80 up-regulation on mDC1 was 

observed. In agreement with this observation, the synergy between murine pDCs with 

mDCs in response to CpG has been shown to lead to an increased CD40 and CD86 

expression by mDCs (262). Likewise, a very recent report from Piciolli et al. suggested 

that TLR9 ligand stimulated human pDCs activate mDCs and induce a significant up-

regulation of CD40 and CD80 on mDCs during co-culture (76). 

 

Upon mDC1/pDC interaction, little or no up-regulation of CD40 and CD80 occurred on 

mDC1 from melanoma patients and accumulative data showed the up-regulation is to a 

lesser extent than on cells from controls. This finding suggested that the impaired CD40 

up-regulation might be due to a certain unresponsiveness of pDCs to CpG A treatment, 

alternatively mDC1 from melanoma patients might be dysfunctional. mDCs from 

different cancer patients have been often described to be dysfunctional and to express low 

co-stimulatory molecules (271). However, stimulation of mDC/pDC co-cultures with 

LPS induced comparable up-regulation of CD40 and CD80 on cells from patients and 

healthy controls. Moreover, IL-2 activated autologous NK cells from melanoma patients 

were capable of inducing CD40 up-regulation on mDC1 to the same extent as in healthy 

controls.  
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Several studies have demonstrated the crucial role of pDC-derived type I IFN in inducing 

maturation of mDCs, which can be partially blocked by neutralising antibodies against 

the type I IFN receptor (73, 76). In agreement to these studies, the impaired mDC1/pDC 

interaction in melanoma could be attributed, at least in part, to the inability of pDCs to 

produce normal amounts of IFN-α in response to TLR9 stimulation. Indeed, much lower 

amounts of IFN-α were released in mDC1/pDC co-cultures from melanoma patients than 

from healthy controls though it did not reach statistical sigificance. The lack of statistical 

significance can be due to the low number of patients and the intrinsic variations among 

individuals. The defect in IFN-α production by pDCs in mDC/pDC co-culture is 

supported by a similar and significantly lower IFN-α level in PBMCs from melanoma 

patients than from controls upon CpG A stimulation.  

 

Although mDC1 from melanoma patients undergo maturation following LPS stimulation, 

it is very likely that they also secrete IL-10, since IL-10-secreting tolerogenic DC do 

expressed B7 molecules (272). In fact, purified mDC1 from healthy controls secreted IL-

10 in response to LPS activation and the rise in IL-10 corresponded to the increase of the 

mDC/pDC ratio, pointing to the mDC1 as the major source of IL-10 production. Palucka 

et al. reported that IL-10 suppresses IFN-α production by pDCs in a dose-dependent 

manner (256). However, under LPS simulation, similar levels of IL-10 were measured in 

mDC/pDC co-cultures from healthy controls and patients. This excludes the possibility 

that the altered IFN-α production by patients’ pDCs was due to suppression by higher IL-

10 levels.  

 

Interestingly, in vitro generated moDCs secrete IL-12p70 in response to LPS. However, 

stimulation of blood mDC1 from patients or healthy controls with LPS alone did not 

result in IL-12p70 production (data not shown). Similar finding were reported by 

Picciolli et al. (76) further emphasizing the physiological difference between blood 

mDC1 and in vitro generated human moDC. Taken together, this study demonstrates a 

defect of pDCs from melanoma patients to respond to CpG A stimulation and to mediate 

mDC1 maturation. Since the mDC/pDC cross-talk enhances the ability of mDCs to 

present antigen to T cells (262), the defect of the mDCs/pDCs interaction in melanoma 
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patients might have impact on the capacity of DCs from patients to elicit and amplify 

efficient anti-tumour T cell responses. 

 

5.4 Altered cytokine and chemokine profile released by PBMC after CpG A 
stimulation and in sera of melanoma patients  

 
Increased production of pro-inflammatory mediators including cytokines and chemokines 

upon TLR activation is one of the major functions of DCs (273). In this study, we 

observed a reduction of IFN-α release by PBMCs and mDC/pDC co-cultures from 

melanoma patients after CpG A stimulation. Consistent with this data, dysfunction of 

pDCs lacking the ability to produce type I IFN upon TLR exposure have been shown in 

patients with head and neck cancer (101). A low or moderate production of type I IFN by 

pDCs has also been reported for pDCs infiltrating sentinel lymph nodes or tumours from 

melanoma patients (102). In breast cancer, type I IFN production by pDCs was described 

to be completely absent (99). Type I IFN seems to influence tumor development and 

progression via different mechanisms. The cytokine has been shown to inhibit 

proliferation of certain tumours, to protect CD8+ T cells from activation-induced cell 

death (274) and to promote terminal differentiation of mDCs (275).  

 

Human pDCs are not only responsible for robust production of type I IFNs (276, 277) 

they also produce substantial amounts of other inflammatory molecules upon TLR9 

activation. Several studies defined that pDC stimulation leads to the production of 

cytokines like TNF- , IL-1β and IL-6, as well as chemokines such as CCL3, CCL4, 

CCL5 and CXCL10 (278-280). Expression of some of these cytokines and chemokines, 

secreted by pDCs after TLR ligation, is enhanced by autocrine type I IFN. Furthermore, 

pDC-derived IFN-α could also induce cytokine and chemokine production by other cell 

types. In fact, we observed lower CCL3, CCL4 and CCL5 fold change in PBMCs from 

melanoma patients than healthy controls after CpG A stimulation. Despite the lack of 

statistical significance in some of the cytokines and chemokines production that is due to 

the low number of patients, similar defect were observed among patients. As chemokines 

often act in synergy, a reduction of several chemokines with similar functions may 

impact the function of immune effectors. Since CCL5 acting alone or in combination 
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with CCL3 and CCL4 could confer protection to T cells from activation-induced cell 

death, a reduction of these chemokines may indirectly be relevant to a higher 

susceptibility of T cells to undergo apoptosis in melanoma patients (221).  

It has been reported that CCL3, CCL4, CCL5 and CXCL10 are chemokines that display 

redundant functions in the recruitment of DCs, T cells and NK cells (221-223, 234, 278). 

Most likely, the production of several chemokines that are able to attract the same type of 

immune cells represents a mechanism to compensate a deficiency of chemokines (281) 

and allows the fine-tuning of specific biological responses. Therefore, the lack of pDC 

activation in melanoma patients that consequently lead to low CCL3, CCL4, CCL5 and 

CXCL10 release may implicate a defect in recruitment of the respective immune effector 

cells to site of imflammation. Indeed, a recent study described that the lack of effective 

T-cell mediated melanoma rejection might be attributable to the absence of key 

chemokines in these tumours. Lymphocytes-rich melanoma tumours were found to 

uniquely express CCL2, CCL3, CCL4, CCL5, CCL19, CCL21, CXCL19, CXCL10, 

CXCL11 and CXCL13 (282).   

 

CCL2 and IL-12p70 secretion as detected in PBMC cultures following CpG A 

stimulation can be produced by other cell types, which are activated by pDCs. IL-12p70 

has been described to represent a key immunoregulatory cytokine produced by 

immunogenic mDCs and is capable of polarising T cells towards a Th1 phenotype and of 

optimising NK cell function (55). Treatment of moDCs with IFN-α for example, induces 

high IL-12p70 production and is associated with a higher capacity in priming antigen 

specific CD8+ T cells (52). We observed a tendency of reduced IL-12p70 prodcution in 

PBMCs from melanoma patients after CpG A stimulation. Very often, tumours directly 

paralyse the capability of mDCs to secrete IL-12p70 through the release of tumour-

derived factors such as IL-6, IL-10 and TGF-β, thereby inhibiting efficient CD8+ T cells 

activation (283, 284). However, since mDC/pDC cooperation confers optimal function of 

mDCs, it is possible that tumour cells could simply escape from immune recognition by 

suppressing pDC function, which in turn affects mDC activity. Low CCL2 instead of 

high concentrations, however, may facilitate the migration of monocytes/macrophages to 

the tumour and have been previously reported to favour the growth of melanoma (230-
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232). These data on the altered PBMC cytokine profile demonstrated in this study may 

be, at least in part, a consequence of the impaired TLR9 signaling in pDCs from cancer 

patients. 

 

Interestingly, we observed low CCL2, CCL4 and CCL5 in the sera of melanoma patients. 

One can not exclude the possibility that the dysregulated chemokine profile observed in 

melanoma patients may relate to the impaired pDCs function, but the association remains 

to be established. Although increased IL-6 and CXCL10 levels were observed in the sera 

of patients, its association with the dysfunctional properties of pDCs is elusive since the 

tumour itself and endothelial cells may serve as the source for these cytokine and 

chemokine.  

 

5.5 Reduced NK cell numbers but conserved NK function in melanoma patients  

NK cells are one of the key players in preventing growth and spreading of malignant 

cells. In our study, absolute NK cell numbers were quantified in whole blood from stage 

IV melanoma patients and age-matched healthy controls. The analysis revealed a 

reduction in absolute numbers of CD16+CD56+ NK cells but not CD56bright NK cells. In 

fact, a decreased absolute NK cell numbers have been reported for patients diagnosed 

with HNSCC and with diffuses large B cell lymphoma (285, 286). A low NK cell number 

may be explained by an impeded maturation and differentiation of NK cells from 

precursors, which could be induced by tumour growth (287). Another explanation could 

be that tumours induce apoptosis of NK cells in cancer patients (288).  

 

Tumour associated impairment of NK cell function has been shown in patients with 

advanced malignancies (289-292). In particular, reduced NK cell numbers, a dysbalance 

in the activating and inhibitory NK cell receptor repertoire and a dysregulation of the 

cytotoxic machinery can suppress NK cell function. Moreover, shedding of ligands 

binding to the activating receptor NKG2D has been reported to down-regulate receptor 

expression due to chronic ligand engagement (140, 141). Down-regulation of the 

NKG2D receptor can also be induced by cytokines such as TGF-β derived from tumours 

(139).  
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Unexpectedly, despite the reduction of CD16+CD56+ NK cells in the circulation of 

melanoma patients, these cells still displayed a conserved phenotype and function. The 

expression levels of the NKG2D receptor and the frequency of NKG2D expressing NK 

cells were comparable for melanoma patients and healthy controls, though the soluble 

forms of the NKG2D ligands MICA and ULBP2 were elevated in sera of melanoma 

patients (292). A study by Groh et al. suggested that upon prolonged interaction with 

soluble NKG2D ligands in the sera of cancer patients, the NKG2D receptor was down-

regulated on NK and T cells by endocytosis and subsequent degradation (140). In 

contrast, a down-regulation of the NKG2D receptor was not observed although high 

concentration of soluble MICA was detected in sera from patients with rheumatoid 

arthritis (293). Besides, a normal expression of the NKG2D receptor by NK cells has also 

been reported by Cai et al. in hepatocellular carcinoma patients (294), suggesting 

differential regulation of this receptor in distinct malignancies.  On the other hand, 

defective NK cell function has been associated with aberrant NCR family but not 

NKG2D receptor expression in acute leukemia (291). NK cells from melanoma patients 

that were analysed in this study showed an increased expression of the NCR receptors 

NKp30 and NKp46. Furthermore NKp30 and NKp46 positive NK cells were present at a 

higher frequency in the peripheral blood from melanoma patients than from controls. In 

contrast, comparable expression of NKp30 and NKp46 by NK cells from patients and 

healthy donors were observed in case of metastatic renal cell carcinoma (294). 

Interestingly, an increased NKp30 and NKp46 expression by NK cells was reported in 

patients infected with HCV (295). This suggests that the expression profile of NK cell 

activating receptors is differentially regulated in distinct malignancies and other 

pathological situations.  

 

Furthermore, the secretory cytolytic machinery of NK cells from melanoma patients was 

found to be intact since the frequency of perforin expressing NK cells, the ability to 

degranulate and to secrete IFN-γ by NK cells from melanoma patients were comparable 

to healthy controls. In agreement, NK cells from metastatic renal cell carcinoma patients 

display killing activity similar to those from healthy subjects (294). It is tempting to 
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speculate that an increased NKp30 and NKp46 expression and frequency of NKp30+ and 

NKp46+ NK cells may play a role in conferring conserved NK cell killing activity 

although there is decreased NK cell numbers in melanoma patients. In fact, NK cells 

from patients infected with HCV exhibit increased NKp30 expression and this is 

accompanied by a conserved cytotoxic activity against all tested targets except hepatoma 

cells (295). NK cells can also mediate killing through non-secretory mechanisms via the 

Fas/Fas ligand pathway (131). It remains to be determined if this type of killing is intact 

in NK cells from melanoma patients.  

 

The present study also demonstrated that in co-cultures of mDC1 and IL-2 activated NK 

cells, the NK cells purified from melanoma patients induced mDC1 maturation, measured 

as CD40 up-regulation, similarly to NK cells from normal subjects. This supports the 

notion that peripheral blood NK cells from melanoma patients possess intact functional 

properties. However, we could not exclude the possibility that tumour infiltrating NK 

cells might have different properties compared to blood NK cells, since the tumour 

microenviroment consists of different immunoregulatory factors with strong suppressive 

activities. 

 
5.6 Involvement of MyD88, IRF7 and p4E-BP1 in aberrant IFN-α production by 

pDCs from melanoma patients 
 
A number of factors including the relatively low numbers of pDCs in blood have 

precluded careful analysis on aberrant functionality of this DC subset in cancer patients. 

In this study, by using pDCs purified from leukapherasis products of patients, we 

revealed that TLR9 triggering by CpG A induced a higher IFN-α secretion by pDCs from 

healthy donors than from patients. Consistently, non-fractionated PBMCs from patients 

also displayed a marked reduction in IFN-α production after CpG A stimulation in 

comparison to PBMCs from healthy subjects. Alhough evidence concerning alterations in 

the IFN-α production by pDCs in several malignancies is rising, the exact mechanism 

and molecules involved in this process still remain unclear. One explanation for the 

aberrant function of pDCs could be a dysregulated BDCA2 expression. BDCA2 is a 

negative regulator of IFN-α signaling and ligation of the BDCA2 receptors inhibits TLR9 
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induced type I IFN, TNF and IL-6 production (296). In this study, however, 

investigations on the basal expression of BDCA2 by pDCs from healthy controls and 

patients revealed no significant differences. Thus, it is unlikely that BDCA2 contributes 

to the aberrant IFN-α production by pDCs from stage IV melanoma patients. Besides, it 

is known that BDCA2 is down-regulated when pDCs encounter a maturation signal 

(245). Interestingly, the reduction in BDCA2 levels on CpG A activated pDCs was 

greater for pDCs from controls than from melanoma patients, suggesting that the pDCs 

from patients are somehow defective in their response to CpG A. In addition to BDCA2, 

the BDCA4 molecule is also involved in the negative regulation of IFN-α production by 

pDCs. Cross-linking of the BDCA4 receptor on pDCs with magnetic beads has been 

shown to abrogate IFN-α production (297). However, it is unlikely that BDCA4 down-

regulation is responsible for the aberrant IFN-α production by pDCs observed in this 

study, since pDC purification was performed similarly on cells from patients and 

controls. This is also supported by a marked reduction in IFN-α production by non-

fractionated PBMCs from the patients after CpG A stimulation. 

 

Several signalling pathways are activated in pDCs following TLR9 ligation by CpG A. A 

major pathway is the TLR9-MyD88-IRF7 signalling cascade that leads to massive IFN-α 

production by pDCs. Thus, the decreased responsiveness of pDCs to TLR9 stimulation 

might be related to the TLR9 expression level. Mouse pDCs that lack TLR9 completely 

lose their ability to produce type I IFN. In particular, tumour-derived factors from 

patients with HNSCC have been shown to down-regulate intracellular TLR9 expression 

(298). However, the present analysis revealed similar intracellular TLR9 expression 

levels in pDCs from melanoma patients and healthy individuals.  

 

Besides TLR9, the aberrant IFN-α secretion by pDCs from patients might be due to 

defects in the downstream signaling. It has been shown that expression of MyD88 and its 

recruitment are important for forming signalling complexes with IRAK4 and TRAF6, 

which in turn are crucial for IRF7 activation (182-185). In murine pDCs deficient of 

MyD88, type I IFN release upon TLR7/9 ligand stimulation is abolished (182, 186). In 

this study, TLR9 triggering did not lead to an up-regulation of MyD88 in pDCs from 
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patients compared to healthy donors, implicating a defect in down-stream signaling for 

IFN-α production.  

 

In support of this finding, further analysis revealed that CpG A stimulation of PBMCs 

from patients only slightly up-regulated the mRNA levels of IRF7, the master regulator 

of IFN-α production. Unlike other immune effector cells, pDCs constitutively express the 

IRF7 protein and this is partially related to the rapid release of IFN-α by these cells. 

Upon the stimulation of pDCs with CpG A, it has been shown that the activation of TLR9 

signalling leads to a strong transcriptional activation of the IRF7 gene, which is crucial 

for a high IFN-α production by pDCs (299). Besides, only small changes in IRF7 

expression can substantially affect IFN-α production by pDCs (299). With respect to this, 

the present study suggests that pDCs from melanoma patients were only partially 

activated by CpG A. Although comparable basal IRF7 protein levels were detected by 

flow cytometry in gated pDCs from patients and controls, IRF7 up-regulation after TLR9 

ligation was significantly lower in patients.  

 

Recently, it has been demonstrated that the expression of IRF7 is also regulated at the 

level of translation. Colina et al. demonstrated that IRF7 mRNA translation is under 

control of the translational repressor 4E-BP1 (195). The phosphorylation of 4E-BP1 leads 

to the release of eIF4E and the formation of the eIF4F complex that allows the initiation 

of eukaryotic cap-dependent mRNA translation to take place. A low p4E-BP1 

(Ser65/Thr70) level was detected in pDCs and PBMCs from melanoma patients 

compared to healthy donors within this study, suggesting that an impaired translation of 

IRF7 mRNA might contribute to the absense of IRF7 protein up-regulation, despite an 

increase in IRF7 mRNA. A clear association of nearly constant IRF7 and p4E-BP1 

protein levels after CpG A stimulation of PBMCs from patients indicates that the release 

of eIF4E may inhibited by 4E-BP1, which prevents the increase in translation of IRF7 

mRNA. Consistently, Colina et al. demonstrated that a deletion of 4E-BP1 and 4E-BP2 in 

mice enhances the level of IFN-α production in comparison to the corresponding controls 

(195). The current study can not directly rule out if there is alteration on the total 4E-BP1 

protein that may affect the translation efficiency due to limited samples. However, this is 
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most unlikely the case since there is no significant difference on the basal IRF7 

expression between patients and healthy donors. It is reasonable that a deficient IRF7 

mRNA translation could affect the IRF7 protein pool, which is essentially required for a 

robust IFN-α secretion upon TLR9 activation.  

 

IRF7 up-regulation can also occur in response to IFN-α production in an autocrine 

manner by binding to the IFNAR. Triggering of the IFNAR elicits ISGF3 signalling 

thereby sustaining IRF7 expression after TLR9 activation (207-209). Since in this study 

TLR9 stimulation was performed for only 6 hrs, the up-regulation of IRF7 is unlikely to 

be an effect of autocrine IFN-α signalling because this process needs approximately 10-

12 h (300). Besides, we detected similar up-regulation of IRF7 mRNA levels in PBMCs 

from patients and healthy controls after exogenous IFN-α treatment. The exogenous IFN-

α stimulation can activate not only pDCs but also other non-pDCs cells in PBMCs to up-

regulate IRF7 expression through the ISGF3 pathway. However, a marked up-regulation 

of IRF7 mRNA in parallel to increased IRF7 protein levels detected in PBMC gated 

pDCs from melanoma patients indicates an intact ISGF3 signalling in pDCs from 

melanoma patients. 

 

Importantly, regulation of type I IFN production upon TLR9 engagement is crucially 

governed by the translocation of phosphorylated IRF7 to the nucleus. The defective 

MyD88-IRAK-TRAF complex assembly and their recruitment could contribute to the 

impairment of IRF7 activation, which is essential for subsequent translocation to the 

nucleus (301). Confocal microscopy analysis performed within this study demonstrated a 

lower IRF7 translocation rate in pDCs from melanoma patients than from controls. This 

impairment likely accounts for the reduced IFN-α production by pDCs from melanoma 

patients. Moreover, the reduced nuclear translocation of IRF7 detected in cord blood 

pDCs versus adult pDCs leads to an aberrant IFN-α production, which further supports 

our finding (302). Besides, the impairment of IRF7 in pDCs from melanoma patients that 

we observed in our study is unlikely due to prior treatment since a similar defect was 

observed among all patients included in this analysis. This is further supported by a 

recent study that has demonstrated an impairment of IFN signalling in lymphocytes from 
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breast cancer patients was not affected by chemotherapy as similar defect was equally 

observed in patients received treatment and patients received no treatment (303).  

 

Taken together, these findings underline the impairment of TLR9 signalling accounts for 

aberrant IFN-α production by pDCs from melanoma patients. Reduced up-regulation of 

IRF7 mRNA and translation in parallel with an impairment of its nuclear translocation 

are likely explainations for the alteration of IFN-α release by pDCs from melanoma 

patients.  

 

6.0 Conclusion 

In the present work, we have identified an immune defect in pDCs from stage IV 

melanoma patients. We have demonstrated that the absolute number of pDCs, mDC2 and 

CD16+CD56+ NK cells in the peripheral blood of melanoma patients is reduced. 

However, functional impairments were observed in pDCs but not NK cells from 

melanoma patients. The reduced pDC number in melanoma patients is accompanied by a 

trend of impairment in activating mDC1 during mDC1/pDC interaction upon CpG A 

stimulation. In addition, pDCs also displayed a defective function in producing pro-

inflammatory cytokines and chemokines including IFN-α, CCL5, CCL3 and CCL4. We 

have further shown that the aberrant function of pDCs in advanced stage melanoma 

patients was due to an impairment of TLR9 signalling. This defect was further related to 

a reduced up-regulation of IRF7 mRNA and translation in parallel with an impairment of 

its nuclear translocation in pDCs from melanoma patients.  

 

In conclusion, our findings provide evidences that pDCs from stage IV melanoma 

patients display functional defects involving an impairment of TLR9 signalling. These 

findings represent an important insight into immune dysfunctions in cancer patients. 

Further analysis on designing strategies to correct this dysfunction may enhance the 

success of cancer immunotherapeutic strategies.  
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8.0 Appendix 
 
8.1  Buffers 
 
Blood DC Enumeration Buffer 
0.5% BSA: 0.01% NaN3; 1x PBS 
 
1X BD FACS™ lysing solution 
5mL of 10X BD FACS™ lysing solution in 45mL distilled H2O 
 
FACS Buffer 
10% FCS; 1x PBS without Ca2+/Mg2+ (pH7.2-7.4) (PAA); 0.1% NaN3   
 
3.75% PFA 
5mL of 37.5% Formaldehyde solution (Microscopy grade) in 45mL distilled H2O  
 
MACS Buffer 
0.5% BSA; 2mM EDTA; sterile 1xPBS without Ca2+/Mg2+ (pH 7.4);   
 
Dead Cell Removal Binding Buffer 
25 mL of 20X dead cell removal binding buffer; 475 mL sterile double distilled H2O 
 
Fixation Solution for Immunofluorescence  
1.0% Formaldehyde in PBS 
 
Permeabilisation Buffer for Immunofluoresence 
0.25% Triton-X (v/v); 1x PBS without Ca2+/Mg2+ (pH7.4); 3% FCS 
 
Wash Buffer for Immunofluorescence 
0.1% BSA; 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
ELISA Coating buffer 
PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
ELISA Wash Buffer 
0.05% Tween-20 (v/v); 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
Blocking Buffer for ELISA (IFN-α)   
0.05% Tween-20 (v/v); 0.1% BSA; 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
Assay diluent for ELISA (IFN-α) 
0.05% Tween-20 (v/v); 0.1% BSA (w/v); 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
Blocking Buffer for ELISA (IL-10)   
5.0% BSA (w/v); 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
 
Assay diluent for ELISA (IL-10) 
1.0% BSA (w/v); 1x PBS without Ca2+/Mg2+ (pH 7.2-7.4) 
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ELISA Stop Solution 
1N H2SO4 in H2O 
 
Complete Cell Culture Medium 
RPMI 1640 (with  Glutamine) (PAA) ; 10% FCS; 1% Penicillin/streptomycin 
IMDM (with Glutamine) (PAA); 10% Human AB Serum; 1% Penicillin/streptomycin 
 
Freezing Medium 
10% DMSO; 90% FCS 
 
Trypan blue 
3.6 mL diluted with 6.4 mL 1X PBS. 
 
50X TAE Buffer 
242 g/L Tris base 
37.2 g/L Na2EDTA*2H2O 
57.1 mL/L glacial acetic acid 
in ddH2O, pH 8.5, storage at room temperature 
 
SDS poly-acrylamide gel electrophoresis 
 
5X Sample buffer 
5ml glycerol (99% v/v); 1.5g SDS; 2.5ml β-mercaptoethanol; 1mL bromophenol blue (0.25% 
w/v); Adjust with H2O to 7.5 mL and store at 4 °C 
 
 
4X Upper Buffer, pH 6.8 
3.03 g Tris-base (0.5 M); 0.2ml SDS (20 %); Adjust pH to 6.8 and with H2O to 100 mL 
 
4X Lower Buffer, pH 8.8 
18.17 g Tris-base (1.5 M); 2ml SDS (20 %); Adjust pH to 8.8 and with H2O to 100 mL 
Separating gel (10 %) 
4.0 mL ddH2O 
3.3 mL 30% acrylamide/bis-acrylamide solution 
2.5 mL Tris HCl (1,5 M, pH 8.8) 
0.1 mL SDS (10 %) 
0.1 mL APS (10%) 
4 μL TEMED 
 
Stacking gel 3 mL ddH2O 
1.72 mL  ddH2O 
0.5 mL 30% acrylamide/bis-acrylamide solution 
0.76 mL Tris HCl (0.5 M, pH 6.8) 
30 μL SDS (10 %) 
30 μL APS (10%) 
3 μL TEMED 
 
10X Electrophoresis Running Buffer  
30g Tris-Base; 144g Glycine; 10g SDS; Adjust with H2O to 1 L; store at room temperature 
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10X Western blot Transfer Buffer  
30g Tris-Base; 145g Glycine; 3.74g SDS; Adjust with H2O to 1 L; store at room temperature 
 
PBS-T Washing Solution for Western Blot 
1x PBS without Ca2+/Mg2+ (pH 7.2-7.4); 0.1 % (v/v) Tween 20  
 
Blocking buffer  
(5 %) 5 % (w/v) powdered milk or BSA in PBS-T solution 
 
8.2 MyD88 and IRF7 expression by pDCs from melanoma patients upon NDV 

stimulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30: MyD88 and IRF7 expression in pDCs from melanoma patients after NDV infection. PBMCs 
from melanoma patients (Pts) and healthy donors (HD) were incubated with either UV-inactivated NDV or 
in medium for 6 h. The cells were then harvested and stained with antibodies against surface antigens 
CD123, CD11c and BDCA-2 followed by intracellular staining of MyD88 or IRF7. (a) The expression 
levels of IRF7 on CD123+BDCA2+CD11c- pDC are shown in histograms, the fluorescence intensity is 
determined as median fluorescence intensity (MFI). (b) The fold changes (MFIstimulated / MFIunstimulated) of MyD88 
and IRF7 on CD123+BDCA2+CD11c- pDCs are presented in scatter plot, bars indicate median value of 
expression. *P<0.05.  
 
Activation of TLR7 signalling, which sense the ssRNA of virus triggers the type I IFN 

production via the recruitment MyD88 with downstream complexes including TRAF6 

and IRAK1. In this study, when we stimulated PBMCs with UV-inactivated NDV, a 

ssRNA type virus that can activate TLR7 signalling and TLR independent pathway (RIG-

I and MDA-5), some tendency of reduced fold changes (MFIstimulated/MFIunstimulated) of 

MyD88 expression was noted in CD123+BDCA2+ gated pDCs from patients compared to 

healthy controls. Subsequent analysis on NDV stimulated PBMCs revealed a tendency of 

lower fold change of IRF7 expression in PBMCs from patients (Appendix 7.2, Figure 

30). Statistic analysis revealed no significant difference on the fold changes of MyD88 

and IRF7 expression between healthy controls and patients. 
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