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Abstract

In this thesis it is shown that every finite nilpotent group has the arithmetic lifting
property over Qab, the maximal abelian extension of the field of rational numbers.
For a group G to have the arithmetic lifting property over a field K means that
every Galois extension M/K with Galois group G can be obtained from a Galois
extension M̃/K(t), regular over K, with Galois group G by replacing the variable
t with an element of K. In particular it is shown that every finite nilpotent group
can be realized regularly as Galois group over Qab(t).

Zusammenfassung

In dieser Arbeit wird gezeigt, dass jede endliche nilpotente Gruppe die Arithmetis-
che Liftungseigenschaft über Qab hat, der maximalen abelschen Erweiterungen des
Körpers der rationalen Zahlen.
Hierbei hat eine Gruppe G die Arithmetische Liftungseigenschaft über eine Körper
K, wenn jede Galoiserweiterung M/K mit Galoisgruppe G aus einer über K regu-
lären Erweiterung M̃/K(t) gewonnen werden kann, indem die Variable t durch ein
Element aus K ersetzt wird. Insbesondere wird nachgewiesen, dass jede endliche
nilpotente Gruppe regulär über Qab(t) realisiert werden kann.
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Introduction

The original Noether problem formulated by E. Noether in [Noether1] poses the
question, whether the fixed field of a permutation group G which acts on a rational
function field by permuting the indeterminates is again purely transcendental over
the base field. When this is the case, it is possible to obtain a parameterization
for all polynomials with Galois group G. Even very small groups do not necessarily
have this property: The first counterexamples over the field of rational numbers Q
are abelian groups which contain at least one element of order 8 by [Lenstra1] and
C47, the cyclic group of order 47, by [Swan1].

A weaker property of a group G is the existence of generic polynomials for this
group over a given field K. A generic polynomial is a polynomial g(t1, ..., tn, X)
which has Galois group G over the rational function field K(t1, .., tn) in n indetermi-
nates such that all Galois extensions M/K ′ of all fields K ′ ⊇ K can be obtained by
specializing the ti to values ai ∈ K ′ and taking the splitting field of g(a1, ..., an, X).
For infinite fields the existence of generic polynomials for a given group is equivalent
to the existence of generic extensions as described in [Saltman1]. Generic polyno-
mials over Q exist, for example, for all cyclic groups of odd order, thus for some
groups which do not have the properties considered in the Noether problem. For
abelian groups which contain elements of order 8, generic polynomials still do not
exist by [Saltman1].

If there are no generic polynomials for a given group over a given field, one can
ask if there is a “weaker specialization property” which is satisfied by this group.
The arithmetic lifting property, formulated for the first time in [Beckmann1] in 1992,
is such a property. By definition a finite group G has the arithmetic lifting property
over a given field K if every G-extension M/K is a specialization of a G-extension
M̃/K(t) of K(t), the rational function field in one variable, that is regular over K.

M̂
G

{{{{{{{{

@@@@@@@@

K(t)

EEEEEEEE M
G

}}}}}}}}

K

In this context, a field extension M̃/K(t) is called regular (over K) or geometric, if
K̄ ∩ M̃ = K for every algebraic closure K̄ of K.
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The existence of generic polynomials for a certain group implies the arithmetic
lifting property for this group. But the arithmetic lifting property is a weaker prop-
erty than the existence of generic polynomials. In the very first treatment of the
arithmetic lifting property in [Beckmann1] it is proven that all abelian groups have
the arithmetic lifting property over Q.

Since the arithmetic lifting property is stable under the formation of certain
group products and group extensions, it is possible to construct a wide array of
groups for which no generic polynomials exist but which still have have the arith-
metic lifting property. A list of groups which have the arithmetic lifting property
is contained in the final chapter of this thesis. One important result for the consid-
erations done in this text is the following: Let K be a field, and let G1 and G2 be
groups which have the arithmetic lifting property over K. Then the direct product
G1 ×G2 has the arithmetic lifting property over K, too.

For now, even over Q no group is know that does not have the arithmetic lifting
property. The conjecture that every finite group has the arithmetic lifting property
over an arbitrary number field, mentioned for the first time in [Black1], is called the
Beckmann-Black-Conjecture. On the other hand for a group G to have the arith-
metic lifting property over a field K implies that there exist realizations for G over
K(t) that are regular over K. The question if a given finite group has the arithmetic
lifting property, however, is not answered for general finite groups over many fields.
The “weaker” question if every finite group can be realized by an extension of Q(t)
regular over Q, was first posed by J.-P. Serre and is still a major open problem.

This thesis is concerned with the arithmetic lifting property for nilpotent groups
over Qab, the maximal abelian extension of Q, and hence with regular realizations
of nilpotent groups over the same field. Since every nilpotent group can be decom-
posed into a direct product of p-groups, and since the arithmetic lifting property is
stable under the formation of direct products, this question can be reduced to the
case of p-groups.

The most extensive result in this direction is due to J. Sonn. In [Sonn1] it is
shown that there is a regular realization of every nilpotent group over the field Qsolv,
the maximal solvable extension of Q. The paper is not, however, concerned with
the arithmetic lifting property, and the methods can not be generalized or modified
to realize nilpotent groups regularly over Qab.

The only other results concerning the arithmetic lifting property for nilpotent
groups are for small p-groups and dihedral groups. In [Ledet2] and in [Jensen1],
Chapter 6, the question for generic polynomials, and hence for the arithmetic lifting
property, for 2-groups up to the order of 24 = 16 and p-groups up to the order of
p3 for odd p over Q is answered. In [Black1] and [Black2] the arithmetic lifting
property is proven for dihedral groups of arbitrary order as long as sufficiently many
roots of unity are contained in the base field. The diploma theses [DiGiacomo1] and
[Basten1] are concerned with the arithmetic lifting property up to the order 26 or
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p4 for odd p over number fields that contain sufficiently many roots of unity.

The main result of this thesis is that every finite nilpotent group has the arith-
metic lifting property over Qab and in fact over every field of characteristic zero and
of cohomological dimension ≤ 1 that contains all roots of unity. Furthermore we see
that every finite nilpotent group has an realization over Qab(t) that is regular over
Qab and deduce that this assertion holds for every field that contains Qab, generaliz-
ing the result of [Sonn1]. These results are contained in Section 3.3, see in particular
the Main Theorem in this section and Corollary 3.3.3.

To prove that every finite p-group has the arithmetic lifting property over a field
K of characteristic zero and of cohomological dimension ≤ 1 that contains all roots
of unity, we use that every p-group has a non-trivial center and so every p-group can
be constructed inductively by taking group extensions with cyclic kernel, starting
from the trivial group. We do not, however, consider every single p-group separately.
Instead we construct, in terms of generators and relations, a certain central series
of p-groups in such a way that the groups are determined by as few relations as
possible. In doing so, we obtain that every p-group can be realized as factor group
of at least one of the groups of the series. This will be done in Section 2.1.

Since our field K contains all roots of unity, central group extensions lead to
Brauer type embedding problems if the groups in question are Galois groups of
extensions of K. This is quite useful, because there are very accessible solvabil-
ity criteria for Brauer type embedding problems and moreover, if one solution to a
Brauer type embedding problem is known, all other solutions can be obtained from
this solution using one parameter. The necessary parts of the theory of Brauer type
embedding problems are summarized in Section 2.2.

The proof that a certain group of our central series has the arithmetic lifting
property is by induction on the nilpotency class of the groups in this series. In each
step of the induction, we consider for a group E an E-extension F/K that is a so-
lution to a Brauer type embedding problem given by a cyclic and central subgroup
Cq of E, a factor group E/Cq = G and a G-extension M/K. We assume that M/K
is a specialization of a regular G-extension M̃/K(t) and prove that the embedding
problem given by E,G and M̃/K(t) is also solvable, that the solution F̃ has Galois
group E, and that F̃ specializes to F . This will be done in Section 3.2.

Aside from these considerations, we show in Section 3.1 that for a given group
that has the arithmetic lifting property over a field K as described above, every
factor group has the arithmetic lifting property as well. This allows us to infer from
the fact that every group of our central series has the arithmetic lifting property over
K that every finite p-group has the arithmetic lifting property over K. So, roughly
speaking, to realize a given p-group G, we “embiggen the embedding problems”
leading to the field having this group as Galois group, arrive at a larger field, “step
down” to a subfield and thus arrive at the group G as factor group.



10 Introduction

Danksagung

Mein Dank gilt zuallererst meinem Betreuer Prof. Dr. B.H. Matzat, der mich
bei der Ausarbeitung meiner Doktorarbeit ausgezeichnet betreut hat und jederzeit
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A note on notation

H,G,E Groups.
Z(G) The center of a group G.
A An abelian group.
Cq The cyclic group of order q.
ρ A generator of a group.
σ An element of a group or a (basic) commutator.
τ A generator of the kernel of a cyclic group extension.
F,M,K Fields.
K× The mulitplicative group of a field K.

K̃ K(t).

M̃ A regular extension M̃/K̃ specializing to M/K.
(M/K,E,G) An embedding problem where Gal(M/K) = G

and E is a group extension with cokernel G.
ω An element of a field. The solution field of a cyclic

embedding problem (M/K,E,G) is given by M( q
√
ω).

s(σ) A section of a group extension s : G→ E.
c(σ1, σ2) A factor system mapping σ1, σ2 ∈ G to a cyclic group Cq.
Rσ(x) The term x · σ(x) · ... · σq−1(x), where σq = 1.
F A free group.
Li, Ui The subgroups of the lower or upper central series of a group.
cl The nilpotency class of a nilpotent group.
wi Usually the weight of a commutator.
Ai, Bj Sets of indeterminates Xi,α, Yj,β.
ai, bj Sets of elements xi,α, yj,β of a field.
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Chapter 1

Prerequisites

1.1 Specialization and valuations

This section introduces the specialization of a rational function field and summarizes
the basic theory of discrete valuations. A more thorough account of these topics can
be found in [Neukirch1], Chapter II.

Specializing means roughly the following: Let K be a field and K(t) the function
field in one variable over K. By f(t,X) we denote an element in the polynomial ring
K(t)[X] such that M̃/K(t) is a Galois extension of K(t) given by f(t,X). We choose
some element s ∈ K for which f(s,X) is a polynomial in K[X]. Of course not every
s ∈ K will do; if we have for example f(t,X) = 1

t−1
−X, replacing t by 1 will not

result in a polynomial in K[X]. But if f(s,X) ∈ K[X] (and if f(s,X) is separable)
this process will yield a Galois extension M/K satisfying [M : K] ≤ [M̃ : K(t)].
This extension will be called a specialization of M̃/K(t). We will make this precise:

Let M̃ be a field. A discrete valuation of M̃ is a map v : M̃ → Z ∪ {∞} such
that the following holds:

v(ãb̃) = v(ã) + v(b̃)

v(ã+ b̃) ≥ min{v(ã), v(b̃)}
v(ã) =∞⇐⇒ ã = 0

There exists an element ã ∈ M̃× satisfying v(ã) 6= 0.

The symbol ∞ satisfies the relations: ∞ +∞ = α +∞ = ∞ + α = ∞ and
α < ∞ for all α ∈ Z. Two discrete valuations v1, v2 are equivalent if they differ
only by a constant, i.e. if there exists a z ∈ Z such that z·v1(a) = v2(a) for all a ∈ M̃ .

A place of M̃ is a map ϕ : M̃ →M ∪ {∞} for a field M , such that the following
holds:

ϕ(ãb̃) = ϕ(ã)ϕ(b̃)

ϕ(ã+ b̃) = ϕ(ã) + ϕ(b̃)

There exists an element ã ∈ F satisfying ϕ(ã) =∞.

13
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There exists an element b̃ ∈ F satisfying ϕ(b̃) 6=∞ and ϕ(b̃) 6= 0.

The symbol ∞ satisfies the relations: ∞ +∞ = α +∞ = ∞ + α = ∞ and
α · ∞ = ∞ · α = ∞ for all α ∈ M . The expressions ∞ · ∞ and 0 · ∞ are not
defined. (Each of those equations is understood to hold if the right hand side of the
equation is defined.) Two places ϕ1 : M̃ → M1 ∪ {∞} and ϕ2 : M̃ → M1 ∪ {∞}
are equivalent, if there exists an isomorphism λ : M1 → M2, such that λ ◦ ϕ1 = ϕ2

holds.

In general, each equivalence class of places corresponds to an equivalence class
of valuations: Assume we have a discrete valuation v and we want to construct the
place ϕ corresponding to this valuation. The subring Ov := {a ∈ M̃ | v(a) ≥ 0}
of M̃ is the valuation ring of M̃ with respect to v. The ring Ov has precisely one
maximal ideal mv := {a ∈ M̃ | v(a) > 0}, hence Mv := Ov/mv is a field.

If we have Mv := Ov/mv, the quotient map ϕ : Ov → Mv defines a place, de-
noted again by ϕ, ϕ : M̃ →Mv ∪∞ via ϕ(a) =∞ for all a ∈ M̃\Ov.

Hence we have Ov = {a ∈ M̃ | ϕ(a) < ∞} and mv = {a ∈ M̃ | ϕ(a) = 0}. As
we will be more interested in the place ϕ than in the valuation v later on, we will
denote the valuation ring and its maximal ideal belonging to v, and thus to ϕ, by
Oϕ := Ov and mϕ := mv, respectively from now on.

If K is a field, M̃/K(t) a finite regular Galois extension and s ∈ K, we obtain
from the polynomial (t− s) via

vs : M̃× −→ Z, f̃ = ũ(t− s)m 7→ m,

a discrete valuation of M̃ . The corresponding place will be denoted by ϕs. The
valuation ring of M̃ with respect to (t− s) is

Oϕs :=

{
f̃

g̃
| f̃ ∈ M̃, g̃ ∈ M̃ und (t− s) - g̃

}
and its maximal ideal is mϕs := Oϕs(t− s). The quotient map

ϕs : Oϕs −→Mϕs := Oϕs/mϕs , t 7→ s

gives, as above, the place ϕs : M̃ → Mϕs ∪ {∞}. This place will be called special-
ization of M̃ at s. If the Galois extension M̃/K(t) is given by a polynomial f(t,X)
with coefficients in Oϕs we obtain a polynomial f(s,X) for the extension Mϕs/K
by replacing the coefficients of f(t,X) with their images under ϕs.

For arbitrary fields and an arbitrary valuation v, the degree of the extension
Mv/K will be smaller than the degree of the extension M̃/K(t). We have however
the following result due to D. Hilbert:

Theorem 1.1.1. (Hilbert’s Irreducibility Theorem) Let f(t,X) be an irreducible
polynomial in Q(t)[X]. Then there exists an s ∈ Q such that the specialization
f(s,X) is irreducible in Q[X].
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Since an irreducible polynomial f(s,X) ∈ Q[X] gives rise to a Galois extension
of Q, this theorem leads to

Corollary 1.1.2. If a finite group G can be realized as the Galois group of a Galois
extension M̃/Q(t), then it can be specialized to a Galois extension M/Q with G as
its Galois group.

For a proof of these statements see for example [Jensen1], Proposition 3.1.2.

The field of rational numbers is not the only field that satisfies the property
described in Hilbert’s Irreducibility Theorem. In general, all fields for which the
assertion of Theorem 1.1.1 holds, are called Hilbertian. Examples of Hilbertian fields
are all algebraic number fields and the field Qab, the maximal abelian extension of
Q, see [Weissauer1].

1.2 Some basic invariant theory

Let K be a field of characteristic zero and let K[T1, ..., Tn] denote the polynomial
ring over K in n variables T1, .., Tn. Let G be a subgroup of Sn, the symmetric
group of degree n, which acts on K[T1, ..., Tn] by permutation of the indeterminates
T1, ..., Tn. Let K[T1, ..., Tn]G denote the subring of invariants of K[T1, ..., Tn] under
the action of G.

Example: If G = Sn then K[T1, ..., Tn]Sn = K[k0, ..., kn−1], where k0, ..., kn−1 denote
the elementary symmetric polynomials in T1, ..., Tn.

For an arbitrary finite group G, however, K[T1, ..., Tn]G will in general be gener-
ated by more, but still finitely many, invariants:

Theorem 1.2.1. Under the assumptions above, the ring K[T1, ..., Tn]G is a ring
generated by finitely many invariants k0, ..., kr.

This is a classical result of Hilbert, see [Smith1], Chapter 2.1 for example, and
even holds for more general linear actions. It is in fact possible to compute the
invariants algorithmically:

Theorem 1.2.2. Under the assumptions above, the ring K[T1, ..., Tn]G is a ring
generated by at most

(
n+ord G

ord G

)
elements of degree at most ord G.

This theorem is a special case of a theorem by E. Noether and can be found in a
more general form in [Smith1] as Corollary 2.4.3. The proof of Theorem 1.2.2 yields
an algorithm to compute a set of invariants generating K[T1, ..., Tn]G as an algebra,
see [Smith1] Chapter 2.3 for reference.

Theorem 1.2.3. Under the assumptions above, let G act by permutation on the
field K(T1, ..., Tn) = Frac(K[T1, ..., Tn]). Then we have for the field of invariants
K(T1, ..., Tn)G = Frac(K[T1, ..., Tn]G). In particular, it is possible to work with func-
tions fields instead of polynomial rings.
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See [Smith1] Prop. 1.2.4 for reference.

Example: Assume the group C3 = 〈σ〉 acts on K[T1, T2, T3] via

σ : (T1, T2, T3) 7→ (T2, T3, T1).

As ord C3 = 3, a generating set of K[T1, T2, T3]
C3 will consist of polynomials of

degree at most 3. Using the algorithm given in [Smith1] Chapter 2.3 a generating
set of invariants can be computed to be given by:

k0 := T1 + T2 + T3,
k1 := T1T2 + T1T3 + T2T3,
k2 := T1T2T3,
k3 := T 2

1 T2 + T 2
2 T3 + T 2

3 T1.

This set is minimal since k0, k1, k2 are elementary symmetric polynomials and thus
a minimal generating set of the symmetric polynomials in 3 variables and k3 is not
a symmetric polynomial. We see in this example that the ring of invariants

K[T1, T2, T3]
C3 = K[k0, k1, k2, k3]

is generated by one more invariant than the ring of invariants

K[T1, T2, T3]
S3 = K[k0, k1, k2].

We will use these results in Section 3.2 for a Galois extension L/K of degree n
given by an irreducible polynomial f(X) with roots θ1, ..., θn. In this situation we
have L = K[θ1, ..., θn] and the Galois group of L/K acts on L by permutation of
the θi. Hence the results of this section can be used by specializing Ti to θi. To
illustrate this, we return to the example above:

Example: Let K be a field and assume that the third roots of unity are contained
in K. Then, by Kummer theory, a C3 extension of K is given for example by the
polynomial

f(X) = X3 − 2.

The roots of this polynomial are

θ1 =
3
√

2, θ2 = ζ · 3
√

2, θ3 = ζ2 · 3
√

2

where ζ denotes a primitive third root of unity. The splitting field of f(X) is given
by

M = K(
3
√

2) = [
3
√

2, ζ · 3
√

2, ζ2 · 3
√

2] = K[θ1, θ2, θ3]

and we have MC3 = K. Since C3 acts on the roots of f(X) by permutation, we
look at the ring K[T1, T2, T3]. We know from the previous example that the ring of
invariants K[T1, T2, T3]

C3 is generated by

k0 := T1 + T2 + T3,
k1 := T1T2 + T1T3 + T2T3,
k2 := T1T2T3,
k3 := T 2

1 T2 + T 2
2 T3 + T 2

3 T1.
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Specializing these invariants to roots of the minimal polynomial f(X) yields:

l0 := θ1 + θ2 + θ3,
l1 := θ1θ2 + θ1θ3 + θ2θ3,
l2 := θ1θ2θ3,
l3 := θ2

1θ2 + θ2
2θ3 + θ2

3θ1.

A calculation shows that these invariants indeed lie in K:

l0 = 3
√

2 + ζ · 3
√

2 + ζ2 · 3
√

2 = 0 · 3
√

2 = 0,

l1 = 3
√

2 · ζ · 3
√

2 + 3
√

2 · ζ2 · 3
√

2 + ζ · 3
√

2 · ζ2 · 3
√

2 = 0 · 3
√

2
2

= 0,

l2 = 3
√

2 · ζ · 3
√

2 · ζ2 · 3
√

2 = 1 · 3
√

2 = 2,

l3 = 3
√

2
2 · ζ · 3

√
2 + ζ2 · 3

√
2

2 · ζ2 · 3
√

2 + ζ4 · 3
√

2
2 3
√

2 = 3 · ζ · 3
√

2
3

= 6 · ζ.

Hence we obtain again K[θ1, θ2, θ3]
C3 = K[0, 0, 2, 6 · ζ] = K.

1.3 The arithmetic lifting property

1.3.1 The Noether problem and generic polynomials

The original Noether problem formulated by E. Noether in [Noether1] poses the
question, if the fixed field of a permutation group G, that acts on a function field
by permuting the indeterminates, is again purely transcendental over the base field.
When this is the case, it is possible to obtain a parameterization for all polynomials
with Galois group G. Even very small groups do not have this property: The first
counterexamples over the field of rational numbers Q are abelian groups which con-
tain at least one element of order 8 by [Lenstra1] and C47, the cyclic group of order
47, by [Swan1].

A weaker property of a group G is the existence of generic polynomials for this
group over a given field K. A generic polynomial is a polynomial g(t1, ..., tn, X)
which has Galois group G over the rational function field K(t1, .., tn) in n indetermi-
nates such that all Galois extensions M/K ′ of all fields K ′ ⊇ K can be obtained by
specializing the ti to values ai ∈ K ′ and taking the splitting field of g(a1, ..., an, X).
For infinite fields the existence of generic polynomials for a given group is equivalent
to the existence of generic extensions as described in [Saltman1]. Generic polyno-
mials over Q exist, for example, for all cyclic groups of odd order, thus for some
groups which do not have the properties considered in the Noether problem. For
abelian groups which contain elements of order 8, generic polynomials still do not
exist by [Saltman1].

1.3.2 The arithmetic lifting property

If there do not exist generic polynomials for a given group over a given field, one can
ask if there is a “weaker specialization property” which is satisfied by this group.
The arithmetic lifting property, formulated for the first time in [Beckmann1], is such
a property.
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Definition: A field extension M̃/K(t) is regular (over K) or geometric, if
K̄ ∩ M̃ = K for every algebraic closure K̄ of K.

Definition: Let K be an arbitrary field and K(t) the function field in one inde-
terminate. A finite group G has the arithmetic lifting property over K, if every
G-extension M/K is a specialization of a G-extension M̃/K(t) of K(t) regular over
K.

M̃
G

zzzzzzzz

@@@@@@@@

K(t)

EEEEEEEE M
G

}}}}}}}}

K

The existence of generic polynomials for a certain group implies the arithmetic
lifting property for this group. A proof can be found in Chapter 3 of [Jensen1].

The arithmetic lifting property is a weaker property than the existence of generic
polynomials. In the very first treatment of the arithmetic lifting property in
[Beckmann1] this property is proven for all abelian groups over Q:

Theorem 1.3.1 ([Beckmann1], Theorem 2.4). Let K be an algebraic number field
and G an abelian group. Then G has the arithmetic lifting property over K.

Since the arithmetic lifting property is stable under the formation of certain
group products and group extensions, it is possible to construct a wide array of
groups for which no generic polynomials exist but that still have have the arith-
metic lifting property. A list of groups which have the arithmetic lifting property is
contained in the appendix. One important result used in this thesis is the following:

Theorem 1.3.2 ([Black3], Corollary 2.2). Let K be a field, and let G1 and G2 be
groups which have the arithmetic lifting property over K. Then the direct product
G1 ×G2 has the arithmetic lifting property over K.

Proof. Let M/K be a G1 × G2-extension. We have to find a G1 × G2-extension
M̃/K(t), regular over K, that specializes to M/K. By [Lang1], Chapter VI, Thm.
1.14, there exist subextensions M1/K, M2/K, linearly disjoint over K, such that
Gal(M1/K) = G1, Gal(M2/K) = G2 and such that M = M1 ⊗K M2 = M1M2.
By assumption there are a G1-extension M̃1/K(t) and G2-extension M̃2/K(t), both
regular over K, that specialize to M1 and M2. Without loss of generality we can
assume that the specialization maps ϕ1 : M̃1 →M1 and ϕ1 : M̃2 →M2 are given by
ϕ1 : t 7→ 0 and ϕ2 : t 7→ 0, or, in other words, that the prime ideals of the valuation
rings Oϕ1 and Oϕ2 are given by (t) in both cases.
We then have that M̃1 and M̃2 are linearly disjoint over K(t) because they specialize
to linearly disjoint extensions at t = 0. So M̃ := M̃1 ⊗K(t) M̃2 = M̃1M̃2 is a
G1×G2-extension of K(t). This extension is regular over K because it is composed
of regular extensions and clearly specializes to M at t = 0.
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For now no group is known that does not have the arithmetic lifting property even
over Q. The conjecture that every finite group has the arithmetic lifting property
over an arbitrary number field, mentioned for the first time in [Black1], is called the
Beckmann-Black-Conjecture.

1.3.3 The arithmetic lifting property for nilpotent groups

Every nilpotent group is the direct product of p-groups, by Theorem 2.1.2. So the
question whether a given nilpotent group has the arithmetic lifting property over a
given field or not can usually be reduced to the question if the p-groups appearing
in this decomposition have the arithmetic lifting property.

Concerning the question of the arithmetic lifting property of p-groups, several
results have been obtained in the past.

[Ledet2] and [Jensen1], Chapter 6 deal with the question for generic polynomials
for 2-groups up to order 24 = 16 and p-groups up to order p3 for odd p over Q. In
[Black1] and [Black2] the arithmetic lifting property is proven for dihedral groups
of arbitrary order, as long as sufficiently many roots of unity are contained in the
base field. The diploma theses [DiGiacomo1] and [Basten1] are concerned with the
arithmetic lifting property up to order 26 or p4 for odd p over number fields that
contain sufficiently many roots of unity.

In the present thesis, the approach of [Basten1] is generalized and used to prove
the arithmetic lifting property for arbitrary finite p-groups over the field Qab, the
maximal abelian extension of Q.
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Chapter 2

p-groups and embedding problems

2.1 p-groups

In this section, basic properties of finite p-groups are summarized. A reference for
the introduction to the theory of p-groups is [McKay1], a more extensive account is
[Leedham1].

2.1.1 Nilpotent groups

Definition: Let p be a prime. A finite p-group is a finite group whose order is a
power of p.

Definition: The upper (or ascending) central series of a group G is the series

U0(G) ≤ U1(G) ≤ U2(G) ≤ ...

of normal subgroups of G defined inductively by

U0(G) = 〈1〉 and Ui/Ui−1 = Z(G/Ui−1(G)) for i > 0.

G is nilpotent if there exists an integer n such that Un(G) = G. If G is nilpotent, the
nilpotency class cl of G is the smallest positive integer cl ≥ 1 such that Ucl(G) = G.

Definition: The lower (or descending) central series of of a group G is the series

G = L1(G) ≥ L2(G) ≥ L3(G) ≥ ...

of subgroups of G defined inductively by

L1(G) = G and Li = [Li−1, G] for i > 1.

Two of the most basic results on nilpotent groups are summarized in the following
two theorems:

Theorem 2.1.1. The following are equivalent:

(i.) G is nilpotent of class cl.

21
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(ii.) G = L1(G) > L2(G) > .... > Lcl+1(G) = 〈1〉.

(iii.) 〈1〉 = U0(G) < U1(G) < .... < Ucl(G) = G.

Theorem 2.1.2. If G is a finite nilpotent group, then G is the direct product of
its p-Sylow subgroups. Hence a finite nilpotent group is a direct product of finite
p-groups.

The first theorem can be found as Lemma 1.1.20 in [Leedham1], the second
as Theorem 5.39 in [Rotman1]. Since factor groups of nilpotent groups are again
nilpotent, every finite p-group is a nilpotent group as well.

2.1.2 Commutators and collection

This section summarizes the necessary definitions and facts about the collecting
process for commutators. It is mainly taken from [McKay1], Chapter 3.

Definition: Let Fd be a finitely generated free group on d generators ρi, i = 1, .., d.
The formal commutators in ρi and their weights and orders are defined as follows.

(i.) The generators ρi are formal commutators of weight 1.

(ii.) If σi, σj are formal commutators of weight wi and wj then [σi, σj] is a formal
commutator of weight wi + wj.

(iii.) Every formal commutator arises this way.

(iv.) The formal commutators are given an ordering relation “<”, which is defined
as follows:

(a) If σi has smaller weight than σj then σi < σj.

(b) If i < j then ρi < ρj.

(c) Beside these conditions the ordering is chosen arbitrarily.

It is clear that an ordering as described in (iv.) can always be chosen but it is
not unique. It depends on the enumeration of the generators ρi, and for a given
weight w ∈ N the commutators of weight w can be ordererd arbitrarily. So if there
are n commutators of weight w, the commutators of weight w can be ordered in n!
ways, each way defining a different ordering. We assume from now that an arbitrary
but fixed ordering has been chosen according to the rules above when we deal with
commutators.

It is important to note that these are “formal” commutators in the sense that
they are expressions involving ρi and [ , ] built up according to the rules in the
definition. If the ρi are elements of a group G, commutators in the ρi can also be
evaluated in G to give elements in G. There will then be relations between these
elements. Some such relations will depend on the actual group G. Others will hold
in all groups, for example, [ρi, ρi] = 1, [ρi, ρj][ρj, ρi] = 1. Hence it is possible to speak
of the weight of a commutator in a (finite) group G, but an element of that group
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may be represented by different commutators of different weights. This problem
will be dealt with when basic commutators are defined. These are chosen in a way
that they are independent in the sense that they do not satisfy such “automatic”
relations. Before we come to this, we examine what a commutator in a given group
G looks like:

Definition: Let G be an arbitrary group. If σ1, σ2 ∈ G then the commutator [σ1, σ2]
of σ1 with σ2 is σ−1

1 σ−1
2 σ1σ2.

If σ1, ..., σn ∈ G then the left normed commutator [σ1, ..., σn] for n > 2 is defined
inductively to be [[σ1, ..., σn−1], σn]. Note that the σi do not need to be distinct.

We will now describe the collecting process for commutators:

Definition: In an arbitrary product of commutators σi1σi2 ...σin the collected part
is the (possibly empty) section σi1σi2 ...σim with m maximal subject to

σi1 ≤ σi2 ≤ ... ≤ σim , and σim ≤ σik if m < k ≤ n,

and
σim+1 > σij for some j such that m+ 1 < j ≤ n,

and the uncollected part is the remaining section.

In a (not empty) product of commutators, let σu and k be such that

σu < σij for m+ 1 ≤ j < k and σu = σik and σu ≤ σij for k < j < n.

Now the commutator collecting process step replaces

σi1 ...σim ...σik−1
σuσik+1

...σin

by
σi1 ...σimσuσim+1 [σim+1 , σu]...σik−1

[σik−1
, σu]σik+1

...σin .

Notice that this new expression still represents the same element of the given
group and has moved σu from the k-th position to the (m + 1)-th position directly
following σim . The collected part of the original product is undisturbed and the
collected part of the new product is this with at least one extra term. The uncollected
part contains several extra commutators but these are of higher weight than σu and
so higher in the ordering. There is one less occurrence of σu in the new uncollected
part, and so a finite number of applications of the collecting process step will move
all occurrences of σu into the collected part, so that the smallest σv in the uncollected
part satisfies σu < σv.

Definition: The process described above is called collecting σu.

There are two things that should be noted at this point: At first, in general
collecting does not terminate. If we start with an arbitrary word, with every collected
commutator new commutators of higher weight and order will arise in the uncollected
part. The second point is that not all commutators arise when using the collecting
process. For example [ρi, ρi], [ρ1, ρ2] are very simple examples of commutators that
do not appear in this process. The basic commutators are designed to be the ones
that do arise this way. Furthermore they are precisely those commutators that do
not satisfy ”automatic“ relations.
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Definition: Let ρi be generators of a finitely generated free group Fd. Assume an
ordering on the set of formal commutators of Fd has been chosen according to the
rules in the above definition. The formal basic commutators in ρi are defined as
follows.

(i.) ρi are basic commutators;

(ii.) [σi, σj] is a basic commutator if and only if σi and σj are basic commutators
with σi > σj and if σi = [σk, σl] with σk, σl basic commutators, then σl ≤ σj.

Note that the set of formal basic commutators depends on the chosen ordering,
but for each ordering it is uniquely defined. Since the basic commutators form a
subset of the set of formal commutators, the ordering on the set of formal commuta-
tors induces an ordering on the set of basic commutators. This ordering still places
commutators of greater weight higher in the ordering.

As was noted above, the collecting process does not terminate in general. It does
however for nilpotent groups. Furthermore we have certain information about the
relation between the lower central series of a group and the basic commutators of a
given weight.

Theorem 2.1.3. Let Fd be a finitely generated free group. The commutators of
weight i generate the section Li(Fd)/Li+1(Fd) as a free abelian group, or equivalently:
Let σ1 < σ2 < ... denote all formal basic commutators of Fd in order. If σ ∈ Fd,
then there is a unique sequence m1,m2, ... of integers such that, for any i > 0, if u is
the largest integer such that σu has weight i then σ ≡ σm1

1 σm2
2 ....σmuu mod Li+1(Fd).

Corollary 2.1.4. Let G be a nilpotent group of class cl. The commutators of weight
greater than cl are equal to 1 in G.

These results are due to M. Hall and P. Hall, see for example [Leedham1] Chap-
ter 1.1 and Prop. 1.1.29. for details.

We will now look at some examples for the presentation of p-groups by basic
commutators.

Example: We consider the pair of groups below given by sets of basic commutators
and relations between them. The first group is

G1 := 〈σ̄1, ..., σ̄6 | σ̄3
i = 1, [σ̄2, σ̄1] = σ̄4, [σ̄3, σ̄1] = σ̄5, [σ̄3, σ̄2] = σ̄6,

[σ̄j, σ̄i] = 1 for j = 4, 5, 6 and all i〉.

All σi are basic commutators, hence the group G1 has order 36. The nilpotency class
is 2 because only commutators of weight 2 appear in G1. In fact σ̄4, σ̄5, σ̄6 are all
basic commutators of weight 2 in a group on three generators.

The second group is

E1 := 〈σ1, ..., σ6, τ | σ3
i = τ 3 = 1, [σ2, σ1] = σ4[σ3, σ1] = σ5, [σ3, σ2] = σ6,

[σ4, σ3] = [σ2, σ1, σ3] = τ,

[σi, σj] = 1 for all basic commutators satisfying j = 4, 5, 6,

[τ, σj] = 1 for j = 1, 2, 3, 4, 5, 6〉.
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Again all σi and τ are basic commutators, hence the order of E1 is 37, its nilpo-
tency class is 3 because τ has weight 3. We take closer look at the basic commutators
of weight 3. Those are

[σ2, σ1, σ1], [σ3, σ1, σ1],

[σ2, σ1, σ2], [σ3, σ1, σ2], [σ3, σ2, σ2],

[σ2, σ1, σ3], [σ3, σ1, σ3], [σ3, σ2, σ3].

All basic commutators of weight 3 are left normed commutators and all but [σ2, σ1, σ3]
are equal to 1 in E. This does not mean, however, that all left normed commutators
except of [σ2, σ1, σ3] vanish. By the Hall-Witt-identity we have

[σ2, σ1, σ3] · [σ3, σ2, σ1] · [σ1, σ3, σ2] = 1.

Using

[σ1, σ3, σ2] = [[σ1, σ3], σ2] = [[σ3, σ1]
−1, σ2] = [σ3, σ1, σ2]

−1 = 1

we obtain

[σ3, σ2, σ1]
−1 = [σ2, σ3, σ1] = [σ2, σ1, σ3].

So [σ3, σ2, σ1] 6= 1, but neither [σ3, σ2, σ1] nor [σ2, σ3, σ1] are basic commutators. In
any case we have a cyclic, central group extension

1 // C3
// E1

// G1
// 1

〈τ〉
.

This extension will be used in later examples.

We now want to construct a series of p-groups that is described by relations that
are in a way ”minimal“. The idea of this construction is that on the one hand every
p-group can be obtained from one (or more) of the groups of this series by taking a
factor group. On the other hand the groups of this series will be easy to describe in
terms of generators and relations, because they are determined by as few relations
as possible.

Definition: Let Fd be a free group on d generators, q a power of a prime p. For
integers cl and d, the group G(q, cl, d) is the factor group of Fd defined by the
following relations:

For each basic commutator σi of weight wi we have σ
(qcl+1−wi )
1 = 1 if wi < cl and

σi = 1 if wi ≥ cl.

Since there are no ”automatic“ relations between the basic commutators, and
none are imposed on them by the definition of G(q, cl, d), two different basic com-
mutators in G(q, cl, d) define two different elements of this group. The group is a
finite p-group since its order is exactly the product of the exponents of the basic
commutators of weight smaller than cl which is a power of q and hence a power of
the prime p. Furthermore, in G(q, cl, d) a basic commutator equals 1 if and only if
it is of weight at least cl + 1, thus G(q, cl, d) has nilpotency class cl.
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Observe that for two basic commutators σi, σj of G(q, cl, d) neither σi is a power
of σj nor is σj a power of σi: By the definition of basic commutators there are
no relations between basic commutators in a free group aside from the relations
appearing in the definition and no relations aside from a power relation to bound the
order of basic commutator are imposed on the basic commutators in the definition
of the group G(q, cl, d). Hence we have:

Corollary 2.1.5. A basic commutator of a group G(q, cl, d) is not a power of another
basic commutator of this group.

The groups G(q, cl, d) are a series of p-groups which arise from free groups by
imposing ”as few relations as possible“ on them to obtain a finite p-group. The only
relations of G(q, cl, d) are those necessary to bound the order of the group, hence
making G(q, cl, d) a finite group. This bound is defined by the parameters q, cl and
d. Therefore every p-group can be obtained as a factor group of one (or more) of
the groups G(q, cl, d); this is done by simply choosing q, cl and d large enough and
imposing additional relations on this group.

2.2 Embedding problems

This section gives a short account of the theory of embedding problems, in partic-
ular of the theory of Brauer type embedding problems and their connection with
cohomology. General references for this topic are [Malle&Matzat1] Chapter IV and
[Ledet1] Chapter 3. We assume throughout this section that all fields have charac-
teristic zero.
For fields of characteristic p, p 6= 0, most of the problems considered in this thesis
are solved. In [Harbater1] and [Pop1] D. Harbater and F. Pop proved independently
that the inverse problem of Galois theory has a positive answer for the field F̄p(t),
the maximal cyclotomic extension of the field Fp(t). Furthermore in characteristic p
every embedding problem of p-groups is solvable and this can be used to show that
there exist generic polynomials for every p-group in characteristic p, see [Jensen1],
Chapter 5.6 for reference.

2.2.1 Basic theory of embedding problems

If H and G are finite groups, a finite group E ≥ H is called a group extension of H
by G if there is an exact sequence

1 // H
i // E

π // G // 1 .

In this situation the subgroup H of E is the kernel, the factor group G = E/H
the cokernel of the extension. The group extension is called split, if there exists a
homomorphism φ : G→ E, such that π◦φ = idG. This is equivalent to the property
that E is a semidirect product of H and G, i.e. E = H o G. The group extension
is called central, if the kernel H is a subgroup of the center Z(E) of E.
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Two group extensions

1 // H
i1 // E1

π1 // G // 1

1 // H
i2 // E2

π2 // G // 1

are said to be equivalent if E1
∼= E2.

If M/K is a Galois extension with Galois group G and E is a group extension as
above, then the embedding problem given by M/K and the group extension is the
following question: Does there exist a Galois extension F/K and an injective group
homomorphism ψ : Gal(F/K) −→ E, such that M ≥ F and such that the diagram

1 // H
i // E

π // G = Gal(M/K) // 1

Gal(F/K)

ψ

OO

resM

66mmmmmmmmmmmmm

commutes. (Here resM : Gal(F/K) → Gal(M/K) is the natural restriction map.)
Such an embedding problem will be denoted by (M/K,E,G).

A weak solution of an embedding problem is a pair F/K and ψ, such that the
conditions above are satisfied. The field F is the solution field of the embedding
problem. If ψ is an isomorphism, the solution is called a proper solution. Since
only proper solutions are of importance in this thesis, the term solution will always
and exclusively be used for a proper solution. We recall the definition of a regular
extension from Section 1.3.2. A field extension M̃/K(t) is called regular over K or
geometric if K̄ ∩ M̃ = K for every algebraic closure K̄ of K. This gives rise to the
following definition:

Definition: An embedding problem (M̃/K(t), E,G) is called regular if M̃/K(t) is
regular over K. A solution with solution field F̃ to this embedding problem is called
a regular solution, if the extension F̃ /K(t) is regular over K.

The following two fundamental theorems on the solvability of embedding prob-
lems will be needed later on:

Theorem 2.2.1.

• Let F be a field with absolute Galois group of cohomological dimension at most
1. Then every finite embedding problem over F is solvable.

• The absolute Galois group of Qab has cohomological dimension at most 1.

These results can be found in [Malle&Matzat1], Chapter IV, Section 1.5.
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Theorem 2.2.2. Assume that the kernel of the finite embedding problem (M/K,E,G)
decomposes into a direct product H =

∏r
i=1Hi of normal subgroups Hi of E. Then

for the induced embedding problems (M/K,Ei, G) given by

1 // Hi
// Ei // G // 1

we have:

• The embedding problem (M/K,E,G) possesses a (proper) solution if and only
if (M/K,Ei, G) possess (proper) solutions, linearly disjoint over M , for
i = 1, .., r.

• The embedding problem (M̃/K(t), E,G) possesses a regular (proper) solution if
and only if (M̃/K(t), Ei, G) possess regular (proper) solutions, linearly disjoint
over K̄M̃ , for i = 1, .., r.

This theorem is Theorem 1.6 in Chapter IV of [Malle&Matzat1].

2.2.2 Brauer type embedding problems

Brauer type embedding problems are a special kind of embedding problems with
particularly useful properties. We begin with the central definitions and most im-
portant properties:

Definition: An embedding problem given by a Galois extension M/K with
Gal(M/K) = G and a central group extension with cyclic kernel of order m

1 // Cm // E // G // 1

is a Brauer type embedding problem if the group of m-th roots of unity is contained
in M and is isomorphic as G-module to the kernel of the group extension.

The main theorem about Brauer type embedding problems is the following:

Theorem 2.2.3. If F = M( m
√
ω) is a solution field of a Brauer type embedding

problem given by an extension M/K with Gal(M/K) = G and a group extension

1 // Cm // E
π // G // 1 ,

then all solution fields are of the form F ′ = M( m
√
r ω) with r ∈ K×.

A proof for this theorem will be given in the next section.

Definition: An embedding problem given by a Galois extension M/K with
Gal(M/K) = G and a group extension

1 // H // E // G // 1

is a Frattini embedding problem if the kernel H of the group extension is contained
in the Frattini subgroup of E. The Frattini subgroup of a group is defined as the
intersection of all maximal subgroups of this group.
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The Brauer type embedding problems (BEPs for short) considered here will all
have the property that the m-th roots of unity are already contained in K and that
the group extensions are non-split, central extensions. In this case the embedding
problems are in addition Frattini embedding problems. For Frattini embedding
problems the following important theorem holds:

Theorem 2.2.4. Every weak solution of a Frattini embedding problem is already a
(proper) solution.
Every solution of a regular Frattini embedding problem is already a regular solution.

A proof for Theorem 2.2.4 can be found in [Malle&Matzat1] (Proposition IV
5.1 ).

2.2.3 Brauer type embedding problems and cohomology

The following section is a short account of the theory of Brauer type embedding
problems and its connection with group cohomology. A more detailed account on
this topic, including the proofs omitted here, can be found in [Ledet1].

Let

1 // A
ι // E

π // G // 1 ,

be a group extension with abelian kernel. An abelian group A on which a group G
acts by automorphisms is called a G-module. If α ∈ A, a group extension as above
induces a G-module structure on its kernel A by ι(σ(α)) := σ′ι(α)σ′−1, where σ′ ∈ E
is a preimage of σ ∈ G. If the group A is already a G-module, such an extension
is called an extension with the G-module A if it induces the givenG-module structure.

A map s : G→ E, such that π◦s = 1G is called a section of the group extension.
If s : G→ E is a section, we get a map c : G×G→ A by

s(σ) · s(τ) = ι(c(σ, τ)) · s(στ)

for σ, τ ∈ G. (Note that the composition in A is written multiplicatively.)

We then have

c(ρ, σ) · c(ρσ, τ) = ρ(c(σ, τ)) · c(ρ, στ), ρ, σ, τ ∈ G

by the associative law of E. Maps c : G × G → A fulfilling this relation are called
factor systems. Point-wise addition turns the set of factor systems into an abelian
group Z2(G,A). For an arbitrary function x : G→ A, σ 7→ xσ the map

(σ, τ) 7→ xσ · σ(xτ )

xστ

is a factor system. A factor system of this kind is called splitting or split. The set
of splitting factor systems forms a subgroup B2(G,A) of Z2(G,A) and the second
cohomology group of G with coefficients in A is the factor group

H2(G,A) := Z2(G,A)/B2(G,A).
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The following theorem shows that the elements of H2(G,A) describe the set of
extensions of a group G a with kernel A, see [Ledet1], Theorem 2.3.1 for reference:

Theorem 2.2.5. Two extensions of a group G with the G-module A are equivalent,
if and only if they have the same cohomology class. Furthermore, for every element
of H2(G,A) there exists an extension corresponding to this cohomology class.

Consider a field extension M/K with Galois group G, a central group extension

1 // Cq // E
π // G // 1 ,

and the Brauer type embedding problem (M/K,E,G) given by this data. Let
γ ∈ H2(G,Cq) describe the cohomology class corresponding to E. We then have:

Theorem 2.2.6. The Brauer type embedding problem (M/K,E,G) is weakly solv-
able if and only if i(γ) = 1 ∈ H2(G,M×) where i : H2(G,Cq) → H2(G,M×) is the
homomorphism induced by the inclusion Cq ⊆ M× when Cq is identified with the
group of the q-th roots of unity. Furthermore if F = M( q

√
ω) is a weak solution,

then all weak solutions are of the form F = M( q
√
rω), r ∈ K×.

Proof. Let c ∈ Z2(G,Cq) represent γ. If i(γ) = 1, we have for all σ1, σ2 ∈ G

c(σ1, σ2) = xσ1 · σ1(xσ2) · x−1
σ1σ2

for some map x : G→M×. Then we have

1 = xqσ1
· σ1(x

q
σ2

) · x−qσ1σ2

because c(σ1, σ2) is q-th root of unity and by the cohomological version of Hilbert’s
Theorem 90 (see, for example, [Ledet1], Chapter 2.3) there exist ω ∈M×, such that
for all σ ∈ G

σ(ω)

ω
= xqσ.

We claim that M( q
√
ω)/K is a weak solution to the embedding problem:

First of all, M( q
√
ω)/K is Galois, since σ(ω)

ω
∈ (M×)q for σ ∈ G by Ex 1.52(2) in

[Ledet1]. Thus we can extend σ ∈ G to σ′ ∈ Gal(M( q
√
ω)/K) by

σ′( q
√
ω) = ζσxσ

q
√
ω

for some q-th root of unity ζσ. Let yσ := ζσxσ.

Now let τ ∈ Gal(M( q
√
ω)/M), i.e. τ = ζ q

√
ω for some q-th root of unity ζ. Then

σ′τ( q
√
ω) = σ′(ζ · q

√
ω) = ζeσ · yσ · q

√
ω = τ eσ(yσ · q

√
ω) = τ eσσ′( q

√
ω),

where σ′ζ = ζeσ , and so Gal(M( q
√
ω)/M) can be identified with a submodule Cd,

d | q, of Cq by τ 7→ ζ. This gives an extension

1 // Cd
ζ 7→( q

√
ω 7→ζ q

√
ω)

// Gal(M( q
√
ω)/K) resM

// G // 1.
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Furthermore,

σ′1σ
′
2(

q
√
ω) = yσ1 · σ1(yσ2) · q

√
ω

= (ζσ1σ1(ζσ2)ζ
−1
σ1σ2

) · c(σ1, σ2) · yσ1σ2 · q
√
ω

= (ζσ1σ1(ζσ2)ζ
−1
σ1σ2

) · c(σ1, σ2) · (σ1σ2)
′( q
√
ω)

and so the cohomology class of the group extension above in H2(G,Cd) is given by
the factor system

(σ1, σ2) 7→ (ζσ1σ1(ζσ2)ζ
−1
σ1σ2

) · c(σ1, σ2).

Obviously, this factor system is equivalent to c when considered in Z2(G,Cq),
meaning that we have an embedding of Gal(M( q

√
ω)/K) into E as desired. Thus,

M( q
√
ω)/K is a weak solution.

Conversely, let M( q
√
ω)/K, ω ∈ M×, be a weak solution. Then there exists a

monomorphism φ: Gal(M( q
√
ω)/K) → E such that resM = π ◦ φ. If

d = [M( q
√
ω) : M ], we then have a commutative diagram

1 // Cd

ζ 7→ζh
��

ζ 7→( q
√
ω 7→ζ q

√
ω)// Gal(M( q

√
ω)/K)

φ

��

resM // G

=

��

// 1

1 // Cq // E π
// G // 1

for some h ∈ Z which can be chosen to be prime to q. Let s : G → E be a section
with Im(s) ⊆ Im(φ), and let c′ ∈ Z2(G,Cd) be the corresponding factor system.

Also let σ′ = φ−1(sσ). By Ex. 1.52(2) in [Ledet1] again, (σ(ω)
ω

)iσ ∈ (M×)q for some
iσ ∈ Z prime to q, since M( q

√
ω)/K is Galois. And since we know how G operates

on Gal(M( q
√
ω)/M), we know that iσ = 1. Hence, σ(ω)

ω
= xqσ for some xσ ∈ M×,

and we may assume σ′( q
√
ω) = xσ · q

√
ω. But then

c′(σ1, σ2) = (xσ1 · σ1(xσ2) · x−1
σ1σ2

)h

for σ1, σ2 ∈ G. Thus, as [c] = [c′] ∈ H2(G,Cq), we have i(γ) = 1. Also M( q
√
r · ω)/K

is a solution for r ∈ K×, by the first part of the proof.

Now let M( q
√
λ)/K, λ ∈M× be another solution. As above, we get σ(λ) = yqσ ·λ,

where
c′′(σ1, σ2) = (yσ1 · σ1(yσ2) · y−1

σ1σ2
)k

is equivalent to c. Modifying xσ and yσ by suitable roots of unity, we may assume
that c = c′ = c′′. Then ykσ/x

h
σ = zσ satisfies

1 = zqσ1
· σ1(z

q
σ2

) · z−qσ1σ2

and by Hilbert’s Theorem 90 there exists an a ∈M×, such that for all σ ∈ G

σ(a)

a
= zσ.

It follows that
σ(λk)

λk
= yqkσ =

σaq

aq
xqkσ =

σ(aqωh)

aqωh
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for all σ ∈ G, and thus λk = raqωh for some r ∈ K×. Hence,

M(
q
√
λ) = M(

q
√
λk) = M(

q
√
raqωh) = M(

q
√
rωh) = M( q

√
sω),

where s = rj for some j with hj ≡ 1(mod q). Thus every solution is of the form
M( q
√
rω)/K for some r ∈ K×.

This is the proof as given in [Ledet1]. An alternative proof can be found in
[Malle&Matzat1] (Theorem IV 7.2 ).

Hence a Brauer type embedding problem (M/K,E,G) is weakly solvable if
and only if the image i(γ) ∈ H2(G,M×) of the corresponding cohomology class
γ ∈ H2(G,Cq) vanishes i.e. i(γ) ∈ B(G,M×). The image i(γ) will be called the
embedding obstruction. By the definition of split factor systems this is the case if
and only if E can be embedded into the semi-direct product M×oG in such a way
that the diagram

E
π //

��

G

M× oG
(x,σ)7→σ

::tttttttttt

is commutative.

Again by the definition of split factor systems, this is equivalent to the condition
that there exist for all pairs σ, τ ∈ G elements xσ, xτ , xστ ∈ M× satisfying the
following relation

c(σ, τ) =
xσ · σ(xτ )

xστ
.

As we see in the proof of Theorem 2.2.6 we have for these elements:

Corollary 2.2.7. If F = M( q
√
ω) is a solution field of a Brauer type embedding

problem given by (M/K,E,G), then the element ω satisfies the following relation
for all σ ∈ G:

σ(ω)

ω
= xqσ,

or, respectively,
σ( q
√
ω)

q
√
ω

= xσ

where the elements xσ ∈M× are obtained from the fact that the embedding obstruc-
tion vanishes as above.

2.2.4 Factor systems

Assume we have a central, cyclic embedding problem given by a G-extension M/K
and a group extension of p-groups

1 // Cq // E // G // 1

〈τ〉
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with cohomology class γ ∈ H2(G,Cq). Let c : G×G→ Cq describe a factor system
of this class. Assume that the embedding problem is solvable, i.e., the embedding
obstruction i(γ) vanishes. We want to describe the map

x : G → M
σ 7→ xσ

belonging to this embedding obstruction. As above we identify Cq with its image
in M× and regard c as a map c : G × G → M×. We then have for σ1, σ2 ∈ G the
relation:

c(σ1, σ2) =
xσ1 · σ1(xσ2)

xσ1σ2

or, equivalently,

c(σ1, σ2) · xσ1σ2 = xσ1 · σ1(xσ2).

Hence the element xσ1σ2 belonging to the product σ1σ2 is determined by the
elements xσ1 , xσ2 and the root of unity c(σ1, σ2).

Lemma 2.2.8. We have in the situation above for every triple of elements
σ1, σ2, σ3 ∈ G:

x(σ1σ2)σ3 = xσ1(σ2σ3),

i.e. the map x : G→M is compatible with associativity.

Proof. A short calculation shows

x(σ1σ2)σ3 = xσ1σ2 ·σ1σ2(xσ3)/c(σ1σ2, σ3) = xσ1 ·σ1(xσ2) ·σ1σ2(xσ3)/c(σ1σ2, σ3)c(σ1, σ2)

and on the other hand

xσ1(σ2σ3) = xσ1 · σ1(xσ2σ3)/c(σ1, σ2σ3) = xσ1 · σ1(xσ2) · σ1σ2(xσ3)/c(σ1, σ2σ3)c(σ2, σ3).

The two expressions are equal because

c(σ1σ2, σ3) · c(σ1, σ2) = c(σ1, σ2σ3) · c(σ2, σ3).

This last equality is a consequence of the associativity of E and can be found in
[Ledet1], page 31.

Using this, we can describe x[σ1,σ2], the element belonging to the commutator of
two group elements σ1 and σ2:

Lemma 2.2.9. Using the notation above, we have in the situation above for every
pair of elements σ1, σ2 ∈ G:

x[σ1,σ2] =
c(σ1σ2, [σ1, σ2]) · c(σ1, σ2)

c(σ2, σ1)
· σ−1

2 σ−1
1 (

xσ2 · σ2(xσ1)

xσ1 · σ1(xσ2)
).
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Proof. A calculation shows

xσ1σ2 · σ1σ2(x[σ1,σ2])

xσ2σ1

= c(σ1σ2, [σ1, σ2])

σ1σ2(x[σ1,σ2])

c(σ1σ2, [σ1, σ2])
=

xσ2 · σ2(xσ1) · c(σ1, σ2)

xσ1 · σ1(xσ2) · c(σ2, σ1)

x[σ1,σ2] =
c(σ1σ2, [σ1, σ2]) · c(σ1, σ2)

c(σ2, σ1)
· σ−1

2 σ−1
1 (

xσ2 · σ2(xσ1)

xσ1 · σ1(xσ2)
).

This means, roughly spoken: If G were a free group, M were an infinite field and
if we knew the map c : G × G → Cq ⊂ M× we had: For every ρi of G an element
xρi ∈ M× could be chosen arbitrarily and it would be possible to assign to every
group element σ by the formula

c(σ1, σ2) · xσ1σ2 = xσ1 · σ1(xσ2)

an unique element xσ that can be written as an expression in the elements xρi with-
out any problems. Since the group G is a Galois group, however, it is not a free
group. Hence the relations of G “that distinguish G from a free group” have to
be taken into account. We will consider now the p-groups G(q, cl, d), introduced in
section 2.1.2 which are determined by as few relations as possible.

Assume now that s : G → E is a section belonging to the factor system c, i.e.
we have for each pair σ, τ ∈ G and the inclusion ι : Cq → E:

s(σ) · s(τ) = ι(c(σ, τ)) · s(στ).

Without loss of generality we can assume that s(1) = 1 ∈ E. We then have

Lemma 2.2.10. Assume that σ ∈ G has order n. If s(σ) ∈ E has order n then
Rσ(xσ) := xσ · σ(xσ) · ... · σ(n−1)(xσ) = 1 and if s(σ) ∈ E has order greater than n
then Rσ(xσ) = ζ i, for an i ∈ 1, ..., q − 1, where ζ is a primitive q-th root of unity.

Proof. Assume σ′ := s(σ) ∈ E satisfies the relation σ′n = 1. Note that c(σ, σ) = 1
if we have s(σ)n = 1, because 1 = s(σ)n = ι(c(σ, σn−1)) · s(σn) = s(1) = 1. Hence
c(σ, σn−1) = 1 and since n is a power of p this contradicts c(σ, σ) 6= 1. We then have
for xσ:

xσ2 = x · σ(xσ),
...

xσn = x · ... · σn−1(xσ) = Rσ(xσ).

Hence in this case we conclude

1 = x1 = xσn = Rσ(xσ).

The only other possibility is that s(σ)n = τ i for some i ∈ {1, ..., q−1} as the preimage
of 1 ∈ G is 〈τ〉 = Cq. In this case we find ζ i = Rσ(xσ) if τ ∈ Cq corresponds to
the root of unity ζ ∈ M×. If, in this situation, s(σ)n is a generator of Cq, then the
corresponding root of unity ζ i is a primitive q-th root of unity.
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Summarizing these considerations we obtain: If G is a p-group that is only
determined by the orders of its generators and the commutators of generators the
elements xσ must be chosen in such a way that to every generator ρ an element xρ
is assigned, satisfying Rρ(xρ) = ζ i, for a suitable i, and to every basic commutator
σ3 := [σ1, σ2] an element xσ3 is assigned, satisfying

Rσ3(xσ3) = ζ i

and

xσ3 =
c(σ1σ2, [σ1, σ2]) · c(σ1, σ2)

c(σ2, σ1)
· σ−1

2 σ−1
1 (

xσ2 · σ2(xσ1)

xσ1 · σ1(xσ2)
).

We illustrate this with an example:

Example: We consider an embedding problem (M/K,E1, G1) given by the group
extension

1 // C3
// E1

// G1
// 1

〈τ〉
,

from the first example of Section 2.1.2. The groups G1 and E1 are

G1 := 〈σ̄1, ..., σ̄6 | σ̄3
i = 1, [σ̄2, σ̄1] = σ̄4[σ̄3, σ̄1] = σ̄5, [σ̄3, σ̄2] = σ̄6,

[σ̄j, σ̄i] = 1 for j = 4, 5, 6〉.

E1 := 〈σ1, ..., σ6, τ | σ3
i = τ 3 = 1, [σ2, σ1] = σ4[σ3, σ1] = σ5, [σ3, σ2] = σ6,

[σ4, σ3] = [σ2, σ1, σ3] = τ,

[σi, σj] = 1 for all basic commutators satisfying j = 4, 5, 6,

[τ, σj] = 1 for j = 1, 2, 3, 4, 5, 6〉.

We have τ ∈ Z(E1) and hence we see that this extension is a non-split extension:
By [σ4, σ3] = τ we have clearly E1 � 〈τ〉 × G1. If c : G1 × G1 → E1 is the factor
system of this group extension, the embedding problem is solvable if and only if we
can assign an element xσi ∈M to each basic commutator σ̄i such that the following
holds:

Rσi(xσi) = 1, for i = 1, ..., 6,

xσ4 =
c(σ2σ1, [σ2, σ1]) · c(σ2, σ1)

c(σ1, σ2)
· σ−1

1 σ−1
2 (

xσ1 · σ1(xσ2)

xσ2 · σ2(xσ1)
) = σ−1

1 σ−1
2 (

xσ1 · σ1(xσ2)

xσ2 · σ2(xσ1)
),

xσ5 =
c(σ3σ1, [σ3, σ1]) · c(σ3, σ1)

c(σ1, σ3)
· σ−1

1 σ−1
3 (

xσ1 · σ3(xσ3)

xσ3 · σ3(xσ1)
) = σ−1

1 σ−1
3 (

xσ1 · σ3(xσ3)

xσ3 · σ3(xσ1)
),

xσ6 =
c(σ3σ2, [σ3, σ2]) · c(σ3, σ2)

c(σ2, σ3)
· σ−1

2 σ−1
3 (

xσ2 · σ2(xσ3)

xσ3 · σ3(xσ2)
) = ·σ−1

2 σ−1
3 (

xσ2 · σ2(xσ3)

xσ3 · σ3(xσ2)
)
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and

1 =
c(σjσi, [σj, σi]) · c(σj, σi)

c(σj, σi)
· σ−1

i σ−1
j (

xσi · σi(xσj)
xσj · σj(xσi)

)

for all other basic commutators [σj, σi].

As there are 3 basic commutators of weight 2 and 8 basic commutators weight 3
we end up with a total of 3 + 8 + 6 = 17 equations. We can do better however.

Firstly we observe that we have c(σ4, σ3) = ζ and c(σj, σi) = 1 for all other pairs
of basic commutators σj, σi. We know by Theorem 2.2.7 that the embedding problem

is solvable if and only if there exists an element ω ∈ M satisfying xpσi = σi(ω)
ω

. The
solution to the embedding problem will then be F = M( p

√
ω). On the other hand

we can take a closer look on the subgroup structure of E1. Let H2 := 〈σ3, σ5, σ6〉.
We see that τ /∈ H2 and thus we define H1 := 〈σ3, σ5, σ6, τ〉.

F

H1

















H2 τ EEEEEEEE

E1

M

���������������

H2

G1

FH2

τ FFFFFFFF

FH1

K

Since H1/H2
∼= 〈τ〉 and τ ∈ C(E1) we have in fact H1 = H2×〈τ〉, hence H2 can

be identified with a subgroup of G1. Furthermore we see that H1 / E1 and H2 / H1.
Thus the element p

√
ω of the extension F/M can be chosen to lie in FH2 ⊂M . Since

xσi = σi( p
√
ω)

p√ω we obtain the the relations xσ3 = xσ5 = xσ6 = 1. Hence the equation

1 =
c(σjσi, [σj, σi]) · c(σj, σi)

c(σi, σj)
·
xσi · σi(xσj)
xσj · σj(xσi)

vanishes for the pairs (i, j) = (3, 5), (3, 6). For the pairs (i, j) = (1, 3), (2, 3), (1, 5),
(2, 5), (2, 6) we immediately find

1 =
c(σjσi, [σj, σi]) · c(σj, σi)

c(σi, σj)
·
xσi · σi(xσj)
xσj · σj(xσi)

=
xσi

σj(xσi)
= 1,

hence they are always satisfied. (Note that the pairs (1, 6) and (5, 6) do not yield a
basic commutator, as seen in Section 2.1.2.)

Thus the 7 remaining equations are

Rσ1(xσ1) = 1,



Embedding problems for p-groups 37

Rσ2(xσ2) = 1,

Rσ4(xσ4) = 1,

xσ4 =
c(σ2σ1, [σ2, σ1]) · c(σ2, σ1)

c(σ1, σ2)
· σ−1

1 σ−1
2 (

xσ1 · σ1(xσ2)

xσ2 · σ2(xσ1)
) = σ−1

1 σ−1
2 (

xσ1 · σ1(xσ2)

xσ2 · σ2(xσ1)
),

1 =
c(σ4σ1, [σ4, σ1]) · c(σ4, σ1)

c(σ1, σ4)
· xσ1 · σ1(xσ4)

xσ4 · σ4(xσ1)
=
xσ1 · σ1(xσ4)

xσ4 · σ4(xσ1)
,

1 =
c(σ4σ2, [σ4, σ2]) · c(σ4, σ2)

c(σ2, σ4)
· xσ2 · σ2(xσ4)

xσ4 · σ4(xσ2)
=
xσ2 · σ2(xσ4)

xσ4 · σ4(xσ2)
,

1 =
c(σ4σ3, [σ4, σ3]) · c(σ4, σ3)

c(σ3, σ4)
· xσ3 · σ3(xσ4)

xσ4 · σ4(xσ3)
= ζ−1σ3(xσ4)

xσ4

.

2.3 Embedding problems for p-groups

We will now look at the connection between the construction of p-groups, or more
generally nilpotent groups, as Galois groups and Brauer type embedding problems.

Since p-groups are nilpotent, there are central series for every p-group. Conse-
quently every p-group can be constructed, starting from the trivial group, by central
group extensions. In fact, even more is known about these group extensions: By
[Leedham1] Prop. 1.2.4, the commutator subgroup of a p-group G is a subgroup of
the Frattini subgroup of G. Hence if [G,G] is the commutator subgroup of G and
A := G/[G,G], then the group extension

1 // [G,G] // G // A // 1

is a Frattini extension. This extension can be subdivided into extensions with cyclic
kernel, which are still Frattini extensions. Hence we have:

Theorem 2.3.1. Let G be an arbitrary p-group and A := G/[G,G]. Then G can be
constructed, starting from the abelian group A, by cyclic Frattini group extensions.
If M/K is a field extension with Gal(M/K) = G, then M can be obtained from
an abelian extension of K by solving cyclic Frattini embedding problems. If K con-
tains sufficiently many pn-th roots of unity, those embedding problems are Brauer
type embedding problems and all solutions of each step are of the form described in
Theorem 2.2.3.

Proof. A weak solution of a Frattini embedding problem is already a proper solution
by 2.2.4. The rest follows from the considerations above.

Thus if we consider a field K that contains sufficiently many roots of unity, the
problem of realizing p-groups as Galois groups over K can be addressed by solving
only Brauer type embedding problems. This is of course far easier than dealing
with general embedding problems, as there are easy criteria for solvability and we
even have a comfortable way to describe the solutions (if there are any). These
observations will be used in the next chapter.
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Chapter 3

The arithmetic lifting property for
nilpotent groups

We will now address the problem of proving the Arithmetic Lifting property for
nilpotent groups over the field Qab, the maximal abelian extension of Q. In the
first section we show that in certain situations the arithmetic lifting property is
preserved under the formation of factor groups, a statement that does not need to
hold for arbitrary fields. In our situation, however, we will see that if a group E has
the arithmetic lifting property so do all factor groups of E. In the second section
it will be shown that the groups G(q, cl, d) introduced in Section 2.1.2 have the
arithmetic lifting property over fields that contain sufficiently many roots of unity.
Those two results will then be used to prove the arithmetic lifting property over Qab

for finite nilpotent groups. We assume throughout this chapter that all fields have
characteristic zero.

3.1 The arithmetic lifting property for factor

groups

In certain situations, it is possible to deduce from the fact that some group E has
the arithmetic lifting property over a given field K, that factor groups of E have
the arithmetic lifting property as well. While it is obviously always possible to infer
that every factor group of a group E has a regular realization over a given field K
if E has a regular realization over the same field, the same does not need to be true
for the arithmetic lifting property. This assertion holds, however, if the field K has
cohomological dimension ≤ 1.

Theorem 3.1.1. Let E be a finite group having the arithmetic lifting property over
a given field K. If E has the decomposition E = AoG where A is an abelian normal
subgroup of E. Then G has the arithmetic lifting property over the field K.

Proof. Split embedding problems with abelian kernel are always solvable (see
[Malle&Matzat1], Thm. IV 2.4), thus every G-extension M is a subextension of
an E-extension F .
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As E has the arithmetic lifting property, every E-extension F is a specialization
of a regular E-extension F̃ /K(t). For an arbitrary G-extension M choose F and
F̃ such that M ⊂ F . The subextension M is a specialization of the corresponding
subextension M̃/K(t) of F̃ .

Theorem 3.1.2. Let K be a field with cohomological dimension ≤ 1 and E be a
finite group having the arithmetic lifting property over K. Then every factor group
G of E has the arithmetic lifting property over the field K.

Proof. Let M/K be an arbitrary G-extension. Since the cohomological dimen-
sion of K is less than 2, every finite embedding problem over K is solvable, see
[Malle&Matzat1], Thm. IV 1.10, Cor. IV 1.11). Thus M/K can be embedded in an
E-extension F/K which is specialization of a regular E-extension F̃ /K(t). Hence
M is a specialization of a subextension M̃/K(t) of F̃ .

3.2 The arithmetic lifting property for embed-

ding problems

In the next section we will prove that every finite p-group, and hence every finite
nilpotent group, has the arithmetic lifting property over the field Qab. In this sec-
tion the main part of the proof will be done. The proof is by induction on the
nilpotency class of the groups G(q, cl, d) introduced in Section 2.1.2. In each step
of the induction we consider an E-extension F/K that is a solution of a Brauer
type embedding problem (M/K,E,G). We assume that M/K is specialization of
a regular G-extension M̃/K(t) and conclude that the embedding problem given by
E,G and M̃/K(t) is also solvable and that the solution F̃ has Galois group E. This
is the main part of the proof and is contained in Theorem 3.2.3 and Lemma 3.2.4.
Consequently we show that F̃ specializes to F and that the results of Theorem 3.2.3
can be extended to certain embedding problems with abelian kernel. We start with
two preliminary results needed later on. The first is a variation of Hilbert’s Theorem
90, the second a technical Lemma needed for the proof of Lemma 3.2.4.

Theorem 3.2.1. Let K be a field and M/K be a Galois extension with Galois group
G. Let σ ∈ G satisfy σq = 1 and let x ∈M . We have Rσ(x) = 1 if and only if there

exists an element y ∈M× such that σ(y)
y

= x.
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Proof. The proof is similar to the proof of Hilbert’s Theorem 90. Assume such an
element y exists. Applying Rσ gives Rσ(x) = Rσ(σ(y))

Rσ(y)
. Inserting σ just permutes the

powers of σ, hence Rσ(x) = 1.
On the other hand assume that we have Rσ(x) = 1. By Artin’s theorem on the
linear independence of characters, see [Lang1] Thm. VI.4.1, the map given by

σ0 + x · σ1 + x · σ(x) · σ2 + ...+ x · σ(x) · ... · σq−2(x) · σq−1

on M is not identically zero. Hence there exists z ∈M such that the element

1

y
:= z + x · σ1(z) + x · σ(x) · σ2(z) + ...+ x · σ(x) · ... · σq−2(x) · σq−1(z)

is not equal to 0. Application of σ and multiplication by x yields:

x · σ(
1

y
) = x · σ(z) + x · σ(x) · σ2(z) + ...+ x · σ(x) · ... · σq−1(x)σq(z) =

1

y
,

because Rσ(x) = 1 and σq = 1. Multiplication by σ(y) completes the proof.

Lemma 3.2.2. Using the notations of Section 1.2, let L denote a system of linear
equations over the function field K(T1, ..., Tn). Let L̄ denote a system of linear equa-
tions over a field K(θ1, ..., θn), where the θi are the roots of an irreducible polynomial
of degree n over K, and assume L̄ is obtained from L by specializing the coefficients
of L via Ti 7→ θi. If L̄ consists of linearly independent equations over K(θ1, ..., θn)
and has a solution in K, then L consists of linearly independent equations over
K(T1, ..., Tn) and is also solvable.

Proof. Assume L consists of the following m equations

c1,1Z1 + ...+ c1,nZn = d1

...
cm,1Z1 + ...+ cm,nZn = dm

where ci,j, di ∈ K(T1, ..., Tn), and assume L̄ consists of the linearly independent
equations

c̄1,1Z̄1 + ...+ c̄1,nZ̄n = d̄1

...
c̄m,1Z̄1 + ...+ c̄m,nZ̄n = d̄m

where c̄i,j, d̄i ∈ K(θ1, .., θn).
Since L̄ has a solution, we have n ≥ m and we assume a solution is given by
z1, ..., zn ∈ K. As the equations are linearly independent we can add n−m equations
to this system to arrive at a new system L̄

∗
which is uniquely solvable. Without

loss of generality we may add the linear equations

z1 = Z̄1, ..., zn−m = Z̄n−m.

Since the new system L̄
∗

is uniquely solvable we have for the determinant of the
matrix C̄∗, describing the homogeneous system of linear equations corresponding to
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L̄
∗
, det(C̄∗) 6= 0.

If we expand the system L to a new system L∗ by adding the equations

z1 = Z1, ..., zn−m = Zn−m,

L̄
∗

will be obtained from L∗ by specializing the coefficients of L via Ti 7→ θi. Corre-
spondingly the determinant det(C∗) of the matrix C∗ describing the homogeneous
system of linear equations corresponding to L∗ will specialize to det(C̄∗). Since
det(C̄∗) 6= 0 we have det(C∗) 6= 0. Hence the system L∗ is uniquely solvable and
thus the subsystem L is solvable.

Now, we consider the groups introduced in Section 2.1.2. Let cl, d ∈ N be
arbitrary but fixed integers and let q be a fixed power of a fixed prime p. Let
G := G(q, cl, d)/Z(G(q, cl, d)). Since Z(G(q, cl, d)) is a direct product of cyclic
groups of order q, the embedding problem (M/K,G(q, cl, d), G) is given by a group
extension

1 // Z(G(q, cl, d)) i // G(q, cl, d) // G // 1

and it can be decomposed into embedding problems with cyclic kernel by Theo-
rem 2.2.2. If (M/K,E,G) is such an embedding problem we have cl(E) > cl(G).
Observe that Z(G(q, cl, d)) = Lcl(G(q, cl, d)) is generated by basic commutators of
G(q, cl, d) by Theorem 2.1.3. Hence the kernel of the cyclic embedding problem
(M/K,E,G) is generated by a basic commutator of E.

As noted above the proof is by induction on the nilpotency class of the groups
G(q, cl, d) introduced in Section 2.1.2. A given group G(q, cl, d) can be obtained
from the group G(q, cl, d)/C(G(q, cl, d)), which has smaller nilpotency class, by a
group extension with abelian kernel. This group extension can then be decomposed
into group extensions with cyclic kernel. So the group G(q, cl, d) can be constructed
inductively by group extensions with cyclic kernels, starting from the trivial group.
So if we want to realize G(q, cl, d) regularly over K as Galois group over K(t) we
can follow this decomposition of G(q, cl, d) and, since all roots of unity are assumed
to be in the field K, solve Brauer type embedding problems in each step.
So we will now consider an E-extension F/K that is a solution to a Brauer type
embedding problem (M/K,E,G), given by a group extension

1 // Cq
ι // E // G // 1

〈τ〉

and a G-extension M/K. We will assume that M/K is specialization of a regu-
lar G-extension M̃/K(t) and show that the embedding problem given by E,G and
M̃/K(t) is also solvable and that the solution F̃ has Galois group E.

Before we come to the central Theorem 3.2.3 we introduce some notation and
make some preliminary observations.

Let F be a solution of the embedding problem (M/K,E,G). We define two
subgroups H1 and H2 of E. Let H2 be a subgroup of E that is generated by basic
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commutators, that does not contain τ and that has the following property: The
group H1 := 〈τ,H2〉 satisfies H1 /E and H2 is maximal with these properties. Since
〈τ〉/E, such an H2 exists always, but it can be trivial. We note that 〈τ〉/H1, hence
the group extension

1 // H2
ι // H1

// 〈τ〉 // 1

splits. Since τ is a central element of G we have thus H1 = 〈τ〉 ×H2.
By [Lang1] VI.1.14, H2 can be identified with a subgroup of G.

F

H1
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We will see later on that the question whether the embedding problem (M/K,E,G)
can be solved can be decided by examining the field FH1 < M instead of M itself.
We note that FH1 is the smallest Galois subextension of M such that the corre-
sponding Galois group E/H1 is generated by basic commutators. In other words,
the group E/H1 is build up from just enough classes of basic commutators of E such
that it is not possible to “build up τ from the remaining basic commutators in H2”.
These basic commutators will be denoted by σ1, ..., σm, hence m denotes the number
of basic commutators generating E/H1. Let n the order of E/H1. The group H2

will be used later on to reduce the elements in the factor system corresponding to
the embedding problem to a minimal set. The proof will then contain an induction
on those elements.

As stated above, we assume now that M/K is a specialization of a regular Galois
extension M̃/K(t) with Gal(M̃/K(t)) = G via a specialization ϕ, i.e., the extension
M̃/K(t) and the specialization M/K are Galois extensions of the same degree.

By the definition of a specialization, this means that there exists a s ∈ K such
that the specialization is given by ϕ : t 7→ s and the polynomial (t− s) gives via

v : M̃× −→ Z, f̃ = ũ(t− s)m 7→ m,

a discrete valuation of M̃ . This valuation is inert in M̃/K(t) and the following
assertions hold, see Section 1.1 for reference: The valuation ring of M̃ with respect
to (t− s) is

Oϕ :=

{
f̃

g̃
| f̃ ∈ M̃, g̃ ∈ M̃ and (t− s) - g̃

}
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and its maximal ideal is mϕ := Oϕ(t− s). The quotient map

ϕ : Oϕ −→M := Oϕ/mϕ, t 7→ s

is a place from M̃ to M . The map ϕ is the specialization of M̃ at s and since this is
the only specialization map considered here, we will simply call it the specialization.

We will now restrict ourselves to the subextension M̃H2/K(t) of M̃/K(t) which,
by assumption, specializes to FH1 = MH2 via the map ϕ and describe these ex-
tensions via minimal polynomials and primitive elements: Let θ := θ1 denote a
primitive element of the extension FH1/K and let θ1, ..., θn denote a normal basis
for FH1/K. Furthermore, let

P (X) := Xn + (−1)kn−1X
n−1 + ...+ (−1)nk0

denote a minimal polynomial for θ over this extension, i.e. a polynomial that has
θ1, ..., θn as roots. We pick a preimage θ̃ := θ̃1 of θ1 under the specialization ϕ that is
a primitive element of the extension M̃H2/K(t) and let
Gal(M̃H2/K(t)) = Gal(FH1/K) act on this element. In doing so, we obtain preim-
ages θ̃1, ..., θ̃n of θ1, ..., θn. Let

P (t,X) := P̃ (X) := Xn + (−1)k̃n−1X
n−1 + ...+ (−1)nk̃0

be a polynomial that has θ̃1, ..., θ̃n as roots, i.e., a minimal polynomial for M̃H2/K(t).
Then P (t,X) specializes to P (X) under the specialization ϕ and the roots θ̃1, ..., θ̃n
form a normal basis for the extension M̃H2/K(t). We come now to the central
Theorem:

Theorem 3.2.3. Let K be a field of characteristic zero that contains all roots of
unity and let M be a Galois extension of K with Galois group
G := G(q, cl, d)/Z(G(q, cl, d)) for a group G(q, cl, d) as described above.
Let (M/K,E,G) be an embedding problem with central, cyclic kernel Cq = 〈τ〉. As-
sume that M̃/K(t) is a regular G-extension that specializes to M/K. If the embed-
ding problem (M/K,E,G) is solvable, then the embedding problem (M̃/K(t), E,G)
is also solvable.

Proof. Using the notation introduced above, we see that if the embedding problem
(M/K,E,G) above is solvable, then F = M( q

√
ω) for an element ω ∈ FH1 . Since

FH2/FH1 is a cyclic extension of order q and the q-th roots of unity are contained
in K, we have without loss of generality

τ( q
√
ω) = ζ · q

√
ω

for a primitive q-th root of unity ζ. Furthermore there exists a factor system with

elements xσ := σ( p
√
ω)

p√ω from FH1 corresponding to those elements σ whose images

under the canonical projection on E/H1 do not disappear by Corollary 2.2.7. Due to
the compatibility of the composition xσ ·σ(xσ′) = xσσ′ with associativity for arbitrary
group elements σ, σ′ it is sufficient to consider the elements xσ for basic commutators
σi ∈ E/H1. All other elements can be obtained from those by the considerations
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done in Lemma 2.2.8, Lemma 2.2.9 and Lemma 2.2.10 in Section 2.2.4. For three
basic commutators σi, σj, σk ∈ E/H1 with the relation σk = [σi, σj] we get by Lemma
2.2.9 the following relation for their corresponding elements xi, xj, xk:

xk =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· σ−1

j σ−1
i (

xj · σj(xi)
xi · σi(xj)

)

or, equivalently,

σiσj(xk) · xi · σi(xj) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· xj · σj(xi).

In case [σi, σj] = 1, the expression reduces to

xi · σi(xj) =
c(σi, σj)

c(σj, σi)
· xj · σj(xi).

Since τ is a basic commutator, we have τ = [σ′m, σ
′
l] for a uniquely determined

pair of basic commutators σ′l, σ
′
m ∈ E. We denote the classes of σ′l, σ

′
m in E/H1

by σl, σm. (Note that m denotes also the number of basic commutators generating
E/H1. Since there is for now no ordering on the basic commutators, this choice can
be made without loss of generality. We will, however, in the proof of Lemma 3.2.4
choose an ordering and σm will then turn out to be the highest basic commutator
with respect to this ordering.)
At most one of these two commutators lies in H2, since we can assume without loss
of generality σm 6= 1 ∈ E/H1. Because of the relation

ζ · q
√
ω = τ( q

√
ω) = [σ′m, σ

′
l](

q
√
ω) 6= q

√
ω

we obtain, in the case σ′l ∈ H2, one additional equation:

xm · σm(xl) =
c(σmσl, [σm, σl]) · c(σm, σl)

c(σl, σm)
· xl · σl(xm).

(If σ′l /∈ H2 we have σl, σm 6= 1 ∈ E/H1 and the equation is already contained
in the system above because the system contains all equations that come from
commutators [σi, σj], σi, σj ∈ E/H1.) This equation is a special case of the ex-
pression for commutators of the form 1 = [σi, σj]. We have c(σmσl, [σm, σl]) = 1
because 1 = [σm, σl] ∈ E/H1. By the definition of the factor system c we have
σ′mσ

′
l = ι(c(σm, σl))(σmσl)

′ and σ′lσ
′
m = ι(c(σl, σm))(σlσm)′, where ι : Cq → E de-

notes the inclusion map. Hence we get c(σm, σl) = 1 and c(σl, σm) = ζ−1 because of
τ = [σ′m, σ

′
l] and the generator τ of Cq corresponds to the primitive q-th root of unity

ζ via ζ · q
√
ω = τ( q

√
ω). Since σl ∈ H2 we have xl = 1 and so by Lemma 2.2.9 the

equation can be reduced to
xm = ζ · σl(xm).

Furthermore we have by Lemma 2.2.10

Rσi(xi) = 1

for all elements xi, because τ is a basic commutator of E and by the definition of
the groups G(q, cl, d) not a power of another basic commutator, see Corollary 2.1.5.
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Hence every preimage σ′i ∈ E of a basic commutator σi ∈ E/H1 has the same order
as σi.

To prove solvability of the embedding problem over K(t), we have to obtain a
factor system for K(t) from the factor system for K. Hence we have to find elements
x̃i ∈ M̃H2 that satisfy the conditions above.

Using Theorem 3.2.1 we can write each element xi as xi = σi(yi)
yi

with elements

yi ∈ FH1 . Hence we have an equivalent system of equations of the following form:
For all triples of basic commutators σi, σj, σk ∈ E/H1 and for the commutator
relation τ = [σi, σj]:

σiσj(xk) · xi · σi(xj) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· xj · σj(xi) for σk = [σi, σj],

xi · σi(xj) =
c(σi, σj)

c(σj, σi)
· xj · σj(xi) for 1 = [σi, σj] or τ = [σi, σj],

σi(yi) = xi · yi.

If n := [FH1 : K], the elements xi and yj can be written as

xi :=
n∑

α=1

xi,αθα, xi,α ∈ K,

yj :=
n∑
β=1

yj,βθβ, yj,β ∈ K,

for a normal basis θ1, ..., θn and these expressions can be inserted into the system
above. In doing so we obtain expressions in the elements xi,α, yj,β ∈ K. We write
for the sets of coefficients

ai := {xi,α | α = 1, ..., n},bi := {yj,β | β = 1, ..., n}.

Hence we can consider xi,α, yj,β ∈ K as a solution of the following system of
equations, denoted by (∗)θ:

σiσj(X̄k) · X̄i · σi(X̄j) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· X̄j · σj(X̄i) for σk = [σi, σj],

X̄i · σi(X̄j) =
c(σi, σj)

c(σj, σi)
· X̄j · σj(X̄i) for 1 = [σi, σj] or τ = [σi, σj],

σi(Ȳi) = X̄i · Ȳi,

where

X̄i :=
n∑

α=1

X̄i,αθα,
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Ȳj :=
n∑
β=1

Ȳj,βθβ,

with parameters X̄i,α, Ȳj,β and a normal basis θ1, ..., θn for the extension FH1/K. We
denote this system of equations by (∗)θ.

All the considerations above are of course also true for the embedding problem
(M̃/K(t), E,G), because it is a Brauer type embedding problem as well and the
structure of the system of equations above depends only on the group
G =Gal(M/K) =Gal(M̃/K(t)). Thus the embedding problem (M̃/K(t), E,G) is
solvable if we find a solution to a similar system of equations, denoted by (∗)θ̃,

σiσj(X̃k) · X̃i · σi(X̃j) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· X̃j · σj(X̃i) for σk = [σi, σj],

X̃i · σi(X̃j) =
c(σi, σj)

c(σj, σi)
· X̃j · σj(X̃i) for 1 = [σi, σj] or τ = [σi, σj],

σi(Ỹi) = X̃i · Ỹi

in M̃H2 .

Lemma 3.2.4 belows shows precisely that a solution xi, yj ∈ MH2 of the system
(∗)θ can be lifted to a solution x̃i, ỹj ∈ M̃H2 of the system (∗)θ̃ and so the embed-
ding problem (M̃/K(t), E,G) is solvable if the embedding problem (M/K,E,G) is
solvable.

We need the following Lemma to complete the proof of Theorem 3.2.3.

Lemma 3.2.4. Assume we have embedding problems given as in Theorem 3.2.3.
When we have a specialization ϕ : M̃ →M , a normal basis θ̃1, ..., θ̃n for M̃H2/K(t)
that specializes to a normal basis θ1, ..., θn of MH2/K via the specialization ϕ, the
following holds: If we have a system of equations, denoted by (∗)θ with parameters
X̄i,α, Ȳj,β

σiσj(X̄k) · X̄i · σi(X̄j) = c(σiσj ,[σi,σj ])·c(σi,σj)
c(σj ,σi)

· X̄j · σj(X̄i) for σk = [σi, σj ], (1)

X̄i · σi(X̄j) = c(σi,σj)
c(σj ,σi)

· X̄j · σj(X̄i) for 1 = [σi, σj ] or τ = [σi, σj ], (2)

σi(Ȳi) = X̄i · Ȳi (3)

where

X̄i :=
n∑

α=1

X̄i,αθα,

Ȳj :=
n∑
β=1

Ȳj,βθβ,

and there exists a nontrivial solution

xi :=
n∑

α=1

xi,αθα, yi :=
n∑
β=1

yj,βθβ ∈ FH1 = MH2
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with xi,α, yj,β ∈ K, this solution can be lifted to a solution x̃i, ỹi of a similar system,

denoted by (∗)θ̃ over K(t) where the θi are replaced by θ̃i, where ϕ(θ̃i) = θi. In other
words, the system

σiσj(X̃k) · X̃i · σi(X̃j) = c(σiσj ,[σi,σj ])·c(σi,σj)
c(σj ,σi)

· X̃j · σj(X̃i) for σk = [σi, σj ], (1)

X̃i · σi(X̃j) = c(σi,σj)
c(σj ,σi)

· X̃j · σj(X̃i) for 1 = [σi, σj ] or τ = [σi, σj ], (2)

σi(Ỹi) = X̃i · Ỹi (3)

has a solution x̃i, ỹi ∈ M̃H2 over K(t).

Proof. The proof of this Lemma will be split into five steps. In the first step we
translate the system of equations to a system of equations over the function field
K(T1, ..., Tn) to work with indeterminates Ti instead of roots θi. In the second step
we establish a method to order the equations of type (1) and (2) in a certain conve-
nient way. In the third step we use this ordering to write some of the parameters of
these equations as rational functions of the remaining parameters. The fourth step
is concerned with the equations of type (3) and in the last step it is shown how a so-
lution of the system (∗)θ can be lifted to a solution of (∗)θ̃ using the previous results.

Step 1:

In this step, we want to translate the system of equations (∗)θ into a system
of equations over the function field K(T1, ..., Tn) where the roots θi are replaced by
indeterminates Ti.
We recall the notation established in the beginning of this section: Let θ̃ := θ̃1

denote a primitive element of the extension M̃H2 , θ̃1, ..., θ̃n a normal basis of M̃H2

and let
P (t,X) := P̃ (X) := Xn + (−1)k̃n−1X

n−1 + ...+ (−1)nk̃0

denote a minimal polynomial for θ̃ over this extension, i.e., a polynomial that has
θ̃1, ..., θ̃n as roots. The polynomial

P (X) := Xn + (−1)kn−1X
n−1 + ...+ (−1)nk0

denotes a minimal polynomial for the extension FH1 , obtained by specializing P (t,X)
via the map ϕ. Correspondingly, each θi is a root of P (X) obtained by specializing θ̃i
via the map ϕ and θ1, ..., θn is a normal basis of the extension FH1 . We write θ := θ1.

We want to write eventually some of the elements X̄i,α, we denote them by
X̄i,α′ , as rational functions in the remaining elements X̄i,α′′ , the primitive element θ
and the other roots of the minimal polynomial obtained from θ via the Galois action.

This will be done in the following way: We recall that the Galois group E/H1 of
the extension FH1/K acts on the roots θi by permutation. Furthermore each θi is

a specialized value of a root θ̃i ∈ M̃H2 of the minimal polynomial of the extension
M̃/K(t) by the specialization map ϕ : M̃ →M . The group E/H1 acts on the roots
θ̃i in the same ways as on the roots θi. We will now replace the roots θ1, ..., θn by
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variables T1, ..., Tn:
We map the K vector space generated by θ1, ..., θn to the (isomorphic) K vector
space generated by T1, ..., Tn via the vector space isomorphism

Ψ : θi 7→ Ti.

Furthermore we let the group Gal(MH2/K) = E/H1 act on the K vector space
generated by the T1, ..., Tn via this vector space isomorphism, i.e., if σ ∈ E/H1 acts
by σ(θi) = θj, then σ(Ti) = Tj. We then extend this action multiplicatively to the
field K(T1, ..., Tn) to obtain that the Galois group E/H1 acts on the indeterminates
Ti as a permutation group in the same way as on the roots θi. See Section 1.2 for the
prerequisites from invariant theory needed here. Again, as with the roots θ = θ1,
we write T := T1.
We note that Ψ : K(θ1, ..., θn)→ K(T1, ..., Tn) is not compatible with multiplication.
We have for example Ψ(θi) ·Ψ(θi) = Ti ·Ti = T 2

i 6= Ψ(θ2
i ), as T 2

i is not an element of
the K vector space generated by indeterminates T1, ..., Tn. On the other hand the
specialization

Φ : K(T1, ..., Tn)→ K(θ1, ..., θn), Ti 7→ θi

is a place of K(T1, ..., Tn) to K(θ1, ..., θn) and thus we have Φ(f ·g) = Φ(f) ·Φ(g) for
all f, g ∈ K(T1, ..., Tn) whenever Φ(f),Φ(g) are well defined elements of K(θ1, ..., θn).
Furthermore we have for each σ ∈Gal(FH1/K) = E/H1

σ(Φ(Ti) = σ(θi) = θσ(i) = Φ(Tσ(i)) = Φ(σ(Ti)).

Hence specializing via Φ commutes with the action of E/H1 on K(T1, ..., Tn) and
K(θ1, ..., θn), i.e. Φ is Gal(FH1/K)-equivariant. If ι denotes the embedding of the
K vector space generated by T1, ..., Tn into the function field K(T1, ..., Tn) we then
have that

Φ ◦ ι ◦Ψ : K(θ1, ..., θn)→ K(θ1, ..., θn)

is the identity map and a Gal(FH1/K)-equivariant isomorphism of fields. We then
have the following commutative diagram:

K(T1, ..., Tn)

E/H1

Ti 7→θi
K(θ1, ..., θn) = FH1

E/H1

K(T1, ..., Tn)E/H1
Ti 7→θi

K(θ1, ..., θn)E/H1 = K.

With these definitions we translate the equations obtained from the commutator
relations into a system of equations over K(T1, ..., Tn): Via the map Ψ we replace
the elements

X̄i :=
n∑

α=1

X̄i,αθα,

Ȳj :=
n∑
β=1

Ȳj,βθβ,
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by

Xi :=
n∑

α=1

Xi,αTα,

Yj :=
n∑
β=1

Yj,βTβ,

and consider then a system of equations, denoted by (∗). Thus each equation of the
original system will then give rise to an equation with its parameters defined over
the field K(T1, ..., Tn), i.e., we obtain a system of equations

σiσj(Xk) ·Xi · σi(Xj) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
·Xj · σj(Xi) for σk = [σi, σj],

Xi · σi(Xj) =
c(σi, σj)

c(σj, σi)
·Xj · σj(Xi) for 1 = [σi, σj] or τ = [σi, σj],

σi(Yi) = Xi · Yi.

with

Xi :=
n∑

α=1

Xi,αTα,

Yj :=
n∑
β=1

Yj,βTβ,

with parameters Xi,α, Yj,β and coefficients in the field K(T1, ..., Tn) and we try to
find a solution for the Xi,α, Yj,β in K(T1, ..., Tn)E/H1 . The system (∗) looks similar
to the system (∗)θ, we have just replaced the roots θi ∈ FH1 by indeterminates
Ti ∈ K(T1, ..., Tn) over K and renamed the X̄i,α, X̄j,β, which represent elements
of K, to Xi,α, Yj,β, because we are now looking for a solution of this system in
K(T1, ..., Tn)E/H1 .

From now on we will call the original system

σiσj(X̄k) · X̄i · σi(X̄j) = c(σiσj ,[σi,σj ])·c(σi,σj)
c(σj ,σi)

· X̄j · σj(X̄i) for σk = [σi, σj ], (1)

X̄i · σi(X̄j) = c(σi,σj)
c(σj ,σi)

· X̄j · σj(X̄i) for 1 = [σi, σj ] or τ = [σi, σj ], (2)

σi(Ȳi) = X̄i · Ȳi (3)

with

X̄i :=
n∑

α=1

X̄i,αθα,

Ȳj :=
n∑
β=1

Ȳj,βθβ,

over K, which can be regained from the system above by specializing the Ti with
the roots of the minimal polynomial θ1, ..., θn, the specialized system. We recall that
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this system is denoted by (∗)θ. We keep in mind that by assumption this special-
ized system of equations over the field FH1 = K(θ1, ..., θn) has at least one solution
xi,α, yj,β ∈ K.

Hence, now the system (∗) is a system of equations with coefficients in
K(T1, ..., Tn). The Galois group acts on the indeterminates T1, ..., Tn by permutation
as explained above and we will solve the system over the same field K(T1, ..., Tn).
We will do all computations and all transformations of these equations over the field
K(T1, ..., Tn). In doing so, we will by transformations of the equations be able to
express some elements Xi,α, denoted by Xi,α′ , as rational functions in the remain-
ing elements, denoted by Xi,α′′ , with coefficients in K(T1, ..., Tn). Thus we “keep
track” of the Galois action. After we have done the transformations over the field
K(T1, ..., Tn), we specialize the indeterminates Ti to the roots θi and hence obtain
corresponding parameters X̄i,α′ as rational functions in the remaining parameters
X̄i,α′′ , with coefficients in K(θ1, ..., θn).

We have to make sure that the transformations used to isolate the Xi,α′ are
compatible with specializing, i.e., that this process yields the same rational function
as isolating the parameters X̄i,α′ in the system (∗)θ would yield. When we look at
the equations of the system (∗) we see that each side of the equations is an element
of

K(T1, ..., Tn)[X1,1, ..., Xm,n] ⊂ K(θ1, ..., θn)(T1, ..., Tn)(X1,1, ..., Xm,n).

Correspondingly, each side of each equation of the system (∗)θ is an element of

K(θ1, ..., θn)[X̄1,1, ..., X̄m,n] ⊂ K(θ1, ..., θn)(X̄1,1, ..., X̄m,n).

To isolate a certain Xi,α′ in one of the equations of (∗) we change both sides of
the equation by successively adding elements of K(T1, ..., Tn)(X1,1, ..., Xm,n) or by
multiplying each side with elements of K(T1, ..., Tn)(X1,1, ..., Xm,n). Note that we
do not need the action of the group E/H1 on the indeterminates T1, ..., Tn in this
process.

We observe that the specialization

K(θ1, ..., θn)[T1, ..., Tn]→ K(θ1, ..., θn), Ti 7→ θi

is a ring homomorphism, the evaluation homomorphism. It can be extended to a
ring homomorphism

K(θ1, ..., θn)[T1, ..., Tn]θi → K(θ1, ..., θn),

where

K(θ1, ..., θn)[T1, ..., Tn]θi :=

{
f

g
| f, g ∈ K(θ1, ..., θn)[T1, ..., Tn], (Ti − θi) - g

}
.

Furthermore the map

K(θ1, ..., θn)(T1, ..., Tn)(X1,1, ..., Xm,n)→ K(θ1, ..., θn)(T1, ..., Tn)(X̄1,1, ..., X̄m,n)
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given by

Xi,α 7→ X̄i,α

is an isomorphism of fields. Then the specialization of the equations considered
above is obtained by restricting the composition of these maps to
K[T1, ..., Tn]θi(X1,1, ..., Xm,n), where

K[T1, ..., Tn]θi := K(θ1, ..., θn)[T1, ..., Tn]θi ∩K(T1, ..., Tn)

and hence it is a ring homomorphism on this restriction. We note that K[T1, ..., Tn]θi
is the localization of K[T1, ..., Tn] at P (t,X). Thus specializing is compatible with all
transformations of the equations as long as we use only elements of
K[T1, ..., Tn]θi(X1,1, ..., Xm,n) for our transformations. We can however assume that
we need only elements of K[T1, ..., Tn]θi(X1,1, ..., Xm,n) when isolating a given pa-
rameter Xi,α′ , as long as we know that the specialized system has a solution and
that the corresponding parameter X̄i,α′ can be isolated in the specialized system.
Otherwise it would not be possible to isolate X̄i,α′ in the specialized system at all,
because isolating would require a “division by zero”.

Step 2:

From now on we work with the system of equations (∗) defined over K(T1, ..., Tn).
Our aim in this step is to order the equations of types (1) and (2) of this system in
a certain convenient way.

We recall that the basic commutators can be ordered in such a way that basic
commutators of higher weight appear later in the ordering. We choose such an
ordering and enumerate the basic commutators not equal to 1 according to this
ordering,

σ1 < σ2 < ... < σm.

As G is finite nilpotent, this sequence terminates by Corollary 2.1.4, i.e., there exists
a “last basic commutator, necessary to describe G”, which will be denoted by σm.
If n = [FH1 : K] = ord E/H1 as before, we have m < n because the number of
elements of a finite p-group exceeds the number of basic commutators generating it.
We look at the equations of type (1) and (2), i.e., those of the form

σiσj(Xk) ·Xi · σi(Xj) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
·Xj · σj(Xi)

or

Xi · σi(Xj) =
c(σi, σj)

c(σj, σi)
·Xj · σj(Xi).

Each equation comes from a commutator expression of the form σk = [σi, σj],
i > j. By the definition of the ordering relation of the basic commutators, we know
that commutators of higher weight appear later in the ordering than basic commu-
tators of lower weight. Hence, since σk has higher weight than σj and σi, we have
σk > σi > σj. We have thus always the relation k > i > j in the equations above.
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To standardize notation we write now k = ki,j and all commutator expressions
yielding equations of types (1) or (2) in the form

σkj,i = [σj, σi]

instead of distinguishing between equations of the two types. Hence each σkj,i de-
notes either a basic commutator satisfying kj,i > j > i or we have σkj,i = 1. In
the second case we add a new parameter X̄kj,i belonging to σkj,i . This does not
change anything, this element will simply have to take the value 1 in a solution for
this system of equations. (We note already at this point that we will not isolate
the parameter X̄kj,i in the system of equations when we solve the system of equa-
tions later on. We have ki,j > i > j and we will always isolate parameters with
the least index. Hence no problems occur with the fact that we know beforehand
which values the X̄kj,i have to assume to yield a solution of the system of equations.)

We write as above

Xi :=
n∑

α=1

Xi,αTα,

and, to shorten notation,

ci,j,kj,i :=
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
=
c(σiσj, σkj,i) · c(σi, σj)

c(σj, σi)
.

Since c : G → M is a factor system, its image consists of roots of unity and so the
expression ci,j,kj,i is a well defined root of unity for all i, j, kj,i.
Using this notation, we obtain equations of the form:

σiσj(Xkj,i) · (
n∑

α=1

Xi,αTα) · σi(Xj) = ci,j,kj,i ·Xj · (
n∑

α=1

Xi,ασj(Tα)).

We look now at the equations of type (1) and (2) of the system defined over
K(T1, ..., Tn). We isolate in the equations the parameters Xi,α′ , and hence equate
each Xi,α′ to a rational function in the remaining parameters Xi,α′′ with coefficients
in K(T1, ..., Tn) as follows: All equations come from commutator relations of the
form σki,j = [σj, σi]. We order these commutator relations by the second argument
σi of the commutator first and then by the first argument σj, both in descending
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order:

τ = [σm, σl]

1. block { σkm,m−1 = [σm, σm−1]

2. block
{ σkm,m−2 = [σm, σm−2]

σkm−1,m−2 = [σm−1, σm−2]

...

i. block

{ σkm,i = [σm, σi]
...

σki+1,i
= [σi+1, σi]

...

(m− 1). block

{ σkm,1 = [σm, σ1]
...

σk2,1 = [σ2, σ1]

We let the first commutator equation aside and divide the remaining equations into
blocks as indicated above. In this subdivision the equations of the i-th block have
the following properties: The block consists of i commutator expressions and every
expression is a commutator of the basic commutator σm−i with a basic commuta-
tors σj that is higher in the ordering of basic commutators than σm−i. Hence the
commutator [σj, σm−i] itself is either higher in the ordering than σm−i or equal to 1.

Step 3:

In this step we use the ordering of the equations obtained above to write some
of the parameters of the equations of types (1) and (2) as rational functions in the
remaining parameters.

Assume now that we have a solution to the original specialized system of equa-
tions (1), (2), (3) over K, i.e., we have a set of elements xi,α ∈ K that satisfies all
those equations. We now want to write some of the Xi,α, we denote them by Xi,α′ ,
as rational functions in the remaining Xi,α′′ and the indeterminates T1, ..., Tn. Hence
we have to isolate some of the variables Xi,α in these equations.

We will do this stepwise: Since every equation of the system consisting of equa-
tions of types (1) and (2) comes from one of the commutator relations above, we can
order the equations in the same way as the commutator relations above. Now the
idea is to solve the system of equations blockwise, starting with the first block. We
isolate in the equations of the i-th block coefficients of Xm−i and obtain coefficients
of Xm−i, denoted Xm−i,α′ as expressions in the remaining coefficients of Xm−1 and
elements Xj, j > m− i. Now we will do this in detail:
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The ordered system of equations consists of:

The first equation, corresponding to the first commutator relation:

ζσl(
n∑
α=1

Xm,αTα) =
n∑
α=1

Xm,αTα.

Equations of the 1. block, corresponding to the 1. block of commutator relations:

σm−1σm(Xkm,m−1) · (
n∑
α=1

Xm−1,αTα) · σm−1(Xm) = cm−1,m,km,m−1 ·Xm · (
n∑
α=1

Xm−1,ασm(Tα)).

Equations of the 2. block, corresponding to the 2. block of commutator relations:

σm−2σm(Xkm,m−2) · (
∑n

α=1Xm−2,αTα) · σm−2(Xm)
= cm−2,m,km,m−2 ·Xm · (

∑n
α=1Xm−2,ασm(Tα)),

σm−2σm−1(Xkm−1,m−2) · (
∑n

α=1Xm−2,αTα) · σm−2(Xm−1)
= cm−2,m−1,km−1,m−2 ·Xm−1 · (

∑n
α=1Xm−2,ασm−1(Tα)).

...

Equations of the i. block, corresponding to the i. block of commutator relations:

σiσm(Xkm,i
) · (

n∑
α=1

Xi,αTα) · σi(Xm) = ci,m,km,i
·Xm · (

n∑
α=1

Xi,ασm(Tα)),

...

σiσi+1(Xki+1,i) · (
n∑
α=1

Xi,αTα) · σi(Xi+1) = ci,i+1,ki+1,i ·Xi+1 · (
n∑
α=1

Xi,ασi+1(Tα)).

...

Equations of the m − 1. block, corresponding to the m − 1. block of commutator
relations:

σ1σm(Xkm,1) · (
n∑
α=1

X1,αTα) · σ1(Xm) = c1,m,km,1 ·Xm · (
n∑
α=1

X1,ασm(Tα)),

...

σ1σ2(Xk2,1) · (
n∑
α=1

X1,αTα) · σ1(X2) = c1,2,k2,1 ·X2 · (
n∑
α=1

X1,ασ2(Tα)).
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Note that all equations look basically alike. Different equations depend on dif-
ferent elements Xi,α and commutators σi but their structure is always the same.
The very first equation of the system depends only on Xm,1, ..., Xm,n and no other
element Xi,α, so we consider this equation separately. We divide the remaining
equations into m − 1 blocks as indicated above. In this subdivision the equations
of the i-th block have the following properties: The block consist of i equations and
every equation contains the parameters Xm−i,1, ..., Xm−i,n (which come from a basic
commutator σm−i). All other elements Xj,α appearing in any of the equations of the
i-th block satisfy j > m − i, because they come from basic commutators σj that
are higher in the ordering of basic commutators than σm−i. We will now solve the
system of equations:

The very first equation

ζ · σl(
n∑

α=1

Xm,αTα) =
n∑

α=1

Xm,αTα

contains only Xm,1, ..., Xm,n none of which appear to any powers other than 1 and
no other coefficients Xi,α. So the equation is a linear equation in Xm,1, ..., Xm,n and
we know that it is not zero because the specialized system has a nontrivial solution
xm,1, ..., xm,n by assumption. We have to make sure that the denominator of this
expression will not become zero when specializing the equations later on:
We know by assumption that the set of elements xi,α ∈ K is a solution to the whole
system of all the equations of types (1) and (2) of the specialized system. Hence
the elements xm,1, ..., xm,n form a solution of the “subsystem” consisting of only one
equation obtained from specializing this equation. Furthermore the equation is not
zero and is a linear equations. Thus we have a solvable “system of linear equations”
(consisting of only one equation). So there exists at least one parameter in the
specialized equation that can be isolated, hence be expressed as a rational function
of in the other parameters. So by Lemma 3.2.2 the same holds for the equation
considered here and thus we can choose Xm,α′1

in such a way that the function above
and its specialization are well defined.
We denote the set of coefficients Xm,α of Xm by
Am := {Xm,α | α = 1, ..., n}, the set containing the coefficient which has been
isolated in this equation by A′m := {Xm,α′1

} and the set of the remaining coefficients
by A′′m := {Xm,α | α = 1, ..., n, α 6= α′1}. Thus we have a disjoint decomposition

Am = A′m ∪A′′m

and we write to visualize that Xm,α′1
depends on the elements of A′′m and the Ti:

Xm,α′1
= Xm,α′1

(A′′m, T1, ..., Tn).

As explained above, we solve the other equations stepwise, solving the equations
of one block in each step:

In the first step we consider all equations coming from commutators of the form
σkj,m−1

= [σj, σm−1] satisfying j > m− 1. Since the only commutator higher in the
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ordering than σm−1 is σm, there is only one equation of this type, the first equation
in our list, namely:

σm−1σm(Xkm,m−1) · (
∑n

α=1Xm−1,αTα) · σm−1(Xm)
= cm−1,m,km,m−1 ·Xm · (

∑n
α=1Xm−1,ασm(Tα)).

Note that the specialized system has a nontrivial solution by assumption, hence
neither side of the equation is zero. If we consider the parameters Xm,α as fixed
and look just at the Xm−1,0, ..., Xm−1,n−1, the equation forms a “system of linear
equations” in Xm−1,0, ..., Xm−1,n−1. This system consists of only 1 equation and has
n indeterminates. Isolating one coefficient of Xm−1, denoted by Xm−1,α′1

, gives us
the following expression for Xm−1,α′1

:

(
P
α′′ 6=α′1

Xm,α′′σm(Tα
′′
)) · cm−1,m,km,m−1 ·Xm − (

P
α′′ 6=α′1

Xm−1,α′′T
α′′ ) · σm−1σm(Xkm,m−1 ) · σm−1(Xm)

T · σm−1σm(Xkm,m−1 ) · σm−1(Xm)− σm(T ) · cm−1,m,km,m−1 ·Xm
.

Hence Xm−1,α′1
is a rational function in the remaining n − 1 coefficients, denoted

by Xm−1,α′′ , and T1, ..., Tn and the elements Xm,1, ..., Xm,n. We have to make sure
that the denominator of this expression will not become zero when specializing the
equations later on:
We know by assumption that the set of elements xi,α ∈ K is a solution to the whole
system of all the equations of types (1) and (2) of the specialized system. Hence the
elements xm−1,1, ..., xm−1,n form a solution of the “subsystem” consisting of only one
equation obtained from specializing this equation. Furthermore the equation is not
zero and is a linear equations. Thus we have a solvable “system of linear equations”.
So there exists at least one parameter in the specialized equation that can be isolated,
hence be expressed as a rational function of in the other parameters. So by Lemma
3.2.2 the same holds for the equation considered here and thus we can choose Xm−1,α′1

in such a way that the function above and its specialization are well defined. Again,
we denote the set of coefficients Xm−1,α of Xm−1 by Am−1 := {Xm−1,α | α = 1, ..., n},
the set containing the isolated coefficient by A′m−1 := {Xm−1,α′1

} and the set of the
remaining coefficients by A′′m−1 := {Xm−1,α | α = 1, ..., n, α 6= α′1}. Thus we have a
disjoint decomposition

Am−1 = A′m−1 ∪A′′m−1

and we write to visualize that Xm−1,α′1
depends on the elements of Am,A

′′
m−1 and

the Ti:
Xm−1,α′1

= Xm−1,α′1
(Am,A

′′
m−1, T1, ..., Tn).

We see that the expression thus obtained does not contain any roots, as it is obtained
from solving a linear equation. Now we replace in this expression the coefficient
Xm,α′1

with the term obtained above (from solving the equation belonging to the
commutator τ = [σm, σl]) and arrive at an expression depending only on A′′m,A

′′
m−1

and T1, ..., Tn, hence we write

Xm−1,α′1
= Xm−1,α′1

(A′′m,A
′′
m−1, T1, ..., Tn)

to visualize that xm−1,α′1
can be written as a rational function in A′′m,A

′′
m−1 and

T1, ..., Tn.
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We continue by examining the equations coming from commutator equations of
the form σkj,m−2

= [σj, σm−2] satisfying j > m− 2. There are two equations of this
type:

σm−2σm(Xkm,m−2) · (
∑n

α=1Xm−2,αTα) · σm−2(Xm)
= cm−2,m,km,m−2 ·Xm · (

∑n
α=1Xm−2,ασm(Tα))

σm−2σm−1(Xkm−1,m−2) · (
∑n

α=1Xm−2,αTα) · σm−2(Xm−1)
= cm−2,m−1,km−1,m−2 ·Xm−1 · (

∑n
α=1Xm−2,ασm−1(Tα))

We proceed now exactly as before: The equations are of the same form as above,
but we consider now Xm−2,0, ..., Xm−2,n, as the parameters of this system of equa-
tions and assume Xm−1,1, ..., Xm−1,n and Xm,1, ..., Xm,n to be fixed. As above, the
equations then form a system of linear equations. This system consists of 2 equa-
tions and has again n indeterminates and we know again that there exists a solution
of the specialized system given by xm−2,0, ..., xm−2,n.
We know that the specialized system is solvable but we have to make sure that the
system defined over K(T1, ..., Tn) considered here is also solvable. This follows from
the following considerations: Assume the specialized equations are not linearly in-
dependent. Then one of the equations can be omitted or is automatically satisfied.
Since each equation reflects a commutator relation, this means that one of the com-
mutator relations in the list on page 54 is not needed. Hence the solvability of the
embedding problem is independent of one of those commutator relations. So either
the basic commutator described by this relation is not necessary for the description
of τ (in terms of basic commutators of lower weight) or the relation for this basic
commutator is determined by the remaining relations.
In the first case, this contradicts the fact that the subgroup H2 of G is chosen as the
largest possible subgroup, generated by basic commutators, such that τ cannot be
build up by its basic commutators: By adding the basic commutator of the relation
in question to H2 we would obtain a larger group. This group is still generated by
basic commutators, because we see from Theorem 2.1.3 that the preimage of a basic
commutator of E/H1 can be chosen to be a basic commutator of E a canonical way.
Hence we have a contradiction to maximality of H2.
The second case means that we have a commutator relation that is not necessary to
determine E/H1 uniquely, i.e. it is already determined by the remaining relations.
But we have imposed no relations on the basic commutators generating the group
E/H1 aside from bounding the orders of the basic commutators. So this contradicts
the fact that the only relations between basic commutators are the very relations
needed for their definition, which is a minimal set of relations. Hence with the
specialized equations being linearly independent, we know from Lemma 3.2.2 that
the system of equations over K(T1, ..., Tn) consists of linearly independent equations
and is solvable.

Using the same argument as in the step above, we can thus find 2 coefficients of
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Xm−2, denoted by Xm−2,α′1
and Xm−2,α′2

, that can be written as well defined rational
functions in the remaining n− 2 coefficients, denoted by Xm−2,α′′ , and T1, ..., Tn and
the elements Xm−1, Xm. Again, we denote the set of coefficients Xm−2,α of Xm−2

by Am−2 := {Xm−2,α | α = 1, ..., n}, the set containing the coefficients that have
been isolated in the equations by A′m−2 := {Xm−2,α′1

, Xm−2,α′2
} and the set of the

remaining coefficients by A′′m−2 := {Xm−2,α | α = 1, ..., n, α 6= α′1, α
′
2}. Thus we

have a disjoint decomposition

Am−2 = A′m−2 ∪A′′m−2.

Now we replace in the expressions above the coefficients Xm,α′1
, Xm−1,α′1

by the terms
obtained before and arrive at rational functions dependent only on A′′m,A

′′
m−1,A

′′
m−2

and T1, ..., Tn, hence we write

Xm−2,α′1
= Xm−2,α′1

(A′′m,A
′′
m−1,A

′′
m−2, T1, ..., Tn)

and

Xm−2,α′2
= Xm−2,α′2

(A′′m,A
′′
m−1,A

′′
m−2, T1, ..., Tn).

The rational functions thus obtained do not contain any roots as they are obtained
from solving a linear equation, it is however possible that some coefficients Xj,α′′ ,
j > m− 2 appear nonlinearly.

The other steps are done inductively in the same way for decreasing i. We con-
sider in the i-th step the equations coming from commutators of the form
σkj,i = [σj, σi] satisfying j > i , i.e. the equations

σiσm(Xkm,i) · (
n∑

α=1

Xi,αTα) · σi(Xm) = ci,m,km,i ·Xm · (
n∑

α=1

Xi,ασm(Tα))

...

σiσi+1(Xki+1,i
) · (

n∑
α=1

Xi,αTα) · σi(Xi+1) = ci,i+1,ki+1,i
·Xi+1 · (

n∑
α=1

Xi,ασi+1(Tα)).

Considering Xi+1,1, ...Xi+1,n, ..., Xm,1, ..., Xm,n as fixed as above, the equations then
form a system of m − i linear equations for Xi,0, ..., Xi,n−1. Since the subsys-
tem of equations considered in the i-th step is part of the whole system of equa-
tions of type (1) and (2), we know that the specialized subssystem has a solu-
tion given by xi,0, ..., xi,n−1. We know again, with the same argument as in the
previous step and by using Lemma 3.2.2, that the subsystem is linearly inde-
pendent over K(T1, ..., Tn) and solvable. Again, we denote the set of coefficients
Xi,α by Ai := {Xi,α | α = 1, ..., n}, the set containing the coefficient that have been
isolated in the equations by A′i := {Xi,α′1

, ..., Xi,α′m−i
} and the set of the remaining

coefficients by A′′i := {Xi,α | α = 1, ..., n, α 6= α′1, ..., α
′
m−i}. Thus we have a disjoint

decomposition

Ai = A′i ∪A′′i .
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Thus we arrive at rational functions

Xi,α′1
= Xi,α′1

(Am, ...,Ai+1,A
′′
i , T1, ..., Tn),

...

Xi,α′m−i
= Xi,α′m−i

(Am, ...,Ai+1,A
′′
i , T1, ..., Tn).

Now we replace for all j > i in these expressions those coefficients Xj,α′ that
have been determined in the steps before and arrive at expressions dependent only
on A′′m, ...,A

′′
i and T1, ..., Tn:

Xi,α′1
= Xi,α′1

(A′′m, ...,A
′′
i , T1, ..., Tn),

...

Xi,α′m−i
= Xi,α′m−i

(A′′m, ...,A
′′
i , T1, ..., Tn).

In doing so, we finally arrive at a system of equations:

Xm,α′1
= Xm,α′1

(A′′m, T1, ..., Tn),

Xm−1,α′1
= Xm−1,α′1

(A′′m, ...,A
′′
m−1, T1, ..., Tn),

Xm−2,α′1
= Xm−2,α′1

(A′′m, ...,A
′′
m−2, T1, ..., Tn),

Xm−2,α′2
= Xm−2,α′2

(A′′m, ...,A
′′
m−2, T1, ..., Tn),

...

Xi,α′1
= Xi,α′1

(A′′m, ...,A
′′
i , T1, ..., Tn),

...

Xi,α′m−i
= Xi,α′m−i

(A′′m, ...,A
′′
i , T1, ..., Tn),

...

X1,α′1
= X1,α′1

(A′′m, ...,A
′′
1, T1, ..., Tn),

...

X1,α′m−1
= X1,α′m−1

(A′′m, ...,A
′′
1, T1, ..., Tn).

This system is equivalent to the original system described by the equations of types
(1) and (2) but expresses some coefficients Xi,α′ as rational functions of the remain-
ing coefficients Xi,α′′ from the sets A′′i and the powers of T1, ..., Tn. This system is
not necessarily unique. In each step other choices for Xi,α′ might be expressable in
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the remaining coefficients of a given Xi. The important part is that in each step at
least one choice is possible. But as noted above this is assured, because we know
that each subsystem has a solution and because each subsystem consists of linear
equations it is possible to isolate the respective Xi,α′ .

We note that up to this point the fact that the extension M/K is obtained from
specializing an extension M̃/K(t) has not been used. We have only used the fact
that there are solutions to certain equations (the equations of types (1), (2) and (3))
and then reformulated some of these equations (the equations of types (1) and (2)).

Step 4:

In this step we will consider the equations of type (3). We will use these equations
to write some of the parameters as rational functions in the remaining parameters.

We will now use the equations (3), i.e. those of the form

σi(Yi) = Xi · Yi,

to determine the coefficients of yj,β as functions of xi,α and θ1, ..., θn. We write

Yj :=
n∑
β=1

Yj,βTβ

to arrive at equations

σi(
n∑
β=1

Yj,βTβ) = Xi · (
n∑
β=1

Yj,βTβ).

Again, we have replaced the roots θ1, ..., θn in the original equations by the
indeterminates T1, ..., Tn and we solve now each equation for one coefficient Yi,β′ .
Again this is possible because we know that xi ∈M, yi,β ∈ K are part of a solution
to the whole specialized system of equations of types (1),(2),(3) over K, so we know
in particular that the system is solvable. Hence we arrive at expressions of the form

Yi,β′ =

∑
β′′ 6=β′ Yi,β′′σi(T

β′′)−Xi · (
∑

β′′ 6=β′ Yi,β′′T
β′′)

σi(T β
′)−Xi · T β′

.

As above, these expressions are well-defined: For some fixed xi,1, ..., xi,n from a
solution of the whole system of the original set of all specialized equations of types
(1),(2),(3) defined over the field K, the yi,β form a solution of the linear “subsystem”
given by the equation

σi(
n∑
β=1

X̄j,βθβ) = xi · (
n∑
β=1

X̄j,βθβ).

Thus we have a “system of linear equations” consisting of one equation, not equal to
zero, and so there exists at least one parameter that can be expressed as a rational
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function in the remaining parameters without the denominator becoming zero. So
we can choose Yi,β′ in a way that the function above and its specialization obtained
by replacing the Ti by θi are well-defined.

As above, not all coefficients will by determined in this process. We denote the
sets of coefficients Yj,0, ..., Yj,n−1 for a given Yj by Bj and we denote again all co-
efficients determined by the process above by Yj,β′ and the sets of coefficients thus
determined by B′j. The sets of the remaining coefficients will be denoted by B′′j .
Hence we arrive at a system of equations that gives some coefficients Yj,β′ ∈ B′j as
functions of the remaining coefficients Yj,β′′ ∈ B′′j , the coefficients X ′′i,α ∈ A′′i and the
powers of T1, ..., Tn that is equivalent to the system of equations (3).

In total we have shown that the sets of coefficients Ai = {Xi,α | α = 1, ..., n},
Bi = {Yi,β | β = 1, ..., n} of the Xi and Yj can be subdivided into two disjoint
subsets

Ai = A′i ∪A′′i for each of the elements Xi,

Bi = B′i ∪B′′i for each of the elements Yi,

such that the coefficients Xi,α′ ∈ A′i and Yj,β′ ∈ B′j are determined by the remaining
coefficients Xi,α′′ ∈ A′′i and Yj,β′′ ∈ B′′j the T1, ..., Tn via the original set of equations.
We replace now each coefficient Xi,α′ by its expression gained from solving the
equations of types (1) and (2) and get a system of equations (∗):

Xi,α′ = Xi,α′(A
′′
m, ...,A

′′
1, T1, ..., Tn),

Yj,β′ = Yj,β′(A
′′
m, ...,A

′′
1,B

′′
m, ...,B

′′
1, T1, ..., Tn),

that is equivalent to the original system of equations (1), (2), (3). Still, we have not
used the fact that the extension M/K is obtained from specializing an extension
M̃/K(t). Up to this point we have only reformulated the equations of types (1),
(2) and (3) using the fact that we know that they are solvable over K by assumption.

Step 5:

We will now address the problem of lifting the solutions of (∗)θ to a solution of
the corresponding system (∗)θ̃ of equations over K(t).

We start with a solution xi, yj of the original system of equations. If xi,α de-
notes the coefficient of xi corresponding to Xi,α for all i = 1, ...,m, α = 1, ..., n
and yj,β denotes the coefficient of yj corresponding to Yj,β for all j = 1, ...,m,
β = 1, ..., n, we get an induced decomposition of the sets
ai := {xi,α | α = 1, ..., n}, bi = {yi,β | β = 1, ..., n} of the xi and yj via:

ai = a′i ∪ a′′i for each of the elements xi,

bi = b′i ∪ b′′i for each of the elements yi.
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When we “evaluate” the rational functions

Xi,α′ = Xi,α′(A
′′
m, ...,A

′′
1, T1, ..., Tn),

Yj,β′ = Yj,β′(A
′′
m, ...,A

′′
1,B

′′
m, ...,B

′′
1, T1, ..., Tn),

by specializing the indeterminates Ti to the roots θi and each X ′′i,α ∈ A′′i and
Y ′′i,β ∈ B′′i to the corresponding x′′i,α ∈ a′′i and y′′i,β ∈ b′′i we get

xi,α′ = Xi,α′(a
′′
m, ..., a

′′
1, θ1, ..., θn),

yj,β′ = Yj,β′(a
′′
m, ..., a

′′
1,b

′′
m, ...,b

′′
1, θ1, ..., θn).

We note that we have for each of the elements xi,α′ , yj,β′ obtained rational functions
in the x′′i,α, y

′′
i,β and the roots θi but we do not know how these functions exactly look

like without actually computing the function using the process above. In particu-
lar, the θi will appear in these functions nonlinearly. This is no problem however,
since the specialization Φ : K(T1, ..., Tn)→ K(θ1, ..., θn) is Gal(FH1/K)-equivariant.
Hence it makes no difference whether we compute the action of Gal(FH1/K) = E/H1

on any Xi,α′ , Yj,β′ before we specialize these elements or if we compute the action of
Gal(FH1/K) = E/H1 on the specialized xi,α′ , yj,β′ .

We can now do the same over K(t). We specialize the system via Ti 7→ θ̃i.
We note that the specialization Ti 7→ θi is the composition of the specialization
Ti 7→ θ̃i and the specialization ϕ : θ̃i 7→ θi, hence as long as all the images under the
specialization Ti 7→ θi are well defined, the images under the specialization Ti 7→ θ̃i
are well defined as well. Thus we get equations in the parameters X̃1,0, ..., X̃m,n−1

over K(t):

σiσj(X̃k) · X̃i · σi(X̃j) =
c(σiσj, [σi, σj]) · c(σi, σj)

c(σj, σi)
· X̃j · σj(X̃i) for σk = [σi, σj],

X̃i · σi(X̃j) =
c(σi, σj)

c(σj, σi)
· X̃j · σj(X̃i) for 1 = [σi, σj] or τ = [σi, σj],

σi(Ỹi) = X̃i · Ỹi
with

X̃i :=
n∑

α=1

X̃i,αθ̃α,

Ỹj :=
n∑
β=1

Ỹj,β θ̃β,

The system (∗) becomes then a system of equations over K(t), denoted by (∗)θ̃ and
we have

K(T1, ..., Tn)

E/H1

Ti 7→θ̃i
K(θ̃1, ..., θ̃n) ⊆ M̃H2

E/H1

θ̃i 7→θi
K(θ1, ..., θn) = FH1

E/H1

K(T1, ..., Tn)E/H1
Ti 7→θ̃i

K(θ̃1, ..., θ̃n)E/H1 ⊆ K(t)
θ̃i 7→θi

K(θ1, ..., θn)E/H1 = K.
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We define now

x̃i,α′′ := xi,α′′ ,

x̃i,α′ := Xi,α′(a
′′
1, ..., a

′′
m, θ̃1, ..., θ̃n, ),

ỹj,β′′ := yj,β′′ ,

ỹj,β′ := Yjβ′(a
′′
1, ..., a

′′
m,b

′′
1, ...,b

′′
m, θ̃1, ..., θ̃n).

Since each θi is an image of the corresponding θ̃i under the specialization map ϕ, each
x′iα, y

′
i,β is an image of the corresponding x̃′iα, ỹ

′
i,β. Thus all x̃′iα, ỹ

′
i,β are well-defined,

because all x′iα, y
′
i,β are well-defined. Furthermore we let

x̃i :=
n∑

α=1

x̃i,αθ̃α

and

ỹj :=
n∑
β=1

ỹj,β θ̃β.

Since the system (∗) yields a solution of the system of all equations of types (1),
(2), (3) if considered as a system for the indeterminates T1, ..., Tn over K(T1, ..., Tn),
it yields a solution of every specialized system of the equations of types (1), (2), (3).
So it does in particular for the specialization Ti 7→ θ̃i.
Hence we have gained a set of coefficients x̃i,α, ỹj,β precisely in a way, that the
elements

x̃i =
n∑

α=1

x̃i,αθ̃α,

ỹj =
n∑
β=1

ỹj,β θ̃β

satisfy the specialized system of equations of types (1), (2), (3) over K(t). Since the
roots θ̃1, ..., θ̃n are elements of M̃H2 , the elements x̃i, ỹj are then elements of M̃H2 as
desired.

We revisit the first example of Section 2.1.2 to illustrate how the process of
ordering the equations works:

Example: We consider again the embedding problem (M/K,E1, G1) given by the
group extension

1 // C3
// E1

// G1
// 1

〈τ〉
,
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from the first example of Section 2.1.2. The groups G1 and E1 are

G1 := 〈σ̄1, ..., σ̄6 | σ̄3
i = 1, [σ̄2, σ̄1] = σ̄4[σ̄3, σ̄1] = σ̄5, [σ̄3, σ̄2] = σ̄6,

[σ̄j, σ̄i] = 1 for j = 4, 5, 6〉,

E1 := 〈σ1, ..., σ6, τ | σ3
i = τ 3 = 1, [σ2, σ1] = σ4[σ3, σ1] = σ5, [σ3, σ2] = σ6,

[σ4, σ3] = [σ2, σ1, σ3] = τ,

[σi, σj] = 1 for any other basic commutator with j = 4, 5, 6〉.

The embedding problem (M/K,E1, G1) is solvable if the equations

Rσ1(Xσ1) = 1, Rσ2(Xσ2) = 1, Rσ4(Xσ4) = 1,

and

Xσ4 = σ−1
1 σ−1

2 (
Xσ1 · σ1(Xσ2)

Xσ2 · σ2(Xσ1)
), 1 =

Xσ1 · σ1(Xσ4)

Xσ4 · σ4(Xσ1)
, 1 =

Xσ2 · σ2(Xσ4)

Xσ4 · σ4(Xσ2)
, 1 = ζ−1σ3(Xσ4)

Xσ4

have a solution in FH1 , where ζ is a primitive 3-rd root of unity. We order the
equations of types (1) and (2) according to the rules of Lemma 3.2.4:

1 = ζ−1σ3(Xσ4)

Xσ4

will be resolved for one coefficient of Xσ4 , this coefficient will be replaced by the
expression thus gained in

1 =
Xσ2 · σ2(Xσ4)

Xσ4 · σ4(Xσ2)
,

which will then be resolved for one coefficient of Xσ2 . Both coefficients will be
replaced by the expressions obtained from the two equations above in the system

1 =
Xσ1 · σ1(Xσ4)

Xσ4 · σ4(Xσ1)
,

Xσ4 = σ−1
1 σ−1

2 (
Xσ1 · σ1(Xσ2)

Xσ2 · σ2(Xσ1)
),

which will be resolved for two coefficients of Xσ1 .

Since the kernel of the embedding problems considered in Theorem 3.2.3 is always
contained in the commutator subgroup E, we note that the embedding problems
are Frattini embedding problems by [Leedham1], Prop. 1.2.4 (see Section 2.3). The
solutions obtained by solving these embedding problems are therefore proper regular
solutions by Theorems 2.2.6 and 2.2.4. Hence we have:

Corollary 3.2.5. Every solution field F̃ of an embedding problem (M̃/K(t), E,G)
described in Theorem 3.2.3 is a regular extension of K(t) and has Galois group E.
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There are two obvious questions that arise from Theorem 3.2.3. Firstly, if there
is a solvable embedding problem (M/K,E,G) with a solution field F that is ob-
tained from a regular extension M̃/K(t) by specialization, is there a solution field F̃
of (M̃/K(t), E,G) that specializes to F? The second question is whether the results
obtained in 3.2.3 for embedding problems with cyclic kernel can be generalized to
embedding problems with abelian kernel.

These first conjecture is true, the second will be proven for abelian groups that
are direct products of isomorphic cyclic groups, as can be seen below:

Theorem 3.2.6. Let K be a field of characteristic zero that contains all roots of
unity and let (M/K,E,G) be a solvable embedding problem as in Theorem 3.2.3
and let M̃/K(t) be a regular G-extension that specializes to M/K via the specializa-
tion map ϕ. Every solution field F of the embedding problem (M/K,E,G) can be
obtained by specializing a solution field F̃ of the embedding problem (M̃/K(t), E,G).

Proof. By Theorem 3.2.3 the embedding problem (M̃/K(t), E,G) is solvable and
a solution is of the form F̃ = M̃( q

√
ω̃) for an element ω̃ ∈ M̃ . By Corollary 2.2.7

we have σ(ω̃)
ω̃

= x̃qσ, where x̃σ is defined as in Theorem 3.2.3. Let ϕ : t 7→ s, s ∈ K
denote the specialization map from M̃/K(t) to M/K,

Oϕ :=

{
f̃

g̃
| f̃ ∈ M̃, g̃ ∈ M̃ and (t− s) - g̃

}
the corresponding valuation ring and mϕ := Oϕ(t− s) its maximal ideal.
We can assume that ω̃ ∈ Oϕ: If ω̃ /∈ Oϕ, we can multiply it with an appropriate
r̃ ∈ K(t) to arrive at an element ω̃′ := r̃ω̃ ∈ Oϕ. This might change the field
F̃ to a new field F̃ ′ := M̃( q

√
ω̃′) but we still have Gal(F̃ ′/K(t)) = E, because

(M̃/K(t), E,G) is a Brauer type embedding problem.

Since σ(ω̃′)
ω̃′

= x̃qσ and ϕ(x̃qσ) = xqσ 6= 0 we have x̃qσ /∈ mϕ and hence σ(ω̃′) /∈ mϕ for all

σ ∈ G. Hence ϕ maps ω̃′ to an element ω′ of M that satisfies the relations σ(ω′)
ω′

= xqσ,

and so F ′ = M( q
√
ω′) gives a solution of the embedding problem (M/K,E,G).

Every solution of (M/K,E,G) is given by M( q
√
rω′), for some r ∈ K, and so we can

obtain an arbitrary solution by specializing M̃( q
√
rω̃′) for the correct r ∈ K.

Theorem 3.2.7. Let K be a field of characteristic zero that contains all roots of
unity and let (M/K,E,G) be an embedding problem with abelian kernel of the form
A = Cq

i , for a cyclic group Ci, such that the embedding problems (M/K,Ei, G) with
cyclic kernel induced by the decomposition A = Cq

i are of the form described in
Theorem 3.2.3. Then the following holds:
If M̃/K(t) is a regular G-extension which specializes to M/K, then there exists a
solvable embedding problem (M̃/K(t), E,G) that specializes to (M/K,E,G).

Proof. In general, an embedding problem with abelian kernel is solvable if and only
if the induced embedding problems with cyclic kernel are solvable and have linearly
disjoint solutions by [Malle&Matzat1] Theorem IV 1.6. Hence we have to decompose
a solution F of (M/K,E,G) into linearly disjoined solutions Fi of (M/K,Ei, G):
By Theorem 3.2.3 we have solutions F̃i of the embedding problems (M̃/K(t), Ei, G)
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specializing to the Fi under the specialization map that maps M̃ to M . Every solu-
tion F̃i is given by the q-th roots of an element ci ∈ M̃ , so two solutions are either
equal or linearly disjoint over M̃ . Hence we obtain a solution of (M̃/K(t), E,G).
Specializing F̃ (using the map above) produces a field that contains all Fi as subex-
tensions. Thus it contains the composite of the Fi as well and this is exactly the
solution F of (M/K,E,G) we started with.

3.3 The arithmetic lifting property for nilpotent

groups over Qab

Using the results of the previous section we can now show that every finite p-group
has the arithmetic lifting property over the field Qab, and in fact over every field
of characteristic zero and of cohomological dimension ≤ 1 that contains all roots of
unity. This is main result of this thesis. Consequently every nilpotent group can be
realized as the Galois group of an extension of Qab(t) that is regular over Qab. We
will assume for the following two results that K is a field such that for given primes
p every p-group can be realized over K. Otherwise there is nothing to prove; if a
p-group cannot be realized over K, there is no extension that could be obtained as
a specialization of some extension of K(t), regular over K.

Theorem 3.3.1. Let q be a power of a prime p. Let K be a field of characteristic
zero and of cohomological dimension ≤ 1 that contains all roots of unity and such
that every finite p-group can be realized over K as Galois group. For every triple
(q, cl, d), where cl and d are integers, the group G(q, cl, d) has the arithmetic lifting
property over K. Hence every finite p-group has the arithmetic lifting property over
K.

Proof. The proof is by induction on the class cl. For the first step of the induction
we have G(q, 1, d) = Cd

q , so the group G(q, 1, d) is abelian and has the arithmetic
lifting property over Q for arbitrary q, d by Theorem 1.3.1. Thus it has the arith-
metic lifting property over K as well.
For the inductive step we choose q, d arbitrary but fixed. We have to show that the
group G(q, i + 1, d) has the arithmetic lifting property over K under the assump-
tion, that for all integers d′ and all powers q′ of p, the groups G(q′, i, d′) have the
arithmetic lifting property. Assume that F/K is an arbitrary Galois extension with
Galois group G(q, i+ 1, d). Since the center of G(q, i+ 1, d) is generated by n basic
commutators of maximal weight, all of those having order q, we have a central group
extension

1 // Cn
q

// G(q, i+ 1, d) // G(q, i+ 1, d)/Cn
q

// 1,

where Cn
q = Z(G(q, i+ 1, d)).

The group G(q, i+ 1, d)/Cn
q has nilpotency class i. It is in fact a factor group of

the group G(q2, i, d): Let σ be a basic commutator of G(q2, i, d) of weight w. The

relation in G(q2, i, d) bounding the order of σ is then given by σq
2(i−w)

= 1. We
obtain G(q, i + 1, d)/Cn

q as factor group by taking G(q2, i, d) modulo the relation
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σq
(i+1−w)

= 1 for every basic commutator σ of weight w.

By assumption G(q2, i, d) has the arithmetic lifting property, and by Theorem
3.1.2 the same is true for G(q, i + 1, d)/Cn

q . At this point we use that all roots of
unity are contained in K and that there exist G(q2, i, d)-extensions of K.
Hence, F is the solution field of an embedding problem

(M/K,G(q, i+ 1, cl), G(q, i+ 1, d)/Cn
q )

with abelian kernel. Since G(q, i + 1, d)/Cn
q has the arithmetic lifting property by

assumption, M/K is a specialization of a regular extension M̃/K(t) with Galois
group G(q, i+ 1, d)/Cn

q . Hence by Theorem 3.2.7, F/K is a specialization of a reg-

ular extension F̃ /K(t) with Galois group G(q, i + 1, d). This means precisely that
G(q, i+ 1, d) has the arithmetic lifting property over K.

Now, let G be an arbitrary p-group. Since there exist integers q, cl, d such
that G can be realized as a factor group of G(q, cl, d) and K has cohomological
dimension ≤ 1, G has the arithmetic lifting property over K by Theorem 3.1.2.

This statement immediately leads to the Main Theorem of this thesis:

Main Theorem: Let K be a field of characteristic zero and of cohomological di-
mension ≤ 1 that contains all roots of unity and such that every finite nilpotent
group can be realized as Galois group over K. Then every finite nilpotent group has
the arithmetic lifting property over K.

Proof. A finite nilpotent group G is a direct product of finite p-groups by Theorem
2.1.2. Hence G has the arithmetic lifting property over a field of cohomological
dimension ≤ 1 that contains all roots of unity by Theorem 1.3.2 and Theorem
3.3.1.

The most prominent example of a field of cohomological
dimension ≤ 1 that contains all roots of unity is Qab, the maximal abelian extension
of Q. From the Main Theorem we deduce immediately:

Corollary 3.3.2. Every finite nilpotent group can be realized as the Galois group of
an extension of Qab(t) that is regular over Qab.

Proof. Every nilpotent group can be realized as the Galois group of an extension
of Qab by a classical result of I. R. Shafarevich, see [Shafarevich1]. Furthermore
every finite nilpotent group has the arithmetic lifting property over Qab by the Main
Theorem of this thesis. Thus every nilpotent group can be certainly realized as the
Galois group of an extension of K(t) that is regular over K.

Corollary 3.3.3. Let K be a field that contains Qab. Then every finite nilpotent
group can be realized as the Galois group of an extension of K(t) that is regular over
K.
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Proof. Let G be a nilpotent group. Let M̃ be an extension of Qab(t) that is reg-
ular over Qab, and has Galois group G. Such an extension exists by Corollary
3.3.2. We may assume that K and Qab(t) are linearly disjoint over Qab. Then
K ⊗Qab Qab(t) is an extension of constants with respect to the indeterminate t and

thus (K ⊗Qab Qab(t)) ⊗Qab(t) M̃ is a Galois extension of K(t) with Galois group G
that is regular over K.

This last corollary extends the result of J. Sonn that every nilpotent group can
be realized regularly over Qsolv(t) as given in [Sonn1].

3.4 Outlook: The arithmetic lifting property for

solvable groups

In 1954 I. R. Shafarevich gave the proof that every solvable group can be realized
as a Galois group over Q. In the first step of his proof, done in [Shafarevich1], he
showed that every p-group, and hence every nilpotent group, can be realized over
Q using central embedding problems. Unsurprisingly the proof for the arithmetic
lifting property of nilpotent groups given in the last sections shares many common
ideas with Shafarevich’s proof given in [Shafarevich1]. Hence it is natural to ask if
the results obtained in this chapter can be generalized to hold for solvable groups.
There is, at least, no obvious answer to this question.

The final part of Shafarevich’s proof, done in [Shafarevich2], is concerned with
the solvability of split embedding problems with nilpotent kernel. He shows that
every split-embedding problem with nilpotent kernel is solvable over Q. Using that
every solvable group G is a factor group of a nilpotent group by a solvable group of
lower order than G, he can then proof by induction on the order of solvable groups
that every solvable group occurs as Galois group over Q.

Unfortunately not very much is known about split embedding problems and the
arithmetic lifting property besides Theorem 1.3.2. The most far-reaching results in
this direction can be found in [Black4]. We need the following definition to state
them:

Definition: Let H and G be finite groups. The wreath product of G by H is the
semi-direct product N oG, where N := H1× ...×Hn, n = ord G, each Hi is a copy
of H and G acts on N by permutation of the indices 1, ..., n.

We then have

Theorem 3.4.1. ([Black4], Theorem 1.1) Assume that a finite group G has the
arithmetic lifting property over a Hilbertian field K and assume that there exist
generic polynomials for another finite group H over the same field K. In this situ-
ation the wreath product H oG has the arithmetic lifting property over K.

E. Black uses this Theorem to obtain some results on the arithmetic lifting prop-
erty and the formation of semi-direct products: If in addition to the assumptions
of the theorem above H is abelian and the orders of H and G are relatively prime,
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it is shown in [Black4] Cor.1.3 that the semi-direct product H o G has the arith-
metic lifting property as well. The central arguments of the proof of this corollary
are that if H is abelian then H o G is a factor group of H o G and if the orders
of H and G are relatively prime the group extension given by (H oG)/(HoG) splits.

The condition ord(H) and ord(G) being relatively prime can be omitted if we
assume that K has cohomological dimension ≤ 1 by Theorem 3.1.2. It remains
however a crucial part that there have to exist generic polynomials for H for the
proof to work. As noted in the introduction, there exist generic polynomials for an
abelian group H precisely if H does not contain an element of order 8.

So, for now there is not even a way known, to infer from the fact that a group
G has the arithmetic lifting property, that general split group extensions of G with
abelian kernel have the arithmetic lifting property as well. With regard to this,
even though it may seem likely that every solvable group has the arithmetic lifting
property over Qab, there appears to be no obvious way to proof this conjecture.



Chapter 4

Some other results on the
arithmetic lifting property

4.1 Other results on the arithmetic lifting prop-

erty

The two results presented in this section are neither concerned with p-groups nor
used anywhere in the text but arise as corollaries to Theorem 3.1.2.

Definition: A group G is called semiabelian if it can be constructed in finitely
many steps, starting from the trivial group, by taking semidirect products with fi-
nite abelian kernel and by taking factor groups. (For further characterizations and
properties see [Malle&Matzat1] Chapter IV, Section 2.3.)

Corollary 4.1.1. Let K be a Hilbertian field of cohomological dimension ≤ 1 that
contains all roots of unity. Every semiabelian group has the arithmetic lifting prop-
erty over K.

Proof. Every semiabelian group G is factor group of an iterated wreath product of
cyclic groups according to [Stoll1], i.e.

G ' C onm/N = Cm o ... o Cm︸ ︷︷ ︸
n−times

/N

for suitable m,n ∈ N and a suitable normal subgroup N C C onm . Such wreath
products have the arithmetic lifting property over Hilbertian fields according to
[Black3], Cor. 4.5. Hence by Theorem 3.1.2 G has the arithmetic lifting property
over K.

Corollary 4.1.2. Let A be an abelian group and let G be a group which has the
arithmetic lifting property over a Hilbertian field K of cohomological dimension ≤ 1
such that the following conditions are satisfied: The characteristic of K is prime to
the order of A and the extension K(ζq)/K is cyclic, when ζq denotes a primitive
q-th root of unity and q is the exponent of the 2-Sylow subgroup of A. (The field
Qab, for example, satisfies all those conditions.)
Then the semidirect product AoG has the arithmetic lifting property over K.
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Proof. The semidirect product AoG is a factor group of the wreath product A oG
according to [Huppert1] Ch.2 Thm. 10.10. By [Black3], Cor. 4.5 the group A oG has
the arithmetic lifting property over any Hilbertian field K satisfying the conditions
of the corollary.

4.2 Lists of groups having the arithmetic lifting

property

For certain groups, the arithmetic lifting property or the existence of generic poly-
nomials have been verified over certain algebraic number fields or even over Q. The
next two tables give an overview of some of these groups or group products. The
list is restricted to fields of characteristic zero.
In the last column of each line of the tables a reference for each group or group
product is given.

4.2.1 List of groups having the arithmetic lifting property

For the groups of this list either there exist no generic polynomials or the existence
of generic polynomials is unknown.

Group Field K Reference

An, the alternating group char K = 0 [Black3]

Abelian groups number field [Beckmann1],
Cor. 2.4

H1 ×H2

H1, H2 have the arithmetic lifting
property

K Hilbertian [Black3], Cor. 2.2

C oH
C cyclic,
H has arithm. lifting property,
ord C and ord H prime to each
other

K Hilbertian,
char K - ord C,

[Black3], Cor. 4.4

AoH
A abelian, there are generic poly-
nomials for A,
H has arithm. lifting property

K Hilbertian,
ord A and ord H
prime to each other

[Black3], Cor. 4.4
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Group Field K Reference

A oH
A abelian,
H has arithm. lifting property

K Hilbertian,
char K - ord A,
K(µq)/K cyclic

[Black3], Cor. 4.5

G oH
there are generic polynomials for
G,
H has arithm. lifting property

K Hilbertian [Black4], Cor. 1.2

4.2.2 List of groups with generic polynomials

For these groups the existence of generic polynomials is known. Hence they have
the arithmetic lifting property by [Jensen1], Proposition 3.3.8 to Theorem 3.3.10.
This list is just a selection with emphasis on p-groups.

Group Field K Reference

Sn, the symmetric group arbitrary [Jensen1], p. 11

A4, A5, alternating groups arbitrary [Jensen1], p. 11

C2, C4, Cn, n odd arbitrary [Jensen1], p. 11

Abelian groups not containing an
element of order 8

Q [Lenstra1]

D2d , dihedral groups of order 2d+1 char K 6= 2,
2d-th roots of unity
contained in K

[Black2], Cor. 3.4

H1 ×H2

there are generic polynomials for
H1, H2

number field [Saltman1]
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