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Zusammenfassung

Diese Arbeit beschäftigt sich mit den Mechanismen und den Auswirkungen von anomaler
Diffusion in dichten Flüssigkeiten unter Einsatz von Computersimulationen.
Um den zugrunde liegenden Mechnismus von Subdiffusion aufzuklären, betrachten wir
die gemittelte Form aufgezeichneter Trajektorien als ein potentielles Kriterium, mit dem
häufig diskutierte Modelle zuverlässig gegeneinander abgegrenzt werden können. Unsere
Simulationen zeigen zudem, dass die Bestimmung dieses Mechanismus’ durch inhärente
Messfehler der experimentellen Daten erschwert wird.
Wir schlagen ein partikelbasiertes Modell für das Zytoplasma vor: Es vereint eine weiche
Abstoßung und schwache Anziehung zwischen globulären Proteinen verschiedener Größe.
Unter diesen Bedingungen zeigen Simulationen transiente Subdiffusion der Partikel, die auf
experimentellen Zeitskalen jedoch in normale Diffusion übergeht. Realistischere Modelle
müssen daher mehr Details über die beteiligten Wechselwirkungen berücksichtigen.
Im zweiten Teil dieser Arbeit werden mesoskopische, stochastische Simulationen eingesetzt,
um die Auswirkungen von Subdiffusion auf biochemische Reaktionen zu untersuchen. Wegen
ihrer kompakten Trajektorien segregieren subdiffusive Reaktanden mit der Zeit. Dies führt zu
anomaler Kinetik, die stark von klassischen Theorien abweicht. Andererseits kann Subdiffusion
die Produktivität eines mehrstufigen Prozesses deutlich erhöhen, wenn die reaktiven Partikel
in einem Zwischenschritt dissozieren und erneut assoziieren müssen.

Abstract

This thesis investigates the underlying mechanism and the effects of anomalous diffusion in
crowded fluids by means of computer simulations.
In order to elucidate the mechanism behind crowding-induced subdiffusion we discuss the
average shape of tracer trajectories as a potential criterion that allows to reliably discriminate
between frequently proposed models. Our simulations show that measurement errors inherent
to single particle tracking generally impair the determination of the underlying random
process from experimental data.
We propose a particle-based model for the crowded cytoplasm that incorporates soft-core
repulsion and weak attraction between globular proteins of various sizes. Under these
prerequisites simulations reveal transient subdiffusion of proteins. On experimental time
scales, however, diffusion is normal indicating that realistic, microscopic models of crowded
fluids require further detail of the relevant interactions.
In the second part of this thesis, the impact of subdiffusion on biochemical reactions is
studied via mesoscopic, stochastic simulations. Due to their compact trajectories subdiffusive
reactants get increasingly segregated over time. This results in anomalous kinetics that
differs strongly from classical theories. Moreover, for a two-step reaction scheme relying on
an intermediate dissociation-association event, subdiffusion can substantially improve the
overall productivity because spatio-temporal correlations are exploited with high efficiency.
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Chapter 1

Introduction

1.1 Motivation

Chemical reactions are the basis of all biological processes. Many of these reactions
ultimately rely on the physical encounter of two or more proteins in the cell and are
hence fundamentally influenced by

1. diffusive transport of the participating agents,

2. their potentially low copy number (stochasticity).

The interior of the cell resembles a tremendously complex and crowded medium.
Being the most abundant macromolecules, proteins occupy approximately 20 to 40%
of the total volume. The dynamics of an arbitrary protein is changed by numerous
other proteins around (crowders) into an anomalous diffusion, i.e. the dynamics
is not only slowed down but changes qualitatively. In the modeling of chemical
reactions, the effect of crowding has been widely neglected so far. Consequently
one part of this work deals with the simulation of reaction-subdiffusion systems.
Furthermore, stochastic aspects due to the particle character of reactants are studied
as they may lead to dramatically different results as compared to the established
(classical) mean-field approaches.

There are different models for anomalous diffusion that can be used to simulate
particle trajectories. The particular mechanism realized in complex, crowded fluids
like the interior of a cell is still a matter of debate. During the past few years,
increasing evidence has been collected that viscoelasticity underlies the observed
subdiffusion but a conclusive answer is still lacking. One way to address this issue is
to statistically analyze the behavior of individual tracer trajectories from microscopy
experiments. Along this line, a criterion is developed that allows to reliably decide
which of the various models for subdiffusion describes the observed behavior best.

1.2 Chemical Reactions in the Cell

This section shall provide a brief introduction to the biology and biochemistry of a
cell. The focus is on terminology and basic concepts. If no explicit citation is given,
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12 Introduction

the presented facts are textbook knowledge taken from the celebrated “Molecular
Biology of the Cell” by B. Alberts et al. [1].

1.2.1 The Cell
In physical terms, a living organism is superficially an open, thermodynamic system
that maintains a state of low entropy by converting energy and matter from the
outside in a self-organized way. In biological terms, the attribute living is assigned
to entities that conduct a stable metabolism, dynamically adopt to environmental
changes, reproduce themselves, and undergo evolution1. Cells can be considered as
the “atoms of life” in the sense that the smallest organisms meeting these criteria
consist of just a single cell. On the other end of the scale, “macroscopic” organisms
like mammals are agglomerates of up to 1013 highly specialized and interacting cells.

From the perspective of life the cell is basic, but in fact it resembles a highly
complex entity. Essentially, it can be considered as a reaction vessel confined by
a semipermeable membrane that contains thousands of different chemicals. These
give rise to the life-relevant processes by a complicated network of reactions and
interactions. The cell’s outer boundary is the plasma membrane, formed by a
double layer of lipids. It separates the interior, the cytoplasm, from the outside,
the extracellular space, while still allowing for a strictly regulated exchange of
molecules between these two domains. One can distinguish between prokaryotic
cells that contain no internal subcompartments and eukarytic cells that possess a
sophisticated internal organization, cf. Figure 1.1. This includes membrane enclosed
subcompartments (e.g. mitochondria, nucleus, Golgi apparatus) and a vast network
of filaments and tubules. Prokaryotic cells are evolutionary older, and members of
this family are exclusively single-cell organisms. The Escherichia coli bacterium
resembles the best studied model organism among prokaryots and hence serves as the
prototypical experimental system. Eukaryotic cells, on the other hand, form single-
(e.g. yeast, protists) and all higher, multicellular organisms comprising animals, fungi,
and plants. Their complex inner structure involves the above mentioned system of
filaments and tubules, the cytoskeleton, which determines the shape of the cell. In
contrast to the skeleton of vertebrates, this structure is highly dynamic and allows
the cell to flexibly change its shape and even to move on a substrate.

Cells contain a tremendous variety of molecules that ranges from simple ions
(e.g. K+, Na+, Ca2+, Cl−) over small metabolites like sugars (e.g. sucrose, ribose)
and lipids (e.g phospholipids in the membranes) to large macromolecules. These
chemicals are dissolved in water that contributes 70% of the cell’s weight. Biological
macromolecules are of special interest since they constitute a domain of unimaginable
versatile chemicals that make life possible in the first place. They consist of a sequence
of simple repeating units (monomers) that form a chain (polymer) with emergent
properties. The three prominent families of biological polymers are polysaccharides,
nucleic acids, and proteins, Table 1.1. Proteins in particular can be considered as

1The given definition of life suffices for the context of this work. Actually a more precise and
universal definition of life is still vividly debated, see for example [2]
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Figure 1.1 Sketch of an eukaryotic cell. The cytoplasm is separated
from the outside by the plasma membrane. In contrast to a prokaryotic
cell, it is organized in membrane enclosed subcompartments, so called
organelles. The mitochondria, for example, host the respiratory chain
that converts the energy contained in nutrients. The nucleus contains
the heredity information as a long DNA polymer. The filamentous
cytoskeleton provides structural integrity.

“tools” that keep the cellular “machinery” running. They do this by performing a
wide variety of tasks: Enzymes are highly efficient catalysts which promote reactions
that otherwise would take place too slowly or never. Motor proteins generate
forces, structural proteins build up the cytoskeleton. Membrane-resident transporters
selectively exchange molecules between cytoplasm and extracellular space. This
list could be continued and the crucial importance of proteins is reflected in their
abundance: They contribute 18% (15% in E. coli) to the total weight of a cell which
is by far the highest fraction of any chemical.

family monomer example

polysaccharides sugar glycogen (energy storage in liver
cells)

nucleic acid nucleotide DNA, RNA (carrier of heredity in-
formation)

proteins amino acid GFP (green fluorescent protein)

Table 1.1 The three major families of macromolecules found in cells.
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1.2.2 Basic Biochemistry

All life-relevant processes in the cell are based on chemical reactions. Metabolism,
i.e. the turnover of external energy and material, relies on a highly complex network
containing an unimaginable number of reactants, intermediates, and products. To
occur spontaneously, many of the involved reactions would actually require very high
temperatures as compared to the regime where life is possible. This holds, especially,
for the formation, breaking and modification of covalent bonds. These reactions
require much higher energies than provided by thermal energy kBT under physiological
conditions2. In these cases, enzymes serve as highly specific and tremendously efficient
catalysts. They lower the activation barrier so that reactions take place with sufficient
rapidity at ambient temperature. Often an enzyme is specialized to assist in a very
particular reaction. However the question arises how it identifies the correct agents
among the plethora of chemicals in the cell. Enzymes, and proteins in general,
bind to other chemical agents (ligands) in a non-covalent manner, i.e. by hydrogen,
ionic, or van der Waals bonds. Hence, a single bond can easily break due to thermal
fluctuations, but when many act in a concerted manner, cooperative effects eventually
lead to a tight association. Then the molecules are said to have a high affinity to
each another. The opposite case, i.e. association to a “wrong” ligand, corresponds to
low affinity and thus weak and short-lived binding. Consequently, the large difference
between binding affinities provides a reliable means to provide specificity.

An ubiquitous forward-backward reaction pair that is catalyzed by enzymes is the
phosphorylation/dephosphorylation, cf. Figure 1.2: A phosphate group is covalently
attached to or removed from a particular amino acid side chain of a protein. Enzymes
that catalyze a phosphorylation reaction are called kinases and their counterparts are
phosphatases. The addition/removal of phosphate groups regulates protein function
in eukaryotic cells: Since the phosphate ion carries two negative charges, its presence
can induce major conformational changes in the protein, e.g. when positively charged
residues are attracted to the phosphorylated site and negatively ones are repelled
from it. By such a structural change, new binding sites may emerge that enable the
modified protein to act as an enzyme itself. On the other hand, the phosphate can
be part of a structure that serves as a recognition site for other proteins. Thus the
phosphorylation may also trigger the formation of protein complexes that eventually
provide the desired functionality. Vividly spoken, (de)phosphorylation reactions
can switch a protein on and off. This conceptually simple mechanism is actually
of central importance: According to estimates one third of all proteins in a typical
mammalian cell incorporate a kind of phosphorylation-switch.

It has been stated above that the association of an enzyme E to its substrate S
represents the first step in any enzymatic reaction. In the following we will focus
on a frequently applied model reaction , the so called Michaelis-Menten scheme for

2“Physiological conditions” refers to a tempretaure of T = 37 ◦C = 310 K. Then the thermal
energy amounts to Eth = kBT = 4.28× 10−21 J = 0.027 eV. For comparison: A typical covalent
bond has an energy of several eV.
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PE E
P

P
S

Figure 1.2 Sketch of a (de)phosphorylation cycle. The enzyme E is
inactive when no phosphate is bond (left). The covalent attachment of a
phosphate (P) by a kinase (not shown) induces structural changes that
transfer E to its active state (right). Consequently it becomes able to
bind and act on its substrate S. If a phosphatase removes the phosphate
from E, it returns to its quiescent state.

enzyme-catalyzed reactions:

E + S
k1
®
k2

C k3→ E + P . (1.1)

The enzyme and substrate first form an intermediate complex C with rate k1 that
may either decay again with rate k2 or lead to a reaction with rate k3 releasing
the enzyme and the product. This model assumes that the production step can be
reduced to a single rate-determining reaction and is restricted to one intermediate
complex. For example, E could phosphorylate its substrate S that consequently
assumes its active form P. The advantage of the catalysis lies in the rate k3 which is
typically several orders of magnitude faster than the spontaneous rate of S → P at
ambient temperature.

When investigating enzyme kinetics one is interested in the catalytic reaction
rate v = k3[C], where [ · ] stands for concentration. The approach of Michaelis and
Menten assumes that, after mixing of E and S, the concentration of C rapidly reaches
a nearly constant steady-state value given by

k2[C] + k3 = k1[E][S] . (1.2)

Straightforward calculations give the relation between [C] and the total enzyme and
substrate concentrations [E0] and [S]:

[C] = [E0][S]
Km + [S]

with Km ≡
k2 + k3
k1

. (1.3)

With this the Michaelis-Menten equation for the reaction rate is obtained

v = k3[E0][S]
Km + [S]

. (1.4)
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In the limit of very high substrate concentration, practically all enzymes will be
bound in a complex. Hence there is a maximum reaction rate vm = k3[E0] and one
rewrites the Michaelis-Menten equation:

v = vm[S]
Km + [S]

. (1.5)

Km resembles an approximate measure of the substrate-enzyme affinity since it is
equal to [S] at v = 0.5vm. Generally, the lower Km the tighter the enzyme binds to
the substrate. k3 is also called turnover number. For [S]� Km ⇒ [E] ≈ [E0] and the
reaction rate becomes v = k3/Km[S][E]. In other words, the ratio k3/Km gives the
rate constant for the reaction between free E and free S. For some enzymes (“perfect
enzymes”) the catalysis is diffusion-limited, i.e. k3/Km takes on a maximum value
between 108 and 109 s−1M−1 that is determined by the rate of E-S collisions. This
kind of analysis is widely applied in the field of (in vitro) enzyme kinetics, but a
debate has arisen whether the underlying assumptions are generally met in the cell ,
see e.g. [3, 4].

1.2.3 Signaling and Biochemical Networks
One demanding task a cell faces frequently is the adaption to a constantly changing
environment. Vividly spoken, it has to “sense” critical changes, for example the
depletion of a nutrient, and respond accordingly, for example by promoting metabo-
lization of an alternative nutrient. In more technical terms, the cell has to receive
and process signals from the outside. Moreover, in a multicellular context of a tissue,
cells have to communicate in order to act in a concerted manner. This means they
must not proliferate and divide in an arbitrary, unsynchronized fashion that would be
hazardous for the integrity of the tissue. To this end, cells exchange chemical signals
like growth factors. Actually, if a cell looses sensitivity to certain signals and behaves
independently of its surrounding this is one characteristic of cancer [5]. One emphasis
of cancer research is hence on biochemical signal processing. In this field the focus
shifts away from single reactions to a system view on biochemical networks. Owing to
the overwhelming complexity, this approach requires computer-assisted modeling to
interpret experimental data. The used terminology is borrowed from technical signal
processing. As artificial signal processing devices, biochemical networks are built of
basic modules like switches and feedback loops. The components of the “circuits”
are realized by reaction schemes, like a (de)phosphorylation cycle that emerges from
the interplay of a kinase and a phosphatase [6].

The pathway of the epidermal growth factor receptor (EGFR) represents a
thoroughly studied example of a signaling cascade in eukaryotic cells and furthermore
is a target of cancer therapy [7]. It illustrates the complexity and modularity
of biochemical networks that are necessary to translate an extracellular signal
to a cellular response in terms of a changed gene expression pattern. Here we
will only roughly describe the basic concepts and omit the overwhelming detail of
the involved proteins and their interactions, see Figure 1.3: In the first step, the
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signaling agent (EGF) binds to a membrane crossing receptor protein (EGFR). This
induces conformational changes in the receptor and a tyrosine kinase domain on
the cytoplasmic side is activated that phosphorylates specific tyrosine residues on a
small set of intracellular signaling proteins, the so called second messengers. This
is the onset of the next layer of signal processing. As the signal is transported
further downstream towards the genome, it gets more and more interconnected with
other cellular pathways. In this way various signals can be integrated to a coherent
biochemical “picture” that consequently triggers an adequate adaption of the cell.

EGFR

EGF

extracellular space

cytosol

Grb2

Sos

Gab1

PI3K

Ras Raf

MAPKK

MAPK

cell cycle

PIP3

Shp2

WASP

cytoskeleton
further nodes

activation

inhibition

Figure 1.3 A small part of the signal processing network that originates
in the epidermal growth factor receptor (EGFR). Each dark shaded box
corresponds to an enzyme species or family addressed by its abbrevi-
ated name (e.g. Sos stands for “son of sevenless”). The interactions
between the proteins are given in terms of activation and inhibition via
(de)phosphorylation. Some components of this network are shared by
other pathways to provide crosstalk between different signals.

In the context of the EGFR pathway an the mitogen-activated protein kinase
(MAPK) cascade deserves further explanantion: This module is ubiquitous in eu-
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karyots and it is involved in various physiological processes [1, 8]. MAPK has two
sites that may be phosphorylated by a kinase and hence it is an example for a
multisite protein phosphorylation motif [9]. One important distinction in this context
is between distributive and processive kinases. Processive kinases may phosphorylate
multiple sites on a protein while in a complex with the substrate whereas distributive
kinases require perpetual association-dissociation cycles. Depending on the mode of
the involved enzymes and the possible phosphorlation patterns etc. a vast variety
of signal processing modules may be realized. The MAPK cascade, in particular,
consists of three layers, where in each layer a kinase turns on the kinase of the next
layer by phosphorylation, cf. Figure 1.4. To be fully active, MAPK must carry
phosphates on both phosphorylation sites. This is highly specifically performed by
the upstream MAPK-kinase, which in turn is activated by the MAPK-kinase-kinase
(called Raf in the context of the EGFR pathway, cf. Figure 1.3). This scheme can,
for example, give rise to bistability [10] and ultrasensitive response [11].

MAPK

P P P

MAPKMAPK downstream
phosphorylations

MAPKK MAPKK

Phosphatase Phosphatase

Figure 1.4 Sketch of the mitogen-activated protein kinase (MAPK) phos-
phorylation cycle as an example for multi-site phosphorylation. MAPK
possesses two phosphorylation sites and in order to be active and trigger
downstream signaling, both sites must have a phosphate bound. Both
phosphorylation reactions are catalyzed by MAPK-kinase (MAPKK)
which works antagonistically to phosphatases that switch MAPK off.

1.2.4 Macromolecular Crowding

The classical approaches for modeling biochemical reactions typically assume a dilute
solution of reactants in aequous solution [12, 13]. This, of course, neglects the complex
internal organization of eukaryotic cells and the huge number of macromolecules that
are present without taking part in a particular reaction. For the reaction of interest,
these other agents appear as inert crowders which, firstly, reduce the available space
by their volume, and secondly, bind transiently to the reactants with low affinity.
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Both aspects alter the reaction kinetics as the accessible volume for the reactants is
smaller, and their diffusional transport may be qualitatively modified to anomalous
diffuion, see Section 1.3.

The cytoplasm of living cells thus resembles an example of a crowded or com-
plex fluid [14]. Estimates state that macromolecules occupy 20 to 40% of the cell
volume [15] and hence the effects of crowding on biochemical reactions must be
appreciated in models and experiments [16], cf. Figure 1.5 (a). This also applies to
processes on the cellular membrane, where more than 20% of the total area can be
occupied by proteins [17].

(a)

M

D

D

2

1

(b)

Figure 1.5 (a) An illustration for molecular crowding. The black circles
and the gray shaded square occupy approximately 40% of the total area
of the box. (b) Dimerization reaction in the presence of crowders (black
circles). The dimer D2 occupies a larger volume than two monomers
(M) and hence is energetically less favorable than D1, since more energy
has to be spent on the displacement of crowders.

Volume exclusion due to macromolecular crowding changes reaction rates and
equilibria as compared to bulk solution [18]. The underlying mechanism is universal
and unspecific and consequently affects most macromolecular reactions. For example,
a thermodynamic analysis shows that crowding can substantially enhance or inhibit
dimerization depending on the character of the dimer, cf. Figure 1.5 (b): If it is
“compact” and occupies less volume than two monomers, a dimerization is favorable,
while the opposite is true if it has an extended shape that needs a comparably
large volume. On the other hand, crowding hampers the motion of macromolecules
and hence decreases the diffusion constant. Hence, one expects that increased
crowding lowers the diffusion-controlled association rate. In the reaction-limited
regime, however, the energy barrier for necessary conformational changes resemble
the bottleneck. As the transition state of a dimer is typically as compact as the
product complex, crowding will effectively lower the energy barrier. So in summary
the presence of inert crowders decelerates fast (diffusion-limited) and accelerates slow
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(reaction-limited) associations.

1.3 Anomalous Diffusion

1.3.1 Phenomenology of Diffusion

In the early 19th century the botanist Robert Brown (1773–1858) discovered that
small pollen particles undergo an erratic movement – a phenomenon that afterwards
became known as Brownian motion. In 1905 Albert Einstein [19] presented a theo-
retical description of Brownian motion in the framework of statistical mechanics and
showed that the random displacements of individual particles leads macroscopically
to a spreading of their concentration, that is Fickian diffusion. In the picture of
Einstein, the erratic movement, e.g. of colloids in water, emerges from perpetual,
uncorrelated impacts of solvent molecules onto the dissolved particle. Thus, the
regime of Brownian motion is indeed the mesoscopic scale: On one hand, the solutes
are small enough to experience substantial thermal fluctuations, but on the other
hand they are so large that the impacts of the solvent particles may be treated in a
statistical manner. The typical sizes of particles that undergo Brownian motion thus
stretches from the nano- to the micrometer scale.

One way to classify diffusion processes is the scaling of the mean square displace-
ment (MSD) 〈δ2〉 with time t, i.e. the time course of the average area explored. In
the context of this work the focus lies on power-law scalings:

〈δ2〉 ∼ tα, with α > 0 . (1.6)

The special case of a linear scaling (α = 1) corresponds to Brownian motion. It
is closely related to an unbiased random walk (see below) and thus constitutes a
canonical scenario. Here, it will also be addressed as regular or normal diffusion
in the context of diffusive transport phenomena. Anomalous diffusion, in turn, is
defined as any non-linear scaling of the MSD with time [20], i.e. α 6= 1. The diffusion
anomaly α may take any positive real value. Notable regimes are

1. α < 1: subdiffusion,

2. α = 1: normal diffusion (Brownian motion),

3. α > 1: superdiffusion,

4. α = 2: ballistic motion.

This work focuses on subdiffusion (α < 1) since this mode of motion is frequently
observed in complex fluids. In the following we summarize experimental methods
and evidence for anomalous subdiffusion and models for its physical mechanism.
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1.3.2 Experimental Techniques
Fluorescence Correlation Spectroscopy (FCS)

Fluorescence correlation spectroscopy (FCS) is a well established technique to study
anomalous diffusion in vitro and in vivo [21, 22, 23]. Figure 1.6 depicts the essential
setup: As a fluorescent microscopy technique, FCS relies on excitable dyes that emit
fluorescence light when they relax back to their ground state. By virtue of confocal
laser optics, the excitation beam is permanently focused onto a small spot with radius
r0 (typically ≈ 320 nm [24]), the confocal volume, within the specimen. When a
fluorescent tracer enters the confocal volume it emits fluorescence light that is recorded
by an appropriate detector, e.g. an avalanche photodiode. The time series of the
fluorescence intensity F (t) contains information about the number of tracers within
the confocal volume and its autocorrelation C(τ) = (F (t)−〈F 〉)(F (t+τ)−〈F 〉)〉/〈F 〉2
allows to extract properties of the diffusion process, cf. Figure 1.7. This is achieved
by fitting a model autocorrelation function to the data. In particular, for anomalous
subdiffusion in three dimensions the corresponding model reads [25]

C(τ) = 1/N
1 + (τ/τD)α

√
1 + q(τ/τD)α

, (1.7)

where τD and α are fitting parameters; τD corresponds to the mean residence time
that a tracer spends within the confocal volume; q accounts for the unavoidable
elongation of the confocal volume along the optical axis, with a typical value of
q ≈ 1/36 [24]. N denotes the average number of tracers that contribute to the signal
and usually falls into the range 1 < N < 10. In case of normal diffusion, the diffusion
coefficient can be estimated from the mean residence time through τD = r2

0/(4D).
By concept, FCS measures the average diffusion behavior of an ensemble of

tracers and individual features of the trajectories are lost. This renders FCS a rather
robust method, but it cannot be used alone to determine the underlying dynamics of
tracers. At the moment it seems, that only higher moments of the observables can
give a conclusive answer in this respect.

Single Particle Tracking (SPT)

Single particle tracking (SPT) denotes a category of microscopy experiments that
study the motion of individual nano-particles [26]. The markers are usually fluorescent
dyes, colloidal gold, or latex beads. In general, the two- or even three dimensional
coordinate x of the particle under observation is recorded at a frame rate ϕ (e.g. the
standard video rate: 1/25 s−1; modern devices reach up to 1/500 s−1). Since the
tracer is smaller than the optical wavelength, the center of its Airy disk defines its
position. Consequently, the uncertainty of the particle position can be considerably
smaller than the optical wavelength, i.e. several nanometers. The accuracy gets
worse for moving tracers and faster frame rates. The error on x can lead to severe
misinterpretations like apparent subdiffusion where diffusion should be normal [27]
and wrong conclusions about the process behind subdiffusion, see Section 3.1.
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excitation beam

flourescent
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Figure 1.6 Sketch of a FCS setup. Fluorescent tracers, e.g. a labeled
protein species, diffuse in the specimen while the excitation beam resides
at a fixed position. Whenever a tracer enters the confocal volume
(dark shaded area) it contributes to the measured fluorescence signal, cf.
Figure 1.7 (a).
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Figure 1.7 Analysis of a simulated FCS measurement. The fluorescence
signal (a) is autocorrelated (b) and subsequently fitted with an adequate
model. For subdiffusion, e.g., the model C(τ) reads as Equation (1.7)
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A crucial point in every SPT setup is to detect the photons emitted from or
scattered by individually moving particles. Here, wide-field microscopy resembles a
well established approach where a large spatial area is monitored, e.g. by a CCD
camera [28]. The unavoidable noise, e.g. due to dark states of the label, render it a
demanding task to reconstruct the trajectory of a single particle from the sequence
of frames [29].

A detection method that combines the advantages of confocal imaging with
the ability to follow the tracers’ motion has been proposed by Enderlein [30], see
Figure 1.8: A laser beam (Gaussian shape, waist w) that is sharply focused onto
a plane describes a circular trajectory with radius R and period T . During each
rotation the number of detected photons is recorded with high temporal resolution.
After every full period, the center of the circular trajectory is moved into the direction
where the majority of the photons has been collected. As this corresponds to the
direction where the tracer came closer to the circulating beam, the center of the circle
consequently follows its motion. This technique allows to record very long trajectories;
even for a moderate signal-to-noise ratio the average tracking time is several orders of
magnitude larger than the escape time from a static focus. Furthermore, extensions
to this approach allow for highly resolved trajectories in three dimensions [31].
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tracer trajectory
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R
w

Figure 1.8 The principles of the rotat-
ing focus technique for single particle
tracking (SPT). The Gaussian exci-
tation beam of width w is tightly fo-
cused on the plane of diffusion and
describes a circular trajectory with ra-
dius R around the tracer. After a full
period the center of the circle is moved
into the direction where most photons
have been detected, because there the
tracer closely approached the rotating
focus.

One straightforward analysis on the time series of recorded coordinates is the
calculation of the time- and ensemble-averaged MSD [32], cf. Section 1.3.4. From this
the diffusion anomaly α and the diffusion coefficient D can be obtained. Furthermore,
one can study geometrical aspects like the trajectory shape [33], see Section 3.2.
The empirical probability distribution function of these quantities yield precious
information about tracer diffusion, e.g. the coexistence of fast and slow populations
[34]. But, as mentioned above, SPT data can readily provoke wrong interpretations
due to measurement uncertainties [27, 32]. Moreover, the intrinsic stochasticity of the
process under investigation may be misleading [33, 34]. Hence, the robust analysis
of SPT data requires care, experience, and often a consistency check with computer
simulations.

In all, SPT outperforms FCS in terms of detail since, in principle, the whole
distributions of quantities like the diffusion coefficient are accessible. It thus provides
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a constantly advancing technique for the analysis of diffusion processes in complex
environments like the cytoplasm, see Section 3.2. The other side of the coin is that
drawing reliable conclusions from the data requires much effort in terms of data
recording, the generation of good statistics, and a subsequent careful analysis.

1.3.3 Evidence for crowding-induced Subdiffusion

Up to now, a plethora of experiments has detected subdiffusion of tracer particles in
crowded fluids. Using FCS, for example, it has been explored in the cytoplasm and
nucleoplasm of living cells [25, 35]. This applies for dextran tracers of various sizes
as well as for nano-gold particles with a radius of approximately 5 nm. Furthermore,
to check for the influence of complex structures like the cytoskeleton or membrane
enclosed organelles these have been disrupted by drugs. It turned out that the
measured α is almost independent of these treatments, implying that subdiffusion
originates primarily from the crowded nature of the cytoplasm without the need
for any ordered structures [25]. Guigas et al. [35] confirmed this interpretation
by showing that osmotic stress leads to alleviated subdiffusion of nano-gold in the
cytoplasm.

Along this line, Xenopus laevis egg extract served as another example for a
biological, crowded solution [35]. Naturally, there are neither membranous nor
skeletal structures and again subdiffusion occurred with very pronounced anomalies
down to α = 0.52. Other in vivo studies relied on tracers that are relatively huge
and allow the tracking of individual particles. In the cytoplasm of E. coli bacteria
Golding and Cox [36] tracked the diffusion of individual fluorescently labeled mRNA
molecules with a physical size of order ∼ 100 nm. They observed subdiffusion with
α = 0.70. A similar value was discovered for lipid granules (300 nm in diameter) in
living yeast cells [37]: For short times (10−4 . . . 10−3 s) optical tweezer measurements
give α = 0.73 and for longer times multiple particle tracking reveals α = 0.68
(0.1 . . . 1 s) and α = 0.70 (1 . . . 10 s), respectively. Again, only slightly changed values
were obtained when the cytoskeletal filaments of the cell were disrupted by drug
treatment.

The nucleoplasm of eukaryotic cells is of special interest in the context of diffusion
experiments since it contains the heredity information in form of DNA. Intriguingly,
the two metres of human DNA are thronged into the cell nucleus of just some
micrometers in size. This demands a sophisticated way of folding that still allows
active genes to be reliably processed by the cell machinery. Wachsmuth et al. [38]
studied the diffusion of EGFP through the nucleoplasm and found subdiffusion
consistent with α ≈ 0.87. Bancaud et al. [39] took a closer look and detected
subdiffusion with α = 0.73 . . . 0.79 depending on the method (FCS/SPT) and the
locus. Regions with low gene activity (“heterochromatin”) are more dense and lead to
slightly enhanced subdiffusion as compared to highly active regions (“euchromatin”).
Guigas et al. [35] report a pronounced, average subdiffusion with α = 0.56 of nano-
gold through the nucleoplasm. As in the cytoplasm, osmotic stress weakens the
effect.
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Artificial, complex fluids usually consist of only a single or few crowding species
and hence promise a better control of anomalous diffusion than biological fluids
that contain thousands of macromolecules. Various combinations of tracers and
crowders have been discussed: Banks and Fradin [40], for example, studied dextran,
BSA and streptavidin solutions and tracers of various sizes, namely streptavidin
(52.8 kDa), FITC-dextran (282.0 kDa), fluorescin (376.3 kDa), and various dextrans.
They find the most pronounced subdiffusion (α = 0.76) for streptavidin in a solution
of 276 kDa-dextran at a concentration of 200 g/l. In contrast, diffusion appears less
anomalous when the crowders are notably smaller than the tracers. Interestingly, the
diffusion of large tracers – BSA, fluorescin and FITC-dextran – in 401 kDa-dextran
solution is still normal even at high crowder concentrations. In a recent FCS study,
Szymanski and Weiss [24] report α = 0.81 for labeled apoferritin in a solution of
500 kDa-dextran at 20% per weight.

Another experimental perspective on subdiffusion evolved from the pioneering
work of Mason and Weitz [41]: In the field of microrheology, the thermal motion
of tracer particles is exploited to obtain the mechanical properties of the medium.
More precisely, from the measured MSD the storage and loss moduli of the bulk fluid
are computed. Normal diffusion implies uncorrelated increments and corresponds
to a purely viscous fluid. Subdiffusion, in contrast, is linked to a non-vanishing
elastic component that imposes an anti-correlation of the tracer increments and
hence viscoelasticity.

A remarkable study in this context has recently been published by Sprakel et al.
[42, 43]. They used different tracers, namely Silica (radius 70 nm and latex particles
(radius 110 nm) in complex fluids containing two classes of transient polymer networks.
The first system consisted of entangled homopolymers while the second additionally
had associative agents that lead to a cross-linking between the polymer chains. Two
possible particle-network interactions could be identified, sticking and non-sticking
conditions. In the sticking scenario, the polymers in the solution adsorbed to the
tracer that consequently became (transiently) a part of the network, while in the
non-sticking setting the polymers avoided contact with the colloids. The measured
tracer MSDs showed three regimes as sketched in Figure 1.9:

1. At short times (t < 10−4 s), the behavior depended on the tracer-network
interactions. For sticking conditions, the tracer diffused like a monomer in
a Rouse polymer, i.e. α = 0.5, while for non-sticking conditions it diffused
normally.

2. For intermediate times (10−4 s < t < 1 s), the elastic component dominated,
giving rise to a plateau in the MSD (elastic caging).

3. For long times (t > 1 s), tracer diffusion was normal. Due to the transient
nature of the polymer networks, this regime was dominated by the macroscopic
viscosity of the fluid.

In a related study Pan et al. [44] followed the diffusion of BSA-coated nano-
particles with diameters ranging between 100 and 1000 nm. As crowding agent they
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used the small protein lysozyme (14.4 kDa). Even for small crowder concentrations
(20 g/l) they observe distinctly anomalous diffusion with α = 0.6 on the millisecond
time scale. Higher concentrations lead to a further drop down to 0.45 at 286 g/l. For
longer times the anomalous diffusion crosses over into normal diffusion according to
the situation described above. Hence, the lysozyme solution exhibits viscoelasticity
due to the formation of a transient network. These two discussed studies nicely
illustrate three important aspects of subdiffusion in complex media: First, it is a
transient phenomenon, i.e. the measured anomaly depends on time. Second, the
interactions between solutes and fluid and within the fluid influence the outcome.
And third, subdiffusion is intimately linked to viscoelasticity.
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Figure 1.9 Sketch of the MSD measured for a colloid in a viscoelastic
fluid. The given cross-over times were chosen according to [43]. The
short time behavior depends on whether the tracer incorporates into the
network of the crowding agents (sticking vs. non-sticking conditions, cf.
text and [43]). If this is the case, the tracer behaves as part of a Rouse
polymer at short times, i.e. α = 0.5, while in the opposite case the initial
dynamics is ballistic (α = 2). At intermediate times a plateau (α ≈ 0)
indicates elastic caging. For long times diffusion becomes normal, i.e.
purely viscous (α = 1).

There are also studies that report on slowed down, normal diffusion, i.e. α = 1, in
crowded fluids. Goins et al. [45], for example, found via FCS that eGFP-calmodulin
(43 kDa) diffuses normally through dextran-solutions of various concentrations and
crowder sizes. In fact, they detect various values α < 1 with the minimum α = 0.87.
They claim that this value is too close to unity to be interpreted as anomalous
diffusion. In their review, Dix and Verkman [46] discuss further experiments that
apparently contradict the notion of anomalous diffusion in biological fluids.

Membranes like those that enclose the cell and its compartments can be considered
as two-dimensional fluids. In analogy to the cytoplasm they contain numerous proteins
and hence constitute a complex medium for diffusive tracers where as much as 20%
of the total area is occupied [17] Indeed, subdiffusion of proteins has been detected
with pronounced diffusion anomalies varying between α = 0.5 and α = 0.8 [47, 48].
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In addition, anomalous subdiffusion also occurs on artificial membranes with and
without crowding [28, 49]. Only recently Harland et al. [50] claimed that pure
phospholipid bilayers exhibit viscoelasticity.

In summary, various in vivo and in vitro experiments show crowding-induced
subdiffusion in the cytoplasm, on membranes and in artificial polymer solutions.
Given the vast range of possible tracer-crowder combinations it is a challenging
task to rationalize the experimental findings and predict the occurrence and degree
of anomalous diffusion. Due to the mesoscopic nature of diffusion phenomena, all
kinds of tracer-crowder and crowder-crowder interactions as well as their size ratio
determine the observed behavior.

1.3.4 Theoretical Models for Normal and Anomalous Diffusion

Brownian Motion

The random walk (RW) is a prototypic discrete random process in time and space
with a vast range of applications [51]. A “random walker” moves on a d-dimensional
lattice with a constant (small) distance r between neighbouring nodes by randomly
jumping to a nearest neighbor site in every instant of time. Assuming a symmetric,
unbiased RW, the probability to proceed to a particular neighbor site is 1/(2d). Let
Sn be the position of the walker after n steps. Then the displacement in x-direction
reads

S1
n − S1

0 =
n∑
i=1

Xi , (1.8)

where the sequence {Xi} contains independently and identically distributed random
numbers according to

P(Xi = kδ) =
{ 1

2d if |k| = 1 ,
1− 1

d if k = 0 .
(1.9)

However, Brownian motion takes place in continuous time and space, and particle
experience a large number of erratic of impacts during an observation period. In
other words the number of steps n is large and the central limit theorem states that
the distribution of the displacements becomes approximately normal in this case,
N (0, 1

dnr
2). Let τ denote the discretization of time, i.e. jumps take place at times

τ, 2τ, 3τ . . .. τ is small in the sense that in any reasonable observation time t numerous
jumps occur, namely n = bt/τc. Hence the distribution of the displacements becomes
N (0, 1

d tr
2/τ). Taking the limit τ and r → 0 in such a way that σ2 ≡ 1

dr
2/τ remains

constant leads to N (0, σ2t). As all spatial directions are mutually independent the
displacement vector S(t)− S(0) actually follows a multivariate normal distribution.

Mathematically, the continuous limit of the random walk, and thus Brownian
motion, is described by the Wiener process W = {W (t) : t ≥ 0} (W (0) = w) with
the following characteristics [51]:
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1. W is aGaussian process: Each finite-dimensional vector (W (t1),W (t2), . . . ,W (tn)
has the multivariate normal distribution N(µ(t),V(t)) for some time dependent
mean vector µ and covariance matrix V.

2. W has stationary independent increments: That means

• the distribution of W (t)−W (s) depends only on the distance t− s and
• the variables W (tj) −W (sj) with 1 ≤ j ≤ n are independent whenever
the intervals (sj , tj ] are disjoint.

3. The differencesW (s+t)−W (s) (s, t > 0) are distributed according to a normal
distribution with zero mean and variance σ2t, where σ is a positive constant.

4. W has continuous sample paths.
One can prove, that a random process with these features indeed exists, see e.g. [51].

The trajectory of a Wiener process exhibits (statistical) self-affinity and self-
similarity and thus resembles a random fractal [52]. The Hausdorff and box counting
dimension of a trajectory in Rd (d ≥ 2) is dW = 2.

There are conceptual impairments with the Wiener process as a model for
Brownian motion: It can be shown that almost all sample paths are nowhere
differentiable functions of t. Consequently, the arclength of a sample path is infinite
with respect to every finite time interval. On short time scales the Wiener process
thus describes unphysical behavior but the agreement with experiments is good for
longer periods. There are improved models to overcome the difficulties on short time
scales, a prominent example being the Ornstein-Uhlenbeck process [51].

Given the covariance of W the expected value of W 2 is 〈W (t)2〉 = σ2t. This
value complies with the MSD of Brownian particles:

〈δ2〉 ≡ σ2t = 2dDt , (1.10)

where D denotes the diffusion coefficient. D is a measure for the mobility of the
diffusing particles in a given solvent. It thus specifically depends on the particle
and solution properties as size, shape, and viscosity. For small particles, like macro-
molecules or colloids, the Reynolds number is very small3. Thus Stokes’ law applies
that gives the frictional force on a sphere with radius R dragged with constant
velocity u through a fluid of viscosity η:

FS = 6πηRu . (1.11)

Now, the diffusion coefficient D can be expressed through FS by the so called
Einstein-Stokes equation [19]

D = kBT

6πηR
. (1.12)

3In fluid mechanics, the Reynolds number Re gives a dimensionless measure for the relative
importance of viscosity and inertia in fluid flow around an object. It is defined as the ratio uρl/η,
where u denotes the mean flow velocity, ρ the density of the fluid, l a characteristic length scale
and η the (dynamic) viscosity of the fluid. A small value of Re corresponds to viscous flow. This
limiting case is also known as Stokes regime. [53]
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An alternative formulation of Brownian motion has been proposed by Paul
Langevin in 1908. In an elegant manner it combines Einstein’s interpretation with
Newton’s equation of motion to a stochastic differential equation for the particle
position x, known as the Langevin equation:

m
d2x

dt2
= −mζ dx

dt
+ ξ(t) . (1.13)

In this formulation the perpetual impacts of solvent molecules onto a Brownian
particle of mass m are summarized in a stochastic force ξ(t). ζ denotes the friction
coefficient, i.e. the dissipation of kinetic energy in the medium. According to the
ideas of Einstein, the impacts should contribute no measurable displacement on the
average, hence one demands

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = φ(t− t′) . (1.14)

The motion of the particle is studied for times τ > τc where τc gives the scale on
which the correlation function φ deviates significantly from zero. The function φ(τ)
can hence be written in terms of a Dirac δ-function:

φ(τ) = σδ(τ) . (1.15)

The friction coefficient ζ and the variance of the stochastic force σ are linked by a
fluctuation-dissipation theorem known as the Einstein relation

σ = 2ζmkBT . (1.16)

The description of Brownian motion by virtue of the Langevin equation is a starting
point for stochastic simulation algorithms as will be described later.

Ergodicity

The MSD of a diffusion process can be defined in two ways, namely

1. as an ensemble average

〈δ2〉E(t) ≡ 1
N

N∑
i=1

(xi(t)− xi(0))2 , (1.17)

2. or as a time average

〈δ2〉T(τ) ≡

t−τ∫
0

[xi(t′ + τ)− xi(t′)]2 dt′

T − τ
, (1.18)
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where the lag time τ takes the role of t.
According to the quasi-ergodic hypothesis a system is called ergodic, if every

trajectory – excluding a set of zero measure – comes arbitrarily close to every point
of the phase space in finite time. For ergodic systems time and ensemble average are
equivalent, i.e.

〈δ2〉T = 〈δ2〉E , (1.19)

for long times t. Systems with broken ergodicity can, for example, arise after
symmetry breaking phase-transitions when some regions of the phase space are no
longer accessible for the system. Bouchaud [54] introduced the term of weak ergodicity
breaking. The attribute “weak” refers to the fact that phase space does not a priori
fragment into isolated subvolumes. In contrast, the dynamics is governed by power
law distributed sojourn times with a diverging mean. Anomalous diffusion according
to the continuous time random walk is one example for such a system.

Continuous Time Random Walk (CTRW)

A continuous time random walk (CTRW) [20, 55] is an extension of the regular
random walk. In contrast to its ancestor, the jump lengths r and the waiting times
t may differ for each step and follow some probability density function ψ(r, t). In
case of independent jump lengths and waiting times ψ separates: ψ(r, t) = λ(r)w(t).
Different CTRW realizations can be characterized by the mean waiting time (also
characteristic waiting time) T and the jump length variance S2:

T =
∞∫

0

dt w(t) t (1.20)

S2 =
∞∫
−∞

dxλ(x)x2 . (1.21)

In this respect, one has to consider especially processes with diverging T and S2.
For finite waiting time and jump length variance, the long-time limit is always
normal diffusion since the central limit theorem applies. Here, we will focus on
scenarios where T diverges and hence subdiffusive motion emerges. In particular,
the distribution w(t) shall obey a power-law decay for long times

w(t) ∼
(
τ

t

)1+α
for 0 < α < 1 . (1.22)

Consequently, the random walker will encounter extremely long waiting times with
non-zero probability. For the limited observation in a simulation this implies that
the walker is practically stuck. An ensemble of walkers hence tends towards a frozen
state, where the majority of particles is at rest. In mathematical terms, the CTRW
has non-stationary increments and shows aging, i.e. the outcome of a measurement
depends on the time when the measurement is performed.
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The CTRW exhibits weak ergodicity breaking [56]. This means time and ensemble
averages of quantities like the squared displacement behave differently: If a set of
CTRW-trajectories is analyzed one finds that the time average MSD scales linear with
the lag time, i.e. 〈δ2〉T(τ) ∼ τ , while the ensemble average shows a subdiffusive scaling
law 〈δ2〉E ∼ tα. The diffusion coefficient Dα obtained from the time-averaged MSDs
is a random variable among the ensemble of trajectories [57, 58]. In general, time-
averaged quantities show a broad distribution around the ensemble average for systems
under weak ergodicity breaking [59]. This feature of the CTRW separates it from
other models – especially fractional Brownian motion and obstructed diffusion – and
hence has been discussed as a means to determine the mechanism of experimentally
observed subdiffusion [57, 58].

Fractional Brownian Motion (FBM)

Fractional Brownian motion (FBM) is a generalization of Brownian motion in
the sense that the increments are still stationary but no longer independent. It
was initially discussed by Mandelbrot and van Ness [60], but we will first give
a definition that emphasizes the close relationship to BM. A real-valued process
B = {B(t) : t ≥ 0} that starts from B(0) = b is called fractional Brownian motion,
if the following characteristics are met [52]:

1. B is a Gaussian process.

2. B has stationary increments: That means

• the distribution of B(t)−B(s) depends only on the distance t− s, but

• the variables B(tj)−B(sj) with 1 ≤ j ≤ n are in general not independent
even for disjoint intervals (sj , tj ].

3. The differences B(s+ t)−B(s) (s, t > 0) are distributed according to a normal
distribution with zero mean and variance σ2t2H , where σ is a positive constant,
and 0 < H < 1 the Hurst parameter.

4. B(t) has continuous sample paths.

The newly introduced Hurst parameter H describes the self-similarity of the
process. In analogy to BM, the incremental process of FBM

dB(t, s) ≡ B(t+ s)−B(t) (1.23)

is called fractional Gaussian noise (FGN).
Several interesting properties can be derived from the definition of FBM and

FGN:

• The special case H = 1/2 is equivalent to BM.
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• The probability function of FGN reads

P (B(t+ s)−B(t) ≤ x) = 1√
2πσ2s2H

x∫
−∞

e
−u2

2σ2s2H du . (1.24)

• Using its path integral representation, Sebastian [61] calculated the propagator
of FBM:

G(Bt, t|B0, 0) =
(

2HΓ2(H + 1/2)
2t2Hπ

)1/2

exp
(
−(Bt −B0)2Γ2(H + 1/2)2H

2t2H

)
.

(1.25)

• The increments are statistically invariant under an affine transformation.

• The MSD gives 〈B(t)2〉 = σ2t2H , so the diffusion anomaly relates to H as
α = 2H.

• The autocorrelation function for FGN yields

C(τ) ≡ 〈dB(t+ τ, s)dB(t, s)〉 = σ2

2

(
(τ + s)2H − 2τ2H − (τ − s)2H

)
, (1.26)

which becomes

C(τ) ≈ H(2H − 1)τ2H−2 for large lags, i.e. τ � s . (1.27)

• Based on C(τ) one can define three regimes [60, 62, 63]

1. 0 < H < 1
2 : C(τ) < 0, i.e. increments are anti-correlated. This regime

corresponds to an anti-persistent process and subdiffusion. C(τ) decays
to zero for τ →∞ with a power law ∼ τ−1...−2, so C(τ) is summable and
FGN constitutes a short memory process.

2. H = 1
2 : C(τ) = 0, i.e. increments are uncorrelated, as expected for

memory-free Gaussian noise.
3. 1

2 < H < 1: C(τ) > 0, i.e. increments are correlated. Now FGN is
persistent and C(τ)→ 0 like ∼ τ0...−1. In this case, C(τ) is not summable
and hence indicates a long memory process.

In their systematic discussion, Mandelbrot and van Ness defined FBM in a
different way [60]. As before, the Hurst parameter is bound to 0 < H < 1 and b is
an arbitrary real number. The following random function B(t) resembles (reduced)
fractional Brownian motion for t > 0:

B(0) = b ,

B(t)−B(0) = 1
Γ
(
H + 1

2

)
 t∫

0

(t− τ)H−1/2 dW (τ)

+
0∫

−∞

[
(t− τ)H−1/2 − (−τ)H−1/2

]
dW (τ)

 .

(1.28)
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The integrator dW corresponds to (regular) Brownian motion. Thus B(t) resembles
a fractional derivative or integral of BM. The special case of BM is recovered for
H = 1

2 , i.e. when all t-dependent terms under the integrals vanish. This notation
makes clear that FBM differs from BM by a memory kernel that creates a dependence
between the next step and all previous steps of the process.

Although CTRW and FBM share some characteristics and both give rise to
anomalous diffusion, they are quite different. In contrast to a CTRW, FBM is
ergodic for H < 3/4, i.e. time- and ensemble-averaged MSD are equivalent in the
subdiffusive regime [64]: The time average MSD shows sublinear scaling with lag
time τ (〈δ2〉T ∼ τα), while a CTRW appears like normal diffusion with respect to τ .
The anti-persistence of FGN below H = 1

2 implies that a step in positive direction
will be followed by one in negative direction with high probability, and vice versa.
Nevertheless, the average residence time that the process spends within a finite
spatial domain does not diverge like for a CTRW [65].

The Langevin equation has been presented before as a convenient formulation
of Brownian motion. In close analogy a fractional Langevin equation (FLE) can be
derived for FBM [66, 67]:

m
d2x

dt2
= −γ

t∫
0

1
(t− t′)α

dx

dt′
dt′ + ξ(t) , (1.29)

where γ denotes a generalized friction constant, γ = 1/mγΓ(1 − α). Now, ξ(t)
resembles FGN with zero mean, and the fluctuation-dissipation relation

〈ξ(t)ξ(t′)〉 = kBTγ|t− t′|−α (1.30)

In contrast to the conventional Langevin equation the friction term in Equation (1.29)
contains an integral over a memory kernel with a power-law decay. The memory
kernel for Brownian motion simply is the δ-function.

Obstructed Diffusion (OD)

Another way of generalizing the random walk is to confine its motion to a topological
subset of the embedding space [68, 69]. A concrete realization for such a disordered
environment emerges when a set of lattice nodes is inaccessible to the random walk.
The deletion procedure can, for example, follow a percolation approach, i.e. randomly
place a given number of obstacles among the lattice sites, or rely on an iterated
formula to create a deterministic fractal support like a Sierpinski gasket. Now, also
the support of the walk has a fractal dimension df that describes how the fractal is
embedded into the d-dimensional “outer” space. In particular, df relates the “mass”
M of the fractal contained within a hyper-sphere of radius R:

M ∼ Rdf . (1.31)

As stated above, the random walk itself exhibits statistically self-similar behavior
and has a fractal dimension dW = 2. So, for a random walk on a fractal support the
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interplay of the fractal dimensions dW and df will somehow determine the transport
properties. In fact, dW changes and hence diffusion becomes anomalous. The MSD
of the random walk then scales as [68]

〈δ2〉 ∼ t2/dW ⇒ α = 2
dW

. (1.32)

The spectral dimension dS describes how the number of distinct sites visited by the
random walk grows with time:

S(t) ∼ tdS/2 with dS =
2df
dW

(1.33)

The term obstructed diffusion is usually assigned to a random environment formed
by stochastically distributed obstacles in a system. Such a setting corresponds to
the percolation problem [70]: At a critical obstacle concentration fp (percolation
threshold) there is one macroscopic, contiguous cluster of empty sites, the percolating
cluster. Above this threshold the accessible space consists of numerous, isolated
(“microscopic”) islands. The resulting set of vacant sites constitutes a random fractal
with fractal dimension df depending on the obstacle concentration f [68, 71]:

1. Below fp there is an infinite cluster of vacant sites, but also an upper scale
ξ(f) for its statistical self-similarity (i.e. a finite correlation length). So above
ξ(f) the mass of the cluster does not scale like a fractal (Rdf ), but rather
like a homogeneous object (Rd). In this case, a random walk exhibits normal
behavior, i.e. dW = 2 for R > ξ(f).

2. At fp (on the 2D square lattice: fp = 1 − 0.59274 = 0.40726 [72]) there is a
single infinte self-similar cluster of vacant sites that spans the whole system.
The percolation threshold marks a phase transition, so the correlation length
diverges and there is no upper scale for self-similarity. In this scenario, a
random walk encounters dead-ends on all scales and thus anomalous diffusion
emerges with dW > 2. In particular, for two embedding dimensions: df = 91/48
and dW ≈ 2.87 (i.e. α ≈ 0.697 [71]).

3. Above fp the vacant sizes are arranged in isolated clusters with a typical
size of ξ(f). Each cluster resembles a finite fractal object. As t → ∞, an
ensemble of random walks will feel the island boundaries, i.e. the MSD levels
at 〈δ2〉 ∼ ξ(f)2.

1.3.5 Interpretation of Crowding-induced Subdiffusion

Viscoelasticity

For subdiffusion in experiments we discussed the close relationship to viscoelasticity.
Indeed, in the framework of the generalized Langevin equation (GLE), viscoelastic
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Figure 1.10 Principle of the random walk and derived models for subdif-
fusion. a) In every instant the next position of the RW is chosen among
all nearest neighbor sites with equal probability. For the example shown,
the walker starts at the filled circle for t = 0 and subsequently follows
the path indicated by the solid line. b) A CTRW extends the RW by
introducing a waiting time that is drawn randomly from a heavy-tailed
distribution at every position. For example, the walker leaves its initial
position only after the waiting time t0 has passed. c) OD resembles
another variant of the RW: A subset of lattice sites is occupied by im-
mobile obstacles (black circles). The random walker may not visit these
nodes and hence its motion is obstructed.

effects can be accounted for via a generic memory kernel [73]:

m
d2x

dt2
= −γ

t∫
0

η(t− t′)dx
dt′
dt′ + ξ(t) . (1.34)

η(t− t′) gives rise to temporally correlated motion and together with the random
force ξ(t) obeys a fluctuation-dissipation relation in Fourier space

〈ξ(ω)ξ(ω′)〉 = kBT

π
mη(ω)δ(ω + ω′) , (1.35)

where ξ(ω) and η(ω) denote the Fourier transforms of ξ(t) and η(t) respectively.
As described above, for FBM a fractional Langevin equation is given by the choice
η(t−t′) = (t−t′)−α. This corresponds to the Gemant model of viscoelasticity [65, 74].
In this setting, persistent subdiffusion occurs and the particle is effectively coupled
to a bath of oscillators with a frequency spectrum 1/f1−α (“fracton thermal bath”).
For an experimental situation, the frequency spectrum is truncated and subdiffusion
occurs on a limited time scale.

So, FBM arises as a special case of diffusion according to a GLE. Because
viscoelasticity is a macroscopic material property, this description resembles a kind
of “mean-field” theory. The above mentioned coupling of the particle to a fracton
thermal bath can be interpreted as an effective picture of viscoelastic forces in a real
complex medium derived from first principles [65]. However, the question arises how
this effective behavior can ultimately emerge from particle-particle interactions, i.e.
from a “bottom-up” design of a complex fluid.
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Coarse-grained molecular dynamics simulations are a promising method to assess
this issue: Frequently encountered manifestations of a complex fluid are gels. They
consist of a wide network of interconnected polymer chains immersed in a solvent.
Typically, the gelation transition takes place at low concentration of polymers, hence
the gel consists largely of solvent. In physical gels the interconnections are weak and
transient, like van der Waals or ionic bonds. As a result, the structure of physical
gels is highly dynamic. On the other side chemical gels base on more stable chemical
interactions, hence these structures are static. Hurtado et al. [75] proposed a model
for reversible gelation and studied the diffusion within the transient structure. Hard
spherical particles carry a certain number of valences that may form elastic, transient
links to other particles in their vicinity. Consequently, a dynamic gel evolved showing
viscoelasticity. On intermediate scales elasticity dominates which also shows up as
subdiffusion in the course of the MSD. The reversibility leads to normal diffusion
in the end. That is, the shape of the MSD curve essentially resembles that of a
tracer in a viscoelastic medium, cf. Figure 1.9. In a conceptually different approach
Stauffer et al. [76] found transient anomalous diffusion of tracers in the presence of
slowly moving barriers. In this case, the observed phenomena comprise sub- and
superdiffusion in crowded environments.

Identifying the Mechanism behind crowding-induced Subdiffusion

Three models for anomalous have been presented above, namely CTRW, OD, and
FBM. Although all of them give rise to some α < 1 they exhibit quite different
features in other aspects. For example, weak ergodicity breaking implies that time
and ensemble average are not equal for the CTRW – in contrast to FBM and OD. It
is hence a central question, which model is the best to describe anomalous diffusion
in a particular situation. In turn, an adequate model can then be used, to simulate
trajectories in the computer and to study the impact on diffusion-dependent processes
like chemical reactions.

In recent years, much effort has been dedicated to the determination of the
mechanism behind experimentally observed subdiffusion, especially in the biological
context. Subdiffusion in the cell nucleus is typically attributed to a fractal environ-
ment formed by the chromatin fiber, hence OD is the preferred model in this context
[38, 39].

The presence of static obstacles may also play a role on membranes [71], but
a resident anomaly has been reported, even if all obstacles are mobile or removed
from the membrane [28, 48, 49]. This indicates an additional component that may
originate in viscoelastic features of the membrane [50]. Malchus and Weiss [48]
showed that interactions with the cell’s quality control mechanism led to a stronger
subdiffusion of a dysfunctional protein as compared to its active form. Hence, cellular
processes may exploit the compactness of subdiffusive trajectories.

For the cytoplasm, a conclusive answer cannot be given, yet. Earlier studies have
interpreted experimental data in favor of a CTRW [57, 58], but just recently this
hypothesis has been rejected by Magdziarz et al. [77] for the data of Golding and
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Cox [36] using the p variation method, see also Section 3.1. Tejedor et al. [78] found
that the motion of lipid granules in living yeast cells is compatible with FBM. But a
subsequent study by Jeon et al. [79] on the same system actually revealed that this
applies for longer times only. Indeed, short time diffusion showed signatures of weak
ergodicity breaking and is better described by a CTRW with a finite cutoff in the
waiting-time distribution.

Szymanski and Weiss [24] excluded the CTRW from being responsible for sub-
diffuion in artificial dextran solutions by analyzing the distribution of measured
anomalies. First-passage observables have been proposed as another criterion to
discriminate between the OD and CTRW scenarios [80]. On the other hand, the
distinction whether experimental trajectories are better described by OD or FBM is
difficult. In summary, elucidating the mechanism behind crowding-induced subdiffu-
sion requires a sophisticated analysis that combines various approaches [81].

Along this line, we propose a simple method to distinguish FBM, CTRW, and OD
in one step. It relies on the different shape of subdiffusive trajectories, as simulations
show that FBM trajectories are more spherical in shape than OD trajectories. We
applied this method to SPT data of tracers in dextran solutions and found evidence
for FBM as the underlying mechanism. This analysis combined with high quality
SPT data may prove as a powerful means to distinguish between the three models
for subdiffusion in complex fluids.

1.4 Diffusion-controlled Kinetics
Any second or higher order chemical reaction ultimately relies on the encounter of the
participating agents. Actually, the rate (velocity) of a reaction is a combination of two
factors: Firstly, the encounter rate determined by the reactant diffusion process and,
secondly, the reaction rate that depends on the activation energy necessary to form
the product. Consequently, there are two types of reactions, namely diffusion-limited
and reaction-limited where either of the two processes dominates the overall reaction
rate.

In the context of classical kinetics, diffusion is a fast process providing a perfect
mixing of reactants at any time. Consequently, reactions can be modeled via a system
of ordinary differential equations (ODE) relying on the concentrations of reactants.
Hence, transport phenomena and discreteness of reactants are neglected. Within the
mean-field description in terms of concentrations, spatial aspects can be implemented
by using partial differential equations (PDEs). This approach still relies on locally
well-stirred conditions: Any volume element has to contain a sufficient number of
particles so that the description in terms of concentrations is valid.

1.4.1 Classical Kinetics – Smoluchowski Theory
The impact of diffusion on chemical reaction rates was first discussed by Marian
Smoluchowski in 1917 in the context of colloid coagulation [82] (see also, for example,
[83, 84, 85]). His rationals provide the interpretation of fast, i.e. diffusion-limited,
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reactions in the classical sense. For a basic bulk reaction like A + B k→ with a rate
coefficient k products the principal ideas are as follows: The approach focuses on
the concentration of B, ρB(r; t), in a radial distance r around a central A when B is
present in large excess. Furthermore the simple diffusion equation, i.e. Fick’s law (cf.
above), is assumed to describe the mutual diffusion of A and B. Hence the average
stationary spatial distribution of B is obtained by solving the diffusion equation with
a sink boundary condition at A and assuming a bulk concentration ρB far remote
from A, formally

∂ρB
∂t

= DAB∇2ρB , (1.36)

with the boundary conditions ρB(R, t) = 0 and ρB(∞, t) = ρB and the mutual
diffusion coefficient DAB = DA +DB. R denotes the reaction radius that resembles
the radial distance of closest approach before A and B react. In steady state, when A
is constantly added to the system to keep its concentration fixed, the solution reads

ρssB (r) = ρB

(
1− R

r

)
. (1.37)

The diffusion flux at R is proportional to the reaction rate, hence

4πR2DAB

(
dρssB
dr

)
R

= kρB , (1.38)

and
k = 4πDABR . (1.39)

Because the diffusion coefficient DAB does not depend on time the same is true for
the observed rate coefficient k.

The conceptually simple theory of Smoluchowski agrees qualitatively with classical
reaction kinetics, where the rate coefficient k is a constant. On the other hand, this
approach suffers from severe limitations. For example, reactions in two dimensions,
e.g. on biological membranes, cannot be described. In this case, it is impossible
to satisfy the boundary conditions as the solution to Laplace’s equation exhibits
a logarithmic divergence. Furthermore, the assumptions of large excess of B and
steady state with respect to A imply a permanently well-stirred system, where every
A is always surrounded by numerous Bs. So, in situations where stirring is imperfect
or for reactions in less than three dimensions deviations from Smoluchowski’s theory
are anticipated.

1.4.2 Anomalous Kinetics
In a more general description of diffusion-limited kinetics, the Smoluchowski theory
turns out to be exact in the limit of immobile A (DA → 0) and vanishing interaction
among the B particles. Hence, it describes many-particle diffusion dynamics correctly
only under particular conditions [85]. Numerous improvements of the classical theory
have been developed that apply to more general situations (e.g. [84, 85]). Any
deviations from classical behavior are denoted as anomalous kinetics. Here, we use
this term to refer to a non-constant rate coefficient, k(t).
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Generalized Transport Process

P. G. de Gennes [86] theoretically analyzed diffusion-limited reactions with non-
classical reactant transport, i.e. anomalous diffusion. In other words, the assumption
that the concentration of B follows Equation (1.36) is abandoned. For the discussion
above, we analyzed the concentration ρB around some central A particle. Now we
will use the pair distribution function ψ(rA, rB) that measures the probability to find
A and B at the positions rA and rB, respectively. This means, all A particles are
considered at the same time. The formulas derived above change correspondingly if
written with ψ instead of ρB. The particles shall react with a constant rate Q when
they approach closer than the reactive distance R (in the discussion of Smoluchowski’s
theory Q =∞, cf. above), i.e.

∂ψ

∂t

∣∣∣∣
reaction

= −Qψ if |rA − rB| < R . (1.40)

For a large reaction volume a self-consistency equation for ψ(r, r; t) ≡ ψ(t) is obtained

ψ(t) = ρA ρB −Q
4π
3
Rd

t∫
0

dt′ψ(t′)S(t− t′) , (1.41)

where d gives the dimension of the embedding space and S(t) resembles a memory
function

S(t) =
∫
drΓt(r0, r0|r, r) . (1.42)

S(t) contains the two-particle propagator Γt(r0, r0|r, r). The probability to find A
and B in the volume elements drA and drB given that they were at r0

A and r0
B for

t = 0 is Γt(r0
A, r

0
B|rA, rB)drAdrB.

The compact form of Equation (1.41) masks the high complexity of the problem.
First, we will study the structure of the memory function S(t). Since the positions of
the A and B particles are assumed to be uncorrelated – leaving aside the effects of the
reaction – the two-particle propagator factorizes into the single-particle propagators
for A and B. For simplicity, these propagators shall be identical and called Gt. De
Gennes proposes a rather generic scaling assumption for the form of Gt, namely

Gt(r0|r1) = 1
σ(t)d

G

[
|r0 − r1|
σ(t)

]
, (1.43)

where σ(t) is the root of the MSD, i.e. the average distance traveled by one particle
until time t, and the prefactor assures normalization. For the special case of normal
diffusion, the function G is a Gaussian. A general law for the memory function can
now be derived:

S(t) = κσ−d(t) , (1.44)

where the coefficient κ depends on the details of the diffusion process. The scaling
with σ(t) indicates that S is actually a measure for the exploration volume, i.e. the



40 Introduction

volume that encloses all possible trajectories of the particle until time t. Like for
the work at hand, the impact of anomalous diffusion is of special interest in the
discussion of de Gennes: In this case, a scaling of the form σ2(t) ∼ tα applies leading
to a power law memory function

S(t) = κ′t−dα/2 . (1.45)

In terms of a random walk, let j(t) denote the number of steps the walker
performed until time t. Then j(t) ∝ t and the number of distinct sites visited
n(t) ≤ j(t). Two regimes can be distinguished:

1. S(t) decreases more rapidly than t−1 (2/α < d): Then σd(t) > j(t) ≥ n(t).
Consequently, the number of explored sites is smaller than the number of sites
actually contained within the exploration volume σd. This behavior is called
non-compact exploration.

2. S(t) decreases more slowly than t−1 (2/α > d): Then σd(t) < j(t). The number
of explored sites is larger than the number of sites actually contained within
σd. Hence, most of the enclosed sites are visited or even oversampled. This
behavior is called compact exploration.

Now, the solution of Equation (1.41), and in particular the resulting rate coefficient
k, can be computed for the two regimes:

1. Non-compact exploration:

k−1 =
∫ ∞

0
S(t)dt , (1.46)

i.e. in this case k does not depend on time and resembles truly a rate constant.

2. Compact exploration:

k(t) = σd(t)
t

sin(π α/2 d)
κπ

∼ tα/2 d−1 . (1.47)

So k(t) depends on time and decays like a power law with exponent −h ≡
α/2 d− 1.

In particular, the following scaling relations hold for the unrestricted random
walk on a simple cubic lattice [87]:

n(t) ∼ (8j(t)/π)1/2 for d = 1 (1.48)
n(t) ∼ πj(t)/ log j(t) for d = 2 (1.49)
n(t) ∼ j(t)/1.5164 for d = 3 . (1.50)

Thus in one dimension n(t) grows slower than j(t) indicating compact exploration. For
d = 3 n(t) scales like j(t) meaning that the walker visits a new site in almost every step.
This corresponds to non-compact exploration. Consequently this regime contains the
classical scenario of bulk reactions under Brownian motion (2/α = 2 < d = 3). The
two-dimensional walk resembles a marginal scenario, where logarithmic corrections
apply to the scaling n(t) ∼ j(t).
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Fractal-like Kinetics

When recalling the discussion of random walks through fractal environments in
Section 1.3.4 one realizes that α/2 is identical to the fractal dimension dW of the
random walk. From this perspective, de Gennes considered reactants that diffuse
anomalously, i.e. with dW > 2 (α < 1) on a homogeneous substrate with df = d. On
the other hand, one may also vary df , to obtain anomalous kinetics for intrinsically
normal diffusive reactants. This notion underlies the field of fractal-like reaction
kinetics that has been promoted especially by R. Kopelman and his coworkers [88].
The main aspect of fractal-like kinetics is a rate coefficient decaying like a power-law
for long times:

k(t) = k0t
−h 0 ≤ h ≤ 1 (t ≥ 0) . (1.51)

The heterogeneity exponent h ranges between zero and unity where h = 0 corresponds
to the classical limit. The term “fractal-like” implies that this kind of kinetics is
frequently observed on fractals, like a percolating cluster, but not limited to these.
Moreover, it also prevails on low-dimensional homogeneous substrates like channels
for which df = 1, cf. above.

Since classical kinetics relies on homogeneous densities of reactants, initial density
fluctuations that naturally arise for a stochastic, multi-particle system are neglected.
Ovchinnikov and Zeldovich [89] predicted for the reaction A + B → ∅ that these
density fluctuations evolve to a macroscopic segregation into A- and B-rich. This
segregation is called the Zeldovich effect and can indeed be observed in computer
simulations [90]. The Zeldovich regime is characterized by a non-classical decay of
the average concentration, namely ∼ t−d/4 (d < 4) instead of t−1. Actually, three
scaling regimes arise for equal initial densities, i.e. ρ0

A = ρ0
B [91]: For very short

times, the reactants are well mixed and consequently classical behavior is observed.
For intermediate times, depletion zones arise and

〈ρB(r, t)〉 ∼
{
t−d/2, d ≤ 2 ,
t−1, d > 2 .

(1.52)

For longer times, macroscopic segregation emerges leading to the td/4 scaling of
the Zeldovich regime. The heterogeneity exponent h in the rate coefficient reads
h = 1− d/2 before the onset of Zeldovich segregation and h = 1− d/4 afterwards.
Especially in three dimensions, this asymptotic depends sensibly on the boundary
conditions. The Zeldovich effect has been reported for simulations with reflecting
boundaries, while periodic boundary conditions effectively introduce convection
currents that oppose reactant segregation [92]. Moreover finite size effects can overlay
the described asymptotic [91].

Bramson and Lebowitz [93] generalized the analysis to ρ0
A < ρ0

B and found a
rather different behavior for the minority species

ρA(t) ∼


exp(−λ1

√
t) d = 1

exp(−λ2t/ ln t) d = 2
exp(−λdt) d ≥ 3 .

(1.53)
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That is d = 2 marks the transition between two kinetic regimes.
These discussions are valid for batch conditions, where the reactants are randomly

distributed in the system and subsequently the reaction takes place without adding
new reactants. For steady-state conditions reactants replenish with a fixed rate
and hence the reaction proceeds constantly. Intriguingly, also in this scenario a
macroscopic segregation of reactants may occur [94]. The critical dimension is then
d = 2, meaning that for d ≥ 3 classical kinetics prevails.

Subdiffusion-Limited Reactions

As detailed in Section 1.3.4 a random walk in a fractal environment like a percolating
cluster exhibits subdiffusion. From the discussion in the preceding paragraphs one
may anticipate a link between anomalous, fractal-like kinetics and subdiffusion.
This leads to the notion of subdiffusion-limited reactions. So far, we have described
the case of OD as the underlying mechanism, but there are also studies that rely
on CTRW-type subdiffusion, see the article by Yuste et al. [95, chap. 13] for a
comprehensive review.

Some results follow via the so called subordination trick, i.e. by performing the
simple substitution t → tα. For example, the concentrations for A + B → ∅ with
ρ0
A = ρ0

B are asymptotically governed by

ρB(t) ∼
{
t−αd/4 d < 4
t−α d > 4 ,

(1.54)

This simple subordination procedure bases on the argument that the number of steps
j(t) during a time interval t grows sub-linear with time, i.e. j(t) ∼ tα. Consequently,
all properties whose time dependence arises only through the number of steps follow
the laws derived for normal diffusion with tα instead of t.

This argument is closely related to the spectral dimension dS that describes
how the number of distinct sites visited by the random walk scales with time,
Equation (1.33). In the Zeldovich regime h = 1− dS/4 [91, 92] with dS = 2df/dW =
α× df . Hence, subdiffusive reactants with a diffusion anomaly α on a homogeneous
substrate with df = d yield h = 1− αd/4.

Geometry-controlled Kinetics

Another perspective on diffusion-limited reactions is the first passage time (FPT)
T that measures how long a random walker, starting at a point S, needs to reach
some target site X. This quantity used to be tractable for quasi-one dimensional
and unconfined systems only, but in recent years, first the mean of T (MFPT) [96]
and finally the full distribution of T [97] have been calculated for confined domains
containing N sites. Two regimes emerge that coincide with the compact and non-
compact exploration scenarios introduced by de Gennes, cf. above. For non-compact
exploration (dW < df ) the quantity 〈T 〉X giving the MFPT to reach X averaged
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over all starting points, scales linear with the domain size N . The same scaling arises
for the MFPT 〈T 〉 and is independent of the dimensions dW and df .

For the compact exploration scenario, in contrast, 〈T 〉X ∼ NdW /df while still
〈T 〉 ∼ N . This implies, that several time scales are involved, beyond the MFPT. It
turns out, that now the FPT depends strongly on the initial separation r between
the points S and X. Bénichou et al. [97] hence denote the kinetics in the compact
exploration regime as geometry-controlled. This notion incorporates all scenarios
of anomalous diffusion, like fractal-like kinetics of reactants on a low-dimensional
support. It hence provides a general theoretical framework for reactions in complex
environments where reactant transport is anomalous.

As discussed above, classical kinetics is associated with non-compact exploration.
Hence the initial conditions play no role in this case. In contrast, for geometry-
controlled kinetics diffusive mixing works ineffectively and hence the behavior of the
system depends on the time of the measurement, cf. [88]

1.4.3 Simulations of Reaction and Diffusion in Crowded Media

In addition to the macroscopic treatment of crowding effects by thermodynamics,
cf. Section 1.2.4, full-stochastic, particle-based approaches promise new insights
into reactions that occur within complex fluids. Especially the impact of non-trivial
reactant transport can be studied. To this end, the large number of particles and
possible interactions demands the use of computer simulations. The computational
models of crowded fluids differ in their aims and degree of complexity. A large body
of work deals with lattice models of biological membranes [71, 98, 99, 100]: In this
approach the crowders are considered as an inert species, that moves with varying
mobility compared to the reactants. If the crowders are immobile they form a fractal
environment that leads to OD of reactants as described in Section 1.3.4.

This type of system shows fractal-like kinetics as found for elementary reactions
like A + B → ∅, see e.g. [88, 101, 102]. Addressing the relevance of anomalous
kinetics in the cell, Berry [99] showed that biochemical reactions of Michaelis-Menten
type, cf. Equation (1.1), also develop reactant segregation and non-classical kinetics
on a crowded model membrane. Grima and Schnell [100] systematically analyzed
the elementary reaction A + B → C under various conditions and found that the
asymptotic behavior is always fractal-like kinetics. The transient towards this regime
depends on the reaction probability on encounter P and the initial densities of the
reactants: For small P and [A0]� [B0] the kinetics is indeed classical. This implies
that in experiments anomalous kinetics may not be important depending on the
prevailing rates and concentrations.

Another type of model describes reactions in the cytosol or in artificial crowded
solutions. The reactants and crowders are modeled as spherical moving and in-
teracting according to a molecular dynamics or Brownian dynamics approach. A
recent review by Adrian Elcock [103] discusses, among others, this type of models
and their relation to in vitro experiments. In their study, Kim and Yethiraj [104]
reproduced the results of thermodynamic calculations, that is association rates may
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be accelerated or decelerated in the presence of a inert species depending on whether
the reaction is diffusion- or reaction-limited, cf. Section 1.3.4. Crowder and reactants
only differed by the ability to undergo a reaction and hence this scenario rather
corresponded to an artificial setting of a monodisperse system.

Ridgway et al. [105] investigated a dimerization reaction in a coarse-grained
model of the bacterial cytoplasm. This means that the crowder species covered a
certain, experimentally grounded range of sizes and masses (polydisperse system).
Qualitatively, the effects are the same as for a single crowder size. Additionally the
authors note, that the kinetics were not only decelerated but significantly deviated
from classical predictions.

Recently Grima et al. [106] published a study on reactions in nanoscale porous
media. Their approach extents the planar lattice simulations discussed above to three
dimensional, continuous space. The crowders are now immobile, randomly distributed
spheres, i.e. this setup corresponds to the three dimensional swiss cheese model
or Lorenz gas model (the percolation problem in three dimensions and continuous
space). In such an environment, reactants show trajectories that deviate strongly
from free diffusion. In particular, the anisotropy of the material gives rise to more
elongated trajectory shapes. In consequence, apparent diffusion-limited association
rates can be dramatically reduced as compared to the bulk scenario.

Experimental in vitro models for crowding effects typically rely on Dextran
or Ficoll as crowders [103]. These molecules are presumed to be truly inert and
consequently only provide excluded volume. From this perspective there is good
qualitative agreement between simulations and experiments, but the modeling of
Dextran, for example, requires particular geometric parameters depending on the
system under consideration. Moreover, Dextran in solution can induce anomalous
subdiffusion of tracers [24, 25, 40] a phenomenon that is usually not included in
particle based simulations of bulk reactions.

1.5 Scope
The preceding introductory sections gave an overview on anomalous reactant transport
and reaction kinetics in a biological context. The crowded character of the cytoplasm
qualitatively alters the diffusion of particles into anomalous subdiffusion, that is the
average area covered by the particles (the MSD) grows sub-linearly with time:

〈δ2〉E ∼ tα with 0 < α < 1 . (1.55)

Three distinct models, the CTRW, FBM, and OD, were presented that give rise
to this kind of scaling. It is still debated which of these models provides the most
accurate description of subdiffusion in the cytoplasm although numerous studies
addressed this question recently [24, 77, 78, 79, 107].

The recent developments of single particle monitoring techniques yield sample
trajectories of unprecedented accuracy. Most of the approaches to identify the
mechanism behind crowding-induced subdiffusion hence exploit the information
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contained in these data. Along this line the work at hand contributes a simulation
study that compares different estimates of α in dependence on the diffusion process,
see Section 3.1. Furthermore the impact of measurement uncertainties is discussed.
Section 3.2 thoroughly analyzes the average shape of subdiffusive trajectories. It
turns out that the three models CTRW, FBM, and OD, show a quite different
behavior in this respect. Hence the average shape may prove as a powerful means to
distinguish the different modes of motion. To test the applicability of this criterion
we compare experimental data obtained by a novel SPT device with our simulations.
Finally, Section 3.3 presents a proposal for a particle-based model of the cytoplasm.
It accounts for the size distribution of proteins and the influence of weak, non-specific
attraction between them.

So far, the computational modeling of biochemical networks bases mainly on
“classical” assumptions like the perfect mixing of reactants. These assumptions may be
violated in complex fluids, see e.g. [3, 4]. On the other hand, existing theoretical work
on non-classical, subdiffusion-limited reaction kinetics mainly relies on OD or CTRW
as model processes. Given the growing evidence that the viscoelasticity of a crowded
medium evokes subdiffusion, we consider FBM as the underlying mechanism for
full-stochastic reaction-subdiffusion simulations. Section 4.1 presents the results for
the prototypic reaction A + B → C in two dimensions. As a more complex scenario
the impact of anomalous diffusion on a double phosphorylation cycle (e.g. MAPK)
is studied in Section 4.2. It turns out that spatio-temporal effects as described in
[108] are more pronounced when reactants move subdiffusively.





Chapter 2

Methods

2.1 Simulation of Diffusion
2.1.1 Lattice Gas Model
The close relationship between Brownian motion and a random walk feeds a con-
ceptually simple and widely used method to simulate diffusing particles, namely
the lattice gas model or lattice gas automaton (LGA). The particles occupy the
nodes of a regular lattice and in every instant of time they travel along an edge to a
neighboring site with some probability pm that is gauged according to the desired
diffusion constant D:

pm = 2dD ∆t
∆x2 , (2.1)

where d is the spatial dimension, ∆x the distance between two lattice nodes, i.e.
the discretization length, and ∆t the time increment. In its simplest form with
pm = 1 the LGA resembles a straight-forward Monte Carlo algorithm [109, 110]. In
every time step, a random number from the range [0, 1, . . . , 2d] determines in which
direction the walker moves next. Emulation of a particular diffusion coefficient D
leads to pm < 1. This means, that a walker resides at its current position until
another generated, uniformly distributed random number ω ∈ [0, 1) fulfills ω < pm.
Excluded volume can readily be implemented into the LGA by prohibiting multiple
occupation of lattice sites. The walker behaves as a “blind ant” in the sense that it
stays at its current position if the proposed move ends in an already occupied site
[111]. In other words, before the move is proposed the walker has no information
about forbidden sites in its vicinity.

2.1.2 Brownian Dynamics
The Brownian dynamics (BD) simulation technique exploits the description of
Brownian motion by the Langevin equation

m
d2x
dt2

= −mζ dx
dt

+ F(x, t) + ξ(t) . (2.2)

As extension to Equation (1.13) an additional force F is introduced that arises from
inter-particle potentials, i.e. repulsion and attraction. In the context of this work

47
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the overdamped limit is considered:

m

ζ

d2x
dt2
� dx

dt
⇒ dx

dt
≈ ξ(t) + F . (2.3)

This assumption corresponds to the regime of small Reynolds number, i.e. for
systems that are dominated by viscosity rather than by inertia, cf. Section 1.3.4.
This especially applies to the small length scales of intracellular processes. The
simulation algorithm transfers each bead from its position x(t) at time t to a new
position x(t+ ∆t) according to the equation

x(t+ ∆t) = x(t) + Rc(∆t) + D0
kBT

·F(t) ·∆t , (2.4)

where ∆t denotes the time interval over which the equations of motions are integrated.
It corresponds to one “time step”, i.e. the temporal resolution of the simulations.
Equation (2.4) contains two contributions to the total displacement of the particle:

1. random displacement Rc given by white noise

〈Rc〉 = 0 〈R2
c 〉 = 6D0∆t , (2.5)

2. displacement due to forces acting on the bead

Rf (∆t) = D0/kBT ·F(t)∆t . (2.6)

D0 denotes the diffusion coefficient of the particle in bulk water. In summary, BD
is more realistic than the LGA method as it does not incorporate a discretization
of space. This gain in accuracy comes at the price of higher computational effort,
especially for a system of many interacting particles.

Excluded Volume Interaction

One possibility to account for the volume of the particles is to use a Monte Carlo-style
move rejection in close analogy to the blind ant variant of the LGA: If a proposed
move would produce an overlap between two particles the algorithm rejects it and
the respective particle stays at its current position. This approach ensures hard
sphere exclusion at all times. Note that not all center-to-center distances need to
be calculated to detect an overlap between any two beads owing to the short-range
character of volume exclusion. The Verlet-table algorithm keeps a list for every bead
that contains all possible interaction partners within some cut-off distance. Only
these are relevant for collision in the next few simulation steps [109]. A further
speed up can be gained when the tables are assigned to regions of space rather than
individual particles. This method divides the simulation volume into equally sized
cells that are small compared to the whole volume but larger than the interaction
radius, in case of excluded volume, for example, 2R. Collisions may only occur with
particles that reside in the same cell or one of its neighbors.
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The so-called soft core potential provides another way to implement excluded
volume interactions. In this case, the repulsion between colliding beads is explicitly
realized as a force. Again the short-range character of the interaction allows the
use of Verlet-tables and cell structure for more efficient computing. The effective
distance between the particles is calculated by

d′ = d−Ri −Rj , (2.7)

where Ri,j denotes the radii of the beads and d the distance between their centers.
The two particles i and j may overlap (d′ < 0) but are then driven apart by a
constant force with amplitude

A = 6πη · 103 µm2/s; η = ηwater = 10−3 Pa s . (2.8)

As their effective distance increases (d′ > 0) the force drops linearly to zero over a
scale of Rd = 2 nm:

F = A ·
(

1− d

Rd

)
(2.9)

Figure 2.1 shows schematically the course of the force experienced by two particles
of size R as a function of the distance d between their centers. Since soft beads
can overlap the distinct definition of the particle size is difficult. Here, the “core”
of radius R, i.e. the extension of the force plateau, defines the bead size. In fact,
due to the gradually decreasing force regime between d = 2R and d = 2R+ Rd/2,
the apparent particle size is larger. One can obtain an empirical correction factor
by comparison of soft and hard bead simulations. Since the soft repulsive potential
does not contain a divergence at d = 2R in contrast to hard sphere repulsion, the
algorithm can exploit larger integration times ∆t to reach longer time scales.

Attractive Interaction

Besides the excluded volume effect, the change of diffusion due to nonspecific attrac-
tive forces between beads is studied. The attractive force is implemented analogously
to the excluded volume interaction. Starting from an effective distance d = Rd the
force drops linearly to a minimum of

B = −b · kBT/ nm with b = 1.0 . . . 3.0 . (2.10)

Afterwards the force increases linearly to the long distance limit F∞ = 0. The
attractive force acts over a range of 2 nm in total. The complete course of the
force between two particles with identical radii R is shown as a function of their
center-to-center distance in Figure 2.1.

2.2 Simulation of Subdiffusion
2.2.1 Continuous Time Random Walk (CTRW)
The simulation of a CTRW process relies on the LGA with one important modification:
After every step a waiting time τ is drawn from a heavy-tailed distribution, i.e.
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Figure 2.1 Course of the force F between two soft beads of size R as a
function of their center-to-center distance d. If the beads overlap they
are repelled from each other by a constant force with amplitude A. As
d increases above 2R the force drops linearly to zero over a length of
Rd = 2 nm. In a model for non-specific attraction, it drops further,
becoming negative until F = B, and increases again with the same
absolute slope to zero.

P (τ) ∼ 1/τ1+α. Only after waiting for τ time steps, the walker may proceed to
its next position. The parameter α coincides with the desired (ensemble-averaged)
diffusion anomaly of the process.

2.2.2 Obstructed Diffusion (OD)
The simulation of an OD scenario involves two stages: First, the environment (also:
support) is generated and, second, a “blind ant” random walk is performed on the
remaining lattice sites. The diffusion process works exactly as described before, but
now obstacles occupy a substantial subset of the lattice sites and thereby obstruct
the motion of the random walker. The way in which the obstacles are placed on the
lattice depends on the desired shape of the support. Here, we are interested in a type
of a random fractal, namely a percolation system. A straight-forward Monte Carlo
algorithm generates realizations of such a fractal as follows: It picks a lattice site by
random. If it is vacant, an obstacle is placed there, otherwise another lattice site is
drawn. The algorithm repeats this procedure for a predefined number of obstacles.

2.2.3 Fractional Brownian Motion (FBM)
The simulation of fractional Brownian motion (FBM) and its incremental process,
fractional Gaussian noise (FGN), requires more sophisticated methods than those
discussed above. Due to the correlated increments it constitutes a strictly non-
Markovian process, i.e. a diffusive step depends not only on its predecessor but
on the complete history of the process. Typical Monte Carlo methods cannot be
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used as they are by construction Markovian. By now, various methods have been
described that allow for the simulation of processes with memory. Especially the
case of FBM/FGN has attracted much interest due to its wide applicability. An
exhaustive review on various simulation techniques including a discussion of their
accuracy and impairments can, for example, be found in the Master’s thesis of A. B.
Dieker [112]. For the thesis at hand essentially two methods were used, the exact
circulant method and the approximative Weierstrass-Mandelbrot function method.

Circulant Method

The circulant method is an in principle exact simulation technique to generate
random samples of an arbitrary Gaussian process. The term “in principle” refers to
the theoretical case of infinite numerical accuracy and the use of truly independent
random numbers – conditions that cannot be fulfilled in computer simulations since
they rely on pseudo-random numbers and the finite accuracy of binary number
representation. In the following we adopt the notation and arguments of Wood and
Chan [113] who generalized an algorithm firstly presented by Davies and Harte [114].

Let X be a zero mean stationary Gaussian process X = {X(t) : t ∈ R} with a
given covariance function γ. The aim of a simulation is now to generate a random
vector with n elements, X̂ = (X(0), X(1/n), . . . , X((n− 1)/n))T , that complies with
this covariance structure and, of course, possesses all other properties of X, that is
X̂ Nn(0, G) with

G =


γ(0) γ

(
1
n

)
. . . γ

(
n−1
n

)
γ
(

1
n

)
γ(0) . . . γ

(
n−2
n

)
...

...
...

γ
(
n−1
n

)
γ
(
n−2
n

)
. . . γ(0)

 . (2.11)

G is a Toeplitz matrix, that means the elements along each descending diagonal from
left to right are equal. In general, any Toeplitz matrix can be embedded into a
circulant matrix (which is a special form of a Toeplitz matrix) of size m C(m×m):

C =


c0 c1 . . . cm−1
cm−1 c0 . . . cm−2
...

...
...

c1 c2 . . . c0

 . (2.12)

In a circulant matrix the elements of each row are shifted one place to the right
relative to the preceding one. The importance of circulant matrices for numerical
analysis arises from their property to be diagonalized by the discrete Fourier transform
(DFT). Here, G(n× n) becomes part of C(m×m) with m = 2g for some integer g
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and m ≤ 2(n− 1) by setting

cj = γ

(
j

n

)
if 0 ≤ j ≤ m

2
(2.13)

= γ

(
m− j
n

)
if m

2
≤ j ≤ m− 1 . (2.14)

So by construction C is symmetric and G comprises its upper left n× n submatrix.
For a general random process with covariance function γ C is not necessarily positive
definite, and hence may not represent a covariance matrix. There are strategies to
deal with such situations described in [113]. C is positive-definite in the case of FGN,
where γ(τ) = ((τ − 1)2H − 2τ2H + (τ + 1)2H)/2 (Equation (1.26)), and thus for the
purpose of this work, the described embedding procedure can be applied without
restriction.

Now, a random vector Y = (Y0, Y1, . . . , Yn−1)T ∼ Nm(0, C) can be generated, that
by virtue of the described construction of C contains a subvector (Y0, . . . , Yn−1)T ∼
Nn(0, G) with the desired properties of X̂. The computation of Y starts from the
representation of C in its eigenbasis

C = QΛQ∗ where Λ = diag λ0, . . . , λm−1 . (2.15)

λi are the eigenvalues of C, and the unitary matrix Q reads

qjk = m−1/2 exp
(
−2πijk

m

)
, 0 ≤ j, k ≤ m− 1 . (2.16)

Note that the DFT of the sequence {c0, c1, . . . , cm−1} determines the eigenvalues of
C:

λk =
m−1∑
j=0

cj exp
(
−2πijk

m

)
, k = 0, 1, . . . , n− 1 (2.17)

The sampling procedure now shall generate a random vector Y = C1/2Z = QΛ1/2Q∗Z

with Λ1/2 = diag λ1/2
0 , . . . , λ

1/2
m−1 and Z = (Z0, Z1, . . . , Zm−1)T a vector of indepen-

dent N (0, 1) random variables. Under these preliminaries Y ∼ Nm(0, C) since Q is
unitary. In the first step, the vector Q∗Z = S + iT is simulated, by generating two
independent Nm(0, 1) random vectors, one for the real and one for the imaginary part
(see [113] for a proof that S and T are independent). From this, one can compute the
vector W = Λ1/2Q∗Z. The desired sample X̂ = (X(0), X(1/n), . . . , X((n− 1)/n))T
results from

X

(
k

n

)
=

m−1∑
j=0

(Wj/m
1/2)

(
−2πijk

m

)
, k = 0, 1, . . . , n− 1 . (2.18)

The essence of the circulant method is the efficient calculation of Equation (2.17)
and Equation (2.18) with the fast Fourier transform algorithm (FFT). For a sample
size of m, the best case runtime thus becomes O(m logm) when m = 2g. In practice,
the power m is chosen to be 2n. We note that the circulant method always generates
a full time of length n and cannot be used to compute correlated increments on
demand.
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Weierstrass-Mandelbrot Function

The Weierstrass-Mandelbrot function extends the peculiar Weierstrass function
(1872) that is continuous but nowhere differentiable. The graph of this function has
a Hausdorff dimension exceeding unity and is scale free. Thus it is well suited to
model fractal phenomena. In the following we will stick to the thorough discussion
in [115]. The complex valued function reads

W (t) ≡
∞∑

n=−∞

(1− eiγnt)eiφn

γα/2n , (2.19)

where 0 < α < 2 imposes self similarity, γ > 1 is a parameter, and the φn are
arbitrary phases from [0, 2π). The values γn can be interpreted as frequencies
that span from zero to infinity in geometric progression, and hence constitute a
“Weierstrass spectrum”. If the phases φn are chosen randomly one obtains a stochastic
function. As a sum of infinitely many random contributions, W (t) is even a Gaussian
random function. An analysis of the increments W (t+ τ)−W (t) reveals zero mean
and an auto-covariance that only depends on τ . Consequently, the series of increments
of W (t) is stationary. Interestingly, the autocovariance function itself resembles a
Weierstrass-Mandelbrot function, with a self-similarity parameter α′ = 2α. The power
spectrum of W can be approximated by a continuous form: S(ω) ≈ 1/(ln(γ)ω1+α).
Furthermore the fractal dimension of the path of W complies with 2− α/2. Notably,
the derivation of this result contains an argument that strictly applies for irrational
γ only (see [115] for details). In all, the process defined by W (t) shares important
characteristics with FBM and thus may be used to generate FBM samples.

For the purpose of simulation the real part of Equation (2.19) is slightly rewritten:

w(t) =
∞∑

n=−∞

cos(φn)− cos(γnt∗ + φn)
γnα/2 . (2.20)

As stated above, irrational γ are favorable, so in our simulations we set γ =
√
π. In

w(t) time is measured in units of 2π, i.e. a complete simulation run with T time
steps corresponds to a full period. Thus, in order to simulate arbitrarily long time
series, t has to be transformed according to t∗ = 2πt/T . w(t) contains an infinite sum
that requires a truncation in practice. The limits nmin and nmax have to be chosen
empirically [115]. We use nmin = −8, nmax = 48 that proved as a good trade-off
between accuracy and fast computations in earlier studies [116, 117]. From the
truncated version of Equation (2.20) a FBM sample is obtained in a straight-forward
fashion, as w(t) directly corresponds to the position of the FBM process at time
t where w(0) = 0 . Furthermore, the incremental process dw(t), i.e. FGN, can be
obtained by calculating the differences dw(t) = w(t+ ∆t)− w(t).

The bottleneck of this method is the calculation of 57 cosine values twice in every
simulation step. For a sample of 106 data points the reference computer needs 14
seconds. The calculations can be accelerated when the values cos(φn) are computed
once and stored for further use. For the study at hand, therefore the cosine of 105
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equally spaced angles in [0; 2π] were precalculated and stored in a random-access
data structure. The error due to the angle discretization is negligible. By these
actions the computations are accelerated by almost a factor of five. As the operations
are identical in every step, the complexity of the Weierstrass-Mandelbrot method is
of the order O(T ) when T is the total number of steps. It is thus faster than the
circulant method, i.e. the fastest exact method available. A further advantage is the
possibility to calculate the next step on demand, which can save many computations
in the simulation of reacting particles, as will be described below.

2.3 Simulation of Reaction-Diffusion Processes

2.3.1 Full-stochastic Simulations

Over the last decades, the interest in modelling biochemical reactions and reaction
networks within the living cell has grown tremendously [6]. The possible approaches
are manifold in the assumptions they make [12, 13, 118]: Deterministic methods
assume high abundance of reactants and consequently use a continuous description
in terms of reactant concentrations. The system is then described by a set of coupled
differential equations. Stochastic approaches, in contrast, work on the level of –
eventually small – reactant numbers. The chemical master equation is solved by
using approximative methods like the chemical Langevin equation [12, 119, 120].
Both classes of approaches have in common that they rely on well-stirred conditions,
i.e. on (locally) homogeneous concentrations. The work at hand abandons this
assumption in that the motion of reactants is non-trivially modified to anomalous
subdiffusion. To this end, a full-stochastic, i.e. particle based, simulation method is
applied.

For reactants undergoing Brownian motion, several efficient stochastic simulation
algorithms have been developed, e.g. Green’s function reaction dynamics (GFRD)
[121] and first-passage Monte Carlo algorithms [122, 123]. To our knowledge, nothing
equivalent exists for subdiffusive reactants. Consequently, we rely on the explicit
simulation of the individual particles that eventually react on an encounter [118, 124].
The trajectories are generated via the Brownian dynamics and FBM approaches as
described above. The particles are realized as phantom spheres with an interaction
radius radius R. Each belongs to one of the involved chemical species, e.g. A, B, or
C in the case of a A + B → C reaction.

In the particle based picture, reaction rates are represented by probabilities. For
the example A + B ® C the decay part is determined by p2, that is the probability
for each C in the system to become an A-B pair during one time step ∆t. Then the
corresponding rate reads ν2 = k2ρA = p2/∆t ρA. On the other hand, the complex
formation is a diffusion-influenced second order reaction: When two reaction partners
overlap with their reaction radii, a random number ω is drawn. For ω < p1 a reaction
takes place and the two particles merge to form a C. The relation between p1 and the
respective rate coefficient k1 is not as straight-forward as for a first order reaction. In
principle, an adequate tuning of R and p1 allows to emulate a particular bimolecular



2.3. Simulation of Reaction-Diffusion Processes 55

reaction rate [124]. Here, the focus is on generic effects and we use the relation
k1 = c1p1/∆t with an empiric factor c1 to compare our simulations with theoretical
predictions, cf. [99, 118].

Throughout our simulations we apply batch conditions [88]: The system is set up
by randomly distributing the reactants in the simulation box. Then the reaction-
diffusion process runs without providing new substance and the system tends towards
an equilibrium state which in general differs from the initial configuration.

2.3.2 Limitations and Impairments

The described approach does not cover the effects of excluded volume between the
reactants. Rejecting or cutting trial moves, as it is typically performed in particle
based reaction-diffusion simulations (see above), distorts the correlation structure of
subdiffusive increments and thus may lead to unforeseen side effects. The problem
actually originates in the violation of the fluctuation-dissipation theorem as we
treat the FGN as an external stochastic force [81]. Implementation of interparticle
forces (attraction/repulsion) would hence require a more rigorous approach via a
generalized Langevin equation to fulfill a fluctuation-dissipation relation between
noise and friction.

We neglected the effects of particle interactions for computational reasons because
phantom spheres allow for larger systems and longer simulation times. Moreover,
the (long term) observations described in this work are independent of the excluded
volume in the case of ordinary Brownian motion. Although the quantitative results
may differ, the qualitative observations, i.e. anomalous kinetics, reactant segregation,
etc., are present even if the excluded volume of the reactants is neglected. Section 4.1.3
discusses this issue in detail for the prototypic A + B → C reaction.

We mentioned that our method for simulating subdiffusion does not fulfill a
fluctuation-dissipation theorem. Furthermore, the subdiffusion process is determined
by the correlation between the increments, hence arbitrary removal or modification
of increments in the time series will distort the autocorrelation structure of the
process, at least locally. In particular, this applies for reversible reactions like A +
B ® C : If A becomes part of a complex at time t1 and this complex decays again
at t2, the trajectory of A lacks the increments in (t1 . . . t2) that would influence all
following steps. For subdiffusive FBM and not too fast reactions this distortion
can be neglected since for H < 0.5 FBM resembles a short memory process, cf.
Section 1.3.4.

Figure 2.2 (a) shows the empirical autocorrelation function (acf) for simulated
FGN time series with H = 0.3 and H = 0.4. For comparison the circulant and
Weierstrass-Mandelbrot function (WMF) method have been used for simulation.
At very short lag-times τ the increments of the time series exhibit anti-correlation
that grows as H is lowered, indicating anti-persistent motion. With increasing τ
the acf drops quickly beneath the 5%-significance limit and the increments become
practically independent after 3-4 steps. This is especially seen in the curve generated
by the circulant method. The WMF method leads to a more complex acf that itself
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Figure 2.2 (a) The autocorrelation functions (acf) of FGN samples with
H = 0.3 and H = 0.4 generated by the WMF and circulant method. The
acf indicates anti-correlation for short lag-times τ that quickly decays
beneath the 5% significance level. The WMF method produces a more
complicated acf that itself resembles a WMF. (b) Measured diffusion
anomaly of subsets of a FGN sample with T = 8192 steps. ts gives
the starting point of each subset with a size of 128. The systematic
deviation from the imposed anomaly (α = 0.8, broken line) originates in
the limited accuracy of the FGN fitting procedure.

resembles a WMF (see above). Still the generated time series has only short memory.
To check whether subsets of a FGN series possess the desired features of the full
sample we fitted FGN to pieces of 128 steps using the method proposed by McLeod
et al. [125]. The results in Figure 2.2 (b) show that the measured diffusion anomaly
α spreads homogeneously around a mean value that is somewhat lower than the
imposed one (α = 0.8, broken line). This systematic deviation probably originates
in the limited accuracy of the fitting procedure for small sample sizes since both
simulation techniques yield the same behavior. All subtrajectories are characterized
by the same average diffusion anomaly indicating that any (not too small) subset of
a FGN sample shares the features of the full series.

In summary, our approach to the simulation of reaction-subdiffusion using FBM
trajectories is conceptually simple and fast given the non-Markovian nature of this
process. Future improvements could implement excluded volume interactions. So far
these are included in a kind of mean-field that bears the FBM-type subdiffusion of
the reactants. Hence, the particles are considered as phantoms and reactive collisions
cannot simulated explicitly. Consequently the mapping of the simulation parameters
to realistic reaction rates is complicated. Nevertheless, the generic observations
are in excellent agreement with existing studies on anomalous reaction kinetics, see
Section 4.1.3 for details.



Chapter 3

Crowding-induced Subdiffusion

3.1 Challenges in Determining Anomalous Diffusion in Crowded
Fluids

The results presented in this section have been accepted for publication in Journal
of Physics: Condensed Matter1.

3.1.1 Introduction
Despite the frequent observation of subdiffusion in crowded fluids, the origin of
the anomaly, i.e. the microscopic mechanics of crowding-induced subdiffusion, has
remained controversial. The most prominent theoretical models that are commonly
employed are (i) a continuous time random walk (CTRW) [20], (ii) fractional Brownian
motion (FBM) [60], and (iii) obstructed diffusion in a disordered environment (OD)
[68], cf. Section 1.3.4.

The above models have been introduced to rationalize the observation of subdif-
fusion in crowded media. However, an unambiguous identification of the stochastic
process underlying crowding-induced subdiffusion has not yet been possible, see Sec-
tion 1.3.5. In recent times, various analysis protocols have been proposed to address
this question. For example, Szymanski and Weiss [24] compared the histograms
of diffusion anomalies measured via FCS with simulations of the three models for
subdiffusion. Tejedor et al. [78] computed the statistics of the maximum excursion of
SPT trajectories and combined this with a growing sphere analysis. In general, the
growing body of high quality SPT data allows sophisticated methods to be applied
that eventually can identify whether a given model describes the studied system or
not. Along this line, the approach of Magdziarz et al. [77] shall be further examined
in the following. It is based on the p variations of the particle displacements, a
concept that we describe below.

Here, we have investigated the applicability of the p variation for experimentally
realistic data and compared the results to other common approaches, e.g. direct
fitting of the MSD. As a result, we have found that SPT data and FCS curves yield
the same distributions of the diffusion anomaly, α, for FBM and OD irrespective

1M. Hellmann, J. Klafter, D. W. Heermann, and M. Weiss, Challenges in determining anomalous
diffusion in crowded fluids, Journal of Physics: Condensed Matter, accepted (2010)
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of the evaluation method. Furthermore the influence of experimental uncertainties
of the particle positions in a SPT setup was studied by superimposing a Gaussian
blur to the trajectories in each frame. In accord with [27] we find that analyzing
a blurred trajectory leads to a systematic underestimation of α, regardless of the
underlying mechanism and the evaluation method. This discrepancy between the
inherent anomaly of the process and the measured one becomes increasingly relevant
when the uncertainty reaches the scale of the typical positional increment between
two successive frames. For ergodic scenarios like OD and FBM, time- and ensemble-
averaged MSD provide values for α that are equally affected by the blurring. This is
in contrast to a CTRW, where the anomaly obtained from the time-averaged MSD
(α ≈ 1) is much more sensitive than the result from the ensemble-averaged MSD
(α < 1). This phenomenon may hamper the detection of ergodicity breaking in
experiments as the same scaling of time- and ensemble-averaged MSD is measured
when the positional uncertainty is of the order of the average increment between two
successive frames.

3.1.2 Parameters, Setup, and Analysis

The CTRW and OD trajectories – including the marginal case of Brownian motion –
were generated by the corresponding modifications of the LGA algorithm, cf. Sec-
tion 2.2.1 and Section 2.2.2. For the simulation of FBM the Weierstrass-Mandelbrot
function was applied, see Section 2.2.3. Table 3.1 summarizes the important pareme-
ters. We analyzed the simulated trajectories with various methods that are discussed
in the following.

Fluorescence Correlation Spectroscopy simulations

The FCS method has been described in Section 1.3.2. For the simulation of FCS we
assumed a Gaussian confocal volume of width r0 = 250 nm around the center of the
system. The cumulative fluorescence signal of all tracers within the confocal volume
was calculated at every time step and autocorrelated after 107 time steps. Thus the
analysis covered the time scales 5 µs · · · 50 s. The resulting curve was fitted with
the theoretical autocorrelation function (equivalent to Equation (1.7) with q = 0, cf.
[25]):

C(τ) = 1/N
1 + (τ/τD)αFCS

. (3.1)

to extract the diffusion anomaly αFCS and the mean residence time τD within the
confocal volume.

For each parameter set, Nr = 50 runs were performed to build histograms of the
measured anomalies. In each run, K = 300 fluorescent tracers were simulated so that
the average number of tracers in the confocal volume, N , was of the order of ten.
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Single Particle Tracking simulations

Simulating a SPT experiment required storing the particle positions at particular
time points. For this study the time interval between two measurements was
∆tSPT = 100 × ∆t, i.e. 0.5 ms. This interval is somewhat faster than typical
experimental systems that currently allow for frame rates of about 100 s−1. To relate
to this experimental situation, we increased ∆tSPT tenfold for part of the analysis,
i.e. we only considered every 10th point of the time series. The total simulation time
T was 106∆t (=5 s) and a single tracer was tracked in Nr = 500 independent runs
per parameter set.

The diffusion anomaly of a SPT experiment is recovered from the slope of the
(ensemble-averaged) MSD as

α = d log〈δ2〉E
d log t

. (3.2)

The anomaly α may also be obtained from the time-averaged MSD which is defined
as [Equation (1.18)]

〈δ2〉T = 1
T − t

T−t∫
0

2∑
i=1

[xi(τ + t)− xi(τ)]2 dτ . (3.3)

Here, τ denotes the lag time that takes the role of t in Equation (3.2), cf. Section 1.3.4.
We note already at this point that single-particle trajectories naturally suffer from
measurement errors that can be as big as 100 nm (depending on the camera frame
rate).

Parameter FCS simulations SPT simulations
∆t 5× 10−6 s =

∆tSPT - 5× 10−4 s
T 50 s 5 s

∆x 10 nm =
L 350 nm =

r0 25 nm -
K 300 1
Nr 50 500

D 1.6 µm2/s =

Table 3.1 The parameters of the FCS and SPT simulations.

p variation analysis

To go beyond a mere determination of the anomaly, i.e. to elucidate which stochastic
process is actually observed, the p variation method has been introduced recently
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[77]. Formally, it is defined as the limit

V (p)(t) = lim
n→∞

V (p)
n (t), (3.4)

where the partial sum of increments of the stochastic process X(t) is given as

V p
n (t) =

2n−1∑
j=0

∣∣∣∣X ((j + 1)T
2n

∧ t
)
−X

(
jT

2n
∧ t
)∣∣∣∣p (3.5)

with a ∧ b = min(a, b). Experimental trajectories can only yield an approximation of
the p variation via V p

n (t) where n is limited by the trajectory length.
For a FBM process with Hurst parameter H the p variation is as follows: The

approximated p variation of order n is linear in time. For p > 1/H, V (p)(t) = ∞,
i.e. the slope of V (p)

n (t) increases with n. The opposite situation is encountered for
p < 1/H, where V (p)(t) = 0, i.e. the slope of V (p)

n (t) decreases with growing n. In
the special case p = 1/H the curves of V (p)

n (t) collapse for increasing n onto a single
master curve that, for normalized FBM, is given by V (p)(t) = t

〈
|BH(1)|1/H

〉
. Here,

BH(1) is a one-step FBM process with Hurst parameter H, while 〈 · 〉 denotes the
expectation value. The special case of Brownian motion (H = 1/2) is included in
this discussion: The ’total variation’ (p = 1) is infinite while the ’quadratic variation’
(p = 2) is proportional to time.

For diffusion on a fractal the p variation behaves similarly. It is finite only for
p = dW , where dW denotes the fractal dimension of the walk. Calculations supporting
this notion exist for a Sierpinski gasket embedded in two dimensions [77]. In the case
of diffusion on a percolation cluster dW = 2/α, i.e. the p variation should be finite
for p = 2/α in accordance with the result for FBM.

We used a simple approach to quantify the deviation between V
(p)
n (t) among

different orders n: First a mean variation 〈V (p)
n (t)〉n is calculated at time t. Then

the cumulative quadratic difference

ω2(p) =
∑
∀n,t

(
V (p)
n (t)−

〈
V (p)
n (t)

〉)2
. (3.6)

provides a single number for every p. By varying p over a plausible range in steps of
0.005, a minimum of ω2(p) can be found at pmin from which one can estimate the
anomaly as αP = 2/pmin. In this way, for each SPT trajectory an estimated diffusion
anomaly is obtained.

To render the simulations comparable to real SPT experiments we analyzed
trajectories with a length of 29 positions and a time increment ∆tp = 5 ms. Hence,
the resolutions n = 7, 8, 9 were considered in the summation of Equation (3.6).

3.1.3 Results and Discussion
Determining diffusion anomalies: FCS vs. SPT

Since quantifying the diffusion anomaly has been done by FCS and SPT in the
literature (see Section 1.3.3), we first investigated whether the two methods indeed
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Figure 3.1 The diffusion anomaly α as obtained by FCS and SPT (open
squares and circles, respectively) shows only minor differences. For
FBM (left), the imposed anomaly 2H with the Hurst parameter H
is plotted on the abscissa. The full line indicates the expected values
α = 2H. For OD (right) the abscissa shows the occupied volume fraction
f . For f > 0.4 the anomaly converges towards the limiting value at the
percolation threshold (indicated by dashed line). In both cases, error
bars for SPT data are smaller than the symbol size.

yield the same results for α. For FCS simulations (FBM and OD) we fitted the
anomalous diffusion model Equation (3.1) to the autocorrelation curve and obtained
from that αFCS. For the analogous SPT simulations, three methods were applied to
determine the anomaly:

1. fitting of 〈δ2〉E [Equation (3.2)] ⇒ αE,

2. fitting of 〈δ2〉T [Equation (3.3)] ⇒ αT,

3. using the p variation ⇒ αP.

Unlike the first approach, the latter two yield an anomaly for each trajectory, hence
allowing one to inspect the distribution of anomalies.

As expected for ergodic processes like FBM and OD, 〈δ2〉E and 〈δ2〉T yielded
the same anomaly values. Comparing these results with αFCS obtained for the same
scenario revealed no significant difference between the two experimental methods
(Figure 3.1). Besides a larger standard deviation due to the lower amount of FCS
curves, the mean anomaly did not show any method-specific shift. For the OD
scenario, a crossover between subdiffusion and normal diffusion may occur during the
simulation period for low values of f since an asymptotic subdiffusion characteristics
can only be expected at the percolation threshold [71]. As a consequence, the
estimates of FCS and SPT were compatible only when the respective fits were
performed in the same time intervals (10−4 . . . 2× 10−1 s).
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Figure 3.2 Representative course of
V

(p)
n (t) at pmin (n = 6 · · · 9, shown

as dotted, dash-dotted, dashed, and
full lines, respectively) for (a) normal
diffusion, (b) FBM (H = 0.35), and
(c) OD (f = 0.39). A good collapse of
the curves with increasing n is visible
in all cases. Insets: The corresponding
values for ω2 as a function of 1/p show a
clear minimum from which the anomaly
αP = 2/pmin can be determined.
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Diffusion anomaly from p variation

We next asked whether the recently introduced p variation method also can be used
to reliably extract α. So far, applying the p variation has relied on using an estimate
for α from another source (e.g. from a MSD fit). On this basis, it has been judged
whether different orders of V (p)

n (t) converge or diverge. This approach allows one to
distinguish random walks with stationary increments from those with non-stationary
increments [77]. Here, in contrast, p variation alone shall provide α by scanning for
the particular value pmin for which the V (p)

n (t) converge to a single master curve (cf.
Section 3.1.2). Furthermore, we extend here the use of this method from FBM to
OD.

In Equation (3.6) we defined a measure ω2 for the deviation between different
orders of V (p)

n (t). Examples of the p variation for normal diffusion and subdiffusion
(FBM and OD) at p = pmin are shown in Figure 3.2. While the lower orders n = 5, 6
typically suffer from discretization artifacts (stepwise increase of V (p)

n (t)), higher
orders (n = 7, 8, 9) yield a smooth curve of V (p)

n (t). Owing to this observation, the
analysis was restricted to n ≥ 7 unless stated otherwise.

As can be seen from Figure 3.2, ω2 is indeed a useful measure to determine the
diffusion anomaly without prior knowledge: Clear minima in ω2 emerged for all three
examples, from which α could be determined reliably. The collapse of V (p)

n (t) to a
single master curve confirms the goodness of the estimate for the anomaly.

Having confirmed that p variation is a good means to extract the diffusion anomaly
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Figure 3.3 Distributions p(α) ob-
tained via FCS (n = 50, grey-shaded
histogram), 〈δ2〉T (n = 500, filled
circles), and p variation (n = 500,
filled squares). The mean anomalies
coincide for (a) normal diffusion,
(b) FBM (H = 0.35), and (c) OD
(f = 0.39), and also the width of the
distributions does not significantly
depend on the method or the type of
random walk.

even for fairly short trajectories, we next compared the different approaches by which
α can be determined from SPT data. To this end, we monitored the distribution of
anomalies, p(α), which had previously been used to distinguish CTRW from FBM
and OD [24]. In particular, we compared the distributions of anomalies p(αT) and
p(αP) and p(αFCS) for FBM and OD.

As a result, we observed that the mean of all distributions and the ensemble-
averaged mean αE did not differ significantly (Figure 3.3). Also the width of the
distributions did neither show systematic dependencies on the method nor on the
type of random walk. Hence, unlike for the case of CTRW, p(α) is not a good means
to distinguish the different types of random walks with stationary increments. Also
the p variation does not allow for a more detailed discrimination in this respect.

The influence of experimental uncertainties in SPT data

Next, we investigated how experimental uncertainties influence the above described
methods. Since uncertainties in FCS experiments have been discussed already
extensively elsewhere [23, 47], we restrict ourselves here to SPT.

We have used a moderate yet realistic range of uniformly distributed random shifts,
i.e. s = 0.001 . . . 0.040 µm, but also investigated situations with s = 0.1 . . . 0.4 µm,
which may be a realistic scenario in SPT experiments with a very high frame rate. For
the subsequent considerations we exploited the maximum resolution of our simulated
trajectories, i.e. 104 steps and ∆t = 0.5 ms. It is convenient to express the blur s
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Figure 3.4 Change of the apparent
anomaly α for (a) FBM, (b) OD, and (c)
CTRW when a positional uncertainty s
is added to SPT data. Data from the
ensemble- and time-averaged MSDs, i.e.
αE and αT , are shown with open and full
symbols, respectively. For a consistent
comparison of all data, the positional
uncertainty is expressed in units of the
diffusive increment between successive
positions, ∆r. For an increasing blur of
the position, the anomaly decreases with
respect to the unperturbed anomaly
α0. For s/∆r ≈ 1 the blurring masks
the diffusive motion and the trajectory
assumes the form of a Gaussian cloud
and hence α→ 0.
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in units of the (empirically determined) average increment between two successive,
non-identical positions, ∆r. By this approach, a fair comparison between the different
scenarios of subdiffusion is achieved. We quantify the deviation of the measured
anomaly in the presence of blur from α0 for the case s = 0 via ∆α/α0 = α/α0 − 1.
Negative values hence indicate a decreased value of α with respect to α0.

As a result, we have found that αE (obtained from the ensemble-averaged MSD)
decreases for all scenarios and parameter sets when the positional uncertainty s is
increased, Figure 3.4. A major change in αE is observed when the blur and the typical
increment become comparable, i.e. s/∆r ≈ 1. Beyond this point, the appearance of
the trajectory is dominated by the blurring which masks the diffusive motion, i.e.
the positions look like a Gaussian cloud. In this limiting case, α→ 0 as the sequence
of particle coordinates becomes completely random and looses the correlation of
subsequent time steps inherent to a diffusion process.
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Figure 3.5 (a) Comparison of ensemble- and time-averaged anomalies
αE and αT (open and filled symbols, respectively) when αE ≈ 0.7. Data
for FBM (H = 0.35, circles), OD (f = 0.39, diamonds), and CTRW
(α0 = 0.7, squares) are shown. (b)Absolute difference between ensemble-
and time-averaged anomaly, αE − αT , αE ≈ 0.7, for FBM (H = 0.35;
open diamonds), OD (f = 0.39; filled circles), and CTRW (α0 = 0.70;
asterisks).

For FBM, OD, and CTRW with different α0 a good but not perfect collapse
of the anomaly data for αE is observed. The same observation holds true for αT
albeit the data for αE and αT differ slightly (see also below). While this difference is
fairly small for FBM and OD , the difference is very strong for CTRW data. Indeed,
due to the previously reported weak ergodicity breaking [57, 58] such a difference in
the behavior of αE and αT is anticipated. The time-averaged MSD exhibits normal
scaling αT = 1, while the ensemble average indicates subdiffusion with αE < 1.
Hence, our results suggest that the detection of the anomalous scaling behavior of
the ensemble average is less affected by positional uncertainties than measurement
of the normal scaling of the time average. Adding an increasing artificial noise to
experimentally obtained SPT data therefore can be used as a straightforward test to
distinguish CTRW from FBM and OD.

It is worth noting at this point that the p variation method failed already for
moderate blurring. No reasonable minimum for ω2 could be obtained for most of the
trajectories. Due to this limitation and the high effort needed to calculate αP we
therefore neglected the p variation method in the further analysis.

When comparing FBM, OD, and CTRW with a similar diffusion anomaly, i.e.
αE ≈ 0.7, we observed a good collapse of the data for OD and FBM and the time-
averaged data for CTRW. The ensemble-averaged anomaly αE for CTRW however
deviated considerably and was much less sensitive to blurring as compared to its
time-averaged analogue αT (Figure 3.5 [a]). Indeed, the difference between time
and ensemble average, i.e. αE − αT is moderate for all blurs for FBM and OD,
but it deviates strongly from zero for CTRW (Figure 3.5 [b]). Especially, when the
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uncertainty s is of the size of a typical increment, ∆r, the different scaling of the
time and ensemble average displacements can no longer be detected since αE = αT .
So, in this case the distinction between CTRW and OD/FBM scenarios by means of
measuring ergodicity breaking fails.

At this point, it is instructive to discuss the non-zero values of αE − αT for FBM
and OD. Usually the ensemble- and time-averaged MSDs are calculated and fitted
in different time intervals, as for the time average the one or two upper decades
in time have to be omitted due to poor statistics. Hence, the time-averaged MSD
relies on smaller displacements than the ensemble-averaged MSD and hence both
are differentially affected by the blurring. For the data presented in Figure 3.5, for
example, the fitting range τ = 5× 10−4 . . . 5× 10−2 s was used for the time average
and t = 5× 10−4 . . . 5× 10−1 s for the ensemble average. Still, the deviation of both
anomalies is moderate and well separable from the strong effect found for CTRW by
using the same fitting ranges.

3.1.4 Summary and Conclusions

In summary, we find that blurring of particle positions generally leads to an underes-
timation of the anomaly coefficient α, i.e. the diffusion appears more anomalous. For
moderate blurs s, one can still determine a reasonable anomaly which is, however,
smaller than the actual value of the diffusion process. Hence, when determining α
in SPT experiments, an adequate trade-off has to be found: On the one hand the
increments between subsequent measurements should be larger than the anticipated
uncertainty of the particle position. On the other hand the subdiffusion process
under investigation may be transient, so the recording frame rate should be fast
enough to cover the relevant time scale. Our simulations show that, if the uncertainty
is of the order of the average increment, α drops by almost 40%. Moreover, if CTRW
is the underlying process, a different scaling of time and ensemble average MSD that
indicates ergodicity breaking may no longer be detected in this case.

We have also shown that the p variation method can be used to extract the diffu-
sion anomaly. Unfortunately, it reacts quite sensebly to the blurring of trajectories.
Already at moderate uncertainties it becomes difficult to estimate the anomaly and
draw reliable conclusions about the underlying mechanism. Furthermore it does not
provide a means to distinguish between the two ergodic processes OD and FBM.
Still it resembles a valuable analysis tool for (high-quality) SPT data if a distinction
between processes with stationary and those with non-stationary increments has to
be made.

3.2 The Shape of Subdiffusive Trajectories

3.2.1 Introduction

Subdiffusion of tracers in crowded media is a frequently observed phenomenon,
cf. Section 1.3.3. Despite large efforts in recent years, the mechanism that under-
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lies crowding-induced subdiffusion has remained widely elusive so far. The most
prominent models for subdiffusion are continuous time random walks (CTRW) [20],
fractional Brownian motion (FBM) [60], and diffusion on fractal supports (obstructed
diffusion, OD) [68], cf. Section 1.3.4. All of these models give rise to a sublinear
scaling of the mean square displacement (MSD) with time 〈δ2〉 ∝ tα but they rely
on quite different concepts.

On the one hand, techniques that allow to judge whether experimental data
comply with a CTRW or not are well established. They exploit, e.g. the distribution
of anomalies [24], (weak) ergodicity breaking [57, 58], or the p variation of tracer
trajectories [77], cf. 3.1. On the other hand, the distinction between OD and FBM is
difficult. In this respect, the velocity autocorrelation function has been proposed as a
criterion [107]. Furthermore the statistics of the maximum excursion combined with
a growing sphere analysis can yield the relevant information [78]. In all, it appears
that a conclusive statement about the subdiffusion mechanism requires an involved
analysis of high-quality SPT data [81]. Along this line, a recent study reports on
subdiffusion of lipid granules through the cytoplasm of yeast cells that complies to a
CTRW with a finite cut-off in the waiting time distribution on short time scales and
FBM on longer time scales [79].

Here, we propose a conceptually simple criterion to distinguish between different
models for subdiffusion that exploits the average shape of tracer trajectories [33]. For
simulated trajectories we find that CTRW, FBM, and OD imply different correlations
between α and the average trajectory shape as quantified by the asphericity (see
below). Hence, this approach could in principle allow for a robust determination
of the most appropriate model. One possible pitfall arises from the measurement
uncertainties inherent to SPT data, cf. Section 1.3.2. In the last section it has been
shown that measurement errors on the particle position lead to an underestimated
anomaly α. Analogously, blurred trajectories are expected to have a more spherical
shape. Hence, we also considered the scenario that we call “apparent subdiffusion”
(ASD), where normal diffusive trajectories (α = 1) are artificially blurred to mimic
measurement uncertainties (cf. Section 3.1).

To verify our method we analyze high-quality SPT trajectories recorded by the
group of Prof. Dr. Jürgen Köhler at the University of Bayreuth. As a model system
for a tracer immersed in a crowded fluid, diffusion of a 20 nm bead in dense dextran
solutions is studied. In the accessible time-regime diffusion is essentially normal and
accordingly the average shape and diffusion anomaly of the trajectories show only
small deviations from the random walk values.

Quantification of Trajectory Shapes: Asphericity

The asphericity provides a simple measure for the shape of fractal objects in general
and random walks in particular [126]. Let the object under consideration be defined
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by a set of N points with coordinates x1 . . .xN . The gyration tensor reads [127]

Tij = 1
N

N∑
n=1

(xni − 〈xi〉)(xnj − 〈xj〉) . (3.7)

Thus, T describes the geometrical arrangement with respect to the center of mass

〈x〉 = 1
N

N∑
n=1

xn . (3.8)

Comprising a symmetric matrix, T can be transfered to diagonal form. Its eigenvectors
resemble the principal axes of gyration and the corresponding eigenvalues Ri the
principal components of the radius of gyration. Then, the asphericity A of a d-
dimensional object is

A =

d∑
i>j

〈
(R2

i −R2
j )2
〉

(d− 1)
〈(

d∑
i=1

R2
i

)2〉 . (3.9)

A involves averaging over the ensemble of walks as indicated by 〈 · 〉. The limiting
cases A = 0 and A = 1 resemble a perfectly spherical and an extended rod-like shape,
respectively. For an unbiased random walk an analytic value is available [128, 129]:

A = 2(d+ 2)
5d+ 4

⇒ A = 4
7

for d = 2 . (3.10)

Thus, the average shape of a two-dimensional random walk differs drastically from a
circle and is fairly elongated. As an alternative, the asphericity may also be calculated
individually for each trajectory of the ensemble:

Ai =

d∑
i<j

(R2
i −R2

j )2

(
d∑
i
R2
i

)2 . (3.11)

In this case, no analytic value for the average 〈Ai〉 is known [126] and hence it has to
be computed from simulated walks. The individual values Ai allow for an extended
analysis of the distribution of asphericities.

3.2.2 Parameters, Setup, and Analysis
Calculation of Theory Curves

In the following, we compare the shape of experimental trajectories with theoretical
predictions derived from simulated trajectories of FBM and OD in two dimensions
(2D). To this end, OD samples were generated by the corresponding variants of the
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LGA algorithm, cf. Section 2.2.2. For FBM we applied the circulant method, see
Section 2.2.3. For the special case H = 0.5 the Brownian dynamics algorithm was
chosen, cf. Section 2.1.2. With the data from an independent method the consistency
of the simulations was checked.

To obtain solid statistics, a large ensemble of 106 trajectories was created for
every parameter set. We fixed the trajectory length N = 213 = 8192 for FBM. The
OD scenario required some additional considerations: Since subdiffusion is transient
below the percolation threshold (see [71] and Section 1.3.4) we systematically varied
N in a wide range to study the influence on the shape and diffusion anomaly α.
Furthermore, for large obstacle densities f , the obstacles may constrain the tracer to
a tiny set of lattice sites. We identified and removed such “trapped” trajectories from
the analysis. In total, their number was low compared to the number of simulated
walks, even for large f (e.g. f = 0.42 and N = 5000 yielded less than 5% trapped
walks). Nevertheless, we generated a set of 1.5 × 106 trajectories per value of f
to assure strong statistics. To reduce the repetitive sampling of identical paths we
generated a new random environment in every 1000th run. In two dimensions the
site percolation threshold for vacant sites is fp = 1 − 0.59274 = 0.40726 [72]. We
varied f between 0.33 and 0.42 in order to cover the sub- and supercritical behavior.
Owing to the finite system size of 350× 350 lattice sites, the threshold was rather
situated at f ≈ 0.39.

3.2.3 Simulations
Fractional Brownian Motion (FBM)

Figure 3.6 presents the calculated asphericity in dependence on the Hurst parameter
for two-dimensional trajectories. We extended the analysis beyond subdiffusion
(H < 0.5) to superdiffusion (H > 0.5) because, to our knowledge, there is no
comprehensive study on the shape of FBM trajectories, yet. Naively, one would
expect, that in the limit H → 0 also (A|〈Ai〉)→ 0 as the trajectories shrink effectively
to points. The opposite scenario H → 1 corresponds to ballistic motion, i.e. particles
follow a linear path and consequently (A|〈Ai〉)→ 1. Indeed, our simulations showed
for both definitions of the asphericity, Equation (3.9) and Equation (3.11), the same
tendency, namely a monotonous increase with H between the two extremes.

We found that for the relevant subdiffusive regime (0.2 < H < 0.5) A(H) can be
described by a simple linear relationship, see Figure 3.6 (a):

(0.2 < H < 0.5) A = (1.25± 0.02)H − (0.049± 0.006) . (3.12)

Here, the determined slope would result in A = 1 already at H ≈ 0.84. Indeed, in
the superdiffusive regime the data revealed slightly different parameters:

(H > 0.7) A = (0.80± 0.01)H − (0.210± 0.009) . (3.13)

As can be judged from the figure, the linear approximations describe the data very
accurately in the respective regimes. Moreover, the expected values in the limits
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H → 0 and H → 1 were captured with good precision. Even more importantly, the
linear interpolation for H < 0.55 predicted the analytically known asphericity of
the random walk (4/7, cf. [126]) at H ≈ 0.5 . The data point at H = 0.5 has been
generated with the Brownian dynamics algorithm (cf. Section 3.2.2) and complied
well with the FBM data.
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Figure 3.6 (a) Dependence of the asphercity A as calculated via Equa-
tion (3.9) in dependence on the Hurst exponent. Two regimes can be
distinguished in which A(H) is well approximated by slightly different
linear functions (solid lines), cf. Equation (3.12) and Equation (3.13).
The extrapolated values for H → 0 and H → 1 coincide with the expec-
tations. Moreover the analytical value for the random walk (H = 0.5)
is obtained with good precision. (b) Dependence of the alternative as-
phercity measure 〈Ai〉, Equation (3.11), on the Hurst exponent. A single
linear function describes the data well, even for superdiffusive FBM, cf.
Equation (3.14). At approximately H = 3/4 where a transition between
ergodic and non-ergodic behavior has been localized (cf. [64]) the slope
increases strongly.

The alternative measure for the asphericity, 〈Ai〉, showed a somewhat different
behavior. The data were well described by a unique linear relationship for a large
interval of H values, cf. Figure 3.6 (b):

(0.2 < H < 0.7) 〈Ai〉 = (0.847 ± 0.003)H − (−0.028± 0.002) . (3.14)

If interpolated to the limit H → 1, this would yield 〈Ai〉(H → 1) ≈ 0.819 rather
than unity. Again, a crossover to a different, strongly enhanced slope of the data
could be observed. Intriguingly, we localized this crossover close to H = 3/4 that
has been associated with a transition to ergodicity breaking behavior of FBM [64].
In all, the linear approximation works very well for the subdiffusive case. Since no
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analytic value for 〈Ai〉 exists we extracted it from our Brownian dynamics simulations:
〈Ai〉(H = 0.5) ≈ 0.396 which is well captured by the FBM simulations.

In summary, the shape of FBM trajectories gradually changes with H from the
perfectly spherical (A = 0) to the fully stretched (A = 1) conformation. Partly, the
increase can be described by a simple proportionality. For the following discussions
we focus on the subdiffusive and diffusive scenarios, i.e. we rely on the linear
approximations Equation (3.12) and Equation (3.14) as theoretical predictions.

Obstructed Diffusion (OD)

Below the percolation threshold (f < fp) the shape of OD trajectories should not
deviate from that of a random walk on long time scales, when the local fractality of
the environment averages out. At fp the percolating cluster exhibits self-similarity
on all scales. Thus, like the diffusion anomaly (cf. Section 1.3.4), the asphericity
should be independent of the trajectory length N . Finally, above fp the vacant sites
constitute confined clusters that strongly obstruct the tracers’ motion. In this limit,
a decreased asphericity may be anticipated. Generally, since for f < fp there is an
upper limit for self-similarity, all observed phenomena have to be tested with respect
to N .
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Figure 3.7 (a) Course of the asphericity A as calculated via Equation (3.9)
in dependence on the occupied volume fraction f . At the percolation
transition the data for moderate trajectory lengths N intersect close
to a single point (f ≈ 0.39,A ≈ 0.548). (b) The alternative asphericity
measure 〈Ai〉, Equation (3.11), with symbols like in (a). Also the longest
trajectories do not reach the calculated value for a random walk at
f = 0.33 (〈Ai〉 = 0.396). Furthermore the intersection of different N is
not as clear as in case of A.

In Figure 3.7 we present the course of the two asphericity measures A and 〈Ai〉.
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Figure 3.8 Course of the diffusion anomaly
α as determined for trajectories of vary-
ing length (symbols as in Figure 3.7 [a]).
As expected for a finite size analysis at
a critical point the data intersect close
to a single point that marks the percola-
tion transition. The detected transition
point somewhat deviates from the litera-
ture value (indicated by the gray, broken
lines) due to the finite size of the lattice.
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Indeed, we found that the outlined expectations were met. Very short trajectories
(N < 500) showed a slight increase with f indicating that the trajectories became
more extended. This effect most probably resembles a finite-size artifact: The tracers
can only make a small number of steps when most of the proposed moves would
lead to an overlap with obstacles. In the following we hence focus on N ≥ 500: For
f = 0.33 A increased with growing trajectory length and approached the random walk
value (4/7) for the largest N studied, see Figure 3.7 (a). Hence, for N = 2.5×104 the
local fractality of the support averaged out completely and the trajectories resembled
random walks. At f ≈ 0.39 the data intersected near to a single point with A ≈ 0.548.
This marks the percolation transition in our finite system. Like the diffusion anomaly,
the asphericity A takes a scale-independent value at the threshold. Above fp, the
longer trajectories experienced strong confinement in the finite clusters of vacant
sites and their shape became more spherical. Analogously a decreasing α is found
in this regime where free subdiffusion crosses over to confined diffusion (α→ 0 for
N →∞).

The alternative asphericity measure 〈Ai〉 yielded a similar but slightly different
picture, see Figure 3.7 (b). Again, the short trajectories were omitted from the
finite size analysis. For N ≥ 500, the data intersected but not as clearly as for A.
Furthermore, no scenario comes close to the asphericity of a random walk (0.396) even
at low occupied volume fraction. Thus, the influence of an initially more spherical
shape diminishes not as fast as in case of A. This means, while A captures the
large-scale shape of the trajectories, 〈Ai〉 is still strongly affected by the short-time
behavior.

As a complement to the asphericity data the course of the diffusion anomaly
α with f is shown in Figure 3.8. The intersection of the data at the percolation
threshold is clearly visible. For comparison the literature values (corresponding to
an infinite system, L→∞) are indicated by gray, broken lines. In our finite system
we found the transition situated at α ≈ 0.72 and f ≈ 0.39.

To compare our simulations to experimental data we eliminated f by merging
α(f) and A(f) from the simulations to a pair (α,A) that can also be obtained from
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SPT measurements. Figure 3.9 (a) depicts the results for three different trajectory
lengths. Analogously to the FBM scenario, we detected an increase of A with α and
rationalized this behavior by an approximative linear dependence A ∝ α. In the plot,
the corresponding fit for the representative case N = 5000 is given:

(0.33 < f < 0.42; N = 5000) A = (0.120± 0.006)α− (0.458± 0.004) . (3.15)

The linear approximation performed worse than for FBM but still quite accurately.
Although, the determined slope increased with growing N , the data for the longest
trajectory, N = 2.5× 104, showed that the typical range of A stayed well above the
FBM data. We consequently chose N = 5000 as a representative example and used
Equation (3.15) as theoretical prediction.

In part (b) of Figure 3.9 the pairs (α,〈Ai〉) are plotted for three trajectory lengths.
It has been discussed that 〈Ai〉 is strongly influenced by the shape on short time
scales. Hence varying N has a weaker effect than in case of A. Again, a simple linear
fit provides a reasonable approximation of the data. For the example N = 5000
(solid line in the plot) we found

(0.33 < f < 0.42; N = 5000) 〈Ai〉 = (0.157 ± 0.014)α− (0.233± 0.011) . (3.16)
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Figure 3.9 (a) The determined pairs (α,A) from OD simulations for
three different trajectory lengths. Like for FBM we rationalize the data
by approximating A ∝ α (fit shown for N = 5000, solid line). The
approximation performs worse as compared to FBM and the slope varies
only slightly with N . (b) The same plot for the alternative asphericity
measure 〈Ai〉. Again a linear fit is shown as an approximation for
N = 5000. Since 〈Ai〉 has a stronger memory with respect to short time
scales, varying N has a much weaker effect than in case of A.
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Continuous Time Random Walk (CTRW)

The CTRW scenario does not require additional considerations as it resembles a
random walk with stochastic sojourn times. Hence the geometrical appearance
of CTRW trajectories is that of a regular random walk and thus A = 4/7 and
〈Ai〉 = 0.396. To obtain these results, however, all “apparent stops” have to be
removed from the sample trajectories. That is, the full walk has to be reduced to
the series of successively distinct coordinates. For simulations it is straight-forward
to check whether x(t) = x(t+ ∆t) but for experimental data this criterion has to be
adjusted, since the position of the tracer is only known within the limits given by
the measurement uncertainties.

The Impact of Position Uncertainties

In the analysis of SPT experiments one faces unavoidable measurement errors that
may provoke wrong interpretations of the data, cf. [26, 27] and Section 3.1. Hence,
we studied the impact of Gaussian blur on the apparent shape of normal diffusive
trajectories by applying the method described in Section 3.1. The standard deviations
of the blur s = (sx, sy) were varied in the range 0.5 . . . 50 ∆r, where ∆r denotes the
mean increment between two successive measurements. As discussed in Section 3.1,
a substantial blur of the particle position leads to an underestimation of α obtained
by fitting to the MSD. As s increases well above the size of a typical positional
increment, α → 0. Accordingly, one anticipates (A|〈Ai〉) → 0, since the resulting
“Gaussian cloud” of coordinates resembles an isotropic, spherical object.

Figure 3.10 shows the courses of A(α) and 〈Ai〉(α) for blurred trajectories with
varying length N . The apparent diffusion anomaly α was determined from a fit to the
(ensemble-averaged) MSD in the range t = 30 . . . N ∆t. The limits of an undisturbed
trajectory and a Gaussian cloud were clearly visible. The transient increase in
between depended on N : For longer trajectories the transition set in already at small
anomalies indicting that the blurring averaged out. Close to (A = 4/7;α = 1) the
course of A(α) is evocative of the curve for FBM, cf. Figure 3.6. Hence, wrongly
interpreting a blurred, normal diffusive trajectory as being subdiffusive FBM is a
probable pitfall when relying on the pair (A,α) to determine the diffusion mechanism.
Consequently, an additional scenario of “apparent subdiffusion” (ASD) caused by
measurement errors should be added to any comparison between experimental data
and theory. In cases where positional blur and FBM can explain the data, further
criteria have to be checked to discriminate between them. For example, the increments
of a FBM time series show anti-correlation whereas they are mutually independent
for a sequence of blurred points.

3.2.4 Comparison to Experiments

In collaboration with the group of Prof. Dr. Jürgen Köhler, Chair for Experimental
Physics IV, University of Bayreuth, we applied our analysis method to high-resolution
SPT data recorded in an advanced circulating focus setup, cf. Section 1.3.2. The
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Figure 3.10 The two asphericity measures A (a) and 〈Ai〉 (b) in depen-
dence on the apparent diffusion anomaly measured for blurred trajecto-
ries. The standard deviation of the Gaussian blur was varied in the range
0.5 . . . 50 ∆r where ∆r corresponds to the average positional increment
between two snapshots. The transition between an undisturbed trajec-
tory (A = 4/7;α = 1) and a Gaussian cloud (A = 0;α = 0) depends on
the trajectory length N .

experiments were prepared and conducted by Dominique Ernst. A solution of 500 kDa
dextran at a concentration of 30% per weight served as a prototypic crowded bulk
fluid. Nano-particles of 20 nm diameter were tracked in two dimensions for up to
103 s at a temporal resolution of 4 ms. In the following, the term “experiment” refers
to the full path of a single tracked particle. To increase the statistical basis we split
each experiment into pieces of 3000 ∆t (12 s) that we call “trajectories”.

For each experiment, we computed the ensemble average MSD 〈δ2〉E over its
trajectories to obtain αE. For the trajectories the principal axes of gyration, R1 and
R2, were computed by diagonalizing the corresponding gyration tensor. From that Ai
(〈Ai〉) and A followed via Equation (3.9) and Equation (3.11). Analytic values for the
standard errors of αE and A are difficult to obtain since they arise from non-trivial
calculations on the ensemble average. To approximate the standard errors we hence
applied the bootstrap method (see, e.g. [130]): The sample Θ = {θ1, θ2, . . . , θn}
consists of n trajectories that have been extracted from one or more experiments.
From that a bootstrap sample ΘB = {b1, b2, . . . , bn} is generated, where the bi ∈ Θ
have been chosen by randomly sampling among the trajectories in Θ with replacement.
We calculated A and 〈δ2〉E for 200 bootstrap samples ΘB to obtain distributions of
values. The standard deviations of αE and A provided estimates for the respective
standard errors.

According to the considerations in [27] and Section 3.1 the inherent uncertainties
of SPT measurements lead to an underestimation of the diffusion anomaly. Hence,
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Figure 3.11 (a) The ensemble-averaged MSD of a 20 nm-bead in a dense
dextran solution (500 kDa-dextran at 30% per weight). Due to inherent
measurement uncertainties, the short time behavior does not yield reli-
able estimates for α. The used fit region as indicated by the gray area
yielded an anomaly close to unity. (b) The distribution of time-averaged
anomalies from all 1910 trajectories.

0.7 0.8 0.9 1.0 α

0.4

0.5

0.6

A RW

OD

FBM

ASD

experiments
time av.
ensemble av.

(a)

0.7 0.8 0.9 1.0 α

0.3

0.4

〈Ai〉

RW

OD

FBM
ASD

experiments
time av.
ensemble av.

(b)

Figure 3.12 The experimentally obtained pairs (A,α) (a) and (〈Ai〉,α)
(b) in comparison to theoretical predictions. The ensemble average αE
(triangle) is taken over all Nt = 1910 trajectories of all experiments. In
(a) the error bars give the standard errors on α and A as obtained by
bootstrapping (see text for details); The open square symbols indicate
the time-averaged diffusion anomaly αT. Furthermore, to illustrate
the scatter of the data, the filled squares mark the positions of the
(A|〈Ai〉, αE) pairs for each of the Ne = 26 experiments.



3.3. Polydisperse Brownian Dynamics 77

a lower limit tmin for reliable fits to the MSD has been determined. Here, the
microscopy setup called for tmin ≈ 100 ms and the fit region was consequently set to
120 . . . 800 ms, cf. Figure 3.11 (a). For this regime we detected a diffusion anomaly
close to unity (αE = 0.97). The broad distribution of time-averaged anomalies αT
in Figure 3.11 (b) revealed a slightly lower value (〈αT〉 = 0.93). In contrast, dense
solutions of heavy dextrans have been reported to bear tracer subdiffusion with
α ≈ 0.82 on the time scales of FCS (0.1 . . . 200 ms) [24]. Apparently, the crossover
to normal diffusion happens on the ms-scale where the SPT data are still impaired
by errors on the particles’ positions.

Figure 3.12 compares the measured pairs (A,α) and (〈Ai〉, α) with the theoretical
expectations that have been calculated above. To give an impression of the scatter
not only the full ensemble average but also the individual values for all 26 experiments
are shown. In accordance with a diffusion anomaly close to unity the average shape
is only slightly more spherical than that of a random walk. Indeed the pair of values
complied to a random walk within the interval of two standard errors. Since the
theoretical curves meet in the point (A = 4/7,α = 1) for a random walk no clear
distinction between the different subdiffusion models was possible.

3.2.5 Summary and Conclusions

In this section we analyzed the shape of trajectories that were generated according to
different subdiffusion models. In all cases a correlation between the diffusion anomaly
α and the asphericitiy measures A and 〈Ai〉 were identified. Since the slope depends
on the model one can compare the experimentally obtained pairs (A|〈Ai〉,α) with
theory to identify the underlying mechanism of subdiffusion.

We applied this method to high-quality SPT trajectories of tracers in dense
dextran solutions. Due to the limited measurement accuracy only the long term
normal diffusive behavior could be covered. Indeed the results differed weakly from
a random walk indicating that the method provides reasonable pairs of anomaly and
asphericities. It will be interesting to test the presented approach on a system where
subdiffusion prevails up to the second-scale, e.g. concentrated lysozyme solutions [44].
Moreover, as SPT technologies get constantly improved, tracking of small particles
in the cytoplasm of a living cell can become tractable, soon. Then the proposed
method could help to elucidate the random process behind subdiffusion in biological
environments.

3.3 Polydisperse Brownian Dynamics

3.3.1 Introduction

Subdiffusion of tracers in crowded fluids is a frequent observation, cf. Section 1.3.3.
The experimental literature mentions manifold situations ranging from colloidal
tracers in dense polymer solutions to labeled proteins in the cytoplasm. So far, these
varying observations could not be rationalized by a generic model. The difficulties
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originate from the variety of tracer-crowder combinations and the different time
scales that are accessible by the respective measurement technique.

In this context, computational models may serve as well defined and easy con-
trolable reference systems. Here, we extend an earlier particle-based model of a
crowded cytoplasm [25]: Spherical Brownian particles with a realistic size distribution
resemble the proteins. They interact as soft spheres with an unspecific inter-particle
attraction at intermediate separations as described in Section 2.1.2. In contrast to
the widely used hard sphere model with strict volume exclusion (cf. Section 2.1.2)
soft spheres allow for much longer integration and overall simulation times. The
pronounced polydispersity is a prominent feature of the cytoplasm, where a large
number of different proteins sustains the various life-relevant biochemical processes.
Finally, the unspecific attractive interaction accounts for the impact of transient
binding, e.g. by “solvation forces” [44], without the detailed knowledge about the
particular bond configuration between any two proteins. In all, the model is based on
realistic particle sizes and time scales to investigate diffusion on time scales that are
accessible by FCS and SPT. On the other hand, the approach is rather generic, in
that it identifies the minimum requirements for a complex fluid to bear subdiffusion.

As a result, we find that purely repulsive spheres do not yield anomalous subd-
iffusion but slowed Brownian motion on experimental time scales (1 . . . 10 ms and
above). This is in accord with the literature and especially complies to hard-sphere
simulations, see e.g. [104, 105, 131]. The effects of polydispersity are marginal – at
least for the studied range of bead radii. Also a weak, attractive interaction did not
change the overall behavior. As the attractive interaction becomes stronger, particles
start to condense into a cluster phase. Consequently, they behave like a system with
an increased concentration, i.e. they diffuse normally but are strongly slowed down.
Anomalous diffusion arises on experimentally accessible time scales when the system
starts from a well-mixed configuration and evolves towards a cluster phase. In a
rather different scenario, a substantial fraction of particles is turned to immobile
obstacles that consequently leave a random, porous medium for the remaining tracers.
The result is subdiffusion on experimental time scales as expected for an OD setting,
cf. Section 1.3.4.

3.3.2 Parameters and Setup
From earlier studies [25] we take the finding that the masses m of proteins contained
in HeLa cells approximately follow a Poissonian (exponential) distribution

p(m) = 1
〈m〉

exp
(−m
〈m〉

)
. (3.17)

For the mean mass 〈m〉 = 350 kDa is a reasonable choice. When setting up the
simulation box, masses were drawn according to the distribution Equation (3.17).
From that, the bead radii Ri were calculated by the empiric formula

Ri =
(8mi

50

) 1
3
, (3.18)
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Parameter Simulation units Conversion

D 0.02 nm2/ns 20 µm2/s
m 1.66054× 10−27 kg 1 kDa

η 10−21 kg nm−1 ns−1 1 mPa s
ρ 1.38× 10−24 kg/nm3 1.38 kg/dm3

A 6πη × 103 µm2/s 18.85 pN
B kBT nm−1 = 4.28× 10−21 J/nm 4.28 pN

E kBT = 1.38× 10−23 J/K× 310 K 0.027 eV

Table 3.2 The important parameters of the BD algorithm. The middle
column gives their values in units used in the simulations, the right
column shows conversions to more commonly used units.

where mi is measured in kDa. Cut-offs at min(R) = 2 nm and max(R) = 5.5 nm
restricted the radii to a tractable range. To categorize the simulation results with
respect to polydispersity the beads were distributed into four size classes with Nk

particles of mean radius Rk, see Figure 3.13. Ensemble-averaged quantities like the
MSD were calculated separately for each size. According to the Einstein-Stokes
relation the bead radius determines the bulk self-diffusion coefficient [Equation (1.12)]

D0 = kBT

6πηR
, (3.19)

where the viscosity η is that of water (1 cP). Throughout the simulations, lengths
are measured in units of 1 nm, and the lowest time scale is defined by the integration
time ∆t = 1 ns. Thermal energy kBT at the physiological temperature (310 K) gives
the unit of energy. The values of the simulation parameters are summarized in
Table 3.2.

Initial positions of the beads in the simulation box were chosen randomly, hence
substantial overlaps could occur especially for high concentrations. Such a config-
uration does, in general, not correspond to thermal equilibrium with respect to
the implemented interactions. Consequently, at the beginning of every simulation
run, the particles were moved for Teq time steps without recording any data. For
increasing B > 0 longer equilibration times were needed. We thus chose Teq = 106 ∆t
which worked for all studied systems with B > 0.

The degree of crowding is quantified by the occupied volume fraction f

f =
∑N
i 4/3πR3

i

L3 , (3.20)

where L denotes the lateral size of the simulation box and N the number of particles.
We fixed N = 5000 for all simulations and varied L in order to tune f between 0.01
and 0.41. Due to the linearily decaying soft-core repulsion, the apparent radius of
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Figure 3.13 (a) A sample configuration of 5000 Brownian particles with
sizes varying in the range 2 . . . 5.5 nm. The box has a lateral extension
of 150 nm and the total occupied volume fraction amounts to f =
0.33246 (empirically corrected: f = 0.46544). (b) Size distribution
of the simulated Brownian particles. The sizes are calculated from
an exponential mass distribution, Equation (3.17), using the empiric
formula Equation (3.18). The four size classes with mean protein radii
Rk are given with the number of associated particles, Nk.

each particle is larger than R that is assigned to the extension of the repelling force
plateau, cf. Section 2.1.2. To estimate the apparent occupied volume fraction, the
measured diffusion coefficient as a function of f can be compared to simulations with
hard-core repulsion, see Figure 3.14. Here, we used published simulation data by
Cichocki and Hinsen [131] and furthermore related our data to the predictions of the
Enskog theory for hard-sphere fluids [104]

D

D0
= (1− f)3

1− f
2

. (3.21)

The soft-sphere system showed qualitatively the expected behavior, namely a
monotonous decay of D(f)/D0. The slope was steeper than for hard spheres implying
that the apparent occupied volume fraction was indeed larger than f as calculated
from R. We found that for our settings, f has to be corrected by +40%, see Fig-
ure 3.14. The residual deviations from Enskog theory originate from the underlying
approximations of this theory.

3.3.3 Results and Discussion
In a first scenario, the influence of (soft) excluded volume interactions between beads
of varying size was studied. To this end, the long-time diffusion coefficient D was
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D/D0 as a function of the occupied vol-
ume fraction f for a monodisperse system
(R = 4.1 nm). The soft-sphere simula-
tions are compared to hard-sphere data
from [131], and the Enskog theory, Equa-
tion (3.21). For the soft-sphere system
the estimated excluded volume has to be
corrected by plus 40% to agree with the
hard-sphere system.

extracted from the computed MSD for t > 100 µs. Figure 3.15 shows the course of
the reduced diffusion coefficient D/D0 where D0 corresponds to the free diffusion
coefficient [Equation (3.19)]. In all, the effect of polydispersity was rather weak:
Larger particles reacted a bit more sensitively and a comparison to a monodisperse
scenario revealed that the beads in size class R = 4.10 nm experienced practically
the same reduction in diffusivity as tracers in a system with only one bead size
(R = 4.1 nm). Hence, for the crowding-induced deceleration of diffusion, the detailed
size distribution of particles does not play a role. Nevertheless, polydispersity could
still be necessary to induce subdiffusion in a system of attractive beads.
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polyd. R = 4.10 nm
polyd. R = 4.93 nm
monod. R = 4.1 nm Figure 3.15 Relative diffusion coefficient

D/D0 as a function of the occupied volume
fraction f for a polydisperse system. There
is a slight tendency that larger particles are
more affected by crowding. Comparison
to a monodisperse system (R = 4.1 nm,
gray points and line) shows that the effect
of polydispersity is weak: The course of
D/D0(f) for R = 4.1 nm practically coin-
cides with the monodisperse scenario.

Hence, the model was extended to incorporate an attractive force of amplitude
B between two particles at intermediate surface-to-surface separation (2 . . . 4 nm),
cf. Figure 2.1. First, we considered a monodisperse system with R = 4.1 nm
after 106 equilibration steps and again calculated the relative long-time diffusion
coefficient D/D0 as a function of f and B, cf. Figure 3.16. For B < 2 kBT/nm the
data closely resembled the purely repulsive case. There was only a slight gain in
slope implying that an increasing attractive force additionally slowed down particle
diffusion. In contrast, for B = 2 kBT/nm a dramatic change was observed: The
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diffusion coefficient dropped steeply already for intermediate f and changed only
weakly for larger values. This indicates a condensation transition above a critical
density. The particles form clusters with an increased local density and their diffusion
is slowed down accordingly. In this regime, increasing the overall concentration of
particles leads only to minor changes in D/D0, because the density of the cluster
phase is the determining factor.

The same observations were made for polydisperse systems. In the following
discussions we focus on the scenario f = 0.33 and beads from the size classR = 4.1 nm.
Figure 3.17 (a) depicts the measured MSD curve and Figure 3.17 (b) the diffusion
anomaly α on three different time scales. For small values of B the slope was
unity on time scales above 103 ns indicating that normal diffusion prevailed. For
t = 102 . . . 103 ns the slope was smaller, i.e. α < 1. This short transient subdiffusion
arises from “cages” and is also present for purely repulsive beads [132]. The data in
Figure 3.17 (b) show that α decreased with B in this regime. In other words, the
caging effect gets stronger for weakly attractive particles because the additional force
promotes localization.

Figure 3.16 The effect of an attractive in-
teraction of amplitude B for a monodis-
perse system (R = 4.1 nm). The behavior
of D/D0(f) sensitively depends on B. For
B = 2 kBT/nm the diffusion coefficient
drops quickly already at small concentra-
tions. In this scenario, the particles con-
dense into a cluster phase that is character-
ized by a strongly increased local density.

●
●

●

●

●

0 0.1 0.2 0.3 f
0

0.2

0.4

0.6

0.8

1D
D0

● B = 0.00 kBT/nm
B = 1.00 kBT/nm
B = 1.50 kBT/nm
B = 1.75 kBT/nm
B = 2.00 kBT/nm
B = 2.50 kBT/nm

In the polydisperse case, the clustering transition was slightly shifted as compared
to the monodisperse scenario: We encountered a strong effect at B = 2.5 kBT/nm.
Figure 3.17 (a) depicts two MSDs for this interaction strength. The first belongs
to a system that was equilibrated with respect to soft core repulsion but not with
respect to attraction (denoted “not eq.”). The other system performed Teq = 106 ∆t
steps with all interactions turned on before data were recorded. The former case
showed persistent subdiffusion with α ≈ 0.8 for t > 103 ns, while the latter exhibited
an extended caging regime and normal diffusion for t > 104 ns. This indicates
the above described clustering phase with an effectively increased value of f and
a concomitantly decreased D. Starting from a random initial configuration that
has been equilibrated with respect to the excluded volume interaction, the diffusion
coefficient changes with time and the motion of particles is therefore anomalous until
the equilibrium with respect to the attractive interaction (i.e. the cluster phase) is
reached.
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Figure 3.17 (a) The MSD in a polydisperse system of attractive Brownian
particles. For the attractive force amplitude B = 2.5 kBT/nm two
scenarios are shown. One went through an equilibration w.r.t. excluded
volume only (denoted “not eq.”), while the other one was thoroughly
equilibrated with active attraction. (b) The measured anomalies for
different time scales. The gray symbols indicate the “not eq.” setting
for B = 2.5 kBT/nm. This system exhibits a strong anomaly on all
experimental scales that vanishes after full equilibration. On intermediate
time scales subdiffusion was robust w.r.t. to longer equilibration.

The diffusion anomalies in Figure 3.17 show that subdiffusion in the caging
regime, i.e. on intermediate scales (t = 103 . . . 104 ns), was robust with respect to
longer equilibration. The same observations have been made in detailed molecular
dynamics simulations of attractive colloids by Zaccarelli et al. [132]. Indeed, the
transition between bulk behavior and clustering originates in the interplay between
attractive and repulsive forces. If the two contributions balance, subdiffusion can
persist over several decades in time.

As described in Section 1.3.4 there are different models for crowding-induced
subdiffusion. So far, the proposed model assumed that all particles are mobile and
move through an isotropic space. In a conceptually different scenario, mobile tracers
move through a porous medium. This setting represents an OD model described
in Section 1.3.4 and hence is anticipated to bear subdiffusion. We immobilized a
fraction p of the particles after equilibration with respect to excluded volume that
consequently formed a random environment for the remaining ones. Figure 3.18
shows the resulting MSD curves (a) and computed anomalies (b) in dependence on p.
At p = 0.5 the transient subdiffusion extended to the experimentally accessible regime
on the 100 µs-scale. This effect was robust with respect to an longer equilibration as
indicated in Figure 3.18. The measured anomalies dropped with increasing p on all
scales.
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Figure 3.18 (a) MSD when a fraction p of particles is immobilized at
random positions. The remaining mobile tracers move trough a static,
random environment. As a result subdiffusion is observed to an extent
that depends on p. (b) the computed diffusion anomalies on different
time scales. The gray points indicate the typical equilibration time for
p = 0.5 while the black symbols stand for simulations with a longer
equilibration time.

3.3.4 Summary and Conclusions

Here, we proposed a mesoscopic model for a complex fluid inspired by the crowded
cytoplasm. It incorporates (soft) excluded volume of proteins, a realistic size dis-
tribution, and unspecific attractive interaction between particles at intermediate
distances. Realistic parameter values were chosen in order to judge whether the
observed diffusion effects translate to experimental time scales. For bulk diffusion in
a crowded environment the model reproduces the behavior of hard spheres indicating
that the soft repulsion resembles a valid approximation. The vaguely defined bead
radii do not have qualitative impact on the diffusive behavior. This also holds for
tracers in a static, random environment showing anomalous subdiffusion as expected
for an OD scenario, cf. Section 1.3.4.

In summary, the data suggest that subdiffusion requires a kind of attractive
interaction between the particles to emerge. We have introduced a diffuse, unspecific
attraction that induces a transient, weak association without explicitly accounting
for particular bonds. This yielded transient subdiffusion starting approximately
at an interaction strength of B ≈ 2 kBT/nm but this effect does not translate to
experimental time scales. Apparently, the proposed model is too simplistic to describe
subdiffusion observed by FCS or SPT.

The explicit modeling of individual bonds resembles a possible further extension –
a kind of approach that has already been applied successfully in studies on clustering
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[133] and gelation [75]. Such an algorithm requires a much higher computational
effort, especially if geometrical aspects like bond angles are incorporated. Thus, a
parallelized implementation may be necessary in order to reach the desired time
scales. It is a promising observation, that the shape of the particle MSD in such
a model (e.g. [133]) is reminiscent of the MSD measured in a viscoelastic fluid, cf.
Section 1.3.3. Hence, it may be anticipated that subdiffusion in the model fluid
exhibits features of FBM, cf. Section 1.3.4. This would add to the growing evidence
that crowding-induced subdiffusion is well described by FBM, cf. Section 1.3.5. The
parameters that determine the inter-particle bonding up to the desired level of detail
could be interpreted as the approximative, microscopic architecture of the complex
fluid under consideration. In the end, such an architecture could imply a stable
gelation that results in a porous medium through which the remaining particles
diffuse. This setting naturally bears subdiffusion as has been shown above where the
porous topology of space was imposed by turning some particles immobile.





Chapter 4

Anomalous Reaction Kinetics

4.1 Anomalous Reaction Kinetics in Crowded Membranes
The results of this section have been presented at the 55th Annual Meeting of the
Biophysical Society1. Furthermore, a large part of this section appeared as a paper
in EPL (Europhysics Letters)2.

4.1.1 Introduction
So far, particle-based simulations of reaction-diffusion in crowded environments use
either a lattice with immobile obstacles covering a substantial fraction of nodes (e.g.
[99, 100, 134]) or (coarse-grained) molecular dynamics simulations of hard spheres
(e.g. [103, 104, 105]). The former approach considers the reactants embedded into
a (sub)percolating environment and thus gives rise to fractal-like kinetics [88] (see
Section 1.4.2), i.e.

k(t) = k0t
−h 0 ≤ h ≤ 1 (t ≥ 0) . (4.1)

Furthermore, due to the topological constraints imposed by the obstacles, the fractal
dimension of a random path, dW , increases and diffusion becomes (transiently)
anomalous, cf. Section 1.3.4. The latter method focuses on the impact of the volume
occupied by mobile, inert crowders. In this scenario diffusion is slowed down but still
normal in character. The excluded volume effect leads to changed association rates
[104] which agree with thermodynamic calculations [18].

In general, the kinetics of a diffusion-limited reaction can be classified to be
either classical (h = 0) or geometry-controlled (h > 0) [97], cf. Section 1.4.2. The
distinction between these two regimes is given by the sampling behavior of the
reactants’ diffusion process: If the fractal dimension of the particle trajectories
(dW ) is lower than the fractal dimension of the support (df ), the exploration is
non-compact. As a consequence, classical reaction kinetics (h = 0) is observed, i.e.
reactants are well-stirred by diffusion and the law of mass action is valid. This
scenario in particular applies to reactions in bulk solution (df = 3) as the fractal

1M. Hellmann, D. W. Heermann, and M. Weiss, 1376-Pos: Impact of Anomalous Diffusion on
Biochemical Kinetics, Biophysical Journal, 100 (3), 251a (2011)

2M. Hellmann, D. W. Heermann, and M. Weiss, Anomalous reaction kinetics and domain
formation on crowded membranes, EPL 94(1), 18002 (2011)
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dimension of Brownian motion is dW = 2. For dW < df , however, diffusion samples
the available space in a compact fashion, hence leading to a less effective mixing of
reactants. As a consequence, h > 0 and even an initially well-mixed setup segregates
into A- and B-rich regions due to initial concentration fluctuations (’Zeldovich effect’
[89]), cf. Section 1.4.2.

Here we present full-stochastic, i.e. particle based, reaction-diffusion simulations
that account for viscoelastic interactions in a two dimensional (2D) complex fluid like
the cellular membrane. These interactions can be modeled by subdiffusion in terms of
fractional Brownian motion (FBM), see Section 1.3.4. All solvent-solute and crowder-
solute interactions are summarized in an external stochastic force characterized
by an autocorrelation function that decays with time as t−2H . H = α/2 denotes
the Hurst exponent and α the resulting diffusion anomaly. Typically, the effect of
crowding in reaction-diffusion systems is studied by changing the fractal dimension
df of the support, e.g. by introducing static obstacles (cf. above). Here, we leave df
unchanged and rather modify the fractal dimension of the diffusion process dW = 2/α
directly. Moreover, space is isotropic and all regions may in principle be visited by
all reactants.

Bearing in mind that protein diffusion on cellular membranes has been reported
to often have an anomalous character, the considered reaction scheme may represent,
for example, the concomitant dissociation of the peripheral membrane protein Arf-1
(A) and its hydrolysis-stimulating factor ARFGAP1 (B) from Golgi membranes (then:
C = ∅) [135] . In the investigated scenario, we find that both, normal and anomalous
diffusion induce a non-classical (fractal) kinetics, i.e. h > 0 with a value that depends
on the anomaly α of the random walk. Owing to an increased compactness of the
random walk, subdiffusion also strongly enhances reactant segregation and hence
may promote the formation of functional domains on cellular membranes, e.g. hot
spots on Golgi membranes that show an enrichment of Arf-1 and hence have a higher
probability to form transport vesicles.

Additionally, we present some preliminary results for reactions in three dimensions
(3D). Since FBM allows to continuously adjust the fractal dimension of the reactant
trajectories, the transition between classical and geometry-controlled kinetics can be
studied. The distinction between the regimes is not sharp due to the limited system
size and simulation times. Still, we can identify a different behavior in the course of
h(t) indicating that a transition occurs.

4.1.2 Parameters and Setup

We applied the methods described in Section 2.3 with three reactant species A, B, and
C and a reaction radius R. For the reaction A + B→ C without excluded volume, the
C species was practically invisible and our reaction scheme reduced, strictly spoken,
to A+B→ ∅. The initial number of particles was chosen as NA = NB = N/2 = 2500
(2D) and NA = NB = N/2 = 7500 (3D), respectively. By periodic boundaries
of the simulation box we emulated a subvolume of an infinite system at a global
concentration. The system size L was adjusted so that the volume (area) within the
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reactive radii N × 4/3πR3 (N × πR2) amounted to 6% of the total volume (the total
area). Diffusive trajectories were generated using the Brownian dynamics approach
(see Section 2.1.2), while subdiffusive reactants followed a FBM generated by the
Weierstrass-Mandelbrot function (see Section 2.2.3). The parameter values for the
three and two dimensional simulations are summarized in Table 4.1.

As steering parameters of the system we varied the anomaly exponent α of the
FBM process in an experimentally relevant range α = 0.5 . . . 1.0, cf. Section 1.3.3.
The probability P that upon an encounter two reactants A and B merge to a C was
selected among 0.002 . . . 1. A reaction probability below unity may be interpreted as
a lowered affinity between the reactants; in fact, most reactions will not occur directly
on collision when the geometry of the reactants is taken into account, meaning that
A and B have to be aligned in a certain manner for the reaction to take place.

Parameter simul. units (2D) simul. units (3D)
R 1 =
L 500R 100R
∆t 2× 10−7 =
T 2.5× 10−5 5× 10−5

D 0.5 =

NA(0) 2500 5000
NB(0) 2500 5000

α 0.5 . . . 1.0 =
P 2× 10−3 . . . 100 =

Table 4.1 The parameters of the full-stochastic reaction-diffusion simu-
lations in two and three dimensions.

To follow the course of the reaction we recorded the instantaneous particle
numbers and corresponding densities NA(t) (ρA), NB(t) (ρB), and NC(t) (ρC) as
the average over 1000 independent runs. From this the anomalous reaction exponent
h was obtained via [102]

1
ρA(t)

− 1
ρA(0)

∝ t1−h . (4.2)

The logarithm of the left versus the logarithm of the right hand side gave a (locally)
linear increase with slope 1 − h. We were interested in the course of h with time
and thus calculated h(t) by the difference quotient between two successive values
of ρA. The counts of AA-, BB, and AB-pairs provide additional information on the
spatial organization of reactants [136]. We denote these numbers by NAA, NBB , and
NAB. In our continuous space simulations, two particles were considered a pair if
their center-to-center distance was less than 2.4R. With the numbers of pairs, the
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Figure 4.1 (a) Comparison of the time dependent reaction anomaly h(t)
between scenarios with and without excluded volume interactions in 2D.
(b) Ratio of Q as measured without excluded volume and QEV obtained
in a system with excluded volume.

segregation of reactants could be quantified according to [99]

Q = NAA +NBB

NAB

(
ρ2

A + ρ2
B

2ρAρB

)−1

. (4.3)

4.1.3 Results and Discussion

The Role of Excluded Volume

As stated in Section 2.3 the used simulation algorithm cannot properly account
for the finite size of reactants. This leads to artifacts which shall be discussed for
reactants undergoing Brownian motion (H = 0.5): Figure 4.1 (a) shows the course of
the reaction anomaly h(t) for systems with and without excluded volume interaction.
For the diffusion-limited scenario (P = 1) the data differed strongly in the beginning.
While phantom discs provoked a pronounced non-classical behavior for small t, their
hard counterparts gave rise to classical kinetics at t = 0 (this is not well visible in the
figure, since the data have been averaged over intervals of 21 time steps, cf. [100]).
After approximately 300 time steps, however, the data reached the same asymptotic
h∞ that is in excellent agreement with earlier publications [100].

For P < 1 the values differed significantly over the whole time window shown
in Figure 4.1 (a). This phenomenon becomes clearer from Figure 4.1 (b) where
the reactant segregations in terms of Q [Equation (4.3)] are compared: The time
course of the ratio Q/QEV exhibited a nearly constant asymptotic for the extremes
of diffusion and reaction limitation (P = 1 and P = 2× 10−3, respectively). In the
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first case, reactant segregation was approximately five times stronger if excluded
volume was neglected. For the latter case, almost no reactions took place and hence
there was no significant segregation in either of the scenarios; consequently, the ratio
is close to unity. Intermediate probabilities (P = 2× 10−2) constituted a cross-over
behavior between the two extremes where Q/QEV depended non-trivially on time.
This regime corresponds to the differing values of h in Figure 4.1 (a). Without
excluded volume a stronger reactant segregation evolves from the well-stirred initial
condition and the ratio Q/QEV grows with time as the reaction proceeds. The slope
of the increase was determined by the “velocity” of the reaction, i.e. the value of P .

In summary, our data show that the observations of Zeldovich segregation and
anomalous reaction kinetics are robust with respect to excluded volume. The
asymptotic values h∞ and hence the scaling of the reaction coefficient coincide for
diffusion-limited reactions. Reactant segregation is stronger for phantom reactants
because, on the average, unrestricted overlaps make the A- and B-rich regions more
compact and the voids in between larger. As the particle number decreases, this
effect of excluded volume becomes less relevant. Quantitative differences arise for
intermediate values of the reaction probability when the reaction proceeds slowly.
In a system of phantom disks the separation grows faster and hence the reaction
anomaly is larger than in case of hard disks. Still, all qualitative conclusions stay
untouched in the pre-Zeldovich regime because effectively only the time scale of this
transient is shifted.

Fractal-like kinetics

Starting from a well-mixed initial setup in the diffusion-limited regime (P = 1), the
reaction exponent h tended to a nonzero value h∞ at large times [Figure 4.2 (a)]
for all anomalies α. For normal diffusion we observed h∞ ≈ 0.36 in agreement with
previous simulations that accounted for the finite volume of reactants [100]. In fact,
for this case an asymptotic decay h ∼ 1/ ln t is expected [93], i.e. h∞ should not be
a real asymptotic value. Owing to the limited resolution and finite length of our
simulations, however, we were unable to detect the asymptotic logarithmic decay.
Hence, h∞ should be considered as a phenomenological description in the accessible
time window (cf. also discussion in [99]).

In the case of obstructed diffusion (OD), the reaction anomaly h increases with
growing concentration of obstacles [99]. On the other hand, this gives rise to a
stronger diffusion anomaly [71]. In close analogy one would expect for reactants
driven by FBM to find a higher reaction anomaly for smaller α. Indeed, fractal-like
reaction kinetics predicts the relationships h = 1 − dS/2 before the onset of the
Zeldovich-segregation regime and h = 1− dS/4 afterwards [92], where dS = 2df/dW
denotes the spectral dimension of the random walk [68], cf. Section 1.3.4. For
FBM trajectories in the plane df = 2 and dW = 2/α = 1/H. Thus one anticipates
respectively h = 1− α and h = 1− α/2. To obtain a similar picture as for reactions
on fractal supports it is convenient to plot h∞ as a function of 1−α. The finiteness of
our simulations, the lack of excluded volume interactions, and reaction probabilities
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Figure 4.2 (a) Time course of
the reaction exponent, h(t),
[Equation (4.1)] for various
anomalies α in the diffusion-
limited regime (P = 1). All
curves show a plateau h(t)→
h∞ > 0 for long times. To re-
duce fluctuations, h(t) was av-
eraged here over 21 consecutive
time points. (b) Reactant seg-
regation is indicated by a scal-
ing h∞ = c1 − c2α with c2 =
1/2. For the diffusion-limited
regime (P = 1, filled circles) a
strong segregation has emerged
already (c2 ≈ 0.57) (full line)
while it has not yet emerged
for lower reaction probabilities
P = 0.02, 0.002 (open circles
and filled diamonds, respec-
tively). (c) The reaction expo-
nent h∞ increases sublinearly
with the reaction probability P
(note the log-scale for P ). Full
lines are stretched exponentials
as a guide to the eye; symbols
as in (a).
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P ≤ 1 lead to deviations from the theoretical predictions and we rather observed a
modified relation between h∞ and α:

h∞ = c1 − c2α with 1/2 ≤ c2 ≤ 1 . (4.4)

In accordance with previous studies [99] we found indeed for large reaction probabili-
ties (P > 0.1) a strong indication for segregation, i.e. c2 ≈ 0.57 (Figure 4.2 b). When
lowering the reaction probability to P = 0.02 an intermediate scaling (c2 ≈ 0.73)
emerged, as the macroscopic segregation has not been established in full during the
simulation time. For very small reaction probabilities (P = 0.002) only first traces of
the Zeldovich regime were visible, i.e. one would need considerably longer simulation
runs to observe the segregation for these small reaction probabilities.

Reactant Segregation

To illustrate the segregation of reactants during the simulation, we show the spatial
distribution of A and B-rich regions in Figure 4.3. The system was divided into
25× 25 square cells for each of which the contained A and B particles were counted.
This number minus the expected cell occupation for a homogeneous distribution of
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Figure 4.3 The spatial distribution of reactants quantified by the count of excess
particles. The system is divided into 25× 25 square cells for which the excess
of A and B particles is calculated at the indicated time points. The excess
is defined as the difference between the actual count of particles in each cell
and the expected count for a homogeneous distribution. The legend on the left
explains the color coding. Normal and anomalous diffusion give rise to reactant
segregation, i.e. well separated A- and B-rich regions emerge from the initial
density fluctuations. Subdiffusive reactants enhance segregation due to their
more compact trajectories.
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Figure 4.4 (a) Time course of re-
actants, N(t), for P = 0.002 and
P = 0.2 (full and dashed lines,
respectively). Curves in each en-
semble are ordered according to
increasing α (cf. indication at
dashed curves), i.e. normal diffu-
sion yielded a higher amount of
products per time than anoma-
lous diffusion. Inset: At a time
scale tc the number of reactants
has decreased by 10%, and this
time scale increases linearly with
the inverse reaction probability,
tc ≈ 2 + 1/(2P ) (full line), irre-
spective of the value of α. (b)
The ratio of reactive pairs for nor-
mal and strongly anomalous diffu-
sion, NAB(α = 1)/NAB(α = 0.6),
shows a strong increase beyond tc,
hence highlighting the faster for-
mation of reactive pairs by normal
diffusion. Only at large times, sub-
diffusive reactants that have not
yet undergone a reaction but are
near to each other lead to an in-
version of the ratio. Shown are
three reaction probabilities (color-
coded) as indicated.
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particles yielded the excess. It is clearly visible that the random distribution of the
reactants in the system induces pronounced spatial density fluctuations.

To get a more detailed picture of reactant segregation in the progress of the
reaction, we inspected the number of reactants, N = NA + NB, and the number
of reactive pairs, NAB. For a vanishing reaction probability, P = 0, N was strictly
conserved, and NAB was constant on average for all α. Thus, FBM and normal
diffusion lead to equivalent randomizations of the particle positions. In the reaction-
limited scenario (P � 1) the number of encounters per successful reaction is large.
As a consequence, a substantial decrease of reactants only emerged beyond a critical
time tc ∼ 1/P that is almost independent of α (Figure 4.4 a). Beyond tc also more
subtle differences between subdiffusion and normal diffusion became clearly visible.
When inspecting the ratio of reactive pairs for normal and subdiffusive motion,
NAB(α = 1)/NAB(α = 0.6), a strong increase at tc is visible (Figure 4.4 b). This
feature indicates that subdiffusion is significantly less efficient in replenishing the
pool of reactive pairs. For large times, when normal diffusive reactants became very
rare, their subdiffusive counterparts were still relatively abundant. Hence anomalous
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diffusion yielded more AB pairs in this limit.
As a consequence of the slower sampling process, the amount of product C, i.e.

NC(t) = N(0)−N(t), increased slower for subdiffusion. Hence, the reactants stayed
on average more separated. This enhanced segregation of reactants is highlighted
by the quantity Q [Equation (4.3)]. While the anticipated lack of segregation at
P = 0 was reflected by Q = 1 ± 0.02 in our simulations, we observed Q(t) > 1
even for normal diffusion when the reaction probability was large (Figure 4.5). For
subdiffusion the segregation was even stronger the lower α became. Thus, the slower
reaction progress for subdiffusion is acompanied by a stronger segregation of reactants.

100

101

102

101 102 103

Q(t)

t/∆t

α=0.6

α=0.7

α=0.8

α=0.9

α=1.0

α=0.6
 … 

α=1.0

Figure 4.5 The parameter Q(t) >
1 [Equation (4.3)] highlights a
strong segregation of reactants for
P = 0.2 (full curves) and P =
0.002 (dashed curves). As a con-
sequence of the slow sampling pro-
cess, subdiffusion shows a strong
enhancement of the segregation
event.

Extension to 3D space

Since FBM allows one to continuously adjust the diffusion anomaly, it provides a
means to study the transition between geometry-controlled and classical kinetics.
In the plane, compact exploration and hence geometry-controlled kinetics prevails
even for α = 1. In three dimensions, however, both scenarios can be investigated. In
particular, for α > 2/3 classical kinetics and for α ≤ 2/3 geometry-controlled kinetics
are anticipated [97] because the fractal dimension of a FBM trajectory is dW = 2/α,
cf. Section 1.3.4. On the other hand, it is known that Zeldovich segregation and hence
anomalous kinetics should arise in three dimensions for the conditions that apply
here (NA = NB and batch conditions), cf. Section 1.4.2. The periodic boundaries of
the simulation box, however, impose effective convection currents that contribute to
the stirring of the reactants [92]. We thus rather expect classical kinetics.

Figure 4.6 (a) shows the course of the reaction anomaly h(t) for A + B→ C in 3D.
In the limited time window accessible by the simulations, h did not fully settle to a
constant h∞ for all diffusion anomalies. The long time behavior can be approximated
by a linear decrease (solid lines in the respective time interval). At this point, the
slope s may be interpreted as an indicator for the final asymptotic: If s is negative,
h tends to zero for t � 1. On the other hand, if s ≈ 0, h takes a nonzero value
h∞. Indeed, as seen in Figure 4.6 (b) the dependence of s on α exhibits roughly the
expected distinction between compact and non-compact exploration: For α > 2/3 s
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decreased with α, indicating that it took longer for weakly subdiffusing reactants to
reach the classical limit than for normally diffusing ones. Beneath α = 2/3 s stayed
close to zero.
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Figure 4.6 (a) The course of h(t) for A + B → C in 3D. Within the
considered time window not all anomalies lead to a constant h∞. Anyhow,
the asymptotic can be approximated by a linear decrease of h with t.
Solid lines show the linear fit in the respective time regime. (b) Slope s of
the asymptotic decay of h(t) in dependence on the diffusion anomaly α.
In the regime of compact exploration (α ≤ 2/3) s ≈ 0, i.e. h∞ > 0 and
non-classical kinetics prevails. In contrast, non-compact walks (α > 2/3)
yield a negative slope that may be interpreted as a transient towards
h∞ → 0, hence implying classical kinetics.

4.1.4 Summary and Conclusions

The overall picture that emerges from our simulations is that product formation by
subdiffusive reactants is slower than for normal diffusion. The subdiffusive reactants’
trajectories are oversampling the available two-dimensional space even more than
normal diffusion already does. Hence, the same molecules are re-encountered over a
long period which supports a strong segregation of reactants.

One may have expected that an enhanced re-encounter rate supports the progress
of the reaction scheme at low P since reactants stay near to each other and thus
may have several attempts to form a product. Contrary to this assumption, our
data show that independently of P the diffusion-limited formation of new pairs is
the most important factor.

This observation, however, is intimately linked to an enhanced reactant segregation
for anomalous diffusion. It is tempting to speculate if and how biological systems may
utilize or benefit from this effect. Let us consider as an example the COPI vesicle
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machinery at the Golgi apparatus [135]. The small GTPase Arf-1 (a soluble protein
when bound to GDP) will firmly associate with Golgi membranes upon nucleotide
exchange. Independent of this event, ARFGAP1 will bind to the membrane. Upon
encountering each other, ARFGAP1 will trigger the hydrolysis of GTP by Arf-1
which leads to the dissociation of both proteins from the Golgi membrane. Hence,
this reaction on the membrane is well described by A + B → ∅. Given the above
results, regions on the membrane should exist that have higher concentrations of
Arf-1. Since Arf-1 is the docking factor for coatomer, a protein that serves in the
formation of transport vesicles, this segregation would induce ’hot spots’ at which
vesicles are produced with higher probability. It will be interesting to test this
prediction experimentally, e.g. by electron microscopy.

Beyond the quite robust data for reactions in the plane we also presented some
preliminary results for bulk reactions. In this context the transition between compact
and non-compact exploration and the respective scenarios, geometry-controlled versus
classical kinetics, were considered. Due to the limited simulation time and the strong
stochasticity of h(t) our data do not yield a sharp distinction between the two
regimes. However, the anticipated tendency is visible. More powerful simulations
that allow for larger systems and longer simulation times can lead to further progress
in this direction and ultimately link the concept of geometry-controlled kinetics to
subdiffusive reactants in the bulk.

4.2 Michaelis-Menten Kinetics in a Viscoelastic Medium
The results of this section have been presented at the 55th Annual Meeting of the
Biophysical Society3. Furthermore a major part of this section has been submitted
for publication.

4.2.1 Introduction
Enzymatic reactions are ubiquitous events that are of vital importance for living
cells [1], see Section 1.2.2. A prototypical enzymatic reaction that lies at the heart of
virtually all cellular signaling pathways is the phosphorylation of proteins [6]. Here,
a kinase E covalently adds a phosphate to another protein (its substrate) S according
to the Michaelis-Menten scheme [cf. Equation (1.1)]:

E + S
k1
®
k2

C k3→ E + P . (4.5)

As a matter of fact, central hubs of signaling cascades may attain even several
phosphorylations by the same kinase, and the subsequent response of the pathway
may depend on the precise phosphorylation pattern [6, 9, 137].

Kinases are traditionally classified as working in a distributive or processive
fashion, depending on whether they can add only one or multiple phosphates while

3M. Hellmann, D. W. Heermann, and M. Weiss, 1376-Pos: Impact of Anomalous Diffusion on
Biochemical Kinetics, Biophysical Journal, 100 (3), 251a (2011)
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being in a complex with the substrate. Reducing the repetitive diffusive search for
the substrate, processive kinases are considered more productive, i.e. they yield a
higher amount of multi-phosphorylated proteins per time. The simplest case in which
a processive kinase may outperform a distributive one is a double phosphorylation
event:

E + S
k1
®
k2

C1
k3→ E + P1

k′1
®
k′2

C2
k′3→ E + P2 . (4.6)

Prominent examples for double-phosphorylated proteins are the members of the
mitogen-activated protein kinase (MAPK) family that become active only after
attaining two phosphorylations by the MAPK kinase, cf. Section 1.2.2. Indeed
the double phosphorylation is the prerequisite for MAPK to translocate from the
cytoplasm to the nucleus in order to regulate gene transcription [8].

Using the law of mass action, Equation (4.5) and Equation (4.6) can be formulated
as a set of ordinary differential equations (ODEs) in a straightforward manner. Indeed,
this approach is commonly used to model biochemical signaling networks [138, 139].
The use of ODEs tacitely relies on two crucial assumptions: (i) all reactants are
so abundant that one may use a mean-field formulation in terms of concentrations,
and (ii) diffusive transport of all molecules is so fast that the reactants are always
well-stirred. Both assumptions, however, may go wrong in the cellular context. The
copy number of proteins of a typical signaling cascade varies between 104 and 107

per cell [138], i.e. from 30 nM to 30 µM. It is hence questionable at least for the
lower bound to which extent (local) concentrations are a valid means to describe
intracellular enzymatic reactions. Furthermore, particle based simulations reveal that
spatio-temporal correlations have a dramatic impact on the behavior of molecular
signaling pathways [108]. They can, for example, destroy the classically anticipated
(bi)stability of a biochemical network. As to the second concern, diffusion in the
crowded cytoplasm is very slow and often shows even an anomalous behavior, i.e.
the proteins’ mean square displacement (MSD) has a subdiffusive characteristics,
〈δ2〉 ∼ tα with α < 1, cf. Section 1.3.4. Subdiffusion often emerges as a consequence
of the viscoelastic nature of crowded fluids [24, 35, 78] which equips the molecules’
random walk with the characteristics of fractional Brownian motion (FBM) [65].
Diffusive mixing of proteins in intracellular fluids therefore resembles a very slow and
ineffective process that undermines the assumption of a well-stirred fluid.

Here we show by means of extensive simulations that crowding-induced sub-
diffusion drastically alters the time course of successive enzymatic reactions in
three-dimensional space, e.g. multi-phosphorylation events in the cell’s cytoplasm.
In particular, we find that a single-step process [Equation (4.5)] is slowed down
and reveals non-classical (fractal) kinetics [88] when molecules undergo subdiffusion.
In contrast, for a double phosphorylation event [Equation (4.6)], subdiffusion can
massively enhance the product yield within a short period. This means the efficiency
of a double phosphorylation is enhanced under crowding conditions even if the kinase
is non-processive in the first place. So, the more compact trajectories of subdiffu-
sive reactants imply a higher re-encounter probability. As a result, an intrinsically
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distributive kinase may be turned into a processive one.

4.2.2 Parameters and Setup

The particle-based simulations of Michealis-Menten reactions extent the algorithm
already described in Section 4.1. That is, diffusive and subdiffusive trajectories
were generated by Brownian dynamics and the Weierstrass-Mandelbrot function,
respectively (cf. Section 2.1.2 a nd Section 2.2.3). Particles were considered as
phantom spheres with an interaction radius R. When the distance between enzyme
and substrate was less than 2R these particles were allowed to react with the
respective rate. Performing particle-based simulations, we modeled the reaction rates
by the corresponding reaction probabilities, i.e. k1 → p1, etc. In order to realize a
particular target reaction rate, the probability and reaction radius have to be adjusted
accordingly [124]. Here the focus is on generic phenomena and hence we omitted
the adaption to precise reaction rates. Moreover, an empirical factor consistently
converted between probabilities in the stochastic simulations and reaction rates in
the ODE picture.

The initial number of particles was NE = 4000, NS = 16000, and the system
size L = 200R. Subdiffusive reactants followed a FBM with α = 0.6. Varying the
reaction probabilities p2, and p3 yielded a phase diagram visualizing the interplay
between production and intermediate decay. To avoid too fast rebinding of just
dissociated proteins we chose a rather small association probability p1 = 0.05. The
measured quantities comprise the instantaneous concentrations E, S, C1,2, P1,2 and
ν, the number of E + S reactions that effectively gave rise to complex formation
until time t. All important parameters and their values are summarized in Table 4.2.

Parameter simul. units (3D)
R 1
L 200R
∆t 2× 10−7

T 2.5× 10−5

D 0.5

NE(0) 4000
NS(0) 16000

α 0.6 and 1.0
p1 0.05
p2,p3 0.02 . . . 0.10

Table 4.2 The parameters for the full-stochastic reaction-diffusion simu-
lations of a (double) Michaelis-Menten scheme in three dimensions.
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Classical Kinetics: Ordinary Differential Equations

The classical expectations are given by the solution to the system of kinetic ordinary
differential equations (ODE). For the case of a simple Michaelis-Menten scheme,
Equation (4.5), they read:

dE/dt = −k1ES + (k2 + k3)C (4.7)
dS/dt = −k1ES + k2C (4.8)
dC/dt = k1ES − (k2 + k3)C (4.9)
dP/dt = k3C (4.10)

And for a two stage reaction, Equation (4.6), one obtains:

dE/dt = −k1E(S + P1) + (k2 + k3)(C1 + C2) (4.11)
dS/dt = −k1ES + k2C1 (4.12)
dC1/dt = k1ES − (k2 + k3)C1 (4.13)
dP1/dt = −k1EP1 + k3C1 + k2C2 (4.14)
dC2/dt = −k1EP1 − (k2 + k3)C2 (4.15)
P2/dt = k3C2 (4.16)

To solve these ODE systems we used the deSolve package [140] within the R Project
[141].

Non-classical or anomalous kinetics arises when diffusion does not provide an
adequate mixing of reactants to maintain a well-stirred situation. In this case,
kinetics becomes geometry controlled and the rate coefficient k1 depends on time. In
particular, fractal reaction theory predicts a power law decay [88], see Section 1.4.2

k1(t) ∼ t−h with ≤ h ≤ 1 . (4.17)

So, h = 0 corresponds to the classical scenario of constant k1. We determined the
anomalous reaction exponent h by using the relationship [99]

k1 = dν/dt

ES
. (4.18)

A linear fit (range: 200. . . 400 time steps) according to log t = h log k0
1 yielded h.

With k1(t) replacing the constant k1 in the system of kinetic ODEs one obtains the
time course of concentrations as predicted by fractal-like kinetics.

4.2.3 Results and Discussion
In this study we investigated single [Equation (4.5)] and double [Equation (4.6)]
Michaelis-Menten reaction schemes under diffusion and subdiffusion. We define
the productivity as the yield of fully phosphorylated substrate per initial substrate
concentration, i.e. P/S0 and P2/S0, respectively.
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Simple Michaelis-Menten Scheme

For this part of the analysis we fixed the reaction probabilities to p1 = 0.05, p2 = 0.02,
p3 = 0.06. As discussed above, the reaction probability p1 can be related to a realistic
rate coefficient k1 by a respective adjustment of R, cf. [124]. We avoided the
concomitant, complex calculations because we were interested in generic effects
and not in a particular target reaction rate. Empirically, one finds that k1 = xp1,
where the proportionality factor x depends on α and p1, see e.g. [99]. In practice,
we manually tuned x to find a good overlap between simulations and classical or
fractal-like kinetics. Figure 4.7 shows for the concentrations of complex C (a) and
product P (b) that the data are in excellent agreement with classical kinetics for
normal diffusive reactants. Only at short times, when the phantom character of the
particles led to a slightly enhanced complex formation, some deviations can be seen
in (a). On the other hand, subdiffusive reactants with α = 0.6 gave rise to fractal-like
kinetics with an heterogeneity exponent h ≈ 0.25. Again, the agreement between
simulations and theory is not perfect for short times, but for intermediate and long
times the data follow the prediction very closely.
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Figure 4.7 The concentrations of complex [C, (a)] and product [P , (b)]
for a simple Michaelis-Menten reaction scheme in 3D. The data are
compared for normal diffusion and subdiffusion with α = 0.6. Normal
diffusive reactants give rise to classical kinetics, while the data for
subdiffusion correspond to fractal-like kinetics with h = 0.25. The
amount of output P is always greater for normal diffusive reactants. The
reaction probabilities are p1 = 0.05, p2 = 0.02, and p3 = 0.06.

These results strongly support the validity of our approach. By virtue of the
simple, empirical relation between p1 and k1, our data can be mapped accurately
to the mean-field predictions. In particular, for normally diffusing reactants in
the bulk, classical kinetics emerged because diffusion is capable of sustaining a
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well-stirred system in this case. Subdiffusion, in contrast, implies more compact
particle trajectories. This enhanced reactant segregation even in three dimensions
and consequently led to anomalous, fractal-like kinetics. In other words, diffusive
mixing becomes less effective with lower α.

From Figure 4.7 (b) it is clear that normal diffusion outperforms subdiffusion at
all times. This indicates that for the simple Michaelis-Menten scheme the rate of first
encounters is the determining factor. Since diffusive mixing works more effectively
for α = 1 this rate is strongly enhanced as compared to α = 0.6.

Double Michaelis-Menten Scheme

Figure 4.8 The concentration of interme-
diate product P1 in a double Michaelis-
Menten scheme. With the same reaction
probabilities as before (cf. Figure 4.7)
strong deviations from the classical be-
havior occur. Even for normal diffusion
the concentration of P1 is lower due to fast
rebinding because P1 is always produced
close to an E. Thus spatio-temporal corre-
lations drastically influence the behavior
of a two-stage process. 0 500 1000 1500 2000 t ∆t
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In the double Michaelis-Menten scheme Equation (4.6) the two stages are concate-
nated by the irreversible step C1 → P1 +E. This implies that the first stage behaves
independently of the second. Accordingly we found for C1 exactly the same course
as for C, cf. Figure 4.7. The concentration of P1, in contrast, deviated strongly
from the mean-field results, see Figure 4.8. This highlights the importance of spatio-
temporal correlations for multi-stage, diffusion-limited reactions [108]. The classical
description neglects these correlations completely and hence is an inaccurate model
in this context. In particular, as seen in the figure, the assumption of a constantly
well-stirred solution implies a higher concentration of intermediate product P1 than
found in stochastic simulations. This is due to neglecting that P1 and E are generated
close to each other, i.e. their positions are highly correlated in time and space. As
a result fast rebinding of E and P1 is probable and leads to an enhanced decay of
P1 and a faster formation of C2. For α = 0.6 the first stage of the scheme processes
more slowly meaning that the concentration of C1 is lower. Consequently, less P1 is
generated in this case.

From the above discussions it is also clear that the concentrations of C2 and P2
showed a drastically changed behavior, see Figure 4.9. Due to the spatio-temporal
correlations between E and P1 their fast rebinding induced an accelerated increase of
C2. For well-mixed reactants the maximum is reached later as the average searching
time in the absence of correlations is larger. The compact trajectories of subdiffusive
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reactants, in turn, improved the effect of correlations and C2(α = 0.6) even exceeded
the value for normal diffusion at short times.
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Figure 4.9 The concentrations of the second complex, C2 (a), and the
final product, P2 (b), of a double Michaelis-Menten reaction scheme in
3D. The reaction probabilities are p1 = 0.05, p2 = 0.02, and p3 = 0.10.
As for P1 also normal diffusive reactants give rise to a pronounced
discrepancy between stochastic simulations and the deterministic ODEs.
Due the fast rebinding events C1 reaches its maximum faster. For
subdiffusion this effect is further enhanced so that at short times more
C2 is generated as in case of normal diffusion. The concentration of
output P2 shows only small differences between α = 1 and α = 0.6 for
t < 500. Consequently, although subdiffusion yields less P1, the full
process works as efficiently as in case of diffusion.

For times t < 500∆t, the amount of P2 is almost equal for diffusive and sub-
diffusive reactants. This corresponds to the similar concentrations of C2 in this
regime. Subdiffusion promotes the fast rebinding of reactants so that a smaller
number of intermediate product P1 can still yield an equal or even larger amount of
final product P2. Figure 4.9 (b) shows P2 for the reaction probabilities p1 = 0.05,
p2 = 0.02, p3 = 0.10, i.e. in comparison to production of P1 the dissociation of C2
into E and P1 is less probable. We varied p2 and p3 in the range 0.02 . . . 0.10 to
study the interplay of production and dissociation. As an observable we chose the
ratio between the concentrations P2 for normal diffusion and subdiffusion (α = 0.6):

ξ(t;α) ≡ P2(t;α = 0.6)
P2(t;α = 1

(4.19)

In Figure 4.10 ξ(t;α = 0.6) is plotted for nine combinations of p2 and p3. The
example discussed in Figure 4.9 corresponds to the upper right field showing only a
short period where subdiffusion yielded more P2 than normal diffusion as indicated
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by the gray shaded area. Decreasing p2 and/or increasing p3 in general increased
the advantage of subdiffusion. The strongest effect was perceived for p2 = 0.10
and p3 = 0.02 (lower left plot). When C2 is a rather fragile entity, the repetitive
binding of P1 and E becomes an increasingly important process on the way to P2.
For subdiffusive reactants the probability that just dissociated P1 and E stay close
to each other and again merge to a C2 is enhanced due to their more compact
trajectories. On the other hand, when the conversion from C2 to P2 works efficiently
(large p3) the formation of new reactive pairs is the limiting step. This is determined
by the replenishing of P1, that is faster for normal diffusive reactants as discussed
before. As soon as all close P1-E pairs have vanished in favor of P2, the diffusive
search process becomes limiting and hence for longer time scales normal diffusion
exhibits a greater productivity. In other words, for subdiffusive reactants the pool of
reactive pairs is exhausted with high efficiency but only slowly replenished.

The central question is hence for which parameter ranges subdiffusive reactants
render the process more efficient, i.e. ξ > 1. Consequently, we reduced Equation (4.19)
to a single number by taking the average deviation from unity over the interval
101 . . . tav = 103 ∆t as indicated by the dotted lines in Figure 4.10:

〈δξ〉(α) = 1
tav − 10

tav∑
10

[
ξ(t′;α)− 1

]
dt′ (4.20)

With this we constructed a phase diagram of the relative productivity in dependence
on the reaction probabilities p2 and p3 while p1 = 0.05 was fixed, see Figure 4.11. The
two regimes where subdiffusion/diffusion performed more efficiently were character-
ized by positive/negative values of 〈δξ〉. As discussed above, frequent dissociations of
C2 and slow production of P2 render subdiffusion the more productive search process.
Figure 4.11 is an linearly interpolated heat map based on the nine combinations
(p2, p3) discussed in Figure 4.10 the transition between the scenarios appeared quite
smooth at the given resolution.

4.2.4 Summary and Conclusions
In this study, the impact of viscoelastic subdiffusion on typical enzymatic reactions
has been investigated. For the following discussions we consider the single and double
phosphorylation of a protein S by a kinase E as a realization of this scenario. For a
simple phosphrylation [Equation (4.5)] the lower first encounter rate of subdiffuive
reactants led to less production of active P – independently of the particular values
of p2 and p3. In this scenario, the greater compactness of the subdiffusive trajectories
caused a macroscopic segregation of reactants due to initial density fluctuations,
i.e. the Zeldovich effect, cf. Section 1.4.2 and Section 4.1.3. Indeed, the behavior
is well described by fractal-like kinetics (see Figure 4.7) implying that viscoelastic
subdiffusion yields qualitatively the same effects as diffusion on a fractal support
that is discussed in [99].

In the context of geometry-controlled kinetics (cf. Section 1.4.2 and [97]) the
reaction rate strongly depends on the initial distance between E and S if the diffusion
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process samples space in a compact fashion, i.e. dW < df . Here we have df = 3 and
our scenarios correspond to the compact (α = 0.6⇒ dW = 3.33) and non-compact
(α = 1⇒ dW = 2) exploration regime. In the latter case, we found the anticipated
classical kinetics with a constant rate coefficient k1. The former case, in contrast,
exhibited rather k1(t) ∼ t−h. In the beginning the reaction is fast because the kinases
find the abundant substrates after traveling only a short distance. As a substantial
amount of substrate is consumed, the average distance between S and E grows since
diffusion cannot sustain the initially well-mixed configuration if sampling process is
compact. Consequently the rate coefficient decays with time.

The double phosphorylation reaction [Equation (4.6)] showed a more complex
behavior and strong deviations from the mean-field description that relies on kinetic
ODEs of global concentrations, cf. Figure 4.8 and Figure 4.9. The reason for the
altered behavior are the spatio-temporal correlations between the positions of E
and P1 that promote a fast rebinding. These correlations are fully neglected in the
framework of kinetic ODEs. Our findings are in qualitative agreement with recent
studies which show that the spatio-temporal correlations in full-stochastic reaction-
diffusion simulations bear unexpected behavior like the breakdown of bistability in a
double phosphorylation cycle [108].

Subdiffusive reactants enhanced the effect of fast rebinding, i.e. spatio-temporal
correlations become even more important. In the framework of geometry-controlled
kinetics, the reaction is more effective if the separation between E and P1 is small. Our
data show that for a two-stage process subdiffusive reactants may even enhance the
overall efficiency compared to the scenario of normal diffusion. Hence, subdiffusion
does not necessarily slow down and hamper biochemical processes but can even
provide a strategy to effectively exploit spatio-temporal correlations.



Chapter 5

Conclusions and Perspectives

5.1 The Mechanism Behind Crowding-induced Subdiffusion

In the work at hand the underlying dynamics of crowding-induced subdiffusion
have been investigated by means of computer simulations. The presented results
show that the typically applied methods for obtaining the diffusion anomaly α from
experimental data provide consistent estimates. This also includes the recently
proposed p variation method [77]. Moreover the results of SPT and FCS experiments
agree, independently whether the underlying dynamics corresponds to the FBM or
the OD model.

The influence of measurement uncertainties inherent to SPT experiments can lead
to wrong interpretations like apparent subdiffusion in a system where tracers diffuse
normally [27]. Our results suggest that these problems extend to the determination
of the underlying random process by commonly applied methods. In particular,
blurring of CTRW trajectories can mask weak ergodicity breaking, i.e. the distinct
scaling of time- and ensemble-averaged MSD. In general, positional blur of SPT data
leads to a systematic underestimation of α. Since even advanced devices suffer from
substantial uncertainties if the tracked particle moves fast, the effects of measurement
errors should always be addressed in the analysis of SPT data.

Aiming at a criterion to distinguish between different models for crowding-induced
subdiffusion we investigated the average shape of SPT trajectories. Simulations reveal
that the frequently proposed models CTRW, FBM, and OD yield quite different
correlations between α and the asphericity A of the trajectories. Furthermore, this
applies to “apparent subdiffusion” of normal diffusive tracers due to measurement
errors. Hence, by measuring the pair of values (A,α) and comparing it to theory
(simulations) one can in principle judge which model describes the experimental
data best. We applied this method on tracer diffusion in dense dextran solutions.
The measurement uncertainties limited the analysis to times t > 100 ms where
diffusion was normal. Accordingly, shape and anomaly deviated only weakly from a
random walk. Future work will consequently focus on other experimental systems
like lysozyme solutions that exhibit subdiffusion on longer time scales.

In a complementary bottom-up approach a particle-based model of the cytoplasm
was designed to isolate the minimum prerequisites for subdiffusion to occur on
time scales accessible by SPT and FCS experiments. Soft-core repulsion and weak
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attraction between spherical particles (proteins) was implemented. For this setting
we only observed transient subdiffusion on short time scales. Further work on
an improved model should probably consider explicit bonds between the proteins.
Following a recent model for gelation [75] finite valencies and geometrical aspects can
give rise to a MSD that is evocative for a tracer in a viscoelastic medium. Thus, by
adequately choosing the parameters, a particle-based system which exhibits FBM-like
subdiffusion could emerge. Another possible modification would be to include more
details of the proteins’ geometry: A recent model of the bacterial cytoplasm that
accounts for the precise structure of numerous proteins indeed shows subdiffusion
[142].

In summary, our projects complement important aspects to the constantly growing
knowledge about crowding-induced subdiffusion. With respect to the underlying
mechanism, however, a conclusive answer is still lacking. In this respect a standard
protocol for the analysis of SPT experiments is desirable. Standardized experiments
on subdiffusion could in turn, inspire coarse-grained models that help to understand
the microscopic architecture of crowded fluids in general and the cytoplasm in
particular.

5.2 Diffusion-controlled Reactions in Crowded Fluids

The second part of this work focused on the impact of subdiffuion on biochemical
kinetics. So far, the analysis of subdiffusion-reaction systems widely relied on the
OD and CTRW scenarios. Inspired by the growing evidence that viscoelasticity gives
rise to subdiffusion in many crowded fluids, including the cytoplasm, and cellular
membranes we applied FBM to generate reactant trajectories. In agreement with
the literature on CTRW and OD we found an enhanced segregation of reactants and
a concomitant, strongly anomalous kinetics for the prototypic reaction A + B → C .

Since FBM is introduced as an external, stochastic force that drives the motion of
the particles, the fluctuation-dissipation relation does not hold. This reduces the com-
putational efforts but also prohibits the implementation of deterministic interactions
like repulsion or attraction between particles. Despite these limitations the observed
behavior is consistent with the existing literature on reaction-subdiffusion. Hence in
the absence of inter-particle forces our method is a valid and efficient approach for
full stochastic simulations of subdiffusive reactants.

In a next step we applied this method to a double Michaelis-Menten reaction
scheme that is realized, for example, in the double phosphorylation of MAPK. Due to
an intermediate dissociation-association event of the reactants spatio-temporal corre-
lations dramatically change the overall process as compared to classical (mean-field)
theories. These findings also hold for normal diffusion (cf. [108]) but subdiffusion
enhances the effect as the more compact trajectories facilitate fast rebinding. Ul-
timately, subdiffusive reactants can even increase the overall productivity of the
reaction.

In all, this study extends the picture of subdiffusion-reaction systems: Subdiffusive
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proteins do not necessarily impair biochemical processes but may even improve the
efficiency when spatio-temporal correlations can be exploited. Since the assumptions
of the mean-field description are not fulfilled, (anomalous) transport of reactants has
to be considered explicitly to obtain correct predictions in such situations. Future
work will address further biologically relevant scenarios like reactions at the interface
of membrane and cytoplasm [143] or subdiffusion-limited formation of gradients
[144].
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