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Universität Heidelberg

Zweitgutachter: Prof. Dr. Dariu M. Gavrila

Universität von Amsterdam





Zusammenfassung

Diese Arbeit beschäftigt sich mit bildgestützter Fußgängererkennung in rea-

len, dynamischen Umgebungen mittels einer bewegten Kamera. Der Arbeits-

schwerpunkt liegt nicht auf der Entwicklung neuer Merkmalstypen zur Klassi-

fikation, sondern auf merkmals- und klassifikatorunabhängigen zusammenge-

setzten Ansätzen. Diese kombinieren komplementäre Informationen aus meh-

reren bildbasierten Informationsquellen mit dem Ziel einer verbesserten Fuß-

gängererkennungsleistung.

Im Anschluss an die Etablierung einer Basiserkennungsleistung mit Hil-

fe einer ausführlichen Experimentalstudie im Bereich der monokularen

Fußgängererkennung wird der Nutzen mehrerer Merkmale auf Modulebene

untersucht. Hierbei wird ein bewegungsbasiertes Konzept zur Aufmerksam-

keitssteuerung vorgestellt, welches auf einem wahrscheinlichkeitsbasierten, ge-

lernten Fußgängerbewegungsmodell aufbaut. Dieses Modell dient zur Adap-

tion der Suchbereiche nachgeschalteter form- und texturbasierter Klassifika-

tionsmodule.

Im weiteren Verlauf dieser Arbeit liegt der Schwerpunkt auf der Integration

komplementärer Informationen in den eigentlichen Mustererkennungsschritt.

In diesem Sinne werden ansichtsspezifische generative Form- und Texturmo-

delle vorgestellt. Die Kombination dieser generativen Modelle mit diskrimina-

tiven Klassifikatoren erfolgt durch die Nutzung generativ erzeugter virtueller

Trainingsbeispiele, um die Erkennungleistung der diskriminativen Modelle zu

verbessern. Beide Modellarten sind durch Aktives Lernen verbunden, um den

Trainingsprozess auf die wichtigsten und informativsten Trainingsbeispiele zu

fokussieren.

Des Weiteren wird ein Mixture-of-Experts-System zur Klassifikation vor-

geschlagen, welches auf lokalen ansichtsspezifischen Klassifikationsexperten

basiert. Diese Experten nutzen mehrere Bildmodalitäten und -merkmale. Als

Modalitäten werden Grauwertintensität, Tiefeninformation aus dichtem Ste-

reosehen und Bewegungsinformation aus dichtem optischen Fluss betrach-

tet. Als Merkmale dienen sowohl formbasierte, gradientenbasierte als auch

texturbasierte Merkmale. Gegenüber Methoden, die auf einem gemeinsamen

Merkmalsraum beruhen, zeichnet sich das Mixture-of-Experts-Modell durch

bessere Erkennungsleistung und bessere praktische Umsetzbarkeit aus.

Zu guter Letzt behandelt diese Arbeit die Erweiterung des Mixture-of-

Experts-Modells im Hinblick auf die Behandlung von Teilverdeckungen und



die Schätzung der Körperorientierung der Fußgänger. Das entwickelte Verde-

ckungsmodell beruht auf der Untersuchung von Diskontinuitäten im Tiefen-

und Bewegungsraum, welche durch Teilverdeckungen hervorgerufen werden.

Abhängig von den Verdeckungen werden Gewichtungsfaktoren für einzelne

Körperteile bestimmt, um die Gesamtentscheidung hauptsächlich auf sichtba-

re Körperteile zu stützen. Das ansichtsspezifische Mixture-of-Experts-Modell

wird ebenfalls zur Schätzung der Dichtefunktion der Körperorientierung ei-

nes Fußgängers benutzt, auch hier unter Berücksichtigung von Form- und

Texturinformation.

Im Rahmen dieser Arbeit wird besonderer Nachdruck auf ausführliche Sys-

temevaluation gelegt, sowohl im Hinblick auf Evaluationsmethodik als auch

unter Zuhilfenahme umfangreicher und anwendungsnaher Datensätze. Mehre-

re Datensätze werden öffentlich zu Vergleichszwecken zur Verfügung gestellt.

Es konnten signifikante Verbesserungen in allen Teilbereichen dieser Arbeit,

d.h. Fußgängererkennung, Behandlung von Teilverdeckungen und Schätzung

der Körperorientierung, verglichen mit dem heutigen Stand der Technik er-

reicht werden. Dies gilt insbesondere für die Fußgängererkennungs-leistung;

Falscherkennungen wurden bei gleicher Erkennungsrate um deutlich mehr als

eine Größenordnung reduziert.



Abstract

This thesis addresses the problem of recognizing pedestrians in video im-

ages acquired from a moving camera in real-world cluttered environments.

Instead of focusing on the development of novel feature primitives or pat-

tern classifiers, we follow an orthogonal direction and develop feature- and

classifier-independent compound techniques which integrate complementary

information from multiple image-based sources with the objective of improved

pedestrian classification performance.

After establishing a performance baseline in terms of a thorough exper-

imental study on monocular pedestrian recognition, we investigate the use

of multiple cues on module-level. A motion-based focus of attention stage is

proposed based on a learned probabilistic pedestrian-specific model of motion

features. The model is used to generate pedestrian localization hypotheses

for subsequent shape- and texture-based classification modules.

In the remainder of this work, we focus on the integration of complemen-

tary information directly into the pattern classification step. We present a

combination of shape and texture information by means of pose-specific gen-

erative shape and texture models. The generative models are integrated with

discriminative classification models by utilizing synthesized virtual pedestrian

training samples from the former to enhance the classification performance

of the latter. Both models are linked using Active Learning to guide the

training process towards informative samples.

A multi-level mixture-of-experts classification framework is proposed which

involves local pose-specific expert classifiers operating on multiple image

modalities and features. In terms of image modalities, we consider gray-level

intensity, depth cues derived from dense stereo vision and motion cues arising

from dense optical flow. We furthermore employ shape-based, gradient-based

and texture-based features. The mixture-of-experts formulation compares

favorably to joint space approaches, in view of performance and practical

feasibility.

Finally, we extend this mixture-of-experts framework in terms of multi-cue

partial occlusion handling and the estimation of pedestrian body orienta-

tion. Our occlusion model involves examining occlusion boundaries which

manifest in discontinuities in depth and motion space. Occlusion-dependent

weights which relate to the visibility of certain body parts focus the deci-

sion on unoccluded body components. We further apply the pose-specific



nature of our mixture-of-experts framework towards estimating the density

of pedestrian body orientation from single images, again integrating shape

and texture information.

Throughout this work, particular emphasis is laid on thorough performance

evaluation both regarding methodology and competitive real-world datasets.

Several datasets used in this thesis are made publicly available for benchmark-

ing purposes. Our results indicate significant performance boosts over state-

of-the-art for all aspects considered in this thesis, i.e. pedestrian recognition,

partial occlusion handling and body orientation estimation. The pedestrian

recognition performance in particular is considerably advanced; false detec-

tions at constant detection rates are reduced by significantly more than an

order of magnitude.
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Chapter 1

Introduction

Perception is one of the key elements for humans to survive in a dynamic

environment. It allows us to extract information from our surroundings,

interpret and understand the situation in order to act and interact appropri-

ately. Vision has developed to be the primary and most important sensory

cue in the human system. The perceptual process is taken to be organized

in a cycle, the perception-action cycle, cf. [60]. A simplified version of the

perception-action cycle is shown in Figure 1.1.

At the beginning of the perceptual process lies the stimulus from the envi-

ronment which is received by the sensory system, e.g. the retina. The stimulus

is processed by the neural system and generates perception. In case of visual

stimuli, perception relates to the conscious experience of seeing something

Figure 1.1: The human perceptual process is organized in a perception-action
cycle. Adapted from [60].
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Chapter 1 Introduction

without identifying what the object actually is. Recognition is the process

of classifying the perceived object into a category, e.g. a cup or a human be-

ing. At this point, humans heavily rely on their knowledge of different object

classes which results from a (possibly never-ending) learning process. The

final step in the perceptual process is (re-)action derived from the recognized

objects and the environment. Action can in turn effect new stimuli which

makes the perception-action cycle continuous.

The ultimate design goal for autonomous systems is to mimic human be-

havior in terms of understanding and effortlessly acting within a dynamic

human-inhabited environment. Although artificial sensors emulating the hu-

man sensory systems, e.g. cameras or microphones, are nowadays widely avail-

able, current autonomous systems are still far behind humans in terms of

understanding and acting in real-world environments. The chief reason is

the (theoretical and practical) unavailability of methods to reliably perform

perception and recognition on a broad scale, i.e. not limited to isolated recog-

nition problems. In addition, the human perception system is still not fully

understood which makes it exceedingly difficult to duplicate artificially.

1.1 Motivation and Challenges

Most autonomous systems rely on visual cues derived from camera sensors to

interpret and understand their environment. At the core, the visual percep-

tion and recognition problem can be formulated as an image-based multi-class

object categorization problem. For most object classes, explicit models rep-

resenting the structure and characteristics of that particular object category

are not readily available. This has spawned the use of computer vision and

pattern recognition techniques to learn an implicit representation of object

classes from example images.

For autonomous systems situated in a human-inhabited environment, a

key ability is to recognize and discriminate people from other object classes.

While easy for humans, finding people in images is one of the most chal-

lenging problems from a machine vision perspective, notwithstanding years

of methodical and technical progress, see Chapter 2.

Foremost, there is the wide range of possible pedestrian appearance. See

Figure 1.2 for examples. The main cause for highly varying pedestrian ap-

pearance is clothing which can be of arbitrary color, style or may or may not

exhibit (regular) patterns. Clothing can be tight-fitting and hence accentuat-

2



1.1 Motivation and Challenges

ing the body contours, see Figures 1.2a and 1.2c, or relatively loose, resulting

in irregular pedestrian shape contours, as shown in Figures 1.2b and 1.2d.

Another challenge arises from the highly articulated body pose of pedes-

trians, see Figures 1.2a and 1.2b. Human pose changes considerably through

a human gait cycle. People can bend down, tilt over, squat down and move

their extremities independently from the torso. This makes it particularly

hard to derive an explicit model for pedestrian recognition. The complexity

of body articulations of pedestrians in 2D images increases significantly with

the camera resolution and proximity to the camera which requires more com-

plex models for close-range and high-resolution applications, e.g. component-

based approaches, see Chapter 2. People can appear at multiple sizes (scales)

(a) (b)

(c) (d)

Figure 1.2: The appearance of pedestrians can change considerably due to
clothing, scale, pose and contrast between the pedestrian and the
background.
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(a) (b)

Figure 1.3: In real-world settings, pedestrians are often partially occluded. Only
parts of the body are visible.

in the image and are often partially occluded by other (static or moving) ob-

jects in the scene. See Figures 1.2a and 1.3.

In real-world applications, environmental conditions can also pose problems

for pedestrian recognition systems. Pedestrians may appear at low contrast to

the background, e.g. see Figure 1.2c, depending on the illumination conditions

and the quality of camera sensors. Under low illumination, images tend to

get noisy and motion blur can be induced due to high camera exposure times.

(a) (b)

Figure 1.4: (a) Difficult environmental conditions. (b) Highly textured and clut-
tered backgrounds.
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Weather conditions can heavily influence recognition performance as well, see

Figure 1.4a.

In case of a moving camera in a dynamic environment, problems arise from

heavily cluttered and ever-changing backgrounds. Since pedestrians have

mainly vertical contours, backgrounds with highly textured vertical structures

are particularly challenging, as depicted in Figure 1.4b. Such areas can easily

be mistaken for a pedestrian, especially in case of approaches that rely on

(vertical) edge structure or shape.

At the same time, machine vision systems for people recognition are often

subject to high performance demands. An ideal system should recognize any

person and be avoid of any errors, i.e. mistaking an arbitrary object as a per-

son. The system should be able to work robustly under various environmental

conditions and be computationally efficient. Taking human recognition per-

formance as a benchmark, real artificial systems available today paint an

inferior performance picture. Most current systems are plagued by the large

intra-class variability of persons which is hard to capture as a whole. Missing

detections (false negatives) are the result. Real-world environments exhibit

many structures that look similar to people at a lower-level, e.g. in terms of

shape, size or structure, resulting in false detections (false positives). De-

ficiencies in the available sensory systems heavily decrease the robustness

to environmental conditions, e.g. illumination or weather. All in all, the

recognition performance is still orders of magnitudes away from human per-

formance, when viewed in isolation from issues such as human reaction time

or vigilance.

This thesis aims to raise the performance bar of state-of-the-art machine

vision systems in terms of people recognition in dynamic real-world environ-

ments. A detailed overview of this thesis and its contributions is given in

Chapter 3.

1.2 Applications

There are many potential application areas for the people recognition meth-

ods developed in this thesis. We are specifically concerned with those cases,

where the human body to be detected covers a smaller portion of the image,

i.e. is visible at lower resolution. Hence our use of the term “pedestrian” in

the remainder of this thesis, rather than the more general “people” or “per-

son.” We do not consider more detailed perception tasks, such as human
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(a) (b)

Figure 1.5: An intelligent vehicle watches the road with cameras (marked in red)
for possible collisions with pedestrians. c© Daimler AG.

pose recovery or activity recognition [53, 107, 126].

Possible applications include outdoor settings such as visual surveillance,

where a camera is watching down onto a street. Another application area is

the field of intelligent vehicles, where an on-board camera watches the road

ahead for possible collisions with pedestrians (and other traffic participants),

see Figure 1.5. It also applies to indoor settings such as a robot recognizing a

human walking down the hall or can be used as a proxy for human-computer

interaction. It is further relevant to the fields of content-based image analysis

and retrieval.

Although the methods presented in this work are fairly general with respect

to the object class to be recognized, we choose the recognition of pedestrians

in an urban environment from a moving vehicle as an experimental testbed.

In this intelligent vehicles application, most of the previously mentioned chal-

lenges and difficulties are combined. In addition, it is arguably the most

important application, given that worldwide fatality figures of pedestrians in

traffic are estimated at 760.000 per year [51]. On average, this figure rep-

resents 65 % of all traffic-related deaths, including vehicle occupants. This

percentage is particularly high in low-income countries.

Despite the inferiority of artificial pedestrian detectors relative to human

vision and severe methodical challenges and performance demands, one of

the central questions concerns the performance that is deemed necessary to

deploy a pedestrian recognition system for real-world use. Besides the afore-
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Figure 1.6: Automotive night vision with pedestrian recognition. c© Daimler
AG.

mentioned limitations in terms of recognition performance, artificial systems

have an advantage over humans in that they do not fatigue, are always vigi-

lant and can possible react in a small fraction of a second. Such benefits can

outweigh the limitations to that extent, that real-world deployment becomes

reasonable, depending on the exact application requirements. Recognizing

pedestrians for content-based image analysis certainly has more relaxed per-

formance requirements than automatic braking in the case of intelligent ve-

hicles.

Taking the field of face recognition as an example, systems are widely used

in real-world, although the recognition performance is not on par with human

performance: Intelligent management software for digital photos can auto-

matically sort and group images both in terms of the presence of faces and by

the faces of individual persons [5]. Digital cameras (and even mobile phones)

have face recognition software on-board to automatically control focus. Here,

possible mistakes of the systems are not critical and can easily be corrected

by the human user without severe consequences.

Regarding intelligent vehicles, the first night vision systems that detect

and highlight pedestrians have reached the market (e.g. Mercedes-Benz E-

Class 2009, BMW 7 series 2008 and Audi A8 2010), see Figure 1.6. Those

systems use near-infrared vision combined with active illumination or far-
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infrared vision (heat images) as the only sensory input and do not effect any

vehicle actuation. The chief reason is the lacking recognition performance

using vision only. As a way out, sensor fusion approaches have been pursued

in the intelligent vehicles domain to boost the recognition performance. In

the second half of 2010, Volvo introduced a collision mitigation system for

pedestrians based on a fusion of vision and radar in their S60 limousine.

All of the previously mentioned applications would significantly benefit

from more robust vision-based methods for pedestrian recognition to improve

performance and to address a wider range of scenarios.
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Chapter 2

Related Work

Pedestrian recognition has attracted a significant amount of interest from

the computer vision and pattern recognition community over the past years.

See [32, 37, 51, 58, 72] for recent surveys and performance studies. In this

chapter, we focus on 2D approaches which are suitable for medium resolu-

tion pedestrian data (i.e. pedestrian height between 30 and 80 pixels). We

do not cover higher-level recognition tasks such as human pose recovery or

activity recognition [53, 107, 126]. A pedestrian classifier is typically part

of an integrated system involving a pre-processing step to select initial ob-

ject hypotheses and a post-processing step to integrate classification results

over time (tracking). The classifier itself is the most important module. Its

performance accounts for the better part of the overall system performance

and the majority of computational resources is spent here. This subdivision

of the recognition problem is not specific to pedestrian recognition, but is a

common concept for the recognition of arbitrary objects, see Figure 2.1.

Figure 2.1: Architecture of most object recognition systems involving four steps:
Image acquisition, hypotheses selection, object classification and
tracking.
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2.1 Hypotheses Selection

The simplest technique to obtain initial object location hypotheses is the slid-

ing window technique, where detector windows at various scales and locations

are shifted over the image. The computational costs are often too high to al-

low for real-time processing. Significant speed-ups can be obtained by either

coupling the sliding window approach with a classifier cascade of increasing

complexity [47, 105, 116, 134, 135, 140, 159, 163, 164, 174, 175, 179, 182]

or by restricting the search-space based on known camera geometry and

prior information about the target object class. These include application-

specific constraints such as the flat-world assumption, ground-plane based

objects and common geometry of pedestrians, e.g. object height or aspect

ratio [37, 40, 56, 92, 94, 110, 135, 139, 181]. In case of a moving camera in a

real-world environment, varying pitch can be handled by relaxing the scene

constraints [56] or by (re-)estimating the scene geometry on-line, using depth

cues [41, 85, 92, 94].

Besides geometric constraints on possible pedestrian locations, cues derived

directly from the image data are useful as early cueing mechanisms. Back-

ground subtraction, which is commonly used in static surveillance scenarios

[107, 111, 147, 181], does not robustly generalize to a moving camera in a real-

world setting. Some approaches have used stereo vision in combination with

low-level segmentation or depth-filtering to further constrain the location of

pedestrian candidates [2, 17, 41, 56, 85, 92, 94, 110, 112, 180], see Figure 2.2.

(a) (b) (c)

Figure 2.2: Example of hypotheses selection by scene constraints and depth-
filtering, following [56]. (a) Input image with estimated scene ge-
ometry (ground-plane). (b) Dense grid of pedestrian hypotheses at
various locations and scales, constrained to lie on the ground. (c)
Remaining hypotheses after depth-filtering.
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Motion cues resulting from the deviation of the observed optical flow from

the expected ego-motion flow field [40, 124] can also provide hypotheses fil-

tering. Another attention-focusing strategy involves interest point detectors

to recover regions with high information content based on local discontinu-

ities of the image brightness function which often occur at object boundaries

[1, 92, 94, 98, 138].

2.2 Pedestrian Classification

After a set of initial object hypotheses has been acquired, further verifi-

cation (classification) involves pedestrian appearance models, using various

spatial and temporal cues. Following a rough categorization of such models

into generative and discriminative models [160], we further introduce a delin-

eation in terms of visual features and classification techniques. In both the

generative and discriminative approach to pedestrian classification, a given

image (or a sub-region thereof) is to be assigned to either the pedestrian or

non-pedestrian class, depending on the corresponding class posterior proba-

bilities. The main difference between generative and discriminative models

is how posterior probabilities are estimated for each class.

2.2.1 Generative Models

Generative approaches to pedestrian classification model the appearance of

the pedestrian class in terms of its class-conditional density function. In

combination with the class priors, the posterior probability for the pedestrian

class can be inferred using a Bayesian approach.

Shape Models

Shape cues are particularly attractive because of their property to reduce vari-

ations in pedestrian appearance due to lighting or clothing. At this point, we

omit discussion of complex 3D human shape models [53, 107, 126] and focus

on 2D pedestrian shape models which are commonly learned from shape con-

tour examples. In this regard, both discrete and continuous representations

have been introduced to model the shape space.

Discrete approaches represent the shape manifold by a set of exemplar

shapes [54, 56, 69, 149, 155]. On the one hand, exemplar-based models im-

ply a high specificity, since only plausible shape examples are included and
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Figure 2.3: A hierarchical tree-like structure for discrete pedestrian shape exem-
plars. Adapted from [54].

changes of topology need not be explicitly modeled. On the other hand, such

models require a large amount of example shapes (up to many thousands)

to sufficiently cover the shape space due to transformations and intra-class

variance. Particularly in close-range (high-resolution) settings, human body

articulations become extremely diverse and often irregular. Exemplar-based

models have difficulties to scale-up to such scenarios. The large amount of

shape variation cannot be adequately represented by distinct shape examples.

From a practical point of view, exemplar-based models have to strike a

balance between specificity and compactness to be used in real-world appli-

cations, particularly with regard to storage constraints and feasible on-line

matching. Efficient matching techniques based on distance-transforms have

been combined with pre-computed hierarchical structures, to allow for real-

time on-line matching of many thousands of exemplars [54, 56, 69, 149], see

Figure 2.3.

Continuous shape models involve a compact parametric representation of

the class-conditional density, learned from a set of training shapes, given the

existence of an appropriate manual [25, 63, 64] or automatic [9, 12, 36, 80, 110]

shape registration method. Linear shape space representations which model

the class-conditional density as a single Gaussian have been employed by [9,

25]. Forcing topologically diverse shapes (e.g. pedestrian with feet apart and

with feet closed) into a single linear model may result in many intermediate
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Figure 2.4: Continuous PCA-based pedestrian shape model depicting shape vari-
ation along two eigenvector modes for two orientation-specific mod-
els. Adapted from [34].

model instantiations that are physically implausible. To recover physically

plausible regions in the linear model space, conditional-density models have

been proposed [25, 34, 36], see Figure 2.4. Further, non-linear extensions have

been introduced at the cost of requiring a larger number of training shapes

to cope with the higher model complexity [25, 36, 63, 64, 110]. Rather than

modeling the non-linearity explicitly, most approaches break up the non-

linear shape space into piecewise linear patches. Techniques to determine

these local sub-regions include fitting a mixture of Gaussians via the EM-

algorithm [25] and K-means clustering in shape space [36, 63, 64, 110].

Compared to discrete shape models, continuous generative models can fill

gaps in the shape representation using interpolation [36, 55]. However, on-

line matching proves to be more complex, since recovering an estimate of the

maximum-a-posteriori model parameters involves iterative parameter estima-

tion techniques, i.e. Active Contours [25, 110].

A two-layer statistical field model has been proposed to increase the robust-
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ness of shape representations to partial occlusions and background clutter by

representing shapes as a distributed connected model [176]. Here, a hidden

Markov field layer to capture the shape prior is combined with an observation

layer which associates shape with the likelihood of image observations.

Combined Shape and Texture Models

A way to enrich the representation is to combine shape and texture informa-

tion within a compound parametric appearance model [23, 25, 36, 43, 79, 80].

These approaches involve separate statistical models for shape and intensity

variations. A linear intensity model is built from shape-normalized examples

guided by sparse [25, 36, 43, 79] or dense correspondences [23, 80]. Model-

fitting requires joint estimation of shape and texture parameters using iter-

ative error minimization schemes [43, 79, 80]. To reduce the complexity of

parameter estimation, the relation of the fitting error and associated model

parameters can be learned from examples [25].

2.2.2 Discriminative Models

In contrast to generative models, discriminative models approximate the

Bayesian maximum-a-posteriori decision by learning the parameters of a

discriminant function (decision boundary) between the pedestrian and non-

pedestrian class from training examples. We discuss the merits and draw-

backs of several feature representations and continue with a review of classifier

architectures and techniques to break down the complexity of the pedestrian

class.

Features

Local filters operating on pixel intensities are a frequently used feature set

[129]. Recently, local binary pattern (LBP) features [115] have been employed

in the context of pedestrian classification [39, 167]. LBPs encode (thres-

holded) local gray-level differences into a binary number, followed by local

histogramming. Their key advantage is the invariance against monotonic

gray-level changes and noisy backgrounds which are common in cluttered

environments.

Non-adaptive Haar wavelet features have been popularized by [120] and

adapted by many others [108, 135, 142, 164, 165, 173], see Figure 2.5a. This
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(a) (b)

Figure 2.5: Examples of texture-based features. (a) Non-adaptive Haar wavelet
features. (b) Adaptive 5×5 pixel local receptive field (LRF) features.
Adapted from [37].

over-complete feature dictionary represents local intensity differences at var-

ious locations, scales and orientations. Their simplicity and fast evaluation

using integral images [97, 164] contributed to the popularity of Haar wavelet

features. However, the many-times redundant representation, due to over-

lapping spatial shifts, requires mechanisms to select the most appropriate

subset of features out of the vast amount of possible features. Initially, this

selection has been manually designed for the pedestrian class, by incorporat-

ing prior knowledge about the geometric configuration of the human body

[108, 120, 142]. Later, automatic feature selection procedures, i.e. variants of

AdaBoost [49], have been employed to select the most discriminative feature

subset [164, 165, 166, 173].

The automatic extraction of a subset of non-adaptive features can be re-

garded as optimizing the features for the classification task. Likewise, the

particular configuration of spatial features has been included in the actual op-

timization itself, yielding feature sets which adapt to the underlying dataset

during training. Such features are referred to as local receptive fields (LRF),

see Figure 2.5b, or convolutional networks [38, 50, 56, 109, 118, 135, 151, 170],

in reference to neural structures in the human visual cortex [60]. Recent stud-

ies have empirically demonstrated the superiority of adaptive local receptive

field features over non-adaptive Haar wavelet features with regard to pedes-

trian classification [109, 151].

Another class of local intensity-based features are codebook patches, ex-

tracted around interesting points in the image [1, 92, 93, 94, 138]. A code-

book of distinctive object feature patches along with geometrical relations

is learned from training data followed by clustering in the space of feature

patches to obtain a compact representation of the underlying object class.
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Based on this representation, feature vectors have been extracted including

information about the presence and geometric relation of codebook patches

[1, 92, 93, 94, 138].

Others have focused on discontinuities in the image brightness function in

terms of models of local edge structure. Well-normalized image gradient ori-

entation histograms, computed over local image blocks, have become popular

in both dense [27, 35, 38, 39, 52, 102, 118, 137, 139, 140, 165, 166, 167, 173,

179, 182] (HOG, histograms of oriented gradients), and sparse representa-

tions [98] (SIFT, Scale-Invariant Feature Transform), where sparseness arises

from pre-processing with an interest-point detector. Initially, dense gradient

orientation histograms were computed using local image blocks at a single

fixed scale [27] to limit the dimensionality of the feature vector and compu-

tational costs. Extensions to variable-sized blocks have been presented by

[140, 173, 179, 182]. Results indicate a performance improvement over the

original HOG approach. Recently, local spatial variation and correlation of

gradient-based features have been encoded using covariance matrix descrip-

tors which increase robustness towards illumination changes [137, 159, 173].

Yet others have designed local shape filters that explicitly incorporate the

spatial configuration of salient edge-like structures. Multi-scale features based

on horizontal and vertical co-occurrence groups of dominant gradient orien-

tation have been introduced by [105]. Manually designed sets of Edgelets,

representing local line or curve segments, have been proposed to capture

edge structure [174]. An extension to these pre-defined edgelet features has

been introduced with regard to adapting the local edgelet features to the

underlying image data [134]. So called Shapelet features are assembled from

low-level oriented gradient responses using AdaBoost, to yield more discrim-

inative local features. Again, variants of AdaBoost are frequently used to

select the most discriminative subset of features.

As an extension to spatial features, spatio-temporal features have been

proposed to capture human motion [28, 35, 39, 143, 164, 165, 166, 173], es-

pecially gait [66, 91, 124, 170]. For example, Haar wavelets and local shape

filters have been extended to the temporal domain by incorporating intensity

differences over time [143, 164]. Local receptive field features have been gen-

eralized to spatio-temporal receptive fields [66, 170]. Histograms of oriented

gradients (HOG) have been extended to histograms of differential optical flow

[28, 35, 39, 165, 166, 173]. Several authors compared the performance of oth-

erwise identical spatial and spatio-temporal features and reported superior
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performance of the latter at the drawback of requiring temporally aligned

training samples [28, 35, 39, 164, 165, 166, 173].

Classifier Architectures

Discriminative classification techniques aim at determining an optimal de-

cision boundary between pattern classes in a feature space. Feed-forward

multi-layer neural networks [78] (MLP, multi-layer perceptron) implement

linear discriminant functions (top layer) in a feature space in which input

patterns have been mapped non-linearly (hidden layer). Optimality of the

decision boundary is assessed by minimizing an error criterion with respect to

the network parameters, i.e. mean squared error [78]. In the context of pedes-

trian recognition, multi-layer neural networks have been applied primarily in

conjunction with adaptive local receptive field features as non-linearities in

the hidden network layer [50, 56, 109, 151, 170]. This architecture unifies

feature extraction and classification within a single model. Other than that,

MLPs can be combined with arbitrary feature sets and provide non-linear

decision boundaries [39].

Support vector machines (SVM) [161] have evolved as a powerful tool to

solve pattern classification problems. In contrast to neural networks, SVMs

do not minimize some artificial error metric but maximize the margin of a

linear decision boundary (hyperplane) to achieve maximum separation be-

tween the object classes. Regarding pedestrian classification, linear SVM

classifiers have been used in combination with various (non-linear) feature

sets [27, 28, 35, 38, 39, 109, 111, 137, 140, 142, 165, 166, 173, 179, 182].

Non-linear SVM classification, e.g. using polynomial or radial basis function

kernels as implicit mapping of the samples into a higher-dimensional (and

probably infinite) space, usually yields further performance boosts. These

are however paid for with a significant increase in computational costs and

memory requirements [2, 102, 108, 109, 111, 120, 137, 151]. Recent work

presents efficient versions of non-linear SVMs for a specific class of kernels

[102].

AdaBoost [49], which has been applied as automatic feature selection proce-

dure (see above), has also been used to construct strong classifiers as weighted

linear combinations of selected weak-learners, each involving a threshold on a

single feature. Such boosting approaches require to map a multi-dimensional

feature set to a single dimension, either by applying projections [159, 175]
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or by treating each dimension as an individual feature [105, 116, 134, 135,

139, 165, 166, 173, 174]. An alternative is the use of more complex weak-

learners that operate in a multi-dimensional space, e.g. support vector ma-

chines, [140, 179, 182].

To incorporate non-linearities and speed-up the classification process, boosted

detector cascades have been introduced by [164] and adopted by many oth-

ers [47, 105, 116, 134, 135, 140, 159, 163, 174, 175, 179, 182]. Motivated

by the fact that the majority of detection windows in an image are non-

pedestrians, the cascade structure is tuned to detect almost all pedestrians

while rejecting non-pedestrians as early as possible. AdaBoost is used in

each layer to iteratively construct a strong classifier guided by user-specified

performance criteria. During training, each layer is focused on the errors the

previous layers make. As a result, the whole cascade consists of increasingly

more complex detectors. This contributes to the high processing speed of the

cascade approach, since usually only a few feature evaluations in the early

cascade layers suffice to quickly reject non-pedestrian examples.

2.2.3 Multi-Level Representations

Besides introducing new feature sets and classification techniques, many pedes-

trian recognition approaches attempt to break-down the complex appearance

of the pedestrian class into better manageable sub-parts.

First, a mixture-of-experts strategy establishes local pose-specific pedes-

trian clusters, followed by the training of a specialized expert classifier for each

subspace [38, 39, 56, 111, 139, 142, 174, 179]. Appropriate pose-based cluster-

ing involves both manually [111, 139, 142, 174] and automatically established

[179] mutually exclusive clusters, as well as soft clustering approaches using a

probabilistic assignment of pedestrian examples to pose clusters, obtained by

a pre-processing step, e.g. shape matching [38, 39, 56]. An additional issue

in mixture-of-experts architectures is how to integrate the individual expert

responses to a final decision. Usually, all experts are run in parallel, where the

final decision is obtained as a combination of local expert responses using tech-

niques such as maximum selection [111, 174], majority voting [142], AdaBoost

[139], trajectory-based data-association [179], and probabilistic shape-based

weighting [38, 39, 56].

Second, component-based approaches decompose pedestrian appearance

into parts. These parts are either semantically motivated (body parts such
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as head, torso and legs) [2, 31, 35, 105, 108, 139, 143, 167, 174] or concern

representations based on a collection of local parts in a deformable configu-

ration [1, 46, 47, 48, 84, 92, 94, 95, 138]. A general trade-off is involved at

the choice of the number and selection of the individual parts. On one hand,

components should have as small spatial extent as possible, to succinctly

capture articulated motion. On the other hand, components should have

sufficiently large spatial extent to contain discriminative visual structure to

allow reliable detection. Part-based approaches require assembly techniques

to integrate the local part responses to a final detection, constrained by spa-

tial relations among the parts.

Approaches using partitions into semantic sub-regions train a discrimi-

native feature-based classifier (see above), specific to a single part, along

with a model for geometric relations between parts. Techniques to assem-

ble part-based detection responses to a final classification result include the

training of a combination classifier [2, 108, 139], probabilistic inference to de-

termine the most likely object configuration given the observed image features

[105, 143, 174], voting schemes [31, 35] or heuristics [167].

Deformable part approaches, i.e. [1, 46, 47, 48, 84, 92, 94, 95, 138], represent

pedestrians in a bottom-up fashion as assemblies of locally linked features,

often augmented with a top-down verification step [92, 94, 95, 138]. Recently,

it has been shown that context information can help to detect parts which

cannot be reliably detected using their own appearance, e.g. because of low

resolution or occlusions [84].

Component-based approaches have certain advantages compared to full-

body classification. They do not suffer from the unfavorable complexity re-

lated to the number of training examples necessary to adequately cover the

set of possible appearances, particularly in close-range and high-resolution

scenarios. Furthermore, the expectation of missing parts due to scene oc-

clusions or inter-object occlusions is easier addressed, particularly if explicit

inter-object occlusion reasoning is incorporated into the model [35, 84, 92, 94,

138, 167, 174]. However, these advantages are paid for with higher complexity

in both model generation (training) and application (testing). Their appli-

cability to lower resolution images is limited since each component detector

requires a certain spatial support for robustness.

A recent trend in the community involves the combination of multiple

features or modalities, e.g. intensity, depth and motion. While some ap-

proaches utilize combinations on module-level [40, 41, 56, 112], others inte-
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Figure 2.6: Multi-modality pedestrian representation. Left to right: Intensity
image, dense stereo (depth) image, dense flow image (motion). In
depth images, darker colors denote closer distances. Optical flow
images depict the horizontal component of flow vectors. Medium red
colors denote close to zero flow, darker and brighter colors indicate
stronger motion (to the left and to the right, respectively). Adapted
from [35].

grate multiple information sources directly into the pattern classification step

[28, 35, 39, 118, 131, 137, 163, 165, 166, 167, 173, 175].

Some approaches combine features in the intensity domain using boosting

[175] or multiple kernel learning [163], e.g. by combining HOG, covariance

and edgelet features into a boosted heterogenous cascade classifier with an

explicit optimization with regard to runtime [175]. Others integrate intensity

and flow features by boosting [165, 173] or concatenating all features into a

single feature vector which is then passed to a single classifier [28, 165, 173].

The work in [165] was recently extended to additionally include depth fea-

tures [166]. Note that the approach of [35] marks the first use of intensity,

motion and depth features in the domain of pedestrian classification, see Fig-

ure 2.6. Boosting approaches require to map the multi-dimensional features

to a single dimension, either by applying projections [175] or treating each

dimension as an individual feature [165, 166, 173]. An alternative is the use of

more complex weak-learners that operate in a multi-dimensional space, e.g.

support vector machines [182].

A joint feature space approach to combine HOG and LBP features was used

in [167]. [137] presents the integration of HOG features, co-occurrence fea-

tures and color frequency descriptors into a very high-dimensional (≈ 170.000

dimensions) joint feature space in which classical machine learning approaches

are intractable. Hence, Partial Least Squares is applied to project the features
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into a subspace with lower dimensionality which facilitates robust classifier

learning.

In contrast, [28, 35, 39, 118, 131] utilize fusion on classifier-level by training

a specialized classifier for each cue. [28] and [35] use a single feature (HOG)

in two (intensity and motion, [28]) and three different modalities (intensity,

depth and motion, [35]), respectively. [118] involves a combination of two

features (HOG and LRF) within a single modality (intensity). [131] presents

a classifier-level combination of two features where each feature operates in

a different modality (HOG / intensity and LRF / depth). Finally, a pose-

specific mixture-of-experts framework using two features (HOG and LBP)

in three different modalities (intensity, depth and motion) is proposed in

[39]. Classifier fusion is done using fuzzy integration [118], simple classifier

combination rules [131] or a mixture-of-experts framework [28, 35, 39, 77].

2.3 Tracking

There has been extensive work on the tracking of pedestrians to infer infor-

mation on trajectory-level. Most approaches follow a tracking-by-detection

paradigm which involves the association of detections made by an object

detection system over time. This is a very challenging problem, given the un-

certainty of estimated object positions, ever-changing backgrounds combined

with a moving camera and occlusions.

One line of research has formulated tracking as frame-by-frame association

of detections based on geometry and dynamics without particular pedes-

trian appearance models [2, 56]. Other approaches utilize pedestrian ap-

pearance models (Section 2.2) coupled with geometry and dynamics [9, 16,

64, 76, 92, 94, 99, 110, 122, 128, 143, 155, 174, 176, 179, 181]. Some ap-

proaches furthermore integrate detection and tracking in a Bayesian frame-

work, combining appearance models with an observation density, dynamics

and probabilistic inference of the posterior state density. For this, either

single [9, 64, 122, 155, 174] or multiple cues [16, 76, 99, 110, 128, 143] are

used.

The integration of multiple cues [147] involves combining separate models

for each cue into a joint observation density. The inference of the posterior

state density is usually formulated as a recursive filtering process [6]. Particle

filters [74] are very popular due to their ability to closely approximate com-

plex real-world multimodal posterior densities using sets of weighted random
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samples. Extensions that are especially relevant for pedestrian tracking in-

volve hybrid discrete / continuous state-spaces [64, 110] and efficient sampling

strategies [29, 76, 86, 100].

An important issue in real-world pedestrian tracking problems is how to

deal with multiple targets in the image. Two basic strategies with regard to

the tracking of multiple objects have been proposed. First, the theoretically

most sound approach is to construct a joint state-space involving the number

of targets and their configurations which are inferred in parallel. Problems

arise regarding the significantly increased and variable dimensionality of the

state-space. Solutions to reduce the computational complexity have involved

grid-based or pre-calculated likelihoods [76, 152] and sophisticated resampling

techniques such as Metropolis-Hastings sampling [86], partitioned sampling

[100], or annealed particle filters [29]. Second, some approaches have proposed

to limit the number of objects to one per tracker and employ multiple tracker

instances instead [16, 75, 82, 110, 116]. While this technique simplifies the

state-space representation, a method for initializing a track along with rules

to separate neighboring tracks is required. Typically, an independent detector

process is employed to initialize a new track. To identify individual targets in

the image sequence, appearance models have been learned on-line [3, 4, 16]

which help to associate the object detections to the correct track. Other

competition rules between multiple tracker instances have been formulated

in terms of heuristics [82, 110].

A detection-by-tracking approach has been proposed, where temporal con-

sistency of body articulations has been explicitly incorporated into the detec-

tion process using a hierarchical Gaussian process latent variable model [3].

The resulting system integrates detection and tracking into a single model

and has shown to boost both detection and tracking performance at the

same time. Further, the results show a certain robustness towards (partial

and long-term) occlusions, due to the assumed regularity of the kinematic

human gait model and the use of an on-line learned appearance model that is

taken to remain constant during the occlusion. This work has recently been

extended in terms of 3D pose estimation from multiple viewpoints [4].
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Chapter 3

Outline and Contributions

The aim of this thesis is to develop novel vision-based methods for pedestrian

recognition which can significantly improve the recognition performance. We

do not focus on the development of new (and possibly improved) feature prim-

itives to be used in the classification module. Instead, we follow an orthogonal

direction and propose and evaluate feature- and classifier-independent com-

pound techniques where the term “compound” refers to the combination of

information sources on different levels. This involves multiple image modali-

ties, e.g. gray-level intensity, dense stereo vision and dense optical flow, mul-

tiple features, e.g. shape-based, gradient-based and texture-based features

and higher-level information, such as pedestrian pose and body orientation,

body components and partial occlusions. Throughout this thesis, particular

emphasis is laid on thorough performance evaluation, both from a method-

ical point-of-view and in terms of large and challenging datasets. Several

datasets used in this thesis are made publicly available for benchmarking and

to stimulate further research.

3.1 Monocular Pedestrian Recognition

Pedestrian recognition has attracted an extensive amount of interest from the

computer vision community over the past few years. Many techniques have

been proposed in terms of features, models and general architectures, see

Chapter 2. The picture is increasingly blurred on the experimental side. Re-

ported performances differ by up to several orders of magnitude (e.g. within

the same study [164], or [92] vs. [164]). This stems from the different types

of image data used (degree of background change), the limited size of the test

datasets, and the different (often, not fully specified) evaluation criteria such

as localization tolerance, coverage area, etc. Chapter 4 first covers an ex-

perimental study on monocular pedestrian recognition that provides a sound
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performance baseline (Section 4.1). State-of-the-art detectors are evaluated

using the same large real-world dataset with the same evaluation criteria. We

present a thorough evaluation methodology for the evaluation of integrated

multi-module pedestrian recognition systems and make our dataset publicly

available for benchmarking purposes. Auxiliary effects, such as training sam-

ple resolution, the granularity of the detection grid, non-maximum suppres-

sion, tracking, as well as scene and processing time constraints are taken into

account.

Chapter 4 then continues with work on the integration of multiple cues

for pedestrian recognition (Section 4.2). Multiple cues in a classification set-

ting will be a central topic later on in this thesis. At this point, multiple cues

are used on module-level, in terms of a novel attentive strategy utilizing mo-

tion to recover meaningful pedestrian location hypotheses. Those hypotheses

are processed by subsequent classification modules that combine shape and

texture information.

3.2 A Mixed Generative-Discriminative Pedestrian Model

Starting with Chapter 5, we focus on the pedestrian classification compo-

nent in isolation, i.e. the most important part of a full recognition system as

described in Chapter 4.

Chapter 5 presents a novel approach to pedestrian classification which in-

volves utilizing the synthesized virtual samples of a learned generative model

to enhance the classification performance of a discriminative model. Our

generative model combines shape and texture cues in terms of a number of

probabilistic shape and texture models, each attuned to a particular pedes-

trian pose. Active learning provides the link between the generative and

discriminative model, in the sense that the former is selectively sampled such

that the training process is guided towards the most informative samples of

the latter.

We consider the main contribution to be the novel mixed generative-discriminative

framework for pedestrian classification where a generative model is used to

enhance the performance of a discriminative model in terms of virtual train-

ing samples. This approach is quite unlike previous combination strategies for

generative and discriminative models [90, 104, 156, 178] and unlike previous

applications of active learning. We neither require controlled data acquisition

[13, 20, 57], nor do we have 3D models [65, 103] to our disposition. At the
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same time, we go beyond the synthesis of samples based on simple transfor-

mations [109, 125, 150, 162] and take into account sample probabilities.

A secondary contribution concerns the generative pedestrian model pro-

posed. Similar to [55, 63], our approach uses separate feature-spaces to model

topologically diverse shapes (e.g. pedestrian with feet apart and with feet

closed), in order to increase model specificity. However, we extend the shape

representation of [55, 63] with a texture component, distinguishing between

texture variations at the coarse and the detail level. We establish a statisti-

cal shape-texture model along with the associated class-conditional density

functions. This provides a sound basis for the synthesis of virtual pedestrian

samples by means of three components: foreground shape, foreground texture

and background texture.

3.3 Multi-Level Mixture-of-Experts for Pedestrian

Classification

Most research in the field of pedestrian classification has focused on features

operating on image intensity, as discussed in Chapter 2. In Chapter 6, we

pursue an orthogonal direction and present a novel multi-level mixture-of-

experts approach to combine information from multiple features and modal-

ities with the objective of improved pedestrian classification. On pose-level,

shape cues based on Chamfer shape matching provide sample-dependent pri-

ors for a certain pedestrian view. On modality-level, we represent each sample

in terms of image intensity, (dense) depth and (dense) flow. On feature-

level, we consider histograms of oriented gradients (HOG) and local binary

patterns (LBP). Multi-layer perceptrons (MLP) and linear support vector

machines (linSVM) are used as expert classifiers.

The main contribution is the aforementioned multi-level mixture-of-

experts framework for pedestrian classification, which breaks down the com-

plex classification problem into better manageable sub-problems. To our

knowledge, this work represents the first integration of shape, intensity, depth

and motion as features into a pattern classification framework. We show how

to combine multi-feature / multi-modality classifiers in a principled manner,

using a classifier-independent mixture-of-experts framework which does nei-

ther suffer from the curse of dimensionality nor impractical training times,

given our large high-dimensional dataset. Our multi-modality dataset is made

public for evaluation purposes.
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3.4 Multi-Modality Partial Occlusion Handling

In Chapter 7, we present an extension to the aforementioned mixture-of-

experts framework in terms of a multi-modality model for partial occlusion

handling. Our framework involves a set of component-based expert classifiers

trained on features derived from intensity, depth and motion. To handle

partial occlusion, we compute expert weights that are related to the degree of

visibility of the associated component. This degree of visibility is determined

by examining occlusion boundaries, i.e. discontinuities in depth and motion.

Occlusion-dependent component weights focus the combined decision of the

classifier on the unoccluded body parts.

We consider the mixture-of-experts extension with regard to partial occlu-

sion handling as the main contribution of this chapter. In contrast to [174],

we do neither require a particular camera set-up nor assume constant visi-

bility of a certain body part. Our method is independent of the employed

feature/classifier combination and the pedestrian component layout, unlike

[167]. A secondary contribution involves the integration of intensity, depth

and motion modalities throughout our approach. Off-line, we train multi-

modality component-based expert classifiers involving feature spaces derived

from gray-level images, depth maps (dense stereo vision) and motion (dense

optical flow), cf. Chapter 6. On-line, we apply multi-modality (depth and

motion) mean-shift segmentation to each test sample to recover occlusion-

dependent component weights which are used to fuse the component-based

expert classifiers to a joint decision with a focus on visible body parts.

3.5 Integrated Classification and Orientation Estimation

Chapter 8 extends the mixture-of-experts framework presented in Chapter 6

in terms of applying the pose-specific nature of the model towards single-

frame estimation of pedestrian body orientation. We use the set of view-

related expert models not only for classification as in Chapter 6, but also

to approximate the probability density of pedestrian orientation. Sample-

dependent priors are integrated in a Bayesian fashion and the approach scales-

up to the use of multiple cameras.

We consider the main contribution of Chapter 8 to be the integrated frame-

work for pedestrian classification and orientation. Previous approaches to

orientation estimation, e.g. [52, 111, 142], assumed classification to be solved

26



3.6 Evaluation Methodology

beforehand by some other approach or treated both problems separately with

different models and different training data. In our approach, both problems

are addressed in a unified fashion, using the same underlying mixture-of-

experts model within a probabilistic framework. The integrated treatment

improves the performance of both classification and orientation estimation.

Unlike [52, 111, 142], we utilize readily available negative samples not only

for classification but also for orientation estimation, to better map out the

feature space and stabilize the learned discriminative models. Our orienta-

tion estimate involves approximating the density function of pedestrian body

orientation. This is quite unlike [52, 142], where pedestrian heading is only re-

covered in terms of pre-defined orientation classes, e.g. front, back, etc., using

multi-class classification techniques. Such orientation classes are implicitly

contained in our approach by integrating the density function.

3.6 Evaluation Methodology

Performance evaluation of pedestrian classifiers is a major aspect of this work,

both in terms of methodology and datasets used. Evaluation can be per-

formed using a per-image measure (detection context) or a per-window mea-

sure (classification context). Per-image evaluation involves shifting a pedes-

trian classifier through location and scale across the whole test image. In

per-window evaluation, the test data involves cut-out and scaled bounding

boxes cropped from full test images.

We use both evaluation methods, depending on the application context

of the systems to be evaluated. Per-image evaluation is used to evaluate

(monocular) sliding-window classifiers, cf. Chapter 4 and [37, 72]. For the

evaluation of integrated systems that include a hypotheses generation and

tracking module, per-image (or even per-trajectory) evaluation is the only

viable choice.

Most real-world systems however integrate several modules; i.e. they do not

follow a brute-force sliding-window detection scheme, but use a pre-processing

step to determine initial pedestrian location hypotheses for both enhanced

performance and computational efficiency. This is done by background sub-

traction [107, 111, 147, 181], shape [40, 56], stereo [2, 17, 41, 56, 85, 92, 94,

110, 112, 180], motion [40] or non-vision sensors, such as radar or lidar [51].

As a result, the remaining object hypotheses are not random sub-windows,

but contain meaningful structure that resembles pedestrians in some aspect.
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Further, the number of hypotheses per image which are processed by the

pedestrian classifier is greatly reduced (up to a factor of 10000) compared to

dense sub-window scanning, resulting in a more even ratio between pedes-

trian and non-pedestrian samples. In this application context, we use the

per-window measure to evaluate a classifier, since it more closely resembles

the actual use of the classifier, cf. Chapters 5 - 8. Classification windows

in the test set are not randomly selected sub-images, but result from a pre-

processing step to focus on meaningful samples in the evaluation.

As opposed to Dollar et al. [32] who consider the per-window evaluation for

classifiers flawed, since auxiliary effects (e.g. grid granularity or non-maximum

suppression) are not taken into account, we regard both evaluation set-ups

as viable. The choice has to be made depending on the actual application

context of the pedestrian classifier.

3.7 Publications

This thesis has led to a number of publications that are listed in Appendix A.

Note that the corresponding publications have been included in the discussion

of related work in Chapter 2.
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Chapter 4

Monocular Pedestrian Recognition

This chapter provides a performance baseline by experimentally evaluating

state-of-the-art monocular pedestrian recognition systems using identical set-

ups. The second part presents a novel multi-cue strategy to early focus the

processing attention on image areas that likely contain pedestrians.

4.1 An Experimental Study

The experimental study presented in this section aims to increase visibility

by providing a common point of reference of monocular pedestrian recogni-

tion performance from an experimental perspective. We evaluate a diverse

set of state-of-the-art systems using identical test criteria and datasets:

• Haar wavelet-based AdaBoost cascade [164]

• Histograms of oriented gradient (HOG) features combined with a linear

SVM [27]

• Neural network using local receptive fields (NN/LRF) [170]

• Combined hierarchical shape matching and texture-based NN/LRF clas-

sification [56]

In terms of evaluation, we consider both a generic and an application-

specific test scenario. The generic test scenario is meant to evaluate the

inherent potential of a pedestrian recognition method. It incorporates no

prior scene knowledge as it uses a simple 2D bounding box overlap criterion

for matching. Furthermore, it places no constraints on allowable processing

times (apart from practical feasibility). The application-specific test scenario

focuses on the case of pedestrian recognition from a moving vehicle, where
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knowledge about camera calibration, location of the ground-plane, and sensi-

ble sensor coverage areas provide regions of interest. Evaluation takes place

in 3D in a coordinate system relative to the vehicle. Furthermore, we place

upper bounds on allowable processing times (250 ms vs. 2.5 s per frame).

In both scenarios, we list recognition performance both at the frame and

trajectory level.

4.1.1 Benchmark Dataset

The dataset is truly large-scale; it includes many tens of thousands of training

samples as well as a test sequence consisting of 21790 monocular images at

640 × 480 resolution, captured from a vehicle in a 27 minute drive through

urban traffic. See Table 4.1. Compared to previous pedestrian datasets,

the availability of sequential images means that also hypothesis generation

and tracking components of pedestrian systems can be evaluated, unlike with

[73, 106, 109]. Furthermore, the dataset excels in complexity (dynamically

changing background) and realism for the pedestrian protection application

on-board vehicles. We release both training and test sets, so that other

authors can independently evaluate their systems, in contrast to [32].

Figure 4.1 shows an excerpt from the Daimler pedestrian recognition bench-

mark dataset used in this work. Dataset statistics are shown in Table 4.1

(last row). Training images were recorded at various day times and locations

with no constraints on illumination, pedestrian pose or clothing, except that

pedestrians are fully visible in an upright position. 15660 pedestrian (posi-

tive) samples are provided as training examples. These samples were obtained

by manually extracting 3915 rectangular position labels from video images.

Four pedestrian samples were created from each label by means of mirror-

ing and randomly shifting the bounding boxes by a few pixels in horizontal

and vertical directions to account for localization errors in the application

system. The addition of jittered samples was shown earlier to substantially

improve performance [36]. Pedestrian labels have a minimum height of 72

pixels, so that there is no up-scaling involved in view of different training

sample resolutions for the systems under consideration. Further, we provide

6744 full images not containing any pedestrians from which all approaches

under consideration extract negative samples for training.

Our test dataset consists of an independent image sequence comprising

21790 images (640 × 480 pixels) with 56492 manual labels, including 259
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Dataset
Training Set Test Set

Comments
Pedestrian /

Non-Pedestrian

Pedestrian /

Non-Pedestrian

MIT CBCL Pedes-
trian Database [106]

924 / 0 (cut-outs)
single images, frontal
and back views only

INRIA Person
Dataset [73]

2416 (cut-outs) /
1218 (full images)

1132 (cut-outs) / 453
(full images)

single images (color)

Mobile Scene Analy-
sis Dataset [41]

490 (full images),
1578 ped. labels

1803 (full images),
9380 ped. labels

camera at walking
speed (stroller on ur-
ban sidewalks)

PETS Datasets
(2001, 2003, 2004)
[121]

-
2688, 2500, 13112 (full
images)

16 image sequences
from static cameras

DaimlerChrysler
Pedestrian Classifi-
cation Benchmark
[109]

14400 / 15000 (cut-
outs) + 1200 (full
images)

9600 / 10000 (cut-
outs)

single images

Caltech Pedestrian
Dataset [32]

67.000 (full im-
ages), 192.000 ped.
labels / 61.000
(full images)

not published
test sets not pub-
lished

TU Darmstadt
Pedestrian Dataset
[173]

1092 (full images),
1776 ped. labels /
192 (full images)

508 (full-images),
1326 ped. labels

temporally aligned
image pairs

Daimler Multi-
Cue Pedestrian
Classification
Benchmark (this
thesis, Chap-
ters 6 and 7 and
[35, 39])

52112 / 32465
(cut-outs)

25608 fully visible
+ 11160 partially
occluded ped. /
16235 (cut-outs)

intensity, dense
stereo and dense
flow images +
partially occluded
pedestrians

Daimler Pedes-
trian Recogni-
tion Benchmark
(this thesis,
Chapter 4 and
[37])

15660 (cut-outs)
/ 6744 (full im-
ages)

21790 (full images),
56492 labels: 14132
fully visible ped.
labels in 259 trajec-
tories, 37236 par-
tial ped. labels,
5124 other labels
(bicyclists, motor-
cyclists, etc.)

test set corre-
sponds to a 27
min drive through
urban traffic

Table 4.1: Overview of publicly available pedestrian datasets with ground-truth.

31



Chapter 4 Monocular Pedestrian Recognition

Figure 4.1: Overview of the Daimler pedestrian recognition benchmark dataset:
Pedestrian training samples (top row), non-pedestrian training im-
ages (center row), test images with annotations (bottom row).

trajectories of fully visible pedestrians, captured from a moving vehicle in

a 27 minute drive through urban traffic. In contrast to other established

benchmark datasets (see Table 4.1), the size and complexity of the current

data allows to draw meaningful conclusions without appreciable overfitting

effects. The dataset has a total size of approximately 8.5 GB1.

4.1.2 Selected Pedestrian Recognition Approaches

We select a diverse set of pedestrian recognition approaches in terms of fea-

tures (adaptive, non-adaptive) and classifier architecture for evaluation: Haar

wavelet-based cascade [164], neural network using LRF features [170], and his-

tograms of oriented gradients combined with a linear SVM [27]. In addition

to these approaches, used in sliding window fashion, we consider a system

utilizing coarse-to-fine shape matching and texture-based classification, i.e. a

monocular variant of [56]. Temporal integration is incorporated by coupling

all approaches with a 2D bounding box tracker. We acknowledge that besides

the selected approaches there exist many other interesting lines of research in

the field of monocular pedestrian recognition (see Chapter 2). We encourage

other authors to report performances using the proposed dataset and eval-

1The dataset is made available for research purposes at http://www.science.uva.nl/
research/isla/downloads/pedestrians/
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4.1 An Experimental Study

Figure 4.2: Overview of the employed set of Haar wavelets. Black and white
areas denote negative and positive weights, respectively.

uation criteria for benchmarking. Here, we focus on the most widely-used

approaches2.

Our experimental set-up assigns the underlying system parameters (e.g.

feature layout, training process, etc.) to the values reported to perform best

in the original publications [27, 56, 109, 164, 170]. Two different resolutions of

training samples are compared. We consider training samples with an actual

pedestrian height of 32 pixels (small scale) and 72 pixels (medium scale). To

this, a fixed fraction of border pixels (background) is added. Details are given

below.

Haar Wavelet-Based Cascade

The Haar wavelet-based cascade framework [164] provides an efficient exten-

sion to the sliding window approach by introducing a degenerate decision

tree of increasingly complex detector layers. Each layer employs a set of

non-adaptive Haar wavelet features [108, 120]. We make use of Haar wavelet

features at different scales and locations, comprising horizontal and vertical

features, corresponding tilted features, as well as point detectors, see Fig-

ure 4.2. Sample resolution for the small scale training set is 18 × 36 pixels

with a border of two pixels around the pedestrian. No constraints on scales

or locations of wavelets are imposed, other than requiring the features to lie

completely within our training samples. The total number of possible fea-

tures is 154190. The medium scale training set consists of samples at 40× 80

pixels with a border of four pixels around the pedestrian which leads to over

3.5 million possible features. Here, we have to constrain the features to al-

low for feasible training: we require a minimum area of 24 pixels with a two

pixel scale step for each feature at a spatial overlap of 75 % which results in

134621 possible features. In each cascade layer, AdaBoost [49] is used to con-

struct a classifier based on a weighted linear combination of selected features

2total processing time for training, testing and evaluation was several months of CPU
time on a 2.66 GHz Intel processor, using implementations in C/C++.
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which yield the lowest error on the training set consisting of pedestrian and

non-pedestrian samples.

We investigated the performance after Nl layers and found that perfor-

mance saturated after incorporating Nl = 15 layers for both training resolu-

tions. Each cascade layer is trained on a new dataset consisting of the initial

15660 pedestrian training samples and a new set of 15660 non-pedestrian

samples which is generated by collecting false positives of the cascade up to

the previous layer on the given set of non-pedestrian images. Negative sam-

ples for the first layer are randomly sampled. Performance criteria for each

layer are set to 50 % false positive rate at 99.5 % detection rate. Adding fur-

ther cascade layers reduced the training error, but performance on the test

set was observed to run in saturation. The total number of features selected

by AdaBoost for the whole 15-layer cascade using small (medium) resolution

samples is 4070 (3751), ranging from 15 (14) features in the first layer to

727 (674) features in the final layer. Experiments are conducted using the

implementation found in the OpenCV library [119].

Neural Network using Local Receptive Fields (NN/LRF)

In contrast to multi-layer perceptrons (MLP), where the hidden layer is fully

connected to the input layer, NN/LRFs introduce the concept of NB branches

Bi (i = 1, . . . , NB), where every neuron in each branch only receives input

from a limited local region of the input layer, its receptive field. See Fig-

ure 4.3. Since synaptical weights are shared among neurons in the same

branch, every branch can be regarded as a spatial feature detector on the

whole input pattern and the amount of parameters to be determined during

training is reduced, alleviating susceptibility to overfitting.

Adaptive local receptive fields (LRF) [50] have shown to be powerful fea-

tures in the domain of pedestrian recognition, in combination with a multi-

layer feed-forward neural network architecture (NN/LRF) [170]. Although

the combination of LRF features and non-linear support vector machine clas-

sification (SVM/LRF) yields slightly better performance [109], we opt for a

NN/LRF in this study, since training a non-linear SVM/LRF classifier on

our large dataset is infeasible due to excessive memory requirements.

We use a NN/LRF consisting of NB = 16 branches Bi. For the small scale

training samples at a resolution of 18 × 36 pixels with a two pixel border,

5 × 5 pixel receptive fields are utilized, shifted at a step size of two pixels
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Figure 4.3: Overview of NN/LRF architecture (left). Average gradient image
along with three exemplary 5 × 5 pixel local receptive field fea-
tures (hidden layer weights) and their activation maps (output layer
weights) for the “pedestrian” output neuron, highlighting regions
where corresponding LRFs are most discriminative for the pedestrian
class (right).

over the training images. 10 × 10 pixel receptive fields are shifted at a step

size of five pixels over the medium scale training samples which are scaled to

40× 80 pixels including a border of four pixels.

The output layer consists of two neurons, where the output of each neuron

represents a (scaled) estimate of posterior probability for the pedestrian and

non-pedestrian class, respectively. Initial training data consists of the given

15660 pedestrian samples, along with 15560 randomly selected samples from

the set of negative images. We further apply a bootstrapping strategy by

shifting the trained NN/LRF classifier over the images containing no pedes-

trians and augmenting the negative training set by collecting 15660 false

positives in each iteration. Finally, the classifier is retrained using the ex-

tended negative training data. Bootstrapping is applied iteratively until test

performance saturates. The higher complexity of the bootstrapped dataset

is accounted for by incorporating additional eight branches in each iteration

to increase classifier complexity.

Histograms of Oriented Gradients with Linear SVM (HOG/linSVM)

We follow the approach of Dalal and Triggs [27] to model local shape and

appearance using well-normalized dense histograms of gradient orientation
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Figure 4.4: Overview of HOG/linSVM architecture. Cells on a spatial grid are
shown in yellow, whereas overlapping normalization blocks are shown
in green (left). Average gradient image along with visualization of
positive and negative SVM weights, which highlight the most dis-
criminative regions for both the pedestrian and non-pedestrian class
(right).

(HOG), see Figure 4.4. Local gradients are binned according to their orien-

tation, weighted by their magnitude, within a spatial grid of cells with over-

lapping block-wise contrast normalization. Within each overlapping block, a

feature vector is extracted by sampling the histograms from the contributing

spatial cells. The feature vectors for all blocks are concatenated to yield a

final feature vector which is subject to classification using a linear support

vector machine (linSVM).

Our choice of system parameters is based on the suggestions by [27]. Com-

pared to the Haar wavelet-based cascade and the NN/LRF, we employ a

larger border to ensure ample spatial support for robust gradient computa-

tion and binning at the pedestrian boundary. Hence, small scale training

samples are utilized at a resolution of 22 × 44 pixels with a border of six

pixels, whereas a resolution of 48 × 96 pixels with a border of twelve pixels

is employed for medium scale training.

We utilize fine scale gradients ([−1, 0, 1] masks without smoothing), fine

orientation binning (9 bins), coarse spatial binning (2×2 blocks of either 4×4

pixel cells for small scale and 8×8 pixel cells for medium scale training) as well

as overlapping block contrast normalization (L2-norm). The descriptor stride
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Figure 4.5: Overview of combined shape-based recognition and texture-based
classification.

is set to half the block width, in order to have 50 % overlap. This amounts

to four pixels for small scale and eight pixels for medium scale training.

Similar to the training of the NN/LRF, the initial 15560 negative samples

are randomly sampled from the set of negative images. We apply bootstrap-

ping by extending the training set by 15660 additional false positives in each

iteration until test performance saturates. As opposed to the NN/LRF clas-

sifier, the complexity of the linear SVM is automatically adjusted during

training by increasing the number of support vectors as the training set be-

comes more complex. Experiments are conducted using the implementation

by [27].

Combined Shape-Texture-Based Pedestrian Recognition

We consider a monocular version of the real-time PROTECTOR system [56],

by cascading shape-based pedestrian recognition with texture-based pedes-

trian classification. Shape-based recognition is achieved by coarse-to-fine

matching of an exemplar-based shape hierarchy to the image data at hand.

The shape hierarchy is constructed off-line in an automatic fashion from man-

ually annotated shape labels, extracted from the 3915 pedestrian examples

in the training set (see Chapter 2). On-line matching involves traversing the

shape hierarchy with the Chamfer distance [14] between a shape template and

an image sub-window as smooth and robust similarity measure. Image loca-

tions where the similarity between shape and image is above a user-specified

threshold are considered recognitions. A single distance threshold applies for

each level of the hierarchy. Additional parameters govern the edge density
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on which the underlying distance map is based. All parameters have been

optimized using a sequential ROC optimization technique [56].

Recognitions of the shape matching step are subject to verification by a

texture-based pattern classifier. Here, we employ the multi-layer feed-forward

neural network operating on local adaptive receptive field features (NN/LRF)

on the small scale training set, with parameters as given above. See Fig-

ure 4.5. The initial negative training samples for the NN/LRF classifier were

extracted by collecting false positives of the shape-based recognition mod-

ule (with a relaxed threshold) on the given set of negative images. Finally,

bootstrapping is applied to the NN/LRF, as described earlier.

Temporal Integration - Tracking

Temporal integration of recognition results allows to overcome gaps in recog-

nition, suppress spurious false positives and provides higher-level temporally-

fused trajectory information for detected objects. Recognitions on trajec-

tory level are fundamental to many real-world attention-focusing or risk-

assessment strategies, for instance in vehicle-based collision-mitigation sys-

tems or visual surveillance scenarios. In this study, we employ a rudimentary

2D bounding box tracker with an object state model involving bounding box

position (x, y) and extent (w, h). Object state parameters are estimated using

an α−β tracker, involving the classical Hungarian method for data assignment

[89]. A new track is started whenever a new object appears in m successive

frames and no active track fits to it. It ends, if the object corresponding to an

active track has not been detected in n successive frames. We acknowledge

the existence of more sophisticated trackers, see Section 2.3, whose perfor-

mance evaluation remains for future work. The generality and simplicity of

our tracker has the advantage to allow a straightforward integration into all

detector approaches to be considered.

4.1.3 Experiments

Methodology

Performance evaluation of the pedestrian recognition systems is based on

comparing system output (alarms) with manually labeled ground-truth

(events) given by bounding box locations of pedestrians using the proposed

benchmark test sequence consisting of 21790 monocular images (see Sec-
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tion 4.1.1). We differentiate between the scenarios of generic pedestrian

recognition and (near) real-time pedestrian recognition from a moving ve-

hicle. There exists a wide range of possible applications of the first scenario,

e.g. ranging from surveillance to advanced robotics. The second scenario is

geared towards collision mitigation/avoidance in the context of intelligent ve-

hicles [51, 56]. The two scenarios differ in the definition of the area of interest

and match criteria. Additionally, the vehicle scenario involves restrictions on

average processing time.

In both scenarios, we consider many-to-many data correspondences, that

is, an event is matched if there is at least one alarm within localization toler-

ances, e.g. the systems are not required to detect each individual pedestrian in

case of a pedestrian group. Multiple detector responses at near identical loca-

tions and scales are addressed in all approaches by applying confidence-based

non-maximum suppression to the detected bounding boxes using pairwise box

coverage: two system alarms ai and aj are subject to non-maximum suppres-

sion if their coverage Γ(ai, aj) is above θn, with θn = 0.5 in our evaluation.

Coverage is defined as the ratio of intersection area and union area:

Γ(ai, aj) =
A (ai ∩ aj)
A (ai ∪ aj)

(4.1)

The recognition with the lowest confidence is discarded, where confidence

is assessed by the classifiers, i.e. cascade (final layer), NN/LRF and SVM

decision values.

Performance is evaluated both at frame- and trajectory-level. Frame-level

performance is measured in terms of sensitivity, precision and false positives

per frame. Sensitivity relates to the percentage of true solutions that were

detected, whereas precision corresponds to the percentage of system solu-

tions that were correct. We visualize frame-level performance in terms of

ROC curves, depicting the trade-off between sensitivity and false positives

per frame based on the corresponding match criteria. ROC curves for the

NN/LRF and HOG/linSVM technique are generated by varying the corre-

sponding detector output thresholds along the curve. In case of the wavelet-

based cascade and the cascaded shape-texture pedestrian recognition system,

there are multiple thresholds (one for each cascade module) that can be var-

ied simultaneously to determine ROC performance. Each multi-dimensional

set of thresholds corresponds to a single point in ROC space, where the final

ROC curve is computed as the Pareto-optimal frontier of this point cloud
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[56].

After incorporating temporal integration (tracking), trajectory-level per-

formance is evaluated in terms of the percentage of matched ground-truth

trajectories (sensitivity), the percentage of correct system trajectories (preci-

sion) and the number of false trajectories per minute. We distinguish between

two types of trajectories (see [56]): “class-B” and “class-A” trajectories that

have at least one or at least 50 % of their events matched. All “class-A”

trajectories are also “class-B” trajectories, but the former demand stronger

application performance. Further, we quantify the reduction in frame-level

false positives resulting from the incorporation of the tracking component.

Generic Pedestrian Recognition

In the evaluation of generic pedestrian recognition, no additional (3D) scene

knowledge and constraints are employed. Instead, we consider pedestrian

recognition solely as a 2D problem, where fully-visible ground-truth pedestri-

ans (see Table 4.1) of at least 72 pixels height are marked as required, which

corresponds to real-world pedestrians of 1.5 m height at a distance of 25 m in

our camera set-up. Smaller or partially occluded pedestrians and bicyclists or

motorcyclists are considered optional, in that the systems are not rewarded

/ penalized for correct / false / missing detections. In our experiments, we

consider in isolation the resolution of the training data (see Section 4.1.2),

the size of the detector grid, as well as the effect of adding additional negative

training samples by bootstrapping or cascading.

Combined shape-texture-based recognition (Section 4.1.2) is disregarded

here, since the shape-based recognition component, providing fast identifica-

tion of possible pedestrian locations, is mainly employed because of process-

ing speed, which is not considered in this evaluation scenario. We instead

evaluate the NN/LRF classifier in isolation, which is the second (and more

important) module of the combined shape-texture-based recognition system.

This leaves us with a total of three approaches: the Haar wavelet-based

cascade, NN/LRF and HOG/linSVM (cf. Section 4.1.2) which are used in

a multi-scale sliding window fashion. With s denoting the current scale,

detector windows are both shifted through scale with a step factor of ∆s

and through location at fractions s∆x and s∆y of the base detector window

size (see Section 4.1.2) in both x- and y-dimension. The smallest scale smin
corresponds to a detector window height of 72 pixels, whereas the largest scale
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S1 S2 S3 S4 S5 S6
Spatial
Stride
(∆x,∆y)

(0.1,0.025) (0.15,0.05) (0.3,0.075) (0.1,0.025) (0.15,0.05) (0.3,0.075)

Scale
Step
∆s

1.1 1.1 1.1 1.25 1.25 1.25

# of
detec-
tion
win-
dows

184392 61790 20890 90982 30608 10256

Table 4.2: Overview of sliding window parameter sets Si for generic evaluation.

smax has been chosen so that the detector windows still fit in the image.

As a result, detector grids for all systems are identical. Several detector

parameter settings Si = (∆i
x,∆

i
y,∆

i
s), defining spatial stride (detector grid

resolution) and scale, have been considered for all approaches, see Table 4.2.

The 2D match criterion is based on bounding box coverage between a system

alarm ai and a ground-truth event ej , where a correct recognition is given by

Γ(ai, ej) > θm, with θm = 0.25. Results are given in Figures 4.6 - 4.9.

Figure 4.6a shows the effect of different training sample resolutions using

detector parameters S1. While the performance difference between small and

medium resolution for the wavelet-based cascade and the NN/LRF detectors

is minor, the HOG/linSVM approach performs significantly worse at a small

resolution. The reason for that may lie in the reduced spatial support for

histogramming. Further experiments involve only the best performing reso-

lution for each system: small resolution for the wavelet-based cascade and the

NN/LRF detector and medium resolution for the HOG/linSVM approach.

Figures 4.6b and 4.7 show the localization tolerance of each detector, that

is the sensitivity to the granularity of the detection grid. Two observations

can be made: First, all detectors perform best using the detection grid at the

finest granularity (parameters S1). Second, the localization tolerances of the

approaches vary considerably. The NN/LRF detector performs almost iden-

tical for all parameter sets under consideration, with false positives per frame

at constant detection rates being reduced by approx. a factor of 1.5, compar-

ing the the best (S1) and worst (S6) setting. The wavelet-based cascade and

HOG/linSVM approaches show a stronger sensitivity to the detection grid

resolution, with a difference in false positives by approx. a factor of 3 and

5.5, respectively.
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Figure 4.6: Evaluation of generic pedestrian recognition. (a) Effect of different
training resolutions. (b) Effect of varying detector grid for wavelet-
based cascade.

42



4.1 An Experimental Study

10
−2

10
−1

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Per Frame

D
et

ec
tio

n 
R

at
e

Generic 2D Evaluation (NN/LRF)

 

 

NN/LRF, Params S
1

NN/LRF, Params S
2

NN/LRF, Params S
3

NN/LRF, Params S
4

NN/LRF, Params S
5

NN/LRF, Params S
6

(a)

10
−2

10
−1

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Per Frame

D
et

ec
tio

n 
R

at
e

Generic 2D Evaluation (HOG)

 

 

HOG, Params S
1

HOG, Params S
2

HOG, Params S
3

HOG, Params S
4

HOG, Params S
5

HOG, Params S
6

(b)

Figure 4.7: Evaluation of generic pedestrian recognition. Effect of varying de-
tector grid for (a) NN/LRF (1 bootstrapping iteration) and (b)
HOG/linSVM (1 bootstrapping iteration).
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Figure 4.8: Evaluation of generic pedestrian recognition. (a) Performance of
individual cascade layers. (b) Effect of bootstrapping on NN/LRF
and HOG/linSVM.
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Figure 4.9: Evaluation of generic pedestrian recognition: best performance of
each approach.

We attribute this to the fact that the NN/LRF uses comparatively the

largest features (5× 5 pixel receptive fields at a sample size of 18× 36 pixels,

see Section 4.1.2), whereas 8 × 8 pixel cells are used in the HOG/linSVM

approach with a sample size of 48×96 pixels (see Section 4.1.2). The wavelet-

based cascade employs features at different scales, as shown in Section 4.1.2.

In the following experiments, we restrict ourselves to the detector param-

eter set S1 which was identified as the best setting for all techniques. We

now evaluate the effect of adding negative samples to the training set, in

terms of additional bootstrapping iterations for NN/LRF and HOG/linSVM

and show the performance of individual layers of the wavelet-based cascade,

each of which is trained on a different and increasingly more difficult set of

negative samples. See Figure 4.8. All detectors show an initial performance

improvement, but then saturate after 15 layers (wavelet-based cascade) or

three (HOG/linSVM) and four (NN/LRF) bootstrapping iterations, respec-

tively. The obtained performance improvements of the wavelet-based cascade

and the NN/LRF detectors are paid for with an increase of computational

costs, since the classifiers become more complex in case of more difficult

training sets (recall that NN/LRF complexity was increased by design during

45



Chapter 4 Monocular Pedestrian Recognition

Cascade NN/LRF HOG/linSVM
F A B F A B F A B

Sensitivity 65.4 % 61.9 % 73.0 % 65.3 % 69.8 % 81.7 % 64.1 % 61.6 % 76.2 %
Precision 56.1 % 47.3 % 53.8 % 33.5 % 27.5 % 33.3 % 90.2 % 84.9 % 87.2 %

FP 103 fr., min 156 19.0 16.7 307 35.7 35.1 16 2.0 1.7
Reduction False Positives 34.3 % - - 50.9 % - - 22.3 % - -

Avg. Proc. Time / 103 win. 20 ms 660 ms 430 ms

Table 4.3: System performance after tracking. F/A/B denote frame- and
trajectory-level performance. False positives “FP” are given per 103

frames and per minute for frame-level and trajectory performance.

bootstrapping, see Section 4.1.2). However, in the case of the HOG/linSVM

detector, the processing time for the evaluation of a single detection window

is constant. For a linear SVM, the processing time is independent from the

actual number of support vectors [177], which becomes larger as more boot-

strapping iterations are conducted. Figure 4.9 shows the best performance

of each system on our test dataset. The HOG/linSVM approach clearly out-

performs both the wavelet-based cascade and NN/LRF. At a detection rate

of 70 %, false positives per frame for the HOG/linSVM detector amount to

0.045, compared to 0.38 and 0.86 for the wavelet-based cascade and NN/LRF.

This is a reduction by a factor of 8 and 19, respectively.

Next, temporal integration is incorporated into all approaches using the 2D

bounding box tracker (see Section 4.1.2) with parameters m = 2 and n = 2.

Input to the tracker are system recognitions, with system parameterization

selected from the corresponding ROC curves, as depicted in Figure 4.9, at a

common reference point of 60 % sensitivity. Results are given in Table 4.3.

One observes that the relative performance differences as shown in Figure 4.9

still apply after tracking. The HOG/linSVM approach achieves a significantly

higher precision at the same sensitivity levels compared to the wavelet-based

cascade and the NN/LRF detector.

On-Board Vehicle Application

In case of (near) real-time pedestrian recognition from a moving vehicle,

application-specific requirements are specified in 3D. In particular, the sen-

sor coverage area is defined in relation to the vehicle as 10 m - 25 m in

longitudinal and ±4 m in lateral direction. Given a system alarm ai and
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ground-truth event ej , we enforce a maximum positional deviation in 3D to

count the alarm as match, where both 2D ground-truth and 2D recognitions

are back-projected into 3D using known camera geometry and the assumption

that pedestrians are standing on the ground-plane (ground-plane constraint).

Since this ground-plane assumption is only valid for fully-visible pedestrians,

partially visible pedestrians are not back-projected into 3D, but matched in

2D with a box coverage of θm = 0.25, as described earlier. Only fully-visible

ground-truth pedestrians (see Table 4.1) within the sensor coverage area are

considered required. Partially visible pedestrians and pedestrians outside the

sensor coverage area are regarded as optional (i.e. recognitions are neither

credited nor penalized).

Localization tolerances are defined as percentage of distance for lateral (X)

and longitudinal (Z) direction with respect to the vehicle. Here, we consider

tolerances of X = 10 % and Z = 30 % with a larger tolerance in longitudinal

direction to account for non-flat road surface and vehicle pitch in case of back-

projection of (monocular) ground-truth and recognitions into 3D, e.g. at 20 m

distance, we tolerate a localization error of ±2 m and ±6 m in lateral and

longitudinal direction.

All systems are evaluated by incorporating 3D scene knowledge into the

recognition process: we assume pedestrians of heights 1.5 m - 2.0 m to be

standing on the ground. Initial object hypotheses violating these assumptions

are discarded. Non-flat road surface and vehicle pitch are modeled by relaxing

the ground-plane constraint using a pitch angle tolerance of ψ = ±2◦.

We consider constraints on average processing time of 2.5 s and 250 ms

(±10 % tolerance) per image. To enforce these constraints, we choose to

maintain the fundamental system parameters, e.g. sample resolution or fea-

ture layout, as reported by the original authors, see Section 4.1.2. Instead,

we use the granularity of the detection grid as a proxy for processing speed.

Sliding window parameters Ti subject to processing time constraints are

given in Table 4.4. The detector grids are finer grained in y-direction than

in x-direction. This results in higher localization accuracy in y-direction

which adds robustness to depth estimation by back-projecting recognitions

into 3D. Instead of a sliding window approach, the combined shape-texture

detector uses a coarse-to-fine hierarchical shape matching scheme yielding a

variable number of hypotheses per image which are processed by the subse-

quent NN/LRF classifier. Hence, the hierarchy level thresholds of the shape

matching module have the largest influence on processing time. We have in-
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Cascade NN/LRF HOG/linSVM

T1 (2.5s)
T4
(250ms)

T2 (2.5s)
T5
(250ms)

T3 (2.5s)
T6
(250ms)

Spatial
Stride
(∆x,∆y)

(0.05,0.025) (0.05,0.025) (0.1,0.025) (0.3,0.08) (0.1,0.025) (0.3,0.08)

Scale
Step
∆s

1.05 1.05 1.1 1.25 1.1 1.25

# of
detec-
tion
win-
dows

11312 11312 5920 617 5920 617

Table 4.4: Overview of sliding window parameter sets Ti for on-board vehicle
evaluation.

corporated time constraints into the parameter optimization [56], to optimize

these thresholds for the given processing time requirements.

Performance is evaluated for the full 15-layer cascade, the shape-texture

detector, as well as the HOG/linSVM and NN/LRF approaches after every

bootstrapping iteration to find the best compromise between performance

and processing speed under the given time constraints. In contrast to the

results of the generic evaluation, the best performance of the NN/LRF clas-

sifier is reached after the second bootstrapping iteration, since the higher

computational costs of more complex NN/LRF detectors require a too large

reduction in detection grid resolution to meet the time constraints. In case

of the wavelet-based cascade, identical parameter settings T1 and T4 are used

for both time constraints settings. This is due to a very dense detection grid

resolution even at time constraints of 250 ms per frame, since each detection

window can be evaluated very rapidly. A further increase of grid resolution

does not yield any performance improvements. We attribute this effect to the

pre-processing of the training data, where robustness to localization errors is

explicitly modeled in terms of shifting the training labels by a few pixels, as

described in Section 4.1.1. Results are given in Figure 4.10.

With processing time constraints of 2.5 s per frame, the relative perfor-

mance of all detector variants is similar to the case of generic evaluation, see

Figures 4.9 and 4.10a. Compared to the application of the NN/LRF in iso-

lation, the combined shape-texture detector further improves performance,

particularly at low false positive rates. Further restricting processing time

constraints to 250 ms per frame effects a massive drop in the performance
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Figure 4.10: Results of on-board vehicle application using time constraints of
(a) 2.5 s / frame and (b) 250 ms / frame.
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of the HOG/linSVM detector, whereas the performance of the NN/LRF de-

creases only slightly. Again, this is an effect of the different localization

tolerances. The performance of the combined shape-texture detector remains

approximately constant. This indicates the powerful pruning capability of

the shape recognition module which allows to quickly focus the subsequent

costly texture classification on promising image regions, which reduces com-

putational costs. At tight processing time constraints, the wavelet-based

cascade significantly outperforms every other detector considered, benefiting

from its high processing speed. The combined shape-texture detector delivers

the second best performance, admittedly at a proper gap.

As in the case of generic pedestrian recognition, the bounding box tracker

is incorporated. As a common reference point we again use 60 % sensitivity,

obtained from the ROC curves depicted in Figure 4.10. Results are given

in Table 4.5. For both time constraint settings, the relative performance

order of various systems does not change in comparison to Figure 4.10. How-

Cascade NN/LRF
F A B F A B

Sensitivity (TC 2.5 s) 64.9 % 58.2 % 79.1 % 65.5 % 67.1 % 82.1 %
Precision (TC 2.5 s) 77.2 % 71.5 % 75.5 % 53.4 % 58.3 % 63.1 %

FP 103 fr., min (TC 2.5 s) 32 5.5 5.1 102 8.8 7.8
Reduction FP (TC 2.5 s) 23.6 % - - 30.6 % - -
Sensitivity (TC 250 ms) 64.9 % 58.2 % 79.1 % 67.0 % 71.6 % 80.6 %
Precision (TC 250 ms) 77.2 % 71.5 % 75.5 % 43.4 % 45.6 % 52.2 %

FP 103 fr., min (TC 250 ms) 32 5.5 5.1 171 17.2 15.0
Reduction FP (TC 250 ms) 23.6 % - - 31.3 % - -

Avg. Proc. Time / 103 windows 20 ms 440 ms

HOG/linSVM Shape-Texture Rec.
F A B F A B

Sensitivity (TC 2.5 s) 64.3 % 58.2 % 68.7 % 64.6 % 65.6 % 85.0 %
Precision (TC 2.5 s) 88.7 % 81.2 % 84.8 % 59.3 % 52.7 % 62.1 %

FP 103 fr., min (TC 2.5 s) 11.7 1.7 1.4 78 9.5 9.1
Reduction FP (TC 2.5 s) 12.5 % - - 28.9 % - -
Sensitivity (TC 250 ms) 67.4 % 65.7 % 79.1 % 63.1 % 65.2 % 80.1 %
Precision (TC 250 ms) 47.6 % 50.8 % 55.8 % 59.2 % 51.3 % 61.9 %

FP 103 fr., min (TC 250 ms) 143 14.5 13.0 81 9.1 8.7
Reduction FP (TC 250 ms) 37.3 % - - 26.1 % - -

Avg. Proc. Time / 103 windows 430 ms approx. 620 ms

Table 4.5: System performance after tracking. F/A/B denote frame- and
trajectory-level performance under processing time constraints “TC”
of 2.5 s and 250 ms per image. False positives “FP” are given per 103

frames and per minute for frame-level and trajectory performance.
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ever, differences in the beneficial effect of the tracker can be observed. For

all systems except for HOG/linSVM, the benefit of the tracker is similar

for the two time constraint settings, approx. 25 % - 35 %, see Table 4.5.

For the HOG/linSVM detector at time constraints of 2.5 s per image, most

false detections turn out to exhibit strong temporal coherence and cannot be

eliminated by the tracker. The reduction in false positives only amounts to

12.5 %. The stronger benefit of the tracker for the HOG/linSVM detector at

250 ms per image can be explained by the fact that fewer detection windows

can be evaluated per image. To reach a sensitivity of 60 %, a more relaxed

threshold setting is required. As a result, additional spurious false positives

are introduced which are observed to be less temporally coherent; these can

be successfully suppressed by the tracker.

The average processing time per 103 detection windows is given in Ta-

ble 4.5 using implementations in C/C++ on a 2.66 GHz Intel processor. In

comparison to the other approaches, the wavelet-based cascade architecture

has a massive advantage in processing time, i.e. it is approx. 20 times faster.

Note that the combined shape-texture detector has the highest processing

time per detection window. However, due the efficient pruning of the search

space by the coarse-to-fine shape matching module, the number of detection

windows per image is greatly reduced in comparison to the sliding window

approaches, while maintaining similar performance levels.

4.1.4 Discussion

We obtained a nuanced picture regarding the relative performance of methods

tested, where the latter depends on the pedestrian image resolution and the

spatial grid size used for probing (used as proxy for processing speed). At low

resolution pedestrian images (e.g. 18×36 pixels), dense Haar wavelet features

represent the most viable option. HOG features, on the other hand, perform

best at intermediate resolutions (e.g. 48× 96 pixels). Their need for a larger

spatial support limit their use in some application scenarios; for example in

our camera set-up of Section 4.1.3, pedestrians further away than 25 m to

the vehicle appear in the image with a height of less than 72 pixels. We

would expect component-based, e.g. [2, 31, 35, 105, 108, 139, 143, 167, 174],

or deformable part approaches, e.g. [1, 46, 47, 48, 84, 92, 94, 95, 138], to

be the natural choice for those applications involving yet higher resolution

pedestrian images.
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Figure 4.11: Typical false positives of all systems. Most errors occur in local
regions with strong vertical structure.

In terms of overall systems, results indicate a clear advantage of the HOG-

based linear SVM approach at intermediate pedestrian image resolutions and

lower processing speeds, and a superiority of the wavelet-based AdaBoost

cascade approach at lower pedestrian image resolutions and (near) real-time

processing speeds. Not surprisingly, tracking improves the performances of

all considered systems, it also decreases the absolute performance differences

amongst the systems. We observe that the tested systems in this study

tend to make rather similar mistakes, although they are based on different

features. For all systems, typical false detections occur in local regions which

are dominated by strong vertical structure, as shown in Figure 4.11.

It is instructive to place the best performance obtained in context, by com-

paring what would be necessary in a realistic application. Let us consider

for this the intelligent vehicle application. If we assume a driver assistance

system using monocular vision, that acoustically warns the driver for possi-

ble collisions with pedestrians, a correct detection rate upwards of 80 % on

trajectory-level would be sensible, say, at a rate of less than one false alarms

per 10 hours driving in urban traffic. Looking at the results currently ob-

tained within 250 ms per frame (assuming that optimization would result in

a real-time implementation), see Table 4.5, we see the best performance of

approx. six false trajectories per minute at a detection rate of 60 % for the

wavelet-based cascade. One might be tempted to conclude that a performance

gap of three orders of magnitude exists. This would be overly pessimistic,

though, since Table 4.5 reflects the average performance over all pedestrian

trajectories within the defined coverage area (10 - 25 m in distance, up to

±4 m laterally). In practice, trajectories that are collision-relevant tend to

be longer and individual recognitions are easier, as they come closer to the

vehicle. Our preliminary investigations show that recognition performance on

such trajectory subsets can be up to one order of magnitude higher, leaving
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a performance gap of two orders of magnitude.

How could one close the remaining performance gap? The most effective

solution is to incorporate a pre-processing stage to constrain the image search

space, based on alternate cues such as motion [40, 124], see Section 4.2, and

depth [2, 17, 41, 56, 85, 92, 94, 110, 112, 180]. For example, [56] reports a

performance gain of an order of magnitude by the inclusion of stereo-based

obstacle detection (a similar boost can be expected in a surveillance setting

by the incorporation of background subtraction).

Any remaining performance gain (i.e. one order of magnitude for the in-

telligent vehicle application listed above) would likely need to be derived

from improving the actual classification methods. For example, in the shape-

texture approach of Section 4.1.2, hierarchical shape matching can be per-

formed probabilistically, with improved performance [54]. The particular

shape template matched could furthermore index into a set of classifiers (ex-

perts), each attuned to a particular body pose. [56] reports a performance

improvement of about 30 % from such a mixture-of-experts architecture. The

cascade approach could be paired up with more powerful features, e.g. local

receptive fields or gradient histograms (cf. Section 4.1.2). [182] presented

initial work on cascade detectors using HOG features and reported real-time

processing speeds at performance levels similar to the original HOG/linSVM

approach [27]. Irrespective of the utilized feature set, the classification tech-

niques could use multiple cues, features or modalities to improve performance

[28, 35, 39, 118, 131, 137, 163, 165, 166, 167, 173, 175], see Chapter 6.

Or perhaps, it is the data that matters most, after all. A study on pedes-

trian classification [109] showed that the benefit of selecting the best combi-

nation of features and pattern classifiers was less pronounced than the gain

obtained by increasing the training set, even though the base training set

already involved many thousands of samples [109]. Adaptive feature sets in

particular, e.g. LRF features, are expected to benefit more from an enlarged

training set than non-adaptive features, e.g. HOG features, since the training

data directly influences the development of the features.

4.1.5 Conclusion

This section presented an experimental study on monocular pedestrian recog-

nition. In order to strike a suitable balance between generality and specificity,

we considered two evaluation settings: a generic setting, where evaluation is
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done without scene and processing constraints, and one specific to an appli-

cation on-board a moving vehicle in traffic.

Results show a nuanced picture regarding the relative performance of meth-

ods tested, where the latter depends on the pedestrian image resolution and

the spatial grid size used for probing (used as proxy for processing speed).

The HOG-based linear SVM approach significantly outperformed all other

approaches considered at little or no processing constraints (factors of 10 - 18

and 3 - 6 less false class-A trajectories at no time constraints and at 2.5 s per

frame, respectively). This suggests that feature representations based on lo-

cal edge orientation are well-suited to capture the complex appearance of the

pedestrian object class. As tighter processing constraints are imposed, the

Haar wavelet-based cascade approach outperforms all other detectors consid-

ered (factor of 2 - 3 less false class-A trajectories at 250 ms per frame).

For all systems, performance is enhanced by incorporating temporal in-

tegration and/or restrictions of the search space based on scene knowledge.

The tracking component tends to decrease the absolute performance differ-

ences of the systems. From a real-world application perspective, the amount

of false trajectories is too high by at least two orders of magnitude. Hence,

this thesis will further present methods and techniques to boost performance.

After evaluating a motion-based attention focusing strategy in Section 4.2,

we will focus on the classification component in isolation in the remainder of

this work.

4.2 Monocular Pedestrian Recognition Using Motion Parallax

4.2.1 Overview

This section aims at improving monocular pedestrian recognition perfor-

mance by introducing an early attention stage to narrow down the hypothe-

ses search space for subsequent complex pedestrian detectors, cf. Section 2.1.

To that extent, we propose an attentive concept involving a probabilistic

model of ego-motion corrected optical flow features, particularly attuned to

the pedestrian class.

The general idea of early focus of attention is independent of the actual

pedestrian recognition system used, cf. Section 2.2. We integrate the pro-

posed hypotheses generation technique with real-time (monocular) shape-

texture based pedestrian recognition and tracking [56], as presented in Sec-
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Figure 4.12: Overview of the integrated pedestrian recognition system compris-
ing motion-based hypotheses generation, shape-based recognition,
texture-based classification and tracking. We focus on the motion-
based hypotheses generation module (red), but evaluate the whole
integrated system.

tion 4.1.2. Shape-based recognition is achieved by efficient matching of an

exemplar-based shape hierarchy to the generated hypotheses. Shape matches

are verified by a texture-based pedestrian classifier, a neural network operat-

ing on local adaptive receptive fields. Temporal integration is provided by an

α−β tracker. The integrated system combines three cues, i.e. motion, shape

and texture, on module-level within a single system. See Figure 4.12.

Our attentive strategy utilizes a learned probabilistic model of motion-

based features, which are particularly attuned to pedestrians. The features

involve mean horizontal velocity and density of local parallax flow. The

application of parallax flow, see Section 4.2.2, allows to focus on static non-

planar or moving objects, while at the same time disregarding camera ego-

motion. Further, this representation seamlessly extends to the recognition

of static pedestrians, unlike previous approaches which require target motion

[26, 45, 124, 139]. We employ a cascade structure with complementary cues

for each module, as depicted in Figure 4.12, to successively narrow down the

search space, see [56]. The proposed motion-model is utilized as hypotheses

generation module for subsequent shape- and texture-based pedestrian clas-

sification, based on a sound Bayesian assessment of posterior probabilities for

each hypothesis. Parameters of the integrated multi-cue system are optimized

with regard to robustness and efficiency for maximum real-time performance,

by employing sequential ROC optimization [56]. Details are given in the next

section.
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4.2.2 Motion-Based Pedestrian Model

The proposed probabilistic motion-based pedestrian model is based on sparse

optical flow features, e.g. [10], induced by our moving camera. Rather than

directly utilizing the observed intrinsic flow field, camera ego-motion is can-

celed out (estimated from inertial sensors) by computing the parallax flow

field [7]. Parallax flow is the difference between the intrinsic optical flow field

and estimated ground-plane flow. Residual parallax flow vectors are then

induced by both static non-planar and moving objects. See Figure 4.13.

Given a sparse parallax flow field F (p) = fp , let fp = (fup , f
v
p) denote hor-

izontal and vertical components of parallax flow at pixel location p. Further,

we introduce a function SF (p), assessing sparseness of a given parallax flow

field F at location p, with SF (p) = 1, if fp exists, and SF (p) = 0 otherwise.

For an arbitrary region of interest R ⊂ F , our aim is to estimate its posterior

probability, P (ω0|R), with respect to the pedestrian class ω0. To that extent,

we represent R in terms of a feature set ϕR based on parallax flow and follow

a Bayesian approach:

P (ω0|R) = P (ω0|ϕR) =
p(ϕR|ω0)P (ω0)P1
i=0 p(ϕR|ωi)P (ωi)

(4.2)

Priors for the pedestrian ω0 and non-pedestrian class ω1, P (ω0) and P (ω1),

are assumed uniform. In the following, details on feature selection and the

estimation of the likelihoods p(ϕR|ωi) are given.

Selecting appropriate motion-based features ϕR involves a trade-off be-

tween generality and specificity. On the one hand, features should be general

with respect to arbitrary pedestrian appearance and motion, while on the

other hand, powerful distinction between pedestrians and background is de-

sired. In view of utilizing the proposed model as a focus-of-attention strategy

for subsequent classification modules, our main concern at this point is gen-

erality. Hence, the proposed motion-based features purposely involve rather

generic measures to not reject potential pedestrian candidate regions too early

in the processing cascade. We consider mean horizontal velocity VR and den-

sity DR within a local hypothesis R. To enhance specificity, features are

particularly attuned to pedestrians in terms of both a probabilistic weighting

scheme and statistical combination.

Pedestrian motion typically involves a characteristic velocity range, as op-

posed to other moving objects in urban traffic. Given that pedestrian motion
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(a)

(b)

Figure 4.13: Visualization of the considered optical flow fields. Warmer colors
encode longer flow vectors. (a) Observed intrinsic flow. (b) Ego-
motion corrected parallax flow focusing on static non-planar and
moving objects. Note that the resulting flow on the ground is close
to zero (except for false correspondences).
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is predominantly horizontal, we restrict ourselves to the horizontal velocity

component fup of parallax flow vectors. At the same time, errors induced by

excessive pitch-movement of the camera are alleviated. Let Pw(pr|ω0) denote

a location-specific probabilistic weighting scheme for pixels pr ∈ R which is

employed to adapt the proposed features to the pedestrian class (the defini-

tion of Pw(pr|ω0) is given below). Then, VR involves the weighted mean of

horizontal flow components fupr
at locations pr:

VR =

P
pr∈R

|fupr
|SF (pr)Pw(pr|ω0)P

pr∈R
SF (pr)Pw(pr|ω0)

(4.3)

As a second feature, we propose weighted mean flow-density DR within R,

again utilizing Pw(pr|ω0) as weighting scheme:

DR =

P
pr∈R

SF (pr)Pw(pr|ω0)P
pr∈R

Pw(pr|ω0)
(4.4)

Local flow density in regions corresponding to pedestrians is expected to be

rather sparse, in particular within the lower body area. The highly articulated

and non-rigid pedestrian motion, combined with continuously appearing and

disappearing background, as well as self-occlusions, negatively affects the

computation of correspondences. Hence, the local density measure aims to

distinct pedestrians from largely rigid objects, where recovered flow estimates

are taken to be more dense. See Figure 4.13.

To enhance specificity of the proposed motion-based features to the pedes-

trian class, Pw(pr|ω0) has been introduced as a weighting paradigm, see

Equations (4.3) and (4.4). Pw(pr|ω0) denotes a two-dimensional probabil-

ity mass function, representing the probability that a given location pr ∈ R
corresponds to a pedestrian. To estimate Pw(pr|ω0), the superposition of a

set of S aligned binary pedestrian foreground masks, ms(pr), as defined by

manually labeled pedestrian contours, is utilized, see Figure 4.14:

Pw(pr|ω0) ∼
SX
s=1

ms(pr), (4.5)

with Pw spatially scaled to the dimensions of the hypothesis R and normalized

such that

0 ≤ Pw(pr|ω0) ≤ 1. (4.6)
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Figure 4.14: Overview of the probabilistic weighting scheme to adapt the
motion-based flow-features to the pedestrian class. A two-
dimensional probability mass function (center) is learned from bi-
nary pedestrian foreground masks (left) and utilized to weight fea-
ture computation (right). Warmer colors encode higher probability.

To further increase the discriminative power and robustness of the proposed

features, we consider statistically combining VR and DR into a multidimen-

sional feature ϕR = VR ∧DR. Under the assumption of independence of VR
and DR, the likelihood functions in Equation (4.2) can be decomposed into:

p(ϕR|ωi) = p(VR ∧DR|ωi) = p(VR|ωi)p(DR|ωi) (4.7)

Approximations of p(VR|ωi) and p(DR|ωi) are obtained via histogramming of

training data with regard to the proposed features. In case of pedestrians, we

utilize manually labeled bounding boxes, whereas non-pedestrian labels are

randomly extracted from parallax flow fields of non-pedestrian images using

ground-plane constraints.

4.2.3 System Integration

The probabilistic motion-based pedestrian model, as introduced in Sec-

tion 4.2.2, is utilized as attentive method within a hypotheses generation

module, see Figure 4.12. This module involves three components: optical

(parallax) flow computation, generation of location hypotheses and filtering

of hypotheses. The filtered hypotheses define initial search areas for the sub-

sequent recognition module. A functional overview of these sub-components

is given in Figure 4.15.

We consider the proposed flow-based features, see Section 4.2.2, as inde-
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Figure 4.15: Overview of motion-based hypotheses generation, cf. Figure 4.12:
parallax flow computation, generation of location hypotheses and
filtering of hypotheses.

pendent from the actual algorithm to compute optical flow [10]. In our ex-

periments, an efficient technique involving correspondences based on census

transform signatures is utilized [148]. This allows for real-time flow computa-

tion (25 Hz). Parallax flow is obtained by canceling out camera ego-motion,

as estimated from inertial sensors [7].

Initial object location hypotheses Ri are generated using the sliding win-

dow technique, where detector windows at various scales and locations are

shifted over the image. Here, application-specific scene constraints, such as

flat-world assumption, people standing on the ground or prior knowledge

about the dimensions of target objects, are incorporated, see Figure 4.16a.

Each pedestrian candidate region Ri is represented in terms of features VRi

and DRi , followed by the estimation of posterior probability with respect to

the pedestrian class, P (ω0|Ri), see Equation (4.2). A threshold θR governs

the amount of hypotheses which are committed to the subsequent module:

Only hypotheses with P (ω0|Ri) > θR, as shown in Figure 4.16b, trigger the

evaluation of the next cascade module. Others are rejected immediately.

Pedestrian recognition proceeds with shape-based recognition, as shown in

Figure 4.16c, involving coarse-to-fine matching of an exemplar-based shape

hierarchy to the image data at hand [56]. Positional initialization is given

by the output hypotheses of the motion-based attention stage. The shape

hierarchy is constructed off-line in an automatic fashion from manually anno-
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(a) (b)

(c) (d)

Figure 4.16: Results of the integrated pedestrian recognition system. (a) Initial
location hypotheses. (b) Hypotheses filtered using the proposed
motion-based focus of attention strategy. (c) Results of shape-
based recognition. (d) System output after texture-based classifi-
cation and tracking.

tated shape labels. On-line matching involves traversing the shape hierarchy

with the Chamfer distance [14] between a shape template and an image sub-

window as smooth and robust similarity measure. Image locations, where the

similarity between shape and image is above a user-specified threshold, are

considered recognitions. A single distance threshold applies for each level of

the hierarchy. Additional parameters govern the edge density on which the
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dataset 1 dataset 2 dataset 3

# of images 2970 2000 2702

# of pedestrian trajectories 45 52 38

pedestrian labels 1 606 1 302 1 625

non-pedestrian labels 910 369 856 256 832 639

Table 4.6: Dataset statistics.

underlying distance map is based.

Recognitions of the shape matching step are subject to verification by a

texture-based pattern classifier. Here, we employ a multi-layer feed-forward

neural network operating on local adaptive receptive field features [56, 170].

Finally temporal integration of recognition results is employed to overcome

gaps in recognition and suppress spurious false positives. A 2D bounding box

tracker is utilized, with an object state model involving bounding box position

and extent [56]. State parameters are estimated using an α − β tracker, see

Figure 4.16d and Section 4.1.2.

4.2.4 Experiments

The proposed motion-based attention strategy is tested in experiments on

pedestrian recognition from a moving vehicle. Datasets were acquired in

daylight conditions in urban traffic and depict non-occluded pedestrians in

front of a changing background. Pedestrian labels were manually extracted,

whereas non-pedestrian labels were obtained randomly from non-pedestrian

images using the sliding window technique in conjunction with ground-plane

constraints. See Table 4.6 for the datasets used. In all experiments, we

perform threefold cross-validation: Two datasets are utilized at a time to

learn the probabilistic model of motion-features and to optimize parameters,

respectively. Performance is evaluated on the remaining dataset.

In a first experiment, the proposed motion-based features, see Section 4.2.2,

are evaluated. In particular, we consider both mean horizontal velocity and

density as single features, ϕR = VR and ϕR = DR, as well as the statistically

combined multi-dimensional feature ϕR = VR ∧DR, see Equation (4.7). To

evaluate the inherent quality of flow features, the manually labeled pedestri-

ans and corresponding non-pedestrians, see Table 4.6, are directly employed

as training and test sets. That is, we consider pedestrian classification utiliz-
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ing bounding box labels, instead of evaluating pedestrian recognition perfor-

mance on an image sequence. A given test sample R is classified as pedestrian

ω0, if the associated posterior probability P (ω0|ϕR) > θR, see Equation (4.2).

Figure 4.17a shows the performances of different features sets ϕR, in terms

of mean ROC curves of all three cross-validation runs, with the threshold

θR varied along the curves. It is observed, that the mean horizontal veloc-

ity feature VR is superior to the density feature DR. Further performance

boost is achieved by statistically combining both features to a robust multi-

dimensional feature ϕR = VR ∧DR, see Equation (4.7).

We now turn our attention to the problem of pedestrian recognition using

test sequences consisting of entire images at a size of 640 × 480 pixels, see

Table 4.6. The proposed integrated system using motion-based hypotheses

generation, see Figure 4.12, is compared to an otherwise identical monocular

recognition system without any hypotheses generation. Further, we compare

to a stereo-based pedestrian recognition system, using depth information for

hypotheses generation, see [56].

The motion-based hypotheses generation module utilizes the combined ve-

locity/density feature (the best performing variant in Figure 4.17a) in con-

junction with two different feature weighting strategies: First, we employ the

proposed probabilistic weighting scheme derived from pedestrian foreground

masks, see Figure 4.14, with the weight for each location pr within an hy-

pothesis R, Pw(pr|ω0), determined using Equations (4.5) and (4.6). Further,

we consider equal weights, with Pw(pr|ω0) defined as a uniform distribution.

To balance efficiency and robustness for maximum performance of all con-

sidered systems, significant parameters of each module, see Figure 4.12 have

been optimized using sequential ROC optimization [56]. Parameters subject

to optimization include the posterior threshold θR for motion-based hypothe-

ses generation, edge and distance thresholds for shape-based recognition, out-

put threshold for texture-based classification, as well as track start and termi-

nation criteria for tracking. This technique avoids ad-hoc parameter tuning

and provides tight module integration.

Evaluation criteria and application-specific requirements for pedestrian

recognition are specified in 3D. In particular, the sensor coverage area is

defined in relation to the vehicle as 7 m - 15 m in longitudinal and ±3 m in

lateral direction. Only fully-visible ground-truth pedestrians within the sen-

sor coverage area are considered required, others are regarded as optional, in

the sense that systems are not rewarded/penalized for correct/false/missing
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Figure 4.17: Mean ROC performance of three cross-validation runs for (a) eval-
uation of local flow features and (b) different variants of pedestrian
recognition systems.
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detections.

Given a system alarm and a ground-truth event, we enforce a maximum

positional deviation in 3D to count the alarm as match, where both 2D

ground-truth and 2D recognitions are back-projected into 3D using known

camera geometry and ground-plane constraints. Localization tolerances are

defined as percentage of distance for lateral (X) and longitudinal (Z) direc-

tion with respect to the vehicle. Here, we consider tolerances of X = 10 %

and Z = 30 % with a larger tolerance in longitudinal direction to account for

non-flat road surface and vehicle pitch in case of back-projection of (monoc-

ular) ground-truth and recognitions into 3D.

Performance is given in terms of mean ROC curves over three cross-validation

runs, depicting system performance (detection rate vs. false positives per

frame) after the final module (tracking) for each system under considera-

tion. From Figure 4.17b it is observed, that the presented attentive strategy

involving motion-based hypotheses generation improves performance of an

otherwise identical monocular pedestrian recognition system, even if uniform

feature-weights are used (black curve vs. red curve). Additional performance

gain is achieved by increasing feature-specificity in terms of the proposed

probabilistic weighting scheme which is derived from pedestrian foreground

masks (blue curve). Compared to the monocular system without any atten-

tion mechanism, false positives are significantly reduced by a factor of two, at

equal detection rates (blue curve vs. red curve). The system variant utilizing

stereo vision to obtain initial hypotheses, outperforms all other monocular

approaches by an order of magnitude (green curve).

Processing time has been evaluated using implementations in C/C++ on

an Intel 2.4 GHz processor, see Table 4.7. Compared to the regular monoc-

ular pedestrian recognition system, the proposed motion-based attention

strategy yields a significant boost in recognition performance, paid for with

only a minor increase in processing time (7.20 Hz vs. 8.10 Hz). Using a uni-

form feature-weighting strategy results in a significant reduction of computa-

tional resources (14.9 Hz vs. 7.20 Hz) at the cost of a decrease in recognition

performance, since the motion-based features VR and DR are less specific to

the pedestrian class. This cut of computational costs is due to the fact that

uniform weighting allows to exploit integral images, as proposed by [164], to

compute the motion-based features. The approach employing stereo vision

exhibits both the best recognition performance and the lowest processing

costs per image (15.5 Hz).
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mono mono + motion-based hyp. gen.
(pedestrian-derived weights)

images per second 8.10 Hz 7.20 Hz

processing time per image 123 ms 138 ms

(a)

mono + motion-based hyp. gen. stereo
(unif. weights + integral img.)

images per second 14.9 Hz 15.5 Hz

processing time per image 67.1 ms 64.5 ms

(b)

Table 4.7: Processing speed of considered pedestrian recognition systems.

4.2.5 Conclusion

This section presented a novel attentive strategy for monocular pedestrian

recognition involving a model of motion-based features learned from ego-

motion corrected optical flow. Features are particularly attuned to the pedes-

trian class and modeled in a probabilistic fashion. In experiments on datasets

captured from a moving vehicle in urban traffic, we obtained the result

that pedestrian recognition performance is substantially enhanced by the

proposed motion-based attention concept; false positives were reduced by

a factor of two.
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A Mixed Generative-Discriminative Pedestrian

Model

5.1 Overview

Several techniques which combine generative and discriminative models have

been proposed [90, 104, 156, 178]. Discriminative models have been employed

to learn a generative model in an iterative fashion [156]. One line of research

has been concerned with designing objective functions which incorporate both

generative and discriminative terms, where their balance is controlled by both

heuristic [104, 178] and probabilistic [90] weighting schemes.

Aside from the particular models used, incorporating prior knowledge about

the target class has been suggested to increase classification robustness [114].

Prior knowledge can be both incorporated directly into the error function of

a discriminative model (vicinal risk minimization) [162] and during training

in terms of enlarging the training set with additional samples [109, 120, 125,

150, 162, 164]. While samples of the non-target class can be easily collected

using bootstrapping [109, 120, 150, 164], acquiring additional target class

samples is typically burdensome. Besides the trivial approach of laborious

manual labeling, a number of techniques to synthesize virtual patterns of

the target class have been proposed. Some require controlled data acquisi-

tion (e.g. same individual with respect to changes in viewpoint, facial ex-

pression and lighting) to obtain prototypical images to be linearly combined

[13, 20, 57]. Others utilize explicit 3D models [65, 103]. If such prerequi-

sites cannot be satisfied, the synthesis of virtual examples has been limited

to simple geometric and photometric jittering in terms of adding mirrored,

rotated, shifted or intensity-manipulated versions of the original training pat-

terns [109, 125, 150, 162].

This chapter proposes a novel combined generative-discriminative approach
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Figure 5.1: Framework overview. Utilizing the synthesized samples of a learned
generative model to enhance the classification performance of a dis-
criminative model.

to pedestrian classification, aimed at addressing the bottleneck caused by the

scarcity of samples of the target class. A generative model is learned from

a pedestrian dataset captured in real urban traffic and used to synthesize

virtual samples of the target class that go way beyond simple transformations

in terms of jittering, mirroring or rotating. The virtual samples enlarge the

training set of a discriminative pattern classifier at little cost. This set of

virtual samples can be considered as a regularization term to the real data to

be fitted, which incorporates prior knowledge about the target object class.

We propose the use of selective sampling, by means of probabilistic active

learning, to guide the training process towards the most informative samples.

See Figure 5.1.

The general idea is independent of the particular generative and discrim-
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Authors Shape Model Texture Model Sample Plausi-
bility

Cootes et al. [22]
Fan et al. [43]
Jones et al. [80]

global linear (PCA) global linear (PCA) limit on deviation
from mean

Jones et al. [79] multi-layer global
linear (weighted
PCA)

multi-layer global
linear (weighted
PCA)

limit on deviation
from mean

Gavrila et al. [55]
Heap et al. [63]

pose-specific linear
(PCA)

- limit on deviation
from mean

Romdhani et al. [132] global non-linear
(Kernel PCA)

- limit on deviation
from mean

Sozou et al. [146] global non-linear
(polynomial regres-
sion)

- limit on deviation
from mean

Cootes et al. [24] global linear (PCA) - probabilistic
(GMM)

this thesis pose-specific lin-
ear (PCA)

pose-specific lin-
ear (PCA), de-
composed

probabilistic
(KDE)

Table 5.1: Overview of existing and proposed generative shape and texture
models.

inative model used and can in principle extend to other object classes than

pedestrians. We propose a generative model which consists of a number

of probabilistic shape and texture models, each attuned to a generic object

pose. For this, we require the existence of a registration method amongst

samples associated with the same generic pose. See Table 5.1 for an overview

of existing generative shape and texture models. Our use of active learning

furthermore requires a confidence measure associated with the output of the

discriminative model, but this assumption is easily met in practice.

5.2 Generative Pedestrian Model

5.2.1 Pedestrian Representation

Input to our pedestrian model is a set D of pedestrians (xi, ω0) ∈ D with class

label ω0. We apply an integrated shape registration and clustering approach

with manual correction [55] to obtain a set of K view-specific clusters, Ψk,

from the shapes underlying D, with prototype shapes pk (we use K = 12 in

the experiments). See Figure 5.2. As a result of shape registration, [55], it

is possible to embed the shapes within a cluster Ψk into a common feature-

space. The features involve the pixel coordinates of corresponding points

sampled at a given (arc-length normalized) distance along the contour. See
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(a)

(b)

Figure 5.2: Integrated shape registration and clustering. (a) Shape registration.
Automatically determined contour point correspondences (first three
columns), Delaunay triangulation (last column). (b) Each row con-
tains a set of randomly selected shapes from a pose-specific cluster
(gray), along with the automatically determined prototype (black).

Figure 5.2a.

Let xk,i denote the i-th example in the k-th pose-specific cluster Ψk, with

i = 1, . . . , Nk. A pedestrian sample xk,i = (sk,i, tk,i) ⊕ bk,i is represented

as the composition ⊕ of a foreground texture tk,i over a background bk,i,

partitioned by a discrete shape contour sk,i.

After applying shape registration, each of the Nk discrete shape contours

sk,i in Ψk consists of lsk two-dimensional contour points (u, v) and is repre-
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sented as a 2lsk-dimensional shape vector:

sk,i =
``
ui,1, vi,1

´
,
`
ui,2, vi,2

´
, . . . ,

`
ui,ls

k
, vi,ls

k

´´T
(5.1)

=
`
ui,1, vi,1, ui,2, vi,2, . . . , ui,ls

k
, vi,ls

k

´T
(5.2)

The foreground texture tk,i represents the area inside the shape contour in

terms of ltk-dimensional vectors containing intensity values π(u, v) at pixels

p = (u, v):

tk,i =
“
π
`
ui,1, vi,1

´
, π
`
ui,2, vi,2

´
, . . . , π

`
ui,lt

k
, vi,lt

k

´”T
, ∀(ui,j , vi,j) inside sk,i

(5.3)

Note that the dimensionality of all tk,i ∈ Ψk is the same, as a result of

shape-normalization. Details are given in Section 5.2.3.

The introduction of pose-specific feature-spaces Ψk effectively reduces cor-

relations between pedestrian texture and their pose or heading. Within each

pose-specific space, a generative model is instantiated describing the pedes-

trian class-conditional density function for the shape and foreground texture

component separately. Foreground and background are assumed uncorre-

lated, thus the background texture component bk is not included into the

generative model.

We now outline the learning procedure for the proposed pose-specific gen-

erative pedestrian shape-texture model involving the set-up of separate shape

and texture model-spaces, as well as the estimation of the class-conditional

densities therein.

5.2.2 Locally Linear Shape Model

Principal Component Analysis (PCA) is applied to each local shape space in

Ψk to obtain a compact representation utilizing dsk dimensions (e.g. to model

95 % of the total variance).

Given a set of registered 2lsk-dimensional shape vectors sk,i, with i =

1, . . . , Nk, the mean shape s̄k is derived as:

s̄k =
1

Nk

NkX
i=1

sk,i (5.4)
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Figure 5.3: Shape variation along the first two PCA-dimensions within a ±3σ
range for two local shape models (light-gray and dark-gray.)

The covariance matrix Vs
k of the shape space is given by:

Vs
k =

1

Nk

NkX
i=1

(sk,i − s̄k)(sk,i − s̄k)T (5.5)

The principal axes are recovered by solving the eigensystem

Vs
k φ

s
k,j = λsk,j φ

s
k,j , j ∈ {1, 2, . . . , 2lsk}, (5.6)

where λsk,j denotes the j-th eigenvalue and φsk,j denotes the j-th eigenvector

of Vs
k. Each eigenvector φsk,j represents a set of displacement vectors along

which the mean shape s̄k can be deformed. λsk,j defines the amount of variance

along each principal axis φsk,j .

Any shape sk,i can be reconstructed in terms of the mean shape s̄k, a

matrix of eigenvectors in each column Φsk
and a set of model parameters
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msk,i :

sk,i = s̄k + Φsk
msk,i (5.7)

This reconstruction is only exact, if all 2lsk dimensions are incorporated. We

select a subset of dsk ≤ 2lsk dimensions to obtain a compact representation.

In our experiments, we choose dsk so that 95 % of the total shape variance is

explained.

The parametric representation msk,i of a pedestrian shape sk,i in terms of

shape model coordinates is then given by solving Equation (5.7) for msk,i .

Note that Φsk
is orthogonal, so Φ−1

sk
= ΦT

sk
:

msk,i = ΦT
sk

(sk,i − s̄k) (5.8)

Figure 5.3 depicts the variation of the first two shape model parameters,

i.e. the first two components of msk,i , along the eigenvectors φsk,j within a

±3σ range, as defined by the square-root of the eigenvalue, σ =
q
λsk,j , of the

corresponding dimension. The more significant modes represent global vari-

ation due to pose changes, whereas the less significant modes are responsible

for smaller local changes in pose.

The locally linear representation in terms of separate pose-specific spaces

Ψk improves the specificity of the shape models involved. Forcing a topolog-

ically diverse set of shapes into a single global linear model, may result in

physically implausible intermediate model instantiations, cf. Figure 5.4.

(a) (b)

Figure 5.4: Single global linear (a) vs. two locally linear models (b) fitted to the
same data. Adapted from [59].
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Figure 5.5: Shape-normalization. (top row) Original pedestrian examples. (bot-
tom row) Shape-normalized examples for one pose-specific subspace.

5.2.3 Locally Linear Foreground Texture Model

To establish a foreground texture feature-space within each cluster Ψk, all

texture vectors tk,i are first shape-normalized to t̂k,i by warping them with

respect to the cluster prototype pk, see Figure 5.5. A Delaunay triangulation-

based piecewise-affine warping function Wsk,i is employed, utilizing shape

correspondences between shape sk,i and prototype pk to map triangles, see

Figure 5.2a:

t̂k,i = Wsk,i(tk,i) (5.9)

Shape-normalization can be seen as a partial linearization of non-linear inter-

dependencies within each pose-specific texture feature-space resulting from

(slightly) different body poses and headings.

As before, PCA is applied to establish a parametric texture model-space

representation of t̂k,i in terms of the mean texture ¯̂tk and eigenvectors Φt̂k
:

mt̂k,i
= ΦT

t̂k

“
t̂k,i − ¯̂tk

”
(5.10)

Figure 5.6 depicts the mean texture along with the first four eigenvectors

for a pose-specific texture model. Note the existence of pose-specific texture
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Figure 5.6: Mean texture and eigenvectors for a pose-specific texture model
(background masked out). Note the pose-specific texture charac-
teristics, e.g. different types of clothing in mode 2 and the coat-shirt
pattern in mode 4.

characteristics, e.g. different types of clothing in mode 2 and the coat-shirt

pattern in mode 4.

Given the scarcity of available texture samples (meanwhile subdivided by

pose) and the high dimensionality of the shape-normalized texture model-

space, we cannot reliably establish a generative texture model to capture a

sizable amount of variance (e.g. 95 %), as done before for shape. Using solely

a subspace spanned by fewer principal components is however not a viable

option, as projection leads to subtle texture details being washed-out, which

in large part determine pedestrian appearance. As a way out, we propose

to decompose the full dtk-dimensional texture model-space obtained by PCA

into two subspaces with dimensionality dtk
′

and dtk
′′
:

dtk = dtk
′
+ dtk

′′
(5.11)

The first subspace represents coarse texture components (e.g. modeling over-

all appearance of clothing parts such as trousers and coat). Its dimensionality

dtk
′
< dtk is selected such that a reliable estimation of the relevant pdf from

training data is possible (e.g. we model 65 % of the total variance). The sec-

ond and complementary dtk
′′
-dimensional subspace captures fine texture com-

ponents. Here no pdf estimation takes place, for synthesis (see Section 5.3)

the associated entries are derived from particular training samples.

Hence, the parametric model-space representation mt̂k,i
, as given in Equa-
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tion (5.10), of a shape-normalized texture vector t̂k,i is decomposed into:

mt̂k,i
=
`
m′t̂k,i

,m′′t̂k,i

´
(5.12)

with

m′t̂k,i
=

`
mt̂k,i,1

, . . . ,mt̂k,i,d
t
k
′
´

(5.13)

m′′t̂k,i
=

`
mt̂k,i,d

t
k
′+1, . . . ,mt̂k,i,d

t
k

´
(5.14)

5.2.4 Class-Conditional Density Estimation

After establishing K pose-specific shape and shape-normalized texture

model-spaces, we estimate the class-conditional densities psk

`
msk |ω0

´
and

pt̂k

`
m′t̂k
|ω0

´
with respect to the pedestrian class ω0 within each subspace.

In preliminary experiments, we found Gaussian Kernel Density Estimation

(KDE) to outperform Gaussian Mixture Models (GMM), based on the like-

lihood of model-fit.

Temporarily dropping the distinction between shape sk and texture t̂k, the

Kernel Density estimate of the class-conditional densities is given by:

pk (m |ω0) =
1

Nk

NkX
n=1

1

det(H)
K
˘
H−1(m −mn)

¯
(5.15)

where K denotes the kernel function and H represents a diagonal matrix con-

taining kernel bandwidths. We use anisotropic multivariate Gaussian kernels

K, with bandwidths optimized via maximum likelihood on the training set

[78], for both the shape and shape-normalized texture space, respectively.

The class-conditional density functions psk

`
msk |ω0

´
and pt̂k

`
m′t̂k
|ω0

´
pro-

vide the basis for the proposed synthesis of virtual pedestrians. As opposed to

[22, 43, 80], where plausibility has been enforced by limiting the deviation of

the model coordinates from the mean (which does not extend to a multimodal

distribution), the probabilistic formulation allows for a direct assessment of

plausibility for a given shape or texture vector.

5.3 Model-Based Virtual Pedestrian Synthesis

The model-based synthesis of virtual pedestrian samples utilizing the pro-

posed pose-specific generative shape and texture models involves the varia-
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Figure 5.7: Overview of the proposed model-based pedestrian synthesis proce-
dure within a pose-specific cluster Ψk. Existing pedestrian examples
are projected onto a generative shape-texture model which is re-
sampled to create virtual pedestrian samples.

tion of three components: shape, foreground texture and background texture.

See Figure 5.7 for an overview.

5.3.1 Shape Variation

Model coordinates m∗sk,j
representing a new virtual shape s∗k,j can be sampled

directly from the generative shape model psk

`
msk |ω0

´
:

m∗sk,j
∼ psk

`
msk |ω0

´
(5.16)

Sampling the KDE estimate of psk

`
msk |ω0

´
involves uniformly selecting the

j-th example msk,j in model-space and sampling from the local kernel K,

centered at msk,j . Plausibility of the virtual shape model coordinates is

enforced by requiring psk

`
m∗sk,j

|ω0

´
> csk , with csk a threshold parameter

learned from the distribution of the training set so that the large majority of

training samples (e.g. 99 %) are covered.

Transforming m∗sk,j
from shape model-space back to the shape feature-
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space yields a new virtual shape contour:

s∗k,j = s̄k + Φsk
m∗sk,j

(5.17)

The virtual shape s∗k,j is utilized to warp an existing pedestrian example into

a new shape, as shown in Figure 5.8b.

5.3.2 Foreground Texture Variation

Regarding the synthesis of virtual texture samples for the pedestrian class,

we utilize the proposed decomposed representation of the shape-normalized

texture space in terms of coarse and detailed components, as outlined in Sec-

tion 5.2. The main idea is, to employ the main modes of variation to control

coarse appearance variations (e.g. individual clothing parts or global illumi-

nation) and induce pose-specific effects of different types of wear (e.g. closed

coat vs. coat-shirt pattern, see Figure 5.6 mode 2 vs. mode 4, respectively),

while at the same time retaining fine-scales details (e.g. internal body or face

contours), which are crucial for pedestrian appearance.

Hence, to obtain virtual shape-normalized texture parameters m∗t̂k,j
, we

first sample model parameters pertaining to coarse texture components m
′∗
t̂k,j

from the generative texture model pt̂k

`
m′t̂k
|ω0

´
, by uniformly selecting the

j-th example in model-space and sampling from the local kernel:

m
′∗
t̂k,j

∼ pt̂k

`
m′t̂k
|ω0

´
(5.18)

Similar to the way the shape component is addressed, plausibility is en-

forced by applying a coverage threshold ct̂k
(e.g. 99 % coverage), with

pt̂k

`
m
′∗
t̂k,j
|ω0

´
> ct̂k

. Model parameters m′′t̂k,j
representing the original

shape-normalized texture details of the j-th example mt̂k,j
are retained

and combined with the synthesized coarse model coordinates m
′∗
t̂k,j

to yield

(cf. Equation (5.12)):

m∗t̂k,j
=
`
m
′∗
t̂k,j

,m′′t̂k,j

´
(5.19)

Thereafter, m∗t̂k,j
is projected from the model-space back to the feature-space

of shape-normalized texture:

t̂∗k,j = ¯̂tk + Φt̂k
m∗t̂k,j

(5.20)
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Finally, the inverse of the shape-normalization operator, W−1
s∗
k,j

, is applied

to warp the virtual shape-normalized texture t̂∗k,j to a shape s∗k,j (which can

be a new virtual shape or an existing shape) within the same pose-specific

model, see Equation (5.9):

t∗k,j = W−1
s∗
k,j

(̂t∗k,j) (5.21)

An example of this technique is depicted in Figures 5.8c - 5.8e. Note how fine-

scale details, e.g. the internal contour of the right arm (Figures 5.8c - 5.8e,

a) b) e)d)c)

(a)

a) b) e)d)c)

(b)

a) b) e)d)c)

(c)

a) b) e)d)c)

(d)

a) b) e)c)

(e)

Figure 5.8: Example of virtual pedestrian synthesis. (a) Original pedestrian ex-
amples. (b) Shape variation. (c) Foreground texture variation. (d)
- (e) Joint variation of shape, foreground and background texture.
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first row) are preserved, while the overall texture exhibits sensible variations.

5.3.3 Background Texture Variation

The background texture component is assumed independent from pedestrian

appearance and is represented by a non-parametric exemplar-based model.

Virtual background texture vectors b∗k,j are uniformly sampled (U) from a

set of non-pedestrian images B that can be obtained at low cost:

b∗k,j ∼ U(B) (5.22)

Application-specific constraints regarding likely target locations (e.g. flat-

world assumption, people standing on the ground) can be incorporated at

this point.

5.3.4 Joint Variation and Compositing

Joint variation of shape, foreground and background texture involves sam-

pling virtual examples for each component. Virtual texture t∗k,j is sampled

from the generative texture model pt̂k

`
m′t̂k
|ω0

´
, see Equations (5.18) - (5.21),

and warped to a virtual shape s∗k,j , sampled from the generative shape model

psk

`
msk |ω0

´
(cf. Equations (5.16) - (5.17)). Finally, background b∗k,j is sam-

pled from the the non-parametric background model (cf. Equation (5.22))

and a virtual pedestrian example x∗k,j is obtained by compositing the tex-

tured pedestrian shape over the background, see Figure 5.8:

x∗k,j = (s∗k,j , t
∗
k,j) ⊕ b∗k,j (5.23)

5.4 Probabilistic Selective Sampling

A probabilistic least-certain querying scheme, an instance of an active learn-

ing algorithm [62, 83, 96], is utilized to directly link the discriminative with

the generative model in terms of assessing the information content of virtual

pedestrian samples. Resampling a generative model allows to create a vir-

tually infinite number of training samples for a discriminative model. Here,

selective sampling becomes a necessity to remove redundancy from the train-

ing set and focus the resources of the discriminative learning procedure on

the examples with the highest information content. In classification tasks,
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Figure 5.9: Region of uncertainty in an exemplary two-dimensional classifica-
tion problem (+ vs. ◦). Two decision boundaries c1 (red) and c2
(green) are shown which are consistent with the training set. The
unknown true decision boundary t is depicted in blue. The region of
uncertainty RD is marked with a hatched pattern, see text.

there exists a region of uncertainty RD, where the classification result is not

unambiguously defined, see the hatched area in Figure 5.9. That is, the dis-

criminative model can learn a multitude of decision boundaries which are

consistent with the given training patterns, but yet disagree in some regions

of the decision space. If a sample is drawn from RD, the size of RD and thus

the global uncertainty can be reduced.

In our probabilistic least-certain querying scheme, we approximate RD
using the probability of error for each sample xi. Given a two-class prob-

lem with classes ω0 (target class) and ω1 (non-target class), we assume the

discriminative model to approximate posterior probabilities and to make a

Bayesian decision, i.e. xi is classified as ω0, if P (ω0|xi) > P (ω1|xi). Then,

the probability of error P (error|xi) is given by

P (error|xi) = min {P (ω0|xi), P (ω1|xi)} . (5.24)
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Obviously, P (error|xi) has a peak at P (ω0|xi) = P (ω1|xi) = 0.5, which rep-

resents the decision boundary. To base uncertainty on P (error|xi), we intro-

duce a threshold Θ ∈ [0, 0.5] on P (error|xi) and consider only those samples

xi as informative examples, where P (error|xi) > Θ. This is equivalent to

putting a threshold on the absolute difference of the posterior probabilities:

0 ≤ |P (ω0|xi)− P (ω1|xi)| ≤ 1− 2Θ (5.25)

Hence, the approximation of the region of uncertainty RD is defined as a

symmetric region centered at P (ω0|x) = P (ω1|x) = 0.5, the decision bound-

ary of the discriminative model. This technique requires an estimate of the

underlying (unknown) probabilities. The outputs of many state-of-the-art

classifiers, e.g. neural networks or support vector machines can be converted

to an estimate of posterior probabilities [78, 83, 96]. We use this in our

experiments.

The aforementioned selective sampling strategy is used in an iterative

scheme to link the training of the discriminative model with the genera-

tive pedestrian synthesis. In each iteration l, the set of virtual examples D∗l
is resampled to bD∗l by retaining only the informative samples x∗j ∈ D∗l , as

evaluated by the discriminative model trained on Dl, using Equation (5.25).

Finally, the discriminative model is retrained on the joint dataset Dl+1 =

Dl ∪ bD∗l .

5.5 Experiments

The proposed generative-discriminative framework is tested in large-scale ex-

periments on pedestrian classification. Our purpose is not to establish the

best absolute classification performance amongst the various state-of-the-art

methods, see Chapter 2. Rather, our aim is to examine the relative perfor-

mance gain that can be obtained by using the proposed mixed generative-

discriminative framework over a particular discriminative-only approach. To

illustrate the generality with respect to the discriminative model used, we

consider two diverse instances: a neural network with local receptive fields of

size 5 × 5 pixels (NN/LRF) [170] and a linear1 support vector machine us-

ing Haar wavelet features at scales of 4× 4 and 8× 8 pixels (Haar/linSVM)

1training a non-linear SVM on our large datasets was not feasible due to excessive
memory requirements
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Pedestrians Pedestrians Non-
(labeled) (jittered) Pedestrians

Initial Training Set 10946 43784 82698
Test Set 13971 251478 133813

Table 5.2: Training and test set statistics.

[120]. Results are expected to generalize to other pedestrian classifiers that

are sufficiently complex to represent the large training datasets, cf. Chapter 2.

See Table 5.2 for the datasets used. Training and test sets contain manu-

ally labeled pedestrian bounding boxes with additional contour labels for the

training set. All training samples are scaled to 18×36 pixels with a two pixel

border in order not to lose contour information. The samples were acquired

in daylight conditions from a moving vehicle and depict non-occluded pedes-

trians in front of a changing background. The non-pedestrian samples were

the result of a pedestrian shape recognition pre-processing step with relaxed

threshold setting, i.e. containing a bias towards more “difficult” patterns,

similar to [109]. Training and test set are strictly separated: no instance of

the same real-world pedestrian appears in both training and test set, sim-

ilarly for the non-target samples. See Figure 5.10 for an overview of the

dataset. Discriminative models trained on this dataset are referred to as base

classifiers.

We examine the effect of introducing jittering to pedestrian training sam-

ples; this represents the applicable state-of-the-art, see Section 5.1. Geo-

metric jittering is introduced in terms of creating four patterns from each

pedestrian sample in the training set by applying a random shift (±2 pixels)

and mirroring. Since we employ contrast normalization during training of

the classifiers, photometric jittering is not considered. Discriminative models

utilizing this dataset are referred to as jittered classifiers.

In all experiments with our mixed generative-discriminative framework

(Figure 5.1), we perform several iterations of virtual sampling and discrimina-

tive model retraining, up to performance saturation. In each such iteration,

the training set is extended by 10946 synthesized pedestrians (plus addi-

tional four jittered versions of each virtual pedestrian), guided by selective

sampling (Equation (5.25)), with Θ = 0.35. For the case of non-targets, we

perform a similar iterative dataset extension approach (4 × 10946 samples,

now obtained by selective sampling on images not containing targets, without
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(a) (b)

Figure 5.10: Dataset overview. (a) Training set examples. (b) Test set exam-
ples. Top and bottom rows show target and non-target samples,
respectively.

jittering).

In a first experiment with an NN/LRF classifier (Figure 5.11a), the number

of non-target training samples is kept constant and the benefit of jittering

and virtual pedestrian synthesis is studied. From Figure 5.11a one observes

that jittering leads to a significant performance improvement over the base

classifier (more jittered samples did not yield further improvement). Yet

we obtained additional performance gain using the proposed framework, by

incrementally incorporating shape, foreground and background texture vari-

ation.

Furthermore, we compare target class resampling involving joint shape,

foreground and background variation (the best performing synthesis variant

in Figure 5.11a) to non-target class resampling, see Figures 5.11b and 5.11c.

The total performance gain by adding non-target training samples only is

significant, yet less than in the case of augmenting the pedestrian set only

(Figures 5.11b and 5.11c, magenta vs. green curve). Best performance is

reached by joint augmentation of the pedestrian and non-pedestrian class.

This variant saturated after three iterations, compared to two iterations for

all others.

For comparison, we added 10946 real pedestrian samples plus four jittered

versions, manually labeled from an auxiliary data pool, to the base dataset
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Figure 5.11: ROC performance for classification experiments. (a) Virtual pedes-
trian synthesis (NN/LRF), (b) - (c) Target class vs. non-target
class resampling for NN/LRF and Haar/linSVM.
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(without synthetic samples and active learning). Remarkably, the proposed

generative-discriminative framework even outperforms the manual approach

(see Figures 5.11b and 5.11c, green vs. red circled curve). This is not an

aberration caused by overfitting; the datasets used are truly large. Rather, it

is the consequence of the fact that, although the manually labeled samples are

more realistic, they are not necessarily more informative (we tediously label

samples that the classifier already knows). Of course, the aim of our pro-

posed generative-discriminative framework is to avoid this additional manual

labeling in the first place.

We finally note that, although absolute performances for the two considered

discriminative models are different, the relative order in which the various

resampling techniques perform is identical, see Figures 5.11b and 5.11c.

5.6 Conclusion

This chapter presented a novel framework for pedestrian classification which

involves utilizing the synthesized samples of a learned generative model to

enhance the classification performance of a discriminative model. In exten-

sive experiments, we obtained the non-trivial result that classification per-

formance is substantially enhanced by the augmented training set; the false

positive rate of the mixed generative-discriminative approach was reduced by

up to a factor of two compared to discriminative-only approach, at the same

detection rate. Our approach also outperformed classifiers bootstrapped by

non-target data or by jittered samples of the target class. Remarkably, high-

informative virtual samples proved to have a similar value than additional

(random) real pedestrian samples. We take this as evidence of the strength

of our generative pedestrian model and selective sampling method. Future

work could involve feedback mechanisms to allow the selective sampling pro-

cedure to guide the generative model, i.e. to create new virtual samples in

areas, where original samples are sparse. Further, the extension to other

object classes is desired.
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Chapter 6

Multi-Level Mixture-of-Experts for Pedestrian

Classification

6.1 Overview

In recent years, a multitude of (more of less) different feature sets has been

used to discriminate pedestrians from non-pedestrian images, as discussed in

Chapter 2. Most of these features operate on intensity contrasts in spatially

restricted local parts of an image. As such, they resemble neural structures

which exist in lower-level processing stages of the human visual cortex [60].

In human perception however, depth and motion are important additional

cues to support object recognition. In particular, the motion flowfield and

surface depth maps seem to be tightly integrated with spatial cues, such as

shape, contrasts or color [88].

The mixture-of-experts framework, cf. [77], for pedestrian classification

presented in this chapter combines four modalities (shape, intensity, depth

and motion) and three features (Chamfer distance [14], histograms of oriented

gradients (HOG) [27] and local binary patterns (LBP) [115, 167], cf. Sec-

tion 2.2). We follow a multi-level approach by utilizing expert classifiers

on pose-, modality- and feature-levels, see Figure 6.1a. The local experts

are integrated in terms of a probabilistic model based on fuzzy view-related

clustering and associated sample-dependent cluster priors. K view-related

models are trained in an off-line step to discriminate between pedestrians

and non-pedestrians. These models consist of sample-dependent cluster pri-

ors and multi-level (multi-modality / multi-feature) expert classifiers. In the

on-line application phase, cluster priors are computed using shape matching

and used to fuse the multi-level expert classifiers to a combined decision, see

Figure 6.1b. Details are given in Section 6.2.

Our approach has a number of advantages compared to fusion approaches
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(a)

(b)

Figure 6.1: Framework overview. (a) Multi-level object representation compris-
ing mixture-of-experts on pose-level, modality-level and feature-level.
(b) K view-related models specific to fuzzy clusters Ψk are used for
classification. The models consist of sample-dependent cluster priors
and multi-modality/feature discriminative experts which are learned
from pedestrian (class ω0) and non-pedestrian (class ω1) samples x.
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using a joint feature space, e.g. [137, 167, 173]. First, our individual expert

classifiers operate on a local lower-dimensional feature subspace and are less

prone to overfitting effects, given an adequate number of training samples.

We do not need to apply dimensionality reduction techniques, e.g. [137], to

robustly train our classifiers. Compared to multi-feature boosting approaches,

we also do not require techniques to map the multi-dimensional features to

a single dimension, e.g. through projection [175] or selection of 1D features

[165, 166, 173].

Second, our mixture-of-experts framework alleviates practical problems

arising from the use of large and high-dimensional datasets. Some authors

reported that classical machine learning techniques do not scale-up (on prac-

tical terms) to the use of many tens of thousands of high-dimensional training

samples, due to excessive memory requirements, e.g. non-linear SVMs [37] or

even linear SVMs [27, 137]. In contrast, the local expert classifiers in our

framework are trained on a lower-dimensional subspace alleviating memory

requirements. As a result, more complex classifiers and/or a larger amount

of training samples can be used, which results in better performance.

A third issue is training time, which can be on the order of weeks on current

hardware, particularly for boosting approaches, e.g. [37, 165, 166, 173, 175].

In our approach, training times are usually faster, given the lower dimension-

ality and inherent parallelism of training multiple local experts independently

at the same time. Note that the expert classifiers used in our experiments

did not require more than one hour for each training run.

Finally, since our expert classifiers are independent from each other, they

are not required to use exactly the same dataset for training. Given that

most recently published datasets include samples from the intensity domain

only, cf. [32, 37, 109], our approach could make maximum use of all avail-

able samples. For evaluation purposes, we utilize the same data samples for

each modality/feature in our experiments to eliminate effects arising from

imbalanced data.

6.2 Multi-Level Mixture-of-Experts

6.2.1 Object Representation

Input to our framework is a training set D of pedestrian (ω0) and non-

pedestrian (ω1) samples xi ∈ D. Each sample xi = [x1
i ; x

2
i ; . . . ; x

M
i ] consists
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Chapter 6 Multi-Level Mixture-of-Experts for Pedestrian Classification

of M different modalities Ψm. In each modality Ψm, a sample xmi ∈ Ψm is

represented in terms of F features Ψf : xmi = [xm,1i ; xm,2i ; . . . ; xm,Fi ].

In this work, we consider M = 3 different modalities, i.e. gray-level im-

age intensity (x1
i ), dense depth information via stereo vision (x2

i ) [68] and

dense optical flow (x3
i ) [168]. Other alternatives include near/far infrared

(NIR/FIR) [101] or time-of-flight imagery [130]. We treat x2
i and x3

i simi-

larly to gray-level intensity images x1
i , in that both depth and motion cues

are represented as images, where pixel values encode distance from the cam-

era and horizontal optical flow between two temporally aligned images, see

below.

Dense stereo provides information for most image areas, apart from regions

which are visible only by one camera (stereo shadow), see Figure 6.3. Spatial

features can be based on either depth Z (in meters) or disparity d (in pixels).

Both are inversely proportional, given the camera geometry with focal length

f and the distance between the two cameras B:

Z(u, v) =
fB

d(u, v)
at pixel p = (u, v) (6.1)

Objects in the scene have similar foreground/background gradients in depth

space, irrespective of their location relative to the camera. In disparity space

however, such gradients are larger, the closer the object is to the camera.

To remove this variability, we derive spatial features from depth instead of

disparity.

In case of optical flow, we only consider the horizontal component of flow

vectors, to alleviate effects introduced from a moving camera with a signif-

icant amount of changes in pitch, e.g. a vehicle-mounted camera. Longitu-

dinal camera motion also induces optical flow. In contrast to the approach

described in Section 4.2, we do not compensate for the ego-motion of the

camera at this point, since we are only interested in local differences in flow

between a pedestrian and the environment. As a positive side-effect, static

pedestrians do not pose a problem in combination with a moving camera.

A visual inspection of the intensity vs. depth and flow images in Figures 6.2

and 6.3 reveals that pedestrians have distinct contours and textures in each

modality. Figure 6.2a shows the average gradient magnitude of all pedestrian

training samples for each modality. In intensity images, lower-body features

(shape and appearance of legs) are the most significant features of a pedes-

trian (see results of part-based approaches, e.g. [108]). There is significant
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(a) (b)

Figure 6.2: Multi-modality sample visualization. (a) Average gradient magni-
tude of all pedestrian training samples for intensity, depth and motion
(left to right). (b) A difficult to recognize (low-contrast) pedestrian
in the intensity domain can be very salient in other modalities.

texture on the pedestrian due to different clothing. In the depth image, the

upper-body area has dominant foreground/background gradients and is par-

ticularly characteristic for a pedestrian. The depth texture on the pedestrian

is fairly uniform, given that areas corresponding to the pedestrian are ap-

proximately in the same distance from the camera. Pedestrian gradients in

flow images are particularly strong around the upper body and torso con-

tours, resulting from motion discontinuities between the (uniformly moving)

pedestrian and the background. Similar to the depth image, the pedestrian

upper body area is fairly homogeneous due to uniform pedestrian motion.

Legs move non-rigidly and less uniform than the rest of the pedestrian body.

As a result, the lower body area is more blurred and less significant in the

average gradient image.

The various salient regions in intensity, depth and flow images motivate

our use of fusion approaches between those modalities to benefit from the

individual strengths, see Section 6.2.3. A characteristic example is shown in

Figure 6.2b. A pedestrian sample which is difficult to classify in the intensity

domain due to low contrast may appear very salient in the depth and motion

modalities. This highlights the complementary aspect of different modalities.

In our experiments, we consider F = 2 features per modality, that is his-

tograms of oriented gradients (HOG) features [27] and local binary pat-

tern (LBP) features [115, 167]. The motivation for this choice is two-fold.

First, recent studies have shown that HOG and LBP features are highly com-
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plementary regarding their sensitivity to noisy background edges which are

common in cluttered backgrounds, cf. [167]. Second, despite the vast amount

of features developed in recent years, HOG and LBP are still among the best

features around [32, 37, 167]. Detailed parameterization of our feature set is

given in Section 6.3.2.

Associated with each sample xi is a class label ωi, (ω0 for the pedestrian

and ω1 for the non-pedestrian class), as well as a K-dimensional cluster mem-

bership vector zi, with 0 ≤ zki ≤ 1 and
P
k z

k
i = 1. zi defines the probabilistic

membership to a set of K clusters Ψk, which relate to the similarity in ap-

pearance to a certain view and pose of a pedestrian. Note that the same

also applies to non-pedestrian training samples, where the image structure

resembles a certain pedestrian view. Our definition of cluster membership zi
is given in Section 6.3.1.

6.2.2 Pedestrian Classification

For pedestrian classification, our goal is to determine the class label ωi of a

previously unseen sample xi. We make a Bayesian decision and assign xi to

the class with highest posterior probability:

ωi = argmax
ωj

P (ωj |xi) (6.2)

We decompose P (ω0|xi), the posterior probability that a given sample is

a pedestrian, in terms of the K clusters Ψk as:

P (ω0|xi) =
X
k

P (Ψk|xi)P (ω0|Ψk,xi) (6.3)

≈
X
k

wk(xi)Hk(xi) (6.4)

In this formulation, P (Ψk|xi) represents a sample-dependent cluster mem-

bership prior for xi. We approximate P (Ψk|xi) using a sample-dependent

gating function wk(xi), with 0 ≤ wk(xi) ≤ 1 and
P
k wk(xi) = 1, as defined

in Equation (6.14) in Section 6.2.4.

P (ω0|Ψk,xi) represents the cluster-specific probability that a given sample

xi is a pedestrian. Instead of explicitly computing P (ω0|Ψk,xi), we utilize

an approximation given by a set of discriminative models Hk. The classifier

outputs Hk(xi) can be seen as approximation of the cluster-specific posterior
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probabilities P (ω0|Ψk,xi).

6.2.3 Multi-Modality / Multi-Feature Expert Classifiers

Given our pose-specific mixture-of-experts formulation, cf. Equation (6.4),

we model the pose-specific expert classifiers Hk(xi) in terms of our multi-

modality dataset (intensity, depth, flow). We extend the mixture-of-

experts formulation by introducing individual classifiers for each modality

m:

Hk(xi) =
X
m

vmk Imk (xmi ) (6.5)

In this formulation, Imk (xmi ) denotes a local expert classifier for the k-th

fuzzy pose cluster, which is represented in terms of the m-th modality. vmk
represents a pose- and modality-dependent weight.

Within each modality, we further introduce another level of expert clas-

sifiers, in that multiple feature sets f are considered. Following a simi-

lar mixture-of-experts principle, Imk (xmi ) is given by:

Imk (xmi ) =
X
f

um,fk Jm,fk (xm,fi ) (6.6)

Jm,fk (xm,fi ) represents a pose-, modality- and feature-specific expert classifier

with an associated weight um,fk .

Plugging Equations (6.5) and (6.6) into Equation (6.4), we approximate

P (ω0|xi), the posterior probability that a given sample is a pedestrian, using

our multi-level mixture-of-experts model as:

P (ω0|xi) ≈
X
k

wk(xi)
“X
m

vmk
`X
f

um,fk Jm,fk (xm,fi )
´”

(6.7)

=
X
k

wk(xi)
“X
m

X
f

vmk u
m,f
k Jm,fk (xm,fi )

”
(6.8)

=
X
k

wk(xi)
“X
m,f

sm,fk Jm,fk (xm,fi )
”
, (6.9)

with sm,fk = vmk u
m,f
k and

X
m,f

sm,fk = 1.

As expert classifiers Jm,fk , we use pattern classifiers which are learned on
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the training set using data from the corresponding modality / feature only.

Given K fuzzy pose clusters, M modalities and F features, we train K ×
M × F classifiers Jm,fk on the full training set D to discriminate between

the pedestrian and the non-pedestrian class. For each training sample xi,

the fuzzy cluster membership vector zi is used as a sample-dependent weight

during training.

In principle, the proposed framework is independent from the actual dis-

criminative models used, cf. [37]. We only require example-dependent weights

during training, and that the classifier outputs (decision values) relate to an

estimate of posterior probability. For neural networks, example-dependent

weights are incorporated using a weighted random sampling step to select

the examples that are presented to the neural network during each learning

iteration. In case of support vector machines, the approach of [15] can be

used. In the limit of infinite data, the outputs of many state-of-the-art classi-

fiers can be converted to an estimate of posterior probabilities [78, 123]. We

use this in our experiments.

We compute sm,fk , the weights to the individual expert classifiers, by inter-

preting
P
m,f s

m,f
k Jm,fk (xm,fi )), see Equation (6.9), as a dot-product in the

m × f -dimensional space of expert classifier posterior probabilities. To de-

termine the weights sm,fk , we train a linear support vector machine (linSVM)

Fk in the expert posterior space. With the linSVM bias term constrained to

be zero, cf. [44], its decision function equals a dot-product:

Fk(xi) =
X
m,f

sm,fk Jm,fk (xm,fi )) (6.10)

= ~s · ~J(xi) (6.11)

Plugging Equation (6.10) into Equation (6.9) then yields:

P (ω0|xi) ≈
X
k

wk(xi)Fk(xi) (6.12)

6.2.4 Sample-Dependent Cluster Priors

Prior probabilities for membership to a certain cluster Ψk of an unseen sample

xi, P (Ψk|xi), are introduced in Equation (6.3). Note that this prior is not a

fixed prior, but depends on the sample xi itself. As such, it represents the

gating of the proposed mixture-of-experts architecture.
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At this point, information from other cues besides texture (on which the

discriminative models Hk are based) can be incorporated into our framework

in a probabilistic manner. We choose to model cluster priors using a Bayesian

approach as:

P (Ψk|xi) =
p(xi|Ψk)P (Ψk)P
l p(xi|Ψl)P (Ψl)

(6.13)

Cluster conditional-likelihoods p(xi|Ψk) involve the representation of xi in

terms of a set of features, followed by likelihood estimation. Possible cues

include motion-based features, i.e. optical flow [28], or shape [56]. Likelihood

estimation can be performed via histogramming on training data or fitting

parametric models [56].

Here, we utilize shape cues, to compute priors P (Ψk|xi) for the membership

of a sample xi to a certain cluster Ψk: Within each cluster Ψk, a discrete set

of shape templates specific to Ψk is matched to the sample xi. Shape match-

ing involves correlation of the shape templates with a distance-transformed

version of xi. Let Dk(xi) ≥ 0 denote the residual shape distance, e.g. the

Chamfer distance [54], between the best matching shape in cluster Ψk and

sample xi. By representing xi in terms of Dk(xi) and using Equation (6.13),

sample-dependent shape-based priors for cluster Ψk are approximated as:

P (Ψk|xi) ≈
p(Dk(xi)|Ψk)P (Ψk)P
l p(Dl(xi)|Ψl)P (Ψl)

= wk(xi) (6.14)

Priors P (Ψk) are assumed equal and cluster-conditionals p(Dk(xi)|Ψk) are

modeled as exponential distributions of Dk(xi):

p(Dk(xi)|Ψk) ≈ bαke−bαkDk(xi) , bαk > 0 (6.15)

Parameters bαk of the exponential distributions are learned via maximum-

likelihood on the training set, as follows. With Equation (6.15), the likelihood

function is given by:

L(αk|Dk(xi)) =
Y

xi∈Ψk

p(Dk(xi)|Ψk) (6.16)

(6.15)
≈

Y
xi∈Ψk

αke
−αkDk(xi) (6.17)

Let Nk > 0 be the number of samples in cluster Ψk. Instead of maximizing

L(αk|Dk(xi)), we apply a logarithmic transformation and maximize the log-
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likelihood Λ(αk|Dk(xi)). Since this transform is monotonically increasing,

the maximum remains at the same value of αk:

Λ(αk|Dk(xi)) = ln
“
L (αk|Dk(xi))

”
(6.18)

(6.17)
≈ ln

0@ Y
xi∈Ψk

αke
−αkDk(xi)

1A (6.19)

= ln

0@ Y
xi∈Ψk

αk

1A+ ln

0@ Y
xi∈Ψk

e−αkDk(xi)

1A (6.20)

= Nk ln (αk)− αk
X

xi∈Ψk

Dk(xi) (6.21)

→ max

To determine the maximum of the log-likelihood function, we compute its

first derivative:

∂

∂αk
Λ(αk|Dk(xi))

(6.18)
=

∂

∂αk
ln
“
L (αk|Dk(xi))

”
(6.22)

(6.21)
≈ ∂

∂αk

0@Nk ln (αk)− αk
X

xi∈Ψk

Dk(xi)

1A (6.23)

=
Nk
αk
−
X

xi∈Ψk

Dk(xi) (6.24)

Setting the derivative to zero and solving for αk yields the maximum-

likelihood parameter estimate bαk:

∂

∂αk
Λ(αk|Dk(xi))

(6.24)
≈ Nk

αk
−
X

xi∈Ψk

Dk(xi) = 0 (6.25)

⇔ bαk =
NkP

xi∈Ψk
Dk(xi)

(6.26)

The second derivative of the log-likelihood function Λ(αk|Dk(xi)) is always

less than zero, given that Nk, the number of samples in cluster Ψk, is a
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positive number. Thus, bαk is indeed a maximum point:

∂2

∂α 2
k

Λ(αk|Dk(xi))
(6.18)

=
∂2

∂α 2
k

ln
“
L (αk|Dk(xi))

”
(6.27)

(6.24)
≈ ∂

∂αk

0@Nk
αk
−
X

xi∈Ψk

Dk(xi)

1A (6.28)

=
−Nk
α 2
k

(6.29)

< 0, ∀Nk > 0 (6.30)

6.3 Experimental Set-Up

6.3.1 Dataset and Evaluation Methodology

The proposed multi-level mixture-of-experts framework is tested in exper-

iments on pedestrian classification. Since we require multi-cue (intensity,

dense stereo, dense optical flow) training and test samples, we cannot use

established datasets for benchmarking, e.g. [27, 32, 37, 109]. Recently, an in-

dependently developed approach combining intensity, motion and depth was

presented in [166]. However, the dataset used in [166] is only partly publicly

available (the training data is not public). We make our full multi-cue train-

ing and test dataset publicly available to non-commercial entities for research

purposes.1

Our training and test samples consist of manually labeled pedestrian and

non-pedestrian bounding boxes in images captured from a vehicle-mounted

calibrated stereo camera rig in an urban environment. For each manually

labeled pedestrian, we create additional samples by geometric jittering. Non-

pedestrian samples result from a pedestrian shape recognition pre-processing

step with a relaxed threshold setting, as well as ground-plane constraints and

prior knowledge about pedestrian geometry, i.e. containing a bias towards

more “difficult” patterns, resembling pedestrians in geometry and structure.

Training and test samples have a resolution of 48× 96 pixels with a 12 pixel

border around the pedestrians; there is no artificial extension of the border

(padding, mirroring) in our data. Dense stereo is computed using the semi-

global matching algorithm [68]. To compute dense optical flow, we use the

1See http://www.science.uva.nl/research/isla/downloads/pedestrians/index.html

97



Chapter 6 Multi-Level Mixture-of-Experts for Pedestrian Classification

Pedestrians Pedestrians Non-
(labeled) (jittered) Pedestrians

Training Set 6514 52112 32465

Test Set 3201 25608 16235

Table 6.1: Training and test set statistics.

method of [168]. See Figure 6.3 and Table 6.1 for an overview of the dataset.

We consider K = 4 view-related clusters Ψk, roughly corresponding to

similarity in appearance to front, left, back and right views of pedestrians.

We use the approximated cluster prior probability, see Section 6.2.4, as cluster

membership weights for training:

zki = wk(xi) ≈ P (Ψk|xi) (6.31)

To compute wk(xi), a set of 10946 shape templates corresponding to clusters

Ψk is used according to the methods outlined in Section 6.2.4.

6.3.2 Feature Extraction and Classification

Regarding features for our multi-modality classifiers, we choose histograms of

oriented gradients (HOG) [27] and cell-structured local binary patterns (LBP)

with uniformity constraints [115, 167] out of many possible feature sets,

cf. [32, 37, 109]. The motivation for this choice is two-fold: First, HOG and

LBP are complementary in the sense that HOGs are gradient-based whereas

LBPs are texture-based features. HOGs are sensitive to noisy background

edges which often occur in cluttered backgrounds. LBPs can filter out back-

ground noise using uniformity constraints, see [167]. Second, HOG and LBP

features are still among the best performing (and most popular) feature sets

available, cf. [32, 37, 167].

We follow [27] and compute histograms of oriented gradients with 9 orien-

tation bins and 8 × 8 pixel cells, accumulated to overlapping 16 × 16 pixel

blocks with a spatial shift of 8 pixels. See Section 4.1.2 for more details on

the HOG feature extraction algorithm.

A single LBP feature is based on a local comparison of n pixels pi within

a given region to the center pixel c of the region. Each region is described

as an n-bit string, where each bit denotes the relation of pi and c. If the

pixel intensity π(pi) is larger than π(c), 1 is added to the bit string and
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Figure 6.3: Multi-modality pedestrian and non-pedestrian samples in our
dataset. In depth images, darker colors denote closer distances. Note
that the background (large depth values) has been faded out for vis-
ibility. Optical flow images depict the horizontal component of flow
vectors. Medium red colors denote close to zero flow, darker and
brighter colors indicate stronger motion (to the left and to the right,
respectively).
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(a)

(b)

Figure 6.4: Extraction of LBP2
8,1 features in an 8 pixel neighborhood. (a) A

uniform LBP2
8,1 feature with two 0-1 transitions. (b) A non-uniform

LBP2
8,1 feature with five 0-1 transitions.

0 otherwise. Generally, LBPun,r denotes LBP features that use n sample

points with a radius r and the number of 0-1 transitions in the bit string no

more than u. Patterns that satisfy this constraint are referred to as uniform

patterns. Here, we use LBP2
8,1 features, as shown in Figure 6.4.

To compute cell-structured LBPs, we first divide the input sample (48×96

pixels) into 8×8 pixel cells, similar to HOG features. Within each 8×8 pixel

cell, 64 single LBP features can be extracted (every pixel in the cell can be

regarded as a center pixel c for a single LBP feature). The feature vector for a

cell is then given by building a histogram which counts the occurrence of each

LBP bit string. To filter out noise in uniform image areas, only uniform LBPs

are voted into different bins. All non-uniform patterns are voted into a single

bin. The individual cell feature vectors are then concatenated into a single

feature vector for the whole 48 × 96 pixel input sample, followed by L1-sqrt

normalization (other normalization variants did not improve performance).

The resulting feature dimensionality is 1980 for HOG and 4248 for LBP.

Note that the same HOG and LBP feature set is extracted from intensity,

dense stereo and dense flow images.

For classification, we employ multi-layer perceptrons (MLP) with one hid-

den layer consisting of eight neurons with sigmoidal transfer functions, trained
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Intensity Depth Motion

HOG 0.27 0.14 0.08

LBP 0.24 0.11 0.16

Table 6.2: Mean weights s m,f for features and modalities, estimated by a linear
SVM on the training set and averaged over view-clusters Ψk.

stochastically using the on-line error back-propagation algorithm. We utilize

the FANN library for MLP training [113]. Compared to the popular lin-

ear support vector machines (linSVM), MLPs provide non-linear decision

boundaries which usually improve performance, see [109]. The training of

non-linear support vector machines was practically infeasible, given our large

datasets.

Expert classifier weights sm,fk , see Equations (6.9) and (6.10), are com-

puted using the linear SVM approach given in Section 6.2.3, applied to the

training set. We utilize the LIBLINEAR library for linear SVM training [44].

Table 6.2 lists s m,f , the actual weights for individual features and modalities

averaged over view-clusters Ψk:

s m,f =
1

K

KX
k=1

sm,fk (6.32)

We reiterate, that the proposed framework is independent from the ac-

tual feature set and discriminative models used. We encourage the scientific

community to present results of other feature-classifier combinations on our

multi-modality data.

6.4 Experiments

Our experiments are designed to evaluate the different levels of the pro-

posed mixture-of-experts framework, see Figure 6.1a, both in isolation and

in combination, to quantify the contribution of the individual cues to the

overall performance. After presenting the experimental results for pedestrian

classification in terms of ROC performance, we analyze the correlation of

classifier outputs in different modalities/features to gain further insight into

the observed performance.
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6.4.1 Pose-Level Mixture-of-Experts

In our first experiment, we evaluate the benefit of our mixture-of-experts ar-

chitecture on pose-level only. For that, we compare the proposed pose-specific

mixture architecture to single “monolithic” classifiers trained on the whole

dataset irrespective of view. We do not consider multi-modality or multi-

feature classifiers yet. For this experiment, we utilize HOG and LBP fea-

tures separately, operating in the intensity domain only. Regarding classi-

fiers, we compare linear support vector machines (linSVM) to multi-layer

perceptrons (MLP). Note that the monolithic HOG/linSVM approach corre-

sponds to the method proposed by Dalal & Triggs [27]. Results are shown in

Figure 6.5a for HOG and Figure 6.5b for LBP features.

Irrespective of the employed feature set, the pose-level mixture classifiers

perform better than the corresponding monolithic classifiers. The decompo-

sition of the problem into view-related sub-parts simplifies the training of the

expert classifiers, since a large part of the observable variation in the sam-

ples is already accounted for. Classification performance and robustness is

increased by a combined decision of the experts. The performance benefit for

the pose-level mixture classifier is up to a factor of two in reduction of false

positives at the same detection rate. Further, multi-layer perceptrons out-

perform linear support vector machines, because of their non-linearities in

decision space. Except for some experiments in Section 6.4.5, we utilize pose-

level mixture-of-experts classification throughout the following experiments.

6.4.2 Modality-Level Mixture-of-Experts

In our second experiment, we evaluate the performance of modality-level

classifiers, as presented in Section 6.2.3, compared to intensity-only classifiers.

Pose-level mixtures are also used, that is, the first two levels of our framework,

see Figure 6.1a, are in place in this experiment. Performance is evaluated for

both HOG and LBP features individually. In each feature-space, we first

evaluate all modalities separately and incrementally add depth and motion

to the baseline intensity cue. Results are shown in Figures 6.6a and 6.7a for

HOG and Figures 6.6b and 6.7b for LBP features.

The relative performance of classifiers trained on intensity, depth and mo-

tion features only is consistent across the two different feature spaces, cf. Fig-

ure 6.6a (HOG) vs. Figure 6.6b (LBP). Classifiers in the intensity modality

have the best performance, by a large margin. In depth and motion modal-
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Figure 6.5: Pose-level mixture-of-experts vs. monolithic classifier. (a) HOG
features in intensity modality. (b) LBP features in intensity modality.
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Figure 6.6: Modality-level mixture-of-experts. (a)-(b) Individual classification
performance of HOG (a) and LBP (b) features in intensity, depth
and motion modality.
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Figure 6.7: Modality-level mixture-of-experts. (a)-(b) Combined classification
performance of HOG (a) and LBP (b) features in intensity, depth
and motion modality.
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ities, performance is similar for both feature sets with depth features per-

forming better then motion features at higher false positive rates and worse

at lower false positive rates. Note that these performance relations are also

apparent in the individual expert classifier weights, see Table 6.2.

Figure 6.7 shows the effect of incrementally adding depth and motion to the

intensity modality. Here, the best performance is reached, when all modalities

are taken into account. However, the observable performance boosts are

different for HOG compared to LBP features. The HOG classifier using

intensity, depth and motion has approx. a factor of four less false positives

than a comparable HOG classifier using intensity only, cf. Figure 6.7a. From

Figure 6.7b we observe, that in case of LBP features, the performance boost

resulting from utilizing all modalities vs. intensity-only is approx. a factor

of twelve in reduction of false positives at equal detection rates.

6.4.3 Feature-Level Mixture-of-Experts

Similar to analyzing the effect of modality-level mixture-of-experts, we

now evaluate the effect of feature-level mixture-of-experts. To that ex-

tent, we combine pose-level mixture-of-experts with feature-level mixture-

of-experts and evaluate the performance of the multi-feature approach in all

three modalities, i.e. intensity, depth, motion, individually. Recalling our

framework architecture, see Figure 6.1a, this corresponds to having levels 1

(pose) and 3 (features) in place. Results are given in Figures 6.8a (intensity),

6.8b (depth) and 6.8c (motion).

In all modalities, one can observe that combining HOG and LBP improves

performance over using both features individually. The largest performance

boost coming from the feature-level mixture-of-experts exists in the intensity

modality. Here, the combined HOG+LBP classifier has up to a factor of four

less false positives than the HOG classifier, which in turn outperforms the

LBP classifier at higher detection rates. In the depth and motion modali-

ties, the corresponding performance boosts amount to factors of 2 (motion)

and 1.5 (depth) at equal detection rate levels. Compared to the performance

improvement obtained by combining different modalities, as shown in Sec-

tion 6.4.2, the effect of feature-level mixture-of-experts is less pronounced,

but still significant.
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Figure 6.8: Feature-level mixture-of-experts. Individual classification perfor-
mance of HOG, LBP and HOG+LBP in intensity (a), depth (b)
and motion (c) modality. Note the different scaling on the x-axis.
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Figure 6.9: Multi-level mixture-of-experts evaluation and performance overview.
(a) Monolithic HOG classifier in intensity domain, best feature-
level MoE (HOG+LBP, intensity), best modality-level MoE (LBP,
intensity+depth+motion), multi-level MoE (HOG+LBP, inten-
sity+depth+motion). (b) Logarithmic plot of (a), focusing on low
false-positive rates.
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6.4.4 Multi-Level Mixture-of-Experts

We now evaluate the performance of our full multi-level mixture-of-

experts framework combining pose-, modality- and feature-level expert clas-

sifiers. As baseline performance, the monolithic (i.e. no delineation of clas-

sifiers at pose-level) HOG/linSVM approach of [27], as well the best per-

forming variants from the previous two experiments are utilized: modality-

level mixture-of-experts using LBP/MLP in intensity, depth and motion

modalities, cf. Section 6.4.2, as well as feature-level mixture-of-experts using

HOG+LBP mixture-of-experts in the intensity domain only, cf. Section 6.4.3.

ROC performance is given in Figure 6.9. We observe that our combined

multi-level mixture-of-experts approach significantly outperforms both vari-

ants using either modality-level or feature-level fusion, as well as the state-

of-the-art monolithic HOG/linSVM approach [27]. To quantify performance,

Table 6.3 lists the false positive rates of all approaches shown in Figure 6.9

using a detection rate of 90 % as a common reference point. We further indi-

cate the resulting reduction in false positives, in comparison to the monolithic

HOG/linSVM classifier as baseline.

If we combine experts on pose-level with experts on feature-level

(HOG/MLP + LBP/MLP, intensity modality) we achieve a reduction in false

positives of more than a factor of 6 over the Dalal & Triggs HOG/linSVM

approach. The use of pose-level and modality-level experts (LBP/MLP, in-

tensity + depth + motion modalities) reduces false positives by more than

a factor of 13 compared to the HOG/linSVM baseline. Our full multi-

level mixture-of-experts approach (HOG/MLP + LBP/MLP, intensity +

depth + motion modalities) further boosts performance up to a reduction

in false positives by a factor of 42.

The results clearly show the benefit of our integrated multi-level architec-

FP Rate Factor

HOG/linSVM - Intensity [Dalal & Triggs] 1.1e-2 1

HOG+LBP/MLP MoE - Intensity 1.7e-3 6.4

LBP/MLP MoE - Int.+Dep.+Mot. 8.2e-4 13.4

HOG+LBP/MLP MoE - Int.+Dep.+Mot. 2.6e-4 42.0

Table 6.3: Performance of approaches in Figure 6.9 using 90 % detection rate
as a common reference point, see text.
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HOG LBP

Intensity / Depth 0.21 0.21

Intensity / Motion 0.19 0.01

Depth / Motion 0.25 0.13

(a)

HOG / LBP

Intensity 0.52

Depth 0.61

Motion 0.62

(b)

Table 6.4: Correlation of classifier outputs in (a) different modalities and (b)
different features.

ture. Additionally, we observe that the combination of different modalities

attributes more to the overall performance, than the use of multiple fea-

tures within a single modality. Given that most recent research has focused

on developing yet another feature to be used in the intensity domain, multi-

modality classification approaches seem to be a promising direction for future

research in the domain of object classification to boost overall performance.

To gain further insight, we compute the correlation of classifier outputs

(decision values) for the individual modality/feature expert classifiers, com-

puted for pedestrian and non-pedestrian samples individually and then av-

eraged over the two classes, see Table 6.4. The correlation analysis shows,

that classifier outputs are far less correlated across different modalities (Ta-

ble 6.4a) than across different features (Table 6.4b). Here, the less correlated

two modalities/features are, the larger the benefits obtained in classification

performance, cf. Figures 6.6, 6.7 and 6.8.

6.4.5 Classifier Fusion

In our final experiments, we compare our multi-level mixture-of-experts fu-

sion approach to other techniques for classifier fusion. First, we analyze fusion

approaches involving a combination of different classifiers in other ways than

our mixture-of-experts framework. Second, we compare our approach against

a single classifiers using a joint feature space which consists of all features in

all modalities L2-normalized and concatenated into a single feature vector, cf.

[173]. Given our feature set-up as presented in Section 6.3.2, the total dimen-

sionality of the joint feature space is 18684. For comparison, the performance

of the Dalal & Triggs HOG/linSVM baseline [27] is also given. Results are

shown in Figure 6.10a for the multi-classifier fusion and in Figure 6.10b for
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Figure 6.10: Performance of different classifier fusion techniques. (a) multi-
classifier fusion. (b) joint feature space with single classifiers.
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the joint space fusion approaches.

The multi-classifier fusion approaches (entitled “Uniform Sum”, “Product”

and “Sugeno Fuzzy Integral”) involve individual classifiers for each feature

(HOG and LBP) and modality (intensity, depth and motion). Altogether,

there are six classifiers to be combined, using the sum and product of the in-

dividual decision values, cf. [87], as well as a fuzzy integration using Sugeno

integrals, cf. [118]. Fuzzy integration involves treating the individual clas-

sifier outputs as a fuzzy set and aggregating them into a single value us-

ing the Sugeno integral. While those approaches improve performance over

the state-of-the-art Dalal & Triggs HOG/linSVM classifier [27], our multi-

level mixture-of-experts classifier has a much better performance. This clearly

shows the benefit of gating on pose-level, see Equation (6.4), and the learned

classifier combination weights in Equation (6.11).

In terms of joint space approaches, we train both a multi-layer percep-

tron (MLP) and a linear support vector machine (linSVM) in the enlarged

18684-dimensional joint feature space (training a non-linear SVM was not

feasible given our large dataset). While one could expect the MLP to im-

prove performance over the linSVM, due to the non-linear decision boundary,

our results paint a different performance picture. The MLP classifier is out-

performed by the linSVM by a significant margin. We attribute this to the

so-called “curse of dimensionality”, e.g. [33], which relates the number of

free parameters in a classifier (as given by feature space dimensionality) to

the amount of available training samples. As a rule-of-thumb, the number

of training samples should be a factor of 10 larger than the number of free

parameters to be estimated during training [33]. This rule is severely vio-

lated in case of the MLP in the 18684-dimensional joint feature space with

149489 free parameters and 84577 training samples. The linear support vector

machine can better cope with the higher dimensionality given its maximum-

margin constraint at the core which is less susceptible to overfitting effects in

high-dimensional spaces. Still, our multi-level mixture-of-experts framework

using MLPs as expert classifiers outperforms the joint space linSVM. We can

afford to use more complex sub-classifiers in our model, since each MLP is

an expert in a lower-dimensional modality/feature subspace, weighted by the

contribution of the shape cues.
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6.5 Discussion

We obtained a significant boost in pedestrian classification performance from

the use of multiple modalities and features in a mixture-of-experts setting.

Our experiments show that the largest performance gain stems from the com-

bination of intensity features with depth and motion features. We expect the

use of additional modalities, e.g. far-infrared (FIR) [101], to further increase

performance. Multi-modality classifiers particularly outperform multi-feature

classifiers in a single modality. Yet, modalities and features are orthogonal, so

that a combined multi-modality / multi-feature approach can further boost

performance.

In this work, we did not heavily optimize the feature sets with regard

to the different modalities. Instead, we transferred general knowledge and

experience from the behavior of features and classifiers from the intensity

domain to the depth and motion domains. At this point, it is not clear, if

(and how) additional modification and adaptation of the feature sets to the

different characteristics found in depth and motion data, cf. Section 6.2.1,

can further improve performance. While the HOG/MLP classifier outper-

forms the LBP/MLP classifier in all modalities in our experiments, this may

not be generally true, cf. [131], where the relative order of feature/classifier

performance reverses with respect to intensity and depth.

Orthogonal to the improvements presented in this work are benefits re-

sulting from an increased training set, cf. [37, 109]. In the intensity domain,

feature-classifier combinations respond differently to an increased training set

(in both size and dimensionality), e.g. in terms of classifier complexity, dis-

criminative power, practical feasibility and saturation effects, cf. [37, 109]. It

is currently unknown, to what extent similar (or different) effects are present

for features and classifiers in other modalities.

Recent work analyzed the dependence of classification performance and

pedestrian image size (as a proxy for distance to the camera) in the intensity

domain [32]. Results show significant relative performance differences of the

evaluated classifiers across multiple scales. Similar effects may also be found

in depth and motion features, particularly since depth and motion measure-

ments tend to get noisy at larger distances to the camera. In case of stereo

vision, the range of measurements is further limited by the camera set-up.

Certainly, more research is necessary to fully explore the benefits of multi-

modality / multi-feature classification. For that purpose, we provide our
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multi-modality dataset not only as a means for benchmarking but also to

stimulate further research on the issues mentioned above.

6.6 Conclusion

This chapter presented a probabilistic multi-level mixture-of-experts frame-

work involving a view-related and sample-dependent combination of multi-

modality / multi-feature pedestrian classifiers. We use highly complementary

Chamfer distance, HOG and LBP features that are extracted from intensity,

dense depth and dense flow data. The pose-specific mixture-of-experts for-

mulation, which divides the complex pedestrian classification problem into

better manageable sub-problems, is feature- and classifier-independent, prac-

tically feasible and does not suffer from overfitting effects in high-dimensional

spaces.

Results show a significant performance boost of up to a factor of 42 in

reduction of false positives at constant detection rates over a state-of-the-

art intensity-only classifier using HOG features and linear SVM classifica-

tion. The observed performance improvements stem from both the fuzzy

sub-division of our data in terms of pose and the combination of multiple

features and modalities. In our experiments, we identified the use of multiple

modalities as the most benefiting factor which is confirmed by a correlation

analysis. We make our multi-modality dataset publicly available for bench-

marking purposes and to stimulate further research to address open issues

with regard to multi-modality / multi-feature classification.
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Chapter 7

Multi-Modality Partial Occlusion Handling

7.1 Overview

Most of the previous efforts in pedestrian classification assume full visibility of

pedestrians in the scene. In a real environment however, significant amounts

of partial occlusion occur as pedestrians move in the proximity of other (static

or moving) objects. Pedestrian classifiers designed for non-occluded pedestri-

ans do typically not respond well to partially occluded pedestrians. If some

body parts of a pedestrian are occluded, the classification results often do

not degrade gracefully.

Component-based approaches which represent a pedestrian as an ensemble

of parts, see Section 2.2.3, can only alleviate this problem to some extent with-

out prior knowledge. The key to successful recognition of partially occluded

pedestrians is additional information about which body parts are occluded.

Classification can then rely on the unoccluded pedestrian components to ob-

tain a robust decision.

In this chapter, we present a multi-modality component-based mixture-of-

experts framework for pedestrian classification with partial occlusion han-

dling. The multi-level mixture-of-experts framework, as introduced in Chap-

ter 6, is employed. We do not consider view-specific experts on “pose-level”,

cf. Figure 6.1a in Section 6.1, but replace this level with a component-based

approach which represents a pedestrian as an ensemble of body parts. Pose-

level experts could be additionally incorporated, given a method to extend the

shape-based computation of view priors, as outlined in Section 6.2.4, to oper-

ate on body components instead of fully visible pedestrians, e.g. part-specific

hierarchical shape matching, see the discussion in [54]. In this chapter, we

focus on the method for partial occlusion handling. At the core of our frame-

work is a set of component-based expert classifiers trained on intensity, depth

and motion features. Occlusions of individual body parts manifest in local
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Figure 7.1: Framework overview. Multi-modality component-based expert clas-
sifiers are trained off-line on features derived from intensity, depth
and motion. On-line, multi-modality segmentation is applied to de-
termine occlusion-dependent component weights for expert fusion.
Data samples are shown in terms of intensity images, dense depth
maps and dense optical flow (left to right).

depth- and motion-discontinuities. In the application phase, a segmentation

algorithm is applied to extract areas of coherent depth and motion. Based

on the segmentation result, we determine occlusion-dependent weights for

our component-based expert classifiers to focus the combined decision on the

visible parts of the pedestrian. See Figure 7.1.

In view of recognizing partially occluded pedestrians, component-based

classification seems an obvious choice. Yet, only a few approaches have used

techniques to infer a measure of (partial) occlusion from the image data

[145, 167, 174]. Sigal and Black proposed a technique for articulated 3D body

pose estimation which is able to handle self-occlusion of body parts [145]. In

our application however, we are not interested in (self-)occlusion handling of

articulated 3D pose but focus on partial occlusions observed in 2D images

of pedestrians. Particularly relevant to current work are the approaches of

Wu and Nevatia [174] and Wang et al. [167]. They explicitly incorporate a
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model of partial occlusion into their 2D classification framework. However,

both methods make some restrictive assumptions, as follows.

The approach of Wu and Nevatia requires a particular camera set-up, where

the camera looks down on the ground-plane [174]. Consequently, they assume

that the head of a pedestrian in the scene is always visible. They further apply

a binary threshold to ignore occluded components in their component-fusion

algorithm.

Wang et al. use a monolithic (full-body) HOG/linSVM classifier to deter-

mine occlusion maps from the responses of the underlying block-wise feature

set [167]. Based on the spatial configuration of the recovered occlusion maps,

they either apply a full-body classifier or activate part-based classifiers in

non-occluded regions or heuristically combine both full-body and part-based

classifiers. Since their method depends on the block-wise responses of HOG

features combined with linear SVMs, it is unclear how to extend their ap-

proach to other popular features or classifiers.

Unlike [174], our method does neither pose restrictions on the camera set-

up nor assumes constant visibility of a certain body part. In contrast to [167],

our approach does not depend on a particular feature/classifier combination

or a certain pedestrian component layout.

7.2 Pedestrian Classification

Input to our framework is a training set D of pedestrian (ω0) and non-

pedestrian (ω1) samples xi ∈ D. Similar to Section 6.2.1, each sample

xi = [x1
i ; x

2
i ; x

3
i ] consists of three different modalities, i.e. gray-level image

intensity (x1
i ), dense depth information via stereo vision (x2

i ) [68] and dense

optical flow (x3
i ) [168]. See Figure 7.5 in Section 7.3.1.

7.2.1 Component-Based Classification

For classification, we approximate the posterior probability that an unseen

sample xi is a pedestrian, P (ω0|xi), in terms of a component-based model.

Each sample xi is composed out of C components which are usually related

to body parts. With Cc(xi) representing a local expert classifier for the c-th

component of xi and woc(xi) denoting its weight, we approximate P (ω0|xi)
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using:

P (ω0|xi) ≈
CX
c=1

woc(xi)Cc(xi) (7.1)

Note that the weight woc(xi) for each component expert classifier is not a

fixed component prior, but depends on the sample xi itself. These component

weights allow to incorporate a model of partial occlusion into our framework

(hence the “o” superscript), as shown in Section 7.2.3.

7.2.2 Multi-Modality Component Expert Classifiers

Given our component-based mixture-of-experts model, cf. Equation (7.1), we

model the component expert classifiers Cc(xi) in terms of our multi-modality

(intensity, depth, flow) dataset. As in Section 6.2.3, we extend the mixture-

of-experts formulation by introducing individual component-based classifiers

for each modality:

Cc(xi) =
X
m

vmc Dm
c (xmi ) (7.2)

In this formulation, Dm
c (xmi ) denotes a local expert classifier for the c-

th component of xi, which is represented in terms of the m-th modality. As

expert classifiers, we use feature-based pattern classifiers which are learned on

the training set using data from the corresponding component and modality

only. Each component/modality classifier is trained to discriminate between

the pedestrian and non-pedestrian class in its local area of the feature space.

Similar to Equation (6.11) in Section 6.2.3, we estimate weights vmc to each

modality classifier on the training set using a linear support vector machine.

7.2.3 Occlusion-Dependent Component Weights

Weights woc(xi) for component classifiers were introduced in Section 7.2.1. We

derive woc(xi) from each example xi to incorporate a measure of occlusion of

certain pedestrian components into our model. Expert classifier outputs, re-

lated to occluded components, should have a low weight in the combined

decision of the expert classifiers, cf. Equation (7.1). We propose to extract

visibility information from each sample xi using the depth (stereo vision) and

motion (optical flow) modalities. Partially occluded pedestrians, e.g. a walk-

ing pedestrian behind a static object, exhibit significant depth and motion

discontinuities at the occlusion boundary, as shown in Figures 7.2 and 7.5.
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7.2 Pedestrian Classification

Figure 7.2: Segmentation results for a non-occluded (first row) and partially
occluded pedestrian (second row). From left to right, the columns
show: intensity image, stereo image, flow image, segmentation on
stereo, segmentation on flow, combined segmentation on stereo and
flow. Clusters are color-coded and the cluster chosen as pedestrian
cluster ~φped, cf. Equation (7.7), is outlined in black. The computed
occlusion-dependent component weights woc(xi), cf. Equation (7.8),
are also shown.

Visible parts of a pedestrian are assumed to be in approximately the same

distance from the camera (pedestrian standing upright on the ground) and

move uniformly.

We employ a three-step procedure to derive component weights woc(xi) from

an unseen sample xi: First, we apply a segmentation algorithm, cf. [42], to the

dense stereo and optical flow images of xi. Second, we select the segmented

cluster which likely corresponds to the visible area of a pedestrian. For this,

a measure of similarity of a cluster to a generic model of pedestrian geometry

in terms of pedestrian shape, size and location is utilized. Third, we estimate

the degree of visibility of each component given the selected cluster.

For segmentation, we choose the mean-shift algorithm, cf. [21], out of many

possible choices. As shown in [42], mean-shift provides a good balance be-

tween segmentation accuracy and processing efficiency. The result of the

mean-shift segmentation is a set of l clusters φl with l = 1, . . . , L, as shown

in Figure 7.2. The actual number of clusters L is optimized during mean-shift
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itself [21]. We evaluate both single-modality segmentation using depth or mo-

tion and simultaneous multi-modality segmentation using both modalities in

our experiments, as shown in Section 7.3.

Let ~φl and ~γc denote binary vectors defining the membership of pixel-

locations of the sample xi to the l-th cluster φl and c-th component γc,

respectively. Note that ~φl results from the segmentation algorithm, whereas

~γc is given by the geometric component layout. Further, we utilize a two-

dimensional probability mass function µv(p|ω0) which represents the proba-

bility that a given pixel p ∈ xi corresponds to a pedestrian ω0, solely based on

its location within xi. µv(p|ω0) is obtained from the normalized superposi-

tion of a set of S aligned binary pedestrian foreground masks ms(p), obtained

from manually labeled pedestrian shapes, cf. Equation (4.5) in Section 4.2.2:

µv(p|ω0) ∼
SX
s=1

ms(p), 0 ≤ µv(p|ω0) ≤ 1 (7.3)

To increase specificity, we use view-dependent probability masks µv(p|ω0) in

terms of separate masks for front/back, left and right views. Those probabil-

ity masks represent a view-dependent model of pedestrian geometry in terms

of shape, size and location. See Figure 7.3a. Again, a vectorized representa-

tion of µv is denoted as ~µv.

To select the segmented cluster, which corresponds to the visible area of a

pedestrian, we utilize a correlation-based similarity measure Γ, as defined in

Equation (7.4). Our similarity measure employs the cluster information and

the probability masks to assess the likelihood that a cluster φl corresponds

to the visible parts of a pedestrian. We model Γ as the sum of two terms,

Γin and Γout:

Γ(~φl, ~γc, ~µv) = Γin(~φl, ~γc, ~µv) + Γout(~φl, ~γc, ~µv) (7.4)

The first measure Γin(~φl, ~γc, ~µv) is designed to evaluate how well a cluster

φl matches typical pedestrian geometry, represented by a view-dependent

pedestrian probability mask µv, in a certain component γc. To compute

Γin(~φl, ~γc, ~µv), we correlate the cluster ~φl with the probability mask ~µv within

the component given by ~γc and normalize:

Γin(~φl, ~γc, ~µv) =
(~µv · ~γc) ◦ (~φl · ~γc)

~µv ◦ ~γc
(7.5)
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(a) (b)

(a)

( v · γc) ◦ (φl · γc)

v · γc φl · γc

(b)

Figure 7.3: (a) Probability masks for front/back, left and right view. The values
of the probability masks are in the range of zero (dark blue) to one
(dark red). The values specify the probability of a certain pixel to be
part of a pedestrian with the corresponding view. (b) Visualization of

the correlation-based similarity measure Γin(~φl, ~γc, ~µv) for the head
component, see text.

Here, · denotes point-wise multiplication of vectors, while ◦ denotes a dot

product. Note that the main purpose of ~γc in this formulation is to restrict

computation to a local body component γc. See Figure 7.3b.

The second measure Γout(~φl, ~γc, ~µv) relates to the specificity of the cluster
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φl. The idea is to penalize clusters which extend too far beyond a typical

pedestrian shape. For that we perform similar correlation using an “inverse”

probability mask ~νv = 1− ~µv:

Γout(~φl, ~γc, ~µv) = 1− (~νv · ~γc) ◦ (~φl · ~γc)
~νv ◦ ~γc

(7.6)

The cluster similarity measure Γ(~φl, ~γc, ~µv), see Equation (7.4), is com-

puted per cluster, component and view-dependent probability mask. To

choose the cluster ~φped which most likely corresponds to visible parts of the

pedestrian, we apply a maximum operation over components and views:

~φped = argmax
~φl

„
max
~γc~µv

“
Γ(~φl, ~γc, ~µv)

”«
(7.7)

From our experiments we observed that the visible parts of a pedestrian

do not significantly disintegrate in the mean-shift segmentation results, see

Figure 7.2. Hence, we only consider single clusters φl and pairs of clusters

merged together as possible candidates.

Once the cluster ~φped, corresponding to visible parts of the pedestrian, is

selected, the degree of visibility of each component is approximated. For

each component ~γc, we choose to relate the spatial extent of ~φped against

clusters corresponding to occluding objects. The set of all clusters ~φj , which

are possible occluders of ~φped, is denoted by Υ. Possible occluders of ~φped
are clusters which are closer to the camera than ~φped. If depth information is

not available for segmentation, all clusters are regarded as possible occluders.

With n(~v) denoting the number of non-zero elements in an arbitrary vector

~v, occlusion-dependent component weights woc(xi), with
P
k w

o
c(xi) = 1, are

then given by:

woc(xi) ∼
n(~φped · ~γc)P

~φj∈Υ

“
n(~φj · ~γc)

”
+ n(~φped · ~γc)

(7.8)

See Figure 7.2 for a visualization of the cluster ~φped, corresponding to visi-

ble parts of the pedestrian, and the recovered occlusion-dependent component

weights woc(xi).
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Pedestrians Pedestrians Non-
(labeled) (jittered) Pedestrians

Training Set 6514 52112 32465

Partially Occluded Test Set 620 11160 16235

Non-Occluded Test Set 3201 25608 16235

Table 7.1: Training and test set statistics.

7.3 Experiments

7.3.1 Experimental Set-Up

As fully visible pedestrian and non-occluded pedestrian samples, we use the

dataset described in Section 6.3.1. Partially occluded pedestrians have been

acquired in a similar fashion. Training and test samples have a resolution of

36 × 84 pixels with a 6 pixel border around the pedestrians. In our experi-

ments, we use C = 3 components γc, corresponding to head/shoulder (36×24

pixels), torso (36× 36 pixels) and leg (36× 48 pixels) regions, see Figure 7.4.

Note that our components vertically overlap by 12 pixels, i.e. each compo-

nent has a 6 pixel border around the associated body part. In preliminary

experiments, we determined this overlap to improve performance. To train

the component classifiers, only non-occluded pedestrians (and non-pedestrian

samples) are used. For testing, we evaluate performance using two different

test sets: one involving non-occluded pedestrians and one consisting of par-

Figure 7.4: Component layout as used in our experiments. We employ three
overlapping components, corresponding to head, torso and leg re-
gions, see text.
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Figure 7.5: Non-occluded pedestrians, partially occluded pedestrian and non-
pedestrian samples in our data. In depth (stereo) images, darker col-
ors denote closer distances. Note that the background (large depth
values) has been faded out for visibility. Optical flow images depict
the magnitude of the horizontal component of flow vectors. Medium
red colors denote close to zero flow, darker and brighter colors indi-
cate stronger motion (to the left and to the right, respectively).

tially occluded pedestrians. The non-pedestrian samples are the same for

both test sets. See Table 7.1 and Figure 7.5 for an overview of the dataset.

Regarding features for the component/modality expert classifiers Dm
c , see

Equation (7.2), we utilize histograms of oriented gradients (HOG). This al-

lows us to compare our framework to the approach of Wang et al. [167] which

explicitly requires and operates on the block-wise structure of HOG features.

We compute histograms of oriented gradients with 12 orientation bins and

6 × 6 pixel cells, accumulated to overlapping 12 × 12 pixel blocks with a

spatial shift of 6 pixels. For classification, we employ linear support vector

machines (SVMs). Note that the same HOG feature set is extracted from

intensity, dense stereo and dense flow images, cf. Chapter 6. In our implemen-

tation of [167], we use the occlusion handling of Wang et al. together with
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Intensity Depth Motion

Head 0.49 0.34 0.17

Torso 0.61 0.28 0.11

Legs 0.73 0.14 0.13

Table 7.2: Component-specific modality expert weights vmc estimated by a linear
SVM on the training set.

the same component layout (head, torso, legs), features (HOG) and classi-

fiers (linear SVMs) as in our approach, but only for the intensity modality (as

in the original publication). Table 7.2 lists the component-specific modality

expert weights vmc as estimated on the training set, see Section 7.2.2.

7.3.2 Performance on Partially Occluded Test Data

Partial Occlusion Handling

In our first experiment, we evaluate the effect of different models of partial

occlusion handling. We do not consider multi-modality classifiers yet. All ex-

pert component classifiers are trained on intensity images only. As baseline

classifiers, we evaluate the full-body HOG approach of [27] (we use the code

provided by the original authors) and the approach of [167], which uses an

occlusion model based on the block-wise response of a full-body HOG classi-

fier to activate part-based classifiers in areas corresponding to non-occluded

pedestrian parts. Our framework is evaluated using four different strategies

to compute occlusion-dependent component weights woc(xi) for xi, as defined

in Section 7.2.3: We consider weights resulting from mean-shift segmentation

using depth only, flow only and a combination of both depth and flow. Addi-

tionally, we consider uniform weights woc(xi), i.e. no segmentation. Note that

weights vmc , as given in Equation (7.2), are still in place. Results in terms of

ROC performance are given in Figure 7.6a.

All component-based approaches outperform the full-body HOG classifier

(magenta *). The approach of Wang et al. [167] (cyan +) significantly

improves performance over the full-body HOG classifier by a factor of two

(reduction in false positives at constant detection rates). All variants of our

framework in turn outperform the method of Wang et al. [167], with segmen-

tation on combined depth and flow (green �) performing best. Compared to

the use of uniform weights woc(xi) (black ×), the addition of multi-modality
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Figure 7.6: Classification performance on the partially occluded test set. (a)
Evaluation of partial occlusion handling strategies. (b) Multi-
modality classification in comparison to intensity-only classifica-
tion. (c) Combined multi-modality partial occlusion handling and
classification.
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segmentation to compute component weights (green �) improves performance

by approximately a factor of two.

Multi-Modality Classification

In our second experiment, we evaluate the performance of multi-modality

component classifiers, as presented in Section 7.2.2, compared to intensity-

only component classifiers. Uniform component weights woc(xi), i.e. no seg-

mentation, were used throughout all approaches. Results are given in Fig-

ure 7.6b (solid lines). As baseline classifiers, we use a full-body intensity-

only HOG classifier and a multi-modality full-body HOG classifier trained

on intensity, stereo and flow data (dashed lines). Multi-modality classifica-

tion significantly improves performance both for the full-body and for the

component-based approach. The best performance (particularly at low false

positive rates) is reached by the component-based approach involving inten-

sity, stereo and flow (green �). The performance improvement over a corre-

sponding component-based classifier using intensity-only (black ×) is up to

a factor of two reduction in false positives.

Multi-Modality Classification with Partial Occlusion Handling

In the next experiment, we evaluate the proposed multi-modality framework

involving occlusion-dependent component weights derived from mean-shift

segmentation combined with multi-modality classification. Instead of pre-

senting results for all possible combinations of modalities for segmentation

and classification, we chose to use the same modalities for both segmenta-

tion and classification. We did evaluate all modality-combinations and found

no better performing combination. Similar to the previous experiment, the

baseline is given by full-body classifiers (cyan + and magenta *), as well as

a component-based intensity-only classifier using uniform weights (black ×).

See Figure 7.6c.

The best performing system variant is the proposed component-

based mixture-of-experts architecture using stereo and optical flow con-

currently to determine occlusion-dependent weights woc(xi) and for multi-

modality classification (green �). Compared to a corresponding multi-

modality full-body classifier (magenta *), the performance boost is approx-

imately a factor of four. A similar performance difference exists between
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our best approach (green �) and a component-based intensity-only classifier

using uniform component weights (black ×).

7.3.3 Performance on Non-Occluded Test Data

After demonstrating significant performance boosts on partially occluded

test data, we evaluate the performance of the proposed approach using non-

occluded pedestrians (and non-pedestrians) as test set. Similar to our previ-

ous experiments, we evaluate the effect of partial occlusion handling indepen-

dently from the use of multiple modalities for segmentation and classification.

Figure 7.7a shows the effect of different models of partial occlusion han-

dling combined with intensity-only component-based classifiers. The full-

body HOG classifier (magenta *), as well as the approach of Wang et al. [167]

(cyan +), serve as baselines. The best performance is reached by the full-body

HOG classifier. All component-based approaches perform slightly worse. Of

all component-based approaches, uniform component weights woc(xi), i.e. no

occlusion handling, yields the best performance by a small margin. This is

not surprising, since all components are visible to the same extent. On non-

occluded test samples, our best approach with occlusion handling (green �)

gives the same performance as Wang et al. [167] (cyan +).

Multi-modality classification, as shown in Figure 7.7b, yields similar per-

formance boosts compared to intensity-only classification as observed for the

test on partially occluded data, cf. Section 7.3.2. Figure 7.7c depicts results of

our integrated multi-modality mixture-of-experts framework with partial oc-

clusion handling. Compared to a full-body classifier involving intensity, stereo

and flow (magenta *), our best performing mixture-of-experts approach gives

only slightly worse performance, particularly at low false positive rates. In

relation to intensity-only full-body classification (cyan +), i.e. the approach

of [27], our multi-modality framework improves performance by up to a factor

of two.

7.4 Conclusion

This chapter presented a multi-modality mixture-of-experts framework for

component-based pedestrian classification with partial occlusion handling.

For the partially occluded dataset, we obtained in the case of depth- and

motion-based occlusion handling an improvement of more than a factor of
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Figure 7.7: Classification performance on the non-occluded test set. (a) Eval-
uation of partial occlusion handling strategies. (b) Multi-modality
classification in comparison to intensity-only classification. (c) Com-
bined multi-modality partial occlusion handling and classification.
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two versus the baseline (component-based, no occlusion handling) and state-

of-the-art [167]. We obtained in the case of multi-modality (intensity, depth,

motion) classification an additional improvement of a factor of two versus the

baseline (intensity only). The full-body classifiers performed worse than the

aforementioned baselines. For the non-occluded dataset, occlusion handling

does not appreciably deteriorate results, while multi-modality classification

improves performance by a factor of two.
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Chapter 8

Integrated Classification and Orientation

Estimation

8.1 Overview

Beyond recognizing a pedestrian in the scene, many application areas benefit

from knowledge of body orientation of a pedestrian. In the domain of intelli-

gent vehicles [51], known pedestrian orientation can enhance path prediction,

to improve risk assessment. Other applications include perceptual interfaces

[158], where body orientation can be used as a proxy for human-computer-

interaction.

Orientation could be inferred by trajectory information (tracking) over

time, assuming that pedestrians move forward. Yet, trajectory-based tech-

niques fail in case of pedestrians which are static or just about to move.

Tracking approaches also require a certain amount of time to converge to

a robust estimate. Quick adaptation to sudden changes in movement is of-

ten problematic. Particularly in the intelligent vehicle application, time is

precious and fast reaction is necessary.

As a way out, methods to infer pedestrian orientation have been proposed.

Besides work in the domain of 3D human pose estimation [107], few ap-

proaches have tried to recover an estimate of pedestrian orientation based

on 2D lower-resolution images [52, 111, 142]. Existing approaches re-used

popular features, i.e. Haar wavelets [142] or gradient histograms [52], and

applied them in a different classification scheme. While pedestrian classifi-

cation usually involves a two-class model (pedestrian vs. non-pedestrian),

[52, 111, 142] did not use non-pedestrian training samples for orientation es-

timation. Instead, one vs. one [52] and one vs. rest [111, 142] multi-class

schemes have been trained using pedestrian data only. Recovering the most

likely discrete orientation class then involved maximum-selection over the
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Figure 8.1: Framework overview. K view-related models specific to fuzzy clus-
ters Ψk are used for pedestrian classification and orientation esti-
mation. The models capture sample-dependent cluster priors and
discriminative experts which are learned from pedestrian (class ω0)
and non-pedestrian (class ω1) samples x.

associated multi-class model.

In this chapter, we present a novel integrated method for single-frame

pedestrian classification and orientation estimation. Both problems are

treated using the same underlying probabilistic framework, in terms of a

set of view-related models which couple discriminative expert models with

sample-dependent priors. We re-use the view-specific set-up of the multi-

level mixture-of-experts framework described in Chapter 6. However, to fo-

cus on orientation estimation, we dispense with the use of multiple features

and multiple-cues in this chapter, i.e. only the “pose-level” of the mixture-of-

experts framework is used, see Figure 6.1a in Section 6.1. The extension to

multi-level orientation estimation is straightforward, similar to Section 6.2.3.

Pedestrian classification involves a maximum-a-posteriori decision between

the pedestrian class and non-pedestrian class. Orientation estimates are in-

ferred by means of approximating the probability density of pedestrian body

orientation. See Figure 8.1 for an overview.

The general approach is independent from the actual type of discrimina-

tive models used and can be extended to other object classes. Our aim is

to demonstrate the relative performance gain resulting from the proposed

integrated approach, exemplified using two state-of-the-art feature sets and

classifiers in our experiments (see Section 8.3).
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8.2 Classification and Orientation Estimation

Similar to Section 6.2.1, the input data consists of a training set D of pedes-

trian and non-pedestrian samples xi ∈ D. Associated with each sample is a

class label ωi, (ω0 for the pedestrian and ω1 for the non-pedestrian class), as

well as a K-dimensional cluster membership vector zi, with 0 ≤ zki ≤ 1 andP
k z

k
i = 1. zi defines the probabilistic membership to a set of K clusters Ψk,

which relate to the similarity in appearance to a certain view of a pedestrian.

Note that the same also applies to non-pedestrian training samples, where the

image structure resembles a certain pedestrian view, see for example the first

non-pedestrian sample in Figure 8.2. Our definition of cluster membership

zi is given in Section 8.3.1.

8.2.1 Pedestrian Classification

To classify a sample xi, we apply Equations (6.2), (6.3) and (6.4), see Sec-

tion 6.2.2:

P (ω0|xi) =
X
k

P (Ψk|xi)P (ω0|Ψk,xi) (8.1)

≈
X
k

wk(xi)Hk(xi) (8.2)

The sample-dependent priors for the membership to a certain cluster Ψk

of an unseen sample xi, P (Ψk|xi) are determined using the method outlined

in Section 6.2.4. In our experiments, we additionally consider uniform priors.

8.2.2 Pedestrian Orientation Estimation

Instead of simply assigning a test sample to one of the K view-related clusters

Ψk used for training (i.e. a maximum a-posteriori decision over the expert

classifiers), we aim to estimate the actual body orientation θ of a pedestrian

ω0. For this, we use a mixed discrete-continuous distribution p(ω0, θ|xi) which

is approximated by a Gaussian mixture model:

p(ω0, θ|xi) ≈
X
k

αk,i gk(θ|xi) (8.3)

In each cluster Ψk, a Gaussian with mean µk and standard deviation σk
is used to approximate the component density gk(θ|xi) of pedestrian body
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orientation associated with cluster Ψk. For mixture weights αk,i, we re-use

wk(xi)Hk(xi), the weighted classifier outputs, as defined in Equation (8.2):

gk(θ|xi) = N (θ|µk, σ2
k) ; αk,i = wk(xi)Hk(xi) (8.4)

The most likely pedestrian orientation θ̂i can be recovered by finding the

mode of the density in Equation (8.3), e.g. [19]:

θ̂i = argmax
θ

(p (ω0, θ|xi)) (8.5)

Besides estimating p(ω0, θ|xi), our framework allows to recover so-called

orientation classes, similar to [52, 111, 142]: The probability that a sample

xi is a pedestrian with orientation in a range of [θ̃a, θ̃b] is given by:

P (ω0, θ ∈ [θ̃a, θ̃b] | xi) =

Z θ̃b

θ̃a

p(ω0, θ|xi)dθ (8.6)

We do not use one vs. one, e.g. [52, 111], or one vs. rest, e.g. [111,

142], multi-class models for orientation estimation. Given the similarity of

front/back or left/right views in low-resolution scenarios, such schemes would

require highly similar training samples (often of the same physical pedestri-

ans) to appear in both positive and negative training data, see Figure 8.2.

As a result, the training procedure might become unstable and the recovered

decision boundaries error-prone.

Instead, we tightly integrate orientation estimation and pedestrian clas-

sification by means of re-using our classification models. Weights αk,i of

the employed Gaussian mixture model are based on the cluster-specific dis-

criminative models Hk and the associated sample-dependent prior weights,

see Equations (8.2) and (8.4). The training of Hk involves pedestrians and

non-pedestrian samples which are readily available in great quantities at no

additional cost and help to gain robustness by implicitly mapping out the

feature space and the decision boundary. Using this scheme, the problems of

the one vs. one or one vs. rest strategies (see above) can be overcome.

Another aspect is computational efficiency. Our framework does not re-

quire to train an additional classifier for orientation estimation. Due to the

integrated treatment, orientation estimation requires only little additional

resources, since the main computational costs are introduced by the texture-

based classifiers Hk, which are re-used.
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Figure 8.2: Examples of training and test data for pedestrians in four view-
related clusters and non-pedestrian samples.

8.3 Experiments

8.3.1 Experimental Set-Up

The proposed integrated framework is tested in large-scale experiments on

pedestrian classification and orientation estimation. To illustrate the gener-

ality with respect to the discriminative models used, we chose two instances

for experimental evaluation which exhibit a diverse set of features. First, we

consider histograms of oriented gradients (9 orientation bins, 8×8 pixel cells)

combined with a linear support vector machine classifier (HOG) [27]. Second,

we evaluate adaptive local receptive field features (5×5 pixels) in a multi-layer

neural network architecture (NN/LRF) [171]. Results are expected to gener-

alize to other pedestrian classifiers that are sufficiently complex to represent

the large training sets, see Chapter 2.
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Pedestrians Pedestrians Non-
(labeled) (jittered) Pedestrians

Training Set 42645 383805 342271

Test Set 7613 68517 73405

Table 8.1: Training and test set statistics.

Training and test sets contain manually labeled pedestrian bounding boxes.

We consider K = 4 view-related clusters Ψk, roughly corresponding to simi-

larity in appearance to front, left, back and right views of pedestrians. For the

non-pedestrian samples, we use the approximated cluster prior probability,

see Section 6.2.4, as cluster membership weights for training:

zki = wk(xi) ≈ P (Ψk|xi) , ωi = ω1 (8.7)

To compute wk(xi), a set of 10946 shape templates corresponding to clusters

Ψk is used. Rather than Equation (6.31), we use a manual assignment to

clusters Ψk for pedestrian training samples, which we found to perform best

in preliminary experiments. A possible reason is that shape cannot provide

a clear distinction between front and back views. Note that the approaches

we compare against, i.e. [52, 111, 142], have similar requirements in terms of

data labeling.

See Table 8.1 and Figure 8.2 for the dataset used. All training samples

are scaled to 48 × 96 pixels (HOG) or 18 × 36 pixels (NN/LRF) with an

eight pixel border (HOG) or two pixel border (NN/LRF), to retain contour

information. Nine training (test) samples were created from each label by

geometric jittering. Pedestrian samples depict non-occluded pedestrians in

front of a changing background.

Non-pedestrian samples were the result of a shape recognition pre-

processing step with relaxed threshold setting, i.e. containing a bias towards

more ”difficult” patterns. Training and test set are strictly separated: no

instance of the same real-world pedestrian appears in both training and test

set, similarly for the non-target samples.

8.3.2 Pedestrian Classification Performance

In our first experiment, we evaluate the classification performance of the pro-

posed view-related mixture architecture in comparison to a single monolithic
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classifier trained on the whole dataset irrespective of view, i.e. the approach of

[27, 171]. Cluster priors, see Sections 6.2.4 and 8.2.1, are considered uniform.

Results in terms of ROC performance are shown in Figure 8.3a. Note that

this experiment is similar to the experiments in Section 6.4.1, but with dif-

ferent classifiers and datasets. In a qualitative manner, results are identical,

cf. Figures 8.3a and 6.5.

The mixture classifiers perform better than the corresponding single classi-

fiers. The decomposition of the problem into view-related sub-parts simplifies

the training of the expert classifiers, since a large part of the observable vari-

ation in the samples is already accounted for. Classification performance and

robustness is increased by a combined decision of the experts. The perfor-

mance benefit for the HOG classifier is approx. a factor of two in reduction

of false positives at the same detection rate. Using LRF features, the benefit

of the mixture classifier is less pronounced.

Figure 8.3b shows the effect of adding a sample-dependent cluster prior

for the test samples based on shape matching, see Sections 6.2.4 and 8.2.1.

Note that the pose-based weighting for classifier training is still in place. For

both HOG and LRF, only a small benefit is observed. This suggests, that

the larger part of the observed benefit in Figure 8.3a comes from the use

of multiple pose-specific classifiers for training. How exactly the fusion of

those classifiers is done in testing, e.g. pose-based vs. uniform, seems less

important.

8.3.3 Pedestrian Orientation Estimation Performance

Discrete Orientation Classes

In our second experiment, we evaluate orientation estimation performance us-

ing the best performing system variant, as given in Figure 8.3: HOG mixture

classifier with shape-based cluster priors. The Gaussian mixture components

used to model the cluster-specific density of body orientation θ are empirically

set as follows (cf. Section 8.3.1):

Ψi : µi = i · 90◦, σi = 45◦, for i ∈ {0, 1, 2, 3} (8.8)

Figure 8.4 visualizes probability densities of body orientation θ using a

polar coordinate system. The angular axis depicts orientation θ whereas the

value of the densities is shown on the radial axis (i.e. distance from the center).
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Figure 8.3: Classification performance. (a) Performance of monolithic classifiers
vs. the view-related mixture architecture. (b) Benefit of shape-based
priors in comparison to non-informative priors.
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Figure 8.4: Visualization of orientation densities in polar coordinates. (a) Gaus-
sian mixture components gk(θ|xi), (b) Mixture density p(ω0, θ|xi)
and components, weighted using αk,i for sample xi (as shown).
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In Figure 8.4a, Gaussian mixture components gk(θ|xi), see Equation (8.4),

are shown with parameters given in Equation (8.8). Figure 8.4b depicts

weighted mixture components and the resulting mixture density p(ω0, θ|xi).
Weights αk,i are derived from the given test sample xi using Equation (8.4).

Note that the actual orientation of the pedestrian sample matches the mode

of the recovered mixture density.

We compare our approach to our own implementations of two state-of-the-

art approaches to recover discrete orientation classes (front, back, left and

right), using the same data and evaluation criteria, in terms of confusion

matrices. First, we consider the approach of Shimizu & Poggio [142] which

involves Haar wavelet features with a set of support vector machines in a

one vs. rest scheme. Second, we evaluate the single-frame method of Gandhi

& Trivedi [52]. This technique uses HOG features (we use identical HOG

parameters as for our approach) and support vector machines in a one vs.

one fashion, together with the estimation of pairwise cluster probabilities.

Both approaches were trained on pedestrian data only. To obtain discrete

orientation classes in our approach, we utilize Equation (8.6). We additionally

consider a variant of our framework involving maximum-selection over the

expert classifiers, instead of the Gaussian mixture-model (GMM) formulation,

cf. Section 8.2.2.

Results are given in Figure 8.5. Our approach reaches up to 67 % accuracy

for front/back views and up to 87 % accuracy for left/right views, clearly

outperforming previous work. The overall correct (false) decision rate is 0.74

(0.26) per test sample. This represents a reduction in false decision rate of

more than 20 % compared to Gandhi & Trivedi [52] and more than 35 %

compared to Shimizu & Poggio [142]. Note that we use the same feature set

for both our approach and for Gandhi & Trivedi [52]. The observed perfor-

mance differences result from the proposed integration of orientation estima-

tion and classification. Using maximum-selection decreases the performance

over GMM.

While the errors in orientation estimation for left and right views are evenly

distributed among the other classes, front and back views are more often con-

fused with each other. We attribute this to front and back views of pedestri-

ans being highly similar both in shape and texture. The main distinguishing

factor is the head/face area, which is very small compared to the torso/leg

area, see Figure 8.2. In case of left and right views, characteristic leg posture

and body tilt seem to be more discriminative cues.
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Figure 8.5: Confusion matrices and correct / false decision rate per test sample
for: (a) Our approach (GMM). (b) Our approach (max. selection).
(c) Gandhi & Trivedi [52]. (d) Shimizu & Poggio [142].

Continuous Orientation

To evaluate the quality of our continuous orientation estimate, we utilize

14118 2D images of fully visible pedestrians from a realistic multi-camera (3

cameras at different view-points, 4706 images per camera) 3D human pose

estimation dataset, see [69]. Since ground-truth 3D pose is available, we can

obtain exact ground-truth body orientation for all 2D images to compare

against. We evaluate the two best performing systems from the previous

experiment: our approach using GMM and maximum-selection. Our evalua-

tion measure is absolute difference of estimated orientation and ground-truth

orientation.

First, we treat all images independently, irrespective of which camera they

come from (simulating a single camera) and perform orientation estimation

using Equation (8.5). Second, we take into account that each pedestrian is

visible in three cameras at the same time from different view-points. One

camera serves as a reference camera and the rotational offsets of the other
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Figure 8.6: Cumulative distribution of absolute orientation error using different
system variants, see text.

cameras are known through camera calibration. For orientation estimation,

we establish K = 4 view-related models (related to front, back, left and right)

per camera and incorporate all models into a single 12-component GMM

model, see Section 8.2.2, with orientations normalized to the reference cam-

era. For maximum-selection using multiple cameras, we perform orientation

estimation using maximum-selection over the expert classifiers independently

for each camera and average (normalized) orientations over all three cameras.

This technique performs better than maximum-selection over all 12 models.

Results are shown in Figure 8.6, in terms of cumulative distributions of ab-

solute orientation error which are obtained using histogramming. All GMM

variants outperform the maximum-selection variants. Multi-camera fusion

significantly improves performance. The benefit is more significant for the

GMM approach (blue curve vs. red curve) than for the maximum-selection

approach (green curve vs. black curve) which demonstrates the strength of

the proposed GMM-based orientation estimation technique. Covering the

same fraction of samples, orientation errors for the multi-camera GMM ap-

proach are up to 50 % less than for the corresponding maximum-selection

technique (blue curve vs. green curve).

Note that the presented results were obtained by considering orientation

errors for all views. Results on a subset consisting of left and right views

are significantly better, cf. Figure 8.5. Further, no temporal filtering of the

recovered orientation densities was applied, which would presumably further

improve absolute performance.
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8.4 Conclusion

This chapter presented a novel integrated approach for pedestrian classifica-

tion and orientation estimation. Our probabilistic model does not restrict

the estimated pedestrian orientation to a fixed set of orientation classes but

directly approximates the probability density of body orientation. Cluster

priors can be incorporated using a Bayesian model. In large-scale experi-

ments, we showed that the proposed integrated approach reduces the error

rate for classification and orientation estimation by up to 50 %, compared to

state-of-the-art.
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Chapter 9

Discussion and Perspectives

The central focus of this thesis are methods for vision-based pedestrian recog-

nition. To that extent, Chapter 4 presented an experimental study involving

state-of-the-art pedestrian detectors. The results obtained serve as a per-

formance baseline. We showed that HOG features in combination with lin-

ear support vector machines (HOG/linSVM) outperform all other approaches

considered. Similar results were obtained in another more recent benchmark

study [32]. In Chapter 4, we addressed the issue of sample resolution in terms

of training all systems at a low- and a medium-scale resolution. The test data

was identical for both cases. Our results indicate that HOG features perform

best when trained on higher resolutions. The authors of [32] evaluated the

performance of several detectors on different scales in the test data which in-

cludes pedestrians between 10 pixels and 256 pixels height, corresponding to

a distance to the camera between 7 m and 180 m. While HOG/linSVM is not

the best performing system on their whole test set irrespective of pedestrian

height, a significant performance advantage of HOG/linSVM over all other

systems in close-range scenarios is reported. They defined “close-range” to

consist of pedestrians larger than 80 pixels which corresponds to a distance

to the camera of up to 22.5 m in their set-up. They further demonstrated

that the performance of all systems is closely related to the available image

resolution. Pedestrian recognition performance beyond distances of 60 m is

reported to be orders of magnitudes worse than in close-range settings [32].

Hence, particularly for the intelligent vehicles application where the main fo-

cus is on pre-crash collision mitigation close to the vehicle, HOG is still one of

the best features available and presents a solid and challenging performance

baseline for this thesis.

One of the main contributions of this thesis is the integration of infor-

mation from multiple sources into the actual pedestrian classification step.

Chapter 6 presented a multi-level mixture-of-experts model which combines
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several features and image modalities. We showed that the benefit of using

multiple (complementary) image modalities for classification, such as gray-

level intensity, dense stereo and dense optical flow, is larger than the use of

multiple feature sets in the same image modality, see Table 6.3. Our full

pose-specific multi-level mixture-of-experts approach reduced the false pos-

itives of the state-of-the-art HOG/linSVM approach at the same detection

rate levels by a factor of 42. We followed a mixture-of-experts strategy in

terms of treating each feature/modality separately. An alternative is the

construction of a joint feature/modality space at the expense of a very high-

dimensional feature space. By design, the mixture-of-experts approach is less

susceptive to overfitting effects in high-dimensional spaces resulting from the

scarcity of training samples. However, it has the disadvantage that correla-

tions between individual feature and modality dimensions cannot be learned.

In practice, the choice between mixture-of-experts or joint space approaches

has to be made in view of the actual dimensionality and number of train-

ing samples available. The more features and modalities are included, the

less robust classical machine learning techniques become. The application

of dimensionality reduction techniques to the joint feature space [137] can

possibly alleviate the problems to some extent. Feature selection approaches,

e.g. boosting [49], could also help in that regard, but they require mappings

of multi-dimensional features to be used with one-dimensional weak-learners

and are often plagued by practically infeasible training times on the order of

weeks or months, see the discussion in Section 6.1.

Chapters 7 and 8 focused on extensions to the mixture-of-experts frame-

work involving higher-level information such as partial occlusions or pedes-

trian body orientation. Although performance improvements over state-of-

the-art in terms of occlusion handling and orientation recovery could be

demonstrated, several open issues remain. In its current state, our model for

occlusion handling, see Chapter 7, is tied to the actual layout of the decom-

position of pedestrians into body parts. We chose to subdivide a pedestrian

into a representation involving head, torso and leg components. This choice is

motivated by observing partial occlusions in the real-world which are mostly

horizontal and result from other static or moving ground-based objects in

the scene, see Figure 7.5. However, in some application scenarios, such as a

pedestrian stepping onto the road behind a large object, vertical occlusions

can be present, e.g. parts of the pedestrian facing the road are non-occluded.

Ultimately, a part-based approach that scales-up to arbitrary occlusions is de-
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sired. Local deformable part approaches, i.e. [1, 46, 47, 48, 84, 92, 94, 95, 138],

which build up their evidence in a bottom-up scheme, might be better suited

to handle arbitrary occlusions. However, they are usually less discriminative

than systems involving dense feature sets, e.g. HOG, and hence often require

several verification stages. It is currently unclear, how to integrate the han-

dling of arbitrary partial occlusions into approaches using dense feature sets

for classification. Detection-by-tracking approaches, e.g. [3], which explicitly

include temporal consistency of body articulations in terms of human gait and

appearance, e.g. clothing, can help to recover from partial occlusions. How-

ever, such approaches require an initialization phase where the pedestrian is

fully visible, to build-up the corresponding models.

Our approach to the estimation of body orientation, as outlined in Chap-

ter 8, currently operates on single images only. A straightforward extension

is the incorporation of motion information under the assumption that pedes-

trians usually move forward. The recovered body orientation densities could

be tracked over time, assuming local orientation constancy. Initial research

has been done on extracting yet higher-level models in view of object-specific

(learned) motion models for enhanced path prediction, activity recognition

and risk assessment, e.g. [61, 71, 144, 154, 157]. We consider this a worthwhile

and promising future research direction which can make use of the proposed

powerful single-frame methods for classification, partial occlusion handling

and orientation estimation.

Besides the selection of features and classifiers, the quality and size of the

training dataset are essential factors contributing to system performance.

In Chapter 5, we proposed an automatic method to generate high informa-

tive virtual pedestrian samples that proved to be more valuable than real

randomly selected pedestrian samples, most of which the classifier already

“knew”. We did not explicitly model the synthesis of a pedestrian but made

use of statistical models describing the shape and appearance variance ob-

served on a set of training samples. A drawback of this approach is that it

can hardly extend beyond the shape and appearance variations present in the

training set, e.g. as opposed to [103], where virtual pedestrians are generated

by rendering an arbitrarily textured 3D pedestrian model. Further, we follow

a “generate and test” approach, in that each virtually generated pedestrian

is filtered by the discriminative classifier and is either included in the train-

ing set for the next round of training (if it is close to the decision boundary

in classifier feature space) or discarded (if it is too far beyond the decision
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(a) (b)

Figure 9.1: The influence of scene context on human object recognition. (a)
The recognition of the highlighted person and car becomes much
easier if scene context, i.e. the location and shape of the road, are
incorporated. (b) Visually identical objects can be recognized as
different objects (a car and a person in this case) when they appear
in a different context.

boundary), see Section 5.4. This approach has the disadvantage, that the

number of informative virtual samples which are not discarded decreases as

the classifiers get better and better. Of interest would be an approach to

generate informative samples more purposefully. A further extension could

involve non-linear shape and texture models instead of the PCA-based mod-

els in our approach, e.g. kernel PCA [132] or manifold learning techniques,

such as Isomap [153] or locally linear embedding (LLE) [133]. Most manifold

learning techniques do not provide an easy generalization to discover the low-

dimensional embedding for new data points, i.e. virtual samples in our case.

As a result, extensions to alleviate or circumvent this so called “out-of-sample

problem” are necessary, e.g. [11, 141].

In human visual processing, knowledge of scene context has a tremendous

effect on object recognition [117]. Objects do typically not appear in isola-

tion but interact actively or passively with the environment, e.g. in terms of

location and scale relative to other objects. In Figure 9.1a, it is hard to rec-

ognize the person and the car in isolation. Once scene context is available - in

this case, the relative position of the objects to the road - the interpretation

becomes much easier. The visual system further uses context to distinguish
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between similar objects. In the image shown in Figure 9.1b, most people

recognize a person and a car on a road. However, both marked objects have

in fact the same shape and appearance. They only differ in a 90◦ rotation.

This highlights the significant influence of context on human object recogni-

tion and categorization. Most current artificial object recognition systems do

not consider an image as a whole but operate locally on a constricted area of

the image, e.g. in a sliding window approach. Hence, significant performance

boosts could be expected from incorporating a model of contextual feedback

on object recognition and hypotheses generation. While initial research on

this topic has recently been presented, several open issues remain [30, 70].

In this work, we did not particularly focus on real-time processing time

constraints, e.g. 25 Hz, 40 ms per image, and assumed that software opti-

mization or hardware implementation would result in real-time applicability

of the proposed algorithms. In case of HOG/linSVM several real-time imple-

mentations have recently been proposed [8, 18, 67, 81, 127, 169, 172].

Finally, in Section 4.1.4 we concluded that for HOG/linSVM a perfor-

mance gap of about a factor of 10 exists, in case of an intelligent vehicle

application with an acoustical driver warning for collisions with pedestrians.

With other improvements and constraints already factored in, this improve-

ment needed to be derived from the actual classification component. We

obtained a performance boost of a factor of 42, stemming from the mixture-

of-experts framework presented in Chapter 6, not taking benefits from virtual

training samples (Chapter 5) into account. Collision mitigation systems with

automatic emergency braking on the other hand have much higher perfor-

mance constraints in terms of false activations. Here, systems using camera

input as the only sensory input are still lacking the necessary performance.

However, sensor fusion approaches, e.g. with radar or laser scanners, can pro-

vide that additional level of robustness and reliability which is required for

viable commercial deployment.
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Chapter 10

Conclusion

This thesis addressed the problem of vision-based pedestrian recognition in

real-world environments using compound models involving the combination

of several complementary cues, modalities and features. Multiple integration

approaches, both on module-level and in terms of direct integration into the

pattern classification step, were presented. Higher-level extensions involving

partial occlusion handling and pedestrian body orientation estimation have

been developed.

In extensive experiments on large real-world datasets, we obtained signif-

icant performance boosts over state-of-the-art for all aspects considered in

this thesis, i.e. pedestrian recognition, partial occlusion handling and body

orientation estimation. The pedestrian recognition performance in particu-

lar was considerably advanced; false detections at constant detection rates

were reduced by significantly more than an order of magnitude compared to

state-of-the-art, finally reaching performance levels that are viable for the

commercial deployment of pedestrian recognition systems.

151





Appendix A

Publications

This thesis has led to the following publications:

Journal Publications

[Enzweiler2011a] M. Enzweiler and D. M. Gavrila. A Multi-Level

Mixture-of-Experts Framework for Pedestrian Classification. IEEE

Transactions on Image Processing, in press, 2011.

[Keller2011a] C. G. Keller, M. Enzweiler, M. Rohrbach, D. F. Llorca, C.
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with shape priors. In N. Paragios, Y. Chen, and O. Faugeras, editors,

Mathematical Models in Computer Vision: The Handbook. Springer,

2005.

[13] D. Beymer and T. Poggio. Face recognition from one example view.

Proc. of the International Conference on Computer Vision (ICCV),

pages 500–507, 1995.

[14] G. Borgefors. Distance transformations in digital images. Computer

Vision, Graphics and Image Processing, 34(3):344–371, 1986.

[15] U. Brefeld, P. Geibel, and F. Wysotzki. Support vector machines with

example dependent costs. Proc. of the European Conference on Machine

Learning (ECML), pages 23–34, 2003.

[16] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van

Gool. Robust tracking-by-detection using a detector confidence parti-

cle filter. Proc. of the International Conference on Computer Vision

(ICCV), 2009.

[17] A. Broggi, A. Fascioli, I. Fedriga, A. Tibaldi, and M. Del Rose. Stereo-

based preprocessing for human shape localization in unstructured en-

vironments. Proc. of the IEEE Intelligent Vehicles Symposium, pages

410–415, 2003.

[18] T. P. Cao, G. Deng, and D. Mulligan. Implementation of real-time

pedestrian detection on FPGA. Image and Vision Computing New

Zealand, 2008.

156



Bibliography

[19] M. A. Carreira-Perpinan. Mode-finding for mixtures of Gaussian dis-

tributions. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 22(11):1318–1323, 2000.

[20] H.-P. Chiu, T. Lozano-Perez, and L. Pack Kaelbling. Virtual training

for multi-view object class recognition. Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2007.

[21] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(5):603–619, 2002.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance mod-

els. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(6):681–685, 2001.

[23] T. F. Cootes, S. Marsland, C. J. Twining, K. Smith, and C. J.

Taylor. Groupwise diffeomorphic non-rigid registration for automatic

model building. Proc. of the European Conference on Computer Vision

(ECCV), pages 316–327, 2004.

[24] T. F. Cootes and C. J. Taylor. A mixture model for representing shape

variation. Image and Vision Computing, 17(8):567–574, 1999.

[25] T. F. Cootes and C. J. Taylor. Statistical models of appearance for

computer vision. Technical report, University of Manchester, 2004.

[26] C. Curio, J. Edelbrunner, T. Kalinke, C. Tzomakas, and W. von See-

len. Walking pedestrian recognition. IEEE Transactions on Intelligent

Transportation Systems, 1(3):155–163, 2000.

[27] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-

tection. Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 886–893, 2005.

[28] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented

histograms of flow and appearance. Proc. of the European Conference

on Computer Vision (ECCV), pages 428–441, 2006.

[29] J. Deutscher, A. Blake, and I. D. Reid. Articulated body motion capture

by annealed particle filtering. Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 126–133, 2000.

157



Bibliography

[30] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert. An

empirical study of context in object detection. Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2009.

[31] P. Dollar, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple com-

ponent learning for object detection. Proc. of the European Conference

on Computer Vision (ECCV), pages 211–224, 2008.

[32] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:

A benchmark. Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2009.

[33] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd

ed.). Wiley Interscience, 2000.

[34] M. Enzweiler. Resampling techniques for pedestrian classification. Mas-

ter’s thesis, University of Ulm, Faculty of Computer Science, 2005.

[35] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-

Cue pedestrian classification with partial occlusion handling. Proc.

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2010.

[36] M. Enzweiler and D. M. Gavrila. A mixed generative-discriminative

framework for pedestrian classification. Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2008.

[37] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Sur-

vey and experiments. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 31(12):2179–2195, 2009.

[38] M. Enzweiler and D. M. Gavrila. Integrated pedestrian classification

and orientation estimation. Proc. of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2010.

[39] M. Enzweiler and D. M. Gavrila. A multi-level Mixture-of-Experts

framework for pedestrian classification. IEEE Transactions on Image

Processing, in press, 2011.

[40] M. Enzweiler, P. Kanter, and D. M. Gavrila. Monocular pedestrian

recognition using motion parallax. Proc. of the IEEE Intelligent Vehi-

cles Symposium, pages 792–797, 2008.

158



Bibliography

[41] A. Ess, B. Leibe, and L. van Gool. Depth and appearance for mo-

bile scene analysis. Proc. of the International Conference on Computer

Vision (ICCV), 2007.

[42] F. J Estrada and A. D. Jepson. Benchmarking image segmentation

algorithms. International Journal of Computer Vision, 85(2):167–181,

2009.

[43] L. Fan, K.-K. Sung, and T.-K. Ng. Pedestrian registration in static

images with unconstrained background. Pattern Recognition, 36:1019–

1029, 2003.

[44] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin.

Liblinear: A library for large linear classification. Journal of Machine

Learning Research, 9:1871–1874, 2008.

[45] B. Fardi, I. Seifert, G. Wanielik, and J. Gayko. Motion-based pedes-

trian recognition from a moving vehicle. Proc. of the IEEE Intelligent

Vehicles Symposium, pages 219–224, 2006.

[46] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object

detection with deformable part models. Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2010.

[47] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32:1627–

1645, 2010.

[48] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for ob-

ject recognition. International Journal of Computer Vision, 61(1):55–

79, 2005.

[49] Y. Freund and R. E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Proc. of the European

Conference on Computational Learning Theory, pages 23–37, 1995.

[50] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network

model for a mechanism of visual pattern recognition. IEEE Transac-

tions on Systems, Man, and Cybernetics, 13:826–834, 1983.

159



Bibliography

[51] T. Gandhi and M. M. Trivedi. Pedestrian protection systems: Issues,

survey, and challenges. IEEE Transactions on Intelligent Transporta-

tion Systems, 8(3):413–430, 2007.

[52] T. Gandhi and M. M. Trivedi. Image based estimation of pedestrian

orientation for improving path prediction. Proc. of the IEEE Intelligent

Vehicles Symposium, pages 506–511, 2008.

[53] D. M. Gavrila. The visual analysis of human movement: A survey.

Computer Vision and Image Understanding, 73(1):82–98, 1999.

[54] D. M. Gavrila. A Bayesian, exemplar-based approach to hierarchical

shape matching. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(8):1408–1421, 2007.

[55] D. M. Gavrila and J. Giebel. Virtual sample generation for template-

based shape matching. Proc. of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 676–681, 2001.

[56] D. M. Gavrila and S. Munder. Multi-Cue pedestrian detection and

tracking from a moving vehicle. International Journal of Computer

Vision, 73(1):41–59, 2007.

[57] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few

to many: Illumination cone models for face recognition under variable

lighting and pose. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(6):643–660, 2001.

[58] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey on pedes-

trian detection for advanced driver assistance systems. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(7):1239–1258,

2010.

[59] J. Giebel, D. M. Gavrila, and C. Schnörr. A Bayesian framework for
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[115] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of tex-

ture measures with classification based on feature distributions. Pattern

Recognition, 29:51–59, 1996.

[116] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A

boosted particle filter: Multitarget detection and tracking. Proc. of the

European Conference on Computer Vision (ECCV), pages 28–39, 2004.

[117] A. Oliva and A. Torralba. The role of context in object recognition.

Trends in Cognitive Sciences, 11(12):520–527, 2007.

[118] L. Oliveira, U. Nunes, and P. Peixoto. On exploration of classifier

ensemble synergism in pedestrian detection. IEEE Transactions on

Intelligent Transportation Systems, 11(1):16–27, 2010.

[119] OpenCV Library. http://opencv.willowgarage.com/, 2010.

[120] C. Papageorgiou and T. Poggio. A trainable system for object detection.

International Journal of Computer Vision, 38:15–33, 2000.

[121] PETS Datasets. http://www.cvg.rdg.ac.uk/slides/pets.html,

2007.

[122] V. Philomin, R. Duraiswami, and L. S. Davis. Quasi-random sampling

for condensation. Proc. of the European Conference on Computer Vi-

sion (ECCV), pages 134–149, 2000.

[123] J. C. Platt. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Advances In Large Margin

Classifiers, pages 61–74, 1999.

[124] R. Polana and R. Nelson. Low-level recognition of human motion. IEEE

Workshop on Motion of Non-Rigid and Articulated Objects, pages 77–

92, 1994.

166

http://opencv.willowgarage.com/
http://www.cvg.rdg.ac.uk/slides/pets.html


Bibliography

[125] D. Pomerleau. Neural network vision for robot driving. In The Hand-

book of Brain Theory and Neural Networks. M. Arbib, ed., 1995.

[126] R. Poppe. Vision-based human motion analysis: An overview. Com-

puter Vision and Image Understanding, 108:4–18, 2007.

[127] V. Prisacariu and I. Reid. FastHOG - a real-time GPU implementa-

tion of HOG. Technical Report 2310/09, Department of Engineering

Science, Oxford University, 2009.

[128] D. Ramanan, A. D. Forsyth, and A. Zisserman. Strike a pose: Tracking

people by finding stylized poses. Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 271– 278,

2005.

[129] T. Randen and J. H. Husøy. Filtering for texture classification: A com-

parative study. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(4):291–310, 1999.

[130] M. Rapus, S. Munder, G. Baratoff, and J. Denzler. Pedestrian recogni-

tion using combined low-resolution depth and intensity images. Proc.

of the IEEE Intelligent Vehicles Symposium, 2008.

[131] M. Rohrbach, M. Enzweiler, and D. M. Gavrila. High-level fusion of

depth and intensity for pedestrian classification. Proc. of the DAGM

Symposium on Pattern Recognition, pages 101–110, 2009.

[132] S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active

shape model using kernel PCA. Proc. of the British Machine Vision

Conference (BMVC), pages 483–492, 1999.

[133] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.

[134] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning

shapelet features. Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2007.

[135] W. Schulz, M. Enzweiler, and T. Ehlgen. Pedestrian recognition from a

moving catadioptric camera. Proc. of the DAGM Symposium on Pattern

Recognition, pages 456–465, 2007.

167



Bibliography
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